Powered by Deep Web Technologies
Note: This page contains sample records for the topic "linear accelerator center" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Independent Oversight Inspection, Stanford Linear Accelerator Center -  

Broader source: Energy.gov (indexed) [DOE]

Stanford Linear Accelerator Stanford Linear Accelerator Center - January 2007 Independent Oversight Inspection, Stanford Linear Accelerator Center - January 2007 January 2007 Inspection of Environment, Safety, and Health Programs at the Stanford Linear Accelerator Center The U.S. Department of Energy (DOE) Office of Independent Oversight, within the Office of Health, Safety and Security, conducted an inspection of environment, safety, and health (ES&H) programs at the DOE Stanford Linear Accelerator Center (SLAC) during October and November 2006. The inspection was performed by Independent Oversight's Office of Environment, Safety and Health Evaluations. Since the 2004 Type A electrical accident, SSO and SLAC have made improvements in many aspects of ES&H programs. However, the deficiencies in

2

2011 Annual Planning Summary for Stanford Linear Accelerator Center Site Office (SLAC)  

Broader source: Energy.gov [DOE]

The ongoing and projected Environmental Assessments and Environmental Impact Statements for 2011 and 2012 within the Stanford Linear Accelerator Center Site Office (SLAC SO) (See also Science).

3

Environmental Survey preliminary report, Stanford Linear Accelerator Center, Stanford, California  

SciTech Connect (OSTI)

This report presents the preliminary findings from the first phase of the Survey of the US Department of Energy (DOE) Stanford Linear Accelerator Center (SLAC) at Stanford, California, conducted February 29 through March 4, 1988. The Survey is being conducted by an interdisciplinary team of environmental specialists, led and managed by the Office of Environment, Safety and Health's Office of Environmental Audit. Individual team components are being supplied by a private contractor. The objective of the Survey is to identify environmental problems and areas of environmental risk associated with the SLAC. The Survey covers all environmental media and all areas of environmental regulation and is being performed in accordance with the DOE Environmental Survey Manual. This phase of the Survey involves the review of existing site environmental data, observations of the operations at the SLAC, and interviews with site personnel. The Survey team is developing a Sampling and Analysis Plan to assist in further assessing certain of the environmental problems identified during its on-site activities. The Sampling and Analysis Plan will be executed by a DOE National Laboratory or a support contractor. When completed, the results will be incorporated into the Environmental Survey Interim Report for the SLAC facility. The Interim Report will reflect the final determinations of the SLAC Survey. 95 refs., 25 figs., 25 tabs.

Not Available

1988-07-01T23:59:59.000Z

4

Linear Accelerator  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Linear Accelerator (LINAC) The core of the LANSCE facility is one of the nation's most powerful proton linear accelerators or LINAC. The LINAC at LANSCE has served the nation since...

5

Polarized electrons at the Bates Linear Accelerator Center  

SciTech Connect (OSTI)

A beam of polarized electrons have successfully been injected into the MIT Bates Linear Accelerator and accelerated it to 250 MeV. The intense beam was produced by photoemission from a GaAs crystal. The electron polarization at full energy, as measured by a brief test based on Moller scattering from a magnetized foil, was in excess of 30%. The peak intensity for the 15 ..mu..sec long pulses during the first test was about 2mA, representing about a third of the design value. The pulse rate of the accelerator was reduced to 60 Hz to minimize the total beam on the iron target. In a subsequent test, in which the beam hit a thick carbon target, the facility operated successfully at the full rate of 600 Hz. Under this condition, the average current on target was about 10 ..mu..A.

Souder, P.A.; Kim, D.H.; Kumar, K.; Schulze, M.; Lubell, M.; Patch, J.S.; Wilson, R.; Dodson, G.W.; Dow, K.A.; Flanz, J.

1986-01-01T23:59:59.000Z

6

Independent Oversight Inspection, Stanford Linear Accelerator...  

Broader source: Energy.gov (indexed) [DOE]

Stanford Linear Accelerator Center - January 2007 January 2007 Inspection of Environment, Safety, and Health Programs at the Stanford Linear Accelerator Center This report...

7

Stanford Linear Accelerator Center, Order R2-2005-0022, May 18, 2005  

Broader source: Energy.gov (indexed) [DOE]

CALIFORNIA REGIONAL WATER QUALITY CONTROL BOARD CALIFORNIA REGIONAL WATER QUALITY CONTROL BOARD SAN FRANCISCO BAY REGION ORDER No. R2-2005-0022 RESCISSION of: ORDER No. 85-88, WASTE DISCHARGE REQUIREMENTS and ADOPTION of: SITE CLEANUP REQUIREMENTS for: STANFORD UNIVERSITY and the UNITED STATES DEPARTMENT OF ENERGY for the property located at the: STANFORD LINEAR ACCELERATOR CENTER 2575 SAND HILL ROAD MENLO PARK, SAN MATEO COUNTY FINDINGS: The California Regional Water Quality Control Board, San Francisco Bay Region (Water Board) finds that: 1. Purpose of Order This Order establishes Site Cleanup Requirements for the investigation and remediation of impacted soil and groundwater resulting from historical spills and leaks that have occurred during the course of operations of the Stanford Linear

8

Focusing in Linear Accelerators  

DOE R&D Accomplishments [OSTI]

Review of the theory of focusing in linear accelerators with comments on the incompatibility of phase stability and first-order focusing in a simple accelerator.

McMillan, E. M.

1950-08-24T23:59:59.000Z

9

History of Proton Linear Accelerators  

E-Print Network [OSTI]

much. References 1. Linear Accelerators, edited by P. M .at the 1986 Linear Accelerator Conference, SLAC, Stanford,HISTORY OF PROTON LINEAR ACCELERATORS Luis W. Alvarez TWO-

Alvarez, Luis W.

1987-01-01T23:59:59.000Z

10

Relative Humidity in Limited Streamer Tubes for Stanford Linear Accelerator Center's BaBar Detector  

SciTech Connect (OSTI)

The BABAR Detector at the Stanford Linear Accelerator Center studies the decay of B mesons created in e{sup +}e{sup -} collisions. The outermost layer of the detector, used to detect muons and neutral hadrons created during this process, is being upgraded from Resistive Plate Chambers (RPCs) to Limited Streamer Tubes (LSTs). The standard-size LST tube consists of eight cells, where a silver-plated wire runs down the center of each. A large potential difference is placed between the wires and ground. Gas flows through a series of modules connected with tubing, typically four. LSTs must be carefully tested before installation, as it will be extremely difficult to repair any damage once installed in the detector. In the testing process, the count rate in most modules showed was stable and consistent with cosmic ray rate over an approximately 500 V operating range between 5400 to 5900 V. The count in some modules, however, was shown to unexpectedly spike near the operation point. In general, the modules through which the gas first flows did not show this problem, but those further along the gas chain were much more likely to do so. The suggestion was that this spike was due to higher humidity in the modules furthest from the fresh, dry inflowing gas, and that the water molecules in more humid modules were adversely affecting the modules' performance. This project studied the effect of humidity in the modules, using a small capacitive humidity sensor (Honeywell). The sensor provided a humidity-dependent output voltage, as well as a temperature measurement from a thermistor. A full-size hygrometer (Panametrics) was used for testing and calibrating the Honeywell sensors. First the relative humidity of the air was measured. For the full calibration, a special gas-mixing setup was used, where relative humidity of the LST gas mixture could be varied from almost dry to almost fully saturated. With the sensor calibrated, a set of sensors was used to measure humidity vs. time in the LSTs. The sensors were placed in two sets of LST modules, one gas line flowing through each set. These modules were tested for count rate v. voltage while simultaneously measuring relative humidity in each module. One set produced expected readings, while the other showed the spike in count rate. The relative humidity in the two sets of modules looked very similar, but it rose significantly for modules further along the gas chain.

Lang, M.I.; /MIT; Convery, M.; /SLAC; Menges, W.; /Queen Mary, U. of London

2005-12-15T23:59:59.000Z

11

North Linear Accelerator  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

North Linear Accelerator North Linear Accelerator Building Exterior Beam Enclosure Level Walk to the North Spreader North Recombiner Extras! North Linear Accelerator The North Linear Accelerator is one of the two long, straight sections of Jefferson Lab's accelerator. Electrons gain energy in this section by passing through acceleration cavities. There are 160 cavities in this straightaway, all lined up end to end. That's enough cavities to increase an electron's energy by 400 million volts each time it passes through this section. Electrons can pass though this section as many as five times! The cavities are powered by microwaves that travel down the skinny rectangular pipes from the service buildings above ground. Since the cavities won't work right unless they are kept very cold, they

12

Berkeley Proton Linear Accelerator  

DOE R&D Accomplishments [OSTI]

A linear accelerator, which increases the energy of protons from a 4 Mev Van de Graaff injector, to a final energy of 31.5 Mev, has been constructed. The accelerator consists of a cavity 40 feet long and 39 inches in diameter, excited at resonance in a longitudinal electric mode with a radio-frequency power of about 2.2 x 10{sup 6} watts peak at 202.5 mc. Acceleration is made possible by the introduction of 46 axial "drift tubes" into the cavity, which is designed such that the particles traverse the distance between the centers of successive tubes in one cycle of the r.f. power. The protons are longitudinally stable as in the synchrotron, and are stabilized transversely by the action of converging fields produced by focusing grids. The electrical cavity is constructed like an inverted airplane fuselage and is supported in a vacuum tank. Power is supplied by 9 high powered oscillators fed from a pulse generator of the artificial transmission line type.

Alvarez, L. W.; Bradner, H.; Franck, J.; Gordon, H.; Gow, J. D.; Marshall, L. C.; Oppenheimer, F. F.; Panofsky, W. K. H.; Richman, C.; Woodyard, J. R.

1953-10-13T23:59:59.000Z

13

History of Proton Linear Accelerators  

E-Print Network [OSTI]

the board to show why the accelerator couldn't work. Then atmuch. References 1. Linear Accelerators, edited by P. M .at the 1986 Linear Accelerator Conference, SLAC, Stanford,

Alvarez, Luis W.

1986-01-01T23:59:59.000Z

14

Linear induction accelerator  

DOE Patents [OSTI]

A linear induction accelerator includes a plurality of adder cavities arranged in a series and provided in a structure which is evacuated so that a vacuum inductance is provided between each adder cavity and the structure. An energy storage system for the adder cavities includes a pulsed current source and a respective plurality of bipolar converting networks connected thereto. The bipolar high-voltage, high-repetition-rate square pulse train sets and resets the cavities. 4 figs.

Buttram, M.T.; Ginn, J.W.

1988-06-21T23:59:59.000Z

15

History of Proton Linear Accelerators  

DOE R&D Accomplishments [OSTI]

Some personal recollections are presented that relate to the author`s experience developing linear accelerators, particularly for protons. (LEW)

Alvarez, L. W.

1987-01-00T23:59:59.000Z

16

Repair of overheating linear accelerator  

SciTech Connect (OSTI)

Los Alamos Neutron Science Center (LANSCE) is a proton accelerator that produces high energy particle beams for experiments. These beams include neutrons and protons for diverse uses including radiography, isotope production, small feature study, lattice vibrations and material science. The Drift Tube Linear Accelerator (DTL) is the first portion of a half mile long linear section of accelerator that raises the beam energy from 750 keV to 100 MeV. In its 31st year of operation (2003), the DTL experienced serious issues. The first problem was the inability to maintain resonant frequency at full power. The second problem was increased occurrences of over-temperature failure of cooling hoses. These shortcomings led to an investigation during the 2003 yearly preventative maintenance shutdown that showed evidence of excessive heating: discolored interior tank walls and coper oxide deposition in the cooling circuits. Since overheating was suspected to be caused by compromised heat transfer, improving that was the focus of the repair effort. Investigations revealed copper oxide flow inhibition and iron oxide scale build up. Acid cleaning was implemented with careful attention to protection of the base metal, selection of components to clean and minimization of exposure times. The effort has been very successful in bringing the accelerator through a complete eight month run cycle allowing an incredible array of scientific experiments to be completed this year (2003-2004). This paper will describe the systems, investigation analysis, repair, return to production and conclusion.

Barkley, Walter; Baldwin, William; Bennett, Gloria; Bitteker, Leo; Borden, Michael; Casados, Jeff; Fitzgerald, Daniel; Gorman, Fred; Johnson, Kenneth; Kurennoy, Sergey; Martinez, Alberto; OíHara, James; Perez, Edward; Roller, Brandon; Rybarcyk, Lawrence; Stark, Peter; Stockton, Jerry

2004-01-01T23:59:59.000Z

17

Fermilab | Illinois Accelerator Research Center | Illinois Accelerator  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

photo: IARC photo: IARC As envisioned, the Illinois Accelerator Research Center will provide approximately 83,000 square feet of technical, office and classroom space for scientists and industrial partners. The Illinois Accelerator Research Center (IARC) is a new accelerator research facility being built at Fermi National Accelerator Laboratory. At the Illinois Accelerator Research Center, scientists and engineers from Fermilab, Argonne and Illinois universities will work side by side with industrial partners to research and develop breakthroughs in accelerator science and translate them into applications for the nation's health, wealth and security. Located on the Fermilab campus this 83,000 square foot, state-of-the-art facility will house offices, technical and educational space to study

18

Cast dielectric composite linear accelerator  

DOE Patents [OSTI]

A linear accelerator having cast dielectric composite layers integrally formed with conductor electrodes in a solventless fabrication process, with the cast dielectric composite preferably having a nanoparticle filler in an organic polymer such as a thermosetting resin. By incorporating this cast dielectric composite the dielectric constant of critical insulating layers of the transmission lines of the accelerator are increased while simultaneously maintaining high dielectric strengths for the accelerator.

Sanders, David M. (Livermore, CA); Sampayan, Stephen (Manteca, CA); Slenes, Kirk (Albuquerque, NM); Stoller, H. M. (Albuquerque, NM)

2009-11-10T23:59:59.000Z

19

Preliminary design report of a relativistic-Klystron two-beam-accelerator based power source for a 1 TeV center-of-mass next linear collider  

SciTech Connect (OSTI)

A preliminary point design for an 11.4 GHz power source for a 1 TeV center-of-mass Next Linear Collider (NLC) based on the Relativistic-Klystron Two-Beam-Accelerator (RK-TBA) concept is presented. The present report is the result of a joint LBL-LLNL systems study. consisting of three major thrust areas: physics, engineering, and costing. The new RK-TBA point design, together with our findings in each of these areas, are reported.

Yu, S.; Goffeney, N.; Henestroza, E. [Lawrence Berkeley Lab., CA (United States)] [and others

1995-02-22T23:59:59.000Z

20

Ultra-high vacuum photoelectron linear accelerator  

DOE Patents [OSTI]

An rf linear accelerator for producing an electron beam. The outer wall of the rf cavity of said linear accelerator being perforated to allow gas inside said rf cavity to flow to a pressure chamber surrounding said rf cavity and having means of ultra high vacuum pumping of the cathode of said rf linear accelerator. Said rf linear accelerator is used to accelerate polarized or unpolarized electrons produced by a photocathode, or to accelerate thermally heated electrons produced by a thermionic cathode, or to accelerate rf heated field emission electrons produced by a field emission cathode.

Yu, David U.L.; Luo, Yan

2013-07-16T23:59:59.000Z

Note: This page contains sample records for the topic "linear accelerator center" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Cryogenic technology boosts linear accelerator capability  

Science Journals Connector (OSTI)

Cryogenic technology boosts linear accelerator capability ... Two critical properties of matter at cryogenic temperaturesósuperconductivity and superfluidityóshould open the way for a major advance in electron linear accelerator capability. ...

1968-05-06T23:59:59.000Z

22

Voltage regulation in linear induction accelerators  

DOE Patents [OSTI]

Improvement in voltage regulation in a Linear Induction Accelerator wherein a varistor, such as a metal oxide varistor, is placed in parallel with the beam accelerating cavity and the magnetic core. The non-linear properties of the varistor result in a more stable voltage across the beam accelerating cavity than with a conventional compensating resistance.

Parsons, William M. (Santa Fe, NM)

1992-01-01T23:59:59.000Z

23

Voltage regulation in linear induction accelerators  

DOE Patents [OSTI]

Improvement in voltage regulation in a linear induction accelerator wherein a varistor, such as a metal oxide varistor, is placed in parallel with the beam accelerating cavity and the magnetic core is disclosed. The non-linear properties of the varistor result in a more stable voltage across the beam accelerating cavity than with a conventional compensating resistance. 4 figs.

Parsons, W.M.

1992-12-29T23:59:59.000Z

24

Fermilab | Illinois Accelerator Research Center | Accelerators...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Accelerators and Society Physicists have been inventing new types of accelerators to propel charged particles to higher and higher energies for more than 80 years. Today, besides...

25

Optimization Online - Accelerated Linearized Bregman Method  

E-Print Network [OSTI]

Jun 27, 2011 ... Abstract: In this paper, we propose and analyze an accelerated linearized Bregman (ALB) method for solving the basis pursuit and related†...

Bo Huang

2011-06-27T23:59:59.000Z

26

Terahertz-driven linear electron acceleration  

E-Print Network [OSTI]

The cost, size and availability of electron accelerators is dominated by the achievable accelerating gradient. Conventional high-brightness radio-frequency (RF) accelerating structures operate with 30-50 MeV/m gradients. Electron accelerators driven with optical or infrared sources have demonstrated accelerating gradients orders of magnitude above that achievable with conventional RF structures. However, laser-driven electron accelerators require intense sources and suffer from low bunch charge, sub-micron tolerances and sub-femtosecond timing requirements due to the short wavelength of operation. Here, we demonstrate the first linear acceleration of electrons with keV energy gain using optically-generated terahertz (THz) pulses. THz-driven accelerating structures enable high-gradient electron accelerators with simple accelerating structures, high repetition rates and significant charge per bunch. Increasing the operational frequency of accelerators into the THz band allows for greatly increased accelerating ...

Nanni, Emilio Alessandro; Ravi, Koustuban; Fallahi, Arya; Moriena, Gustavo; Miller, R J Dwayne; Kšrtner, Franz X

2014-01-01T23:59:59.000Z

27

Finding of No Significant Impact for the Construction and Operation of the Linac Coherent Light Source (LCLS) at the Stanford Linear Accelerator Center (SLAC), California (DOE/EA-1426) (2/28/03)  

Broader source: Energy.gov (indexed) [DOE]

U.S. Department of Energy (DOE) U.S. Department of Energy (DOE) Finding of No Significant Impact Construction and Operation of the Linac Coherent Light Source (LCLS) at the Stanford Linear Accelerator Center (SLAC), California. AGENCY: U.S. Department of Energy (DOE) ACTION: Finding of No Significant Impact (FONSI) SUMMARY: The U.S. Department of Energy (DOE) has prepared an Environmental Assessment (EA), DOE/EA-1426, evaluating the proposed action to construct and operate the Linac Coherent Light Source (LCLS) at the Stanford Linear Accelerator Center (SLAC). Based upon the information and analyses in the EA, the DOE has determined that the proposed federal action does not significantly affect the quality of the human environment within the meaning of the National Environmental Policy Act of 1969.

28

High-gradient compact linear accelerator  

DOE Patents [OSTI]

A high-gradient linear accelerator comprises a solid-state stack in a vacuum of five sets of disc-shaped Blumlein modules each having a center hole through which particles are sequentially accelerated. Each Blumlein module is a sandwich of two outer conductive plates that bracket an inner conductive plate positioned between two dielectric plates with different thicknesses and dielectric constants. A third dielectric core in the shape of a hollow cylinder forms a casing down the series of center holes, and it has a dielectric constant different that the two dielectric plates that sandwich the inner conductive plate. In operation, all the inner conductive plates are charged to the same DC potential relative to the outer conductive plates. Next, all the inner conductive plates are simultaneously shorted to the outer conductive plates at the outer diameters. The signal short will propagate to the inner diameters at two different rates in each Blumlein module. A faster wave propagates quicker to the third dielectric core across the dielectric plates with the closer spacing and lower dielectric constant. When the faster wave reaches the inner extents of the outer and inner conductive plates, it reflects back outward and reverses the field in that segment of the dielectric core. All the field segments in the dielectric core are then in unipolar agreement until the slower wave finally propagates to the third dielectric core across the dielectric plates with the wider spacing and higher dielectric constant. During such unipolar agreement, particles in the core are accelerated with gradients that exceed twenty megavolts per meter.

Carder, Bruce M. (205 Rogue River Hwy., Gold Hill, OR 97525)

1998-01-01T23:59:59.000Z

29

High-gradient compact linear accelerator  

DOE Patents [OSTI]

A high-gradient linear accelerator comprises a solid-state stack in a vacuum of five sets of disc-shaped Blumlein modules each having a center hole through which particles are sequentially accelerated. Each Blumlein module is a sandwich of two outer conductive plates that bracket an inner conductive plate positioned between two dielectric plates with different thicknesses and dielectric constants. A third dielectric core in the shape of a hollow cylinder forms a casing down the series of center holes, and it has a dielectric constant different that the two dielectric plates that sandwich the inner conductive plate. In operation, all the inner conductive plates are charged to the same DC potential relative to the outer conductive plates. Next, all the inner conductive plates are simultaneously shorted to the outer conductive plates at the outer diameters. The signal short will propagate to the inner diameters at two different rates in each Blumlein module. A faster wave propagates quicker to the third dielectric core across the dielectric plates with the closer spacing and lower dielectric constant. When the faster wave reaches the inner extents of the outer and inner conductive plates, it reflects back outward and reverses the field in that segment of the dielectric core. All the field segments in the dielectric core are then in unipolar agreement until the slower wave finally propagates to the third dielectric core across the dielectric plates with the wider spacing and higher dielectric constant. During such unipolar agreement, particles in the core are accelerated with gradients that exceed twenty megavolts per meter. 10 figs.

Carder, B.M.

1998-05-26T23:59:59.000Z

30

Linear Accelerator | Advanced Photon Source  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

(MeV). At 450 MeV, the electrons are relativistic: they are traveling at >99.999% of the speed of light, which is 299,792,458 meters second (186,000 milessecond). Photo: Linear...

31

Fermilab | Illinois Accelerator Research Center | Contact IARC  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

nsergei@fnal.gov (630) 840-4397 Chief Technology Officer and Technical Division Head Hasan Padamsee padamsee@fnal.gov (630) 840-5015 Accelerator Physics Center Vladimir Shiltsev...

32

Enhanced dielectric-wall linear accelerator  

DOE Patents [OSTI]

A dielectric-wall linear accelerator is enhanced by a high-voltage, fast e-time switch that includes a pair of electrodes between which are laminated alternating layers of isolated conductors and insulators. A high voltage is placed between the electrodes sufficient to stress the voltage breakdown of the insulator on command. A light trigger, such as a laser, is focused along at least one line along the edge surface of the laminated alternating layers of isolated conductors and insulators extending between the electrodes. The laser is energized to initiate a surface breakdown by a fluence of photons, thus causing the electrical switch to close very promptly. Such insulators and lasers are incorporated in a dielectric wall linear accelerator with Blumlein modules, and phasing is controlled by adjusting the length of fiber optic cables that carry the laser light to the insulator surface. 6 figs.

Sampayan, S.E.; Caporaso, G.J.; Kirbie, H.C.

1998-09-22T23:59:59.000Z

33

Accelerator Center: National symbol or white elephant?  

SciTech Connect (OSTI)

This article discusses the possible future of the National Accelerator Center facility in South Africa. This state of the art facility with a 200-megaelectrol-volt proton cyclotron, carries out important nuclear physics research but takes a huge part of South Africa`s total science research budget.

NONE

1995-06-02T23:59:59.000Z

34

The Klynac: An Integrated Klystron and Linear Accelerator  

SciTech Connect (OSTI)

The Klynac concept integrates an electron gun, a radio frequency (RF) power source, and a coupled-cavity linear accelerator into a single resonant system

Potter, J. M., Schwellenbach, D., Meidinger, A.

2012-08-07T23:59:59.000Z

35

An Accelerated Linearized Alternating Direction Method of Multipliers  

E-Print Network [OSTI]

Feb 12, 2014 ... An Accelerated Linearized Alternating Direction Method of Multipliers. Yuyuan Ouyang(ouyang ***at*** ufl.edu) Yunmei Chen(yun ***at***†...

Yuyuan Ouyang

2014-02-12T23:59:59.000Z

36

2010 Annual Planning Summary for Stanford Linear Accelerator...  

Office of Environmental Management (EM)

Accelerator Center Site Office (SLAC) Annual Planning Summaries briefly describe the status of ongoing NEPA compliance activities, any EAs expected to be prepared in the next 12...

37

Acceleration-field calculation for a structure-based laser-driven linear accelerator  

E-Print Network [OSTI]

Acceleration-field calculation for a structure-based laser-driven linear accelerator Y. C. Huanga for publication 16 April 1998 A laser-driven particle accelerator, scaled to optical wavelengths, has a feature size many orders of magnitude smaller than a radio-frequency accelerator. However, similar to a radio

Byer, Robert L.

38

Drift tube suspension for high intensity linear accelerators  

DOE Patents [OSTI]

The disclosure relates to a drift tube suspension for high intensity linear accelerators. The system comprises a series of box-sections girders independently adjustably mounted on a linear accelerator. A plurality of drift tube holding stems are individually adjustably mounted on each girder.

Liska, Donald J. (Los Alamos, NM); Schamaun, Roger G. (Los Alamos, NM); Clark, Donald C. (Los Alamos, NM); Potter, R. Christopher (Los Alamos, NM); Frank, Joseph A. (Los Alamos, NM)

1982-01-01T23:59:59.000Z

39

Drift tube suspension for high intensity linear accelerators  

DOE Patents [OSTI]

The disclosure relates to a drift tube suspension for high intensity linear accelerators. The system comprises a series of box-sections girders independently adjustably mounted on a linear accelerator. A plurality of drift tube holding stems are individually adjustably mounted on each girder.

Liska, D.J.; Schamaun, R.G.; Clark, D.C.; Potter, R.C.; Frank, J.A.

1980-03-11T23:59:59.000Z

40

Variable-energy drift-tube linear accelerator  

DOE Patents [OSTI]

A linear accelerator system includes a plurality of post-coupled drift-tubes wherein each post coupler is bistably positionable to either of two positions which result in different field distributions. With binary control over a plurality of post couplers, a significant accumlative effect in the resulting field distribution is achieved yielding a variable-energy drift-tube linear accelerator.

Swenson, Donald A. (Los Alamos, NM); Boyd, Jr., Thomas J. (Los Alamos, NM); Potter, James M. (Los Alamos, NM); Stovall, James E. (Los Alamos, NM)

1984-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "linear accelerator center" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Jeffrey S. Oishi Stanford Linear Accelerator Center  

E-Print Network [OSTI]

triangles: integration of resistive term Magnetic helicity measures the linkage of magnetic field lines geometries and equations #12;Disks can create their own fields even when the magnetic Prandtl Number Pm of Natural History Magnetic Helicity and Astrophysical Disk Dynamos #12;Astrophysical disks transport

42

STANFORD LINEAR ACCELERATOR CENTER Stanford University  

E-Print Network [OSTI]

particle beams, and we look forward to interesting results on plasma focusing. Best personal regards

43

Fermilab | Illinois Accelerator Research Center | Fermilab Core...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Refrigeration systems Control, Interlock, and Data acquisition systems VHDL, PLD, PLC, DSP programming Accelerator Engineering Complete accelerator design, fabrication,...

44

Novel Approach to Linear Accelerator Superconducting Magnet System  

SciTech Connect (OSTI)

Superconducting Linear Accelerators include a superconducting magnet system for particle beam transportation that provides the beam focusing and steering. This system consists of a large number of quadrupole magnets and dipole correctors mounted inside or between cryomodules with SCRF cavities. Each magnet has current leads and powered from its own power supply. The paper proposes a novel approach to magnet powering based on using superconducting persistent current switches. A group of magnets is powered from the same power supply through the common, for the group of cryomodules, electrical bus and pair of current leads. Superconducting switches direct the current to the chosen magnet and close the circuit providing the magnet operation in a persistent current mode. Two persistent current switches were fabricated and tested. In the paper also presented the results of magnetic field simulations, decay time constants analysis, and a way of improving quadrupole magnetic center stability. Such approach substantially reduces the magnet system cost and increases the reliability.

Kashikhin, Vladimir; /Fermilab

2011-11-28T23:59:59.000Z

45

Linear Accelerators for Protons: New Developments  

Science Journals Connector (OSTI)

...5 P INT C HIGH EN AC 624 ( 1965 ). CITRON, A, 1966 P LIN AC C 497 ( 1966 ). COURANT, E.D., THE STRONG-FOCUSING SYNCHROTON - A NEW HIGH ENERGY ACCELERATOR, PHYSICAL REVIEW 88 : 1190 ( 1952 ). CURTIS, C.D., 1966 P LIN ACC C 365 ( 1966...

Darragh E. Nagle

1967-07-14T23:59:59.000Z

46

The Klynac: An Integrated Klystron and Linear Accelerator  

SciTech Connect (OSTI)

The Klynac concept integrates an electron gun, a radio frequency (RF) power source, and a coupled-cavity linear accelerator into a single resonant system. The klystron is essentially a conventional klystron structure with an input cavity, some number of intermediate cavities and an output cavity. The accelerator structure is, likewise, a conventional on-axis coupled structure. The uniqueness is the means of coupling the klystron output cavity to the accelerator. The coupler is a resonant coupler rather than an ordinary transmission line. The geometry of such a system need not be coaxial. However, if the klystron and accelerator are coaxial we can eliminate the need for a separate cathode for the accelerator by injecting some of the klystron beam into the accelerator. Such a device can be made cylindrical which is ideal for some applications.

Potter, J. M. [JP Accelerator Works; Schwellenbach, D. [NSTec

2013-04-01T23:59:59.000Z

47

Radio-frequency quadrupole resonator for linear accelerator  

DOE Patents [OSTI]

An RFQ resonator for a linear accelerator having a reduced level of interfering modes and producing a quadrupole mode for focusing, bunching and accelerating beams of heavy charged particles, with the construction being characterized by four elongated resonating rods within a cylinder with the rods being alternately shorted and open electrically to the shell at common ends of the rods to provide an LC parallel resonant circuit when activated by a magnetic field transverse to the longitudinal axis.

Moretti, A.

1982-10-19T23:59:59.000Z

48

Argonne Accelerator Institute  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Useful Links Useful Links Argonne National Laboratory Accelerator Sites Conferences Advanced Photon Source (APS) Argonne Wakefield Accelerator (AWA) Argonne Tandem Linear Accelerator System (ATLAS) High Energy Physics Division RIA (????) Link to JACoW (Joint Accelerator Conferences Website) Fermi National Accelerator Laboratory Fermilab-Argonne Collaboration Accelerator Physics Center Workshops Other Accelerator Institutes Energy Recovering Linacs Center for Advance Studies of Accelerators (Jefferson Labs) Center for Beam Physics (LBNL) Accelerator Test Facility (BNL) The Cockcroft Institute (Daresbury, UK) John Adams Institute (Rutherford, UK) ERL2009 to be held at Cornell ERL2007 ERL2005 DOE Laboratory with Accelerators Fermilab Stanford Linear Accelerator Center Brookhaven National Laboratory

49

Linear induction accelerator and pulse forming networks therefor  

DOE Patents [OSTI]

A linear induction accelerator includes a plurality of adder cavities arranged in a series and provided in a structure which is evacuated so that a vacuum inductance is provided between each adder cavity and the structure. An energy storage system for the adder cavities includes a pulsed current source and a respective plurality of bipolar converting networks connected thereto. The bipolar high-voltage, high-repetition-rate square pulse train sets and resets the cavities.

Buttram, Malcolm T. (Sandia Park, NM); Ginn, Jerry W. (Albuquerque, NM)

1989-01-01T23:59:59.000Z

50

Accelerated Iterative Method for Solving Steady Solutions of Linearized Atmospheric Models  

E-Print Network [OSTI]

Accelerated Iterative Method for Solving Steady Solutions of Linearized Atmospheric Models Masahiro approach, referred to as the accelerated iterative method (AIM), is developed for solving steady state, respectively. For ensuring the accelerated asymptotic convergence of iterative procedure

Watanabe, Masahiro

51

A comparative study of the peripheral doses from a linear accelerator with a multileaf collimator system  

Science Journals Connector (OSTI)

......Oncor Impression linear accelerator on its 6-MV photon...libraries (Evaluated Nuclear Data Files, version...The head included the vacuum envelope assembly for...photon beams on a linear accelerator with multileaf collimator...Peripheral dose from a linear accelerator equipped with multileaf......

Hediye Acun; Ali Zubaroglu; GŲnŁl Kemikler; Ahmet Bozkurt

2014-02-01T23:59:59.000Z

52

RECENT PROGRESS TOWARD A MUON RECIRCULATING LINEAR ACCELERATOR  

SciTech Connect (OSTI)

Both Neutrino Factories (NF) and Muon Colliders (MC) require very rapid acceleration due to the short lifetime of muons. After a capture and bunching section, a linac raises the energy to about 900 MeV, and is followed by one or more Recirculating Linear Accelerators (RLA), possibly followed by a Rapid Cycling Synchnotron (RCS) or Fixed-Field Alternating Gradient (FFAG) ring. A RLA reuses the expensive RF linac section for a number of passes at the price of having to deal with different energies within the same linac. Various techniques including pulsed focusing quadruopoles, beta frequency beating, and multipass arcs have been investigated via simulations to improve the performance and reduce the cost of such RLAs.

Slawomir Bogacz, Vasiliy Morozov, Yves Roblin, Kevin Beard

2012-07-01T23:59:59.000Z

53

Linear particle accelerator with seal structure between electrodes and insulators  

DOE Patents [OSTI]

An electrostatic linear accelerator includes an electrode stack comprised of primary electrodes formed or Kovar and supported by annular glass insulators having the same thermal expansion rate as the electrodes. Each glass insulator is provided with a pair of fused-in Kovar ring inserts which are bonded to the electrodes. Each electrode is designed to define a concavo-convex particle trap so that secondary charged particles generated within the accelerated beam area cannot reach the inner surface of an insulator. Each insulator has a generated inner surface profile which is so configured that the electrical field at this surface contains no significant tangential component. A spark gap trigger assembly is provided, which energizes spark gaps protecting the electrodes affected by over voltage to prevent excessive energy dissipation in the electrode stack.

Broadhurst, John H. (Golden Valley, MN)

1989-01-01T23:59:59.000Z

54

Acceleration in the linear non-scaling fixed-field alternating-gradient accelerator EMMA  

SciTech Connect (OSTI)

In a fixed-field alternating-gradient (FFAG) accelerator, eliminating pulsed magnet operation permits rapid acceleration to synchrotron energies, but with a much higher beam-pulse repetition rate. Conceived in the 1950s, FFAGs are enjoying renewed interest, fuelled by the need to rapidly accelerate unstable muons for future high-energy physics colliders. Until now a 'scaling' principle has been applied to avoid beam blow-up and loss. Removing this restriction produces a new breed of FFAG, a non-scaling variant, allowing powerful advances in machine characteristics. We report on the first non-scaling FFAG, in which orbits are compacted to within 10?mm in radius over an electron momentum range of 12-18 MeV/c. In this strictly linear-gradient FFAG, unstable beam regions are crossed, but acceleration via a novel serpentine channel is so rapid that no significant beam disruption is observed. This result has significant implications for future particle accelerators, particularly muon and high-intensity proton accelerators.

Machida, S.; Barlow, R.; Berg, J.S.; Bliss, N.; Buckley, R.K.; Clarke, J.A.; Craddock, M.K.; D'Arcy, R.; Edgecock, R.; Garland, J.M.; Giboudot, Y.; /Rutherford /Huddersfield U. /Brookhaven /Daresbury /Cockcroft Inst. Accel. Sci. Tech. /TRIUMF /British Columbia U., Vancouver, Dept. Phys. Astron. /University Coll. London /Manchester U. /Brunel U. /ASP, Melbourne

2012-03-01T23:59:59.000Z

55

PHYSICAL REVIEW SPECIAL TOPICS -ACCELERATORS AND BEAMS, VOLUME 5, 011001 (2002) Energy doubler for a linear collider  

E-Print Network [OSTI]

, California 90089 W. B. Mori, C. Joshi, R. Hemker, E. S. Dodd, C. E. Clayton, K. A. Marsh, B. Blue, and S. Wang University of California, Los Angeles, Los Angeles, California 90095 R. Assmann, F. J. Decker, M. Hogan, R. Iverson, and D. Walz Stanford Linear Accelerator Center, Stanford University, Stanford

56

Type A Investigation of the Electrical Arc Injury at the Stanford Linear Accelerator Complex on October 11, 2004  

Broader source: Energy.gov [DOE]

On October 11, 2004, at approximately 11:15 am, a subcontractor electrician working at the Stanford Linear Accelerator Center (SLAC) received serious burn injuries requiring hospitalization due to an electrical arc flash that occurred during the installation of a circuit breaker in an energized 480-Volt (V) electrical panel.

57

Cryogen free superconducting splittable quadrupole magnet for linear accelerators  

SciTech Connect (OSTI)

A new superconducting quadrupole magnet for linear accelerators was fabricated at Fermilab. The magnet is designed to work inside a cryomodule in the space between SCRF cavities. SCRF cavities must be installed inside a very clean room adding issues to the magnet design, and fabrication. The designed magnet has a splittable along the vertical plane configuration and could be installed outside of the clean room around the beam pipe previously connected to neighboring cavities. For more convenient assembly and replacement a 'superferric' magnet configuration with four racetrack type coils was chosen. The magnet does not have a helium vessel and is conductively cooled from the cryomodule LHe supply pipe and a helium gas return pipe. The quadrupole generates 36 T integrated magnetic field gradient, has 600 mm effective length, and the peak gradient is 54 T/m. In this paper the quadrupole magnetic, mechanical, and thermal designs are presented, along with the magnet fabrication overview and first test results.

Kashikhin, V.S.; Andreev, N.; Kerby, J.; Orlov, Y.; Solyak, N.; Tartaglia, M.; Velev, G.; /Fermilab

2011-09-01T23:59:59.000Z

58

A threshold for laser-driven linear particle acceleration in unbounded vacuum  

E-Print Network [OSTI]

We hypothesize that a charged particle in unbounded vacuum can be substantially accelerated by a force linear in the electric field of a propagating electromagnetic wave only if the accelerating field is capable of bringing ...

Wong, Liang Jie

2011-01-01T23:59:59.000Z

59

Linear Fixed-Field Multi-Pass Arcs for Recirculating Linear Accelerators  

SciTech Connect (OSTI)

Recirculating Linear Accelerators (RLA's) provide a compact and efficient way of accelerating particle beams to medium and high energies by reusing the same linac for multiple passes. In the conventional scheme, after each pass, the different energy beams coming out of the linac are separated and directed into appropriate arcs for recirculation, with each pass requiring a separate fixed-energy arc. In this paper we present a concept of an RLA return arc based on linear combined-function magnets, in which two and potentially more consecutive passes with very different energies are transported through the same string of magnets. By adjusting the dipole and quadrupole components of the constituting linear combined-function magnets, the arc is designed to be achromatic and to have zero initial and final reference orbit offsets for all transported beam energies. We demonstrate the concept by developing a design for a droplet-shaped return arc for a dog-bone RLA capable of transporting two beam passes with momenta different by a factor of two. We present the results of tracking simulations of the two passes and lay out the path to end-to-end design and simulation of a complete dog-bone RLA.

V.S. Morozov, S.A. Bogacz, Y.R. Roblin, K.B. Beard

2012-06-01T23:59:59.000Z

60

Stochastic Acceleration in the Galactic Center HESS Source  

E-Print Network [OSTI]

Stochastic acceleration of electrons interacting resonantly with a turbulent magnetic field in a small accretion torus appears to be the likely mechanism responsible for much of Sagittarius A*'s millimeter and shorter wavelength spectrum. The longer wavelength radiation is produced at larger radii by electrons either diffusing from smaller scales or accelerated in situ. An important prediction of this model is the ejection of a significant flux of relativistic protons from a magnetic-field-dominated acceleration site into the wind-shocked medium surrounding the black hole. Recently, several air Cerenkov telescopes, notably HESS, have detected TeV emission from the Galactic center, with characteristics hinting at a p-p-induced pion decay process for the \\gamma-ray emission. Given (1) the size of this acceleration region measured in the radio band and (2) the wind-injected ISM mapped with Chandra using the diffuse X-rays, it is feasible to test the idea that protons accelerated within \\~20 Schwarzschild radii of the black hole produce the TeV emission farther out. We show a fraction of TeV protons scattering about once within ~3 pc of Sagittarius A* and the proton power (~10^37 erg s^-1) produced in concert with the 7 mm radio emission matches the TeV luminosity well. This model explains why the TeV source does not vary on a timescale of a year or less. The particle cascade generated by the p-p scatterings also produces bremsstrahlung, inverse Compton, and synchrotron emission at longer wavelengths from secondary particles. We compare these with current measurements and demonstrate that GLAST will detect this source during its one-year all-sky survey.

Siming Liu; Fulvio Melia; Vahe Petrosian; Marco Fatuzzo

2006-09-16T23:59:59.000Z

Note: This page contains sample records for the topic "linear accelerator center" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

CONSTRAINTS ON LASER-DRIVEN ACCELERATORS FOR A HIGH-ENERGY LINEAR COLLIDER*  

E-Print Network [OSTI]

CONSTRAINTS ON LASER-DRIVEN ACCELERATORS FOR A HIGH-ENERGY LINEAR COLLIDER* J.S. Wurtele and AV on 1 TeV) are applied to free-space laser and laser/plasma accelerators. It is shown that the requirements impose very severe constraints upon the new accelerators-- so severe, that it seems unlikely

Wurtele, Jonathan

62

EA-1904: Linac Coherent Light Source II at Stanford Linear Accelerator  

Broader source: Energy.gov (indexed) [DOE]

04: Linac Coherent Light Source II at Stanford Linear 04: Linac Coherent Light Source II at Stanford Linear Accelerator Laboratory, San Mateo, California EA-1904: Linac Coherent Light Source II at Stanford Linear Accelerator Laboratory, San Mateo, California Summary This EA evaluates the environmental impacts of the proposed construction of the Linac Coherent Light Source at SLAC National Accelerator Laboratory, Menlo Park, California. Public Comment Opportunities None available at this time. For more information, contact: Mr. Dave Osugi DOE SLAC Site Office 2575 Sand Hill Road, MS8A Menlo Park, CA 94025 Electronic mail: dave.osugi@sso.science.doe.gov Documents Available for Download March 7, 2012 EA-1904: Finding of No Significant Impact Linac Coherent Light Source II at Stanford Linear Accelerator Laboratory, San Mateo, CA

63

EA-1904: Linac Coherent Light Source II at Stanford Linear Accelerator  

Broader source: Energy.gov (indexed) [DOE]

4: Linac Coherent Light Source II at Stanford Linear 4: Linac Coherent Light Source II at Stanford Linear Accelerator Laboratory, San Mateo, California EA-1904: Linac Coherent Light Source II at Stanford Linear Accelerator Laboratory, San Mateo, California Summary This EA evaluates the environmental impacts of the proposed construction of the Linac Coherent Light Source at SLAC National Accelerator Laboratory, Menlo Park, California. Public Comment Opportunities None available at this time. For more information, contact: Mr. Dave Osugi DOE SLAC Site Office 2575 Sand Hill Road, MS8A Menlo Park, CA 94025 Electronic mail: dave.osugi@sso.science.doe.gov Documents Available for Download March 7, 2012 EA-1904: Finding of No Significant Impact Linac Coherent Light Source II at Stanford Linear Accelerator Laboratory, San Mateo, CA

64

DOE - Office of Legacy Management -- Yale Heavy Ion Linear Accelerator - CT  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Yale Heavy Ion Linear Accelerator - Yale Heavy Ion Linear Accelerator - CT 05 FUSRAP Considered Sites Site: Yale Heavy Ion Linear Accelerator (CT.05) Eliminated from consideration under FUSRAP Designated Name: Not Designated Alternate Name: None Location: New Haven , Connecticut CT.05-1 Evaluation Year: 1987 CT.05-3 Site Operations: Research and development with solvents. CT.05-1 Site Disposition: Eliminated - Potential for contamination remote based on limited amount of materials handled CT.05-3 Radioactive Materials Handled: Yes Primary Radioactive Materials Handled: Uranium, Radium CT.05-1 Radiological Survey(s): No Site Status: Eliminated from consideration under FUSRAP Also see Documents Related to Yale Heavy Ion Linear Accelerator CT.05-1 - MED Memorandum; To the Files, Thru Ruhoff, et. al.;

65

Proceedings of the Oak Ridge Electron Linear Accelerator (ORELA) Workshop  

SciTech Connect (OSTI)

The Oak Ridge National Laboratory (ORNL) organized a workshop at ORNL July 14-15, 2005, to highlight the unique measurement capabilities of the Oak Ridge Electron Linear Accelerator (ORELA) facility and to emphasize the important role of ORELA for performing differential cross-section measurements in the low-energy resonance region that is important for nuclear applications such as nuclear criticality safety, nuclear reactor and fuel cycle analysis, stockpile stewardship, weapons research, medical diagnosis, and nuclear astrophysics. The ORELA workshop (hereafter referred to as the Workshop) provided the opportunity to exchange ideas and information pertaining to nuclear cross-section measurements and their importance for nuclear applications from a variety of perspectives throughout the U.S. Department of Energy (DOE). Approximately 50 people, representing DOE, universities, and seven U.S. national laboratories, attended the Workshop. The objective of the Workshop was to emphasize the technical community endorsement for ORELA in meeting nuclear data challenges in the years to come. The Workshop further emphasized the need for a better understanding of the gaps in basic differential nuclear measurements and identified the efforts needed to return ORELA to a reliable functional measurement facility. To accomplish the Workshop objective, nuclear data experts from national laboratories and universities were invited to provide talks emphasizing the unique and vital role of the ORELA facility for addressing nuclear data needs. ORELA is operated on a full cost-recovery basis with no single sponsor providing complete base funding for the facility. Consequently, different programmatic sponsors benefit by receiving accurate cross-section data measurements at a reduced cost to their respective programs; however, leveraging support for a complex facility such as ORELA has a distinct disadvantage in that the programmatic funds are only used to support program-specific measurements. As a result, ORELA has not received base funding to support major upgrades and significant maintenance operations that are essential to keep the facility in a state of readiness over the long term. As a result, ORELA has operated on a ''sub-bare-minimum'' budget for the past 10 to 15 years, and the facility has not been maintained at a level for continued reliable operation for the long term. During the Workshop, Jerry McKamy (NNSA/NA-117) used a hospital patient metaphor that accurately depicts the facility status. ORELA is currently in the intensive care unit (ICU) on life support, and refurbishment efforts are needed to get the ''patient'' off life support and out to an ordinary hospital room. McKamy further noted that the DOE NCSP is planning to fund immediate refurbishment tasks ($1.5 M over three years) to help reestablish reliable ORELA operation (i.e., move ORELA from ICU to an ordinary hospital room). Furthermore, the NCSP will work to identify and carry out the actions needed to discharge ORELA from the ''hospital'' over the next five to seven years. In accordance with the Workshop objectives, the technical community publicly endorsed the need for a reliable ORELA facility that can meet current and future nuclear data needs. These Workshop proceedings provide the formal documentation of the technical community endorsement for ORELA. Furthermore, the proceedings highlight the past and current contributions that ORELA has made to the nuclear industry. The Workshop further emphasized the operational and funding problems that currently plague the facility, thereby limiting ORELA's operational reliability. Despite the recent operational problems, ORELA is a uniquely capable measurement facility that must be part of the overall U.S. nuclear data measurement portfolio in order to support current and emerging nuclear applications. The Workshop proceedings further emphasize that ORNL, the technical community, and programmatic sponsors are eager to see ORELA reestablish reliable measurement operation and be readily available to address nuclear data challe

Dunn, M.E.

2006-02-27T23:59:59.000Z

66

Photon Activation Analysis at the Idaho Accelerator Center  

SciTech Connect (OSTI)

Activation methods require minimal sample preparation and provide sufficiently high sensitivity for detecting the vast majority of the elements throughout the periodic table. In this paper we shall discuss photon activation analysis (PAA) at the Idaho Accelerator Center. The process of PAA begins with exposing a sample with photons in the energy range of 10 to 30 MeV. Many nuclides in the sample will become activated and, in turn, these radionuclides will decay by emitting characteristic radiation. These characteristic radiation decays are the telltale signatures for identifying elements which can then be measured with spectrometers such as a high-purity Germanium detector. PAA is not an 'absolute' method, as the samples under investigation must be irradiated along with a reference or calibrating material having a well-known elemental composition. The quantitative evaluation is performed through comparing the two resulting element spectra from the unknown sample and reference material. Besides the obvious advantage of being non-destructive, PAA has minimal contamination issues. Moreover, materials that are difficult to treat chemically, such as certain refractory metals, dusts, ashes, etc., offer no hindrance to the technique of PAA. A further advantage is that PAA is very well suited for investigated minute samples (sub-milligram dust particles) to very large ones (in the multi-kg range). PAA is a robust technique as there are no real limitations concerning the nature of material to be studied.

Wells, Douglas P.; Cole, Philip L. [Idaho Accelerator Center, 1500 Alvin Ricken Drive, Pocatello, ID 83201 (United States); Department of Physics, Idaho State University, Pocatello, Idaho 83209 (United States); Segebade, Christian R. [Idaho Accelerator Center, 1500 Alvin Ricken Drive, Pocatello, ID 83201 (United States)

2010-08-04T23:59:59.000Z

67

Non-perturbative aspects of particle acceleration in non-linear electrodynamics  

E-Print Network [OSTI]

We undertake an investigation of particle acceleration in the context of non-linear electrodynamics. We deduce the maximum energy that an electron can gain in a non-linear density wave in a magnetised plasma, and we show that an electron can `surf' a sufficiently intense Born-Infeld electromagnetic plane wave and be strongly accelerated by the wave. The first result is valid for a large class of physically reasonable modifications of the linear Maxwell equations, whilst the second result exploits the special mathematical structure of Born-Infeld theory.

David A. Burton; Stephen P. Flood; Haibao Wen

2015-01-18T23:59:59.000Z

68

Non-perturbative aspects of particle acceleration in non-linear electrodynamics  

E-Print Network [OSTI]

We undertake an investigation of particle acceleration in the context of non-linear electrodynamics. We deduce the maximum energy that an electron can gain in a non-linear density wave in a magnetised plasma, and we show that an electron can `surf' a sufficiently intense Born-Infeld electromagnetic plane wave and be strongly accelerated by the wave. The first result is valid for a large class of physically reasonable modifications of the linear Maxwell equations, whilst the second result exploits the special mathematical structure of Born-Infeld theory.

Burton, David A; Wen, Haibao

2015-01-01T23:59:59.000Z

69

Superstructure for high current applications in superconducting linear accelerators  

DOE Patents [OSTI]

A superstructure for accelerating charged particles at relativistic speeds. The superstructure consists of two weakly coupled multi-cell subunits equipped with HOM couplers. A beam pipe connects the subunits and an HOM damper is included at the entrance and the exit of each of the subunits. A coupling device feeds rf power into the subunits. The subunits are constructed of niobium and maintained at cryogenic temperatures. The length of the beam pipe between the subunits is selected to provide synchronism between particles and rf fields in both subunits.

Sekutowicz, Jacek (Elbchaussee, DE); Kneisel, Peter (Williamsburg, VA)

2008-03-18T23:59:59.000Z

70

First Director Named for Center for Accelerator Science | Jefferson...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

- is envisioned as a springboard for innovations. In addition to probing the nature of matter, particle accelerators are being used in diverse and rapidly growing fields....

71

The Illinois Accelerator Research Center, or IARC, will  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

partners to develop breakthroughs in accelerator technology and its applications in energy and environment, medicine, industry, national security and discovery science....

72

Klystron Modulator Design for the Los Alamos Neutron Science Center Accelerator  

SciTech Connect (OSTI)

This paper will describe the design of the 44 modulator systems that will be installed to upgrade the Los Alamos Neutron Science Center (LANSCE) accelerator RF system. The klystrons can operate up to 86 kV with a nominal 32 Amp beam current with a 120 Hz repetition rate and 15% duty cycle. The klystrons are a mod-anode design. The modulator is designed with analog feedback control to ensure the klystron beam current is flat-top regulated. To achieve fast switching while maintaining linear feedback control, a grid-clamp, totem-pole modulator configuration is used with an 'on' deck and an 'off' deck. The on and off deck modulators are of identical design and utilize a cascode connected planar triode, cathode driven with a high speed MOSFET. The derived feedback is connected to the planar triode grid to enable the flat-top control. Although modern design approaches suggest solid state designs may be considered, the planar triode (Eimac Y-847B) is very cost effective, is easy to integrate with the existing hardware, and provides a simplified linear feedback control mechanism. The design is very compact and fault tolerant. This paper will review the complete electrical design, operational performance, and system characterization as applied to the LANSCE installation.

Reass, William A. [Los Alamos National Laboratory; Baca, David M. [Los Alamos National Laboratory; Partridge, Edward R. [retired; Rees, Daniel E. [Los Alamos National Laboratory

2012-06-22T23:59:59.000Z

73

E-Print Network 3.0 - accelerator personnel radiatsionnye Sample...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Linear Accelerator Center Collection: Physics 42 Advanced Photon Source Conduct of Operations Manual Summary: . . . . . . . . . . . . . . . . . . . 26 4.5 Beamline...

74

Quasi-linear heating and acceleration in bi-Maxwellian plasmas  

SciTech Connect (OSTI)

Quasi-linear acceleration and heating rates are derived for drifting bi-Maxwellian distribution functions in a general nonrelativistic case for arbitrary wave vectors, propagation angles, and growth/damping rates. The heating rates in a proton-electron plasma due to ion-cyclotron/kinetic Alfvťn and mirror waves for a wide range of wavelengths, directions of propagation, and growth or damping rates are explicitly computed.

Hellinger, Petr [Astronomical Institute and Institute of Atmospheric Physics, AS CR Bocni II/1401, CZ-14131 Prague (Czech Republic)] [Astronomical Institute and Institute of Atmospheric Physics, AS CR Bocni II/1401, CZ-14131 Prague (Czech Republic); Passot, Thierry; Sulem, Pierre-Louis [Universitť de Nice Sophia Antipolis, CNRS, Observatoire de la CŰte d'Azur, BP 4229, 06304 Nice Cedex 4 (France)] [Universitť de Nice Sophia Antipolis, CNRS, Observatoire de la CŰte d'Azur, BP 4229, 06304 Nice Cedex 4 (France); TrŠvnŪ?ek, Pavel M. [Astronomical Institute and Institute of Atmospheric Physics, AS CR Bocni II/1401, CZ-14131 Prague (Czech Republic) [Astronomical Institute and Institute of Atmospheric Physics, AS CR Bocni II/1401, CZ-14131 Prague (Czech Republic); Space Sciences Laboratory, University of Berkeley, 7 Gauss Way, Berkeley, California 94720 (United States)

2013-12-15T23:59:59.000Z

75

Acceleration  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Acceleration Acceleration of porous media simulations on the Cray XE6 platform Kirsten M. Fagnan, Michael Lijewski, George Pau, Nicholas J. Wright Lawrence Berkeley National Laboratory 1 Cyclotron Road Berkeley, CA 94720 May 18, 2011 1 Introduction In this paper we investigate the performance of the Porous Media with Adaptive Mesh Refinment (PMAMR) code which was developed in the Center for Computational Science and Engineering at Lawrence Berkeley National Laboratory. This code is being used to model carbon sequestration and contaminant transport as part of the Advanced Simulation Capability for Environmental Management (ASCEM) project. The goal of the ASCEM project is to better understand and quantify flow and contaminant transport behavior in complex geological systems. It will also address the long-term performance of engineered components including cementitious materials in

76

Assessing Risk in Costing High-energy Accelerators: from Existing Projects to the Future Linear Collider  

E-Print Network [OSTI]

High-energy accelerators are large projects funded by public money, developed over the years and constructed via major industrial contracts both in advanced technology and in more conventional domains such as civil engineering and infrastructure, for which they often constitute one-of markets. Assessing their cost, as well as the risk and uncertainty associated with this assessment is therefore an essential part of project preparation and a justified requirement by the funding agencies. Stemming from the experience with large circular colliders at CERN, LEP and LHC, as well as with the Main Injector, the Tevatron Collider Experiments and Accelerator Upgrades, and the NOvA Experiment at Fermilab, we discuss sources of cost variance and derive cost risk assessment methods applicable to the future linear collider, through its two technical approaches for ILC and CLIC. We also address disparities in cost risk assessment imposed by regional differences in regulations, procedures and practices.

Lebrun, Philippe

2010-01-01T23:59:59.000Z

77

Noninterceptive method to measure longitudinal Twiss parameters of a beam in a hadron linear accelerator using beam position monitors  

DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

A new method of measuring of the rms longitudinal Twiss parameters of a beam in linear accelerators is presented. It is based on using sum signals from beam position monitors sensitive to the longitudinal charge distribution in the bunch. The applicability of the method is demonstrated on the superconducting section of the Oak Ridge Spallation Neutron Source linear accelerator. The results are compared to a direct measurement of the bunch longitudinal profiles using an interceptive bunch shape monitor in the linac warm section of the same accelerator. Limitations of the method are discussed. The method is fast and simple, and can be used to obtain the initial parameters for the longitudinal matching in linear accelerators where interceptive diagnostics are not desirable.

Shishlo, A.; Aleksandrov, A.

2013-06-01T23:59:59.000Z

78

The Dust Accelerator Facility of the Colorado Center for Lunar Dust and Atmospheric Studies  

SciTech Connect (OSTI)

The NASA Lunar Institute's Colorado Center for Lunar Dust and Atmospheric Studies has recently completed the construction of a new experimental facility to study hypervelocity dust impacts. The installation includes a 3 MV Pelletron, accelerating small particles in the size range of 0.1 to few microns to velocities in the range of 1 to 100 km/s. Here we report the capabilities of our facility, and the results of our first experiments.

Horanyi, M.; Colette, A.; Drake, K.; Gruen, E.; Kempf, S.; Munsat, T.; Robertson, S.; Shu, A.; Sternovsky, Z.; Wang, X. [NASA Lunar Science Institute Colorado Center for Lunar Dust and Atmospheric Studies University of Colorado, Boulder, CO, 80309 (United States)

2011-11-29T23:59:59.000Z

79

Neutron source, linear-accelerator fuel enricher and regenerator and associated methods  

DOE Patents [OSTI]

A device for producing fissile material inside of fabricated nuclear elements so that they can be used to produce power in nuclear power reactors. Fuel elements, for example, of a LWR are placed in pressure tubes in a vessel surrounding a liquid lead-bismuth flowing columnar target. A linear-accelerator proton beam enters the side of the vessel and impinges on the dispersed liquid lead-bismuth columns and produces neutrons which radiate through the surrounding pressure tube assembly or blanket containing the nuclear fuel elements. These neutrons are absorbed by the natural fertile uranium-238 elements and are transformed to fissile plutonium-239. The fertile fuel is thus enriched in fissile material to a concentration whereby they can be used in power reactors. After use in the power reactors, dispensed depleted fuel elements can be reinserted into the pressure tubes surrounding the target and the nuclear fuel regenerated for further burning in the power reactor.

Steinberg, Meyer (Huntington Station, NY); Powell, James R. (Shoreham, NY); Takahashi, Hiroshi (Setauket, NY); Grand, Pierre (Blue Point, NY); Kouts, Herbert (Brookhaven, NY)

1982-01-01T23:59:59.000Z

80

A 50-MeV mm-wave electron linear accelerator system for production of tunable short wavelength synchrotron radiation  

SciTech Connect (OSTI)

The Advanced Photon Source (APS) at Argonne in collaboration with the University of Illinois at Chicago and the University of Wisconsin at Madison is developing a new millimeter wavelength, 50-MeV electron linear accelerator system for production of coherent tunable wavelength synchrotron radiation. Modern micromachining techniques based on deep etch x-ray lithography, LIGA (Lithografie, Galvanoformung, Abformung), capable of producing high-aspect ratio structures are being considered for the fabrication of the accelerating components.

Nassiri, A.; Kustom, R.L.; Mills, F.E.; Kang, Y.W.; Matthews, P.J.; Grudzien, D.; Song, J.; Horan, D. [Argonne National Lab., IL (United States). Advanced Photon Source Accelerator Systems Div.; Feinerman, A.D.; Willke, T.L. [Argonne National Lab., IL (United States). Advanced Photon Source Accelerator Systems Div.]|[Univ. of Illinois, Chicago, IL (United States). Dept. of Electrical Engineering and Computer Science; Henke, H. [Argonne National Lab., IL (United States). Advanced Photon Source Accelerator Systems Div.]|[Technische Univ., Berlin (Germany). Inst. fuer Theoretische Electrotechnik

1993-12-31T23:59:59.000Z

Note: This page contains sample records for the topic "linear accelerator center" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Accelerator Research Department BAccelerator Research Department B E163: Laser Acceleration  

E-Print Network [OSTI]

1 Accelerator Research Department BAccelerator Research Department B E163: Laser Acceleration, D. R. Walz Stanford Linear Accelerator Center R. L. Byer, T. Plettner Stanford University * Spokesman. #12;2 Accelerator Research Department B Outline · Introduction ­­ Future requirements for high

Wechsler, Risa H.

82

E-Print Network 3.0 - acceleration linear collider Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

PARTICLES Electrons can be produced by Summary: is invariant Many current particle accelerators are used to collide high energy particle beams. The majority... of accelerators are...

83

A method to simulate linear stability of impulsively accelerated density interfaces in ideal-MHD and gas dynamics  

Science Journals Connector (OSTI)

We present a numerical method to solve the linear stability of impulsively accelerated density interfaces in two dimensions such as those arising in the Richtmyer-Meshkov instability. The method uses an Eulerian approach, and is based on an upwind method ... Keywords: 02.60.Cb, 04.30.Nk, 47.11.Df, 47.20.Cq, 52.57.Fg, Numerical linear stability, Richtmyer-Meshkov, Upwind method

Ravi Samtaney

2009-10-01T23:59:59.000Z

84

3 MV hypervelocity dust accelerator at the Colorado Center for Lunar Dust and Atmospheric Studies  

SciTech Connect (OSTI)

A hypervelocity dust accelerator for studying micrometeorite impacts has been constructed at the Colorado Center for Lunar Dust and Atmospheric Studies (CCLDAS) at the University of Colorado. Based on the Max-Planck-Instituet fuer Kernphysik (MPI-K) accelerator, this accelerator is capable of emitting single particles of a specific mass and velocity selected by the user. The accelerator consists of a 3 MV Pelletron generator with a dust source, four image charge pickup detectors, and two interchangeable target chambers: a large high-vacuum test bed and an ultra-high vacuum impact study chamber. The large test bed is a 1.2 m diameter, 1.5 m long cylindrical vacuum chamber capable of pressures as low as 10{sup -7} torr while the ultra-high vacuum chamber is a 0.75 m diameter, 1.1 m long chamber capable of pressures as low as 10{sup -10} torr. Using iron dust of up to 2 microns in diameter, final velocities have been measured up to 52 km/s. The spread of the dust particles and the effect of electrostatic focusing have been measured using a long exposure CCD and a quartz target. Furthermore, a new technique of particle selection is being developed using real time digital filtering techniques. Signals are digitized and then cross-correlated with a shaped filter, resulting in a suppressed noise floor. Improvements over the MPI-K design, which include a higher operating voltage and digital filtering for detection, increase the available parameter space of dust emitted by the accelerator. The CCLDAS dust facility is a user facility open to the scientific community to assist with instrument calibrations and experiments.

Shu, Anthony; Horanyi, Mihaly; Kempf, Sascha; Thomas, Evan [Colorado Center for Lunar Dust and Atmospheric Studies, Boulder, Colorado 80303 (United States); Department of Physics, University of Colorado, Boulder, Colorado 80309 (United States); Laboratory for Atmospheric and Space Physics, 1234 Innovation Drive, Boulder, Colorado 80303 (United States); Collette, Andrew; Drake, Keith; Northway, Paige [Colorado Center for Lunar Dust and Atmospheric Studies, Boulder, Colorado 80303 (United States); Laboratory for Atmospheric and Space Physics, 1234 Innovation Drive, Boulder, Colorado 80303 (United States); Gruen, Eberhard [Colorado Center for Lunar Dust and Atmospheric Studies, Boulder, Colorado 80303 (United States); MPI fuer Kernphysik, Saupfercheckweg 1, D-69117 Heidelberg (Germany); Mocker, Anna [Colorado Center for Lunar Dust and Atmospheric Studies, Boulder, Colorado 80303 (United States); MPI fuer Kernphysik, Saupfercheckweg 1, D-69117 Heidelberg (Germany); IRS, Universitaet Stuttgart, Pfaffenwaldring 31, D-70569 Stuttgart (Germany); Munsat, Tobin [Colorado Center for Lunar Dust and Atmospheric Studies, Boulder, Colorado 80303 (United States); Department of Physics, University of Colorado, Boulder, Colorado 80309 (United States); Srama, Ralf [MPI fuer Kernphysik, Saupfercheckweg 1, D-69117 Heidelberg (Germany); IRS, Universitaet Stuttgart, Pfaffenwaldring 31, D-70569 Stuttgart (Germany); and others

2012-07-15T23:59:59.000Z

85

Novel X-Ray Imaging Opportunities for the RPI Linear Accelerator's Tunable, Quasi-monochromatic X-ray Source  

E-Print Network [OSTI]

Novel X-Ray Imaging Opportunities for the RPI Linear Accelerator's Tunable, Quasi-monochromatic X-ray of an intense, tunable, polarized, and quasi-monochromatic X-ray source has been ongoing at Rensselaer Polytechnic Institute since 2001 [1, 2, 3, 4, 5, 6]. This X-ray source, known as Parametric X-rays (PXR

Danon, Yaron

86

Thomas Jefferson National Accelerator Facility Site Tour - Accelerator Map  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Counting House Free Electron Accelerator Facility Machine Control Center Physics Storage Building North Linear Accelerator South Linear Accelerator VEPCO Substation Machine Control Center Annex Machine Control Center Annex II North Access Building South Access Building Central Helium Liquefier Injector Hall A Truck Ramp Hall B Truck Ramp Hall C Truck Ramp Experimental Hall A Experimental Hall B Experimental Hall C East Arc West Arc Counting House Free Electron Accelerator Facility Machine Control Center Physics Storage Building North Linear Accelerator South Linear Accelerator VEPCO Substation Machine Control Center Annex Machine Control Center Annex II North Access Building South Access Building Central Helium Liquefier Injector Hall A Truck Ramp Hall B Truck Ramp Hall C Truck Ramp Experimental Hall A Experimental Hall B Experimental Hall C East Arc West Arc Science Education Jefferson Lab Jefferson Lab Home Search Jefferson Lab Contact Jefferson Lab Science Education Home Teacher Resources Student Zone Games and Puzzles Science Cinema Programs and Events Search Education Privacy and Security Notice Jefferson Lab Site Tour Guided Tour Site Map Accelerator Area Map Administrative Area Map Tour Index

87

Standard Test Method for Measuring Dose for Use in Linear Accelerator Pulsed Radiation Effects Tests  

E-Print Network [OSTI]

1.1 This test method covers a calorimetric measurement of the total dose delivered in a single pulse of electrons from an electron linear accelerator or a flash X-ray machine (FXR, e-beam mode) used as an ionizing source in radiation-effects testing. The test method is designed for use with pulses of electrons in the energy range from 10 to 50 MeV and is only valid for cases in which both the calorimeter and the test specimen to be irradiated areďthinĒ compared to the range of these electrons in the materials of which they are constructed. 1.2 The procedure described can be used in those cases in which (1) the dose delivered in a single pulse is 5 Gy (matl) (500 rd (matl)) or greater, or (2) multiple pulses of a lower dose can be delivered in a short time compared to the thermal time constant of the calorimeter. Matl refers to the material of the calorimeter. The minimum dose per pulse that can be acceptably monitored depends on the variables of the particular test, including pulse rate, pulse uniformity...

American Society for Testing and Materials. Philadelphia

2011-01-01T23:59:59.000Z

88

E-Print Network 3.0 - aps linear accelerator Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Collection: Computer Technologies and Information Sciences 6 Particle acceleration in solar flares: observations versus numerical simulations Summary: of stochastic electron...

89

Transverse Beam Emittance Measurements of a 16 MeV Linac at the Idaho Accelerator Center  

SciTech Connect (OSTI)

A beam emittance measurement of the 16 MeV S-band High Repetition Rate Linac (HRRL) was performed at Idaho State University's Idaho Accelerator Center (IAC). The HRRL linac structure was upgraded beyond the capabilities of a typical medical linac so it can achieve a repetition rate of 1 kHz. Measurements of the HRRL transverse beam emittance are underway that will be used to optimize the production of positrons using HRRL's intense electron beam on a tungsten converter. In this paper, we describe a beam imaging system using on an OTR screen and a digital CCD camera, a MATLAB tool to extract beamsize and emittance, detailed measurement procedures, and the measured transverse emittances for an arbitrary beam energy of 15 MeV.

S. Setiniyaz, T.A. Forest, K. Chouffani, Y. Kim, A. Freyberger

2012-07-01T23:59:59.000Z

90

Commissioning of the Varian TrueBeam linear accelerator: A multi-institutional study  

SciTech Connect (OSTI)

Purpose: Latest generation linear accelerators (linacs), i.e., TrueBeam (Varian Medical Systems, Palo Alto, CA) and its stereotactic counterpart, TrueBeam STx, have several unique features, including high-dose-rate flattening-filter-free (FFF) photon modes, reengineered electron modes with new scattering foil geometries, updated imaging hardware/software, and a novel control system. An evaluation of five TrueBeam linacs at three different institutions has been performed and this work reports on the commissioning experience. Methods: Acceptance and commissioning data were analyzed for five TrueBeam linacs equipped with 120 leaf (5 mm width) MLCs at three different institutions. Dosimetric data and mechanical parameters were compared. These included measurements of photon beam profiles (6X, 6XFFF, 10X, 10XFFF, 15X), photon and electron percent depth dose (PDD) curves (6, 9, 12 MeV), relative photon output factors (Scp), electron cone factors, mechanical isocenter accuracy, MLC transmission, and dosimetric leaf gap (DLG). End-to-end testing and IMRT commissioning were also conducted. Results: Gantry/collimator isocentricity measurements were similar (0.27-0.28 mm), with overall couch/gantry/collimator values of 0.46-0.68 mm across the three institutions. Dosimetric data showed good agreement between machines. The average MLC DLGs for 6, 10, and 15 MV photons were 1.33 {+-} 0.23, 1.57 {+-} 0.24, and 1.61 {+-} 0.26 mm, respectively. 6XFFF and 10XFFF modes had average DLGs of 1.16 {+-} 0.22 and 1.44 {+-} 0.30 mm, respectively. MLC transmission showed minimal variation across the three institutions, with the standard deviation <0.2% for all linacs. Photon and electron PDDs were comparable for all energies. 6, 10, and 15 MV photon beam quality, %dd(10){sub x} varied less than 0.3% for all linacs. Output factors (Scp) and electron cone factors agreed within 0.27%, on average; largest variations were observed for small field sizes (1.2% coefficient of variation, 10 MV, 2 Multiplication-Sign 2 cm{sup 2}) and small cone sizes (<1% coefficient of variation, 6 Multiplication-Sign 6 cm{sup 2} cone), respectively. Conclusions: Overall, excellent agreement was observed in TrueBeam commissioning data. This set of multi-institutional data can provide comparison data to others embarking on TrueBeam commissioning, ultimately improving the safety and quality of beam commissioning.

Glide-Hurst, C.; Bellon, M.; Wen, N.; Zhao, B.; Chetty, I. J. [Department of Radiation Oncology, Henry Ford Health Systems, Detroit, Michigan 48202 (United States); Foster, R.; Speiser, M.; Solberg, T. [Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, Texas 75235 (United States); Altunbas, C.; Westerly, D.; Miften, M. [Department of Radiation Oncology, University of Colorado School of Medicine, Aurora, Colorado 80045 (United States); Altman, M. [Department of Radiation Oncology, Washington University School of Medicine, St. Louis, Missouri 63110 (United States)

2013-03-15T23:59:59.000Z

91

SuperHILAC: Heavy-ion linear accelerator: Summary of capabilities, facilities, operations, and research  

SciTech Connect (OSTI)

This report consists of a description of the accelerator facilities and a review of research programs being conducted there. Lists of SuperHILAC researchers and publications are also given.

McDonald, R.J. (ed.)

1987-09-01T23:59:59.000Z

92

Design and Factory Test of the E /E- Frascati Linear Accelerator for DAFNE  

SciTech Connect (OSTI)

The electron-positron accelerator for the DAFNE project has been built and is in test at Titan Beta in Dublin, CA. This S-Band RF linac system utilizes four 45 MW sledded klystrons and 16-3 m accelerating structures to achieve the required performance. It delivers a 4 ampere electron beam to the positron converter and accelerates the resulting positrons to 550 MeV. The converter design uses a 4.3T pulsed tapered flux compressor along with a pseudo-adiabatic tapered field to a 5 KG solenoid over the first two positron accelerating sections. Quadrupole focusing is used after 100 MeV. The system performance is given in Table 1. This paper briefly describes the design and development of the various subassemblies in this system and gives the initial factory test data.

Anamkath, H.; Lyons, S.; Nett, D.; Treas, P.; Whitham, K.; Zante, T.; /Titan Beta, Dublin; Miller, R.; /Titan Beta, Dublin /SLAC; Boni, R.; Hsieh, H.; Sannibale, F.; Vescovi, M.; Vignola, G.; /Frascati

2011-11-28T23:59:59.000Z

93

Linear accelerator design study with direct plasma injection scheme for warm dense matter  

SciTech Connect (OSTI)

Warm Dense Matter (WDM) is a challenging science field, which is related to heavy ion inertial fusion and planetary science. It is difficult to expect the behavior because the state with high density and low temperature is completely different from ideal condition. The well-defined WDM generation is required to understand it. Moderate energy ion beams ({approx} MeV/u) slightly above Bragg peak is an advantageous method for WDM because of the uniform energy deposition. Direct Plasma Injection Scheme (DPIS) with a Interdigital H-mode (IH) accelerator has a potential for the beam parameter. We show feasible parameters of the IH accelerator for WDM. WDM physics is a challenging science and is strongly related to Heavy Ion Fusion science. WDM formation by Direct Plasma Injection Scheme (DPIS) with IH accelerator, which is a compact system, is proposed. Feasible parameters for IH accelerator are shown for WDM state. These represents that DPIS with IH accelerator can access a different parameter region of WDM.

Kondo, K.; Kanesue, T; Okamura, M.

2011-03-28T23:59:59.000Z

94

Doses to patients from photoneutrons emitted in a medical linear accelerator  

Science Journals Connector (OSTI)

......yahoo.com 1 Radiation and Isotope Center, Khartoum, PO Box...40 40 cm2. Author Type of determination FS 10 10 cm2, 18 MV FS 40...and a paired magnesium and boron coated magnesium ionization...transport. | Radiation and Isotope Center, Khartoum, PO Box......

M. K. Saeed; O. Moustafa; O. A. Yasin; C. Tuniz; F. I. Habbani

2009-02-01T23:59:59.000Z

95

2010 Annual Planning Summary for Stanford Linear Accelerator Center Site Office (SLAC)  

Broader source: Energy.gov [DOE]

Annual Planning Summaries briefly describe the status of ongoing NEPA compliance activities, any EAs expected to be prepared in the next 12 months, any EISs expected to be prepared in the next 24...

96

Alignment tolerance of accelerating structures and corrections for future linear colliders  

SciTech Connect (OSTI)

The alignment tolerance of accelerating structures is estimated by tracking simulations. Both single-bunch and multi-bunch effects are taken into account. Correction schemes for controlling the single and multi-bunch emittance growth in the case of large misalignment are also tested by simulations.

Kubo, K.; Adolphsen, C.; Bane, K.L.F.; Raubenheimer, T.O.; Thompson, K.A.

1995-06-01T23:59:59.000Z

97

Non-Linear Transmission Line (NLTL) Microwave Source Lecture Notes the United States Particle Accelerator School  

SciTech Connect (OSTI)

We will quickly go through the history of the non-linear transmission lines (NLTLs). We will describe how they work, how they are modeled and how they are designed. Note that the field of high power, NLTL microwave sources is still under development, so this is just a snap shot of their current state. Topics discussed are: (1) Introduction to solitons and the KdV equation; (2) The lumped element non-linear transmission line; (3) Solution of the KdV equation; (4) Non-linear transmission lines at microwave frequencies; (5) Numerical methods for NLTL analysis; (6) Unipolar versus bipolar input; (7) High power NLTL pioneers; (8) Resistive versus reactive load; (9) Non-lineaer dielectrics; and (10) Effect of losses.

Russell, Steven J. [Los Alamos National Laboratory; Carlsten, Bruce E. [Los Alamos National Laboratory

2012-06-26T23:59:59.000Z

98

Doses to patients from photoneutrons emitted in a medical linear accelerator  

Science Journals Connector (OSTI)

......Center, Khartoum, PO Box 846, Sudan 2 Faculty of Science and Technology...Khartoum, PO Box 12702, Sudan 3 ICTP, Strada Costiera 11...Khartoum, Khartoum, PO Box 321, Sudan This study of doses to patients...sizes and they noticed that the thermal neutron dose equivalent contributes......

M. K. Saeed; O. Moustafa; O. A. Yasin; C. Tuniz; F. I. Habbani

2009-02-01T23:59:59.000Z

99

3-D Model of Broadband Emission from Supernova Remnants Undergoing Non-linear Diffusive Shock Acceleration  

SciTech Connect (OSTI)

We present a 3-dimensional model of supernova remnants (SNRs) where the hydrodynamical evolution of the remnant is modeled consistently with nonlinear diffusive shock acceleration occurring at the outer blast wave. The model includes particle escape and diffusion outside of the forward shock, and particle interactions with arbitrary distributions of external ambient material, such as molecular clouds. We include synchrotron emission and cooling, bremsstrahlung radiation, neutral pion production, inverse-Compton (IC), and Coulomb energy-loss. Boardband spectra have been calculated for typical parameters including dense regions of gas external to a 1000 year old SNR. In this paper, we describe the details of our model but do not attempt a detailed fit to any specific remnant. We also do not include magnetic field amplification (MFA), even though this effect may be important in some young remnants. In this first presentation of the model we don't attempt a detailed fit to any specific remnant. Our aim is to develop a flexible platform, which can be generalized to include effects such as MFA, and which can be easily adapted to various SNR environments, including Type Ia SNRs, which explode in a constant density medium, and Type II SNRs, which explode in a pre-supernova wind. When applied to a specific SNR, our model will predict cosmic-ray spectra and multi-wavelength morphology in projected images for instruments with varying spatial and spectral resolutions. We show examples of these spectra and images and emphasize the importance of measurements in the hard X-ray, GeV, and TeV gamma-ray bands for investigating key ingredients in the acceleration mechanism, and for deducing whether or not TeV emission is produced by IC from electrons or pion-decay from protons.

Lee, Shiu-Hang; Kamae, Tuneyoshi; Ellison, Donald C.

2008-07-02T23:59:59.000Z

100

E-157: A 1.4-m-long plasma wake field acceleration experiment using a 30 GeV electron beam from the Stanford Linear Accelerator  

E-Print Network [OSTI]

-long bunch is propagated through a 1.4-m-long lithium plasma of density up to 2 1014 e /cm3 . The initial- modulated wake field accelerator7 have accelerated electrons with impressive gradients, much in excess of 1 acceleration with gradients in excess of 100 MeV/m over a distance greater than 1 m. The experiment called E

Note: This page contains sample records for the topic "linear accelerator center" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Linear Collider Collaboration Tech Notes  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Notes Notes LCC - 0018, 15/06/99 Rev B, June 2002 Correct Account of RF Deflections in Linac Acceleration June 15, 1999 G.V. Stupakov Stanford Linear Accelerator Center Stanford, California Abstract: During acceleration in the linac structure, the beam not only increases its longitudinal momentum, but also experiences a transverse kick from the accelerating mode which is linear in accelerating gradient. This effect is neglected in such computer codes as LIAR and TRANSPORT. We derived the Hamiltonian equations that describe the effect of RF deflection into the acceleration process and included it into the computational engine of LIAR. By comparing orbits for the NLC main linac, we found that the difference between the two algorithms is about 10\%. The effect will be more pronounced at smaller

102

Image-guided radiotherapy for prostate cancer by CT-linear accelerator combination: Prostate movements and dosimetric considerations  

SciTech Connect (OSTI)

Purpose: Multiple studies have indicated that the prostate is not stationary and can move as much as 2 cm. Such prostate movements are problematic for intensity-modulated radiotherapy, with its associated tight margins and dose escalation. Because of these intrinsic daily uncertainties, a relative generous 'margin' is necessary to avoid marginal misses. Using the CT-linear accelerator combination in the treatment suite (Primatom, Siemens), we found that the daily intrinsic prostate movements can be easily corrected before each radiotherapy session. Dosimetric calculations were performed to evaluate the amount of discrepancy of dose to the target if no correction was done for prostate movement. Methods and materials: The Primatom consists of a Siemens Somatom CT scanner and a Siemens Primus linear accelerator installed in the same treatment suite and sharing a common table/couch. The patient is scanned by the CT scanner, which is movable on a pair of horizontal rails. During scanning, the couch does not move. The exact location of the prostate, seminal vesicles, and rectum are identified and localized. These positions are then compared with the planned positions. The daily movement of the prostate and rectum were corrected for and a new isocenter derived. The patient was treated immediately using the new isocenter. Results: Of the 108 patients with primary prostate cancer studied, 540 consecutive daily CT scans were performed during the last part of the cone down treatment. Of the 540 scans, 46% required no isocenter adjustments for the AP-PA direction, 54% required a shift of {>=}3 mm, 44% required a shift of >5 mm, and 15% required a shift of >10 mm. In the superoinferior direction, 27% required a shift of >3 mm, 25% required a shift of >5 mm, and 4% required a shift of >10 mm. In the right-left direction, 34% required a shift of >3 mm, 24% required a shift of >5 mm, and 5% required a shift of >10 mm. Dosimetric calculations for a typical case of prostate cancer using intensity-modulated radiotherapy with 5-mm margin coverage from the clinical target volume (prostate gland) was performed. With a posterior shift of 10 mm for the prostate, the dose coverage dropped from 95-107% to 71-100% coverage. Conclusion: We have described a technique that corrects for the daily prostate motion, allowing for extremely precise prostate cancer treatment. This technique has significant implications for dose escalation and for decreasing rectal complications in the treatment of prostate cancer.

Wong, James R. [Carol G. Simon Cancer Center, Morristown Memorial Hospital/Atlantic Health System, Morristown, NJ (United States); Department of Radiation Oncology, New York Presbyterian Hospital, Columbia University College of Physicians and Surgeons, New York, NY (United States); Grimm, Lisa [Carol G. Simon Cancer Center, Morristown Memorial Hospital/Atlantic Health System, Morristown, NJ (United States); Uematsu, Minoru [National Defense Medical College, Namiki, Tokorozawa (Japan); Oren, Reva [Carol G. Simon Cancer Center, Morristown Memorial Hospital/Atlantic Health System, Morristown, NJ (United States); Cheng, C.W. [Carol G. Simon Cancer Center, Morristown Memorial Hospital/Atlantic Health System, Morristown, NJ (United States); Merrick, Scott; Schiff, Peter [Department of Radiation Oncology, New York Presbyterian Hospital, Columbia University College of Physicians and Surgeons, New York, NY (United States)

2005-02-01T23:59:59.000Z

103

Three-dimensional, Time-Resolved, Intrafraction Motion Monitoring Throughout Stereotactic Liver Radiation Therapy on a Conventional Linear Accelerator  

SciTech Connect (OSTI)

Purpose: To investigate the time-resolved 3-dimensional (3D) internal motion throughout stereotactic body radiation therapy (SBRT) of tumors in the liver using standard x-ray imagers of a conventional linear accelerator. Methods and Materials: Ten patients with implanted gold markers received 11 treatment courses of 3-fraction SBRT in a stereotactic body-frame on a conventional linear accelerator. Two pretreatment and 1 posttreatment cone-beam computed tomography (CBCT) scans were acquired during each fraction. The CBCT projection images were used to estimate the internal 3D marker motion during CBCT acquisition with 11-Hz resolution by a monoscopic probability-based method. Throughout the treatment delivery by conformal or volumetric modulated arc fields, simultaneous MV portal imaging (8 Hz) and orthogonal kV imaging (5 Hz) were applied to determine the 3D marker motion using either MV/kV triangulation or the monoscopic method when marker segmentation was unachievable in either MV or kV images. The accuracy of monoscopic motion estimation was quantified by also applying monoscopic estimation as a test for all treatments during which MV/kV triangulation was possible. Results: Root-mean-square deviations between monoscopic estimations and triangulations were less than 1.0 mm. The mean 3D intrafraction and intrafield motion ranges during liver SBRT were 17.6 mm (range, 5.6-39.5 mm) and 11.3 mm (2.1-35.5mm), respectively. The risk of large intrafraction baseline shifts correlated with intrafield respiratory motion range. The mean 3D intrafractional marker displacement relative to the first CBCT was 3.4 mm (range, 0.7-14.5 mm). The 3D displacements exceeded 8.8 mm 10% of the time. Conclusions: Highly detailed time-resolved internal 3D motion was determined throughout liver SBRT using standard imaging equipment. Considerable intrafraction motion was observed. The demonstrated methods provide a widely available approach for motion monitoring that, combined with motion-adaptive treatment techniques, has the potential to improve the accuracy of radiation therapy for moving targets.

Worm, Esben S., E-mail: esbeworm@rm.dk [Department of Oncology, Aarhus University Hospital, Aarhus (Denmark); Institute of Clinical Medicine, Aarhus University (Denmark); HÝyer, Morten; Fledelius, Walter [Department of Oncology, Aarhus University Hospital, Aarhus (Denmark)] [Department of Oncology, Aarhus University Hospital, Aarhus (Denmark); Poulsen, Per R. [Department of Oncology, Aarhus University Hospital, Aarhus (Denmark) [Department of Oncology, Aarhus University Hospital, Aarhus (Denmark); Institute of Clinical Medicine, Aarhus University (Denmark)

2013-05-01T23:59:59.000Z

104

Electron Acceleration around the Supermassive Black Hole at the Galactic Center  

E-Print Network [OSTI]

The recent detection of variable infrared emission from Sagittarius A*, combined with its previously observed flare activity in X-rays, provides compelling evidence that at least a portion of this object's emission is produced by nonthermal electrons. We show here that acceleration of electrons by plasma wave turbulence in hot gases near the black hole's event horizon can account both for Sagittarius A*'s mm and shorter wavelengths emission in the quiescent state, and for the infrared and X-ray flares, induced either via an enhancement of the mass accretion rate onto the black hole or by a reorganization of the magnetic field coupled to the accretion gas. The acceleration model proposed here produces distinct flare spectra that may be compared with future coordinated multi-wavelength observations. We further suggest that the diffusion of high energy electrons away from the acceleration site toward larger radii might be able to account for the observed characteristics of Sagittarius A*'s emission at cm and longer wavelengths.

Siming Liu; Vahe' Petrosian; Fulvio Melia

2004-03-19T23:59:59.000Z

105

Experience of micromultileaf collimator linear accelerator based single fraction stereotactic radiosurgery: Tumor dose inhomogeneity, conformity, and dose fall off  

SciTech Connect (OSTI)

Purpose: Sharp dose fall off outside a tumor is essential for high dose single fraction stereotactic radiosurgery (SRS) plans. This study explores the relationship among tumor dose inhomogeneity, conformity, and dose fall off in normal tissues for micromultileaf collimator (mMLC) linear accelerator (LINAC) based cranial SRS plans. Methods: Between January 2007 and July 2009, 65 patients with single cranial lesions were treated with LINAC-based SRS. Among them, tumors had maximum diameters {<=}20 mm: 31; between 20 and 30 mm: 21; and >30 mm: 13. All patients were treated with 6 MV photons on a Trilogy linear accelerator (Varian Medical Systems, Palo Alto, CA) with a tertiary m3 high-resolution mMLC (Brainlab, Feldkirchen, Germany), using either noncoplanar conformal fixed fields or dynamic conformal arcs. The authors also created retrospective study plans with identical beam arrangement as the treated plan but with different tumor dose inhomogeneity by varying the beam margins around the planning target volume (PTV). All retrospective study plans were normalized so that the minimum PTV dose was the prescription dose (PD). Isocenter dose, mean PTV dose, RTOG conformity index (CI), RTOG homogeneity index (HI), dose gradient index R{sub 50}-R{sub 100} (defined as the difference between equivalent sphere radius of 50% isodose volume and prescription isodose volume), and normal tissue volume (as a ratio to PTV volume) receiving 50% prescription dose (NTV{sub 50}) were calculated. Results: HI was inversely related to the beam margins around the PTV. CI had a ''V'' shaped relationship with HI, reaching a minimum when HI was approximately 1.3. Isocenter dose and mean PTV dose (as percentage of PD) increased linearly with HI. R{sub 50}-R{sub 100} and NTV{sub 50} initially declined with HI and then reached a plateau when HI was approximately 1.3. These trends also held when tumors were grouped according to their maximum diameters. The smallest tumor group (maximum diameters {<=}20 mm) had the most HI dependence for dose fall off. For treated plans, CI averaged 2.55{+-}0.79 with HI 1.23{+-}0.06; the average R{sub 50}-R{sub 100} was 0.41{+-}0.08, 0.55{+-}0.10, and 0.65{+-}0.09 cm, respectively, for tumors {<=}20 mm, between 20 and 30 mm, and >30 mm. Conclusions: Tumor dose inhomogeneity can be used as an important and convenient parameter to evaluate mMLC LINAC-based SRS plans. Sharp dose fall off in the normal tissue is achieved with sufficiently high tumor dose inhomogeneity. By adjusting beam margins, a homogeneity index of approximately 1.3 would provide best conformity for the authors' SRS system.

Hong, Linda X.; Garg, Madhur; Lasala, Patrick; Kim, Mimi; Mah, Dennis; Chen, Chin-Cheng; Yaparpalvi, Ravindra; Mynampati, Dinesh; Kuo, Hsiang-Chi; Guha, Chandan; Kalnicki, Shalom [Department of Radiation Oncology, Montefiore Medical Center and Albert Einstein College of Medicine, Bronx, New York 10461 (United States); Department of Neurosurgery, Montefiore Medical Center and Albert Einstein College of Medicine, Bronx, New York 10461 (United States); Department of Epidemiology and Population Health, Montefiore Medical Center and Albert Einstein College of Medicine, Bronx, New York 10461 (United States); Department of Radiation Oncology, Montefiore Medical Center and Albert Einstein College of Medicine, Bronx, New York 10461 (United States)

2011-03-15T23:59:59.000Z

106

Natural and Accelerated Bioremediation Research (NABIR) Field Research Center (FRC), Oak Ridge Tennessee  

SciTech Connect (OSTI)

The Field Research Center (FRC) in Oak Ridge (Fig. 1), Tennessee supports the U.S. Department of Energy's (DOE's) Environmental Remediation Sciences Program (ERSP) goal of understanding the complex physical, chemical, and biological properties of contaminated sites for new solutions to environmental remediation and long-term stewardship. In particular, the FRC provides the opportunity for researchers to conduct studies that promote the understanding of the processes that influence the transport and fate of subsurface contaminants, the effectiveness and long-term consequences of existing remediation options, and the development of improved remediation strategies. It offers a series of contaminated sites around the former S-3 Waste Disposal Ponds and uncontaminated sites in which investigators and students conduct field research or collect samples for laboratory analysis. FRC research also spurs the development of new and improved characterization and monitoring tools. Site specific knowledge gained from research conducted at the FRC also provides the DOE-Oak Ridge Office of Environmental Management (EM) the critical scientific knowledge needed to make cleanup decisions for the S-3 Ponds and other sites on the Oak Ridge Reservation (ORR).

Watson, David; Jardine, Philip; Gu, Baohua; Parker, Jack; Brandt, Craig; Holladay, Susan; Wolfe, Amy; Bogle, Mary Anna; Lowe, Kenneth; Hyder, Kirk

2006-06-01T23:59:59.000Z

107

Improvements in dose accuracy delivered with static-MLC IMRT on an integrated linear accelerator control system  

SciTech Connect (OSTI)

Purpose: Dose accuracy has been shown to vary with dose per segment and dose rate when delivered with static multileaf collimator (SMLC) intensity modulated radiation therapy (IMRT) by Varian C-series MLC controllers. The authors investigated the impact of monitor units (MUs) per segment and dose rate on the dose delivery accuracy of SMLC-IMRT fields on a Varian TrueBeam linear accelerator (LINAC), which delivers dose and manages motion of all components using a single integrated controller. Methods: An SMLC sequence was created consisting of ten identical 10 x 10 cm{sup 2} segments with identical MUs. Beam holding between segments was achieved by moving one out-of-field MLC leaf pair. Measurements were repeated for various combinations of MU/segment ranging from 1 to 40 and dose rates of 100-600 MU/min for a 6 MV photon beam (6X) and dose rates of 800-2400 MU/min for a 10 MV flattening-filter free photon (10XFFF) beam. All measurements were made with a Farmer (0.6 cm{sup 3}) ionization chamber placed at the isocenter in a solid-water phantom at 10 cm depth. The measurements were performed on two Varian LINACs: C-series Trilogy and TrueBeam. Each sequence was delivered three times and the dose readings for the corresponding segments were averaged. The effects of MU/segment, dose rate, and LINAC type on the relative dose variation ({Delta}{sub i}) were compared using F-tests ({alpha} = 0.05). Results: On the Trilogy, large {Delta}{sub i} was observed in small MU segments: at 1 MU/segment, the maximum {Delta}{sub i} was 10.1% and 57.9% at 100 MU/min and 600 MU/min, respectively. Also, the first segment of each sequence consistently overshot ({Delta}{sub i} > 0), while the last segment consistently undershot ({Delta}{sub i} < 0). On the TrueBeam, at 1 MU/segment, {Delta}{sub i} ranged from 3.0% to 4.5% at 100 and 600 MU/min; no obvious overshoot/undershoot trend was observed. F-tests showed statistically significant difference [(1 - {beta}) =1.0000] between the Trilogy and the TrueBeam up to 10 MU/segment, at all dose rates greater than 100 MU/min. The linear trend of decreasing dose accuracy as a function of increasing dose rate on the Trilogy is no longer apparent on TrueBeam, even for dose rates as high as 2400 MU/min. Dose inaccuracy averaged over all ten segments in each beam delivery sequence was larger for Trilogy than TrueBeam, with the largest discrepancy (0.2% vs 3%) occurring for 1 MU/segment beams at both 300 and 600 MU/min. Conclusions: Earlier generations of Varian LINACs exhibited large dose variations for small MU segments in SMLC-IMRT delivery. Our results confirmed these findings. The dose delivery accuracy for SMLC-IMRT is significantly improved on TrueBeam compared to Trilogy for every combination of low MU/segment (1-10) and high dose rate (200-600 MU/min), in part due to the faster sampling rate (100 vs 20 Hz) and enhanced electronic integration of the MLC controller with the LINAC. SMLC-IMRT can be implemented on TrueBeam with higher dose accuracy per beam ({+-}0.2% vs {+-}3%) than previous generations of Varian C-series LINACs for 1 MU/segment delivered at 600 MU/min).

Li Ji; Wiersma, Rodney D.; Stepaniak, Christopher J.; Farrey, Karl J.; Al-Hallaq, Hania A. [Department of Radiation and Cellular Oncology, University of Chicago, 5758 South Maryland Avenue, MC9006, Chicago, Illinois 60637 (United States)

2012-05-15T23:59:59.000Z

108

Type B Accident Investigation of the January 28, 2003, Fall and Injury at the Stanford Linear Accelerator Center  

Broader source: Energy.gov [DOE]

This report is an independent product of the Type B Accident Investigation Board appointed by John S. Muhlestein, Director, Stanford Site Office (DOE/SC), U.S. Department of Energy.

109

Beam dynamics study of a 30?MeV electron linear accelerator to drive a neutron source  

SciTech Connect (OSTI)

An experimental neutron facility based on 32?MeV/18.47?kW electron linac has been studied by means of PARMELA simulation code. Beam dynamics study for a traveling wave constant gradient electron accelerator is carried out to reach the preferential operation parameters (E?=?30?MeV, P?=?18?kW, dE/E?accelerating columns. A disk-loaded, on-axis-coupled, 2?/3-mode type accelerating rf cavity is considered for this linac. After numerous optimizations of linac parameters, 32?MeV beam energy is obtained at the end of the linac. As high electron energy is required to produce acceptable neutron flux. The final neutron flux is estimated to be 5?◊?10{sup 11}?n/cm{sup 2}/s/mA. Future development will be the real design of a 30?MeV electron linac based on S band traveling wave.

Kumar, Sandeep; Yang, Haeryong; Kang, Heung-Sik, E-mail: hskang@postech.ac.kr [Pohang Accelerator Laboratory, San31, Hyoja-dong, Pohang, Gyeongbuk 790-784 (Korea, Republic of)

2014-02-14T23:59:59.000Z

110

Linear Collider Collaboration Tech Notes  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

0 0 April 2001 Rev.1 July 2003 Guide to LIBXSIF, a Library for Parsing the Extended Standard Input Format of Accelerated Beamlines Peter G. Tenenbaum Stanford Linear Accelerator Center Stanford University Stanford, CA Abstract: We describe LIBXSIF, a standalone library for parsing the Extended Standard Input Format of accelerator beamlines. Included in the description are: documentation of user commands; full description of permitted accelerator elements and their attributes; the construction of beamline lists; the mechanics of adding LIBXSIF to an existing program; and "under the hood" details for users who wish to modify the library or are merely morbidly curious. Guide to LIBXSIF, a Library for Parsing the Extended Standard Input Format of

111

Accelerator Mass Spectrometric (AMS) Measurements of Plutonium Activity Concentrations and 240Pu/239Pu Atom Ratios In Soil Extracts Supplied by the Carlsbad Environmental Monitoring & Research Center  

SciTech Connect (OSTI)

Plutonium-239 ({sup 239}Pu) and plutonium-239+240 ({sup 239+240}Pu) activities concentrations and {sup 240}Pu/{sup 239}Pu atom ratios are reported for a series of chemically purified soil extracts received from the Carlsbad Environmental Monitoring & Research Center (CEMRC) in New Mexico. Samples were analyzed without further purification at the Lawrence Livermore National Laboratory (LLNL) using accelerator mass spectrometry (AMS). This report also includes a brief description of the AMS system and internal laboratory procedures used to ensure the quality and reliability of the measurement data.

Hamilton, T F; Brown, T A; Marchetti, A A; Martinelli, R E; Kehl, S R

2005-02-28T23:59:59.000Z

112

Accelerating Structure design and fabrication For KIPT and PAL XFEL  

E-Print Network [OSTI]

ANL and the National Science Center "Kharkov Institute of Physics Technology" (NSC KIPT, Kharkov, Ukraine) jointly proposed to design and build a 100MeV/100KW linear accelerator which will be used to drive the neutron source subcritical assembly. Now the linac was almost assembled in KIPT by the team from Institute of High Energy Physics (IHEP, Beijing, China). The design and measurement result of the accelerating system of the linac will be described in this paper.

Hou, Mi; Pei, Shilun

2014-01-01T23:59:59.000Z

113

Development of High-Gradient Dielectric Laser-Driven Particle Accelerator Structures  

SciTech Connect (OSTI)

The thrust of Stanford's program is to conduct research on high-gradient dielectric accelerator structures driven with high repetition-rate, tabletop infrared lasers. The close collaboration between Stanford and SLAC (Stanford Linear Accelerator Center) is critical to the success of this project, because it provides a unique environment where prototype dielectric accelerator structures can be rapidly fabricated and tested with a relativistic electron beam.

Byer, Robert L.

2013-11-07T23:59:59.000Z

114

E-Print Network 3.0 - accelerator mass spectrometry Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

accelerator mass... ATLAS Argonne Tandem Linear Accelerator System The prime national facility for nuclear structure... , accelerated in the world's first superconducting linear...

115

Solar Technology Acceleration Center (SolarTAC): Cooperative Research and Development Final Report, CRADA Number CRD-07-259  

SciTech Connect (OSTI)

This agreement allowed NREL to serve as an advisor on SolarTAC - a collaborative effort between Xcel Energy, NREL, and the University of Colorado at Boulder. The collaboration was formed to accelerate pre-commercial and early commercial solar energy technologies to the marketplace. Through this CRADA, NREL participated in the deployment of solar energy generation technologies and related solar equipment for research, testing, validation, and demonstration purposes.

Kramer, W.

2011-10-01T23:59:59.000Z

116

Linear Collider Collaboration Tech Notes LCC-0104  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

4 4 October 2002 Beamstrahlung Photon Load on the TESLA Extraction Septum Blade Andrei Seryi Stanford Linear Accelerator Center Stanford, CA 94309, USA Abstract: This note describes work performed in the framework of the International Linear Collider Technical Review Committee [1] to estimate the power load on the TESLA extraction septum blade due to beamstrahlung photons. It is shown, that under realistic conditions the photon load can be several orders of magnitude higher than what was estimated in the TESLA TDR [2] for the ideal Gaussian beams, potentially representing a serious limitation of the current design. Beamstrahlung Photon Load on the TESLA Extraction Septum Blade ANDREI SERYI STANFORD LINEAR

117

LASER-PLASMA-ACCELERATOR-BASED GAMMA GAMMA COLLIDERS  

E-Print Network [OSTI]

LASER-PLASMA-ACCELERATOR-BASED ?? COLLIDERS ? C. B.linear col- lider based on laser-plasma-accelerators arediscussed, and a laser-plasma-accelerator-based gamma-

Schroeder, C. B.

2010-01-01T23:59:59.000Z

118

SU?E?T?153: Proton Linearity and Energy Dependence Studies of Optically Stimulated Luminescent Detectors for Remote Audits of Proton Beam Calibrations by the Radiological Physics Center  

Science Journals Connector (OSTI)

Purpose: Implement Optically Stimulated Luminescent Detectors (OSLD) into Radiological Physics Center's (RPC) remote audit quality assurance (QA) program for protons. Methods: The OSLDs were aluminum oxide (Al2O3:C) nanoDotsô from Landauer Inc. (Glenwood IL.). A standard RPC remote audit electron phantom with detector inserts at two different locations with three scatter rings and slabs of water equivalent plastic phantom added on top of the phantom to place both dosimeter locations within the SOBP were used. Two nanoDotsô were placed in each detector insert of the phantom. For the linearity study a 250 MeV proton beam with reference setup (FS = 10 ◊ 10 cm2 10cm SOBP) was used with the beam isocenter located between the two detector depths. Doses of 25 50 100 200 300 350 cGy at isocenter were delivered. For the energy dependence study doses of 200 cGy each were delivered with the reference setup for 250 200 and 160 MeV proton beams. Co?60 measurement was performed as a standardization process. The OSLDs were read on a MicroStar reader from Landauer between 5 to 7 days after irradiation. Results: The OSLD irradiated had a linear dose response of y=?8.3513E?5x+1.0084 with an R2 = 1.000 over the dose range where y=Kl (dose linearity factor) and x=dose. The energy dependence of the OSLD for the three different energies was less than 3% for the irradiation conditions and fluctuation for different OSLDs less than 1% for the same energy used for the RPC remote audit program. Conclusions: The OSLD showed a linear dose response and consistent energy dependence for three proton energies at the MD Anderson Cancer Center Proton Center. OSLD can be used to replace the TLD for RPC's remote audit QA program for proton beam output.

J Cho; P Alvarez; D Followill; M Gillin; G Ibbott

2011-01-01T23:59:59.000Z

119

About Us: Accelerator Operations and Technology, AOT: LANL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

About AOT Accelerator and Operations Technology AOT Division provides operations and related support for the Los Alamos Neutron Science Center (LANSCE), conducting fundamental and applied research and development needed to improve its operations support efforts. AOT's R&D efforts include plasma physics, ion beam generation; accelerator physics; linear-accelerator-structure engineering, design; high-space-charge proton-accumulator/compressor-ring physics; beam-transport-lattice physics, engineering; particle-beam-diagnostics physics, engineering; high- and low-power-radio-frequency-system engineering; high-voltage and -current, pulsed-power engineering; magnet-power-system engineering; mechanical engineering, design (e.g., precision alignment technology);

120

Measurement of electron clouds in large accelerators by microwave dispersion  

SciTech Connect (OSTI)

Clouds of low energy electrons in the vacuum beam pipes of accelerators of positively charged particle beams present a serious limitation for operation at high currents. Furthermore, it is difficult to probe their density over substantial lengths of the beam pipe. We have developed a novel technique to directly measure the electron cloud density via the phase shift induced in a TE wave transmitted over a section of the accelerator and used it to measure the average electron cloud density over a 50 m section in the positron ring of the PEP-II collider at the Stanford Linear Accelerator Center.

Desantis, Stefano; De Santis, Stefano; Byrd, John M.; Sonnad, Kiran G.; Pivi, Mauro T.F.; Krasnykh, Anatoly; Caspers, Fritz; Kroyer, Tom

2008-01-24T23:59:59.000Z

Note: This page contains sample records for the topic "linear accelerator center" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Evaluation of four-center integrals with the linear muffin-tin orbital tight-binding method  

Science Journals Connector (OSTI)

We derive formulas for the general four-center integral and its Bloch sum within the basis of optimally localized muffin-tin orbitals in the atomic spheres approximation. As an example of application the Hartree and exchange energies of silicon are calculated and the cohesive energy determined in the local-density and Hartree-Fock approximations.

A. Svane and O. K. Andersen

1986-10-15T23:59:59.000Z

122

Accelerators and the Accelerator Community  

E-Print Network [OSTI]

of electrostatic accelerators, while Ernest O. Lawrence (CBP 820 LBNL TBA ACCELERATORS ANDTHE ACCELERATOR COMMUNITY 1 ANDREW SESSLER Lawrence Berkeley

Malamud, Ernest

2009-01-01T23:59:59.000Z

123

Dielectric-wall linear accelerator with a high voltage fast rise time switch that includes a pair of electrodes between which are laminated alternating layers of isolated conductors and insulators  

DOE Patents [OSTI]

A dielectric-wall linear accelerator is improved by a high-voltage, fast rise-time switch that includes a pair of electrodes between which are laminated alternating layers of isolated conductors and insulators. A high voltage is placed between the electrodes sufficient to stress the voltage breakdown of the insulator on command. A light trigger, such as a laser, is focused along at least one line along the edge surface of the laminated alternating layers of isolated conductors and insulators extending between the electrodes. The laser is energized to initiate a surface breakdown by a fluence of photons, thus causing the electrical switch to close very promptly. Such insulators and lasers are incorporated in a dielectric wall linear accelerator with Blumlein modules, and phasing is controlled by adjusting the length of fiber optic cables that carry the laser light to the insulator surface. 12 figs.

Caporaso, G.J.; Sampayan, S.E.; Kirbie, H.C.

1998-10-13T23:59:59.000Z

124

RESEARCH AND DEVELOPMENT FOR AN X-BAND LINEAR COLLIDER* C. Adolphsen  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AND DEVELOPMENT FOR AN AND DEVELOPMENT FOR AN X-BAND LINEAR COLLIDER* C. Adolphsen Stanford Linear Accelerator Center, Stanford University, Stanford CA 94309 USA Abstract At SLAC and KEK research is advancing toward a design for an electron-positron linear collider based on X-Band (11.4 GHz) rf accelerator technology. The nominal acceleration gradient in its main linacs will be about four times that in the Stanford Linear Collider (SLC). The design targets a 1.0 TeV center-of-mass energy but envisions initial operation at 0.5 TeV and allows for expansion to 1.5 TeV. A 10 34 cm -2 s -1 luminosity level will be achieved by colliding multiple bunches per pulse with bunch emittances about two orders of magnitude smaller than those in the SLC. The key components needed to realize such a collider are

125

RESEARCH ON HIGH BEAM-CURRENT ACCELERATORS  

E-Print Network [OSTI]

and M. Wilson, Particle Accelerators 10, 223 13. A. I.Proc. 1976 Proton Linear Accelerator Conf. , Chalk River,and D. Keefe, Particle Accelerators~' 23. S. Humphries, J.

Keefe, Denis

2014-01-01T23:59:59.000Z

126

Accelerators, Electrodynamics  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Science and Innovation Capabilities Accelerators, Electrodynamics science-innovationassetsimagesicon-science.jpg Accelerators, Electrodynamics National security depends...

127

Accelerator Physics Accelerators form the backbone of SLAC's on-site experimental program. Research at SLAC  

E-Print Network [OSTI]

#12;Accelerator Physics Accelerators form the backbone of SLAC's on-site experimental program. Research at SLAC is continually improving accelerators, both here and at other laboratories, and paving the way for a new generation of particle acceleration technology. SLAC's famous linear accelerator

Wechsler, Risa H.

128

Argonne Accelerator Institute  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Mission Mission The mission of the Argonne Accelerator Institute is centered upon the following related goals: Locate next generation accelerator facilities in Northern Illinois Advance accelerator technology Oversee a selected, strategic, lab-wide, and acclaimed accelerator R&D portfolio In order to accomplish the above goals, the institute has established five objectives. These are coupled to programmatic objectives, and are dependent on each other, but they serve to identify important areas for the institute to focus its activities. Educate the "next generation" of accelerator physicists and engineers Work with area Universities to establish Joint Appointments and Adjunct Professorships Identify students Provide research opportunities at Argonne Work with the US Particle Accelerator School

129

accelerators for ATI  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Building Accelerator Analogs Building Accelerator Analogs Some QuarkNet centers have built "accelerators." No, they are not real but can be used as analogs to real particle accelerators. The real learning comes, of course, when you plan and experiment on your own, but this may give you some starting points. Things to Think About What are your objectives? To make an analogy for particle accelerators? To use classical physics qualitatively? To use classical physics quantitatively? To measure forces, speed, etc.? _______________ Who is your target audience¬ó in an Associate Teacher Institute or their students or both? What do the participants need to know before beginning? Jawbreaker Accelerator Pressurized gas shoots jawbreakers through PVC pipe into a fixed target (brick) or into each other. The original speeds and masses are measured as are those of the resulting particles.

130

Quality Assurance Plan for Field Activities at the Natural and Accelerated Bioremediation Research (NABIR) Field Research Center (FRC), Oak Ridge, Tennessee  

SciTech Connect (OSTI)

The Environmental Sciences Division (ESD) at Oak Ridge National Laboratory (ORNL) has established a Natural and Accelerated Bioremediation Research (NABIR) program Field Research Center (FRC) for the U.S. Department of Energy (DOE) Office of Biological and Environmental Research. The FRC is located in Bear Creek Valley within the Y-12 Plant area of responsibility on DOE's Oak Ridge Reservation in Tennessee. The NABIR program is a long-term effort designed to increase the understanding of fundamental biogeochemical processes that would allow the use of bioremediation approaches for cleaning up DOE's contaminated legacy waste sites. The FRC provides a site for investigators in the NABIR program to conduct research and obtain samples related to in situ bioremediation. The FRC is integrated with existing and future laboratory and field research and provides a means of examining the biogeochemical processes that influence bioremediation under controlled small-scale field conditions. This Quality Assurance Plan (QAP) documents the quality assurance protocols for field and laboratory activities performed by the FRC staff. It supplements the requirements in the ORNL Nuclear Quality Assurance Program and the ESD Quality Assurance Program. The QAP addresses the requirements in Title 10 CFR, Part 830 Subpart A, ''Quality Assurance Requirements'', using a graded approach appropriate for Research and Development projects based on guidance from ''Implementation Guide for Quality Assurance Programs for Basic and Applied Research'' (DOE-ER-STD-6001-92). It also supports the NABIR FRC Management Plan (Watson and Quarles 2000a) which outlines the overall procedures, roles and responsibilities for conducting research at the FRC. The QAP summarizes the organization, work activities, and qualify assurance and quality control protocols that will be used to generate scientifically defensible data at the FRC. The QAP pertains to field measurements and sample collection conducted by the FRC to characterize the site and in support of NABIR-funded investigations at the FRC. NABIR investigators who collect their own samples or measurements at the FRC will be responsible for developing their own data quality assurance protocol. Notably, this QAP will be of direct benefit to NABIR investigators who will be provided with and use the documented quality data about the FRC to support their investigations.

Brandt, C.C.

2002-02-28T23:59:59.000Z

131

A High Intensity Linear e+ e- Collider Facility at Low Energy  

E-Print Network [OSTI]

I discuss a proposal for a high intensity $e^+e^-$ linear collider operated at low center of mass energies $\\sqrt{s}intensity beams. Such a facility would provide high statistics samples of (charmed) vector mesons and would permit searches for LFV with unprecedented precision in decays of $\\tau$ leptons and mesons. Implications on the design of the linear accelerator are discussed together with requirements to achieve luminosities of $10^{35}$ cm$^{-2}$s$^{-1}$ or more.

A. Schoning

2006-10-23T23:59:59.000Z

132

Linear Collider Collaboration Tech Notes LCC-0100  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

100 100 August 2002 Systematic Ground Motion and Macroalignment for Linear Colliders Rainer Pitthan Stanford Linear Accelerator Center Stanford University Stanford, CA 94309, USA Abstract: Future colliders with their ¬Ķm-range operational tolerances still need to be classically aligned to the 50 - 100 ¬Ķm range, and kept there, over the km range. This requirement will not be a show-stopper, but not be trivial either. 50 ¬Ķm movements over a betatron wavelength is a the range where systematic long term motions can prevent efficient operation. Systematic Ground Motion and Macro-Alignment for Linear Colliders Complete talk at: http://www-project.slac.stanford.edu/lc/wkshp/snowmass2001/t6/info/pitthan july

133

Linear Collider Collaboration Tech Notes LCC-0101  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

1 1 August 2002 Collimator Wakefield Calculations for ILC-TRC Report Peter Tenenbaum Stanford Linear Accelerator Center Stanford University Stanford, CA 94309, USA Abstract: We summarize the formalism of collimator wakefields and their effect on beams that are near the center of the collimator gap, and apply the formalism to the TESLA, NLC, and CLIC collimation systems. Collimator Wakefield Calculations for ILC-TRC Report P. Tenenbaum LCC-Note-0101 20-Aug-2002 Abstract We summarize the formalism of collimator wakefields and their effect on beams which are near the center of the collimator gap, and apply the formalism to the TESLA, NLC, and CLIC collimation systems. 1 Introduction One of the beam dynamics effects which must be evaluated for the

134

LASER ACCELERATORS  

E-Print Network [OSTI]

UNIVERSITY OF CALIFORNIA Accelerator & Fusion Researchat the 1983 Particle Accelerator Conference, Santa Fe, NM,March 21-23, 1983 LASER ACCELERATORS A.M. Sessler TWO-WEEK

Sessler, A.M.

2008-01-01T23:59:59.000Z

135

Linear Collider Collaboration Tech Notes LCC-0110  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

0 0 December 2002 Post-Target Beamline Design for Proposed FFTB Experiment with Polarized Positrons Y. K. Batygin and J. C. Sheppard Stanford Linear Accelerator Center Stanford University Menlo Park, CA 04025 Abstract: The beamline after positron production target for the proposed experiment E-166 is discussed. The beamline includes bending magnets and solenoid to deliver polarized positron beam from the target to polarimeter. Results of simulation indicate that transmission efficiency of 1...3 % with beam polarization of 60...80 % can be obtained if beam energy resolution is required while the transmission of 40...77 % and polarization of 40% can be obtained without beam energy resolution. 13 December 2002

136

Linear Collider Collaboration Tech Notes LCC-0099  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

099 099 August 2002 Space Charge Dynamics of Bright Electron Beams Alexander W. Chao, Rainer Pitthan, Toshiki Tajima, Dian Yeremian Stanford Linear Accelerator Center Stanford University Abstract: The longitudinal dynamics and its coupling with the transverse dynamics of bunched beams with strong space charge are analyzed. We introduce a self-consistent Vlasov description for the longitudinal phase space similar to the familiar description for the transverse phase space using a Kapchinskij-Vladimirskij (K-V) distribution [1]. A longitudinal beam envelope equation is derived. An exact solution is then obtained when coupling to the transverse dynamics is ignored. This longitudinal envelope equation is coupled to the transverse envelope

137

Centers | ornl.gov  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Centers Centers SHARE Centers BioEnergy Science Center (BESC) The BioEnergy Science Center (BESC) is a multi-institutional (17 partners), multidisciplinary research (biological, chemical, physical and computational sciences, mathematics and engineering) organization focused on the fundamental understanding and elimination of biomass recalcitrance. DOE Energy Frontier Research Centers The Energy Frontier Research Centers program aims to accelerate such transformative discovery, combining the talents and creativity of our national scientific workforce with a powerful new generation of tools for penetrating, understanding, and manipulating matter on the atomic and molecular scales. ORNL is also home to two DOE Energy Frontier Research Centers, the Fluid Interface, Reactions, Structures and Transport (FIRST)

138

Postacceleration Of Laser-Generated High Energy Protons Through Conventional Accelerator Linacs  

SciTech Connect (OSTI)

The post-acceleration of laser-generated protons through conventional drift tube linear accelerators has been simulated with the particle code Parmela. The proton source is generated on the rear surface of a target irradiated by an high-intensity (10{sup 19} W{center_dot}cm{sup -2}) short-pulse (350 fs) laser and focused by a microlens that allows selecting collimated protons at 7{+-}0.1 MeV with rms unnormalized emittance of 0.180 mm.mrad. The simulations show that protons can be accelerated by one drift tube linac tank to more than 14 MeV with unnormalized emittance growth of 8 in x and 22.6 in y directions when considering a total proton charge of 0.112 mA. This result shows for the first time that coupling between laser-plasma accelerators with traditional accelerators is possible, allowing a luminosity gain for the final beam.

Fuchs, Julien; Audebert, Patrick [Laboratoire pour l'Utilisation des Lasers Intenses, UMR 7605 CNRS-CEA-Ecole Polytechnique-Universite Paris VI, Palaiseau (France); Antici, Patrizio [Laboratoire pour l'Utilisation des Lasers Intenses, UMR 7605 CNRS-CEA-Ecole Polytechnique-Universite Paris VI, Palaiseau (France); Dipartimento di Energetica, Universita di Roma 'La Sapienza', Via Scarpa 14-16, 00165 Roma (Italy); Fazi, Mauro; Migliorati, Mauro; Palumbo, Luigi [Dipartimento di Energetica, Universita di Roma 'La Sapienza', Via Scarpa 14-16, 00165 Roma (Italy); Lombardi, Augusto [ATreP via Perini 181, 38100, Trento (Italy)

2008-06-24T23:59:59.000Z

139

Linear Collider Collaboration Tech Notes  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

5 08//00 5 08//00 Study of Beam Energy Spectrum Measurement in the NLC Extraction Line August 2000 Yuri Nosochkov and Tor Raubenheimer Stanford Linear Accelerator Center Stanford, CA Abstract: The NLC extraction line optics includes a secondary focal point with a very small _- function and 2 cm dispersion which can be used for measurement of outgoing beam energy spread. In this study, we performed tracking simulations to transport the NLC disrupted beam from the Interaction Point (IP) to the extraction line secondary focus (the IP image), `measure' the transverse beam pro_le at the IP image and reconstruct the beam energy spectrum. The resultant distribution was compared with the original energy spectrum at the IP. Study of Beam Energy Spectrum Measurement

140

Linear Collider Collaboration Tech Notes  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

2 03/12/99 2 03/12/99 PEP-II RF Cavity Revisited December 3, 1999 R. Rimmer, G. Koehler, D. Li, N. Hartmann, N. Folwell, J. Hodgson, B. McCandless Lawrence Berkeley National Laboratory Stanford Linear Accelerator Center Berkeley, CA, USA Stanford, CA, USA Abstract: This report describes the results of numerical simulations of the PEP-II RF cavity performed after the completion of the construction phase of the project and comparisons are made to previous calculations and measured results. These analyses were performed to evaluate new calculation techniques for the HOM distribution and RF surface heating that were not available at the time of the original design. These include the use of a high frequency electromagnetic element in ANSYS and the new Omega 3P code to study wall

Note: This page contains sample records for the topic "linear accelerator center" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Linear Collider Collaboration Tech Notes  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

4, 10/03/00 4, 10/03/00 Luminosity for NLC Design Variations March 10, 1999 K.A. Thompson and T.O. Raubenheimer Stanford Linear Accelerator Center Stanford, CA, USA Abstract: In this note we give Guineapig simulation results for the luminosity and luminosity spectrum of three baseline NLC designs at 0.5~TeV and 1.0~TeV and compare the simulation results with analytic approximations. We examine the effects of varying several design parameters away from the NLC-B-500 and NLC-B-1000 designs, in order to study possible trade-offs of parameters that could ease tolerances, increase luminosity, or help to optimize machine operation for specific physics processes. Luminosity for NLC Design Variations K.A. Thompson and T.O.Raubenheimer INTRODUCTION In this note we give Guineapig [l] simulation results for the luminosity and

142

Linear Collider Collaboration Tech Notes  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Notes Notes LCC - 0038 29/04/00 CBP Tech Note - 234 Transverse Field Profile of the NLC Damping Rings Electromagnet Wiggler 29 April 2000 17 J. Corlett and S. Marks Lawrence Berkeley National Laboratory M. C. Ross Stanford Linear Accelerator Center Stanford, CA Abstract: The primary effort for damping ring wiggler studies has been to develop a credible radiation hard electromagnet wiggler conceptual design that meets NLC main electron and positron damping ring physics requirements [1]. Based upon an early assessment of requirements, a hybrid magnet similar to existing designs satisfies basic requirements. However, radiation damage is potentially a serious problem for the Nd-Fe-B permanent magnet material, and cost remains an issue for samarium cobalt magnets. Superconducting magnet designs have not been

143

ICFA: International Committee for Future Accelerators  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

ICFA - International Committee for Future Accelerators Membership Secretary What, Why, Who is ICFA? ICFA Meetings Panels Recent Linear Collider Activities Statements Related...

144

Desired Improvements in Laser-Plasma Accelerators  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Wei Gai, John Power What's wrong with far field, or What do nano- lithography and accelerators have in common? r << r >> *Impossibility of linear in electric field...

145

Linear Collider Collaboration Tech Notes LCC-70  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

70 70 August 2001 Design Studies of Positron Collection for the NLC Yuri K. Batygin, Ninod K. Bharadwaj, David C. Schultz ,John C. Sheppard Stanford Linear Accelerator Center Stanford, CA Abstract: The positron source for the NLC project utilizes a 6.2 GeV electron beam interacting in a high-Z positron production target. The electromagnetic shower in the target results in large energy deposition which can cause damage to the target. Optimization of the collection system is required to insure long-term operation of the target with needed high positron yield into the 6-dimensional acceptance of the subsequent pre-damping ring. Positron tracking through the accelerating system indicates a dilution of the initial positron phase space density. Results of simulations indicate that a

146

Accelerating the Understanding and Development of Hydrogen Storage Materials: A Review of the Five-Year Efforts of the Three DOE Hydrogen Storage Materials Centers of Excellence  

Science Journals Connector (OSTI)

A technical review of the progress achieved in hydrogen storage materials development through the U.S. Department of Energyís (DOE) Fuel Cell Technologies Office and the three Hydrogen Storage Materials Center...

Leonard E. Klebanoff; Kevin C. OttÖ

2014-06-01T23:59:59.000Z

147

ORELA accelerator facility  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

The Oak Ridge Electron Linear Accelerator The Oak Ridge Electron Linear Accelerator Pulsed Neutron Source The ORELA is a powerful electron accelerator-based neutron source located in the Physics Division of Oak Ridge National Laboratory. It produces intense, nanosecond bursts of neutrons, each burst containing neutrons with energies from 10e-03 to 10e08 eV. ORELA is operated about 1200 hours per year and is an ORNL User Facility open to university, national laboratory and industrial scientists. The mission of ORELA has changed from a recent focus on applied research to nuclear astrophysics. This is an area in which ORELA has historically been very productive: most of the measurements of neutron capture cross sections necessary for understanding heavy element nucleosynthesis through the slow neutron capture process (s-process) have

148

Real-time linear response for time-dependent density-functional theory Department of Physical Chemistry and the Lise Meitner Minerva-Center for Quantum Chemistry,  

E-Print Network [OSTI]

Real-time linear response for time-dependent density-functional theory Roi Baer Department a linear-response approach for time-dependent density-functional theories using time-adiabatic functionals ground state. This ground state can be treated using density-functional theory, where the density n0(r) 2

Baer, Roi

149

Acceleration of Time Integration  

SciTech Connect (OSTI)

We outline our strategies for accelerating time integration for long-running simulations, such as those for global climate modeling. The strategies target the Cray XT systems at the National Center for Computational Sciences at Oak Ridge National Laboratory. Our strategies include fully implicit, parallel-in-time, and curvelet methods.

White III, James B [ORNL; Drake, John B [ORNL; Worley, Patrick H [ORNL; Archibald, Richard K [ORNL; Evans, Katherine J [ORNL; Kothe, Douglas B [ORNL

2007-01-01T23:59:59.000Z

150

Accelerator and Beam Science, ABS, Accelerator Operations and Technology,  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Accelerator Concepts Accelerator Concepts Injectors Operations Physics CONTACTS Group Leader Robert Garnett Deputy Group Leader Kenneth Johnson Office Administrator Monica Sanchez Phone: (505) 667-2846 Put a short description of the graphic or its primary message here Accelerator and Beam Science The Accelerator and Beam Science (AOT-ABS) Group at Los Alamos addresses physics aspects of the driver accelerator for the LANSCE spallation neutron source and related topics. These activities are wide ranging and include generating negative and positive ions in plasma ion sources, creating ion beams from these particles, accelerating the ion beams in linear accelerator structures up to an energy of 800 MeV, compressing the negative hydrogen beam to packets of sub-microsecond duration and accumulating beam current in the Proton Storage Ring, and

151

Future Accelerators (?)  

E-Print Network [OSTI]

I describe the future accelerator facilities that are currently foreseen for electroweak scale physics, neutrino physics, and nuclear structure. I will explore the physics justification for these machines, and suggest how the case for future accelerators can be made.

John Womersley

2003-08-09T23:59:59.000Z

152

Subcritical Fission Reactor Based on Linear Collider  

E-Print Network [OSTI]

The beams of Linear Collider after main collision can be utilized to build an accelerator--driven sub--critical reactor.

I. F. Ginzburg

2005-07-29T23:59:59.000Z

153

E-Print Network 3.0 - accelerator physics experiments Sample...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

facilities for biology and material sciences. Beam physics--study of beams in accelerators... -ray facilities, and the injector linear accelerator where a pioneering...

154

E-Print Network 3.0 - accelerated beam experiments Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Summary: radiation facilities for biology and material sciences. Beam physics--study of beams in accelerators... -ray facilities, and the injector linear accelerator where a...

155

Acceleration Fund  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

for these Venture Acceleration Fund awards, which have already produced a significant return on investment for the regional companies that have received them," said Padilla....

156

Linear Accelerators for Protons: New Developments  

Science Journals Connector (OSTI)

...Stand-ard methods of perturbation theory are used to describe and predict...to the same frequency (the theory had sug-gested that this would...have been in-vestigating the basic technology of superconducting...Ising, Arkiv Mat. Astron. Fysik 18, 1 (1924) [English translation...

Darragh E. Nagle

1967-07-14T23:59:59.000Z

157

Radiation from accelerated branes  

Science Journals Connector (OSTI)

The radiation emitted by accelerated fundamental strings and D-branes is studied within the linear approximation to the supergravity limit of string theory. We show that scalar, gauge field and gravitational radiation is generically emitted by such branes. In the case where an external scalar field accelerates the branes, we derive a Larmor-type formula for the emitted scalar radiation and study the angular distribution of the outgoing energy flux. The classical radii of the branes are calculated by means of the corresponding Thompson scattering cross sections. Within the linear approximation, the interaction of the external scalar field with the velocity fields of the branes gives a contribution to the observed gauge field and gravitational radiation.

Mohab Abou-Zeid and Miguel S. Costa

2000-04-26T23:59:59.000Z

158

BNL | Our History: Accelerators  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

> See also: Reactors > See also: Reactors A History of Leadership in Particle Accelerator Design Cosmotron Cosmotron (1952-1966) Early in Brookhaven Lab history, the consortium of universities responsible for founding the new research center, decided that Brookhaven should provide leading facilities for high energy physics research. In April 1948, the Atomic Energy Commission approved a plan for a proton synchrotron to be built at Brookhaven. The new machine would accelerate protons to previously unheard of energies-comparable to the cosmic rays showering the earth's outer atmosphere. It would be called the Cosmotron. The Cosmotron was the first accelerator in the world to send particles to energies in the billion electron volt, or GeV, region. The machine reached its full design energy of 3.3 GeV in 1953.

159

Commissioning of Photon Beams of a Flattening Filter-Free Linear Accelerator and the Accuracy of Beam Modeling Using an Anisotropic Analytical Algorithm;TrueBeam; Flattening filter free; Commissioning; Anisotropic analytical algorithm  

SciTech Connect (OSTI)

Purpose: To investigate dosimetric characteristics of a new linear accelerator designed to deliver flattened, as well as flattening filter-free (FFF), beams. To evaluate the accuracy of beam modeling under physical conditions using an anisotropic analytical algorithm. Methods and Materials: Dosimetric data including depth dose curves, profiles, surface dose, penumbra, out-of-field dose, output, total and scatter factors were examined for four beams (X6, X6FFF, X10, and X10FFF) of Varian's TrueBeam machine. Beams modeled by anisotropic analytical algorithm were compared with measured dataset. Results: FFF beams have lower mean energy (tissue-phantom ratio at the depths of 20 and 10 cm (TPR 20/10): X6, 0.667; X6FFF, 0.631; X10, 0.738; X10FFF, 0.692); maximum dose is located closer to the surface; and surface dose increases by 10%. FFF profiles have sharper but faster diverging penumbra. For small fields and shallow depths, dose outside a field is lower for FFF beams; however, the advantage fades with increasing phantom scatter. Output increases 2.26 times for X6FFF and 4.03 times for X10FFF and is less variable with field size; collimator exchange effect is reduced. A good agreement between modeled and measured data is observed. Criteria of 2% depth-dose and 2-mm distance-to-agreement are always met. Conclusion: Reference dosimetric characteristics of TrueBeam photon bundles were obtained, and successful modeling of the beams was achieved.

Hrbacek, Jan, E-mail: jan.hrbacek@usz.ch [Department of Radiation Oncology, University Hospital Zuerich, Zuerich (Switzerland); Lang, Stephanie; Kloeck, Stephan [Department of Radiation Oncology, University Hospital Zuerich, Zuerich (Switzerland)

2011-07-15T23:59:59.000Z

160

Public to have rare opportunity to tour Neutron Science Center  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Rosenfest: celebrate Louis Rosen, tour LANSCE Rosenfest: celebrate Louis Rosen, tour LANSCE Public to have rare opportunity to tour Neutron Science Center Tour attendees can expect to see many facets of the LANSCE, including areas along the linear accelerator beam line, the control room area, and one or more experimental areas. May 10, 2011 Aerial View of Neutron Science Center Aerial View of Neutron Science Center Contact James Rickman Communicatons Office (505) 665-9203 Email LANL Rosenfest will celebrate life of LANSCE founder Louis Rosen and offer tour LOS ALAMOS, New Mexico, May 10, 2011-Members of the public will have an unusual opportunity to tour the Los Alamos Neutron Science Center from 1 to 5 p.m. on Friday, May 20, 2011, as part of Rosenfest, a celebration of LANSCE founder Louis Rosen and the remarkable facility he conceived. In

Note: This page contains sample records for the topic "linear accelerator center" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

LASER-PLASMA-ACCELERATOR-BASED COLLIDERS C. B. Schroeder  

E-Print Network [OSTI]

LASER-PLASMA-ACCELERATOR-BASED COLLIDERS C. B. Schroeder , E. Esarey, Cs. T¬īoth, C. G. R. Geddes-generation linear col- lider based on laser-plasma-accelerators are discussed, and a laser-plasma-accelerator gamma-gamma () collider is considered. An example of the parameters for a 0.5 TeV laser-plasma-accelerator collider

Geddes, Cameron Guy Robinson

162

The Next Linear Collider: NLC2001  

SciTech Connect (OSTI)

Recent studies in elementary particle physics have made the need for an e{sup +}e{sup -} linear collider able to reach energies of 500 GeV and above with high luminosity more compelling than ever [1]. Observations and measurements completed in the last five years at the SLC (SLAC), LEP (CERN), and the Tevatron (FNAL) can be explained only by the existence of at least one particle or interaction that has not yet been directly observed in experiment. The Higgs boson of the Standard Model could be that particle. The data point strongly to a mass for the Higgs boson that is just beyond the reach of existing colliders. This brings great urgency and excitement to the potential for discovery at the upgraded Tevatron early in this decade, and almost assures that later experiments at the LHC will find new physics. But the next generation of experiments to be mounted by the world-wide particle physics community must not only find this new physics, they must find out what it is. These experiments must also define the next important threshold in energy. The need is to understand physics at the TeV energy scale as well as the physics at the 100-GeV energy scale is now understood. This will require both the LHC and a companion linear electron-positron collider. A first Zeroth-Order Design Report (ZDR) [2] for a second-generation electron-positron linear collider, the Next Linear Collider (NLC), was published five years ago. The NLC design is based on a high-frequency room-temperature rf accelerator. Its goal is exploration of elementary particle physics at the TeV center-of-mass energy, while learning how to design and build colliders at still higher energies. Many advances in accelerator technologies and improvements in the design of the NLC have been made since 1996. This Report is a brief update of the ZDR.

D. Burke et al.

2002-01-14T23:59:59.000Z

163

Accelerate Energy  

Broader source: Energy.gov (indexed) [DOE]

the next year, the U.S. Department of Energy, the Council on Competitiveness and the Alliance to Save Energy will join forces to undertake Accelerate Energy Productivity 2030 - an...

164

International Workshop on Linear Colliders 2010  

ScienceCinema (OSTI)

IWLC2010 International Workshop on Linear Colliders 2010ECFA-CLIC-ILC joint meeting: Monday 18 October - Friday 22 October 2010Venue: CERN and CICG (International Conference Centre Geneva, Switzerland)†This year, the International Workshop on Linear Colliders organized by the European Committee for Future Accelerators (ECFA) will study the physics, detectors and accelerator complex of a linear collider covering both CLIC and ILC options.Contact Workshop Secretariat††IWLC2010 is hosted†by CERN

None

2011-10-06T23:59:59.000Z

165

Linear Collider Collaboration Tech Notes LCC-0063  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

3 3 May 2001 Varying alpha/lambda in NLC Structures - BNS Damping and Emittance Growth G. Stupakov and Z. Li Stanford Linear Accelerator Center Stanford, CA Abstract: In this note we consider the effect of varying this iris opening in the NLC structures on the beam dynamics and the rf efficiency in the linac. Varying a/őĽ in NLC structures - BNS damping and emittance growth G. Stupakov and Z. Li SLAC, Stanford University, Stanford, CA 94309 In this note we consider the effect of the varying the iris opening a in the NLC structures on the beam dynamics and the RF efficiency in the linac. The most important consequence of the variation of the iris openings is the change of the longitudinal and transverse wakefields. Wake as a function of parameter a for the NLC structures has been previously calculated by K. Bane. Here we will use his

166

Accelerated Testing Validation  

E-Print Network [OSTI]

the University of California. Accelerated Testing Validationmaterials requires relevant Accelerated Stress Tests (ASTs),

Mukundan, Rangachary

2013-01-01T23:59:59.000Z

167

Reliability and Maintainability Issues for the Next Linear Collider  

SciTech Connect (OSTI)

Large accelerators for high energy physics research traditionally have been designed using informal best design, engineering, and management practices to achieve acceptable levels of operational availability. However, the Next Linear Collider(NLC) project presents a particular challenge for operational availability due to the unprecedented size and complexity of the accelerator systems required to achieve the physics goals of high center-of-mass energy and high luminosity. Formal reliability and maintainability analysis, design, and implementation will be required to achieve acceptable operational availability for the high energy physics research program. This paper introduces some of the basic concepts of reliability analysis and applies them to the 2.6-cm microwave power system of the two 10-km-long, 250-GeV linacs that are currently proposed for the NLC design.

Wilson, Zane J.; Gold, Saul L.; Koontz, Ron F.; Lavine, Ted L.; /SLAC

2011-08-26T23:59:59.000Z

168

US plan for proton accelerator to produce tritium for warheads  

Science Journals Connector (OSTI)

... construction of a huge linear proton accelerator for the production of tritium; it may be powered by excess electricity from hydroelectric sources.

David Swinbanks

1989-02-02T23:59:59.000Z

169

Application Acceleration  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Acceleration Acceleration on Current and Future Cray Platforms Alice Koniges, Robert Preissl, Jihan Kim, Lawrence Berkeley National Laboratory David Eder, Aaron Fisher, Nathan Masters, Velimir Mlaker, Lawrence Livermore National Laboratory Stephane Ethier, Weixing Wang, Princeton Plasma Physics Laboratory Martin Head-Gordon, University of California, Berkeley and Nathan Wichmann, Cray Inc. ABSTRACT: Application codes in a variety of areas are being updated for performance on the latest architectures. We describe current bottlenecks and performance improvement areas for applications including plasma physics, chemistry related to carbon capture and sequestration, and material science. We include a variety of methods including advanced hybrid parallelization using multi-threaded MPI, GPU acceleration, libraries and auto- parallelization compilers. KEYWORDS: hybrid

170

Ion acceleration in a plasma focus  

Science Journals Connector (OSTI)

The electric and magnetic fields associated with anomalous diffusion to the axis of a linear plasma discharge are used to compute representative ion trajectories. Substantial axial acceleration of the ions is demonstrated.

S. Peter Gary

1974-01-01T23:59:59.000Z

171

Fourier Accelerated Conjugate Gradient Lattice Gauge Fixing  

E-Print Network [OSTI]

We provide details of the first implementation of a non-linear conjugate gradient method for Landau and Coulomb gauge fixing with Fourier acceleration. We find clear improvement over the Fourier accelerated steepest descent method, with the average time taken for the algorithm to converge to a fixed, high accuracy, being reduced by a factor of 2 to 4.

R. J. Hudspith

2014-05-22T23:59:59.000Z

172

idaho Accelerator Center Advanced Fuel Cycle Research  

SciTech Connect (OSTI)

The technical effort has been in two parts called; Materials Science and Instrumentation Development. The Materials Science technical program has been based on a series of research and development achievements in Positron-Annihilation Spectroscopy (PAS) for defect detection in structural materials. This work is of particular importance in nuclear power and its supporting systems as the work included detection of defects introduced by mechanical and thermal phenomena as well as those caused by irradiation damage. The second part of the program has focused on instrumentation development using active interrogation techniques supporting proliferation resistant recycling methodologies and nuclear material safeguards. This effort has also lead to basic physics studies of various phenomena relating to photo-fission. Highlights of accomplishments and facility improvement legacies in these areas over the program period include

Wells, Douglas; Dale, Dan

2011-10-20T23:59:59.000Z

173

Fermilab | Illinois Accelerator Research Center | Fermilab Facilities  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

welders, and extensive on-site equipment. Equipment includes conventional and CNC mills, lathes, wire EDM and water jet, with accuracies of a tenth of a mil. High...

174

Fermilab | Illinois Accelerator Research Center | Construction...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Construction Progress 08142013 photo photo 04152013 photo 04012013 photo 03262013 photo 03192013 photo 03112013 photo 03042013 photo 02252013 photo 02182013 photo...

175

About Accelerators | Jefferson Lab  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Accelerator Brochure top-right bottom-left-corner bottom-right-corner About Accelerators Jefferson Lab is home to two superconducting radiofrequency accelerators: the...

176

GPU accelerated cardiac electrophysiology  

E-Print Network [OSTI]

OF THE THESIS GPU Accelerated Cardiac Electrophysiology bySAN DIEGO GPU Accelerated Cardiac Electrophysiology A thesistoolkit for developing GPU accelerated programs called CUDA,

Lionetti, Fred

2010-01-01T23:59:59.000Z

177

1 Industrial Electron Accelerators type ILU for Industrial Technologies  

E-Print Network [OSTI]

1 Industrial Electron Accelerators type ILU for Industrial Technologies The present work describes industrial electron accelerators of the ILU family. Their main parameters, design, principle of action the pulse linear accelerators type ILU are developed and supplied to the industry. The ILU machines

178

Characterisation of electron beams from laser-driven particle accelerators  

SciTech Connect (OSTI)

The development, understanding and application of laser-driven particle accelerators require accurate measurements of the beam properties, in particular emittance, energy spread and bunch length. Here we report measurements and simulations showing that laser wakefield accelerators can produce beams of quality comparable to conventional linear accelerators.

Brunetti, E.; Manahan, G. G.; Shanks, R. P.; Islam, M. R.; Ersfeld, B.; Anania, M. P.; Cipiccia, S.; Issac, R. C.; Vieux, G.; Welsh, G. H.; Wiggins, S. M.; Jaroszynski, D. A. [Physics Department, University of Strathclyde, Glasgow G4 0NG (United Kingdom)

2012-12-21T23:59:59.000Z

179

ONE GEV BEAM ACCELERATION IN A ONE METER LONG  

E-Print Network [OSTI]

ONE GEV BEAM ACCELERATION IN A ONE METER LONG PLASMA CELL A Proposal to the Stanford Linear. A single SLC bunch is used to both induce wakefields in the one meter long plasma and to witness that are needed to apply high-gradient plasma wakefield acceleration to large scale accelerators. The one meter

180

AFRD - Center for Beam Physics  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Center for Beam Physics Center for Beam Physics Home Organization Outreach and Diversity Highlights Safety Links Intramural Group photo of our staff CBP staff, May 2011 CBP in the News: Read about an innovation in super-precise timing and synchronization; and a look toward the next generation of electron guns with responsiveness and brightness needed by future free-electron lasers such as those in the Next Generation Light Source initiative. Who We Are and What We Do The Center for Beam Physics (CBP) is a resource for meeting the challenges of accelerator science, and a source of many innovative concepts, within the Accelerator and Fusion Research Division. We have core expertise in accelerator physics and theory, accelerator modeling using high performance computing, and instrumentation,

Note: This page contains sample records for the topic "linear accelerator center" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

The role of plasma in advanced accelerators* Jonathan S. Wurtele+  

E-Print Network [OSTI]

The role of plasma in advanced accelerators* Jonathan S. Wurtele+ Plasma Fusion Center December 1992; accepted 18 February 1993) The role of plasma in advanced accelerators is reviewed with emphasis on three significant areas of research: plasma guiding of beams in accelerators, plasma focusing

Wurtele, Jonathan

182

Chemical Accelerators The phrase "chemical accelerators"  

E-Print Network [OSTI]

Meetings Chemical Accelerators The phrase "chemical accelerators" is scarcely older than for one or two dozen people grew to include nearly a hundred. Chemical accelerators is a name sug- gested-volt region. Thus chemical accelerators can provide the same type of information for elemen- tary chemical

Zare, Richard N.

183

805 MHz Beta = 0.47 Elliptical Accelerating Structure R & D  

SciTech Connect (OSTI)

A 6-cell 805 MHz superconducting cavity for acceleration in the velocity range of about 0.4 to 0.53 times the speed of light was designed. After single-cell prototyping, three 6-cell niobium cavities were fabricated. In vertical RF tests of the 6-cell cavities, the measured quality factors (Q{sub 0}) were between 7 {center_dot} 10{sup 9} and 1.4 {center_dot} 10{sup 10} at the design field (accelerating gradient of 8 to 10 MV/m). A rectangular cryomodule was designed to house 4 cavities per cryomodule. The 4-cavity cryomodule could be used for acceleration of ions in a linear accelerator, with focusing elements between the cryomodules. A prototype cryomodule was fabricated to test 2 cavities under realistic operating conditions. Two of the 6-cell cavities were equipped with helium tanks, tuners, and input coupler and installed into the cryomodule. The prototype cryomodule was used to verify alignment, electromagnetic performance, frequency tuning, cryogenic performance, low-level RF control, and control of microphonics.

S. Bricker; C. Compton; W. Hartung; M. Johnson; F. Marti; J. Popierlarski; R. C. York; et al

2008-09-22T23:59:59.000Z

184

Linear Collider Collaboration Tech Notes  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

6, 27/05/99 6, 27/05/99 Tolerances of Random RF Jitters in X-Band Main Linacs May 27, 1999 Kiyoshi KUBO KEK Tsukuba, Japan Abstract: Tracking simulations have been performed for the main linacs of an X-band linear collider. We discuss the choice of phase of the accelerating field relative to the bunches. The tolerances of the phase and the amplitude errors are studied. Tolerances of Random RF Jitters in X-Band Main Linacs K. Kubo, KEK Abstract Tracking simulations have been performed for main linacs of X-band linear collider. We discuss about choice of the phase of the accelerating field relative to the bunches. The tolerances of the phase and the amplitude errors are studied. 1 INTRODUCTION In order to preserve the low emittance through the main linacs of future linear colliders, various effects

185

RHIC Superconducting Accelerator and Electron Cooling Group  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Organization Chart (PDF) Organization Chart (PDF) Accelerator R&D Division eRHIC R&D Energy Recovery Linac Photocathode R&D Superconducting RF Electron Cooling LARP Center for Accelerator Science and Education C-AD Accelerator R&D Division Superconducting RF Group Group Headed By: Sergey Belomestnykh This web site presents information on the Superconducting Accelerator and RHIC Electron Cooling Group, which is in the Accelerator R&D Division of the Collider-Accelerator Department of Brookhaven National Laboratory. Work is supported mainly by the Division of Nuclear Physics of the US Department of Energy. Upcoming Events: TBD Most recent events: 56 MHz 2nd External Review, March 8-9, 2011 External Review of the Energy Recovery Linac, February 17-18, 2010. Report of the Review Committee

186

Accelerating Solutions  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Solutions From vehicles on the road to the energy that powers them, Oak Ridge National Laboratory innovations are advancing American transportation. Oak Ridge National Laboratory is making an impact on everyday America by enhancing transportation choices and quality of life. Through strong collaborative partnerships with industry, ORNL research and development efforts are helping accelerate the deployment of a new generation of energy efficient vehicles powered by domestic, renewable, clean energy. EPA ultra-low sulfur diesel fuel rule ORNL and the National Renewable Energy Laboratory co-led a comprehensive research and test program to determine the effects of diesel fuel sulfur on emissions and emission control (catalyst) technology. In the course of this program, involving

187

Properties of Trapped Electron Bunches in a Plasma Wakefield Accelerator  

SciTech Connect (OSTI)

Plasma-based accelerators use the propagation of a drive bunch through plasma to create large electric fields. Recent plasma wakefield accelerator (PWFA) experiments, carried out at the Stanford Linear Accelerator Center (SLAC), successfully doubled the energy for some of the 42 GeV drive bunch electrons in less than a meter; this feat would have required 3 km in the SLAC linac. This dissertation covers one phenomenon associated with the PWFA, electron trapping. Recently it was shown that PWFAs, operated in the nonlinear bubble regime, can trap electrons that are released by ionization inside the plasma wake and accelerate them to high energies. These trapped electrons occupy and can degrade the accelerating portion of the plasma wake, so it is important to understand their origins and how to remove them. Here, the onset of electron trapping is connected to the drive bunch properties. Additionally, the trapped electron bunches are observed with normalized transverse emittance divided by peak current, {epsilon}{sub N,x}/I{sub t}, below the level of 0.2 {micro}m/kA. A theoretical model of the trapped electron emittance, developed here, indicates that the emittance scales inversely with the square root of the plasma density in the non-linear 'bubble' regime of the PWFA. This model and simulations indicate that the observed values of {epsilon}{sub N,x}/I{sub t} result from multi-GeV trapped electron bunches with emittances of a few {micro}m and multi-kA peak currents. These properties make the trapped electrons a possible particle source for next generation light sources. This dissertation is organized as follows. The first chapter is an overview of the PWFA, which includes a review of the accelerating and focusing fields and a survey of the remaining issues for a plasma-based particle collider. Then, the second chapter examines the physics of electron trapping in the PWFA. The third chapter uses theory and simulations to analyze the properties of the trapped electron bunches. Chapters four and five present the experimental diagnostics and measurements for the trapped electrons. Next, the sixth chapter introduces suggestions for future trapped electron experiments. Then, Chapter seven contains the conclusions. In addition, there is an appendix chapter that covers a topic which is extraneous to electron trapping, but relevant to the PWFA. This chapter explores the feasibility of one idea for the production of a hollow channel plasma, which if produced could solve some of the remaining issues for a plasma-based collider.

Kirby, Neil; /SLAC

2009-10-30T23:59:59.000Z

188

Accelerating projects  

SciTech Connect (OSTI)

This chapter describes work at ORNL in the period around 1950, when the laboratory was evolving from its original mission of research aimed at producing the atomic bomb, to a new mission, which in many ways was unclear. The research division from Y-12 merged with the laboratory, which gave an increased work force, access to a wide array of equipment, and the opportunity to work on a number of projects related to nuclear propulsion. The first major project was for a nuclear aircraft. From work on this program, a good share of the laboratories work in peaceful application of nuclear energy would spring. A major concern was the development of light weight shielding to protect the crew and materials in such a plane. To do such shielding work, the laboratory employed existing, and new reactors. The original plans called for the transfer of reactor work to Argonne, but because of their own research load, and the needs of the lab, new reactor projects were started at the lab. They included the Low Intensity Test Reactor, the Swimming Pool Reactor, the Bulk Shielding Reactor, the Tower Shielding Facility, and others. The laboratory was able to extend early work on calutrons to accelerator development, pursuing both electrostatic accelerators and cyclotrons. The aircraft project also drove the need for immense quantities of scientific data, with rapid analysis, which resulted the development of divisions aimed at information support and calculational support. The laboratory also expanded its work in the effects of radiation and cells and biological systems, as well as in health physics.

Not Available

1992-01-01T23:59:59.000Z

189

Teleportation of Accelerated Information  

E-Print Network [OSTI]

A theoretical quantum teleportation protocal is suggested to teleport accelerated and non-accelerated information over different classes of accelerated quantum channels. For the accelerated information, it is shown that the fidelity of the teleported state increases as the entanglement of the initial quantum channel increases. However as the difference between the accelerated channel and the accelerated information decreases the fidelity increases. The fidelity of the non accelerated information increases as the entanglement of the initial quantum channel increases, while the accelerations of the quantum channel has a little effect. The possibility of sending quantum information over accelerated quantum channels is much better than sending classical information.

N. Metwally

2012-06-17T23:59:59.000Z

190

LANSCE | Lujan Neutron Scattering Center  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Department of Energy, National Office of Science Department of Energy, National Office of Science science.energy.gov Department of Energy, National Nuclear Security Administration nnsa.energy.gov Lujan Neutron Scattering Center Logo Lujan Center Mission The Lujan Center delivers science by exploiting the unique characteristics of intense beams of pulsed neutrons for academia, national security, and industry. Lujan Center Vision The Lujan Center will operate a world class user program in the service of the nation. Lujan Center scientists will be recognized for their leadership and innovation in neutron scattering. Lujan Center at LANSCE The Lujan Center is one of five user facilities supported by the LANSCE accelerator which is stewarded. Funding to operate 10 instruments in a national user program is provided by the Department of Energy's Office of

191

Diffusive Acceleration of Ions at Interplanetary Shocks  

Science Journals Connector (OSTI)

Heliospheric shocks are excellent systems for testing theories of particle acceleration in their environs. These generally fall into two classes: (1) interplanetary shocks that are linear in their ion acceleration characteristics with the non?thermal ions serving as test particles and (2) non?linear systems such as the Earthís bow shock and the solar wind termination shock where the accelerated ions strongly influence the magnetohydrodynamic structure of the shock. This paper explores the modelling of diffusive acceleration at a particular interplanetary shock with an emphasis on explaining in situ measurements of ion distribution functions. The observational data for this event was acquired on day 292 of 1991 by the Ulysses mission. The modeling is performed using a well?known kinetic Monte Carlo simulation which has yielded good agreement with observations at several heliospheric shocks as have other theoretical techniques namely hybrid plasma simulations and numerical solution of the diffusion?convection equation. In this theory/data comparison it is demonstrated that diffusive acceleration theory can to first order successfully account for both the proton distribution data near the shock and the observation of energetic protons farther upstream of this interplanetary shock than lower energy pick?up protons using a single turbulence parameter. The principal conclusion is that diffusive acceleration of inflowing upstream ions can model this pick?up ion?rich event without the invoking any seed pre?acceleration mechanism though this investigation does not rule out the action of such pre?acceleration.

Matthew G. Baring; Errol J. Summerlin

2005-01-01T23:59:59.000Z

192

Diffusive Acceleration of Ions at Interplanetary Shocks  

E-Print Network [OSTI]

Heliospheric shocks are excellent systems for testing theories of particle acceleration in their environs. These generally fall into two classes: (1) interplanetary shocks that are linear in their ion acceleration characteristics, with the non-thermal ions serving as test particles, and (2) non-linear systems such as the Earth's bow shock and the solar wind termination shock, where the accelerated ions strongly influence the magnetohydrodynamic structure of the shock. This paper explores the modelling of diffusive acceleration at a particular interplanetary shock, with an emphasis on explaining in situ measurements of ion distribution functions. The observational data for this event was acquired on day 292 of 1991 by the Ulysses mission. The modeling is performed using a well-known kinetic Monte Carlo simulation, which has yielded good agreement with observations at several heliospheric shocks, as have other theoretical techniques, namely hybrid plasma simulations, and numerical solution of the diffusion-convection equation. In this theory/data comparison, it is demonstrated that diffusive acceleration theory can, to first order, successfully account for both the proton distribution data near the shock, and the observation of energetic protons farther upstream of this interplanetary shock than lower energy pick-up protons, using a single turbulence parameter. The principal conclusion is that diffusive acceleration of inflowing upstream ions can model this pick-up ion-rich event without the invoking any seed pre-acceleration mechanism, though this investigation does not rule out the action of such pre-acceleration.

Matthew G. Baring; Errol J. Summerlin

2005-06-08T23:59:59.000Z

193

Diffusive Acceleration of Ions at Interplanetary Shocks  

E-Print Network [OSTI]

Heliospheric shocks are excellent systems for testing theories of particle acceleration in their environs. These generally fall into two classes: (1) interplanetary shocks that are linear in their ion acceleration characteristics, with the non-thermal ions serving as test particles, and (2) non-linear systems such as the Earth's bow shock and the solar wind termination shock, where the accelerated ions strongly influence the magnetohydrodynamic structure of the shock. This paper explores the modelling of diffusive acceleration at a particular interplanetary shock, with an emphasis on explaining in situ measurements of ion distribution functions. The observational data for this event was acquired on day 292 of 1991 by the Ulysses mission. The modeling is performed using a well-known kinetic Monte Carlo simulation, which has yielded good agreement with observations at several heliospheric shocks, as have other theoretical techniques, namely hybrid plasma simulations, and numerical solution of the diffusion-conv...

Baring, M G; Baring, Matthew G.; Summerlin, Errol J.

2005-01-01T23:59:59.000Z

194

for sequence accelerators  

E-Print Network [OSTI]

Wynn's -algorithm for sequence accelerators using high precision arithmetic Rachel Baumann University of Arizona Wynn's -algorithm for sequence accelerators using high precision arithmetic Rachel Baumann University of Arizona April 17, 2012 #12;Wynn's -algorithm for sequence accelerators using high

Zakharov, Vladimir

195

COLLECTIVE PHENOMENA IN ACCELERATORS  

E-Print Network [OSTI]

Proc. 1971 Particle Accelerator Conference, IEEE Trans. onConference on High-Energy Accelerators) 1971 (CERN, Geneva,and P. R. Zenkevich, Particle Accelerators b 1 (1972). M. S.

Sessler, Andrew M.

2008-01-01T23:59:59.000Z

196

High-Current Accelerators  

E-Print Network [OSTI]

F i g . 13 F i g . 14 A 48 ACCELERATOR F i g . 25 F i g . 16supply. Extrapolation of accelerator energy and current9 . A-48 high-current accelerator, low-velocity end. Fig.

Lawrence, Ernest O.

1955-01-01T23:59:59.000Z

197

Derivation of Hamiltonians for accelerators  

SciTech Connect (OSTI)

In this report various forms of the Hamiltonian for particle motion in an accelerator will be derived. Except where noted, the treatment will apply generally to linear and circular accelerators, storage rings, and beamlines. The generic term accelerator will be used to refer to any of these devices. The author will use the usual accelerator coordinate system, which will be introduced first, along with a list of handy formulas. He then starts from the general Hamiltonian for a particle in an electromagnetic field, using the accelerator coordinate system, with time t as independent variable. He switches to a form more convenient for most purposes using the distance s along the reference orbit as independent variable. In section 2, formulas will be derived for the vector potentials that describe the various lattice components. In sections 3, 4, and 5, special forms of the Hamiltonian will be derived for transverse horizontal and vertical motion, for longitudinal motion, and for synchrobetatron coupling of horizontal and longitudinal motions. Hamiltonians will be expanded to fourth order in the variables.

Symon, K.R.

1997-09-12T23:59:59.000Z

198

HPC Code Center Request Form | Computatioinal Scince Center, Brookhaven  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

HPC Code Center Request Form HPC Code Center Request Form All fields are required unless marked as optional. Full Name Institution/Company Email Address Telephone Number Department * Basic Energy Sciences Directorate (DC) Bioscience Department (BO) Business Development & Analysis Office (BU) Business Operations (DI) CEGPA Directorate (DK) Center for Functional Nanomaterials (NC) Chemistry Department (CO) Collider Accelerator Department (AD) Community, Education, Government and Public Affairs (PA) Computational Science Center (CC) Condensed Matter Physics and Materials Science Department (PM) Counterintelligence (CI) Department of Energy (AE) Deputy Director for Operations Directorate (DE) Director's Office Directorate (DO) Diversity Office (DV) Energy & Utilities Division (EU) Environment, Safety and Health

199

Disbursement of $65 million to the State of Texas for construction of a Regional Medical Technology Center at the former Superconducting Super Collider Site, Waxahachie, Texas  

SciTech Connect (OSTI)

As part of a settlement agreement between the US DOE and the State of Texas, DOE proposes to transfer $65 million of federal funds to the Texas National Research Laboratory Commission (TNLRC) for construction of the Regional Medical Technology Center (RMTC) to be located in Ellis County, Texas. The RMTC would be a state-of-the-art medical facility for proton cancer therapy, operated by the State of Texas in conjunction with the University of Texas Southwestern Medical Center. The RMTC would use the linear accelerator assets of the recently terminated DOE Superconducting Super Collider Project to accelerate protons to high energies for the treatment of cancer patients. The current design provides for treatment areas, examination rooms, support laboratories, diagnostic imaging equipment, and office space as well as the accelerators (linac and synchrotron) and beam steering and shaping components. The potential environmental consequences of the proposed action are expected to be minor.

NONE

1995-05-01T23:59:59.000Z

200

Argonne Accelerator Institute  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AAI Home AAI Home Welcome Accelerators at Argonne Mission Organization History Document Collection Conferences & Workshops Beams and Applications Seminar Argonne-Fermilab Collaboration Lee Teng Scholarship Program Useful Links Argonne Accelerator Institute In 2006, Argonne Laboratory Director Robert Rosner formed the AAI as a focal point for accelerator initiatives. The institute works to utilize Argonne's extensive accelerator resources, to enhance existing facilities, to determine the future of accelerator development and construction, and to oversee a dynamic and acclaimed accelerator physics portfolio. More Information for: Members * Students Industrial Collaborators - Working with Argonne Link to: Accelerators for America's Future Upcoming Events and News 4th International Particle Accelerator Conference (IPAC'13)

Note: This page contains sample records for the topic "linear accelerator center" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Fermilab | Science | Particle Accelerators  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Particle Accelerators Main Injector As America's particle physics laboratory, Fermilab operates and builds powerful particle accelerators for investigating the smallest things...

202

Lab announces Venture Acceleration  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Inc., and ThermaSun Inc. as recipients of awards from the Los Alamos National Security, LLC Venture Acceleration Fund. The Laboratory's Venture Acceleration Fund provides...

203

JGI - DOE Bioenergy Research Centers  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

DOE Bioenergy Research Centers DOE Bioenergy Research Centers DOE JGI performs sequencing on behalf of the U.S. Department of Energy Bioenergy Research Centers. The Centers are intended to accelerate basic research in the development of cellulosic ethanol and other biofuels, advancing the federal initiative that seeks to reduce U.S. gasoline consumption by 20% within 10 years through increased efficiency and diversification of clean energy sources. The three Centers are located in geographically distinct areas and use different plants both for laboratory research and for improving feedstock crops. DOE BioEnergy Science Center led by DOE's Oak Ridge National Laboratory in Oak Ridge, Tennessee. This center will focus on the resistance of plant fiber to breakdown into sugars and is studying the potential energy crops

204

Nonparaxial Mathieu and Weber accelerating beams  

E-Print Network [OSTI]

We demonstrate both theoretically and experimentally nonparaxial Mathieu and Weber accelerating beams, generalizing the concept of previously found accelerating beams. We show that such beams bend into large angles along circular, elliptical or parabolic trajectories but still retain nondiffracting and self-healing capabilities. The circular nonparaxial accelerating beams can be considered as a special case of the Mathieu accelerating beams, while an Airy beam is only a special case of the Weber beams at the paraxial limit. Not only generalized nonparaxial accelerating beams open up many possibilities of beam engineering for applications, but the fundamental concept developed here can be applied to other linear wave systems in nature, ranging from electromagnetic and elastic waves to matter waves.

Peng Zhang; Yi Hu; Tongcang Li; Drake Cannan; Xiaobo Yin; Roberto Morandotti; Zhigang Chen; Xiang Zhang

2012-10-23T23:59:59.000Z

205

A new relativistic kinematics of accelerated systems  

E-Print Network [OSTI]

We consider transformations between uniformly accelerated systems, assuming that the Clock Hypothesis is false. We use the proper velocity-time description of events rather than the usual space-time description in order to obtain linear transformations. Based on the generalized principle of relativity and the ensuing symmetry, we obtain transformations of Lorentz-type. We predict the existence of a maximal acceleration and time dilation due to acceleration. We also predict a Doppler shift due to acceleration of the source in addition to the shift due to the source's velocity. Based on our results, we explain the W. K\\"{u}ndig experiment, as reanalyzed by Kholmetski \\textit{et al}, and obtain an estimate of the maximal acceleration.

Yaakov Friedman; Yuriy Gofman

2005-09-01T23:59:59.000Z

206

ACCELERATING POLARIZED PROTONS TO HIGH ENERGY.  

SciTech Connect (OSTI)

The Relativistic Heavy Ion Collider (RHIC) is designed to provide collisions of high energy polarized protons for the quest of understanding the proton spin structure. Polarized proton collisions at a beam energy of 100 GeV have been achieved in RHIC since 2001. Recently, polarized proton beam was accelerated to 250 GeV in RHIC for the first time. Unlike accelerating unpolarized protons, the challenge for achieving high energy polarized protons is to fight the various mechanisms in an accelerator that can lead to partial or total polarization loss due to the interaction of the spin vector with the magnetic fields. We report on the progress of the RHIC polarized proton program. We also present the strategies of how to preserve the polarization through the entire acceleration chain, i.e. a 200 MeV linear accelerator, the Booster, the AGS and RHIC.

BAI, M.; AHRENS, L.; ALEKSEEV, I.G.; ALESSI, J.; BEEBE-WANG, J.; BLASKIEWICZ, M.; BRAVAR, A.; BRENNAN, J.M.; BRUNO, D.; BUNCE, G.; ET AL.

2006-10-02T23:59:59.000Z

207

SuperB Progress Report for Accelerator  

SciTech Connect (OSTI)

This report details the progress made in by the SuperB Project in the area of the Collider since the publication of the SuperB Conceptual Design Report in 2007 and the Proceedings of SuperB Workshop VI in Valencia in 2008. With this document we propose a new electron positron colliding beam accelerator to be built in Italy to study flavor physics in the B-meson system at an energy of 10 GeV in the center-of-mass. This facility is called a high luminosity B-factory with a project name 'SuperB'. This project builds on a long history of successful e+e- colliders built around the world, as illustrated in Figure 1.1. The key advances in the design of this accelerator come from recent successes at the DAFNE collider at INFN in Frascati, Italy, at PEP-II at SLAC in California, USA, and at KEKB at KEK in Tsukuba Japan, and from new concepts in beam manipulation at the interaction region (IP) called 'crab waist'. This new collider comprises of two colliding beam rings, one at 4.2 GeV and one at 6.7 GeV, a common interaction region, a new injection system at full beam energies, and one of the two beams longitudinally polarized at the IP. Most of the new accelerator techniques needed for this collider have been achieved at other recently completed accelerators including the new PETRA-3 light source at DESY in Hamburg (Germany) and the upgraded DAFNE collider at the INFN laboratory at Frascati (Italy), or during design studies of CLIC or the International Linear Collider (ILC). The project is to be designed and constructed by a worldwide collaboration of accelerator and engineering staff along with ties to industry. To save significant construction costs, many components from the PEP-II collider at SLAC will be recycled and used in this new accelerator. The interaction region will be designed in collaboration with the particle physics detector to guarantee successful mutual use. The accelerator collaboration will consist of several groups at present universities and national laboratories. In Italy these may include INFN Frascati and the University of Pisa, in the United States SLAC, LBNL, BNL and several universities, in France IN2P3, LAPP, and Grenoble, in Russia BINP, in Poland Krakow University, and in the UK the Cockcroft Institute. The construction time for this collider is a total of about four years. The new tunnel can be bored in about a year. The new accelerator components can be built and installed in about 4 years. The shipping of components from PEP-II at SLAC to Italy will take about a year. A new linac and damping ring complex for the injector for the rings can be built in about three years. The commissioning of this new accelerator will take about a year including the new electron and positron sources, new linac, new damping ring, new beam transport lines, two new collider rings and the Interaction Region. The new particle physics detector can be commissioned simultaneously with the accelerator. Once beam collisions start for particle physics, the luminosity will increase with time, likely reaching full design specifications after about two to three years of operation. After construction, the operation of the collider will be the responsibility of the Italian INFN governmental agency. The intent is to run this accelerator about ten months each year with about one month for accelerator turn-on and nine months for colliding beams. The collider will need to operate for about 10 years to provide the required 50 ab{sup -1} requested by the detector collaboration. Both beams as anticipated in this collider will have properties that are excellent for use as sources for synchrotron radiation (SR). The expected photon properties are comparable to those of PETRA-3 or NSLS-II. The beam lines and user facilities needed to carry out this SR program are being investigated.

Biagini, M.E.; Boni, R.; Boscolo, M.; Buonomo, B.; Demma, T.; Drago, A.; Esposito, M.; Guiducci, S.; Mazzitelli, G.; Pellegrino, L.; Preger, M.A.; Raimondi, P.; Ricci, R.; Rotundo, U.; Sanelli, C.; Serio, M.; Stella, A.; Tomassini, S.; Zobov, M.; /Frascati; Bertsche, K.; Brachman, A.; /SLAC /Novosibirsk, IYF /INFN, Pisa /Pisa U. /Orsay, LAL /Annecy, LAPP /LPSC, Grenoble /IRFU, SPP, Saclay /DESY /Cockroft Inst. Accel. Sci. Tech. /U. Liverpool /CERN

2012-02-14T23:59:59.000Z

208

Accelerator Operations and Technology, AOT: LANL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

ADE Accelerator and Operations Technology, AOT ADE Accelerator and Operations Technology, AOT About Us AOT Home Groups Accelerator, Beam Science High Power Electrodynamics Instrumentation, Controls Mechanical Design Engineering Operations Radio Frequency Engineering CONTACTS Division Leader John Erickson Deputy Division Leader for Operations Martha Zumbro Deputy Division Leader for Technology Subrata Nath Administrator Jean N. Trujillo Phone: (505) 665-2683 Put a short description of the graphic or its primary message here Accelerator and Operations Technology The Accelerator and Operations Technology (AOT) Division at Los Alamos National Laboratory conducts fundamental and applied research and development needed to improve operations and operations support for the Los Alamos Neutron Science Center (LANSCE). AOT's R&D efforts include

209

Accelerator mass spectrometry in biomedical dosimetry: relationship between low-level exposure and covalent binding of heterocyclic amine carcinogens to DNA.  

Science Journals Connector (OSTI)

...Division, tCenter for Accelerator Mass Spectrometry, and Nuclear Chemistry Division...1990) ABSTRACT Accelerator mass spectrometry...Abbreviations: AMS, accelerator mass spectrometry...mixture was dried under vacuum in silica tubes and...

K W Turteltaub; J S Felton; B L Gledhill; J S Vogel; J R Southon; M W Caffee; R C Finkel; D E Nelson; I D Proctor; J C Davis

1990-01-01T23:59:59.000Z

210

I. ACCELERATION A. Introduction  

E-Print Network [OSTI]

I. ACCELERATION A. Introduction Following cooling and initial bunch compression, the beams must be rapidly accelerated. The acceleration needed for a Higgs collider is probably the most conventional part undertaken. A sequence of linacs would work, but would be expensive. Some form of circulating acceleration

McDonald, Kirk

211

Linear Collider Collaboration Tech Notes LCC-0073 SLAC-PUB-9004  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

3 3 SLAC-PUB-9004 September 2001 Microwave Quadrupoles for Beam Break-up Supression In the NLC Main Linac K.L.F. Bane and G. Stupakov Stanford Linear Accelerator Center Stanford, CA Abstract: This is a preliminary study of the effect of using microwave quads (MQs) instead of rf phase shifting to induce BNS damping in the main linac of the NLC collider. We consider MQs running at X-band, and find that the total length of MQs needed for the NLC is 6% of the total length of the accelerating structures. We show through simulations that, by using MQs instead of phase shifting for BNS damping, the quad alignment tolerances can be relaxed but at the expense of shifting the tight tolerances to the MQs; this can be advantageous if the MQs can be better aligned

212

Superconducting Radiofrequency (SRF) Accelerator Cavities  

SciTech Connect (OSTI)

Charlie Reece, an accelerator technology scientist, explains how superconducting radiofrequency accelerator cavities work.

Reece, Charlie

2013-05-03T23:59:59.000Z

213

Superconducting Radiofrequency (SRF) Accelerator Cavities  

ScienceCinema (OSTI)

Charlie Reece, an accelerator technology scientist, explains how superconducting radiofrequency accelerator cavities work.

Reece, Charlie

2014-05-22T23:59:59.000Z

214

Center for Beam Physics, 1993  

SciTech Connect (OSTI)

The Center for Beam Physics is a multi-disciplinary research and development unit in the Accelerator and Fusion Research Division at Lawrence Berkeley Laboratory. At the heart of the Center`s mission is the fundamental quest for mechanisms of acceleration, radiation and focusing of energy. Dedicated to exploring the frontiers of the physics of (and with) particle and photon beams, its primary mission is to promote the science and technology of the production, manipulation, storage and control systems of charged particles and photons. The Center serves this mission via conceptual studies, theoretical and experimental research, design and development, institutional project involvement, external collaborations, association with industry and technology transfer. This roster provides a glimpse at the scientists, engineers, technical support, students, and administrative staff that make up this team and a flavor of their multifaceted activities during 1993.

Not Available

1994-05-01T23:59:59.000Z

215

E-Print Network 3.0 - accelerating polarized beams Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

polarized beams Search Powered by Explorit Topic List Advanced Search Sample search results for: accelerating polarized beams Page: << < 1 2 3 4 5 > >> 1 Linear Collider...

216

Krylov Subspace Accelerated Algebraic Multigrid for Mimetic Finite Differences on GPUs.  

E-Print Network [OSTI]

?? The topic of this thesis is GPU accelerated sparse linear algebra for subsurface reservoir modeling. Numerical techniques for reservoir sim- ulations are described andÖ (more)

LÝnsethagen, Simen Andreas Andreassen

2012-01-01T23:59:59.000Z

217

Petawatt pulsed-power accelerator  

DOE Patents [OSTI]

A petawatt pulsed-power accelerator can be driven by various types of electrical-pulse generators, including conventional Marx generators and linear-transformer drivers. The pulsed-power accelerator can be configured to drive an electrical load from one- or two-sides. Various types of loads can be driven; for example, the accelerator can be used to drive a high-current z-pinch load. When driven by slow-pulse generators (e.g., conventional Marx generators), the accelerator comprises an oil section comprising at least one pulse-generator level having a plurality of pulse generators; a water section comprising a pulse-forming circuit for each pulse generator and a level of monolithic triplate radial-transmission-line impedance transformers, that have variable impedance profiles, for each pulse-generator level; and a vacuum section comprising triplate magnetically insulated transmission lines that feed an electrical load. When driven by LTD generators or other fast-pulse generators, the need for the pulse-forming circuits in the water section can be eliminated.

Stygar, William A. (Albuquerque, NM); Cuneo, Michael E. (Albuquerque, NM); Headley, Daniel I. (Albuquerque, NM); Ives, Harry C. (Albuquerque, NM); Ives, legal representative; Berry Cottrell (Albuquerque, NM); Leeper, Ramon J. (Albuquerque, NM); Mazarakis, Michael G. (Albuquerque, NM); Olson, Craig L. (Albuquerque, NM); Porter, John L. (Sandia Park, NM); Wagoner; Tim C. (Albuquerque, NM)

2010-03-16T23:59:59.000Z

218

Fermilab | Science | Particle Accelerators | Fermilab's Accelerator...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

It produces the world's most powerful, high-energy neutrino beam and provides proton beams for various experiments and R&D programs. Fermilab's accelerator complex delivers...

219

Fermilab | Science | Particle Accelerators | Leading Accelerator...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Fermilab scientists and engineers develop particle accelerators to produce beams to take particle physics to the next level, collaborating with scientists and...

220

Laser-PlasmaWakefield Acceleration with Higher Order Laser Modes  

E-Print Network [OSTI]

Design considerations for a laser-plasma linear collider,"E.Esarey, and W.P.Leemans, "Free-electron laser driven bythe LBNL laser-plasma accelerator," in Proc. Adv. Acc. Con.

Geddes, C.G.R.

2011-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "linear accelerator center" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Proceedings of the first international workshop on accelerator alignment  

SciTech Connect (OSTI)

This report contains papers on the following accelerator topics: current alignment topics; toolboxes: instrumentation, software, and methods; fiducialization of conventional magnets; fiducialization of superconducting magnets; and next generation linear colliders.

Not Available

1990-10-01T23:59:59.000Z

222

E-Print Network 3.0 - accelerator energy constraints Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Christian, Eric - Laboratory for High Energy Astrophysics, NASA Goddard Space Flight Center Collection: Physics 2 Particle acceleration in solar flares: observations versus...

223

Muon Collider Progress: Accelerators  

SciTech Connect (OSTI)

A muon collider would be a powerful tool for exploring the energy-frontier with leptons, and would complement the studies now under way at the LHC. Such a device would offer several important benefits. Muons, like electrons, are point particles so the full center-of-mass energy is available for particle production. Moreover, on account of their higher mass, muons give rise to very little synchrotron radiation and produce very little beamstrahlung. The first feature permits the use of a circular collider that can make efficient use of the expensive rf system and whose footprint is compatible with an existing laboratory site. The second feature leads to a relatively narrow energy spread at the collision point. Designing an accelerator complex for a muon collider is a challenging task. Firstly, the muons are produced as a tertiary beam, so a high-power proton beam and a target that can withstand it are needed to provide the required luminosity of ~1 ◊ 10{sup 34} cm{sup Ė2}s{sup Ė1}. Secondly, the beam is initially produced with a large 6D phase space, which necessitates a scheme for reducing the muon beam emittance (ďcoolingĒ). Finally, the muon has a short lifetime so all beam manipulations must be done very rapidly. The Muon Accelerator Program, led by Fermilab and including a number of U.S. national laboratories and universities, has undertaken design and R&D activities aimed toward the eventual construction of a muon collider. Design features of such a facility and the supporting R&D program are described.

Zisman, Michael S.

2011-09-10T23:59:59.000Z

224

Accelerator and Fusion Research Division  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Outreach and Diversity Highlights Safety Other Sites and Labs Intramural Outreach and Diversity Highlights Safety Other Sites and Labs Intramural Historical photo of Laboratory founder and cyclotron inventor Ernest Orlando Lawrence at his desk OUR SCIENTIFIC PROGRAMS Accelerator Physics for the ALS Center for Beam Physics LOASIS Laboratory Fusion Science and Ion Beam Technology Superconducting Magnets Free Electron Laser R&D News: AFRD's Jean-Luc Vay and former AFRD scientist Kwang-Je Kim share the US Particle Accelerator School Prize. Andre Anders places two articles among the year's top 30 in the Journal of Applied Physics. AFRD personnel win an R&D 100 in a joint project with industry; the laser at the heart of BELLA sets a world record for laser power. Employees: Safety tips regarding the mountain lion are available. The results from our two most recent Self-Assessment Focus Groups are up, covering emergency preparedness and ergonomics while working offsite.

225

Accelerator Fusion Research Division 1991 summary of activities  

SciTech Connect (OSTI)

This report discusses research projects in the following areas: Heavy-ion fusion accelerator research; magnetic fusion energy; advanced light source; center for x-ray optics; exploratory studies; superconducting magnets; and bevalac operations.

Not Available

1991-12-01T23:59:59.000Z

226

Accelerator & Fusion Research Division 1991 summary of activities  

SciTech Connect (OSTI)

This report discusses research projects in the following areas: Heavy-ion fusion accelerator research; magnetic fusion energy; advanced light source; center for x-ray optics; exploratory studies; superconducting magnets; and bevalac operations.

Not Available

1991-12-01T23:59:59.000Z

227

Accelerator and fusion research division. 1992 Summary of activities  

SciTech Connect (OSTI)

This report contains brief discussions on research topics in the following area: Heavy-Ion Fusion Accelerator Research; Magnetic Fusion Energy; Advanced Light Source; Center for Beam Physics; Superconducting Magnets; and Bevalac Operations.

Not Available

1992-12-01T23:59:59.000Z

228

Argonne cranks up new heavy-ion accelerator  

Science Journals Connector (OSTI)

Argonne cranks up new heavy-ion accelerator ... Dedication ceremonies at Argonne National Laboratory last week celebrated completion of the Argonne Tandem Linear Accelerator System (ATLAS), the world's first superconducting accelerator for heavy ions. ... "We expect ATLAS to permit scientists to study certain aspects of nuclear structure and interactions more closely than ever before," says Argonne nuclear physicist Lowell M. Bollinger, manager of the ATLAS project. ...

1985-06-10T23:59:59.000Z

229

Cosmic Acceleration and Anisotropic models with Magnetic field  

E-Print Network [OSTI]

Plane symmetric cosmological models are investigated with or without any dark energy components in the field equations. Keeping an eye on the recent observational constraints concerning the accelerating phase of expansion of the universe, the role of magnetic field is assessed. The presence of magnetic field can favour an accelerating model even if we take a linear relationship between the directional Hubble parameters.

S. K. Tripathy; K. L. Mahanta

2014-07-27T23:59:59.000Z

230

Argonne Accelerator Institute  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Research and Development Research and Development Click to download a PDF version of this document. PDF Focus Research Areas Fundamental Accelerator Physics: Theory Importance Accelerator physics research is normally associated with specific accelerator projects. As a scientific discipline, however, it is useful to study fundamental accelerator phenomena decoupled, as much as possible, from specific project aspects. Pursuit of fundamental accelerator physics in this sense has contributed significantly to the advance of the accelerator physics knowledgebase during the last several decades, clarifying the limitations and suggesting ways to overcome those limitations. Such basic research tends to be discouraged in a project-driven environment. For sustained and significant progress in

231

GPU Acceleration of Numerical Weather John Michalakes  

E-Print Network [OSTI]

GPU Acceleration of Numerical Weather Prediction John Michalakes National Center for Atmospheric parallelism will prove ineffective for many scenarios. We present an alternative method of scaling model Exponentially increasing processor power has fueled fifty years of continuous improvement in weather and climate

Colorado at Boulder, University of

232

Linear Collider Collaboration Tech Notes LCC-0113 CBP Tech Note-276  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

3 3 CBP Tech Note-276 February 2003 The NLC Main Damping Ring Lattice Mark Woodley 1 and Andrzej Wolski 2 1 Stanford Linear Accelerator Center Stanford University Menlo Park, CA 04025 2 Lawrence Berkeley National Laboratory University of California Berkeley, CA Abstract: Studies of the NLC Main Damping Ring lattice since April 2001 have indicated that there are a number of collective effects that potentially limit operational performance. One possible way to reduce the impact of these effects is to raise the momentum compaction of the lattice, which requires a significant redesign. In this note, we present a lattice that has a momentum compaction four times larger than the previous design. We discuss the linear and nonlinear dynamical properties of the lattice, and

233

Recirculating Linac Accelerators For Future Muon Facilities  

SciTech Connect (OSTI)

Neutrino Factories (NF) and Muon Colliders (MC) require rapid acceleration of shortlived muons to multi-GeV and TeV energies. A Recirculating Linear Accelerator (RLA) that uses superconducting RF structures can provide exceptionally fast and economical acceleration to the extent that the focusing range of the RLA quadrupoles allows each muon to pass several times through each high-gradient cavity. A new concept of rapidly changing the strength of the RLA focusing quadrupoles as the muons gain energy is being developed to increase the number of passes that each muon will make in the RF cavities, leading to greater cost effectiveness. We discuss the optics and technical requirements for RLA designs, using RF cavities capable of simultaneous acceleration of both m+ and m- species. The design will include the optics for the multi-pass linac and droplet-shaped return arcs.

Yves Roblin, Alex Bogacz, Vasiliy Morozov, Kevin Beard

2012-04-01T23:59:59.000Z

234

RHIC | Accelerator Complex  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

RHIC Accelerators RHIC Accelerators The Relativistic Heavy Ion Collider complex is actually composed of a long "chain" of particle accelerators Heavy ions begin their travels in the Electron Beam Ion Source accelerator (1). The ions then travel to the small, circular Booster (3) where, with each pass, they are accelerated to higher energy. From the Booster, ions travel to the Alternating Gradient Synchrotron (4), which then injects the beams via a beamline (5) into the two rings of RHIC (6). In RHIC, the beams get a final accelerator "kick up" in energy from radio waves. Once accelerated, the ions can "orbit" inside the rings for hours. RHIC can also conduct colliding-beam experiments with polarized protons. These are first accelerated in the Linac (2), and further in the Booster (3), AGS (4), and

235

Fermilab | Tevatron | Accelerator  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

particle accelerator in the world before it shut down on Sept. 29, 2011. It accelerated beams of protons and antiprotons to 99.999954 percent of the speed of light around a...

236

LARGE-APERTURE D- ACCELERATORS  

E-Print Network [OSTI]

Vignetted current profile at accelerator entrance aperture 'LARGE-APERTURE D" ACCELERATORS* 0. A. Anderson" " Lawrencen i a 9-1720 Abstract Accelerator designs are described for

Anderson, O.A.

2010-01-01T23:59:59.000Z

237

Beam Dynamics for Induction Accelerators  

E-Print Network [OSTI]

Dynamics for Induction Accelerators Edward P. Lee Lawrencea natural candidate accelerator for a heavy ion fusion (HIF)words: Fusion, Induction, Accelerators, Dynamics This work

Lee, E.P.

2014-01-01T23:59:59.000Z

238

Monte Carlo simulations for the shielding of the future high-intensity accelerator facility fair at GSI  

Science Journals Connector (OSTI)

......the universal linear accelerator, UNILAC, the heavy-ion...expands on the present accelerator system at the GSI...beams are produced in nuclear reactions induced by...PROTON AND HEAVY-ION ACCELERATOR During the acceleration...certain flight path in the vacuum. The wall thickness......

T. Radon; F. Gutermuth; G. Fehrenbacher

2005-12-20T23:59:59.000Z

239

Shielding of proton accelerators  

Science Journals Connector (OSTI)

......capabilities of an accelerator control system...meant to undergo a nuclear interaction within...the axis of the vacuum chamber. The beam...of high-energy accelerators. Nucl. Instrum...Series, Group I: Nuclear and Particle Physics-Schopper...100-250 MeV proton accelerators: double differential......

Stefano Agosteo; Matteo Magistris; Marco Silari

2011-07-01T23:59:59.000Z

240

Challenges in future linear colliders  

SciTech Connect (OSTI)

For decades, electron-positron colliders have been complementing proton-proton colliders. But the circular LEP, the largest e-e+ collider, represented an energy limit beyond which energy losses to synchrotron radiation necessitate moving to e-e+ linear colliders (LCs), thereby raising new challenges for accelerator builders. Japanese-American, German, and European collaborations have presented options for the Future Linear Collider (FLC). Key accelerator issues for any FLC option are the achievement of high enough energy and luminosity. Damping rings, taking advantage of the phenomenon of synchrotron radiation, have been developed as the means for decreasing beam size, which is crucial for ensuring a sufficiently high rate of particle-particle collisions. Related challenges are alignment and stability in an environment where even minute ground motion can disrupt performance, and the ability to monitor beam size. The technical challenges exist within a wider context of socioeconomic and political challenges, likely necessitating continued development of international collaboration among parties involved in accelerator-based physics.

Swapan Chattopadhyay; Kaoru Yokoya

2002-09-02T23:59:59.000Z

Note: This page contains sample records for the topic "linear accelerator center" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Argonne Accelerator Institute  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AAI Homepage Lee Teng Scholarship Program USPAS Argonne Department of Education Fermilab Education Office For Students Many scientific advances are made using accelerators. The world of High Energy Particle Physics has driven this field and continues to depend largely on accelerators. Increasingly advances in materials science, chemistry, biology and environmental science are being made at accelerators using x-ray and neutrons to probe matter. Accelerators have a number of commercial applications including isotope production for use in medicine, cancer treatment, processing semiconductor chips, and so on. Presently there are around 15,000 accelerators worldwide. Approximately 97% of these are used for commercial applications. However several hundred are in use

242

PAIRED ACCELERATED FRAMES: THE PERFECT INTERFEROMETER WITH EVERYWHERE SMOOTH WAVE AMPLITUDES \\Lambda  

E-Print Network [OSTI]

PAIRED ACCELERATED FRAMES: THE PERFECT INTERFEROMETER WITH EVERYWHERE SMOOTH WAVE AMPLITUDES In the absence of gravitation the distinguishing feature of any linearly and uniformly accelerated frame event horizons relative to each of the two frames. This acceleration­ induced partitioning of spacetime

Gerlach, Ulrich

243

operations center  

National Nuclear Security Administration (NNSA)

1%2A en Operations Center http:nnsa.energy.govaboutusourprogramsemergencyoperationscounterterrorismoperationscenter

...

244

New Facility Saves $20 Million, Accelerates Waste Processing | Department  

Broader source: Energy.gov (indexed) [DOE]

Facility Saves $20 Million, Accelerates Waste Processing Facility Saves $20 Million, Accelerates Waste Processing New Facility Saves $20 Million, Accelerates Waste Processing August 15, 2012 - 12:00pm Addthis The new Cask Processing Enclosure (CPE) facility is located at the Transuranic Waste Processing Center (TWPC). The Transuranic Waste Processing Center (TWPC) processes, repackages, and ships the site's legacy TRU waste offsite. OAK RIDGE, Tenn. - Oak Ridge's EM program recently began operations at a newly constructed facility that will accelerate the completion of remote-handled transuranic (TRU) waste processing at the site by two years and save taxpayers more than $20 million. The new Cask Processing Enclosure (CPE) facility is located at the Transuranic Waste Processing Center (TWPC). TWPC processes, repackages, and

245

Accelerated Status Exceptionally promising current UCI undergraduate Engineering students may petition for streamlined admission directly  

E-Print Network [OSTI]

Accelerated Status Exceptionally promising current UCI undergraduate Engineering students may numbered 200-289. How to Petition: Students are required to submit an Accelerated Status Petition Form) to the Graduate Student Affairs Office (305 Rockwell Engineering Center). Students may join the Accelerated Status

Mease, Kenneth D.

246

SLAC low emittance accelerator test facility  

SciTech Connect (OSTI)

SLAC is proposing to build a new Accelerator Test Facility (ATF) capable of producing a 50 MeV electron beam with an extremely low geometric tranverse emittance (1.5 x 10/sup -10/ rad.m) for the purpose of testing new methods of acceleration. The low emittance will be achieved by assembling a linear accelerator using one standard SLAC three-meter section and a 400 kV electron gun with a very small photocathode (40 microns in diameter). The photocathode will be illuminated from the back by short bursts (on the order of 6 ps) of visible laser light which will produce bunches of about 10/sup 5/ electrons. Higher currents could be obtained by illuminating the cathode from the front. The gun will be mounted directly against the accelerator section. Calculations show that in the absence of an rf buncher, injection of these 400 keV small radius electron bunches roughly 30/sup 0/ ahead of crest produces negligible transverse emittance growth due to radial rf forces. Acceleration of the electrons up to 50 MeV followed by collimation, energy slits and focusing will provide a 3.2 mm long waist of under 1.5 ..mu..m in diameter where laser acceleration and other techniques can be tested.

Loew, G.A.; Miller, R.H.; Sinclair, C.K.

1986-05-01T23:59:59.000Z

247

BNL | Accelerator Test Facility  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Accelerator Test Facility Accelerator Test Facility Home Core Capabilities Photoinjector S-Band Linac Laser Systems CO2 Laser Nd:Yag Laser Beamlines Beamline Simulation Data Beamline Parameters Beam Diagnostics Detectors Beam Schedule Operations Resources Fact Sheet (.pdf) Image Library Upgrade Proposal (.pdf) Publications ES&H Experiment Start-up ATF Handbook Laser Safety Collider-Accelerator Dept. C-AD ES&H Resources Staff Users' Place Apply for Access ATF photo ATF photo ATF photo ATF photo ATF photo A user facility for advanced accelerator research The Brookhaven Accelerator Test Facility (ATF) is a proposal driven, steering committee reviewed facility that provides users with high-brightness electron- and laser-beams. The ATF pioneered the concept of a user facility for studying complex properties of modern accelerators and

248

Argonne Accelerator Institute  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Welcome Welcome In 2006, Argonne laboratory director Robert Rosner formed the AAI as a focal point for accelerator initiatives. The institute works to utilize Argonne's extensive accelerator resources, to enhance existing facilities, to determine the future of accelerator development and construction, and to oversee a dynamic and acclaimed accelerator physics portfolio. I invite you to look around the content of this web site. Accelerators at Argonne describes our rich heritage in this field, particularly with respect to the development and support of user facilities. Initiatives describes the things we are hoping to do, and Research & Development discusses our research portfolio. If you are a graduate or undergraduate student wishing to pursue a career in accelerator science or technology, please see Educational

249

Argonne Accelerator Institute  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

The Argonne Accelerator History Document Collection The Argonne Accelerator History Document Collection The Argonne Accelerator Institute (AAI) has established a special collection of archived documents which describe notable Argonne accelerator work of the past 50 years. A list of such Argonne Accelerator Projects is given below. Each project is described briefly, with links to archived documents in this collection. This collection includes important Argonne accelerator documents which may have become difficult to locate, as well as ones which have broad scope. In keeping with its historical purpose, this collection only covers work done 10 or more years ago. Many of the listed documents are available online. We hope to make more of them available online in the future. [For several of the projects, interesting additional online documents can be found by

250

Uniformly accelerated black holes  

Science Journals Connector (OSTI)

The static and stationary C metric are examined in a generic framework and their interpretations studied in some detail, especially those with two event horizons, one for the black hole and another for the acceleration. We find that (i) the spacetime of an accelerated static black hole is plagued by either conical singularities or a lack of smoothness and compactness of the black hole horizon, (ii) by using standard black hole thermodynamics we show that accelerated black holes have a higher Hawking temperature than Unruh temperature of the accelerated frame, and (iii) the usual upper bound on the product of the mass and acceleration parameters (<1/27) is just a coordinate artifact. The main results are extended to accelerated rotating black holes with no significant changes.

Patricio S. Letelier and Samuel R. Oliveira

2001-08-24T23:59:59.000Z

251

Miniaturization Techniques for Accelerators  

SciTech Connect (OSTI)

The possibility of laser driven accelerators [1] suggests the need for new structures based on micromachining and integrated circuit technology because of the comparable scales. Thus, we are exploring fully integrated structures including sources, optics (for both light and particle) and acceleration in a common format--an accelerator-on-chip (AOC). Tests suggest a number of preferred materials and techniques but no technical or fundamental roadblocks at scales of order 1 {micro}m or larger.

Spencer, James E.

2003-05-27T23:59:59.000Z

252

Optically pulsed electron accelerator  

DOE Patents [OSTI]

An optically pulsed electron accelerator can be used as an injector for a free electron laser and comprises a pulsed light source, such as a laser, for providing discrete incident light pulses. A photoemissive electron source emits electron bursts having the same duration as the incident light pulses when impinged upon by same. The photoemissive electron source is located on an inside wall of a radiofrequency-powered accelerator cell which accelerates the electron burst emitted by the photoemissive electron source.

Fraser, J.S.; Sheffield, R.L.

1985-05-20T23:59:59.000Z

253

Optically pulsed electron accelerator  

DOE Patents [OSTI]

An optically pulsed electron accelerator can be used as an injector for a free electron laser and comprises a pulsed light source, such as a laser, for providing discrete incident light pulses. A photoemissive electron source emits electron bursts having the same duration as the incident light pulses when impinged upon by same. The photoemissive electron source is located on an inside wall of a radio frequency powered accelerator cell which accelerates the electron burst emitted by the photoemissive electron source.

Fraser, John S. (Los Alamos, NM); Sheffield, Richard L. (Los Alamos, NM)

1987-01-01T23:59:59.000Z

254

Accelerated Testing Validation  

Broader source: Energy.gov (indexed) [DOE]

Accelerated Testing Validation Rangachary Mukundan (PI), Rodney Borup, John Davey, Roger Lujan Los Alamos National Laboratory Adam Z. Weber Lawrence Berkeley National Laboratory...

255

Market Acceleration (Fact Sheet)  

SciTech Connect (OSTI)

The fact sheet summarizes the goals and activities of the DOE Solar Energy Technologies Program efforts within its market acceleration subprogram.

Not Available

2010-09-01T23:59:59.000Z

256

Accelerated Molecular Dynamics Methods  

Broader source: Energy.gov [DOE]

This presentation on Accelerated Molecular Dynamics Methods was given at the DOE Theory Focus Session on Hydrogen Storage Materials on May 18, 2006.

257

Accelerator Test Facility  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Director ATF, Accelerator External program committee W. Leemans, Chair M. Woodle Engineer Mechanical M. Montemagno Engineer Electrical I. Pogorelsky, Physicist, Laser P. Jacob...

258

DOE - Office of Legacy Management -- Stanford Linear Accelerator...  

Office of Legacy Management (LM)

by past operations with volatile organic compounds, polychloronated biphenyls, petroleum hydrocarbons, lead, and other metals. Site cleanup is scheduled for completion in...

259

INTRA BEAM SCATTERING IN LINEAR ACCELERATORS, ESPECIALLY ERLS  

E-Print Network [OSTI]

radiation protection system. INTRODUCTION Single event intra-beam scattering (IBS) that leads to momentum complete propagation of scattered particle. For the example of the ERL x-ray facility that Cornell plans the current of lost particles can pose a radiation hazard. In this paper we describe tracking simulations

260

Accelerators, Beams And Physical Review Special Topics - Accelerators And Beams  

SciTech Connect (OSTI)

Accelerator science and technology have evolved as accelerators became larger and important to a broad range of science. Physical Review Special Topics - Accelerators and Beams was established to serve the accelerator community as a timely, widely circulated, international journal covering the full breadth of accelerators and beams. The history of the journal and the innovations associated with it are reviewed.

Siemann, R.H.; /SLAC

2011-10-24T23:59:59.000Z

Note: This page contains sample records for the topic "linear accelerator center" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Acceleration Worksheet 8/24/2011 ACCELERATION WORKSHEET  

E-Print Network [OSTI]

Acceleration Worksheet 8/24/2011 ACCELERATION WORKSHEET College of Arts and Sciences Name _____________ TO _____________ month/year month/year II. I meet the requirements for acceleration under [fill out either a) or b;Acceleration Worksheet 8/24/2011 Acceleration 2011-2012 Courses of Study The faculty of the college desires

Davis, H. Floyd

262

Help Center  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Los Alamos National Laboratory Advanced Simulation and Computing Los Alamos National Laboratory Advanced Simulation and Computing Menu Events Partnerships Help Center Events Partnerships Help Center Videos Advanced Simulation and Computing Program ¬Ľ Help Center Computing Help Center Help hotlines, hours of operation, training, technical assistance, general information Los Alamos National Laboratory Hours: Monday through Friday, 8:00 a.m. - noon, 1:00-5:00 p.m. Mountain time Telephone: (505) 665-4444 option 3 Fax: (505) 665-6333 E-mail: consult@lanl.gov 24 hours a day, 7 days a week Operations (to report a system or network problem: (505) 667-2919 Lawrence Livermore National Laboratory Hours: Monday through Friday, 8:00 a.m. - noon, 1:00-4:45 p.m. Pacific time High Performance Hotline (technical consulting) Telephone: (925) 422-4532

263

Neutrino physics at accelerators  

E-Print Network [OSTI]

Present and future neutrino experiments at accelerators are mainly concerned with understanding the neutrino oscillation phenomenon and its implications. Here a brief account of neutrino oscillations is given together with a description of the supporting data. Some current and planned accelerator neutrino experiments are also explained.

Enrique Fernandez

2006-07-16T23:59:59.000Z

264

Safety of Accelerator Facilities  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

To establish accelerator-specific safety requirements which, when supplemented by other applicable safety and health requirements, will serve to prevent injuries and illnesses associated with Department of Energy (DOE) or National Nuclear Security Administration (NNSA) accelerator operations. Cancels DOE O 420.2. Canceled by DOE O 420.2B.

2001-01-08T23:59:59.000Z

265

Safety of Accelerator Facilities  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

To establish accelerator-specific safety requirements which, when supplemented by other applicable safety and health requirements, will serve to prevent injuries and illnesses associated with Department of Energy (DOE) or National Nuclear Security Administration (NNSA) accelerator operations. Cancels DOE O 420.2A. Certified 5-13-08. Canceled by DOE O 420.2C.

2004-07-23T23:59:59.000Z

266

Microscale acceleration history discriminators  

DOE Patents [OSTI]

A new class of micromechanical acceleration history discriminators is claimed. These discriminators allow the precise differentiation of a wide range of acceleration-time histories, thereby allowing adaptive events to be triggered in response to the severity (or lack thereof) of an external environment. Such devices have applications in airbag activation, and other safety and surety applications.

Polosky, Marc A. (Albuquerque, NM); Plummer, David W. (Albuquerque, NM)

2002-01-01T23:59:59.000Z

267

Safety of Accelerator Facilities  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

The order defines accelerators and establishes accelerator specific safety requirements and approval authorities which, when supplemented by other applicable safety and health requirements, promote safe operations to ensure protection of workers, the public, and the environment. Cancels DOE O 420.2B.

2011-07-21T23:59:59.000Z

268

Accelerators (4/5)  

ScienceCinema (OSTI)

1a) Introduction and motivation 1b) History and accelerator types 2) Transverse beam dynamics 3a) Longitudinal beam dynamics 3b) Figure of merit of a synchrotron/collider 3c) Beam control 4) Main limiting factors 5) Technical challenges Prerequisite knowledge: Previous knowledge of accelerators is not required.

None

2011-10-06T23:59:59.000Z

269

Accelerators (3/5)  

ScienceCinema (OSTI)

1a) Introduction and motivation 1b) History and accelerator types 2) Transverse beam dynamics 3a) Longitudinal beam dynamics 3b) Figure of merit of a synchrotron/collider 3c) Beam control 4) Main limiting factors 5) Technical challenges Prerequisite knowledge: Previous knowledge of accelerators is not required.

None

2011-10-06T23:59:59.000Z

270

Accelerator Modeling with MATLAB Accelerator Toolbox  

SciTech Connect (OSTI)

This paper introduces Accelerator Toolbox (AT)--a collection of tools to model storage rings and beam transport lines in the MATLAB environment. The objective is to illustrate the flexibility and efficiency of the AT-MATLAB framework. The paper discusses three examples of problems that are analyzed frequently in connection with ring-based synchrotron light sources.

Terebilo, Andrei

2002-08-21T23:59:59.000Z

271

Collider-Accelerator Department  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

RHIC Tunnel and Magnets RHIC Tunnel and Magnets RHIC Tunnel and Magnets AGS Tunnel and Magnets NSRL Beamline RF Kicker Snake 200-MeV LINAC AGS Cold Snake Magnet About the Collider-Accelerator Department The mission of the Collider-Accelerator Department is to develop, improve and operate the suite of particle / heavy ion accelerators used to carry out the program of accelerator-based experiments at BNL; to support the experimental program including design, construction and operation of the beam transports to the experiments plus support of detector and research needs of the experiments; to design and construct new accelerator facilities in support of the BNL and national missions. The C-A Department supports an international user community of over 1500 scientists. The department performs all these functions in an environmentally responsible and safe manner under a rigorous conduct of operations approach.

272

"Infotonics Technology Center"  

SciTech Connect (OSTI)

During this grant period July 15, 2002 thru September 30, 2004, the Infotonics Technology Center developed the critical infrastructure and technical expertise necessary to accelerate the development of sensors, alternative lighting and power sources, and other specific subtopics of interest to Department of Energy. Infotonics fosters collaboration among industry, universities and government and operates as a national center of excellence to drive photonics and microsystems development and commercialization. A main goal of the Center is to establish a unique, world-class research and development facility. A state-of-the-art microsystems prototype and pilot fabrication facility was established to enable rapid commercialization of new products of particular interest to DOE. The Center has three primary areas of photonics and microsystems competency: device research and engineering, packaging and assembly, and prototype and pilot-scale fabrication. Center activities focused on next generation optical communication networks, advanced imaging and information sensors and systems, micro-fluidic systems, assembly and packaging technologies, and biochemical sensors. With targeted research programs guided by the wealth of expertise of Infotonics√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬Ę√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬? business and scientific staff, the fabrication and packaging facility supports and accelerates innovative technology development of special interest to DOE in support of its mission and strategic defense, energy, and science goals.

Fritzemeier, L., Boysel, M.B., and Smith, D.R.

2005-01-14T23:59:59.000Z

273

ASU EFRC - Center researchers  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Principal Investigators Postdoctoral Fellows Center researchers Graduate Students Undergraduate Students All Bisfuel Center Personnel Center researchers Chad Simmons Academic...

274

lgebra Linear Mauro Rincon  

E-Print Network [OSTI]

8.1 √Ālgebra Linear Mauro Rincon M√°rcia Fampa Aula 8: Solu√ß√Ķes de Sistemas de Equa√ß√Ķes Lineares #12

Cabral, Marco

275

Abi Barrow, PhD Founding Director of the Massachusetts Technology Transfer Center  

E-Print Network [OSTI]

Abi Barrow, PhD Founding Director of the Massachusetts Technology Transfer Center Dr. Abigail Barrow is the Founding Director of the Massachusetts Technology Transfer Center (MTTC). She and accelerates technology transfer between all universities, hospitals and research institutions

Vajda, Sandor

276

Ground Broken for New Job-Creating Accelerator Research Facility at DOE's  

Broader source: Energy.gov (indexed) [DOE]

Ground Broken for New Job-Creating Accelerator Research Facility at Ground Broken for New Job-Creating Accelerator Research Facility at DOE's Fermi National Accelerator Laboratory in Illinois Ground Broken for New Job-Creating Accelerator Research Facility at DOE's Fermi National Accelerator Laboratory in Illinois December 16, 2011 - 11:49am Addthis WASHINGTON, D.C. - Today, ground was broken for a new accelerator research facility being built at the Department of Energy's (DOE's) Fermi National Accelerator Laboratory (Fermilab) in Batavia, Illinois. Supported jointly by the state of Illinois and DOE, the construction of the Illinois Accelerator Research Center (IARC) will provide a state-of-the-art facility for research, development and industrialization of particle accelerator technology, and create about 200 high-tech jobs. DOE's Office

277

DEDICATED HEAVY ION MEDICAL ACCELERATORS  

E-Print Network [OSTI]

Lancaster, R.B. Yourd, Pre~,Accelerator A w∑ideroe~,Basedcarbon beam medical accelerator facility. N "' . ,;j "' ::lEat the MARIA Workshop III: Accelerator Systems for Relat ic

Gough, R.A.

2013-01-01T23:59:59.000Z

278

Accelerated Least Squares Multidimensional Scaling  

E-Print Network [OSTI]

x(make_x(36,2)) xACCELERATED SCALING R EFERENCES I.ACCELERATED LEAST SQUARES MULTIDIMENSIONAL SCALING JAN DEare simpler to write. ACCELERATED SCALING It is shown in De

Leeuw, Jan de

2006-01-01T23:59:59.000Z

279

Accelerated Least Squares Multidimensional Scaling  

E-Print Network [OSTI]

x(make_x(36,2)) xACCELERATED SCALING R EFERENCES I.ACCELERATED LEAST SQUARES MULTIDIMENSIONAL SCALING JAN DEare simpler to write. ACCELERATED SCALING It is shown in De

Jan de Leeuw

2011-01-01T23:59:59.000Z

280

Future Accelerators, Muon Colliders, and Neutrino Factories  

SciTech Connect (OSTI)

Particle physics is driven by five great topics. Neutrino oscillations and masses are now at the fore. The standard model with extensions to supersymmetry and a Higgs to generate mass explains much of the field. The origins of CP violation are not understood. The possibility of extra dimensions has raised tantalizing new questions. A fifth topic lurking in the background is the possibility of something totally different. Many of the questions raised by these topics require powerful new accelerators. It is not an overstatement to say that for some of the issues, the accelerator is almost the experiment. Indeed some of the questions require machines beyond our present capability. As this volume attests, there are parts of the particle physics program that have been significantly advanced without the use of accelerators such as the subject of neutrino oscillations and many aspects of the particle-cosmology interface. At this stage in the development of physics, both approaches are needed and important. This chapter first reviews the status of the great accelerator facilities now in operation or coming on within the decade. Next, midrange possibilities are discussed including linear colliders with the adjunct possibility of gamma-gamma colliders, muon colliders, with precursor neutrino factories, and very large hadron colliders. Finally visionary possibilities are considered including plasma and laser accelerators.

Richard A Carrigan, Jr.

2001-12-19T23:59:59.000Z

Note: This page contains sample records for the topic "linear accelerator center" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Accelerator Physics and Design at NERSC  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Accelerator Science Accelerator Science ReframAccelerator.jpg Particle accelerators are among the largest, most complex, and most important scientific instruments in the world....

282

Computational studies and optimization of wakefield accelerators  

E-Print Network [OSTI]

optimization of wakefield accelerators C. G. R. Geddes 1 ,from the U.S. -LHC Accelerator Research Program (LARP),driven plasma wakefield accelerators produce accelerating

Geddes, C.G.R.

2010-01-01T23:59:59.000Z

283

Center Resources  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Resources for Planning Center Activities Resources for Planning Center Activities       QuarkNet at Work - Resources Home QuarkNet is a teacher professional development effort funded by the National Science Foundation and the US Department of Energy. Teachers work on particle physics experiments during a summer and join a cadre of scientists and teachers working to introduce some aspects of their research into their classrooms. This allows tomorrow's particle physicists to peek over the shoulder of today's experimenters. These resources are available for lead teachers and mentors at Quartnet Centers as they design activities for associate teacher workshops and follow-on activities. Important Findings from Previous Years Mentor Tips Associate Teacher Institute Toolkit

284

Stripping of H- beams by residual gas in the linac at the Los Alamos neutron science center  

SciTech Connect (OSTI)

The linear accelerator at the Los Alamos Neutron Science Center (LANSCE) accelerates both protons and H{sup -} ions using Cockroft-Walton-type injectors, a drift-tube linac and a coupled-cavity linac. The vacuum is maintained in the range of 10{sup -6} to 10{sup -7} Torr; the residual gas in the vacuum system results in some stripping of the electrons from the H{sup -} ions resulting in beam spill and the potential for unwanted proton beams delivered to experiments. We have measured the amount of fully-stripped H{sup -} beam (protons) that end up at approximately 800 MeV in the beam switchyard at LANSCE using image plates as very sensitive detectors. We present here the motivation for the measurement, the measurement technique and results.

Mccrady, Rodney C [Los Alamos National Laboratory; Ito, Takeyasu [Los Alamos National Laboratory; Cooper, Martin D [Los Alamos National Laboratory; Alexander, Saunders [Los Alamos National Laboratory

2010-09-07T23:59:59.000Z

285

The evolution of high energy accelerators  

SciTech Connect (OSTI)

Accelerators have been devised and built for two reasons: In the first place, by physicists who needed high energy particles in order to have a means to explore the interactions between particles that probe the fundamental elementary forces of nature. And conversely, sometimes accelerator builders produce new machines for higher energy than ever before just because it can be done, and then challenge potential users to make new discoveries with the new means at hand. These two approaches or motivations have gone hand in hand. This lecture traces how high energy particle accelerators have grown from tools used for esoteric small-scale experiments to the gigantic projects of today. So far all the really high-energy machines built and planned in the world--except the SLC--have been ring accelerators and storage rings using the strong-focusing method. But this method has not removed the energy limit, it has only pushed it higher. It would seem unlikely that one can go beyond the Large Hadron Collider (LHC)--but in fact a workshop was held in Sicily in November 1991, concerned with the question of extrapolating to 100 TeV. Other acceleration and beam-forming methods are now being discussed--collective fields, laser acceleration, wake-field accelerators etc., all aimed primarily at making linear colliders possible and more attractive than with present radiofrequency methods. So far it is not entirely clear which of these schemes will dominate particle physics in the future--maybe something that has not been thought of as yet.

Courant, E.D.

1994-08-01T23:59:59.000Z

286

Argonne Accelerator Institute  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AAI Home AAI Home Welcome Accelerators at Argonne Mission Organization History Document Collection Conferences & Workshops Beams and Applications Seminar Argonne-Fermilab Collaboration Lee Teng Scholarship Program Useful Links Organization The Argonne Accelerator Institute is a matrixed organization. Its members and fellows reside in programmatic Argonne divisions. The Institute reports to the Associate Laboratory Director for Photon Science), and the administrative functions of the Institute are within the PSC directorate. Director: Rodney Gerig Associate Director: Hendrik Weerts ( Director of High Energy Physics Division) Associate Director: Sasha Zholents (Director of Accelerator Systems Division) Associate Director: Robert Janssens ( Director of Argonne Physics Division)

287

Accelerator Toolbox for MATLAB  

SciTech Connect (OSTI)

This paper introduces Accelerator Toolbox (AT)--a collection of tools to model particle accelerators and beam transport lines in the MATLAB environment. At SSRL, it has become the modeling code of choice for the ongoing design and future operation of the SPEAR 3 synchrotron light source. AT was designed to take advantage of power and simplicity of MATLAB--commercially developed environment for technical computing and visualization. Many examples in this paper illustrate the advantages of the AT approach and contrast it with existing accelerator code frameworks.

Terebilo, Andrei

2001-05-29T23:59:59.000Z

288

C-AD Accelerator Division  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Accelerator Division Accelerator Division The Accelerator Division operates and continually upgrades a complex of eight accelerators: 2 Tandem Van de Graaff electrostatic accelerators, an Electron Beam Ion Source (EBIS), a 200 MeV proton Linac, the AGS Booster, the Alternating Gradient Synchrotron (AGS), and the 2 rings of the Relativistic Heavy Ion Collider (RHIC). These machines serve user programs at the Tandems, the Brookhaven Linac Isotope Producer (BLIP), the NASA Space Radiation Laboratory (NSRL), and the 2 RHIC experiments STAR, and PHENIX. The Division also supports the development of new accelerators and accelerator components. Contact Personnel Division Head: Wolfram Fischer Deputy Head: Joe Tuozzolo Division Secretary: Anna Petway Accelerator Physics: Michael Blaskiewicz

289

Systems and methods for cylindrical hall thrusters with independently controllable ionization and acceleration stages  

DOE Patents [OSTI]

Systems and methods may be provided for cylindrical Hall thrusters with independently controllable ionization and acceleration stages. The systems and methods may include a cylindrical channel having a center axial direction, a gas inlet for directing ionizable gas to an ionization section of the cylindrical channel, an ionization device that ionizes at least a portion of the ionizable gas within the ionization section to generate ionized gas, and an acceleration device distinct from the ionization device. The acceleration device may provide an axial electric field for an acceleration section of the cylindrical channel to accelerate the ionized gas through the acceleration section, where the axial electric field has an axial direction in relation to the center axial direction. The ionization section and the acceleration section of the cylindrical channel may be substantially non-overlapping.

Diamant, Kevin David; Raitses, Yevgeny; Fisch, Nathaniel Joseph

2014-05-13T23:59:59.000Z

290

Argonne Accelerator Institute  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Quarterly Meetings Quarterly Meetings November 29, 2011 Held at the Advanced Photon Source, Argonne, IL DOE Accelerator R&D Task Force - M. White February 17, 2010 Held at the Advanced Photon Source, Argonne, IL June 16, 2009 General Updates - R. Gerig Accelerator Developments in Physics Division - R. Janssens Proposal for Argonne SRF Facility - M. Kelly Accelerator Developments in HEP Division - W. Gai Beam Activities of the DOD Project Office-Focus on the Navy FEL - S. Biedron AAI Historical Collection - T. Fields November 24, 2008 Strategic Theme Forum Meeting - This meeting was held to gather information on the Accelerator Science and Technology Theme to establish the Argonne's Strategic Plan January 9, 2008 Opening Remarks - R. Gerig ILC Planning - J. Carwardine Argonne Participation in Project X - P. Ostroumov

291

Advanced Accelerator Concepts Workshop  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

acceleration at the BNL-ATF Thomas Marshall GeVm WAKE FIELDS GENERATED BY A TRAIN OF pC, FEMTOSECOND BUNCHES IN A PLANAR DIELECTRIC MICROSTRUCTURE Changbiao Wang GeVm...

292

Accelerated Currents in Superconductors  

Science Journals Connector (OSTI)

It is shown that the ratio of the accelerated currents of energy and matter induced in a superconductor by a long-wavelength electric field is equal to the chemical potential of the system.

Vinay Ambegaokar and Gerald Rickayzen

1966-02-04T23:59:59.000Z

293

Accelerator on a Chip  

ScienceCinema (OSTI)

SLAC's Joel England explains how the same fabrication techniques used for silicon computer microchips allowed their team to create the new laser-driven particle accelerator chips. (SLAC Multimedia Communications)

England, Joel

2014-07-16T23:59:59.000Z

294

Accelerator on a Chip  

SciTech Connect (OSTI)

SLAC's Joel England explains how the same fabrication techniques used for silicon computer microchips allowed their team to create the new laser-driven particle accelerator chips. (SLAC Multimedia Communications)

England, Joel

2014-06-30T23:59:59.000Z

295

Advanced Accelerator Concepts Workshop  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

EM Structure-Based Accelerators Working Group Group-Leader: Wayne Kimura, STI Optronics (wkimura@stioptronics.com) Group-Co-leader: Steve Lidia, LBNL (SMLidia@lbl.gov)...

296

Linear chain magnetism  

Science Journals Connector (OSTI)

Linear chain magnetism ... A brief introduction to this concept, which is also called lower dimensional magnetism. ...

Richard L. Carlin

1991-01-01T23:59:59.000Z

297

CEBAF accelerator achievements  

SciTech Connect (OSTI)

In the past decade, nuclear physics users of Jefferson Lab's Continuous Electron Beam Accelerator Facility (CEBAF) have benefited from accelerator physics advances and machine improvements. As of early 2011, CEBAF operates routinely at 6 GeV, with a 12 GeV upgrade underway. This article reports highlights of CEBAF's scientific and technological evolution in the areas of cryomodule refurbishment, RF control, polarized source development, beam transport for parity experiments, magnets and hysteresis handling, beam breakup, and helium refrigerator operational optimization.

Y.C. Chao, M. Drury, C. Hovater, A. Hutton, G.A. Krafft, M. Poelker, C. Reece, M. Tiefenback

2011-06-01T23:59:59.000Z

298

Decay of accelerated particles  

Science Journals Connector (OSTI)

We study how the decay properties of particles are changed by acceleration. It is shown that under the influence of acceleration (1) the lifetime of particles is modified and (2) new processes (such as the decay of the proton) become possible. This is illustrated by considering scalar models for the decay of muons, pions, and protons. We discuss the close conceptual relation between these processes and the Unruh effect.

Rainer MŁller

1997-07-15T23:59:59.000Z

299

Breakthrough: Fermilab Accelerator Technology  

SciTech Connect (OSTI)

There are more than 30,000 particle accelerators in operation around the world. At Fermilab, scientists are collaborating with other laboratories and industry to optimize the manufacturing processes for a new type of powerful accelerator that uses superconducting niobium cavities. Experimenting with unique polishing materials, a Fermilab team has now developed an efficient and environmentally friendly way of creating cavities that can propel particles with more than 30 million volts per meter.

None

2012-04-23T23:59:59.000Z

300

Breakthrough: Fermilab Accelerator Technology  

ScienceCinema (OSTI)

There are more than 30,000 particle accelerators in operation around the world. At Fermilab, scientists are collaborating with other laboratories and industry to optimize the manufacturing processes for a new type of powerful accelerator that uses superconducting niobium cavities. Experimenting with unique polishing materials, a Fermilab team has now developed an efficient and environmentally friendly way of creating cavities that can propel particles with more than 30 million volts per meter.

None

2014-08-12T23:59:59.000Z

Note: This page contains sample records for the topic "linear accelerator center" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Engineering Prototype for a Compact Medical Dielectric Wall Accelerator  

Science Journals Connector (OSTI)

A compact accelerator system architecture based on the dielectric wall accelerator (DWA) for medical proton beam therapy has been developed by the Compact Particle Acceleration Corporation (CPAC). The major subsystems are a Radio Frequency Quadrupole (RFQ) injector linac a pulsed kicker to select the desired proton bunches and a DWA linear accelerator incorporating a high gradient insulator (HGI) with stacked Blumleins to produce the required acceleration energy. The Blumleins are switched with solid state laser?driven optical switches integrated into the Blumlein assemblies. Other subsystems include a high power pulsed laser fiber optic distribution system electrical charging system and beam diagnostics. An engineering prototype has been constructed and characterized and these results will be used within the next three years to develop an extremely compact 150 MeV system capable of modulating energy beam current and spot size on a shot?to?shot basis. This paper presents the details the engineering prototype experimental results and commercialization plans.

Anthony Zografos; Andy Hening; Vladimir Joshkin; Kevin Leung; Dave Pearson; Henry Pearce?Percy; Mario Rougieri; Yoko Parker; John Weir; Donald Blackfield; Yu?Jiuan Chen; Steven Falabella; Gary Guethlein; Brian Poole; Robert W. Hamm; Reinard Becker

2011-01-01T23:59:59.000Z

302

Multiple beam induction accelerators for heavy ion fusion  

Science Journals Connector (OSTI)

Abstract Induction accelerators are appealing for heavy-ion driven inertial fusion energy (HIF) because of their high efficiency and their demonstrated capability to accelerate high beam current (?10†kA in some applications). For the HIF application, accomplishments and challenges are summarized. HIF research and development has demonstrated the production of single ion beams with the required emittance, current, and energy suitable for injection into an induction linear accelerator. Driver scale beams have been transported in quadrupole channels of the order of 10% of the number of quadrupoles of a driver. We review the design and operation of induction accelerators and the relevant aspects of their use as drivers for HIF. We describe intermediate research steps that would provide the basis for a heavy-ion research facility capable of heating matter to fusion relevant temperatures and densities, and also to test and demonstrate an accelerator architecture that scales well to a fusion power plant.

Peter A. Seidl; John J. Barnard; Andris Faltens; Alex Friedman; William L. Waldron

2014-01-01T23:59:59.000Z

303

Physics of Laser-driven plasma-based acceleration  

SciTech Connect (OSTI)

The physics of plasma-based accelerators driven by short-pulse lasers is reviewed. This includes the laser wake-field accelerator, the plasma beat wave accelerator, the self-modulated laser wake-field accelerator, and plasma waves driven by multiple laser pulses. The properties of linear and nonlinear plasma waves are discussed, as well as electron acceleration in plasma waves. Methods for injecting and trapping plasma electrons in plasma waves are also discussed. Limits to the electron energy gain are summarized, including laser pulse direction, electron dephasing, laser pulse energy depletion, as well as beam loading limitations. The basic physics of laser pulse evolution in underdense plasmas is also reviewed. This includes the propagation, self-focusing, and guiding of laser pulses in uniform plasmas and plasmas with preformed density channels. Instabilities relevant to intense short-pulse laser-plasma interactions, such as Raman, self-modulation, and hose instabilities, are discussed. Recent experimental results are summarized.

Esarey, Eric; Schroeder, Carl B.

2003-06-30T23:59:59.000Z

304

Advanced accelerator simulation research: miniaturizing accelerators from kilometers to meters  

E-Print Network [OSTI]

Advanced accelerator simulation research: miniaturizing accelerators from kilometers to meters W: Advanced accelerator research is aimed at finding new technologies that can dramatically reduce the size and cost of future high-energy accelerators. Supercomputing is already playing a dramatic and critical role

Geddes, Cameron Guy Robinson

305

Present Status of the TAC Proton Accelerator Proposal  

SciTech Connect (OSTI)

Recently, conceptual design of the Turkic Accelerator Center (TAC) proposal was completed. The main goal of this proposal is a charm factory that consist of a linac-ring type electron-positron collider. In addition, synchrotron radiation from the positron ring, free electron laser from the electron linac and a GeV energy proton accelerator are proposed. The Project related with this proposal has been accepted by the Turkish State Planning Committee. It is planned that the Tecnical Design Repotr of the TAC will have been written in the next three years. In this study we consider main parameters of the TAC proton accelerator, secondary beams and their applications.

Akkus, B. [Istanbul Ueniversitesi, Istanbul (Turkey); Bilgin, P. S.; Caliskan, A.; Yilmaz, M. [Gazi Ueniversitesi, Ankara (Turkey); Sultansoy, S. [Gazi Ueniversitesi, Ankara (Turkey); Institute of Physics, Baku (Azerbaijan)

2007-04-23T23:59:59.000Z

306

ACCELERATED IMPROVEMENT A CONCENTRATED APPROACH  

E-Print Network [OSTI]

ACCELERATED IMPROVEMENT A CONCENTRATED APPROACH FOR CONTINUOUS IMPROVEMENT #12;Accelerated.quality.wisc.edu O F F I C E O F Q U A L I T Y I M P R O V E M E N T Accelerated Improvement This guide to improving resources. You will find helpful information needed to conduct an Accelerated Improvement project

Shapiro, Vadim

307

US LHC Accelerator Research Program  

E-Print Network [OSTI]

US LHC Accelerator Research Program Instrumentation Collaboration Meeting John Marriner May 9, 2003 #12;2/14/03 US LARP Instrumentation Collaboration Mtg 2 US LARP LARP = LHC Accelerator Research Program LARP is an outgrowth of the US LHC Accelerator Project The US LHC Accelerator Project built

Large Hadron Collider Program

308

Accelerator Update | Archive | 2012  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

2 Accelerator Update Archive 2 Accelerator Update Archive April 27, 2012 - April 30, 2012 NuMI reported receiving 7.67E18 protons on target for the period from 4/23/12 to 4/30/12. The Booster developed an aperture restriction that required lower beam intensity Main Injector personnel completed their last study The shutdown begins Linac, MTA, and Booster will continue using beam for one or two more weeks Linac will supply the Neutron Therapy Facility beam for most of the shutdown April 25, 2012 - April 27, 2012 Booster beam stop problem repaired Beam to all experiments will shut off at midnight on Monday morning, 4/30/12. Main Injector will continue to take beam until 6 AM on Monday morning. Linac, the Neutron Therapy Facility, MTA, and Booster will continue using beam for one or two more weeks. The Fermi Accelerator Complex will be in shutdown for approximately one year

309

Interfacing to accelerator instrumentation  

SciTech Connect (OSTI)

As the sensory system for an accelerator, the beam instrumentation provides a tremendous amount of diagnostic information. Access to this information can vary from periodic spot checks by operators to high bandwidth data acquisition during studies. In this paper, example applications will illustrate the requirements on interfaces between the control system and the instrumentation hardware. A survey of the major accelerator facilities will identify the most popular interface standards. The impact of developments such as isochronous protocols and embedded digital signal processing will also be discussed.

Shea, T.J.

1995-12-31T23:59:59.000Z

310

E-Print Network 3.0 - all-dielectric electron accelerator Sample...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Part II: Electron Storage Rings (2.5 weeks) 1. Beam... Linear Accelerators (2.5 weeks) 1. RF cavities 2. Wakefields and ... Source: Experimental High Energy Physics Collection:...

311

Positron acceleration by plasma wake fields driven by a hollow electron beam  

E-Print Network [OSTI]

A scheme of wake field generation for positron acceleration using hollow or donut shaped electron driver beams is studied. An annular shaped, electron free region forms around a hollow driver beam creating a favorable region (longitudinal field is accelerating and transverse field is focusing and radially linear) for positron acceleration. Accelerating gradients of the order of 10 GV/m are produced by a hollow electron beam driver with FACET like parameters. The peak accelerating field increases linearly with the total charge in the beam driver while the axial size of the favorable region ($\\sim$ one plasma wavelength) remains approximately fixed. The radial size drops with the total charge but remains large enough for the placement of a witness positron beam. We simulate an efficient acceleration of a 23 GeV positron beam to 35.4 GeV with a maximum energy spread of 0.4\\% and very small emittance over a plasma length of 140 cm.

Jain, Neeraj; Palastro, J P

2014-01-01T23:59:59.000Z

312

Piecewise Linear Phase Transitions  

E-Print Network [OSTI]

It is shown how simple assumptions lead to piecewise linear behavior, which is observed in certain phase transitions.

Joseph B. Keller

2007-11-26T23:59:59.000Z

313

Possible Accelerators @ CERN Beyond the LHC  

E-Print Network [OSTI]

The physics and world-wide accelerator context for possible accelerator projects at CERN after the LHC are reviewed, including the expectation that an e+ e- linear collider in the TeV energy range will be built elsewhere. Emphasis is laid on the Higgs boson, supersymmetry and neutrino oscillations as benchmarks for physics after the LHC. The default option for CERN's next major project may be the CLIC multi-TeV e+ e- collider project. Also interesting is the option of a three-step scenario for muon storage rings, starting with a neutrino factory, continuing with one or more Higgs factories, and culminating in a mu+ mu- collider at the high-energy frontier.

John Ellis

1999-11-22T23:59:59.000Z

314

Vacuum electron acceleration by using two variable frequency laser pulses  

SciTech Connect (OSTI)

A method is proposed for producing a relativistic electron bunch in vacuum via direct acceleration by using two frequency-chirped laser pulses. We consider the linearly polarized frequency-chiped Hermit-Gaussian 0, 0 mode lasers with linear chirp in which the local frequency varies linearly in time and space. Electron motion is investigated through a numerical simulation using a three-dimensional particle trajectory code in which the relativistic Newton's equations of motion with corresponding Lorentz force are solved. Two oblique laser pulses with proper chirp parameters and propagation angles are used for the electron acceleration along the z-axis. In this way, an electron initially at rest located at the origin could achieve high energy, ?=319 with the scattering angle of 1.02{sup ?} with respect to the z-axis. Moreover, the acceleration of an electron in different initial positions on each coordinate axis is investigated. It was found that this mechanism has the capability of producing high energy electron microbunches with low scattering angles. The energy gain of an electron initially located at some regions on each axis could be greatly enhanced compared to the single pulse acceleration. Furthermore, the scattering angle will be lowered compared to the acceleration by using laser pulses propagating along the z-axis.

Saberi, H.; Maraghechi, B. [Department of Physics, Amirkabir University of Technology, 15875-4413 Tehran (Iran, Islamic Republic of)] [Department of Physics, Amirkabir University of Technology, 15875-4413 Tehran (Iran, Islamic Republic of)

2013-12-15T23:59:59.000Z

315

Los Alamos neutron science center nuclear weapons stewardship and unique national scientific capabilities  

SciTech Connect (OSTI)

This presentation gives an overview of the Los Alamos Neutron Science Center (LANSCE) and its contributions to science and the nuclear weapons program. LANSCE is made of multiple experimental facilities (the Lujan Center, the Weapons Neutron Research facility (WNR), the Ultra-Cold Neutron facility (UCN), the proton Radiography facility (pRad) and the Isotope Production Facility (IPF)) served by the its kilometer long linear accelerator. Several research areas are supported, including materials and bioscience, nuclear science, materials dynamics, irradiation response and medical isotope production. LANSCE is a national user facility that supports researchers worldwide. The LANSCE Risk Mitigation program is currently in progress to update critical accelerator equipment to help extend the lifetime of LANSCE as a key user facility. The Associate Directorate of Business Sciences (ADBS) plays an important role in the continued success of LANSCE. This includes key procurement support, human resource support, technical writing support, and training support. LANSCE is also the foundation of the future signature facility MARIE (Matter-Radiation Interactions in Extremes).

Schoenberg, Kurt F [Los Alamos National Laboratory

2010-12-15T23:59:59.000Z

316

Accelerator driven production of tritium: target and blanket design  

E-Print Network [OSTI]

of neutrons in the 'target' and the use of these neutrons in the 'blanket assembly'. The systems described in this thesis employ a linear accelerator (1 GeV protons, I 00 mA beam current), lead targets for the production of neutrons via spallation reactions...

Ragusa, Jean Concetto

2012-06-07T23:59:59.000Z

317

Superconducting Accelerators: High Energy Is Trailing Low Energy  

Science Journals Connector (OSTI)

...linear acceler-ators built at Stanford and Illinois are modular devices that produce electron beams with greater energies...built now fall in the medium energy range.) A large helium refrigerator was developed and installed, and cryogenic tanks and niobium...

William D. Metz

1975-03-21T23:59:59.000Z

318

PROGRESS OF CONSTRUCTION AND INSTALLATION OF THE SPIRAL2 ACCELERATOR  

E-Print Network [OSTI]

of a linear accelerator producing deuteron, proton and heavy ion beams in a wide range of energies dedicated building. Phase two includes the RIB production process and building, the low energy RIB of first concrete: September 2011 - First GANIL intervention: January 2012 - Low energy building block

Paris-Sud XI, Université de

319

APS Conference Center  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Advanced Photon Source Conference Center The APS Conference Center at Argonne National Laboratory is the ideal location for scientific and professional meetings. The Center can...

320

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Fuels Promotion and Information The Center for Alternative Fuels (Center) promotes alternative fuels as viable energy sources in the state. The Center must assess the...

Note: This page contains sample records for the topic "linear accelerator center" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Laser-Plasma Acceleration of Electrons and Plasma Diagnostics at High Laser Fields  

E-Print Network [OSTI]

would open the prospect of building x-ray free-electron lasers and linear colliders hundreds of timesLaser-Plasma Acceleration of Electrons and Plasma Diagnostics at High Laser Fields Mike Downer: Laser-plasma acceleration is now entering an era of petawatt lasers, tenuous plasmas and multi

Shvets, Gennady

322

Efficient heterogeneous execution on large multicore and accelerator platforms: Case study using a block tridiagonal solver  

Science Journals Connector (OSTI)

The algorithmic and implementation principles are explored in gainfully exploiting GPU accelerators in conjunction with multicore processors on high-end systems with large numbers of compute nodes, and evaluated in an implementation of a scalable block ... Keywords: Accelerator, GPU, Heterogeneous execution, Linear algebra, Memory management, Tridiagonal solver

Alfred J. Park; Kalyan S. Perumalla

2013-12-01T23:59:59.000Z

323

Perimeter Institute Cosmic Acceleration  

E-Print Network [OSTI]

Wayne Hu Perimeter Institute April 2010 Cosmic Acceleration Dark Energy v. Modified Gravity #12;Outline · Dark Energy vs Modified Gravity · Three Regimes of Modified Gravity · Worked (Toy) Models: f 1998 Discovery #12;Mercury or Pluto? General relativity says Gravity = Geometry And Geometry = Matter-Energy

Hu, Wayne

324

Accelerating News Issue 5  

E-Print Network [OSTI]

In this spring issue, we look at developments towards higher luminosity and higher energy colliders. We report on the technology developed for the remote powering of the LHC magnets and studies of diagnostics based on higher order mode port signals. We also inform you about the main outcome of the TIARA survey on market needs for accelerator scientists.

Szeberenyi, A

2013-01-01T23:59:59.000Z

325

Note on accelerated detectors  

Science Journals Connector (OSTI)

The Unruh result, on the thermal-like behavior of particle detectors under a uniformly accelerated state of motion, is found by a different method which does not involve field quantization in a metric with a horizon. The result is extended to other situations.

P. Meyer

1978-07-15T23:59:59.000Z

326

Towards a Future Linear Collider and The Linear Collider Studies at CERN  

ScienceCinema (OSTI)

During the week 18-22 October, more than 400 physicists will meet at CERN and in the CICG (International Conference Centre Geneva) to review the global progress towards a future linear collider. The 2010 International Workshop on Linear Colliders will study the physics, detectors and accelerator complex of a linear collider covering both the CLIC and ILC options. Among the topics presented and discussed will be the progress towards the CLIC Conceptual Design Report in 2011, the ILC Technical Design Report in 2012, physics and detector studies linked to these reports, and an increasing numbers of common working group activities. The seminar will give an overview of these topics and also CERN?s linear collider studies, focusing on current activities and initial plans for the period 2011-16. n.b: The Council Chamber is also reserved for this colloquium with a live transmission from the Main Auditorium.

None

2011-10-06T23:59:59.000Z

327

Introduction to Linear Bialgebra  

E-Print Network [OSTI]

The algebraic structure, linear algebra happens to be one of the subjects which yields itself to applications to several fields like coding or communication theory, Markov chains, representation of groups and graphs, Leontief economic models and so on. This book has for the first time, introduced a new algebraic structure called linear bialgebra, which is also a very powerful algebraic tool that can yield itself to applications. With the recent introduction of bimatrices (2005)we have ventured in this book to introduce new concepts like linear bialgebra and Smarandache neutrosophic linear bialgebra and also give the applications of these algebraic structures. It is important to mention here it is a matter of simple exercise to extend these to linear n-algebra for any n greater than 2; for n = 2 we get the linear bialgebra. This book has five chapters. In the first chapter we just introduce some basic notions of linear algebra and Slinear algebra and their applications. Chapter two introduces some new algebraic bistructures. In chapter three we introduce the notion of linear bialgebra and discuss several interesting properties about them. Also, application of linear bialgebra to bicodes is given. A remarkable part of our research in this book is the introduction of the notion of birepresentation of bigroups. The fourth chapter introduces several neutrosophic algebraic structures since they help in defining the new concept of neutrosophic linear bialgebra, neutrosophic bivector spaces, Smarandache neutrosophic linear bialgebra and Smarandache neutrosophic bivector spaces. Theirprobable applications to real-world models are discussed.

W. B. Vasantha Kandasamy; Florentin Smarandache; K. Ilanthenral

2005-08-15T23:59:59.000Z

328

Helmholtz Alliance Linear Collider Forum Proceedings of the Workshops  

E-Print Network [OSTI]

Helmholtz Alliance Linear Collider Forum Proceedings of the Workshops Hamburg, Munich, Hamburg 2010 of the Helmholtz Alliance Linear Collider Forum 2010­2012, Hamburg, M¨unchen, Hamburg, Germany Conference homepage, Internationales Congress Center, Dresden (at the 4th Annual Workshop of the Helmholtz Alliance `Physics

329

EM Plan Accelerates Uranium-233 Disposal, Saves Taxpayers Half Billion  

Broader source: Energy.gov (indexed) [DOE]

EM Plan Accelerates Uranium-233 Disposal, Saves Taxpayers Half EM Plan Accelerates Uranium-233 Disposal, Saves Taxpayers Half Billion Dollars EM Plan Accelerates Uranium-233 Disposal, Saves Taxpayers Half Billion Dollars August 1, 2012 - 12:00pm Addthis For more than 50 years, the uranium-233 (U-233) supply has been stored at the Oak Ridge National Laboratory√ʬĬôs (ORNL) Building 3019. The facility, located near the center of the ORNL campus, is owned by EM and one of the nation√ʬĬôs few repositories for U-233 and other special nuclear materials dating back to the Manhattan Project. For more than 50 years, the uranium-233 (U-233) supply has been stored at the Oak Ridge National Laboratory's (ORNL) Building 3019. The facility, located near the center of the ORNL campus, is owned by EM and one of the nation's few repositories for U-233 and other special nuclear materials

330

EM Plan Accelerates Uranium-233 Disposal, Saves Taxpayers Half Billion  

Broader source: Energy.gov (indexed) [DOE]

EM Plan Accelerates Uranium-233 Disposal, Saves Taxpayers Half EM Plan Accelerates Uranium-233 Disposal, Saves Taxpayers Half Billion Dollars EM Plan Accelerates Uranium-233 Disposal, Saves Taxpayers Half Billion Dollars August 1, 2012 - 12:00pm Addthis For more than 50 years, the uranium-233 (U-233) supply has been stored at the Oak Ridge National Laboratory√ʬĬôs (ORNL) Building 3019. The facility, located near the center of the ORNL campus, is owned by EM and one of the nation√ʬĬôs few repositories for U-233 and other special nuclear materials dating back to the Manhattan Project. For more than 50 years, the uranium-233 (U-233) supply has been stored at the Oak Ridge National Laboratory's (ORNL) Building 3019. The facility, located near the center of the ORNL campus, is owned by EM and one of the nation's few repositories for U-233 and other special nuclear materials

331

AT2 DS II - Accelerator System Design (Part II) - CCC Video Conference  

SciTech Connect (OSTI)

Discussion Session - Accelerator System Design (Part II) Tutors: C. Darve, J. Weisend II, Ph. Lebrun, A. Dabrowski, U. Raich Video Conference with the CERN Control Center. Experts in the field of Accelerator science will be available to answer the students questions. This session will link the CCC and SA (using Codec VC).

None

2010-12-17T23:59:59.000Z

332

The accelerated universe and the Moon  

Science Journals Connector (OSTI)

Cosmologically motivated theories that explain the small acceleration rate of the Universe via the modification of gravity at very large, horizon, or superhorizon distances, can be tested by precision gravitational measurements at much shorter scales, such as the Earth-Moon distance. Contrary to the naive expectation the predicted corrections to the Einsteinian metric near gravitating sources are so significant that they might fall within the sensitivity of the proposed Lunar Ranging experiments. The key reason for such corrections is the van DamĖVeltmanĖZakharov discontinuity present in linearized versions of all such theories, and its subsequent absence at the nonlinear level in the manner of Vainshtein.

Gia Dvali; Andrei Gruzinov; Matias Zaldarriaga

2003-07-08T23:59:59.000Z

333

Center Research  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

5 5 Center Research ... Supports Electric Utility Restructuring Winds of change in the U.S. power sector: factors listed in the left column have created a gap between the prices utilities must charge to recover their embedded costs and the lower rates they would have to charge in a competitive environment. Possible responses to these pressures are listed to the right. The electricity industry in the U.S. is being dramatically restructured by state regulatory commissions and the Federal Energy Regulatory Commission. Efforts are underway to create a wholesale market for electricity, with wholesale prices to distributing utility companies no longer being regulated. Discussions in several states and at the FERC are aimed at revising the regulation of the structure, operation, and pricing of the

334

KILLGORE CENTER  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

LEASE AGREEMENT NO. DE-AC04-89-AL42 1 10 LEASE AGREEMENT NO. DE-AC04-89-AL42 1 10 KILLGORE CENTER AMENDMENT NO. 6 Lease Agreement No. DE-AC04-89-AL-42110, between the U.S. Department of Energy and Texas Tech University, dated October 1, 1989, as amended (amendments one, two, three, four, and five), is hereby further amended as follows: Article I1 of the base lease entitled, "TERM AND RENT," paragraph A., is hereby deleted and revised to read: A. The term of this Lease is extended for five years beginning October 1, 2009, and ending September 30, 2014. The annual rental for this term shall be as indicated in the following rate schedule determined as follows: 1. Approximately 6,680 square feet of office space. $ 58,280.00 2. Approximately 380 square feet of space in the foyer. $ 3,314.00

335

ELECTRON INJECTION INTO CYCLIC ACCELERATOR USING  

E-Print Network [OSTI]

ELECTRON INJECTION INTO CYCLIC ACCELERATOR USING LASER WAKEFIELD ACCELERATION Ya. V. Getmanov, O. A acceleration #12;Storage ring with laser injection CYCLIC ACCELERATOR RF Electron injection The LWFA beam ­ accelerating light, 5 ­ accelerated electrons, 6 ­fast kicker - + accelerating laser pulse evaporatinglaser

336

Wireless Sensors for Data Centers  

Broader source: Energy.gov (indexed) [DOE]

Proving Ground Proving Ground Wireless Sensors for Data Centers Kevin Powell |May 23 2012 | FEMP Technology Deployment Working Group 9,624 Owned and Leased Assets 30% Metered Energy Reduction, by 2015 NET ZERO In New Construction and Major Remodels, by 2030 EISA 2007 GSA's Green Proving Ground The Green Proving Ground aims to leverage innovative technologies to accelerate GSA's sustainability goals. Program Focus: Identify, test and evaluate innovative technologies to: * Drive innovation in environmental performance in federal buildings * Help lead market transformation through deployment of new technologies. * Reduce GSA operational costs How Does It Work? Green Proving Ground

337

Joint Center for Artificial Photosynthesis  

ScienceCinema (OSTI)

The Joint Center for Artificial Photosynthesis (JCAP) is the nation's largest research program dedicated to the development of an artificial solar-fuel generation technology. Established in 2010 as a U.S. Department of Energy (DOE) Energy Innovation Hub, JCAP aims to find a cost-effective method to produce fuels using only sunlight, water, and carbon dioxide as inputs. JCAP brings together more than 140 top scientists and researchers from the California Institute of Technology and its lead partner, Berkeley Lab, along with collaborators from the SLAC National Accelerator Laboratory, and the University of California campuses at Irvine and San Diego.

Koval, Carl; Lee, Kenny; Houle, Frances; Lewis, Nate

2013-12-19T23:59:59.000Z

338

Wireless Sensors for Data Centers  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Proving Ground Proving Ground Wireless Sensors for Data Centers Kevin Powell |May 23 2012 | FEMP Technology Deployment Working Group 9,624 Owned and Leased Assets 30% Metered Energy Reduction, by 2015 NET ZERO In New Construction and Major Remodels, by 2030 EISA 2007 GSA's Green Proving Ground The Green Proving Ground aims to leverage innovative technologies to accelerate GSA's sustainability goals. Program Focus: Identify, test and evaluate innovative technologies to: * Drive innovation in environmental performance in federal buildings * Help lead market transformation through deployment of new technologies. * Reduce GSA operational costs How Does It Work? Green Proving Ground

339

Joint Center for Artificial Photosynthesis  

SciTech Connect (OSTI)

The Joint Center for Artificial Photosynthesis (JCAP) is the nation's largest research program dedicated to the development of an artificial solar-fuel generation technology. Established in 2010 as a U.S. Department of Energy (DOE) Energy Innovation Hub, JCAP aims to find a cost-effective method to produce fuels using only sunlight, water, and carbon dioxide as inputs. JCAP brings together more than 140 top scientists and researchers from the California Institute of Technology and its lead partner, Berkeley Lab, along with collaborators from the SLAC National Accelerator Laboratory, and the University of California campuses at Irvine and San Diego.

Koval, Carl; Lee, Kenny; Houle, Frances; Lewis, Nate

2013-12-10T23:59:59.000Z

340

Detecting chaos in particle accelerators through the frequency map analysis method  

E-Print Network [OSTI]

The motion of beams in particle accelerators is dominated by a plethora of non-linear effects which can enhance chaotic motion and limit their performance. The application of advanced non-linear dynamics methods for detecting and correcting these effects and thereby increasing the region of beam stability plays an essential role during the accelerator design phase but also their operation. After describing the nature of non-linear effects and their impact on performance parameters of different particle accelerator categories, the theory of non-linear particle motion is outlined. The recent developments on the methods employed for the analysis of chaotic beam motion are detailed. In particular, the ability of the frequency map analysis method to detect chaotic motion and guide the correction of non-linear effects is demonstrated in particle tracking simulations but also experimental data.

Yannis Papaphilippou

2014-06-05T23:59:59.000Z

Note: This page contains sample records for the topic "linear accelerator center" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Preliminary Results from Pyroelectric Crystal Accelerator  

SciTech Connect (OSTI)

The Nuclear Science and Engineering Research Center (NSERC), a Defense Threat Reduction Agency (DTRA) office located at the United States Military Academy (USMA), sponsors and manages cadet and faculty research in support of DTRA objectives. Cadets in the Department of Physics and Nuclear Engineering at USMA are using pyroelectric crystals to ionize and accelerate residual gas trapped inside a vacuum system. A system using two lithium tantalate crystals with associated diagnostics was designed and is now operational. X-ray energies of approximately 150 keV have been achieved. Future work will focus on developing a portable neutron generator using the D-D nuclear fusion process.

Anderson, Tom; Edwards, Ronald; Bright, Kevin; Kovanen, Andrew; Moretti, Brian; Gillich, Don [Department of Physics and Nuclear Engineering, United States Military Academy, West Point, NY 10996 (United States); Danon, Yaron [Dept. of Mechanical, Aerospace, and Nuclear Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180 (United States); Musk, Jeffrey; Shannon, Mike [Nuclear Science and Engineering Research Center, Defense Threat Reduction Agency, West Point, NY 10996 (United States)

2011-06-01T23:59:59.000Z

342

COMMITTEE OF CENTERS AND  

E-Print Network [OSTI]

...................................................................................................... 75 9. CENTER FOR ELECTRIC CAR AND ENERGY CONVERSION............................................... 89

Massachusetts at Lowell, University of

343

Acceleration and Classical Electromagnetic Radiation  

E-Print Network [OSTI]

Classical radiation from an accelerated charge is reviewed along with the reciprocal topic of accelerated observers detecting radiation from a static charge. This review commemerates Bahram Mashhoon's 60th birthday.

E. N. Glass

2008-01-09T23:59:59.000Z

344

Solvent-free cleaning using a centrifugal cryogenic pellet accelerator  

SciTech Connect (OSTI)

An advanced centrifuge that accelerates frozen CO{sub 2} pellets to high speeds for surface cleaning and paint removal is being developed at the Oak Ridge National Laboratory. The centrifuge-based accelerator was designed, fabricated, and tested under a program sponsored by the Warner Robins Air Logistics Center, Robins Air Force Base, Georgia. In comparison to the more conventional compressed air ``sandblast`` pellet accelerators, the centrifugal accelerator system can achieve higher pellet speeds, has precise speed control, and is more than ten times as energy efficient. Furthermore, the use of frozen CO{sub 2} pellets instead of conventional metal, plastic, sand, or other abrasive materials that remain solid at room temperature, minimizes the waste stream. This apparatus has been used to demonstrate cleaning of various surfaces, including removal of paint, oxide coatings, metal coatings, organic coatings, and oil and grease coatings from a variety of surfaces. The design and operation of the apparatus is discussed.

Haines, J.R.; Fisher, P.W.; Foster, C.A.

1995-06-01T23:59:59.000Z

345

Laser Wakefield Particle Accelerators Project at NERSC  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Laser Wakefield Particle Acceleration Laser Wakefield Particle Acceleration Vorpal.jpg Key Challenges: Design of multiple-staged, 10-GeV laser-wakefield plasma accelerated...

346

Charge Diagnostics for Laser Plasma Accelerators  

E-Print Network [OSTI]

the 1989 Particle Accelerator Conference, IEEE, Piscataway,Diagnostics for Laser Plasma Accelerators K . Nakamura, A .ALS) synchrotron booster accelerator. The sensitivity of the

Nakamura, K.

2011-01-01T23:59:59.000Z

347

Fermilab | Science | Particle Accelerators | Advanced Superconducting...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Superconducting Test Accelerator is America's only test bed for cutting-edge particle beams and for accelerator research aimed at Intensity Frontier proton accelerators. ASTA...

348

2013 Bisfuel Center Retreat at Camp Tontozona | Center for Bio...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Center News Research Highlights Center Research News Media about Center Center Video Library Bisfuel Picture Gallery 2013 Bisfuel Center Retreat at Camp Tontozona 28 Oct 2013 The...

349

Acceleration in de Sitter spacetimes  

E-Print Network [OSTI]

We propose a definition of uniform accelerated frames in de Sitter spacetimes exploiting the Nachtmann group theoretical method of introducing coordinates on these manifolds. Requiring the transformation between the static frame and the accelerated one to depend continuously on acceleration in order to recover the well-known Rindler approach in the flat limit, we obtain a new metric with a reasonable physical meaning.

Ion I. Cotaescu

2014-07-09T23:59:59.000Z

350

Basic concepts in plasma accelerators  

Science Journals Connector (OSTI)

...plasma accelerators. Plasma accelerators are ideal...2. Relativistic plasma wave acceleration The...electric field at the focus of high-power short-pulse...Diffraction limits the depth of focus to the Rayleigh length...stimulated Brillouin and plasma modulational instabilities...

2006-01-01T23:59:59.000Z

351

Accelerator Update | Archive | 2010  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

10 Accelerator Update Archive 10 Accelerator Update Archive December 20, 2010 - December 22, 2010 - Three stores provided !32 hours of luminosity - Problems with two Linac quadrupole power supplies - Cryo system technicians work on TEV sector D1 wet engine - TEV quench during checkout - JASMIN's run at MTest ends December 17, 2010 - December 20, 2010 The Integrated Luminosity for the period from 12/13/10 to 12/20/10 was 66.31 inverse picobarns. NuMI reported receiving 7.62E18 protons on target during this same period. - Five Stores provided ~62 hours of luminosity - Operations had trouble with a Linac RF station (LRF3) - Operators tuned the Linac backup source (I- Source) December 15, 2010 - December 17, 2010 - Three stores provided ~36.1 hours of luminosity - MI-52 Septa repaired - NuMI recovered its target LCW system

352

ACCELERATOR SAFETY ENVELOPE  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

LCASE-001, Ver. 3 LCASE-001, Ver. 3 Linac Commissioning Accelerator Safety Envelope For the National Synchrotron Light Source II Photon Sciences Directorate Version 3 December 8, 2011 Prepared by Brookhaven National Laboratory P.O. Box 5000 Upton, NY 11973-5000 managed by Brookhaven Science Associates for the U.S. Department of Energy Office of Science Basic Energy Science under contract DE-AC02-98CD10886 Linac Commissioning Accelerator Safety Envelope (LCASE) ii Photon Sciences Directorate ii DISCLAIMER This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, nor any of their contractors, subcontractors, or their employees, makes any warranty,

353

Argonne Accelerator Institute  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

CWDD - Continuous Wave Deuterium Demonstrator CWDD - Continuous Wave Deuterium Demonstrator The Continuous Wave Deuterium Demonstrator (CWDD) accelerator, a cryogenically-cooled (26K) linac, was designed to accelerate 80 mA cw of D to 7.5 MeV. CWDD was being built to demonstrate the lauching of a beam with characteristics suitable for a space-based neutral particle-beam (NPB). A considerable amount of hardware was constructed and installed in the Argonne-based facility, and major performance milestones were achieved before program funding ended in October 1993. References - Document Access Guide Continuous Wave Deuterium Demonstrator Final Design Review, Grumman Space Systems, Grumman-Culham Laboratory, Los Alamos (1989). (Located in the Argonne Research Library) Recommissioning and first operation of the CWDD injector at Argonne

354

Accelerator Update | Archive | 2009  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

9 Accelerator Update Archive 9 Accelerator Update Archive December 18, 2009 - December 21, 2009 The integrated luminosity for the period from 12/14/09 to 12/21/09 was 51.27 inverse picobarns. NuMI reported receiving 6.38E18 protons on target during this same period. - Four stores provided ~62.25 hours of luminosity - Store 7444 had an AIL of 306E30 - BRF19 cavity suffered a vacuum failure and was removed - The Booster West Anode Power Supply suffered some problems December 16, 2009 - December 18, 2009 - Three stores provided ~45 hours of luminosity - PBar kicker problem - MI RF problems December 14, 2009 - December 16, 2009 - Four stores provided ~42 hours of luminosity - Recycler kicker repaired - Booster East Anode Power Supply trips due to BRF1, 2, & 8 December 11, 2009 - December 14, 2009

355

WIPP Accelerating Cleanup  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

ACCELERATING CLEANUP: ACCELERATING CLEANUP: PATHS TO CLOSURE CARLSBAD AREA OFFICE JUNE 1998 I. Operations/Field Overview CAO Mission The mission of the Carlsbad Area Office (CAO) is to protect human health and the environment by opening and operating the Waste Isolation Pilot Plant (WIPP) for safe disposal of transuranic (TRU) waste and by establishing an effective system for management of TRU waste from generation to disposal. It includes personnel assigned to CAO, WIPP site operations, transportation, and other activities associated with the National TRU Program (NTP). The CAO develops and directs implementation of the TRU waste program, and assesses compliance with the program guidance, as well as the commonality of activities and assumptions among all TRU waste sites. NTP Program Management

356

Plasma Wakefield Acceleration  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

rpwa rpwa Sign In Launch the Developer Dashboard SLAC National Accelerator Laboratory DOE | Stanford | SLAC | SSRL | LCLS | AD | PPA | Photon Science | PULSE | SIMES FACET User Facility : FACET An Office of Science User Facility Search this site... Search Help (new window) Top Link Bar FACET User Facility FACET Home About FACET FACET Experimental Facilities FACET Users Research at FACET SAREC Expand SAREC FACET FAQs FACET User Facility Quick Launch FACET Users Home FACET Division ARD Home About FACET FACET News FACET Users FACET Experimental Facilities FACET Research Expand FACET Research FACET Images Expand FACET Images SAREC Expand SAREC FACET Project Site (restricted) FACET FAQs FACET Site TOC All Site Content Department of Energy Page Content Plasma Wakefield Acceleration

357

Argonne Accelerator Institute  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

ZGS -- Zero Gradient Synchrotron (operation: 1963 - 1979) ZGS -- Zero Gradient Synchrotron (operation: 1963 - 1979) The ZGS was a 12 GeV weak-focusing proton synchrotron. It was the first high energy physics accelerator located between the U.S. coasts. The ZGS was also the first synchrotron to accelerate spin polarized protons and the first to use H-minus injection. Other noteworthy features of the ZGS program were the large number of university-based users and the pioneering development of large superconducting magnets for bubble chambers and beam transport. References - Document Access Guide History of the ZGS, Argonne, 1979, American Institute of Physics, AIP Conference Proceedings No. 60 (1980). (Located in the Argonne Research Library) High Energy Physics at Argonne National Laboratory, A. Crewe, R.

358

ACCELERATOR SAFETY ENVELOPE  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

BCASE-001, Ver. 2 BCASE-001, Ver. 2 Booster Commissioning Accelerator Safety Envelope For the National Synchrotron Light Source II Photon Sciences Directorate Version 2 December 8, 2011 Prepared by Brookhaven National Laboratory P.O. Box 5000 Upton, NY 11973-5000 managed by Brookhaven Science Associates for the U.S. Department of Energy Office of Science Basic Energy Science under contract DE-AC02-98CD10886 Booster Commissioning Accelerator Safety Envelope (BCASE) ii Photon Sciences Directorate ii DISCLAIMER This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, nor any of their contractors, subcontractors, or their employees, makes any warranty,

359

Review of ion accelerators  

SciTech Connect (OSTI)

The field of ion acceleration to higher energies has grown rapidly in the last years. Many new facilities as well as substantial upgrades of existing facilities have extended the mass and energy range of available beams. Perhaps more significant for the long-term development of the field has been the expansion in the applications of these beams, and the building of facilities dedicated to areas outside of nuclear physics. This review will cover many of these new developments. Emphasis will be placed on accelerators with final energies above 50 MeV/amu. Facilities such as superconducting cyclotrons and storage rings are adequately covered in other review papers, and so will not be covered here.

Alonso, J.

1990-06-01T23:59:59.000Z

360

Accelerators for Cancer Therapy  

DOE R&D Accomplishments [OSTI]

The vast majority of radiation treatments for cancerous tumors are given using electron linacs that provide both electrons and photons at several energies. Design and construction of these linacs are based on mature technology that is rapidly becoming more and more standardized and sophisticated. The use of hadrons such as neutrons, protons, alphas, or carbon, oxygen and neon ions is relatively new. Accelerators for hadron therapy are far from standardized, but the use of hadron therapy as an alternative to conventional radiation has led to significant improvements and refinements in conventional treatment techniques. This paper presents the rationale for radiation therapy, describes the accelerators used in conventional and hadron therapy, and outlines the issues that must still be resolved in the emerging field of hadron therapy.

Lennox, Arlene J.

2000-05-30T23:59:59.000Z

Note: This page contains sample records for the topic "linear accelerator center" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

The Muon Accelerator Program  

SciTech Connect (OSTI)

Multi-TeV Muon Colliders and high intensity Neutrino Factories have captured the imagination of the particle physics community. These new types of facility both require an advanced muon source capable of producing O(10{sup 21}) muons per year. The muons must be captured within bunches, and their phase space manipulated so that they fit within the acceptance of an accelerator. In a Neutrino Factory (NF), muons from this 'front end' are accelerated to a few GeV or a few tens of GeV, and then injected into a storage ring with long straight sections. Muon decays in the straight sections produce an intense neutrino beam. In a Muon Collider (MC) the muons must be cooled by a factor O(10{sup 6}) to produce beams that are sufficiently bright to give high luminosity in the collider. Bunches of positive and negative muons are then accelerated to high energy, and injected in opposite directions into a collider ring in which they collide at one or more interaction points. Over the last decade our understanding of the concepts and technologies needed for Muon Colliders and Neutrino Factories has advanced, and it is now believed that, within a few years, with a well focused R&D effort (i) a Neutrino Factory could be proposed, and (ii) enough could be known about the technologies needed for a Muon Collider to assess the feasibility and cost of this new type of facility, and to make a detailed plan for the remaining R&D. Although these next NF and MC steps are achievable, they are also ambitious, and will require an efficient and dedicated organization to accomplish the desired goals with limited resources. The Muon Accelerator Program (MAP) has recently been created to propose and execute this R&D program.

Geer, Steve; /Fermilab; Zisman, Mike; /LBL, Berkeley

2011-08-01T23:59:59.000Z

362

Modulational effects in accelerators  

SciTech Connect (OSTI)

We discuss effects of field modulations in accelerators, specifically those that can be used for operational beam diagnostics and beam halo control. In transverse beam dynamics, combined effects of nonlinear resonances and tune modulations influence diffusion rates with applied tune modulation has been demonstrated. In the longitudinal domain, applied RF phase and voltage modulations provide mechanisms for parasitic halo transport, useful in slow crystal extraction. Experimental experiences with transverse tune and RF modulations are also discussed.

Satogata, T.

1997-12-01T23:59:59.000Z

363

Accelerate Energy Productivity 2030  

Broader source: Energy.gov [DOE]

The U.S. Department of Energy, the Council on Competitiveness, and the Alliance to Save Energy are teaming up for Accelerate Energy Productivity 2030, an initiative to double U.S. energy productivity by 2030. This effort continues support for the goal the President set in his 2013 State of the Union address to double energy productivity, measured by GDP per unit of energy use, from the 2010 level by 2030.

364

Unit I-2 Linear Maps 1 Linear maps  

E-Print Network [OSTI]

Unit I-2 Linear Maps 1 Unit I-2 Linear maps Unit I-2 Linear Maps 2 Linear map · V & U are vector spaces over the same scalars · a function f: VU is a linear map if it preserves the vector space transformation [particularly when f: RnRm] ­ linear operator when f: V V [same v.s.] ­ linear mapping ­ linear

Birkett, Stephen

365

lgebra Linear Mauro Rincon  

E-Print Network [OSTI]

10.1 √Ālgebra Linear Mauro Rincon M√°rcia Fampa Aula 10: Determinantes #12;10.2 8.1 - Defini√ß√Ķes #12

Cabral, Marco

366

Linear Graphene Plasmons  

Science Journals Connector (OSTI)

The coupling of the plasmon spectra of graphene and a nearby thick plasma is examined here in detail. The coupled modes include linear plasmons. Keywords: Graphene, plasmons, surface

N. J.M. Horing

2010-11-01T23:59:59.000Z

367

Linear phase compressive filter  

DOE Patents [OSTI]

A phase linear filter for soliton suppression is in the form of a laddered series of stages of non-commensurate low pass filters with each low pass filter having a series coupled inductance (L) and a reverse biased, voltage dependent varactor diode, to ground which acts as a variable capacitance (C). L and C values are set to levels which correspond to a linear or conventional phase linear filter. Inductance is mapped directly from that of an equivalent nonlinear transmission line and capacitance is mapped from the linear case using a large signal equivalent of a nonlinear transmission line.

McEwan, Thomas E. (Livermore, CA)

1995-01-01T23:59:59.000Z

368

Using Linearity Web Copyright 2007  

E-Print Network [OSTI]

Using Linearity Web Rev. 2.0 May 2007 Copyright © 2007 #12;Using Linearity Web i Contents Introduction to Linearity Web.............................................................................1 Features, Benefits, and Value of Linearity Web..............................................1 Before You

Rodriguez, Carlos

369

Feedback between Accelerator Physicists and magnet builders  

SciTech Connect (OSTI)

Our task is not to record history but to change it. (K. Marx (paraphrased)) How should Accelerator Physicists set magnet error specifications? In a crude social model, they place tolerance limits on undesirable nonlinearities and errors (higher order harmonics, component alignments, etc.). The Magnet Division then goes away for a suitably lengthy period of time, and comes back with a working magnet prototype that is reproduced in industry. A better solution is to set no specifications. Accelerator Physicists begin by evaluating expected values of harmonics, generated by the Magnet Division, before and during prototype construction. Damaging harmonics are traded off against innocuous harmonics as the prototype design evolves, lagging one generation behind the evolution of expected harmonics. Finally, the real harmonics are quickly evaluated during early industrial production, allowing a final round of performance trade-offs, using contingency scenarios prepared earlier. This solution assumes a close relationship and rapid feedback between the Accelerator Physicists and the magnet builders. What follows is one perspective of the way that rapid feedback was used to `change history` (improve linear and dynamic aperture) at RHIC, to great benefit.

Peggs, S.

1995-12-31T23:59:59.000Z

370

Recent Advances in Plasma Acceleration  

SciTech Connect (OSTI)

The costs and the time scales of colliders intended to reach the energy frontier are such that it is important to explore new methods of accelerating particles to high energies. Plasma-based accelerators are particularly attractive because they are capable of producing accelerating fields that are orders of magnitude larger than those used in conventional colliders. In these accelerators a drive beam, either laser or particle, produces a plasma wave (wakefield) that accelerates charged particles. The ultimate utility of plasma accelerators will depend on sustaining ultra-high accelerating fields over a substantial length to achieve a significant energy gain. More than 42 GeV energy gain was achieved in an 85 cm long plasma wakefield accelerator driven by a 42 GeV electron drive beam in the Final Focus Test Beam (FFTB) Facility at SLAC. Most of the beam electrons lose energy to the plasma wave, but some electrons in the back of the same beam pulse are accelerated with a field of {approx}52 GV/m. This effectively doubles their energy, producing the energy gain of the 3 km long SLAC accelerator in less than a meter for a small fraction of the electrons in the injected bunch. Prospects for a drive-witness bunch configuration and high-gradient positron acceleration experiments planned for the SABER facility will be discussed.

Hogan, Mark

2007-03-19T23:59:59.000Z

371

Siemens Technology Accelerator | Open Energy Information  

Open Energy Info (EERE)

Siemens Technology Accelerator Place: Germany Sector: Services Product: General Financial & Legal Services ( Subsidiary Division ) References: Siemens Technology Accelerator1...

372

Safety of Accelerator Facilities - DOE Directives, Delegations...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Health, Environmental Protection, Facility Authorization, Safety The order defines accelerators and establishes accelerator specific safety requirements and approval authorities...

373

Accelerating Clean Energy Adoption (Fact Sheet), Weatherization...  

Broader source: Energy.gov (indexed) [DOE]

Accelerating Clean Energy Adoption (Fact Sheet), Weatherization and Intergovernmental Program (WIP) Accelerating Clean Energy Adoption (Fact Sheet), Weatherization and...

374

Accelerating Energy Savings Performance Contracting Through Model...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Accelerating Energy Savings Performance Contracting Through Model Statewide Programs Accelerating Energy Savings Performance Contracting Through Model Statewide Programs Provides...

375

SLAC linear collider  

SciTech Connect (OSTI)

A brief description of the proposed SLAC Linear Collider is given. This machine would investigate the possibilities and limitations of Linear Colliders while at the same time producing thousands of Z/sup 0/ particles per day for the study of the weak interactions.

Hollebeek, R.

1980-06-01T23:59:59.000Z

376

Online Catalog of Isotope Products from DOE's National Isotope Development Center  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

The National Isotope Development Center (NIDC) interfaces with the User Community and manages the coordination of isotope production across the facilities and business operations involved in the production, sale, and distribution of isotopes. A virtual center, the NIDC is funded by the Isotope Development and Production for Research and Applications (IDPRA) subprogram of the Office of Nuclear Physics in the U.S. Department of Energy Office of Science. The Isotope subprogram supports the production, and the development of production techniques of radioactive and stable isotopes that are in short supply for research and applications. Isotopes are high-priority commodities of strategic importance for the Nation and are essential for energy, medical, and national security applications and for basic research; a goal of the program is to make critical isotopes more readily available to meet domestic U.S. needs. This subprogram is steward of the Isotope Production Facility (IPF) at Los Alamos National Laboratory (LANL), the Brookhaven Linear Isotope Producer (BLIP) facility at BNL, and hot cell facilities for processing isotopes at ORNL, BNL and LANL. The subprogram also coordinates and supports isotope production at a suite of university, national laboratory, and commercial accelerator and reactor facilities throughout the Nation to promote a reliable supply of domestic isotopes. The National Isotope Development Center (NIDC) at ORNL coordinates isotope production across the many facilities and manages the business operations of the sale and distribution of isotopes.

377

Estimated airborne release of plutonium from the 102 Building at the General Electric Vallecitos Nuclear Center, Vallecitos, California, as a result of damage from severe wind and earthquake hazard  

SciTech Connect (OSTI)

This report estimates the potential airborne releases of plutonium as a consequence of various severities of earthquake and wind hazard postulated for the 102 Building at the General Electric Vallecitos Nuclear Center in California. The releases are based on damage scenarios developed by other specialists. The hazard severities presented range up to a nominal velocity of 230 mph for wind hazard and are in excess of 0.8 g linear acceleration for earthquakes. The consequences of thrust faulting are considered. The approaches and factors used to estimate the releases are discussed. Release estimates range from 0.003 to 3 g Pu.

Mishima, J.; Ayer, J.E.; Hays, I.D.

1980-12-01T23:59:59.000Z

378

The CARE accelerator R&D programme in Europe  

E-Print Network [OSTI]

CARE, an ambitious and coordinated programme of accelerator research and developments oriented towards high energy physics projects, has been launched in January 2004 by the main European laboratories and the European Commission. This project aims at improving existing infrastructures dedicated to future projects such as linear colliders, upgrades of hadron colliders and high intensity proton drivers. We describe the CARE R&D plans, mostly devoted to advancing the performance of the superconducting technology, both in the fields of RF cavities for electron or proton acceleration and of high field magnets, as well as to developing high intensity electron and proton injectors. We highlight some results and progress obtained so far.

Napoly, Olivier; den Ouden, Andres; Devred, Arnaud; Garoby, Roland; Garvey, Terence; Ghigo, Andrea; Gschwendtner, Edda; Losito, Roberto; Mais, Helmut; Palladino, V; Proch, Dieter; Richard, F; Rinolfi, Louis; Ruggiero, Francesco; Scandale, Walter; Schulte, Daniel; Vretenar, Maurizio

2005-01-01T23:59:59.000Z

379

Inhomogeneity implies accelerated expansion  

Science Journals Connector (OSTI)

The Einstein equations for an inhomogeneous irrotational dust universe are analyzed. A set of mild assumptions, all of which are shared by the standard Friedmann-Lemaitre-Robertson-WalkerĖtype scenarios, results in a model that depends only on the distribution of scalar spatial curvature. If the shape of this distribution is made to fit the structure of the present Universe, with most of the matter in galaxy clusters and very little in the voids that will eventually dominate the volume, then there is a period of accelerated expansion after cluster formation, even in the absence of a cosmological constant.

Harald Skarke

2014-02-10T23:59:59.000Z

380

Black holes at accelerators.  

E-Print Network [OSTI]

ar X iv :h ep -p h/ 05 11 12 8v 3 6 A pr 2 00 6 Black Holes at Accelerators Bryan Webber Cavendish Laboratory, University of Cambridge, Cambridge CB3 0HE, UK In theories with large extra dimensions and TeV-scale gravity, black holes... 2000 3000 Missing ET (GeV) Ar bi tra ry S ca le p p ? QCD SUSY 5 TeV BH (n=6) 5 TeV BH (n=2) (PT > 600 GeV) (SUGRA point 5) Figure 10: Missing transverse energy for various processes at the LHC. 4.2. Event Characteristics Turning from single...

Webber, Bryan R

Note: This page contains sample records for the topic "linear accelerator center" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Argonne Accelerator Institute  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Fermilab Collaboration Fermilab Collaboration Lee Teng Scholarship Program Useful Links The Argonne Accelerator Institute Historical Document Collection Document Access Guide The documents in this collection are held in several repositories, some of which have restricted access. This guide explains the different types of access, and specifies the access levels for each repository. Repositories Name Access Argonne National Laboratory Document Open Access Argonne Research Library Hard Copy Only Beam Dynamics Newsletter Open Access DOE Information Bridge Open Access IEEE Xplore Library Subscription Required JACoW Open Access Journal of Applied Physics Subscription Required Nuclear Instruments & Methods in Physics Research, Section A Subscription Required Physical Review A Subscription Required

382

Performance Evaluation Of An Irradiation Facility Using An Electron Accelerator  

SciTech Connect (OSTI)

Irradiation parameters over a period of seven years have been evaluated for a radiation processing electron accelerator facility. The parameters monitored during this time were the electron beam energy, linearity of beam current, linearity of dose with the reciprocal value of the samples speed, and dose uniformity along the scanning area after a maintenance audit performed by the electron accelerator manufacturer. The electron energy was determined from the depth-dose curve by using a two piece aluminum wedge and measuring the practical range from the obtained curves. The linearity of dose with beam current, and reciprocal value of the speed and dose uniformity along the scanning area of the electron beam were determined by measuring the dose under different beam current and cart conveyor speed conditions using film dosimetry. The results of the experiments have shown that the energy in the range from 1 to 5 MeV has not changed by more than 15% from the High Voltage setting of the machine over the evaluation period, and dose linearity with beam current and cart conveyor speed has not changed. The dose uniformity along the scanning direction of the beam showed a dose uniformity of 90% or better for energies between 2 and 5 MeV, however for 1 MeV electrons this value was reduced to 80%. This parameter can be improved by changing the beam optics settings in the control console of the accelerator though.

Uribe, R. M.; Hullihen, K. [Kent State University, Kent, Ohio (United States); Filppi, E. [Case Western Reserve University, Cleveland OH (United States)

2011-06-01T23:59:59.000Z

383

Video Center Administrator Guide  

E-Print Network [OSTI]

LifeSize¬ģ Video Center Administrator Guide March 2011 LifeSize Video Center 2200 #12;LifeSize Video Center Adminstrator Guide 2 Administering LifeSize Video Center LifeSize Video Center is a network server that stores and streams video sent by LifeSize video communications systems enabled for recording. It can also

Eisen, Michael

384

Machine-learning algorithm aims to accelerate materials discovery | Argonne  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Science Science Computing, Environment & Life Sciences Energy Engineering & Systems Analysis Photon Sciences Physical Sciences & Engineering Energy Frontier Research Centers Science Highlights Postdoctoral Researchers Machine-learning algorithm aims to accelerate materials discovery July 16, 2013 Tweet EmailPrint A research team led by Argonne Leadership Computing Facility computational chemist Anatole von Lilienfeld is developing an algorithm that combines quantum chemistry with machine learning (artificial intelligence) to enable atomistic simulations that predict the properties of new materials with unprecedented speed. From innovations in medicine to novel materials for next-generation batteries, this approach could greatly accelerate the pace of materials discovery, with high-performance

385

Energy Center Center for Coal Technology Research  

E-Print Network [OSTI]

Energy Center Center for Coal Technology Research http://www.purdue.edu/dp/energy/CCTR/ Consumption Production Gasification Power Plants Coking Liquid Fuels Environment Oxyfuels Byproducts Legislation, 500 Central Drive West Lafayette, IN 47907-2022 #12;INDIANA COAL REPORT 2009 Center for Coal

Fern√°ndez-Juricic, Esteban

386

Chemical Hydrogen Storage Center Center of Excellence  

E-Print Network [OSTI]

alternatives and assess economics and life cycle analysis of borohydride/water to hydrogen · Millennium CellChemical Hydrogen Storage Center Center of Excellence for Chemical Hydrogen Storage William Tumas proprietary or confidential information #12;2 Chemical Hydrogen Storage Center Overview Project Start Date: FY

Carver, Jeffrey C.

387

Linear plasma-based tritium production facility  

SciTech Connect (OSTI)

The concept presented here is an adaptation of a recently completed conceptual design of a compact high-fluence D-T neutron source for accelerated end-of-life testing of fusion reactor materials. Although this preliminary assessment serves to illustrate the main features of a linear plasma-based tritium breeder, it is not necessarily an optimized design. We believe that proper design choices for the breeder application will certainly reduce costs, perhaps as much as a factor of two. We also point out that Q (the ratio of fusion power produced to power input to the plasma) increases with system length and that the cost per kg of tritium decreases for longer systems with higher output. In earlier studies of linear two-component plasma systems, Q values as high as three were predicted. At this level of performance and with energy recovery, operating power requirements of the breeder could approach zero. 5 refs., 1 fig., 1 tab.

Coensgen, F.H.; Futch, A.H.; Molvik, A.W.

1989-02-15T23:59:59.000Z

388

Magnetic Insulation for Electrostatic Accelerators  

SciTech Connect (OSTI)

The voltage gradient which can be sustained between electrodes without electrical breakdowns is usually one of the most important parameters in determining the performance which can be obtained in an electrostatic accelerator. We have recently proposed a technique which might permit reliable operation of electrostatic accelerators at higher electric field gradients, perhaps also with less time required for the conditioning process in such accelerators. The idea is to run an electric current through each accelerator stage so as to produce a magnetic field which envelopes each electrode and its electrically conducting support structures. Having the magnetic field everywhere parallel to the conducting surfaces in the accelerator should impede the emission of electrons, and inhibit their ability to acquire energy from the electric field, thus reducing the chance that local electron emission will initiate an arc. A relatively simple experiment to assess this technique is being planned. If successful, this technique might eventually find applicability in electrostatic accelerators for fusion and other applications.

Grisham, L. R. [Princeton Plasma Physics Laboratory, P. O. Box 451, Princeton, New Jersey 08543 (United States)

2011-09-26T23:59:59.000Z

389

PNNL: News Center - Search  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Newsroom Search the News Center Keywords Search News Center News Center Home News Releases Social Media Directory PNNL Leadership Our Experts Subscribe to E-Mail News Service RSS...

390

Modern electron accelerators for radiography  

SciTech Connect (OSTI)

Over the past dozen years or so there have been significant advances in electron accelerators designed specifically for radiography of hydrodynamic experiments. Accelerator technology has evolved to accomodate the radiographers' contitiuing quest for multiple images in t h e and space:, improvements in electron beam quality have resulted in smaller radiographic spot sizes for better resolution, while higher radiation do% now provides imprcwed penetration of large, dense objects. Inductive isolation and acceleration techniques have played a ley rob in these advances.

Ekdahl, C. A. (Carl A.)

2001-01-01T23:59:59.000Z

391

Accelerating and Retarding Anomalous Diffusion  

E-Print Network [OSTI]

In this paper Gaussian models of retarded and accelerated anomalous diffusion are considered. Stochastic differential equations of fractional order driven by single or multiple fractional Gaussian noise terms are introduced to describe retarding and accelerating subdiffusion and superdiffusion. Short and long time asymptotic limits of the mean squared displacement of the stochastic processes associated with the solutions of these equations are studied. Specific cases of these equations are shown to provide possible descriptions of retarding or accelerating anomalous diffusion.

Chai Hok Eab; S. C. Lim

2012-01-14T23:59:59.000Z

392

Syntactic edges and linearization  

E-Print Network [OSTI]

In this thesis, I investigate the question of how the units of a linguistic expression are linearly ordered in syntax. In particular, I examine interactions between locality conditions on movement and the mapping between ...

Ko, Heejeong

2005-01-01T23:59:59.000Z

393

Challenges in Accelerator Beam Instrumentation  

SciTech Connect (OSTI)

The challenges in beam instrumentation and diagnostics for present and future particle accelerator projects are presented. A few examples for advanced hadron and lepton beam diagnostics are given.

Wendt, M.

2009-12-01T23:59:59.000Z

394

High field gradient particle accelerator  

DOE Patents [OSTI]

A high electric field gradient electron accelerator utilizing short duration, microwave radiation, and capable of operating at high field gradients for high energy physics applications or at reduced electric field gradients for high average current intermediate energy accelerator applications is disclosed. Particles are accelerated in a smooth bore, periodic undulating waveguide, wherein the period is so selected that the particles slip an integral number of cycles of the r.f. wave every period of the structure. This phase step of the particles produces substantially continuous acceleration in a traveling wave without transverse magnetic or other guide means for the particle. 10 figs.

Nation, J.A.; Greenwald, S.

1989-05-30T23:59:59.000Z

395

High field gradient particle accelerator  

DOE Patents [OSTI]

A high electric field gradient electron accelerator utilizing short duration, microwave radiation, and capable of operating at high field gradients for high energy physics applications or at reduced electric field gradients for high average current intermediate energy accelerator applications. Particles are accelerated in a smooth bore, periodic undulating waveguide, wherein the period is so selected that the particles slip an integral number of cycles of the r.f. wave every period of the structure. This phase step of the particles produces substantially continuous acceleration in a traveling wave without transverse magnetic or other guide means for the particle.

Nation, John A. (Ithaca, NY); Greenwald, Shlomo (Haifa, IL)

1989-01-01T23:59:59.000Z

396

Advances in CTIX Accelerator Study  

Science Journals Connector (OSTI)

Several new experiments have been conducted on the UC Davis repetitive-pulsed spheromak-like compact toroid (SCT) accelerator (CTIX...

D. Q. Hwang; R. D. Horton; S. Howard; R. W. EvansÖ

2007-06-01T23:59:59.000Z

397

Accelerating Combined Heat & Power Deployment  

Broader source: Energy.gov (indexed) [DOE]

ACCELERATING COMBINED HEAT & POWER DEPLOYMENT An Industry Consultation by the United States Energy Association August 31, 2011 Cover Photograph: CHP Plant at the Mueller Energy...

398

Non-Paraxial Accelerating Beams  

E-Print Network [OSTI]

We present the spatially accelerating solutions of the Maxwell equations. Such non-paraxial beams accelerate in a circular trajectory, thus generalizing the concept of Airy beams. For both TE and TM polarizations, the beams exhibit shape-preserving bending with sub-wavelength features, and the Poynting vector of the main lobe displays a turn of more than 90 degrees. We show that these accelerating beams are self-healing, analyze their properties, and compare to the paraxial Airy beams. Finally, we present the new family of periodic accelerating beams which can be constructed from our solutions.

Ido Kaminer; Rivka Bekenstein; Jonathan Nemirovsky; Mordechai Segev

2012-02-03T23:59:59.000Z

399

Accelerate Energy Productivity 2030 Launch  

Office of Energy Efficiency and Renewable Energy (EERE)

Today, the Department of Energy kicked off Accelerate Energy Productivity 2030. This initiative supports President Obamaís goal to double our energy productivity by 2030.

400

Benchmarking Help Center Guide  

Broader source: Energy.gov [DOE]

Benchmarking Help Center Guide provides recommendations for establishing a benchmarking help center based on experiences and lessons learned in New York City and Seattle.

Note: This page contains sample records for the topic "linear accelerator center" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Energy Efficient Data Centers  

Broader source: Energy.gov [DOE]

Presentationógiven at the Federal Utility Partnership Working Group (FUPWG) Fall 2008 meetingócovers energy efficiency improvement opportunities for data centers, including data center design.

402

UC Davis Energy Efficiency Center EEC | Open Energy Information  

Open Energy Info (EERE)

UC Davis Energy Efficiency Center EEC UC Davis Energy Efficiency Center EEC Jump to: navigation, search Name UC Davis Energy Efficiency Center (EEC) Place California Sector Efficiency Product With a leadership grant from the California Clean Energy Fund (CalCEF) of USD 1.0m, the UC Davis has established the EEC to accelerate energy efficiency innovation and to stimulate the transfer of the technology into the marketplace. References UC Davis Energy Efficiency Center (EEC)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. UC Davis Energy Efficiency Center (EEC) is a company located in California . References ‚ÜĎ "UC Davis Energy Efficiency Center (EEC)" Retrieved from "http://en.openei.org/w/index.php?title=UC_Davis_Energy_Efficiency_Center_EEC&oldid=352456

403

DOE Provides $30 Million to Jump Start Bioenergy Research Centers |  

Broader source: Energy.gov (indexed) [DOE]

30 Million to Jump Start Bioenergy Research Centers 30 Million to Jump Start Bioenergy Research Centers DOE Provides $30 Million to Jump Start Bioenergy Research Centers October 1, 2007 - 2:49pm Addthis DOE Bioenergy Research Center Investment Tops $400 Million WASHINGTON, DC-The U.S. Department of Energy (DOE) today announced it has invested nearly $30 million in end-of-fiscal-year (2007) funds to accelerate the start-up of its three new Bioenergy Research Centers, bringing total DOE Bioenergy Research Center investment to over $400 million. The three DOE Bioenergy Research Centers-located in Oak Ridge, Tennessee; Madison, Wisconsin; and near Berkeley, California-selected by DOE this June, bring together multidisciplinary teams of leading scientists to advance research needed to make cellulosic ethanol and other biofuels

404

Science Accelerator : User Login  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Login Login The Science Accelerator ALERTS feature will automatically update you regarding newly available information in your specific area(s) of interest. Simply register for the service, then create a search strategy which will be run against information added to . Select a schedule (weekly, monthly, etc.) for receiving the email Alerts. If you are a new patron, Register to learn how to set up Alerts to meet your needs. If you are an existing patron, enter your user name and password in the boxes to login. Once logged in, you may review or modify your search, add a new search and see recent Alerts results. User Name: Password: Remember Me Remember me on this computer. Login Don't have a user name? Register! Forgot your password? Reset your password Alerts The Alerts function allows you to monitor a topic and receive timely

405

Science Accelerator : Your Selections  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Your Selections Back To Previous Page Selections - of First Page Previous Page Next Page Last Page Back To Previous Page You have 0 selections. Click the checkboxes clipping.addClipping on the results or alert results pages to add to your selections. Some links on this page may take you to non-federal websites. Their policies may differ from this site. U.S. Department of Energy U.S. Department of Energy Office of Science Office of Scientific and Technical Information Website Policies/Important Links Science Accelerator science.gov WorldWideScience.org Deep Web Technologies Email Results Use this form to email your search results * Email this to: * Your Name: Comments: URL only?: Number of results: 10 20 50 100 200 All Email Format: HTML TEXT * Required field Print Results

406

Accelerated overlap fermions  

Science Journals Connector (OSTI)

Numerical evaluation of the overlap Dirac operator is difficult since it contains the sign function ?(Hw) of the Hermitian Wilson-Dirac operator Hw with a negative mass term. The problems are due to Hw having very small eigenvalues on the equilibrium background configurations generated in current day Monte Carlo simulations. Since these are a consequence of the lattice discretization and do not occur in the continuum version of the operator, we investigate in this paper to what extent the numerical evaluation of the overlap can be accelerated by making the Wilson-Dirac operator more continuum-like. Specifically, we study the effect of including the clover term in the Wilson-Dirac operator and smearing the link variables in the irrelevant terms. In doing so, we have obtained a factor of 2 speedup by moving from the Wilson action to a fat link irrelevant clover action as the overlap kernel.

Waseem Kamleh; David H. Adams; Derek B. Leinweber; Anthony G. Williams

2002-07-09T23:59:59.000Z

407

Vibrational measurement for commissioning SRF Accelerator Test Facility at Fermilab  

SciTech Connect (OSTI)

The commissioning of two cryomodule components is underway at Fermilab's Superconducting Radio Frequency (SRF) Accelerator Test Facility. The research at this facility supports the next generation high intensity linear accelerators such as the International Linear Collider (ILC), a new high intensity injector (Project X) and other future machines. These components, Cryomodule No.1 (CM1) and Capture Cavity II (CC2), which contain 1.3 GHz cavities are connected in series in the beamline and through cryogenic plumbing. Studies regarding characterization of ground motion, technical and cultural noise continue. Mechanical transfer functions between the foundation and critical beamline components have been measured and overall system displacement characterized. Baseline motion measurements given initial operation of cryogenic, vacuum systems and other utilities are considered.

McGee, M.W.; Leibfritz, J.; Martinez, A.; Pischalnikov, Y.; Schappert, W.; /Fermilab

2011-03-01T23:59:59.000Z

408

A Non-scaling Fixed Field Alternating Gradient Accelerator for the Final Acceleration Stage of the International Design Study of the Neutrino Factory.  

SciTech Connect (OSTI)

The International Design Study of the Neutrino Factory (IDS-NF) has recently completed its Interim Design Report (IDR), which presents our current baseline design of the neutrino factory. To increase the efficiency and reduce the cost of acceleration, the IDR design uses a linear non-scaling fixed field alternating gradient accelerator (FFAG) for its final acceleration stage. We present the current lattice design of that FFAG, including the main ring plus its injection and extraction systems. We describe parameters for the main ring magnets, kickers, and septa, as well as the power supplies for the kickers. We present a first pass at an engineering layout for the ring and its subsystems.

Berg, J.S.; Aslaninejad, M.; Pasternak, J.; Witte, H.; Bliss, N. Cordwell M.; Jones, T.; Muir, A., Kelliher, D.; Machida, S.

2011-09-04T23:59:59.000Z

409

Lab Breakthrough: Supercomputing Power to Accelerate Fossil Energy Research  

Broader source: Energy.gov (indexed) [DOE]

Supercomputing Power to Accelerate Fossil Energy Supercomputing Power to Accelerate Fossil Energy Research Lab Breakthrough: Supercomputing Power to Accelerate Fossil Energy Research September 30, 2013 - 4:49pm Addthis At the heart of the Simulation-Based Engineering User Center (SBEUC) is a high-performance computer that enables the simulation of processes or technologies that are difficult or impossible to demonstrate using traditional methods. | Video by the National Energy Technology Laboratory. Ben Dotson Ben Dotson Project Coordinator for Digital Reform, Office of Public Affairs How can I participate? Watch the video and learn more about the National Labs and their work in high performance computing. The Lab Breakthroughs series features videos produced by each of the National Labs about their game-changing innovations and discoveries. To see

410

Accelerator and Fusion Research Division: 1987 summary of activities  

SciTech Connect (OSTI)

An overview of the design and the initial studies for the Advanced Light Source is given. The research efforts for the Center for X-Ray Optics include x-ray imaging, multilayer mirror technology, x-ray sources and detectors, spectroscopy and scattering, and synchrotron radiation projects. The Accelerator Operations highlights include the research by users in nuclear physics, biology and medicine. The upgrade of the Bevalac is also discussed. The High Energy Physics Technology review includes the development of superconducting magnets and superconducting cables. A review of the Heavy-Ion Fusion Accelerator Research is also presented. The Magnetic Fusion Energy research included the development of ion sources, accelerators for negative ions, diagnostics, and theoretical plasma physics. (WRF)

Not Available

1988-04-01T23:59:59.000Z

411

Acceleration-level control of the CyberCarpet A. De Luca, R. Mattone, P. Robuffo Giordano  

E-Print Network [OSTI]

devices (linear and angular) and the motion control problem is dual to that of nonholonomic wheeled mobile systems to move the design to control laws at the acceleration level. Acceleration control is more suitable to take into account the limitations imposed to the platform motion by the actuation system and

De Luca, Alessandro

412

Laser acceleration of ion beams  

E-Print Network [OSTI]

We consider methods of charged particle acceleration by means of high-intensity lasers. As an application we discuss a laser booster for heavy ion beams provided, e.g. by the Dubna nuclotron. Simple estimates show that a cascade of crossed laser beams would be necessary to provide additional acceleration to gold ions of the order of GeV/nucleon.

I. A. Egorova; A. V. Filatov; A. V. Prozorkevich; S. A. Smolyansky; D. B. Blaschke; M. Chubaryan

2007-02-01T23:59:59.000Z

413

General purpose programmable accelerator board  

DOE Patents [OSTI]

A general purpose accelerator board and acceleration method comprising use of: one or more programmable logic devices; a plurality of memory blocks; bus interface for communicating data between the memory blocks and devices external to the board; and dynamic programming capabilities for providing logic to the programmable logic device to be executed on data in the memory blocks.

Robertson, Perry J. (Albuquerque, NM); Witzke, Edward L. (Edgewood, NM)

2001-01-01T23:59:59.000Z

414

Reliability-Centered Maintenance  

Broader source: Energy.gov [DOE]

Reliability-centered maintenance leverages the same practices and technologies of predictive maintenance.

415

SPEAR3 Accelerator Physics Update  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

SPEAR3 ACCELERATOR PHYSICS UPDATE* SPEAR3 ACCELERATOR PHYSICS UPDATE* J. Safranek # , W.J. Corbett, R. Hettel, X. Huang, Y. Nosochkov, J. Sebek, A. Terebilo, SSRL/SLAC, Menlo Park, CA, U.S.A. Abstract The SPEAR3 [1,2] storage ring at Stanford Synchrotron Radiation Laboratory has been delivering photon beams for three years. We will give an overview of recent and ongoing accelerator physics activities, including 500 mA fills, work toward top-off injection, long-term orbit stability characterization and improvement, fast orbit feedback, new chicane optics, low alpha optics & short bunches, low emittance optics, and MATLAB software. The accelerator physics group has a strong program to characterize and improve SPEAR3 performance. INTRODUCTION In this summary of the past three years of accelerator

416

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

domestic freight industry. This partnership is designed to reduce greenhouse gases and air pollution by accelerating the adoption of advanced technologies and operational...

417

Emittance Measurements of Trapped Electrons from a Plasma Wakefield Accelerator  

SciTech Connect (OSTI)

Recent electron beam driven plasma wakefield accelerator experiments carried out at SLAC showed trapping of plasma electrons. These trapped electrons appeared on an energy spectrometer with smaller transverse size than the beam driving the wake. A connection is made between transverse size and emittance; due to the spectrometer's resolution, this connection allows for placing an upper limit on the trapped electron emittance. The upper limit for the lowest normalized emittance measured in the experiment is 1 mm {center_dot} mrad.

Kirby, N.; Berry, M.; Blumenfeld, I.; Decker, F.-J.; Hogan, M.J.; Ischebeck, R.; Iverson, R.; Siemann, R.; Walz, D.; /SLAC; Clayton, C.E.; Huang, C.; Joshi, C.; Lu, W.; Marsh, K.A.; Mori, W.B.; Zhou, M.; /UCLA; Katsouleas, T.C.; Muggli, P.; Oz, E.; /Southern California U.

2007-06-28T23:59:59.000Z

418

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

AFDC AFDC Printable Version Share this resource Send a link to Alternative Fuels Data Center to someone by E-mail Share Alternative Fuels Data Center on Facebook Tweet about Alternative Fuels Data Center on Twitter Bookmark Alternative Fuels Data Center on Google Bookmark Alternative Fuels Data Center on Delicious Rank Alternative Fuels Data Center on Digg Find More places to share Alternative Fuels Data Center on AddThis.com... More in this section... Alternative Fuels Data Center: Page Not Found Skip to Content Eere_header_logo U.S. Department of Energy Energy Efficiency and Renewable Energy EERE Home | Programs & Offices | Consumer Information Alternative Fuels Data Center Search Search Help Alternative Fuels Data Center Fuels & Vehicles Biodiesel | Diesel Vehicles

419

Community petascale project for accelerator science and simulation: Advancing computational science for future accelerators and accelerator technologies  

E-Print Network [OSTI]

al. 2005 Impact of SciDAC on accelerator projects across the171; Spentzouris P 2006 Accelerator modeling under SciDAC:of next-generation accelerator design, analysis, and

Spentzouris, Panagiotis

2008-01-01T23:59:59.000Z

420

EXOTIC MAGNETS FOR ACCELERATORS.  

SciTech Connect (OSTI)

Over the last few years, several novel magnet designs have been introduced to meet the requirements of new, high performance accelerators and beam lines. For example, the FAIR project at GSI requires superconducting magnets ramped at high rates ({approx} 4 T/s) in order to achieve the design intensity. Magnets for the RIA and FAIR projects and for the next generation of LHC interaction regions will need to withstand high doses of radiation. Helical magnets are required to maintain and control the polarization of high energy protons at RHIC. In other cases, novel magnets have been designed in response to limited budgets and space. For example, it is planned to use combined function superconducting magnets for the 50 GeV proton transport line at J-PARC to satisfy both budget and performance requirements. Novel coil winding methods have been developed for short, large aperture magnets such as those used in the insertion region upgrade at BEPC. This paper will highlight the novel features of these exotic magnets.

WANDERER, P.

2005-09-18T23:59:59.000Z

Note: This page contains sample records for the topic "linear accelerator center" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

RFQ accelerator tuning system  

DOE Patents [OSTI]

A cooling system is provided for maintaining a preselected operating temperature in a device, which may be an RFQ accelerator, having a variable heat removal requirement, by circulating a cooling fluid through a cooling system remote from the device. Internal sensors in the device enable an estimated error signal to be generated from parameters which are indicative of the heat removal requirement from the device. Sensors are provided at predetermined locations in the cooling system for outputting operational temperature signals. Analog and digital computers define a control signal functionally related to the temperature signals and the estimated error signal, where the control signal is defined effective to return the device to the preselected operating temperature in a stable manner. The cooling system includes a first heat sink responsive to a first portion of the control signal to remove heat from a major portion of the circulating fluid. A second heat sink is responsive to a second portion of the control signal to remove heat from a minor portion of the circulating fluid. The cooled major and minor portions of the circulating fluid are mixed in response to a mixing portion of the control signal, which is effective to proportion the major and minor portions of the circulating fluid to establish a mixed fluid temperature which is effective to define the preselected operating temperature for the remote device. In an RFQ environment the stable temperature control enables the resonant frequency of the device to be maintained at substantially a predetermined value during transient operations.

Bolie, Victor W. (Albuquerque, NM)

1990-01-01T23:59:59.000Z

422

RFQ accelerator tuning system  

DOE Patents [OSTI]

A cooling system is provided for maintaining a preselected operating temperature in a device, which may be an RFQ accelerator, having a variable heat removal requirement, by circulating a cooling fluid through a cooling system remote from the device. Internal sensors in the device enable an estimated error signal to be generated from parameters which are indicative of the heat removal requirement from the device. Sensors are provided at predetermined locations in the cooling system for outputting operational temperature signals. Analog and digital computers define a control signal functionally related to the temperature signals and the estimated error signal, where the control signal is defined effective to return the device to the preselected operating temperature in a stable manner. The cooling system includes a first heat sink responsive to a first portion of the control signal to remove heat from a major portion of the circulating fluid. A second heat sink is responsive to a second portion of the control signal to remove heat from a minor portion of the circulating fluid. The cooled major and minor portions of the circulating fluid are mixed in response to a mixing portion of the control signal, which is effective to proportion the major and minor portions of the circulating fluid to establish a mixed fluid temperature which is effective to define the preselected operating temperature for the remote device. In an RFQ environment the stable temperature control enables the resonant frequency of the device to be maintained at substantially a predetermined value during transient operations. 3 figs.

Bolie, V.W.

1990-07-03T23:59:59.000Z

423

CALCIUM SULFATE-INDUCED ACCELERATED CORROSION  

E-Print Network [OSTI]

10286 CALCIUM SULFATE-INDUCED ACCELERATED CORROSION HilaryCT Calcium Sulf(1te∑∑induced Accelerated Corrosion By Hilaryof the Caso - induced accelerated attack on pure iron and

Akuezue, Hilary Chikezie

2013-01-01T23:59:59.000Z

424

Application of particle accelerators in research  

Science Journals Connector (OSTI)

......prospectives is presented. Accelerators in research are widely...to solid state, nuclear and atomic physics...bunches-multi bunch accelerator) and decrease the...In a multi-bunch accelerator, separate vacuum chambers are needed......

Giovanni Mazzitelli

2011-07-01T23:59:59.000Z

425

Pulse - Accelerator Science in Medicine  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

t he future of accelerator physics isn’t just for physicists. As in the past, tomorrow’s discoveries in particle accelerator science may lead to unexpected applications for medical diagnosis, healing and the understanding of human biology. t he future of accelerator physics isn’t just for physicists. As in the past, tomorrow’s discoveries in particle accelerator science may lead to unexpected applications for medical diagnosis, healing and the understanding of human biology. Breakthroughs in the technology of superconducting magnets, nanometer beams, laser instrumentation and information technology will give high-energy physicists new accelerators to explore the deepest secrets of the universe: the ultimate structure of matter and the nature of space and time. But breakthroughs in accelerator science may do more than advance the exploration of particles and forces. No field of science is an island. Physics, astronomy, chemistry, biology, medicine— all interact in the continuing human endeavor to explore and understand our world and ourselves. Research at high-energy physics laboratories will lead to the next generation of particle accelerators—and perhaps to new tools for medical science.

426

PROTON ACCELERATION AT OBLIQUE SHOCKS  

SciTech Connect (OSTI)

Acceleration at the shock waves propagating oblique to the magnetic field is studied using a recently developed theoretical/numerical model. The model assumes that resonant hydromagnetic wave-particle interaction is the most important physical mechanism relevant to motion and acceleration of particles as well as to excitation and damping of waves. The treatment of plasma and waves is self-consistent and time dependent. The model uses conservation laws and resonance conditions to find where waves will be generated or damped, and hence particles will be pitch-angle-scattered. The total distribution is included in the model and neither introduction of separate population of seed particles nor some ad hoc escape rate of accelerated particles is needed. Results of the study show agreement with diffusive shock acceleration models in the prediction of power spectra for accelerated particles in the upstream region. However, they also reveal the presence of spectral break in the high-energy part of the spectra. The role of the second-order Fermi-like acceleration at the initial stage of the acceleration is discussed. The test case used in the paper is based on ISEE-3 data collected for the shock of 1978 November 12.

Galinsky, V. L.; Shevchenko, V. I., E-mail: vit@ucsd.edu [ECE Department, UC San Diego, MC 407, La Jolla, CA 92093-0407 (United States)

2011-06-20T23:59:59.000Z

427

Pioneer acceleration and variation of light speed: experimental situation  

E-Print Network [OSTI]

The situation with respect to the experiments is presented of a recently proposed model that gives an explanation of the Pioneer anomalous acceleration $a_{\\rm P}$. The model is based on an idea already discovered by Einstein in 1907: the light speed depends on the gravitational potential $\\Phi$, so that it is larger the higher if $\\Phi$. The potential due to all the mass and energy in the universe increases in time because of its expansion, which has the consequence that light must be slowly accelerating. Moreover it turns out that the observational effects of a universal adiabatic acceleration of light $a_\\ell =a_{\\rm P}$ and of an extra acceleration towards the Sun $a_{\\rm P}$ of a spaceship would be the same: a blue shift increasing linearly in time, precisely what was observed. The phenomenon would be due to a cosmological acceleration of the proper time of bodies with respect to the coordinate time. It is shown that it agrees with the experimental tests of special relativity and the weak equivalence principle if the cosmological variation of the fine structure constant is zero or very small, as it seems now.

Antonio F. Ranada

2004-02-26T23:59:59.000Z

428

Linear Logic as CSP  

Science Journals Connector (OSTI)

......research-article Original Articles Linear Logic as CSP ERIC MONTEIRO Department of Informatics...translation from such proofs into a corresponding CSP process is offered. It is shown that the...between the cut elimination process and the CSP execution. Generalizations and related......

ERIC MONTEIRO

1994-08-01T23:59:59.000Z

429

Linear Programming Environmental  

E-Print Network [OSTI]

Linear Program to control air pollution was developed in 1968 by Teller, which minimized cost Fall 2006 #12;Topics · Introduction · Background · Air · Land · Water #12;Introduction · "The United States spends more than 2% of its gross domestic product on pollution control, and this is more than any

Nagurney, Anna

430

Cosmic Particle Acceleration: Basic Issues  

E-Print Network [OSTI]

Cosmic-rays are ubiquitous, but their origins are surprisingly difficult to understand. A review is presented of some of the basic issues common to cosmic particle accelerators and arguments leading to the likely importance of diffusive shock acceleration as a general explanation. The basic theory of diffusive shock acceleration is outlined, followed by a discussion of some of the key issues that still prevent us from a full understanding of its outcomes. Some recent insights are mentioned at the end that may help direct ultimate resolution of our uncertainties.

T. W. Jones

2000-12-22T23:59:59.000Z

431

ASTA at Fermilab: Accelerator Physics and Accelerator Education Programs at the Modern Accelerator R&D Users Facility for HEP and Accelerator Applications.  

SciTech Connect (OSTI)

We present the current and planned beam physics research program and accelerator education program at Advanced Superconducting Test Accelerator (ASTA) at Fermilab.

Shiltsev, V.; Piot, P.

2013-09-01T23:59:59.000Z

432

An Accelerator Control Middle Layer Using MATLAB  

E-Print Network [OSTI]

Accelerator Modeling with MATLAB Accelerator Toolbox,Ē PACChannel Access Toolbox for Matlab," ICALEPCS 2001. [4] J.Orbit Control Using MATLAB,Ē PAC 2001. [5] J. Safranek, G.

Portmann, Gregory J.; Corbett, Jeff; Terebilo, Andrei

2005-01-01T23:59:59.000Z

433

Development of Artificial Ash Accelerated Accumulation Test ...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Artificial Ash Accelerated Accumulation Test Development of Artificial Ash Accelerated Accumulation Test Poster presented at the 16th Directions in Engine-Efficiency and Emissions...

434

Chevrolet Malibu HEV Accelerated Testing - June 2013  

Broader source: Energy.gov (indexed) [DOE]

Malibu HEV Accelerated Testing - June 2013 Four model year 2013 Chevrolet Malibu hybrid electric vehicles (HEVs) entered Accelerated testing during November 2012 in a fleet in...

435

Comparing Accelerated Testing and Outdoor Exposure | Department...  

Broader source: Energy.gov (indexed) [DOE]

Comparing Accelerated Testing and Outdoor Exposure Comparing Accelerated Testing and Outdoor Exposure Presented at the PV Module Reliability Workshop, February 26 - 27 2013,...

436

Accelerated Testing Validation | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Accelerated Testing Validation Accelerated Testing Validation Presented at the Department of Energy Fuel Cell Projects Kickoff Meeting, September 1 - October 1, 2009...

437

Hyundai Sonata HEV Accelerated Testing - March 2013  

Broader source: Energy.gov (indexed) [DOE]

Hyundai Sonata HEV Accelerated Testing - March 2013 Two model year 2011 Hyundai Sonata hybrid electric vehicles (HEVs) entered Accelerated testing during June 2011 in a fleet in...

438

CRAD, Occupational Safety & Health - Idaho Accelerated Retrieval...  

Broader source: Energy.gov (indexed) [DOE]

Occupational Safety & Health - Idaho Accelerated Retrieval Project Phase II CRAD, Occupational Safety & Health - Idaho Accelerated Retrieval Project Phase II February 2006 A...

439

RDC receives award for Accelerate Program  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Issues submit RDC receives award for Accelerate Program Accelerate is designed to help graduate more technical career students, place them in jobs, and better prepare them...

440

SLAC National Accelerator Laboratory Technology Marketing Summaries...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

SLAC National Accelerator Laboratory Technology Marketing Summaries Here you'll find marketing summaries for technologies available for licensing from the SLAC National Accelerator...

Note: This page contains sample records for the topic "linear accelerator center" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Early Days of Accelerator Mass Spectrometry  

DOE R&D Accomplishments [OSTI]

Alvarez reviews his role in the development of the tandem Van de Graaff accelerator and the technique of accelerator mass spectrometry as a technique for isotope dating. (GHT)

Alvarez, L. W.

1981-05-00T23:59:59.000Z

442

Lab announces Venture Acceleration Fund recipients  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Inc., and ThermaSun Inc. as recipients of awards from the Los Alamos National Security, LLC Venture Acceleration Fund. The Laboratory's Venture Acceleration Fund provides...

443

Electron-Beam Microcharacterization Centers | U.S. DOE Office of Science  

Office of Science (SC) Website

Electron-Beam Microcharacterization Centers Electron-Beam Microcharacterization Centers Scientific User Facilities (SUF) Division SUF Home About User Facilities X-Ray Light Sources Neutron Scattering Facilities Nanoscale Science Research Centers Electron-Beam Microcharacterization Centers Accelerator & Detector Research & Development Principal Investigators' Meetings Scientific Highlights Construction Projects BES Home User Facilities Electron-Beam Microcharacterization Centers Print Text Size: A A A RSS Feeds FeedbackShare Page This research area supports three electron-beam microcharacterization centers, which operate as user facilities, work to develop next-generation electron-beam instrumentation, and conduct corresponding research. Operating funds are provided to enable expert scientific interaction and

444

3D gravity and non-linear cosmology  

E-Print Network [OSTI]

By the inclusion of an additional term, non-linear in the scalar curvature $R$, it is tested if dark energy could rise as a geometrical effect in 3D gravitational formulations. We investigate a cosmological fluid obeying a non-polytropic equation of state (the van der Waals equation) that is used to construct the energy-momentum tensor of the sources, representing the hypothetical inflaton in gravitational interaction with a matter contribution. Following the evolution in time of the scale factor, its acceleration, and the energy densities of constituents it is possible to construct the description of an inflationary 3D universe, followed by a matter dominated era. For later times it is verified that, under certain conditions, the non-linear term in $R$ can generate the old 3D universe in accelerated expansion, where the ordinary matter is represented by the barotropic limit of the van der Waals constituent.

F. P. Devecchi; M. L. Froehlich

2005-10-11T23:59:59.000Z

445

Linear and nonlinear dynamics of a dust bicrystal consisting of positive and negative dust particles  

SciTech Connect (OSTI)

A dusty plasma crystalline configuration consisting of charged dust grains of alternating charge sign ({center_dot}{center_dot}{center_dot}/+/-/+/-/+/{center_dot}{center_dot}{center_dot}) and mass is considered. Both charge and mass of each dust species are taken to be constant. Considering the equations of longitudinal motion, a dispersion relation for linear longitudinal vibrations is derived from first principles and then analyzed. Two harmonic modes are obtained, namely, an acoustic mode and an inverse-dispersive optic-like one. The nonlinear aspects of acoustic longitudinal dust grain motion are addressed via a generalized Boussinesq (and, alternatively, a generalized Korteweg-de Vries) description.

Kourakis, I.; Shukla, P.K.; Morfill, G.E. [Institut fuer Theoretische Physik IV and Centre for Plasma Science and Astrophysics, Fakultaet fuer Physik und Astronomie, Ruhr-Universitaet Bochum, D-44780 Bochum (Germany); Max-Planck Institut fuer Extraterrestrische Physik, Giessenbachstrasse, D-85740 Garching (Germany)

2005-11-15T23:59:59.000Z

446

BNL | Accelerators for Applied Research  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Accelerators for Applied Research Accelerators for Applied Research Brookhaven National Lab operates several accelerator facilities dedicated to applied research. These facilities directly address questions and concerns on a tremendous range of fields, including medical imaging, cancer therapy, computation, and space exploration. Leading scientists lend their expertise to these accelerators and offer crucial assistant to collaborating researchers, pushing the limits of science and technology. Interested in gaining access to these facilities for research? See the contact number listed for each facility. RHIC tunnel Brookhaven Linac Isotope Producer The Brookhaven Linac Isoptope Producer (BLIP)-positioned at the forefront of research into radioisotopes used in cancer treatment and diagnosis-produces commercially unavailable radioisotopes for use by the

447

Accelerating and rotating black holes  

E-Print Network [OSTI]

An exact solution of Einstein's equations which represents a pair of accelerating and rotating black holes (a generalised form of the spinning C-metric) is presented. The starting point is a form of the Plebanski-Demianski metric which, in addition to the usual parameters, explicitly includes parameters which describe the acceleration and angular velocity of the sources. This is transformed to a form which explicitly contains the known special cases for either rotating or accelerating black holes. Electromagnetic charges and a NUT parameter are included, the relation between the NUT parameter $l$ and the Plebanski-Demianski parameter $n$ is given, and the physical meaning of all parameters is clarified. The possibility of finding an accelerating NUT solution is also discussed.

J. B. Griffiths; J. Podolsky

2005-07-06T23:59:59.000Z

448

Polarimeter for an Accelerated Spheromak.  

E-Print Network [OSTI]

??A three-beam heterodyne polarimeter has been designed and constructed to measure line-integrated density and Faraday rotation of accelerated spheromak plasmas in the Plasma Injector 1Ö (more)

Carle, PATRICK

2014-01-01T23:59:59.000Z

449

Market Acceleration | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Market Acceleration Market Acceleration Market Acceleration Photo of several men on a floating platform that is lowering monitoring tools into the ocean. The Water Power Program works to foster a commercial market for marine and hydrokinetic (MHK) energy devices in order to achieve its goal of the nation obtaining 15% of its electricity needs from all types of water power by 2030. Though marine and hydrokinetic energy is still in its infancy, the program is developing a robust portfolio of projects to accelerate wave, tidal and current project deployments and development of the MHK market in general. These projects include project siting activities, market assessments, environmental impact analyses, and research supporting technology commercialization. Learn more about the Water Power Program's work in the following areas of

450

Nonlocal theory of accelerated observers  

Science Journals Connector (OSTI)

A nonlocal theory of accelerated observers is developed on the basis of the hypothesis that an electromagnetic wave can never stand completely still with respect to an observer. In the eikonal approximation, the nonlocal theory reduces to the standard extension of Lorentz invariance to accelerated observers. The validity of the nonlocal theory would exclude the possibility of existence of any basic scalar field in nature. The observational consequences of this theory are briefly discussed.

Bahram Mashhoon

1993-05-01T23:59:59.000Z

451

SPEAR3 Accelerator Physics Update  

SciTech Connect (OSTI)

The SPEAR3 storage ring at Stanford Synchrotron Radiation Laboratory has been delivering photon beams for three years. We will give an overview of recent and ongoing accelerator physics activities, including 500 mA fills, work toward top-off injection, long-term orbit stability characterization and improvement, fast orbit feedback, new chicane optics, low alpha optics & short bunches, low emittance optics, and MATLAB software. The accelerator physics group has a strong program to characterize and improve SPEAR3 performance

Safranek, James A.; Corbett, W.Jeff; Gierman, S.; Hettel, R.O.; Huang, X.; Nosochkov, Yuri; Sebek, Jim; Terebilo, Andrei; /SLAC

2007-11-02T23:59:59.000Z

452

Sequentially pulsed traveling wave accelerator  

DOE Patents [OSTI]

A sequentially pulsed traveling wave compact accelerator having two or more pulse forming lines each with a switch for producing a short acceleration pulse along a short length of a beam tube, and a trigger mechanism for sequentially triggering the switches so that a traveling axial electric field is produced along the beam tube in synchronism with an axially traversing pulsed beam of charged particles to serially impart energy to the particle beam.

Caporaso, George J. (Livermore, CA); Nelson, Scott D. (Patterson, CA); Poole, Brian R. (Tracy, CA)

2009-08-18T23:59:59.000Z

453

Wind Energy at NREL's National Wind Technology Center  

ScienceCinema (OSTI)

It is a pure, plentiful natural resource. Right now wind is in high demand and it holds the potential to transform the way we power our homes and businesses. NREL is at the forefront of wind energy research and development. NREL's National Wind Technology Center (NWTC) is a world-class facility dedicated to accelerating and deploying wind technology.

None

2013-05-29T23:59:59.000Z

454

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Center to someone by E-mail Center to someone by E-mail Share Alternative Fuels Data Center on Facebook Tweet about Alternative Fuels Data Center on Twitter Bookmark Alternative Fuels Data Center on Google Bookmark Alternative Fuels Data Center on Delicious Rank Alternative Fuels Data Center on Digg Find More places to share Alternative Fuels Data Center on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Local Laws and Incentives There are a variety of local laws and incentives that support reducing U.S. petroleum consumption by encouraging or requiring individuals and/or public and private organizations to use alternative fuels, advanced vehicles, and strategies to decrease fuel use or increase fuel economy. Local city and county governments create such laws and incentives to ensure people use

455

About Cost Center  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

from the university, fee-for-service contracts, as well as establishing CAMD as a cost center. We know that our users are reluctant to see CAMD become a cost center, however...

456

NREL: Education Center - Events  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

phone number is 303-384-6565. November 2014 Education Center Holiday Hours November 26 - December 1, 2014 Golden, CO Contact: NREL Education Center 303-384-6565 The NREL...

457

ARM - News Center Archive  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

3 1 BAECC 1 BBOP 4 ENA 1 GOAMAZON 6 MAGIC 15 MC3E 17 SGP 3 STORMVEX 29 TCAP 3 Search News Search Blog News Center All Categories What's this? Social Media Guidance News Center...

458

LANSCE | Lujan Center | Publications  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

use of add here name of specific Lujan instruments at the Lujan Center at Los Alamos Neutron Science Center. Los Alamos National Laboratory is operated by Los Alamos National...

459

ENERGY CENTER OF WISCONSIN  

E-Print Network [OSTI]

ENERGY CENTER OF WISCONSIN report report report report report report report report report report energy center Report 193-1 Fuel Cells for Distributed Generation A Technology and Marketing Summary March

Wisconsin at Madison, University of

460

INTERNATIONAL PACIFIC RESEARCH CENTER  

E-Print Network [OSTI]

INTERNATIONAL PACIFIC RESEARCH CENTER APRIL 2004­MARCH 2005 REPORT SCHOOL OF OCEAN AND EARTH RESEARCH HIGHLIGHTS Indo-Pacific Ocean Climate Pacific Research Center Design by: Susan Yamamoto Printed by: Hagadone Printing Company Photo: Waikiki

Wang, Yuqing

Note: This page contains sample records for the topic "linear accelerator center" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Center to someone by E-mail Center to someone by E-mail Share Alternative Fuels Data Center on Facebook Tweet about Alternative Fuels Data Center on Twitter Bookmark Alternative Fuels Data Center on Google Bookmark Alternative Fuels Data Center on Delicious Rank Alternative Fuels Data Center on Digg Find More places to share Alternative Fuels Data Center on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Recent Federal Actions This list includes recent federal actions, such as Federal Register notices and rulemaking actions, agency directives or agency communications, that are all publicly available. These actions relate to alternative fuels and vehicles, fuel blends, hybrid vehicles, and idle reduction and fuel economy measures. When rulemakings are finalized, they will move to the list of

462

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Center to someone by E-mail Center to someone by E-mail Share Alternative Fuels Data Center on Facebook Tweet about Alternative Fuels Data Center on Twitter Bookmark Alternative Fuels Data Center on Google Bookmark Alternative Fuels Data Center on Delicious Rank Alternative Fuels Data Center on Digg Find More places to share Alternative Fuels Data Center on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Expired, Repealed, and Archived Federal Incentives and Laws The following is a list of expired, repealed, and archived incentives, laws, regulations, funding opportunities, or other initiatives related to alternative fuels and vehicles, advanced technologies, or air quality. Value-Added Producer Grants (VAPG) Archived: 12/31/2012

463

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Tools Tools Printable Version Share this resource Send a link to Alternative Fuels Data Center to someone by E-mail Share Alternative Fuels Data Center on Facebook Tweet about Alternative Fuels Data Center on Twitter Bookmark Alternative Fuels Data Center on Google Bookmark Alternative Fuels Data Center on Delicious Rank Alternative Fuels Data Center on Digg Find More places to share Alternative Fuels Data Center on AddThis.com... Truckstop Electrification Truck Stop Electrification Locator Locate truck stops with electrification sites. Click on a location on the map for site details. A U.S. Department of Energy Energy Efficiency and Renewable Energy Source: Alternative Fuels Data Center dditional Resources View list of electrification sites in the U.S. by state. Learn more about idle reduction techniques.

464

Teleportation with Multiple Accelerated Partners  

E-Print Network [OSTI]

As the current revolution in communication is underway, quantum teleportation can increase the level of security in quantum communication applications. In this paper, we present a quantum teleportation procedure that capable to teleport either accelerated or non-accelerated information through different quantum channels. These quantum chan- nels are based on accelerated multi-qubit states, where each qubit of each of these channels represent a partner. Namely, these states are the the W state, Greenberger-Horne-Zeilinger (GHZ) state, and the GHZ-like state. Here, we show that the fidelity of teleporting acceler- ated information is higher than the fidelity of teleporting non-accelerated information, both through a quantum channel that is based on accelerated state. Also, the comparison among the performance of these three channels shows that the degree of fidelity depends on type of the used channel, type of the measurement, and value of the acceleration. The result of comparison concludes that teleporting information through channel that is based on the GHZ state is more robust than teleporting information through channels that are based on the other two states. For future work, the proposed procedure can be generalized later to achieve communication through a wider quantum network.

Alaa Sagheer; Hala Hamdoun

2014-01-31T23:59:59.000Z

465

Combustion powered linear actuator  

DOE Patents [OSTI]

The present invention provides robotic vehicles having wheeled and hopping mobilities that are capable of traversing (e.g. by hopping over) obstacles that are large in size relative to the robot and, are capable of operation in unpredictable terrain over long range. The present invention further provides combustion powered linear actuators, which can include latching mechanisms to facilitate pressurized fueling of the actuators, as can be used to provide wheeled vehicles with a hopping mobility.

Fischer, Gary J. (Albuquerque, NM)

2007-09-04T23:59:59.000Z

466

Energy Technology Engineering Center  

Broader source: Energy.gov (indexed) [DOE]

Technology Engineering Center Technology Engineering Center 41 00 Guardian Street, Suite # 160 Simi Valley, CA 93063 Memorandum for: Gregory H. Woods General Council January 30, 2013 FROM: John Jones EL\= Federal ProjeÔŅĹ irector Energy Technology Engineering Center (ETEC) Project Office SUBJECT: Annual National Environmental Policy Act {NEPA) Planning Summary Attached is the 2013 Annual NEPA Planning Summary for the ETEC Project Office.

467

Louisiana Transportation Research Center  

E-Print Network [OSTI]

Louisiana Transportation Research Center LTRC www.ltrc.lsu.edu 2012-13 ANNUALREPORT #12;The Louisiana Transportation Research Center (LTRC) is a research, technology transfer, and training center administered jointly by the Louisiana Department of Transportation and Development (DOTD) and Louisiana State

Harms, Kyle E.

468

Present and Future Computational Requirements General Plasma Physics Center for Integrated Computation and Analysis of Reconnection and Turbulence (CICART)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Computational Computational Current Future Accelerators Present and Future Computational Requirements General Plasma Physics Center for Integrated Computation and Analysis of Reconnection and Turbulence (CICART) Kai Germaschewski, Homa Karimabadi Amitava Bhattacharjee, Fatima Ebrahimi, Will Fox, Liwei Lin CICART Space Science Center / Dept. of Physics University of New Hampshire March 18, 2013 Kai Germaschewski and Homa Karimabadi CICART Project Computational Current Future Accelerators Outline 1 Project Information 2 Computational Strategies 3 Current HPC usage and methods 4 HPC requirements for 2017 5 Strategies for New Architectures Kai Germaschewski and Homa Karimabadi CICART Project Computational Current Future Accelerators Project Information Center for Integrated Computation and Analysis of Reconnection and Turbulence Director: Amitava Bhattacharjee, PPPL /

469

Center for Bio-inspired Solar Fuel Production Personnel | Center...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Center for Bio-inspired Solar Fuel Production Personnel Principal Investigators Postdoctoral Fellows Center researchers Graduate Students Undergraduate Students All Bisfuel Center...

470

Linear and nonlinear resonance of water waves near periodic structures  

E-Print Network [OSTI]

In the first part of this thesis, we present a nonlinear theory for the excitation of trapped wave around a circular cylinder mounted at the center of a channel. It is well-known that near an infinite linear array of ...

Li, Yile, 1973-

2006-01-01T23:59:59.000Z

471

Demand Response Opportunities and Enabling Technologies for Data Centers:  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Demand Response Opportunities and Enabling Technologies for Data Centers: Demand Response Opportunities and Enabling Technologies for Data Centers: Findings From Field Studies Title Demand Response Opportunities and Enabling Technologies for Data Centers: Findings From Field Studies Publication Type Report LBNL Report Number LBNL-5763E Year of Publication 2012 Authors Ghatikar, Girish, Venkata Ganti, Nance Matson, and Mary Ann Piette Publisher PG&E/SDG&E/CEC/LBNL Keywords communication and standards, control systems, data centers, demand response, enabling technologies, end-use technologies, load migration, market sectors, technologies Abstract The energy use in data centers is increasing and, in particular, impacting the data center energy cost and electric grid reliability during peak and high price periods. As per the 2007 U.S. Environmental Protection Agency (EPA), in the Pacific Gas and Electric Company territory, data centers are estimated to consume 500 megawatts of annual peak electricity. The 2011 data confirm the increase in data center energy use, although it is slightly lower than the EPA forecast. Previous studies have suggested that data centers have significant potential to integrate with supply-side programs to reduce peak loads. In collaboration with California data centers, utilities, and technology vendors, this study conducted field tests to improve the understanding of the demand response opportunities in data centers. The study evaluated an initial set of control and load migration strategies and economic feasibility for four data centers. The findings show that with minimal or no impact to data center operations a demand savings of 25% at the data center level or 10% to 12% at the whole building level can be achieved with strategies for cooling and IT equipment, and load migration. These findings should accelerate the grid-responsiveness of data centers through technology development, integration with the demand response programs, and provide operational cost savings.

472

National Energ y Research Scientific Computing Center  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Annual Report Annual Report This work was supported by the Director, Office of Science, Office of Advanced Scientific Computing Research of the U.S. Department of Energy under Contract No. DE-AC 03-76SF00098. LBNL-49186, December 2001 National Energ y Research Scientific Computing Center 2001 Annual Report NERSC aspires to be a world leader in accelerating scientific discovery through computation. Our vision is to provide high- performance computing tools to tackle science's biggest and most challenging problems, and to play a major role in advancing large- scale computational science and computing technology. The result will be a rate of scientific progress previously unknown. NERSC's mission is to accelerate the pace of scientific discovery in the Department of Energy Office

473

ACCELERATED DESTRUCTIVE DEGRADATION TESTS: DATA, MODELS,  

E-Print Network [OSTI]

ACCELERATED DESTRUCTIVE DEGRADATION TESTS: DATA, MODELS, AND ANALYSIS Luis A. Escobar Dept are often accelerated by testing at higher than usual levels of accelerating variables like temperature. This chapter describes an important class of models for accelerated destructive degradation data. We use

474

Accelerators: powering cutting-edge research  

E-Print Network [OSTI]

Accelerators: powering cutting-edge research #12;What is a particle accelerator? Booster ourselves. Particle accelerators are our attempt to turn back the clock and see into the early stages of the Universe. They accelerate everyday charged particles (electrons or protons) to close to the speed of light

Crowther, Paul

475

US LHC Accelerator Project and Research Program  

E-Print Network [OSTI]

US LHC Accelerator Project and Research Program Jim Strait Fermilab 13 June 2002 brookhaven - fermilab - berkeley US LHC ACCELERATOR PROJECT #12;13 June 2002 J. Strait - US LHC Accelerator Project 2 Outline US LHC Accelerator (Construction) Project Project Technical and Schedule Status Cost and Schedule

Large Hadron Collider Program

476

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Tools Tools Printable Version Share this resource Send a link to Alternative Fuels Data Center to someone by E-mail Share Alternative Fuels Data Center on Facebook Tweet about Alternative Fuels Data Center on Twitter Bookmark Alternative Fuels Data Center on Google Bookmark Alternative Fuels Data Center on Delicious Rank Alternative Fuels Data Center on Digg Find More places to share Alternative Fuels Data Center on AddThis.com... Fuel Properties Search Fuel Properties Comparison Create a custom chart comparing fuel properties and characteristics for multiple fuels. Select the fuel and properties of interest. Select Fuels Clear all All Fuels Gasoline Diesel (No. 2) Biodiesel Compressed Natural Gas (CNG) Electricity Ethanol Hydrogen Liquefied Natural Gas (LNG) Propane (LPG)

477

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Electricity ¬Ľ Laws & Incentives Electricity ¬Ľ Laws & Incentives Printable Version Share this resource Send a link to Alternative Fuels Data Center to someone by E-mail Share Alternative Fuels Data Center on Facebook Tweet about Alternative Fuels Data Center on Twitter Bookmark Alternative Fuels Data Center on Google Bookmark Alternative Fuels Data Center on Delicious Rank Alternative Fuels Data Center on Digg Find More places to share Alternative Fuels Data Center on AddThis.com... More in this section... Electricity Basics Benefits & Considerations Stations Vehicles Laws & Incentives Federal Laws and Incentives for EVs The list below contains summaries of all Federal laws and incentives related to EVs. Incentives Alternative Fuel Infrastructure Tax Credit Fueling equipment for natural gas, liquefied petroleum gas (propane),

478

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Propane ¬Ľ Laws & Incentives Propane ¬Ľ Laws & Incentives Printable Version Share this resource Send a link to Alternative Fuels Data Center to someone by E-mail Share Alternative Fuels Data Center on Facebook Tweet about Alternative Fuels Data Center on Twitter Bookmark Alternative Fuels Data Center on Google Bookmark Alternative Fuels Data Center on Delicious Rank Alternative Fuels Data Center on Digg Find More places to share Alternative Fuels Data Center on AddThis.com... More in this section... Propane Basics Benefits & Considerations Stations Vehicles Laws & Incentives Federal Laws and Incentives for Propane (LPG) The list below contains summaries of all Federal laws and incentives related to Propane (LPG). Incentives Alternative Fuel Infrastructure Tax Credit Fueling equipment for natural gas, liquefied petroleum gas (propane),

479

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Biodiesel ¬Ľ Laws & Incentives Biodiesel ¬Ľ Laws & Incentives Printable Version Share this resource Send a link to Alternative Fuels Data Center to someone by E-mail Share Alternative Fuels Data Center on Facebook Tweet about Alternative Fuels Data Center on Twitter Bookmark Alternative Fuels Data Center on Google Bookmark Alternative Fuels Data Center on Delicious Rank Alternative Fuels Data Center on Digg Find More places to share Alternative Fuels Data Center on AddThis.com... More in this section... Biodiesel Basics Benefits & Considerations Stations Vehicles Laws & Incentives Federal Laws and Incentives for Biodiesel The list below contains summaries of all Federal laws and incentives related to Biodiesel. Incentives Alternative Fuel Infrastructure Tax Credit Fueling equipment for natural gas, liquefied petroleum gas (propane),

480

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Ethanol ¬Ľ Laws & Incentives Ethanol ¬Ľ Laws & Incentives Printable Version Share this resource Send a link to Alternative Fuels Data Center to someone by E-mail Share Alternative Fuels Data Center on Facebook Tweet about Alternative Fuels Data Center on Twitter Bookmark Alternative Fuels Data Center on Google Bookmark Alternative Fuels Data Center on Delicious Rank Alternative Fuels Data Center on Digg Find More places to share Alternative Fuels Data Center on AddThis.com... More in this section... Ethanol Basics Benefits & Considerations Stations Vehicles Laws & Incentives Federal Laws and Incentives for Ethanol The list below contains summaries of all Federal laws and incentives related to Ethanol. Incentives Alternative Fuel Infrastructure Tax Credit Fueling equipment for natural gas, liquefied petroleum gas (propane),

Note: This page contains sample records for the topic "linear accelerator center" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Hydrogen ¬Ľ Laws & Incentives Hydrogen ¬Ľ Laws & Incentives Printable Version Share this resource Send a link to Alternative Fuels Data Center to someone by E-mail Share Alternative Fuels Data Center on Facebook Tweet about Alternative Fuels Data Center on Twitter Bookmark Alternative Fuels Data Center on Google Bookmark Alternative Fuels Data Center on Delicious Rank Alternative Fuels Data Center on Digg Find More places to share Alternative Fuels Data Center on AddThis.com... More in this section... Hydrogen Basics Benefits & Considerations Stations Vehicles Laws & Incentives Federal Laws and Incentives for Hydrogen Fuel Cells The list below contains summaries of all Federal laws and incentives related to Hydrogen Fuel Cells. Incentives Alternative Fuel Tax Exemption Alternative fuels used in a manner that the Internal Revenue Service (IRS)

482

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Tools Tools Printable Version Share this resource Send a link to Alternative Fuels Data Center to someone by E-mail Share Alternative Fuels Data Center on Facebook Tweet about Alternative Fuels Data Center on Twitter Bookmark Alternative Fuels Data Center on Google Bookmark Alternative Fuels Data Center on Delicious Rank Alternative Fuels Data Center on Digg Find More places to share Alternative Fuels Data Center on AddThis.com... Data Included in the Alternative Fuel Stations Download The following data fields are provided in the downloadable files for alternative fuel stations. Field Value Description fuel_type_code Type: string The type of alternative fuel the station provides. Fuel types are given as code values as described below: Value Description BD Biodiesel (B20 and above)

483

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Conserve Fuel ¬Ľ Laws & Incentives Conserve Fuel ¬Ľ Laws & Incentives Printable Version Share this resource Send a link to Alternative Fuels Data Center to someone by E-mail Share Alternative Fuels Data Center on Facebook Tweet about Alternative Fuels Data Center on Twitter Bookmark Alternative Fuels Data Center on Google Bookmark Alternative Fuels Data Center on Delicious Rank Alternative Fuels Data Center on Digg Find More places to share Alternative Fuels Data Center on AddThis.com... More in this section... Biodiesel Electricity Ethanol Hydrogen Natural Gas Propane Emerging Fuels Fuel Prices Federal Laws and Incentives for Idle Reduction The list below contains summaries of all Federal laws and incentives related to Idle Reduction. Incentives Idle Reduction Technology Excise Tax Exemption Qualified on-board idle reduction devices and advanced insulation are

484

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Natural Gas ¬Ľ Laws & Incentives Natural Gas ¬Ľ Laws & Incentives Printable Version Share this resource Send a link to Alternative Fuels Data Center to someone by E-mail Share Alternative Fuels Data Center on Facebook Tweet about Alternative Fuels Data Center on Twitter Bookmark Alternative Fuels Data Center on Google Bookmark Alternative Fuels Data Center on Delicious Rank Alternative Fuels Data Center on Digg Find More places to share Alternative Fuels Data Center on AddThis.com... More in this section... Natural Gas Basics Benefits & Considerations Stations Vehicles Laws & Incentives Federal Laws and Incentives for Natural Gas The list below contains summaries of all Federal laws and incentives related to Natural Gas. Incentives Alternative Fuel Infrastructure Tax Credit Fueling equipment for natural gas, liquefied petroleum gas (propane),

485

LANSCE | Lujan Neutron Scattering Center  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Lujan Center Data Management Lujan Neutron Scattering Center Logo The Lujan Center within LANSCE utilizes a pulsed source and has a complement of 15 instruments. It maintains a...

486

Pulse - Accelerator Science in Medicine  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

t the forefront of biomedical research, medical scientists use particle accelerators to explore the structure of biological molecules. They use the energy that charged particles emit when accelerated to nearly the speed of light to create one of the brightest lights on earth, 30 times more powerful than the sun and focused on a pinpoint. t the forefront of biomedical research, medical scientists use particle accelerators to explore the structure of biological molecules. They use the energy that charged particles emit when accelerated to nearly the speed of light to create one of the brightest lights on earth, 30 times more powerful than the sun and focused on a pinpoint. Deciphering the structure of proteins is key to understanding biological processes and healing disease. To determine a protein’s structure, researchers direct the beam from an accelerator called a synchrotron through a protein crystal. The crystal scatters the beam onto a detector. From the pattern of scattering, computers calculate the position of every atom in the protein molecule and create a 3-D image of the molecule.

487

Photo of the Week: Lego Rendition of SLAC National Laboratory's Linear  

Broader source: Energy.gov (indexed) [DOE]

Lego Rendition of SLAC National Laboratory's Lego Rendition of SLAC National Laboratory's Linear Particle Accelerator Photo of the Week: Lego Rendition of SLAC National Laboratory's Linear Particle Accelerator February 4, 2013 - 10:26am Addthis At two miles long, SLAC's linear particle accelerator is a monster of a machine. But now, thanks to an old collection of Legos and some creative work by SLAC graphic designer Greg Stewart, the two-mile accelerator has been drastically reduced in size. After happening upon his Legos at home one night, Stewart decided to spend his evening designing, building and photographing this Lego diorama homage to the inside of the SLAC linac, a place that's 20 feet underground and not often seen by anyone besides the accelerator engineers who work there. SLAC's safety officers will even be pleased to see the Lego workers wearing their "PPE" (personal protective equipment, in this case helmets). See an actual photo of the SLAC linac. | Photo courtesy of Greg Stewart, SLAC National Accelerator Laboratory.

488

SNAPSNAPSuperNova/Acceleration Probe Dark Energy and the Accelerating Universe  

E-Print Network [OSTI]

Nova/Acceleration Probe Dark Energy and the Accelerating Universe SNAP #12;he recent discovery that the expansionSNAPSNAPSuperNova/Acceleration Probe Dark Energy and the Accelerating Universe Super attraction alone, its rate of expansion would be slowing. Acceleration requires a strange "dark energy

Perlmutter, Saul

489

Linear Fresnel | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Linear Fresnel systems, which are a type of linear concentrator, are active in Germany, Spain, Australia, India, and the United States. The SunShot Initiative funds R&D on...

490

Cryogenic supply for accelerators and experiments at FAIR  

SciTech Connect (OSTI)

In the coming years the new international accelerator facility FAIR (Facility for Antiproton and Ion Research), one of the largest research projects worldwide, will be built at GSI. In the final construction FAIR consists of synchrotrons and storage rings with up to 1,100 meters in circumference, two linear accelerators and about 3.5 kilometers beam transfer lines. The existing GSI accelerators serve as pre-accelerators. Partly the new machines will consist of superconducting magnets and therefore require a reliable supply with liquid helium. As the requirements for the magnets is depending on the machine and have a high variety, the cooling system is different for each machine; two phase cooling, forced flow cooling and bath cooling respectively. In addition the cold mass of the individual magnets varies between less than 1t up to 80t and some magnets will cause a dynamic heat load due to ramping that is higher than the static loads. The full cryogenic system will be operated above atmospheric pressure. The refrigeration and liquefaction power will be provided by two main cryogenic plants of 8 and 25 kW at 4K and two smaller plants next to the experiments.

Kauschke, M.; Xiang, Y.; Schroeder, C. H.; Streicher, B.; Kollmus, H. [GSI Helmholtzzentrum fŁr Schwerionenforschung GmbH, PlanckstraŖe 1,64291 Darmstadt (Germany)

2014-01-29T23:59:59.000Z

491

Energy Department Selects Three Bioenergy Research Centers for $375 Million  

Broader source: Energy.gov (indexed) [DOE]

Three Bioenergy Research Centers for $375 Three Bioenergy Research Centers for $375 Million in Federal Funding Energy Department Selects Three Bioenergy Research Centers for $375 Million in Federal Funding June 26, 2007 - 2:08pm Addthis Basic Genomics Research Furthers President Bush's Plan to Reduce Gasoline Usage 20 Percent in Ten Year WASHINGTON, DC - U. S. Department of Energy (DOE) Secretary Samuel W. Bodman today announced that DOE will invest up to $375 million in three new Bioenergy Research Centers that will be located in Oak Ridge, Tennessee; Madison, Wisconsin; and near Berkeley, California. The Centers are intended to accelerate basic research in the development of cellulosic ethanol and other biofuels, advancing President Bush's Twenty in Ten Initiative, which seeks to reduce U.S. gasoline consumption by 20 percent

492

Virginia Center for Innovative Technology CIT | Open Energy Information  

Open Energy Info (EERE)

Innovative Technology CIT Innovative Technology CIT Jump to: navigation, search Name Virginia Center for Innovative Technology (CIT) Place Herndon, Virginia Zip VA 20170-4 Product CIT is a state-chartered not-for profit corporation with a mission to accelerate Virginia's next generation of technology and technology companies. References Virginia Center for Innovative Technology (CIT)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Virginia Center for Innovative Technology (CIT) is a company located in Herndon, Virginia . References ‚ÜĎ "Virginia Center for Innovative Technology (CIT)" Retrieved from "http://en.openei.org/w/index.php?title=Virginia_Center_for_Innovative_Technology_CIT&oldid=352847"

493

Market Acceleration | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Market Acceleration Market Acceleration Market Acceleration Photo of the Wanapum Dam. Hydropower contributes significantly to the nation's renewable energy portfolio; over the last decade, the United States obtained nearly 7% of its electricity from hydropower sources. Already the largest source of renewable electricity in the United States, there remains a vast untapped resource potential in hydropower. To achieve its vision of supporting 15% of our nation's electricity needs from water power by 2030, the Water Power Program works to address environmental and regulatory barriers that prevent significant amounts of deployment; to assess and quantify the value of hydropower to the nation's electric grid and its ability to integrate other variable renewable energy technologies; and to develop a vibrant U.S.

494

Virtual gap dielectric wall accelerator  

DOE Patents [OSTI]

A virtual, moving accelerating gap is formed along an insulating tube in a dielectric wall accelerator (DWA) by locally controlling the conductivity of the tube. Localized voltage concentration is thus achieved by sequential activation of a variable resistive tube or stalk down the axis of an inductive voltage adder, producing a "virtual" traveling wave along the tube. The tube conductivity can be controlled at a desired location, which can be moved at a desired rate, by light illumination, or by photoconductive switches, or by other means. As a result, an impressed voltage along the tube appears predominantly over a local region, the virtual gap. By making the length of the tube large in comparison to the virtual gap length, the effective gain of the accelerator can be made very large.

Caporaso, George James; Chen, Yu-Jiuan; Nelson, Scott; Sullivan, Jim; Hawkins, Steven A

2013-11-05T23:59:59.000Z

495

Symposium on accelerator mass spectrometry  

SciTech Connect (OSTI)

The area of accelerator mass spectrometry has expanded considerably over the past few years and established itself as an independent and interdisciplinary research field. Three years have passed since the first meeting was held at Rochester. A Symposium on Accelerator Mass Spectrometry was held at Argonne on May 11-13, 1981. In attendance were 96 scientists of whom 26 were from outside the United States. The present proceedings document the program and excitement of the field. Papers are arranged according to the original program. A few papers not presented at the meeting have been added to complete the information on the status of accelerator mass spectrometry. Individual papers were prepared separately for the data base.

None

1981-01-01T23:59:59.000Z

496

Center for Energy Nanoscience at USC  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

People Click HERE for the complete Center Directory. Center Leadership Center Advisory Board Members...

497

Transfer equation in accelerated media  

Science Journals Connector (OSTI)

The transfer equation for photons is obtained from the Lindquist formalism in curvilinear coordinates (no symmetry assumed), in an arbitrary frame and in any basis (natural or physical), to first order in O(v/c). Acceleration terms in the fluid are introduced via a modification of the metric tensor. The local tetrad attached to the accelerated fluid element follows a Fermi-Walker transport. Lorentz transformations are used to transform locally the equation from Lagrangian to Eulerian space-time coordinates. The resulting equation agrees in the case of a local Minkowskian space with the equation obtained directly using special-relativistic considerations.

Alain Munier

1986-04-15T23:59:59.000Z

498

OpenMP for Accelerators  

SciTech Connect (OSTI)

OpenMP [13] is the dominant programming model for shared-memory parallelism in C, C++ and Fortran due to its easy-to-use directive-based style, portability and broad support by compiler vendors. Similar characteristics are needed for a programming model for devices such as GPUs and DSPs that are gaining popularity to accelerate compute-intensive application regions. This paper presents extensions to OpenMP that provide that programming model. Our results demonstrate that a high-level programming model can provide accelerated performance comparable to hand-coded implementations in CUDA.

Beyer, J C; Stotzer, E J; Hart, A; de Supinski, B R

2011-03-15T23:59:59.000Z

499

Muon Acceleration R and D  

SciTech Connect (OSTI)

An intense muon source can be built in stages to support a uniquely broad program in high energy physics. Starting with a low-energy cooled muon beam, extraordinarily precise lepton flavor violation experiments are possible. Upgrading the facility with acceleration and a muon storage ring, one can build a Neutrino Factory that would allow a neutrino mixing physics program with unprecedented precision. Adding further acceleration and a collider ring, an energy-frontier muon collider can explore electroweak symmetry breaking and open a window to new physics.

Torun, Yagmur [Illinois Institute of Technology, Chicago (United States)

2009-12-17T23:59:59.000Z

500

Electron Cloud Effects in Accelerators  

SciTech Connect (OSTI)

Abstract We present a brief summary of various aspects of the electron-cloud effect (ECE) in accelerators. For further details, the reader is encouraged to refer to the proceedings of many prior workshops, either dedicated to EC or with significant EC contents, including the entire ?ECLOUD? series [1?22]. In addition, the proceedings of the various flavors of Particle Accelerator Conferences [23] contain a large number of EC-related publications. The ICFA Beam Dynamics Newsletter series [24] contains one dedicated issue, and several occasional articles, on EC. An extensive reference database is the LHC website on EC [25].

Furman, M.A.

2012-11-30T23:59:59.000Z