Powered by Deep Web Technologies
Note: This page contains sample records for the topic "line accidents storage" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Canister Storage Building (CSB) Design Basis Accident Analysis Documentation  

SciTech Connect (OSTI)

This document provided the detailed accident analysis to support HNF-3553, Spent Nuclear Fuel Project Final Safety Analysis Report, Annex A, ''Canister Storage Building Final Safety Analysis Report''. All assumptions, parameters, and models used to provide the analysis of the design basis accidents are documented to support the conclusions in the Canister Storage Building Final Safety Analysis Report.

CROWE, R.D.; PIEPHO, M.G.

2000-03-23T23:59:59.000Z

2

Evaluation of Accident Frequencies at the Canister Storage Bldg (CSB)  

SciTech Connect (OSTI)

By using simple frequency calculations and fault tree logic, an evaluation of the design basis accident frequencies at the Canister Storage Building has been performed. The following are the design basis accidents: Mechanical damage of MCO; Gaseous release from the MCO; MCO internal hydrogen deflagration; MCO external hydrogen deflagration; Thermal runaway reactions inside the MCO; and Violation of design temperature criteria.

POWERS, T.B.

2000-03-20T23:59:59.000Z

3

Evaluation of accident frequencies at the canister storage building  

SciTech Connect (OSTI)

By using the fault tree logic, an evaluation of the design basis accident frequencies at the Canister Storage Building has been performed. The evaluation demonstrates that due to low frequency of occurrences, the following design basis accidents are considered not credible (annual frequency of less than 10{sup -6}): Rearrangement of multi-canister overpack (MCO) internals; Gaseous release from the MCO; MCO internal hydrogen explosion; MCO external hydrogen explosion; Thermal runaway reactions inside the MCO; and Violation of design temperature criteria.

LIU, Y.J.

1999-05-13T23:59:59.000Z

4

Three dimensional effects in analysis of PWR steam line break accident  

E-Print Network [OSTI]

A steam line break accident is one of the possible severe abnormal transients in a pressurized water reactor. It is required to present an analysis of a steam line break accident in the Final Safety Analysis Report (FSAR) ...

Tsai, Chon-Kwo

5

Technical evaluation: 300 Area steam line valve accident  

SciTech Connect (OSTI)

On June 7, 1993, a journeyman power operator (JPO) was severely burned and later died as a result of the failure of a 6-in. valve that occurred when he attempted to open main steam supply (MSS) valve MSS-25 in the U-3 valve pit. The pit is located northwest of Building 331 in the 300 Area of the Hanford Site. Figure 1-1 shows a layout of the 300 Area steam piping system including the U-3 steam valve pit. Figure 1-2 shows a cutaway view of the approximately 10- by 13- by 16-ft-high valve pit with its various steam valves and connecting piping. Valve MSS-25, an 8-in. valve, is located at the bottom of the pit. The failed 6-in. valve was located at the top of the pit where it branched from the upper portion of the 8-in. line at the 8- by 8- by 6-in. tee and was then ``blanked off`` with a blind flange. The purpose of this technical evaluation was to determine the cause of the accident that led to the failure of the 6-in. valve. The probable cause for the 6-in. valve failure was determined by visual, nondestructive, and destructive examination of the failed valve and by metallurgical analysis of the fractured region of the valve. The cause of the accident was ultimately identified by correlating the observed failure mode to the most probable physical phenomenon. Thermal-hydraulic analyses, component stress analyses, and tests were performed to verify that the probable physical phenomenon could be reasonably expected to produce the failure in the valve that was observed.

Not Available

1993-08-01T23:59:59.000Z

6

Farm Fuel Safety Accidents in the handling, use and storage of gasoline, gasohol, diesel fuel, LP-gas and  

E-Print Network [OSTI]

112 Farm Fuel Safety Accidents in the handling, use and storage of gasoline, gasohol, diesel fuel and by keeping fuel storage facilities in top condition. Flammable Liquids and Gases Gasoline, diesel fuel, LP flammability and safety precautions. Do not keep gasoline inside the home or transport it in the trunks

7

Gas Cylinder Storage and Handling Serious accidents can result from the misuse, abuse, or mishandling of compressed gas  

E-Print Network [OSTI]

Gas Cylinder Storage and Handling Serious accidents can result from the misuse, abuse, or mishandling of compressed gas cylinders. Safe procedures for their use are as follows: · All compressed gas combustible material. · Keep cylinders out of the direct sun and do not allow them to be overheated. · Gas

de Lijser, Peter

8

TITAN code development for application to a PWR steam line break accident : final report 1983-1984  

E-Print Network [OSTI]

Modification of the TITAN computer code which enables it to be applied to a PWR steam line break accident has been accomplished. The code now has the capability of simulating an asymmetric inlet coolant temperature transient ...

Tsai, Chon-Kwo

1984-01-01T23:59:59.000Z

9

Type A Accident Investigation Report on the June 25, 1997, Contractor Inspector Fatality on the Satsop-Aberdeen #2 & #3 230 kV Line  

Broader source: Energy.gov [DOE]

On June 27, 1997, I established a Type-A Accident Investigation Board to investigate the June 25, 1997 fatal contractor accident which occurred on BPA?s Satsop-Aberdeen #2 and #3 230-kV transmission lines right-of-way.

10

Analysis of accident sequences and source terms at treatment and storage facilities for waste generated by US Department of Energy waste management operations  

SciTech Connect (OSTI)

This report documents the methodology, computational framework, and results of facility accident analyses performed for the US Department of Energy (DOE) Waste Management Programmatic Environmental Impact Statement (WM PEIS). The accident sequences potentially important to human health risk are specified, their frequencies assessed, and the resultant radiological and chemical source terms evaluated. A personal-computer-based computational framework and database have been developed that provide these results as input to the WM PEIS for the calculation of human health risk impacts. The WM PEIS addresses management of five waste streams in the DOE complex: low-level waste (LLW), hazardous waste (HW), high-level waste (HLW), low-level mixed waste (LLMW), and transuranic waste (TRUW). Currently projected waste generation rates, storage inventories, and treatment process throughputs have been calculated for each of the waste streams. This report summarizes the accident analyses and aggregates the key results for each of the waste streams. Source terms are estimated, and results are presented for each of the major DOE sites and facilities by WM PEIS alternative for each waste stream. Key assumptions in the development of the source terms are identified. The appendices identify the potential atmospheric release of each toxic chemical or radionuclide for each accident scenario studied. They also discuss specific accident analysis data and guidance used or consulted in this report.

Mueller, C.; Nabelssi, B.; Roglans-Ribas, J.; Folga, S.; Policastro, A.; Freeman, W.; Jackson, R.; Mishima, J.; Turner, S.

1996-12-01T23:59:59.000Z

11

Commercial potential of natural gas storage in lined rock caverns (LRC)  

SciTech Connect (OSTI)

The geologic conditions in many regions of the United States will not permit the development of economical high-deliverability gas storage in salt caverns. These regions include the entire Eastern Seaboard; several northern states, notably Minnesota and Wisconsin; many of the Rocky Mountain States; and most of the Pacific Northwest. In late 1997, the United States Department of Energy (USDOE) Federal Energy Technology Center engaged Sofregaz US to investigate the commercialization potential of natural gas storage in Lined Rock Caverns (LRC). Sofregaz US teamed with Gaz de France and Sydkraft, who had formed a consortium, called LRC, to perform the study for the USDOE. Underground storage of natural gas is generally achieved in depleted oil and gas fields, aquifers, and solution-mined salt caverns. These storage technologies require specific geologic conditions. Unlined rock caverns have been used for decades to store hydrocarbons - mostly liquids such as crude oil, butane, and propane. The maximum operating pressure in unlined rock caverns is limited, since the host rock is never entirely impervious. The LRC technology allows a significant increase in the maximum operating pressure over the unlined storage cavern concept, since the gas in storage is completely contained with an impervious liner. The LRC technology has been under development in Sweden by Sydkraft since 1987. The development process has included extensive technical studies, laboratory testing, field tests, and most recently includes a storage facility being constructed in southern Sweden (Skallen). The LRC development effort has shown that the concept is technically and economically viable. The Skallen storage facility will have a rock cover of 115 meters (375 feet), a storage volume of 40,000 cubic meters (250,000 petroleum barrels), and a maximum operating pressure of 20 MPa (2,900 psi). There is a potential for commercialization of the LRC technology in the United States. Two regions were studied in some detail - the Northeast and the Southeast. The investment cost for an LRC facility in the Northeast is approximately $182 million and $343 million for a 2.6-billion cubic foot (bcf) working gas facility and a 5.2-bcf working gas storage facility, respectively. The relatively high investment cost is a strong function of the cost of labor in the Northeast. The labor union-related rules and requirements in the Northeast result in much higher underground construction costs than might result in Sweden, for example. The LRC technology gas storage service is compared to other alternative technologies. The LRC technology gas storage service was found to be competitive with other alternative technologies for a variety of market scenarios.

NONE

1999-11-01T23:59:59.000Z

12

Accident Investigation of the June 17, 2012, Construction Accident...  

Energy Savers [EERE]

June 17, 2012, Construction Accident - Structural Steel Collapse at The Over pack Storage Expansion 2 at the Naval Reactors Facility at the Idaho National Laboratory, Idaho Falls,...

13

Magnet power supply control of the NSLS VUV and x-ray storage rings transfer lines  

SciTech Connect (OSTI)

The transfer lines for NSLS VUV and x-ray storage rings have been split. New power supplies have been incorporated with existing ones. The existing microprocessor system has been upgraded in order to control the additional functions. This system expands the input/output port of the microprocessor to an addressable serial/parallel link to each magnet power supply. The implementation of this system will be discussed.

Klein, J.D.; Ramamoorthy, S.; Singh, O.; Smith, J.D.

1985-01-01T23:59:59.000Z

14

Supplemental analysis of accident sequences and source terms for waste treatment and storage operations and related facilities for the US Department of Energy waste management programmatic environmental impact statement  

SciTech Connect (OSTI)

This report presents supplemental information for the document Analysis of Accident Sequences and Source Terms at Waste Treatment, Storage, and Disposal Facilities for Waste Generated by US Department of Energy Waste Management Operations. Additional technical support information is supplied concerning treatment of transuranic waste by incineration and considering the Alternative Organic Treatment option for low-level mixed waste. The latest respirable airborne release fraction values published by the US Department of Energy for use in accident analysis have been used and are included as Appendix D, where respirable airborne release fraction is defined as the fraction of material exposed to accident stresses that could become airborne as a result of the accident. A set of dominant waste treatment processes and accident scenarios was selected for a screening-process analysis. A subset of results (release source terms) from this analysis is presented.

Folga, S.; Mueller, C.; Nabelssi, B.; Kohout, E.; Mishima, J.

1996-12-01T23:59:59.000Z

15

Unavoidable Accident  

E-Print Network [OSTI]

463. _____. 1987. Economic Analysis of Accident Law. _____.2005. Liability for Accidents, NBER Working Paper No.possibility is that the accident wasnt under the defendant

Grady, Mark F.

2009-01-01T23:59:59.000Z

16

Allocation of inventory to a variable, time-phased, on-line storage system under known demand  

E-Print Network [OSTI]

ALLOCATION OF INVENTORY TO A VARIABLE, TIME-PHASED, ON-LINE STORAGE SYSTEM UNDER KNOWN DEMAND A Thesis By CHARLES WESLEY WHITE Submitted to the Graduate College of the Texas ASM University in partial fulfillment of the requirements... for the degree of MASTER OF SCIENCE January, 1968 Major Subject: Industrial Engineering ALLOCATION OF INVENTORY TO A VARIABLE ~ T IME PHASED ~ ON L INE STORAGE SYSTEM UNDER KNOWN DEMAND A Thesis By CHARLES WESLEY WHITE Approved as to style...

White, Charles Wesley

1968-01-01T23:59:59.000Z

17

E-Print Network 3.0 - accident risks methodology Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Energy Storage, Conversion and Utilization ; Engineering 6 THE RELATIONSHIP BETWEEN TRAIN LENGTH AND ACCIDENT CAUSES AND RATES Summary: ABSTRACT Train accident rates are a...

18

Modeling of coupled thermodynamic and geomechanical performance of underground compressed air energy storage (CAES) in lined rock caverns  

SciTech Connect (OSTI)

We applied coupled nonisothermal, multiphase fluid flow and geomechanical numerical modeling to study the coupled thermodynamic and geomechanical performance of underground compressed air energy storage (CAES) in concrete-lined rock caverns. The paper focuses on CAES in lined caverns at relatively shallow depth (e.g., 100 m depth) in which a typical CAES operational pressure of 5 to 8 MPa is significantly higher than both ambient fluid pressure and in situ stress. We simulated a storage operation that included cyclic compression and decompression of air in the cavern, and investigated how pressure, temperature and stress evolve over several months of operation. We analyzed two different lining options, both with a 50 cm thick low permeability concrete lining, but in one case with an internal synthetic seal such as steel or rubber. For our simulated CAES system, the thermodynamic analysis showed that 96.7% of the energy injected during compression could be recovered during subsequent decompression, while 3.3% of the energy was lost by heat conduction to the surrounding media. Our geomechanical analysis showed that tensile effective stresses as high as 8 MPa could develop in the lining as a result of the air pressure exerted on the inner surface of the lining, whereas thermal stresses were relatively smaller and compressive. With the option of an internal synthetic seal, the maximum effective tensile stress was reduced from 8 to 5 MPa, but was still in substantial tension. We performed one simulation in which the tensile tangential stresses resulted in radial cracks and air leakage though the lining. This air leakage, however, was minor (about 0.16% of the air mass loss from one daily compression) in terms of CAES operational efficiency, and did not significantly impact the overall energy balance of the system. However, despite being minor in terms of energy balance, the air leakage resulted in a distinct pressure increase in the surrounding rock that could be quickly detected using pressure monitoring outside the concrete lining.

Rutqvist, J.; Kim, H. -M.; Ryu, D. -W.; Synn, J. -H.; Song, W. -K.

2012-02-01T23:59:59.000Z

19

Type B Accident Investigation Board Report on the May 7, 1997, Worker Injury at the Hanford Site Canister Storage Building Construction Site, Richland, Washington  

Broader source: Energy.gov [DOE]

This report is an independent product of the Type B Accident Investigation Board appointed by Michael S. Cowan, Chief Program Officer, Western Area Power Administration.

20

Exploring the concept of compressed air energy storage (CAES) in lined rock caverns at shallow depth: A modeling study of air tightness and energy balance  

E-Print Network [OSTI]

K. H. Lux, Design of salt caverns for the storage of naturalof CAES in a lined rock cavern. Table 2. :Leakage rate forLeakage rate for different cavern depth. Table 4. Calculated

Kim, H.-M.

2012-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "line accidents storage" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

E-Print Network 3.0 - accident prone locations Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Energy Storage, Conversion and Utilization 9 U of L Campus AccidentIncident Report Automobile AccidentIncident Page 1 of 2 University of Lethbridge Summary: of the accident...

22

Modeling of coupled thermodynamic and geomechanical performance of underground compressed air energy storage (CAES) in lined rock caverns  

E-Print Network [OSTI]

Williams, Compressed air energy storage: Theory, resources,study for the compressed air energy storage technology byplant for compressed air energy storage power generation,

Rutqvist, J.

2013-01-01T23:59:59.000Z

23

Characterizing excavation damaged zone and stability of pressurized lined rock caverns for underground compressed air energy storage  

E-Print Network [OSTI]

for Underground Compressed Air Energy Storage Hyung-Mok Kimperformance of compressed air energy storage (CAES) in linedcavern (LRC); Compressed air energy storage (CAES); TOUGH-

Kim, H.M.

2014-01-01T23:59:59.000Z

24

Modeling of coupled thermodynamic and geomechanical performance of underground compressed air energy storage (CAES) in lined rock caverns  

E-Print Network [OSTI]

Williams, Compressed air energy storage: Theory, resources,for the compressed air energy storage technology by thefor compressed air energy storage power generation, Japan

Rutqvist, J.

2013-01-01T23:59:59.000Z

25

Type A Accident Investigation Board Report on the February 20, 1996, Fall Fatality at the Radioactive Waste Management Complex Transuranic Storage Area- Retrieval Enclosure, Idaho National Engineering Laboratory  

Broader source: Energy.gov [DOE]

This report is an independent product of the Type A Accident Investigation Board appointed by Tara OToole, M.D., M.P.H., Assistant Secretary for Environment, Safety and Health (EH-1).

26

Accident Investigations  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

This Order prescribes organizational responsibilities, authorities, and requirements for conducting investigations of certain accidents occurring at DOE sites, facilities, areas, operations, and activities.

2011-03-04T23:59:59.000Z

27

Type B Accident Investigation Board Report on the September 1, 1999, Plutonium Intakes at the Savannah River Site FB-Line  

Broader source: Energy.gov [DOE]

This report is an independent product of the Type B Accident Investigation Board appointed by Greg Rudy, Manager, Savannah River Operations Office, U.S. Department of Energy.

28

Type B Accident Investigation Board Report on the November 17, 1997, Chiller Line Rupture at Technical Area 35, Building 27, Los Alamos National Laboratory  

Broader source: Energy.gov [DOE]

This report is a product of an accident investigation board appointed by Bruce G. Twining, Manager, Albuquerque Operations Office, Department of Energy.

29

Accident Investigations  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

To prescribe requirements for conducting investigations of certain accidents occurring at Department of Energy (DOE) operations and sites; to improve the environment, safety and health for DOE, contractors, and the public; and to prevent the recurrence of such accidents. Chg 2, 4-26-96

1996-04-26T23:59:59.000Z

30

Accident Investigations  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

To prescribe requirements for conducting investigations of certain accidents occurring at Department of Energy (DOE) operations and sites; to improve the environment , safety and health for DOE, contractors, and the public; and to prevent the recurrence of such accidents. Chg 1, 10-26-95. Cancels parts of DOE 5484.1

1995-10-26T23:59:59.000Z

31

Modeling of coupled thermodynamic and geomechanical performance of underground compressed air energy storage (CAES) in lined rock caverns  

E-Print Network [OSTI]

Excavated Hard Rock Caverns. Pacific Northwest Laboratory,Lux, K.H. Design of salt caverns for the storage of naturalgas storage in unlined rock caverns. Int J Rock Mech Min Sc

Rutqvist, J.

2013-01-01T23:59:59.000Z

32

Modeling of coupled thermodynamic and geomechanical performance of underground compressed air energy storage (CAES) in lined rock caverns  

E-Print Network [OSTI]

reservoir storage project in Sesta, Italy [1]; as well as two pilot tests in rock caverns associated with abandoned

Rutqvist, J.

2013-01-01T23:59:59.000Z

33

Level 1 Accident Investigation Report of August 17, 2004, Fatal...  

Broader source: Energy.gov (indexed) [DOE]

Investigation Report of August 17, 2004, Fatal Aircraft Accident on the Grand Coulee-Bell No.6, 500 kV Line Level 1 Accident Investigation Report of August 17, 2004, Fatal Aircraft...

34

Type B Accident Investigation Board Report on the July 25, 1997, Contract Brush Cutter Injury on the Ashe-Marion #2 500 kV Line  

Broader source: Energy.gov [DOE]

On July 25, 1997, at 1205 hours, a contract hand brush cutter was seriously injured when he felled a tree close to a Bonneville Power Administration energized transmission power line, located within a BPA transmission-line corridor.

35

Chernobyl accident: A comprehensive risk assessment  

SciTech Connect (OSTI)

The authors, all of whom are Ukrainian and Russian scientists involved with Chernobyl nuclear power plant since the April 1986 accident, present a comprehensive review of the accident. In addition, they present a risk assessment of the remains of the destroyed reactor and its surrounding shelter, Chernobyl radioactive waste storage and disposal sites, and environmental contamination in the region. The authors explore such questions as the risks posed by a collapse of the shelter, radionuclide migration from storage and disposal facilities in the exclusion zone, and transfer from soil to vegetation and its potential regional impact. The answers to these questions provide a scientific basis for the development of countermeasures against the Chernobyl accident in particular and the mitigation of environmental radioactive contamination in general. They also provide an important basis for understanding the human health and ecological risks posed by the accident.

Vargo, G.J.; Poyarkov, V.; Baryakhtar, V.; Kukhar, V.; Los, I.

1999-11-01T23:59:59.000Z

36

Chernobyl accident: A comprehensive risk assessment  

SciTech Connect (OSTI)

The authors, all of whom are Ukrainian and Russian scientists involved with Chernobyl nuclear power plant since the April 1986 accident, present a comprehensive review of the accident. In addition, they present a risk assessment of the remains of the destroyed reactor and its surrounding shelter, Chernobyl radioactive waste storage and disposal sites, and environmental contamination in the region. The authors explore such questions as the risks posed by a collapse of the shelter, radionuclide migration from storage and disposal facilities in the exclusion zone, and transfer from soil to vegetation and its potential regional impact. The answers to these questions provide a scientific basis for the development of countermeasures against the Chernobyl accident in particular and the mitigation of environmental radioactive contamination in general. They also provide an important basis for understanding the human health and ecological risks posed by the accident.

Vargo, G.J.; Poyarkov, V.; Baryakhtar, V.; Kukhar, V.; Los, I.

1999-01-01T23:59:59.000Z

37

Type B Accident Investigation Board Report of the April 23, 1997...  

Broader source: Energy.gov (indexed) [DOE]

Board Report on the May 7, 1997, Worker Injury at the Hanford Site Canister Storage Building Construction Site, Richland, Washington Level 1 Accident Investigation Report of...

38

E-Print Network 3.0 - accident analysis program Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Energy Storage, Conversion and Utilization ; Engineering 2 THE RELATIONSHIP BETWEEN TRAIN LENGTH AND ACCIDENT CAUSES AND RATES Summary: a sensitivity analysis was conducted to...

39

E-Print Network 3.0 - accident analysis calculations Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Energy Storage, Conversion and Utilization ; Engineering 2 THE RELATIONSHIP BETWEEN TRAIN LENGTH AND ACCIDENT CAUSES AND RATES Summary: . The objectives of this analysis were:...

40

E-Print Network 3.0 - accident analysis structural Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Energy Storage, Conversion and Utilization ; Engineering 3 THE RELATIONSHIP BETWEEN TRAIN LENGTH AND ACCIDENT CAUSES AND RATES Summary: a sensitivity analysis was conducted to...

Note: This page contains sample records for the topic "line accidents storage" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Exploring the concept of compressed air energy storage (CAES) in lined rock caverns at shallow depth: A modeling study of air tightness and energy balance  

E-Print Network [OSTI]

wind- diesel-compressed air energy storage system for remotestudy for the compressed air energy storage technology bydesign of compressed air energy storage electric power

Kim, H.-M.

2012-01-01T23:59:59.000Z

42

Exploring the concept of compressed air energy storage (CAES) in lined rock caverns at shallow depth: A modeling study of air tightness and energy balance  

E-Print Network [OSTI]

Progress in electrical energy storage system: a criticalcurrent and future energy storage technologies for electricwind- diesel-compressed air energy storage system for remote

Kim, H.-M.

2012-01-01T23:59:59.000Z

43

Hypothetical Reactor Accident Study  

E-Print Network [OSTI]

- W 4 DfcSkoollo Rise-R-427 CARNSORE: Hypothetical Reactor Accident Study O. Walmod-Larsen, N. O: HYPOTHETICAL REACTOR ACCIDENT STUDY O. Walmod-Larsen, N.O. Jensen, L. Kristensen, A. Heide, K.L. Nedergård, P-basis accident and a series of hypothetical core-melt accidents to a 600 MWe reactor are de- scribed

44

Employee Accident / Incident Investigation Report Employee Name _________________________________________________________________  

E-Print Network [OSTI]

Employee Accident / Incident Investigation Report Employee Name's Title _________________________________________________________________ Date and Time of Accident accident occurred

Long, Nicholas

45

Exploring the concept of compressed air energy storage (CAES) in lined rock caverns at shallow depth: A modeling study of air tightness and energy balance  

SciTech Connect (OSTI)

This paper presents a numerical modeling study of coupled thermodynamic, multiphase fluid flow and heat transport associated with underground compressed air energy storage (CAES) in lined rock caverns. Specifically, we explored the concept of using concrete lined caverns at a relatively shallow depth for which constructing and operational costs may be reduced if air tightness and stability can be assured. Our analysis showed that the key parameter to assure long-term air tightness in such a system was the permeability of both the concrete lining and the surrounding rock. The analysis also indicated that a concrete lining with a permeability of less than 110{sup -18} m{sup 2} would result in an acceptable air leakage rate of less than 1%, with the operational pressure range between 5 and 8 MPa at a depth of 100 m. It was further noted that capillary retention properties and the initial liquid saturation of the lining were very important. Indeed, air leakage could be effectively prevented when the air-entry pressure of the concrete lining is higher than the operational air pressure and when the lining is kept moist at a relatively high liquid saturation. Our subsequent energy-balance analysis demonstrated that the energy loss for a daily compression and decompression cycle is governed by the air-pressure loss, as well as heat loss by conduction to the concrete liner and surrounding rock. For a sufficiently tight system, i.e., for a concrete permeability off less than 110{sup -18} m{sup 2}, heat loss by heat conduction tends to become proportionally more important. However, the energy loss by heat conduction can be minimized by keeping the air-injection temperature of compressed air closer to the ambient temperature of the underground storage cavern. In such a case, almost all the heat loss during compression is gained back during subsequent decompression. Finally, our numerical simulation study showed that CAES in shallow rock caverns is feasible from a leakage and energy efficiency viewpoint. Our numerical approach and energy analysis will next be applied in designing and evaluating the performance of a planned full-scale pilot test of the proposed underground CAES concept.

Kim, H.-M.; Rutqvist, J.; Ryu, D.-W.; Choi, B.-H.; Sunwoo, C.; Song, W.-K.

2011-07-15T23:59:59.000Z

46

Type A Accident Investigation Board Report of the April 25, 1997, Contractor Fatality on the Olympia-White River #1 230 kV Line  

Broader source: Energy.gov [DOE]

On April 25, 1997, at approximately 1510 hours, a lineman for Great Southwestern Construction Inc. was fatally electrocuted when he came in direct contact with a deenergized 230-kilovolt (kV) transmission power line conductor which contained an induced voltage.

47

Placental findings in cord accidents  

E-Print Network [OSTI]

Placental findings in cord accidents. BMC Pregnancy andPlacental findings in cord accidents Mana M Parast Fromfor stillbirth. Cord accident, defined by obstruction of

Parast, Mana M

2012-01-01T23:59:59.000Z

48

The Accident Externality from Driving  

E-Print Network [OSTI]

Sex-Divided Mile- age, Accident, and Insurance Cost DataMandic. 2003. The Accident Externality from Driving. Insurance Res. Council. accident externality from driving

Edlin, Aaron S.; Karaca-Mandic, Pinar

2007-01-01T23:59:59.000Z

49

A Comparison of Popular Remedial Technologies for Petroleum Contaminated Soils from Leaking Underground Storage Tanks  

E-Print Network [OSTI]

Underground Storage Tanks. Chelsea: Lewis Publishers.and Underground Storage Tank Sites. Database on-line.Michigan Underground Storage Tank Rules. Database on-line.

Kujat, Jonathon D.

1999-01-01T23:59:59.000Z

50

Interpreting Accident Statistics  

E-Print Network [OSTI]

Accident statistics have often been used to support the argument that an abnormally small proportion of drivers account for a large proportion of the accidents. This paper compares statistics developed from six-year data ...

Ferreira, Joseph Jr.

51

A Road Accident  

E-Print Network [OSTI]

tracks (include description/relationship if appropriate) NA Title of track A Road Accident Translation of title Description (to be used in archive entry) Shel ko shares his experience of a serious road accident in which the truck he...

G.yu lha

52

The Safe Storage Study for Autocatalytic Reactive Chemicals  

E-Print Network [OSTI]

In the U.S. Chemical Safety and Hazard Investigation Board (CSB) report, Improving Reactive Hazard Management, there are 37 out of 167 accidents, which occurred in a storage tank or a storage area. This fact demonstrates that thermal runaway...

Liu, Lijun

2010-10-12T23:59:59.000Z

53

Group Accident Insurance Certificate  

E-Print Network [OSTI]

Group Accident Insurance Certificate Regents of the University of New Mexico #12;#12;Life Insurance Company GROUP ACCIDENT CERTIFICATE THIS CERTIFICATE PROVIDES LIMITED COVERAGE. PLEASE READ YOUR. THIS CERTIFICATE IS ISSUED UNDER AN ACCIDENT ONLY POLICY. IT DOES NOT PAY BENEFITS FOR LOSS CAUSED BY SICKNESS. GA

New Mexico, University of

54

Field lines twisting in a noisy corona: implications for energy storage and release, and initiation of solar eruptions  

E-Print Network [OSTI]

We present simulations modeling closed regions of the solar corona threaded by a strong magnetic field where localized photospheric vortical motions twist the coronal field lines. The linear and nonlinear dynamics are investigated in the reduced magnetohydrodynamic regime in Cartesian geometry. Initially the magnetic field lines get twisted and the system becomes unstable to the internal kink mode, confirming and extending previous results. As typical in this kind of investigations, where initial conditions implement smooth fields and flux-tubes, we have neglected fluctuations and the fields are laminar until the instability sets in. But previous investigations indicate that fluctuations, excited by photospheric motions and coronal dynamics, are naturally present at all scales in the coronal fields. Thus, in order to understand the effect of a photospheric vortex on a more realistic corona, we continue the simulations after kink instability sets in, when turbulent fluctuations have already developed in the co...

Rappazzo, A F; Einaudi, G

2013-01-01T23:59:59.000Z

56

Accident motivates scholarship recipient  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Accident motivates scholarship recipient Leyba encourages students: apply for Los Alamos Employees' Scholarship Fund Life-changing experience: springboard to a career in exercise,...

57

Accident Investigation of the July 30, 2013, Electrical Fatality...  

Broader source: Energy.gov (indexed) [DOE]

July 30, 2013, Electrical Fatality on the Bandon-Rogue No. 1 115kV Line at the Bonneville Power Administration Accident Investigation of the July 30, 2013, Electrical Fatality on...

58

Type B Accident Investigation Board Report on the September 1...  

Broader source: Energy.gov (indexed) [DOE]

September 1, 1999, Plutonium Intakes at the Savannah River Site FB-Line Type B Accident Investigation Board Report on the September 1, 1999, Plutonium Intakes at the Savannah River...

59

The Accident Externality from Driving  

E-Print Network [OSTI]

a given state could a?ect accident risk and could correlateVolume on Motor-Vehicle Accidents on Two-Lane Tangents. Laurie. Sex-Divided Mileage Accident and In- surance Cost

Edlin, Aaron S.; Karaca-Mandic, Pinar

2005-01-01T23:59:59.000Z

60

The Accident Externality from Driving  

E-Print Network [OSTI]

to which this externality results from increases in accidentrates, accident severity or both remains unclear. Itpertains to underinsured accident costs like fatality risk.

Edlin, Aaron S.; Karaca-Mandic, Pinar

2003-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "line accidents storage" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

TIPS ON ACCIDENT/INCIDENT REPORTING Accident Reporting Why?  

E-Print Network [OSTI]

TIPS ON ACCIDENT/INCIDENT REPORTING Accident Reporting ­ Why? Obligation to report Health Care of the accident ­ if not, the organization (i.e. the department) can be fined Obligation under Section 51, 52 happened? When did it happen? (Date, Time and Place) When was the accident/incident reported? Any

Lennard, William N.

62

Improving Transportation Safety Through Accident  

E-Print Network [OSTI]

;10! Investigative Groups " Highway Factors & Bridge Construction " Bridge Design " Witness " Survival accidents. " Major Railroad accidents. " Major Pipeline accidents. " Major marine accidents of the U10 gusset plates, due to a design error by the bridge design firm . . . Contributing to the design

Minnesota, University of

63

NORTHWESTERN UNIVERSITY ACCIDENT REPORT FORM  

E-Print Network [OSTI]

NORTHWESTERN UNIVERSITY ACCIDENT REPORT FORM Whenever a University vehicle sustains damage of any kind, or is involved in an accident which results in personal injury or property damage, this accident that this form is for University Use Only and is not meant to supersede the official state accident report form

Shahriar, Selim

64

Accident Response Group  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

To establish Department of Energy (DOE) policy for DOE response to accidents and significant incidents involving nuclear weapons or nuclear weapon components. Cancels DOE O 5530.1. Canceled by DOE O 153.1.

1991-09-20T23:59:59.000Z

65

Accident resistant transport container  

DOE Patents [OSTI]

The invention relates to a container for the safe air transport of plutonium having several intermediate wood layers and a load spreader intermediate an inner container and an outer shell for mitigation of shock during a hypothetical accident.

Andersen, John A. (Albuquerque, NM); Cole, James K. (Albuquerque, NM)

1980-01-01T23:59:59.000Z

66

Primer on lead-acid storage batteries  

SciTech Connect (OSTI)

This handbook was developed to help DOE facility contractors prevent accidents caused during operation and maintenance of lead-acid storage batteries. Major types of lead-acid storage batteries are discussed as well as their operation, application, selection, maintenance, and disposal (storage, transportation, as well). Safety hazards and precautions are discussed in the section on battery maintenance. References to industry standards are included for selection, maintenance, and disposal.

NONE

1995-09-01T23:59:59.000Z

67

Hanford Waste Tank Bump Accident and Consequence Analysis  

SciTech Connect (OSTI)

This report provides a new evaluation of the Hanford tank bump accident analysis and consequences for incorporation into the Authorization Basis. The analysis scope is for the safe storage of waste in its current configuration in single-shell and double-shell tanks.

BRATZEL, D.R.

2000-06-20T23:59:59.000Z

68

Radiological Release Accident Investigation Report - Phase 1...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Radiological Release Accident Investigation Report - Phase 1 Radiation Report Radiological Release Accident Investigation Report - Phase 1 Radiation Report Phase 1 of this accident...

69

Estimating Pedestrian Accident Exposure: Protocol Report  

E-Print Network [OSTI]

A Method of Measuring Exposure to Pedestrian Accident Risk.Accident Analysis and Prevention, Vol. 14, 1982, pp 397-405.Estimating Pedestrian Accident Exposure: Protocol Report,

Greene-Roesel, Ryan; Diogenes, Mara Chagas; Ragland, David R

2007-01-01T23:59:59.000Z

70

Accident at Creswell Colliery, Derbyshire  

E-Print Network [OSTI]

MINISTRY OF FUEL AND POWER ACCIDENT AT CRESWELL COLLIERY, DERBYSHIRE REPORT On the causes of, and the circumstances attending, the accident which occurred at Creswell Colliery, Derbyshire, on the 26th September, 1950 BY ...

Bryan, Andrew

71

UNIVERSITY OF TRENTO ACCIDENT INSURANCE  

E-Print Network [OSTI]

1 UNIVERSITY OF TRENTO ACCIDENT INSURANCE POLICY This document reflects the contractual conditions in force, though it should not be considered as a binding analysis of the coverage and, in case of accident for the purposes stated. TYPE OF COVERAGE = GROUP ACCIDENT INSURANCE POLICY No. = 088 00429120 COMPANY NAME

72

Electrical shock accident investigation  

SciTech Connect (OSTI)

This report documents results of the accident investigation of an electrical shock received by two subcontractor employees on May 13, 1994, at the Pinellas Plant. The direct cause of the electrical shock was worker contact with a cut ``hot`` wire and a grounded panelboard (PPA) enclosure. Workers presumed that all wires in the enclosure were dead at the time of the accident and did not perform thorough Lockout/Tagout (LO/TO). Three contributing causes were identified. First, lack of guidance in the drawing for the modification performed in 1987 allowed the PPA panel to be used as a junction box. The second contributing cause is that Environmental, Safety and Health (ES&H) procedures do not address multiple electrical sources in an enclosure. Finally, the workers did not consider the possibility of multiple electrical sources. The root cause of the electrical shock was the inadequacy of administrative controls, including construction requirement and LO/TO requirements, and subcontractor awareness regarding multiple electrical sources. Recommendations to prevent further reoccurrence of this type of accident include revision of ES&H Standard 2.00, Electrical Safety Program Manual, to document requirements for multiple electrical sources in a single enclosure to specify a thorough visual inspection as part of the voltage check process. In addition, the formality of LO/TO awareness training for subcontractor electricians should be increased.

Not Available

1994-09-30T23:59:59.000Z

73

Evaluating the effectiveness of wildlife accident mitigation installations with the wildlife accident reporting system (WARS) in British Columbia  

E-Print Network [OSTI]

EFFECTIVENESS OF WILDLIFE ACCIDENT MITIGATION INSTALLATIONSWITH THE WILDLIFE ACCIDENT REPORTING SYSTEM (WARS) INadministers the Wildlife Accident Reporting System (WARS), a

Sielecki, Leonard E.

2001-01-01T23:59:59.000Z

74

PRESSURIZATION OF FIXED ROOF STORAGE TANKS DUE TO EXTERNAL FIRES  

E-Print Network [OSTI]

PRESSURIZATION OF FIXED ROOF STORAGE TANKS DUE TO EXTERNAL FIRES Fabien FouiHen, INERIS, Parc. Reflections led on this accident have pushed to consider the phenomenon of tank pressurization as a potential initiating event of the fire ball observed. In concrete terms, when a fixed roof storage tank is surrounded

Paris-Sud XI, Université de

75

Type A Accident Investigation Report on the June 25, 1997, Contractor...  

Broader source: Energy.gov (indexed) [DOE]

contractor accident which occurred on BPAs Satsop-Aberdeen 2 and 3 230-kV transmission lines right-of-way. The responsibilities of this board have been completed with...

76

Probability of spent fuel transportation accidents  

SciTech Connect (OSTI)

The transported volume of spent fuel, incident/accident experience and accident environment probabilities were reviewed in order to provide an estimate of spent fuel accident probabilities. In particular, the accident review assessed the accident experience for large casks of the type that could transport spent (irradiated) nuclear fuel. This review determined that since 1971, the beginning of official US Department of Transportation record keeping for accidents/incidents, there has been one spent fuel transportation accident. This information, coupled with estimated annual shipping volumes for spent fuel, indicated an estimated annual probability of a spent fuel transport accident of 5 x 10/sup -7/ spent fuel accidents per mile. This is consistent with ordinary truck accident rates. A comparison of accident environments and regulatory test environments suggests that the probability of truck accidents exceeding regulatory test for impact is approximately 10/sup -9//mile.

McClure, J. D.

1981-07-01T23:59:59.000Z

77

BLANKET STUDENT ACCIDENT AND SICKNESS INSURANCE  

E-Print Network [OSTI]

BLANKET STUDENT ACCIDENT AND SICKNESS INSURANCE Especially Designed for Students of insurance. Your coverage is governed by a policy of student accident and sickness insurance underwritten

Suzuki, Masatsugu

78

BLANKET STUDENT ACCIDENT AND SICKNESS INSURANCE  

E-Print Network [OSTI]

BLANKET STUDENT ACCIDENT AND SICKNESS INSURANCE Especially Designed for International Students is governed by a policy of student accident and sickness insurance underwritten by BCS Insurance Company BCS

Suzuki, Masatsugu

79

Accident Research Helps Save Lives of Loggers Research Brief # 33  

E-Print Network [OSTI]

of the fatal accidents and many other accidents. Training, defined work procedures, lockout / tagout programs

80

Energy Storage  

ScienceCinema (OSTI)

ORNL Distinguished Scientist Parans Paranthaman is discovering new materials with potential for greatly increasing batteries' energy storage capacity and bring manufacturing back to the US.

Paranthaman, Parans

2014-06-23T23:59:59.000Z

Note: This page contains sample records for the topic "line accidents storage" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Energy Storage  

SciTech Connect (OSTI)

ORNL Distinguished Scientist Parans Paranthaman is discovering new materials with potential for greatly increasing batteries' energy storage capacity and bring manufacturing back to the US.

Paranthaman, Parans

2014-06-03T23:59:59.000Z

82

University of Pittsburgh Vehicle Accident Report Form  

E-Print Network [OSTI]

University of Pittsburgh Vehicle Accident Report Form To be completed by the driver immediately following the accident (if medically able) and return this completed form to Fleet Services, Dept of Parking-624-1817 A. Report Date: ______/______/_______ B: Accident Data Date of accident

Sibille, Etienne

83

Exact Location : Date of Accident : AM PM  

E-Print Network [OSTI]

SSN Cell Phone Home Phone Work Phone Exact Location : Date of Accident : AM PM Date accident treatment provided? Yes No Where Was time lost from work? Yes No If yes, how long? Could this accident have the following information as soon as it relates to your work related accident/injury/illness within 72 hours

Swaddle, John

84

Bordereau de transmission accident du travail  

E-Print Network [OSTI]

Bordereau de transmission accident du travail Service des pensions et accidents du travail accidents du travail du CNRS Accompagné des pièces requises Nom .................................................... Prénom ........................ Matricule ...... Composition du dossier Observations Déclaration d'accident

Pouyanne, Nicolas

85

An Interview About an Accident  

E-Print Network [OSTI]

Length of track 0:02:32 Related tracks (include description/relationship if appropriate) Title of track An Interview About an Accident Translation of title Description (to be used in archive entry) The respondent recalls how he and his... wife survived a motorcycle accident. Genre or type (i.e. epic, song, ritual) Interview Name of recorder (if different from collector) G.yu lha Date of recording December 17th 2009 Place of recording Siyuewu Village, Puxi Township, Rangtang...

G.yu lha

2009-12-17T23:59:59.000Z

86

ACCIDENT TOLERANT FUEL ANALYSIS  

SciTech Connect (OSTI)

Safety is central to the design, licensing, operation, and economics of Nuclear Power Plants (NPPs). Consequently, the ability to better characterize and quantify safety margin holds the key to improved decision making about light water reactor design, operation, and plant life extension. A systematic approach to characterization of safety margins and the subsequent margins management options represents a vital input to the licensee and regulatory analysis and decision making that will be involved. The purpose of the Risk Informed Safety Margin Characterization (RISMC) Pathway research and development (R&D) is to support plant decisions for risk-informed margins management by improving economics and reliability, and sustaining safety, of current NPPs. Goals of the RISMC Pathway are twofold: (1) Develop and demonstrate a risk-assessment method coupled to safety margin quantification that can be used by NPP decision makers as part of their margin recovery strategies. (2) Create an advanced RISMC toolkit that enables more accurate representation of NPP safety margin. In order to carry out the R&D needed for the Pathway, the Idaho National Laboratory is performing a series of case studies that will explore methods- and tools-development issues, in addition to being of current interest in their own right. One such study is a comparative analysis of safety margins of plants using different fuel cladding types: specifically, a comparison between current-technology Zircaloy cladding and a notional accident-tolerant (e.g., SiC-based) cladding. The present report begins the process of applying capabilities that are still under development to the problem of assessing new fuel designs. The approach and lessons learned from this case study will be included in future Technical Basis Guides produced by the RISMC Pathway. These guides will be the mechanism for developing the specifications for RISMC tools and for defining how plant decision makers should propose and evaluate margin recovery strategies.

Smith, Curtis [Idaho National Laboratory; Chichester, Heather [Idaho National Laboratory; Johns, Jesse [Texas A& M University; Teague, Melissa [Idaho National Laboratory; Tonks, Michael Idaho National Laboratory; Youngblood, Robert [Idaho National Laboratory

2014-09-01T23:59:59.000Z

87

Accident Tolerant Fuel Analysis  

SciTech Connect (OSTI)

Safety is central to the design, licensing, operation, and economics of Nuclear Power Plants (NPPs). Consequently, the ability to better characterize and quantify safety margin holds the key to improved decision making about light water reactor design, operation, and plant life extension. A systematic approach to characterization of safety margins and the subsequent margins management options represents a vital input to the licensee and regulatory analysis and decision making that will be involved. The purpose of the Risk Informed Safety Margin Characterization (RISMC) Pathway research and development (R&D) is to support plant decisions for risk-informed margins management by improving economics and reliability, and sustaining safety, of current NPPs. Goals of the RISMC Pathway are twofold: (1) Develop and demonstrate a risk-assessment method coupled to safety margin quantification that can be used by NPP decision makers as part of their margin recovery strategies. (2) Create an advanced RISMC toolkit that enables more accurate representation of NPP safety margin. In order to carry out the R&D needed for the Pathway, the Idaho National Laboratory is performing a series of case studies that will explore methods- and tools-development issues, in addition to being of current interest in their own right. One such study is a comparative analysis of safety margins of plants using different fuel cladding types: specifically, a comparison between current-technology Zircaloy cladding and a notional accident-tolerant (e.g., SiC-based) cladding. The present report begins the process of applying capabilities that are still under development to the problem of assessing new fuel designs. The approach and lessons learned from this case study will be included in future Technical Basis Guides produced by the RISMC Pathway. These guides will be the mechanism for developing the specifications for RISMC tools and for defining how plant decision makers should propose and evaluate margin recovery strategies.

Curtis Smith; Heather Chichester; Jesse Johns; Melissa Teague; Michael Tonks; Robert Youngblood

2014-09-01T23:59:59.000Z

88

Hydrogen Storage  

Fuel Cell Technologies Publication and Product Library (EERE)

This 2-page fact sheet provides a brief introduction to hydrogen storage technologies. Intended for a non-technical audience, it explains the different ways in which hydrogen can be stored, as well a

89

ACCIDENT ANALYSES & CONTROL OPTIONS IN SUPPORT OF THE SLUDGE WATER SYSTEM SAFETY ANALYSIS  

SciTech Connect (OSTI)

This report documents the accident analyses and nuclear safety control options for use in Revision 7 of HNF-SD-WM-SAR-062, ''K Basins Safety Analysis Report'' and Revision 4 of HNF-SD-SNF-TSR-001, ''Technical Safety Requirements - 100 KE and 100 KW Fuel Storage Basins''. These documents will define the authorization basis for Sludge Water System (SWS) operations. This report follows the guidance of DOE-STD-3009-94, ''Preparation Guide for US. Department of Energy Nonreactor Nuclear Facility Safety Analysis Reports'', for calculating onsite and offsite consequences. The accident analysis summary is shown in Table ES-1 below. While this document describes and discusses potential control options to either mitigate or prevent the accidents discussed herein, it should be made clear that the final control selection for any accident is determined and presented in HNF-SD-WM-SAR-062.

WILLIAMS, J.C.

2003-11-15T23:59:59.000Z

90

Type B Accident Investigation of the July 14, 2005, Americium...  

Broader source: Energy.gov (indexed) [DOE]

4, 2005, Americium Contamination Accident at the Sigma Facility, Los Alamos National Laboratory Type B Accident Investigation of the July 14, 2005, Americium Contamination Accident...

91

The Wildlife Accident Reporting System (WARS) in British Columbia  

E-Print Network [OSTI]

2001, WARS 2000 Wildlife Accident Reporting System (2000related motor vehicle accident claim data and funding toTHE WILDLIFE ACCIDENT REPORTING SYSTEM (WARS) IN BRITISH

Sielecki, Leonard E.

2003-01-01T23:59:59.000Z

92

Type B Accident Investigation on the February 17, 2004, Personal...  

Broader source: Energy.gov (indexed) [DOE]

on the February 17, 2004, Personal Injury Accident, Bettis Atomic Power Laboratory Type B Accident Investigation on the February 17, 2004, Personal Injury Accident, Bettis Atomic...

93

Type B Accident Investigation Board Report on the September 7...  

Broader source: Energy.gov (indexed) [DOE]

Accident Investigation Board Report on the September 7, 2001, Burn Accident at Oak Ridge National Laboratory, Building 9210 Type B Accident Investigation Board Report on the...

94

Type B Accident Investigation of the Subcontractor Employee Injuries...  

Broader source: Energy.gov (indexed) [DOE]

Type B Accident Investigation of the Subcontractor Employee Injuries from a November 15, 2000, Fall Accident at the Oak Ridge National Laboratory Type B Accident Investigation of...

95

Estimating Pedestrian Accident Exposure: Automated Pedestrian Counting Devices Report  

E-Print Network [OSTI]

291. Estimating Pedestrian Accident Exposure: Draft ProtocolEstimating Pedestrian Accident Exposure: Draft Protocol39. Estimating Pedestrian Accident Exposure: Draft Protocol

Bu, Fanping; Greene-Roesel, Ryan; Diogenes, Mara Chagas; Ragland, David R

2007-01-01T23:59:59.000Z

96

Underground pumped hydroelectric storage  

SciTech Connect (OSTI)

Underground pumped hydroelectric energy storage was conceived as a modification of surface pumped storage to eliminate dependence upon fortuitous topography, provide higher hydraulic heads, and reduce environmental concerns. A UPHS plant offers substantial savings in investment cost over coal-fired cycling plants and savings in system production costs over gas turbines. Potential location near load centers lowers transmission costs and line losses. Environmental impact is less than that for a coal-fired cycling plant. The inherent benefits include those of all pumped storage (i.e., rapid load response, emergency capacity, improvement in efficiency as pumps improve, and capacity for voltage regulation). A UPHS plant would be powered by either a coal-fired or nuclear baseload plant. The economic capacity of a UPHS plant would be in the range of 1000 to 3000 MW. This storage level is compatible with the load-leveling requirements of a greater metropolitan area with population of 1 million or more. The technical feasibility of UPHS depends upon excavation of a subterranean powerhouse cavern and reservoir caverns within a competent, impervious rock formation, and upon selection of reliable and efficient turbomachinery - pump-turbines and motor-generators - all remotely operable.

Allen, R.D.; Doherty, T.J.; Kannberg, L.D.

1984-07-01T23:59:59.000Z

97

BLANKET STUDENT ACCIDENT AND SICKNESS INSURANCE  

E-Print Network [OSTI]

BLANKET STUDENT ACCIDENT AND SICKNESS INSURANCE Especially Designed for the Dependents. It is not a contract of insurance. Your coverage is governed by a policy of student accident and sickness insurance

Suzuki, Masatsugu

98

RICE UNIVERSITY ACCIDENT/INJURY REPORT  

E-Print Network [OSTI]

RICE UNIVERSITY ACCIDENT/INJURY REPORT Please Print Section A: Details of incident Injury Work Exposure to radiation Mental stress factors Noise Insect/animal bite Vehicle accident Slip

Natelson, Douglas

99

Analysis of accidents during flashing operations  

E-Print Network [OSTI]

University, 1976 Federal Highway Administration Study, 1980 San Francisco Study National Study Portland, Oregon Study Summary of Literature Review Studies 13 14 16 17 20 CHAPTER Page III. ACCIDENT ANALYSIS METHODOLOGY . 22 Study Site Location... V. SUMMARY AND FINDINGS 44 REFERENCES 48 VITA 50 LIST OF TABLES TABLE 1. Groupings for Marson's Accident Analysis 2. Groupings for San Francisco Accident Analysis 3. Groupings for Portland Accident Analysis 4. Sample Sizes by Volume Ratio 5...

Obermeyer, Michael Edward

1993-01-01T23:59:59.000Z

100

UWO Vehicle ACCIDENT REPORTING FORM  

E-Print Network [OSTI]

UWO Vehicle ­ ACCIDENT REPORTING FORM To be completed at the scene. (Important: Do not admit liability or discuss any settlement.) If there are personal injuries or severe damage to the vehicle, call 911. If vehicle is drivable and if it's safe to do so, pull to the side of road away from traffic. Put

Sinnamon, Gordon J.

Note: This page contains sample records for the topic "line accidents storage" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

ASSESSING CAUSAL FACTORS IN INDIVIDUAL ROAD ACCIDENTS  

E-Print Network [OSTI]

ASSESSING CAUSAL FACTORS IN INDIVIDUAL ROAD ACCIDENTS: COLLECTIVE RESPONSIBILITY IN FREEWAY REAR accident report: Happened on I-94 in downtown Minneapolis Happened during the afternoon peak period Vehicle" is a "condition or event" such that "had the condition or event been prevented...the accident would not occur

Minnesota, University of

102

The Hartford Life and Accident Insurance  

E-Print Network [OSTI]

The Hartford Life and Accident Insurance Company Group Numbers Basic Term Life - 677984 Basic by The Hartford Life and Accident Insurance Company. (Referred to as The Hartford or Hartford.) General from an accident, the benefit will be equal to $140,000 ($70,000 basic group term life PLUS $70

103

DESCRIPTION OF ACCIDENT MSU DRIVERS SIGNATURE  

E-Print Network [OSTI]

DESCRIPTION OF ACCIDENT MSU DRIVERS SIGNATURE Signature 2-9-108, MCA (Statutory Coverage, in lieu-90-(4-20). CERTIFICATE OF INSURANCE X Weather Conditions: ACCIDENT INFORMATION Location: Date: - - 20 Time: : .M. Driver and Risk Management ~ 1160 Research Drive Bozeman, MT 59718 ~ (406) 994-2711 Accident Form #12;OTHER

Dyer, Bill

104

INTERNATIONAL STUDENT & SCHOLAR Accident & Sickness Insurance Plan  

E-Print Network [OSTI]

INTERNATIONAL STUDENT & SCHOLAR Accident & Sickness Insurance Plan 2012-2013 Plan Eligibility an accident and sickness insurance plan for international students and scholars studying in the United States are administered by NAHGA Claim Services: National Accident & Health General Agency The information provided below

Bordenstein, Seth

105

AQUIFER THERMAL ENERGY STORAGE  

E-Print Network [OSTI]

using aquifers for thermal energy storage. Problems outlinedmatical Modeling of Thermal Energy Storage in Aquifers,"ings of Aquifer Thermal Energy Storage Workshop, Lawrence

Tsang, C.-F.

2011-01-01T23:59:59.000Z

106

AQUIFER THERMAL ENERGY STORAGE  

E-Print Network [OSTI]

aquifers for thermal energy storage. Problems outlined aboveModeling of Thermal Energy Storage in Aquifers," Proceed-ings of Aquifer Thermal Energy Storage Workshop, Lawrence

Tsang, C.-F.

2011-01-01T23:59:59.000Z

107

SUPERCONDUCTING MAGNETIC ENERGY STORAGE  

E-Print Network [OSTI]

Superconducting 30-MJ Energy Storage Coil", Proc. 19 80 ASC,Superconducting Magnetic Energy Storage Plant", IEEE Trans.SlIperconducting Magnetic Energy Storage Unit", in Advances

Hassenzahl, W.

2011-01-01T23:59:59.000Z

108

AQUIFER THERMAL ENERGY STORAGE  

E-Print Network [OSTI]

using aquifers for thermal energy storage. Problems outlinedmatical Modeling of Thermal Energy Storage in Aquifers,"Proceed- ings of Aquifer Thermal Energy Storage Workshop,

Tsang, C.-F.

2011-01-01T23:59:59.000Z

109

Criteria for Preparing and Packaging Plutonium Metals and Oxides for Long-Term Storage  

SciTech Connect (OSTI)

This Standard provides criteria for packaging of plutonium metals and stabilized oxides for storage periods of at least 50 years. To meet the criteria, plutonium-bearing materials must be in stable forms and be packaged in containers designed to maintain their integrity both under normal storage conditions and during anticipated handling accidents.

NONE

1994-12-01T23:59:59.000Z

110

Canister Storage Building (CSB) Hazard Analysis Report  

SciTech Connect (OSTI)

This report describes the methodology used in conducting the Canister Storage Building (CSB) Hazard Analysis to support the final CSB Safety Analysis Report and documents the results. This report describes the methodology used in conducting the Canister Storage Building (CSB) hazard analysis to support the CSB final safety analysis report (FSAR) and documents the results. The hazard analysis process identified hazardous conditions and material-at-risk, determined causes for potential accidents, identified preventive and mitigative features, and qualitatively estimated the frequencies and consequences of specific occurrences. The hazard analysis was performed by a team of cognizant CSB operations and design personnel, safety analysts familiar with the CSB, and technical experts in specialty areas. The material included in this report documents the final state of a nearly two-year long process. Attachment A provides two lists of hazard analysis team members and describes the background and experience of each. The first list is a complete list of the hazard analysis team members that have been involved over the two-year long process. The second list is a subset of the first list and consists of those hazard analysis team members that reviewed and agreed to the final hazard analysis documentation. The material included in this report documents the final state of a nearly two-year long process involving formal facilitated group sessions and independent hazard and accident analysis work. The hazard analysis process led to the selection of candidate accidents for further quantitative analysis. New information relative to the hazards, discovered during the accident analysis, was incorporated into the hazard analysis data in order to compile a complete profile of facility hazards. Through this process, the results of the hazard and accident analyses led directly to the identification of safety structures, systems, and components, technical safety requirements, and other controls required to protect the public, workers, and environment.

POWERS, T.B.

2000-03-16T23:59:59.000Z

111

AQUIFER THERMAL ENERGY STORAGE  

E-Print Network [OSTI]

of Discharge Using Ground- Water Storage," Transactions1971. "Storage of Solar Energy in a Sandy-Gravel Ground,"

Tsang, C.-F.

2011-01-01T23:59:59.000Z

112

Gas storage materials, including hydrogen storage materials  

DOE Patents [OSTI]

A material for the storage and release of gases comprises a plurality of hollow elements, each hollow element comprising a porous wall enclosing an interior cavity, the interior cavity including structures of a solid-state storage material. In particular examples, the storage material is a hydrogen storage material, such as a solid state hydride. An improved method for forming such materials includes the solution diffusion of a storage material solution through a porous wall of a hollow element into an interior cavity.

Mohtadi, Rana F; Wicks, George G; Heung, Leung K; Nakamura, Kenji

2014-11-25T23:59:59.000Z

113

Gas storage materials, including hydrogen storage materials  

DOE Patents [OSTI]

A material for the storage and release of gases comprises a plurality of hollow elements, each hollow element comprising a porous wall enclosing an interior cavity, the interior cavity including structures of a solid-state storage material. In particular examples, the storage material is a hydrogen storage material such as a solid state hydride. An improved method for forming such materials includes the solution diffusion of a storage material solution through a porous wall of a hollow element into an interior cavity.

Mohtadi, Rana F; Wicks, George G; Heung, Leung K; Nakamura, Kenji

2013-02-19T23:59:59.000Z

114

COMMERCIAL SNF ACCIDENT RELEASE FRACTIONS  

SciTech Connect (OSTI)

The purpose of this design analysis is to specify and document the total and respirable fractions for radioactive materials that are released from an accident event at the Monitored Geologic Repository (MGR) involving commercial spent nuclear fuel (CSNF) in a dry environment. The total and respirable release fractions will be used to support the preclosure licensing basis for the MGR. The total release fraction is defined as the fraction of total CSNF assembly inventory, typically expressed as an activity inventory (e.g., curies), of a given radionuclide that is released to the environment from a waste form. The radionuclides are released from the inside of breached fuel rods (or pins) and from the detachment of radioactive material (crud) from the outside surfaces of fuel rods and other components of fuel assemblies. The total release fraction accounts for several mechanisms that tend to retain, retard, or diminish the amount of radionuclides that are available for transport to dose receptors or otherwise can be shown to reduce exposure of receptors to radiological releases. The total release fraction includes a fraction of airborne material that is respirable and could result in inhalation doses. This subset of the total release fraction is referred to as the respirable release fraction. Potential accidents may involve waste forms that are characterized as either bare (unconfined) fuel assemblies or confined fuel assemblies. The confined CSNF assemblies at the MGR are contained in shipping casks, canisters, or disposal containers (waste packages). In contrast to the bare fuel assemblies, the container that confines the fuel assemblies has the potential of providing an additional barrier for diminishing the total release fraction should the fuel rod cladding breach during an accident. However, this analysis will not take credit for this additional bamer and will establish only the total release fractions for bare unconfined CSNF assemblies, which may however be conservatively applied to confined CSNF assemblies.

S.O. Bader

1999-10-18T23:59:59.000Z

115

DOE Accident Prevention and Investigation Program | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

tools utilized in the investigation of "accidents" can be valuable in looking at leading indicators associated with our safety program, to determine the embedded precursors to...

116

Type B Accident Investigation, Subcontractor Employee Personal...  

Broader source: Energy.gov (indexed) [DOE]

ignited the right leg of his 100% cotton anticontamination (anti-c) coveralls and the plastic bootie. Type B Accident Investigation, Subcontractor Employee Personal Protective...

117

Computerized Accident Incident Reporting System | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

and other accidents that occur during DOE operations. CAIRS is a Government computer system and, as such, has security requirements that must be followed. Access to the...

118

ORISE: REAC/TS Radiation Accident Registries  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Accident Registries The Radiation Emergency Assistance CenterTraining Site (REACTS) at the Oak Ridge Institute for Science and Education (ORISE) maintains a number of radiation...

119

Solid-State Hydrogen Storage: Storage Capacity,Thermodynamics...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Hydrogen Storage: Storage Capacity,Thermodynamics and Kinetics. Solid-State Hydrogen Storage: Storage Capacity,Thermodynamics and Kinetics. Abstract: Solid-state reversible...

120

Date of Accident: _____/_____/________ Day of Week: __________________ Hour: _____:______ AM / PM TIME VEHICLE ACCIDENT REPORT  

E-Print Network [OSTI]

Page 1/2 Date of Accident: _____/_____/________ Day of Week: __________________ Hour: _____:______ AM / PM TIME VEHICLE ACCIDENT REPORT TO BE USED BY ALL STATE AGENCIES to make immediate report of all motor vehicle accidents involving State employees, vehicles, equipment or where highways could result

Farritor, Shane

Note: This page contains sample records for the topic "line accidents storage" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Risk assessment for the Waste Technologies Industries (WTI) hazardous waste incineration facility (East Liverpool, Ohio). Volume 7. Accident analysis; selection and assessment of potential release scenarios  

SciTech Connect (OSTI)

In this part of the assessment, several accident scenarios are identified that could result in significant releases of chemicals into the environment. These scenarios include ruptures of storage tanks, large magnitude on-site spills, mixing of incompatible wastes, and off-site releases caused by tranpsortation accidents. In evaluating these scenarios, both probability and consequence are assessed, so that likelihood of occurrence is coupled with magnitude of effect in characterizing short term risks.

NONE

1997-05-01T23:59:59.000Z

122

Energy Management for an Onboard Storage System Based on Multi-Objective Optimization  

E-Print Network [OSTI]

Energy Management for an Onboard Storage System Based on Multi-Objective Optimization Tobias Knoke an onboard energy storage, the overhead line peak power and energy consumption can be reduced. The storage. This can be achieved by using an onboard energy storage, which recuperates the power during the braking

Paderborn, Universität

123

Seasonal thermal energy storage  

SciTech Connect (OSTI)

This report describes the following: (1) the US Department of Energy Seasonal Thermal Energy Storage Program, (2) aquifer thermal energy storage technology, (3) alternative STES technology, (4) foreign studies in seasonal thermal energy storage, and (5) economic assessment.

Allen, R.D.; Kannberg, L.D.; Raymond, J.R.

1984-05-01T23:59:59.000Z

124

accident victims: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Every year, traffic congestion and traffic accidents have been Cho, Sung-Bae 118 The Analysis of a Friendly Fire Accident using a Systems Model of Accidents* N.G. Leveson,...

125

accident victim conduite: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Every year, traffic congestion and traffic accidents have been Cho, Sung-Bae 152 The Analysis of a Friendly Fire Accident using a Systems Model of Accidents* N.G. Leveson,...

126

HEALTH EFFECTS OF THE NUCLEAR ACCIDENT AT THREE MILE ISLAND  

E-Print Network [OSTI]

occurred during the nuclear accident, and probably noHEALTH EFFECTS OF THE NUCLEAR ACCIDENT AT MILE ISLAND JacobENG-48 HEALTH EFFECTS OF THE NUCLEAR ACCIDENT A T THREE MILE

Fabrikant, J.I.

2010-01-01T23:59:59.000Z

127

HEALTH EFFECTS OF THE NUCLEAR ACCIDENT AT THREE MILE ISLAND  

E-Print Network [OSTI]

Commission on the Accident at Three Mile Island (Fabrikant,Commission on the Accident at Three Mile Island. (Fahrikant,Commission on the Accident at Three Mile Island. (Fabrikant,

Fabrikant, J.I.

2010-01-01T23:59:59.000Z

128

Does Daylight Savings Time Affect Traffic Accidents?  

E-Print Network [OSTI]

This paper studies the effect of changes in accident pattern due to Daylight Savings Time (DST). The extension of the DST in 2007 provides a natural experiment to determine whether the number of traffic accidents is affected by shifts in hours...

Deen, Sophia 1988-

2012-04-20T23:59:59.000Z

129

TRAVEL ACCIDENT INSURANCE PLAN 01-01-2012 The Travel Accident Insurance Plan provides 24-hour Accident coverage while on Authorized  

E-Print Network [OSTI]

1 TRAVEL ACCIDENT INSURANCE PLAN 01-01-2012 The Travel Accident Insurance Plan provides 24-hour Accident coverage while on Authorized Business Travel. Coverage begins at the actual starting point. Please note that the Employer reserves the right to amend or terminate this Travel Accident Insurance

Johnson, Peter D.

130

SUPERCONDUCTING MAGNETIC ENERGY STORAGE  

E-Print Network [OSTI]

to MW/40 MWI-IR Battery Energy Storage Facility", proc. 23rdcompressed air, and battery energy storage are all only 65

Hassenzahl, W.

2011-01-01T23:59:59.000Z

131

SUPERCONDUCTING MAGNETIC ENERGY STORAGE  

E-Print Network [OSTI]

hydro, compressed air, and battery energy storage are allenergy storage sys tem s suc h as pumped hydro and compressed air.

Hassenzahl, W.

2011-01-01T23:59:59.000Z

132

The Fukushima Daiichi Accident Study Information Portal  

SciTech Connect (OSTI)

This paper presents a description of The Fukushima Daiichi Accident Study Information Portal. The Information Portal was created by the Idaho National Laboratory as part of joint NRC and DOE project to assess the severe accident modeling capability of the MELCOR analysis code. The Fukushima Daiichi Accident Study Information Portal was created to collect, store, retrieve and validate information and data for use in reconstructing the Fukushima Daiichi accident. In addition to supporting the MELCOR simulations, the Portal will be the main DOE repository for all data, studies and reports related to the accident at the Fukushima Daiichi nuclear power station. The data is stored in a secured (password protected and encrypted) repository that is searchable and accessible to researchers at diverse locations.

Shawn St. Germain; Curtis Smith; David Schwieder; Cherie Phelan

2012-11-01T23:59:59.000Z

133

Commercial SNF Accident Release Fractions  

SciTech Connect (OSTI)

The purpose of this analysis is to specify and document the total and respirable fractions for radioactive materials that could be potentially released from an accident at the repository involving commercial spent nuclear fuel (SNF) in a dry environment. The total and respirable release fractions are used to support the preclosure licensing basis for the repository. The total release fraction is defined as the fraction of total commercial SNF assembly inventory, typically expressed as an activity inventory (e.g., curies), of a given radionuclide that is released to the environment from a waste form. Radionuclides are released from the inside of breached fuel rods (or pins) and from the detachment of radioactive material (crud) from the outside surfaces of fuel rods and other components of fuel assemblies. The total release fraction accounts for several mechanisms that tend to retain, retard, or diminish the amount of radionuclides that are available for transport to dose receptors or otherwise can be shown to reduce exposure of receptors to radiological releases. The total release fraction includes a fraction of airborne material that is respirable and could result in inhalation doses; this subset of the total release fraction is referred to as the respirable release fraction. Accidents may involve waste forms characterized as: (1) bare unconfined intact fuel assemblies, (2) confined intact fuel assemblies, or (3) canistered failed commercial SNF. Confined intact commercial SNF assemblies at the repository are contained in shipping casks, canisters, or waste packages. Four categories of failed commercial SNF are identified: (1) mechanically and cladding-penetration damaged commercial SNF, (2) consolidated/reconstituted assemblies, (3) fuel rods, pieces, and debris, and (4) nonfuel components. It is assumed that failed commercial SNF is placed into waste packages with a mesh screen at each end (CRWMS M&O 1999). In contrast to bare unconfined fuel assemblies, the container that confines the fuel assemblies could provide an additional barrier for diminishing the total release fraction should the fuel rod cladding breach during an accident. This analysis, however, does not take credit for the additional barrier and establishes only the total release fractions for bare unconfined intact commercial SNF assemblies, which may be conservatively applied to confined intact commercial I SNF assemblies.

J. Schulz

2004-11-05T23:59:59.000Z

134

Type A Accident Investigation of the June 21, 2001, Drilling...  

Office of Environmental Management (EM)

A Accident Investigation of the June 21, 2001, Drilling Rig Operator Injury at the Fermi National Accelerator Laboratory, August 2001 Type A Accident Investigation of the June 21,...

135

Type B Accident Investigation Board Report on the November 1...  

Office of Environmental Management (EM)

B Accident Investigation Board Report on the November 1, 1999, Construction Injury at the Monticello Mill Tailings Remedial Action Site, Monticello, Utah Type B Accident...

136

Web Based Course: SAF-230DE, Accident Investigation Overview...  

Broader source: Energy.gov (indexed) [DOE]

Web Based Course: SAF-230DE, Accident Investigation Overview Promotional Video Web Based Course: SAF-230DE, Accident Investigation Overview Promotional Video September 20, 2013 -...

137

Accident Investigation of the February 7, 2013, Scissor Lift...  

Office of Environmental Management (EM)

Lift Accident in the West Hackberry Brine Tank-14 Resulting in Injury, Strategic Petroleum Reserve West Hackberry, LA Accident Investigation of the February 7, 2013, Scissor...

138

ORISE: The Medical Basis for Radiation-Accident Preparedness...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

The Medical Basis for Radiation-Accident Preparedness: Medical Management Proceedings of the Fifth International REACTS Symposium on the Medical Basis for Radiation-Accident...

139

Partnership Logging Accidents Cornelis de Hoop, LA Forest Products Lab  

E-Print Network [OSTI]

Partnership Logging Accidents by Cornelis de Hoop, LA Forest Products Lab Albert Lefort Agreement 1998 & 1999 Accident Reports 25 injuries reported 185 loggers signed up 8 deaths 1999

140

accident management aids: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Accident, Illness and Liability Coverage Risk Management in the 4-H Youth Development Program Environmental Sciences and Ecology Websites Summary: 1 Accident, Illness and...

Note: This page contains sample records for the topic "line accidents storage" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Accident Investigation of the June 1, 2013, Stairway Fall Resulting...  

Energy Savers [EERE]

Accident Investigation of the June 1, 2013, Stairway Fall Resulting in a Federal Employee Fatality at DOE Headquarters Germantown, Maryland Accident Investigation of the June 1,...

142

Type B Accident Investigation of the July 12, 2007, Forklift...  

Broader source: Energy.gov (indexed) [DOE]

2, 2007, Forklift and Pedestrian Accident at the Paducah Gaseous Diffusion Plant, PortsmouthPaducah Project Office Type B Accident Investigation of the July 12, 2007, Forklift and...

143

accident management summary: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Management of the Acute Radiation Syndrome 2001 flow Feed back Radiation Accident MedicalManagement COMPENDIUMCOMPENDIUM MEDICAL MANAGEMENT OF RADIATION ACCIDENTS...

144

Probabilistic risk analysis for Test Area North Hot Shop Storage Pool Facility  

SciTech Connect (OSTI)

A storage pool facility used for storing spent fuel and radioactive debris from the Three Mile Island (TMI) accident was evaluated to determine the risk associated with its normal operations. Several hazards were identified and examined to determine if any any credible accident scenarios existed. Expected annual occurrence frequencies were calculated for hazards for which accident scenarios were identified through use of fault trees modeling techniques. Fault tree models were developed for two hazards: (1) increased radiation field and (2) spread of contamination. The models incorporated facets of the operations within the facility as well as the facility itself. 6 refs.

Meale, B.M.; Satterwhite, D.G.

1990-01-01T23:59:59.000Z

145

Canister storage building hazard analysis report  

SciTech Connect (OSTI)

This report describes the methodology used in conducting the Canister Storage Building (CSB) hazard analysis to support the CSB final safety analysis report (FSAR) and documents the results. The hazard analysis was performed in accordance with the DOE-STD-3009-94, ''Preparation Guide for US. Department of Energy Nonreactor Nuclear Facility Safety Analysis Reports'', and meets the intent of HNF-PRO-704, ''Hazard and Accident Analysis Process''. This hazard analysis implements the requirements of DOE Order 5480.23, ''Nuclear Safety Analysis Reports''.

POWERS, T.B.

1999-05-11T23:59:59.000Z

146

E-Print Network 3.0 - aps storage ring Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

total distance from the beginning... in the storage ring and the injector to ring beam line. The magnet locations in the synchrotron are not shown... the Storage Ring. 12;) (...

147

Estimating Rear-End Accident Probabilities at Signalized Intersections: An Occurrence-Mechanism Approach  

E-Print Network [OSTI]

Estimating Rear-End Accident Probabilities at Signalized Intersections: An Occurrence intersections, rear-end accidents are frequently the predominant accident type. These accidents result from to this deceleration. This paper mathematically represents this process, by expressing accident probability

Wang, Yinhai

148

Extending dry storage of spent LWR fuel for 100 years.  

SciTech Connect (OSTI)

Because of delays in closing the back end of the fuel cycle in the U.S., there is a need to extend dry inert storage of spent fuel beyond its originally anticipated 20-year duration. Many of the methodologies developed to support initial licensing for 20-year storage should be able to support the longer storage periods envisioned. This paper evaluates the applicability of existing information and methodologies to support dry storage up to 100 years. The thrust of the analysis is the potential behavior of the spent fuel. In the USA, the criteria for dry storage of LWR spent fuel are delineated in 10 CFR 72 [1]. The criteria fall into four general categories: maintain subcriticality, prevent the release of radioactive material above acceptable limits, ensure that radiation rates and doses do not exceed acceptable levels, and maintain retrievability of the stored radioactive material. These criteria need to be considered for normal, off-normal, and postulated accident conditions. The initial safety analysis report submitted for licensing evaluated the fuel's ability to meet the requirements for 20 years. It is not the intent to repeat these calculations, but to look at expected behavior over the additional 80 years, during which the temperatures and radiation fields are lower. During the first 20 years, the properties of the components may change because of elevated temperatures, presence of moisture, effects of radiation, etc. During normal storage in an inert atmosphere, there is potential for the cladding mechanical properties to change due to annealing or interaction with cask materials. The emissivity of the cladding could also change due to storage conditions. If there is air leakage into the cask, additional degradation could occur through oxidation in breached rods, which could lead to additional fission gas release and enlargement of cladding breaches. Air in-leakage could also affect cover gas conductivity, cladding oxidation, emissivity changes, and excessive creep and mechanical property changes. Postulated accident scenarios would be the same for 20-year or 100-year storage, because they are mostly governed by operational or outside events, and not by the cask or fuel. Analyses of accident scenarios during extended dry storage could be impacted by fuel and cask changes that would result from the extended period of storage. Overall, the results of this work indicate that, based on fuel behavior, spent fuel at burnups below {approximately}45 GWd/MTU can be dry stored for 100 years. Long-term storage of higher burnup fuel or fuels with newer cladding will require the determination of temperature limits based on evaluation of stress-driven degradation mechanisms of the cladding.

Einziger, R. E.

1998-12-16T23:59:59.000Z

149

SUPERVISOR'S ACCIDENT INVESTIGATION FORM Employee's Name: Job Title  

E-Print Network [OSTI]

SUPERVISOR'S ACCIDENT INVESTIGATION FORM Employee's Name: Job Title: Time employee has been in current position? How long had employee been at work prior to injury? Accident Date: Time of Accident: AM PM Overtime: Yes No Location of Accident (Be Specific): Specific Task Being Performed at Time

Jiang, Wen

150

ACCIDENT PREVENTION SIGNS, TAGS, LABELS, SIGNALS, PIPING SYSTEM IDENTIFICATION AND  

E-Print Network [OSTI]

EM 385-1-1 XX Sep 13 i Section 8 ACCIDENT PREVENTION SIGNS, TAGS, LABELS, SIGNALS, PIPING SYSTEM............................................................8-13 Tables: 8-1 Accident Prevention Sign Requirements..........................8-17 8-2 Accident.......................................8-24 8-9 Accident Prevention Tags.............................................8-25 #12;EM 385-1-1 XX

US Army Corps of Engineers

151

STATE OF CALIFORNIA -DGS ORIM VEHICLE ACCIDENT REPORT  

E-Print Network [OSTI]

STATE OF CALIFORNIA - DGS ORIM VEHICLE ACCIDENT REPORT STD. 270 (REV. 2/2002c) ACCIDENT PREVIOUSLY REPORTED TO ORIM? (If Yes, give date) YES NO THIS REPORT MUST BE MAILED WITHIN 48 HOURS AFTER ACCIDENT (ACCIDENTS INVOLVING INJURY SHOULD FIRST BE CALLED OR FAXED TO ORIM AT (916) 376-5302 - CALNET 480-5302 - FAX

Ponce, V. Miguel

152

UoS Motor Accident Report Form COMPANY DETAILS  

E-Print Network [OSTI]

UNIV01FL02 UoS Motor Accident Report Form COMPANY DETAILS INSURED: University of Sussex ADDRESS: LOCATION: DESCRIPTION OF HOW ACCIDENT HAPPENED: PLEASE DRAW A SKETCH OF THE ACCIDENT: #12;DRIVER DETAILS: PREVIOUS ACCIDENTS: ADDRESS: VEHICLE DETAILS DATE VEHICLE PURCHASED: MAKE/MODEL: REGISTRATION: MILEAGE

Sussex, University of

153

Fuel Storage Facility Final Safety Analysis Report. Revision 1  

SciTech Connect (OSTI)

The Fuel Storage Facility (FSF) is an integral part of the Fast Flux Test Facility. Its purpose is to provide long-term storage (20-year design life) for spent fuel core elements used to provide the fast flux environment in FFTF, and for test fuel pins, components and subassemblies that have been irradiated in the fast flux environment. This Final Safety Analysis Report (FSAR) and its supporting documentation provides a complete description and safety evaluation of the site, the plant design, operations, and potential accidents.

Linderoth, C.E.

1984-03-01T23:59:59.000Z

154

MELCOR accident analysis for ARIES-ACT  

E-Print Network [OSTI]

MELCOR accident analysis for ARIES-ACT Paul Humrickhouse Brad Merrill INL Fusion Safety Program progression in water-cooled fission reactors · INL has modified it for fusion; MELCOR 1.8.5 for fusion has

California at San Diego, University of

155

Review of models applicable to accident aerosols  

SciTech Connect (OSTI)

Estimations of potential airborne-particle releases are essential in safety assessments of nuclear-fuel facilities. This report is a review of aerosol behavior models that have potential applications for predicting aerosol characteristics in compartments containing accident-generated aerosol sources. Such characterization of the accident-generated aerosols is a necessary step toward estimating their eventual release in any accident scenario. Existing aerosol models can predict the size distribution, concentration, and composition of aerosols as they are acted on by ventilation, diffusion, gravity, coagulation, and other phenomena. Models developed in the fields of fluid mechanics, indoor air pollution, and nuclear-reactor accidents are reviewed with this nuclear fuel facility application in mind. The various capabilities of modeling aerosol behavior are tabulated and discussed, and recommendations are made for applying the models to problems of differing complexity.

Glissmeyer, J.A.

1983-07-01T23:59:59.000Z

156

An Investigation of the Therac-25 Accidents  

E-Print Network [OSTI]

commission investigation of the Three Mile Island incident). The Therac-25 accidents are the most serious of the Therac-25 prob- lems have been oversimplified, with misleading omissions. In an effort to remedy this, we

Yang, Junfeng

157

A systems approach to food accident analysis  

E-Print Network [OSTI]

Food borne illnesses lead to 3000 deaths per year in the United States. Some industries, such as aviation, have made great strides increasing safety through careful accident analysis leading to changes in industry practices. ...

Helferich, John D

2011-01-01T23:59:59.000Z

158

Three Mile Island accident and post-accident recovery: what did we learn  

SciTech Connect (OSTI)

A description of the accident at Three Mile Island-2 reactor is presented. Activities related to the cleanup and decontamination of the reactor are described.

Collins, E.D.

1982-01-01T23:59:59.000Z

159

risk_policies_accident_std_vist.doc/ac 1 Revised 07.26.13 STUDENT AND VISITOR ACCIDENT  

E-Print Network [OSTI]

risk_policies_accident_std_vist.doc/ac 1 Revised 07.26.13 STUDENT AND VISITOR ACCIDENT REPORTING: 408-924-1892 Student and Visitor Accident Reporting Guidelines These guidelines provide instructions for reporting and handling accidents or incidents that happen to students and visitors while on the San José

Su, Xiao

160

Criticality Safety Evaluation of Hanford Site High Level Waste Storage Tanks  

SciTech Connect (OSTI)

This criticality safety evaluation covers operations for waste in underground storage tanks at the high-level waste tank farms on the Hanford site. This evaluation provides the bases for criticality safety limits and controls to govern receipt, transfer, and long-term storage of tank waste. Justification is provided that a nuclear criticality accident cannot occur for tank farms operations, based on current fissile material and operating conditions.

ROGERS, C.A.

2000-02-17T23:59:59.000Z

Note: This page contains sample records for the topic "line accidents storage" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Power Aware Storage Cache Management Qingbo Zhu and Yuanyuan Zhou  

E-Print Network [OSTI]

management schemes to save energy. More specifically, we present an off-line energy-optimal cache replacement algorithm using dynamic programming which minimizes the disk energy consumption. We also present an off including web hosting, application services, outsourced storage and other network services. Storage is one

Zhou, Yuanyuan

162

Releases of UF{sub 6} to the atmosphere after a potential fire in a cylinder storage yard  

SciTech Connect (OSTI)

Uranium hexafluoride (UF{sub 6}), a toxic material, is stored in just over 6200 cylinders at the K-25 site in Oak Ridge, Tennessee. The safety analysis report (SAR) for cylinder yard storage operations at the plant required the development of accident scenarios for the potential release of UF{sub 6} to the atmosphere. In accordance with DOE standards and guidance, the general approach taken in this SAR was to examine the functions and contents of the cylinder storage yards to determine whether safety-significant hazards were present for workers in the immediate vicinity, workers on-site, the general public off-site, or the environment. and to evaluate the significance of any hazards that were found. A detailed accident analysis was performed to determine a set of limiting accidents that have potential for off-site consequences. One of the limiting accidents identified in the SAR was the rupture of a cylinder engulfed in a fire.

Lombardi, D.A.; Williams, W.R.; Anderson, J.C. [and others

1997-06-01T23:59:59.000Z

163

Advanced Gas Storage Concepts: Technologies for the Future  

SciTech Connect (OSTI)

This full text product includes: 1) A final technical report titled Advanced Underground Gas Storage Concepts, Refrigerated-Mined Cavern Storage and presentations from two technology transfer workshops held in 1998 in Houston, Texas, and Pittsburgh, Pennsylvania (both on the topic of Chilled Gas Storage in Mined Caverns); 2) A final technical report titled Natural Gas Hydrates Storage Project, Final Report 1 October 1997 - 31 May 1999; 3) A final technical report titled Natural Gas Hydrates Storage Project Phase II: Conceptual Design and Economic Study, Final Report 9 June - 10 October 1999; 4) A final technical report titled Commerical Potential of Natural Gas Storage in Lined Rock Caverns (LRC) and presentations from a DOE-sponsored workshop on Alternative Gas Storage Technologies, held Feb 17, 2000 in Pittsburgh, PA; and 5) Phase I and Phase II topical reports titled Feasibility Study for Lowering the Minimum Gas Pressure in Solution-Mined Caverns Based on Geomechanical Analyses of Creep-Induced Damage and Healing.

Freeway, Katy (PB-KBB Inc.); Rogers, R.E. (Mississippi State University); DeVries, Kerry L.; Nieland, Joel D.; Ratigan, Joe L.; Mellegard, Kirby D. (RESPEC)

2000-02-01T23:59:59.000Z

164

Accident Procedure Outline the procedures for accidents involving University of Michigan (U-M) vehicles.  

E-Print Network [OSTI]

owned by U-M are covered by the U-M self insurance program administered by Risk Management. Procedure 1. An accident is defined as any incident that causes damage to people or property. 2. In the event. 4. If the accident causes personal injury to the driver, occupants and/or pedestrian, contact Risk

Kirschner, Denise

165

Sandia National Laboratories: Energy Storage Multimedia Gallery  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

StorageEnergy Storage Multimedia Gallery Energy Storage Multimedia Gallery Images Videos Energy Storage Image Gallery Energy Storage B-Roll Videos Battery Abuse Testing Laboratory...

166

Cool Storage Performance  

E-Print Network [OSTI]

Utilities have promoted the use of electric heat and thermal storage to increase off peak usage of power. High daytime demand charges and enticing discounts for off peak power have been used as economic incentives to promote thermal storage systems...

Eppelheimer, D. M.

1985-01-01T23:59:59.000Z

167

Underground Storage Tank Regulations  

Broader source: Energy.gov [DOE]

The Underground Storage Tank Regulations is relevant to all energy projects that will require the use and building of pipelines, underground storage of any sorts, and/or electrical equipment. The...

168

Safe Home Food Storage  

E-Print Network [OSTI]

Proper food storage can preserve food quality and prevent spoilage and food/borne illness. The specifics of pantry, refrigerator and freezer storage are given, along with helpful information on new packaging, label dates, etc. A comprehensive table...

Van Laanen, Peggy

2002-08-22T23:59:59.000Z

169

Hydrate Control for Gas Storage Operations  

SciTech Connect (OSTI)

The overall objective of this project was to identify low cost hydrate control options to help mitigate and solve hydrate problems that occur in moderate and high pressure natural gas storage field operations. The study includes data on a number of flow configurations, fluids and control options that are common in natural gas storage field flow lines. The final phase of this work brings together data and experience from the hydrate flow test facility and multiple field and operator sources. It includes a compilation of basic information on operating conditions as well as candidate field separation options. Lastly the work is integrated with the work with the initial work to provide a comprehensive view of gas storage field hydrate control for field operations and storage field personnel.

Jeffrey Savidge

2008-10-31T23:59:59.000Z

170

Energy Storage Systems  

SciTech Connect (OSTI)

Energy Storage Systems An Old Idea Doing New Things with New Technology article for the International Assoication of ELectrical Inspectors

Conover, David R.

2013-12-01T23:59:59.000Z

171

FOREST CENTRE STORAGE BUILDING  

E-Print Network [OSTI]

FOREST CENTRE STORAGE BUILDING 3 4 5 6 7 8 UniversityDr. 2 1 G r e n f e l l D r i v e MULTI PURPOSE COURT STUDENT RESIDENCES GREEN HOUSE STUDENT RESIDENCES STUDENT RESIDENCES RECPLEX STORAGE BUILDING STORAGE BUILDING LIBRARY & COMPUTING FINE ARTS FOREST CENTRE ARTS &SCIENCE BUILDING ARTS &SCIENCE

deYoung, Brad

172

Evaluation of Radiation Impacts of Spent Nuclear Fuel Storage (SNFS-2) of Chernobyl NPP - 13495  

SciTech Connect (OSTI)

Radiation effects are estimated for the operation of a new dry storage facility for spent nuclear fuel (SNFS-2) of Chernobyl NPP RBMK reactors. It is shown that radiation exposure during normal operation, design and beyond design basis accidents are minor and meet the criteria for safe use of radiation and nuclear facilities in Ukraine. (authors)

Paskevych, Sergiy; Batiy, Valiriy; Sizov, Andriy [Institute for Safety Problems of Nuclear Power Plants, National Academy of Sciences of Ukraine, 36 a Kirova str. Chornobyl, Kiev region, 07200 (Ukraine)] [Institute for Safety Problems of Nuclear Power Plants, National Academy of Sciences of Ukraine, 36 a Kirova str. Chornobyl, Kiev region, 07200 (Ukraine); Schmieman, Eric [Battelle Memorial Institute, PO Box 999 MSIN K6-90, Richland, WA 99352 (United States)] [Battelle Memorial Institute, PO Box 999 MSIN K6-90, Richland, WA 99352 (United States)

2013-07-01T23:59:59.000Z

173

E-Print Network 3.0 - accident experience alarm Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

, accident investigation, indoor air quality, bloodborne pathogens, chemical safety, lockout-tagout, hot work... Campus Fires 11 12 Accident Reporting 14 Employee Accidents 15...

174

E-Print Network 3.0 - accident frequencies program Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

of the fatal accidents and many other accidents. Training, defined work procedures, lockout tagout programs... Accident Research Helps Save Lives of Loggers Research Brief ...

175

E-Print Network 3.0 - accident management procedures Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

of the fatal accidents and many other accidents. Training, defined work procedures, lockout tagout programs... Accident Research Helps Save Lives of Loggers Research Brief ...

176

E-Print Network 3.0 - accident management program Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

of the fatal accidents and many other accidents. Training, defined work procedures, lockout tagout programs... Accident Research Helps Save Lives of Loggers Research Brief ...

177

E-Print Network 3.0 - accident investigation sites Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Chemistry ; Biology and Medicine 6 U of L Campus AccidentIncident Report Automobile AccidentIncident Page 1 of 2 University of Lethbridge Summary: accidents that occur...

178

E-Print Network 3.0 - accident excursion occurring Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

University Collection: Geosciences 4 U of L Campus AccidentIncident Report Automobile AccidentIncident Page 1 of 2 University of Lethbridge Summary: accidents that occur...

179

E-Print Network 3.0 - accident location analysis Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Conversion and Utilization ; Engineering 8 U of L Campus AccidentIncident Report Automobile AccidentIncident Page 1 of 2 University of Lethbridge Summary: of the accident...

180

E-Print Network 3.0 - accident survival time Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Technologies and Information Sciences 3 U of L Campus AccidentIncident Report Automobile AccidentIncident Page 1 of 2 University of Lethbridge Summary: of the accident...

Note: This page contains sample records for the topic "line accidents storage" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Creating an urban deer-vehicle accident management plan using information from a town's GIS project  

E-Print Network [OSTI]

AN URBAN DEER-VEHICLE ACCIDENT MANAGEMENT PLAN USINGincrease in deer vehicle accidents. Given the Town'sof increased deer vehicle accidents which, in the past 10

Premo, Dean B.; Rogers, Elizabeth I.

2001-01-01T23:59:59.000Z

182

Do "Accidents" Happen? An Examination of Injury Mortality Among Maltreated Children  

E-Print Network [OSTI]

2002;26. Garling T. Children's environments, accidents,and accident prevention: An introduction. In: Garling T,Toward a Psychology of Accident Prevention. New York: Plenum

Hornstein, Emily Putnam

2010-01-01T23:59:59.000Z

183

A research university's rapid response to a fatal chemistry accident: Safety changes and outcomes  

E-Print Network [OSTI]

to a fatal chemistry accident: Safety changes and outcomesprogram following a chemistry accident in December 2008 thatcommunity. Since the 2008 accident at UCLA, the na- tional

Gibson, JH; Schrder, I; Wayne, NL

2014-01-01T23:59:59.000Z

184

Technical Safety Requirements for the Waste Storage Facilities  

SciTech Connect (OSTI)

This document contains Technical Safety Requirements (TSR) for the Radioactive and Hazardous Waste Management (RHWM) WASTE STORAGE FACILITIES, which include Area 612 (A612) and the Decontamination and Waste Treatment Facility (DWTF) Storage Area at Lawrence Livermore National Laboratory (LLNL). The TSRs constitute requirements regarding the safe operation of the WASTE STORAGE FACILITIES. These TSRs are derived from the Documented Safety Analysis for the Waste Storage Facilities (DSA) (LLNL 2006). The analysis presented therein determined that the WASTE STORAGE FACILITIES are low-chemical hazard, Hazard Category 2 non-reactor nuclear facilities. The TSRs consist primarily of inventory limits and controls to preserve the underlying assumptions in the hazard and accident analyses. Further, appropriate commitments to safety programs are presented in the administrative controls sections of the TSRs. The WASTE STORAGE FACILITIES are used by RHWM to handle and store hazardous waste, TRANSURANIC (TRU) WASTE, LOW-LEVEL WASTE (LLW), mixed waste, California combined waste, nonhazardous industrial waste, and conditionally accepted waste generated at LLNL as well as small amounts from other U.S. Department of Energy (DOE) facilities, as described in the DSA. In addition, several minor treatments (e.g., drum crushing, size reduction, and decontamination) are carried out in these facilities. The WASTE STORAGE FACILITIES are located in two portions of the LLNL main site. A612 is located in the southeast quadrant of LLNL. The A612 fenceline is approximately 220 m west of Greenville Road. The DWTF Storage Area, which includes Building 693 (B693), Building 696 Radioactive Waste Storage Area (B696R), and associated yard areas and storage areas within the yard, is located in the northeast quadrant of LLNL in the DWTF complex. The DWTF Storage Area fenceline is approximately 90 m west of Greenville Road. A612 and the DWTF Storage Area are subdivided into various facilities and storage areas, consisting of buildings, tents, other structures, and open areas as described in Chapter 2 of the DSA. Section 2.4 of the DSA provides an overview of the buildings, structures, and areas in the WASTE STORAGE FACILITIES, including construction details such as basic floor plans, equipment layout, construction materials, controlling dimensions, and dimensions significant to the hazard and accident analysis. Chapter 5 of the DSA documents the derivation of the TSRs and develops the operational limits that protect the safety envelope defined for the WASTE STORAGE FACILITIES. This TSR document is applicable to the handling, storage, and treatment of hazardous waste, TRU WASTE, LLW, mixed waste, California combined waste, nonhazardous industrial waste, and conditionally accepted waste received or generated in the WASTE STORAGE FACILITIES. Section 5, Administrative Controls, contains those Administrative Controls necessary to ensure safe operation of the WASTE STORAGE FACILITIES. Programmatic Administrative Controls are in Section 5.6. This Introduction to the WASTE STORAGE FACILITIES TSRs is not part of the TSR limits or conditions and contains no requirements related to WASTE STORAGE FACILITIES operations or to the safety analyses of the DSA.

Larson, H L

2007-09-07T23:59:59.000Z

185

Assessment of CRBR core disruptive accident energetics  

SciTech Connect (OSTI)

The results of an independent assessment of core disruptive accident energetics for the Clinch River Breeder Reactor are presented in this document. This assessment was performed for the Nuclear Regulatory Commission under the direction of the CRBR Program Office within the Office of Nuclear Reactor Regulation. It considered in detail the accident behavior for three accident initiators that are representative of three different classes of events; unprotected loss of flow, unprotected reactivity insertion, and protected loss of heat sink. The primary system's energetics accommodation capability was realistically, yet conservatively, determined in terms of core events. This accommodation capability was found to be equivalent to an isentropic work potential for expansion to one atmosphere of 2550 MJ or a ramp rate of about 200 $/s applied to a classical two-phase disassembly.

Theofanous, T.G.; Bell, C.R.

1984-03-01T23:59:59.000Z

186

Enhanced Accident Tolerant LWR Fuels: Metrics Development  

SciTech Connect (OSTI)

The Department of Energy (DOE) Fuel Cycle Research and Development (FCRD) Advanced Fuels Campaign (AFC) is conducting research and development on enhanced Accident Tolerant Fuels (ATF) for light water reactors (LWRs). This mission emphasizes the development of novel fuel and cladding concepts to replace the current zirconium alloy-uranium dioxide (UO2) fuel system. The overall mission of the ATF research is to develop advanced fuels/cladding with improved performance, reliability and safety characteristics during normal operations and accident conditions, while minimizing waste generation. The initial effort will focus on implementation in operating reactors or reactors with design certifications. To initiate the development of quantitative metrics for ATR, a LWR Enhanced Accident Tolerant Fuels Metrics Development Workshop was held in October 2012 in Germantown, MD. This paper summarizes the outcome of that workshop and the current status of metrics development for LWR ATF.

Shannon Bragg-Sitton; Lori Braase; Rose Montgomery; Chris Stanek; Robert Montgomery; Lance Snead; Larry Ott; Mike Billone

2013-09-01T23:59:59.000Z

187

Structural aspects of the Chernobyl accident  

SciTech Connect (OSTI)

On April 26, 1986 the world's worst nuclear power plant accident occurred at the Unit 4 of the Chernobyl Nuclear Power Station in the USSR. This paper presents a discussion of the design of the Chernobyl Power Plant, the sequence of events that led to the accident and the damage caused by the resulting explosion. The structural design features that contributed to the accident and resulting damage will be highlighted. Photographs and sketches obtained from various worldwide news agencies will be shown to try and gain a perspective of the extent of the damage. The aftermath, clean-up, and current situation will be discussed and the important lessons learned for the structural engineer will be presented. 15 refs., 10 figs.

Murray, R.C.; Cummings, G.E.

1988-09-02T23:59:59.000Z

188

A Review of Criticality Accidents 2000 Revision  

SciTech Connect (OSTI)

Criticality accidents and the characteristics of prompt power excursions are discussed. Sixty accidental power excursions are reviewed. Sufficient detail is provided to enable the reader to understand the physical situation, the chemistry and material flow, and when available the administrative setting leading up to the time of the accident. Information on the power history, energy release, consequences, and causes are also included when available. For those accidents that occurred in process plants, two new sections have been included in this revision. The first is an analysis and summary of the physical and neutronic features of the chain reacting systems. The second is a compilation of observations and lessons learned. Excursions associated with large power reactors are not included in this report.

Thomas P. McLaughlin; Shean P. Monahan; Norman L. Pruvost; Vladimir V. Frolov; Boris G. Ryazanov; Victor I. Sviridov

2000-05-01T23:59:59.000Z

189

Storage Ring Revised March 1994  

E-Print Network [OSTI]

.5.4.3. Ground Plane Epoxy #12; 136 Storage Ring #12; Storage Ring 137 8.5.5. Coil Winding Process #12; 138Chapter 8. Storage Ring Revised March 1994 8.1. Introduction -- 107 -- #12; 108 Storage Ring 8.2. Magnetic Design and Field Calculations 8.2.1. Conceptual Approach #12; Storage Ring 109 #12; 110 Storage

Brookhaven National Laboratory - Experiment 821

190

Accident progression event tree analysis for postulated severe accidents at N Reactor  

SciTech Connect (OSTI)

A Level II/III probabilistic risk assessment (PRA) has been performed for N Reactor, a Department of Energy (DOE) production reactor located on the Hanford reservation in Washington. The accident progression analysis documented in this report determines how core damage accidents identified in the Level I PRA progress from fuel damage to confinement response and potential releases the environment. The objectives of the study are to generate accident progression data for the Level II/III PRA source term model and to identify changes that could improve plant response under accident conditions. The scope of the analysis is comprehensive, excluding only sabotage and operator errors of commission. State-of-the-art methodology is employed based largely on the methods developed by Sandia for the US Nuclear Regulatory Commission in support of the NUREG-1150 study. The accident progression model allows complex interactions and dependencies between systems to be explicitly considered. Latin Hypecube sampling was used to assess the phenomenological and systemic uncertainties associated with the primary and confinement system responses to the core damage accident. The results of the analysis show that the N Reactor confinement concept provides significant radiological protection for most of the accident progression pathways studied.

Wyss, G.D.; Camp, A.L.; Miller, L.A.; Dingman, S.E.; Kunsman, D.M. (Sandia National Labs., Albuquerque, NM (USA)); Medford, G.T. (Science Applications International Corp., Albuquerque, NM (USA))

1990-06-01T23:59:59.000Z

191

Lessons learned from early criticality accidents  

SciTech Connect (OSTI)

Four accidents involving the approach to criticality occurred during the period July, 1945, through May, 1996. These have been described in the format of the OPERATING EXPERIENCE WEEKLY SUMMARY which is distributed by the Office of Nuclear and Facility Safety. Although the lessons learned have been incorporated in standards, codes, and formal procedures during the last fifty years, this is their first presentation in this format. It is particularly appropriate that they be presented in the forum of the Nuclear Criticality Technology Safety Project Workshop closest to the fiftieth anniversary of the last of the four accidents, and that which was most instrumental in demonstrating the need to incorporate lessons learned.

Malenfant, R.E.

1996-06-01T23:59:59.000Z

192

LESSONS LEARNED FROM A RECENT LASER ACCIDENT  

SciTech Connect (OSTI)

A graduate student received a laser eye injury from a femtosecond Ti:sapphire laser beam while adjusting a polarizing beam splitter optic. The direct causes for the accident included failure to follow safe alignment practices and failure to wear the required laser eyewear protection. Underlying root causes included inadequate on-the-job training and supervision, inadequate adherence to requirements, and inadequate appreciation for dimly visible beams outside the range of 400-700nm. This paper describes how the accident occurred, discusses causes and lessons learned, and describes corrective actions being taken.

Woods, Michael; /SLAC

2011-01-26T23:59:59.000Z

193

Electric utility applications of hydrogen energy storage systems  

SciTech Connect (OSTI)

This report examines the capital cost associated with various energy storage systems that have been installed for electric utility application. The storage systems considered in this study are Battery Energy Storage (BES), Superconducting Magnetic Energy Storage (SMES) and Flywheel Energy Storage (FES). The report also projects the cost reductions that may be anticipated as these technologies come down the learning curve. This data will serve as a base-line for comparing the cost-effectiveness of hydrogen energy storage (HES) systems in the electric utility sector. Since pumped hydro or compressed air energy storage (CAES) is not particularly suitable for distributed storage, they are not considered in this report. There are no comparable HES systems in existence in the electric utility sector. However, there are numerous studies that have assessed the current and projected cost of hydrogen energy storage system. This report uses such data to compare the cost of HES systems with that of other storage systems in order to draw some conclusions as to the applications and the cost-effectiveness of hydrogen as a electricity storage alternative.

Swaminathan, S.; Sen, R.K.

1997-10-15T23:59:59.000Z

194

Type B Accident Investigation of the July 14, 2005, Americium Contamination  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy Usage »of EnergyTheTwo New Energy Storage SafetyPersonalin TA-48,Accident at the

195

Type B Accident Investigation of the July 31, 2006, Fall from Ladder  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy Usage »of EnergyTheTwo New Energy Storage SafetyPersonalin TA-48,Accident at

196

Type B Accident Investigation of the October 9, 2008 Employee Injured when  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy Usage »of EnergyTheTwo New Energy Storage SafetyPersonalin TA-48,Accident

197

Type B Accident Investigation of the Savannah River Site Arc Flash Burn  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy Usage »of EnergyTheTwo New Energy Storage SafetyPersonalin TA-48,AccidentInjury

198

Type B Accident Investigation on the February 17, 2004, Personal Injury  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy Usage »of EnergyTheTwo New Energy Storage SafetyPersonalinAccident, Bettis Atomic

199

Type B Accident Investigation on the June 27, 2002, Exothermic Metal  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy Usage »of EnergyTheTwo New Energy Storage SafetyPersonalinAccident, Bettis

200

The temporal effect of traffic violations and accidents on accident occurrence  

E-Print Network [OSTI]

, in the final analysis, will make the greatest use of such research. Traffic Research Time Frame Requirements The largest statistical problem in using accident and violation conviction data is the fact that accidents are rare events, (O'Neall 1967). She... assumed to have resulted from the crash and are not included. TABLE 2 Distribution of Student Crashes Vs. Driving Convictions* Number of Accidents 1 2 2 O I M M g M M A 4109 (85. 4%) 1578 (79. 3X) 555 (72. 6%) 224 (71. 6%) 155 (63. 5...

McKemie, Martha Susan

1979-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "line accidents storage" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Spent Fuel Storage Operational Experience With Increased Crud Activities  

SciTech Connect (OSTI)

A significant part of the electricity production in Hungary is provided by 4 units of VVER 440 nuclear reactors at the Paks Nuclear Power Plant. Interim dry storage of the spent fuel assemblies that are generated during the operation of the reactors is provided in a Modular Vault Dry Storage (MVDS) facility that is located in the immediate vicinity of the Paks Nuclear Power Plant. The storage capacity of the MVDS is being continuously extended in accordance with spent the fuel production rate from the four reactors. An accident occurred at unit 2 of the Paks Nuclear Power Plant in 2003, when thirty irradiated fuel assemblies were damaged during a cleaning process. The fuel assemblies were not inside the reactor at the time of the accident, but in a separate tank within the adjacent fuel decay pool. As a result of this accident, contamination from the badly damaged fuel assemblies spread to the decay pool water and also became deposited onto the surface of (hermetic) spent fuel assemblies within the decay pool. Therefore, it was necessary to review the design basis of the MVDS and assess the effects of taking the surface contaminated spent fuel assemblies into dry storage. The contaminated hermetic assemblies were transferred from the unit 2 pool to the interim storage facility in the period between 2005 and 2007. Continuous inspection and measurement was carried out during the transfer of these fuel assemblies. On the basis of the design assessments and measurement of the results during the fuel transfer, it was shown that radiological activity values increased due to the consequences of the accident but that these levels did not compromise the release and radiation dose limits for the storage facility. The aim of this paper is to show the effect on the operation of the MVDS interim storage facility as a result of the increased activity values due to the accident that occurred in 2003, as well as to describe the measurements that were taken, and their results and experience gained. In summary: On the basis of the design assessments and measurement of the results during the fuel transfer operations, it was shown that radiological activity values increased due to the consequences of the 2003 accident but that these levels did not compromise the release and dose limits for the fuel storage facility. In the environment there was no measurable radioactivity as a result of the operation of the Paks ISFSI. The exposure of the surrounding population was calculated on measured releases and meteorological data. The calculations show negligible doses until 2004. Due to the increased surface contamination on the spent fuel assemblies the dose rate increased almost 5 times compared to the least annual value, but still less then 0.01 percent of the allowed dose restriction. (authors)

Barnabas, I. [Public Agency for Radioactive Waste, Management (PURAM) (Hungary); Eigner, T. [Paks NPP (Hungary); Gresits, I. [Technical University of Budapest (Hungary); Ordagh, M. [SOM System Llc, (Hungary)

2008-07-01T23:59:59.000Z

202

Arrival condition of spent fuel after storage, handling, and transportation  

SciTech Connect (OSTI)

This report presents the results of a study conducted to determine the probable arrival condition of spent light-water reactor (LWR) fuel after handling and interim storage in spent fuel storage pools and subsequent handling and accident-free transport operations under normal or slightly abnormal conditions. The objective of this study was to provide information on the expected condition of spent LWR fuel upon arrival at interim storage or fuel reprocessing facilities or at disposal facilities if the fuel is declared a waste. Results of a literature survey and data evaluation effort are discussed. Preliminary threshold limits for storing, handling, and transporting unconsolidated spent LWR fuel are presented. The difficulty in trying to anticipate the amount of corrosion products (crud) that may be on spent fuel in future shipments is also discussed, and potential areas for future work are listed. 95 references, 3 figures, 17 tables.

Bailey, W.J.; Pankaskie, P.J.; Langstaff, D.C.; Gilbert, E.R.; Rising, K.H.; Schreiber, R.E.

1982-11-01T23:59:59.000Z

203

Type B Accident Investigation, Response to the 24 Command Wildland...  

Broader source: Energy.gov (indexed) [DOE]

Type B Accident Investigation, Response to the 24 Command Wildland Fire on the Hanford Site, June 27-July 1, 2000 Type B Accident Investigation, Response to the 24 Command Wildland...

204

E-Print Network 3.0 - accidents retroperspektive individuelle...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

de Montral Collection: Engineering 11 U of L Campus AccidentIncident Report Automobile AccidentIncident Page 1 of 2 University of Lethbridge Summary: U of L Campus...

205

E-Print Network 3.0 - accident soderzhanie korotkozhivushchikh...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Page: << < 1 2 3 4 5 > >> 1 U of L Campus AccidentIncident Report Automobile AccidentIncident Page 1 of 2 University of Lethbridge Summary: U of L Campus...

206

Hydrogen storage with titanium-functionalized graphene  

E-Print Network [OSTI]

We report on hydrogen adsorption and desorption on titanium-covered graphene in order to test theoretical proposals to use of graphene functionalized with metal atoms for hydrogen storage. At room temperature titanium islands grow with an average diameter of about 10 nm. Samples were then loaded with hydrogen, and its desorption kinetics was studied by thermal desorption spectroscopy. We observe the desorption of hydrogen in the temperature range between 400K and 700 K. Our results demonstrate the stability of hydrogen binding at room temperature and show that hydrogen desorbs at moderate temperatures in line with what required for practical hydrogen-storage applications.

Mashoff, Torge; Tanabe, Shinichi; Hibino, Hiroki; Beltram, Fabio; Heun, Stefan

2013-01-01T23:59:59.000Z

207

L'accident la centrale nuclaire de Quelques explications scientifiques  

E-Print Network [OSTI]

L'accident à la centrale nucléaire de Fukushima Quelques explications scientifiques G. Marleau, J´eal, 18 mars 2011 L'accident `a la centrale nucl´eaire de Fukushima ­ 1/29 Accident de Fukushima 1 Contenu. Commentaires finaux. ´Ecole Polytechnique de Montr´eal, 18 mars 2011 L'accident `a la centrale nucl´eaire de

Skorobogatiy, Maksim

208

Technical Safety Requirements for the Waste Storage Facilities  

SciTech Connect (OSTI)

This document contains Technical Safety Requirements (TSR) for the Radioactive and Hazardous Waste Management (RHWM) WASTE STORAGE FACILITIES, which include Area 625 (A625) and the Decontamination and Waste Treatment Facility (DWTF) Storage Area at Lawrence Livermore National Laboratory (LLNL). The TSRs constitute requirements regarding the safe operation of the WASTE STORAGE FACILITIES. These TSRs are derived from the 'Documented Safety Analysis for the Waste Storage Facilities' (DSA) (LLNL 2008). The analysis presented therein determined that the WASTE STORAGE FACILITIES are low-chemical hazard, Hazard Category 2 non-reactor nuclear facilities. The TSRs consist primarily of inventory limits and controls to preserve the underlying assumptions in the hazard and accident analyses. Further, appropriate commitments to safety programs are presented in the administrative controls sections of the TSRs. The WASTE STORAGE FACILITIES are used by RHWM to handle and store hazardous waste, TRANSURANIC (TRU) WASTE, LOW-LEVEL WASTE (LLW), mixed waste, California combined waste, nonhazardous industrial waste, and conditionally accepted waste generated at LLNL as well as small amounts from other U.S. Department of Energy (DOE) facilities, as described in the DSA. In addition, several minor treatments (e.g., size reduction and decontamination) are carried out in these facilities. The WASTE STORAGE FACILITIES are located in two portions of the LLNL main site. A625 is located in the southeast quadrant of LLNL. The A625 fenceline is approximately 225 m west of Greenville Road. The DWTF Storage Area, which includes Building 693 (B693), Building 696 Radioactive Waste Storage Area (B696R), and associated yard areas and storage areas within the yard, is located in the northeast quadrant of LLNL in the DWTF complex. The DWTF Storage Area fenceline is approximately 90 m west of Greenville Road. A625 and the DWTF Storage Area are subdivided into various facilities and storage areas, consisting of buildings, tents, other structures, and open areas as described in Chapter 2 of the DSA. Section 2.4 of the DSA provides an overview of the buildings, structures, and areas in the WASTE STORAGE FACILITIES, including construction details such as basic floor plans, equipment layout, construction materials, controlling dimensions, and dimensions significant to the hazard and accident analysis. Chapter 5 of the DSA documents the derivation of the TSRs and develops the operational limits that protect the safety envelope defined for the WASTE STORAGE FACILITIES. This TSR document is applicable to the handling, storage, and treatment of hazardous waste, TRU WASTE, LLW, mixed waste, California combined waste, nonhazardous industrial waste, and conditionally accepted waste received or generated in the WASTE STORAGE FACILITIES. Section 5, Administrative Controls, contains those Administrative Controls necessary to ensure safe operation of the WASTE STORAGE FACILITIES. Programmatic Administrative Controls are in Section 5.6.

Laycak, D T

2008-06-16T23:59:59.000Z

209

Underground gas storage in New York State: A historical perspective  

SciTech Connect (OSTI)

New York State has a long history of underground gas storage activity that began with conversion of the Zoar gas field into a storage reservoir in 1916, the first in the United States. By 1961 another fourteen storage fields were developed and seven more were added between 1970 and 1991. All twenty-two operating storage reservoirs of New York were converted from depleted gas fields and are of low-deliverability, base-load type. Nineteen of these are in sandstone reservoirs of the Lower Silurian Medina Group and the Lower Devonian Oriskany Formation and three in limestone reservoirs are located in the gas producing areas of southwestern New York and are linked to the major interstate transmission lines. Recent developments in underground gas storage in New York involve mainly carbonate-reef and bedded salt-cavern storage facilities, one in Stuben County and the other in Cayuga County, are expected to begin operation by the 1996-1997 heating season.

Friedman, G.M.; Sarwar, G.; Bass, J.P. [Brooklyn College of the City Univ., Troy, NY (United States)] [and others

1995-09-01T23:59:59.000Z

210

Policy 3240 Accident Review Committee 1 OLD DOMINION UNIVERSITY  

E-Print Network [OSTI]

Policy 3240 ­ Accident Review Committee 1 OLD DOMINION UNIVERSITY University Policy Policy #3240 ACCIDENT REVIEW COMMITTEE Responsible Oversight Executive: Vice President for Administration and Finance vehicles for which ODU is responsible and the University's Accident Review Committee in the review

211

HEALTH AND ACCIDENT INSURANCE VERIFICATION ******************** TO BE COMPLETED BY STUDENT ********************  

E-Print Network [OSTI]

HEALTH AND ACCIDENT INSURANCE VERIFICATION ******************** TO BE COMPLETED BY STUDENT Services Office of the university of Florida requires that s/he has health and accident insurance with your participating in study abroad activate hold health and accident insurance with a minimum coverage of $200

Jawitz, James W.

212

For the mathematically accident prone student W Stephen Wilson  

E-Print Network [OSTI]

For the mathematically accident prone student by W Stephen Wilson Many students make the claim answers, whatever the reason for the incorrect answer. Students who are accident prone in mathematics. This is generally good advice for anyone, not just the accident prone. As problems get more and more complicated

Wilson, W. Stephen

213

A New Accident Model for Engineering Safer Systems Nancy Leveson  

E-Print Network [OSTI]

A New Accident Model for Engineering Safer Systems Nancy Leveson Aeronautics and Astronautics Dept changes in the etiology of accidents and is creating a need for changes in the explanatory mechanisms used. We need better and less subjective understanding of why accidents occur and how to prevent future

Leveson, Nancy

214

Structure Evolution of Dynamic Bayesian Network for Traffic Accident Detection  

E-Print Network [OSTI]

Structure Evolution of Dynamic Bayesian Network for Traffic Accident Detection Ju-Won Hwang, Young and the accuracy in a domain of the traffic accident detection. Keywords-structure of dynamic Bayesian network; Bayesian network, evolution I. INTRODUCTION Every year, traffic congestion and traffic accidents have been

Cho, Sung-Bae

215

COMPARING THE IDENTIFICATION OF RECOMMENDATIONS BY DIFFERENT ACCIDENT  

E-Print Network [OSTI]

1 COMPARING THE IDENTIFICATION OF RECOMMENDATIONS BY DIFFERENT ACCIDENT INVESTIGATORS USING Langley Research Center ,100 NASA Road / Mail Stop 130, Hampton VA 23681-2199 USA. Keywords: Accident Investigation, SOL, Root Cause Analysis. Abstract Accident reports play a key role in the safety of complex

Johnson, Chris

216

Annexes 195 13.11 Fecal Accident Plan  

E-Print Network [OSTI]

Annexes 195 13.11 Fecal Accident Plan Residual and Contact Time Table Loose Stool Chlorine Residual and Contact Time Table Formed Stool Chlorine Residual mg/l or PPM Time Minutes 2 25 Sample Fecal Accident/spa at three locations to ensure proper mixing. Record fecal accidents in maintenance logs. Follow normal pool

217

A STAMP ANALYSIS OF THE LEX COMAIR 5191 ACCIDENT  

E-Print Network [OSTI]

A STAMP ANALYSIS OF THE LEX COMAIR 5191 ACCIDENT Thesis submitted in partial fulfilment;A STAMP ANALYSIS OF THE LEX COMAIR 5191 ACCIDENT Paul S. Nelson 2 #12;Acknowledgements I want pressure" (Dekker, 2007, p. 131) A new, holistic systems perspective, accident model is used for analysis

Leveson, Nancy

218

Accident/Injury Reporting, Investigation, & Basic First Aid Plan  

E-Print Network [OSTI]

Accident/Injury Reporting, Investigation, & Basic First Aid Plan Environmental Health, Safety of accidents/injuries at Stephen F. Austin State University (SFASU) and provides basic first aid practices. It is designed to help reduce injuries by reducing unsafe or hazardous conditions and discouraging accident

Long, Nicholas

219

COLUMBIA UNIVERSITY Departmental Accident Report Form for Worker's Compensation Benefits  

E-Print Network [OSTI]

COLUMBIA UNIVERSITY Departmental Accident Report Form for Worker's Compensation Benefits EMPLOYEE___________ ACCIDENT DATA (to be completed by employee) Date of Injury_____/_____/____ Time of Injury the employee How did the injury or illness occur? (Describe fully the events that caused the accident) Describe

Jia, Songtao

220

DEVELOPMENT AND USE OF A DIRECTORY OF ACCIDENT DATABASES INVOLVING  

E-Print Network [OSTI]

DEVELOPMENT AND USE OF A DIRECTORY OF ACCIDENT DATABASES INVOLVING CHEMICALS J.P.Pineau Institut from end-users of accident data who need validated data for dealing with risk assessment in which Data collection Data analysis, Reliability, Uncertainty, Accident, Hazardous material, Risk analysis

Paris-Sud XI, Université de

Note: This page contains sample records for the topic "line accidents storage" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

CLAIMANT AUTO ACCIDENT REPORT For Completion by Driver  

E-Print Network [OSTI]

CLAIMANT AUTO ACCIDENT REPORT For Completion by Driver D E P A R T M E N T O F A D M I N I S T R Address City State Zip For what purpose was car being used at time of accident? Has damage been repaired signals did you give? Other Driver? Who investigated? Who Cited and Why? Describe Accident CONTINUE

Tullos, Desiree

222

Scar sarcoidosis with a 50-year interval between an accident and onset of lesions  

E-Print Network [OSTI]

year interval between an accident and onset of lesions Hiramreported in scars of accidents [ 2 ], herpes zoster [ 1 ],

Jr, Hiram Larangeira de Almeida; Fiss, Roberto Coswig

2008-01-01T23:59:59.000Z

223

SL-1 Accident Briefing Report - 1961 Nuclear Reactor Meltdown Educational Documentary  

SciTech Connect (OSTI)

U.S. Atomic Energy Commission (Idaho Operations Office) briefing about the SL-1 Nuclear Reactor Meltdown. The SL-1, or Stationary Low-Power Reactor Number One, was a United States Army experimental nuclear power reactor which underwent a steam explosion and meltdown on January 3, 1961, killing its three operators. The direct cause was the improper withdrawal of the central control rod, responsible for absorbing neutrons in the reactor core. The event is the only known fatal reactor accident in the United States. The accident released about 80 curies (3.0 TBq) of Iodine-131, which was not considered significant due to its location in a remote desert of Idaho. About 1,100 curies (41 TBq) of fission products were released into the atmosphere. The facility, located at the National Reactor Testing Station approximately 40 miles (64 km) west of Idaho Falls, Idaho, was part of the Army Nuclear Power Program and was known as the Argonne Low Power Reactor (ALPR) during its design and build phase. It was intended to provide electrical power and heat for small, remote military facilities, such as radar sites near the Arctic Circle, and those in the DEW Line. The design power was 3 MW (thermal). Operating power was 200 kW electrical and 400 kW thermal for space heating. In the accident, the core power level reached nearly 20 GW in just four milliseconds, precipitating the reactor accident and steam explosion.

None

2013-09-25T23:59:59.000Z

224

SL-1 Accident Briefing Report - 1961 Nuclear Reactor Meltdown Educational Documentary  

ScienceCinema (OSTI)

U.S. Atomic Energy Commission (Idaho Operations Office) briefing about the SL-1 Nuclear Reactor Meltdown. The SL-1, or Stationary Low-Power Reactor Number One, was a United States Army experimental nuclear power reactor which underwent a steam explosion and meltdown on January 3, 1961, killing its three operators. The direct cause was the improper withdrawal of the central control rod, responsible for absorbing neutrons in the reactor core. The event is the only known fatal reactor accident in the United States. The accident released about 80 curies (3.0 TBq) of Iodine-131, which was not considered significant due to its location in a remote desert of Idaho. About 1,100 curies (41 TBq) of fission products were released into the atmosphere. The facility, located at the National Reactor Testing Station approximately 40 miles (64 km) west of Idaho Falls, Idaho, was part of the Army Nuclear Power Program and was known as the Argonne Low Power Reactor (ALPR) during its design and build phase. It was intended to provide electrical power and heat for small, remote military facilities, such as radar sites near the Arctic Circle, and those in the DEW Line. The design power was 3 MW (thermal). Operating power was 200 kW electrical and 400 kW thermal for space heating. In the accident, the core power level reached nearly 20 GW in just four milliseconds, precipitating the reactor accident and steam explosion.

None

2014-03-11T23:59:59.000Z

225

Heat storage duration  

SciTech Connect (OSTI)

Both the amount and duration of heat storage in massive elements of a passive building are investigated. Data taken for one full winter in the Balcomb solar home are analyzed with the aid of sub-system simulation models. Heat storage duration is tallied into one-day intervals. Heat storage location is discussed and related to overall energy flows. The results are interpreted and conclusions drawn.

Balcomb, J.D.

1981-01-01T23:59:59.000Z

226

Building Trust in Storage Outsourcing: Secure Accounting of Utility Storage  

E-Print Network [OSTI]

Building Trust in Storage Outsourcing: Secure Accounting of Utility Storage Vishal Kher Yongdae Kim players. While storage outsourcing is cost-effective, many companies are hesitating to outsource their storage due to security concerns. The success of storage outsourcing is highly dependent on how well

Minnesota, University of

227

SUPERCONDUCTING MAGNETIC ENERGY STORAGE  

E-Print Network [OSTI]

and R. W . BOOIll, "Superconductive Energy Storage Inducand H. A. Peterson, "Superconductive E nergy S torage forMeeting, Janua ry N. Mohan, "Superconductive Energy S torage

Hassenzahl, W.

2011-01-01T23:59:59.000Z

228

Energy Storage and Transportation  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Storage and Transportation INL Logo Search Skip Navigation Links Home Newsroom About INL Careers Research Programs Energy and Environment National and Homeland Security New Energy...

229

HEATS: Thermal Energy Storage  

SciTech Connect (OSTI)

HEATS Project: The 15 projects that make up ARPA-Es HEATS program, short for High Energy Advanced Thermal Storage, seek to develop revolutionary, cost-effective ways to store thermal energy. HEATS focuses on 3 specific areas: 1) developing high-temperature solar thermal energy storage capable of cost-effectively delivering electricity around the clock and thermal energy storage for nuclear power plants capable of cost-effectively meeting peak demand, 2) creating synthetic fuel efficiently from sunlight by converting sunlight into heat, and 3) using thermal energy storage to improve the driving range of electric vehicles (EVs) and also enable thermal management of internal combustion engine vehicles.

None

2012-01-01T23:59:59.000Z

230

SUPERCONDUCTING MAGNETIC ENERGY STORAGE  

E-Print Network [OSTI]

Design of the BPA Superconducting 30-MJ Energy Storagefor a Utility Scale Superconducting Magnetic Energy Storagefor a Lnrge Scale Superconducting Magnetic Energy Storage

Hassenzahl, W.

2011-01-01T23:59:59.000Z

231

1 BASEMENT STORAGE 3 MICROSCOPE LAB  

E-Print Network [OSTI]

MECHANICAL ROOM 13 SHOWER ROOMSAIR COMPRESSOR 14 NITROGEN STORAGE 15 DIESEL FUEL STORAGE 16 ACID NEUT. TANK 17a ACID STORAGE 17b INERT GAS STORAGE 17c BASE STORAGE 17d SHELVES STORAGE * KNOCK-OUT PANEL

Boonstra, Rudy

232

REAC/TS Radiation Accident Registry: An Overview  

SciTech Connect (OSTI)

Over the past four years, REAC/TS has presented a number of case reports from its Radiation Accident Registry. Victims of radiological or nuclear incidents must meet certain dose criteria for an incident to be categorized as an accident and be included in the registry. Although the greatest numbers of accidents in the United States that have been entered into the registry involve radiation devices, the greater percentage of serious accidents have involved sealed sources of one kind or another. But if one looks at the kinds of accident scenarios that have resulted in extreme consequence, i.e., death, the greater share of deaths has occurred in medical settings.

Doran M. Christensen, DO, REAC /TS Associate Director and Staff Physician Becky Murdock, REAC/TS Registry and Health Physics Technician

2012-12-12T23:59:59.000Z

233

The Analysis of a Friendly Fire Accident using a Systems Model of Accidents* N.G. Leveson, Ph.D.; Massachusetts Institute of Technology; Cambridge, Massachusetts  

E-Print Network [OSTI]

The Analysis of a Friendly Fire Accident using a Systems Model of Accidents* N.G. Leveson, Ph.D.; University of Victoria; Victoria, Canada Keywords: accident analysis, accident models Abstract In another paper presented at this conference, Leveson describes a new accident model based on systems theory [2

Leveson, Nancy

234

HOW TO REPORT AN ACCIDENT, INCIDENT OR NEAR MISS 1. Notify your supervisor or lab manager as soon as possible of your accident, incident, or  

E-Print Network [OSTI]

HOW TO REPORT AN ACCIDENT, INCIDENT OR NEAR MISS 1. Notify your supervisor or lab manager as soon as possible of your accident, incident, or near miss. 2. Fill out the online accident report (OARS) form://www.ehs.washington.edu/ohsoars/index.shtm. The supervisor, lab manager, or person who had the accident can fill out the form. 3. For any serious accidents

Borenstein, Elhanan

235

Evaluation Metrics Applied to Accident Tolerant Fuels  

SciTech Connect (OSTI)

The safe, reliable, and economic operation of the nations nuclear power reactor fleet has always been a top priority for the United States nuclear industry. Continual improvement of technology, including advanced materials and nuclear fuels, remains central to the industrys success. Decades of research combined with continual operation have produced steady advancements in technology and have yielded an extensive base of data, experience, and knowledge on light water reactor (LWR) fuel performance under both normal and accident conditions. One of the current missions of the U.S. Department of Energys (DOE) Office of Nuclear Energy (NE) is to develop nuclear fuels and claddings with enhanced accident tolerance for use in the current fleet of commercial LWRs or in reactor concepts with design certifications (GEN-III+). Accident tolerance became a focus within advanced LWR research upon direction from Congress following the 2011 Great East Japan Earthquake, resulting tsunami, and subsequent damage to the Fukushima Daiichi nuclear power plant complex. The overall goal of ATF development is to identify alternative fuel system technologies to further enhance the safety, competitiveness and economics of commercial nuclear power. Enhanced accident tolerant fuels would endure loss of active cooling in the reactor core for a considerably longer period of time than the current fuel system while maintaining or improving performance during normal operations. The U.S. DOE is supporting multiple teams to investigate a number of technologies that may improve fuel system response and behavior in accident conditions, with team leadership provided by DOE national laboratories, universities, and the nuclear industry. Concepts under consideration offer both evolutionary and revolutionary changes to the current nuclear fuel system. Mature concepts will be tested in the Advanced Test Reactor at Idaho National Laboratory beginning in Summer 2014 with additional concepts being readied for insertion in fiscal year 2015. This paper provides a brief summary of the proposed evaluation process that would be used to evaluate and prioritize the candidate accident tolerant fuel concepts currently under development.

Shannon M. Bragg-Sitton; Jon Carmack; Frank Goldner

2014-10-01T23:59:59.000Z

236

THERMAL ENERGY STORAGE IN AQUIFERS WORKSHOP  

E-Print Network [OSTI]

The Legalization of Ground Water Storage," Water Resourcesprocedure to above ground storage of heat in huge insulatedthis project is heat storage in ground-water regions storage

Authors, Various

2011-01-01T23:59:59.000Z

237

Sandia National Laboratories: Batteries & Energy Storage Publications  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

StorageBatteries & Energy Storage Publications Batteries & Energy Storage Publications Batteries & Energy Storage Fact Sheets Achieving Higher Energy Density in Flow Batteries at...

238

Energy storage capacitors  

SciTech Connect (OSTI)

The properties of capacitors are reviewed in general, including dielectrics, induced polarization, and permanent polarization. Then capacitance characteristics are discussed and modelled. These include temperature range, voltage, equivalent series resistance, capacitive reactance, impedance, dissipation factor, humidity and frequency effects, storage temperature and time, and lifetime. Applications of energy storage capacitors are then discussed. (LEW)

Sarjeant, W.J.

1984-01-01T23:59:59.000Z

239

Severe accident approach - final report. Evaluation of design measures for severe accident prevention and consequence mitigation.  

SciTech Connect (OSTI)

An important goal of the US DOE reactor development program is to conceptualize advanced safety design features for a demonstration Sodium Fast Reactor (SFR). The treatment of severe accidents is one of the key safety issues in the design approach for advanced SFR systems. It is necessary to develop an in-depth understanding of the risk of severe accidents for the SFR so that appropriate risk management measures can be implemented early in the design process. This report presents the results of a review of the SFR features and phenomena that directly influence the sequence of events during a postulated severe accident. The report identifies the safety features used or proposed for various SFR designs in the US and worldwide for the prevention and/or mitigation of Core Disruptive Accidents (CDA). The report provides an overview of the current SFR safety approaches and the role of severe accidents. Mutual understanding of these design features and safety approaches is necessary for future collaborations between the US and its international partners as part of the GEN IV program. The report also reviews the basis for an integrated safety approach to severe accidents for the SFR that reflects the safety design knowledge gained in the US during the Advanced Liquid Metal Reactor (ALMR) and Integral Fast Reactor (IFR) programs. This approach relies on inherent reactor and plant safety performance characteristics to provide additional safety margins. The goal of this approach is to prevent development of severe accident conditions, even in the event of initiators with safety system failures previously recognized to lead directly to reactor damage.

Tentner, A. M.; Parma, E.; Wei, T.; Wigeland, R.; Nuclear Engineering Division; SNL; INL

2010-03-01T23:59:59.000Z

240

Gas Storage Technology Consortium  

SciTech Connect (OSTI)

Gas storage is a critical element in the natural gas industry. Producers, transmission & distribution companies, marketers, and end users all benefit directly from the load balancing function of storage. The unbundling process has fundamentally changed the way storage is used and valued. As an unbundled service, the value of storage is being recovered at rates that reflect its value. Moreover, the marketplace has differentiated between various types of storage services, and has increasingly rewarded flexibility, safety, and reliability. The size of the natural gas market has increased and is projected to continue to increase towards 30 trillion cubic feet (TCF) over the next 10 to 15 years. Much of this increase is projected to come from electric generation, particularly peaking units. Gas storage, particularly the flexible services that are most suited to electric loads, is critical in meeting the needs of these new markets. In order to address the gas storage needs of the natural gas industry, an industry-driven consortium was created--the Gas Storage Technology Consortium (GSTC). The objective of the GSTC is to provide a means to accomplish industry-driven research and development designed to enhance operational flexibility and deliverability of the Nation's gas storage system, and provide a cost effective, safe, and reliable supply of natural gas to meet domestic demand. This report addresses the activities for the quarterly period of April 1 to June 30, 2006. Key activities during this time period include: (1) Develop and process subcontract agreements for the eight projects selected for cofunding at the February 2006 GSTC Meeting; (2) Compiling and distributing the three 2004 project final reports to the GSTC Full members; (3) Develop template, compile listserv, and draft first GSTC Insider online newsletter; (4) Continue membership recruitment; (5) Identify projects and finalize agenda for the fall GSTC/AGA Underground Storage Committee Technology Transfer Workshop in San Francisco, CA; and (6) Identify projects and prepare draft agenda for the fall GSTC Technology Transfer Workshop in Pittsburgh, PA.

Joel L. Morrison; Sharon L. Elder

2006-07-06T23:59:59.000Z

Note: This page contains sample records for the topic "line accidents storage" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

EPR Severe Accident Threats and Mitigation  

SciTech Connect (OSTI)

Despite the extremely low EPR core melt frequency, an improved defence-in-depth approach is applied in order to comply with the EPR safety target: no stringent countermeasures should be necessary outside the immediate plant vicinity like evacuation, relocation or food control other than the first harvest in case of a severe accident. Design provisions eliminate energetic events and maintain the containment integrity and leak-tightness during the entire course of the accident. Based on scenarios that cover a broad range of physical phenomena and which provide a sound envelope of boundary conditions associated with each containment challenge, a selection of representative loads has been done, for which mitigation measures have to cope with. This paper presents the main critical threats and the approach used to mitigate those threats. (authors)

Azarian, G. [Framatome ANP SAS, Tour Areva, Place de la Coupole 92084 Paris la Defense (France); Kursawe, H.M.; Nie, M.; Fischer, M.; Eyink, J. [Framatome ANP GmbH, Freyeslebenstrasse, 1, D-91058 Erlangen (Germany); Stoudt, R.H. [Framatome ANP Inc. - 3315 Old Forest Rd, Lynchburgh, VA 24501 (United States)

2004-07-01T23:59:59.000Z

242

US Department of Energy Chernobyl accident bibliography  

SciTech Connect (OSTI)

This bibliography has been prepared by Pacific Northwest Laboratory (PNL) for the US Department of Energy (DOE) Office of Health and Environmental Research to provide bibliographic information in a usable format for research studies relating to the Chernobyl nuclear accident that occurred in the Ukrainian Republic, USSR in 1986. This report is a product of the Chernobyl Database Management project. The purpose of this project is to produce and maintain an information system that is the official United States repository for information related to the accident. Two related products prepared for this project are the Chernobyl Bibliographic Search System (ChernoLit{trademark}) and the Chernobyl Radiological Measurements Information System (ChernoDat). This report supersedes the original release of Chernobyl Bibliography (Carr and Mahaffey, 1989). The original report included about 2200 references. Over 4500 references and an index of authors and editors are included in this report.

Kennedy, R.A.; Mahaffey, J.A.; Carr, F. Jr.

1992-04-01T23:59:59.000Z

243

Redesigning experimental equipment for determining peak pressure in a simulated tank car transfer line  

E-Print Network [OSTI]

When liquids are transported from storage tanks to tank cars, improper order of valve openings can cause pressure surges in the transfer line. To model this phenomenon and predict the peak pressures in such a transfer line, ...

Diaz, Richard A

2007-01-01T23:59:59.000Z

244

Lengthening the Storage Period of Cucumbers.  

E-Print Network [OSTI]

days compared with 7 days for those unwrapped. Under refrigera- tion unwrapped fruits remained in good condition about 10 days and those wrapped in M. T. Cellophane about 14 days. For home refrigerator storage, a ventilated pan was found...- tainer,-a refrigerator humidifier (covered and slightly ventilated enamel pan, standard equipment with a mechanical household refrigerator), or a shipping container (bushel size wood crate, half-bushel splint basket, or corrugated paper carton) lined...

Hawthorn, L. R. (Leslie Rushton); Whitacre, Jessie (Jessie Opal); Yarnell, S. H. (Sidney Howe)

1939-01-01T23:59:59.000Z

245

Accident and Off Normal Response and Recovery from Multi Canister Overpack (MCO) Processing Events  

SciTech Connect (OSTI)

In the process of removing spent nuclear fuel (SNF) from the K Basins through its subsequent packaging, drymg, transportation and storage steps, the SNF Project must be able to respond to all anticipated or foreseeable off-normal and accident events that may occur. Response procedures and recovery plans need to be in place, personnel training established and implemented to ensure the project will be capable of appropriate actions. To establish suitable project planning, these events must first be identified and analyzed for their expected impact to the project. This document assesses all off-normal and accident events for their potential cross-facility or Multi-Canister Overpack (MCO) process reversal impact. Table 1 provides the methodology for establishing the event planning level and these events are provided in Table 2 along with the general response and recovery planning. Accidents and off-normal events of the SNF Project have been evaluated and are identified in the appropriate facility Safety Analysis Report (SAR) or in the transportation Safety Analysis Report for Packaging (SARP). Hazards and accidents are summarized from these safety analyses and listed in separate tables for each facility and the transportation system in Appendix A, along with identified off-normal events. The tables identify the general response time required to ensure a stable state after the event, governing response documents, and the events with potential cross-facility or SNF process reversal impacts. The event closure is predicated on stable state response time, impact to operations and the mitigated annual occurrence frequency of the event as developed in the hazard analysis process.

ALDERMAN, C.A.

2000-09-19T23:59:59.000Z

246

Ultrafine hydrogen storage powders  

DOE Patents [OSTI]

A method of making hydrogen storage powder resistant to fracture in service involves forming a melt having the appropriate composition for the hydrogen storage material, such, for example, LaNi.sub.5 and other AB.sub.5 type materials and AB.sub.5+x materials, where x is from about -2.5 to about +2.5, including x=0, and the melt is gas atomized under conditions of melt temperature and atomizing gas pressure to form generally spherical powder particles. The hydrogen storage powder exhibits improved chemcial homogeneity as a result of rapid solidfication from the melt and small particle size that is more resistant to microcracking during hydrogen absorption/desorption cycling. A hydrogen storage component, such as an electrode for a battery or electrochemical fuel cell, made from the gas atomized hydrogen storage material is resistant to hydrogen degradation upon hydrogen absorption/desorption that occurs for example, during charging/discharging of a battery. Such hydrogen storage components can be made by consolidating and optionally sintering the gas atomized hydrogen storage powder or alternately by shaping the gas atomized powder and a suitable binder to a desired configuration in a mold or die.

Anderson, Iver E. (Ames, IA); Ellis, Timothy W. (Doylestown, PA); Pecharsky, Vitalij K. (Ames, IA); Ting, Jason (Ames, IA); Terpstra, Robert (Ames, IA); Bowman, Robert C. (La Mesa, CA); Witham, Charles K. (Pasadena, CA); Fultz, Brent T. (Pasadena, CA); Bugga, Ratnakumar V. (Arcadia, CA)

2000-06-13T23:59:59.000Z

247

Gas Storage Technology Consortium  

SciTech Connect (OSTI)

Gas storage is a critical element in the natural gas industry. Producers, transmission and distribution companies, marketers, and end users all benefit directly from the load balancing function of storage. The unbundling process has fundamentally changed the way storage is used and valued. As an unbundled service, the value of storage is being recovered at rates that reflect its value. Moreover, the marketplace has differentiated between various types of storage services and has increasingly rewarded flexibility, safety, and reliability. The size of the natural gas market has increased and is projected to continue to increase towards 30 trillion cubic feet (TCF) over the next 10 to 15 years. Much of this increase is projected to come from electric generation, particularly peaking units. Gas storage, particularly the flexible services that are most suited to electric loads, is crucial in meeting the needs of these new markets. To address the gas storage needs of the natural gas industry, an industry-driven consortium was created - the Gas Storage Technology Consortium (GSTC). The objective of the GSTC is to provide a means to accomplish industry-driven research and development designed to enhance the operational flexibility and deliverability of the nation's gas storage system, and provide a cost-effective, safe, and reliable supply of natural gas to meet domestic demand. This report addresses the activities for the quarterly period of January1, 2007 through March 31, 2007. Key activities during this time period included: {lg_bullet} Drafting and distributing the 2007 RFP; {lg_bullet} Identifying and securing a meeting site for the GSTC 2007 Spring Proposal Meeting; {lg_bullet} Scheduling and participating in two (2) project mentoring conference calls; {lg_bullet} Conducting elections for four Executive Council seats; {lg_bullet} Collecting and compiling the 2005 GSTC Final Project Reports; and {lg_bullet} Outreach and communications.

Joel L. Morrison; Sharon L. Elder

2007-03-31T23:59:59.000Z

248

Gas Storage Technology Consortium  

SciTech Connect (OSTI)

Gas storage is a critical element in the natural gas industry. Producers, transmission and distribution companies, marketers, and end users all benefit directly from the load balancing function of storage. The unbundling process has fundamentally changed the way storage is used and valued. As an unbundled service, the value of storage is being recovered at rates that reflect its value. Moreover, the marketplace has differentiated between various types of storage services and has increasingly rewarded flexibility, safety, and reliability. The size of the natural gas market has increased and is projected to continue to increase towards 30 trillion cubic feet over the next 10 to 15 years. Much of this increase is projected to come from electric generation, particularly peaking units. Gas storage, particularly the flexible services that are most suited to electric loads, is crucial in meeting the needs of these new markets. To address the gas storage needs of the natural gas industry, an industry-driven consortium was created--the Gas Storage Technology Consortium (GSTC). The objective of the GSTC is to provide a means to accomplish industry-driven research and development designed to enhance the operational flexibility and deliverability of the nation's gas storage system, and provide a cost-effective, safe, and reliable supply of natural gas to meet domestic demand. This report addresses the activities for the quarterly period of April 1, 2007 through June 30, 2007. Key activities during this time period included: (1) Organizing and hosting the 2007 GSTC Spring Meeting; (2) Identifying the 2007 GSTC projects, issuing award or declination letters, and begin drafting subcontracts; (3) 2007 project mentoring teams identified; (4) New NETL Project Manager; (5) Preliminary planning for the 2007 GSTC Fall Meeting; (6) Collecting and compiling the 2005 GSTC project final reports; and (7) Outreach and communications.

Joel L. Morrison; Sharon L. Elder

2007-06-30T23:59:59.000Z

249

Gas Storage Technology Consortium  

SciTech Connect (OSTI)

Gas storage is a critical element in the natural gas industry. Producers, transmission and distribution companies, marketers, and end users all benefit directly from the load balancing function of storage. The unbundling process has fundamentally changed the way storage is used and valued. As an unbundled service, the value of storage is being recovered at rates that reflect its value. Moreover, the marketplace has differentiated between various types of storage services, and has increasingly rewarded flexibility, safety, and reliability. The size of the natural gas market has increased and is projected to continue to increase towards 30 trillion cubic feet (TCF) over the next 10 to 15 years. Much of this increase is projected to come from electric generation, particularly peaking units. Gas storage, particularly the flexible services that are most suited to electric loads, is critical in meeting the needs of these new markets. In order to address the gas storage needs of the natural gas industry, an industry driven consortium was created--the Gas Storage Technology Consortium (GSTC). The objective of the GSTC is to provide a means to accomplish industry-driven research and development designed to enhance operational flexibility and deliverability of the Nation's gas storage system, and provide a cost effective, safe, and reliable supply of natural gas to meet domestic demand. This report addresses the activities for the quarterly period of April 1, 2005 through June 30, 2005. During this time period efforts were directed toward (1) GSTC administration changes, (2) participating in the American Gas Association Operations Conference and Biennial Exhibition, (3) issuing a Request for Proposals (RFP) for proposal solicitation for funding, and (4) organizing the proposal selection meeting.

Joel Morrison

2005-09-14T23:59:59.000Z

250

Gas Storage Technology Consortium  

SciTech Connect (OSTI)

Gas storage is a critical element in the natural gas industry. Producers, transmission and distribution companies, marketers, and end users all benefit directly from the load balancing function of storage. The unbundling process has fundamentally changed the way storage is used and valued. As an unbundled service, the value of storage is being recovered at rates that reflect its value. Moreover, the marketplace has differentiated between various types of storage services, and has increasingly rewarded flexibility, safety, and reliability. The size of the natural gas market has increased and is projected to continue to increase towards 30 trillion cubic feet (TCF) over the next 10 to 15 years. Much of this increase is projected to come from electric generation, particularly peaking units. Gas storage, particularly the flexible services that are most suited to electric loads, is critical in meeting the needs of these new markets. In order to address the gas storage needs of the natural gas industry, an industry-driven consortium was created--the Gas Storage Technology Consortium (GSTC). The objective of the GSTC is to provide a means to accomplish industry-driven research and development designed to enhance operational flexibility and deliverability of the Nation's gas storage system, and provide a cost effective, safe, and reliable supply of natural gas to meet domestic demand. This report addresses the activities for the quarterly period of January 1, 2006 through March 31, 2006. Activities during this time period were: (1) Organize and host the 2006 Spring Meeting in San Diego, CA on February 21-22, 2006; (2) Award 8 projects for co-funding by GSTC for 2006; (3) New members recruitment; and (4) Improving communications.

Joel L. Morrison; Sharon L. Elder

2006-05-10T23:59:59.000Z

251

Energy storage benefits and market analysis handbook : a study for the DOE Energy Storage Systems Program.  

SciTech Connect (OSTI)

This Guide describes a high level, technology-neutral framework for assessing potential benefits from and economic market potential for energy storage used for electric utility-related applications. In the United States use of electricity storage to support and optimize transmission and distribution (T&D) services has been limited due to high storage system cost and by limited experience with storage system design and operation. Recent improvement of energy storage and power electronics technologies, coupled with changes in the electricity marketplace, indicate an era of expanding opportunity for electricity storage as a cost-effective electric resource. Some recent developments (in no particular order) that drive the opportunity include: (1) states adoption of the renewables portfolio standard (RPS), which may increased use of renewable generation with intermittent output, (2) financial risk leading to limited investment in new transmission capacity, coupled with increasing congestion on some transmission lines, (3) regional peaking generation capacity constraints, and (4) increasing emphasis on locational marginal pricing (LMP).

Eyer, James M. (Distributed Utility Associates, Livermore, CA); Corey, Garth P.; Iannucci, Joseph J., Jr. (Distributed Utility Associates, Livermore, CA)

2004-12-01T23:59:59.000Z

252

Multiported storage devices  

E-Print Network [OSTI]

In the past decade the demand for systems that can process and deliver massive amounts of storage has increased. Traditionally, large disk farms have been deployed by connecting several disks to a single server. A problem with this configuration...

Grande, Marcus Bryan

2012-06-07T23:59:59.000Z

253

Monitored Retrievable Storage Background  

Broader source: Energy.gov [DOE]

`The U.S. Government is seeking a site for a monitored retrievable storage facility (MRS). Employing proven technologies used in this country and abroad, the MRS will be an Integral part of the...

254

Gas Storage Act (Illinois)  

Broader source: Energy.gov [DOE]

Any corporation which is engaged in or desires to engage in, the distribution, transportation or storage of natural gas or manufactured gas, which gas, in whole or in part, is intended for ultimate...

255

SUPERCONDUCTING MAGNETIC ENERGY STORAGE  

E-Print Network [OSTI]

Encrgy Storage Plant" , EPRI Report EM-3457, April 1984. [4521st century. REFERENCES The EPRI Regional Systems preparedby J. J. Mulvaney, EPRI Report EPRI P-19S0SR, (1981). [2J O.

Hassenzahl, W.

2011-01-01T23:59:59.000Z

256

Hydrogen storage compositions  

DOE Patents [OSTI]

Compositions for hydrogen storage and methods of making such compositions employ an alloy that exhibits reversible formation/deformation of BH4- anions. The composition includes a ternary alloy including magnesium, boron and a metal and a metal hydride. The ternary alloy and the metal hydride are present in an amount sufficient to render the composition capable of hydrogen storage. The molar ratio of the metal to magnesium and boron in the alloy is such that the alloy exhibits reversible formation/deformation of BH4- anions. The hydrogen storage composition is prepared by combining magnesium, boron and a metal to prepare a ternary alloy and combining the ternary alloy with a metal hydride to form the hydrogen storage composition.

Li, Wen; Vajo, John J.; Cumberland, Robert W.; Liu, Ping

2011-04-19T23:59:59.000Z

257

Storage Tanks (Arkansas)  

Broader source: Energy.gov [DOE]

The Storage Tanks regulations is a set of rules and permit requirements mandated by the Arkansas Pollution and Ecology Commission in order to protect the public health and the lands and the waters...

258

A framework for the assessment of severe accident management strategies  

SciTech Connect (OSTI)

Severe accident management can be defined as the use of existing and/or altemative resources, systems and actors to prevent or mitigate a core-melt accident. For each accident sequence and each combination of severe accident management strategies, there may be several options available to the operator, and each involves phenomenological and operational considerations regarding uncertainty. Operational uncertainties include operator, system and instrumentation behavior during an accident. A framework based on decision trees and influence diagrams has been developed which incorporates such criteria as feasibility, effectiveness, and adverse effects, for evaluating potential severe accident management strategies. The framework is also capable of propagating both data and model uncertainty. It is applied to several potential strategies including PWR cavity flooding, BWR drywell flooding, PWR depressurization and PWR feed and bleed.

Kastenberg, W.E. [ed.; Apostolakis, G.; Dhir, V.K. [California Univ., Los Angeles, CA (United States). Dept. of Mechanical, Aerospace and Nuclear Engineering] [and others

1993-09-01T23:59:59.000Z

259

Application of NUREG-1150 methods and results to accident management  

SciTech Connect (OSTI)

The use of NUREG-1150 and similar Probabilistic Risk Assessments in NRC and industry risk management programs is discussed. Risk management'' is more comprehensive than the commonly used term accident management.'' Accident management includes strategies to prevent vessel breach, mitigate radionuclide releases from the reactor coolant system, and mitigate radionuclide releases to the environment. Risk management also addresses prevention of accident initiators, prevention of core damage, and implementation of effective emergency response procedures. The methods and results produced in NUREG-1150 provide a framework within which current risk management strategies can be evaluated, and future risk management programs can be developed and assessed. Examples of the use of the NUREG-1150 framework for identifying and evaluating risk management options are presented. All phases of risk management are discussed, with particular attention given to the early phases of accidents. Plans and methods for evaluating accident management strategies that have been identified in the NRC accident management program are discussed. 2 refs., 3 figs.

Dingman, S.; Sype, T.; Camp, A.; Maloney, K.

1990-01-01T23:59:59.000Z

260

Analog storage integrated circuit  

DOE Patents [OSTI]

A high speed data storage array is defined utilizing a unique cell design for high speed sampling of a rapidly changing signal. Each cell of the array includes two input gates between the signal input and a storage capacitor. The gates are controlled by a high speed row clock and low speed column clock so that the instantaneous analog value of the signal is only sampled and stored by each cell on coincidence of the two clocks. 6 figs.

Walker, J.T.; Larsen, R.S.; Shapiro, S.L.

1989-03-07T23:59:59.000Z

Note: This page contains sample records for the topic "line accidents storage" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Interdisciplinary Institute for Innovation Le risque d'accident nuclaire  

E-Print Network [OSTI]

Interdisciplinary Institute for Innovation Le risque d'accident nucléaire majeur : calcul et-27Feb2013 #12;Le risque d'accident nucléaire majeur : calcul et perception des probabilités1 François Lévêque L'accident de Fukushima Daiichi s'est produit le 11 mars 2011. Cette catastrophe nucléaire

Paris-Sud XI, Université de

262

LIQUID PROPANE GAS (LPG) STORAGE AREA BOILING LIQUID EXPANDING VAPOR EXPLOSION (BLEVE) ANALYSIS  

SciTech Connect (OSTI)

The PHA and the FHAs for the SWOC MDSA (HNF-14741) identified multiple accident scenarios in which vehicles powered by flammable gases (e.g., propane), or combustible or flammable liquids (e.g., gasoline, LPG) are involved in accidents that result in an unconfined vapor cloud explosion (UVCE) or in a boiling liquid expanding vapor explosion (BLEVE), respectively. These accident scenarios are binned in the Bridge document as FIR-9 scenarios. They are postulated to occur in any of the MDSA facilities. The LPG storage area will be in the southeast corner of CWC that is relatively remote from store distaged MAR. The location is approximately 30 feet south of MO-289 and 250 feet east of 2401-W by CWC Gate 10 in a large staging area for unused pallets and equipment.

PACE, M.E.

2004-01-13T23:59:59.000Z

263

COLD STORAGE DESIGN REFRIGERATION EQUIPMENT  

E-Print Network [OSTI]

COLD STORAGE DESIGN AND REFRIGERATION EQUIPMENT REFRIGERATION OF FISH - PART 1 \\ "..\\- ,,, T I (Section 1), and F. Bruce Sanford (Section 1) Table of Contents Pages Section 1 - Cold Storage Design to be Considered in the Freezing and Cold Storage of Fishery Products - Preparing, Freezing, and Cold Storage

264

accident loca testing: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

for the degree ol' MASTER OF SCIENCE May 1992 Major Subject: Nuclear Engineering SIMULATION OF A SMALL BREAK LOSS OF COOLANT ACCIDENT CONDUCTED AT THE BETHSY INTEGRAL TEST...

265

Type B Accident Investigation Board Report Subcontractor Radioactive...  

Energy Savers [EERE]

Subcontractor Radioactive Release During Transportation Activities on May 14, 2004, Bechtel Jacobs Company LLC, Oak Ridge, Tennessee (Amended) Type B Accident Investigation Board...

266

Type B Accident Investigation Board Report of the September 29...  

Office of Environmental Management (EM)

at the Separations Process Research Unit (SPRU), Building H2 Demolition, in Niskayuna, New, York Type B Accident Investigation Board Report of the September 29, 2010,...

267

Type B Accident Investigation Board Report of the Brookhaven...  

Broader source: Energy.gov (indexed) [DOE]

Closure Hanford, LLC, Employee Fall Injury on July 1, 2009, At The 336 Building, Hanford Site, Washington Type B Accident Investigation Board Report on the September 4,...

268

Type B Accident Investigation Board Report on the October 8,...  

Broader source: Energy.gov (indexed) [DOE]

fell from a Toro Workman 3200 Utility Vehicle and fracturedhis right leg above the ankle. Type B Accident Investigation Board Report on the October 8, 2004, Grounds Worker...

269

Dose estimates in a loss of lead shielding truck accident.  

SciTech Connect (OSTI)

The radiological transportation risk & consequence program, RADTRAN, has recently added an updated loss of lead shielding (LOS) model to it most recent version, RADTRAN 6.0. The LOS model was used to determine dose estimates to first-responders during a spent nuclear fuel transportation accident. Results varied according to the following: type of accident scenario, percent of lead slump, distance to shipment, and time spent in the area. This document presents a method of creating dose estimates for first-responders using RADTRAN with potential accident scenarios. This may be of particular interest in the event of high speed accidents or fires involving cask punctures.

Dennis, Matthew L.; Osborn, Douglas M.; Weiner, Ruth F.; Heames, Terence John (Alion Science & Technology Albuquerque, NM)

2009-08-01T23:59:59.000Z

270

Microsoft PowerPoint - Mod 14 - HTGR Accident Analyses - final...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Cooling System (SCS) Core Conditioning System (CCS) - Helium Purification System Post Accident Train y (Pebble Bed HPS PAT) - Reactor Cavity Cooling System (RCCS) A ti d *...

271

Type B Accident Investigation Board Report on the October 15...  

Office of Environmental Management (EM)

15, 2001, Grout Injection Operator Injury at the Cold Test Pit South, Idaho National Engineering and Environmental Laboratory Type B Accident Investigation Board Report on the...

272

accident management programme: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

ACCIDENT FIRE POLLUTION "NEAR MISS immediately after the occurrence. 3 Material damage or pollution Total volume of mercury spillage was approximately 200 ml. Of that volume,...

273

accident management programmes: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

ACCIDENT FIRE POLLUTION "NEAR MISS immediately after the occurrence. 3 Material damage or pollution Total volume of mercury spillage was approximately 200 ml. Of that volume,...

274

accident source term: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

42 Long-term investigations of radiocaesium activity concentrations in carps in north Croatia after the Chernobyl accident CERN Preprints Summary: Long-term investigations of...

275

accident source terms: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

42 Long-term investigations of radiocaesium activity concentrations in carps in north Croatia after the Chernobyl accident CERN Preprints Summary: Long-term investigations of...

276

Type B Accident Investigation on the June 27, 2002, Exothermic...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

June 27, 2002, Exothermic Metal Reaction Event During Converter Disassembly in Building K-33 at the East Tennessee Technology Park Type B Accident Investigation on the June 27,...

277

Microsoft Word - Case Study for Enhanced Accident Tolerance Design...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

2355 Case Study for Enhanced Accident Tolerance Design Changes Steven Prescott Curtis Smith Tony Koonce June 2014 DISCLAIMER This information was prepared as an account of work...

278

Accident Investigation of the February 5, 2014, Underground Salt...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

5, 2014, Underground Salt Haul Truck Fire at the Waste Isolation Pilot Plant, Carlsbad NM Accident Investigation of the February 5, 2014, Underground Salt Haul Truck Fire...

279

Type B Accident Investigation At Washington Closure Hanford,...  

Broader source: Energy.gov (indexed) [DOE]

Investigation At Washington Closure Hanford, LLC, Employee Fall Injury on July 1, 2009, At The 336 Building, Hanford Site, Washington Type B Accident Investigation At Washington...

280

Type B Accident Investigation of the Arc Flash at Brookhaven...  

Broader source: Energy.gov (indexed) [DOE]

Arc Flash at Brookhaven National Laboratory, April 14, 2006 Type B Accident Investigation of the Arc Flash at Brookhaven National Laboratory, April 14, 2006 February 10, 2006 An...

Note: This page contains sample records for the topic "line accidents storage" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Accident Investigation of the September 20, 2012 Fatal Fall from...  

Broader source: Energy.gov (indexed) [DOE]

Dworshak-Taft 1 Transmission Tower, at the Bonneville Power Marketing Administration Accident Investigation of the September 20, 2012 Fatal Fall from the Dworshak-Taft 1...

282

Accident Investigation of the December 11, 2013, Integrated Device...  

Broader source: Energy.gov (indexed) [DOE]

Accidental Discharge at the Sandia National Laboratory Site 9920, Albuquerque, NM Accident Investigation of the December 11, 2013, Integrated Device Fireset and Detonator...

283

Accident Investigation of the October 1, 2013, Tice Electric...  

Broader source: Energy.gov (indexed) [DOE]

Employee Fatality near Patrick's Knob Radio Station, Bonneville Power Administration Accident Investigation of the October 1, 2013, Tice Electric Company Employee Fatality near...

284

Type B Accident Investigation Board Report of the Bechtel Jacobs...  

Broader source: Energy.gov (indexed) [DOE]

at the K-25 Building, East Tennessee Technology Park, Oak Ridge, Tennessee Type B Accident Investigation Board Report of the Bechtel Jacobs Company, LLC Employee Fall Injury on...

285

Type B Accident Investigation Board Report, May 8, 2004, Exothermic...  

Broader source: Energy.gov (indexed) [DOE]

Transfer Activities, East Tennessee Technology Park, Oak Ridge, Tennessee Type B Accident Investigation Board Report, May 8, 2004, Exothermic Metal Reactor Event During Sodium...

286

Type A Accident Investigation of the March 16, 2000, Plutonium...  

Broader source: Energy.gov (indexed) [DOE]

Multiple Intake Event at the Plutonium Facility, Los Alamos National Laboratory, New Mexico Type A Accident Investigation of the March 16, 2000, Plutonium-238 Multiple Intake...

287

Type B Accident Investigation Report on the Exertional Heat Illnesses...  

Broader source: Energy.gov (indexed) [DOE]

Heat Illnesses during SPOTC 2006 at the National Training Center in Albuquerque, New Mexico, July 13, 2006 Type B Accident Investigation Report on the Exertional Heat Illnesses...

288

Gas Storage Technology Consortium  

SciTech Connect (OSTI)

Gas storage is a critical element in the natural gas industry. Producers, transmission and distribution companies, marketers, and end users all benefit directly from the load balancing function of storage. The unbundling process has fundamentally changed the way storage is used and valued. As an unbundled service, the value of storage is being recovered at rates that reflect its value. Moreover, the marketplace has differentiated between various types of storage services, and has increasingly rewarded flexibility, safety, and reliability. The size of the natural gas market has increased and is projected to continue to increase towards 30 trillion cubic feet (TCF) over the next 10 to 15 years. Much of this increase is projected to come from electric generation, particularly peaking units. Gas storage, particularly the flexible services that are most suited to electric loads, is critical in meeting the needs of these new markets. In order to address the gas storage needs of the natural gas industry, an industry-driven consortium was created-the Gas Storage Technology Consortium (GSTC). The objective of the GSTC is to provide a means to accomplish industry-driven research and development designed to enhance operational flexibility and deliverability of the Nation's gas storage system, and provide a cost effective, safe, and reliable supply of natural gas to meet domestic demand. This report addresses the activities for the quarterly period of July 1, 2006 to September 30, 2006. Key activities during this time period include: {lg_bullet} Subaward contracts for all 2006 GSTC projects completed; {lg_bullet} Implement a formal project mentoring process by a mentor team; {lg_bullet} Upcoming Technology Transfer meetings: {sm_bullet} Finalize agenda for the American Gas Association Fall Underground Storage Committee/GSTC Technology Transfer Meeting in San Francisco, CA. on October 4, 2006; {sm_bullet} Identify projects and finalize agenda for the Fall GSTC Technology Transfer Meeting, Pittsburgh, PA on November 8, 2006; {lg_bullet} Draft and compile an electronic newsletter, the GSTC Insider; and {lg_bullet} New members update.

Joel L. Morrison; Sharon L. Elder

2006-09-30T23:59:59.000Z

289

GAS STORAGE TECHNOLOGY CONSORTIUM  

SciTech Connect (OSTI)

Gas storage is a critical element in the natural gas industry. Producers, transmission and distribution companies, marketers, and end users all benefit directly from the load balancing function of storage. The unbundling process has fundamentally changed the way storage is used and valued. As an unbundled service, the value of storage is being recovered at rates that reflect its value. Moreover, the marketplace has differentiated between various types of storage services, and has increasingly rewarded flexibility, safety, and reliability. The size of the natural gas market has increased and is projected to continue to increase towards 30 trillion cubic feet (TCF) over the next 10 to 15 years. Much of this increase is projected to come from electric generation, particularly peaking units. Gas storage, particularly the flexible services that are most suited to electric loads, is critical in meeting the needs of these new markets. In order to address the gas storage needs of the natural gas industry, an industry-driven consortium was created--the Gas Storage Technology Consortium (GSTC). The objective of the GSTC is to provide a means to accomplish industry-driven research and development designed to enhance operational flexibility and deliverability of the Nation's gas storage system, and provide a cost effective, safe, and reliable supply of natural gas to meet domestic demand. To accomplish this objective, the project is divided into three phases that are managed and directed by the GSTC Coordinator. Base funding for the consortium is provided by the U.S. Department of Energy (DOE). In addition, funding is anticipated from the Gas Technology Institute (GTI). The first phase, Phase 1A, was initiated on September 30, 2003, and is scheduled for completion on March 31, 2004. Phase 1A of the project includes the creation of the GSTC structure, development of constitution (by-laws) for the consortium, and development and refinement of a technical approach (work plan) for deliverability enhancement and reservoir management. This report deals with the second 3-months of the project and encompasses the period December 31, 2003, through March 31, 2003. During this 3-month, the dialogue of individuals representing the storage industry, universities and the Department of energy was continued and resulted in a constitution for the operation of the consortium and a draft of the initial Request for Proposals (RFP).

Robert W. Watson

2004-04-17T23:59:59.000Z

290

Accident Response Group | National Nuclear Security Administration  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc Documentation RUCProductstwrmrAre the Effects ofAboutTest Facility VitalyGateAccessingAccident

291

DOE Global Energy Storage Database  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

The DOE International Energy Storage Database has more than 400 documented energy storage projects from 34 countries around the world. The database provides free, up-to-date information on grid-connected energy storage projects and relevant state and federal policies. More than 50 energy storage technologies are represented worldwide, including multiple battery technologies, compressed air energy storage, flywheels, gravel energy storage, hydrogen energy storage, pumped hydroelectric, superconducting magnetic energy storage, and thermal energy storage. The policy section of the database shows 18 federal and state policies addressing grid-connected energy storage, from rules and regulations to tariffs and other financial incentives. It is funded through DOEs Sandia National Laboratories, and has been operating since January 2012.

292

Ramkrishna Mukherjee. Uganda: An Historical Accident?: Class, Natona, State Formation. Trenton, New Jersey: Africa World Press, 1985 281pp.  

E-Print Network [OSTI]

Trenton, Historical Accident? : Class, Natona, New Jersey:in Mukherjee Historical Accident. analyzes the "poUticalare not an "historical accident." War, Violence and Children

Isabirye, Stephen B.

1989-01-01T23:59:59.000Z

293

Safety Aspects of Dry Spent Fuel Storage and Spent Fuel Management - 13559  

SciTech Connect (OSTI)

Dry storage systems are characterized by passive and inherent safety systems ensuring safety even in case of severe incidents or accidents. After the events of Fukushima, the advantages of such passively and inherently safe dry storage systems have become more and more obvious. As with the storage of all radioactive materials, the storage of spent nuclear fuel (SF) and high-level radioactive waste (HLW) must conform to safety requirements. Following safety aspects must be achieved throughout the storage period: - safe enclosure of radioactive materials, - safe removal of decay heat, - securing nuclear criticality safety, - avoidance of unnecessary radiation exposure. The implementation of these safety requirements can be achieved by dry storage of SF and HLW in casks as well as in other systems such as dry vault storage systems or spent fuel pools, where the latter is neither a dry nor a passive system. Furthermore, transport capability must be guaranteed during and after storage as well as limitation and control of radiation exposure. The safe enclosure of radioactive materials in dry storage casks can be achieved by a double-lid sealing system with surveillance of the sealing system. The safe removal of decay heat must be ensured by the design of the storage containers and the storage facility. The safe confinement of radioactive inventory has to be ensured by mechanical integrity of fuel assembly structures. This is guaranteed, e.g. by maintaining the mechanical integrity of the fuel rods or by additional safety measures for defective fuel rods. In order to ensure nuclear critically safety, possible effects of accidents have also to be taken into consideration. In case of dry storage it might be necessary to exclude the re-positioning of fissile material inside the container and/or neutron moderator exclusion might be taken into account. Unnecessary radiation exposure can be avoided by the cask or canister vault system itself. In Germany dry storage of SF in casks fulfills both transport and storage requirements. Mostly, storage facilities are designed as concrete buildings above the ground, but due to regional constraints, one storage facility has also been built as a rock tunnel. The decay heat is always removed by natural air flow; further technical equipment is not needed. The removal of decay heat and shielding had been modeled and calculated by state-of-the-art computer codes before such a facility has been built. TueV and BAM present their long experience in the licensing process for sites and casks and inform about spent nuclear fuel management and issues concerning dry storage of spent nuclear fuel. Different storage systems and facilities in Germany, Europe and world-wide are compared with respect to the safety aspects mentioned above. Initial points are the safety issues of wet storage of SF, and it is shown how dry storage systems can ensure the compliance with the mentioned safety criteria over a long storage period. The German storage concept for dry storage of SF and HLW is presented and discussed. Exemplarily, the process of licensing, erection and operation of selected German dry storage facilities is presented. (authors)

Botsch, W.; Smalian, S.; Hinterding, P. [TUV NORD Nuclear c/o TUV NORD EnSys Hannover GmbH and Co.KG, Dept. Radiation Protection and Waste Disposal, Am TueV 1, 30519 Hannover (Germany)] [TUV NORD Nuclear c/o TUV NORD EnSys Hannover GmbH and Co.KG, Dept. Radiation Protection and Waste Disposal, Am TueV 1, 30519 Hannover (Germany); Voelzke, H.; Wolff, D.; Kasparek, E. [BAM Federal Institute for Materials Research and Testing Division 3.4 Safety of Storage Containers Unter den Eichen 44-46, 12203 Berlin (Germany)] [BAM Federal Institute for Materials Research and Testing Division 3.4 Safety of Storage Containers Unter den Eichen 44-46, 12203 Berlin (Germany)

2013-07-01T23:59:59.000Z

294

Regulatory Concerns on the In-Containment Water Storage System of the Korean Next Generation Reactor  

SciTech Connect (OSTI)

The in-containment water storage system (IWSS) is a newly adopted system in the design of the Korean Next Generation Reactor (KNGR). It consists of the in-containment refueling water storage tank, holdup volume tank, and cavity flooding system (CFS). The IWSS has the function of steam condensation and heat sink for the steam release from the pressurizer and provides cooling water to the safety injection system and containment spray system in an accident condition and to the CFS in a severe accident condition. With the progress of the KNGR design, the Korea Institute of Nuclear Safety has been developing Safety and Regulatory Requirements and Guidances for safety review of the KNGR. In this paper, regarding the IWSS of the KNGR, the major contents of the General Safety Criteria, Specific Safety Requirements, Safety Regulatory Guides, and Safety Review Procedures were introduced, and the safety review items that have to be reviewed in-depth from the regulatory viewpoint were also identified.

Ahn, Hyung-Joon; Lee, Jae-Hun; Bang, Young-Seok; Kim, Hho-Jung [Korea Institute of Nuclear Safety (Korea, Republic of)

2002-07-15T23:59:59.000Z

295

Preliminary analysis of loss-of-coolant accident in Fukushima nuclear accident  

SciTech Connect (OSTI)

Loss-of-Coolant Accident (LOCA) in Boiling Water Reactor (BWR) especially on Fukushima Nuclear Accident will be discussed in this paper. The Tohoku earthquake triggered the shutdown of nuclear power reactors at Fukushima Nuclear Power station. Though shutdown process has been completely performed, cooling process, at much smaller level than in normal operation, is needed to remove decay heat from the reactor core until the reactor reach cold-shutdown condition. If LOCA happen at this condition, it will cause the increase of reactor fuel and other core temperatures and can lead to reactor core meltdown and exposure of radioactive material to the environment such as in the Fukushima Dai Ichi nuclear accident case. In this study numerical simulation has been performed to calculate pressure composition, water level and temperature distribution on reactor during this accident. There are two coolant regulating system that operational on reactor unit 1 at this accident, Isolation Condensers (IC) system and Safety Relief Valves (SRV) system. Average mass flow of steam to the IC system in this event is 10 kg/s and could keep reactor core from uncovered about 3,2 hours and fully uncovered in 4,7 hours later. There are two coolant regulating system at operational on reactor unit 2, Reactor Core Isolation Condenser (RCIC) System and Safety Relief Valves (SRV). Average mass flow of coolant that correspond this event is 20 kg/s and could keep reactor core from uncovered about 73 hours and fully uncovered in 75 hours later. There are three coolant regulating system at operational on reactor unit 3, Reactor Core Isolation Condenser (RCIC) system, High Pressure Coolant Injection (HPCI) system and Safety Relief Valves (SRV). Average mass flow of water that correspond this event is 15 kg/s and could keep reactor core from uncovered about 37 hours and fully uncovered in 40 hours later.

Su'ud, Zaki; Anshari, Rio [Nuclear and Biophysics Research Group, Dept. of Physics, Bandung Institute of Technology, Jl.Ganesha 10, Bandung, 40132 (Indonesia)

2012-06-06T23:59:59.000Z

296

Type B Accident Investigation of the March 20, 2003, Stair Installation Accident at Building 752, Sandia National Laboratories  

Broader source: Energy.gov [DOE]

This report is an independent product of the Type B Accident Investigation Board appointed by Karen L. Boardman, Manager, Sandia Site Office (SSO), National Nuclear Security Administration (NNSA).

297

Concentrating Solar Program; Session: Thermal Storage - Overview (Presentation)  

SciTech Connect (OSTI)

The project overview of this presentation is: (1) description--(a) laboratory R and D in advanced heat transfer fluids (HTF) and thermal storage systems; (b) FOA activities in solar collector and component development for use of molten salt as a heat transfer and storage fluid; (c) applications for all activities include line focus and point focus solar concentrating technologies; (2) Major FY08 Activities--(a) advanced HTF development with novel molten salt compositions with low freezing temperatures, nanofluids molecular modeling and experimental studies, and use with molten salt HTF in solar collector field; (b) thermal storage systems--cost analysis and updates for 2-tank and thermocline storage and model development and analysis to support near-term trought deployment; (c) thermal storage components--facility upgrade to support molten salt component testing for freeze-thaw receiver testing, long-shafted molten salt pump for parabolic trough and power tower thermal storage systems; (d) CSP FOA support--testing and evaluation support for molten salt component and field testing work, advanced fluids and storage solicitation preparation, and proposal evaluation for new advanced HTF and thermal storage FOA.

Glatzmaier, G.; Mehos, M.; Mancini, T.

2008-04-01T23:59:59.000Z

298

GAS STORAGE TECHNOLOGY CONSORTIUM  

SciTech Connect (OSTI)

Gas storage is a critical element in the natural gas industry. Producers, transmission and distribution companies, marketers, and end users all benefit directly from the load balancing function of storage. The unbundling process has fundamentally changed the way storage is used and valued. As an unbundled service, the value of storage is being recovered at rates that reflect its value. Moreover, the marketplace has differentiated between various types of storage services, and has increasingly rewarded flexibility, safety, and reliability. The size of the natural gas market has increased and is projected to continue to increase towards 30 trillion cubic feet (TCF) over the next 10 to 15 years. Much of this increase is projected to come from electric generation, particularly peaking units. Gas storage, particularly the flexible services that are most suited to electric loads, is critical in meeting the needs of these new markets. In order to address the gas storage needs of the natural gas industry, an industry-driven consortium was created--the Gas Storage Technology Consortium (GSTC). The objective of the GSTC is to provide a means to accomplish industry-driven research and development designed to enhance operational flexibility and deliverability of the Nation's gas storage system, and provide a cost effective, safe, and reliable supply of natural gas to meet domestic demand. To accomplish this objective, the project is divided into three phases that are managed and directed by the GSTC Coordinator. The first phase, Phase 1A, was initiated on September 30, 2003, and was completed on March 31, 2004. Phase 1A of the project included the creation of the GSTC structure, development and refinement of a technical approach (work plan) for deliverability enhancement and reservoir management. This report deals with Phase 1B and encompasses the period July 1, 2004, through September 30, 2004. During this time period there were three main activities. First was the ongoing negotiations of the four sub-awards working toward signed contracts with the various organizations involved. Second, an Executive Council meeting was held at Penn State September 9, 2004. And third, the GSTC participated in the SPE Eastern Regional Meeting in Charleston, West Virginia, on September 16th and 17th. We hosted a display booth with the Stripper Well Consortium.

Robert W. Watson

2004-10-18T23:59:59.000Z

299

GAS STORAGE TECHNOLOGY CONSORTIUM  

SciTech Connect (OSTI)

Gas storage is a critical element in the natural gas industry. Producers, transmission and distribution companies, marketers, and end users all benefit directly from the load balancing function of storage. The unbundling process has fundamentally changed the way storage is used and valued. As an unbundled service, the value of storage is being recovered at rates that reflect its value. Moreover, the marketplace has differentiated between various types of storage services, and has increasingly rewarded flexibility, safety, and reliability. The size of the natural gas market has increased and is projected to continue to increase towards 30 trillion cubic feet (TCF) over the next 10 to 15 years. Much of this increase is projected to come from electric generation, particularly peaking units. Gas storage, particularly the flexible services that are most suited to electric loads, is critical in meeting the needs of these new markets. In order to address the gas storage needs of the natural gas industry, an industry-driven consortium was created--the Gas Storage Technology Consortium (GSTC). The objective of the GSTC is to provide a means to accomplish industry-driven research and development designed to enhance operational flexibility and deliverability of the Nation's gas storage system, and provide a cost effective, safe, and reliable supply of natural gas to meet domestic demand. To accomplish this objective, the project is divided into three phases that are managed and directed by the GSTC Coordinator. Base funding for the consortium is provided by the U.S. Department of Energy (DOE). In addition, funding is anticipated from the Gas Technology Institute (GTI). The first phase, Phase 1A, was initiated on September 30, 2003, and was completed on March 31, 2004. Phase 1A of the project included the creation of the GSTC structure, development and refinement of a technical approach (work plan) for deliverability enhancement and reservoir management. This report deals with Phase 1B and encompasses the period April 1, 2004, through June 30, 2004. During this 3-month period, a Request for Proposals (RFP) was made. A total of 17 proposals were submitted to the GSTC. A proposal selection meeting was held June 9-10, 2004 in Morgantown, West Virginia. Of the 17 proposals, 6 were selected for funding.

Robert W. Watson

2004-07-15T23:59:59.000Z

300

Material Selection for Accident Tolerant Fuel Cladding  

DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

Alternative cladding materials are being investigated for accident tolerance, which can be defined as >100X improvement (compared to current Zr-based alloys) in oxidation resistance in steam environments at ?1200C for short (?4 h) times. After reviewing a wide range of candidates, current steam oxidation testing is being conducted on Mo, MAX phases and FeCrAl alloys. Recently reported low mass losses for Mo in steam at 800C could not be reproduced. Both FeCrAl and MAX phase Ti2AlC form a protective alumina scale in steam. However, commercial Ti2AlC that is not single phase, formed a much thicker oxide at 1200C in steam and significant TiO2, and therefore may be challenging to use as a cladding or a coating. Alloy development for FeCrAl is seeking to maintain its steam oxidation resistance to 1475C, while reducing its Cr content to minimize susceptibility to irradiation assisted Cr-rich ? formation. The composition effects and critical limits to retaining protective scale formation at >1400C are still being evaluated. Keywords: Accident tolerant LWR Fuel cladding, FeCrAl, Mo, Ti2AlC, Al2O3, high temperature steam oxidation resistance

none,

2014-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "line accidents storage" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Energy storage connection system  

DOE Patents [OSTI]

A power system for connecting a variable voltage power source, such as a power controller, with a plurality of energy storage devices, at least two of which have a different initial voltage than the output voltage of the variable voltage power source. The power system includes a controller that increases the output voltage of the variable voltage power source. When such output voltage is substantially equal to the initial voltage of a first one of the energy storage devices, the controller sends a signal that causes a switch to connect the variable voltage power source with the first one of the energy storage devices. The controller then causes the output voltage of the variable voltage power source to continue increasing. When the output voltage is substantially equal to the initial voltage of a second one of the energy storage devices, the controller sends a signal that causes a switch to connect the variable voltage power source with the second one of the energy storage devices.

Benedict, Eric L.; Borland, Nicholas P.; Dale, Magdelena; Freeman, Belvin; Kite, Kim A.; Petter, Jeffrey K.; Taylor, Brendan F.

2012-07-03T23:59:59.000Z

302

E-Print Network 3.0 - accident locations Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

locations Page: << < 1 2 3 4 5 > >> 1 U of L Campus AccidentIncident Report Automobile AccidentIncident Page 1 of 2 University of Lethbridge Summary: of the accident...

303

E-Print Network 3.0 - accidents Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

for: accidents Page: << < 1 2 3 4 5 > >> 1 U of L Campus AccidentIncident Report Automobile AccidentIncident Page 1 of 2 University of Lethbridge Summary: U of L Campus...

304

E-Print Network 3.0 - accident site grissom Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

site grissom Page: << < 1 2 3 4 5 > >> 1 U of L Campus AccidentIncident Report Automobile AccidentIncident Page 1 of 2 University of Lethbridge Summary: accidents that occur...

305

E-Print Network 3.0 - accident reports Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

accident reports Page: << < 1 2 3 4 5 > >> 1 U of L Campus AccidentIncident Report Automobile AccidentIncident Page 1 of 2 University of Lethbridge Summary: U of L Campus...

306

accident victims bio-indicateurs: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Every year, traffic congestion and traffic accidents have been Cho, Sung-Bae 119 The Analysis of a Friendly Fire Accident using a Systems Model of Accidents* N.G. Leveson,...

307

Web Based Course: SAF-230DE, Accident Investigation Overview Promotional Video  

Broader source: Energy.gov [DOE]

This course that provides an overview of the fundamentals of accident investigation. The course is intended to meet the every five year refresher training requirement for DOE Federal Accident Investigators under DOE O 225.1B, Accident Investigations.

308

E-Print Network 3.0 - accident conditions lessons Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

1 Why System Safety Professionals Should Read Accident Reports C. M. Holloway*, C. W. Johnson Summary: the lessons that are really taught by an accident or group of accidents....

309

Using a towns GIS project to create a deer-vehicle accident management plan  

E-Print Network [OSTI]

TO CREATE A DEER-VEHICLE ACCIDENT MANAGEMENT PLAN Elizabethhigh numbers of deer-vehicle accidents (DVAs) on a landscapeto provide an assessment of accident risk in time and space.

Rogers, Elizabeth I.

2003-01-01T23:59:59.000Z

310

Road traffic accidents in Kathmanduan hour of education yields a glimmer of hope  

E-Print Network [OSTI]

et al. : Road traffic accidents in Kathmandu an hour ofOpen Access Road traffic accidents in Kathmanduan hour ofnumber of road traffic accidents in the year 2012 decreased

Basnet, Bibhusan; Vohra, Rais; Bhandari, Amit; Pandey, Subash

2013-01-01T23:59:59.000Z

311

Estimating Pedestrian Accident Exposure: Approaches to a Statewide Pedestrian Exposure Database  

E-Print Network [OSTI]

Pedestrian Exposure to Risk of Road Accident in New Zealand.Accident Analysis and Prevention, Vol. 27, No. 3, 1995, pp.Automated Traffic Accident Surveillance and Analysis System,

Greene-Roesel, Ryan; Diogenes, Mara Chagas; Ragland, David R

2007-01-01T23:59:59.000Z

312

UNIVERSITY OF TORONTO ACCIDENT/INCIDENT/OCCUPATIONAL DISEASE REPORT FOR EMPLOYEES  

E-Print Network [OSTI]

UNIVERSITY OF TORONTO ACCIDENT/INCIDENT/OCCUPATIONAL DISEASE REPORT FOR EMPLOYEES RELEVANT SECTIONS: _______________________________________ NAME OF SUPERVISOR TO WHOM ACCIDENT WAS REPORTED: _________________________________ TELEPHONE: _____________________ IF THERE WAS A DELAY IN REPORTING THIS ACCIDENT, LIST REASON

Kronzucker, Herbert J.

313

STUDENT / VISITOR ACCIDENT REPORT FORM nco/revised 10/06/03  

E-Print Network [OSTI]

STUDENT / VISITOR ACCIDENT REPORT FORM nco/revised 10/06/03 (To Be Completed By Individual Involved In Accident) 1. Name: ________________________________________ Student ID or DL No.: _______________________ 2 No - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 6. Date of Accident: ___________________ Day of Week: _______________________ Time: ____________ 7

Azevedo, Ricardo

314

The 2011 Tohoku earthquake, tsunami, and Fukushima nuclear accident  

E-Print Network [OSTI]

? 2 #12;The multiple risk situations Earthquake Tsunami Nuclear accident Energy shortage Energy priceThe 2011 Tohoku earthquake, tsunami, and Fukushima nuclear accident: the Risk Policy Aftermath of nuclear energy has blocked risk discussions and reasonable preparations. Electric companies Opponents

Ferrari, Silvia

315

Chemical factors affecting fission product transport in severe LMFBR accidents  

SciTech Connect (OSTI)

This study was performed as a part of a larger evaluation effort on LMFBR accident, source-term estimation. Purpose was to provide basic chemical information regarding fission product, sodium coolant, and structural material interactions required to perform estimation of fission product transport under LMFBR accident conditions. Emphasis was placed on conditions within the reactor vessel; containment vessel conditions are discussed only briefly.

Wichner, R.P.; Jolley, R.L.; Gat, U.; Rodgers, B.R.

1984-10-01T23:59:59.000Z

316

accident analysis codes: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

accident analysis codes First Page Previous Page 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Next Page Last Page Topic Index 1 Analysis of accidents during...

317

Risk factors for injury accidents among moped and motorcycle riders  

E-Print Network [OSTI]

Risk factors for injury accidents among moped and motorcycle riders Aurélie Moskal a , Jean on the vehicle. Moped and motorcycle riders are analyzed separately, adjusting for the main characteristics of the accident. Results: for both moped and motorcycle riders, being male, not wearing a helmet, exceeding

Paris-Sud XI, Université de

318

Berkeley Lab Accident Statistics Through December 31, 2008  

E-Print Network [OSTI]

1 Berkeley Lab Accident Statistics Through December 31, 2008 These slides are updated on a monthly Goal DART Goal 1.17 #12;8 LBNL vs DOE Contractor Rates Berkeley Lab Site Accident Rates 5.70 4.95 3

Eisen, Michael

319

Berkeley Lab Accident Statistics Through January 31, 2009  

E-Print Network [OSTI]

1 Berkeley Lab Accident Statistics Through January 31, 2009 These slides are updated on a monthly Goal DART Goal 1.17 #12;8 LBNL vs DOE Contractor Rates Berkeley Lab Site Accident Rates 5.70 4.95 3

Eisen, Michael

320

Berkeley Lab Accident Statistics Through November 30, 2008  

E-Print Network [OSTI]

1 Berkeley Lab Accident Statistics Through November 30, 2008 These slides are updated on a monthly Rates Berkeley Lab Site Accident Rates 5.70 4.95 3.79 2.92 2.93 3.27 3.63 2.44 2.17 2.51 1.17 1.81 1

Eisen, Michael

Note: This page contains sample records for the topic "line accidents storage" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Berkeley Lab Accident Statistics Through November 30, 2009  

E-Print Network [OSTI]

1 Berkeley Lab Accident Statistics Through November 30, 2009 These slides are updated on a monthly Contractor Rates Berkeley Lab Site Accident Rates 5.70 4.95 3.79 2.92 2.93 3.27 3.63 2.44 2.17 2.51 1.17 1

Eisen, Michael

322

Berkeley Lab Accident Statistics Through February 28, 2009  

E-Print Network [OSTI]

1 Berkeley Lab Accident Statistics Through February 28, 2009 These slides are updated on a monthly Goal DART Goal 1.17 #12;9 LBNL vs DOE Contractor Rates Berkeley Lab Site Accident Rates 5.70 4.95 3

Eisen, Michael

323

Berkeley Lab Accident Statistics Through August 31, 2008  

E-Print Network [OSTI]

1 Berkeley Lab Accident Statistics Through August 31, 2008 These slides are updated on a monthly 1.17 #12;7 LBNL vs DOE Contractor Rates Berkeley Lab Site Accident Rates 5.70 4.95 3.79 2.92 2.93 3

Eisen, Michael

324

Berkeley Lab Accident Statistics Through April 30, 2010  

E-Print Network [OSTI]

1 Berkeley Lab Accident Statistics Through April 30, 2010 These slides are updated on a monthly Berkeley Lab Site Accident Rates 5.70 4.95 3.79 2.92 2.93 3.27 3.63 2.44 2.17 2.51 1.17 1.81 1.28 1.65 1

Eisen, Michael

325

Berkeley Lab Accident Statistics Through May 31, 2010  

E-Print Network [OSTI]

1 Berkeley Lab Accident Statistics Through May 31, 2010 These slides are updated on a monthly basis DOE Contractor Rates Berkeley Lab Site Accident Rates 5.70 4.95 3.79 2.92 2.93 3.27 3.63 2.44 2.17 2

Eisen, Michael

326

Berkeley Lab Accident Statistics Through June 30, 2009  

E-Print Network [OSTI]

1 Berkeley Lab Accident Statistics Through June 30, 2009 These slides are updated on a monthly Berkeley Lab Site Accident Rates 5.70 4.95 3.79 2.92 2.93 3.27 3.63 2.44 2.17 2.51 1.17 1.81 1.28 1.65 1

Eisen, Michael

327

Berkeley Lab Accident Statistics Through January 31, 2010  

E-Print Network [OSTI]

1 Berkeley Lab Accident Statistics Through January 31, 2010 These slides are updated on a monthly Berkeley Lab Site Accident Rates 5.70 4.95 3.79 2.92 2.93 3.27 3.63 2.44 2.17 2.51 1.17 1.81 1.28

Eisen, Michael

328

Berkeley Lab Accident Statistics Through October 31, 2009  

E-Print Network [OSTI]

1 Berkeley Lab Accident Statistics Through October 31, 2009 These slides are updated on a monthly;8 LBNL vs DOE Contractor Rates Berkeley Lab Site Accident Rates 5.70 4.95 3.79 2.92 2.93 3.27 3.63 2.44 2

Eisen, Michael

329

Berkeley Lab Accident Statistics Through September 30, 2008  

E-Print Network [OSTI]

1 Berkeley Lab Accident Statistics Through September 30, 2008 These slides are updated on a monthly.17 #12;7 LBNL vs DOE Contractor Rates Berkeley Lab Site Accident Rates 5.70 4.95 3.79 2.92 2.93 3.27 3

Eisen, Michael

330

Berkeley Lab Accident Statistics Through April 30, 2009  

E-Print Network [OSTI]

1 Berkeley Lab Accident Statistics Through April 30, 2009 These slides are updated on a monthly Berkeley Lab Site Accident Rates 5.70 4.95 3.79 2.92 2. 93 3.27 3.63 2.44 2.17 2.51 1.17 1.81 1.28 1.65 1

Eisen, Michael

331

Berkeley Lab Accident Statistics Through December 31, 2010  

E-Print Network [OSTI]

1 Berkeley Lab Accident Statistics Through December 31, 2010 These slides are updated on a monthly.17 #12;9 LBNL vs DOE Contractor Rates Berkeley Lab Site Accident Rates 5.70 4.95 3.79 2.92 2.93 3.27 3

Eisen, Michael

332

accident dosimetry systems: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

accident dosimetry systems First Page Previous Page 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Next Page Last Page Topic Index 1 A New Accident Model for...

333

REVIEW OF FAST FLUX TEST FACILITY (FFTF) FUEL EXPERIMENTS FOR STORAGE IN INTERIM STORAGE CASKS (ISC)  

SciTech Connect (OSTI)

Appendix H, Section H.3.3.10.11 of the Final Safety Analysis Report (FSAR), provides the limits to be observed for fueled components authorized for storage in the Fast Flux Test Facility (FFTF) spent fuel storage system. Currently, the authorization basis allows standard driver fuel assemblies (DFA), as described in the FSAR Chapter 17, Section 17.5.3.1, to be stored provided decay power per assembly is {le} 250 watts, post-irradiation time is four years minimum, average assembly burn-up is 150,000 MWD/MTHM maximum and the pre-irradiation enrichment is 29.3% maximum (per H.3.3.10.11). In addition, driver evaluation (DE), core characterizer assemblies (CCA), and run-to-cladding-breach (RTCB) assemblies are included based on their similarities to a standard DFA. Ident-69 pin containers with fuel pins from these DFAs can also be stored. Section H.3.3.10.11 states that fuel types outside the specification criteria above will be addressed on a case-by-case basis. There are many different types of fuel and blanket experiments that were irradiated in the FFTF which now require offload to the spent fuel storage system. Two reviews were completed for a portion of these special type fuel components to determine if placement into the Core Component Container (CCC)/Interim Storage Cask (ISC) would require any special considerations or changes to the authorization basis. Project mission priorities coupled with availability of resources and analysts prevented these evaluations from being completed as a single effort. Areas of review have included radiological accident release consequences, radiological shielding adequacy, criticality safety, thermal limits, confinement, and stress. The results of these reviews are available in WHC-SD-FF-RPT-005, Rev. 0 and 1, ''Review of FFTF Fuel Experiments for Storage at ISA'', (Reference I), which subsequently allowed a large portion of these components to be included in the authorization basis (Table H.3.3-21). The report also identified additional components and actions in Section 3.0 and Table 3 that require further evaluation. The purpose of this report is to evaluate another portion of the remaining inventory (i.e., delayed neutron signal fuel, blanket assemblies, highly enriched assemblies, newly loaded Ident-69 pin containers, and returned fuel) to ensure it can be safely off loaded to the FFTF spent fuel storage system.

CHASTAIN, S.A.

2005-10-24T23:59:59.000Z

334

Marketing Cool Storage Technology  

E-Print Network [OSTI]

storage has been substantiated. bv research conducted by Electric Power Research Institute, and by numerous installations, it has become acknowledged that cool stora~e can provide substantial benefits to utilities and end-users alike. A need was reco...~ned to improve utility load factors, reduce peak electric demands, and other-wise mana~e the demand-side use of electricity. As a result of these many pro~rams, it became apparent that the storage of coolin~, in the form of chilled water, ice, or other phase...

McCannon, L.

335

Storage tracking refinery trends  

SciTech Connect (OSTI)

Regulatory and marketplace shakeups have made the refining and petrochemical industries highly competitive. The fight to survive has forced refinery consolidations, upgrades and companywide restructurings. Bulk liquid storage terminals are following suit. This should generate a flurry of engineering and construction by the latter part of 1997. A growing petrochemical industry translates into rising storage needs. Industry followers forecasted flat petrochemical growth in 1996 due to excessive expansion in 1994 and 1995. But expansion is expected to continue throughout this year on the strength of several products.

Saunders, J. [ed.

1996-05-01T23:59:59.000Z

336

Storage Ring Parameters  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administrationcontroller systemsBiSiteNeutron Scattering4American'! ITransportStorage RingStorage

337

SAS4A LMFBR whole core accident analysis code  

SciTech Connect (OSTI)

To ensure that public health and safety are protected even under accident conditions in an LMFBR, many accidents are analyzed for their potential consequences. Extremely unlikely accidents that might lead to melting of reactor fuel and release of radioactive fission products are referred to as hypothetical core disruptive accidents (HCDAs). The evaluation of such accidents involves the simultaneous evaluation of thermal, mechanical, hydraulic and neutronic processes and their interactions. The complexity of this analysis requires the use of large, integrated computer codes which address the response of the reactor core and several important systems. The SAS family of codes, developed at Argonne National Laboratory, provides such an analysis capability. The SAS4A code, the latest generation of this series of codes, has recently been completed and released for use to the LMFBR safety community. This paper will summarize the important new capabilitites of this analysis tool and illustrate an application of the integrated capability, while highlighting the importance of specific phenomenological models.

Weber, D.P.; Birgersson, G.; Bordner, G.L.; Briggs, L.L.; Cahalan, J.E.; Dunn, F.E.; Kalimullah; Miles, K.J.; Prohammer, F.G.; Tentner, A.M.

1985-01-01T23:59:59.000Z

338

Spent-fuel-storage alternatives  

SciTech Connect (OSTI)

The Spent Fuel Storage Alternatives meeting was a technical forum in which 37 experts from 12 states discussed storage alternatives that are available or are under development. The subject matter was divided into the following five areas: techniques for increasing fuel storage density; dry storage of spent fuel; fuel characterization and conditioning; fuel storage operating experience; and storage and transport economics. Nineteen of the 21 papers which were presented at this meeting are included in this Proceedings. These have been abstracted and indexed. (ATT)

Not Available

1980-01-01T23:59:59.000Z

339

A Technique for Showing Causal Arguments in Accident Reports C. W. Johnson; University of Glasgow; Glasgow, Scotland, UK  

E-Print Network [OSTI]

A Technique for Showing Causal Arguments in Accident Reports C. W. Johnson; University of Glasgow: causes, accidents, logic, argument, visualization, road traffic accidents Abstract In the prototypical accident report, specific findings, particularly those related to causes and contributing factors

Johnson, Chris

340

E-Print Network 3.0 - accident fuel dispersion Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Summary: of the transportation system. We construct measures of each externality: noise, air pollution, accidents and congestion... pollution and accidents. For highway travel,...

Note: This page contains sample records for the topic "line accidents storage" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

E-Print Network 3.0 - accident safety issues Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

, accident investigation, indoor air quality, bloodborne pathogens, chemical safety, lockout-tagout, hot work... Accidents 15 12;III. EH&S DEPARTMENTS AND PROGRAMS 16...

342

Type A Accident Investigation Report of the June 25, 1997 Contract...  

Broader source: Energy.gov (indexed) [DOE]

Officer, Bonneville Power Administration, upon approval of the US Department of Energy (DOE), appointed a Type A Accident Investigation Board to investigate the accident in...

343

E-Print Network 3.0 - accident conditions vercors Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

de mathmatiques Collection: Mathematics 5 U of L Campus AccidentIncident Report Automobile AccidentIncident Page 1 of 2 University of Lethbridge Summary: Incident:...

344

E-Print Network 3.0 - accidents home Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

of Alaska Fairbanks AccidentIncident Report (personal injury) To report an automobile... accident, do not use this form, please go to: http:www.alaska.eduswrisk...

345

E-Print Network 3.0 - accident diagrams Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Sciences, University of Arkansas Collection: Environmental Sciences and Ecology 2 AUTOMOBILE ACCIDENT REPORT Department of Financial Services Summary: AUTOMOBILE ACCIDENT REPORT...

346

E-Print Network 3.0 - accident issues differences Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Glasgow Collection: Computer Technologies and Information Sciences 4 September 2003 AUTOMOBILE ACCIDENTS Summary: September 2003 AUTOMOBILE ACCIDENTS UCLA STUDENT LEGAL SERVICES...

347

E-Print Network 3.0 - accident declaration form Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

of Strathclyde Collection: Mathematics 4 U of L Campus AccidentIncident Report Automobile AccidentIncident Page 1 of 2 University of Lethbridge Summary: of Lethbridge Campus...

348

E-Print Network 3.0 - accident containment conditions Sample...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Technologies and Information Sciences 9 U of L Campus AccidentIncident Report Automobile AccidentIncident Page 1 of 2 University of Lethbridge Summary: Incident:...

349

E-Print Network 3.0 - accident additional information Sample...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Biology and Medicine ; Environmental Sciences and Ecology 13 September 2003 AUTOMOBILE ACCIDENTS Summary: information with the other people involved in the accident. You...

350

E-Print Network 3.0 - accidents occupational Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Collection: Biology and Medicine 6 Exact Location : Date of Accident : AM PM Summary: SSN Cell Phone Home Phone Work Phone Exact Location : Date of Accident : AM PM Date...

351

E-Print Network 3.0 - accident causes Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Warwick Collection: Engineering 3 Exact Location : Date of Accident : AM PM Summary: SSN Cell Phone Home Phone Work Phone Exact Location : Date of Accident : AM PM Date...

352

E-Print Network 3.0 - accident medical aspect Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Collection: Mathematics 5 Exact Location : Date of Accident : AM PM Summary: SSN Cell Phone Home Phone Work Phone Exact Location : Date of Accident : AM PM Date...

353

E-Print Network 3.0 - accidents aviation Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Engineering 3 A Historical Perspective on Aviation Accident Investigation C. W. Johnson Summary: A Historical Perspective on Aviation Accident Investigation C. W. Johnson C....

354

E-Print Network 3.0 - accident sequences simulated Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Mathematics 3 A Technique for Showing Causal Arguments in Accident Reports C. W. Johnson; University of Glasgow; Glasgow, Scotland, UK Summary: for an accident report...

355

E-Print Network 3.0 - accident analysis handbook Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Mathematics 3 A Technique for Showing Causal Arguments in Accident Reports C. W. Johnson; University of Glasgow; Glasgow, Scotland, UK Summary: relevant to the accident and...

356

E-Print Network 3.0 - accident consequence model Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

2 Why System Safety Professionals Should Read Accident Reports C. M. Holloway*, C. W. Johnson Summary: accidents in general; an increased understanding of the consequences of...

357

E-Print Network 3.0 - accident conditions key Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

1 Why System Safety Professionals Should Read Accident Reports C. M. Holloway*, C. W. Johnson Summary: Why System Safety Professionals Should Read Accident Reports C. M....

358

E-Print Network 3.0 - accident consequences analysis Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

3 Why System Safety Professionals Should Read Accident Reports C. M. Holloway*, C. W. Johnson Summary: accidents in general; an increased understanding of the consequences of...

359

E-Print Network 3.0 - accident zone osobennosti Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Physics 2 A Technique for Showing Causal Arguments in Accident Reports C. W. Johnson; University of Glasgow; Glasgow, Scotland, UK Summary: and the work zone accident...

360

E-Print Network 3.0 - aviation accidents findings Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Engineering 3 A Historical Perspective on Aviation Accident Investigation C. W. Johnson Summary: A Historical Perspective on Aviation Accident Investigation C. W. Johnson C....

Note: This page contains sample records for the topic "line accidents storage" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

E-Print Network 3.0 - aircraft accident investigation Sample...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

; Engineering 3 A Historical Perspective on Aviation Accident Investigation C. W. Johnson Summary: A Historical Perspective on Aviation Accident Investigation C. W. Johnson C....

362

E-Print Network 3.0 - accident consequence analysis Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

3 Why System Safety Professionals Should Read Accident Reports C. M. Holloway*, C. W. Johnson Summary: accidents in general; an increased understanding of the consequences of...

363

E-Print Network 3.0 - accident research thermal Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

1 Why System Safety Professionals Should Read Accident Reports C. M. Holloway*, C. W. Johnson Summary: , accident prevention, system safety Abstract System safety professionals,...

364

E-Print Network 3.0 - accident lessons learned Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

2 Why System Safety Professionals Should Read Accident Reports C. M. Holloway*, C. W. Johnson Summary: seek to learn from the results of accident investigations. We believe that...

365

E-Print Network 3.0 - accident management center Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

3 Why System Safety Professionals Should Read Accident Reports C. M. Holloway*, C. W. Johnson Summary: Why System Safety Professionals Should Read Accident Reports C. M....

366

E-Print Network 3.0 - accident consequences elimination Sample...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

1 Why System Safety Professionals Should Read Accident Reports C. M. Holloway*, C. W. Johnson Summary: accidents in general; an increased understanding of the consequences of...

367

E-Print Network 3.0 - aircraft accident victims Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

The occasion... of accidents and disasters. The areas included were nuclear power plants, petrochemical plants, aircraft... accident as a case in point. Other systems that belonged...

368

E-Print Network 3.0 - accident research priorities Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

traffic accidents in Toxoplasma-infected military drivers... , for example, in a higher risk of traffic accidents in subjects with this life-long infection. Two recent......

369

E-Print Network 3.0 - accident records Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

traffic accidents in Toxoplasma-infected military drivers... , for example, in a higher risk of traffic accidents in subjects with this life-long ... Source: Flegr, Jaroslav -...

370

E-Print Network 3.0 - accidents industrial Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Collection: Computer Technologies and Information Sciences 4 THE RELATIONSHIP BETWEEN TRAIN LENGTH AND ACCIDENT CAUSES AND RATES Summary: . Accidents on yard and industry tracks...

371

E-Print Network 3.0 - accident consequence code Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

and Technology Group Collection: Engineering ; Chemistry 2 THE RELATIONSHIP BETWEEN TRAIN LENGTH AND ACCIDENT CAUSES AND RATES Summary: train length and accident rate and...

372

E-Print Network 3.0 - accidents analysis code Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

for: accidents analysis code Page: << < 1 2 3 4 5 > >> 1 THE RELATIONSHIP BETWEEN TRAIN LENGTH AND ACCIDENT CAUSES AND RATES Summary: a sensitivity analysis was conducted to...

373

E-Print Network 3.0 - accident sequence analysis Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

, Preliminary risk analysis (PRA), risk, potential accident, feared events, Automatic Train Control. I... , dangers and potential accidents respectively. At the beginning of the...

374

E-Print Network 3.0 - accidents graves susceptibles Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

BETWEEN TRAIN LENGTH AND ACCIDENT CAUSES AND RATES Summary: accidents than shorter trains. This is because longer trains are more susceptible to car... THE RELATIONSHIP BETWEEN...

375

E-Print Network 3.0 - accident sequence evaluation Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

(MIT) Collection: Engineering 48 Risk factors for injury accidents among moped and motorcycle riders Summary: are frequently available, contain information on the accident...

376

E-Print Network 3.0 - accident severity Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

and Information Sciences 22 Risk factors for injury accidents among moped and motorcycle riders Summary: to their vulnerability, is the high risk of accident involvement,...

377

E-Print Network 3.0 - accident consequence uncertainty Sample...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Databases and Resources 56 Risk factors for injury accidents among moped and motorcycle riders Summary: Risk factors for injury accidents among moped and motorcycle riders...

378

E-Print Network 3.0 - accident loca based Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Collection: Fossil Fuels 34 Risk factors for injury accidents among moped and motorcycle riders Summary: -control study with accident responsibility as the event. 2....

379

E-Print Network 3.0 - accident sequence analyses Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Collection: Mathematics 40 Risk factors for injury accidents among moped and motorcycle riders Summary: or Bulletins d'Analyse des Accidents corporels de la Circulation...

380

E-Print Network 3.0 - accident exposure Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Collection: Mathematics 12 Risk factors for injury accidents among moped and motorcycle riders Summary: they were responsible or not for the accident. In this way, we...

Note: This page contains sample records for the topic "line accidents storage" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Understanding Long-Term Storage Access Patterns  

E-Print Network [OSTI]

4 Scientific Tertiary Storage System Behavior 4.1 Datasetof analyses based on storage system traces. Bibliography [1]in heterogeneous archival storage systems. In Proceedings of

Adams, Ian Forrest

2013-01-01T23:59:59.000Z

382

Nanostructured Materials for Energy Generation and Storage  

E-Print Network [OSTI]

for Electrochemical Energy Storage Nanostructured Electrodesof the batteries and their energy storage efficiency. viifor Nanostructure-Based Energy Storage and Generation Tech-

Khan, Javed Miller

2012-01-01T23:59:59.000Z

383

AQUIFER THERMAL ENERGY STORAGE-A SURVEY  

E-Print Network [OSTI]

High temperature underground thermal energy storage, inProceedings, Thermal Energy Storage in Aquifers Workshop:underground thermal energy storage, in ATES newsletter:

Tsang, Chin Fu

2012-01-01T23:59:59.000Z

384

THERMAL ENERGY STORAGE IN AQUIFERS WORKSHOP  

E-Print Network [OSTI]

Survey of Thermal Energy Storage in Aquifers Coupled withconcept of thermal energy storage in aquifers was suggestedLow Temperature Thermal Energy Storage Program of Oak Ridge

Authors, Various

2011-01-01T23:59:59.000Z

385

NERSC Frontiers in Advanced Storage Technology Project  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Storage R&D Frontiers in Advanced Storage Technologies (FAST) project Working with vendors to develop new functionality in storage technologies generally not yet available to...

386

AQUIFER THERMAL ENERGY STORAGE-A SURVEY  

E-Print Network [OSTI]

1978, High temperature underground thermal energy storage,in Proceedings, Thermal Energy Storage in Aquifers Workshop:High temperature underground thermal energy storage, in ATES

Tsang, Chin Fu

2012-01-01T23:59:59.000Z

387

NV Energy Electricity Storage Valuation  

SciTech Connect (OSTI)

This study examines how grid-level electricity storage may benet the operations of NV Energy in 2020, and assesses whether those benets justify the cost of the storage system. In order to determine how grid-level storage might impact NV Energy, an hourly production cost model of the Nevada Balancing Authority (\\BA") as projected for 2020 was built and used for the study. Storage facilities were found to add value primarily by providing reserve. Value provided by the provision of time-of-day shifting was found to be limited. If regulating reserve from storage is valued the same as that from slower ramp rate resources, then it appears that a reciprocating engine generator could provide additional capacity at a lower cost than a pumped storage hydro plant or large storage capacity battery system. In addition, a 25-MW battery storage facility would need to cost $650/kW or less in order to produce a positive Net Present Value (NPV). However, if regulating reserve provided by storage is considered to be more useful to the grid than that from slower ramp rate resources, then a grid-level storage facility may have a positive NPV even at today's storage system capital costs. The value of having storage provide services beyond reserve and time-of-day shifting was not assessed in this study, and was therefore not included in storage cost-benefit calculations.

Ellison, James F.; Bhatnagar, Dhruv; Samaan, Nader A.; Jin, Chunlian

2013-06-30T23:59:59.000Z

388

MELCOR accident analysis for ARIES-ACT  

SciTech Connect (OSTI)

We model a loss of flow accident (LOFA) in the ARIES-ACT1 tokamak design. ARIES-ACT1 features an advanced SiC blanket with LiPb as coolant and breeder, a helium cooled steel structural ring and tungsten divertors, a thin-walled, helium cooled vacuum vessel, and a room temperature water-cooled shield outside the vacuum vessel. The water heat transfer system is designed to remove heat by natural circulation during a LOFA. The MELCOR model uses time-dependent decay heats for each component determined by 1-D modeling. The MELCOR model shows that, despite periodic boiling of the water coolant, that structures are kept adequately cool by the passive safety system.

Paul W. Humrickhouse; Brad J. Merrill

2012-08-01T23:59:59.000Z

389

NGLW RCRA Storage Study  

SciTech Connect (OSTI)

The Idaho Nuclear Technology and Engineering Center (INTEC) at the Idaho National Engineering and Environmental Laboratory contains radioactive liquid waste in underground storage tanks at the INTEC Tank Farm Facility (TFF). INTEC is currently treating the waste by evaporation to reduce the liquid volume for continued storage, and by calcination to reduce and convert the liquid to a dry waste form for long-term storage in calcine bins. Both treatment methods and activities in support of those treatment operations result in Newly Generated Liquid Waste (NGLW) being sent to TFF. The storage tanks in the TFF are underground, contained in concrete vaults with instrumentation, piping, transfer jets, and managed sumps in case of any liquid accumulation in the vault. The configuration of these tanks is such that Resource Conservation and Recovery Act (RCRA) regulations apply. The TFF tanks were assessed several years ago with respect to the RCRA regulations and they were found to be deficient. This study considers the configuration of the current tanks and the RCRA deficiencies identified for each. The study identifies four potential methods and proposes a means of correcting the deficiencies. The cost estimates included in the study account for construction cost; construction methods to minimize work exposure to chemical hazards, radioactive contamination, and ionizing radiation hazards; project logistics; and project schedule. The study also estimates the tank volumes benefit associated with each corrective action to support TFF liquid waste management planning.

R. J. Waters; R. Ochoa; K. D. Fritz; D. W. Craig

2000-06-01T23:59:59.000Z

390

Seed Cotton Handling & Storage  

E-Print Network [OSTI]

Seed Cotton Handling & Storage #12;S.W. Searcy Texas A&M University College Station, Texas M) Lubbock, Texas E.M. Barnes Cotton Incorporated Cary, North Carolina Acknowledgements: Special thanks for the production of this document has been provided by Cotton Incorporated, America's Cotton Producers

Mukhtar, Saqib

391

HYDROGEN STORAGE USINGHYDROGEN STORAGE USING COMPLEX HYDRIDESCOMPLEX HYDRIDES  

E-Print Network [OSTI]

, Michael D. HamptonDarlene K. Slattery, Michael D. Hampton FL Solar Energy Center, U. of Central FLFL Solar Energy Center, U. of Central FL #12;Objective · Identify a hydrogen storage system that meets the DOEHYDROGEN STORAGE USINGHYDROGEN STORAGE USING COMPLEX HYDRIDESCOMPLEX HYDRIDES Darlene K. Slattery

392

Graphite Oxidation Simulation in HTR Accident Conditions  

SciTech Connect (OSTI)

Massive air and water ingress, following a pipe break or leak in steam-generator tubes, is a design-basis accident for high-temperature reactors (HTRs). Analysis of these accidents in both prismatic and pebble bed HTRs requires state-of-the-art capability for predictions of: 1) oxidation kinetics, 2) air ?helium gas mixture stratification and diffusion into the core following the depressurization, 3) transport of multi-species gas mixture, and 4) graphite corrosion. This project will develop a multi-dimensional, comprehensive oxidation kinetics model of graphite in HTRs, with diverse capabilities for handling different flow regimes. The chemical kinetics/multi-species transport model for graphite burning and oxidation will account for temperature-related changes in the properties of graphite, oxidants (O2, H2O, CO), reaction products (CO, CO2, H2, CH4) and other gases in the mixture (He and N2). The model will treat the oxidation and corrosion of graphite in geometries representative of HTR core component at temperatures of 900C or higher. The developed chemical reaction kinetics model will be user-friendly for coupling to full core analysis codes such as MELCOR and RELAP, as well as computational fluid dynamics (CFD) codes such as CD-adapco. The research team will solve governing equations for the multi-dimensional flow and the chemical reactions and kinetics using Simulink, an extension of the MATLAB solver, and will validate and benchmark the model's predictions using reported experimental data. Researchers will develop an interface to couple the validated model to a commercially available CFD fluid flow and thermal-hydraulic model of the reactor , and will perform a simulation of a pipe break in a prismatic core HTR, with the potential for future application to a pebble-bed type HTR.

Mohamed El-Genk

2012-10-19T23:59:59.000Z

393

Silo Storage Preconceptual Design  

SciTech Connect (OSTI)

The National Nuclear Security Administration (NNSA) has a need to develop and field a low-cost option for the long-term storage of a variety of radiological material. The storage options primary requirement is to provide both environmental and physical protection of the materials. Design criteria for this effort require a low initial cost and minimum maintenance over a 50-year design life. In 1999, Argonne National Laboratory-West was tasked with developing a dry silo storage option for the BN-350 Spent Fuel in Aktau Kazakhstan. Argons design consisted of a carbon steel cylinder approximately 16 ft long, 18 in. outside diameter and 0.375 in. wall thickness. The carbon steel silo was protected from corrosion by a duplex coating system consisting of zinc and epoxy. Although the study indicated that the duplex coating design would provide a design life well in excess of the required 50 years, the review board was concerned because of the novelty of the design and the lack of historical use. In 2012, NNSA tasked Idaho National Laboratory (INL) with reinvestigating the silo storage concept and development of alternative corrosion protection strategies. The 2012 study, Silo Storage Concepts, Cathodic Protection Options Study (INL/EST-12-26627), concludes that the option which best fits the design criterion is a passive cathotic protection scheme, consisting of a carbon steel tube coated with zinc or a zinc-aluminum alloy encapsulated in either concrete or a cement grout. The hot dipped zinc coating option was considered most efficient, but the flame-sprayed option could be used if a thicker zinc coating was determined to be necessary.

Stephanie L. Austad; Patrick W. Bragassa; Kevin M Croft; David S Ferguson; Scott C Gladson; Annette L Shafer; John H Weathersby

2012-09-01T23:59:59.000Z

394

Compressed Air Energy Storage System  

E-Print Network [OSTI]

/expanders are crucial for the economical viability of a Compressed Air Energy Storage (CAES) system such as the

Farzad A. Shirazi; Mohsen Saadat; Bo Yan; Perry Y. Li; Terry W. Simon

395

Webinar: Hydrogen Storage Materials Requirements  

Broader source: Energy.gov [DOE]

Video recording and text version of the webinar titled, Hydrogen Storage Materials Requirements, originally presented on June 25, 2013.

396

Normal matter storage of antiprotons  

SciTech Connect (OSTI)

Various simple issues connected with the possible storage of anti p in relative proximity to normal matter are discussed. Although equilibrium storage looks to be impossible, condensed matter systems are sufficiently rich and controllable that nonequilibrium storage is well worth pursuing. Experiments to elucidate the anti p interactions with normal matter are suggested. 32 refs.

Campbell, L.J.

1987-01-01T23:59:59.000Z

397

Electrical Energy Storage: Stan Whittingham  

E-Print Network [OSTI]

1 p. 1 Electrical Energy Storage: Stan Whittingham Report of DOE workshop, April 2007 A Cleaner and Energy Independent America through Chemistry Chemical Storage: Batteries, today and tomorrow http needed in Energy Storage Lithium Economy not Hydrogen Economy #12;9 p. 9 Batteries are key to an economy

Suzuki, Masatsugu

398

The Power of Energy Storage  

E-Print Network [OSTI]

The Power of Energy Storage How to Increase Deployment in California to Reduce Greenhouse Gas;1Berkeley Law \\ UCLA Law The Power of Energy Storage: How to Increase Deployment in California to Reduce Greenhouse Gas Emissions Executive Summary: Expanding Energy Storage in California Sunshine and wind, even

Sadoulet, Elisabeth

399

PC-Cluster based Storage System Architecture for Cloud Storage  

E-Print Network [OSTI]

Design and architecture of cloud storage system plays a vital role in cloud computing infrastructure in order to improve the storage capacity as well as cost effectiveness. Usually cloud storage system provides users to efficient storage space with elasticity feature. One of the challenges of cloud storage system is difficult to balance the providing huge elastic capacity of storage and investment of expensive cost for it. In order to solve this issue in the cloud storage infrastructure, low cost PC cluster based storage server is configured to be activated for large amount of data to provide cloud users. Moreover, one of the contributions of this system is proposed an analytical model using M/M/1 queuing network model, which is modeled on intended architecture to provide better response time, utilization of storage as well as pending time when the system is running. According to the analytical result on experimental testing, the storage can be utilized more than 90% of storage space. In this paper, two parts...

Yee, Tin Tin

2011-01-01T23:59:59.000Z

400

Panel 4, Hydrogen Energy Storage Policy Considerations  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Energy Storage Policy Considerations Hydrogen Storage Workshop Jeffrey Reed Southern California Gas Company May 15, 2014 0 Methane is a Great Storage Medium 1 SoCalGas' storage...

Note: This page contains sample records for the topic "line accidents storage" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Post-accident inhalation exposure and experience with plutonium  

SciTech Connect (OSTI)

This paper addresses the issue of inhalation exposure immediately afterward and for a long time following a nuclear accident. For the cases where either a nuclear weapon burns or explodes prior to nuclear fission, or at locations close to a nuclear reactor accident containing fission products, a major concern is the inhalation of aerosolized plutonium (Pu) particles producing alpha-radiation. We have conducted field studies of Pu- contaminated real and simulated accident sites at Bikini, Johnston Atoll, Tonopah (Nevada), Palomares (Spain), Chernobyl, and Maralinga (Australia).

Shinn, J

1998-06-01T23:59:59.000Z

402

Hydrogen Compression, Storage, and Dispensing Cost Reduction...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Compression, Storage, and Dispensing Cost Reduction Workshop Addendum Hydrogen Compression, Storage, and Dispensing Cost Reduction Workshop Addendum Document states additional...

403

Combinatorial Approaches for Hydrogen Storage Materials (presentation...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Approaches for Hydrogen Storage Materials (presentation) Combinatorial Approaches for Hydrogen Storage Materials (presentation) Presentation on NIST Combinatorial Methods at the...

404

Webinar: Hydrogen Storage Materials Database Demonstration |...  

Broader source: Energy.gov (indexed) [DOE]

Storage Materials Database Demonstration Webinar: Hydrogen Storage Materials Database Demonstration Presentation slides from the Fuel Cell Technologies Office webinar "Hydrogen...

405

Fact Sheet: Energy Storage Technology Advancement Partnership...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Technology Advancement Partnership (October 2012) Fact Sheet: Energy Storage Technology Advancement Partnership (October 2012) The Energy Storage Technology Advancement Partnership...

406

Storage depot for radioactive material  

DOE Patents [OSTI]

Vertical drilling of cylindrical holes in the soil, and the lining of such holes, provides storage vaults called caissons. A guarded depot is provided with a plurality of such caissons covered by shielded closures preventing radiation from penetrating through any linear gap to the atmosphere. The heat generated by the radioactive material is dissipated through the vertical liner of the well into the adjacent soil and thus to the ground surface so that most of the heat from the radioactive material is dissipated into the atmosphere in a manner involving no significant amount of biologically harmful radiation. The passive cooling of the radioactive material without reliance upon pumps, personnel, or other factor which might fail, constitutes one of the most advantageous features of this system. Moreover this system is resistant to damage from tornadoes or earthquakes. Hermetically sealed containers of radioactive material may be positioned in the caissons. Loading vehicles can travel throughout the depot to permit great flexibility of loading and unloading radioactive materials. Radioactive material can be shifted to a more closely spaced caisson after ageing sufficiently to generate much less heat. The quantity of material stored in a caisson is restricted by the average capacity for heat dissipation of the soil adjacent such caisson.

Szulinski, Milton J. (Richland, WA)

1983-01-01T23:59:59.000Z

407

Superconducting magnetic energy storage  

SciTech Connect (OSTI)

Recent programmatic developments in Superconducting Magnetic Energy Storage (SMES) have prompted renewed and widespread interest in this field. In mid 1987 the Defense Nuclear Agency, acting for the Strategic Defense Initiative Office, issued a request for proposals for the design and construction of SMES Engineering Test Model (ETM). Two teams, one led by Bechtel and the other by Ebasco, are now engaged in the first phase of the development of a 10 to 20 MWhr ETM. This report presents the rationale for energy storage on utility systems, describes the general technology of SMES, and explains the chronological development of the technology. The present ETM program is outlined; details of the two projects for ETM development are described in other papers in these proceedings. The impact of high T/sub c/ materials on SMES is discussed. 69 refs., 3 figs., 3 tabs.

Hassenzahl, W.

1988-08-01T23:59:59.000Z

408

The Accident at Fukushima: What Happened?  

SciTech Connect (OSTI)

At 2:46 PM, on the coast of the Pacific Ocean in eastern Japan, people were spending an ordinary afternoon. The earthquake had a magnitude of 9.0, the fourth largest ever recorded in the world. Avery large number of aftershocks were felt after the initial earthquake. More than 100 of them had a magnitude of over 6.0. There were very few injured or dead at this point. The large earthquake caused by this enormous crustal deformation spawned a rare and enormous tsunami that crashed down 30-40 minutes later. It easily cleared the high levees, washing away cars and houses and swallowing buildings of up to three stories in height. The largest tsunami reading taken from all regions was 40 meters in height. This tsunami reached the West Coast of the United States and the Pacific coast of South America, with wave heights of over two meters. It was due to this tsunami that the disaster became one of a not imaginable scale, which saw the number of dead or missing reach about 20,000 persons. The enormous tsunami headed for 15 nuclear power plants on the Pacific coast, but 11 power plants withstood the tsunami and attained cold shutdown. The flood height of the tsunami that struck each power station ranged to a maximum of 15 meters. The Fukushima Daiichi Nuclear Power Plant Units experienced the largest and the cores of three reactors suffered meltdown. As a result, more than 160,000 residents were forced to evacuate, and are still living in temporary accommodation. The main focus of this presentation is on what happened at the Fukushima Daiichi, and how station personnel responded to the accident, with considerable international support. A year after the Fukushima Daiichi accident, Japan is in the process of leveraging the lessons learned from the accident to further improve the safety of nuclear power facilities and regain the trust of society. In this connection, not only international organizations, including IAEA, and WANO, but also governmental organizations and nuclear industry representatives from various countries, have been evaluating what happened at Fukushima Daiichi. Support from many countries has contributed to successfully stabilizing the Fukushima Daiichi Nuclear Power Station. International cooperation is required as Japan started along the long road to decommissioning the reactors. Such cooperation with the international community would achieve the decommissioning of the damaged reactors. Finally, recovery plans by the Japanese government to decontaminate surrounding regions have been started in order to get residents back to their homes as early as possible. Looking at the world's nuclear power industry, there are currently approximately 440 reactors in operation and 60 under construction. Despite the dramatic consequences of the Fukushima Daiichi catastrophe it is expected that the importance of nuclear power generation will not change in the years to come. Newly accumulated knowledge and capabilities must be passed on to the next generation. This is the duty put upon us and which is one that we must embrace.

Fujie, Takao [Japan Nuclear Technology Institute - JANTI (Japan)

2012-07-01T23:59:59.000Z

409

HYDROGEN USAGE AND STORAGE  

E-Print Network [OSTI]

It is thought that it will be useful to inform society and people who are interested in hydrogen energy. The study below has been prepared due to this aim can be accepted as an article to exchange of information between people working on this subject. This study has been presented to reader to be utilized as a technical note. Main Energy sources coal, petroleum and natural gas are the fossil fuels we use today. They are going to be exhausted since careless usage in last decades through out the world, and human being is going to face the lack of energy sources in the near future. On the other hand as the fossil fuels pollute the environment makes the hydrogen important for an alternative energy source against to the fossil fuels. Due to the slow progress in hydrogens production, storage and converting into electrical energy experience, extensive usage of Hydrogen can not find chance for applications in wide technological practices. Hydrogen storage stands on an important point in the development of Hydrogen energy Technologies. Hydrogen is volumetrically low energy concentration fuel. Hydrogen energy, to meet the energy quantity necessary for the nowadays technologies and to be accepted economically and physically against fossil fuels, Hydrogen storage technologies have to be developed in this manner. Today the most common method in hydrogen storage may be accepted as the high pressurized composite tanks. Hydrogen is stored as liquid or gaseous phases. Liquid hydrogen phase can be stored by using composite tanks under very high pressure conditions. High technology composite material products which are durable to high pressures, which should not be affected by hydrogen embrittlement and chemical conditions.[1

410

Maui energy storage study.  

SciTech Connect (OSTI)

This report investigates strategies to mitigate anticipated wind energy curtailment on Maui, with a focus on grid-level energy storage technology. The study team developed an hourly production cost model of the Maui Electric Company (MECO) system, with an expected 72 MW of wind generation and 15 MW of distributed photovoltaic (PV) generation in 2015, and used this model to investigate strategies that mitigate wind energy curtailment. It was found that storage projects can reduce both wind curtailment and the annual cost of producing power, and can do so in a cost-effective manner. Most of the savings achieved in these scenarios are not from replacing constant-cost diesel-fired generation with wind generation. Instead, the savings are achieved by the more efficient operation of the conventional units of the system. Using additional storage for spinning reserve enables the system to decrease the amount of spinning reserve provided by single-cycle units. This decreases the amount of generation from these units, which are often operated at their least efficient point (at minimum load). At the same time, the amount of spinning reserve from the efficient combined-cycle units also decreases, allowing these units to operate at higher, more efficient levels.

Ellison, James; Bhatnagar, Dhruv; Karlson, Benjamin

2012-12-01T23:59:59.000Z

411

Safety First Safety Last Safety Always Roughly one out of every four accidents (25%) involves  

E-Print Network [OSTI]

Safety First Safety Last Safety Always Roughly one out of every four accidents (25%) involves at an unsafe speed · Failure to check mirrors often Fleet Safety: Backing Accidents Safety Tip #2 Accidents hurt-- safety doesn't. All backing accidents are preventable. The key is to plan ahead to avoid backing

Minnesota, University of

412

RESEARCH FOUNDATION -STATE UNIVERSITY OF NEW YORK REPORT OF ACCIDENT OR INJURY  

E-Print Network [OSTI]

RESEARCH FOUNDATION - STATE UNIVERSITY OF NEW YORK REPORT OF ACCIDENT OR INJURY (OTHER THAN A MOTOR VEHICLE ACCIDENT) Revised: July 2008 1. Date and T ime of accident: Date: T ime: 2. Date of Report: 3. T o be completed by Safety Supervisor: YEAR: NO.: SEQUENCE: FILE ID: 4. Did accident involve personal injury? Yes

Suzuki, Masatsugu

413

INTRODUCTION OF FREQUENCY IN FRANCE FOLLOWING THE AZF ACCIDENT Clment LENOBLE*  

E-Print Network [OSTI]

INTRODUCTION OF FREQUENCY IN FRANCE FOLLOWING THE AZF ACCIDENT Clément LENOBLE* , Clarisse DURAND** * INERIS, Accident risks division, Parc Technologique Alata BP2, F-60550 Verneuil-en-Halatte ** French been consecutive to industrial accidents. Two years after the industrial accident of AZF (French

Paris-Sud XI, Université de

414

Monthly Theme OARS January 2009 Report an Accident / Incident / Near Miss  

E-Print Network [OSTI]

Monthly Theme ­ OARS ­ January 2009 Report an Accident / Incident / Near Miss Online Accident Reporting System (OARS) debuts January 2009 EH&S has a NEW online system to report any accident or incident that happens at the University. The web- based reporting system is called OARS -- Online Accident Reporting

Calgary, University of

415

Analysis of a hypothetical criticality accident in a waste supercompactor  

SciTech Connect (OSTI)

A hypothetical nuclear criticality accident in a waste supercompactor is evaluated. The waste consists of a homogenous mixture of plutonium 49, beryllium, and air contained in a 35 gallon carbon steel drum. Possible consequences are investigated.

Plaster, M.J.; Basoglu, B.; Bentley, C.L.; Dunn, M.E.; Ruggles, A.E.; Wilkinson, A.; Yamamoto, T.; Dodds, H.L. [Univ. of Tennessee, Knoxville, TN (United States)

1994-12-31T23:59:59.000Z

416

Response of Soviet VVER-440 accident localization systems to overpressurization  

SciTech Connect (OSTI)

The Soviet designed VVER-440 model V230 and VVER-440 model V213 reactors do not use full containments to mitigate the effects of accidents. Instead, these VVER-440 units employ a sealed set of interconnected compartments, collectively called the accident localization system (ALS), to reduce the release of radionuclides to the atmosphere during accidents. Descriptions of the VVER accident localization structures may be found in the report DOE NE-0084. The objective of this paper is to evaluate the structural integrity of the VVER-440 ALS at the Soviet design pressure, and to determine their response to pressure loadings beyond the design value. Complex, three-dimensional, nonlinear, finite element models were developed to represent the major structural components of the localization systems of the VVER-440 models V230 and V213. The interior boundary of the localization system was incrementally pressurized in the calculations until the prediction of gross failure. 6 refs., 9 figs.

Kulak, R.F.; Fiala, C.; Sienicki, J.J.

1989-01-01T23:59:59.000Z

417

Modeling control room crews for accident sequence analysis  

E-Print Network [OSTI]

This report describes a systems-based operating crew model designed to simulate the behavior of an nuclear power plant control room crew during an accident scenario. This model can lead to an improved treatment of potential ...

Huang, Y. (Yuhao)

1991-01-01T23:59:59.000Z

418

Failsafe : living with man-made disaster and accident  

E-Print Network [OSTI]

"There is no progress with out progress of the catastrophe." Virilio. This thesis project proposes that technological solutions in the design of our systems are not enough to prevent 'man-made' accident. Social, organisational ...

Higgins, Saoirse, 1966-

2004-01-01T23:59:59.000Z

419

Type B Accident Investigation Board Report BNFL, Inc. Employee...  

Broader source: Energy.gov (indexed) [DOE]

Park Building K-31 February 1, 2004 On December 17, 2003, at approximately 7:15 a.m., an accident occurred at the U.S. Department of Energy (DOE) East Tennessee Technology Park,...

420

Type B Accident Investigation Report of the October 28, 2004...  

Broader source: Energy.gov (indexed) [DOE]

National Laboratory Type B Accident Investigation of the Savannah River Site Arc Flash Burn Injury on September 23, 2009, in the D Area Powerhouse Worker Health Summary, 1995-2004...

Note: This page contains sample records for the topic "line accidents storage" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Type B Accident Investigation of the Savannah River Site Arc...  

Broader source: Energy.gov (indexed) [DOE]

the Savannah River Site Arc Flash Burn Injury on September 23, 2009, in the D Area Powerhouse Type B Accident Investigation of the Savannah River Site Arc Flash Burn Injury on...

422

Accidents, engineering and history at NASA: 1967-2003  

E-Print Network [OSTI]

The manned spaceflight program of the National Aeronautics and Space Administration (NASA) has suffered three fatal accidents: one in the Apollo program and two in the Space Transportation System (the Shuttle). These were ...

Brown, Alexander F. G. (Alexander Frederic Garder), 1970-

2009-01-01T23:59:59.000Z

423

Type B Accident Investigation of the August 22, 2000, Injury...  

Broader source: Energy.gov (indexed) [DOE]

Site October 20, 2000 On August 22, 2000, an accident occurred at the U. S. Department of Energy (DOE) Portsmouth Gaseous Diffusion Plant (PORTS) located in Piketon, Ohio. An...

424

A STAMP model of the berlingen aircraft collision accident  

E-Print Network [OSTI]

STAMP is a method for evaluating accidents that is based on systems theory. It departs from traditional event chain models that tend to focus on human errors instead of the goals and motives that triggered the errors. The ...

Wong, Brian, 1982 Nov 11-

2004-01-01T23:59:59.000Z

425

Type B Accident Investigation of the Acid Vapor Inhalation on...  

Broader source: Energy.gov (indexed) [DOE]

2005, in TA-48, Building RC-1 Room 402 at the Los Alamos National Laboratory Type B Accident Investigation of the Acid Vapor Inhalation on June 7, 2005, in TA-48, Building RC-1...

426

Type B Accident Investigation Board Report of the Savannah River...  

Broader source: Energy.gov (indexed) [DOE]

Site Hand Injury at the Salt Waste Processing Facility on October 6, 2009 Type B Accident Investigation Board Report of the Savannah River Site Hand Injury at the Salt Waste...

427

Some methods of estimating uncertainty in accident reconstruction  

E-Print Network [OSTI]

In the paper four methods for estimating uncertainty in accident reconstruction are discussed: total differential method, extreme values method, Gauss statistical method, and Monte Carlo simulation method. The methods are described and the program solutions are given.

Milan Batista

2011-07-20T23:59:59.000Z

428

accident dosimetry system: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Next Page Last Page Topic Index 1 A New Accident Model for Engineering Safer Systems Nancy Leveson Engineering Websites Summary: A New...

429

Type B Accident Investigation Board Report Employee Puncture...  

Broader source: Energy.gov (indexed) [DOE]

F-TRU Waste Remediation Facility at the Savannah River Site on June 14, 2010 Type B Accident Investigation Board Report Employee Puncture Wound at the F-TRU Waste Remediation...

430

Type B Accident Investigation of the January 10, 2006, Flash...  

Broader source: Energy.gov (indexed) [DOE]

10, 2006, Flash Fire and Injury at the Savannah River National Laboratory Type B Accident Investigation of the January 10, 2006, Flash Fire and Injury at the Savannah River...

431

Type B Accident Investigation Board Report on the Head Injury...  

Broader source: Energy.gov (indexed) [DOE]

on the Head Injury to a Miner at the Waste Isolation Pilot Plant, Carlsbad, New Mexico - August 25, 2004 Type B Accident Investigation Board Report on the Head Injury to a Miner at...

432

Type B Accident Investigation Of The February 25, 2009 Injury...  

Broader source: Energy.gov (indexed) [DOE]

To A Passenger In An Electric Cart At The Waste Isolation Pilot Plant, Carlsbad, New Mexico Type B Accident Investigation Of The February 25, 2009 Injury To A Passenger In An...

433

Beam line design for synchrotron spectroscopy in the VUV  

SciTech Connect (OSTI)

The character of the radiation source provided by an electron storage ring is briefly reviewed from the point of view of utilization for VUV spectroscopy. The design of beam line components is then considered with special reference to the problems of contamination of optical surfaces and vacuum protection. The issues involved in designing mirrors for use with storage rings are considered with emphasis on the questions of power dissipation, image quality and materials selection.

Howells, M R

1980-01-01T23:59:59.000Z

434

Improved dose estimates for nuclear criticality accidents  

SciTech Connect (OSTI)

Slide rules are improved for estimating doses and dose rates resulting from nuclear criticality accidents. The original slide rules were created for highly enriched uranium solutions and metals using hand calculations along with the decades old Way-Wigner radioactive decay relationship and the inverse square law. This work uses state-of-the-art methods and better data to improve the original slide rules and also to extend the slide rule concept to three additional systems; i.e., highly enriched (93.2 wt%) uranium damp (H/{sup 235}U = 10) powder (U{sub 3}O{sub 8}) and low-enriched (5 wt%) uranium mixtures (UO{sub 2}F{sub 2}) with a H/{sup 235}U ratio of 200 and 500. Although the improved slide rules differ only slightly from the original slide rules, the improved slide rules and also the new slide rules can be used with greater confidence since they are based on more rigorous methods and better nuclear data.

Wilkinson, A.D.; Basoglu, B.; Bentley, C.L.; Dunn, M.E.; Plaster, M.J.; Dodds, H.L. [Univ. of Tennessee, Knoxville, TN (United States). Nuclear Engineering Dept.; Haught, C.F. [Martin Marietta Utility Systems, Piketon, OH (United States); Yamamoto, T. [Japan Atomic Energy Research Inst., Tokai (Japan). Tokai Research Establishment; Hopper, C.M. [Oak Ridge National Lab., TN (United States)

1995-08-01T23:59:59.000Z

435

Trees as Filters of Radioactive Fallout from the Chernobyl Accident  

E-Print Network [OSTI]

This paper is a copy of an unpublished study of the filtering effect of red maple trees (acer rubrum) on fission product fallout near Binghamton, NY, USA following the 1986 Chernobyl accident. The conclusions of this work may offer some insight into what is happening in the forests exposed to fallout from the Fukushima Daiichi Nuclear Plant accident. This posting is in memory of Noel K. Yeh.

Brownridge, James D

2011-01-01T23:59:59.000Z

436

Berkeley Lab Accident Statistics Through January 31, 2012  

E-Print Network [OSTI]

1 Berkeley Lab Accident Statistics Through January 31, 2012 These slides are updated on a monthly Systems Engineer suffered the injuries from a single vehicle motorcycle accident. The employee had braked 0 0 0 0 0 0 0 1 Nuclear Science 0 0 0 0 0 0 0 0 0 0 0 0 0 Physics 0 0 0 0 0 0 0 0 0 0 0 0 0 Energy

Eisen, Michael

437

The role of NUREG-1150 in accident management  

SciTech Connect (OSTI)

NUREG-1150 is being prepared by the NRC and its contractors to estimate the risk from five commercial light water reactors: Surry, Sequoyah, Peach Bottom, Grand Gulf, and Zion. Level 3 probabilistic risk assessments (PRAs) are being prepared for each of these plants. These PRAs provide a framework for evaluating accident management alternatives from a risk standpoint. This paper describes the accident management benefits that NUREG-1150 is providing.

Camp, A.L.; Cramond, W.R.; Sype, T.T.

1988-01-01T23:59:59.000Z

438

The role of NUREG-1150 in accident management  

SciTech Connect (OSTI)

The NUREG-1150 report is being prepared by the US Nuclear Regulatory Commission and its contractors to estimate the risk from five commercial light water reactors: Surry, Sequoyah, Peach Bottom, Grand Gulf, and Zion. Level-3 probabilistic risk assessments (PRAs) are being prepared for each of these plants. These PRAs provided a framework for evaluating accident management alternatives from a risk standpoint. This paper describes the accident management benefits that NUREG-1150 is providing.

Camp, A.L.; Cramond, W.R.; Sype, T.T.

1988-01-01T23:59:59.000Z

439

Routine and post-accident sampling in nuclear reactors  

SciTech Connect (OSTI)

Review of the Three Mile Island accident by NRC has resulted in new post-accident-sampling-capability requirements for utilities that operate pressurized water reactors and/or boiling water reactors. Several vendors are offering equipment that they hope will suffice to met both the new NRC regulations and an operational deadline of January 1, 1981. The advantages and disadvantages of these systems and projected future-new-system needs for TVA reactors are being evaluated in light of TMI experience.

Armento, W.J.; Kitts, F.G.; German, G.E.

1980-01-01T23:59:59.000Z

440

Berkeley Lab Accident Statistics Through July 31, 2009  

E-Print Network [OSTI]

1 Berkeley Lab Accident Statistics Through July 31, 2009 These slides are updated on a monthly Accident Rates 5.70 4.95 3.79 2.92 2.93 3.27 3.63 2.44 2.17 2.51 1.17 1.81 1.28 1.65 1.92 3.90 3.41 2.65 2

Eisen, Michael

Note: This page contains sample records for the topic "line accidents storage" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Berkeley Lab Accident Statistics Through September 30, 2009  

E-Print Network [OSTI]

1 Berkeley Lab Accident Statistics Through September 30, 2009 These slides are updated on a monthly Accident Rates 5.70 4.95 3.79 2.92 2.93 3.27 3.63 2.44 2.17 2.51 1.17 1.81 1.28 1.65 1.92 3.90 3.41 2.65 2

Eisen, Michael

442

Berkeley Lab Accident Statistics Through May 31, 2009  

E-Print Network [OSTI]

1 Berkeley Lab Accident Statistics Through May 31, 2009 These slides are updated on a monthly basis Berkeley Lab Site Accident Rates 5.70 4.95 3.79 2.92 2.93 3.27 3.63 2.44 2.17 2.51 1.17 1.81 1.28 1.65 1

Eisen, Michael

443

Berkeley Lab Accident Statistics Through October 31, 2008  

E-Print Network [OSTI]

1 Berkeley Lab Accident Statistics Through October 31, 2008 These slides are updated on a monthly Accident Rates 5.70 4.95 3.79 2.92 2.93 3.27 3.63 2.44 2.17 2.51 1.17 1.81 1.28 1.65 1.72 0.40 3.90 3.41 2

Eisen, Michael

444

Berkeley Lab Accident Statistics Through August 31, 2009  

E-Print Network [OSTI]

1 Berkeley Lab Accident Statistics Through August 31, 2009 These slides are updated on a monthly Accident Rates 5.70 4.95 3.79 2.92 2.93 3.27 3.63 2.44 2.17 2.51 1.17 1.81 1.28 1.65 1.92 3.90 3.41 2.65 2

Eisen, Michael

445

Type B Accident Investigation Board Report on the March 27, 1998, Rotating Shaft Accident at the Ames Laboratory, Ames, Iowa  

Broader source: Energy.gov [DOE]

This report is an independent product of the Type B Accident Investigation Board appointed by John Kennedy, Acting Manager, Chicago Operations Office, U.S. Department of Energy (DOE).

446

Civil aircraft accident Report on the Accident to Boeing 707-465 G-Arwe at Heathrow Airport, London on 8th April 1968  

E-Print Network [OSTI]

A3.C.A.P. 324 Civil aircraft accident Report on the Accident to Boeing 707-465 G-Arwe at Heathrow Airport, London on 8th April 1968...

Anonymous

1969-01-01T23:59:59.000Z

447

Alcohol, Drugs, and Accident Prevention (RC-371/-571) Course Description The role of alcohol and drugs and their relationship to accident causation will be examined. The problem  

E-Print Network [OSTI]

Alcohol, Drugs, and Accident Prevention (RC-371/-571) Course Description The role of alcohol and drugs and their relationship to accident causation will be examined. The problem of alcoholism and drug

Wu, Mingshen

448

Third Generation Flywheels for electric storage  

SciTech Connect (OSTI)

Electricity is critical to our economy, but growth in demand has saturated the power grid causing instability and blackouts. The economic penalty due to lost productivity in the US exceeds $100 billion per year. Opposition to new transmission lines and power plants, environmental restrictions, and an expected $100 billion grid upgrade cost have slowed system improvements. Flywheel electricity storage could provide a more economical, environmentally benign alternative and slash economic losses if units could be scaled up in a cost effective manner to much larger power and capacity than the present maximum of a few hundred kW and a few kWh per flywheel. The goal of this project is to design, construct, and demonstrate a small-scale third generation electricity storage flywheel using a revolutionary architecture scalable to megawatt-hours per unit. First generation flywheels are built from bulk materials such as steel and provide inertia to smooth the motion of mechanical devices such as engines. They can be scaled up to tens of tons or more, but have relatively low energy storage density. Second generation flywheels use similar designs but are fabricated with composite materials such as carbon fiber and epoxy. They are capable of much higher energy storage density but cannot economically be built larger than a few kWh of storage capacity due to structural and stability limitations. LaunchPoint is developing a third generation flywheel the "Power Ring" with energy densities as high or higher than second generation flywheels and a totally new architecture scalable to enormous sizes. Electricity storage capacities exceeding 5 megawatt-hours per unit appear both technically feasible and economically attractive. Our design uses a new class of magnetic bearing a radial gap shear-force levitator that we discovered and patented, and a thin-walled composite hoop rotated at high speed to store kinetic energy. One immediate application is power grid frequency regulation, where Power Rings could cut costs, reduce fuel consumption, eliminate emissions, and reduce the need for new power plants. Other applications include hybrid diesel-electric locomotives, grid power quality, support for renewable energy, spinning reserve, energy management, and facility deferral. Decreased need for new generation and transmission alone could save the nation $2.5 billion per year. Improved grid reliability could cut economic losses due to poor power quality by tens of billions of dollars per year. A large export market for this technology could also develop. Power Ring technology will directly support the EERE mission, and the goals of the Distributed Energy Technologies Subprogram in particular, by helping to reduce blackouts, brownouts, electricity costs, and emissions, by relieving transmission bottlenecks, and by greatly improving grid power quality.

Ricci, Michael, R.; Fiske, O. James

2008-02-29T23:59:59.000Z

449

Interim storage study report  

SciTech Connect (OSTI)

High-level radioactive waste (HLW) stored at the Idaho Chemical Processing Plant (ICPP) in the form of calcine and liquid and liquid sodium-bearing waste (SBW) will be processed to provide a stable waste form and prepare the waste to be transported to a permanent repository. Because a permanent repository will not be available when the waste is processed, the waste must be stored at ICPP in an Interim Storage Facility (ISF). This report documents consideration of an ISF for each of the waste processing options under consideration.

Rawlins, J.K.

1998-02-01T23:59:59.000Z

450

Gas Storage Technology Consortium  

SciTech Connect (OSTI)

The EMS Energy Institute at The Pennsylvania State University (Penn State) has managed the Gas Storage Technology Consortium (GSTC) since its inception in 2003. The GSTC infrastructure provided a means to accomplish industry-driven research and development designed to enhance the operational flexibility and deliverability of the nation's gas storage system, and provide a cost-effective, safe, and reliable supply of natural gas to meet domestic demand. The GSTC received base funding from the U.S. Department of Energy's (DOE) National Energy Technology Laboratory (NETL) Oil & Natural Gas Supply Program. The GSTC base funds were highly leveraged with industry funding for individual projects. Since its inception, the GSTC has engaged 67 members. The GSTC membership base was diverse, coming from 19 states, the District of Columbia, and Canada. The membership was comprised of natural gas storage field operators, service companies, industry consultants, industry trade organizations, and academia. The GSTC organized and hosted a total of 18 meetings since 2003. Of these, 8 meetings were held to review, discuss, and select proposals submitted for funding consideration. The GSTC reviewed a total of 75 proposals and committed co-funding to support 31 industry-driven projects. The GSTC committed co-funding to 41.3% of the proposals that it received and reviewed. The 31 projects had a total project value of $6,203,071 of which the GSTC committed $3,205,978 in co-funding. The committed GSTC project funding represented an average program cost share of 51.7%. Project applicants provided an average program cost share of 48.3%. In addition to the GSTC co-funding, the consortium provided the domestic natural gas storage industry with a technology transfer and outreach infrastructure. The technology transfer and outreach were conducted by having project mentoring teams and a GSTC website, and by working closely with the Pipeline Research Council International (PRCI) to jointly host technology transfer meetings and occasional field excursions. A total of 15 technology transfer/strategic planning workshops were held.

Joel Morrison; Elizabeth Wood; Barbara Robuck

2010-09-30T23:59:59.000Z

451

NERSC HPSS Storage Statistics  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas Conchas recovery challengeMultiscale SubsurfaceExascalePhase-1 HPSS ChargingArchive Storage

452

Energy Storage Program Overview  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeat PumpRecord ofESPC ENABLE:2009Applications - Report |ofSectorSTORAGE 101The

453

Sandia National Laboratories: Storage  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -theErikGroundbreakingStandards Solar ThermochemicalStorage Protected: Hydrogen and

454

Storage Ring Parameters  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administrationcontroller systemsBiSiteNeutron Scattering4American'! ITransportStorage Ring

455

Storage Ring Parameters  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administrationcontroller systemsBiSiteNeutron Scattering4American'! ITransportStorage

456

Storage Ring Parameters  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassiveSubmittedStatus TomAbout » Staff125,849 127,174 126,924Storage Ring Parameters

457

Storage Ring Parameters  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassiveSubmittedStatus TomAbout » Staff125,849 127,174 126,924Storage Ring

458

Storage Ring Parameters  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassiveSubmittedStatus TomAbout » Staff125,849 127,174 126,924Storage RingPhoton

459

Storage Ring Parameters  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassiveSubmittedStatus TomAbout » Staff125,849 127,174 126,924Storage

460

Heat storage with CREDA  

SciTech Connect (OSTI)

The principle of operation of ETS or Electric Thermal Storage is discussed in this book. As can be seen by the diagram presented, heating elements buried deep within the core are energized during off-peak periods or periods of lower cost energy. These elements charge the core to a per-determined level, then during the on-peak periods when the cost of electricity is higher or demand is higher, the heat is extracted from the core. The author discusses how this technology has progressed to the ETS equipment of today; this being the finer control of charging rates and extraction of heat from the core.

Beal, T. (Fostoria Industries, Fostoria, OH (US))

1987-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "line accidents storage" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

NORMES D'ACTUACI EN CAS D'ACCIDENT 1. Els accidents hauran de justificar-se mitjanant la corresponent comunicaci  

E-Print Network [OSTI]

NORMES D'ACTUACI? EN CAS D'ACCIDENT 1. Els accidents hauran de justificar-se mitjançant la corresponent comunicació d'accident que haurà d'emplenar el club, entitat esportiva o empresa prenedora a la als serveis mèdics concertats és necessari aportar la comunicació d'accident certificada i identificar

Geffner, Hector

462

Enabling Utility-Scale Electrical Energy Storage through Underground Hydrogen-Natural Gas Co-Storage.  

E-Print Network [OSTI]

??Energy storage technology is needed for the storage of surplus baseload generation and the storage of intermittent wind power, because it can increase the flexibility (more)

Peng, Dan

2013-01-01T23:59:59.000Z

463

Systems analysis of thermal storage  

SciTech Connect (OSTI)

During FY 1981, analyses were conducted on thermal storage concepts for solar thermal applications. These studies include estimates of both the obtainable costs of thermal storage concepts and their worth to a user (i.e., value). Based on obtainable costs and performance, an in-depth study evaluated thermal storage concepts for water/steam, organic fluid, and gas/Brayton solar thermal receivers. Promising and nonpromising concepts were identified. A study to evaluate thermal storage concepts for a liquid metal receiver was initiated. The value of thermal storage in a solar thermal industrial process heat application was analyzed. Several advanced concepts are being studied, including ground-mounted thermal storage for parabolic dishes with Stirling engines.

Copeland, R.J.

1981-08-01T23:59:59.000Z

464

Threat of Hydride Re-orientation to Spent Fuel Integrity During Transportation Accidents: Myth or Reality?  

SciTech Connect (OSTI)

The source-term study conducted by Sandia National Laboratories nearly two decades ago for the spent fuel inventory known at the time, which was in the low-to-medium burnup range ({approx}35 GWd/MTU), showed that the effects of transportation accidents on spent fuel failures, and consequential radioactivity release to the environment, were relatively benign. However, with today's discharged fuel burnups routinely greater than 45 GWd/MTU, potential hydride reorientation during interim dry storage, and its effects on cladding properties, has become one of the primary concerns for spent fuel transportation. Laboratory tests of un-irradiated cladding specimens subjected to heat treatments promoting hydride dissolution followed by re-precipitation in the radial direction have shown that relatively moderate concentrations ({approx}70 ppm) of radial hydrides can significantly degrade cladding ductility, at least at room temperature. The absence of specific data that are relevant to high-burnup spent fuel under dry storage conditions have led to the conjecture, deduced from those tests, that massive cladding failures, possibly resulting in fuel reconfiguration, can be expected during cask drop events. Such conclusions are not borne out by the findings in this paper. The analysis results indicate that cladding failure is bi-modal: a state of failure initiation at the cladding ID remaining as part-wall damage with less than 2% probability of occurrence, and a through-wall failure at a probability of 1 E-5. These results indicate that spent fuel conditions that could promote the formation of radial hydrides during dry storage are not sufficient to produce radial hydrides concentrations of significant levels to cause major threat to spent fuel integrity. It is important to note in this regard that the through-wall cladding failure probability of 1 E-5 is of the same order of magnitude as calculated in the cited Sandia study for low burnup fuel. (authors)

Rashid, Joe [ANATECH, 5435 Oberlin Drive, San Diego, CA 92121 (United States); Machiels, Albert [EPRI, 3420 Hillview Avenue, Palo Alto, CA 94304 (United States)

2007-07-01T23:59:59.000Z

465

Gas hydrate cool storage system  

DOE Patents [OSTI]

The invention presented relates to the development of a process utilizing a gas hydrate as a cool storage medium for alleviating electric load demands during peak usage periods. Several objectives of the invention are mentioned concerning the formation of the gas hydrate as storage material in a thermal energy storage system within a heat pump cycle system. The gas hydrate was formed using a refrigerant in water and an example with R-12 refrigerant is included. (BCS)

Ternes, M.P.; Kedl, R.J.

1984-09-12T23:59:59.000Z

466

Underground caverns for hydrocarbon storage  

SciTech Connect (OSTI)

Large, international gas processing projects and growing LPG imports in developing countries are driving the need to store large quantities of hydrocarbon liquids. Even though underground storage is common in the US, many people outside the domestic industry are not familiar with the technology and the benefits underground storage can offer. The latter include lower construction and operating costs than surface storage, added safety, security and greater environmental acceptance.

Barron, T.F. [Exeter Energy Services, Houston, TX (United States)

1998-12-31T23:59:59.000Z

467

Article for thermal energy storage  

DOE Patents [OSTI]

A thermal energy storage composition is provided which is in the form of a gel. The composition includes a phase change material and silica particles, where the phase change material may comprise a linear alkyl hydrocarbon, water/urea, or water. The thermal energy storage composition has a high thermal conductivity, high thermal energy storage, and may be used in a variety of applications such as in thermal shipping containers and gel packs.

Salyer, Ival O. (Dayton, OH)

2000-06-27T23:59:59.000Z

468

Savannah River Hydrogen Storage Technology  

Broader source: Energy.gov (indexed) [DOE]

Member of DOE Carbon Working Group - Developed novel method for forming doped carbon nanotubes as part of DOE Storage Program (patent pending) - Collaborated with universities and...

469

Energy Storage Laboratory (Fact Sheet)  

SciTech Connect (OSTI)

This fact sheet describes the purpose, lab specifications, applications scenarios, and information on how to partner with NREL's Energy Storage Laboratory at the Energy Systems Integration Facility. At NREL's Energy Storage Laboratory in the Energy Systems Integration Facility (ESIF), research focuses on the integration of energy storage systems (both stationary and vehicle-mounted) and interconnection with the utility grid. Focusing on battery technologies, but also hosting ultra-capacitors and other electrical energy storage technologies, the laboratory will provide all resources necessary to develop, test, and prove energy storage system performance and compatibility with distributed energy systems. The laboratory will also provide robust vehicle testing capability, including a drive-in environmental chamber, which can accommodate commercial-sized hybrid, electric, biodiesel, ethanol, compressed natural gas, and hydrogen fueled vehicles. The Energy Storage Laboratory is designed to ensure personnel and equipment safety when testing hazardous battery systems or other energy storage technologies. Closely coupled with the research electrical distribution bus at ESIF, the Energy Storage Laboratory will offer megawatt-scale power testing capability as well as advanced hardware-in-the-loop and model-in-the-loop simulation capabilities. Some application scenarios are: The following types of tests - Performance, Efficiency, Safety, Model validation, and Long duration reliability. (2) Performed on the following equipment types - (a) Vehicle batteries (both charging and discharging V2G); (b) Stationary batteries; (c) power conversion equipment for energy storage; (d) ultra- and super-capacitor systems; and (e) DC systems, such as commercial microgrids.

Not Available

2011-10-01T23:59:59.000Z

470

Underground Storage Tanks (West Virginia)  

Broader source: Energy.gov [DOE]

This rule governs the construction, installation, upgrading, use, maintenance, testing, and closure of underground storage tanks, including certification requirements for individuals who install,...

471

Underground Storage Tank Program (Vermont)  

Broader source: Energy.gov [DOE]

These rules are intended to protect public health and the environment by establishing standards for the design, installation, operation, maintenance, monitoring, and closure of underground storage...

472

Underground Storage Tanks (New Jersey)  

Broader source: Energy.gov [DOE]

This chapter constitutes rules for all underground storage tank facilities- including registration, reporting, permitting, certification, financial responsibility and to protect human health and...

473

CO2 Geologic Storage (Kentucky)  

Broader source: Energy.gov [DOE]

Division staff, in partnership with the Kentucky Geological Survey (KGS), continued to support projects to investigate and demonstrate the technical feasibility of geologic storage of carbon...

474

Flywheel energy storage workshop  

SciTech Connect (OSTI)

Since the November 1993 Flywheel Workshop, there has been a major surge of interest in Flywheel Energy Storage. Numerous flywheel programs have been funded by the Advanced Research Projects Agency (ARPA), by the Department of Energy (DOE) through the Hybrid Vehicle Program, and by private investment. Several new prototype systems have been built and are being tested. The operational performance characteristics of flywheel energy storage are being recognized as attractive for a number of potential applications. Programs are underway to develop flywheels for cars, buses, boats, trains, satellites, and for electric utility applications such as power quality, uninterruptible power supplies, and load leveling. With the tremendous amount of flywheel activity during the last two years, this workshop should again provide an excellent opportunity for presentation of new information. This workshop is jointly sponsored by ARPA and DOE to provide a review of the status of current flywheel programs and to provide a forum for presentation of new flywheel technology. Technology areas of interest include flywheel applications, flywheel systems, design, materials, fabrication, assembly, safety & containment, ball bearings, magnetic bearings, motor/generators, power electronics, mounting systems, test procedures, and systems integration. Information from the workshop will help guide ARPA & DOE planning for future flywheel programs. This document is comprised of detailed viewgraphs.

O`Kain, D.; Carmack, J. [comps.

1995-12-31T23:59:59.000Z

475

Human factors review for Severe Accident Sequence Analysis (SASA)  

SciTech Connect (OSTI)

The paper will discuss work being conducted during this human factors review including: (1) support of the Severe Accident Sequence Analysis (SASA) Program based on an assessment of operator actions, and (2) development of a descriptive model of operator severe accident management. Research by SASA analysts on the Browns Ferry Unit One (BF1) anticipated transient without scram (ATWS) was supported through a concurrent assessment of operator performance to demonstrate contributions to SASA analyses from human factors data and methods. A descriptive model was developed called the Function Oriented Accident Management (FOAM) model, which serves as a structure for bridging human factors, operations, and engineering expertise and which is useful for identifying needs/deficiencies in the area of accident management. The assessment of human factors issues related to ATWS required extensive coordination with SASA analysts. The analysis was consolidated primarily to six operator actions identified in the Emergency Procedure Guidelines (EPGs) as being the most critical to the accident sequence. These actions were assessed through simulator exercises, qualitative reviews, and quantitative human reliability analyses. The FOAM descriptive model assumes as a starting point that multiple operator/system failures exceed the scope of procedures and necessitates a knowledge-based emergency response by the operators. The FOAM model provides a functionally-oriented structure for assembling human factors, operations, and engineering data and expertise into operator guidance for unconventional emergency responses to mitigate severe accident progression and avoid/minimize core degradation. Operators must also respond to potential radiological release beyond plant protective barriers. Research needs in accident management and potential uses of the FOAM model are described. 11 references, 1 figure.

Krois, P.A.; Haas, P.M.; Manning, J.J.; Bovell, C.R.

1984-01-01T23:59:59.000Z

476

Electrochemical hydrogen Storage Systems  

SciTech Connect (OSTI)

As the global need for energy increases, scientists and engineers have found a possible solution by using hydrogen to power our world. Although hydrogen can be combusted as a fuel, it is considered an energy carrier for use in fuel cells wherein it is consumed (oxidized) without the production of greenhouse gases and produces electrical energy with high efficiency. Chemical storage of hydrogen involves release of hydrogen in a controlled manner from materials in which the hydrogen is covalently bound. Sodium borohydride and aminoborane are two materials given consideration as chemical hydrogen storage materials by the US Department of Energy. A very significant barrier to adoption of these materials as hydrogen carriers is their regeneration from 'spent fuel,' i.e., the material remaining after discharge of hydrogen. The U.S. Department of Energy (DOE) formed a Center of Excellence for Chemical Hydrogen Storage, and this work stems from that project. The DOE has identified boron hydrides as being the main compounds of interest as hydrogen storage materials. The various boron hydrides are then oxidized to release their hydrogen, thereby forming a 'spent fuel' in the form of a lower boron hydride or even a boron oxide. The ultimate goal of this project is to take the oxidized boron hydrides as the spent fuel and hydrogenate them back to their original form so they can be used again as a fuel. Thus this research is essentially a boron hydride recycling project. In this report, research directed at regeneration of sodium borohydride and aminoborane is described. For sodium borohydride, electrochemical reduction of boric acid and sodium metaborate (representing spent fuel) in alkaline, aqueous solution has been investigated. Similarly to literature reports (primarily patents), a variety of cathode materials were tried in these experiments. Additionally, approaches directed at overcoming electrostatic repulsion of borate anion from the cathode, not described in the previous literature for electrochemical reduction of spent fuels, have been attempted. A quantitative analytical method for measuring the concentration of sodium borohydride in alkaline aqueous solution has been developed as part of this work and is described herein. Finally, findings from stability tests for sodium borohydride in aqueous solutions of several different compositions are reported. For aminoborane, other research institutes have developed regeneration schemes involving tributyltin hydride. In this report, electrochemical reduction experiments attempting to regenerate tributyltin hydride from tributyltin chloride (a representative by-product of the regeneration scheme) are described. These experiments were performed in the non-aqueous solvents acetonitrile and 1,2-dimethoxyethane. A non-aqueous reference electrode for electrolysis experiments in acetonitrile was developed and is described. One class of boron hydrides, called polyhedral boranes, became of interest to the DOE due to their ability to contain a sufficient amount of hydrogen to meet program goals and because of their physical and chemical safety attributes. Unfortunately, the research performed here has shown that polyhedral boranes do not react in such a way as to allow enough hydrogen to be released, nor do they appear to undergo hydrogenation from the spent fuel form back to the original hydride. After the polyhedral boranes were investigated, the project goals remained the same but the hydrogen storage material was switched by the DOE to ammonia borane. Ammonia borane was found to undergo an irreversible hydrogen release process, so a direct hydrogenation was not able to occur. To achieve the hydrogenation of the spent ammonia borane fuel, an indirect hydrogenation reaction is possible by using compounds called organotin hydrides. In this process, the organotin hydrides will hydrogenate the spent ammonia borane fuel at the cost of their own oxidation, which forms organotin halides. To enable a closed-loop cycle, our task was then to be able to hydrogenate the organotin halides back to th

Dr. Digby Macdonald

2010-08-09T23:59:59.000Z

477

LOSS OF COOLANT ACCIDENT AND LOSS OF FLOW ACCIDENT ANALYSIS OF THE ARIES-AT DESIGN E. A. Mogahed, L. El-Guebaly, A. Abdou, P. Wilson, D. Henderson and the ARIES Team  

E-Print Network [OSTI]

LOSS OF COOLANT ACCIDENT AND LOSS OF FLOW ACCIDENT ANALYSIS OF THE ARIES-AT DESIGN E. A. Mogahed, L accident (LOCA) and loss of flow accident (LOFA) analysis is performed for ARIES-AT, an advanced fusion of steel in the reactor is about (600 °C - 700°C) after about 4 days from the onset of the accident

California at San Diego, University of

478

SunLine Transit Agency Hydrogen-Powered Transit Buses: Third...  

Broader source: Energy.gov (indexed) [DOE]

system with a UTC Power PureMotion 1 120 Fuel Cell Power System and ZEBRA batteries for energy storage. SunLine has also been operating a prototype hydrogen hybrid internal...

479

Hanford Tank Farm interim storage phase probabilistic risk assessment outline  

SciTech Connect (OSTI)

This report is the second in a series examining the risks for the high level waste (HLW) storage facilities at the Hanford Site. The first phase of the HTF PSA effort addressed risks from Tank 101-SY, only. Tank 101-SY was selected as the initial focus of the PSA because of its propensity to periodically release (burp) a mixture of flammable and toxic gases. This report expands the evaluation of Tank 101-SY to all 177 storage tanks. The 177 tanks are arranged into 18 farms and contain the HLW accumulated over 50 years of weapons material production work. A centerpiece of the remediation activity is the effort toward developing a permanent method for disposing of the HLW tank`s highly radioactive contents. One approach to risk based prioritization is to perform a PSA for the whole HLW tank farm complex to identify the highest risk tanks so that remediation planners and managers will have a more rational basis for allocating limited funds to the more critical areas. Section 3 presents the qualitative identification of generic initiators that could threaten to produce releases from one or more tanks. In section 4 a detailed accident sequence model is developed for each initiating event group. Section 5 defines the release categories to which the scenarios are assigned in the accident sequence model and presents analyses of the airborne and liquid source terms resulting from different release scenarios. The conditional consequences measured by worker or public exposure to radionuclides or hazardous chemicals and economic costs of cleanup and repair are analyzed in section 6. The results from all the previous sections are integrated to produce unconditional risk curves in frequency of exceedance format.

Not Available

1994-05-19T23:59:59.000Z

480

Methods for air cleaning system design and accident analysis  

SciTech Connect (OSTI)

This paper describes methods, in the form of a handbook and five computer codes, that can be used for air cleaning system design and accident analysis. Four of the codes were developed primarily at the Los Alamos National Laboratory, and one was developed in France. Tools such as these are used to design ventilation systems in the mining industry but do not seem to be commonly used in the nuclear industry. For example, the Nuclear Air Cleaning Handbook is an excellent design reference, but it fails to include information on computer codes that can be used to aid in the design process. These computer codes allow the analyst to use the handbook information to form all the elements of a complete system design. Because these analysis methods are in the form of computer codes, they allow the analyst to investigate many alternative designs. In addition, the effects of many accident scenarios on the operation of the air cleaning system can be evaluated. These tools originally were intended for accident analysis, but they have been used mostly as design tools by several architect-engineering firms. The Cray, VAX, and personal computer versions of the codes, an accident analysis handbook, and the codes' availability will be discussed. The application of these codes to several design operations of nuclear facilities will be illustrated, and their use to analyze the effect of several accident scenarios also will be described.

Gregory, W.S.; Nichols, B.D.

1986-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "line accidents storage" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

PNNL Results from 2010 CALIBAN Criticality Accident Dosimeter Intercomparison Exercise  

SciTech Connect (OSTI)

This document reports the results of the Hanford personnel nuclear accident dosimeter (PNAD) and fixed nuclear accident dosimeter (FNAD) during a criticality accident dosimeter intercomparison exercise at the CEA Valduc Center on September 20-23, 2010. Pacific Northwest National Laboratory (PNNL) participated in a criticality accident dosimeter intercomparison exercise at the Commissariat a Energie Atomique (CEA) Valduc Center near Dijon, France on September 20-23, 2010. The intercomparison exercise was funded by the U.S. Department of Energy, Nuclear Criticality Safety Program, with Lawrence Livermore National Laboratory as the lead Laboratory. PNNL was one of six invited DOE Laboratory participants. The other participating Laboratories were: Lawrence Livermore National Laboratory (LLNL), Los Alamos National Laboratory (LANL), Savannah River Site (SRS), the Y-12 National Security Complex at Oak Ridge, and Sandia National Laboratory (SNL). The goals of PNNL's participation in the intercomparison exercise were to test and validate the procedures and algorithm currently used for the Hanford personnel nuclear accident dosimeters (PNADs) on the metallic reactor, CALIBAN, to test exposures to PNADs from the side and from behind a phantom, and to test PNADs that were taken from a historical batch of Hanford PNADs that had varying degrees of degradation of the bare indium foil. Similar testing of the PNADs was done on the Valduc SILENE test reactor in 2009 (Hill and Conrady, 2010). The CALIBAN results are reported here.

Hill, Robin L.; Conrady, Matthew M.

2011-10-28T23:59:59.000Z

482

Study on Total Instantaneous Blockage Accident for CEFR  

SciTech Connect (OSTI)

Chinese Experimental Fast Reactor (CEFR) is under construction in China. It is essential to investigate core disruptive accidents (CDAs) for the evaluation of CEFR's safety characteristic. Accident of total instantaneous blockage in single assembly scale had already been modeled and analyzed. The degradation scenario had been calculated by a fluid-dynamics analysis code for liquid-metal fast reactors (LMFRs). For further investigation of accident process and influence to the near bundles, the seven assembly scale were then simulated and calculated. Total instantaneous blockage was assumed to occur in the center assembly under normal operating conditions and consequences to neighboring assemblies were studied. The result shows that the key events such as sodium boiling, clad melting, fuel particles relocation, hexcan failure and melt discharge into neighboring six assemblies symmetrically were adequately simulated. All the key events appeared in the same sequence as the single assembly simulation, while hexcan failure occurred later than that of single assembly simulation. The reason for the different timing may be the boundary condition assumption can influence the heat removal from the blocked assembly. The seven-assembly scale model can reduce the boundary condition's uncertainties and help to give a better understanding and prediction of hypothetical accident scenario in subassembly blockage accidents for CEFR. (authors)

Zhe Wang; Xuewu Cao [Shanghai Jiaotong University, Shanghai (China)

2006-07-01T23:59:59.000Z

483

Reversible hydrogen storage materials  

DOE Patents [OSTI]

In accordance with the present disclosure, a process for synthesis of a complex hydride material for hydrogen storage is provided. The process includes mixing a borohydride with at least one additive agent and at least one catalyst and heating the mixture at a temperature of less than about 600.degree. C. and a pressure of H.sub.2 gas to form a complex hydride material. The complex hydride material comprises MAl.sub.xB.sub.yH.sub.z, wherein M is an alkali metal or group IIA metal, Al is the element aluminum, x is any number from 0 to 1, B is the element boron, y is a number from 0 to 13, and z is a number from 4 to 57 with the additive agent and catalyst still being present. The complex hydride material is capable of cyclic dehydrogenation and rehydrogenation and has a hydrogen capacity of at least about 4 weight percent.

Ritter, James A. (Lexington, SC); Wang, Tao (Columbia, SC); Ebner, Armin D. (Lexington, SC); Holland, Charles E. (Cayce, SC)

2012-04-10T23:59:59.000Z

484

Thermal Energy Storage for Cooling of Commercial Buildings  

E-Print Network [OSTI]

trates a design load profile for a partial storage system.load management / full storage / ice storage / partialfor partial storage) because part of the cooling load is

Akbari, H.

2010-01-01T23:59:59.000Z

485

Grid Storage and the Energy Frontier Research Centers | Department...  

Broader source: Energy.gov (indexed) [DOE]

Grid Storage and the Energy Frontier Research Centers Grid Storage and the Energy Frontier Research Centers DOE: Grid Storage and the Energy Frontier Research Centers Grid Storage...

486

Electricity storage for grid-connected household dwellings with PV panels  

SciTech Connect (OSTI)

Classically electricity storage for PV panels is mostly designed for stand-alone applications. In contrast, we focus in this article on houses connected to the grid with a small-scale storage to store a part of the solar power for postponed consumption within the day or the next days. In this way the house owner becomes less dependent on the grid and does only pay for the net shortage of his energy production. Local storage solutions pave the way for many new applications like omitting over-voltage of the line and bridging periods of power-line black-out. Since 2009 using self-consumption of PV energy is publicly encouraged in Germany, which can be realised by electric storage. This paper develops methods to determine the optimal storage size for grid-connected dwellings with PV panels. From measurements in houses we were able to establish calculation rules for sizing the storage. Two situations for electricity storage are covered: - the storage system is an optimum to cover most of the electricity needs; - it is an optimum for covering the peak power need of a dwelling. After these calculation rules a second step is needed to determine the size of the real battery. The article treats the aspects that should be taken into consideration before buying a specific battery like lead-acid and lithium-ion batteries. (author)

Mulder, Grietus; Six, Daan [Vlaamse Instelling voor Technologisch Onderzoek, Unit Energy Technology, Mol (Belgium); Ridder, Fjo De [Vrije Universiteit Brussel (Belgium)

2010-07-15T23:59:59.000Z

487

MATERIAL HANDLING, STORAGE, AND DISPOSAL  

E-Print Network [OSTI]

Materials shall be stored in a manner that allows easy identification and access to labels, identification entering storage areas. All persons shall be in a safe position while materials are being loadedEM 385-1-1 XX Jun 13 14-1 SECTION 14 MATERIAL HANDLING, STORAGE, AND DISPOSAL 14.A MATERIAL

US Army Corps of Engineers

488

Nanostructured materials for hydrogen storage  

DOE Patents [OSTI]

A system for hydrogen storage comprising a porous nano-structured material with hydrogen absorbed on the surfaces of the porous nano-structured material. The system of hydrogen storage comprises absorbing hydrogen on the surfaces of a porous nano-structured semiconductor material.

Williamson, Andrew J. (Pleasanton, CA); Reboredo, Fernando A. (Pleasanton, CA)

2007-12-04T23:59:59.000Z

489

Systems analysis of thermal storage  

SciTech Connect (OSTI)

During FY80 analyses were conducted on thermal storage concepts for solar thermal applications. These studies include both estimates of the obtainable costs of thermal storage concepts and their worth to a user (i.e., value). Based on obtainable costs and performance, promising thermal storage concepts are being identified. A preliminary screening was completed in FY80 and a more in-depth study was initiated. Value studies are being conducted to establish cost goals. A ranking of storage concepts based on value in solar thermal electric plants was conducted for both diurnal and long duration applications. Ground mounted thermal storage concepts for a parabolic dish/Stirling systtem are also being evaluated.

Copeland, R. J.

1980-08-01T23:59:59.000Z

490

Technical Assessment: Cryo-Compressed Hydrogen Storage  

E-Print Network [OSTI]

Technical Assessment: Cryo-Compressed Hydrogen Storage for Vehicular Applications October 30, 2006 .....................................................................................................................................................................8 APPENDIX A: Review of Cryo-Compressed Hydrogen Storage Systems ......................................................................................18 APPENDIX C: Presentation to the FreedomCAR & Fuel Hydrogen Storage Technical Team

491

Nanostructured Materials for Energy Generation and Storage  

E-Print Network [OSTI]

energy generation and battery storage via the use ofenergy generation and battery storage via the use of nanos-and storage (e.g lithium-ion rechargeable battery)

Khan, Javed Miller

2012-01-01T23:59:59.000Z

492

Distributed Generation with Heat Recovery and Storage  

E-Print Network [OSTI]

in floor tiles for thermal energy storage, working paper,D. R. (2000). Thermal energy storage for space cooling,A simple model of thermal energy storage is developed as a

Siddiqui, Afzal S.; Marnay, Chris; Firestone, Ryan M.; Zhou, Nan

2008-01-01T23:59:59.000Z

493

THERMAL ENERGY STORAGE IN AQUIFERS WORKSHOP  

E-Print Network [OSTI]

and J. Schwarz, Survey of Thermal Energy Storage in AquifersLow Temperature Thermal Energy Storage Program of Oak RidgeAquifers for Seasonal Thermal Energy Storage: An Overview of

Authors, Various

2011-01-01T23:59:59.000Z

494

NATURAL GAS STORAGE ENGINEERING Kashy Aminian  

E-Print Network [OSTI]

NATURAL GAS STORAGE ENGINEERING Kashy Aminian Petroleum & Natural Gas Engineering, West Virginia University, Morgantown, WV, USA. Shahab D. Mohaghegh Petroleum & Natural Gas Engineering, West Virginia University, Morgantown, WV, USA. Keywords: Gas Storage, Natural Gas, Storage, Deliverability, Inventory

Mohaghegh, Shahab

495

AQUIFER THERMAL ENERGY STORAGE-A SURVEY  

E-Print Network [OSTI]

solid-fluid heat storage systems in the ground; extractions0 Thermal storage of cold water in ground water aquifers forA. 8 1971, Storage of solar energy in a sandy-gravel ground:

Tsang, Chin Fu

2012-01-01T23:59:59.000Z

496

THERMAL ENERGY STORAGE IN AQUIFERS WORKSHOP  

E-Print Network [OSTI]

and J. Schwarz, Survey of Thermal Energy Storage in AquifersB. Quale. Seasonal storage of thermal energy in water in theSecond Annual Thermal Energy Storage Contractors'

Authors, Various

2011-01-01T23:59:59.000Z

497

FSAR fire accident analysis for a plutonium facility  

SciTech Connect (OSTI)

The Final Safety Analysis Report (FSAR) for a plutonium facility as required by DOE Orders 5480.23 and 5480.22 has recently been completed and approved. The facility processes and stores radionuclides such as Pu-238, Pu-239, enriched uranium, and to a lesser degree other actinides. This facility produces heat sources. DOE Order 5480.23 and DOE-STD-3009-94 require analysis of different types of accidents (operational accidents such as fires, explosions, spills, criticality events, and natural phenomena such as earthquakes). The accidents that were analyzed quantitatively, or the Evaluation Basis Accidents (EBAs), were selected based on a multi-step screening process that utilizes extensively the Hazards Analysis (HA) performed for the facility. In the HA, specific accident scenarios, with estimated frequency and consequences, were developed for each identified hazard associated with facility operations and activities. Analysis of the EBAs and comparison of their consequences to the evaluation guidelines established the safety envelope for the facility and identified the safety-class structures, systems, and components. This paper discusses the analysis of the fire EBA. This fire accident was analyzed in relatively great detail in the FSAR because of its potential off-site consequences are more severe compared to other events. In the following, a description of the scenario is first given, followed by a brief summary of the methodology for calculating the source term. Finally, the author discuss how a key parameter affecting the source term, the leakpath factor, was determined, which is the focus of this paper.

Lam, K.

1997-06-01T23:59:59.000Z

498

Harvesting and StorageHarvesting and Storage Importance of safe food handling during harvest and storage  

E-Print Network [OSTI]

Harvesting and StorageHarvesting and Storage Importance of safe food handling during harvest illness. Steps to take prior to harvest When washing and sanitizing surfaces, use the appropriate. Pressure washing is a good way to clean. Clean and sanitize harvesting tools such as knives, pruners

Liskiewicz, Maciej

499

Investigations in cool thermal storage: storage process optimization and glycol sensible storage enhancement  

E-Print Network [OSTI]

device in order to meet the utility's mandate. The first part of this study looks at the effects of adding propylene glycol to a static-water ice thermal storage tank, in the pursuit of increasing storage capacity. The effects of glycol addition...

Abraham, Michaela Marie

1993-01-01T23:59:59.000Z

500

Post-accident gas generation from radiolysis of organic materials  

SciTech Connect (OSTI)

This report presents a methodology for estimating the gas generation rates resulting from radiolysis of organic materials in paints and electrical cable insulation inside a nuclear reactor containment building under design basis accident conditions. The methodology was based on absorption of the radiation energies from the post-accident fission products and the assumed gas yields of the irradiated materials. A sample calculation was made using conservative assumptions, plant-specific data of a nuclear power plant, and a radiation source term which took into account the time-dependent release and physico-chemical behavior of the fission products.

Wing, J.

1984-09-01T23:59:59.000Z