Sample records for line accidents storage

  1. Canister Storage Building (CSB) Design Basis Accident Analysis Documentation

    SciTech Connect (OSTI)

    CROWE, R.D.

    1999-09-09T23:59:59.000Z

    This document provides the detailed accident analysis to support ''HNF-3553, Spent Nuclear Fuel Project Final Safety, Analysis Report, Annex A,'' ''Canister Storage Building Final Safety Analysis Report.'' All assumptions, parameters, and models used to provide the analysis of the design basis accidents are documented to support the conclusions in the Canister Storage Building Final Safety Analysis Report.

  2. Canister Storage Building (CSB) Design Basis Accident Analysis Documentation

    SciTech Connect (OSTI)

    CROWE, R.D.; PIEPHO, M.G.

    2000-03-23T23:59:59.000Z

    This document provided the detailed accident analysis to support HNF-3553, Spent Nuclear Fuel Project Final Safety Analysis Report, Annex A, ''Canister Storage Building Final Safety Analysis Report''. All assumptions, parameters, and models used to provide the analysis of the design basis accidents are documented to support the conclusions in the Canister Storage Building Final Safety Analysis Report.

  3. Evaluation of Accident Frequencies at the Canister Storage Bldg (CSB)

    SciTech Connect (OSTI)

    POWERS, T.B.

    2000-03-20T23:59:59.000Z

    By using simple frequency calculations and fault tree logic, an evaluation of the design basis accident frequencies at the Canister Storage Building has been performed. The following are the design basis accidents: Mechanical damage of MCO; Gaseous release from the MCO; MCO internal hydrogen deflagration; MCO external hydrogen deflagration; Thermal runaway reactions inside the MCO; and Violation of design temperature criteria.

  4. Evaluation of accident frequencies at the canister storage building

    SciTech Connect (OSTI)

    LIU, Y.J.

    1999-05-13T23:59:59.000Z

    By using the fault tree logic, an evaluation of the design basis accident frequencies at the Canister Storage Building has been performed. The evaluation demonstrates that due to low frequency of occurrences, the following design basis accidents are considered not credible (annual frequency of less than 10{sup -6}): Rearrangement of multi-canister overpack (MCO) internals; Gaseous release from the MCO; MCO internal hydrogen explosion; MCO external hydrogen explosion; Thermal runaway reactions inside the MCO; and Violation of design temperature criteria.

  5. Three dimensional effects in analysis of PWR steam line break accident

    E-Print Network [OSTI]

    Tsai, Chon-Kwo

    A steam line break accident is one of the possible severe abnormal transients in a pressurized water reactor. It is required to present an analysis of a steam line break accident in the Final Safety Analysis Report (FSAR) ...

  6. Technical evaluation: 300 Area steam line valve accident

    SciTech Connect (OSTI)

    Not Available

    1993-08-01T23:59:59.000Z

    On June 7, 1993, a journeyman power operator (JPO) was severely burned and later died as a result of the failure of a 6-in. valve that occurred when he attempted to open main steam supply (MSS) valve MSS-25 in the U-3 valve pit. The pit is located northwest of Building 331 in the 300 Area of the Hanford Site. Figure 1-1 shows a layout of the 300 Area steam piping system including the U-3 steam valve pit. Figure 1-2 shows a cutaway view of the approximately 10- by 13- by 16-ft-high valve pit with its various steam valves and connecting piping. Valve MSS-25, an 8-in. valve, is located at the bottom of the pit. The failed 6-in. valve was located at the top of the pit where it branched from the upper portion of the 8-in. line at the 8- by 8- by 6-in. tee and was then ``blanked off`` with a blind flange. The purpose of this technical evaluation was to determine the cause of the accident that led to the failure of the 6-in. valve. The probable cause for the 6-in. valve failure was determined by visual, nondestructive, and destructive examination of the failed valve and by metallurgical analysis of the fractured region of the valve. The cause of the accident was ultimately identified by correlating the observed failure mode to the most probable physical phenomenon. Thermal-hydraulic analyses, component stress analyses, and tests were performed to verify that the probable physical phenomenon could be reasonably expected to produce the failure in the valve that was observed.

  7. Gas Cylinder Storage and Handling Serious accidents can result from the misuse, abuse, or mishandling of compressed gas

    E-Print Network [OSTI]

    de Lijser, Peter

    Gas Cylinder Storage and Handling Serious accidents can result from the misuse, abuse, or mishandling of compressed gas cylinders. Safe procedures for their use are as follows: · All compressed gas combustible material. · Keep cylinders out of the direct sun and do not allow them to be overheated. · Gas

  8. TITAN code development for application to a PWR steam line break accident : final report 1983-1984

    E-Print Network [OSTI]

    Tsai, Chon-Kwo

    1984-01-01T23:59:59.000Z

    Modification of the TITAN computer code which enables it to be applied to a PWR steam line break accident has been accomplished. The code now has the capability of simulating an asymmetric inlet coolant temperature transient ...

  9. Type A Accident Investigation Report on the June 25, 1997, Contractor Inspector Fatality on the Satsop-Aberdeen #2 & #3 230 kV Line

    Broader source: Energy.gov [DOE]

    On June 27, 1997, I established a Type-A Accident Investigation Board to investigate the June 25, 1997 fatal contractor accident which occurred on BPA?s Satsop-Aberdeen #2 and #3 230-kV transmission lines right-of-way.

  10. Superconducting magnetic energy storage for BPA transmission-line stabilization

    SciTech Connect (OSTI)

    Rogers, J.D.; Barron, M.H.; Boenig, H.J.; Criscuolo, A.L.; Dean, J.W.; Schermer, R.I.

    1982-01-01T23:59:59.000Z

    The Bonneville Power Administration (BPA) operates the electrical transmission system that joins the Pacific Northwest with southern California. A 30 MJ (8.4 kWh) Superconducting Magnetic Energy Storage (SMES) unit with a 10 MW converter is being installed at the Tacoma Substation to provide system damping for low frequency oscillations of 0.35 Hz. The integrated system status is described and reviewed. Components included in the system are the superconducting coil, seismically mounted in an epoxy fiberglass nonconducting dewar; a helium refrigerator; a heat rejection subsystem; a high pressure gas recovery subsystem; a liquid nitrogen trailer; the converter with power transformers and switchgear; and a computer system for remote microwave link operation of the SMES unit.

  11. Commercial potential of natural gas storage in lined rock caverns (LRC)

    SciTech Connect (OSTI)

    NONE

    1999-11-01T23:59:59.000Z

    The geologic conditions in many regions of the United States will not permit the development of economical high-deliverability gas storage in salt caverns. These regions include the entire Eastern Seaboard; several northern states, notably Minnesota and Wisconsin; many of the Rocky Mountain States; and most of the Pacific Northwest. In late 1997, the United States Department of Energy (USDOE) Federal Energy Technology Center engaged Sofregaz US to investigate the commercialization potential of natural gas storage in Lined Rock Caverns (LRC). Sofregaz US teamed with Gaz de France and Sydkraft, who had formed a consortium, called LRC, to perform the study for the USDOE. Underground storage of natural gas is generally achieved in depleted oil and gas fields, aquifers, and solution-mined salt caverns. These storage technologies require specific geologic conditions. Unlined rock caverns have been used for decades to store hydrocarbons - mostly liquids such as crude oil, butane, and propane. The maximum operating pressure in unlined rock caverns is limited, since the host rock is never entirely impervious. The LRC technology allows a significant increase in the maximum operating pressure over the unlined storage cavern concept, since the gas in storage is completely contained with an impervious liner. The LRC technology has been under development in Sweden by Sydkraft since 1987. The development process has included extensive technical studies, laboratory testing, field tests, and most recently includes a storage facility being constructed in southern Sweden (Skallen). The LRC development effort has shown that the concept is technically and economically viable. The Skallen storage facility will have a rock cover of 115 meters (375 feet), a storage volume of 40,000 cubic meters (250,000 petroleum barrels), and a maximum operating pressure of 20 MPa (2,900 psi). There is a potential for commercialization of the LRC technology in the United States. Two regions were studied in some detail - the Northeast and the Southeast. The investment cost for an LRC facility in the Northeast is approximately $182 million and $343 million for a 2.6-billion cubic foot (bcf) working gas facility and a 5.2-bcf working gas storage facility, respectively. The relatively high investment cost is a strong function of the cost of labor in the Northeast. The labor union-related rules and requirements in the Northeast result in much higher underground construction costs than might result in Sweden, for example. The LRC technology gas storage service is compared to other alternative technologies. The LRC technology gas storage service was found to be competitive with other alternative technologies for a variety of market scenarios.

  12. Accident Investigation of the June 17, 2012, Construction Accident...

    Energy Savers [EERE]

    June 17, 2012, Construction Accident - Structural Steel Collapse at The Over pack Storage Expansion 2 at the Naval Reactors Facility at the Idaho National Laboratory, Idaho Falls,...

  13. Magnet power supply control of the NSLS VUV and x-ray storage rings transfer lines

    SciTech Connect (OSTI)

    Klein, J.D.; Ramamoorthy, S.; Singh, O.; Smith, J.D.

    1985-01-01T23:59:59.000Z

    The transfer lines for NSLS VUV and x-ray storage rings have been split. New power supplies have been incorporated with existing ones. The existing microprocessor system has been upgraded in order to control the additional functions. This system expands the input/output port of the microprocessor to an addressable serial/parallel link to each magnet power supply. The implementation of this system will be discussed.

  14. Supplemental analysis of accident sequences and source terms for waste treatment and storage operations and related facilities for the US Department of Energy waste management programmatic environmental impact statement

    SciTech Connect (OSTI)

    Folga, S.; Mueller, C.; Nabelssi, B.; Kohout, E.; Mishima, J.

    1996-12-01T23:59:59.000Z

    This report presents supplemental information for the document Analysis of Accident Sequences and Source Terms at Waste Treatment, Storage, and Disposal Facilities for Waste Generated by US Department of Energy Waste Management Operations. Additional technical support information is supplied concerning treatment of transuranic waste by incineration and considering the Alternative Organic Treatment option for low-level mixed waste. The latest respirable airborne release fraction values published by the US Department of Energy for use in accident analysis have been used and are included as Appendix D, where respirable airborne release fraction is defined as the fraction of material exposed to accident stresses that could become airborne as a result of the accident. A set of dominant waste treatment processes and accident scenarios was selected for a screening-process analysis. A subset of results (release source terms) from this analysis is presented.

  15. Unavoidable Accident

    E-Print Network [OSTI]

    Grady, Mark F.

    2009-01-01T23:59:59.000Z

    463. _____. 1987. Economic Analysis of Accident Law. _____.2005. “Liability for Accidents”, NBER Working Paper No.possibility is that the accident wasn’t under the defendant’

  16. Farm Fuel Safety Accidents in the handling, use and storage of gasoline, gasohol, diesel fuel, LP-gas and

    E-Print Network [OSTI]

    risk to life and property, the requirements of NFPA 30 & 321, OAR 473-004-0720 and OSHA Standard 1910 from fire and other safety and health hazards. · Storage of Flammable liquids shall be in NFPA approved at a point of use. · Appropriate fire extinguishers are to be mounted within 75 feet of outside areas

  17. Modeling of coupled thermodynamic and geomechanical performance of underground compressed air energy storage (CAES) in lined rock caverns

    SciTech Connect (OSTI)

    Rutqvist, J.; Kim, H. -M.; Ryu, D. -W.; Synn, J. -H.; Song, W. -K.

    2012-02-01T23:59:59.000Z

    We applied coupled nonisothermal, multiphase fluid flow and geomechanical numerical modeling to study the coupled thermodynamic and geomechanical performance of underground compressed air energy storage (CAES) in concrete-lined rock caverns. The paper focuses on CAES in lined caverns at relatively shallow depth (e.g., 100 m depth) in which a typical CAES operational pressure of 5 to 8 MPa is significantly higher than both ambient fluid pressure and in situ stress. We simulated a storage operation that included cyclic compression and decompression of air in the cavern, and investigated how pressure, temperature and stress evolve over several months of operation. We analyzed two different lining options, both with a 50 cm thick low permeability concrete lining, but in one case with an internal synthetic seal such as steel or rubber. For our simulated CAES system, the thermodynamic analysis showed that 96.7% of the energy injected during compression could be recovered during subsequent decompression, while 3.3% of the energy was lost by heat conduction to the surrounding media. Our geomechanical analysis showed that tensile effective stresses as high as 8 MPa could develop in the lining as a result of the air pressure exerted on the inner surface of the lining, whereas thermal stresses were relatively smaller and compressive. With the option of an internal synthetic seal, the maximum effective tensile stress was reduced from 8 to 5 MPa, but was still in substantial tension. We performed one simulation in which the tensile tangential stresses resulted in radial cracks and air leakage though the lining. This air leakage, however, was minor (about 0.16% of the air mass loss from one daily compression) in terms of CAES operational efficiency, and did not significantly impact the overall energy balance of the system. However, despite being minor in terms of energy balance, the air leakage resulted in a distinct pressure increase in the surrounding rock that could be quickly detected using pressure monitoring outside the concrete lining.

  18. Modeling of coupled thermodynamic and geomechanical performance of underground compressed air energy storage (CAES) in lined rock caverns

    E-Print Network [OSTI]

    Rutqvist, J.

    2013-01-01T23:59:59.000Z

    associated with natural gas storage in Sweden, includingassociated with natural gas storage in Sweden. The main

  19. Modeling of coupled thermodynamic and geomechanical performance of underground compressed air energy storage (CAES) in lined rock caverns

    E-Print Network [OSTI]

    Rutqvist, J.

    2013-01-01T23:59:59.000Z

    compressed air energy storage technology by the hydraulicscale electric energy storage technologies. Compressed air

  20. Modeling of coupled thermodynamic and geomechanical performance of underground compressed air energy storage (CAES) in lined rock caverns

    E-Print Network [OSTI]

    Rutqvist, J.

    2013-01-01T23:59:59.000Z

    Williams, Compressed air energy storage: Theory, resources,for the compressed air energy storage technology by thefor compressed air energy storage power generation, Japan

  1. Accident Investigations

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2011-03-04T23:59:59.000Z

    This Order prescribes organizational responsibilities, authorities, and requirements for conducting investigations of certain accidents occurring at DOE sites, facilities, areas, operations, and activities.

  2. Type B Accident Investigation Board Report on the September 1, 1999, Plutonium Intakes at the Savannah River Site FB-Line

    Broader source: Energy.gov [DOE]

    This report is an independent product of the Type B Accident Investigation Board appointed by Greg Rudy, Manager, Savannah River Operations Office, U.S. Department of Energy.

  3. Type B Accident Investigation Board Report on the November 17, 1997, Chiller Line Rupture at Technical Area 35, Building 27, Los Alamos National Laboratory

    Broader source: Energy.gov [DOE]

    This report is a product of an accident investigation board appointed by Bruce G. Twining, Manager, Albuquerque Operations Office, Department of Energy.

  4. Accident Investigations

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1996-04-26T23:59:59.000Z

    To prescribe requirements for conducting investigations of certain accidents occurring at Department of Energy (DOE) operations and sites; to improve the environment, safety and health for DOE, contractors, and the public; and to prevent the recurrence of such accidents. Chg 2, 4-26-96

  5. Accident Investigations

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1995-10-26T23:59:59.000Z

    To prescribe requirements for conducting investigations of certain accidents occurring at Department of Energy (DOE) operations and sites; to improve the environment , safety and health for DOE, contractors, and the public; and to prevent the recurrence of such accidents. Chg 1, 10-26-95. Cancels parts of DOE 5484.1

  6. Type A Accident Investigation Board Report on the February 20...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    February 20, 1996, Fall Fatality at the Radioactive Waste Management Complex Transuranic Storage Area - Retrieval Enclosure, Idaho National Engineering Laboratory Type A Accident...

  7. 30-MJ superconducting magnetic energy storage for BPA transmission-line stabilizer

    SciTech Connect (OSTI)

    Schermer, R.I.

    1981-01-01T23:59:59.000Z

    The Bonneville Power Administration operates the transmission system that joins the Pacific Northwest and southern California. A 30 MJ (8.4 kWh) superconducting Magnetic Energy Storage (SMES) unit with a 10 MW converter can provide system damping for low frequency oscillations. The unit is scheduled to operate in late 1982. Progress to date is described. The coil is complete. All major components of the electrical and cryogenic systems have been received and testing has begun. Computer control hardware is in place and software development is proceeding. Support system components and dewar lid are being fabricated and foundation design is complete. A contract for dewar fabrication is being negotiated.

  8. 30-MJ superconducting magnetic-energy storage for BPA transmission-line stabilizer

    SciTech Connect (OSTI)

    Schermer, R.I.

    1981-01-01T23:59:59.000Z

    The Bonneville Power Administration operates the transmission system that joins the Pacific Northwest and southern California. A 30 MJ (8.4 kWh) Superconducting Magnetic Energy Storage (SMES) unit with a 10 MW converter can provide system damping for low frequency oscillations. The unit is scheduled to operate in 1982. Progress during FY 81 is described. The coil is complete. All major components of the electrical and cryogenic systems have been received and testing has begun. Computer control hardware is in place and software development is proceeding. Support system components and dewar lid are being fabricated and foundation design is complete. A contract for dewar fabrication is being negotiated.

  9. APT Blanket System Loss-of-Coolant Accident (LOCA) Based on Initial Conceptual Design - Case 4: External Pressurizer Surge Line Break Near Inlet Header

    SciTech Connect (OSTI)

    Hamm, L.L.

    1998-10-07T23:59:59.000Z

    This report is one of a series of reports documenting accident scenario simulations for the Accelerator Production of Tritium (APT) blanket heat removal systems. The simulations were performed in support of the Preliminary Safety Analysis Report (PSAR) for the APT.

  10. CHEMICAL STORAGE: MYTHS VERSUS REALITY

    SciTech Connect (OSTI)

    Simmons, F

    2007-03-19T23:59:59.000Z

    A large number of resources explaining proper chemical storage are available. These resources include books, databases/tables, and articles that explain various aspects of chemical storage including compatible chemical storage, signage, and regulatory requirements. Another source is the chemical manufacturer or distributor who provides storage information in the form of icons or color coding schemes on container labels. Despite the availability of these resources, chemical accidents stemming from improper storage, according to recent reports (1) (2), make up almost 25% of all chemical accidents. This relatively high percentage of chemical storage accidents suggests that these publications and color coding schemes although helpful, still provide incomplete information that may not completely mitigate storage risks. This manuscript will explore some ways published storage information may be incomplete, examine the associated risks, and suggest methods to help further eliminate chemical storage risks.

  11. Modeling of coupled thermodynamic and geomechanical performance of underground compressed air energy storage (CAES) in lined rock caverns

    E-Print Network [OSTI]

    Rutqvist, J.

    2013-01-01T23:59:59.000Z

    reservoir storage project in Sesta, Italy [1]; as well as two pilot tests in rock caverns associated with abandoned

  12. Type B Accident Investigation Board Report on the July 25, 1997, Contract Brush Cutter Injury on the Ashe-Marion #2 500 kV Line

    Broader source: Energy.gov [DOE]

    On July 25, 1997, at 1205 hours, a contract hand brush cutter was seriously injured when he felled a tree close to a Bonneville Power Administration energized transmission power line, located within a BPA transmission-line corridor.

  13. Exploring the concept of compressed air energy storage (CAES) in lined rock caverns at shallow depth: A modeling study of air tightness and energy balance

    E-Print Network [OSTI]

    Kim, H.-M.

    2012-01-01T23:59:59.000Z

    Progress in electrical energy storage system: a criticalcurrent and future energy storage technologies for electricwind- diesel-compressed air energy storage system for remote

  14. Exploring the concept of compressed air energy storage (CAES) in lined rock caverns at shallow depth: A modeling study of air tightness and energy balance

    E-Print Network [OSTI]

    Kim, H.-M.

    2012-01-01T23:59:59.000Z

    current and future energy storage technologies for electriccompressed air energy storage technology by the hydraulicgridflexenergy.com/energy-storage- technologies/, accessed

  15. Employee Accident / Incident Investigation Report Employee Name _________________________________________________________________

    E-Print Network [OSTI]

    Long, Nicholas

    Employee Accident / Incident Investigation Report Employee Name's Title _________________________________________________________________ Date and Time of Accident accident occurred

  16. Exploring the concept of compressed air energy storage (CAES) in lined rock caverns at shallow depth: A modeling study of air tightness and energy balance

    SciTech Connect (OSTI)

    Kim, H.-M.; Rutqvist, J.; Ryu, D.-W.; Choi, B.-H.; Sunwoo, C.; Song, W.-K.

    2011-07-15T23:59:59.000Z

    This paper presents a numerical modeling study of coupled thermodynamic, multiphase fluid flow and heat transport associated with underground compressed air energy storage (CAES) in lined rock caverns. Specifically, we explored the concept of using concrete lined caverns at a relatively shallow depth for which constructing and operational costs may be reduced if air tightness and stability can be assured. Our analysis showed that the key parameter to assure long-term air tightness in such a system was the permeability of both the concrete lining and the surrounding rock. The analysis also indicated that a concrete lining with a permeability of less than 1×10{sup -18} m{sup 2} would result in an acceptable air leakage rate of less than 1%, with the operational pressure range between 5 and 8 MPa at a depth of 100 m. It was further noted that capillary retention properties and the initial liquid saturation of the lining were very important. Indeed, air leakage could be effectively prevented when the air-entry pressure of the concrete lining is higher than the operational air pressure and when the lining is kept moist at a relatively high liquid saturation. Our subsequent energy-balance analysis demonstrated that the energy loss for a daily compression and decompression cycle is governed by the air-pressure loss, as well as heat loss by conduction to the concrete liner and surrounding rock. For a sufficiently tight system, i.e., for a concrete permeability off less than 1×10{sup -18} m{sup 2}, heat loss by heat conduction tends to become proportionally more important. However, the energy loss by heat conduction can be minimized by keeping the air-injection temperature of compressed air closer to the ambient temperature of the underground storage cavern. In such a case, almost all the heat loss during compression is gained back during subsequent decompression. Finally, our numerical simulation study showed that CAES in shallow rock caverns is feasible from a leakage and energy efficiency viewpoint. Our numerical approach and energy analysis will next be applied in designing and evaluating the performance of a planned full-scale pilot test of the proposed underground CAES concept.

  17. Type A Accident Investigation Board Report of the April 25, 1997, Contractor Fatality on the Olympia-White River #1 230 kV Line

    Broader source: Energy.gov [DOE]

    On April 25, 1997, at approximately 1510 hours, a lineman for Great Southwestern Construction Inc. was fatally electrocuted when he came in direct contact with a deenergized 230-kilovolt (kV) transmission power line conductor which contained an induced voltage.

  18. Estimating Pedestrian Accident Exposure: Protocol Report

    E-Print Network [OSTI]

    Greene-Roesel, Ryan; Diogenes, Mara Chagas; Ragland, David R

    2007-01-01T23:59:59.000Z

    Pedestrian Accident Risk. Accident Analysis and Prevention,Pedestrian Accidents. Accident Analysis and Prevention, Vol.in New Zealand. Accident Analysis and Prevention, Vol. 27,

  19. Allocation of inventory to a variable, time-phased, on-line storage system under known demand

    E-Print Network [OSTI]

    White, Charles Wesley

    1968-01-01T23:59:59.000Z

    for the automotive industry are being phased into production and inventory control systems the procedures for supplying the assembly operation must be updated. An initial step in updating the precedures would be to base them on more quantitative techniques... for the degree of MASTER OF SCIENCE January, 1968 Major Subject: Industrial Engineering ALLOCATION OF INVENTORY TO A VARIABLE ~ T IME PHASED ~ ON L INE STORAGE SYSTEM UNDER KNOWN DEMAND A Thesis By CHARLES WESLEY WHITE Approved as to style...

  20. Placental findings in cord accidents

    E-Print Network [OSTI]

    Parast, Mana M

    2012-01-01T23:59:59.000Z

    Placental findings in cord accidents. BMC Pregnancy andPlacental findings in cord accidents Mana M Parast Fromfor stillbirth. “Cord accident,” defined by obstruction of

  1. The Accident Externality from Driving

    E-Print Network [OSTI]

    Edlin, Aaron S.; Karaca-Mandic, Pinar

    2007-01-01T23:59:59.000Z

    Sex-Divided Mile- age, Accident, and Insurance Cost DataMandic. 2003. “The Accident Externality from Driving. ”Insurance Res. Council. accident externality from driving

  2. Interpreting Accident Statistics

    E-Print Network [OSTI]

    Ferreira, Joseph Jr.

    Accident statistics have often been used to support the argument that an abnormally small proportion of drivers account for a large proportion of the accidents. This paper compares statistics developed from six-year data ...

  3. A Road Accident

    E-Print Network [OSTI]

    G.yu lha

    tracks (include description/relationship if appropriate) NA Title of track A Road Accident Translation of title Description (to be used in archive entry) Shel ko shares his experience of a serious road accident in which the truck he...

  4. FIELD LINES TWISTING IN A NOISY CORONA: IMPLICATIONS FOR ENERGY STORAGE AND RELEASE, AND INITIATION OF SOLAR ERUPTIONS

    SciTech Connect (OSTI)

    Rappazzo, A. F. [Bartol Research Institute, Department of Physics and Astronomy, University of Delaware, DE 19716 (United States); Velli, M. [Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 (United States); Einaudi, G., E-mail: rappazzo@udel.edu [Berkeley Research Associates, Inc., 6537 Mid Cities Avenue, Beltsville, MD 20705 (United States)

    2013-07-10T23:59:59.000Z

    We present simulations modeling closed regions of the solar corona threaded by a strong magnetic field where localized photospheric vortical motions twist the coronal field lines. The linear and nonlinear dynamics are investigated in the reduced magnetohydrodynamic regime in Cartesian geometry. Initially the magnetic field lines get twisted and the system becomes unstable to the internal kink mode, confirming and extending previous results. As typical in this kind of investigations, where initial conditions implement smooth fields and flux-tubes, we have neglected fluctuations and the fields are laminar until the instability sets in. However, previous investigations indicate that fluctuations, excited by photospheric motions and coronal dynamics, are naturally present at all scales in the coronal fields. Thus, in order to understand the effect of a photospheric vortex on a more realistic corona, we continue the simulations after kink instability sets in, when turbulent fluctuations have already developed in the corona. In the nonlinear stage the system never returns to the simple initial state with ordered twisted field lines, and kink instability does not occur again. Nevertheless, field lines get twisted, although in a disordered way, and energy accumulates at large scales through an inverse cascade. This energy can subsequently be released in micro-flares or larger flares, when interaction with neighboring structures occurs or via other mechanisms. The impact on coronal dynamics and coronal mass ejections initiation is discussed.

  5. Type A Accident Investigation Report – Western Area Power Administration Investigation of the June 7, 2004, Construction Contractor Electrical Accident at Double-Circuit Structure 38/1, Watertown-Granite Falls 230-kV Transmission Line East of Watertown, S

    Broader source: Energy.gov [DOE]

    This report is an independent product of the Type A Accident Investigation board appointed by Timothy J. Meeks, Chief Operating Officer, Western Area Power Administration.

  6. Accident motivates scholarship recipient

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Accident motivates scholarship recipient Leyba encourages students: apply for Los Alamos Employees' Scholarship Fund Life-changing experience: springboard to a career in exercise,...

  7. Type B Accident Investigation Board Report on the September 1...

    Broader source: Energy.gov (indexed) [DOE]

    September 1, 1999, Plutonium Intakes at the Savannah River Site FB-Line Type B Accident Investigation Board Report on the September 1, 1999, Plutonium Intakes at the Savannah River...

  8. The Accident Externality from Driving

    E-Print Network [OSTI]

    Edlin, Aaron S.; Karaca-Mandic, Pinar

    2005-01-01T23:59:59.000Z

    a given state could a?ect accident risk and could correlateVolume on Motor-Vehicle Accidents on Two-Lane Tangents. ”Laurie. “Sex-Divided Mileage Accident and In- surance Cost

  9. The Accident Externality from Driving

    E-Print Network [OSTI]

    Edlin, Aaron S.; Karaca-Mandic, Pinar

    2003-01-01T23:59:59.000Z

    to which this externality results from increases in accidentrates, accident severity or both remains unclear. Itpertains to underinsured accident costs like fatality risk.

  10. Radiological Release Accident Investigation Report

    Broader source: Energy.gov [DOE]

    Phase 1 of this accident investigation report is an independent product of the Accident Investigation Board appointed by Matthew Moury, Deputy Assistant Secretary, Safety, Security, and Quality...

  11. APS Guideline for Accident Investigations

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    APS Guideline for Accident Investigations Introduction Purpose The primary purpose of an incident or accident investigation is to identify the hazard control systems that either...

  12. TIPS ON ACCIDENT/INCIDENT REPORTING Accident Reporting Why?

    E-Print Network [OSTI]

    Lennard, William N.

    TIPS ON ACCIDENT/INCIDENT REPORTING Accident Reporting ­ Why? Obligation to report Health Care of the accident ­ if not, the organization (i.e. the department) can be fined Obligation under Section 51, 52 happened? When did it happen? (Date, Time and Place) When was the accident/incident reported? Any

  13. Improving Transportation Safety Through Accident

    E-Print Network [OSTI]

    Minnesota, University of

    ;10! Investigative Groups ·" Highway Factors & Bridge Construction ·" Bridge Design ·" Witness ·" Survival accidents. ·" Major Railroad accidents. ·" Major Pipeline accidents. ·" Major marine accidents of the U10 gusset plates, due to a design error by the bridge design firm . . . Contributing to the design

  14. NORTHWESTERN UNIVERSITY ACCIDENT REPORT FORM

    E-Print Network [OSTI]

    Shahriar, Selim

    NORTHWESTERN UNIVERSITY ACCIDENT REPORT FORM Whenever a University vehicle sustains damage of any kind, or is involved in an accident which results in personal injury or property damage, this accident that this form is for University Use Only and is not meant to supersede the official state accident report form

  15. Accident Response Group

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1991-09-20T23:59:59.000Z

    To establish Department of Energy (DOE) policy for DOE response to accidents and significant incidents involving nuclear weapons or nuclear weapon components. Cancels DOE O 5530.1. Canceled by DOE O 153.1.

  16. Accident resistant transport container

    DOE Patents [OSTI]

    Andersen, John A. (Albuquerque, NM); Cole, James K. (Albuquerque, NM)

    1980-01-01T23:59:59.000Z

    The invention relates to a container for the safe air transport of plutonium having several intermediate wood layers and a load spreader intermediate an inner container and an outer shell for mitigation of shock during a hypothetical accident.

  17. Radiological Release Accident Investigation Report - Phase 1...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Radiological Release Accident Investigation Report - Phase 1 Radiation Report Radiological Release Accident Investigation Report - Phase 1 Radiation Report Phase 1 of this accident...

  18. Estimating Pedestrian Accident Exposure: Protocol Report

    E-Print Network [OSTI]

    Greene-Roesel, Ryan; Diogenes, Mara Chagas; Ragland, David R

    2007-01-01T23:59:59.000Z

    A Method of Measuring Exposure to Pedestrian Accident Risk.Accident Analysis and Prevention, Vol. 14, 1982, pp 397-405.Estimating Pedestrian Accident Exposure: Protocol Report,

  19. Accident at Creswell Colliery, Derbyshire 

    E-Print Network [OSTI]

    Bryan, Andrew

    MINISTRY OF FUEL AND POWER ACCIDENT AT CRESWELL COLLIERY, DERBYSHIRE REPORT On the causes of, and the circumstances attending, the accident which occurred at Creswell Colliery, Derbyshire, on the 26th September, 1950 BY ...

  20. Accident Report Form Victim's Name

    E-Print Network [OSTI]

    Amin, S. Massoud

    Accident Report Form Date: Victim's Name: Address: Classification: Program Area: Activity: Brief Description of Accident: Body Fluid Spill: Action Taken by DRS Employee: Witness Name: Witness Address:____________________________________ DOB: Intramurals Front Back Revision - 2011 **Location of Accident** URC North Gymnasium URC South

  1. UNIVERSITY OF TRENTO ACCIDENT INSURANCE

    E-Print Network [OSTI]

    1 UNIVERSITY OF TRENTO ACCIDENT INSURANCE POLICY This document reflects the contractual conditions in force, though it should not be considered as a binding analysis of the coverage and, in case of accident for the purposes stated. TYPE OF COVERAGE = GROUP ACCIDENT INSURANCE POLICY No. = 088 00429120 COMPANY NAME

  2. Electrical shock accident investigation

    SciTech Connect (OSTI)

    Not Available

    1994-09-30T23:59:59.000Z

    This report documents results of the accident investigation of an electrical shock received by two subcontractor employees on May 13, 1994, at the Pinellas Plant. The direct cause of the electrical shock was worker contact with a cut ``hot`` wire and a grounded panelboard (PPA) enclosure. Workers presumed that all wires in the enclosure were dead at the time of the accident and did not perform thorough Lockout/Tagout (LO/TO). Three contributing causes were identified. First, lack of guidance in the drawing for the modification performed in 1987 allowed the PPA panel to be used as a junction box. The second contributing cause is that Environmental, Safety and Health (ES&H) procedures do not address multiple electrical sources in an enclosure. Finally, the workers did not consider the possibility of multiple electrical sources. The root cause of the electrical shock was the inadequacy of administrative controls, including construction requirement and LO/TO requirements, and subcontractor awareness regarding multiple electrical sources. Recommendations to prevent further reoccurrence of this type of accident include revision of ES&H Standard 2.00, Electrical Safety Program Manual, to document requirements for multiple electrical sources in a single enclosure to specify a thorough visual inspection as part of the voltage check process. In addition, the formality of LO/TO awareness training for subcontractor electricians should be increased.

  3. Evaluating the effectiveness of wildlife accident mitigation installations with the wildlife accident reporting system (WARS) in British Columbia

    E-Print Network [OSTI]

    Sielecki, Leonard E.

    2001-01-01T23:59:59.000Z

    EFFECTIVENESS OF WILDLIFE ACCIDENT MITIGATION INSTALLATIONSWITH THE WILDLIFE ACCIDENT REPORTING SYSTEM (WARS) INadministers the Wildlife Accident Reporting System (WARS), a

  4. Accident motivates scholarship recipient

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisiting the TWP TWP Related LinksATHENA couldAboutClean WaterAccessingAccident

  5. Type A Accident Investigation Report on the June 25, 1997, Contractor...

    Broader source: Energy.gov (indexed) [DOE]

    contractor accident which occurred on BPAs Satsop-Aberdeen 2 and 3 230-kV transmission lines right-of-way. The responsibilities of this board have been completed with...

  6. Type A Accident Investigation Report of the June 25, 1997 Contract...

    Broader source: Energy.gov (indexed) [DOE]

    contractor accident which occurred on BPAs Satsop-Aberdeen 2 and 3 230-kV transmission lines right-of-way. The responsibilities of this board have been completed with...

  7. Type B Accident Investigation Board Report on the July 25, 1997...

    Broader source: Energy.gov (indexed) [DOE]

    July 25, 1997, Contract Brush Cutter Injury on the Ashe-Marion 2 500 kV Line Type B Accident Investigation Board Report on the July 25, 1997, Contract Brush Cutter Injury on the...

  8. Probability of spent fuel transportation accidents

    SciTech Connect (OSTI)

    McClure, J. D.

    1981-07-01T23:59:59.000Z

    The transported volume of spent fuel, incident/accident experience and accident environment probabilities were reviewed in order to provide an estimate of spent fuel accident probabilities. In particular, the accident review assessed the accident experience for large casks of the type that could transport spent (irradiated) nuclear fuel. This review determined that since 1971, the beginning of official US Department of Transportation record keeping for accidents/incidents, there has been one spent fuel transportation accident. This information, coupled with estimated annual shipping volumes for spent fuel, indicated an estimated annual probability of a spent fuel transport accident of 5 x 10/sup -7/ spent fuel accidents per mile. This is consistent with ordinary truck accident rates. A comparison of accident environments and regulatory test environments suggests that the probability of truck accidents exceeding regulatory test for impact is approximately 10/sup -9//mile.

  9. BLANKET STUDENT ACCIDENT AND SICKNESS INSURANCE

    E-Print Network [OSTI]

    Suzuki, Masatsugu

    BLANKET STUDENT ACCIDENT AND SICKNESS INSURANCE Especially Designed for Students of insurance. Your coverage is governed by a policy of student accident and sickness insurance underwritten

  10. BLANKET STUDENT ACCIDENT AND SICKNESS INSURANCE

    E-Print Network [OSTI]

    Suzuki, Masatsugu

    BLANKET STUDENT ACCIDENT AND SICKNESS INSURANCE Especially Designed for International Students is governed by a policy of student accident and sickness insurance underwritten by BCS Insurance Company BCS

  11. A review of criticality accidents

    SciTech Connect (OSTI)

    Stratton, W R; Smith, D R

    1989-03-01T23:59:59.000Z

    Criticality accidents and the characteristics of prompt power excursions are discussed. Forty-one accidental power transients are reviewed. In each case where available, enough detail is given to help visualize the physical situation, the cause or causes of the accident, the history and characteristics of the transient, the energy release, and the consequences, if any, to personnel and property. Excursions associated with large power reactors are not included in this study, except that some information on the major accident at the Chernobyl reactor in April 1986 is provided in the Appendix. 67 refs., 21 figs., 2 tabs.

  12. Energy Storage

    SciTech Connect (OSTI)

    Paranthaman, Parans

    2014-06-03T23:59:59.000Z

    ORNL Distinguished Scientist Parans Paranthaman is discovering new materials with potential for greatly increasing batteries' energy storage capacity and bring manufacturing back to the US.

  13. Energy Storage

    ScienceCinema (OSTI)

    Paranthaman, Parans

    2014-06-23T23:59:59.000Z

    ORNL Distinguished Scientist Parans Paranthaman is discovering new materials with potential for greatly increasing batteries' energy storage capacity and bring manufacturing back to the US.

  14. Terrestrial Water Storage

    E-Print Network [OSTI]

    Rodell, M; Chambers, D P; Famiglietti, Jay

    2013-01-01T23:59:59.000Z

    T. E. Reilly, 2002: Flow and storage in groundwater systems.storage ..2013: Global ocean storage of anthropogenic carbon.

  15. Stasis: Flexible Transactional Storage

    E-Print Network [OSTI]

    Sears, Russell C.

    2009-01-01T23:59:59.000Z

    storage . . . . . . . . . . . . . . . . . . . . . .example system based on log-structured storage 10.1 SystemA storage bottleneck. . . . . . . . . . . . . . . .

  16. University of Pittsburgh Vehicle Accident Report Form

    E-Print Network [OSTI]

    Sibille, Etienne

    University of Pittsburgh Vehicle Accident Report Form To be completed by the driver immediately following the accident (if medically able) and return this completed form to Fleet Services, Dept of Parking-624-1817 A. Report Date: ______/______/_______ B: Accident Data Date of accident

  17. Exact Location : Date of Accident : AM PM

    E-Print Network [OSTI]

    Swaddle, John

    SSN Cell Phone Home Phone Work Phone Exact Location : Date of Accident : AM PM Date accident treatment provided? Yes No Where Was time lost from work? Yes No If yes, how long? Could this accident have the following information as soon as it relates to your work related accident/injury/illness within 72 hours

  18. Bordereau de transmission accident du travail

    E-Print Network [OSTI]

    Pouyanne, Nicolas

    Bordereau de transmission accident du travail Service des pensions et accidents du travail accidents du travail du CNRS Accompagné des pièces requises Nom .................................................... Prénom ........................ Matricule ...... Composition du dossier Observations Déclaration d'accident

  19. An Interview About an Accident

    E-Print Network [OSTI]

    G.yu lha

    2009-12-17T23:59:59.000Z

    Length of track 0:02:32 Related tracks (include description/relationship if appropriate) Title of track An Interview About an Accident Translation of title Description (to be used in archive entry) The respondent recalls how he and his... wife survived a motorcycle accident. Genre or type (i.e. epic, song, ritual) Interview Name of recorder (if different from collector) G.yu lha Date of recording December 17th 2009 Place of recording Siyuewu Village, Puxi Township, Rangtang...

  20. Accident tolerant fuel analysis

    SciTech Connect (OSTI)

    Smith, Curtis [Idaho National Laboratory; Chichester, Heather [Idaho National Laboratory; Johns, Jesse [Texas A& M University; Teague, Melissa [Idaho National Laboratory; Tonks, Michael Idaho National Laboratory; Youngblood, Robert [Idaho National Laboratory

    2014-09-01T23:59:59.000Z

    Safety is central to the design, licensing, operation, and economics of Nuclear Power Plants (NPPs). Consequently, the ability to better characterize and quantify safety margin holds the key to improved decision making about light water reactor design, operation, and plant life extension. A systematic approach to characterization of safety margins and the subsequent margins management options represents a vital input to the licensee and regulatory analysis and decision making that will be involved. The purpose of the Risk Informed Safety Margin Characterization (RISMC) Pathway research and development (R&D) is to support plant decisions for risk-informed margins management by improving economics and reliability, and sustaining safety, of current NPPs. Goals of the RISMC Pathway are twofold: (1) Develop and demonstrate a risk-assessment method coupled to safety margin quantification that can be used by NPP decision makers as part of their margin recovery strategies. (2) Create an advanced ''RISMC toolkit'' that enables more accurate representation of NPP safety margin. In order to carry out the R&D needed for the Pathway, the Idaho National Laboratory is performing a series of case studies that will explore methods- and tools-development issues, in addition to being of current interest in their own right. One such study is a comparative analysis of safety margins of plants using different fuel cladding types: specifically, a comparison between current-technology Zircaloy cladding and a notional ''accident-tolerant'' (e.g., SiC-based) cladding. The present report begins the process of applying capabilities that are still under development to the problem of assessing new fuel designs. The approach and lessons learned from this case study will be included in future Technical Basis Guides produced by the RISMC Pathway. These guides will be the mechanism for developing the specifications for RISMC tools and for defining how plant decision makers should propose and evaluate margin recovery strategies.

  1. Accident Tolerant Fuel Analysis

    SciTech Connect (OSTI)

    Curtis Smith; Heather Chichester; Jesse Johns; Melissa Teague; Michael Tonks; Robert Youngblood

    2014-09-01T23:59:59.000Z

    Safety is central to the design, licensing, operation, and economics of Nuclear Power Plants (NPPs). Consequently, the ability to better characterize and quantify safety margin holds the key to improved decision making about light water reactor design, operation, and plant life extension. A systematic approach to characterization of safety margins and the subsequent margins management options represents a vital input to the licensee and regulatory analysis and decision making that will be involved. The purpose of the Risk Informed Safety Margin Characterization (RISMC) Pathway research and development (R&D) is to support plant decisions for risk-informed margins management by improving economics and reliability, and sustaining safety, of current NPPs. Goals of the RISMC Pathway are twofold: (1) Develop and demonstrate a risk-assessment method coupled to safety margin quantification that can be used by NPP decision makers as part of their margin recovery strategies. (2) Create an advanced “RISMC toolkit” that enables more accurate representation of NPP safety margin. In order to carry out the R&D needed for the Pathway, the Idaho National Laboratory is performing a series of case studies that will explore methods- and tools-development issues, in addition to being of current interest in their own right. One such study is a comparative analysis of safety margins of plants using different fuel cladding types: specifically, a comparison between current-technology Zircaloy cladding and a notional “accident-tolerant” (e.g., SiC-based) cladding. The present report begins the process of applying capabilities that are still under development to the problem of assessing new fuel designs. The approach and lessons learned from this case study will be included in future Technical Basis Guides produced by the RISMC Pathway. These guides will be the mechanism for developing the specifications for RISMC tools and for defining how plant decision makers should propose and evaluate margin recovery strategies.

  2. ACCIDENT ANALYSES & CONTROL OPTIONS IN SUPPORT OF THE SLUDGE WATER SYSTEM SAFETY ANALYSIS

    SciTech Connect (OSTI)

    WILLIAMS, J.C.

    2003-11-15T23:59:59.000Z

    This report documents the accident analyses and nuclear safety control options for use in Revision 7 of HNF-SD-WM-SAR-062, ''K Basins Safety Analysis Report'' and Revision 4 of HNF-SD-SNF-TSR-001, ''Technical Safety Requirements - 100 KE and 100 KW Fuel Storage Basins''. These documents will define the authorization basis for Sludge Water System (SWS) operations. This report follows the guidance of DOE-STD-3009-94, ''Preparation Guide for US. Department of Energy Nonreactor Nuclear Facility Safety Analysis Reports'', for calculating onsite and offsite consequences. The accident analysis summary is shown in Table ES-1 below. While this document describes and discusses potential control options to either mitigate or prevent the accidents discussed herein, it should be made clear that the final control selection for any accident is determined and presented in HNF-SD-WM-SAR-062.

  3. Hydrogen Storage

    Fuel Cell Technologies Publication and Product Library (EERE)

    This 2-page fact sheet provides a brief introduction to hydrogen storage technologies. Intended for a non-technical audience, it explains the different ways in which hydrogen can be stored, as well a

  4. The Wildlife Accident Reporting System (WARS) in British Columbia

    E-Print Network [OSTI]

    Sielecki, Leonard E.

    2003-01-01T23:59:59.000Z

    2001, WARS 2000 Wildlife Accident Reporting System (2000related motor vehicle accident claim data and funding toTHE WILDLIFE ACCIDENT REPORTING SYSTEM (WARS) IN BRITISH

  5. Type B Accident Investigation Board Report on the September 7...

    Broader source: Energy.gov (indexed) [DOE]

    Accident Investigation Board Report on the September 7, 2001, Burn Accident at Oak Ridge National Laboratory, Building 9210 Type B Accident Investigation Board Report on the...

  6. Type B Accident Investigation of the Subcontractor Employee Injuries...

    Broader source: Energy.gov (indexed) [DOE]

    Type B Accident Investigation of the Subcontractor Employee Injuries from a November 15, 2000, Fall Accident at the Oak Ridge National Laboratory Type B Accident Investigation of...

  7. Estimating Pedestrian Accident Exposure: Automated Pedestrian Counting Devices Report

    E-Print Network [OSTI]

    Bu, Fanping; Greene-Roesel, Ryan; Diogenes, Mara Chagas; Ragland, David R

    2007-01-01T23:59:59.000Z

    291. Estimating Pedestrian Accident Exposure: Draft ProtocolEstimating Pedestrian Accident Exposure: Draft Protocol39. Estimating Pedestrian Accident Exposure: Draft Protocol

  8. Safety Issues Chemical Storage

    E-Print Network [OSTI]

    Cohen, Robert E.

    Safety Issues · Chemical Storage ·Store in compatible containers that are in good condition to store separately. #12;Safety Issues · Flammable liquid storage -Store bulk quantities in flammable storage cabinets -UL approved Flammable Storage Refrigerators are required for cold storage · Provide

  9. Underground pumped hydroelectric storage

    SciTech Connect (OSTI)

    Allen, R.D.; Doherty, T.J.; Kannberg, L.D.

    1984-07-01T23:59:59.000Z

    Underground pumped hydroelectric energy storage was conceived as a modification of surface pumped storage to eliminate dependence upon fortuitous topography, provide higher hydraulic heads, and reduce environmental concerns. A UPHS plant offers substantial savings in investment cost over coal-fired cycling plants and savings in system production costs over gas turbines. Potential location near load centers lowers transmission costs and line losses. Environmental impact is less than that for a coal-fired cycling plant. The inherent benefits include those of all pumped storage (i.e., rapid load response, emergency capacity, improvement in efficiency as pumps improve, and capacity for voltage regulation). A UPHS plant would be powered by either a coal-fired or nuclear baseload plant. The economic capacity of a UPHS plant would be in the range of 1000 to 3000 MW. This storage level is compatible with the load-leveling requirements of a greater metropolitan area with population of 1 million or more. The technical feasibility of UPHS depends upon excavation of a subterranean powerhouse cavern and reservoir caverns within a competent, impervious rock formation, and upon selection of reliable and efficient turbomachinery - pump-turbines and motor-generators - all remotely operable.

  10. accidents: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Phone Home Phone Work Phone Exact Location : Date of Accident : AM PM Date accident treatment provided? Yes No Where Was time lost from work? Yes No If yes, how long? Could this...

  11. BLANKET STUDENT ACCIDENT AND SICKNESS INSURANCE

    E-Print Network [OSTI]

    Suzuki, Masatsugu

    BLANKET STUDENT ACCIDENT AND SICKNESS INSURANCE Especially Designed for the Dependents. It is not a contract of insurance. Your coverage is governed by a policy of student accident and sickness insurance

  12. RICE UNIVERSITY ACCIDENT/INJURY REPORT

    E-Print Network [OSTI]

    Natelson, Douglas

    RICE UNIVERSITY ACCIDENT/INJURY REPORT Please Print Section A: Details of incident Injury Work Exposure to radiation Mental stress factors Noise Insect/animal bite Vehicle accident Slip

  13. Analysis of accidents during flashing operations

    E-Print Network [OSTI]

    Obermeyer, Michael Edward

    1993-01-01T23:59:59.000Z

    University, 1976 Federal Highway Administration Study, 1980 San Francisco Study National Study Portland, Oregon Study Summary of Literature Review Studies 13 14 16 17 20 CHAPTER Page III. ACCIDENT ANALYSIS METHODOLOGY . 22 Study Site Location... V. SUMMARY AND FINDINGS 44 REFERENCES 48 VITA 50 LIST OF TABLES TABLE 1. Groupings for Marson's Accident Analysis 2. Groupings for San Francisco Accident Analysis 3. Groupings for Portland Accident Analysis 4. Sample Sizes by Volume Ratio 5...

  14. UWO Vehicle ACCIDENT REPORTING FORM

    E-Print Network [OSTI]

    Sinnamon, Gordon J.

    UWO Vehicle ­ ACCIDENT REPORTING FORM To be completed at the scene. (Important: Do not admit liability or discuss any settlement.) If there are personal injuries or severe damage to the vehicle, call 911. If vehicle is drivable and if it's safe to do so, pull to the side of road away from traffic. Put

  15. TREE FAILURES AND ACCIDENTS IN

    E-Print Network [OSTI]

    Standiford, Richard B.

    .DEPARTMENT O F AGRICULTURE GENERAL TECHNICAL REPORT PSW- 24 #12;TREE FAILURES AND ACCIDENTS IN RECREATION are major concerns. Injuries, fatalities, and high property losses occur each year as a result of tree losses associated with public occupancy. Hazard reduction can limit such losses to predefined levels

  16. ASSESSING CAUSAL FACTORS IN INDIVIDUAL ROAD ACCIDENTS

    E-Print Network [OSTI]

    Minnesota, University of

    ASSESSING CAUSAL FACTORS IN INDIVIDUAL ROAD ACCIDENTS: COLLECTIVE RESPONSIBILITY IN FREEWAY REAR accident report: Happened on I-94 in downtown Minneapolis Happened during the afternoon peak period Vehicle" is a "condition or event" such that "had the condition or event been prevented...the accident would not occur

  17. The Hartford Life and Accident Insurance

    E-Print Network [OSTI]

    The Hartford Life and Accident Insurance Company Group Numbers Basic Term Life - 677984 Basic by The Hartford Life and Accident Insurance Company. (Referred to as The Hartford or Hartford.) General from an accident, the benefit will be equal to $140,000 ($70,000 basic group term life PLUS $70

  18. AQUIFER THERMAL ENERGY STORAGE

    E-Print Network [OSTI]

    Tsang, C.-F.

    2011-01-01T23:59:59.000Z

    aquifers for thermal energy storage. Problems outlined aboveModeling of Thermal Energy Storage in Aquifers," Proceed-ings of Aquifer Thermal Energy Storage Workshop, Lawrence

  19. SUPERCONDUCTING MAGNETIC ENERGY STORAGE

    E-Print Network [OSTI]

    Hassenzahl, W.

    2011-01-01T23:59:59.000Z

    Superconducting 30-MJ Energy Storage Coil", Proc. 19 80 ASC,Superconducting Magnetic Energy Storage Plant", IEEE Trans.SlIperconducting Magnetic Energy Storage Unit", in Advances

  20. AQUIFER THERMAL ENERGY STORAGE

    E-Print Network [OSTI]

    Tsang, C.-F.

    2011-01-01T23:59:59.000Z

    aquifers for thermal energy storage. Problems outlined abovean Aquifer Used for Hot Water Storage: Digital Simulation ofof Aquifer Systems for Cyclic Storage of Water," of the Fall

  1. AQUIFER THERMAL ENERGY STORAGE

    E-Print Network [OSTI]

    Tsang, C.-F.

    2011-01-01T23:59:59.000Z

    using aquifers for thermal energy storage. Problems outlinedmatical Modeling of Thermal Energy Storage in Aquifers,"ings of Aquifer Thermal Energy Storage Workshop, Lawrence

  2. AQUIFER THERMAL ENERGY STORAGE

    E-Print Network [OSTI]

    Tsang, C.-F.

    2011-01-01T23:59:59.000Z

    using aquifers for thermal energy storage. Problems outlinedmatical Modeling of Thermal Energy Storage in Aquifers,"Proceed- ings of Aquifer Thermal Energy Storage Workshop,

  3. Stasis: Flexible Transactional Storage

    E-Print Network [OSTI]

    Sears, Russell C.

    2009-01-01T23:59:59.000Z

    Stasis: Flexible Transactional Storage by Russell C. Sears AR. Larson Fall 2009 Stasis: Flexible Transactional StorageC. Sears Abstract Stasis: Flexible Transactional Storage by

  4. Criteria for Preparing and Packaging Plutonium Metals and Oxides for Long-Term Storage

    SciTech Connect (OSTI)

    NONE

    1994-12-01T23:59:59.000Z

    This Standard provides criteria for packaging of plutonium metals and stabilized oxides for storage periods of at least 50 years. To meet the criteria, plutonium-bearing materials must be in stable forms and be packaged in containers designed to maintain their integrity both under normal storage conditions and during anticipated handling accidents.

  5. Angular dependence of a simple accident dosimeter

    SciTech Connect (OSTI)

    Devine, R. T. (Robert T.); Romero, L. L. (Leonard L.); Olsher, R. H. (Richard H.)

    2004-01-01T23:59:59.000Z

    A simple dosimeter made of a sulfur tablet, bare and cadmium covered indium foils and a cadmium covered copper foil has been modeled using MCNP5. Studies of the model without phantom or other confounding factors have shown that the cross sections and fluence-to-dose factors generated by the Monte Carlo method agree with those generated by analytic expressions for the high energy component. The threshold cross sections for the detectors on a phantom were calculated. The resulting doses assigned agree well with exposures made to three critical assemblies. In this study the angular dependence on a phantom is studied and compared with measurements taken on the GODIVA reactor. The dosimeter positions on the phantom are facing the source, on the back and the side. In previous papers the modeling of a simple dosimeter made of a sulfur tablet, bare and cadmium covered indium foils and a cadmium covered copper foil has been modeled using MCNP5. The conclusion made was that most of the neutron dose from criticality assemblies results from the high energy neutron fluences determined by the sulfur and indium detectors. The results using doses measured from the GODIVA, SHEBA, and bare and lead shielded SILENE reactors confirmed this. The angular dependence of an accident dosemeter is of interest in evaluating the exposure of personnel. To investigate this effect accident dosemeters were placed on a phantom and exposed to the GODIVA reactor at phantom orientations of 0{sup o}, 45{sup o}, 90{sup o}, 135{sup o}, and 180{sup o} to the assembly center line.

  6. Storage Rings

    SciTech Connect (OSTI)

    Fischer, W.

    2011-01-01T23:59:59.000Z

    Storage rings are circular machines that store particle beams at a constant energy. Beams are stored in rings without acceleration for a number of reasons (Tab. 1). Storage rings are used in high-energy, nuclear, atomic, and molecular physics, as well as for experiments in chemistry, material and life sciences. Parameters for storage rings such as particle species, energy, beam intensity, beam size, and store time vary widely depending on the application. The beam must be injected into a storage ring but may not be extracted (Fig. 1). Accelerator rings such as synchrotrons are used as storage rings before and after acceleration. Particles stored in rings include electrons and positrons; muons; protons and anti-protons; neutrons; light and heavy, positive and negative, atomic ions of various charge states; molecular and cluster ions, and neutral polar molecules. Spin polarized beams of electrons, positrons, and protons were stored. The kinetic energy of the stored particles ranges from 10{sup -6} eV to 3.5 x 10{sup 12} eV (LHC, 7 x 10{sup 12} eV planned), the number of stored particles from one (ESR) to 1015 (ISR). To store beam in rings requires bending (dipoles) and transverse focusing (quadrupoles). Higher order multipoles are used to correct chromatic aberrations, to suppress instabilities, and to compensate for nonlinear field errors of dipoles and quadrupoles. Magnetic multipole functions can be combined in magnets. Beams are stored bunched with radio frequency systems, and unbunched. The magnetic lattice and radio frequency system are designed to ensure the stability of transverse and longitudinal motion. New technologies allow for better storage rings. With strong focusing the beam pipe dimensions became much smaller than previously possible. For a given circumference superconducting magnets make higher energies possible, and superconducting radio frequency systems allow for efficient replenishment of synchrotron radiation losses of large current electron or positron beams. Storage rings have instrumentation to monitor the electrical and mechanical systems, and the beam quality. Computers are used to control the operation. Large storage rings have millions of control points from all systems. The time dependent beam intensity I(t) can often be approximated by an exponential function I(t) = I(0) exp(-t/{tau}) (1) where the decay time {tau} and, correspondingly, the store time ranges from a few turns to 10 days (ISR). {tau} can be dominated by a variety of effects including lattice nonlinearities, beam-beam, space charge, intrabeam and Touschek scattering, interaction with the residual gas or target, or the lifetime of the stored particle. In this case, the beam lifetime measurement itself can be the purpose of a storage ring experiment. The main consideration in the design of a storage ring is the preservation of the beam quality over the store length. The beam size and momentum spread can be reduced through cooling, often leading to an increase in the store time. For long store times vacuum considerations are important since the interaction rate of the stored particles with the residual gas molecules is proportional to the pressure, and an ultra-high vacuum system may be needed. Distributed pumping with warm activated NEG surfaces or cold surfaces in machines with superconducting magnets are ways to provide large pumping speeds and achieve low pressures even under conditions with dynamic gas loads. The largest application of storage rings today are synchrotron light sources, of which about 50 exist world wide. In experiments where the beam collides with an internal target or another beam, a storage ring allows to re-use the accelerated beam many times if the interaction with the target is sufficiently small. In hadron collider and ion storage rings store times of many hours or even days are realized, corresponding to up to 1011 turns and thereby target passages. Ref. [3] is the first proposal for a collider storage ring. A number of storage rings exist where the beam itself or its decay products are the object of s

  7. The contribution of CO2 capture and storage

    E-Print Network [OSTI]

    The contribution of CO2 capture and storage to a sustainable energy system Policy brief the prospects of CO2 capture and storage (CCS) technologies in the power sector. Based on the results of 10. The uncertainties, particularly in storage capacities, are large. Using conservative estimates in line with the IPCC

  8. Cool Storage Performance

    E-Print Network [OSTI]

    Eppelheimer, D. M.

    1985-01-01T23:59:59.000Z

    . This article covers three thermal storage topics. The first section catalogs various thermal storage systems and applications. Included are: load shifting and load leveling, chilled water storage systems, and ice storage systems using Refrigerant 22 or ethylene...

  9. Canister Storage Building (CSB) Hazard Analysis Report

    SciTech Connect (OSTI)

    POWERS, T.B.

    2000-03-16T23:59:59.000Z

    This report describes the methodology used in conducting the Canister Storage Building (CSB) Hazard Analysis to support the final CSB Safety Analysis Report and documents the results. This report describes the methodology used in conducting the Canister Storage Building (CSB) hazard analysis to support the CSB final safety analysis report (FSAR) and documents the results. The hazard analysis process identified hazardous conditions and material-at-risk, determined causes for potential accidents, identified preventive and mitigative features, and qualitatively estimated the frequencies and consequences of specific occurrences. The hazard analysis was performed by a team of cognizant CSB operations and design personnel, safety analysts familiar with the CSB, and technical experts in specialty areas. The material included in this report documents the final state of a nearly two-year long process. Attachment A provides two lists of hazard analysis team members and describes the background and experience of each. The first list is a complete list of the hazard analysis team members that have been involved over the two-year long process. The second list is a subset of the first list and consists of those hazard analysis team members that reviewed and agreed to the final hazard analysis documentation. The material included in this report documents the final state of a nearly two-year long process involving formal facilitated group sessions and independent hazard and accident analysis work. The hazard analysis process led to the selection of candidate accidents for further quantitative analysis. New information relative to the hazards, discovered during the accident analysis, was incorporated into the hazard analysis data in order to compile a complete profile of facility hazards. Through this process, the results of the hazard and accident analyses led directly to the identification of safety structures, systems, and components, technical safety requirements, and other controls required to protect the public, workers, and environment.

  10. AQUIFER THERMAL ENERGY STORAGE

    E-Print Network [OSTI]

    Tsang, C.-F.

    2011-01-01T23:59:59.000Z

    of Discharge Using Ground- Water Storage," Transactions1971. "Storage of Solar Energy in a Sandy-Gravel Ground,"

  11. Approaches to accident analysis in recent US Department of Energy environmental impact statements

    SciTech Connect (OSTI)

    Mueller, C.; Folga, S.; Nabelssi, B.

    1996-12-31T23:59:59.000Z

    A review of accident analyses in recent US Department of Energy (DOE) Environmental Impact Statements (EISs) was conducted to evaluate the consistency among approaches and to compare these approaches with existing DOE guidance. The review considered several components of an accident analysis: the overall scope, which in turn should reflect the scope of the EIS; the spectrum of accidents considered; the methods and assumptions used to determine frequencies or frequency ranges for the accident sequences; and the assumption and technical bases for developing radiological and chemical atmospheric source terms and for calculating the consequences of airborne releases. The review also considered the range of results generated with respect to impacts on various worker and general populations. In this paper, the findings of these reviews are presented and methods recommended for improving consistency among EISs and bringing them more into line with existing DOE guidance.

  12. Storage System and IBM System Storage

    E-Print Network [OSTI]

    IBM® XIV® Storage System and IBM System Storage® SAN Volume Controller deliver high performance and smart management for SAP® landscapes IBM SAP International Competence Center #12;"The combination of the XIV Storage System and SAN Volume Controller gives us a smarter way to manage our storage. If we need

  13. Gas storage materials, including hydrogen storage materials

    DOE Patents [OSTI]

    Mohtadi, Rana F; Wicks, George G; Heung, Leung K; Nakamura, Kenji

    2014-11-25T23:59:59.000Z

    A material for the storage and release of gases comprises a plurality of hollow elements, each hollow element comprising a porous wall enclosing an interior cavity, the interior cavity including structures of a solid-state storage material. In particular examples, the storage material is a hydrogen storage material, such as a solid state hydride. An improved method for forming such materials includes the solution diffusion of a storage material solution through a porous wall of a hollow element into an interior cavity.

  14. Gas storage materials, including hydrogen storage materials

    DOE Patents [OSTI]

    Mohtadi, Rana F; Wicks, George G; Heung, Leung K; Nakamura, Kenji

    2013-02-19T23:59:59.000Z

    A material for the storage and release of gases comprises a plurality of hollow elements, each hollow element comprising a porous wall enclosing an interior cavity, the interior cavity including structures of a solid-state storage material. In particular examples, the storage material is a hydrogen storage material such as a solid state hydride. An improved method for forming such materials includes the solution diffusion of a storage material solution through a porous wall of a hollow element into an interior cavity.

  15. COMMERCIAL SNF ACCIDENT RELEASE FRACTIONS

    SciTech Connect (OSTI)

    S.O. Bader

    1999-10-18T23:59:59.000Z

    The purpose of this design analysis is to specify and document the total and respirable fractions for radioactive materials that are released from an accident event at the Monitored Geologic Repository (MGR) involving commercial spent nuclear fuel (CSNF) in a dry environment. The total and respirable release fractions will be used to support the preclosure licensing basis for the MGR. The total release fraction is defined as the fraction of total CSNF assembly inventory, typically expressed as an activity inventory (e.g., curies), of a given radionuclide that is released to the environment from a waste form. The radionuclides are released from the inside of breached fuel rods (or pins) and from the detachment of radioactive material (crud) from the outside surfaces of fuel rods and other components of fuel assemblies. The total release fraction accounts for several mechanisms that tend to retain, retard, or diminish the amount of radionuclides that are available for transport to dose receptors or otherwise can be shown to reduce exposure of receptors to radiological releases. The total release fraction includes a fraction of airborne material that is respirable and could result in inhalation doses. This subset of the total release fraction is referred to as the respirable release fraction. Potential accidents may involve waste forms that are characterized as either bare (unconfined) fuel assemblies or confined fuel assemblies. The confined CSNF assemblies at the MGR are contained in shipping casks, canisters, or disposal containers (waste packages). In contrast to the bare fuel assemblies, the container that confines the fuel assemblies has the potential of providing an additional barrier for diminishing the total release fraction should the fuel rod cladding breach during an accident. However, this analysis will not take credit for this additional bamer and will establish only the total release fractions for bare unconfined CSNF assemblies, which may however be conservatively applied to confined CSNF assemblies.

  16. Computerized Accident Incident Reporting System | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and other accidents that occur during DOE operations. CAIRS is a Government computer system and, as such, has security requirements that must be followed. Access to the...

  17. ORISE: REAC/TS Radiation Accident Registries

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Accident Registries The Radiation Emergency Assistance CenterTraining Site (REACTS) at the Oak Ridge Institute for Science and Education (ORISE) maintains a number of radiation...

  18. DOE Accident Prevention and Investigation Program | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    tools utilized in the investigation of "accidents" can be valuable in looking at leading indicators associated with our safety program, to determine the embedded precursors to...

  19. Type B Accident Investigation, Subcontractor Employee Personal...

    Broader source: Energy.gov (indexed) [DOE]

    February 18, 2003, at the East Tennessee Technology Park, Oak Ridge, Tennessee Type B Accident Investigation, Subcontractor Employee Personal Protective Equipment Ignition Incident...

  20. Solid-State Hydrogen Storage: Storage Capacity,Thermodynamics...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hydrogen Storage: Storage Capacity,Thermodynamics and Kinetics. Solid-State Hydrogen Storage: Storage Capacity,Thermodynamics and Kinetics. Abstract: Solid-state reversible...

  1. Date of Accident: _____/_____/________ Day of Week: __________________ Hour: _____:______ AM / PM TIME VEHICLE ACCIDENT REPORT

    E-Print Network [OSTI]

    Farritor, Shane

    Page 1/2 Date of Accident: _____/_____/________ Day of Week: __________________ Hour: _____:______ AM / PM TIME VEHICLE ACCIDENT REPORT TO BE USED BY ALL STATE AGENCIES to make immediate report of all motor vehicle accidents involving State employees, vehicles, equipment or where highways could result

  2. Energy Management for an Onboard Storage System Based on Multi-Objective Optimization

    E-Print Network [OSTI]

    Paderborn, Universität

    Energy Management for an Onboard Storage System Based on Multi-Objective Optimization Tobias Knoke an onboard energy storage, the overhead line peak power and energy consumption can be reduced. The storage. This can be achieved by using an onboard energy storage, which recuperates the power during the braking

  3. Risk assessment for the Waste Technologies Industries (WTI) hazardous waste incineration facility (East Liverpool, Ohio). Volume 7. Accident analysis; selection and assessment of potential release scenarios

    SciTech Connect (OSTI)

    NONE

    1997-05-01T23:59:59.000Z

    In this part of the assessment, several accident scenarios are identified that could result in significant releases of chemicals into the environment. These scenarios include ruptures of storage tanks, large magnitude on-site spills, mixing of incompatible wastes, and off-site releases caused by tranpsortation accidents. In evaluating these scenarios, both probability and consequence are assessed, so that likelihood of occurrence is coupled with magnitude of effect in characterizing short term risks.

  4. Severe accident research in Canada

    SciTech Connect (OSTI)

    Simpson, L.A. [AECL Research, Pinawa, Manitoba (Canada)

    1994-12-31T23:59:59.000Z

    The reactor safety research program in Canada not only recognizes the unique features of the CANDU reactor, but is supplemented by a strong interaction with the LWR research community. This is especially so in the area of severe accidents. We participate in international programs such as Phebus FP and CSARP to take advantage of cooperative efforts on phenomena that are generic to all reactors, but also have our distinct programs in Canada on severe fuel damage, fission product chemistry, aerosol behaviour and hydrogen combustion and mitigation. These programs address the characteristics of Canadian nuclear fuel and containment design, and our own series of severe accident scenarios. The scope of the R&D encompasses separate effects experiments, model development and code development, leading to validation testing in several large integral test facilities including the Radioiodine Test Facility and the Blowdown Test Facility in the NRU reactor. We also have extensive hydrogen combustion test facilities including the Large Scale Vented Combustion Test Facility now under construction. The essence of the program is described with examples from recent experiments and analysis.

  5. Sandia National Laboratories: Energy Storage

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Storage Sandian Spoke at the New York Energy Storage Expo On December 12, 2014, in Energy, Energy Storage, Energy Storage Systems, Grid Integration, Infrastructure Security, News,...

  6. Sandia National Laboratories: hydrogen storage

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    storage Energy Department Awards 7M to Advance Hydrogen Storage Systems On June 12, 2014, in CRF, Energy, Energy Storage, Energy Storage Systems, Facilities, Infrastructure...

  7. HEALTH EFFECTS OF THE NUCLEAR ACCIDENT AT THREE MILE ISLAND

    E-Print Network [OSTI]

    Fabrikant, J.I.

    2010-01-01T23:59:59.000Z

    Commission on the Accident at Three Mile Island (Fabrikant,Commission on the Accident at Three Mile Island. (Fahrikant,Commission on the Accident at Three Mile Island. (Fabrikant,

  8. accident victims: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Every year, traffic congestion and traffic accidents have been Cho, Sung-Bae 118 The Analysis of a Friendly Fire Accident using a Systems Model of Accidents* N.G. Leveson,...

  9. accident zone osobennosti: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Every year, traffic congestion and traffic accidents have been Cho, Sung-Bae 62 The Analysis of a Friendly Fire Accident using a Systems Model of Accidents* N.G. Leveson,...

  10. accident victim conduite: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Every year, traffic congestion and traffic accidents have been Cho, Sung-Bae 152 The Analysis of a Friendly Fire Accident using a Systems Model of Accidents* N.G. Leveson,...

  11. MELCOR accident analysis for ARIES-ACT

    E-Print Network [OSTI]

    California at San Diego, University of

    Flow Flow #12;Fusion Safety Program · MELCOR is a code originally designed to model severe accidentMELCOR accident analysis for ARIES-ACT Paul Humrickhouse Brad Merrill INL Fusion Safety Program progression in water-cooled fission reactors · INL has modified it for fusion; MELCOR 1.8.5 for fusion has

  12. Does Daylight Savings Time Affect Traffic Accidents?

    E-Print Network [OSTI]

    Deen, Sophia 1988-

    2012-04-20T23:59:59.000Z

    This paper studies the effect of changes in accident pattern due to Daylight Savings Time (DST). The extension of the DST in 2007 provides a natural experiment to determine whether the number of traffic accidents is affected by shifts in hours...

  13. Photon Storage Cavities

    E-Print Network [OSTI]

    Kim, K.-J.

    2008-01-01T23:59:59.000Z

    Sessler, "Analysis of Photon Storage Cavities for a Free-configuration of coupled storage cavity and PEL cavity. TheFig. 2. A ring resonator storage cavity coupled through a

  14. Seasonal thermal energy storage

    SciTech Connect (OSTI)

    Allen, R.D.; Kannberg, L.D.; Raymond, J.R.

    1984-05-01T23:59:59.000Z

    This report describes the following: (1) the US Department of Energy Seasonal Thermal Energy Storage Program, (2) aquifer thermal energy storage technology, (3) alternative STES technology, (4) foreign studies in seasonal thermal energy storage, and (5) economic assessment.

  15. TRAVEL ACCIDENT INSURANCE PLAN 01-01-2012 The Travel Accident Insurance Plan provides 24-hour Accident coverage while on Authorized

    E-Print Network [OSTI]

    Johnson, Peter D.

    1 TRAVEL ACCIDENT INSURANCE PLAN 01-01-2012 The Travel Accident Insurance Plan provides 24-hour Accident coverage while on Authorized Business Travel. Coverage begins at the actual starting point. Please note that the Employer reserves the right to amend or terminate this Travel Accident Insurance

  16. The Fukushima Daiichi Accident Study Information Portal

    SciTech Connect (OSTI)

    Shawn St. Germain; Curtis Smith; David Schwieder; Cherie Phelan

    2012-11-01T23:59:59.000Z

    This paper presents a description of The Fukushima Daiichi Accident Study Information Portal. The Information Portal was created by the Idaho National Laboratory as part of joint NRC and DOE project to assess the severe accident modeling capability of the MELCOR analysis code. The Fukushima Daiichi Accident Study Information Portal was created to collect, store, retrieve and validate information and data for use in reconstructing the Fukushima Daiichi accident. In addition to supporting the MELCOR simulations, the Portal will be the main DOE repository for all data, studies and reports related to the accident at the Fukushima Daiichi nuclear power station. The data is stored in a secured (password protected and encrypted) repository that is searchable and accessible to researchers at diverse locations.

  17. Commercial SNF Accident Release Fractions

    SciTech Connect (OSTI)

    J. Schulz

    2004-11-05T23:59:59.000Z

    The purpose of this analysis is to specify and document the total and respirable fractions for radioactive materials that could be potentially released from an accident at the repository involving commercial spent nuclear fuel (SNF) in a dry environment. The total and respirable release fractions are used to support the preclosure licensing basis for the repository. The total release fraction is defined as the fraction of total commercial SNF assembly inventory, typically expressed as an activity inventory (e.g., curies), of a given radionuclide that is released to the environment from a waste form. Radionuclides are released from the inside of breached fuel rods (or pins) and from the detachment of radioactive material (crud) from the outside surfaces of fuel rods and other components of fuel assemblies. The total release fraction accounts for several mechanisms that tend to retain, retard, or diminish the amount of radionuclides that are available for transport to dose receptors or otherwise can be shown to reduce exposure of receptors to radiological releases. The total release fraction includes a fraction of airborne material that is respirable and could result in inhalation doses; this subset of the total release fraction is referred to as the respirable release fraction. Accidents may involve waste forms characterized as: (1) bare unconfined intact fuel assemblies, (2) confined intact fuel assemblies, or (3) canistered failed commercial SNF. Confined intact commercial SNF assemblies at the repository are contained in shipping casks, canisters, or waste packages. Four categories of failed commercial SNF are identified: (1) mechanically and cladding-penetration damaged commercial SNF, (2) consolidated/reconstituted assemblies, (3) fuel rods, pieces, and debris, and (4) nonfuel components. It is assumed that failed commercial SNF is placed into waste packages with a mesh screen at each end (CRWMS M&O 1999). In contrast to bare unconfined fuel assemblies, the container that confines the fuel assemblies could provide an additional barrier for diminishing the total release fraction should the fuel rod cladding breach during an accident. This analysis, however, does not take credit for the additional barrier and establishes only the total release fractions for bare unconfined intact commercial SNF assemblies, which may be conservatively applied to confined intact commercial I SNF assemblies.

  18. Type B Accident Investigation Board Report on the November 1...

    Office of Environmental Management (EM)

    B Accident Investigation Board Report on the November 1, 1999, Construction Injury at the Monticello Mill Tailings Remedial Action Site, Monticello, Utah Type B Accident...

  19. Development of Light Water Reactor Fuels with Enhanced Accident...

    Energy Savers [EERE]

    Development of Light Water Reactor Fuels with Enhanced Accident Tolerance - Report to Congress Development of Light Water Reactor Fuels with Enhanced Accident Tolerance - Report to...

  20. ORISE: The Medical Basis for Radiation-Accident Preparedness...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The Medical Basis for Radiation-Accident Preparedness: Medical Management Proceedings of the Fifth International REACTS Symposium on the Medical Basis for Radiation-Accident...

  1. Type A Accident Investigation of the June 21, 2001, Drilling...

    Office of Environmental Management (EM)

    A Accident Investigation of the June 21, 2001, Drilling Rig Operator Injury at the Fermi National Accelerator Laboratory, August 2001 Type A Accident Investigation of the June 21,...

  2. accident analysis structural: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    provides a theoretical foundation for the introduction of unique new types of accident analysis, hazard analysis, accident prevention strategies including new approaches to...

  3. accident prone drivers: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    provides a theoretical foundation for the introduction of unique new types of accident analysis, hazard analysis, accident prevention strategies including new approaches to...

  4. accident related release: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    age on auto accidents is examined by employing an interrupted time series analysis of monthly accident data covering the period January, 1969, through September 1973. The data ......

  5. Radiological Release Accident Investigation Report- Phase 1 Radiation Report

    Broader source: Energy.gov [DOE]

    Phase 1 of this accident investigation report is an independent product of the Accident Investigation Board appointed by Matthew Moury, Deputy Assistant Secretary, Safety, Security, and Quality...

  6. Type B Accident Investigation of the July 12, 2007, Forklift...

    Energy Savers [EERE]

    2, 2007, Forklift and Pedestrian Accident at the Paducah Gaseous Diffusion Plant, PortsmouthPaducah Project Office Type B Accident Investigation of the July 12, 2007, Forklift and...

  7. Type B Accident Investigation on the February 17, 2004, Personal...

    Energy Savers [EERE]

    Investigation of the July 12, 2007, Forklift and Pedestrian Accident at the Paducah Gaseous Diffusion Plant, PortsmouthPaducah Project Office Type B Accident Investigation...

  8. Web Based Course: SAF-230DE, Accident Investigation Overview...

    Broader source: Energy.gov (indexed) [DOE]

    Web Based Course: SAF-230DE, Accident Investigation Overview Promotional Video Web Based Course: SAF-230DE, Accident Investigation Overview Promotional Video September 20, 2013 -...

  9. Partnership Logging Accidents Cornelis de Hoop, LA Forest Products Lab

    E-Print Network [OSTI]

    Partnership Logging Accidents · by · Cornelis de Hoop, LA Forest Products Lab · Albert Lefort Agreement · 1998 & 1999 Accident Reports · 25 injuries reported · 185 loggers signed up · 8 deaths 1999

  10. accident management aids: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Accident, Illness and Liability Coverage Risk Management in the 4-H Youth Development Program Environmental Sciences and Ecology Websites Summary: 1 Accident, Illness and...

  11. Accident Investigation of the June 1, 2013, Stairway Fall Resulting...

    Energy Savers [EERE]

    Accident Investigation of the June 1, 2013, Stairway Fall Resulting in a Federal Employee Fatality at DOE Headquarters Germantown, Maryland Accident Investigation of the June 1,...

  12. accident sequence precursor: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Susskind; Nicolaos Toumbas 2000-03-17 7 Pedestrian Accidents - In-depth Analysis and Accident Figures. Open Access Theses and Dissertations Summary: ?? Pedestrian fatalities and...

  13. accident phenomenology cours: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Demande Commentaires Parrott, Lael 211 Pedestrian Accidents - In-depth Analysis and Accident Figures. Open Access Theses and Dissertations Summary: ?? Pedestrian fatalities and...

  14. accident management summary: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Management of the Acute Radiation Syndrome 2001 flow Feed back Radiation Accident MedicalManagement COMPENDIUMCOMPENDIUM MEDICAL MANAGEMENT OF RADIATION ACCIDENTS...

  15. Storage and IO Technology

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Burst Buffer User Defined Images Archive Home R & D Storage and IO Technologies Storage and IO Technologies Burst Buffer NVRAM and Burst Buffer Use Cases In collaboration...

  16. NERSC HPSS Storage Statistics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Storage Trends and Summaries Storage by Scientific Discipline Troubleshooting IO Resources for Scientific Applications at NERSC Optimizing IO performance on the Lustre file...

  17. SUPERCONDUCTING MAGNETIC ENERGY STORAGE

    E-Print Network [OSTI]

    Hassenzahl, W.

    2011-01-01T23:59:59.000Z

    to MW/40 MWI-IR Battery Energy Storage Facility", proc. 23rdcompressed air, and battery energy storage are all only 65

  18. Canister storage building hazard analysis report

    SciTech Connect (OSTI)

    POWERS, T.B.

    1999-05-11T23:59:59.000Z

    This report describes the methodology used in conducting the Canister Storage Building (CSB) hazard analysis to support the CSB final safety analysis report (FSAR) and documents the results. The hazard analysis was performed in accordance with the DOE-STD-3009-94, ''Preparation Guide for US. Department of Energy Nonreactor Nuclear Facility Safety Analysis Reports'', and meets the intent of HNF-PRO-704, ''Hazard and Accident Analysis Process''. This hazard analysis implements the requirements of DOE Order 5480.23, ''Nuclear Safety Analysis Reports''.

  19. Selecting Thermal Storage Systems for Schools

    E-Print Network [OSTI]

    Maxwell, C. L.

    1990-01-01T23:59:59.000Z

    measurement at six equally spaced elevations. Charged by chiller or hydronic vent cycle. B. Hot Water Storage Tank - Concrete lined steel 17,000 gallon with four headers arranged for dual temperature storage. C. Chiller - Variable frequency drive, 196... for Thermal Storage Projects since 1985: KW SCHOOL REDUCTION Kimball E.S. 7 1 Poteet H.S. 210 Phases I & I1 AC New M.S. 18 4 Pirrung E.S. 7 6 Poteet H.S. 14 0 Phase I11 Kimball E.S. 2 0 Phase I1 Black E.S. 3 7 Cannaday E.S. 9 0 Austin E.S. 94 N...

  20. Estimating Rear-End Accident Probabilities at Signalized Intersections: An Occurrence-Mechanism Approach

    E-Print Network [OSTI]

    Wang, Yinhai

    Estimating Rear-End Accident Probabilities at Signalized Intersections: An Occurrence intersections, rear-end accidents are frequently the predominant accident type. These accidents result from to this deceleration. This paper mathematically represents this process, by expressing accident probability

  1. Extending dry storage of spent LWR fuel for 100 years.

    SciTech Connect (OSTI)

    Einziger, R. E.

    1998-12-16T23:59:59.000Z

    Because of delays in closing the back end of the fuel cycle in the U.S., there is a need to extend dry inert storage of spent fuel beyond its originally anticipated 20-year duration. Many of the methodologies developed to support initial licensing for 20-year storage should be able to support the longer storage periods envisioned. This paper evaluates the applicability of existing information and methodologies to support dry storage up to 100 years. The thrust of the analysis is the potential behavior of the spent fuel. In the USA, the criteria for dry storage of LWR spent fuel are delineated in 10 CFR 72 [1]. The criteria fall into four general categories: maintain subcriticality, prevent the release of radioactive material above acceptable limits, ensure that radiation rates and doses do not exceed acceptable levels, and maintain retrievability of the stored radioactive material. These criteria need to be considered for normal, off-normal, and postulated accident conditions. The initial safety analysis report submitted for licensing evaluated the fuel's ability to meet the requirements for 20 years. It is not the intent to repeat these calculations, but to look at expected behavior over the additional 80 years, during which the temperatures and radiation fields are lower. During the first 20 years, the properties of the components may change because of elevated temperatures, presence of moisture, effects of radiation, etc. During normal storage in an inert atmosphere, there is potential for the cladding mechanical properties to change due to annealing or interaction with cask materials. The emissivity of the cladding could also change due to storage conditions. If there is air leakage into the cask, additional degradation could occur through oxidation in breached rods, which could lead to additional fission gas release and enlargement of cladding breaches. Air in-leakage could also affect cover gas conductivity, cladding oxidation, emissivity changes, and excessive creep and mechanical property changes. Postulated accident scenarios would be the same for 20-year or 100-year storage, because they are mostly governed by operational or outside events, and not by the cask or fuel. Analyses of accident scenarios during extended dry storage could be impacted by fuel and cask changes that would result from the extended period of storage. Overall, the results of this work indicate that, based on fuel behavior, spent fuel at burnups below {approximately}45 GWd/MTU can be dry stored for 100 years. Long-term storage of higher burnup fuel or fuels with newer cladding will require the determination of temperature limits based on evaluation of stress-driven degradation mechanisms of the cladding.

  2. COMPARING THE IDENTIFICATION OF RECOMMENDATIONS BY DIFFERENT ACCIDENT

    E-Print Network [OSTI]

    Johnson, Chris

    will be identified for similar incidents. Accident analysis methods can also help to reduce individual bias

  3. SUPERVISOR'S ACCIDENT INVESTIGATION FORM Employee's Name: Job Title

    E-Print Network [OSTI]

    Jiang, Wen

    SUPERVISOR'S ACCIDENT INVESTIGATION FORM Employee's Name: Job Title: Time employee has been in current position? How long had employee been at work prior to injury? Accident Date: Time of Accident: AM PM Overtime: Yes No Location of Accident (Be Specific): Specific Task Being Performed at Time

  4. ACCIDENT PREVENTION SIGNS, TAGS, LABELS, SIGNALS, PIPING SYSTEM IDENTIFICATION AND

    E-Print Network [OSTI]

    US Army Corps of Engineers

    EM 385-1-1 XX Sep 13 i Section 8 ACCIDENT PREVENTION SIGNS, TAGS, LABELS, SIGNALS, PIPING SYSTEM............................................................8-13 Tables: 8-1 Accident Prevention Sign Requirements..........................8-17 8-2 Accident.......................................8-24 8-9 Accident Prevention Tags.............................................8-25 #12;EM 385-1-1 XX

  5. STATE OF CALIFORNIA -DGS ORIM VEHICLE ACCIDENT REPORT

    E-Print Network [OSTI]

    Ponce, V. Miguel

    STATE OF CALIFORNIA - DGS ORIM VEHICLE ACCIDENT REPORT STD. 270 (REV. 2/2002c) ACCIDENT PREVIOUSLY REPORTED TO ORIM? (If Yes, give date) YES NO THIS REPORT MUST BE MAILED WITHIN 48 HOURS AFTER ACCIDENT (ACCIDENTS INVOLVING INJURY SHOULD FIRST BE CALLED OR FAXED TO ORIM AT (916) 376-5302 - CALNET 480-5302 - FAX

  6. UoS Motor Accident Report Form COMPANY DETAILS

    E-Print Network [OSTI]

    Sussex, University of

    UNIV01FL02 UoS Motor Accident Report Form COMPANY DETAILS INSURED: University of Sussex ADDRESS: LOCATION: DESCRIPTION OF HOW ACCIDENT HAPPENED: PLEASE DRAW A SKETCH OF THE ACCIDENT: #12;DRIVER DETAILS: PREVIOUS ACCIDENTS: ADDRESS: VEHICLE DETAILS DATE VEHICLE PURCHASED: MAKE/MODEL: REGISTRATION: MILEAGE

  7. Review of models applicable to accident aerosols

    SciTech Connect (OSTI)

    Glissmeyer, J.A.

    1983-07-01T23:59:59.000Z

    Estimations of potential airborne-particle releases are essential in safety assessments of nuclear-fuel facilities. This report is a review of aerosol behavior models that have potential applications for predicting aerosol characteristics in compartments containing accident-generated aerosol sources. Such characterization of the accident-generated aerosols is a necessary step toward estimating their eventual release in any accident scenario. Existing aerosol models can predict the size distribution, concentration, and composition of aerosols as they are acted on by ventilation, diffusion, gravity, coagulation, and other phenomena. Models developed in the fields of fluid mechanics, indoor air pollution, and nuclear-reactor accidents are reviewed with this nuclear fuel facility application in mind. The various capabilities of modeling aerosol behavior are tabulated and discussed, and recommendations are made for applying the models to problems of differing complexity.

  8. Dose calculations for severe LWR accident scenarios

    SciTech Connect (OSTI)

    Margulies, T.S.; Martin, J.A. Jr.

    1984-05-01T23:59:59.000Z

    This report presents a set of precalculated doses based on a set of postulated accident releases and intended for use in emergency planning and emergency response. Doses were calculated for the PWR (Pressurized Water Reactor) accident categories of the Reactor Safety Study (WASH-1400) using the CRAC (Calculations of Reactor Accident Consequences) code. Whole body and thyroid doses are presented for a selected set of weather cases. For each weather case these calculations were performed for various times and distances including three different dose pathways - cloud (plume) shine, ground shine and inhalation. During an emergency this information can be useful since it is immediately available for projecting offsite radiological doses based on reactor accident sequence information in the absence of plant measurements of emission rates (source terms). It can be used for emergency drill scenario development as well.

  9. Use of root in vehicular accident reconstruction

    E-Print Network [OSTI]

    Scurlock, Bob

    2011-01-01T23:59:59.000Z

    The purpose of this article is to introduce the reader to the ROOT data analysis software package, and demonstrate how it may be used to complement one's accident reconstruction analyses.

  10. A systems approach to food accident analysis

    E-Print Network [OSTI]

    Helferich, John D

    2011-01-01T23:59:59.000Z

    Food borne illnesses lead to 3000 deaths per year in the United States. Some industries, such as aviation, have made great strides increasing safety through careful accident analysis leading to changes in industry practices. ...

  11. Fuel Storage Facility Final Safety Analysis Report. Revision 1

    SciTech Connect (OSTI)

    Linderoth, C.E.

    1984-03-01T23:59:59.000Z

    The Fuel Storage Facility (FSF) is an integral part of the Fast Flux Test Facility. Its purpose is to provide long-term storage (20-year design life) for spent fuel core elements used to provide the fast flux environment in FFTF, and for test fuel pins, components and subassemblies that have been irradiated in the fast flux environment. This Final Safety Analysis Report (FSAR) and its supporting documentation provides a complete description and safety evaluation of the site, the plant design, operations, and potential accidents.

  12. Assessing economic consequences of radiation accidents

    SciTech Connect (OSTI)

    Rowe, M.D.; Lee, J.C.; Grimshaw, C.A.; Kalb, P.D.

    1987-01-01T23:59:59.000Z

    This project reviewed the literature on the economic consequences of accidents to determine the availability of assessment methods and data and their applicability to the high-level radioactive waste (HLW) disposal system before closure; determined needs for expansion, revision, or adaptation of methods and data for modeling economic consequences of accidents of the scale projected for the disposal system; and gathered data that might be useful for the needed revisions. 8 refs., 1 tab.

  13. risk_policies_accident_std_vist.doc/ac 1 Revised 07.26.13 STUDENT AND VISITOR ACCIDENT

    E-Print Network [OSTI]

    Su, Xiao

    risk_policies_accident_std_vist.doc/ac 1 Revised 07.26.13 STUDENT AND VISITOR ACCIDENT REPORTING: 408-924-1892 Student and Visitor Accident Reporting Guidelines These guidelines provide instructions for reporting and handling accidents or incidents that happen to students and visitors while on the San José

  14. Releases of UF{sub 6} to the atmosphere after a potential fire in a cylinder storage yard

    SciTech Connect (OSTI)

    Lombardi, D.A.; Williams, W.R.; Anderson, J.C. [and others

    1997-06-01T23:59:59.000Z

    Uranium hexafluoride (UF{sub 6}), a toxic material, is stored in just over 6200 cylinders at the K-25 site in Oak Ridge, Tennessee. The safety analysis report (SAR) for cylinder yard storage operations at the plant required the development of accident scenarios for the potential release of UF{sub 6} to the atmosphere. In accordance with DOE standards and guidance, the general approach taken in this SAR was to examine the functions and contents of the cylinder storage yards to determine whether safety-significant hazards were present for workers in the immediate vicinity, workers on-site, the general public off-site, or the environment. and to evaluate the significance of any hazards that were found. A detailed accident analysis was performed to determine a set of limiting accidents that have potential for off-site consequences. One of the limiting accidents identified in the SAR was the rupture of a cylinder engulfed in a fire.

  15. Advanced Gas Storage Concepts: Technologies for the Future

    SciTech Connect (OSTI)

    Freeway, Katy (PB-KBB Inc.); Rogers, R.E. (Mississippi State University); DeVries, Kerry L.; Nieland, Joel D.; Ratigan, Joe L.; Mellegard, Kirby D. (RESPEC)

    2000-02-01T23:59:59.000Z

    This full text product includes: 1) A final technical report titled Advanced Underground Gas Storage Concepts, Refrigerated-Mined Cavern Storage and presentations from two technology transfer workshops held in 1998 in Houston, Texas, and Pittsburgh, Pennsylvania (both on the topic of Chilled Gas Storage in Mined Caverns); 2) A final technical report titled Natural Gas Hydrates Storage Project, Final Report 1 October 1997 - 31 May 1999; 3) A final technical report titled Natural Gas Hydrates Storage Project Phase II: Conceptual Design and Economic Study, Final Report 9 June - 10 October 1999; 4) A final technical report titled Commerical Potential of Natural Gas Storage in Lined Rock Caverns (LRC) and presentations from a DOE-sponsored workshop on Alternative Gas Storage Technologies, held Feb 17, 2000 in Pittsburgh, PA; and 5) Phase I and Phase II topical reports titled Feasibility Study for Lowering the Minimum Gas Pressure in Solution-Mined Caverns Based on Geomechanical Analyses of Creep-Induced Damage and Healing.

  16. Distributed storage with communication costs

    E-Print Network [OSTI]

    Armstrong, Craig Kenneth

    2011-01-01T23:59:59.000Z

    5 Introduction to Coding for Distributed Storage The Repairflow graph for 1 repair with varying storage capac- itythe Capacity of Storage Nodes . . . 4.1 Characterizing

  17. Storage Space Request Aurora Facility

    E-Print Network [OSTI]

    Ickert-Bond, Steffi

    Storage Space Request Aurora Facility (1855 Marika) Department and Division: _______________________________________________________ Storage Contact: ____________________________________________________________ Name Phone and fax Fiscal Footage required: ______________ Brief Description of storage items

  18. Energy Storage | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Storage Energy Storage The challenge of creating new advanced batteries and energy storage technologies is one of Argonne's key initiatives. By creating a multidisciplinary...

  19. Accident Procedure Outline the procedures for accidents involving University of Michigan (U-M) vehicles.

    E-Print Network [OSTI]

    Kirschner, Denise

    owned by U-M are covered by the U-M self insurance program administered by Risk Management. Procedure 1. An accident is defined as any incident that causes damage to people or property. 2. In the event. 4. If the accident causes personal injury to the driver, occupants and/or pedestrian, contact Risk

  20. Hydrate Control for Gas Storage Operations

    SciTech Connect (OSTI)

    Jeffrey Savidge

    2008-10-31T23:59:59.000Z

    The overall objective of this project was to identify low cost hydrate control options to help mitigate and solve hydrate problems that occur in moderate and high pressure natural gas storage field operations. The study includes data on a number of flow configurations, fluids and control options that are common in natural gas storage field flow lines. The final phase of this work brings together data and experience from the hydrate flow test facility and multiple field and operator sources. It includes a compilation of basic information on operating conditions as well as candidate field separation options. Lastly the work is integrated with the work with the initial work to provide a comprehensive view of gas storage field hydrate control for field operations and storage field personnel.

  1. Sandia National Laboratories: Energy Storage Multimedia Gallery

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    StorageEnergy Storage Multimedia Gallery Energy Storage Multimedia Gallery Images Videos Energy Storage Image Gallery Energy Storage B-Roll Videos Battery Abuse Testing Laboratory...

  2. Model NOx storage systems: Storage capacity and thermal aging...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Model NOx storage systems: Storage capacity and thermal aging of BaOtheta- Al2O3NiAl(100). Model NOx storage systems: Storage capacity and thermal aging of BaOtheta- Al2O3...

  3. Storage Ring Operation Modes

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Longitudinal bunch profile and Up: APS Storage Ring Parameters Previous: Source Parameter Table Storage Ring Operation Modes Standard Operating Mode, top-up Fill pattern: 102 mA in...

  4. Underground Storage Tank Regulations

    Broader source: Energy.gov [DOE]

    The Underground Storage Tank Regulations is relevant to all energy projects that will require the use and building of pipelines, underground storage of any sorts, and/or electrical equipment. The...

  5. Cool Storage Performance 

    E-Print Network [OSTI]

    Eppelheimer, D. M.

    1985-01-01T23:59:59.000Z

    Utilities have promoted the use of electric heat and thermal storage to increase off peak usage of power. High daytime demand charges and enticing discounts for off peak power have been used as economic incentives to promote thermal storage systems...

  6. Safe Home Food Storage

    E-Print Network [OSTI]

    Van Laanen, Peggy

    2002-08-22T23:59:59.000Z

    Proper food storage can preserve food quality and prevent spoilage and food/borne illness. The specifics of pantry, refrigerator and freezer storage are given, along with helpful information on new packaging, label dates, etc. A comprehensive table...

  7. Energy Storage Systems

    SciTech Connect (OSTI)

    Conover, David R.

    2013-12-01T23:59:59.000Z

    Energy Storage Systems – An Old Idea Doing New Things with New Technology article for the International Assoication of ELectrical Inspectors

  8. Evaluation of Radiation Impacts of Spent Nuclear Fuel Storage (SNFS-2) of Chernobyl NPP - 13495

    SciTech Connect (OSTI)

    Paskevych, Sergiy; Batiy, Valiriy; Sizov, Andriy [Institute for Safety Problems of Nuclear Power Plants, National Academy of Sciences of Ukraine, 36 a Kirova str. Chornobyl, Kiev region, 07200 (Ukraine)] [Institute for Safety Problems of Nuclear Power Plants, National Academy of Sciences of Ukraine, 36 a Kirova str. Chornobyl, Kiev region, 07200 (Ukraine); Schmieman, Eric [Battelle Memorial Institute, PO Box 999 MSIN K6-90, Richland, WA 99352 (United States)] [Battelle Memorial Institute, PO Box 999 MSIN K6-90, Richland, WA 99352 (United States)

    2013-07-01T23:59:59.000Z

    Radiation effects are estimated for the operation of a new dry storage facility for spent nuclear fuel (SNFS-2) of Chernobyl NPP RBMK reactors. It is shown that radiation exposure during normal operation, design and beyond design basis accidents are minor and meet the criteria for safe use of radiation and nuclear facilities in Ukraine. (authors)

  9. Creating an urban deer-vehicle accident management plan using information from a town's GIS project

    E-Print Network [OSTI]

    Premo, Dean B.; Rogers, Elizabeth I.

    2001-01-01T23:59:59.000Z

    AN URBAN DEER-VEHICLE ACCIDENT MANAGEMENT PLAN USINGincrease in deer vehicle accidents. Given the Town'sof increased deer vehicle accidents which, in the past 10

  10. Do "Accidents" Happen? An Examination of Injury Mortality Among Maltreated Children

    E-Print Network [OSTI]

    Hornstein, Emily Putnam

    2010-01-01T23:59:59.000Z

    2002;26. Garling T. Children's environments, accidents,and accident prevention: An introduction. In: Garling T,Toward a Psychology of Accident Prevention. New York: Plenum

  11. A research university's rapid response to a fatal chemistry accident: Safety changes and outcomes

    E-Print Network [OSTI]

    Gibson, JH; Schröder, I; Wayne, NL

    2014-01-01T23:59:59.000Z

    to a fatal chemistry accident: Safety changes and outcomesprogram following a chemistry accident in December 2008 thatcommunity. Since the 2008 accident at UCLA, the na- tional

  12. Exploratory Analysis of Motor Carrier Accident Risk And Daily Driving Patterns

    E-Print Network [OSTI]

    Jovanis, Paul P.; Kaneko, Tetsuya; Lin, Tzuoo-Din

    1991-01-01T23:59:59.000Z

    in a Sleeper Berth," Accident Analysis and Prevention. 1988,Survival Theory," Accident Analysis and Prevention, Vol. 21,most of the analyses with accident data compared actual

  13. Estimating Pedestrian Accident Exposure: Approaches to a Statewide Pedestrian Exposure Database

    E-Print Network [OSTI]

    Greene-Roesel, Ryan; Diogenes, Mara Chagas; Ragland, David R

    2007-01-01T23:59:59.000Z

    in New Zealand. Accident Analysis and Prevention, Vol. 27,System Network-Traffic Accident Analysis and SurveillanceAutomated Traffic Accident Surveillance and Analysis System,

  14. Multiday Driving Patterns and Motor Carrier Accident Risk: A Disagregate Analysis

    E-Print Network [OSTI]

    Kaneko, Tetsuya; Jovanis, Paul P.

    1991-01-01T23:59:59.000Z

    as a survival process, Accident Analysis and Prevention, 22:a sleeper berth, rest Accident Analysis and Prevention, 20:using survival theory, Accident Analysis and Prevention, 21:

  15. FOREST CENTRE STORAGE BUILDING

    E-Print Network [OSTI]

    deYoung, Brad

    FOREST CENTRE STORAGE BUILDING 3 4 5 6 7 8 UniversityDr. 2 1 G r e n f e l l D r i v e MULTI PURPOSE COURT STUDENT RESIDENCES GREEN HOUSE STUDENT RESIDENCES STUDENT RESIDENCES RECPLEX STORAGE BUILDING STORAGE BUILDING LIBRARY & COMPUTING FINE ARTS FOREST CENTRE ARTS &SCIENCE BUILDING ARTS &SCIENCE

  16. Technical Safety Requirements for the Waste Storage Facilities

    SciTech Connect (OSTI)

    Larson, H L

    2007-09-07T23:59:59.000Z

    This document contains Technical Safety Requirements (TSR) for the Radioactive and Hazardous Waste Management (RHWM) WASTE STORAGE FACILITIES, which include Area 612 (A612) and the Decontamination and Waste Treatment Facility (DWTF) Storage Area at Lawrence Livermore National Laboratory (LLNL). The TSRs constitute requirements regarding the safe operation of the WASTE STORAGE FACILITIES. These TSRs are derived from the Documented Safety Analysis for the Waste Storage Facilities (DSA) (LLNL 2006). The analysis presented therein determined that the WASTE STORAGE FACILITIES are low-chemical hazard, Hazard Category 2 non-reactor nuclear facilities. The TSRs consist primarily of inventory limits and controls to preserve the underlying assumptions in the hazard and accident analyses. Further, appropriate commitments to safety programs are presented in the administrative controls sections of the TSRs. The WASTE STORAGE FACILITIES are used by RHWM to handle and store hazardous waste, TRANSURANIC (TRU) WASTE, LOW-LEVEL WASTE (LLW), mixed waste, California combined waste, nonhazardous industrial waste, and conditionally accepted waste generated at LLNL as well as small amounts from other U.S. Department of Energy (DOE) facilities, as described in the DSA. In addition, several minor treatments (e.g., drum crushing, size reduction, and decontamination) are carried out in these facilities. The WASTE STORAGE FACILITIES are located in two portions of the LLNL main site. A612 is located in the southeast quadrant of LLNL. The A612 fenceline is approximately 220 m west of Greenville Road. The DWTF Storage Area, which includes Building 693 (B693), Building 696 Radioactive Waste Storage Area (B696R), and associated yard areas and storage areas within the yard, is located in the northeast quadrant of LLNL in the DWTF complex. The DWTF Storage Area fenceline is approximately 90 m west of Greenville Road. A612 and the DWTF Storage Area are subdivided into various facilities and storage areas, consisting of buildings, tents, other structures, and open areas as described in Chapter 2 of the DSA. Section 2.4 of the DSA provides an overview of the buildings, structures, and areas in the WASTE STORAGE FACILITIES, including construction details such as basic floor plans, equipment layout, construction materials, controlling dimensions, and dimensions significant to the hazard and accident analysis. Chapter 5 of the DSA documents the derivation of the TSRs and develops the operational limits that protect the safety envelope defined for the WASTE STORAGE FACILITIES. This TSR document is applicable to the handling, storage, and treatment of hazardous waste, TRU WASTE, LLW, mixed waste, California combined waste, nonhazardous industrial waste, and conditionally accepted waste received or generated in the WASTE STORAGE FACILITIES. Section 5, Administrative Controls, contains those Administrative Controls necessary to ensure safe operation of the WASTE STORAGE FACILITIES. Programmatic Administrative Controls are in Section 5.6. This Introduction to the WASTE STORAGE FACILITIES TSRs is not part of the TSR limits or conditions and contains no requirements related to WASTE STORAGE FACILITIES operations or to the safety analyses of the DSA.

  17. Assessment of CRBR core disruptive accident energetics

    SciTech Connect (OSTI)

    Theofanous, T.G.; Bell, C.R.

    1984-03-01T23:59:59.000Z

    The results of an independent assessment of core disruptive accident energetics for the Clinch River Breeder Reactor are presented in this document. This assessment was performed for the Nuclear Regulatory Commission under the direction of the CRBR Program Office within the Office of Nuclear Reactor Regulation. It considered in detail the accident behavior for three accident initiators that are representative of three different classes of events; unprotected loss of flow, unprotected reactivity insertion, and protected loss of heat sink. The primary system's energetics accommodation capability was realistically, yet conservatively, determined in terms of core events. This accommodation capability was found to be equivalent to an isentropic work potential for expansion to one atmosphere of 2550 MJ or a ramp rate of about 200 $/s applied to a classical two-phase disassembly.

  18. Enhanced Accident Tolerant LWR Fuels: Metrics Development

    SciTech Connect (OSTI)

    Shannon Bragg-Sitton; Lori Braase; Rose Montgomery; Chris Stanek; Robert Montgomery; Lance Snead; Larry Ott; Mike Billone

    2013-09-01T23:59:59.000Z

    The Department of Energy (DOE) Fuel Cycle Research and Development (FCRD) Advanced Fuels Campaign (AFC) is conducting research and development on enhanced Accident Tolerant Fuels (ATF) for light water reactors (LWRs). This mission emphasizes the development of novel fuel and cladding concepts to replace the current zirconium alloy-uranium dioxide (UO2) fuel system. The overall mission of the ATF research is to develop advanced fuels/cladding with improved performance, reliability and safety characteristics during normal operations and accident conditions, while minimizing waste generation. The initial effort will focus on implementation in operating reactors or reactors with design certifications. To initiate the development of quantitative metrics for ATR, a LWR Enhanced Accident Tolerant Fuels Metrics Development Workshop was held in October 2012 in Germantown, MD. This paper summarizes the outcome of that workshop and the current status of metrics development for LWR ATF.

  19. A Review of Criticality Accidents 2000 Revision

    SciTech Connect (OSTI)

    Thomas P. McLaughlin; Shean P. Monahan; Norman L. Pruvost; Vladimir V. Frolov; Boris G. Ryazanov; Victor I. Sviridov

    2000-05-01T23:59:59.000Z

    Criticality accidents and the characteristics of prompt power excursions are discussed. Sixty accidental power excursions are reviewed. Sufficient detail is provided to enable the reader to understand the physical situation, the chemistry and material flow, and when available the administrative setting leading up to the time of the accident. Information on the power history, energy release, consequences, and causes are also included when available. For those accidents that occurred in process plants, two new sections have been included in this revision. The first is an analysis and summary of the physical and neutronic features of the chain reacting systems. The second is a compilation of observations and lessons learned. Excursions associated with large power reactors are not included in this report.

  20. Sandia National Laboratories: Energy Storage

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    for Infrastructure Research and Innovation (CIRI), Concentrating Solar Power, Energy, Energy Storage, Energy Storage Systems, Facilities, Infrastructure Security, Materials...

  1. Groundwater and Terrestrial Water Storage

    E-Print Network [OSTI]

    Rodell, M; Chambers, D P; Famiglietti, J S

    2011-01-01T23:59:59.000Z

    T. E. Reilly, 2002: Flow and storage in groundwater systems.Estimating ground water storage changes in the Mississippistorage..

  2. LESSONS LEARNED FROM A RECENT LASER ACCIDENT

    SciTech Connect (OSTI)

    Woods, Michael; /SLAC

    2011-01-26T23:59:59.000Z

    A graduate student received a laser eye injury from a femtosecond Ti:sapphire laser beam while adjusting a polarizing beam splitter optic. The direct causes for the accident included failure to follow safe alignment practices and failure to wear the required laser eyewear protection. Underlying root causes included inadequate on-the-job training and supervision, inadequate adherence to requirements, and inadequate appreciation for dimly visible beams outside the range of 400-700nm. This paper describes how the accident occurred, discusses causes and lessons learned, and describes corrective actions being taken.

  3. MELCOR accident consequence code system (MACCS)

    SciTech Connect (OSTI)

    Alpert, D.J.; Chanin, D.I.; Helton, J.C.; Ostmeyer, R.M.; Ritchie, L.T.

    1985-01-01T23:59:59.000Z

    Currently, the usefulness of reactor accident consequence assessments for providing guidance for planning and decision making is limited by the poor definition of uncertainties in predicted results. The MELCOR Accident Consequence Code System has been structured to facilitate performing uncertainty and sensitivity analyses. MACCS incorporates improved modeling capabilities in the treatment of variable or long duration releases, deposition modeling, dosimetry, emergency response, radiological health effects, and economic effects. At this writing (March 1985), the new code system has been completed and is undergoing testing, de-bugging, etc. Release of the first version of the full MELCOR code system, with associated documentation, is anticipated for the Autumn of 1985.

  4. Storage : DAS / SAN / NAS Dploiement

    E-Print Network [OSTI]

    Collette. Sébastien

    CH8 Divers Agenda · Storage : DAS / SAN / NAS · Déploiement · VLAN ­ 802.1Q · Gestion d · Sécurisation de Windows · Sécurisation de UNIX · Qu'est-ce que... ­ Firewall, VPN, IDS/IPS, PKI Storage : DAS, NAS, SAN #12;Storage : DAS, NAS, SAN · Direct Attached Storage · Network Attached Storage · Storage

  5. Storage Ring Revised March 1994

    E-Print Network [OSTI]

    Brookhaven National Laboratory - Experiment 821

    Chapter 8. Storage Ring Revised March 1994 8.1. Introduction -- 107 -- #12; 108 Storage Ring 8.2. Magnetic Design and Field Calculations 8.2.1. Conceptual Approach #12; Storage Ring 109 #12; 110 Storage Ring 8.2.2. Computer Aided Refined Pole Designs #12; Storage Ring 111 #12; 112 Storage Ring #12

  6. SACO-1: a fast-running LMFBR accident-analysis code

    SciTech Connect (OSTI)

    Mueller, C.J.; Cahalan, J.E.; Vaurio, J.K.

    1980-01-01T23:59:59.000Z

    SACO is a fast-running computer code that simulates hypothetical accidents in liquid-metal fast breeder reactors to the point of permanent subcriticality or to the initiation of a prompt-critical excursion. In the tradition of the SAS codes, each subassembly is modeled by a representative fuel pin with three distinct axial regions to simulate the blanket and core regions. However, analytic and integral models are used wherever possible to cut down the computing time and storage requirements. The physical models and basic equations are described in detail. Comparisons of SACO results to analogous SAS3D results comprise the qualifications of SACO and are illustrated and discussed.

  7. Accident Investigation Report Plutonium Contamination in the...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    one of the storage containers, the workers discovered a Pu fuel plate wrapped in plastic and tape. When the workers attempted to remove the wrapping material, an uncontrolled...

  8. The temporal effect of traffic violations and accidents on accident occurrence

    E-Print Network [OSTI]

    McKemie, Martha Susan

    1979-01-01T23:59:59.000Z

    THE TEMPORAL EFFECT OF TRAFFIC VIOLATIONS AND ACCIDENTS ON ACCIDENT OCCURRENCE A Thesis by . 1artha Susan McKemie Submitted to the Graduate College of Texas A&M University in partial fulfillment of the requirement for the degree of MASTER... OF SCIENCE December 1979 Major Subject: Industrial Engineering THE TEMPORAL El'FECT OF TRAI'FIC VIOIATIONS AND ACCIDENTS ON XCCIDENT OCCURPEENCE A Thesis by Martha Susan McKemie Approved as to style and content by: / ~J' (Chairman of Commi tee...

  9. accident localisation system: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    to designing performance monitoring and safety metrics. 1 Nancy Leveson 2004-01-01 14 The Analysis of a Friendly Fire Accident using a Systems Model of Accidents* N.G. Leveson,...

  10. accident survival time: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    person(s) involved in IncidentAccident: 1) Name New Hampshire, University of 2 Does Daylight Savings Time Affect Traffic Accidents? Texas A&M University - TxSpace Summary: This...

  11. accident issledovanie raspredeleniya: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Phone Home Phone Work Phone Exact Location : Date of Accident : AM PM Date accident treatment provided? Yes No Where Was time lost from work? Yes No If yes, how long? Could this...

  12. accident soderzhanie korotkozhivushchikh: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Phone Home Phone Work Phone Exact Location : Date of Accident : AM PM Date accident treatment provided? Yes No Where Was time lost from work? Yes No If yes, how long? Could this...

  13. PNNL Results from 2009 Silene Criticality Accident Dosimeter Intercomparison Exercise

    SciTech Connect (OSTI)

    Hill, Robin L.; Conrady, Matthew M.

    2010-06-30T23:59:59.000Z

    This document reports the results of testing of the Hanford Personnel Nuclear Accident Dosimeter (PNAD) during a criticality accident dosimeter intercomparison exercise at the CEA Valduc Center on October 13, 14, and 15, 2009.

  14. Type B Accident Investigation, Response to the 24 Command Wildland...

    Broader source: Energy.gov (indexed) [DOE]

    Type B Accident Investigation, Response to the 24 Command Wildland Fire on the Hanford Site, June 27-July 1, 2000 Type B Accident Investigation, Response to the 24 Command Wildland...

  15. accidents epidemiology trends: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Next Page Last Page Topic Index 1 Accident epidemiology and the US chemical industry: accident history and worst-case data from...

  16. accident du travail: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    18 19 20 21 22 23 24 25 Next Page Last Page Topic Index 1 Bordereau de transmission accident du travail Mathematics Websites Summary: Bordereau de transmission accident du...

  17. Arrival condition of spent fuel after storage, handling, and transportation

    SciTech Connect (OSTI)

    Bailey, W.J.; Pankaskie, P.J.; Langstaff, D.C.; Gilbert, E.R.; Rising, K.H.; Schreiber, R.E.

    1982-11-01T23:59:59.000Z

    This report presents the results of a study conducted to determine the probable arrival condition of spent light-water reactor (LWR) fuel after handling and interim storage in spent fuel storage pools and subsequent handling and accident-free transport operations under normal or slightly abnormal conditions. The objective of this study was to provide information on the expected condition of spent LWR fuel upon arrival at interim storage or fuel reprocessing facilities or at disposal facilities if the fuel is declared a waste. Results of a literature survey and data evaluation effort are discussed. Preliminary threshold limits for storing, handling, and transporting unconsolidated spent LWR fuel are presented. The difficulty in trying to anticipate the amount of corrosion products (crud) that may be on spent fuel in future shipments is also discussed, and potential areas for future work are listed. 95 references, 3 figures, 17 tables.

  18. Hydrogen storage with titanium-functionalized graphene

    E-Print Network [OSTI]

    Mashoff, Torge; Tanabe, Shinichi; Hibino, Hiroki; Beltram, Fabio; Heun, Stefan

    2013-01-01T23:59:59.000Z

    We report on hydrogen adsorption and desorption on titanium-covered graphene in order to test theoretical proposals to use of graphene functionalized with metal atoms for hydrogen storage. At room temperature titanium islands grow with an average diameter of about 10 nm. Samples were then loaded with hydrogen, and its desorption kinetics was studied by thermal desorption spectroscopy. We observe the desorption of hydrogen in the temperature range between 400K and 700 K. Our results demonstrate the stability of hydrogen binding at room temperature and show that hydrogen desorbs at moderate temperatures in line with what required for practical hydrogen-storage applications.

  19. ACCIDENT ANALYSIS AND HAZARD ANALYSIS FOR HUMAN AND ORGANIZATIONAL FACTORS

    E-Print Network [OSTI]

    Leveson, Nancy

    culpable. An accident analysis method is needed that will guide the work, aid in the analysis of the role

  20. Underground gas storage in New York State: A historical perspective

    SciTech Connect (OSTI)

    Friedman, G.M.; Sarwar, G.; Bass, J.P. [Brooklyn College of the City Univ., Troy, NY (United States)] [and others

    1995-09-01T23:59:59.000Z

    New York State has a long history of underground gas storage activity that began with conversion of the Zoar gas field into a storage reservoir in 1916, the first in the United States. By 1961 another fourteen storage fields were developed and seven more were added between 1970 and 1991. All twenty-two operating storage reservoirs of New York were converted from depleted gas fields and are of low-deliverability, base-load type. Nineteen of these are in sandstone reservoirs of the Lower Silurian Medina Group and the Lower Devonian Oriskany Formation and three in limestone reservoirs are located in the gas producing areas of southwestern New York and are linked to the major interstate transmission lines. Recent developments in underground gas storage in New York involve mainly carbonate-reef and bedded salt-cavern storage facilities, one in Stuben County and the other in Cayuga County, are expected to begin operation by the 1996-1997 heating season.

  1. Characterization of a nuclear accident dosimeter

    E-Print Network [OSTI]

    Burrows, Ronald Allen

    1995-01-01T23:59:59.000Z

    The 23rd nuclear accident dosimetry intercomparison was held during the week of June 12-16, 1995 at Los Alamos National Laboratory. This report presents the results of this event, referred to as NAD 23, as related to the performance of Sandia...

  2. INTERNATIONAL STUDENT & SCHOLAR Accident & Sickness Insurance Plan

    E-Print Network [OSTI]

    Bordenstein, Seth

    and scholars participating in international educational programs outside of the United States. It is strongly an accident and sickness insurance plan for international students and scholars studying in the United States. The International Student & Scholar plan has a low monthly rate of $70 per person. WE'VE GOT YOU COVERED

  3. ANS severe accident program overview & planning document

    SciTech Connect (OSTI)

    Taleyarkhan, R.P.

    1995-09-01T23:59:59.000Z

    The Advanced Neutron Source (ANS) severe accident document was developed to provide a concise and coherent mechanism for presenting the ANS SAP goals, a strategy satisfying these goals, a succinct summary of the work done to date, and what needs to be done in the future to ensure timely licensability. Guidance was received from various bodies [viz., panel members of the ANS severe accident workshop and safety review committee, Department of Energy (DOE) orders, Nuclear Regulatory Commission (NRC) requirements for ALWRs and advanced reactors, ACRS comments, world-wide trends] were utilized to set up the ANS-relevant SAS goals and strategy. An in-containment worker protection goal was also set up to account for the routine experimenters and other workers within containment. The strategy for achieving the goals is centered upon closing the severe accident issues that have the potential for becoming certification issues when assessed against realistic bounding events. Realistic bounding events are defined as events with an occurrency frequency greater than 10{sup {minus}6}/y. Currently, based upon the level-1 probabilistic risk assessment studies, the realistic bounding events for application for issue closure are flow blockage of fuel element coolant channels, and rapid depressurization-related accidents.

  4. Technical Safety Requirements for the Waste Storage Facilities

    SciTech Connect (OSTI)

    Laycak, D T

    2008-06-16T23:59:59.000Z

    This document contains Technical Safety Requirements (TSR) for the Radioactive and Hazardous Waste Management (RHWM) WASTE STORAGE FACILITIES, which include Area 625 (A625) and the Decontamination and Waste Treatment Facility (DWTF) Storage Area at Lawrence Livermore National Laboratory (LLNL). The TSRs constitute requirements regarding the safe operation of the WASTE STORAGE FACILITIES. These TSRs are derived from the 'Documented Safety Analysis for the Waste Storage Facilities' (DSA) (LLNL 2008). The analysis presented therein determined that the WASTE STORAGE FACILITIES are low-chemical hazard, Hazard Category 2 non-reactor nuclear facilities. The TSRs consist primarily of inventory limits and controls to preserve the underlying assumptions in the hazard and accident analyses. Further, appropriate commitments to safety programs are presented in the administrative controls sections of the TSRs. The WASTE STORAGE FACILITIES are used by RHWM to handle and store hazardous waste, TRANSURANIC (TRU) WASTE, LOW-LEVEL WASTE (LLW), mixed waste, California combined waste, nonhazardous industrial waste, and conditionally accepted waste generated at LLNL as well as small amounts from other U.S. Department of Energy (DOE) facilities, as described in the DSA. In addition, several minor treatments (e.g., size reduction and decontamination) are carried out in these facilities. The WASTE STORAGE FACILITIES are located in two portions of the LLNL main site. A625 is located in the southeast quadrant of LLNL. The A625 fenceline is approximately 225 m west of Greenville Road. The DWTF Storage Area, which includes Building 693 (B693), Building 696 Radioactive Waste Storage Area (B696R), and associated yard areas and storage areas within the yard, is located in the northeast quadrant of LLNL in the DWTF complex. The DWTF Storage Area fenceline is approximately 90 m west of Greenville Road. A625 and the DWTF Storage Area are subdivided into various facilities and storage areas, consisting of buildings, tents, other structures, and open areas as described in Chapter 2 of the DSA. Section 2.4 of the DSA provides an overview of the buildings, structures, and areas in the WASTE STORAGE FACILITIES, including construction details such as basic floor plans, equipment layout, construction materials, controlling dimensions, and dimensions significant to the hazard and accident analysis. Chapter 5 of the DSA documents the derivation of the TSRs and develops the operational limits that protect the safety envelope defined for the WASTE STORAGE FACILITIES. This TSR document is applicable to the handling, storage, and treatment of hazardous waste, TRU WASTE, LLW, mixed waste, California combined waste, nonhazardous industrial waste, and conditionally accepted waste received or generated in the WASTE STORAGE FACILITIES. Section 5, Administrative Controls, contains those Administrative Controls necessary to ensure safe operation of the WASTE STORAGE FACILITIES. Programmatic Administrative Controls are in Section 5.6.

  5. Technical Safety Requirements for the Waste Storage Facilities

    SciTech Connect (OSTI)

    Laycak, D T

    2010-03-05T23:59:59.000Z

    This document contains Technical Safety Requirements (TSR) for the Radioactive and Hazardous Waste Management (RHWM) WASTE STORAGE FACILITIES, which include Area 625 (A625) and the Decontamination and Waste Treatment Facility (DWTF) Storage Area at Lawrence Livermore National Laboratory (LLNL). The TSRs constitute requirements regarding the safe operation of the WASTE STORAGE FACILITIES. These TSRs are derived from the Documented Safety Analysis for the Waste Storage Facilities (DSA) (LLNL 2009). The analysis presented therein determined that the WASTE STORAGE FACILITIES are low-chemical hazard, Hazard Category 2 non-reactor nuclear facilities. The TSRs consist primarily of inventory limits and controls to preserve the underlying assumptions in the hazard and accident analyses. Further, appropriate commitments to safety programs are presented in the administrative controls sections of the TSRs. The WASTE STORAGE FACILITIES are used by RHWM to handle and store hazardous waste, TRANSURANIC (TRU) WASTE, LOW-LEVEL WASTE (LLW), mixed waste, California combined waste, nonhazardous industrial waste, and conditionally accepted waste generated at LLNL as well as small amounts from other U.S. Department of Energy (DOE) facilities, as described in the DSA. In addition, several minor treatments (e.g., size reduction and decontamination) are carried out in these facilities. The WASTE STORAGE FACILITIES are located in two portions of the LLNL main site. A625 is located in the southeast quadrant of LLNL. The A625 fenceline is approximately 225 m west of Greenville Road. The DWTF Storage Area, which includes Building 693 (B693), Building 696 Radioactive Waste Storage Area (B696R), and associated yard areas and storage areas within the yard, is located in the northeast quadrant of LLNL in the DWTF complex. The DWTF Storage Area fenceline is approximately 90 m west of Greenville Road. A625 and the DWTF Storage Area are subdivided into various facilities and storage areas, consisting of buildings, tents, other structures, and open areas as described in Chapter 2 of the DSA. Section 2.4 of the DSA provides an overview of the buildings, structures, and areas in the WASTE STORAGE FACILITIES, including construction details such as basic floor plans, equipment layout, construction materials, controlling dimensions, and dimensions significant to the hazard and accident analysis. Chapter 5 of the DSA documents the derivation of the TSRs and develops the operational limits that protect the safety envelope defined for the WASTE STORAGE FACILITIES. This TSR document is applicable to the handling, storage, and treatment of hazardous waste, TRU WASTE, LLW, mixed waste, California combined waste, nonhazardous industrial waste, and conditionally accepted waste received or generated in the WASTE STORAGE FACILITIES. Section 5, Administrative Controls, contains those Administrative Controls necessary to ensure safe operation of the WASTE STORAGE FACILITIES. Programmatic Administrative Controls are in Section 5.4.

  6. SL-1 Accident Briefing Report - 1961 Nuclear Reactor Meltdown Educational Documentary

    ScienceCinema (OSTI)

    None

    2014-03-11T23:59:59.000Z

    U.S. Atomic Energy Commission (Idaho Operations Office) briefing about the SL-1 Nuclear Reactor Meltdown. The SL-1, or Stationary Low-Power Reactor Number One, was a United States Army experimental nuclear power reactor which underwent a steam explosion and meltdown on January 3, 1961, killing its three operators. The direct cause was the improper withdrawal of the central control rod, responsible for absorbing neutrons in the reactor core. The event is the only known fatal reactor accident in the United States. The accident released about 80 curies (3.0 TBq) of Iodine-131, which was not considered significant due to its location in a remote desert of Idaho. About 1,100 curies (41 TBq) of fission products were released into the atmosphere. The facility, located at the National Reactor Testing Station approximately 40 miles (64 km) west of Idaho Falls, Idaho, was part of the Army Nuclear Power Program and was known as the Argonne Low Power Reactor (ALPR) during its design and build phase. It was intended to provide electrical power and heat for small, remote military facilities, such as radar sites near the Arctic Circle, and those in the DEW Line. The design power was 3 MW (thermal). Operating power was 200 kW electrical and 400 kW thermal for space heating. In the accident, the core power level reached nearly 20 GW in just four milliseconds, precipitating the reactor accident and steam explosion.

  7. SL-1 Accident Briefing Report - 1961 Nuclear Reactor Meltdown Educational Documentary

    SciTech Connect (OSTI)

    None

    2013-09-25T23:59:59.000Z

    U.S. Atomic Energy Commission (Idaho Operations Office) briefing about the SL-1 Nuclear Reactor Meltdown. The SL-1, or Stationary Low-Power Reactor Number One, was a United States Army experimental nuclear power reactor which underwent a steam explosion and meltdown on January 3, 1961, killing its three operators. The direct cause was the improper withdrawal of the central control rod, responsible for absorbing neutrons in the reactor core. The event is the only known fatal reactor accident in the United States. The accident released about 80 curies (3.0 TBq) of Iodine-131, which was not considered significant due to its location in a remote desert of Idaho. About 1,100 curies (41 TBq) of fission products were released into the atmosphere. The facility, located at the National Reactor Testing Station approximately 40 miles (64 km) west of Idaho Falls, Idaho, was part of the Army Nuclear Power Program and was known as the Argonne Low Power Reactor (ALPR) during its design and build phase. It was intended to provide electrical power and heat for small, remote military facilities, such as radar sites near the Arctic Circle, and those in the DEW Line. The design power was 3 MW (thermal). Operating power was 200 kW electrical and 400 kW thermal for space heating. In the accident, the core power level reached nearly 20 GW in just four milliseconds, precipitating the reactor accident and steam explosion.

  8. L'accident la centrale nuclaire de Quelques explications scientifiques

    E-Print Network [OSTI]

    Skorobogatiy, Maksim

    L'accident à la centrale nucléaire de Fukushima Quelques explications scientifiques G. Marleau, J´eal, 18 mars 2011 L'accident `a la centrale nucl´eaire de Fukushima ­ 1/29 Accident de Fukushima 1 Contenu de Fukushima. 3. La puissance résiduelle. 4. Perte de refroidissement et conséquences. 5

  9. Policy 3240 Accident Review Committee 1 OLD DOMINION UNIVERSITY

    E-Print Network [OSTI]

    Policy 3240 ­ Accident Review Committee 1 OLD DOMINION UNIVERSITY University Policy Policy #3240 ACCIDENT REVIEW COMMITTEE Responsible Oversight Executive: Vice President for Administration and Finance vehicles for which ODU is responsible and the University's Accident Review Committee in the review

  10. HEALTH AND ACCIDENT INSURANCE VERIFICATION ******************** TO BE COMPLETED BY STUDENT ********************

    E-Print Network [OSTI]

    Jawitz, James W.

    HEALTH AND ACCIDENT INSURANCE VERIFICATION ******************** TO BE COMPLETED BY STUDENT Services Office of the university of Florida requires that s/he has health and accident insurance with your participating in study abroad activate hold health and accident insurance with a minimum coverage of $200

  11. For the mathematically accident prone student W Stephen Wilson

    E-Print Network [OSTI]

    Wilson, W. Stephen

    For the mathematically accident prone student by W Stephen Wilson Many students make the claim answers, whatever the reason for the incorrect answer. Students who are accident prone in mathematics. This is generally good advice for anyone, not just the accident prone. As problems get more and more complicated

  12. A New Accident Model for Engineering Safer Systems Nancy Leveson

    E-Print Network [OSTI]

    Leveson, Nancy

    A New Accident Model for Engineering Safer Systems Nancy Leveson Aeronautics and Astronautics Dept changes in the etiology of accidents and is creating a need for changes in the explanatory mechanisms used. We need better and less subjective understanding of why accidents occur and how to prevent future

  13. Structure Evolution of Dynamic Bayesian Network for Traffic Accident Detection

    E-Print Network [OSTI]

    Cho, Sung-Bae

    Structure Evolution of Dynamic Bayesian Network for Traffic Accident Detection Ju-Won Hwang, Young and the accuracy in a domain of the traffic accident detection. Keywords-structure of dynamic Bayesian network; Bayesian network, evolution I. INTRODUCTION Every year, traffic congestion and traffic accidents have been

  14. Annexes 195 13.11 Fecal Accident Plan

    E-Print Network [OSTI]

    Annexes 195 13.11 Fecal Accident Plan Residual and Contact Time Table Loose Stool Chlorine Residual and Contact Time Table Formed Stool Chlorine Residual mg/l or PPM Time Minutes 2 25 Sample Fecal Accident/spa at three locations to ensure proper mixing. Record fecal accidents in maintenance logs. Follow normal pool

  15. A STAMP ANALYSIS OF THE LEX COMAIR 5191 ACCIDENT

    E-Print Network [OSTI]

    Leveson, Nancy

    A STAMP ANALYSIS OF THE LEX COMAIR 5191 ACCIDENT Thesis submitted in partial fulfilment;A STAMP ANALYSIS OF THE LEX COMAIR 5191 ACCIDENT Paul S. Nelson 2 #12;Acknowledgements I want pressure" (Dekker, 2007, p. 131) A new, holistic systems perspective, accident model is used for analysis

  16. Accident/Injury Reporting, Investigation, & Basic First Aid Plan

    E-Print Network [OSTI]

    Long, Nicholas

    Accident/Injury Reporting, Investigation, & Basic First Aid Plan Environmental Health, Safety of accidents/injuries at Stephen F. Austin State University (SFASU) and provides basic first aid practices. It is designed to help reduce injuries by reducing unsafe or hazardous conditions and discouraging accident

  17. COLUMBIA UNIVERSITY Departmental Accident Report Form for Worker's Compensation Benefits

    E-Print Network [OSTI]

    Jia, Songtao

    COLUMBIA UNIVERSITY Departmental Accident Report Form for Worker's Compensation Benefits EMPLOYEE___________ ACCIDENT DATA (to be completed by employee) Date of Injury_____/_____/____ Time of Injury the employee How did the injury or illness occur? (Describe fully the events that caused the accident) Describe

  18. DEVELOPMENT AND USE OF A DIRECTORY OF ACCIDENT DATABASES INVOLVING

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    DEVELOPMENT AND USE OF A DIRECTORY OF ACCIDENT DATABASES INVOLVING CHEMICALS J.P.Pineau Institut from end-users of accident data who need validated data for dealing with risk assessment in which Data collection Data analysis, Reliability, Uncertainty, Accident, Hazardous material, Risk analysis

  19. CLAIMANT AUTO ACCIDENT REPORT For Completion by Driver

    E-Print Network [OSTI]

    Tullos, Desiree

    CLAIMANT AUTO ACCIDENT REPORT For Completion by Driver D E P A R T M E N T O F A D M I N I S T R Address City State Zip For what purpose was car being used at time of accident? Has damage been repaired signals did you give? Other Driver? Who investigated? Who Cited and Why? Describe Accident CONTINUE

  20. Scar sarcoidosis with a 50-year interval between an accident and onset of lesions

    E-Print Network [OSTI]

    Jr, Hiram Larangeira de Almeida; Fiss, Roberto Coswig

    2008-01-01T23:59:59.000Z

    year interval between an accident and onset of lesions Hiramreported in scars of accidents [ 2 ], herpes zoster [ 1 ],

  1. Heat storage duration

    SciTech Connect (OSTI)

    Balcomb, J.D.

    1981-01-01T23:59:59.000Z

    Both the amount and duration of heat storage in massive elements of a passive building are investigated. Data taken for one full winter in the Balcomb solar home are analyzed with the aid of sub-system simulation models. Heat storage duration is tallied into one-day intervals. Heat storage location is discussed and related to overall energy flows. The results are interpreted and conclusions drawn.

  2. Energy Storage Program Overview

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Barriers HEV & PHEV Technology Roadmaps R&D Timeline Overview 3 Develop electrochemical energy storage technologies which support the commercialization of hybrid and electric...

  3. Hydrogen Storage Related Links

    Broader source: Energy.gov [DOE]

    The following resources provide details about DOE-funded hydrogen storage activities, research plans and roadmaps, models and tools, and additional related links.

  4. Culex quinquefasciatus Storage Proteins

    E-Print Network [OSTI]

    2013-01-01T23:59:59.000Z

    and hemolymph proteins of Cx. quinquefasciatus . A and B:of typical storage proteins in Cx. quinquefasciatus.Fourth-instar Cx. quinquefasciatus larvae and early pupae

  5. HEATS: Thermal Energy Storage

    SciTech Connect (OSTI)

    None

    2012-01-01T23:59:59.000Z

    HEATS Project: The 15 projects that make up ARPA-E’s HEATS program, short for “High Energy Advanced Thermal Storage,” seek to develop revolutionary, cost-effective ways to store thermal energy. HEATS focuses on 3 specific areas: 1) developing high-temperature solar thermal energy storage capable of cost-effectively delivering electricity around the clock and thermal energy storage for nuclear power plants capable of cost-effectively meeting peak demand, 2) creating synthetic fuel efficiently from sunlight by converting sunlight into heat, and 3) using thermal energy storage to improve the driving range of electric vehicles (EVs) and also enable thermal management of internal combustion engine vehicles.

  6. SUPERCONDUCTING MAGNETIC ENERGY STORAGE

    E-Print Network [OSTI]

    Hassenzahl, W.

    2011-01-01T23:59:59.000Z

    and R. W . BOOIll, "Superconductive Energy Storage Inducand H. A. Peterson, "Superconductive E nergy S torage forMeeting, Janua ry N. Mohan, "Superconductive Energy S torage

  7. SUPERCONDUCTING MAGNETIC ENERGY STORAGE

    E-Print Network [OSTI]

    Hassenzahl, W.

    2011-01-01T23:59:59.000Z

    Design of the BPA Superconducting 30-MJ Energy Storagefor a Utility Scale Superconducting Magnetic Energy Storagefor a Lnrge Scale Superconducting Magnetic Energy Storage

  8. REAC/TS Radiation Accident Registry: An Overview

    SciTech Connect (OSTI)

    Doran M. Christensen, DO, REAC /TS Associate Director and Staff Physician Becky Murdock, REAC/TS Registry and Health Physics Technician

    2012-12-12T23:59:59.000Z

    Over the past four years, REAC/TS has presented a number of case reports from its Radiation Accident Registry. Victims of radiological or nuclear incidents must meet certain dose criteria for an incident to be categorized as an “accident” and be included in the registry. Although the greatest numbers of “accidents” in the United States that have been entered into the registry involve radiation devices, the greater percentage of serious accidents have involved sealed sources of one kind or another. But if one looks at the kinds of accident scenarios that have resulted in extreme consequence, i.e., death, the greater share of deaths has occurred in medical settings.

  9. Rflexions sur le transfert mthodologique de l'analyse qualitative d'accidents de la circulation routire issue de l'tude dtaille des accidents (EDA) franaise aux

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    transfer for qualitative road accident analysis obtained from French Detailed Accident Studies (DAS the comprehensive accident analysis methodologies used in developed countries provide an understanding of the origin accident studies (DASs) and their adaptation to the analysis of accident reports. Colombia has

  10. The Analysis of a Friendly Fire Accident using a Systems Model of Accidents* N.G. Leveson, Ph.D.; Massachusetts Institute of Technology; Cambridge, Massachusetts

    E-Print Network [OSTI]

    Leveson, Nancy

    The Analysis of a Friendly Fire Accident using a Systems Model of Accidents* N.G. Leveson, Ph.D.; University of Victoria; Victoria, Canada Keywords: accident analysis, accident models Abstract In another paper presented at this conference, Leveson describes a new accident model based on systems theory [2

  11. HOW TO REPORT AN ACCIDENT, INCIDENT OR NEAR MISS 1. Notify your supervisor or lab manager as soon as possible of your accident, incident, or

    E-Print Network [OSTI]

    Borenstein, Elhanan

    HOW TO REPORT AN ACCIDENT, INCIDENT OR NEAR MISS 1. Notify your supervisor or lab manager as soon as possible of your accident, incident, or near miss. 2. Fill out the online accident report (OARS) form://www.ehs.washington.edu/ohsoars/index.shtm. The supervisor, lab manager, or person who had the accident can fill out the form. 3. For any serious accidents

  12. Evaluation Metrics Applied to Accident Tolerant Fuels

    SciTech Connect (OSTI)

    Shannon M. Bragg-Sitton; Jon Carmack; Frank Goldner

    2014-10-01T23:59:59.000Z

    The safe, reliable, and economic operation of the nation’s nuclear power reactor fleet has always been a top priority for the United States’ nuclear industry. Continual improvement of technology, including advanced materials and nuclear fuels, remains central to the industry’s success. Decades of research combined with continual operation have produced steady advancements in technology and have yielded an extensive base of data, experience, and knowledge on light water reactor (LWR) fuel performance under both normal and accident conditions. One of the current missions of the U.S. Department of Energy’s (DOE) Office of Nuclear Energy (NE) is to develop nuclear fuels and claddings with enhanced accident tolerance for use in the current fleet of commercial LWRs or in reactor concepts with design certifications (GEN-III+). Accident tolerance became a focus within advanced LWR research upon direction from Congress following the 2011 Great East Japan Earthquake, resulting tsunami, and subsequent damage to the Fukushima Daiichi nuclear power plant complex. The overall goal of ATF development is to identify alternative fuel system technologies to further enhance the safety, competitiveness and economics of commercial nuclear power. Enhanced accident tolerant fuels would endure loss of active cooling in the reactor core for a considerably longer period of time than the current fuel system while maintaining or improving performance during normal operations. The U.S. DOE is supporting multiple teams to investigate a number of technologies that may improve fuel system response and behavior in accident conditions, with team leadership provided by DOE national laboratories, universities, and the nuclear industry. Concepts under consideration offer both evolutionary and revolutionary changes to the current nuclear fuel system. Mature concepts will be tested in the Advanced Test Reactor at Idaho National Laboratory beginning in Summer 2014 with additional concepts being readied for insertion in fiscal year 2015. This paper provides a brief summary of the proposed evaluation process that would be used to evaluate and prioritize the candidate accident tolerant fuel concepts currently under development.

  13. Secondary Storage Management Himanshu Gupta

    E-Print Network [OSTI]

    Gupta, Himanshu

    Secondary Storage Management Himanshu Gupta Storage­1 #12;Outline · Memory Hierarchy · Disk Records/Fields · Deletions and Insertions of Records Himanshu Gupta Storage­2 #12;Himanshu Gupta Storage­3 Memory Hierarchy Cache (1 MB; 1-5 nsec) Main Memory (GBs; 10-100 nsec) Secondary Storage

  14. Optimal Storage Allocation for Serial

    E-Print Network [OSTI]

    Yechiali, Uri

    Optimal Storage Allocation for Serial Haim Mendelson, Joseph S. Pliskin, and Uri Yechiali Tel Aviv reside on a direct-access storage device in which storage space is limited. Records are added allocating storage space to the files. Key Words and Phrases: serial files, storage allocation

  15. Severe accident approach - final report. Evaluation of design measures for severe accident prevention and consequence mitigation.

    SciTech Connect (OSTI)

    Tentner, A. M.; Parma, E.; Wei, T.; Wigeland, R.; Nuclear Engineering Division; SNL; INL

    2010-03-01T23:59:59.000Z

    An important goal of the US DOE reactor development program is to conceptualize advanced safety design features for a demonstration Sodium Fast Reactor (SFR). The treatment of severe accidents is one of the key safety issues in the design approach for advanced SFR systems. It is necessary to develop an in-depth understanding of the risk of severe accidents for the SFR so that appropriate risk management measures can be implemented early in the design process. This report presents the results of a review of the SFR features and phenomena that directly influence the sequence of events during a postulated severe accident. The report identifies the safety features used or proposed for various SFR designs in the US and worldwide for the prevention and/or mitigation of Core Disruptive Accidents (CDA). The report provides an overview of the current SFR safety approaches and the role of severe accidents. Mutual understanding of these design features and safety approaches is necessary for future collaborations between the US and its international partners as part of the GEN IV program. The report also reviews the basis for an integrated safety approach to severe accidents for the SFR that reflects the safety design knowledge gained in the US during the Advanced Liquid Metal Reactor (ALMR) and Integral Fast Reactor (IFR) programs. This approach relies on inherent reactor and plant safety performance characteristics to provide additional safety margins. The goal of this approach is to prevent development of severe accident conditions, even in the event of initiators with safety system failures previously recognized to lead directly to reactor damage.

  16. Sandia National Laboratories: implement energy storage projects

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    implement energy storage projects Sandian Spoke at the New York Energy Storage Expo On December 12, 2014, in Energy, Energy Storage, Energy Storage Systems, Grid Integration,...

  17. Sandia National Laboratories: Stationary Energy Storage

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    StorageStationary Energy Storage Stationary Energy Storage The 1 MW Energy Storage Test Pad integrated with renewable energy generation at Sandia's Distributed Energy Technology...

  18. Sandia National Laboratories: Batteries & Energy Storage Publications

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    StorageBatteries & Energy Storage Publications Batteries & Energy Storage Publications Batteries & Energy Storage Fact Sheets Achieving Higher Energy Density in Flow Batteries at...

  19. Sandia National Laboratories: evaluate energy storage opportunity

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    energy storage opportunity Sandian Spoke at the New York Energy Storage Expo On December 12, 2014, in Energy, Energy Storage, Energy Storage Systems, Grid Integration,...

  20. THERMAL ENERGY STORAGE IN AQUIFERS WORKSHOP

    E-Print Network [OSTI]

    Authors, Various

    2011-01-01T23:59:59.000Z

    The Legalization of Ground Water Storage," Water Resourcesprocedure to above ground storage of heat in huge insulatedthis project is heat storage in ground-water regions storage

  1. Sandia Energy - Energy Storage Test Pad (ESTP)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Storage Test Pad (ESTP) Home Energy Permalink Gallery Evaluating Powerful Batteries for Modular Electric Grid Energy Storage Energy, Energy Storage, Energy Storage Systems, Energy...

  2. EPR Severe Accident Threats and Mitigation

    SciTech Connect (OSTI)

    Azarian, G. [Framatome ANP SAS, Tour Areva, Place de la Coupole 92084 Paris la Defense (France); Kursawe, H.M.; Nie, M.; Fischer, M.; Eyink, J. [Framatome ANP GmbH, Freyeslebenstrasse, 1, D-91058 Erlangen (Germany); Stoudt, R.H. [Framatome ANP Inc. - 3315 Old Forest Rd, Lynchburgh, VA 24501 (United States)

    2004-07-01T23:59:59.000Z

    Despite the extremely low EPR core melt frequency, an improved defence-in-depth approach is applied in order to comply with the EPR safety target: no stringent countermeasures should be necessary outside the immediate plant vicinity like evacuation, relocation or food control other than the first harvest in case of a severe accident. Design provisions eliminate energetic events and maintain the containment integrity and leak-tightness during the entire course of the accident. Based on scenarios that cover a broad range of physical phenomena and which provide a sound envelope of boundary conditions associated with each containment challenge, a selection of representative loads has been done, for which mitigation measures have to cope with. This paper presents the main critical threats and the approach used to mitigate those threats. (authors)

  3. US Department of Energy Chernobyl accident bibliography

    SciTech Connect (OSTI)

    Kennedy, R A; Mahaffey, J A; Carr, F Jr

    1992-04-01T23:59:59.000Z

    This bibliography has been prepared by Pacific Northwest Laboratory (PNL) for the US Department of Energy (DOE) Office of Health and Environmental Research to provide bibliographic information in a usable format for research studies relating to the Chernobyl nuclear accident that occurred in the Ukrainian Republic, USSR in 1986. This report is a product of the Chernobyl Database Management project. The purpose of this project is to produce and maintain an information system that is the official United States repository for information related to the accident. Two related products prepared for this project are the Chernobyl Bibliographic Search System (ChernoLit{trademark}) and the Chernobyl Radiological Measurements Information System (ChernoDat). This report supersedes the original release of Chernobyl Bibliography (Carr and Mahaffey, 1989). The original report included about 2200 references. Over 4500 references and an index of authors and editors are included in this report.

  4. Understanding the Columbia Space Shuttle Accident

    SciTech Connect (OSTI)

    Osheroff, Doug (Stanford University) [Stanford University

    2004-06-16T23:59:59.000Z

    On February 1, 2003, the NASA space shuttle Columbia broke apart during re-entry over East Texas at an altitude of 200,000 feet and a velocity of approximately 12,000 mph. All aboard perished. Prof. Osheroff was a member of the board that investigated the origins of this accident, both physical and organizational. In his talk he will describe how the board was able to determine with almost absolute certainty the physical cause of the accident. In addition, Prof. Osherhoff will discuss its organizational and cultural causes, which are rooted deep in the culture of the human spaceflight program. Why did NASA continue to fly the shuttle system despite the persistent failure of a vital sub-system that it should have known did indeed pose a safety risk on every flight? Finally, Prof. Osherhoff will touch on the future role humans are likely to play in the exploration of space.

  5. Energy storage capacitors

    SciTech Connect (OSTI)

    Sarjeant, W.J.

    1984-01-01T23:59:59.000Z

    The properties of capacitors are reviewed in general, including dielectrics, induced polarization, and permanent polarization. Then capacitance characteristics are discussed and modelled. These include temperature range, voltage, equivalent series resistance, capacitive reactance, impedance, dissipation factor, humidity and frequency effects, storage temperature and time, and lifetime. Applications of energy storage capacitors are then discussed. (LEW)

  6. Accident and Off Normal Response and Recovery from Multi Canister Overpack (MCO) Processing Events

    SciTech Connect (OSTI)

    ALDERMAN, C.A.

    2000-09-19T23:59:59.000Z

    In the process of removing spent nuclear fuel (SNF) from the K Basins through its subsequent packaging, drymg, transportation and storage steps, the SNF Project must be able to respond to all anticipated or foreseeable off-normal and accident events that may occur. Response procedures and recovery plans need to be in place, personnel training established and implemented to ensure the project will be capable of appropriate actions. To establish suitable project planning, these events must first be identified and analyzed for their expected impact to the project. This document assesses all off-normal and accident events for their potential cross-facility or Multi-Canister Overpack (MCO) process reversal impact. Table 1 provides the methodology for establishing the event planning level and these events are provided in Table 2 along with the general response and recovery planning. Accidents and off-normal events of the SNF Project have been evaluated and are identified in the appropriate facility Safety Analysis Report (SAR) or in the transportation Safety Analysis Report for Packaging (SARP). Hazards and accidents are summarized from these safety analyses and listed in separate tables for each facility and the transportation system in Appendix A, along with identified off-normal events. The tables identify the general response time required to ensure a stable state after the event, governing response documents, and the events with potential cross-facility or SNF process reversal impacts. The event closure is predicated on stable state response time, impact to operations and the mitigated annual occurrence frequency of the event as developed in the hazard analysis process.

  7. Lengthening the Storage Period of Cucumbers.

    E-Print Network [OSTI]

    Hawthorn, L. R. (Leslie Rushton); Whitacre, Jessie (Jessie Opal); Yarnell, S. H. (Sidney Howe)

    1939-01-01T23:59:59.000Z

    days compared with 7 days for those unwrapped. Under refrigera- tion unwrapped fruits remained in good condition about 10 days and those wrapped in M. T. Cellophane about 14 days. For home refrigerator storage, a ventilated pan was found...- tainer,-a refrigerator humidifier (covered and slightly ventilated enamel pan, standard equipment with a mechanical household refrigerator), or a shipping container (bushel size wood crate, half-bushel splint basket, or corrugated paper carton) lined...

  8. Risk Estimation Methodology for Launch Accidents.

    SciTech Connect (OSTI)

    Clayton, Daniel James; Lipinski, Ronald J.; Bechtel, Ryan D.

    2014-02-01T23:59:59.000Z

    As compact and light weight power sources with reliable, long lives, Radioisotope Power Systems (RPSs) have made space missions to explore the solar system possible. Due to the hazardous material that can be released during a launch accident, the potential health risk of an accident must be quantified, so that appropriate launch approval decisions can be made. One part of the risk estimation involves modeling the response of the RPS to potential accident environments. Due to the complexity of modeling the full RPS response deterministically on dynamic variables, the evaluation is performed in a stochastic manner with a Monte Carlo simulation. The potential consequences can be determined by modeling the transport of the hazardous material in the environment and in human biological pathways. The consequence analysis results are summed and weighted by appropriate likelihood values to give a collection of probabilistic results for the estimation of the potential health risk. This information is used to guide RPS designs, spacecraft designs, mission architecture, or launch procedures to potentially reduce the risk, as well as to inform decision makers of the potential health risks resulting from the use of RPSs for space missions.

  9. Gas Storage Technology Consortium

    SciTech Connect (OSTI)

    Joel L. Morrison; Sharon L. Elder

    2006-07-06T23:59:59.000Z

    Gas storage is a critical element in the natural gas industry. Producers, transmission & distribution companies, marketers, and end users all benefit directly from the load balancing function of storage. The unbundling process has fundamentally changed the way storage is used and valued. As an unbundled service, the value of storage is being recovered at rates that reflect its value. Moreover, the marketplace has differentiated between various types of storage services, and has increasingly rewarded flexibility, safety, and reliability. The size of the natural gas market has increased and is projected to continue to increase towards 30 trillion cubic feet (TCF) over the next 10 to 15 years. Much of this increase is projected to come from electric generation, particularly peaking units. Gas storage, particularly the flexible services that are most suited to electric loads, is critical in meeting the needs of these new markets. In order to address the gas storage needs of the natural gas industry, an industry-driven consortium was created--the Gas Storage Technology Consortium (GSTC). The objective of the GSTC is to provide a means to accomplish industry-driven research and development designed to enhance operational flexibility and deliverability of the Nation's gas storage system, and provide a cost effective, safe, and reliable supply of natural gas to meet domestic demand. This report addresses the activities for the quarterly period of April 1 to June 30, 2006. Key activities during this time period include: (1) Develop and process subcontract agreements for the eight projects selected for cofunding at the February 2006 GSTC Meeting; (2) Compiling and distributing the three 2004 project final reports to the GSTC Full members; (3) Develop template, compile listserv, and draft first GSTC Insider online newsletter; (4) Continue membership recruitment; (5) Identify projects and finalize agenda for the fall GSTC/AGA Underground Storage Committee Technology Transfer Workshop in San Francisco, CA; and (6) Identify projects and prepare draft agenda for the fall GSTC Technology Transfer Workshop in Pittsburgh, PA.

  10. Investigations on optimization of accident management measures following a station blackout accident in a VVER-1000 pressurized water reactor

    SciTech Connect (OSTI)

    Tusheva, P.; Schaefer, F.; Kliem, S. [Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstrasse 400, D-01328 Dresden (Germany)

    2012-07-01T23:59:59.000Z

    The reactor safety issues are of primary importance for preserving the health of the population and ensuring no release of radioactivity and fission products into the environment. A part of the nuclear research focuses on improvement of the safety of existing nuclear power plants. Studies, research and efforts are a continuing process at improving the safety and reliability of existing and newly developed nuclear power plants at prevention of a core melt accident. Station blackout (loss of AC power supply) is one of the dominant accidents taken into consideration at performing accident analysis. In case of multiple failures of safety systems it leads to a severe accident. To prevent an accident to turn into a severe one or to mitigate the consequences, accident management measures must be performed. The present paper outlines possibilities for application and optimization of accident management measures following a station blackout accident. Assessed is the behaviour of the nuclear power plant during a station blackout accident without accident management measures and with application of primary/secondary side oriented accident management measures. Discussed are the possibilities for operators ' intervention and the influence of the performed accident management measures on the course of the accident. Special attention has been paid to the effectiveness of the passive feeding and physical phenomena having an influence on the system behaviour. The performed simulations show that the effectiveness of the secondary side feeding procedure can be limited due to an early evaporation or flashing effects in the feed water system. The analyzed cases show that the effectiveness of the accident management measures strongly depends on the initiation criteria applied for depressurization of the reactor coolant system. (authors)

  11. Sandia National Laboratories: Energy Storage

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Storage Electric Car Challenge Sparks Students' STEM Interest On January 9, 2015, in Energy, Energy Storage, News, News & Events, Partnership, Transportation Energy Aspiring...

  12. Improving energy storage devices | EMSL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    energy storage devices Improving energy storage devices Released: April 15, 2014 Lithium-sulfur batteries last longer with nanomaterial-packed cathode A new PNNL-developed...

  13. Sandia National Laboratories: Energy Storage

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Capture & Storage, Center for Infrastructure Research and Innovation (CIRI), Energy, Energy Storage, Facilities, Livermore Valley Open Campus (LVOC), Materials Science, News,...

  14. Sandia National Laboratories: Energy Storage

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Collaboration On May 28, 2014, in Biofuels, CRF, Distribution Grid Integration, Energy, Energy Storage, Energy Storage Systems, Energy Surety, Facilities, Grid Integration,...

  15. Ultrafine hydrogen storage powders

    DOE Patents [OSTI]

    Anderson, Iver E. (Ames, IA); Ellis, Timothy W. (Doylestown, PA); Pecharsky, Vitalij K. (Ames, IA); Ting, Jason (Ames, IA); Terpstra, Robert (Ames, IA); Bowman, Robert C. (La Mesa, CA); Witham, Charles K. (Pasadena, CA); Fultz, Brent T. (Pasadena, CA); Bugga, Ratnakumar V. (Arcadia, CA)

    2000-06-13T23:59:59.000Z

    A method of making hydrogen storage powder resistant to fracture in service involves forming a melt having the appropriate composition for the hydrogen storage material, such, for example, LaNi.sub.5 and other AB.sub.5 type materials and AB.sub.5+x materials, where x is from about -2.5 to about +2.5, including x=0, and the melt is gas atomized under conditions of melt temperature and atomizing gas pressure to form generally spherical powder particles. The hydrogen storage powder exhibits improved chemcial homogeneity as a result of rapid solidfication from the melt and small particle size that is more resistant to microcracking during hydrogen absorption/desorption cycling. A hydrogen storage component, such as an electrode for a battery or electrochemical fuel cell, made from the gas atomized hydrogen storage material is resistant to hydrogen degradation upon hydrogen absorption/desorption that occurs for example, during charging/discharging of a battery. Such hydrogen storage components can be made by consolidating and optionally sintering the gas atomized hydrogen storage powder or alternately by shaping the gas atomized powder and a suitable binder to a desired configuration in a mold or die.

  16. Energy storage benefits and market analysis handbook : a study for the DOE Energy Storage Systems Program.

    SciTech Connect (OSTI)

    Eyer, James M. (Distributed Utility Associates, Livermore, CA); Corey, Garth P.; Iannucci, Joseph J., Jr. (Distributed Utility Associates, Livermore, CA)

    2004-12-01T23:59:59.000Z

    This Guide describes a high level, technology-neutral framework for assessing potential benefits from and economic market potential for energy storage used for electric utility-related applications. In the United States use of electricity storage to support and optimize transmission and distribution (T&D) services has been limited due to high storage system cost and by limited experience with storage system design and operation. Recent improvement of energy storage and power electronics technologies, coupled with changes in the electricity marketplace, indicate an era of expanding opportunity for electricity storage as a cost-effective electric resource. Some recent developments (in no particular order) that drive the opportunity include: (1) states adoption of the renewables portfolio standard (RPS), which may increased use of renewable generation with intermittent output, (2) financial risk leading to limited investment in new transmission capacity, coupled with increasing congestion on some transmission lines, (3) regional peaking generation capacity constraints, and (4) increasing emphasis on locational marginal pricing (LMP).

  17. Gas Storage Technology Consortium

    SciTech Connect (OSTI)

    Joel L. Morrison; Sharon L. Elder

    2007-06-30T23:59:59.000Z

    Gas storage is a critical element in the natural gas industry. Producers, transmission and distribution companies, marketers, and end users all benefit directly from the load balancing function of storage. The unbundling process has fundamentally changed the way storage is used and valued. As an unbundled service, the value of storage is being recovered at rates that reflect its value. Moreover, the marketplace has differentiated between various types of storage services and has increasingly rewarded flexibility, safety, and reliability. The size of the natural gas market has increased and is projected to continue to increase towards 30 trillion cubic feet over the next 10 to 15 years. Much of this increase is projected to come from electric generation, particularly peaking units. Gas storage, particularly the flexible services that are most suited to electric loads, is crucial in meeting the needs of these new markets. To address the gas storage needs of the natural gas industry, an industry-driven consortium was created--the Gas Storage Technology Consortium (GSTC). The objective of the GSTC is to provide a means to accomplish industry-driven research and development designed to enhance the operational flexibility and deliverability of the nation's gas storage system, and provide a cost-effective, safe, and reliable supply of natural gas to meet domestic demand. This report addresses the activities for the quarterly period of April 1, 2007 through June 30, 2007. Key activities during this time period included: (1) Organizing and hosting the 2007 GSTC Spring Meeting; (2) Identifying the 2007 GSTC projects, issuing award or declination letters, and begin drafting subcontracts; (3) 2007 project mentoring teams identified; (4) New NETL Project Manager; (5) Preliminary planning for the 2007 GSTC Fall Meeting; (6) Collecting and compiling the 2005 GSTC project final reports; and (7) Outreach and communications.

  18. Gas Storage Technology Consortium

    SciTech Connect (OSTI)

    Joel L. Morrison; Sharon L. Elder

    2006-05-10T23:59:59.000Z

    Gas storage is a critical element in the natural gas industry. Producers, transmission and distribution companies, marketers, and end users all benefit directly from the load balancing function of storage. The unbundling process has fundamentally changed the way storage is used and valued. As an unbundled service, the value of storage is being recovered at rates that reflect its value. Moreover, the marketplace has differentiated between various types of storage services, and has increasingly rewarded flexibility, safety, and reliability. The size of the natural gas market has increased and is projected to continue to increase towards 30 trillion cubic feet (TCF) over the next 10 to 15 years. Much of this increase is projected to come from electric generation, particularly peaking units. Gas storage, particularly the flexible services that are most suited to electric loads, is critical in meeting the needs of these new markets. In order to address the gas storage needs of the natural gas industry, an industry-driven consortium was created--the Gas Storage Technology Consortium (GSTC). The objective of the GSTC is to provide a means to accomplish industry-driven research and development designed to enhance operational flexibility and deliverability of the Nation's gas storage system, and provide a cost effective, safe, and reliable supply of natural gas to meet domestic demand. This report addresses the activities for the quarterly period of January 1, 2006 through March 31, 2006. Activities during this time period were: (1) Organize and host the 2006 Spring Meeting in San Diego, CA on February 21-22, 2006; (2) Award 8 projects for co-funding by GSTC for 2006; (3) New members recruitment; and (4) Improving communications.

  19. Gas Storage Technology Consortium

    SciTech Connect (OSTI)

    Joel L. Morrison; Sharon L. Elder

    2007-03-31T23:59:59.000Z

    Gas storage is a critical element in the natural gas industry. Producers, transmission and distribution companies, marketers, and end users all benefit directly from the load balancing function of storage. The unbundling process has fundamentally changed the way storage is used and valued. As an unbundled service, the value of storage is being recovered at rates that reflect its value. Moreover, the marketplace has differentiated between various types of storage services and has increasingly rewarded flexibility, safety, and reliability. The size of the natural gas market has increased and is projected to continue to increase towards 30 trillion cubic feet (TCF) over the next 10 to 15 years. Much of this increase is projected to come from electric generation, particularly peaking units. Gas storage, particularly the flexible services that are most suited to electric loads, is crucial in meeting the needs of these new markets. To address the gas storage needs of the natural gas industry, an industry-driven consortium was created - the Gas Storage Technology Consortium (GSTC). The objective of the GSTC is to provide a means to accomplish industry-driven research and development designed to enhance the operational flexibility and deliverability of the nation's gas storage system, and provide a cost-effective, safe, and reliable supply of natural gas to meet domestic demand. This report addresses the activities for the quarterly period of January1, 2007 through March 31, 2007. Key activities during this time period included: {lg_bullet} Drafting and distributing the 2007 RFP; {lg_bullet} Identifying and securing a meeting site for the GSTC 2007 Spring Proposal Meeting; {lg_bullet} Scheduling and participating in two (2) project mentoring conference calls; {lg_bullet} Conducting elections for four Executive Council seats; {lg_bullet} Collecting and compiling the 2005 GSTC Final Project Reports; and {lg_bullet} Outreach and communications.

  20. Gas Storage Technology Consortium

    SciTech Connect (OSTI)

    Joel Morrison

    2005-09-14T23:59:59.000Z

    Gas storage is a critical element in the natural gas industry. Producers, transmission and distribution companies, marketers, and end users all benefit directly from the load balancing function of storage. The unbundling process has fundamentally changed the way storage is used and valued. As an unbundled service, the value of storage is being recovered at rates that reflect its value. Moreover, the marketplace has differentiated between various types of storage services, and has increasingly rewarded flexibility, safety, and reliability. The size of the natural gas market has increased and is projected to continue to increase towards 30 trillion cubic feet (TCF) over the next 10 to 15 years. Much of this increase is projected to come from electric generation, particularly peaking units. Gas storage, particularly the flexible services that are most suited to electric loads, is critical in meeting the needs of these new markets. In order to address the gas storage needs of the natural gas industry, an industry driven consortium was created--the Gas Storage Technology Consortium (GSTC). The objective of the GSTC is to provide a means to accomplish industry-driven research and development designed to enhance operational flexibility and deliverability of the Nation's gas storage system, and provide a cost effective, safe, and reliable supply of natural gas to meet domestic demand. This report addresses the activities for the quarterly period of April 1, 2005 through June 30, 2005. During this time period efforts were directed toward (1) GSTC administration changes, (2) participating in the American Gas Association Operations Conference and Biennial Exhibition, (3) issuing a Request for Proposals (RFP) for proposal solicitation for funding, and (4) organizing the proposal selection meeting.

  1. NSLS-II Transport Line Progress

    SciTech Connect (OSTI)

    Fliller R. P.; Wahl, W.; Anderson, A.; Benish, B.; DeBoer, W.; Ganetis, G.; Heese, R.; Hseuh, H.-C.; Hu, J.-P.; Johanson, M.P.; Kosciuk, B.N.; Padrazo, D.; Roy, K.; Shaftan, T.; Singh, O.; Tuozzolo, J.; Wang, G.

    2012-05-20T23:59:59.000Z

    The National Synchrotron Light Source II (NSLS-II) is a state-of-the-art 3-GeV third generation light source currently under construction at Brookhaven National Laboratory. The NSLS-II injection system consists of a 200 MeV linac, a 3-GeV booster synchrotron and associated transfer lines. The first part of the Linac to Booster Transport (LBT) line has been installed for linac commissioning. This part includes all components necessary to commission the NSLS-II linac. The second part of this transport line is undergoing installation. Initial results of hardware commissioning will be discussed. The Booster to Storage Ring (BSR) transport line underwent a design review. The first part of the BSR transport line, consisting of all components necessary to commission the booster will be installed in 2012 for booster commissioning. We report on the final design of the BSR line along with the plan to commission the booster.

  2. A framework for the assessment of severe accident management strategies

    SciTech Connect (OSTI)

    Kastenberg, W.E. [ed.; Apostolakis, G.; Dhir, V.K. [California Univ., Los Angeles, CA (United States). Dept. of Mechanical, Aerospace and Nuclear Engineering] [and others

    1993-09-01T23:59:59.000Z

    Severe accident management can be defined as the use of existing and/or altemative resources, systems and actors to prevent or mitigate a core-melt accident. For each accident sequence and each combination of severe accident management strategies, there may be several options available to the operator, and each involves phenomenological and operational considerations regarding uncertainty. Operational uncertainties include operator, system and instrumentation behavior during an accident. A framework based on decision trees and influence diagrams has been developed which incorporates such criteria as feasibility, effectiveness, and adverse effects, for evaluating potential severe accident management strategies. The framework is also capable of propagating both data and model uncertainty. It is applied to several potential strategies including PWR cavity flooding, BWR drywell flooding, PWR depressurization and PWR feed and bleed.

  3. Storage Exchange: A Global Trading Platform for Storage Services

    E-Print Network [OSTI]

    Melbourne, University of

    Storage Exchange: A Global Trading Platform for Storage Services Martin Placek and Rajkumar Buyya,raj}@csse.unimelb.edu.au Abstract. The Storage Exchange (SX) is a new platform allowing stor- age to be treated as a tradeable resource. Organisations with varying storage requirements can use the SX platform to trade and exchange

  4. Building Trust in Storage Outsourcing: Secure Accounting of Utility Storage

    E-Print Network [OSTI]

    Minnesota, University of

    Building Trust in Storage Outsourcing: Secure Accounting of Utility Storage Vishal Kher Yongdae Kim are witnessing a revival of Storage Service Providers (SSP) in the form of new vendors as well as traditional players. While storage outsourcing is cost-effective, many companies are hesitating to outsource

  5. Interdisciplinary Institute for Innovation Le risque d'accident nuclaire

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Interdisciplinary Institute for Innovation Le risque d'accident nucléaire majeur : calcul et-27Feb2013 #12;Le risque d'accident nucléaire majeur : calcul et perception des probabilités1 François Lévêque L'accident de Fukushima Daiichi s'est produit le 11 mars 2011. Cette catastrophe nucléaire

  6. SUPERCONDUCTING MAGNETIC ENERGY STORAGE

    E-Print Network [OSTI]

    Hassenzahl, W.

    2011-01-01T23:59:59.000Z

    Encrgy Storage Plant" , EPRI Report EM-3457, April 1984. [4521st century. REFERENCES The EPRI Regional Systems preparedby J. J. Mulvaney, EPRI Report EPRI P-19S0SR, (1981). [2J O.

  7. Marketing Cool Storage Technology 

    E-Print Network [OSTI]

    McCannon, L.

    1987-01-01T23:59:59.000Z

    in the field. The International Thermal Storage Advisory Council was formed to help meet this perceived need. This paper will review activities of EPRI and ITSAC to achieve widespread acceptance of the technology....

  8. Hydrogen storage compositions

    SciTech Connect (OSTI)

    Li, Wen; Vajo, John J.; Cumberland, Robert W.; Liu, Ping

    2011-04-19T23:59:59.000Z

    Compositions for hydrogen storage and methods of making such compositions employ an alloy that exhibits reversible formation/deformation of BH4- anions. The composition includes a ternary alloy including magnesium, boron and a metal and a metal hydride. The ternary alloy and the metal hydride are present in an amount sufficient to render the composition capable of hydrogen storage. The molar ratio of the metal to magnesium and boron in the alloy is such that the alloy exhibits reversible formation/deformation of BH4- anions. The hydrogen storage composition is prepared by combining magnesium, boron and a metal to prepare a ternary alloy and combining the ternary alloy with a metal hydride to form the hydrogen storage composition.

  9. Hydrogen storage compositions

    DOE Patents [OSTI]

    Li, Wen; Vajo, John J.; Cumberland, Robert W.; Liu, Ping

    2011-04-19T23:59:59.000Z

    Compositions for hydrogen storage and methods of making such compositions employ an alloy that exhibits reversible formation/deformation of BH.sub.4.sup.- anions. The composition includes a ternary alloy including magnesium, boron and a metal and a metal hydride. The ternary alloy and the metal hydride are present in an amount sufficient to render the composition capable of hydrogen storage. The molar ratio of the metal to magnesium and boron in the alloy is such that the alloy exhibits reversible formation/deformation of BH.sub.4.sup.- anions. The hydrogen storage composition is prepared by combining magnesium, boron and a metal to prepare a ternary alloy and combining the ternary alloy with a metal hydride to form the hydrogen storage composition.

  10. APS Storage Ring Parameters

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Main Parameters APS Storage Ring Parameters M. Borland, G. Decker, L. Emery, W. Guo, K. Harkay, V. Sajaev, C.-Y. Yao Advanced Photon Source September 8, 2010 This document list the...

  11. Stasis: Flexible Transactional Storage

    E-Print Network [OSTI]

    Sears, Russell C.

    2009-01-01T23:59:59.000Z

    He and Bowei Du implemented Oasys, and helped with my firstwas built on top of a C++ object persistence library, Oasys.Oasys uses plug-in storage modules that implement persistent

  12. Gas Storage Act (Illinois)

    Broader source: Energy.gov [DOE]

    Any corporation which is engaged in or desires to engage in, the distribution, transportation or storage of natural gas or manufactured gas, which gas, in whole or in part, is intended for ultimate...

  13. SUPERCONDUCTING MAGNETIC ENERGY STORAGE

    E-Print Network [OSTI]

    Hassenzahl, W.

    2011-01-01T23:59:59.000Z

    World's First 290 MW Gas Turbine Air Storage Peaking Plant",hydro e lectric plants and gas turbines, are less effectedelectricity. For a gas turbine the conversion efficiency may

  14. Storage Tanks (Arkansas)

    Broader source: Energy.gov [DOE]

    The Storage Tanks regulations is a set of rules and permit requirements mandated by the Arkansas Pollution and Ecology Commission in order to protect the public health and the lands and the waters...

  15. Thermal Energy Storage

    SciTech Connect (OSTI)

    Rutberg, Michael; Hastbacka, Mildred; Cooperman, Alissa; Bouza, Antonio

    2013-06-05T23:59:59.000Z

    The article discusses thermal energy storage technologies. This article addresses benefits of TES at both the building site and the electricity generation source. The energy savings and market potential of thermal energy store are reviewed as well.

  16. Energy Storage 101

    Broader source: Energy.gov (indexed) [DOE]

    the storage of heat or cold between opposing seasons in deep aquifers or bedrock. A wind-up clock stores potential energy, in this case mechanical, in the spring tension. ...

  17. Storage management solutions Buyer's guide: purchasing criteria

    E-Print Network [OSTI]

    Storage management solutions Buyer's guide: purchasing criteria Manage your storage to meet service storage environment cohesively As new guidelines or regulations surface, storage administrators receive increasing numbers of requests for change (RFCs) in storage provisioning. Simultaneously, routine changes

  18. assigned accident investigation: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    33 Long-term investigations of radiocaesium activity concentrations in carps in north Croatia after the Chernobyl accident CERN Preprints Summary: Long-term investigations of...

  19. accident source term: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    42 Long-term investigations of radiocaesium activity concentrations in carps in north Croatia after the Chernobyl accident CERN Preprints Summary: Long-term investigations of...

  20. accident investigation: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    26 Long-term investigations of radiocaesium activity concentrations in carps in north Croatia after the Chernobyl accident CERN Preprints Summary: Long-term investigations of...

  1. accident source terms: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    42 Long-term investigations of radiocaesium activity concentrations in carps in north Croatia after the Chernobyl accident CERN Preprints Summary: Long-term investigations of...

  2. Type A Accident Investigation of the March 16, 2000, Plutonium...

    Office of Environmental Management (EM)

    Multiple Intake Event at the Plutonium Facility, Los Alamos National Laboratory, New Mexico Type A Accident Investigation of the March 16, 2000, Plutonium-238 Multiple Intake...

  3. Type B Accident Investigation Report on the Exertional Heat Illnesses...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Heat Illnesses during SPOTC 2006 at the National Training Center in Albuquerque, New Mexico, July 13, 2006 Type B Accident Investigation Report on the Exertional Heat...

  4. Dose estimates in a loss of lead shielding truck accident.

    SciTech Connect (OSTI)

    Dennis, Matthew L.; Osborn, Douglas M.; Weiner, Ruth F.; Heames, Terence John (Alion Science & Technology Albuquerque, NM)

    2009-08-01T23:59:59.000Z

    The radiological transportation risk & consequence program, RADTRAN, has recently added an updated loss of lead shielding (LOS) model to it most recent version, RADTRAN 6.0. The LOS model was used to determine dose estimates to first-responders during a spent nuclear fuel transportation accident. Results varied according to the following: type of accident scenario, percent of lead slump, distance to shipment, and time spent in the area. This document presents a method of creating dose estimates for first-responders using RADTRAN with potential accident scenarios. This may be of particular interest in the event of high speed accidents or fires involving cask punctures.

  5. affecting reactor accident: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    METEOROLOGY; NUCLEAR POWER PLANTS; P CODES; PWR TYPE REACTORS; RADIATION 2 Does Daylight Savings Time Affect Traffic Accidents? Texas A&M University - TxSpace Summary: This...

  6. Microsoft Word - Case Study for Enhanced Accident Tolerance Design...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2355 Case Study for Enhanced Accident Tolerance Design Changes Steven Prescott Curtis Smith Tony Koonce June 2014 DISCLAIMER This information was prepared as an account of work...

  7. Type B Accident Investigation Board Report on the October 15...

    Energy Savers [EERE]

    on the October 15, 2001, Grout Injection Operator Injury at the Cold Test Pit South, Idaho National Engineering and Environmental Laboratory Type B Accident Investigation Board...

  8. accident loca testing: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    for the degree ol' MASTER OF SCIENCE May 1992 Major Subject: Nuclear Engineering SIMULATION OF A SMALL BREAK LOSS OF COOLANT ACCIDENT CONDUCTED AT THE BETHSY INTEGRAL TEST...

  9. Sec. Herrington Leads Delegation in Response to Chernobyl Accident...

    National Nuclear Security Administration (NNSA)

    Sec. Herrington Leads Delegation in Response to Chernobyl Accident | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the...

  10. Type B Accident Investigation Report of the October 28, 2004...

    Energy Savers [EERE]

    of the October 28, 2004, Burn Injuries Sustained During an Office of Secure Transportation Joint Training Exercise at Fort Hunter-Liggett, CA Type B Accident Investigation Report...

  11. Type B Accident Investigation Board Report of the September 29...

    Energy Savers [EERE]

    at the Separations Process Research Unit (SPRU), Building H2 Demolition, in Niskayuna, New, York Type B Accident Investigation Board Report of the September 29, 2010,...

  12. accident prevention manual: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Wu, Mingshen 9 Chest--Manual Defrost Models Biology and Medicine Websites Summary: old refrigerator or freezer, please follow the instructions below to help prevent accidents....

  13. accident management programme: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ACCIDENT FIRE POLLUTION "NEAR MISS immediately after the occurrence. 3 Material damage or pollution Total volume of mercury spillage was approximately 200 ml. Of that volume,...

  14. accident management programmes: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ACCIDENT FIRE POLLUTION "NEAR MISS immediately after the occurrence. 3 Material damage or pollution Total volume of mercury spillage was approximately 200 ml. Of that volume,...

  15. Type B Accident Investigation Board Report, May 8, 2004, Exothermic...

    Energy Savers [EERE]

    Report, May 8, 2004, Exothermic Metal Reactor Event During Sodium Transfer Activities, East Tennessee Technology Park, Oak Ridge, Tennessee Type B Accident Investigation Board...

  16. Accident Investigation of the September 20, 2012 Fatal Fall from...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    September 20, 2012 Fatal Fall from the Dworshak-Taft 1 Transmission Tower, at the Bonneville Power Marketing Administration Accident Investigation of the September 20, 2012 Fatal...

  17. Accident Investigation of the July 30, 2013, Electrical Fatality...

    Energy Savers [EERE]

    to the Secretary of Labor Accident Investigation of the September 20, 2012 Fatal Fall from the Dworshak-Taft 1 Transmission Tower, at the Bonneville Power Marketing Administration...

  18. Type B Accident Investigation At Washington Closure Hanford,...

    Broader source: Energy.gov (indexed) [DOE]

    Fall Injury on July 1, 2009, At The 336 Building, Hanford Site, Washington Type B Accident Investigation At Washington Closure Hanford, LLC, Employee Fall Injury on July 1,...

  19. Type B Accident Investigation of the Arc Flash at Brookhaven...

    Broader source: Energy.gov (indexed) [DOE]

    Arc Flash at Brookhaven National Laboratory, April 14, 2006 Type B Accident Investigation of the Arc Flash at Brookhaven National Laboratory, April 14, 2006 February 10, 2006 An...

  20. accidents involving external: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    25 Next Page Last Page Topic Index 1 Development and use of the ESReDA directory of accident databases involving chemicals Computer Technologies and Information Sciences Websites...

  1. Type B Accident Investigation Board Report of the Brookhaven...

    Broader source: Energy.gov (indexed) [DOE]

    National Laboratory Employee Injury at Building 1005H on October 9, 2009 Type B Accident Investigation Board Report of the Brookhaven National Laboratory Employee Injury at...

  2. accident resistant container: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    failure of thermal barrier coatings (TBCs) driven by thickening Wadley, Haydn 2 OTHER ACCIDENT?24. ANY PERSON WHO KNOWINGLY AND WITH INTENT TO DEFRAUD ANY INSURANCE COMPANY OR...

  3. accident diagrams: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    study of groups (see 22 or 26) Victor Guba; Mark Sapir 1996-01-01 2 AUTOMOBILE ACCIDENT REPORT Department of Financial Services Geosciences Websites Summary: . 0103 (USE...

  4. Accident Investigation of the December 11, 2013, Integrated Device...

    Broader source: Energy.gov (indexed) [DOE]

    Accidental Discharge at the Sandia National Laboratory Site 9920, Albuquerque, NM Accident Investigation of the December 11, 2013, Integrated Device Fireset and Detonator...

  5. Type B Accident Investigation of the August 22, 2000, Injury...

    Broader source: Energy.gov (indexed) [DOE]

    Type B Accident Investigation of the August 22, 2000, Injury Resulting From Violent Exothermic Chemical Reaction at the Portsmouth Gaseous Diffusion Plant, X-701B Site Type B...

  6. accident response calculations: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    25 Next Page Last Page Topic Index 1 Primary Responsibilities 1. Identify potential accident hazards. Materials Science Websites Summary: Primary Responsibilities 1. Identify...

  7. Type B Accident Investigation Board Report of the Bechtel Jacobs...

    Broader source: Energy.gov (indexed) [DOE]

    at the K-25 Building, East Tennessee Technology Park, Oak Ridge, Tennessee Type B Accident Investigation Board Report of the Bechtel Jacobs Company, LLC Employee Fall Injury on...

  8. accident conditions final: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    to evaluate human weather discomfort due to hot conditions and then tested for work accident differences using non-parametric procedures. Present findings showed that hot weather...

  9. LIQUID PROPANE GAS (LPG) STORAGE AREA BOILING LIQUID EXPANDING VAPOR EXPLOSION (BLEVE) ANALYSIS

    SciTech Connect (OSTI)

    PACE, M.E.

    2004-01-13T23:59:59.000Z

    The PHA and the FHAs for the SWOC MDSA (HNF-14741) identified multiple accident scenarios in which vehicles powered by flammable gases (e.g., propane), or combustible or flammable liquids (e.g., gasoline, LPG) are involved in accidents that result in an unconfined vapor cloud explosion (UVCE) or in a boiling liquid expanding vapor explosion (BLEVE), respectively. These accident scenarios are binned in the Bridge document as FIR-9 scenarios. They are postulated to occur in any of the MDSA facilities. The LPG storage area will be in the southeast corner of CWC that is relatively remote from store distaged MAR. The location is approximately 30 feet south of MO-289 and 250 feet east of 2401-W by CWC Gate 10 in a large staging area for unused pallets and equipment.

  10. Severe Accident Studies | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011 Strategic2Uranium Transfer toSensor Technologies for a SmartSevere Accident Studies

  11. Storage In C Matt Bishop

    E-Print Network [OSTI]

    Bishop, Matt

    Storage In C Matt Bishop Research Institute for Advanced Computer Science NASA Ames Research Center. Intimately bound with the idea of scope is that of storage. When a program defines a variable, the compiler storage (such as on a stack) or as more permanent storage (in data space.) Recall that the format of a C

  12. Storage In C Matt Bishop

    E-Print Network [OSTI]

    Bishop, Matt

    Storage In C Matt Bishop Research Institute for Advanced Computer Science NASA Ames Research Center. Intimately bound with the idea of scope is that of storage. When a program deÞnes a variable, the compiler storage (such as on a stack) or as more permanent storage (in data space.) Recall that the format of a C

  13. Ramkrishna Mukherjee. Uganda: An Historical Accident?: Class, Natona, State Formation. Trenton, New Jersey: Africa World Press, 1985 281pp.

    E-Print Network [OSTI]

    Isabirye, Stephen B.

    1989-01-01T23:59:59.000Z

    Trenton, Historical Accident? : Class, Natona, New Jersey:in Mukherjee Historical Accident. analyzes the "poUticalare not an "historical accident." War, Violence and Children

  14. Safety Aspects of Dry Spent Fuel Storage and Spent Fuel Management - 13559

    SciTech Connect (OSTI)

    Botsch, W.; Smalian, S.; Hinterding, P. [TUV NORD Nuclear c/o TUV NORD EnSys Hannover GmbH and Co.KG, Dept. Radiation Protection and Waste Disposal, Am TueV 1, 30519 Hannover (Germany)] [TUV NORD Nuclear c/o TUV NORD EnSys Hannover GmbH and Co.KG, Dept. Radiation Protection and Waste Disposal, Am TueV 1, 30519 Hannover (Germany); Voelzke, H.; Wolff, D.; Kasparek, E. [BAM Federal Institute for Materials Research and Testing Division 3.4 Safety of Storage Containers Unter den Eichen 44-46, 12203 Berlin (Germany)] [BAM Federal Institute for Materials Research and Testing Division 3.4 Safety of Storage Containers Unter den Eichen 44-46, 12203 Berlin (Germany)

    2013-07-01T23:59:59.000Z

    Dry storage systems are characterized by passive and inherent safety systems ensuring safety even in case of severe incidents or accidents. After the events of Fukushima, the advantages of such passively and inherently safe dry storage systems have become more and more obvious. As with the storage of all radioactive materials, the storage of spent nuclear fuel (SF) and high-level radioactive waste (HLW) must conform to safety requirements. Following safety aspects must be achieved throughout the storage period: - safe enclosure of radioactive materials, - safe removal of decay heat, - securing nuclear criticality safety, - avoidance of unnecessary radiation exposure. The implementation of these safety requirements can be achieved by dry storage of SF and HLW in casks as well as in other systems such as dry vault storage systems or spent fuel pools, where the latter is neither a dry nor a passive system. Furthermore, transport capability must be guaranteed during and after storage as well as limitation and control of radiation exposure. The safe enclosure of radioactive materials in dry storage casks can be achieved by a double-lid sealing system with surveillance of the sealing system. The safe removal of decay heat must be ensured by the design of the storage containers and the storage facility. The safe confinement of radioactive inventory has to be ensured by mechanical integrity of fuel assembly structures. This is guaranteed, e.g. by maintaining the mechanical integrity of the fuel rods or by additional safety measures for defective fuel rods. In order to ensure nuclear critically safety, possible effects of accidents have also to be taken into consideration. In case of dry storage it might be necessary to exclude the re-positioning of fissile material inside the container and/or neutron moderator exclusion might be taken into account. Unnecessary radiation exposure can be avoided by the cask or canister vault system itself. In Germany dry storage of SF in casks fulfills both transport and storage requirements. Mostly, storage facilities are designed as concrete buildings above the ground, but due to regional constraints, one storage facility has also been built as a rock tunnel. The decay heat is always removed by natural air flow; further technical equipment is not needed. The removal of decay heat and shielding had been modeled and calculated by state-of-the-art computer codes before such a facility has been built. TueV and BAM present their long experience in the licensing process for sites and casks and inform about spent nuclear fuel management and issues concerning dry storage of spent nuclear fuel. Different storage systems and facilities in Germany, Europe and world-wide are compared with respect to the safety aspects mentioned above. Initial points are the safety issues of wet storage of SF, and it is shown how dry storage systems can ensure the compliance with the mentioned safety criteria over a long storage period. The German storage concept for dry storage of SF and HLW is presented and discussed. Exemplarily, the process of licensing, erection and operation of selected German dry storage facilities is presented. (authors)

  15. DOE Global Energy Storage Database

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    The DOE International Energy Storage Database has more than 400 documented energy storage projects from 34 countries around the world. The database provides free, up-to-date information on grid-connected energy storage projects and relevant state and federal policies. More than 50 energy storage technologies are represented worldwide, including multiple battery technologies, compressed air energy storage, flywheels, gravel energy storage, hydrogen energy storage, pumped hydroelectric, superconducting magnetic energy storage, and thermal energy storage. The policy section of the database shows 18 federal and state policies addressing grid-connected energy storage, from rules and regulations to tariffs and other financial incentives. It is funded through DOE’s Sandia National Laboratories, and has been operating since January 2012.

  16. Preliminary analysis of loss-of-coolant accident in Fukushima nuclear accident

    SciTech Connect (OSTI)

    Su'ud, Zaki; Anshari, Rio [Nuclear and Biophysics Research Group, Dept. of Physics, Bandung Institute of Technology, Jl.Ganesha 10, Bandung, 40132 (Indonesia)

    2012-06-06T23:59:59.000Z

    Loss-of-Coolant Accident (LOCA) in Boiling Water Reactor (BWR) especially on Fukushima Nuclear Accident will be discussed in this paper. The Tohoku earthquake triggered the shutdown of nuclear power reactors at Fukushima Nuclear Power station. Though shutdown process has been completely performed, cooling process, at much smaller level than in normal operation, is needed to remove decay heat from the reactor core until the reactor reach cold-shutdown condition. If LOCA happen at this condition, it will cause the increase of reactor fuel and other core temperatures and can lead to reactor core meltdown and exposure of radioactive material to the environment such as in the Fukushima Dai Ichi nuclear accident case. In this study numerical simulation has been performed to calculate pressure composition, water level and temperature distribution on reactor during this accident. There are two coolant regulating system that operational on reactor unit 1 at this accident, Isolation Condensers (IC) system and Safety Relief Valves (SRV) system. Average mass flow of steam to the IC system in this event is 10 kg/s and could keep reactor core from uncovered about 3,2 hours and fully uncovered in 4,7 hours later. There are two coolant regulating system at operational on reactor unit 2, Reactor Core Isolation Condenser (RCIC) System and Safety Relief Valves (SRV). Average mass flow of coolant that correspond this event is 20 kg/s and could keep reactor core from uncovered about 73 hours and fully uncovered in 75 hours later. There are three coolant regulating system at operational on reactor unit 3, Reactor Core Isolation Condenser (RCIC) system, High Pressure Coolant Injection (HPCI) system and Safety Relief Valves (SRV). Average mass flow of water that correspond this event is 15 kg/s and could keep reactor core from uncovered about 37 hours and fully uncovered in 40 hours later.

  17. Gas Storage Technology Consortium

    SciTech Connect (OSTI)

    Joel L. Morrison; Sharon L. Elder

    2006-09-30T23:59:59.000Z

    Gas storage is a critical element in the natural gas industry. Producers, transmission and distribution companies, marketers, and end users all benefit directly from the load balancing function of storage. The unbundling process has fundamentally changed the way storage is used and valued. As an unbundled service, the value of storage is being recovered at rates that reflect its value. Moreover, the marketplace has differentiated between various types of storage services, and has increasingly rewarded flexibility, safety, and reliability. The size of the natural gas market has increased and is projected to continue to increase towards 30 trillion cubic feet (TCF) over the next 10 to 15 years. Much of this increase is projected to come from electric generation, particularly peaking units. Gas storage, particularly the flexible services that are most suited to electric loads, is critical in meeting the needs of these new markets. In order to address the gas storage needs of the natural gas industry, an industry-driven consortium was created-the Gas Storage Technology Consortium (GSTC). The objective of the GSTC is to provide a means to accomplish industry-driven research and development designed to enhance operational flexibility and deliverability of the Nation's gas storage system, and provide a cost effective, safe, and reliable supply of natural gas to meet domestic demand. This report addresses the activities for the quarterly period of July 1, 2006 to September 30, 2006. Key activities during this time period include: {lg_bullet} Subaward contracts for all 2006 GSTC projects completed; {lg_bullet} Implement a formal project mentoring process by a mentor team; {lg_bullet} Upcoming Technology Transfer meetings: {sm_bullet} Finalize agenda for the American Gas Association Fall Underground Storage Committee/GSTC Technology Transfer Meeting in San Francisco, CA. on October 4, 2006; {sm_bullet} Identify projects and finalize agenda for the Fall GSTC Technology Transfer Meeting, Pittsburgh, PA on November 8, 2006; {lg_bullet} Draft and compile an electronic newsletter, the GSTC Insider; and {lg_bullet} New members update.

  18. GAS STORAGE TECHNOLOGY CONSORTIUM

    SciTech Connect (OSTI)

    Robert W. Watson

    2004-04-17T23:59:59.000Z

    Gas storage is a critical element in the natural gas industry. Producers, transmission and distribution companies, marketers, and end users all benefit directly from the load balancing function of storage. The unbundling process has fundamentally changed the way storage is used and valued. As an unbundled service, the value of storage is being recovered at rates that reflect its value. Moreover, the marketplace has differentiated between various types of storage services, and has increasingly rewarded flexibility, safety, and reliability. The size of the natural gas market has increased and is projected to continue to increase towards 30 trillion cubic feet (TCF) over the next 10 to 15 years. Much of this increase is projected to come from electric generation, particularly peaking units. Gas storage, particularly the flexible services that are most suited to electric loads, is critical in meeting the needs of these new markets. In order to address the gas storage needs of the natural gas industry, an industry-driven consortium was created--the Gas Storage Technology Consortium (GSTC). The objective of the GSTC is to provide a means to accomplish industry-driven research and development designed to enhance operational flexibility and deliverability of the Nation's gas storage system, and provide a cost effective, safe, and reliable supply of natural gas to meet domestic demand. To accomplish this objective, the project is divided into three phases that are managed and directed by the GSTC Coordinator. Base funding for the consortium is provided by the U.S. Department of Energy (DOE). In addition, funding is anticipated from the Gas Technology Institute (GTI). The first phase, Phase 1A, was initiated on September 30, 2003, and is scheduled for completion on March 31, 2004. Phase 1A of the project includes the creation of the GSTC structure, development of constitution (by-laws) for the consortium, and development and refinement of a technical approach (work plan) for deliverability enhancement and reservoir management. This report deals with the second 3-months of the project and encompasses the period December 31, 2003, through March 31, 2003. During this 3-month, the dialogue of individuals representing the storage industry, universities and the Department of energy was continued and resulted in a constitution for the operation of the consortium and a draft of the initial Request for Proposals (RFP).

  19. Concentrating Solar Program; Session: Thermal Storage - Overview (Presentation)

    SciTech Connect (OSTI)

    Glatzmaier, G.; Mehos, M.; Mancini, T.

    2008-04-01T23:59:59.000Z

    The project overview of this presentation is: (1) description--(a) laboratory R and D in advanced heat transfer fluids (HTF) and thermal storage systems; (b) FOA activities in solar collector and component development for use of molten salt as a heat transfer and storage fluid; (c) applications for all activities include line focus and point focus solar concentrating technologies; (2) Major FY08 Activities--(a) advanced HTF development with novel molten salt compositions with low freezing temperatures, nanofluids molecular modeling and experimental studies, and use with molten salt HTF in solar collector field; (b) thermal storage systems--cost analysis and updates for 2-tank and thermocline storage and model development and analysis to support near-term trought deployment; (c) thermal storage components--facility upgrade to support molten salt component testing for freeze-thaw receiver testing, long-shafted molten salt pump for parabolic trough and power tower thermal storage systems; (d) CSP FOA support--testing and evaluation support for molten salt component and field testing work, advanced fluids and storage solicitation preparation, and proposal evaluation for new advanced HTF and thermal storage FOA.

  20. Regulatory Concerns on the In-Containment Water Storage System of the Korean Next Generation Reactor

    SciTech Connect (OSTI)

    Ahn, Hyung-Joon; Lee, Jae-Hun; Bang, Young-Seok; Kim, Hho-Jung [Korea Institute of Nuclear Safety (Korea, Republic of)

    2002-07-15T23:59:59.000Z

    The in-containment water storage system (IWSS) is a newly adopted system in the design of the Korean Next Generation Reactor (KNGR). It consists of the in-containment refueling water storage tank, holdup volume tank, and cavity flooding system (CFS). The IWSS has the function of steam condensation and heat sink for the steam release from the pressurizer and provides cooling water to the safety injection system and containment spray system in an accident condition and to the CFS in a severe accident condition. With the progress of the KNGR design, the Korea Institute of Nuclear Safety has been developing Safety and Regulatory Requirements and Guidances for safety review of the KNGR. In this paper, regarding the IWSS of the KNGR, the major contents of the General Safety Criteria, Specific Safety Requirements, Safety Regulatory Guides, and Safety Review Procedures were introduced, and the safety review items that have to be reviewed in-depth from the regulatory viewpoint were also identified.

  1. Material Selection for Accident Tolerant Fuel Cladding

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    none,

    2014-07-01T23:59:59.000Z

    Alternative cladding materials are being investigated for accident tolerance, which can be defined as >100X improvement (compared to current Zr-based alloys) in oxidation resistance in steam environments at ?1200°C for short (?4 h) times. After reviewing a wide range of candidates, current steam oxidation testing is being conducted on Mo, MAX phases and FeCrAl alloys. Recently reported low mass losses for Mo in steam at 800°C could not be reproduced. Both FeCrAl and MAX phase Ti2AlC form a protective alumina scale in steam. However, commercial Ti2AlC that is not single phase, formed a much thicker oxide at 1200°C in steammore »and significant TiO2, and therefore may be challenging to use as a cladding or a coating. Alloy development for FeCrAl is seeking to maintain its steam oxidation resistance to 1475°C, while reducing its Cr content to minimize susceptibility to irradiation assisted Cr-rich ?’ formation. The composition effects and critical limits to retaining protective scale formation at >1400°C are still being evaluated. Keywords: Accident tolerant LWR Fuel cladding, FeCrAl, Mo, Ti2AlC, Al2O3, high temperature steam oxidation resistance« less

  2. Material Selection for Accident Tolerant Fuel Cladding

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    none,

    2014-07-01T23:59:59.000Z

    Alternative cladding materials are being investigated for accident tolerance, which can be defined as >100X improvement (compared to current Zr-based alloys) in oxidation resistance in steam environments at ?1200°C for short (?4 h) times. After reviewing a wide range of candidates, current steam oxidation testing is being conducted on Mo, MAX phases and FeCrAl alloys. Recently reported low mass losses for Mo in steam at 800°C could not be reproduced. Both FeCrAl and MAX phase Ti2AlC form a protective alumina scale in steam. However, commercial Ti2AlC that is not single phase, formed a much thicker oxide at 1200°C in steam and significant TiO2, and therefore may be challenging to use as a cladding or a coating. Alloy development for FeCrAl is seeking to maintain its steam oxidation resistance to 1475°C, while reducing its Cr content to minimize susceptibility to irradiation assisted Cr-rich ?’ formation. The composition effects and critical limits to retaining protective scale formation at >1400°C are still being evaluated. Keywords: Accident tolerant LWR Fuel cladding, FeCrAl, Mo, Ti2AlC, Al2O3, high temperature steam oxidation resistance

  3. Demonstration of Promising Energy Storage Technologies

    SciTech Connect (OSTI)

    Bollinger, Benjamin

    2014-12-31T23:59:59.000Z

    This project develops and demonstrates a megawatt (MW)-scale Energy Storage System that employs compressed air as the storage medium. An isothermal compressed air energy storage (ICAESTM) system rated for 1 MW or more will be demonstrated in a full-scale prototype unit. Breakthrough cost-effectiveness will be achieved through the use of proprietary methods for isothermal gas cycling and staged gas expansion implemented using industrially mature, readily-available components. The ICAES approach uses an electrically driven mechanical system to raise air to high pressure for storage in low-cost pressure vessels, pipeline, or lined-rock cavern (LRC). This air is later expanded through the same mechanical system to drive the electric motor as a generator. The approach incorporates two key efficiency-enhancing innovations: (1) isothermal (constant temperature) gas cycling, which is achieved by mixing liquid with air (via spray or foam) to exchange heat with air undergoing compression or expansion; and (2) a novel, staged gas-expansion scheme that allows the drivetrain to operate at constant power while still allowing the stored gas to work over its entire pressure range. The ICAES system will be scalable, non-toxic, and cost-effective, making it suitable for firming renewables and for other grid applications.

  4. GAS STORAGE TECHNOLOGY CONSORTIUM

    SciTech Connect (OSTI)

    Robert W. Watson

    2004-10-18T23:59:59.000Z

    Gas storage is a critical element in the natural gas industry. Producers, transmission and distribution companies, marketers, and end users all benefit directly from the load balancing function of storage. The unbundling process has fundamentally changed the way storage is used and valued. As an unbundled service, the value of storage is being recovered at rates that reflect its value. Moreover, the marketplace has differentiated between various types of storage services, and has increasingly rewarded flexibility, safety, and reliability. The size of the natural gas market has increased and is projected to continue to increase towards 30 trillion cubic feet (TCF) over the next 10 to 15 years. Much of this increase is projected to come from electric generation, particularly peaking units. Gas storage, particularly the flexible services that are most suited to electric loads, is critical in meeting the needs of these new markets. In order to address the gas storage needs of the natural gas industry, an industry-driven consortium was created--the Gas Storage Technology Consortium (GSTC). The objective of the GSTC is to provide a means to accomplish industry-driven research and development designed to enhance operational flexibility and deliverability of the Nation's gas storage system, and provide a cost effective, safe, and reliable supply of natural gas to meet domestic demand. To accomplish this objective, the project is divided into three phases that are managed and directed by the GSTC Coordinator. The first phase, Phase 1A, was initiated on September 30, 2003, and was completed on March 31, 2004. Phase 1A of the project included the creation of the GSTC structure, development and refinement of a technical approach (work plan) for deliverability enhancement and reservoir management. This report deals with Phase 1B and encompasses the period July 1, 2004, through September 30, 2004. During this time period there were three main activities. First was the ongoing negotiations of the four sub-awards working toward signed contracts with the various organizations involved. Second, an Executive Council meeting was held at Penn State September 9, 2004. And third, the GSTC participated in the SPE Eastern Regional Meeting in Charleston, West Virginia, on September 16th and 17th. We hosted a display booth with the Stripper Well Consortium.

  5. GAS STORAGE TECHNOLOGY CONSORTIUM

    SciTech Connect (OSTI)

    Robert W. Watson

    2004-07-15T23:59:59.000Z

    Gas storage is a critical element in the natural gas industry. Producers, transmission and distribution companies, marketers, and end users all benefit directly from the load balancing function of storage. The unbundling process has fundamentally changed the way storage is used and valued. As an unbundled service, the value of storage is being recovered at rates that reflect its value. Moreover, the marketplace has differentiated between various types of storage services, and has increasingly rewarded flexibility, safety, and reliability. The size of the natural gas market has increased and is projected to continue to increase towards 30 trillion cubic feet (TCF) over the next 10 to 15 years. Much of this increase is projected to come from electric generation, particularly peaking units. Gas storage, particularly the flexible services that are most suited to electric loads, is critical in meeting the needs of these new markets. In order to address the gas storage needs of the natural gas industry, an industry-driven consortium was created--the Gas Storage Technology Consortium (GSTC). The objective of the GSTC is to provide a means to accomplish industry-driven research and development designed to enhance operational flexibility and deliverability of the Nation's gas storage system, and provide a cost effective, safe, and reliable supply of natural gas to meet domestic demand. To accomplish this objective, the project is divided into three phases that are managed and directed by the GSTC Coordinator. Base funding for the consortium is provided by the U.S. Department of Energy (DOE). In addition, funding is anticipated from the Gas Technology Institute (GTI). The first phase, Phase 1A, was initiated on September 30, 2003, and was completed on March 31, 2004. Phase 1A of the project included the creation of the GSTC structure, development and refinement of a technical approach (work plan) for deliverability enhancement and reservoir management. This report deals with Phase 1B and encompasses the period April 1, 2004, through June 30, 2004. During this 3-month period, a Request for Proposals (RFP) was made. A total of 17 proposals were submitted to the GSTC. A proposal selection meeting was held June 9-10, 2004 in Morgantown, West Virginia. Of the 17 proposals, 6 were selected for funding.

  6. Web Based Course: SAF-230DE, Accident Investigation Overview Promotional Video

    Broader source: Energy.gov [DOE]

    This course that provides an overview of the fundamentals of accident investigation. The course is intended to meet the every five year refresher training requirement for DOE Federal Accident Investigators under DOE O 225.1B, Accident Investigations.

  7. Using a town’s GIS project to create a deer-vehicle accident management plan

    E-Print Network [OSTI]

    Rogers, Elizabeth I.

    2003-01-01T23:59:59.000Z

    TO CREATE A DEER-VEHICLE ACCIDENT MANAGEMENT PLAN Elizabethhigh numbers of deer-vehicle accidents (DVAs) on a landscapeto provide an assessment of accident risk in time and space.

  8. Road traffic accidents in Kathmandu¿an hour of education yields a glimmer of hope

    E-Print Network [OSTI]

    Basnet, Bibhusan; Vohra, Rais; Bhandari, Amit; Pandey, Subash

    2013-01-01T23:59:59.000Z

    et al. : Road traffic accidents in Kathmandu— an hour ofOpen Access Road traffic accidents in Kathmandu—an hour ofnumber of road traffic accidents in the year 2012 decreased

  9. accident victims bio-indicateurs: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Every year, traffic congestion and traffic accidents have been Cho, Sung-Bae 119 The Analysis of a Friendly Fire Accident using a Systems Model of Accidents* N.G. Leveson,...

  10. Estimating Pedestrian Accident Exposure: Approaches to a Statewide Pedestrian Exposure Database

    E-Print Network [OSTI]

    Greene-Roesel, Ryan; Diogenes, Mara Chagas; Ragland, David R

    2007-01-01T23:59:59.000Z

    Pedestrian Exposure to Risk of Road Accident in New Zealand.Accident Analysis and Prevention, Vol. 27, No. 3, 1995, pp.Automated Traffic Accident Surveillance and Analysis System,

  11. UNIVERSITY OF TORONTO ACCIDENT/INCIDENT/OCCUPATIONAL DISEASE REPORT FOR EMPLOYEES

    E-Print Network [OSTI]

    Kronzucker, Herbert J.

    UNIVERSITY OF TORONTO ACCIDENT/INCIDENT/OCCUPATIONAL DISEASE REPORT FOR EMPLOYEES RELEVANT SECTIONS: _______________________________________ NAME OF SUPERVISOR TO WHOM ACCIDENT WAS REPORTED: _________________________________ TELEPHONE: _____________________ IF THERE WAS A DELAY IN REPORTING THIS ACCIDENT, LIST REASON

  12. STUDENT / VISITOR ACCIDENT REPORT FORM nco/revised 10/06/03

    E-Print Network [OSTI]

    Azevedo, Ricardo

    STUDENT / VISITOR ACCIDENT REPORT FORM nco/revised 10/06/03 (To Be Completed By Individual Involved In Accident) 1. Name: ________________________________________ Student ID or DL No.: _______________________ 2 No - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 6. Date of Accident: ___________________ Day of Week: _______________________ Time: ____________ 7

  13. Energy storage connection system

    DOE Patents [OSTI]

    Benedict, Eric L.; Borland, Nicholas P.; Dale, Magdelena; Freeman, Belvin; Kite, Kim A.; Petter, Jeffrey K.; Taylor, Brendan F.

    2012-07-03T23:59:59.000Z

    A power system for connecting a variable voltage power source, such as a power controller, with a plurality of energy storage devices, at least two of which have a different initial voltage than the output voltage of the variable voltage power source. The power system includes a controller that increases the output voltage of the variable voltage power source. When such output voltage is substantially equal to the initial voltage of a first one of the energy storage devices, the controller sends a signal that causes a switch to connect the variable voltage power source with the first one of the energy storage devices. The controller then causes the output voltage of the variable voltage power source to continue increasing. When the output voltage is substantially equal to the initial voltage of a second one of the energy storage devices, the controller sends a signal that causes a switch to connect the variable voltage power source with the second one of the energy storage devices.

  14. accident analysis codes: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    accident analysis codes First Page Previous Page 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Next Page Last Page Topic Index 1 Analysis of accidents during...

  15. Cold Vacuum Drying (CVD) Facility Design Basis Accident Analysis Documentation

    SciTech Connect (OSTI)

    PIEPHO, M.G.

    1999-10-20T23:59:59.000Z

    This document provides the detailed accident analysis to support HNF-3553, Annex B, Spent Nuclear Fuel Project Final Safety Analysis Report, ''Cold Vacuum Drying Facility Final Safety Analysis Report (FSAR).'' All assumptions, parameters and models used to provide the analysis of the design basis accidents are documented to support the conclusions in the FSAR.

  16. accident analysis documentation: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    accident analysis documentation First Page Previous Page 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Next Page Last Page Topic Index 1 Analysis of accidents...

  17. Berkeley Lab Accident Statistics Through December 31, 2008

    E-Print Network [OSTI]

    Eisen, Michael

    1 Berkeley Lab Accident Statistics Through December 31, 2008 These slides are updated on a monthly Goal DART Goal 1.17 #12;8 LBNL vs DOE Contractor Rates Berkeley Lab Site Accident Rates 5.70 4.95 3

  18. accident proneness: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    accident proneness First Page Previous Page 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Next Page Last Page Topic Index 1 Accident proneness as an expression...

  19. accident analysis: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    accident analysis First Page Previous Page 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Next Page Last Page Topic Index 1 Analysis of accidents during flashing...

  20. accident atuacao da: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    accident atuacao da First Page Previous Page 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Next Page Last Page Topic Index 1 DIRECTORY OF ESReDA ACCIDENT...

  1. accident lofa analysis: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    accident lofa analysis First Page Previous Page 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Next Page Last Page Topic Index 1 MELCOR ACCIDENT ANALYSIS FOR...

  2. Berkeley Lab Accident Statistics Through November 30, 2008

    E-Print Network [OSTI]

    Eisen, Michael

    1 Berkeley Lab Accident Statistics Through November 30, 2008 These slides are updated on a monthly Rates Berkeley Lab Site Accident Rates 5.70 4.95 3.79 2.92 2.93 3.27 3.63 2.44 2.17 2.51 1.17 1.81 1

  3. accident precursor analysis: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    accident precursor analysis First Page Previous Page 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Next Page Last Page Topic Index 1 Analysis of accidents...

  4. aircraft accident victims: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    aircraft accident victims First Page Previous Page 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Next Page Last Page Topic Index 1 Cyclistes Victimes d'Accident...

  5. accident prone locations: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    accident prone locations First Page Previous Page 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Next Page Last Page Topic Index 1 Accident proneness as an...

  6. Berkeley Lab Accident Statistics Through November 30, 2009

    E-Print Network [OSTI]

    Eisen, Michael

    1 Berkeley Lab Accident Statistics Through November 30, 2009 These slides are updated on a monthly Contractor Rates Berkeley Lab Site Accident Rates 5.70 4.95 3.79 2.92 2.93 3.27 3.63 2.44 2.17 2.51 1.17 1

  7. accident severity: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    accident severity First Page Previous Page 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Next Page Last Page Topic Index 1 Accidents on the campus Severe...

  8. accident proneness prospect: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    accident proneness prospect First Page Previous Page 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Next Page Last Page Topic Index 1 Accident proneness as an...

  9. accident consequences health: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    accident consequences health First Page Previous Page 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Next Page Last Page Topic Index 1 HEALTH AND ACCIDENT...

  10. Berkeley Lab Accident Statistics Through August 31, 2008

    E-Print Network [OSTI]

    Eisen, Michael

    1 Berkeley Lab Accident Statistics Through August 31, 2008 These slides are updated on a monthly 1.17 #12;7 LBNL vs DOE Contractor Rates Berkeley Lab Site Accident Rates 5.70 4.95 3.79 2.92 2.93 3

  11. Berkeley Lab Accident Statistics Through April 30, 2010

    E-Print Network [OSTI]

    Eisen, Michael

    1 Berkeley Lab Accident Statistics Through April 30, 2010 These slides are updated on a monthly Berkeley Lab Site Accident Rates 5.70 4.95 3.79 2.92 2.93 3.27 3.63 2.44 2.17 2.51 1.17 1.81 1.28 1.65 1

  12. accident characteristics: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    accident characteristics First Page Previous Page 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Next Page Last Page Topic Index 1 guia accidents BSICA ...

  13. alternative accident sequences: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    alternative accident sequences First Page Previous Page 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Next Page Last Page Topic Index 1 Beyond Normal Accidents...

  14. Berkeley Lab Accident Statistics Through May 31, 2010

    E-Print Network [OSTI]

    Eisen, Michael

    1 Berkeley Lab Accident Statistics Through May 31, 2010 These slides are updated on a monthly basis DOE Contractor Rates Berkeley Lab Site Accident Rates 5.70 4.95 3.79 2.92 2.93 3.27 3.63 2.44 2.17 2

  15. Berkeley Lab Accident Statistics Through June 30, 2009

    E-Print Network [OSTI]

    Eisen, Michael

    1 Berkeley Lab Accident Statistics Through June 30, 2009 These slides are updated on a monthly Berkeley Lab Site Accident Rates 5.70 4.95 3.79 2.92 2.93 3.27 3.63 2.44 2.17 2.51 1.17 1.81 1.28 1.65 1

  16. Berkeley Lab Accident Statistics Through January 31, 2010

    E-Print Network [OSTI]

    Eisen, Michael

    1 Berkeley Lab Accident Statistics Through January 31, 2010 These slides are updated on a monthly Berkeley Lab Site Accident Rates 5.70 4.95 3.79 2.92 2.93 3.27 3.63 2.44 2.17 2.51 1.17 1.81 1.28

  17. accident types: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    accident types First Page Previous Page 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Next Page Last Page Topic Index 1 Risk Advisor for Car Accidents Javier...

  18. Berkeley Lab Accident Statistics Through October 31, 2009

    E-Print Network [OSTI]

    Eisen, Michael

    1 Berkeley Lab Accident Statistics Through October 31, 2009 These slides are updated on a monthly;8 LBNL vs DOE Contractor Rates Berkeley Lab Site Accident Rates 5.70 4.95 3.79 2.92 2.93 3.27 3.63 2.44 2

  19. accident compensation insurance: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    accident compensation insurance First Page Previous Page 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Next Page Last Page Topic Index 1 Group Accident...

  20. Berkeley Lab Accident Statistics Through September 30, 2008

    E-Print Network [OSTI]

    Eisen, Michael

    1 Berkeley Lab Accident Statistics Through September 30, 2008 These slides are updated on a monthly.17 #12;7 LBNL vs DOE Contractor Rates Berkeley Lab Site Accident Rates 5.70 4.95 3.79 2.92 2.93 3.27 3

  1. accident situation study: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    accident situation study First Page Previous Page 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Next Page Last Page Topic Index 1 Hypothetical Reactor Accident...

  2. accident exposure: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    accident exposure First Page Previous Page 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Next Page Last Page Topic Index 1 Estimating Pedestrian Accident...

  3. Berkeley Lab Accident Statistics Through April 30, 2009

    E-Print Network [OSTI]

    Eisen, Michael

    1 Berkeley Lab Accident Statistics Through April 30, 2009 These slides are updated on a monthly Berkeley Lab Site Accident Rates 5.70 4.95 3.79 2.92 2. 93 3.27 3.63 2.44 2.17 2.51 1.17 1.81 1.28 1.65 1

  4. accident sequence analyses: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    accident sequence analyses First Page Previous Page 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Next Page Last Page Topic Index 1 Analysing Aviation Accidents...

  5. accident insurance: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    accident insurance First Page Previous Page 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Next Page Last Page Topic Index 1 Group Accident Insurance Certificate...

  6. Berkeley Lab Accident Statistics Through December 31, 2010

    E-Print Network [OSTI]

    Eisen, Michael

    1 Berkeley Lab Accident Statistics Through December 31, 2010 These slides are updated on a monthly.17 #12;9 LBNL vs DOE Contractor Rates Berkeley Lab Site Accident Rates 5.70 4.95 3.79 2.92 2.93 3.27 3

  7. aircraft accident cases: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    accident cases First Page Previous Page 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Next Page Last Page Topic Index 1 HOW PAST LOSS OF CONTROL ACCIDENTS MAY...

  8. accident dosimetry systems: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    accident dosimetry systems First Page Previous Page 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Next Page Last Page Topic Index 1 A New Accident Model for...

  9. accident loca based: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    accident loca based First Page Previous Page 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Next Page Last Page Topic Index 1 A GIS based traffic accident data...

  10. LS-35 6 GeV Light Source Storage Ring Quadrupole and Sextupole...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1 shows the cross section of one-fourth of a storage ring quadru- pole magnet. The vacuum chamber outline is shown by the dashed line. A tapered pole is necessary to reduce the...

  11. BALLISTICS TESTING OF THE 9977 SHIPPING PACKAGE FOR STORAGE APPLICATIONS

    SciTech Connect (OSTI)

    Loftin, B.; Abramczyk, G.; Koenig, R.

    2012-06-06T23:59:59.000Z

    Radioactive materials are stored in a variety of locations throughout the DOE complex. At the Savannah River Site (SRS), materials are stored within dedicated facilities. Each of those facilities has a documented safety analysis (DSA) that describes accidents that the facility and the materials within it may encounter. Facilities at the SRS are planning on utilizing the certified Model 9977 Shipping Package as a long term storage package and one of these facilities required ballistics testing. Specifically, in order to meet the facility DSA, the radioactive materials (RAM) must be contained within the storage package after impact by a .223 caliber round. In order to qualify the Model 9977 Shipping Package for storage in this location, the package had to be tested under these conditions. Over the past two years, the Model 9977 Shipping Package has been subjected to a series of ballistics tests. The purpose of the testing was to determine if the 9977 would be suitable for use as a storage package at a Savannah River Site facility. The facility requirements are that the package must not release any of its contents following the impact in its most vulnerable location by a .223 caliber round. A package, assembled to meet all of the design requirements for a certified 9977 shipping configuration and using simulated contents, was tested at the Savannah River Site in March of 2011. The testing was completed and the package was examined. The results of the testing and examination are presented in this paper.

  12. Statistical evaluation of design-error related accidents

    SciTech Connect (OSTI)

    Ott, K.O.; Marchaterre, J.F.

    1980-01-01T23:59:59.000Z

    In a recently published paper (Campbell and Ott, 1979), a general methodology was proposed for the statistical evaluation of design-error related accidents. The evaluation aims at an estimate of the combined residual frequency of yet unknown types of accidents lurking in a certain technological system. Here, the original methodology is extended, as to apply to a variety of systems that evolves during the development of large-scale technologies. A special categorization of incidents and accidents is introduced to define the events that should be jointly analyzed. The resulting formalism is applied to the development of the nuclear power reactor technology, considering serious accidents that involve in the accident-progression a particular design inadequacy.

  13. REVIEW OF FAST FLUX TEST FACILITY (FFTF) FUEL EXPERIMENTS FOR STORAGE IN INTERIM STORAGE CASKS (ISC)

    SciTech Connect (OSTI)

    CHASTAIN, S.A.

    2005-10-24T23:59:59.000Z

    Appendix H, Section H.3.3.10.11 of the Final Safety Analysis Report (FSAR), provides the limits to be observed for fueled components authorized for storage in the Fast Flux Test Facility (FFTF) spent fuel storage system. Currently, the authorization basis allows standard driver fuel assemblies (DFA), as described in the FSAR Chapter 17, Section 17.5.3.1, to be stored provided decay power per assembly is {le} 250 watts, post-irradiation time is four years minimum, average assembly burn-up is 150,000 MWD/MTHM maximum and the pre-irradiation enrichment is 29.3% maximum (per H.3.3.10.11). In addition, driver evaluation (DE), core characterizer assemblies (CCA), and run-to-cladding-breach (RTCB) assemblies are included based on their similarities to a standard DFA. Ident-69 pin containers with fuel pins from these DFAs can also be stored. Section H.3.3.10.11 states that fuel types outside the specification criteria above will be addressed on a case-by-case basis. There are many different types of fuel and blanket experiments that were irradiated in the FFTF which now require offload to the spent fuel storage system. Two reviews were completed for a portion of these special type fuel components to determine if placement into the Core Component Container (CCC)/Interim Storage Cask (ISC) would require any special considerations or changes to the authorization basis. Project mission priorities coupled with availability of resources and analysts prevented these evaluations from being completed as a single effort. Areas of review have included radiological accident release consequences, radiological shielding adequacy, criticality safety, thermal limits, confinement, and stress. The results of these reviews are available in WHC-SD-FF-RPT-005, Rev. 0 and 1, ''Review of FFTF Fuel Experiments for Storage at ISA'', (Reference I), which subsequently allowed a large portion of these components to be included in the authorization basis (Table H.3.3-21). The report also identified additional components and actions in Section 3.0 and Table 3 that require further evaluation. The purpose of this report is to evaluate another portion of the remaining inventory (i.e., delayed neutron signal fuel, blanket assemblies, highly enriched assemblies, newly loaded Ident-69 pin containers, and returned fuel) to ensure it can be safely off loaded to the FFTF spent fuel storage system.

  14. A Technique for Showing Causal Arguments in Accident Reports C. W. Johnson; University of Glasgow; Glasgow, Scotland, UK

    E-Print Network [OSTI]

    Johnson, Chris

    A Technique for Showing Causal Arguments in Accident Reports C. W. Johnson; University of Glasgow: causes, accidents, logic, argument, visualization, road traffic accidents Abstract In the prototypical accident report, specific findings, particularly those related to causes and contributing factors

  15. Storage Ring Parameters

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del Sol HomeFacebookScholarshipSpiralingSecurity217,354 217,814 218,494StorageStorage

  16. Spent-fuel-storage alternatives

    SciTech Connect (OSTI)

    Not Available

    1980-01-01T23:59:59.000Z

    The Spent Fuel Storage Alternatives meeting was a technical forum in which 37 experts from 12 states discussed storage alternatives that are available or are under development. The subject matter was divided into the following five areas: techniques for increasing fuel storage density; dry storage of spent fuel; fuel characterization and conditioning; fuel storage operating experience; and storage and transport economics. Nineteen of the 21 papers which were presented at this meeting are included in this Proceedings. These have been abstracted and indexed. (ATT)

  17. MELCOR accident analysis for ARIES-ACT

    SciTech Connect (OSTI)

    Paul W. Humrickhouse; Brad J. Merrill

    2012-08-01T23:59:59.000Z

    We model a loss of flow accident (LOFA) in the ARIES-ACT1 tokamak design. ARIES-ACT1 features an advanced SiC blanket with LiPb as coolant and breeder, a helium cooled steel structural ring and tungsten divertors, a thin-walled, helium cooled vacuum vessel, and a room temperature water-cooled shield outside the vacuum vessel. The water heat transfer system is designed to remove heat by natural circulation during a LOFA. The MELCOR model uses time-dependent decay heats for each component determined by 1-D modeling. The MELCOR model shows that, despite periodic boiling of the water coolant, that structures are kept adequately cool by the passive safety system.

  18. Graphite Oxidation Simulation in HTR Accident Conditions

    SciTech Connect (OSTI)

    El-Genk, Mohamed

    2012-10-19T23:59:59.000Z

    Massive air and water ingress, following a pipe break or leak in steam-generator tubes, is a design-basis accident for high-temperature reactors (HTRs). Analysis of these accidents in both prismatic and pebble bed HTRs requires state-of-the-art capability for predictions of: 1) oxidation kinetics, 2) air ?helium gas mixture stratification and diffusion into the core following the depressurization, 3) transport of multi-species gas mixture, and 4) graphite corrosion. This project will develop a multi-dimensional, comprehensive oxidation kinetics model of graphite in HTRs, with diverse capabilities for handling different flow regimes. The chemical kinetics/multi-species transport model for graphite burning and oxidation will account for temperature-related changes in the properties of graphite, oxidants (O2, H2O, CO), reaction products (CO, CO2, H2, CH4) and other gases in the mixture (He and N2). The model will treat the oxidation and corrosion of graphite in geometries representative of HTR core component at temperatures of 900°C or higher. The developed chemical reaction kinetics model will be user-friendly for coupling to full core analysis codes such as MELCOR and RELAP, as well as computational fluid dynamics (CFD) codes such as CD-adapco. The research team will solve governing equations for the multi-dimensional flow and the chemical reactions and kinetics using Simulink, an extension of the MATLAB solver, and will validate and benchmark the model's predictions using reported experimental data. Researchers will develop an interface to couple the validated model to a commercially available CFD fluid flow and thermal-hydraulic model of the reactor , and will perform a simulation of a pipe break in a prismatic core HTR, with the potential for future application to a pebble-bed type HTR.

  19. Sandia National Laboratories: Energy Storage Systems

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sandian Spoke at the New York Energy Storage Expo On December 12, 2014, in Energy, Energy Storage, Energy Storage Systems, Grid Integration, Infrastructure Security, News, News &...

  20. AQUIFER THERMAL ENERGY STORAGE-A SURVEY

    E-Print Network [OSTI]

    Tsang, Chin Fu

    2012-01-01T23:59:59.000Z

    High temperature underground thermal energy storage, inProceedings, Thermal Energy Storage in Aquifers Workshop:underground thermal energy storage, in ATES newsletter:

  1. THERMAL ENERGY STORAGE IN AQUIFERS WORKSHOP

    E-Print Network [OSTI]

    Authors, Various

    2011-01-01T23:59:59.000Z

    Survey of Thermal Energy Storage in Aquifers Coupled withconcept of thermal energy storage in aquifers was suggestedLow Temperature Thermal Energy Storage Program of Oak Ridge

  2. Sandia National Laboratories: DOE International Energy Storage...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    International Energy Storage Database Has Logged 420 Energy Storage Projects Worldwide with 123 GW of Installed Capacity DOE International Energy Storage Database Has Logged 420...

  3. Distributed Generation with Heat Recovery and Storage

    E-Print Network [OSTI]

    Siddiqui, Afzal S.; Marnay, Chris; Firestone, Ryan M.; Zhou, Nan

    2008-01-01T23:59:59.000Z

    tiles for thermal energy storage,” working paper, Colorado1991). Wallboard with latent heat storage for passive solarR. (2000). Thermal energy storage for space cooling, Pacific

  4. Sandia National Laboratories: Electricity Storage Handbook

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Electricity Storage Handbook Published On July 31, 2013, in Energy, Energy Assurance, Energy Storage, Energy Storage Systems, Energy Surety, Grid Integration, Infrastructure...

  5. Nanostructured Materials for Energy Generation and Storage

    E-Print Network [OSTI]

    Khan, Javed Miller

    2012-01-01T23:59:59.000Z

    for Electrochemical Energy Storage Nanostructured ElectrodesCells for Energy Storage and Generation . . . . . . . . . .batteries and their energy storage efficiency. vii Contents

  6. NERSC Frontiers in Advanced Storage Technology Project

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Storage R&D Frontiers in Advanced Storage Technologies (FAST) project Working with vendors to develop new functionality in storage technologies generally not yet available to...

  7. THERMAL ENERGY STORAGE IN AQUIFERS WORKSHOP

    E-Print Network [OSTI]

    Authors, Various

    2011-01-01T23:59:59.000Z

    Survey of Thermal Energy Storage in Aquifers Coupled withAnnual Thermal Energy Storage Contractors' InformationLarge-Scale Thermal Energy Storage for Cogeneration and

  8. Nanostructured Materials for Energy Generation and Storage

    E-Print Network [OSTI]

    Khan, Javed Miller

    2012-01-01T23:59:59.000Z

    of new energy generation and storage technologies arenew energy generation and storage technologies is importantBased Energy Storage and Generation Technologies The world

  9. Water Heaters (Storage Oil) | Department of Energy

    Energy Savers [EERE]

    Oil) Water Heaters (Storage Oil) Water Heater, Storage Oil - v1.0.xlsx More Documents & Publications Water Heaters (Tankless Electric) Water Heaters (Storage Electric)...

  10. AQUIFER THERMAL ENERGY STORAGE-A SURVEY

    E-Print Network [OSTI]

    Tsang, Chin Fu

    2012-01-01T23:59:59.000Z

    1978, High temperature underground thermal energy storage,in Proceedings, Thermal Energy Storage in Aquifers Workshop:High temperature underground thermal energy storage, in ATES

  11. Evaluation of severe accident risks: Quantification of major input parameters: MAACS (MELCOR Accident Consequence Code System) input

    SciTech Connect (OSTI)

    Sprung, J.L.; Jow, H-N (Sandia National Labs., Albuquerque, NM (USA)) [Sandia National Labs., Albuquerque, NM (USA); Rollstin, J.A. (GRAM, Inc., Albuquerque, NM (USA)) [GRAM, Inc., Albuquerque, NM (USA); Helton, J.C. (Arizona State Univ., Tempe, AZ (USA)) [Arizona State Univ., Tempe, AZ (USA)

    1990-12-01T23:59:59.000Z

    Estimation of offsite accident consequences is the customary final step in a probabilistic assessment of the risks of severe nuclear reactor accidents. Recently, the Nuclear Regulatory Commission reassessed the risks of severe accidents at five US power reactors (NUREG-1150). Offsite accident consequences for NUREG-1150 source terms were estimated using the MELCOR Accident Consequence Code System (MACCS). Before these calculations were performed, most MACCS input parameters were reviewed, and for each parameter reviewed, a best-estimate value was recommended. This report presents the results of these reviews. Specifically, recommended values and the basis for their selection are presented for MACCS atmospheric and biospheric transport, emergency response, food pathway, and economic input parameters. Dose conversion factors and health effect parameters are not reviewed in this report. 134 refs., 15 figs., 110 tabs.

  12. NV Energy Electricity Storage Valuation

    SciTech Connect (OSTI)

    Ellison, James F.; Bhatnagar, Dhruv; Samaan, Nader A.; Jin, Chunlian

    2013-06-30T23:59:59.000Z

    This study examines how grid-level electricity storage may benet the operations of NV Energy in 2020, and assesses whether those benets justify the cost of the storage system. In order to determine how grid-level storage might impact NV Energy, an hourly production cost model of the Nevada Balancing Authority (\\BA") as projected for 2020 was built and used for the study. Storage facilities were found to add value primarily by providing reserve. Value provided by the provision of time-of-day shifting was found to be limited. If regulating reserve from storage is valued the same as that from slower ramp rate resources, then it appears that a reciprocating engine generator could provide additional capacity at a lower cost than a pumped storage hydro plant or large storage capacity battery system. In addition, a 25-MW battery storage facility would need to cost $650/kW or less in order to produce a positive Net Present Value (NPV). However, if regulating reserve provided by storage is considered to be more useful to the grid than that from slower ramp rate resources, then a grid-level storage facility may have a positive NPV even at today's storage system capital costs. The value of having storage provide services beyond reserve and time-of-day shifting was not assessed in this study, and was therefore not included in storage cost-benefit calculations.

  13. Rubber linings answer to many problems

    SciTech Connect (OSTI)

    Mehra, L. [Quality Linings Co., Aurora, CO (United States)

    1998-12-31T23:59:59.000Z

    The uses of rubber linings in different fields industries are discussed.The physical properties of rubber both natural and synthetic rubber are listed and their importance is evaluated. The aging of rubber is discussed in detail, including effects of temperature on aging of rubber. By virtue of its inherent elasticity and chemical resistance, rubber linings have found many uses in the protection of mining equipment, water treatment tanks and vessels, flue gas desulfurization equipment in power plants and varied process and storage vessels in chemical industries. Rubber has found extensive use in civil engineering field as expansion joints and bladders in dams. Electrical resistance of rubber is useful for its application as an insulating material. Rubber is chemically resistant to acids, alkalies and many salt solutions. Rubber linings are therefore used for protection of steel against these acids, alkalies or salt solutions. The extreme elasticity of rubber has been found useful in its application as a lining material in areas subject to high abrasion. Frequently rubber linings are the linings of choice when a combination of abrasion and chemical attack are to be protected against. Constantly, new formulations of rubber lining compounds are being developed just as new chemical processes are being made. The flexibility of compounding and the relative ease of putting layers of different rubber formulations together in multilayered formulations of rubber lining compounds is leading to new uses of this lining material.

  14. NGLW RCRA Storage Study

    SciTech Connect (OSTI)

    R. J. Waters; R. Ochoa; K. D. Fritz; D. W. Craig

    2000-06-01T23:59:59.000Z

    The Idaho Nuclear Technology and Engineering Center (INTEC) at the Idaho National Engineering and Environmental Laboratory contains radioactive liquid waste in underground storage tanks at the INTEC Tank Farm Facility (TFF). INTEC is currently treating the waste by evaporation to reduce the liquid volume for continued storage, and by calcination to reduce and convert the liquid to a dry waste form for long-term storage in calcine bins. Both treatment methods and activities in support of those treatment operations result in Newly Generated Liquid Waste (NGLW) being sent to TFF. The storage tanks in the TFF are underground, contained in concrete vaults with instrumentation, piping, transfer jets, and managed sumps in case of any liquid accumulation in the vault. The configuration of these tanks is such that Resource Conservation and Recovery Act (RCRA) regulations apply. The TFF tanks were assessed several years ago with respect to the RCRA regulations and they were found to be deficient. This study considers the configuration of the current tanks and the RCRA deficiencies identified for each. The study identifies four potential methods and proposes a means of correcting the deficiencies. The cost estimates included in the study account for construction cost; construction methods to minimize work exposure to chemical hazards, radioactive contamination, and ionizing radiation hazards; project logistics; and project schedule. The study also estimates the tank volumes benefit associated with each corrective action to support TFF liquid waste management planning.

  15. Hydrogen Storage CODES & STANDARDS

    E-Print Network [OSTI]

    automotive start-up. · Air/Thermal/Water Management ­ improved air systems, high temperature membranes, heat to pump Hydrogen Fuel/ Storage/ Infrastructure $45/kW (2010) $30kW (2015) 325 W/kg 220 W/L 60% (hydrogen system Component Air management, sensors, MEA's, membranes, Bipolar Plates, fuel processor reactor zones

  16. Storage Ring | Advanced Photon Source

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The Electron Storage Ring The 7-GeV electrons are injected into the 1104-m-circumference storage ring, a circle of more than 1,000 electromagnets and associated equipment, located...

  17. Chit-based Remote Storage

    E-Print Network [OSTI]

    Paluska, Justin Mazzola

    We propose a model for reliable remote storage founded on contract law. Consumers submit their bits to storage providers in exchange for a chit. A chit is a cryptographically secure, verifiable contract between a consumer ...

  18. Gaseous and Liquid Hydrogen Storage

    Broader source: Energy.gov [DOE]

    Today's state of the art for hydrogen storage includes 5,000- and 10,000-psi compressed gas tanks and cryogenic liquid hydrogen tanks for on-board hydrogen storage.

  19. Silo Storage Preconceptual Design

    SciTech Connect (OSTI)

    Stephanie L. Austad; Patrick W. Bragassa; Kevin M Croft; David S Ferguson; Scott C Gladson; Annette L Shafer; John H Weathersby

    2012-09-01T23:59:59.000Z

    The National Nuclear Security Administration (NNSA) has a need to develop and field a low-cost option for the long-term storage of a variety of radiological material. The storage option’s primary requirement is to provide both environmental and physical protection of the materials. Design criteria for this effort require a low initial cost and minimum maintenance over a 50-year design life. In 1999, Argonne National Laboratory-West was tasked with developing a dry silo storage option for the BN-350 Spent Fuel in Aktau Kazakhstan. Argon’s design consisted of a carbon steel cylinder approximately 16 ft long, 18 in. outside diameter and 0.375 in. wall thickness. The carbon steel silo was protected from corrosion by a duplex coating system consisting of zinc and epoxy. Although the study indicated that the duplex coating design would provide a design life well in excess of the required 50 years, the review board was concerned because of the novelty of the design and the lack of historical use. In 2012, NNSA tasked Idaho National Laboratory (INL) with reinvestigating the silo storage concept and development of alternative corrosion protection strategies. The 2012 study, “Silo Storage Concepts, Cathodic Protection Options Study” (INL/EST-12-26627), concludes that the option which best fits the design criterion is a passive cathotic protection scheme, consisting of a carbon steel tube coated with zinc or a zinc-aluminum alloy encapsulated in either concrete or a cement grout. The hot dipped zinc coating option was considered most efficient, but the flame-sprayed option could be used if a thicker zinc coating was determined to be necessary.

  20. Webinar: Hydrogen Storage Materials Requirements

    Broader source: Energy.gov [DOE]

    Video recording and text version of the webinar titled, Hydrogen Storage Materials Requirements, originally presented on June 25, 2013.

  1. The Power of Energy Storage

    E-Print Network [OSTI]

    Sadoulet, Elisabeth

    The Power of Energy Storage How to Increase Deployment in California to Reduce Greenhouse Gas;1Berkeley Law \\ UCLA Law The Power of Energy Storage: How to Increase Deployment in California to Reduce Greenhouse Gas Emissions Executive Summary: Expanding Energy Storage in California Sunshine and wind, even

  2. HIERARCHICAL STORAGE SYSTEMS FOR INTERACTIVE

    E-Print Network [OSTI]

    Tobagi, Fouad

    HIERARCHICAL STORAGE SYSTEMS FOR INTERACTIVE VIDEO­ON­DEMAND Shueng­Han Gary Chan and Fouad A; Hierarchical Storage Systems for Interactive Video­On­Demand Shueng­Han Gary Chan and Fouad A. Tobagi Technical­9040 pubs@shasta.stanford.edu Abstract On­demand video servers based on hierarchical storage systems

  3. GETTING CARBON CAPTURE AND STORAGE

    E-Print Network [OSTI]

    Haszeldine, Stuart

    GETTING CARBON CAPTURE AND STORAGE TECHNOLOGIES TO MARKET BREAKING THE DEADLOCK Report of a Science: Carbon Capture and Storage © OECD/IEA 2009, fig. 1, p. 6 Figures 2 and 3 reprinted with permission from `UK Carbon storage and capture, where is it?' by Stuart Haszeldine, Professor of Carbon Capture

  4. Normal matter storage of antiprotons

    SciTech Connect (OSTI)

    Campbell, L.J.

    1987-01-01T23:59:59.000Z

    Various simple issues connected with the possible storage of anti p in relative proximity to normal matter are discussed. Although equilibrium storage looks to be impossible, condensed matter systems are sufficiently rich and controllable that nonequilibrium storage is well worth pursuing. Experiments to elucidate the anti p interactions with normal matter are suggested. 32 refs.

  5. Methods for Detector Placement and Analysis of Criticality Accident Alarm Systems

    SciTech Connect (OSTI)

    Peplow, Douglas E. [ORNL] [ORNL; Wetzel, Larry [Babcock & Wilcox Nuclear Operations Group Inc.] [Babcock & Wilcox Nuclear Operations Group Inc.

    2012-01-01T23:59:59.000Z

    Determining the optimum placement to minimize the number of detectors for a criticality accident alarm system (CAAS) in a large manufacturing facility is a complex problem. There is typically a target for the number of detectors that can be used over a given zone of the facility. A study to optimize detector placement typically begins with some initial guess at the placement of the detectors and is followed by either predictive calculations of accidents at specific locations or adjoint calculations based on preferred detector locations. Within an area of a facility, there may be a large number of potential criticality accident sites. For any given placement of the detectors, the list of accident sites can be reduced to a smaller number of locations at which accidents may be difficult for detectors to detect. Developing the initial detector placement and determining the list of difficult accident locations are both based on the practitioner's experience. Simulations following fission particles released from an accident location are called 'forward calculations.' These calculations can be used to answer the question 'where would an alarm be triggered?' by an accident at a specified location. Conversely, 'adjoint calculations' start at a detector site using the detector response function as a source and essentially run in reverse. These calculations can be used to answer the question 'where would an accident be detected?' by a specified detector location. If the number of accidents, P, is much less than the number of detectors, Q, then forward simulations may be more convenient and less time-consuming. If Q is large or the detectors are not placed yet, then a mesh tally of dose observed by a detector at any location must be computed over the entire zone. If Q is much less than P, then adjoint calculations may be more efficient. Adjoint calculations employing a mesh tally can be even more advantageous because they do not rely on a list of specific difficult-to-detect accident sites, which may not have included every possible accident location. Analog calculations (no biasing) simply follow particles naturally. For sparse buildings and line-of-sight calculations, analog Monte Carlo (MC) may be adequate. For buildings with internal walls or large amounts of heavy equipment (dense geometry), variance reduction may be required. Calculations employing the CADIS method use a deterministic calculation to create an importance map and a matching biased source distribution that optimize the final MC to quickly calculate one specific tally. Calculations employing the FW-CADIS method use two deterministic calculations (one forward and one adjoint) to create an importance map and a matching biased source distribution that are designed to make the MC calculate a mesh tally with more uniform uncertainties in both high-dose and low-dose areas. Depending on the geometry of the problem, the number of detectors, and the number of accident sites, different approaches to CAAS placement studies can be taken. These are summarized in Table I. SCALE 6.1 contains the MAVRIC sequence, which can be used to perform any of the forward-based approaches outlined in Table I. For analog calculations, MAVRIC simply calls the Monaco MC code. For CADIS and FW-CADIS, MAVRIC uses the Denovo discrete ordinates (SN) deterministic code to generate the importance map and biased source used by Monaco. An adjoint capability is currently being added to Monaco and should be available in the next release of SCALE. An adjoint-based approach could be performed with Denovo alone - although fine meshes, large amounts of memory, and long computation times may be required to obtain accurate solutions. Coarse-mesh SN simulations could be employed for adjoint-based scoping studies until the adjoint capability in Monaco is complete. CAAS placement studies, especially those dealing with mesh tallies, require some extra utilities to aid in the analysis. Detectors must receive a minimum dose rate in order to alarm; therefore, a simple yes/no plot could be more useful to the analyst t

  6. Above Ground Storage Tank (AST) Inspection Form

    E-Print Network [OSTI]

    Pawlowski, Wojtek

    Above Ground Storage Tank (AST) Inspection Form Petroleum Bulk Storage Form Facility Name.ehs.cornell.edu/env/bulk-material-storage/petroleum-bulk-storage/Documents/AST_Inspection_Form.pdf #12;

  7. Panel 4, Hydrogen Energy Storage Policy Considerations

    Broader source: Energy.gov (indexed) [DOE]

    Energy Storage Policy Considerations Hydrogen Storage Workshop Jeffrey Reed Southern California Gas Company May 15, 2014 0 Methane is a Great Storage Medium 1 SoCalGas' storage...

  8. Central Storage for Unsealed Radioactive Materials

    E-Print Network [OSTI]

    Pawlowski, Wojtek

    Central Storage for Unsealed Radioactive Materials Radiation Safety Form PERMIT HOLDER NAME:______________________________ PHONE #: ____________________________ ADDRESS/DEPT.: _______________________________ Storage Location: Refrigerator Freezer Dry Storage List each item being transferred to storage separately: EH&S LAB WIPE SURVEY

  9. The Accident at Fukushima: What Happened?

    SciTech Connect (OSTI)

    Fujie, Takao [Japan Nuclear Technology Institute - JANTI (Japan)

    2012-07-01T23:59:59.000Z

    At 2:46 PM, on the coast of the Pacific Ocean in eastern Japan, people were spending an ordinary afternoon. The earthquake had a magnitude of 9.0, the fourth largest ever recorded in the world. Avery large number of aftershocks were felt after the initial earthquake. More than 100 of them had a magnitude of over 6.0. There were very few injured or dead at this point. The large earthquake caused by this enormous crustal deformation spawned a rare and enormous tsunami that crashed down 30-40 minutes later. It easily cleared the high levees, washing away cars and houses and swallowing buildings of up to three stories in height. The largest tsunami reading taken from all regions was 40 meters in height. This tsunami reached the West Coast of the United States and the Pacific coast of South America, with wave heights of over two meters. It was due to this tsunami that the disaster became one of a not imaginable scale, which saw the number of dead or missing reach about 20,000 persons. The enormous tsunami headed for 15 nuclear power plants on the Pacific coast, but 11 power plants withstood the tsunami and attained cold shutdown. The flood height of the tsunami that struck each power station ranged to a maximum of 15 meters. The Fukushima Daiichi Nuclear Power Plant Units experienced the largest and the cores of three reactors suffered meltdown. As a result, more than 160,000 residents were forced to evacuate, and are still living in temporary accommodation. The main focus of this presentation is on what happened at the Fukushima Daiichi, and how station personnel responded to the accident, with considerable international support. A year after the Fukushima Daiichi accident, Japan is in the process of leveraging the lessons learned from the accident to further improve the safety of nuclear power facilities and regain the trust of society. In this connection, not only international organizations, including IAEA, and WANO, but also governmental organizations and nuclear industry representatives from various countries, have been evaluating what happened at Fukushima Daiichi. Support from many countries has contributed to successfully stabilizing the Fukushima Daiichi Nuclear Power Station. International cooperation is required as Japan started along the long road to decommissioning the reactors. Such cooperation with the international community would achieve the decommissioning of the damaged reactors. Finally, recovery plans by the Japanese government to decontaminate surrounding regions have been started in order to get residents back to their homes as early as possible. Looking at the world's nuclear power industry, there are currently approximately 440 reactors in operation and 60 under construction. Despite the dramatic consequences of the Fukushima Daiichi catastrophe it is expected that the importance of nuclear power generation will not change in the years to come. Newly accumulated knowledge and capabilities must be passed on to the next generation. This is the duty put upon us and which is one that we must embrace.

  10. Beam line design for synchrotron spectroscopy in the VUV

    SciTech Connect (OSTI)

    Howells, M R

    1980-01-01T23:59:59.000Z

    The character of the radiation source provided by an electron storage ring is briefly reviewed from the point of view of utilization for VUV spectroscopy. The design of beam line components is then considered with special reference to the problems of contamination of optical surfaces and vacuum protection. The issues involved in designing mirrors for use with storage rings are considered with emphasis on the questions of power dissipation, image quality and materials selection.

  11. Sandia National Laboratories: Energy Storage Systems

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Reserve University On January 28, 2014, in Computational Modeling & Simulation, Energy, Energy Storage, Energy Storage Systems, Infrastructure Security, Materials Science,...

  12. Sandia National Laboratories: Energy Storage Systems

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    in Center for Infrastructure Research and Innovation (CIRI), Energy, Energy Assurance, Energy Storage, Energy Storage Systems, Facilities, Infrastructure Security, Materials...

  13. Project Profile: Thermochemical Storage with Anhydrous Ammonia...

    Office of Environmental Management (EM)

    Storage with Anhydrous Ammonia: Optimizing the Synthesis Reactor for Direct Production of Supercritical Steam Project Profile: Thermochemical Storage with Anhydrous...

  14. THERMAL ENERGY STORAGE IN AQUIFERS WORKSHOP

    E-Print Network [OSTI]

    Authors, Various

    2011-01-01T23:59:59.000Z

    1975. Underground Storage of Treated Water: A Field Test.1975. "Underground Storage of Treated Water: A Field Test,"

  15. Hydrogen Compression, Storage, and Dispensing Cost Reduction...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Compression, Storage, and Dispensing Cost Reduction Workshop Addendum Hydrogen Compression, Storage, and Dispensing Cost Reduction Workshop Addendum Document states additional...

  16. Combinatorial Approaches for Hydrogen Storage Materials (presentation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Approaches for Hydrogen Storage Materials (presentation) Combinatorial Approaches for Hydrogen Storage Materials (presentation) Presentation on NIST Combinatorial Methods at the...

  17. Storage depot for radioactive material

    DOE Patents [OSTI]

    Szulinski, Milton J. (Richland, WA)

    1983-01-01T23:59:59.000Z

    Vertical drilling of cylindrical holes in the soil, and the lining of such holes, provides storage vaults called caissons. A guarded depot is provided with a plurality of such caissons covered by shielded closures preventing radiation from penetrating through any linear gap to the atmosphere. The heat generated by the radioactive material is dissipated through the vertical liner of the well into the adjacent soil and thus to the ground surface so that most of the heat from the radioactive material is dissipated into the atmosphere in a manner involving no significant amount of biologically harmful radiation. The passive cooling of the radioactive material without reliance upon pumps, personnel, or other factor which might fail, constitutes one of the most advantageous features of this system. Moreover this system is resistant to damage from tornadoes or earthquakes. Hermetically sealed containers of radioactive material may be positioned in the caissons. Loading vehicles can travel throughout the depot to permit great flexibility of loading and unloading radioactive materials. Radioactive material can be shifted to a more closely spaced caisson after ageing sufficiently to generate much less heat. The quantity of material stored in a caisson is restricted by the average capacity for heat dissipation of the soil adjacent such caisson.

  18. Microsoft Word - 2015.06.22 - Report to Congress - Accident Tolerant...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ROADMAP: DEVELOPMENT OF LWR FUELS WITH ENHANCED ACCIDENT TOLERANCE Page i Development of Light Water...

  19. Analysing Aviation Accidents using WB-Analysis An Application for Multimodal Reasoning

    E-Print Network [OSTI]

    Moeller, Ralf

    Analysing Aviation Accidents using WB-Analysis An Application://www.rvs.uni-bielefeld.de We describe our ongoing work in accident analysis. Accident reports should tell* * us at least what the accident was and what the critical events were. A third requirement th* *ey should fulfil is to explain

  20. RESEARCH FOUNDATION -STATE UNIVERSITY OF NEW YORK REPORT OF ACCIDENT OR INJURY

    E-Print Network [OSTI]

    Suzuki, Masatsugu

    RESEARCH FOUNDATION - STATE UNIVERSITY OF NEW YORK REPORT OF ACCIDENT OR INJURY (OTHER THAN A MOTOR VEHICLE ACCIDENT) Revised: July 2008 1. Date and T ime of accident: Date: T ime: 2. Date of Report: 3. T o be completed by Safety Supervisor: YEAR: NO.: SEQUENCE: FILE ID: 4. Did accident involve personal injury? Yes

  1. INTRODUCTION OF FREQUENCY IN FRANCE FOLLOWING THE AZF ACCIDENT Clment LENOBLE*

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    INTRODUCTION OF FREQUENCY IN FRANCE FOLLOWING THE AZF ACCIDENT Clément LENOBLE* , Clarisse DURAND** * INERIS, Accident risks division, Parc Technologique Alata BP2, F-60550 Verneuil-en-Halatte ** French been consecutive to industrial accidents. Two years after the industrial accident of AZF (French

  2. Monthly Theme OARS January 2009 Report an Accident / Incident / Near Miss

    E-Print Network [OSTI]

    Calgary, University of

    Monthly Theme ­ OARS ­ January 2009 Report an Accident / Incident / Near Miss Online Accident Reporting System (OARS) debuts January 2009 EH&S has a NEW online system to report any accident or incident that happens at the University. The web- based reporting system is called OARS -- Online Accident Reporting

  3. Nanoscale data storage

    E-Print Network [OSTI]

    J. C. Li

    2007-01-29T23:59:59.000Z

    The object of this article is to review the development of ultrahigh-density, nanoscale data storage, i.e., nanostorage. As a fundamentally new type of storage system, the recording mechanisms of nanostorage may be completely different to those of the traditional devices. Currently, two types of molecules are being studied for potential application in nanostorage. One is molecular electronic elements including molecular wires, rectifiers, switches, and transistors. The other approach employs nanostructured materials such as nanotubes, nanowires, and nanoparticles. The challenges for nanostorage are not only the materials, ultrahigh data-densities, fabrication-costs, device operating temperatures and large-scale integration, but also the development of the physical principles and models. There are already some breakthroughs obtained, but it is still unclear what kind of nanostorage systems can ultimately replace the current silicon based transistors. A promising candidate may be a molecular-nanostructure hybrid device with sub-5 nm dimensions.

  4. Superconducting magnetic energy storage

    SciTech Connect (OSTI)

    Hassenzahl, W.

    1988-08-01T23:59:59.000Z

    Recent programmatic developments in Superconducting Magnetic Energy Storage (SMES) have prompted renewed and widespread interest in this field. In mid 1987 the Defense Nuclear Agency, acting for the Strategic Defense Initiative Office, issued a request for proposals for the design and construction of SMES Engineering Test Model (ETM). Two teams, one led by Bechtel and the other by Ebasco, are now engaged in the first phase of the development of a 10 to 20 MWhr ETM. This report presents the rationale for energy storage on utility systems, describes the general technology of SMES, and explains the chronological development of the technology. The present ETM program is outlined; details of the two projects for ETM development are described in other papers in these proceedings. The impact of high T/sub c/ materials on SMES is discussed. 69 refs., 3 figs., 3 tabs.

  5. Accidents, engineering and history at NASA: 1967-2003

    E-Print Network [OSTI]

    Brown, Alexander F. G. (Alexander Frederic Garder), 1970-

    2009-01-01T23:59:59.000Z

    The manned spaceflight program of the National Aeronautics and Space Administration (NASA) has suffered three fatal accidents: one in the Apollo program and two in the Space Transportation System (the Shuttle). These were ...

  6. accident hydrologic analysis: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (SFHS) is a non information, contact: - Neil JohnsonMWH - Jayantha ObeysekeraSFWMD - Mike SukopFIU - Chris PetersCH2M HILL Sukop, Mike 291 HOW TO REPORT AN ACCIDENT,...

  7. Type B Accident Investigation Board Report on the Head Injury...

    Office of Environmental Management (EM)

    on the Head Injury to a Miner at the Waste Isolation Pilot Plant, Carlsbad, New Mexico - August 25, 2004 Type B Accident Investigation Board Report on the Head Injury to a Miner at...

  8. Type B Accident Investigation Of The February 25, 2009 Injury...

    Energy Savers [EERE]

    To A Passenger In An Electric Cart At The Waste Isolation Pilot Plant, Carlsbad, New Mexico Type B Accident Investigation Of The February 25, 2009 Injury To A Passenger In An...

  9. accident consequence code: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    MACPISA-CANDU (more) Pohl, Daniel J. 2009-01-01 5 Validation of severe accident codes against Phebus FP for plant applications: status of the PHEBEN2 project CiteSeer...

  10. A STAMP model of the Überlingen aircraft collision accident

    E-Print Network [OSTI]

    Wong, Brian, 1982 Nov 11-

    2004-01-01T23:59:59.000Z

    STAMP is a method for evaluating accidents that is based on systems theory. It departs from traditional event chain models that tend to focus on human errors instead of the goals and motives that triggered the errors. The ...

  11. Modeling control room crews for accident sequence analysis

    E-Print Network [OSTI]

    Huang, Y. (Yuhao)

    1991-01-01T23:59:59.000Z

    This report describes a systems-based operating crew model designed to simulate the behavior of an nuclear power plant control room crew during an accident scenario. This model can lead to an improved treatment of potential ...

  12. accidents traffic: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    specifically, three distinct studies (more) OShields, Lara Lynn 2007-01-01 2 Does Daylight Savings Time Affect Traffic Accidents? Texas A&M University - TxSpace Summary: This...

  13. Type B Accident Investigation of the January 10, 2006, Flash...

    Office of Environmental Management (EM)

    January 10, 2006, Flash Fire and Injury at the Savannah River National Laboratory Type B Accident Investigation of the January 10, 2006, Flash Fire and Injury at the Savannah River...

  14. Response of Soviet VVER-440 accident localization systems to overpressurization

    SciTech Connect (OSTI)

    Kulak, R.F.; Fiala, C.; Sienicki, J.J.

    1989-01-01T23:59:59.000Z

    The Soviet designed VVER-440 model V230 and VVER-440 model V213 reactors do not use full containments to mitigate the effects of accidents. Instead, these VVER-440 units employ a sealed set of interconnected compartments, collectively called the accident localization system (ALS), to reduce the release of radionuclides to the atmosphere during accidents. Descriptions of the VVER accident localization structures may be found in the report DOE NE-0084. The objective of this paper is to evaluate the structural integrity of the VVER-440 ALS at the Soviet design pressure, and to determine their response to pressure loadings beyond the design value. Complex, three-dimensional, nonlinear, finite element models were developed to represent the major structural components of the localization systems of the VVER-440 models V230 and V213. The interior boundary of the localization system was incrementally pressurized in the calculations until the prediction of gross failure. 6 refs., 9 figs.

  15. Accident Investigation of the February 5, 2014, Underground Salt...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    5, 2014, Underground Salt Haul Truck Fire at the Waste Isolation Pilot Plant, Carlsbad NM Accident Investigation of the February 5, 2014, Underground Salt Haul Truck Fire at the...

  16. Type B Accident Investigation Board Report of the Savannah River...

    Office of Environmental Management (EM)

    Savannah River Site Hand Injury at the Salt Waste Processing Facility on October 6, 2009 Type B Accident Investigation Board Report of the Savannah River Site Hand Injury at the...

  17. Type B Accident Investigation of the Savannah River Site Arc...

    Energy Savers [EERE]

    H2 Demolition, in Niskayuna, New, York Type B Accident Investigation Board Report of the Savannah River Site Hand Injury at the Salt Waste Processing Facility on October 6, 2009...

  18. Failsafe : living with man-made disaster and accident

    E-Print Network [OSTI]

    Higgins, Saoirse, 1966-

    2004-01-01T23:59:59.000Z

    "There is no progress with out progress of the catastrophe." Virilio. This thesis project proposes that technological solutions in the design of our systems are not enough to prevent 'man-made' accident. Social, organisational ...

  19. accidents radiologiques sur: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    SUR L'ORIGINE DES BRUITS DU COEUR ET DES ACCIDENTS DE DCOMPRESSION EN PLONGE : LA CAVITATION. Engineering Websites Summary: CAVITATION. HYPOTH?SE SUR L'ORIGINE DE LA FERMETURE...

  20. The 2011 Tohoku earthquake, tsunami, and Fukushima nuclear accident

    E-Print Network [OSTI]

    Ferrari, Silvia

    The 2011 Tohoku earthquake, tsunami, and Fukushima nuclear accident: the Risk Policy Aftermath 3 #12;Personal experience in March 2011 Tsukuba 170km Tokyo 230km Fukushima Daiichi nuclear power

  1. Type B Accident Investigation of the Acid Vapor Inhalation on...

    Broader source: Energy.gov (indexed) [DOE]

    2005, in TA-48, Building RC-1 Room 402 at the Los Alamos National Laboratory Type B Accident Investigation of the Acid Vapor Inhalation on June 7, 2005, in TA-48, Building RC-1...

  2. accident locations: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    17 18 19 20 21 22 23 24 25 Next Page Last Page Topic Index 1 Exact Location : Date of Accident : AM PM Environmental Sciences and Ecology Websites Summary: SSN Cell Phone Home...

  3. accidents dus aux: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    qui taient en lgre hausse lanne dernire. De plus, il ny a eu aucun accident de trajet avec arrt en 2002. Pour le personnel LHC gnie civil, les rsultats...

  4. accident risks methodology: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    13 14 15 16 17 18 19 20 21 22 23 24 25 Next Page Last Page Topic Index 1 Design Basis Accident Radiological Assessment Calculational Methodology CiteSeer Summary: submitted revised...

  5. accident phebus program: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Test FPT1 CiteSeer Summary: The contribution of radioiodine to risk from a severe accident is recognized to be one of the highest among all the fission products. In a long term...

  6. Some methods of estimating uncertainty in accident reconstruction

    E-Print Network [OSTI]

    Milan Batista

    2011-07-20T23:59:59.000Z

    In the paper four methods for estimating uncertainty in accident reconstruction are discussed: total differential method, extreme values method, Gauss statistical method, and Monte Carlo simulation method. The methods are described and the program solutions are given.

  7. accident dosimetry system: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Next Page Last Page Topic Index 1 A New Accident Model for Engineering Safer Systems Nancy Leveson Engineering Websites Summary: A New...

  8. Type B Accident Investigation Board Report Employee Puncture...

    Broader source: Energy.gov (indexed) [DOE]

    F-TRU Waste Remediation Facility at the Savannah River Site on June 14, 2010 Type B Accident Investigation Board Report Employee Puncture Wound at the F-TRU Waste Remediation...

  9. HYDROGEN USAGE AND STORAGE

    E-Print Network [OSTI]

    It is thought that it will be useful to inform society and people who are interested in hydrogen energy. The study below has been prepared due to this aim can be accepted as an article to exchange of information between people working on this subject. This study has been presented to reader to be utilized as a “technical note”. Main Energy sources coal, petroleum and natural gas are the fossil fuels we use today. They are going to be exhausted since careless usage in last decades through out the world, and human being is going to face the lack of energy sources in the near future. On the other hand as the fossil fuels pollute the environment makes the hydrogen important for an alternative energy source against to the fossil fuels. Due to the slow progress in hydrogen’s production, storage and converting into electrical energy experience, extensive usage of Hydrogen can not find chance for applications in wide technological practices. Hydrogen storage stands on an important point in the development of Hydrogen energy Technologies. Hydrogen is volumetrically low energy concentration fuel. Hydrogen energy, to meet the energy quantity necessary for the nowadays technologies and to be accepted economically and physically against fossil fuels, Hydrogen storage technologies have to be developed in this manner. Today the most common method in hydrogen storage may be accepted as the high pressurized composite tanks. Hydrogen is stored as liquid or gaseous phases. Liquid hydrogen phase can be stored by using composite tanks under very high pressure conditions. High technology composite material products which are durable to high pressures, which should not be affected by hydrogen embrittlement and chemical conditions.[1

  10. Iodine chemical forms in LWR severe accidents

    SciTech Connect (OSTI)

    Beahm, E.C.; Weber, C.F.; Kress, T.S.; Parker, G.W.

    1991-01-01T23:59:59.000Z

    Calculated data from seven severe accident sequences in light-water reactor plants were used to assess the chemical forms of iodine in containment. In most of the calculations for the seven sequences, iodine entering containment from the reactor coolant system was almost entirely in the form of CsI with very small contributions of I or HI. The largest fraction of iodine in forms other than CsI was a total of 3.2% as I plus HI. Within the containment, the CsI will deposit onto walls and other surfaces, as well as in water pools, largely in the form of iodide (I{sup {minus}}). The radiation induced conversion of I{sup {minus}} in water pools into I{sub 2} is strongly dependent on pH. In systems where the pH was controlled above 7, little additional elemental iodine would be produced in the containment atmosphere. When the pH falls below 7, it may be assumed that it is not being controlled, and large fractions of iodine as I{sub 2} within the containment atmosphere may be produced. 16 refs.

  11. MELCOR Accident Consequence Code System (MACCS)

    SciTech Connect (OSTI)

    Chanin, D.I. (Technadyne Engineering Consultants, Inc., Albuquerque, NM (USA)); Sprung, J.L.; Ritchie, L.T.; Jow, Hong-Nian (Sandia National Labs., Albuquerque, NM (USA))

    1990-02-01T23:59:59.000Z

    This report describes the MACCS computer code. The purpose of this code is to simulate the impact of severe accidents at nuclear power plants on the surrounding environment. MACCS has been developed for the US Nuclear Regulatory Commission to replace the previous CRAC2 code, and it incorporates many improvements in modeling flexibility in comparison to CRAC2. The principal phenomena considered in MACCS are atmospheric transport, mitigative actions based on dose projection, dose accumulation by a number of pathways including food and water ingestion, early and latent health effects, and economic costs. The MACCS code can be used for a variety of applications. These include (1) probabilistic risk assessment (PRA) of nuclear power plants and other nuclear facilities, (2) sensitivity studies to gain a better understanding of the parameters important to PRA, and (3) cost-benefit analysis. This report is composed of three volumes. This document, Volume 1, the Users's Guide, describes the input data requirements of the MACCS code and provides directions for its use as illustrated by three sample problems.

  12. MELCOR Accident Consequence Code System (MACCS)

    SciTech Connect (OSTI)

    Jow, H.N.; Sprung, J.L.; Ritchie, L.T. (Sandia National Labs., Albuquerque, NM (USA)); Rollstin, J.A. (GRAM, Inc., Albuquerque, NM (USA)); Chanin, D.I. (Technadyne Engineering Consultants, Inc., Albuquerque, NM (USA))

    1990-02-01T23:59:59.000Z

    This report describes the MACCS computer code. The purpose of this code is to simulate the impact of severe accidents at nuclear power plants on the surrounding environment. MACCS has been developed for the US Nuclear Regulatory Commission to replace the previously used CRAC2 code, and it incorporates many improvements in modeling flexibility in comparison to CRAC2. The principal phenomena considered in MACCS are atmospheric transport, mitigative actions based on dose projection, dose accumulation by a number of pathways including food and water ingestion, early and latent health effects, and economic costs. The MACCS code can be used for a variety of applications. These include (1) probabilistic risk assessment (PRA) of nuclear power plants and other nuclear facilities, (2) sensitivity studies to gain a better understanding of the parameters important to PRA, and (3) cost-benefit analysis. This report is composed of three volumes. Volume I, the User's Guide, describes the input data requirements of the MACCS code and provides directions for its use as illustrated by three sample problems. Volume II, the Model Description, describes the underlying models that are implemented in the code, and Volume III, the Programmer's Reference Manual, describes the code's structure and database management. 59 refs., 14 figs., 15 tabs.

  13. Maui energy storage study.

    SciTech Connect (OSTI)

    Ellison, James; Bhatnagar, Dhruv; Karlson, Benjamin

    2012-12-01T23:59:59.000Z

    This report investigates strategies to mitigate anticipated wind energy curtailment on Maui, with a focus on grid-level energy storage technology. The study team developed an hourly production cost model of the Maui Electric Company (MECO) system, with an expected 72 MW of wind generation and 15 MW of distributed photovoltaic (PV) generation in 2015, and used this model to investigate strategies that mitigate wind energy curtailment. It was found that storage projects can reduce both wind curtailment and the annual cost of producing power, and can do so in a cost-effective manner. Most of the savings achieved in these scenarios are not from replacing constant-cost diesel-fired generation with wind generation. Instead, the savings are achieved by the more efficient operation of the conventional units of the system. Using additional storage for spinning reserve enables the system to decrease the amount of spinning reserve provided by single-cycle units. This decreases the amount of generation from these units, which are often operated at their least efficient point (at minimum load). At the same time, the amount of spinning reserve from the efficient combined-cycle units also decreases, allowing these units to operate at higher, more efficient levels.

  14. Trees as Filters of Radioactive Fallout from the Chernobyl Accident

    E-Print Network [OSTI]

    Brownridge, James D

    2011-01-01T23:59:59.000Z

    This paper is a copy of an unpublished study of the filtering effect of red maple trees (acer rubrum) on fission product fallout near Binghamton, NY, USA following the 1986 Chernobyl accident. The conclusions of this work may offer some insight into what is happening in the forests exposed to fallout from the Fukushima Daiichi Nuclear Plant accident. This posting is in memory of Noel K. Yeh.

  15. Berkeley Lab Accident Statistics Through July 31, 2009

    E-Print Network [OSTI]

    Eisen, Michael

    1 Berkeley Lab Accident Statistics Through July 31, 2009 These slides are updated on a monthly Accident Rates 5.70 4.95 3.79 2.92 2.93 3.27 3.63 2.44 2.17 2.51 1.17 1.81 1.28 1.65 1.92 3.90 3.41 2.65 2

  16. Berkeley Lab Accident Statistics Through September 30, 2009

    E-Print Network [OSTI]

    Eisen, Michael

    1 Berkeley Lab Accident Statistics Through September 30, 2009 These slides are updated on a monthly Accident Rates 5.70 4.95 3.79 2.92 2.93 3.27 3.63 2.44 2.17 2.51 1.17 1.81 1.28 1.65 1.92 3.90 3.41 2.65 2

  17. Berkeley Lab Accident Statistics Through May 31, 2009

    E-Print Network [OSTI]

    Eisen, Michael

    1 Berkeley Lab Accident Statistics Through May 31, 2009 These slides are updated on a monthly basis Berkeley Lab Site Accident Rates 5.70 4.95 3.79 2.92 2.93 3.27 3.63 2.44 2.17 2.51 1.17 1.81 1.28 1.65 1

  18. Berkeley Lab Accident Statistics Through October 31, 2008

    E-Print Network [OSTI]

    Eisen, Michael

    1 Berkeley Lab Accident Statistics Through October 31, 2008 These slides are updated on a monthly Accident Rates 5.70 4.95 3.79 2.92 2.93 3.27 3.63 2.44 2.17 2.51 1.17 1.81 1.28 1.65 1.72 0.40 3.90 3.41 2

  19. Berkeley Lab Accident Statistics Through August 31, 2009

    E-Print Network [OSTI]

    Eisen, Michael

    1 Berkeley Lab Accident Statistics Through August 31, 2009 These slides are updated on a monthly Accident Rates 5.70 4.95 3.79 2.92 2.93 3.27 3.63 2.44 2.17 2.51 1.17 1.81 1.28 1.65 1.92 3.90 3.41 2.65 2

  20. Type B Accident Investigation Board Report on the March 27, 1998, Rotating Shaft Accident at the Ames Laboratory, Ames, Iowa

    Broader source: Energy.gov [DOE]

    This report is an independent product of the Type B Accident Investigation Board appointed by John Kennedy, Acting Manager, Chicago Operations Office, U.S. Department of Energy (DOE).

  1. Civil aircraft accident Report on the Accident to Boeing 707-465 G-Arwe at Heathrow Airport, London on 8th April 1968 

    E-Print Network [OSTI]

    Anonymous

    1969-01-01T23:59:59.000Z

    A3.C.A.P. 324 Civil aircraft accident Report on the Accident to Boeing 707-465 G-Arwe at Heathrow Airport, London on 8th April 1968...

  2. Alcohol, Drugs, and Accident Prevention (RC-371/-571) Course Description The role of alcohol and drugs and their relationship to accident causation will be examined. The problem

    E-Print Network [OSTI]

    Wu, Mingshen

    Alcohol, Drugs, and Accident Prevention (RC-371/-571) Course Description The role of alcohol and drugs and their relationship to accident causation will be examined. The problem of alcoholism and drug

  3. Third Generation Flywheels for electric storage

    SciTech Connect (OSTI)

    Ricci, Michael, R.; Fiske, O. James

    2008-02-29T23:59:59.000Z

    Electricity is critical to our economy, but growth in demand has saturated the power grid causing instability and blackouts. The economic penalty due to lost productivity in the US exceeds $100 billion per year. Opposition to new transmission lines and power plants, environmental restrictions, and an expected $100 billion grid upgrade cost have slowed system improvements. Flywheel electricity storage could provide a more economical, environmentally benign alternative and slash economic losses if units could be scaled up in a cost effective manner to much larger power and capacity than the present maximum of a few hundred kW and a few kWh per flywheel. The goal of this project is to design, construct, and demonstrate a small-scale third generation electricity storage flywheel using a revolutionary architecture scalable to megawatt-hours per unit. First generation flywheels are built from bulk materials such as steel and provide inertia to smooth the motion of mechanical devices such as engines. They can be scaled up to tens of tons or more, but have relatively low energy storage density. Second generation flywheels use similar designs but are fabricated with composite materials such as carbon fiber and epoxy. They are capable of much higher energy storage density but cannot economically be built larger than a few kWh of storage capacity due to structural and stability limitations. LaunchPoint is developing a third generation flywheel — the "Power Ring" — with energy densities as high or higher than second generation flywheels and a totally new architecture scalable to enormous sizes. Electricity storage capacities exceeding 5 megawatt-hours per unit appear both technically feasible and economically attractive. Our design uses a new class of magnetic bearing – a radial gap “shear-force levitator” – that we discovered and patented, and a thin-walled composite hoop rotated at high speed to store kinetic energy. One immediate application is power grid frequency regulation, where Power Rings could cut costs, reduce fuel consumption, eliminate emissions, and reduce the need for new power plants. Other applications include hybrid diesel-electric locomotives, grid power quality, support for renewable energy, spinning reserve, energy management, and facility deferral. Decreased need for new generation and transmission alone could save the nation $2.5 billion per year. Improved grid reliability could cut economic losses due to poor power quality by tens of billions of dollars per year. A large export market for this technology could also develop. Power Ring technology will directly support the EERE mission, and the goals of the Distributed Energy Technologies Subprogram in particular, by helping to reduce blackouts, brownouts, electricity costs, and emissions, by relieving transmission bottlenecks, and by greatly improving grid power quality.

  4. Threat of Hydride Re-orientation to Spent Fuel Integrity During Transportation Accidents: Myth or Reality?

    SciTech Connect (OSTI)

    Rashid, Joe [ANATECH, 5435 Oberlin Drive, San Diego, CA 92121 (United States); Machiels, Albert [EPRI, 3420 Hillview Avenue, Palo Alto, CA 94304 (United States)

    2007-07-01T23:59:59.000Z

    The source-term study conducted by Sandia National Laboratories nearly two decades ago for the spent fuel inventory known at the time, which was in the low-to-medium burnup range ({approx}35 GWd/MTU), showed that the effects of transportation accidents on spent fuel failures, and consequential radioactivity release to the environment, were relatively benign. However, with today's discharged fuel burnups routinely greater than 45 GWd/MTU, potential hydride reorientation during interim dry storage, and its effects on cladding properties, has become one of the primary concerns for spent fuel transportation. Laboratory tests of un-irradiated cladding specimens subjected to heat treatments promoting hydride dissolution followed by re-precipitation in the radial direction have shown that relatively moderate concentrations ({approx}70 ppm) of radial hydrides can significantly degrade cladding ductility, at least at room temperature. The absence of specific data that are relevant to high-burnup spent fuel under dry storage conditions have led to the conjecture, deduced from those tests, that massive cladding failures, possibly resulting in fuel reconfiguration, can be expected during cask drop events. Such conclusions are not borne out by the findings in this paper. The analysis results indicate that cladding failure is bi-modal: a state of failure initiation at the cladding ID remaining as part-wall damage with less than 2% probability of occurrence, and a through-wall failure at a probability of 1 E-5. These results indicate that spent fuel conditions that could promote the formation of radial hydrides during dry storage are not sufficient to produce radial hydrides concentrations of significant levels to cause major threat to spent fuel integrity. It is important to note in this regard that the through-wall cladding failure probability of 1 E-5 is of the same order of magnitude as calculated in the cited Sandia study for low burnup fuel. (authors)

  5. NORMES D'ACTUACI EN CAS D'ACCIDENT 1. Els accidents hauran de justificar-se mitjanant la corresponent comunicaci

    E-Print Network [OSTI]

    Geffner, Hector

    NORMES D'ACTUACI� EN CAS D'ACCIDENT 1. Els accidents hauran de justificar-se mitjançant la corresponent comunicació d'accident que haurà d'emplenar el club, entitat esportiva o empresa prenedora a la als serveis mèdics concertats és necessari aportar la comunicació d'accident certificada i identificar

  6. Neutrino signals in electron-capture storage-ring experiments

    E-Print Network [OSTI]

    Avraham Gal

    2015-05-26T23:59:59.000Z

    Neutrino signals in electron-capture storage-ring experiments at GSI are reconsidered, with special emphasis placed on the quasi-circular motion of the daughter ions in two-body decays. Whereas parent-ion decay rates cannot exhibit modulation with the several-second period reported in these experiments, the time evolution of the detected daughter ions is shown to produce oscillations that under certain conditions may provide resolution of the `GSI Oscillations' puzzle. New dedicated storage-ring or trap experiments could look up for these oscillations.

  7. Systems analysis of thermal storage

    SciTech Connect (OSTI)

    Copeland, R.J.

    1981-08-01T23:59:59.000Z

    During FY 1981, analyses were conducted on thermal storage concepts for solar thermal applications. These studies include estimates of both the obtainable costs of thermal storage concepts and their worth to a user (i.e., value). Based on obtainable costs and performance, an in-depth study evaluated thermal storage concepts for water/steam, organic fluid, and gas/Brayton solar thermal receivers. Promising and nonpromising concepts were identified. A study to evaluate thermal storage concepts for a liquid metal receiver was initiated. The value of thermal storage in a solar thermal industrial process heat application was analyzed. Several advanced concepts are being studied, including ground-mounted thermal storage for parabolic dishes with Stirling engines.

  8. Entanglement Storage Units

    E-Print Network [OSTI]

    T. Caneva; T. Calarco; S. Montangero

    2012-09-27T23:59:59.000Z

    We introduce a protocol based on optimal control to drive many body quantum systems into long-lived entangled states, protected from decoherence by big energy gaps, without requiring any apriori knowledge of the system. With this approach it is possible to implement scalable entanglement-storage units. We test the protocol in the Lipkin-Meshkov-Glick model, a prototype many-body quantum system that describes different experimental setups, and in the ordered Ising chain, a model representing a possible implementation of a quantum bus.

  9. Gas Storage Technology Consortium

    SciTech Connect (OSTI)

    Joel Morrison; Elizabeth Wood; Barbara Robuck

    2010-09-30T23:59:59.000Z

    The EMS Energy Institute at The Pennsylvania State University (Penn State) has managed the Gas Storage Technology Consortium (GSTC) since its inception in 2003. The GSTC infrastructure provided a means to accomplish industry-driven research and development designed to enhance the operational flexibility and deliverability of the nation's gas storage system, and provide a cost-effective, safe, and reliable supply of natural gas to meet domestic demand. The GSTC received base funding from the U.S. Department of Energy's (DOE) National Energy Technology Laboratory (NETL) Oil & Natural Gas Supply Program. The GSTC base funds were highly leveraged with industry funding for individual projects. Since its inception, the GSTC has engaged 67 members. The GSTC membership base was diverse, coming from 19 states, the District of Columbia, and Canada. The membership was comprised of natural gas storage field operators, service companies, industry consultants, industry trade organizations, and academia. The GSTC organized and hosted a total of 18 meetings since 2003. Of these, 8 meetings were held to review, discuss, and select proposals submitted for funding consideration. The GSTC reviewed a total of 75 proposals and committed co-funding to support 31 industry-driven projects. The GSTC committed co-funding to 41.3% of the proposals that it received and reviewed. The 31 projects had a total project value of $6,203,071 of which the GSTC committed $3,205,978 in co-funding. The committed GSTC project funding represented an average program cost share of 51.7%. Project applicants provided an average program cost share of 48.3%. In addition to the GSTC co-funding, the consortium provided the domestic natural gas storage industry with a technology transfer and outreach infrastructure. The technology transfer and outreach were conducted by having project mentoring teams and a GSTC website, and by working closely with the Pipeline Research Council International (PRCI) to jointly host technology transfer meetings and occasional field excursions. A total of 15 technology transfer/strategic planning workshops were held.

  10. Interim storage study report

    SciTech Connect (OSTI)

    Rawlins, J.K.

    1998-02-01T23:59:59.000Z

    High-level radioactive waste (HLW) stored at the Idaho Chemical Processing Plant (ICPP) in the form of calcine and liquid and liquid sodium-bearing waste (SBW) will be processed to provide a stable waste form and prepare the waste to be transported to a permanent repository. Because a permanent repository will not be available when the waste is processed, the waste must be stored at ICPP in an Interim Storage Facility (ISF). This report documents consideration of an ISF for each of the waste processing options under consideration.

  11. Multiported storage devices

    E-Print Network [OSTI]

    Grande, Marcus Bryan

    2000-01-01T23:59:59.000Z

    of niultiported storage device 3 Linux file I/O subsystem 4 Windows NT layered I/O driver model 10 15 5 Location of multiported module in I/O stack 17 6 The bulfer cache . . . 20 7 Queuing of I/O requests 8 Processing of I/O requests by smart blkfiltcr 9... Registering of filter applet via Linux stacked module mechanism . 21 22 . . 26 10 Table of registered filter applets (functions) . . 27 11 Overhead due to presence of smart blkfilter alone . 12 Overhead of smart blkfilter using rot13 filter port 31 33...

  12. Storage | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed off Energy.gov. Are you sure you want toworldPower 2010 1 TNews & Solar Solar How much doStorage

  13. Warehouse and Storage Buildings

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial602 1,397 125 Q 69 (Million Cubic58 810 0 0349,980Warehouse and Storage

  14. Storage Ring Parameters

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over Our Instagram Secretary900Steep SlopeStochastic Weekly DownloadRegionalStorage Ring

  15. Sandia Energy - Energy Storage

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Scienceand RequirementsCoatingsUltra-High-Voltage SiliconEnergy Council ExecutivegeochemStorage

  16. Storage Ring Parameters

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del Sol HomeFacebookScholarshipSpiralingSecurity217,354 217,814 218,494Storage Ring

  17. Storage Ring Parameters

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del Sol HomeFacebookScholarshipSpiralingSecurity217,354 217,814 218,494Storage

  18. NERSC HPSS Storage Statistics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |IsLove Your1AllocationsNOVA Portal: Submit2014ftp ftp Storage Trends

  19. Human factors review for Severe Accident Sequence Analysis (SASA)

    SciTech Connect (OSTI)

    Krois, P.A.; Haas, P.M.; Manning, J.J.; Bovell, C.R.

    1984-01-01T23:59:59.000Z

    The paper will discuss work being conducted during this human factors review including: (1) support of the Severe Accident Sequence Analysis (SASA) Program based on an assessment of operator actions, and (2) development of a descriptive model of operator severe accident management. Research by SASA analysts on the Browns Ferry Unit One (BF1) anticipated transient without scram (ATWS) was supported through a concurrent assessment of operator performance to demonstrate contributions to SASA analyses from human factors data and methods. A descriptive model was developed called the Function Oriented Accident Management (FOAM) model, which serves as a structure for bridging human factors, operations, and engineering expertise and which is useful for identifying needs/deficiencies in the area of accident management. The assessment of human factors issues related to ATWS required extensive coordination with SASA analysts. The analysis was consolidated primarily to six operator actions identified in the Emergency Procedure Guidelines (EPGs) as being the most critical to the accident sequence. These actions were assessed through simulator exercises, qualitative reviews, and quantitative human reliability analyses. The FOAM descriptive model assumes as a starting point that multiple operator/system failures exceed the scope of procedures and necessitates a knowledge-based emergency response by the operators. The FOAM model provides a functionally-oriented structure for assembling human factors, operations, and engineering data and expertise into operator guidance for unconventional emergency responses to mitigate severe accident progression and avoid/minimize core degradation. Operators must also respond to potential radiological release beyond plant protective barriers. Research needs in accident management and potential uses of the FOAM model are described. 11 references, 1 figure.

  20. Plains and Eastern Clean Line Transmission Line: Comment from...

    Office of Environmental Management (EM)

    from Block Plains and Eastern Clean Line: Arkansas and Oklahoma Plains and Eastern Clean Line Transmission Line: Comment from Block Plains and Eastern Clean Line: Arkansas and...