Powered by Deep Web Technologies
Note: This page contains sample records for the topic "line accidents storage" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Accidents  

NLE Websites -- All DOE Office Websites (Extended Search)

Health Risks » Accidents Health Risks » Accidents DUF6 Health Risks line line Accidents Storage Conversion Manufacturing Disposal Transportation Accidents A discussion of accidents involving depleted UF6 storage cylinders, including possible health effects, accident risk, and accident history. Potential Health Effects from Cylinder Accidents Accidents involving depleted UF6 storage cylinders are a concern because they could result in an uncontrolled release of UF6 to the environment, which could potentially affect the health of workers and members of the public living downwind of the accident site. Accidental release of UF6 from storage cylinders or during processing activities could result in injuries or fatalities. The most immediate hazard after a release would be from inhalation of hydrogen fluoride (HF), a highly corrosive gas formed when

2

Canister Storage Building (CSB) Design Basis Accident Analysis Documentation  

Science Conference Proceedings (OSTI)

This document provided the detailed accident analysis to support HNF-3553, Spent Nuclear Fuel Project Final Safety Analysis Report, Annex A, ''Canister Storage Building Final Safety Analysis Report''. All assumptions, parameters, and models used to provide the analysis of the design basis accidents are documented to support the conclusions in the Canister Storage Building Final Safety Analysis Report.

CROWE, R.D.; PIEPHO, M.G.

2000-03-23T23:59:59.000Z

3

Evaluation of Accident Frequencies at the Canister Storage Bldg (CSB)  

DOE Green Energy (OSTI)

By using simple frequency calculations and fault tree logic, an evaluation of the design basis accident frequencies at the Canister Storage Building has been performed. The following are the design basis accidents: Mechanical damage of MCO; Gaseous release from the MCO; MCO internal hydrogen deflagration; MCO external hydrogen deflagration; Thermal runaway reactions inside the MCO; and Violation of design temperature criteria.

POWERS, T.B.

2000-03-20T23:59:59.000Z

4

Evaluation of Accident Frequencies at the Canister Storage Bldg (CSB)  

DOE Green Energy (OSTI)

By using the fault tree logic, an evaluation of the design basis accident frequencies at the Canister Storage Building has been performed. The evaluation demonstrates that due to low frequency of occurrences, the following design basis accidents are considered not credible (annual frequency of less than 10{sup -6}): Rearrangement of multidster overpack (MCO) internals; Gaseous release from the MCO; MCO internal hydrogen explosion; MCO external hydrogen explosion; Thermal runaway reactions inside the MCO; and Violation of design temperature criteria.

LIU, Y.J.

1999-09-02T23:59:59.000Z

5

Evaluation of accident frequencies at the canister storage building  

DOE Green Energy (OSTI)

By using the fault tree logic, an evaluation of the design basis accident frequencies at the Canister Storage Building has been performed. The evaluation demonstrates that due to low frequency of occurrences, the following design basis accidents are considered not credible (annual frequency of less than 10{sup -6}): Rearrangement of multi-canister overpack (MCO) internals; Gaseous release from the MCO; MCO internal hydrogen explosion; MCO external hydrogen explosion; Thermal runaway reactions inside the MCO; and Violation of design temperature criteria.

LIU, Y.J.

1999-05-13T23:59:59.000Z

6

Storage  

NLE Websites -- All DOE Office Websites (Extended Search)

Storage Storage DUF6 Health Risks line line Accidents Storage Conversion Manufacturing Disposal Transportation Storage A discussion of depleted UF6 cylinder storage activities and associated risks. Management Activities for Cylinders in Storage The long-term management of the existing DUF6 storage cylinders and the continual effort to remediate and maintain the safe condition of the DUF6 storage cylinders will remain a Departmental responsibility for many years into the future. The day to day management of the DUF6 cylinders includes actions designed to cost effectively maintain and improve their storage conditions, such as: General storage cylinder and storage yard maintenance; Performing regular inspections of cylinders; Restacking and respacing the cylinders to improve drainage and to

7

Three dimensional effects in analysis of PWR steam line break accident  

E-Print Network (OSTI)

A steam line break accident is one of the possible severe abnormal transients in a pressurized water reactor. It is required to present an analysis of a steam line break accident in the Final Safety Analysis Report (FSAR) ...

Tsai, Chon-Kwo

8

Technical evaluation: 300 Area steam line valve accident  

SciTech Connect

On June 7, 1993, a journeyman power operator (JPO) was severely burned and later died as a result of the failure of a 6-in. valve that occurred when he attempted to open main steam supply (MSS) valve MSS-25 in the U-3 valve pit. The pit is located northwest of Building 331 in the 300 Area of the Hanford Site. Figure 1-1 shows a layout of the 300 Area steam piping system including the U-3 steam valve pit. Figure 1-2 shows a cutaway view of the approximately 10- by 13- by 16-ft-high valve pit with its various steam valves and connecting piping. Valve MSS-25, an 8-in. valve, is located at the bottom of the pit. The failed 6-in. valve was located at the top of the pit where it branched from the upper portion of the 8-in. line at the 8- by 8- by 6-in. tee and was then ``blanked off`` with a blind flange. The purpose of this technical evaluation was to determine the cause of the accident that led to the failure of the 6-in. valve. The probable cause for the 6-in. valve failure was determined by visual, nondestructive, and destructive examination of the failed valve and by metallurgical analysis of the fractured region of the valve. The cause of the accident was ultimately identified by correlating the observed failure mode to the most probable physical phenomenon. Thermal-hydraulic analyses, component stress analyses, and tests were performed to verify that the probable physical phenomenon could be reasonably expected to produce the failure in the valve that was observed.

Not Available

1993-08-01T23:59:59.000Z

9

Study on the Accidental Rupture of Hot Leg or Surge Line in SBO Accident  

Science Conference Proceedings (OSTI)

The postulated total station blackout accident (SBO) of PWR NPP with 600 MWe in China is analyzed as the base case using SCDAP/RELAP5 code. Then the hot leg or surge line are assumed to rupture before the lower head of Reactor Pressure Vessel (RPV) ruptures, and the progressions are analyzed in detail comparing with the base case. The results show that the accidental rupture of hot leg or surge line will greatly influence the progression of accident. The probability of hot leg or surge line rupture in intentional depressurization is also studied in this paper, which provides a suggestion to the development of Severe Accident Management Guidelines (SAMG). (authors)

Kun Zhang; Xuewu Cao [Shanghai Jiaotong University, Shanghai (China)

2006-07-01T23:59:59.000Z

10

Storage  

NLE Websites -- All DOE Office Websites (Extended Search)

Environmental Risks » Storage Environmental Risks » Storage Depleted UF6 Environmental Risks line line Storage Conversion Manufacturing Disposal Environmental Risks of Depleted UF6 Storage Discussion of the potential environmental impacts from storage of depleted UF6 at the three current storage sites, as well as potential impacts from the storage of depleted uranium after conversion to an oxide form. Impacts Analyzed in the PEIS The PEIS included an analysis of the potential environmental impacts from continuing to store depleted UF6 cylinders at the three current storage sites, as well as potential impacts from the storage of depleted uranium after conversion to an oxide form. Impacts from Continued Storage of UF6 Cylinders Continued storage of the UF6 cylinders would require extending the use of a

11

Accident safety analysis for 300 Area N Reactor Fuel Fabrication and Storage Facility  

SciTech Connect

The purpose of the accident safety analysis is to identify and analyze a range of credible events, their cause and consequences, and to provide technical justification for the conclusion that uranium billets, fuel assemblies, uranium scrap, and chips and fines drums can be safely stored in the 300 Area N Reactor Fuel Fabrication and Storage Facility, the contaminated equipment, High-Efficiency Air Particulate filters, ductwork, stacks, sewers and sumps can be cleaned (decontaminated) and/or removed, the new concretion process in the 304 Building will be able to operate, without undue risk to the public, employees, or the environment, and limited fuel handling and packaging associated with removal of stored uranium is acceptable.

Johnson, D.J.; Brehm, J.R.

1994-01-01T23:59:59.000Z

12

TITAN code development for application to a PWR steam line break accident : final report 1983-1984  

E-Print Network (OSTI)

Modification of the TITAN computer code which enables it to be applied to a PWR steam line break accident has been accomplished. The code now has the capability of simulating an asymmetric inlet coolant temperature transient ...

Tsai, Chon-Kwo

1984-01-01T23:59:59.000Z

13

Evaluation of coverage of enriched UF{sub 6} cylinder storage lots by existing criticality accident alarms  

SciTech Connect

The Portsmouth Gaseous Diffusion Plant (PORTS) is leased from the US Department of Energy (DOE) by the United States Enrichment Corporation (USEC), a government corporation formed in 1993. PORTS is in transition from regulation by DOE to regulation by the Nuclear Regulatory Commission (NRC). One regulation is 10 CFR Part 76.89, which requires that criticality alarm systems be provided for the site. PORTS originally installed criticality accident alarm systems in all building for which nuclear criticality accidents were credible. Currently, however, alarm systems are not installed in the enriched uranium hexafluoride (UF{sub 6}) cylinder storage lots. This report analyzes and documents the extent to which enriched UF{sub 6} cylinder storage lots at PORTS are covered by criticality detectors and alarms currently installed in adjacent buildings. Monte Carlo calculations are performed on simplified models of the cylinder storage lots and adjacent buildings. The storage lots modelled are X-745B, X-745C, X745D, X-745E, and X-745F. The criticality detectors modelled are located in building X-343, the building X-344A/X-342A complex, and portions of building X-330. These criticality detectors are those located closest to the cylinder storage lots. Results of this analysis indicate that the existing criticality detectors currently installed at PORTS are largely ineffective in detecting neutron radiation from criticality accidents in most of the cylinder storage lots at PORTS, except sometimes along portions of their peripheries.

Lee, B.L. Jr.; Dobelbower, M.C.; Woollard, J.E.; Sutherland, P.J.; Tayloe, R.W. Jr.

1995-03-01T23:59:59.000Z

14

Analysis of the reasons for accidents and of protective measures against induced voltage on aerial electrical transmission lines  

SciTech Connect

The problem of safety during work on aerial transmission lines under an induced voltage is examined. Results are presented from a study of the causes of accidents over the last 20 years in electrical grids in this country. A determination of different levels of induced voltage on disconnected aerial transmission lines as a function of their grounding scheme is proposed. The order of magnitudes for each level are given, along with approximate expressions for calculating them.

Misrikhanov, M. Sh. [MES Tsentra (Russian Federation); Mirzaabdullaev, A. O. [Branch of JSC 'FSK EES'- Nizhegorodskoe PMES (Russian Federation)

2009-01-15T23:59:59.000Z

15

Modeling of coupled thermodynamic and geomechanical performance of underground compressed air energy storage (CAES) in lined rock caverns  

E-Print Network (OSTI)

in design of natural gas storage in unlined caverns;associated with natural gas storage in Sweden, includingIn the case of natural gas storage, a steel lining provides

Rutqvist, J.

2013-01-01T23:59:59.000Z

16

Superconducting magnetic energy storage for BPA transmission-line stabilization  

DOE Green Energy (OSTI)

The Bonneville Power Administration (BPA) operates the electrical transmission system that joins the Pacific Northwest with southern California. A 30 MJ (8.4 kWh) Superconducting Magnetic Energy Storage (SMES) unit with a 10 MW converter is being installed at the Tacoma Substation to provide system damping for low frequency oscillations of 0.35 Hz. The integrated system status is described and reviewed. Components included in the system are the superconducting coil, seismically mounted in an epoxy fiberglass nonconducting dewar; a helium refrigerator; a heat rejection subsystem; a high pressure gas recovery subsystem; a liquid nitrogen trailer; the converter with power transformers and switchgear; and a computer system for remote microwave link operation of the SMES unit.

Rogers, J.D.; Barron, M.H.; Boenig, H.J.; Criscuolo, A.L.; Dean, J.W.; Schermer, R.I.

1982-01-01T23:59:59.000Z

17

MODELING OF 2LIBH4 PLUS MGH2 HYDROGEN STORAGE SYSTEM ACCIDENT SCENARIOS USING EMPIRICAL AND THEORETICAL THERMODYNAMICS  

DOE Green Energy (OSTI)

It is important to understand and quantify the potential risk resulting from accidental environmental exposure of condensed phase hydrogen storage materials under differing environmental exposure scenarios. This paper describes a modeling and experimental study with the aim of predicting consequences of the accidental release of 2LiBH{sub 4}+MgH{sub 2} from hydrogen storage systems. The methodology and results developed in this work are directly applicable to any solid hydride material and/or accident scenario using appropriate boundary conditions and empirical data. The ability to predict hydride behavior for hypothesized accident scenarios facilitates an assessment of the of risk associated with the utilization of a particular hydride. To this end, an idealized finite volume model was developed to represent the behavior of dispersed hydride from a breached system. Semiempirical thermodynamic calculations and substantiating calorimetric experiments were performed in order to quantify the energy released, energy release rates and to quantify the reaction products resulting from water and air exposure of a lithium borohydride and magnesium hydride combination. The hydrides, LiBH{sub 4} and MgH{sub 2}, were studied individually in the as-received form and in the 2:1 'destabilized' mixture. Liquid water hydrolysis reactions were performed in a Calvet calorimeter equipped with a mixing cell using neutral water. Water vapor and oxygen gas phase reactivity measurements were performed at varying relative humidities and temperatures by modifying the calorimeter and utilizing a gas circulating flow cell apparatus. The results of these calorimetric measurements were compared with standardized United Nations (UN) based test results for air and water reactivity and used to develop quantitative kinetic expressions for hydrolysis and air oxidation in these systems. Thermodynamic parameters obtained from these tests were then inputted into a computational fluid dynamics model to predict both the hydrogen generation rates and concentrations along with localized temperature distributions. The results of these numerical simulations can be used to predict ignition events and the resultant conclusions will be discussed.

James, C; David Tamburello, D; Joshua Gray, J; Kyle Brinkman, K; Bruce Hardy, B; Donald Anton, D

2009-04-01T23:59:59.000Z

18

Commercial potential of natural gas storage in lined rock caverns (LRC)  

SciTech Connect

The geologic conditions in many regions of the United States will not permit the development of economical high-deliverability gas storage in salt caverns. These regions include the entire Eastern Seaboard; several northern states, notably Minnesota and Wisconsin; many of the Rocky Mountain States; and most of the Pacific Northwest. In late 1997, the United States Department of Energy (USDOE) Federal Energy Technology Center engaged Sofregaz US to investigate the commercialization potential of natural gas storage in Lined Rock Caverns (LRC). Sofregaz US teamed with Gaz de France and Sydkraft, who had formed a consortium, called LRC, to perform the study for the USDOE. Underground storage of natural gas is generally achieved in depleted oil and gas fields, aquifers, and solution-mined salt caverns. These storage technologies require specific geologic conditions. Unlined rock caverns have been used for decades to store hydrocarbons - mostly liquids such as crude oil, butane, and propane. The maximum operating pressure in unlined rock caverns is limited, since the host rock is never entirely impervious. The LRC technology allows a significant increase in the maximum operating pressure over the unlined storage cavern concept, since the gas in storage is completely contained with an impervious liner. The LRC technology has been under development in Sweden by Sydkraft since 1987. The development process has included extensive technical studies, laboratory testing, field tests, and most recently includes a storage facility being constructed in southern Sweden (Skallen). The LRC development effort has shown that the concept is technically and economically viable. The Skallen storage facility will have a rock cover of 115 meters (375 feet), a storage volume of 40,000 cubic meters (250,000 petroleum barrels), and a maximum operating pressure of 20 MPa (2,900 psi). There is a potential for commercialization of the LRC technology in the United States. Two regions were studied in some detail - the Northeast and the Southeast. The investment cost for an LRC facility in the Northeast is approximately $182 million and $343 million for a 2.6-billion cubic foot (bcf) working gas facility and a 5.2-bcf working gas storage facility, respectively. The relatively high investment cost is a strong function of the cost of labor in the Northeast. The labor union-related rules and requirements in the Northeast result in much higher underground construction costs than might result in Sweden, for example. The LRC technology gas storage service is compared to other alternative technologies. The LRC technology gas storage service was found to be competitive with other alternative technologies for a variety of market scenarios.

1999-11-01T23:59:59.000Z

19

Analysis of accident sequences and source terms at treatment and storage facilities for waste generated by US Department of Energy waste management operations  

SciTech Connect

This report documents the methodology, computational framework, and results of facility accident analyses performed for the US Department of Energy (DOE) Waste Management Programmatic Environmental Impact Statement (WM PEIS). The accident sequences potentially important to human health risk are specified, their frequencies assessed, and the resultant radiological and chemical source terms evaluated. A personal-computer-based computational framework and database have been developed that provide these results as input to the WM PEIS for the calculation of human health risk impacts. The WM PEIS addresses management of five waste streams in the DOE complex: low-level waste (LLW), hazardous waste (HW), high-level waste (HLW), low-level mixed waste (LLMW), and transuranic waste (TRUW). Currently projected waste generation rates, storage inventories, and treatment process throughputs have been calculated for each of the waste streams. This report summarizes the accident analyses and aggregates the key results for each of the waste streams. Source terms are estimated, and results are presented for each of the major DOE sites and facilities by WM PEIS alternative for each waste stream. Key assumptions in the development of the source terms are identified. The appendices identify the potential atmospheric release of each toxic chemical or radionuclide for each accident scenario studied. They also discuss specific accident analysis data and guidance used or consulted in this report.

Mueller, C.; Nabelssi, B.; Roglans-Ribas, J.; Folga, S.; Policastro, A.; Freeman, W.; Jackson, R.; Mishima, J.; Turner, S.

1996-12-01T23:59:59.000Z

20

Supplemental analysis of accident sequences and source terms for waste treatment and storage operations and related facilities for the US Department of Energy waste management programmatic environmental impact statement  

SciTech Connect

This report presents supplemental information for the document Analysis of Accident Sequences and Source Terms at Waste Treatment, Storage, and Disposal Facilities for Waste Generated by US Department of Energy Waste Management Operations. Additional technical support information is supplied concerning treatment of transuranic waste by incineration and considering the Alternative Organic Treatment option for low-level mixed waste. The latest respirable airborne release fraction values published by the US Department of Energy for use in accident analysis have been used and are included as Appendix D, where respirable airborne release fraction is defined as the fraction of material exposed to accident stresses that could become airborne as a result of the accident. A set of dominant waste treatment processes and accident scenarios was selected for a screening-process analysis. A subset of results (release source terms) from this analysis is presented.

Folga, S.; Mueller, C.; Nabelssi, B.; Kohout, E.; Mishima, J.

1996-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "line accidents storage" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

DUF6 Storage Safety  

NLE Websites -- All DOE Office Websites (Extended Search)

Storage Safety Depleted UF6 Storage line line How DUF6 is Stored Where DUF6 is Stored DUF6 Storage Safety Cylinder Leakage Depleted UF6 Storage Safety Continued cylinder storage is...

22

Analysis of accident sequences and source terms at waste treatment and storage facilities for waste generated by U.S. Department of Energy Waste Management Operations, Volume 3: Appendixes C-H  

Science Conference Proceedings (OSTI)

This report contains the Appendices for the Analysis of Accident Sequences and Source Terms at Waste Treatment and Storage Facilities for Waste Generated by the U.S. Department of Energy Waste Management Operations. The main report documents the methodology, computational framework, and results of facility accident analyses performed as a part of the U.S. Department of Energy (DOE) Waste Management Programmatic Environmental Impact Statement (WM PEIS). The accident sequences potentially important to human health risk are specified, their frequencies are assessed, and the resultant radiological and chemical source terms are evaluated. A personal computer-based computational framework and database have been developed that provide these results as input to the WM PEIS for calculation of human health risk impacts. This report summarizes the accident analyses and aggregates the key results for each of the waste streams. Source terms are estimated and results are presented for each of the major DOE sites and facilities by WM PEIS alternative for each waste stream. The appendices identify the potential atmospheric release of each toxic chemical or radionuclide for each accident scenario studied. They also provide discussion of specific accident analysis data and guidance used or consulted in this report.

Mueller, C.; Nabelssi, B.; Roglans-Ribas, J. [and others

1995-04-01T23:59:59.000Z

23

Modeling of coupled thermodynamic and geomechanical performance of underground compressed air energy storage (CAES) in lined rock caverns  

DOE Green Energy (OSTI)

We applied coupled nonisothermal, multiphase fluid flow and geomechanical numerical modeling to study the coupled thermodynamic and geomechanical performance of underground compressed air energy storage (CAES) in concrete-lined rock caverns. The paper focuses on CAES in lined caverns at relatively shallow depth (e.g., 100 m depth) in which a typical CAES operational pressure of 5 to 8 MPa is significantly higher than both ambient fluid pressure and in situ stress. We simulated a storage operation that included cyclic compression and decompression of air in the cavern, and investigated how pressure, temperature and stress evolve over several months of operation. We analyzed two different lining options, both with a 50 cm thick low permeability concrete lining, but in one case with an internal synthetic seal such as steel or rubber. For our simulated CAES system, the thermodynamic analysis showed that 96.7% of the energy injected during compression could be recovered during subsequent decompression, while 3.3% of the energy was lost by heat conduction to the surrounding media. Our geomechanical analysis showed that tensile effective stresses as high as 8 MPa could develop in the lining as a result of the air pressure exerted on the inner surface of the lining, whereas thermal stresses were relatively smaller and compressive. With the option of an internal synthetic seal, the maximum effective tensile stress was reduced from 8 to 5 MPa, but was still in substantial tension. We performed one simulation in which the tensile tangential stresses resulted in radial cracks and air leakage though the lining. This air leakage, however, was minor (about 0.16% of the air mass loss from one daily compression) in terms of CAES operational efficiency, and did not significantly impact the overall energy balance of the system. However, despite being minor in terms of energy balance, the air leakage resulted in a distinct pressure increase in the surrounding rock that could be quickly detected using pressure monitoring outside the concrete lining.

Rutqvist, J.; Kim, H. -M.; Ryu, D. -W.; Synn, J. -H.; Song, W. -K.

2012-02-01T23:59:59.000Z

24

Analysis of accident sequences and source terms at waste treatment and storage facilities for waste generated by U.S. Department of Energy Waste Management Operations, Volume 1: Sections 1-9  

SciTech Connect

This report documents the methodology, computational framework, and results of facility accident analyses performed for the U.S. Department of Energy (DOE) Waste Management Programmatic Environmental Impact Statement (WM PEIS). The accident sequences potentially important to human health risk are specified, their frequencies are assessed, and the resultant radiological and chemical source terms are evaluated. A personal computer-based computational framework and database have been developed that provide these results as input to the WM PEIS for calculation of human health risk impacts. The methodology is in compliance with the most recent guidance from DOE. It considers the spectrum of accident sequences that could occur in activities covered by the WM PEIS and uses a graded approach emphasizing the risk-dominant scenarios to facilitate discrimination among the various WM PEIS alternatives. Although it allows reasonable estimates of the risk impacts associated with each alternative, the main goal of the accident analysis methodology is to allow reliable estimates of the relative risks among the alternatives. The WM PEIS addresses management of five waste streams in the DOE complex: low-level waste (LLW), hazardous waste (HW), high-level waste (HLW), low-level mixed waste (LLMW), and transuranic waste (TRUW). Currently projected waste generation rates, storage inventories, and treatment process throughputs have been calculated for each of the waste streams. This report summarizes the accident analyses and aggregates the key results for each of the waste streams. Source terms are estimated and results are presented for each of the major DOE sites and facilities by WM PEIS alternative for each waste stream. The appendices identify the potential atmospheric release of each toxic chemical or radionuclide for each accident scenario studied. They also provide discussion of specific accident analysis data and guidance used or consulted in this report.

Mueller, C.; Nabelssi, B.; Roglans-Ribas, J. [and others

1995-04-01T23:59:59.000Z

25

Modeling of coupled thermodynamic and geomechanical performance of underground compressed air energy storage (CAES) in lined rock caverns  

E-Print Network (OSTI)

Williams, Compressed air energy storage: Theory, resources,for the compressed air energy storage technology by thefor compressed air energy storage power generation, Japan

Rutqvist, J.

2013-01-01T23:59:59.000Z

26

Severe Accident Studies  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Severe Accident Studies Severe Accident Studies Christopher S. Bajwa Division of Spent Fuel Storage and Transportation Office of Nuclear Material Safety and Safeguards USNRC 2012 U.S. DOE National Transportation Stakeholders Forum (NTSF) May 15 - 17, 2012 Knoxville, TN * Going The Distance? - The Safe Transport of Spent Nuclear Fuel and High-Level Radioactive Waste in the United States * Released February 9, 2006 * Conclusions: * NRC safety regulations are adequate to ensure package containment effectiveness over a wide range of transport conditions, including most credible accident conditions. * The radiological risks are well understood and are generally low, with the possible exception of risks from releases in extreme accidents involving long duration, fully engulfing fires.

27

30-MJ superconducting magnetic energy storage for BPA transmission-line stabilizer  

DOE Green Energy (OSTI)

The Bonneville Power Administration operates the transmission system that joins the Pacific Northwest and southern California. A 30 MJ (8.4 kWh) superconducting Magnetic Energy Storage (SMES) unit with a 10 MW converter can provide system damping for low frequency oscillations. The unit is scheduled to operate in late 1982. Progress to date is described. The coil is complete. All major components of the electrical and cryogenic systems have been received and testing has begun. Computer control hardware is in place and software development is proceeding. Support system components and dewar lid are being fabricated and foundation design is complete. A contract for dewar fabrication is being negotiated.

Schermer, R.I.

1981-01-01T23:59:59.000Z

28

30-MJ superconducting magnetic-energy storage for BPA transmission-line stabilizer  

DOE Green Energy (OSTI)

The Bonneville Power Administration operates the transmission system that joins the Pacific Northwest and southern California. A 30 MJ (8.4 kWh) Superconducting Magnetic Energy Storage (SMES) unit with a 10 MW converter can provide system damping for low frequency oscillations. The unit is scheduled to operate in 1982. Progress during FY 81 is described. The coil is complete. All major components of the electrical and cryogenic systems have been received and testing has begun. Computer control hardware is in place and software development is proceeding. Support system components and dewar lid are being fabricated and foundation design is complete. A contract for dewar fabrication is being negotiated.

Schermer, R.I.

1981-01-01T23:59:59.000Z

29

Fracture Optimization eXpert (FOX) -How Computational Intelligence Helps the Bottom-Line in Gas Storage; A Case Study  

E-Print Network (OSTI)

. The understanding of this value concept is to a natural gas storage pool: the top gas capacity, the first to expand a market for natural gas ing side, though, the storage pool cap/del working unit is storage case is established. The actual incremental increases in expansion. value of the natural gas storage

Mohaghegh, Shahab

30

Modeling of coupled thermodynamic and geomechanical performance of underground compressed air energy storage (CAES) in lined rock caverns  

E-Print Network (OSTI)

caverns for the storage of natural gas, crude oil and compressed air: Geomechanical aspects of construction, operation and abandonment

Rutqvist, J.

2013-01-01T23:59:59.000Z

31

Nuclear Reactor Accidents  

NLE Websites -- All DOE Office Websites (Extended Search)

Reactor Accidents The accidents at the Three Mile Island (TMI) and Chernobyl nuclear reactors have triggered particularly intense concern about radiation hazards. The TMI accident,...

32

Exploring the concept of compressed air energy storage (CAES) in lined rock caverns at shallow depth: A modeling study of air tightness and energy balance  

E-Print Network (OSTI)

Progress in electrical energy storage system: a criticalcurrent and future energy storage technologies for electricwind- diesel-compressed air energy storage system for remote

Kim, H.-M.

2012-01-01T23:59:59.000Z

33

Exploring the concept of compressed air energy storage (CAES) in lined rock caverns at shallow depth: A modeling study of air tightness and energy balance  

Science Conference Proceedings (OSTI)

This paper presents a numerical modeling study of coupled thermodynamic, multiphase fluid flow and heat transport associated with underground compressed air energy storage (CAES) in lined rock caverns. Specifically, we explored the concept of using concrete lined caverns at a relatively shallow depth for which constructing and operational costs may be reduced if air tightness and stability can be assured. Our analysis showed that the key parameter to assure long-term air tightness in such a system was the permeability of both the concrete lining and the surrounding rock. The analysis also indicated that a concrete lining with a permeability of less than 110{sup -18} m{sup 2} would result in an acceptable air leakage rate of less than 1%, with the operational pressure range between 5 and 8 MPa at a depth of 100 m. It was further noted that capillary retention properties and the initial liquid saturation of the lining were very important. Indeed, air leakage could be effectively prevented when the air-entry pressure of the concrete lining is higher than the operational air pressure and when the lining is kept moist at a relatively high liquid saturation. Our subsequent energy-balance analysis demonstrated that the energy loss for a daily compression and decompression cycle is governed by the air-pressure loss, as well as heat loss by conduction to the concrete liner and surrounding rock. For a sufficiently tight system, i.e., for a concrete permeability off less than 110{sup -18} m{sup 2}, heat loss by heat conduction tends to become proportionally more important. However, the energy loss by heat conduction can be minimized by keeping the air-injection temperature of compressed air closer to the ambient temperature of the underground storage cavern. In such a case, almost all the heat loss during compression is gained back during subsequent decompression. Finally, our numerical simulation study showed that CAES in shallow rock caverns is feasible from a leakage and energy efficiency viewpoint. Our numerical approach and energy analysis will next be applied in designing and evaluating the performance of a planned full-scale pilot test of the proposed underground CAES concept.

Kim, H.-M.; Rutqvist, J.; Ryu, D.-W.; Choi, B.-H.; Sunwoo, C.; Song, W.-K.

2011-07-15T23:59:59.000Z

34

Chernobyl accident: A comprehensive risk assessment  

SciTech Connect

The authors, all of whom are Ukrainian and Russian scientists involved with Chernobyl nuclear power plant since the April 1986 accident, present a comprehensive review of the accident. In addition, they present a risk assessment of the remains of the destroyed reactor and its surrounding shelter, Chernobyl radioactive waste storage and disposal sites, and environmental contamination in the region. The authors explore such questions as the risks posed by a collapse of the shelter, radionuclide migration from storage and disposal facilities in the exclusion zone, and transfer from soil to vegetation and its potential regional impact. The answers to these questions provide a scientific basis for the development of countermeasures against the Chernobyl accident in particular and the mitigation of environmental radioactive contamination in general. They also provide an important basis for understanding the human health and ecological risks posed by the accident.

Vargo, G.J.; Poyarkov, V.; Baryakhtar, V.; Kukhar, V.; Los, I.

1999-11-01T23:59:59.000Z

35

Accident Investigation Handbook  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Improvement (HPI). The recommended techniques apply equally well to DOE Federal-led accident investigations conducted under DOE Order (O) 225.1B, Accident Investigations,...

36

Nuclear criticality accidents  

SciTech Connect

Criticality occurs when a sufficient quantity of fissionable material is accumulated, and it results in the liberation of nuclear energy. All process accidents have involved plutonium or highly enriched uranium, as have most of the critical experiment accidents. Slightly enriched uranium systems require much larger quantities of material to achieve criticality. An appreciation of criticality accidents should be based on an understanding of factors that influence criticality, which are discussed in this article. 11 references.

Smith, D.R. (Los Alamos National Laboratory, New Mexico (Unites States))

1991-10-01T23:59:59.000Z

37

Severe Accident Studies | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Severe Accident Studies Severe Accident Studies Powerpoint discussing studies and conclusions on transportation accidents and safety. Severe Accident Studies More Documents &...

38

Exploring the concept of compressed air energy storage (CAES) in lined rock caverns at shallow depth: A modeling study of air tightness and energy balance  

E-Print Network (OSTI)

caverns for the storage of natural gas, crude oil and compressed air: Geomechanical aspects of construction, operation and abandonment,caverns involved in CAES include stability, air tightness, acceptable surface subsidence, and (later on) an environmentally safe decommissioning and abandonment [

Kim, H.-M.

2012-01-01T23:59:59.000Z

39

Hydrogen Storage  

Science Conference Proceedings (OSTI)

Oct 10, 2012 ... Energy Storage: Materials, Systems and Applications: Hydrogen Storage Program Organizers: Zhenguo "Gary" Yang, Pacific Northwest...

40

Accident resistant transport container  

DOE Patents (OSTI)

The invention relates to a container for the safe air transport of plutonium having several intermediate wood layers and a load spreader intermediate an inner container and an outer shell for mitigation of shock during a hypothetical accident.

Andersen, John A. (Albuquerque, NM); Cole, James K. (Albuquerque, NM)

1980-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "line accidents storage" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Primer on lead-acid storage batteries  

DOE Green Energy (OSTI)

This handbook was developed to help DOE facility contractors prevent accidents caused during operation and maintenance of lead-acid storage batteries. Major types of lead-acid storage batteries are discussed as well as their operation, application, selection, maintenance, and disposal (storage, transportation, as well). Safety hazards and precautions are discussed in the section on battery maintenance. References to industry standards are included for selection, maintenance, and disposal.

NONE

1995-09-01T23:59:59.000Z

42

Hanford Waste Tank Bump Accident and Consequence Analysis  

Science Conference Proceedings (OSTI)

This report provides a new evaluation of the Hanford tank bump accident analysis and consequences for incorporation into the Authorization Basis. The analysis scope is for the safe storage of waste in its current configuration in single-shell and double-shell tanks.

BRATZEL, D.R.

2000-06-20T23:59:59.000Z

43

Simulation of an ammonia plant accident using rigorous heterogeneous models: Effect of shift converters disturbances on the methanator  

Science Conference Proceedings (OSTI)

Disturbance introduced into the shift converters section of the ammonia production line may lead to problems in the ammonia production line which manifest themselves in other units of the production line. A real accident that took place in an ammonia ... Keywords: Accident, Ammonia, Catalytic reactors, Heterogeneous models, Modelling, Simulation

F. M. Alhabdan; S. S. E. H. Elnashaie

1995-02-01T23:59:59.000Z

44

Accident Investigation Handbook  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

SENSI NOT MEAS UREMENT TIVE D DOE-HDBK-1 1208-2012 July 2012 DOE E HA ANDBOOK K Ac ccide ent and d Op pera ational Sa afety y An naly ysis Volume e I: Ac ccide ent A Analy ysis Tec chniq ques U.S. Depar rtmen nt of En nergy Was shingto on, D.C C. 205 85 DOE-HDBK-1208-2012 INTRODUCTION - HANDBOOK APPLICATION AND SCOPE Accident Investigations (AI) and Operational Safety Reviews (OSR) are valuable for evaluating technical issues, safety management systems and human performance and environmental conditions to prevent accidents, through a process of continuous organizational learning. This Handbook brings together the strengths of the experiences gained in conducting Department of Energy (DOE) accident investigations over the past many years. That experience encourages us

45

Microsoft Word - Unrelated Accident  

NLE Websites -- All DOE Office Websites (Extended Search)

For Immediate Release For Immediate Release Truck Accident Did Not Involve WIPP Shipment CARLSBAD, N.M., October 1, 2009 - A Wednesday night truck accident north of Albuquerque on Highway 165 that involved an 18-wheeler is not related to Waste Isolation Pilot Plant (WIPP) transuranic waste shipments. Involved in the accident was a load of new, unused 55-gallon drums manufactured in Carlsbad that was en route to Richland, Washington. The Waste Isolation Pilot Plant is a U.S. Department of Energy facility designed to safely isolate defense-related transuranic waste from people and the environment. Waste temporarily stored at sites around the country is shipped to WIPP and permanently disposed in rooms mined out of an ancient salt formation 2,150 feet below the surface. WIPP, which began waste

46

Computerized Accident Incident Reporting System  

Energy.gov (U.S. Department of Energy (DOE))

The Computerized Accident/Incident Reporting System is a database used to collect and analyze DOE and DOE contractor reports of injuries, illnesses, and other accidents that occur during DOE...

47

Calculation notes in support of TWRS FSAR spray leak accident analysis  

SciTech Connect

This document contains the detailed calculations that support the spray leak accident analysis in the Tank Waste Remediation System (TWRS) Final Safety Analysis Report (FSAR). The consequence analyses in this document form the basis for the selection of controls to mitigate or prevent spray leaks throughout TWRS. Pressurized spray leaks can occur due to a breach in containment barriers along transfer routes, during waste transfers. Spray leaks are of particular safety concern because, depending on leak dimensions, and waste pressure, they can be relatively efficient generators of dispersible sized aerosols that can transport downwind to onsite and offsite receptors. Waste is transferred between storage tanks and between processing facilities and storage tanks in TWRS through a system of buried transfer lines. Pumps for transferring waste and jumpers and valves for rerouting waste are located inside below grade pits and structures that are normally covered. Pressurized spray leaks can emanate to the atmosphere due to breaches in waste transfer associated equipment inside these structures should the structures be uncovered at the time of the leak. Pressurized spray leaks can develop through holes or cracks in transfer piping, valve bodies or pump casings caused by such mechanisms as corrosion, erosion, thermal stress, or water hammer. Leaks through degraded valve packing, jumper gaskets, or pump seals can also result in pressurized spray releases. Mechanisms that can degrade seals, packing and gaskets include aging, radiation hardening, thermal stress, etc. An1782other common cause for spray leaks inside transfer enclosures are misaligned jumpers caused by human error. A spray leak inside a DST valve pit during a transfer of aging waste was selected as the bounding, representative accident for detailed analysis. Sections 2 through 5 below develop this representative accident using the DOE- STD-3009 format. Sections 2 describes the unmitigated and mitigated accident scenarios evaluated to determine the need for safety class SSCs or TSR controls. Section 3 develops the source terms associated with the unmitigated and mitigated accident scenarios. Section 4 estimates the radiological and toxicological consequences for the unmitigated and mitigated scenarios. Section 5 compares the radiological and toxicological consequences against the TWRS evaluation guidelines. Section 6 extrapolates from the representative accident case to other represented spray leak sites to assess the conservatism in using the representative case to define controls for other postulated spray leak sites throughout TWRS. Section 7 discusses the sensitivities of the consequence analyses to the key parameters and assumptions used in the analyses. Conclusions are drawn in Section 8. The analyses herein pertain to spray leaks initiated due to internal mechanisms (e.g., corrosion, erosion, thermal stress, etc). External initiators of spray leaks (e.g., excavation accidents), and natural phenomena initiators (e.g., seismic events) are to be covered in separate accident analyses.

Hall, B.W.

1996-09-25T23:59:59.000Z

48

LPG land transportation and storage safety. Final report  

SciTech Connect

This report contains an analytical examination of fatal accidents involving liquefied petroleum gas (LPG) releases during transportation and/or transportation related storage. Principal emphasis was on accidents during the nine-year period 1971 through 1979. Fatalities to members of the general public (i.e., those at the scene of the accident through coincidence or curiosity) were of special interest. Transportation accidents involving railroad tank cars, trucks, and pipelines were examined as were accidents at storage facilities, including loading and unloading at such facilities. The main sources of the necessary historical accident data were the accident reports submitted to the Department of Transportation by LPG carriers, National Transportation Safety Board accident reports, articles in the National Fire Protection Association journals, other literature, and personal interviews with firemen, company personnel, and others with knowledge of certain accidents. The data indicate that, on the average, releases of LPG during transportation and intermediate storage cause approximately six fatalities per year to members of the general public. The individual risk is about 1 death per 37,000,000 persons; about the same as the risk of a person on the ground being killed by an airplane crash, and much less than the risk of death by lightning, tornadoes, or dam failures.

Martinsen, W.E.; Cavin, W.D.

1981-09-01T23:59:59.000Z

49

LPG land transportation and storage safety. Final report  

SciTech Connect

This report contains an analytical examination of fatal accidents involving liquefied petroleum gas (LPG) releases during transportation and/or transportation related storage. Principal emphasis was on accidents during the nine-year period 1971 to 1979. Fatalities to members of the general public (i.e., those at the scene of the accident through coincidence or curiosity) were of special interest. Transportation accidents involving railroad tank cars, trucks, and pipelines were examined as were accidents at storage facilities, including loading and unloading at such facilities. The main sources of the necessary historical accident data were the accident reports submitted to the Department of Transportation by LPG carriers, National Transportation Safety Board accident reports, articles in the National Fire Protection Association journals, other literature, and personal interviews with firemen, company personnel, and others with knowledge of certain accidents. The data indicate that, on the average, releases of LPG during transportation and intermediate storage cause approximately six fatalities per year to members of the general public. The individual risk is about 1 death per 37,000,000 persons; about the same as the risk of a person on the ground being killed by an airplane crash, and much less than the risk of death by lightning, tornadoes, or dam failures.

1981-09-01T23:59:59.000Z

50

Barriers to Switching Accidents  

Science Conference Proceedings (OSTI)

The EPRI Switching Safety & Reliability Project Steering Committee sponsored development of a self-study based training program for personnel who perform switching. Some of the earlier EPRI Switching Safety & Reliability research projects that focused on the causes of switching errors, highlighted a need to reduce the 'complacency' that tends to develop as switching activities are performed over and over again and become 'routine.' Most switching accidents or incidents involve personnel who were trained ...

2005-12-22T23:59:59.000Z

51

Accident, Maryland: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Accident, Maryland: Energy Resources Accident, Maryland: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 39.628696°, -79.319759° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.628696,"lon":-79.319759,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

52

Hydrogen Storage  

Science Conference Proceedings (OSTI)

Applied Neutron Scattering in Engineering and Materials Science Research: Hydrogen Storage Sponsored by: Metallurgical Society of the Canadian Institute of...

53

NETL: Carbon Storage - Geologic Storage  

NLE Websites -- All DOE Office Websites (Extended Search)

Geologic Storage Geologic Storage Carbon Storage Geologic Storage Focus Area Geologiccarbon dioxide (CO2) storage involves the injection of supercritical CO2 into deep geologic formations (injection zones) overlain by competent sealing formations and geologic traps that will prevent the CO2 from escaping. Current research and field studies are focused on developing better understanding 11 major types of geologic storage reservoir classes, each having their own unique opportunities and challenges. Understanding these different storage classes provides insight into how the systems influence fluids flow within these systems today, and how CO2 in geologic storage would be anticipated to flow in the future. The different storage formation classes include: deltaic, coal/shale, fluvial, alluvial, strandplain, turbidite, eolian, lacustrine, clastic shelf, carbonate shallow shelf, and reef. Basaltic interflow zones are also being considered as potential reservoirs. These storage reservoirs contain fluids that may include natural gas, oil, or saline water; any of which may impact CO2 storage differently. The following summarizes the potential for storage and the challenges related to CO2 storage capability for fluids that may be present in more conventional clastic and carbonate reservoirs (saline water, and oil and gas), as well as unconventional reservoirs (unmineable coal seams, organic-rich shales, and basalts):

54

Severe accident analysis using dynamic accident progression event trees.  

E-Print Network (OSTI)

??In present, the development and analysis of Accident Progression Event Trees (APETs) are performed in a manner that is computationally time consuming, difficult to reproduce (more)

Hakobyan, Aram P

2006-01-01T23:59:59.000Z

55

APS Guideline for Accident Investigations  

NLE Websites -- All DOE Office Websites (Extended Search)

occurring in CATXSDs facilities at the APS. Definitions Accident: an unexpected event that produces personal injury, illness, or death; damage to or loss of property or...

56

Superconducting magnetic energy storage  

DOE Green Energy (OSTI)

Long-time varying-daily, weekly, and seasonal-power demands require the electric utility industry to have installed generating capacity in excess of the average load. Energy storage can reduce the requirement for less efficient excess generating capacity used to meet peak load demands. Short-time fluctuations in electric power can occur as negatively damped oscillations in complex power systems with generators connected by long transmission lines. Superconducting inductors with their associated converter systems are under development for both load leveling and transmission line stabilization in electric utility systems. Superconducting magnetic energy storage (SMES) is based upon the phenomenon of the nearly lossless behavior of superconductors. Application is, in principal, efficient since the electromagnetic energy can be transferred to and from the storage coils without any intermediate conversion to other energy forms. Results from a reference design for a 10-GWh SMES unit for load leveling are presented. The conceptual engineering design of a 30-MJ, 10-MW energy storage coil is discussed with regard to system stabilization, and tests of a small scale, 100-KJ SMES system are presented. Some results of experiments are provided from a related technology based program which uses superconducting inductive energy storage to drive fusion plasmas.

Rogers, J.D.; Boenig, H.J.; Hassenzahl, W.V.; Schermer, R.I.

1978-01-01T23:59:59.000Z

57

Stress in accident and post-accident management at Chernobyl ?  

E-Print Network (OSTI)

Abstract. The effects of the Chernobyl nuclear accident on the psychology of the affected population have been much discussed. The psychological dimension has been advanced as a factor explaining the emergence, from 1990 onwards, of a post-accident crisis in the main CIS countries affected. This article presents the conclusions of a series of European studies, which focused on the consequences of the Chernobyl accident. These studies show that the psychological and social effects associated with the post-accident situation arise from the interdependency of a number of complex factors exerting a deleterious effect on the population. We shall first attempt to characterise the stress phenomena observed among the population affected by the accident. Secondly, we will be presenting an analysis of the various factors that have contributed to the emerging psychological and social features of population reaction to the accident and in post-accident phases, while not neglecting the effects of the pre-accident situation on the target population. Thirdly, we shall devote some initial consideration to the conditions that might be conducive to better management of postaccident stress. In conclusion, we shall emphasise the need to restore confidence among the population generally. 1.

Gilles Heriard Dubreuil

1996-01-01T23:59:59.000Z

58

Energy Storage  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

National Laboratories September 27, 2007 San Francisco, CA PEER REVIEW 2007 DOE(SNL)CEC Energy Storage Program FYO7 Projects Sandia is a multiprogram laboratory operated by...

59

Accurate accident reconstruction in VANET  

Science Conference Proceedings (OSTI)

We propose a forensic VANET application to aid an accurate accident reconstruction. Our application provides a new source of objective real-time data impossible to collect using existing methods. By leveraging inter-vehicle communications, we compile ... Keywords: EDR, VANET, accident reconstruction, in-vehicle applications

Yuliya Kopylova; Csilla Farkas; Wenyuan Xu

2011-07-01T23:59:59.000Z

60

Nuclear Reactor Severe Accident Experiments  

NLE Websites -- All DOE Office Websites (Extended Search)

Nuclear Reactor Severe Accident Experiments Nuclear Reactor Severe Accident Experiments Capabilities Engineering Experimentation Reactor Safety Testing and Analysis Overview Nuclear Reactor Severe Accident Experiments MAX NSTF SNAKE Aerosol Experiments System Components Laser Applications Robots Applications Other Facilities Other Capabilities Work with Argonne Contact us For Employees Site Map Help Join us on Facebook Follow us on Twitter NE on Flickr Nuclear Reactor Severe Accident Experiments 1 2 3 4 5 6 7 We perform experiments simulating reactor core melt phenomena in which molten core debris ("corium") erodes the concrete floor of a containment building. This occurred during the Fukushima nuclear power plant accident though the extent of concrete damage is yet unknown. This video shows the top view of a churning molten pool of uranium oxide at 2000°C (3600°F) seen during an experiment at Argonne. Corium behaves much like lava.

Note: This page contains sample records for the topic "line accidents storage" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Hydrogen Storage  

Fuel Cell Technologies Publication and Product Library (EERE)

This 2-page fact sheet provides a brief introduction to hydrogen storage technologies. Intended for a non-technical audience, it explains the different ways in which hydrogen can be stored, as well a

62

Energy Storage  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Advanced Development Concept Nitrogen-Air Battery F.M. Delnick, D. Ingersoll, K.Waldrip Sandia National Laboratories Albuquerque, NM presented to U.S. DOE Energy Storage Systems...

63

Ballast Accidents Analysis and Evaluation of Urban Rail Transit Based on Method of Causality Analysis and Faulty Tree Analysis  

Science Conference Proceedings (OSTI)

Ballast casualty often incurs severe sequence once takes place, such as abnormal operation,, personnel injury or even death accident , especially for lines below grade. Causality Analysis and Fault Tree analysis method is applied to research of personnel ... Keywords: ballast accident, causality analysis, faulty tree analysis, urban rail transit

Jing He; Zhi-gang Liu

2009-04-01T23:59:59.000Z

64

An Analysis on the Characteristics of Boiling Liquid Expanding Vapor Explosion Accidents in Marine Transportation  

Science Conference Proceedings (OSTI)

BLEVE is a kind of disaster that may cause serious consequences in the process of maritime transportation of liquefied petroleum gas, liquefied natural gas. To analyze the accident characteristics of both the external environment and the internal causes ... Keywords: BLEVE, boiler, characteristics analysis, liquefied gas storage tank

Sining Chen; Yinquan Duo; Lijun Wei

2010-01-01T23:59:59.000Z

65

Underground pumped hydroelectric storage  

DOE Green Energy (OSTI)

Underground pumped hydroelectric energy storage was conceived as a modification of surface pumped storage to eliminate dependence upon fortuitous topography, provide higher hydraulic heads, and reduce environmental concerns. A UPHS plant offers substantial savings in investment cost over coal-fired cycling plants and savings in system production costs over gas turbines. Potential location near load centers lowers transmission costs and line losses. Environmental impact is less than that for a coal-fired cycling plant. The inherent benefits include those of all pumped storage (i.e., rapid load response, emergency capacity, improvement in efficiency as pumps improve, and capacity for voltage regulation). A UPHS plant would be powered by either a coal-fired or nuclear baseload plant. The economic capacity of a UPHS plant would be in the range of 1000 to 3000 MW. This storage level is compatible with the load-leveling requirements of a greater metropolitan area with population of 1 million or more. The technical feasibility of UPHS depends upon excavation of a subterranean powerhouse cavern and reservoir caverns within a competent, impervious rock formation, and upon selection of reliable and efficient turbomachinery - pump-turbines and motor-generators - all remotely operable.

Allen, R.D.; Doherty, T.J.; Kannberg, L.D.

1984-07-01T23:59:59.000Z

66

A CANDU Severe Accident Analysis  

Science Conference Proceedings (OSTI)

As interest in severe accident studies has increased in the last years, we have developed a set of simple models to analyze severe accidents for CANDU reactors that should be integrated in the EU codes. The CANDU600 reactor uses natural uranium fuel and heavy water (D2O) as both moderator and coolant, with the moderator and coolant in separate systems. We chose to analyze accident development for a LOCA with simultaneous loss of moderator cooling and the loss of emergency core cooling system (ECCS). This type of accident is likely to modify the reactor geometry and will lead to a severe accident development. When the coolant temperatures inside a pressure tube reaches 10000 deg C, a contact between pressure tube and calandria tube occurs and the residual heat is transferred to the moderator. Due to the lack of cooling, the moderator eventually begins to boil and is expelled, through the calandria vessel relief ducts, into the containment. Therefore the calandria tubes (fuel channels) will be uncovered, then will disintegrate and fall down to the calandria vessel bottom. After all the quantity of moderator is vaporized and expelled, the debris will heat up and eventually boil. The heat accumulated in the molten debris will be transferred through the calandria vessel wall to the shield tank water, which normally surrounds the calandria vessel. The phenomena described above are modelled, analyzed and compared with the existing data. The results are encouraging. (authors)

Negut, Gheorghe; Catana, Alexandru [Institute for Nuclear Research, 1, Compului Str., Mioveni, PO Box 78, 0300 Pitesti (Romania); Prisecaru, Ilie [University Politehnica Bucharest (Romania)

2006-07-01T23:59:59.000Z

67

ACCIDENT ANALYSES & CONTROL OPTIONS IN SUPPORT OF THE SLUDGE WATER SYSTEM SAFETY ANALYSIS  

Science Conference Proceedings (OSTI)

This report documents the accident analyses and nuclear safety control options for use in Revision 7 of HNF-SD-WM-SAR-062, ''K Basins Safety Analysis Report'' and Revision 4 of HNF-SD-SNF-TSR-001, ''Technical Safety Requirements - 100 KE and 100 KW Fuel Storage Basins''. These documents will define the authorization basis for Sludge Water System (SWS) operations. This report follows the guidance of DOE-STD-3009-94, ''Preparation Guide for US. Department of Energy Nonreactor Nuclear Facility Safety Analysis Reports'', for calculating onsite and offsite consequences. The accident analysis summary is shown in Table ES-1 below. While this document describes and discusses potential control options to either mitigate or prevent the accidents discussed herein, it should be made clear that the final control selection for any accident is determined and presented in HNF-SD-WM-SAR-062.

WILLIAMS, J.C.

2003-11-15T23:59:59.000Z

68

Naval Spent Fuel Rail Shipment Accident Exercise Objectives ...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Naval Spent Fuel Rail Shipment Accident Exercise Objectives Naval Spent Fuel Rail Shipment Accident Exercise Objectives Naval Spent Fuel Rail Shipment Accident Exercise Objectives...

69

Trends in natural gas storage capacity utilization vary by ...  

U.S. Energy Information Administration (EIA)

Source: U.S. Energy Information Administration, Form EIA-191, Monthly Underground Gas Storage Report and Short-Term Energy Outlook Note: Dashed lines indicate ...

70

NSLS VUV Storage Ring  

NLE Websites -- All DOE Office Websites (Extended Search)

VUV Storage Ring VUV Storage Ring VUV Normal Operations Operating Parameters (pdf) Insertion Devices Flux & Brightness Orbit Stability Lattice Information (pdf) Lattice : MAD Dataset Mechanical Drawing (pdf) VUV Operating Schedule Introduction & History The VUV Ring at the National Synchrotron Light Source was one of the first of the 2nd generation light sources to operate in the world. Initially designed in 1976 the final lattice design was completed in 1978 shortly after funding was approved. Construction started at the beginning of FY 1979 and installation of the magnets was well underway by the end of FY 1980. The first stored beam was achieved in December of 1981 at 600 MeV and the first photons were delivered to beamlines in May 1982, with routine beam line operations underway by the start of FY 1983. The number of beam

71

Hydrogen Storage  

NLE Websites -- All DOE Office Websites (Extended Search)

Objectives - Develop and verify: On-board hydrogen storage systems achieving: 1.5 kWhkg (4.5 wt%), 1.2 kWhL, and 6kWh by 2005 2 kWhkg (6 wt%), 1.5 kWhL, and 4kWh by...

72

AQUIFER THERMAL ENERGY STORAGE  

E-Print Network (OSTI)

using aquifers for thermal energy storage. Problems outlinedmatical Modeling of Thermal Energy Storage in Aquifers,"Proceed- ings of Aquifer Thermal Energy Storage Workshop,

Tsang, C.-F.

2011-01-01T23:59:59.000Z

73

SUPERCONDUCTING MAGNETIC ENERGY STORAGE  

E-Print Network (OSTI)

Superconducting 30-MJ Energy Storage Coil", Proc. 19 80 ASC,Superconducting Magnetic Energy Storage Plant", IEEE Trans.SlIperconducting Magnetic Energy Storage Unit", in Advances

Hassenzahl, W.

2011-01-01T23:59:59.000Z

74

AQUIFER THERMAL ENERGY STORAGE  

E-Print Network (OSTI)

aquifers for thermal energy storage. Problems outlined aboveModeling of Thermal Energy Storage in Aquifers," Proceed-ings of Aquifer Thermal Energy Storage Workshop, Lawrence

Tsang, C.-F.

2011-01-01T23:59:59.000Z

75

Storage | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Usage Storage Storage Energy storage isnt just for AA batteries. Thanks to investments from the Energy Department's Advanced Research...

76

SUPERCONDUCTING MAGNETIC ENERGY STORAGE  

E-Print Network (OSTI)

Scale Superconducting Magnetic Energy Storage Plant", IEEEfor SlIperconducting Magnetic Energy Storage Unit", inSuperconducting Magnetic Energy Storage Plant, Advances in

Hassenzahl, W.

2011-01-01T23:59:59.000Z

77

FCT Hydrogen Storage: Contacts  

NLE Websites -- All DOE Office Websites (Extended Search)

Contacts to someone by E-mail Share FCT Hydrogen Storage: Contacts on Facebook Tweet about FCT Hydrogen Storage: Contacts on Twitter Bookmark FCT Hydrogen Storage: Contacts on...

78

August 2003, Columbia Accident Investigation Report Volume I. Chapter 5-8  

NLE Websites -- All DOE Office Websites (Extended Search)

9 7 9 7 R e p o r t V o l u m e I A u g u s t 2 0 0 3 Part Two Why The Accident Occurred Many accident investigations do not go far enough. They identify the technical cause of the accident, and then connect it to a variant of "operator error" - the line worker who forgot to insert the bolt, the engineer who miscalculated the stress, or the manager who made the wrong decision. But this is sel-

79

Accident analysis for high-level waste management alternatives in the US Department of Energy Environmental Restoration and Waste Management Programmatic Environmental Impact Statement  

SciTech Connect

A comparative generic accident analysis was performed for the programmatic alternatives for high-level waste (HLW) management in the US Department of Energy Environmental Restoration and Waste Management Programmatic Environmental Impact Statement (EM PEIS). The key facilities and operations of the five major HLW management phases were considered: current storage, retrieval, pretreatment, treatment, and interim canister storage. A spectrum of accidents covering the risk-dominant accidents was analyzed. Preliminary results are presented for HLW management at the Hanford site. A comparison of these results with those previously advanced shows fair agreement.

Folga, S.; Mueller, C.; Roglans-Ribas, J.

1994-02-01T23:59:59.000Z

80

Energy Storage  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Daniel R. Borneo, PE Daniel R. Borneo, PE Sandia National Laboratories September 27, 2007 San Francisco, CA PEER REVIEW 2007 DOE(SNL)/CEC Energy Storage Program FYO7 Projects Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy under contract DE-AC04-94AL85000. 2 Presentation Outline * DOE(SNL)/CEC Collaboration - Background of DOE(SNL)/CEC Collaboration - FY07 Project Review * Zinc Bromine Battery (ZBB) Demonstration * Palmdale Super capacitor Demonstration * Sacramento Municipal Utility District (SMUD) Regional Transit (RT) Super capacitor demonstration * Beacon Flywheel Energy Storage System (FESS) 3 Background of DOE(SNL)/CEC Collaboration * Memorandum of Understanding Between CEC and DOE (SNL). - In Place since 2004

Note: This page contains sample records for the topic "line accidents storage" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Energy Storage  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Development Concept Development Concept Nitrogen-Air Battery F.M. Delnick, D. Ingersoll, K.Waldrip Sandia National Laboratories Albuquerque, NM presented to U.S. DOE Energy Storage Systems Research Program Washington, DC November 2-4, 2010 Sandia National Laboratories is a multi-program laboratory operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin company, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. Funded by the Energy Storage Systems Program of the U.S. Department Of Energy through Sandia National Laboratories Full Air Breathing Battery Concept * Concept is to use O 2 and N 2 as the electrodes in a battery * Novel because N 2 is considered inert * Our group routinely reacts N 2 electrochemically

82

Severe Accident Management Guidance Technical Basis Report  

Science Conference Proceedings (OSTI)

Guidance to aid operating crews in responding to a severe core damage accident was first developed as a response to the 1979 accident at Three Mile Island Unit 2. This guidance encompasses those actions that could be considered to arrest the progression of a core damage accident or to limit the extent of resulting releases of fission products. The original guidance was developed in a logical manner, starting with compiling the best information regarding severe-accident phenomena available at that ...

2012-10-31T23:59:59.000Z

83

Chernobyl Nuclear Accident | National Nuclear Security Administration  

NLE Websites -- All DOE Office Websites (Extended Search)

Chernobyl Nuclear Accident | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response...

84

Evolvable neural networks ensembles for accidents diagnosis  

Science Conference Proceedings (OSTI)

Prediction and diagnosis of nuclear accidents is one of the most important tasks for nuclear safety. Since accurate diagnosis of nuclear accident is a very important issue for avoidance of disastrous outcomes, it is more desirable to make a decision ... Keywords: ensembles, neuroevolution, nuclear accidents

Hany Sallam; Carlo S. Regazzoni; Ihab Talkhan; Amir Atiya

2008-07-01T23:59:59.000Z

85

The Silver Bullet: Storage!  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

West Philly High X-prize PHEV The Silver Bullet... Storage! Terry Boston President & CEO PJM Interconnection July 12, 2011 PJM©2011 2 United States PJM Eastern Interconnection PJM as Part of the Eastern Interconnection KEY STATISTICS PJM member companies 700+ millions of people served 58 peak load in megawatts 158,448 MWs of generating capacity 180,400 miles of transmission lines 61,200 GWh of annual energy 794,335 generation sources 1,365 square miles of territory 211,000 area served 13 states + DC Internal/external tie lines 142 * 24% of generation in Eastern Interconnection * 27% of load in Eastern Interconnection * 19% of transmission assets in Eastern Interconnection 20% of U.S. GDP produced in PJM www.pjm.com As of 6/1/2011 PJM©2011 3 43,623 0 5,000 10,000 15,000

86

NETL: Carbon Storage  

NLE Websites -- All DOE Office Websites (Extended Search)

Carbon Sequestration Partnerships Regional Carbon Sequestration Partnership (RCSP) Programmatic Points of Contact Carbon Storage Program Infrastructure Coordinator Carbon Storage...

87

Help Line  

NLE Websites -- All DOE Office Websites (Extended Search)

Help Line Help Line Ombuds Help Line Committed to the fair and equitable treatment of all employees, contractors, and persons doing business with the Laboratory. Contact Ombuds Office (505)665-2837 Email Help Line (505) 667-9370 Fax (505) 667-3119 Map & Hours Help Line: (505) 667-9370 As an option to visiting the Ombuds office, we provide service through a telephone Help Line and email. The telephone Help Line is useful for individuals who have concerns and want advice or referral while preserving confidentiality and anonymity. Callers may remain anonymous and the Help Line does not have caller ID or other methods of identifying callers. The Help Line maintains the same level of confidentiality and neutrality as the other Ombuds services. The Ombuds Help Line is not for reporting emergencies or officially

88

Application-storage discovery  

Science Conference Proceedings (OSTI)

Discovering application dependency on data and storage is a key prerequisite for many storage optimization tasks such as data assignment to storage tiers, storage consolidation, virtualization, and handling unused data. However, in the real world these ... Keywords: enterprise storage, experimental evaluation, storage discovery

Nikolai Joukov; Birgit Pfitzmann; HariGovind V. Ramasamy; Murthy V. Devarakonda

2010-05-01T23:59:59.000Z

89

Angular dependence of a simple accident dosimeter  

SciTech Connect

A simple dosimeter made of a sulfur tablet, bare and cadmium covered indium foils and a cadmium covered copper foil has been modeled using MCNP5. Studies of the model without phantom or other confounding factors have shown that the cross sections and fluence-to-dose factors generated by the Monte Carlo method agree with those generated by analytic expressions for the high energy component. The threshold cross sections for the detectors on a phantom were calculated. The resulting doses assigned agree well with exposures made to three critical assemblies. In this study the angular dependence on a phantom is studied and compared with measurements taken on the GODIVA reactor. The dosimeter positions on the phantom are facing the source, on the back and the side. In previous papers the modeling of a simple dosimeter made of a sulfur tablet, bare and cadmium covered indium foils and a cadmium covered copper foil has been modeled using MCNP5. The conclusion made was that most of the neutron dose from criticality assemblies results from the high energy neutron fluences determined by the sulfur and indium detectors. The results using doses measured from the GODIVA, SHEBA, and bare and lead shielded SILENE reactors confirmed this. The angular dependence of an accident dosemeter is of interest in evaluating the exposure of personnel. To investigate this effect accident dosemeters were placed on a phantom and exposed to the GODIVA reactor at phantom orientations of 0{sup o}, 45{sup o}, 90{sup o}, 135{sup o}, and 180{sup o} to the assembly center line.

Devine, R. T. (Robert T.); Romero, L. L. (Leonard L.); Olsher, R. H. (Richard H.)

2004-01-01T23:59:59.000Z

90

Gas storage materials, including hydrogen storage materials  

DOE Patents (OSTI)

A material for the storage and release of gases comprises a plurality of hollow elements, each hollow element comprising a porous wall enclosing an interior cavity, the interior cavity including structures of a solid-state storage material. In particular examples, the storage material is a hydrogen storage material such as a solid state hydride. An improved method for forming such materials includes the solution diffusion of a storage material solution through a porous wall of a hollow element into an interior cavity.

Mohtadi, Rana F; Wicks, George G; Heung, Leung K; Nakamura, Kenji

2013-02-19T23:59:59.000Z

91

Accident management for indian pressurized heavy water reactors  

Science Conference Proceedings (OSTI)

Indian nuclear power program as of now is mainly based on Pressurized Heavy Water Reactors (PHWRs). Operating Procedures for normal power operation and Emergency Operating Procedures for operational transients and accidents within design basis exist for all Indian PHWRs. In addition, on-site and off-site emergency response procedures are also available for these NPPs. The guidelines needed for severe accidents mitigation are now formally being documented for Indian PHWRs. Also, in line with International trend of having symptom based emergency handling, the work is in advanced stage for preparation of symptom-based emergency operating procedures. Following a plant upset condition; a number of alarms distributed in different information systems appear in the control room to aid operator to identify the nature of the event. After identifying the event, appropriate intervention in the form of event based emergency operating procedure is put into use by the operating staff. However, if the initiating event cannot be unambiguously identified or after the initial event some other failures take place, then the selected event based emergency operating procedure will not be optimal. In such a case, reactor safety is ensured by monitoring safety functions (depicted by selected plant parameters grouped together) throughout the event handling so that the barriers to radioactivity release namely, fuel and fuel cladding, primary heat transport system integrity and containment remain intact. Simultaneous monitoring of all these safety functions is proposed through status trees and this concept will be implemented through a computer-based system. For beyond design basis accidents, event sequences are identified which may lead to severe core damage. As part of this project, severe accident mitigation guidelines are being finalized for the selected event sequences. The paper brings out the details of work being carried out for Indian PHWRs for symptom based event handling and severe accident management. (authors)

Hajela, S.; Grover, R.; Ghadge, S.G.; Bajaj, S.S. [Directorate of Safety, Nuclear Power Corporation of India Limited Nabhikiya Urja Bhawan, Anushakti Nagar, Mumbai-400 094 (India)

2006-07-01T23:59:59.000Z

92

Review of ARAC's involvement in the Titan II missile accident  

SciTech Connect

The Atmospheric Release Advisory Capability (ARAC) response to the Titan II accident near Damascus, Arkansas on 19 September 1980 entailed 12 personnel for periods ranging from 2 to 12 hours. The first call was a NEST Standby alert at 0415L (PCT), followed by a request for dispersal calculations at 0615L, personnel callout at 0630L, crude estimates of plausible source term scenarios at 0845-0900L, first model calculations at 1130L and final model calculations at 1500L. While several new firsts were recorded for ARAC, demonstrating expanded capabilities for NEST-type responses, time lines were very long, essential information was very scant to non-existent, and useful communication of final calculations to the accident site impossible. A detailed chronology is found in Appendix A and a list of acronyms and abbreviations is contained in Appendix B.

Sullivan, T.J.

1980-10-01T23:59:59.000Z

93

FCT Hydrogen Storage: The 'National Hydrogen Storage Project...  

NLE Websites -- All DOE Office Websites (Extended Search)

The 'National Hydrogen Storage Project' to someone by E-mail Share FCT Hydrogen Storage: The 'National Hydrogen Storage Project' on Facebook Tweet about FCT Hydrogen Storage: The...

94

Computerized Accident/Incident Reporting System  

NLE Websites -- All DOE Office Websites (Extended Search)

Accident Recordkeeping and Reporting Accident Recordkeeping and Reporting Accident/Incident Recordkeeping and Reporting CAIRS logo Computerized Accident Incident Reporting System CAIRS Database The Computerized Accident/Incident Reporting System is a database used to collect and analyze DOE and DOE contractor reports of injuries, illnesses, and other accidents that occur during DOE operations. Injury and Illness Dashboard The Dashboard provides an alternate interface to CAIRS information. The initial release of the Dashboard allows analysis of composite DOE-wide information and summary information by Program Office, and site. Additional data feature are under development. CAIRS Registration Form CAIRS is a Government computer system and, as such, has security requirements that must be followed. Access to the

95

Sorption Storage Technology Summary  

NLE Websites -- All DOE Office Websites (Extended Search)

Storage Technology Summary DOE H2 Storage Workshop, Feb 14-15, 2011, Washington, DC 1 Compressed & Cryo-Compressed Hydrogen Storage Workshop February 14 - 15, 2011, Washington, DC...

96

Occult Trucking and Storage  

E-Print Network (OSTI)

At least we used to. We are Occult Trucking and Storage andNOTHING. FLASHBACK -- OCCULT TRUCKING AND STORAGE DEPOT --I saw him. FLASHBACK - OCCULT TRUCKING AND STORAGE DEPOT -

Eyres, Jeffrey Paul

2011-01-01T23:59:59.000Z

97

SUPERCONDUCTING MAGNETIC ENERGY STORAGE  

E-Print Network (OSTI)

Adki ns, "Raccoon Mountain Pumped-Storage Plant- Ten Years2J O. D. Johnson, "Worldwide Pumped-Storage Projects", PowerUnderground Pumped Hydro Storage", Proc. 1976 Eng.

Hassenzahl, W.

2011-01-01T23:59:59.000Z

98

FCT Hydrogen Storage: Basics  

NLE Websites -- All DOE Office Websites (Extended Search)

Basics to someone by E-mail Share FCT Hydrogen Storage: Basics on Facebook Tweet about FCT Hydrogen Storage: Basics on Twitter Bookmark FCT Hydrogen Storage: Basics on Google...

99

Seasonal thermal energy storage  

DOE Green Energy (OSTI)

This report describes the following: (1) the US Department of Energy Seasonal Thermal Energy Storage Program, (2) aquifer thermal energy storage technology, (3) alternative STES technology, (4) foreign studies in seasonal thermal energy storage, and (5) economic assessment.

Allen, R.D.; Kannberg, L.D.; Raymond, J.R.

1984-05-01T23:59:59.000Z

100

Recommendations for Analyzing Accidents Under NEPA  

Energy.gov (U.S. Department of Energy (DOE))

This DOE guidance clarifies and supplements "Recommendations for the Preparation of Environmental Assessments and Environmental Impact Statements." It focuses on principles of accident analyses under NEPA.

Note: This page contains sample records for the topic "line accidents storage" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Accident Tolerant Fuels for Light Water Reactors  

Science Conference Proceedings (OSTI)

Presentation Title, Accident Tolerant Fuels for Light Water Reactors. Author(s), Steven J. Zinkle, Kurt A. Terrani, Lance L. Snead. On-Site Speaker (Planned)...

102

Systematics of Reconstructed Process Facility Criticality Accidents  

SciTech Connect

The systematics of the characteristics of twenty-one criticality accidents occurring in nuclear processing facilities of the Russian Federation, the United States, and the United Kingdom are examined. By systematics the authors mean the degree of consistency or agreement between the factual parameters reported for the accidents and the experimentally known conditions for criticality. The twenty-one reported process criticality accidents are not sufficiently well described to justify attempting detailed neutronic modeling. However, results of classic hand calculations confirm the credibility of the reported accident conditions.

Pruvost, N.L.; McLaughlin, T.P.; Monahan, S.P.

1999-09-19T23:59:59.000Z

103

ORISE: REAC/TS Radiation Accident Registries  

NLE Websites -- All DOE Office Websites (Extended Search)

Accident Registries The Radiation Emergency Assistance CenterTraining Site (REACTS) at the Oak Ridge Institute for Science and Education (ORISE) maintains a number of radiation...

104

Accident Investigation Report Plutonium Contamination in the...  

NLE Websites -- All DOE Office Websites (Extended Search)

Accident Investigation Report Plutonium Contamination in the Zero Power Physics Reactor Facility at the Idaho National Laboratory, November 8, 2011 January 2012 Disclaimer...

105

NERSC HPSS Storage Statistics  

NLE Websites -- All DOE Office Websites (Extended Search)

Storage Trends and Summaries Storage by Scientific Discipline Troubleshooting Optimizing IO performance on the Lustre file system IO Formats Sharing Data Transferring Data Unix...

106

Subsea Pumped Hydro Storage.  

E-Print Network (OSTI)

??A new technology for energy storage called Subsea Pumped Hydro Storage (SPHS) has been evaluated from a techno-economical point of view. Intermittent renewable energy sources (more)

Erik, Almen John

2013-01-01T23:59:59.000Z

107

Energy Storage Testing  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Storage Testing The Advanced Vehicle Testing Activity is tasked by the U.S. Department of Energys Vehicle Technology Program to conduct various types of energy storage...

108

Underground Natural Gas Storage  

U.S. Energy Information Administration (EIA)

Underground Natural Gas Storage. Measured By. Disseminated Through. Monthly Survey of Storage Field Operators -- asking injections, withdrawals, base gas, working gas.

109

Magnetic energy storage  

DOE Green Energy (OSTI)

The fusion program embraces low loss superconductor strand development with integration into cables capable of carrying 50 kA in pulsed mode at high fields. This evolvement has been paralleled with pulsed energy storage coil development and testing from tens of kJ at low fields to a 20 MJ prototype tokamak induction coil at 7.5 T. Energy transfer times have ranged from 0.7 ms to several seconds. Electric utility magnetic storage for prospective application is for diurnal load leveling with massive systems to store 10 GWh at 1.8 K in a dewar structure supported on bedrock underground. An immediate utility application is a 30 MJ system to be used to damp power oscillations on the Bonneville Power Administration electric transmission lines. An off-shoot of this last work is a new program for electric utility VAR control with the potential for use to suppress subsynchronous resonance. This paper presents work in progress, work planned, and recently completed unusual work.

Rogers, J.D.

1980-01-01T23:59:59.000Z

110

A data assimilation methodology for the plume phase of a nuclear accident  

Science Conference Proceedings (OSTI)

In the aftermath of the Chernobyl nuclear accident and following more than ten years of research and development, the Real time On-line DecisiOn Support system (RODOS) offers a wide range of alternatives to dealing in an effective and efficient fashion ...

R. O. Puch; P. Astrup; J. Q. Smith; H. P. Wynn; C. Turcanu; C. Rojas-Palma

2002-01-01T23:59:59.000Z

111

The Hartford Life and Accident Insurance  

E-Print Network (OSTI)

The Hartford Life and Accident Insurance Company Group Numbers Basic Group Term Life AD&D-677984 Life and Accident Insurance Company. (Referred to as The Hartford or Hartford.) General information industry. Europ Assist has been helping customers in times of crisis for more than 46 years. They have

112

Accident states simulation: process fluids release  

Science Conference Proceedings (OSTI)

Seveso II Directive imposes for high hazardous plants quantitative risk evaluation of the major accident. In a general context the risk is defined as product between frequency and consequences of accident state. There are five steps in quantitative risk ... Keywords: hazard, hydrogen sulphide, mathematical model, release, risk, safety system, simulation

Cornelia Croitoru; Mihai Anghel; Floarea Pop; Ioan Stefanescu; Gheorghe Titescu; Mihai Patrascu; Ervin Watzlawek; Dorin Cheresdi

2008-08-01T23:59:59.000Z

113

Does Daylight Savings Time Affect Traffic Accidents?  

E-Print Network (OSTI)

This paper studies the effect of changes in accident pattern due to Daylight Savings Time (DST). The extension of the DST in 2007 provides a natural experiment to determine whether the number of traffic accidents is affected by shifts in hours of daylight using the year as control group. Using data on traffic accidents in Texas based on crash reports provided by the Texas Transportation Institute, and a difference in differences technique, this study creates a regression model to determine how significant this factor is in affecting traffic accident patterns as observed in the data. Results show that DST has no statistically significant effect on traffic accidents of all categories including (but not limited to) highway, non-highway, and accidents, accidents with injuries and no injuries, and accidents by drivers of all age-groups. This implies that the federal governments policy of DST (and its extension) has no costs incurred by a rise in motor vehicle crashes when it gets dark early.

Deen, Sophia 1988-

2012-05-01T23:59:59.000Z

114

Commercial SNF Accident Release Fractions  

Science Conference Proceedings (OSTI)

The purpose of this analysis is to specify and document the total and respirable fractions for radioactive materials that could be potentially released from an accident at the repository involving commercial spent nuclear fuel (SNF) in a dry environment. The total and respirable release fractions are used to support the preclosure licensing basis for the repository. The total release fraction is defined as the fraction of total commercial SNF assembly inventory, typically expressed as an activity inventory (e.g., curies), of a given radionuclide that is released to the environment from a waste form. Radionuclides are released from the inside of breached fuel rods (or pins) and from the detachment of radioactive material (crud) from the outside surfaces of fuel rods and other components of fuel assemblies. The total release fraction accounts for several mechanisms that tend to retain, retard, or diminish the amount of radionuclides that are available for transport to dose receptors or otherwise can be shown to reduce exposure of receptors to radiological releases. The total release fraction includes a fraction of airborne material that is respirable and could result in inhalation doses; this subset of the total release fraction is referred to as the respirable release fraction. Accidents may involve waste forms characterized as: (1) bare unconfined intact fuel assemblies, (2) confined intact fuel assemblies, or (3) canistered failed commercial SNF. Confined intact commercial SNF assemblies at the repository are contained in shipping casks, canisters, or waste packages. Four categories of failed commercial SNF are identified: (1) mechanically and cladding-penetration damaged commercial SNF, (2) consolidated/reconstituted assemblies, (3) fuel rods, pieces, and debris, and (4) nonfuel components. It is assumed that failed commercial SNF is placed into waste packages with a mesh screen at each end (CRWMS M&O 1999). In contrast to bare unconfined fuel assemblies, the container that confines the fuel assemblies could provide an additional barrier for diminishing the total release fraction should the fuel rod cladding breach during an accident. This analysis, however, does not take credit for the additional barrier and establishes only the total release fractions for bare unconfined intact commercial SNF assemblies, which may be conservatively applied to confined intact commercial I SNF assemblies.

J. Schulz

2004-11-05T23:59:59.000Z

115

The Fukushima Daiichi Accident Study Information Portal  

SciTech Connect

This paper presents a description of The Fukushima Daiichi Accident Study Information Portal. The Information Portal was created by the Idaho National Laboratory as part of joint NRC and DOE project to assess the severe accident modeling capability of the MELCOR analysis code. The Fukushima Daiichi Accident Study Information Portal was created to collect, store, retrieve and validate information and data for use in reconstructing the Fukushima Daiichi accident. In addition to supporting the MELCOR simulations, the Portal will be the main DOE repository for all data, studies and reports related to the accident at the Fukushima Daiichi nuclear power station. The data is stored in a secured (password protected and encrypted) repository that is searchable and accessible to researchers at diverse locations.

Shawn St. Germain; Curtis Smith; David Schwieder; Cherie Phelan

2012-11-01T23:59:59.000Z

116

Storage | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Storage Storage Storage Energy storage isn’t just for AA batteries. Thanks to investments from the Energy Department's Advanced Research Projects Agency-Energy (ARPA-E), energy storage may soon play a bigger part in our electricity grid, making it possible to generate more renewable electricity. Learn more. Energy storage isn't just for AA batteries. Thanks to investments from the Energy Department's Advanced Research Projects Agency-Energy (ARPA-E), energy storage may soon play a bigger part in our electricity grid, making it possible to generate more renewable electricity. Learn more.

117

Web Based Course: SAF-230DE, Accident Investigation Overview...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Web Based Course: SAF-230DE, Accident Investigation Overview Promotional Video Web Based Course: SAF-230DE, Accident Investigation Overview Promotional Video September 20, 2013 -...

118

ORISE: The Medical Basis for Radiation-Accident Preparedness...  

NLE Websites -- All DOE Office Websites (Extended Search)

The Medical Basis for Radiation-Accident Preparedness: Medical Management Proceedings of the Fifth International REACTS Symposium on the Medical Basis for Radiation-Accident...

119

Audit of the Department of Energy's Transportation Accident Resistant...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Transportation Accident Resistant Container Program, IG-0380 Audit of the Department of Energy's Transportation Accident Resistant Container Program, IG-0380 Audit of the...

120

Facility accident analysis for low-level waste management alternatives in the US Department of Energy Waste Management Program  

Science Conference Proceedings (OSTI)

The risk to human health of potential radiological releases resulting from facility accidents constitutes an important consideration in the US Department of Energy (DOE) waste management program. The DOE Office of Environmental Management (EM) is currently preparing a Programmatic Environmental Impact Statement (PEIS) that evaluates the risks associated with managing five types of radiological and chemical wastes in the DOE complex. Several alternatives for managing each of the five waste types are defined and compared in the EM PEIS. The alternatives cover a variety of options for storing, treating, and disposing of the wastes. Several treatment methods and operation locations are evaluated as part of the alternatives. The risk induced by potential facility accidents is evaluated for storage operations (current and projected waste storage and post-treatment storage) and for waste treatment facilities. For some of the five waste types considered, facility accidents cover both radiological and chemical releases. This paper summarizes the facility accident analysis that was performed for low-level (radioactive) waste (LLW). As defined in the EM PEIS, LLW includes all radioactive waste not classified as high-level, transuranic, or spent nuclear fuel. LLW that is also contaminated with chemically hazardous components is treated separately as low-level mixed waste (LLMW).

Roglans-Ribas, J.; Mueller, C.; Nabelssi, B.; Folga, S.; Tompkins, M.

1995-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "line accidents storage" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Transportation Storage Interface | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Storage Interface Transportation Storage Interface Regulation of Future Extended Storage and Transportation. Transportation Storage Interface More Documents & Publications Status...

122

Storage of burned PWR and BWR fuel  

SciTech Connect

In the last few years, credit for fuel burnup has been allowed in the design and criticality safety analysis of high-density spent-fuel storage racks. Design and operating philosophies, however, differ significantly between pressurized water reactor (PWR)- and boiling water reactor (BWR)-type plants because: (1) PWR storage pools generally use soluble boron, which provides backup criticality control under accident conditions; and (2) BWR fuel generally contains gadolinium burnable poison, which results in a characteristically peaked burnup-dependent reactivity variation. In PWR systems, the reactivity decreases monotonically with burnup in a nearly linear fashion (excluding xenon effects), and a two-region concept is feasible. In BWR systems, the reactivity is initially low, increases as fuel burnup progresses, and reaches a maximum at a burnup where the gadolinium is nearly depleted. In any spent-fuel storage rack design, uncertainties due to manufacturing tolerances and in calculational methods must be included to assure that the highest reactivity (k/sub eff/) is less than the 0.95 US Nuclear Regulatory Commission limit. In the absence of definitive critical experiment data with spent fuel, the uncertainty due to depletion calculations must be assumed on the basis of judgment. High-density spent-fuel storage racks may be designed for both PWR and BWR plants with credit for burnup. However, the design must be tailored to each plant with appropriate consideration of the preferences/specifications of the utility operating staff.

Turner, S.E.

1987-01-01T23:59:59.000Z

123

Distributed Energy Storage Systems Testing and Evaluation 2010 Interim Results  

Science Conference Proceedings (OSTI)

Distributed Energy Storage Systems (DESS) are fully integrated AC storage devices which can be located within the distribution system, at substation locations, off distribution feeders, near end-of-line pad mounted transformers, or on customer side of the meter locations. Many new and emerging storage systems are being developed for grid support, outage mitigation, power quality and peak load energy management. However there is limited operational data on performance, grid comparability, durability, reli...

2010-12-20T23:59:59.000Z

124

Upcoming Natural Gas Storage Facilities.  

U.S. Energy Information Administration (EIA)

Kentucky Energy Hub Project Orbit Gas Storage Inc KY Leader One Gas Storage Project Peregrine Midstream Partners WY Tricor Ten Section Storage Project

125

Vehicle Technologies Office: Energy Storage  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Storage to someone by E-mail Share Vehicle Technologies Office: Energy Storage on Facebook Tweet about Vehicle Technologies Office: Energy Storage on Twitter Bookmark...

126

Decontamination Dressdown at a Transportation Accident Involving  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Decontamination Dressdown at a Transportation Accident Involving Decontamination Dressdown at a Transportation Accident Involving Radioactive Material Decontamination Dressdown at a Transportation Accident Involving Radioactive Material The purpose of this User's Guide is to provide instructors with an overview of the key points covered in the video. The Student Handout portion of this Guide is designed to assist the instructor in reviewing those points with students. The Student Handout should be distributed to students after the video is shown and the instructor should use the Guide to facilitate a discussion on how the decontamination dressdown process is implemented. During this discussion, the instructor can present various scenarios, each of which would discuss decontamination at the accident scene. The purpose of this discussion would be to cover how responders

127

A systems approach to food accident analysis  

E-Print Network (OSTI)

Food borne illnesses lead to 3000 deaths per year in the United States. Some industries, such as aviation, have made great strides increasing safety through careful accident analysis leading to changes in industry practices. ...

Helferich, John D

2011-01-01T23:59:59.000Z

128

A SUMMARY OF INDUSTRIAL ACCIDENTS IN USAEC FACILITIES  

SciTech Connect

The summary includes descriptions of serious accidents for l959 and 1960, AEC industrial injury frequency rates, criticality accidents, radiation exposures, accidents involving radioactive materials in AEC activities during 1959 and 1960, and accidents involving fatalities in AEC activities during l959 and 1960. (B.O.G.)

1961-12-01T23:59:59.000Z

129

Three Mile Island accident and post-accident recovery: what did we learn  

SciTech Connect

A description of the accident at Three Mile Island-2 reactor is presented. Activities related to the cleanup and decontamination of the reactor are described.

Collins, E.D.

1982-01-01T23:59:59.000Z

130

NREL: Energy Storage - News  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Storage News Below are news stories related to NREL's energy storage research. August 28, 2013 NREL Battery Calorimeters Win R&D 100 Award The award-wining Isothermal...

131

NETL: Carbon Storage Archive  

NLE Websites -- All DOE Office Websites (Extended Search)

2013 Carbon Storage Newsletter PDF-571KB has been posted. 08.27.2013 Publications August 2013 Carbon Storage Newsletter PDF-1.1MB has been posted. 08.15.2013 News Ancient...

132

Carbon Storage Review 2012  

NLE Websites -- All DOE Office Websites (Extended Search)

of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for CO 2 Storage August 21-23,...

133

SUPERCONDUCTING MAGNETIC ENERGY STORAGE  

E-Print Network (OSTI)

pumped hydro, compressed air, and battery energy storage areto other energy storage sys tem s suc h as pumped hydro andenergy would be $50/MJ whereas the cost of the pumped hydro

Hassenzahl, W.

2011-01-01T23:59:59.000Z

134

Energy Storage & Delivery  

Science Conference Proceedings (OSTI)

Energy Storage & Delivery. Summary: Schematic of Membrane Molecular Structure The goal of the project is to develop ...

2013-07-23T23:59:59.000Z

135

Conventional Storage Water Heaters  

Energy.gov (U.S. Department of Energy (DOE))

Conventional storage water heaters remain the most popular type of water heating system for homes and buildings.

136

Low level waste shipment accident lessons learned  

SciTech Connect

On October 1, 1994 a shipment of low-level waste from the Fernald Environmental Management Project, Fernald, Ohio, was involved in an accident near Rolla, Missouri. The accident did not result in the release of any radioactive material. The accident did generate important lessons learned primarily in the areas of driver and emergency response communications. The shipment was comprised of an International Standards Organization (ISO) container on a standard flatbed trailer. The accident caused the low-level waste package to separate from the trailer and come to rest on its top in the median. The impact of the container with the pavement and median inflicted relatively minor damage to the container. The damage was not substantial enough to cause failure of container integrity. The success of the package is attributable to the container design and the packaging procedures used at the Fernald Environmental Management Project for low-level waste shipments. Although the container survived the initial wreck, is was nearly breached when the first responders attempted to open the ISO container. Even though the container was clearly marked and the shipment documentation was technically correct, this information did not identify that the ISO container was the primary containment for the waste. The lessons learned from this accident have DOE complex wide applicability. This paper is intended to describe the accident, subsequent emergency response operations, and the lessons learned from this incident.

Rast, D.M.; Rowe, J.G.; Reichel, C.W.

1995-02-01T23:59:59.000Z

137

Hydrate Control for Gas Storage Operations  

Science Conference Proceedings (OSTI)

The overall objective of this project was to identify low cost hydrate control options to help mitigate and solve hydrate problems that occur in moderate and high pressure natural gas storage field operations. The study includes data on a number of flow configurations, fluids and control options that are common in natural gas storage field flow lines. The final phase of this work brings together data and experience from the hydrate flow test facility and multiple field and operator sources. It includes a compilation of basic information on operating conditions as well as candidate field separation options. Lastly the work is integrated with the work with the initial work to provide a comprehensive view of gas storage field hydrate control for field operations and storage field personnel.

Jeffrey Savidge

2008-10-31T23:59:59.000Z

138

Blast rips Texas LPG storage site  

SciTech Connect

This paper reports that Seminole Pipeline Co. at presstime last week had planned to reopen its 775 mile liquefied petroleum gas pipeline in South Texas by Apr. 12 after a huge explosion devastated the area around a Seminole LPG storage salt dome near Brenham, Tex., forcing the pipeline shutdown. A large fire was still burning at the storage site at presstime last week. The blast - shortly after 7 a.m. Apr. 7 - occurred at a pipeline connecting the main Seminole line with the storage facility and caused shock waves felt 130 miles away. A 5 year old boy who lived in a trailer near Seminole's LPG storage dome was killed, and 20 persons were injured.

1992-04-13T23:59:59.000Z

139

Criticality Safety Evaluation of Hanford Site High Level Waste Storage Tanks  

Science Conference Proceedings (OSTI)

This criticality safety evaluation covers operations for waste in underground storage tanks at the high-level waste tank farms on the Hanford site. This evaluation provides the bases for criticality safety limits and controls to govern receipt, transfer, and long-term storage of tank waste. Justification is provided that a nuclear criticality accident cannot occur for tank farms operations, based on current fissile material and operating conditions.

ROGERS, C.A.

2000-02-17T23:59:59.000Z

140

Advanced Gas Storage Concepts: Technologies for the Future  

Science Conference Proceedings (OSTI)

This full text product includes: 1) A final technical report titled Advanced Underground Gas Storage Concepts, Refrigerated-Mined Cavern Storage and presentations from two technology transfer workshops held in 1998 in Houston, Texas, and Pittsburgh, Pennsylvania (both on the topic of Chilled Gas Storage in Mined Caverns); 2) A final technical report titled Natural Gas Hydrates Storage Project, Final Report 1 October 1997 - 31 May 1999; 3) A final technical report titled Natural Gas Hydrates Storage Project Phase II: Conceptual Design and Economic Study, Final Report 9 June - 10 October 1999; 4) A final technical report titled Commerical Potential of Natural Gas Storage in Lined Rock Caverns (LRC) and presentations from a DOE-sponsored workshop on Alternative Gas Storage Technologies, held Feb 17, 2000 in Pittsburgh, PA; and 5) Phase I and Phase II topical reports titled Feasibility Study for Lowering the Minimum Gas Pressure in Solution-Mined Caverns Based on Geomechanical Analyses of Creep-Induced Damage and Healing.

Freeway, Katy (PB-KBB Inc.) [PB-KBB Inc.; Rogers, R.E. (Mississippi State University) [Mississippi State University; DeVries, Kerry L.; Nieland, Joel D.; Ratigan, Joe L.; Mellegard, Kirby D. (RESPEC) [RESPEC

2000-02-01T23:59:59.000Z

Note: This page contains sample records for the topic "line accidents storage" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Releases of UF{sub 6} to the atmosphere after a potential fire in a cylinder storage yard  

Science Conference Proceedings (OSTI)

Uranium hexafluoride (UF{sub 6}), a toxic material, is stored in just over 6200 cylinders at the K-25 site in Oak Ridge, Tennessee. The safety analysis report (SAR) for cylinder yard storage operations at the plant required the development of accident scenarios for the potential release of UF{sub 6} to the atmosphere. In accordance with DOE standards and guidance, the general approach taken in this SAR was to examine the functions and contents of the cylinder storage yards to determine whether safety-significant hazards were present for workers in the immediate vicinity, workers on-site, the general public off-site, or the environment. and to evaluate the significance of any hazards that were found. A detailed accident analysis was performed to determine a set of limiting accidents that have potential for off-site consequences. One of the limiting accidents identified in the SAR was the rupture of a cylinder engulfed in a fire.

Lombardi, D.A.; Williams, W.R.; Anderson, J.C. [and others

1997-06-01T23:59:59.000Z

142

BEAM LINE  

NLE Websites -- All DOE Office Websites (Extended Search)

BEAM LINE BEAM LINE 45 W ILHELM ROENTGEN'S INITIAL DISCOVERY of X-radiation in 1895 led immediately to practical applications in medicine. Over the next few decades X rays proved to be an invaluable tool for the investigation of the micro-world of the atom and the development of the quantum theory of matter. Almost a century later, telescopes designed to detect X-radiation are indispensable for understanding the structure and evolution of the macro-world of stars, galaxies, and the Universe as a whole. The X-Ray Universe by WALLACE H. TUCKER X-ray images of the Universe are strikingly different from the usual visible-light images. 46 SUMMER 1995 did not think: I investigated." Undeterred by NASA's rejection of a proposal to search for cosmic X-radiation, Giacconi persuaded the

143

Storage Sub-committee  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Storage Sub-committee Storage Sub-committee 2012 Work Plan Confidential 1 2012 Storage Subcommittee Work Plan * Report to Congress. (legislative requirement) - Review existing and projected research and funding - Review existing DOE, Arpa-e projects and the OE 5 year plan - Identify gaps and recommend additional topics - Outline distributed (review as group) * Develop and analysis of the need for large scale storage deployment (outline distributed again) * Develop analysis on regulatory issues especially valuation and cost recovery Confidential 2 Large Scale Storage * Problem Statement * Situation Today * Benefits Analysis * Policy Issues * Technology Gaps * Recommendations * Renewables Variability - Reserves and capacity requirements - Financial impacts - IRC Response to FERC NOI and update

144

FCT Hydrogen Storage: Hydrogen Storage R&D Activities  

NLE Websites -- All DOE Office Websites (Extended Search)

Hydrogen Storage R&D Activities Hydrogen Storage R&D Activities to someone by E-mail Share FCT Hydrogen Storage: Hydrogen Storage R&D Activities on Facebook Tweet about FCT Hydrogen Storage: Hydrogen Storage R&D Activities on Twitter Bookmark FCT Hydrogen Storage: Hydrogen Storage R&D Activities on Google Bookmark FCT Hydrogen Storage: Hydrogen Storage R&D Activities on Delicious Rank FCT Hydrogen Storage: Hydrogen Storage R&D Activities on Digg Find More places to share FCT Hydrogen Storage: Hydrogen Storage R&D Activities on AddThis.com... Home Basics Current Technology DOE R&D Activities National Hydrogen Storage Compressed/Liquid Hydrogen Tanks Testing and Analysis Quick Links Hydrogen Production Hydrogen Delivery Fuel Cells Technology Validation Manufacturing Codes & Standards

145

Chemical Storage-Overview  

NLE Websites -- All DOE Office Websites (Extended Search)

Storage - Storage - Overview Ali T-Raissi, FSEC Hydrogen Storage Workshop Argonne National Laboratory, Argonne, Illinois August 14-15, 2002 Hydrogen Fuel - Attributes * H 2 +½ O 2 → H 2 O (1.23 V) * High gravimetric energy density: 27.1 Ah/g, based on LHV of 119.93 kJ/g * 1 wt % = 189.6 Wh/kg (0.7 V; i.e. η FC = 57%) * Li ion cells: 130-150 Wh/kg Chemical Hydrides - Definition * They are considered secondary storage methods in which the storage medium is expended - primary storage methods include reversible systems (e.g. MHs & C-nanostructures), GH 2 & LH 2 storage Chemical Hydrides - Definition (cont.) * The usual chemical hydride system is reaction of a reactant containing H in the "-1" oxidation state (hydride) with a reactant containing H in the "+1" oxidation

146

NETL: Carbon Storage  

NLE Websites -- All DOE Office Websites (Extended Search)

Storage Storage Technologies Carbon Storage (formerly referred to as the "Carbon Sequestration Program") Program Overview For quick navigation of NETL's Carbon Storage Program website, please click on the image. NETL's Carbon Storage Program Fossil fuels are considered the most dependable, cost-effective energy source in the world. The availability of these fuels to provide clean, affordable energy is essential for domestic and global prosperity and security well into the 21st century. However, a balance is needed between energy security and concerns over the impacts of concentrations of greenhouse gases (GHGs) in the atmosphere - particularly carbon dioxide (CO2). NETL's Carbon Storage Program is developing a technology portfolio of safe, cost-effective, commercial-scale CO2 capture, storage, and mitigation

147

Instrument Performance Under Severe Accident Conditions: Ways to Acquire Information From Instrumentation Affected by an Accident  

Science Conference Proceedings (OSTI)

Under accident conditions, information is needed for diagnosing plant status and confirming plant responses to mitigative actions. This makes it important to understand how instruments behave in severe accident environments and to find ways to obtain information from the instruments under conditions that can be more severe than their design bases.

1993-12-01T23:59:59.000Z

148

Technical Safety Requirements for the Waste Storage Facilities  

SciTech Connect

This document contains Technical Safety Requirements (TSR) for the Radioactive and Hazardous Waste Management (RHWM) WASTE STORAGE FACILITIES, which include Area 612 (A612) and the Decontamination and Waste Treatment Facility (DWTF) Storage Area at Lawrence Livermore National Laboratory (LLNL). The TSRs constitute requirements regarding the safe operation of the WASTE STORAGE FACILITIES. These TSRs are derived from the Documented Safety Analysis for the Waste Storage Facilities (DSA) (LLNL 2006). The analysis presented therein determined that the WASTE STORAGE FACILITIES are low-chemical hazard, Hazard Category 2 non-reactor nuclear facilities. The TSRs consist primarily of inventory limits and controls to preserve the underlying assumptions in the hazard and accident analyses. Further, appropriate commitments to safety programs are presented in the administrative controls sections of the TSRs. The WASTE STORAGE FACILITIES are used by RHWM to handle and store hazardous waste, TRANSURANIC (TRU) WASTE, LOW-LEVEL WASTE (LLW), mixed waste, California combined waste, nonhazardous industrial waste, and conditionally accepted waste generated at LLNL as well as small amounts from other U.S. Department of Energy (DOE) facilities, as described in the DSA. In addition, several minor treatments (e.g., drum crushing, size reduction, and decontamination) are carried out in these facilities. The WASTE STORAGE FACILITIES are located in two portions of the LLNL main site. A612 is located in the southeast quadrant of LLNL. The A612 fenceline is approximately 220 m west of Greenville Road. The DWTF Storage Area, which includes Building 693 (B693), Building 696 Radioactive Waste Storage Area (B696R), and associated yard areas and storage areas within the yard, is located in the northeast quadrant of LLNL in the DWTF complex. The DWTF Storage Area fenceline is approximately 90 m west of Greenville Road. A612 and the DWTF Storage Area are subdivided into various facilities and storage areas, consisting of buildings, tents, other structures, and open areas as described in Chapter 2 of the DSA. Section 2.4 of the DSA provides an overview of the buildings, structures, and areas in the WASTE STORAGE FACILITIES, including construction details such as basic floor plans, equipment layout, construction materials, controlling dimensions, and dimensions significant to the hazard and accident analysis. Chapter 5 of the DSA documents the derivation of the TSRs and develops the operational limits that protect the safety envelope defined for the WASTE STORAGE FACILITIES. This TSR document is applicable to the handling, storage, and treatment of hazardous waste, TRU WASTE, LLW, mixed waste, California combined waste, nonhazardous industrial waste, and conditionally accepted waste received or generated in the WASTE STORAGE FACILITIES. Section 5, Administrative Controls, contains those Administrative Controls necessary to ensure safe operation of the WASTE STORAGE FACILITIES. Programmatic Administrative Controls are in Section 5.6. This Introduction to the WASTE STORAGE FACILITIES TSRs is not part of the TSR limits or conditions and contains no requirements related to WASTE STORAGE FACILITIES operations or to the safety analyses of the DSA.

Larson, H L

2007-09-07T23:59:59.000Z

149

SAF-230DE - Web Based Course: Accident Investigation Overview | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

SAF-230DE - Web Based Course: Accident Investigation Overview SAF-230DE - Web Based Course: Accident Investigation Overview SAF-230DE - Web Based Course: Accident Investigation Overview September 18, 2013 - 10:52am Addthis SAF-230DE - Web Based Course: Accident Investigation Overview The Office of Health Safety and Security (HSS) National Training Center (NTC) in collaboration with the HSS Accident Investigation Program (HS-24) has developed and released a course that provides an overview of the fundamentals of accident investigation. This course is intended to meet the every five year refresher training requirement for DOE Federal Accident Investigators under DOE Order 225.1B "Accident Investigations", and serves as an orientation to other DOE Federal Accident Investigation Board Members who need a basic knowledge of

150

Electric utility applications of hydrogen energy storage systems  

DOE Green Energy (OSTI)

This report examines the capital cost associated with various energy storage systems that have been installed for electric utility application. The storage systems considered in this study are Battery Energy Storage (BES), Superconducting Magnetic Energy Storage (SMES) and Flywheel Energy Storage (FES). The report also projects the cost reductions that may be anticipated as these technologies come down the learning curve. This data will serve as a base-line for comparing the cost-effectiveness of hydrogen energy storage (HES) systems in the electric utility sector. Since pumped hydro or compressed air energy storage (CAES) is not particularly suitable for distributed storage, they are not considered in this report. There are no comparable HES systems in existence in the electric utility sector. However, there are numerous studies that have assessed the current and projected cost of hydrogen energy storage system. This report uses such data to compare the cost of HES systems with that of other storage systems in order to draw some conclusions as to the applications and the cost-effectiveness of hydrogen as a electricity storage alternative.

Swaminathan, S.; Sen, R.K.

1997-10-15T23:59:59.000Z

151

EMERGENCY RESPONSE TO A TRANSPORTATION ACCIDENT INVOLVING RADIOACTIVE MATERIAL  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Emer Emer Emer Emer Emer Emergency Response to a T gency Response to a T gency Response to a T gency Response to a T gency Response to a Transportation ransportation ransportation ransportation ransportation Accident Involving Radioactive Material Accident Involving Radioactive Material Accident Involving Radioactive Material Accident Involving Radioactive Material Accident Involving Radioactive Material DISCLAIMER DISCLAIMER DISCLAIMER DISCLAIMER DISCLAIMER Viewing this video and completing the enclosed printed study material do not by themselves provide sufficient skills to safely engage in or perform duties related to emergency response to a transportation accident involving radioactive material. Meeting that goal is beyond the scope of this video and requires either additional

152

A Review of Criticality Accidents 2000 Revision  

SciTech Connect

Criticality accidents and the characteristics of prompt power excursions are discussed. Sixty accidental power excursions are reviewed. Sufficient detail is provided to enable the reader to understand the physical situation, the chemistry and material flow, and when available the administrative setting leading up to the time of the accident. Information on the power history, energy release, consequences, and causes are also included when available. For those accidents that occurred in process plants, two new sections have been included in this revision. The first is an analysis and summary of the physical and neutronic features of the chain reacting systems. The second is a compilation of observations and lessons learned. Excursions associated with large power reactors are not included in this report.

Thomas P. McLaughlin; Shean P. Monahan; Norman L. Pruvost; Vladimir V. Frolov; Boris G. Ryazanov; Victor I. Sviridov

2000-05-01T23:59:59.000Z

153

Severe accident testing of a personnel airlock  

Science Conference Proceedings (OSTI)

Sandia National Laboratories (Sandia) is investigating the leakage potential of mechanical penetrations as part of a research program on containment integrity under severe accident loads for the US Nuclear Regulatory Commission (NRC). Barnes et al. (1984) and Shackelford et al. (1985) identified leakage from personnel airlocks as an important failure mode of containments subject to severe accident loads. However, these studies were based on relatively simple analysis methods. The complex structural interaction between the door, gasket, and bulkhead in personnel airlocks makes analytical evaluation of leakage difficult. In order to provide data to validate methods for evaluating the leakage potential, a full-size personnel airlock was subject to simulated severe accident loads consisting of pressure and temperature up to 300 psig and 800/degree/F. The test was conducted at Chicago Bridge and Iron under contract to Sandia. Julien and Peters (1989) provide a detailed report on the test program. 6 refs., 5 figs.

Clauss, D.B.; Parks, M.B.; Julien, J.T.; Peters, S.W.

1989-01-01T23:59:59.000Z

154

Assessment of CRBR core disruptive accident energetics  

Science Conference Proceedings (OSTI)

The results of an independent assessment of core disruptive accident energetics for the Clinch River Breeder Reactor are presented in this document. This assessment was performed for the Nuclear Regulatory Commission under the direction of the CRBR Program Office within the Office of Nuclear Reactor Regulation. It considered in detail the accident behavior for three accident initiators that are representative of three different classes of events; unprotected loss of flow, unprotected reactivity insertion, and protected loss of heat sink. The primary system's energetics accommodation capability was realistically, yet conservatively, determined in terms of core events. This accommodation capability was found to be equivalent to an isentropic work potential for expansion to one atmosphere of 2550 MJ or a ramp rate of about 200 $/s applied to a classical two-phase disassembly.

Theofanous, T.G.; Bell, C.R.

1984-03-01T23:59:59.000Z

155

Arrival condition of spent fuel after storage, handling, and transportation  

Science Conference Proceedings (OSTI)

This report presents the results of a study conducted to determine the probable arrival condition of spent light-water reactor (LWR) fuel after handling and interim storage in spent fuel storage pools and subsequent handling and accident-free transport operations under normal or slightly abnormal conditions. The objective of this study was to provide information on the expected condition of spent LWR fuel upon arrival at interim storage or fuel reprocessing facilities or at disposal facilities if the fuel is declared a waste. Results of a literature survey and data evaluation effort are discussed. Preliminary threshold limits for storing, handling, and transporting unconsolidated spent LWR fuel are presented. The difficulty in trying to anticipate the amount of corrosion products (crud) that may be on spent fuel in future shipments is also discussed, and potential areas for future work are listed. 95 references, 3 figures, 17 tables.

Bailey, W.J.; Pankaskie, P.J.; Langstaff, D.C.; Gilbert, E.R.; Rising, K.H.; Schreiber, R.E.

1982-11-01T23:59:59.000Z

156

Accident progression event tree analysis for postulated severe accidents at N Reactor  

SciTech Connect

A Level II/III probabilistic risk assessment (PRA) has been performed for N Reactor, a Department of Energy (DOE) production reactor located on the Hanford reservation in Washington. The accident progression analysis documented in this report determines how core damage accidents identified in the Level I PRA progress from fuel damage to confinement response and potential releases the environment. The objectives of the study are to generate accident progression data for the Level II/III PRA source term model and to identify changes that could improve plant response under accident conditions. The scope of the analysis is comprehensive, excluding only sabotage and operator errors of commission. State-of-the-art methodology is employed based largely on the methods developed by Sandia for the US Nuclear Regulatory Commission in support of the NUREG-1150 study. The accident progression model allows complex interactions and dependencies between systems to be explicitly considered. Latin Hypecube sampling was used to assess the phenomenological and systemic uncertainties associated with the primary and confinement system responses to the core damage accident. The results of the analysis show that the N Reactor confinement concept provides significant radiological protection for most of the accident progression pathways studied.

Wyss, G.D.; Camp, A.L.; Miller, L.A.; Dingman, S.E.; Kunsman, D.M. (Sandia National Labs., Albuquerque, NM (USA)); Medford, G.T. (Science Applications International Corp., Albuquerque, NM (USA))

1990-06-01T23:59:59.000Z

157

Heat storage duration  

DOE Green Energy (OSTI)

Both the amount and duration of heat storage in massive elements of a passive building are investigated. Data taken for one full winter in the Balcomb solar home are analyzed with the aid of sub-system simulation models. Heat storage duration is tallied into one-day intervals. Heat storage location is discussed and related to overall energy flows. The results are interpreted and conclusions drawn.

Balcomb, J.D.

1981-01-01T23:59:59.000Z

158

LESSONS LEARNED FROM A RECENT LASER ACCIDENT  

SciTech Connect

A graduate student received a laser eye injury from a femtosecond Ti:sapphire laser beam while adjusting a polarizing beam splitter optic. The direct causes for the accident included failure to follow safe alignment practices and failure to wear the required laser eyewear protection. Underlying root causes included inadequate on-the-job training and supervision, inadequate adherence to requirements, and inadequate appreciation for dimly visible beams outside the range of 400-700nm. This paper describes how the accident occurred, discusses causes and lessons learned, and describes corrective actions being taken.

Woods, Michael; /SLAC

2011-01-26T23:59:59.000Z

159

Experiments to Address Lower Plenum Response Under Severe Accident Conditions: Volume 2: Data Report, Part 1: Tests 1-6  

Science Conference Proceedings (OSTI)

This report describes a set of experiments that were performed to address reactor pressure vessel lower plenum response under severe accident conditions. High temperature (2400 degrees K) debris was used to study the response of BWR and PWR lower head instrument tube penetrations of a BWR drain line, and of molten debris quenching in a sub-cooled water pool. The importance of water as a heat sink within the instrument tube penetrations and drain line was quantified. Furthermore, the axial penetration of ...

1994-06-07T23:59:59.000Z

160

Experiments to Address Lower Plenum Response Under Severe Accident Conditions: Volume 2: Data Report, Part 2: Tests 7-10  

Science Conference Proceedings (OSTI)

This report describes a set of experiments that were performed to address reactor pressure vessel lower plenum response under severe accident conditions. High temperature (2400 degrees K) debris was used to study the response of BWR and PWR lower head instrument tube penetrations of a BWR drain line, and of molten debris quenching in a sub-cooled water pool. The importance of water as a heat sink within the instrument tube penetrations and drain line was quantified. Furthermore, the axial penetration of ...

1994-06-07T23:59:59.000Z

Note: This page contains sample records for the topic "line accidents storage" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

NETL: Carbon Storage - Infrastructure  

NLE Websites -- All DOE Office Websites (Extended Search)

Infrastructure Infrastructure Carbon Storage Infrastructure The Infrastructure Element of DOE's Carbon Storage Program is focused on research and development (R&D) initiatives to advance geologic CO2 storage toward commercialization. DOE determined early in the program's development that addressing CO2 mitigation on a regional level is the most effective way to address differences in geology, climate, population density, infrastructure, and socioeconomic development. This element includes the following efforts designed to support the development of regional infrastructure for carbon capture and storage (CCS). Click on Image to Navigate Infrastructure Content on this page requires a newer version of Adobe Flash Player. Get Adobe Flash player Regional Carbon Sequestration Partnerships (RCSP) - This

162

Storage Sub-committee  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Gaps - Existing R&D and pilot programs - CAES - Controllable pumping - Off shore (energy island, etc) - Gravity systems - Thermal storage Confidential 3 Report to DOE ...

163

Other Innovative Storage Systems  

Science Conference Proceedings (OSTI)

High Efficiency Electrical Energy Storage Using Reversible Solid Oxide Cells: Scott Barnett1; Gareth Hughes1; Kyle Yakal-Kremski1; Zhan Gao1; 1 Northwestern...

164

NREL: Energy Storage - Webmaster  

NLE Websites -- All DOE Office Websites (Extended Search)

to reply. Your name: Your email address: Your message: Send Message Printable Version Energy Storage Home About the Project Technology Basics Research & Development Awards &...

165

NREL: Energy Storage - Resources  

NLE Websites -- All DOE Office Websites (Extended Search)

Resources The National Renewable Energy Laboratory's (NREL) Energy Storage team and partners work within a variety of programs that have created test manuals to establish standard...

166

Advanced Energy Storage Publications  

NLE Websites -- All DOE Office Websites (Extended Search)

Advanced Energy Storage Publications Reports: Advanced Technology Development Program For Lithium-Ion Batteries: Gen 2 Performance Evaluation Final Report Advanced Technology...

167

HEATS: Thermal Energy Storage  

SciTech Connect

HEATS Project: The 15 projects that make up ARPA-Es HEATS program, short for High Energy Advanced Thermal Storage, seek to develop revolutionary, cost-effective ways to store thermal energy. HEATS focuses on 3 specific areas: 1) developing high-temperature solar thermal energy storage capable of cost-effectively delivering electricity around the clock and thermal energy storage for nuclear power plants capable of cost-effectively meeting peak demand, 2) creating synthetic fuel efficiently from sunlight by converting sunlight into heat, and 3) using thermal energy storage to improve the driving range of electric vehicles (EVs) and also enable thermal management of internal combustion engine vehicles.

None

2012-01-01T23:59:59.000Z

168

H 2 Storage Projects  

Science Conference Proceedings (OSTI)

... 10. Titanium-decorated carbon nanotubes: a potential high-capacity hydrogen storage madium. ... 3. Exohydrogenated single-wall carbon nanotubes. ...

169

Natural Gas Storage Valuation .  

E-Print Network (OSTI)

??In this thesis, one methodology for natural gas storage valuation is developed and two methodologies are improved. Then all of the three methodologies are applied (more)

Li, Yun

2007-01-01T23:59:59.000Z

170

NETL: Carbon Storage FAQs  

NLE Websites -- All DOE Office Websites (Extended Search)

Does CCS really make a difference for the environment? Carbon capture and storage (CCS) is one of several options, including the use of renewables, nuclear energy, alternative...

171

Carbon Storage Program  

NLE Websites -- All DOE Office Websites (Extended Search)

fuel power plants as viable, clean sources of electric power. The program is focused on developing technologies that can achieve 99 percent of carbon dioxide (CO 2 ) storage...

172

Energy Storage Systems 2007 Peer Review - International Energy Storage  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

International Energy International Energy Storage Program Presentations Energy Storage Systems 2007 Peer Review - International Energy Storage Program Presentations The U.S. DOE Energy Storage Systems Program (ESS) held an annual peer review on September 27, 2007 in San Francisco, CA. Eighteen presentations were divided into categories; those related to international energy storage programs are below. Other presentation categories were: Economics - Benefit Studies and Environment Benefit Studies Utility & Commercial Applications of Advanced Energy Storage Systems Power Electronics Innovations in Energy Storage Systems ESS 2007 Peer Review - DOE-CEC Energy Storage Program FY07 Projects - Daniel Borneo, SNL.pdf ESS 2007 Peer Review - Joint NYSERDA-DOE Energy Storage Initiative Projects

173

Technical Safety Requirements for the Waste Storage Facilities  

SciTech Connect

This document contains Technical Safety Requirements (TSR) for the Radioactive and Hazardous Waste Management (RHWM) WASTE STORAGE FACILITIES, which include Area 625 (A625) and the Decontamination and Waste Treatment Facility (DWTF) Storage Area at Lawrence Livermore National Laboratory (LLNL). The TSRs constitute requirements regarding the safe operation of the WASTE STORAGE FACILITIES. These TSRs are derived from the Documented Safety Analysis for the Waste Storage Facilities (DSA) (LLNL 2009). The analysis presented therein determined that the WASTE STORAGE FACILITIES are low-chemical hazard, Hazard Category 2 non-reactor nuclear facilities. The TSRs consist primarily of inventory limits and controls to preserve the underlying assumptions in the hazard and accident analyses. Further, appropriate commitments to safety programs are presented in the administrative controls sections of the TSRs. The WASTE STORAGE FACILITIES are used by RHWM to handle and store hazardous waste, TRANSURANIC (TRU) WASTE, LOW-LEVEL WASTE (LLW), mixed waste, California combined waste, nonhazardous industrial waste, and conditionally accepted waste generated at LLNL as well as small amounts from other U.S. Department of Energy (DOE) facilities, as described in the DSA. In addition, several minor treatments (e.g., size reduction and decontamination) are carried out in these facilities. The WASTE STORAGE FACILITIES are located in two portions of the LLNL main site. A625 is located in the southeast quadrant of LLNL. The A625 fenceline is approximately 225 m west of Greenville Road. The DWTF Storage Area, which includes Building 693 (B693), Building 696 Radioactive Waste Storage Area (B696R), and associated yard areas and storage areas within the yard, is located in the northeast quadrant of LLNL in the DWTF complex. The DWTF Storage Area fenceline is approximately 90 m west of Greenville Road. A625 and the DWTF Storage Area are subdivided into various facilities and storage areas, consisting of buildings, tents, other structures, and open areas as described in Chapter 2 of the DSA. Section 2.4 of the DSA provides an overview of the buildings, structures, and areas in the WASTE STORAGE FACILITIES, including construction details such as basic floor plans, equipment layout, construction materials, controlling dimensions, and dimensions significant to the hazard and accident analysis. Chapter 5 of the DSA documents the derivation of the TSRs and develops the operational limits that protect the safety envelope defined for the WASTE STORAGE FACILITIES. This TSR document is applicable to the handling, storage, and treatment of hazardous waste, TRU WASTE, LLW, mixed waste, California combined waste, nonhazardous industrial waste, and conditionally accepted waste received or generated in the WASTE STORAGE FACILITIES. Section 5, Administrative Controls, contains those Administrative Controls necessary to ensure safe operation of the WASTE STORAGE FACILITIES. Programmatic Administrative Controls are in Section 5.4.

Laycak, D T

2010-03-05T23:59:59.000Z

174

Technical Safety Requirements for the Waste Storage Facilities  

SciTech Connect

This document contains Technical Safety Requirements (TSR) for the Radioactive and Hazardous Waste Management (RHWM) WASTE STORAGE FACILITIES, which include Area 625 (A625) and the Decontamination and Waste Treatment Facility (DWTF) Storage Area at Lawrence Livermore National Laboratory (LLNL). The TSRs constitute requirements regarding the safe operation of the WASTE STORAGE FACILITIES. These TSRs are derived from the 'Documented Safety Analysis for the Waste Storage Facilities' (DSA) (LLNL 2008). The analysis presented therein determined that the WASTE STORAGE FACILITIES are low-chemical hazard, Hazard Category 2 non-reactor nuclear facilities. The TSRs consist primarily of inventory limits and controls to preserve the underlying assumptions in the hazard and accident analyses. Further, appropriate commitments to safety programs are presented in the administrative controls sections of the TSRs. The WASTE STORAGE FACILITIES are used by RHWM to handle and store hazardous waste, TRANSURANIC (TRU) WASTE, LOW-LEVEL WASTE (LLW), mixed waste, California combined waste, nonhazardous industrial waste, and conditionally accepted waste generated at LLNL as well as small amounts from other U.S. Department of Energy (DOE) facilities, as described in the DSA. In addition, several minor treatments (e.g., size reduction and decontamination) are carried out in these facilities. The WASTE STORAGE FACILITIES are located in two portions of the LLNL main site. A625 is located in the southeast quadrant of LLNL. The A625 fenceline is approximately 225 m west of Greenville Road. The DWTF Storage Area, which includes Building 693 (B693), Building 696 Radioactive Waste Storage Area (B696R), and associated yard areas and storage areas within the yard, is located in the northeast quadrant of LLNL in the DWTF complex. The DWTF Storage Area fenceline is approximately 90 m west of Greenville Road. A625 and the DWTF Storage Area are subdivided into various facilities and storage areas, consisting of buildings, tents, other structures, and open areas as described in Chapter 2 of the DSA. Section 2.4 of the DSA provides an overview of the buildings, structures, and areas in the WASTE STORAGE FACILITIES, including construction details such as basic floor plans, equipment layout, construction materials, controlling dimensions, and dimensions significant to the hazard and accident analysis. Chapter 5 of the DSA documents the derivation of the TSRs and develops the operational limits that protect the safety envelope defined for the WASTE STORAGE FACILITIES. This TSR document is applicable to the handling, storage, and treatment of hazardous waste, TRU WASTE, LLW, mixed waste, California combined waste, nonhazardous industrial waste, and conditionally accepted waste received or generated in the WASTE STORAGE FACILITIES. Section 5, Administrative Controls, contains those Administrative Controls necessary to ensure safe operation of the WASTE STORAGE FACILITIES. Programmatic Administrative Controls are in Section 5.6.

Laycak, D T

2008-06-16T23:59:59.000Z

175

Final safety analysis report for the irradiated fuels storage facility  

SciTech Connect

A fuel storage facility has been constructed at the Idaho Chemical Processing Plant to provide safe storage for spent fuel from two commercial HTGR's, Fort St. Vrain and Peach Bottom, and from the Rover nuclear rocket program. The new facility was built as an addition to the existing fuel storage basin building to make maximum use of existing facilities and equipment. The completed facility provides dry storage for one core of Peach Bottom fuel (804 elements), 1$sup 1$/$sub 2$ cores of Fort St. Vrain fuel (2200 elements), and the irradiated fuel from the 20 reactors in the Rover program. The facility is designed to permit future expansion at a minimum cost should additional storage space for graphite-type fuels be required. A thorough study of the potential hazards associated with the Irradiated Fuels Storage Facility has been completed, indicating that the facility is capable of withstanding all credible combinations of internal accidents and pertinent natural forces, including design basis natural phenomena of a 10,000 year flood, a 175-mph tornado, or an earthquake having a bedrock acceleration of 0.33 g and an amplification factor of 1.3, without a loss of integrity or a significant release of radioactive materials. The design basis accident (DBA) postulated for the facility is a complete loss of cooling air, even though the occurrence of this situation is extremely remote, considering the availability of backup and spare fans and emergency power. The occurrence of the DBA presents neither a radiation nor an activity release hazard. A loss of coolant has no effect upon the fuel or the facility other than resulting in a gradual and constant temperature increase of the stored fuel. The temperature increase is gradual enough that ample time (28 hours minimum) is available for corrective action before an arbitrarily imposed maximum fuel centerline temperature of 1100$sup 0$F is reached. (LK)

Bingham, G.E.; Evans, T.K.

1976-01-01T23:59:59.000Z

176

Redesigning experimental equipment for determining peak pressure in a simulated tank car transfer line  

E-Print Network (OSTI)

When liquids are transported from storage tanks to tank cars, improper order of valve openings can cause pressure surges in the transfer line. To model this phenomenon and predict the peak pressures in such a transfer line, ...

Diaz, Richard A

2007-01-01T23:59:59.000Z

177

Experiments to Address Lower Plenum Response Under Severe Accident Conditions: Volume 1: Technical Report  

Science Conference Proceedings (OSTI)

This report describes a set of experiments that were performed to address reactor pressure vessel lower plenum response under severe accident conditions. High temperature (2400 degrees K) debris was used to study the response of BWR and PWR lower head instrument tube penetrations of a BWR drain line and of molten debris quenching in a sub-cooled water pool. The importance of water as a heat sink within the instrument tube penetrations and drain line was quantified. Furthermore, the axial penetration of m...

1994-06-07T23:59:59.000Z

178

Accident Investigation of the Fall Injury at the Savannah River...  

NLE Websites -- All DOE Office Websites (Extended Search)

U.S. Department of Energy Office of Environmental Management Accident Investigation Report Fall Injury Accident at the Savannah River Site on July 1, 2011 August 8, 2011 Disclaimer...

179

NETL: Carbon Storage - Reference Shelf  

NLE Websites -- All DOE Office Websites (Extended Search)

Carbon Storage > Reference Shelf Carbon Storage > Reference Shelf Carbon Storage Reference Shelf Below are links to Carbon Storage Program documents and reference materials. Each of the 10 categories has a variety of documents posted for easy access to current information - just click on the category link to view all related materials. RSS Icon Subscribe to the Carbon Storage RSS Feed. Carbon Storage Collage 2012 Carbon Utilization and Storage Atlas IV Carbon Sequestration Project Portfolio DOE/NETL Carbon Dioxide Capture and Storage RD&D Roadmap Public Outreach and Education for Carbon Storage Projects Carbon Storage Technology Program Plan Carbon Storage Newsletter Archive Impact of the Marcellus Shale Gas Play on Current and Future CCS Activities Site Screening, Selection, and Initial Characterization for Storage of CO2 in Deep Geologic Formations Carbon Storage Systems and Well Management Activities Monitoring, Verification, and Accounting of CO2 Stored in Deep Geologic Formations

180

Two Line Subject Title One Line Title  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy, National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for CCUS August 21-23, 2012...

Note: This page contains sample records for the topic "line accidents storage" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Two Line Subject Title One Line Title  

NLE Websites -- All DOE Office Websites (Extended Search)

efficiency and reduce emmisions from advanced FE systems 30 Energy Storage and Smart Grid Improve reliability and stability of the grid Provide responsive power to meet...

182

Uncertainty Assessments in Severe Nuclear Accident Scenarios  

Science Conference Proceedings (OSTI)

Managing uncertainties in industrial systems is a daily challenge to ensure improved design, robust operation, accountable performance and responsive risk control. This paper aims to illustrate the different depth analyses that the uncertainty software ... Keywords: Monte Carlo simulation, nuclear power plant, sensitivity analysis, severe accident, uncertainty

Bertrand Iooss; Fabrice Gaudier; Michel Marques; Bertrand Spindler; Bruno Tourniaire

2009-09-01T23:59:59.000Z

183

Blasting practices and explosives accidents in Utah coal mines  

SciTech Connect

Practices in use in Utah are commended and accidents incident to blasting are reviewed with suggestions as to future avoidance.

Parker, D.J.

1935-01-01T23:59:59.000Z

184

RECENT LASER ACCIDENTS AT DEPARTMENT OF ENERGY LABORATORIES  

SciTech Connect

Recent laser accidents and incidents at research laboratories across the Department of Energy complex are reviewed in this paper. Factors that contributed to the accidents are examined. Conclusions drawn from the accident reports are summarized and compared. Control measures that could have been implemented to prevent the accidents will be summarized and compared. Recommendations for improving laser safety programs are outlined and progress toward achieving them are summarized.

ODOM, CONNON R. [Los Alamos National Laboratory

2007-02-02T23:59:59.000Z

185

Accident Investigation and Materials Failure Analysis at the ...  

Science Conference Proceedings (OSTI)

Both are independent federal agencies charged with investigating transportation accidents in all modes, including aviation, railroad, highway, marine, pipeline,...

186

DOE O 225.1B, Accident Investigations  

Directives, Delegations, and Requirements

This Order prescribes organizational responsibilities, authorities, and requirements for conducting investigations of certain accidents occurring at DOE sites, ...

2011-03-04T23:59:59.000Z

187

Cool Storage Technology Guide  

Science Conference Proceedings (OSTI)

It is a fact that avoiding load growth is cheaper than constructing new power plants. Cool storage technologies offer one method for strategically stemming the impact of future peak demand growth. This guide provides a comprehensive resource for understanding and evaluating cool storage technologies.

2000-08-14T23:59:59.000Z

188

Energy storage capacitors  

DOE Green Energy (OSTI)

The properties of capacitors are reviewed in general, including dielectrics, induced polarization, and permanent polarization. Then capacitance characteristics are discussed and modelled. These include temperature range, voltage, equivalent series resistance, capacitive reactance, impedance, dissipation factor, humidity and frequency effects, storage temperature and time, and lifetime. Applications of energy storage capacitors are then discussed. (LEW)

Sarjeant, W.J.

1984-01-01T23:59:59.000Z

189

NSLS-II Transport Line Progress  

SciTech Connect

The National Synchrotron Light Source II (NSLS-II) is a state-of-the-art 3-GeV third generation light source currently under construction at Brookhaven National Laboratory. The NSLS-II injection system consists of a 200 MeV linac, a 3-GeV booster synchrotron and associated transfer lines. The first part of the Linac to Booster Transport (LBT) line has been installed for linac commissioning. This part includes all components necessary to commission the NSLS-II linac. The second part of this transport line is undergoing installation. Initial results of hardware commissioning will be discussed. The Booster to Storage Ring (BSR) transport line underwent a design review. The first part of the BSR transport line, consisting of all components necessary to commission the booster will be installed in 2012 for booster commissioning. We report on the final design of the BSR line along with the plan to commission the booster.

Fliller R. P.; Wahl, W.; Anderson, A.; Benish, B.; DeBoer, W.; Ganetis, G.; Heese, R.; Hseuh, H.-C.; Hu, J.-P.; Johanson, M.P.; Kosciuk, B.N.; Padrazo, D.; Roy, K.; Shaftan, T.; Singh, O.; Tuozzolo, J.; Wang, G.

2012-05-20T23:59:59.000Z

190

Solar Storage Company | Open Energy Information  

Open Energy Info (EERE)

Storage Company Storage Company Jump to: navigation, search Name Solar Storage Company Place Palo Alto, California Zip 94301 Sector Solar Product Distibuted On-Demand Solar Year founded 2009 Coordinates 37.4457966°, -122.1575745° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":37.4457966,"lon":-122.1575745,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

191

Warehouse and Storage Buildings  

U.S. Energy Information Administration (EIA) Indexed Site

Warehouse and Storage Warehouse and Storage Characteristics by Activity... Warehouse and Storage Warehouse and storage buildings are those used to store goods, manufactured products, merchandise, raw materials, or personal belongings. Basic Characteristics [ See also: Equipment | Activity Subcategories | Energy Use ] Warehouse and Storage Buildings... While the idea of a warehouse may bring to mind a large building, in reality most warehouses were relatively small. Forty-four percent were between 1,001 and 5,000 square feet, and seventy percent were less than 10,000 square feet. Many warehouses were newer buildings. Twenty-five percent were built in the 1990s and almost fifty percent were constructed since 1980. Tables: Buildings and Size Data by Basic Characteristics Establishment, Employment, and Age Data by Characteristics

192

Underground Natural Gas Storage by Storage Type  

U.S. Energy Information Administration (EIA) Indexed Site

Feb-13 Mar-13 Apr-13 May-13 Jun-13 Jul-13 View History All Operators Natural Gas in Storage 6,482,603 6,102,063 6,235,751 6,653,184 7,027,708 7,302,556 1973-2013 Base Gas 4,379,494...

193

,"Underground Natural Gas Storage by Storage Type"  

U.S. Energy Information Administration (EIA) Indexed Site

Sourcekey","N5030US2","N5010US2","N5020US2","N5070US2","N5050US2","N5060US2" "Date","U.S. Natural Gas Underground Storage Volume (MMcf)","U.S. Total Natural Gas in Underground...

194

Hydrogen-based electrochemical energy storage - Energy ...  

An energy storage device (100) providing high storage densities via hydrogen storage. The device (100) includes a counter electrode (110), a storage ...

195

Ultrafine hydrogen storage powders  

DOE Patents (OSTI)

A method of making hydrogen storage powder resistant to fracture in service involves forming a melt having the appropriate composition for the hydrogen storage material, such, for example, LaNi.sub.5 and other AB.sub.5 type materials and AB.sub.5+x materials, where x is from about -2.5 to about +2.5, including x=0, and the melt is gas atomized under conditions of melt temperature and atomizing gas pressure to form generally spherical powder particles. The hydrogen storage powder exhibits improved chemcial homogeneity as a result of rapid solidfication from the melt and small particle size that is more resistant to microcracking during hydrogen absorption/desorption cycling. A hydrogen storage component, such as an electrode for a battery or electrochemical fuel cell, made from the gas atomized hydrogen storage material is resistant to hydrogen degradation upon hydrogen absorption/desorption that occurs for example, during charging/discharging of a battery. Such hydrogen storage components can be made by consolidating and optionally sintering the gas atomized hydrogen storage powder or alternately by shaping the gas atomized powder and a suitable binder to a desired configuration in a mold or die.

Anderson, Iver E. (Ames, IA); Ellis, Timothy W. (Doylestown, PA); Pecharsky, Vitalij K. (Ames, IA); Ting, Jason (Ames, IA); Terpstra, Robert (Ames, IA); Bowman, Robert C. (La Mesa, CA); Witham, Charles K. (Pasadena, CA); Fultz, Brent T. (Pasadena, CA); Bugga, Ratnakumar V. (Arcadia, CA)

2000-06-13T23:59:59.000Z

196

Environment/Health/Safety (EHS): Monthly Accident Statistics  

NLE Websites -- All DOE Office Websites (Extended Search)

Monthly Accident Statistics Monthly Accident Statistics Latest Accident Statistics Accident Statistics (through December 2013) Archived Accident Statistics 2013 Through November Through October Through September Through August Through July Through June Through May Through April Through March Through February Through January 2012 Through December Through November Through October Through September Through August Through July Through June Through May Through February Through January 2011 Through December Through November Through October Through September Through August Through July Through June Through May Through April Through March Through February Through January 2010 Through December Through November Through October Through September Through August Through July Through June Through May Through April Through March Through February

197

Trends status: Post-accident fission product chemistry  

DOE Green Energy (OSTI)

It is important to understand and model the chemical and physical behavior of vapor iodine species in containment environments for the following reasons: This behavior can contribute significantly to severe accident source terms; the development of accident mitigation or management strategies (e.g., an effective filter system); for long-term clean-up and recovery following an accident; regulatory requirements (e.g., spray or pool additives); and design basis accidents (i.e., steam generator tube rupture). This document discusses the Oak Ridge National Laboratory ''Post-Accident'' Chemistry Program.

Kress, T.S.; Beahm, E.C.; Shockley, W.C.; Weber, C.F.

1988-01-01T23:59:59.000Z

198

REAC/TS Radiation Accident Registry: An Overview  

Science Conference Proceedings (OSTI)

Over the past four years, REAC/TS has presented a number of case reports from its Radiation Accident Registry. Victims of radiological or nuclear incidents must meet certain dose criteria for an incident to be categorized as an accident and be included in the registry. Although the greatest numbers of accidents in the United States that have been entered into the registry involve radiation devices, the greater percentage of serious accidents have involved sealed sources of one kind or another. But if one looks at the kinds of accident scenarios that have resulted in extreme consequence, i.e., death, the greater share of deaths has occurred in medical settings.

Doran M. Christensen, DO, REAC /TS Associate Director and Staff Physician Becky Murdock, REAC/TS Registry and Health Physics Technician

2012-12-12T23:59:59.000Z

199

Gas Storage Technology Consortium  

Science Conference Proceedings (OSTI)

Gas storage is a critical element in the natural gas industry. Producers, transmission and distribution companies, marketers, and end users all benefit directly from the load balancing function of storage. The unbundling process has fundamentally changed the way storage is used and valued. As an unbundled service, the value of storage is being recovered at rates that reflect its value. Moreover, the marketplace has differentiated between various types of storage services, and has increasingly rewarded flexibility, safety, and reliability. The size of the natural gas market has increased and is projected to continue to increase towards 30 trillion cubic feet (TCF) over the next 10 to 15 years. Much of this increase is projected to come from electric generation, particularly peaking units. Gas storage, particularly the flexible services that are most suited to electric loads, is critical in meeting the needs of these new markets. In order to address the gas storage needs of the natural gas industry, an industry-driven consortium was created--the Gas Storage Technology Consortium (GSTC). The objective of the GSTC is to provide a means to accomplish industry-driven research and development designed to enhance operational flexibility and deliverability of the Nation's gas storage system, and provide a cost effective, safe, and reliable supply of natural gas to meet domestic demand. This report addresses the activities for the quarterly period of January 1, 2006 through March 31, 2006. Activities during this time period were: (1) Organize and host the 2006 Spring Meeting in San Diego, CA on February 21-22, 2006; (2) Award 8 projects for co-funding by GSTC for 2006; (3) New members recruitment; and (4) Improving communications.

Joel L. Morrison; Sharon L. Elder

2006-05-10T23:59:59.000Z

200

Gas Storage Technology Consortium  

SciTech Connect

Gas storage is a critical element in the natural gas industry. Producers, transmission and distribution companies, marketers, and end users all benefit directly from the load balancing function of storage. The unbundling process has fundamentally changed the way storage is used and valued. As an unbundled service, the value of storage is being recovered at rates that reflect its value. Moreover, the marketplace has differentiated between various types of storage services and has increasingly rewarded flexibility, safety, and reliability. The size of the natural gas market has increased and is projected to continue to increase towards 30 trillion cubic feet over the next 10 to 15 years. Much of this increase is projected to come from electric generation, particularly peaking units. Gas storage, particularly the flexible services that are most suited to electric loads, is crucial in meeting the needs of these new markets. To address the gas storage needs of the natural gas industry, an industry-driven consortium was created--the Gas Storage Technology Consortium (GSTC). The objective of the GSTC is to provide a means to accomplish industry-driven research and development designed to enhance the operational flexibility and deliverability of the nation's gas storage system, and provide a cost-effective, safe, and reliable supply of natural gas to meet domestic demand. This report addresses the activities for the quarterly period of April 1, 2007 through June 30, 2007. Key activities during this time period included: (1) Organizing and hosting the 2007 GSTC Spring Meeting; (2) Identifying the 2007 GSTC projects, issuing award or declination letters, and begin drafting subcontracts; (3) 2007 project mentoring teams identified; (4) New NETL Project Manager; (5) Preliminary planning for the 2007 GSTC Fall Meeting; (6) Collecting and compiling the 2005 GSTC project final reports; and (7) Outreach and communications.

Joel L. Morrison; Sharon L. Elder

2007-06-30T23:59:59.000Z

Note: This page contains sample records for the topic "line accidents storage" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Gas Storage Technology Consortium  

Science Conference Proceedings (OSTI)

Gas storage is a critical element in the natural gas industry. Producers, transmission and distribution companies, marketers, and end users all benefit directly from the load balancing function of storage. The unbundling process has fundamentally changed the way storage is used and valued. As an unbundled service, the value of storage is being recovered at rates that reflect its value. Moreover, the marketplace has differentiated between various types of storage services, and has increasingly rewarded flexibility, safety, and reliability. The size of the natural gas market has increased and is projected to continue to increase towards 30 trillion cubic feet (TCF) over the next 10 to 15 years. Much of this increase is projected to come from electric generation, particularly peaking units. Gas storage, particularly the flexible services that are most suited to electric loads, is critical in meeting the needs of these new markets. In order to address the gas storage needs of the natural gas industry, an industry driven consortium was created--the Gas Storage Technology Consortium (GSTC). The objective of the GSTC is to provide a means to accomplish industry-driven research and development designed to enhance operational flexibility and deliverability of the Nation's gas storage system, and provide a cost effective, safe, and reliable supply of natural gas to meet domestic demand. This report addresses the activities for the quarterly period of April 1, 2005 through June 30, 2005. During this time period efforts were directed toward (1) GSTC administration changes, (2) participating in the American Gas Association Operations Conference and Biennial Exhibition, (3) issuing a Request for Proposals (RFP) for proposal solicitation for funding, and (4) organizing the proposal selection meeting.

Joel Morrison

2005-09-14T23:59:59.000Z

202

Gas Storage Technology Consortium  

Science Conference Proceedings (OSTI)

Gas storage is a critical element in the natural gas industry. Producers, transmission and distribution companies, marketers, and end users all benefit directly from the load balancing function of storage. The unbundling process has fundamentally changed the way storage is used and valued. As an unbundled service, the value of storage is being recovered at rates that reflect its value. Moreover, the marketplace has differentiated between various types of storage services and has increasingly rewarded flexibility, safety, and reliability. The size of the natural gas market has increased and is projected to continue to increase towards 30 trillion cubic feet (TCF) over the next 10 to 15 years. Much of this increase is projected to come from electric generation, particularly peaking units. Gas storage, particularly the flexible services that are most suited to electric loads, is crucial in meeting the needs of these new markets. To address the gas storage needs of the natural gas industry, an industry-driven consortium was created - the Gas Storage Technology Consortium (GSTC). The objective of the GSTC is to provide a means to accomplish industry-driven research and development designed to enhance the operational flexibility and deliverability of the nation's gas storage system, and provide a cost-effective, safe, and reliable supply of natural gas to meet domestic demand. This report addresses the activities for the quarterly period of January1, 2007 through March 31, 2007. Key activities during this time period included: {lg_bullet} Drafting and distributing the 2007 RFP; {lg_bullet} Identifying and securing a meeting site for the GSTC 2007 Spring Proposal Meeting; {lg_bullet} Scheduling and participating in two (2) project mentoring conference calls; {lg_bullet} Conducting elections for four Executive Council seats; {lg_bullet} Collecting and compiling the 2005 GSTC Final Project Reports; and {lg_bullet} Outreach and communications.

Joel L. Morrison; Sharon L. Elder

2007-03-31T23:59:59.000Z

203

SERI Solar Energy Storage Program  

DOE Green Energy (OSTI)

The SERI Solar Energy Storage Program provides research on advanced technologies, system analyses, and assessments of thermal energy storage for solar applications in support of the Thermal and Chemical Energy Storage Program of the DOE Division of Energy Storage Systems. Currently, research is in progress on direct contact latent heat storage and thermochemical energy storage and transport. Systems analyses are being performed of thermal energy storage for solar thermal applications, and surveys and assessments are being prepared of thermal energy storage in solar applications.

Copeland, R. J.; Wright, J. D.; Wyman, C. E.

1980-02-01T23:59:59.000Z

204

NREL: Energy Storage - Industry Participants  

NLE Websites -- All DOE Office Websites (Extended Search)

Industry Participants NREL's energy storage project is funded by the DOE's Vehicle Technologies Office. We work closely with automobile manufacturers, energy storage developers,...

205

OFA2013_Storage@Distance.pptx  

NLE Websites -- All DOE Office Websites (Extended Search)

NERSC Storage Systems Group NERSC Storage Systems Group Storage at a Distance --- 1 --- Open F abrics A lliance U ser D ay What is storage at a distance? * Data i s n ot l ocal t o t he u ser/resource * Processing a nd w orkflow n eeds a re n ear r eal---7me - Don't w ant t o w ait u n9l d ata t ransfer i s c omplete - Need t o s ee r esults, m ake a djustments, a nd t ry a gain * Network w ill b ecome p art o f t he i nstruments - Telescopes a nd t heir d ata - Sequencers a nd t heir g enome d ata - Light s ources a nd t heir d ata * Is t here a n a rchitecture/protocol t hat i s n ecessary today for successfully providing storage at a distance? - Ethernet v s. I B - ROCE v s. R DMA v s. I P --- 2 --- Open F abrics A lliance U ser D ay Use case 1: Instruments (beam lines) * ShiB w ork ( 24hr c overage) - Scien9sts fl y i n a nd u se t he i nstrument

206

Cooling thermal storage  

Science Conference Proceedings (OSTI)

This article gives some overall guidelines for successful operation of cooling thermal storage installations. Electric utilities use rates and other incentives to encourage thermal storage, which not only reduces their system peaks but also transfers a portion of their load from expensive daytime inefficient peaking plants to less expensive nighttime base load high efficiency coal and nuclear plants. There are hundreds of thermal storage installations around the country. Some of these are very successful; others have failed to achieve all of their predicted benefits because application considerations were not properly addressed.

Gatley, D.P.

1987-04-01T23:59:59.000Z

207

Collector: storage wall systems  

SciTech Connect

Passive Trombe wall systems require massive masonry walls to minimize large temperature swings and movable night insulation to prevent excessive night heat losses. As a solar energy collection system, Trombe wall systems have low efficiencies because of the nature of the wall and, if auxiliary heat is needed, because of absorption of this heat. Separation of collector and storage functions markedly improves the efficiency. A simple fiberglass absorber can provide high efficiency while phase change storage provides a compact storage unit. The need for movable insulation is obviated.

Boardman, H.

1980-01-01T23:59:59.000Z

208

Severe accident approach - final report. Evaluation of design measures for severe accident prevention and consequence mitigation.  

Science Conference Proceedings (OSTI)

An important goal of the US DOE reactor development program is to conceptualize advanced safety design features for a demonstration Sodium Fast Reactor (SFR). The treatment of severe accidents is one of the key safety issues in the design approach for advanced SFR systems. It is necessary to develop an in-depth understanding of the risk of severe accidents for the SFR so that appropriate risk management measures can be implemented early in the design process. This report presents the results of a review of the SFR features and phenomena that directly influence the sequence of events during a postulated severe accident. The report identifies the safety features used or proposed for various SFR designs in the US and worldwide for the prevention and/or mitigation of Core Disruptive Accidents (CDA). The report provides an overview of the current SFR safety approaches and the role of severe accidents. Mutual understanding of these design features and safety approaches is necessary for future collaborations between the US and its international partners as part of the GEN IV program. The report also reviews the basis for an integrated safety approach to severe accidents for the SFR that reflects the safety design knowledge gained in the US during the Advanced Liquid Metal Reactor (ALMR) and Integral Fast Reactor (IFR) programs. This approach relies on inherent reactor and plant safety performance characteristics to provide additional safety margins. The goal of this approach is to prevent development of severe accident conditions, even in the event of initiators with safety system failures previously recognized to lead directly to reactor damage.

Tentner, A. M.; Parma, E.; Wei, T.; Wigeland, R.; Nuclear Engineering Division; SNL; INL

2010-03-01T23:59:59.000Z

209

Severe accidents in spent fuel pools in support of generic safety, Issue 82  

SciTech Connect

This investigation provides an assessment of the likelihood and consequences of a severe accident in a spent fuel storage pool - the complete draining of the pool. Potential mechanisms and conditions for failure of the spent fuel, and the subsequent release of the fission products, are identified. Two older PWR and BWR spent fuel storage pool designs are considered based on a preliminary screening study which tried to identify vulnerabilities. Internal and external events and accidents are assessed. Conditions which could lead to failure of the spent fuel Zircaloy cladding as a result of cladding rupture or as a result of a self-sustaining oxidation reaction are presented. Propagation of a cladding fire to older stored fuel assemblies is evaluated. Spent fuel pool fission product inventory is estimated and the releases and consequences for the various cladding scenarios are provided. Possible preventive or mitigative measures are qualitatively evaluated. The uncertainties in the risk estimate are large, and areas where additional evaluations are needed to reduce uncertainty are identified.

Sailor, V.L.; Perkins, K.R.; Weeks, J.R.; Connell, H.R.

1987-07-01T23:59:59.000Z

210

Characterization of a nuclear accident dosimeter  

E-Print Network (OSTI)

The 23rd nuclear accident dosimetry intercomparison was held during the week of June 12-16, 1995 at Los Alamos National Laboratory. This report presents the results of this event, referred to as NAD 23, as related to the performance of Sandia National Laboratories' (SNL) personal nuclear accident dosimeter (PNAD). Two separate critical assemblies, SHEBA and Godiva, were used to generate seven separate neutron spectra for use in dose comparisons. SNL's PNAD measured absorbed doses that were within +16 to +26 percent of the reference doses. In addition, a preliminary investigation was undertaken to determine the feasibility of using the data obtained from an irradiated PNAD to correct for body orientation. This portion of the experiment was performed with a TRIGA reactor at the Nuclear Science Center at Texas A&M University.

Burrows, Ronald Allen

1995-01-01T23:59:59.000Z

211

EPR Severe Accident Threats and Mitigation  

SciTech Connect

Despite the extremely low EPR core melt frequency, an improved defence-in-depth approach is applied in order to comply with the EPR safety target: no stringent countermeasures should be necessary outside the immediate plant vicinity like evacuation, relocation or food control other than the first harvest in case of a severe accident. Design provisions eliminate energetic events and maintain the containment integrity and leak-tightness during the entire course of the accident. Based on scenarios that cover a broad range of physical phenomena and which provide a sound envelope of boundary conditions associated with each containment challenge, a selection of representative loads has been done, for which mitigation measures have to cope with. This paper presents the main critical threats and the approach used to mitigate those threats. (authors)

Azarian, G. [Framatome ANP SAS, Tour Areva, Place de la Coupole 92084 Paris la Defense (France); Kursawe, H.M.; Nie, M.; Fischer, M.; Eyink, J. [Framatome ANP GmbH, Freyeslebenstrasse, 1, D-91058 Erlangen (Germany); Stoudt, R.H. [Framatome ANP Inc. - 3315 Old Forest Rd, Lynchburgh, VA 24501 (United States)

2004-07-01T23:59:59.000Z

212

Less than severe worst case accidents  

Science Conference Proceedings (OSTI)

Many systems can provide tremendous benefit if operating correctly, produce only an inconvenience if they fail to operate, but have extreme consequences if they are only partially disabled such that they operate erratically or prematurely. In order to assure safety, systems are often tested against the most severe environments and accidents that are considered possible to ensure either safe operation or safe failure. However, it is often the less severe environments which result in the ``worst case accident`` since these are the conditions in which part of the system may be exposed or rendered unpredictable prior to total system failure. Some examples of less severe mechanical, thermal, and electrical environments which may actually be worst case are described as cautions for others in industries with high consequence operations or products.

Sanders, G.A.

1996-08-01T23:59:59.000Z

213

Characterization of a nuclear accident dosimeter  

Science Conference Proceedings (OSTI)

The 23rd nuclear accident dosimetry intercomparison was held during the week of June 12--16, 1995 at Los Alamos National Laboratory. This report presents the results of this event, referred to as NAD 23, as related to the performance of Sandia National Laboratories (SNL) personal nuclear accident dosimeter (PNAD). Two separate critical assemblies, SHEBA and Godiva, were used to generate seven separate neutron spectra for use in dose comparisons. SNL`s PNAD measured absorbed doses that were within +16 to +26% of the reference doses. In addition, a preliminary investigation was undertaken to determine the feasibility of using the data obtained from an irradiated PNAD to correct for body orientation. This portion of the experiment was performed with a TRIGA reactor at the Nuclear Science Center at Texas A and M University.

Burrows, R.A.

1995-12-01T23:59:59.000Z

214

US Department of Energy Chernobyl accident bibliography  

SciTech Connect

This bibliography has been prepared by Pacific Northwest Laboratory (PNL) for the US Department of Energy (DOE) Office of Health and Environmental Research to provide bibliographic information in a usable format for research studies relating to the Chernobyl nuclear accident that occurred in the Ukrainian Republic, USSR in 1986. This report is a product of the Chernobyl Database Management project. The purpose of this project is to produce and maintain an information system that is the official United States repository for information related to the accident. Two related products prepared for this project are the Chernobyl Bibliographic Search System (ChernoLit{trademark}) and the Chernobyl Radiological Measurements Information System (ChernoDat). This report supersedes the original release of Chernobyl Bibliography (Carr and Mahaffey, 1989). The original report included about 2200 references. Over 4500 references and an index of authors and editors are included in this report.

Kennedy, R.A.; Mahaffey, J.A.; Carr, F. Jr.

1992-04-01T23:59:59.000Z

215

Hydrogen Storage- Overview  

NLE Websites -- All DOE Office Websites (Extended Search)

- - Overview George Thomas, Hydrogen Consultant to SNL * and Jay Keller, Hydrogen Program Manager Sandia National Laboratories H 2 Delivery and Infrastructure Workshop May 7-8, 2003 * Most of this presentation has been extracted from George Thomas' invited BES Hydrogen Workshop presentation (May 13-14, 2003) Sandia National Laboratories 4/14/03 2 Sandia National Laboratories From George Thomas, BES workshop 5/13/03 H 2 storage is a critical enabling technology for H 2 use as an energy carrier The low volumetric density of gaseous fuels requires a storage method which compacts the fuel. Hence, hydrogen storage systems are inherently more complex than liquid fuels. Storage technologies are needed in all aspects of hydrogen utilization. production distribution utilization

216

NETL: Carbon Storage FAQs  

NLE Websites -- All DOE Office Websites (Extended Search)

Where is CO2 storage happening today? Where is CO2 storage happening today? Sleipner Project (Norway) Sleipner Project (Norway) Carbon dioxide (CO2) storage is currently happening across the United States and around the world. Large, commercial-scale projects, like the Sleipner CO2 Storage Site in Norway, the Weyburn-Midale CO2 Project in Canada, and the In Salah project in Algeria, have been injecting CO2 for many years. Each of these projects stores more than 1 million tons of CO2 per year. Large-scale efforts are currently underway in Africa, China, Australia, and Europe, too. These commercial-scale projects are demonstrating that large volumes of CO2 can be safely and permanently stored. Additionally, a multitude of pilot efforts are underway in different parts of the world to determine suitable locations and technologies for future

217

storage technology barriers. The...  

NLE Websites -- All DOE Office Websites (Extended Search)

Summit Power to build a 400-megawatt (MW) coal-fired power plant with carbon capture and storage (CCS) in Britain. The companies will submit the Caledonia Clean Energy Project to...

218

Flywheel Energy Storage Module  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

kWh100 kW Flywheel Energy Storage Module * 100KWh - 18 cost KWh vs. current State of the Art * Bonded Magnetic Bearings on Rim ID * No Shaft Hub (which limits surface speed)...

219

Storage Ring Parameters  

NLE Websites -- All DOE Office Websites (Extended Search)

Photon Source Parameters Storage Ring Parameters Print General Parameters Parameter Value Beam particle electron Beam energy 1.9 GeV (1.0-1.9 GeV possible) Injection energy 1.9 GeV...

220

DUF6 Storage  

NLE Websites -- All DOE Office Websites (Extended Search)

of depleted UF6 is stored in steel cylinders at three sites in the U.S. Depleted UF6 Inventory and Storage Locations U.S. DOE's inventory of depleted UF6 consists of approximately...

Note: This page contains sample records for the topic "line accidents storage" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Fukushima Daiichi Accident -- Technical Causal Factor Analysis  

Science Conference Proceedings (OSTI)

On March 11, 2011, the Fukushima Daiichi nuclear power plant experienced a seismic event and subsequent tsunami. The accident and the ensuing mitigation and recovery activities occurred over several days, involved a number of incidents, and might provide several opportunities for lessons learned. The objective of this report is to determine the fundamental causative factors for the loss of critical systems at the Fukushima Daiichi reactors that resulted in core damage and subsequent radioactive release. ...

2012-03-27T23:59:59.000Z

222

Thermal Energy Storage  

Science Conference Proceedings (OSTI)

This Technology Brief provides an update on the current state of cool thermal energy storage systems (TES) for end-use applications. Because of its ability to shape energy use, TES is strategic technology that allows end-users to reduce their energy costs while simultaneously providing benefits for electric utilities through persistent peak demand reduction and peak shifting. In addition to discussing the concepts of thermal energy storage, the Brief discusses the current state of TES technologies and dr...

2008-12-16T23:59:59.000Z

223

Thermal Energy Storage  

Science Conference Proceedings (OSTI)

The Ice Bear30 Hybrid Air Conditionerthermal energy storage system150uses smart integrated controls, ice storage, and a dedicated compressor for cooling. The system is designed to provide cooling to interior spaces by circulating refrigerant within an additional evaporator coil added to a standard unitary air conditioner. The Ice Bear 30 is a relatively small size (5 ton), intended for use in residential and light commercial applications. This report describes EPRI tests of the Ice Bear 30, which is manu...

2009-12-14T23:59:59.000Z

224

Analog storage integrated circuit  

DOE Patents (OSTI)

A high speed data storage array is defined utilizing a unique cell design for high speed sampling of a rapidly changing signal. Each cell of the array includes two input gates between the signal input and a storage capacitor. The gates are controlled by a high speed row clock and low speed column clock so that the instantaneous analog value of the signal is only sampled and stored by each cell on coincidence of the two clocks.

Walker, J. T. (Palo Alto, CA); Larsen, R. S. (Menlo Park, CA); Shapiro, S. L. (Palo Alto, CA)

1989-01-01T23:59:59.000Z

225

Analog storage integrated circuit  

DOE Patents (OSTI)

A high speed data storage array is defined utilizing a unique cell design for high speed sampling of a rapidly changing signal. Each cell of the array includes two input gates between the signal input and a storage capacitor. The gates are controlled by a high speed row clock and low speed column clock so that the instantaneous analog value of the signal is only sampled and stored by each cell on coincidence of the two clocks. 6 figs.

Walker, J.T.; Larsen, R.S.; Shapiro, S.L.

1989-03-07T23:59:59.000Z

226

Energy storage benefits and market analysis handbook : a study for the DOE Energy Storage Systems Program.  

DOE Green Energy (OSTI)

This Guide describes a high level, technology-neutral framework for assessing potential benefits from and economic market potential for energy storage used for electric utility-related applications. In the United States use of electricity storage to support and optimize transmission and distribution (T&D) services has been limited due to high storage system cost and by limited experience with storage system design and operation. Recent improvement of energy storage and power electronics technologies, coupled with changes in the electricity marketplace, indicate an era of expanding opportunity for electricity storage as a cost-effective electric resource. Some recent developments (in no particular order) that drive the opportunity include: (1) states adoption of the renewables portfolio standard (RPS), which may increased use of renewable generation with intermittent output, (2) financial risk leading to limited investment in new transmission capacity, coupled with increasing congestion on some transmission lines, (3) regional peaking generation capacity constraints, and (4) increasing emphasis on locational marginal pricing (LMP).

Eyer, James M. (Distributed Utility Associates, Livermore, CA); Corey, Garth P.; Iannucci, Joseph J., Jr. (Distributed Utility Associates, Livermore, CA)

2004-12-01T23:59:59.000Z

227

Two Line Subject Title One Line Title  

NLE Websites -- All DOE Office Websites (Extended Search)

CO CO 2 Storage Resource Methodologies Presenter: Angela Goodman Team: Angela Goodman, Grant Bromhal, Brian Strazisar, Traci Rodosta and George Guthrie United States Department of Energy, National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for CCUS August 21-23, 2012 Pittsburgh, PA 2 U.S. DEPARTMENT OF ENERGY  OFFICE OF FOSSIL ENERGY NATIONAL ENERGY TECHNOLOGY LABORATORY CARBON STORAGE PROGRAM with ARRA Projects Benefits Global Collaborations Technology Solutions Lessons Learned North America Energy Working Group Carbon Sequestration Leadership Forum International Demonstration Projects Canada (Weyburn, Zama,

228

NETL: Carbon Storage FAQs  

NLE Websites -- All DOE Office Websites (Extended Search)

different options for CO2 storage? different options for CO2 storage? Oil and gas reservoirs, many containing carbon dioxide (CO2), as well as natural deposits of almost pure CO2, can be found in many places in the United States and around the world. These are examples of long-term storage of CO2 by nature, where "long term" means millions of years. Their existence demonstrates that naturally occurring geologic formations and structures of various kinds are capable of securely storing CO2 deep in the subsurface for very long periods of time. Because of the economic importance of oil and gas, scientists and engineers have studied these natural deposits for many decades in order to understand the physical and chemical processes which led to their formation. There are also many decades of engineering experience in subsurface operations similar to those needed for CO2 storage. The most directly applicable experience comes from the oil industry, which, for 40 years, has injected CO2 in depleted oil reservoirs for the recovery of additional product through enhanced oil recovery (EOR). Additional experience comes from natural gas storage operations, which have utilized depleted gas reservoirs, as well as reservoirs containing only water. Scientists and engineers are now combining the knowledge obtained from study of natural deposits with experience from analogous operations as a basis for studying the potential for large-scale storage of CO2 in the deep subsurface.

229

Impacts Associated with Transfer of Spent Nuclear Fuel from Spent Fuel Storage Pools to Dry Storage After Five Years of Cooling, Revision 1  

Science Conference Proceedings (OSTI)

In 2010, EPRI performed a study of the accelerated transfer of spent fuel from pools to dry storage in response to the threat of terrorist activities at nuclear power plants (report 1021049). Following the March 2011 Great East Japan Earthquake and the subsequent accident at the Fukushima Daiichi nuclear power plant, some organizations issued a renewed call for accelerated transfer of used fuel from spent fuel ...

2012-08-31T23:59:59.000Z

230

Energy Conversion, Storage, and Transport News  

Science Conference Proceedings (OSTI)

NIST Home > Energy Conversion, Storage, and Transport News. Energy Conversion, Storage, and Transport News. (showing ...

2010-10-26T23:59:59.000Z

231

Energy Conversion, Storage, and Transport Portal  

Science Conference Proceedings (OSTI)

NIST Home > Energy Conversion, Storage, and Transport Portal. Energy Conversion, Storage, and Transport Portal. Programs ...

2013-04-08T23:59:59.000Z

232

GAS STORAGE TECHNOLOGY CONSORTIUM  

Science Conference Proceedings (OSTI)

Gas storage is a critical element in the natural gas industry. Producers, transmission and distribution companies, marketers, and end users all benefit directly from the load balancing function of storage. The unbundling process has fundamentally changed the way storage is used and valued. As an unbundled service, the value of storage is being recovered at rates that reflect its value. Moreover, the marketplace has differentiated between various types of storage services, and has increasingly rewarded flexibility, safety, and reliability. The size of the natural gas market has increased and is projected to continue to increase towards 30 trillion cubic feet (TCF) over the next 10 to 15 years. Much of this increase is projected to come from electric generation, particularly peaking units. Gas storage, particularly the flexible services that are most suited to electric loads, is critical in meeting the needs of these new markets. In order to address the gas storage needs of the natural gas industry, an industry-driven consortium was created--the Gas Storage Technology Consortium (GSTC). The objective of the GSTC is to provide a means to accomplish industry-driven research and development designed to enhance operational flexibility and deliverability of the Nation's gas storage system, and provide a cost effective, safe, and reliable supply of natural gas to meet domestic demand. To accomplish this objective, the project is divided into three phases that are managed and directed by the GSTC Coordinator. Base funding for the consortium is provided by the U.S. Department of Energy (DOE). In addition, funding is anticipated from the Gas Technology Institute (GTI). The first phase, Phase 1A, was initiated on September 30, 2003, and is scheduled for completion on March 31, 2004. Phase 1A of the project includes the creation of the GSTC structure, development of constitution (by-laws) for the consortium, and development and refinement of a technical approach (work plan) for deliverability enhancement and reservoir management. This report deals with the second 3-months of the project and encompasses the period December 31, 2003, through March 31, 2003. During this 3-month, the dialogue of individuals representing the storage industry, universities and the Department of energy was continued and resulted in a constitution for the operation of the consortium and a draft of the initial Request for Proposals (RFP).

Robert W. Watson

2004-04-17T23:59:59.000Z

233

Gas Storage Technology Consortium  

Science Conference Proceedings (OSTI)

Gas storage is a critical element in the natural gas industry. Producers, transmission and distribution companies, marketers, and end users all benefit directly from the load balancing function of storage. The unbundling process has fundamentally changed the way storage is used and valued. As an unbundled service, the value of storage is being recovered at rates that reflect its value. Moreover, the marketplace has differentiated between various types of storage services, and has increasingly rewarded flexibility, safety, and reliability. The size of the natural gas market has increased and is projected to continue to increase towards 30 trillion cubic feet (TCF) over the next 10 to 15 years. Much of this increase is projected to come from electric generation, particularly peaking units. Gas storage, particularly the flexible services that are most suited to electric loads, is critical in meeting the needs of these new markets. In order to address the gas storage needs of the natural gas industry, an industry-driven consortium was created-the Gas Storage Technology Consortium (GSTC). The objective of the GSTC is to provide a means to accomplish industry-driven research and development designed to enhance operational flexibility and deliverability of the Nation's gas storage system, and provide a cost effective, safe, and reliable supply of natural gas to meet domestic demand. This report addresses the activities for the quarterly period of July 1, 2006 to September 30, 2006. Key activities during this time period include: {lg_bullet} Subaward contracts for all 2006 GSTC projects completed; {lg_bullet} Implement a formal project mentoring process by a mentor team; {lg_bullet} Upcoming Technology Transfer meetings: {sm_bullet} Finalize agenda for the American Gas Association Fall Underground Storage Committee/GSTC Technology Transfer Meeting in San Francisco, CA. on October 4, 2006; {sm_bullet} Identify projects and finalize agenda for the Fall GSTC Technology Transfer Meeting, Pittsburgh, PA on November 8, 2006; {lg_bullet} Draft and compile an electronic newsletter, the GSTC Insider; and {lg_bullet} New members update.

Joel L. Morrison; Sharon L. Elder

2006-09-30T23:59:59.000Z

234

Measurements for Hydrogen Storage Materials  

Science Conference Proceedings (OSTI)

Measurements for Hydrogen Storage Materials. Summary: ... Hydrogen is promoted as petroleum replacement in the Hydrogen Economy. ...

2013-07-02T23:59:59.000Z

235

Dry Cask Storage Characterization Project  

Science Conference Proceedings (OSTI)

Nuclear utilities have developed independent spent fuel storage installations (ISFSIs) as a means of expanding their spent-fuel storage capacity on an interim basis until a geologic repository is available to accept the fuel for permanent storage. This report provides a technical basis for demonstrating the feasibility of extended spent-fuel storage in ISFSIs.

2002-09-26T23:59:59.000Z

236

Two Line Subject Title One Line Title  

NLE Websites -- All DOE Office Websites (Extended Search)

Carbon Sequestration Atlas of the Carbon Sequestration Atlas of the United States and Canada Dawn Deel, Project Manager, Sequestration Division October 5, 2010 2 Background and Statistics Atlas I - March 2007 * First coordinated assessment of CCS in the US and Canada * Provided maps showing number, location and magnitude of CO 2 sources * Maps showing areal extent of geologic storage sites * Storage potential by Partnership * Digital Atlas developed * Over 3,000 hardcopies released: 1,000 CDs mailed * Daily downloads from NETL website Atlas II - November 2008 * Updated the CO 2 storage portfolio * Documented differences in CO 2 resource and CO 2 capacity * Provided CO 2 emission estimation for stationary sources * Described Interagency collaboration * Illustrated federal lands CO 2 geologic storage potential

237

Two Line Subject Title One Line Title  

NLE Websites -- All DOE Office Websites (Extended Search)

Boiler Sulfur Removal Particula te Removal Ash Coal STEAM CYCLE CO 2 Capture Process* ID Fan Air CO 2 2,215 psia 661 MWgross 550 MWnet CO 2 Comp. Flue Gas CO 2 To Storage Low...

238

Health Risks Associated with Disposal of Depleted Uranium  

NLE Websites -- All DOE Office Websites (Extended Search)

Disposal DUF6 Health Risks line line Accidents Storage Conversion Manufacturing Disposal Transportation Disposal of Depleted Uranium A discussion of risks associated with disposal...

239

FCT Hydrogen Storage: Current Technology  

NLE Websites -- All DOE Office Websites (Extended Search)

Current Technology to someone Current Technology to someone by E-mail Share FCT Hydrogen Storage: Current Technology on Facebook Tweet about FCT Hydrogen Storage: Current Technology on Twitter Bookmark FCT Hydrogen Storage: Current Technology on Google Bookmark FCT Hydrogen Storage: Current Technology on Delicious Rank FCT Hydrogen Storage: Current Technology on Digg Find More places to share FCT Hydrogen Storage: Current Technology on AddThis.com... Home Basics Current Technology Gaseous and Liquid Hydrogen Storage Materials-Based Hydrogen Storage Hydrogen Storage Challenges Status of Hydrogen Storage Technologies DOE R&D Activities Quick Links Hydrogen Production Hydrogen Delivery Fuel Cells Technology Validation Manufacturing Codes & Standards Education Systems Analysis Contacts Current Technology

240

GAS STORAGE TECHNOLOGY CONSORTIUM  

SciTech Connect

Gas storage is a critical element in the natural gas industry. Producers, transmission and distribution companies, marketers, and end users all benefit directly from the load balancing function of storage. The unbundling process has fundamentally changed the way storage is used and valued. As an unbundled service, the value of storage is being recovered at rates that reflect its value. Moreover, the marketplace has differentiated between various types of storage services, and has increasingly rewarded flexibility, safety, and reliability. The size of the natural gas market has increased and is projected to continue to increase towards 30 trillion cubic feet (TCF) over the next 10 to 15 years. Much of this increase is projected to come from electric generation, particularly peaking units. Gas storage, particularly the flexible services that are most suited to electric loads, is critical in meeting the needs of these new markets. In order to address the gas storage needs of the natural gas industry, an industry-driven consortium was created--the Gas Storage Technology Consortium (GSTC). The objective of the GSTC is to provide a means to accomplish industry-driven research and development designed to enhance operational flexibility and deliverability of the Nation's gas storage system, and provide a cost effective, safe, and reliable supply of natural gas to meet domestic demand. To accomplish this objective, the project is divided into three phases that are managed and directed by the GSTC Coordinator. Base funding for the consortium is provided by the U.S. Department of Energy (DOE). In addition, funding is anticipated from the Gas Technology Institute (GTI). The first phase, Phase 1A, was initiated on September 30, 2003, and was completed on March 31, 2004. Phase 1A of the project included the creation of the GSTC structure, development and refinement of a technical approach (work plan) for deliverability enhancement and reservoir management. This report deals with Phase 1B and encompasses the period April 1, 2004, through June 30, 2004. During this 3-month period, a Request for Proposals (RFP) was made. A total of 17 proposals were submitted to the GSTC. A proposal selection meeting was held June 9-10, 2004 in Morgantown, West Virginia. Of the 17 proposals, 6 were selected for funding.

Robert W. Watson

2004-07-15T23:59:59.000Z

Note: This page contains sample records for the topic "line accidents storage" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Radioactive waste storage issues  

SciTech Connect

In the United States we generate greater than 500 million tons of toxic waste per year which pose a threat to human health and the environment. Some of the most toxic of these wastes are those that are radioactively contaminated. This thesis explores the need for permanent disposal facilities to isolate radioactive waste materials that are being stored temporarily, and therefore potentially unsafely, at generating facilities. Because of current controversies involving the interstate transfer of toxic waste, more states are restricting the flow of wastes into - their borders with the resultant outcome of requiring the management (storage and disposal) of wastes generated solely within a state`s boundary to remain there. The purpose of this project is to study nuclear waste storage issues and public perceptions of this important matter. Temporary storage at generating facilities is a cause for safety concerns and underscores, the need for the opening of permanent disposal sites. Political controversies and public concern are forcing states to look within their own borders to find solutions to this difficult problem. Permanent disposal or retrievable storage for radioactive waste may become a necessity in the near future in Colorado. Suitable areas that could support - a nuclear storage/disposal site need to be explored to make certain the health, safety and environment of our citizens now, and that of future generations, will be protected.

Kunz, D.E.

1994-08-15T23:59:59.000Z

242

LIQUID PROPANE GAS (LPG) STORAGE AREA BOILING LIQUID EXPANDING VAPOR EXPLOSION (BLEVE) ANALYSIS  

SciTech Connect

The PHA and the FHAs for the SWOC MDSA (HNF-14741) identified multiple accident scenarios in which vehicles powered by flammable gases (e.g., propane), or combustible or flammable liquids (e.g., gasoline, LPG) are involved in accidents that result in an unconfined vapor cloud explosion (UVCE) or in a boiling liquid expanding vapor explosion (BLEVE), respectively. These accident scenarios are binned in the Bridge document as FIR-9 scenarios. They are postulated to occur in any of the MDSA facilities. The LPG storage area will be in the southeast corner of CWC that is relatively remote from store distaged MAR. The location is approximately 30 feet south of MO-289 and 250 feet east of 2401-W by CWC Gate 10 in a large staging area for unused pallets and equipment.

PACE, M.E.

2004-01-13T23:59:59.000Z

243

A framework for the assessment of severe accident management strategies  

SciTech Connect

Severe accident management can be defined as the use of existing and/or altemative resources, systems and actors to prevent or mitigate a core-melt accident. For each accident sequence and each combination of severe accident management strategies, there may be several options available to the operator, and each involves phenomenological and operational considerations regarding uncertainty. Operational uncertainties include operator, system and instrumentation behavior during an accident. A framework based on decision trees and influence diagrams has been developed which incorporates such criteria as feasibility, effectiveness, and adverse effects, for evaluating potential severe accident management strategies. The framework is also capable of propagating both data and model uncertainty. It is applied to several potential strategies including PWR cavity flooding, BWR drywell flooding, PWR depressurization and PWR feed and bleed.

Kastenberg, W.E. [ed.; Apostolakis, G.; Dhir, V.K. [California Univ., Los Angeles, CA (United States). Dept. of Mechanical, Aerospace and Nuclear Engineering] [and others

1993-09-01T23:59:59.000Z

244

Underground Natural Gas Storage by Storage Type  

Gasoline and Diesel Fuel Update (EIA)

2007 2008 2009 2010 2011 2012 View 2007 2008 2009 2010 2011 2012 View History All Operators Net Withdrawals 192,093 33,973 -348,719 -17,009 -347,562 -7,279 1967-2012 Injections 3,132,920 3,340,365 3,314,990 3,291,395 3,421,813 2,825,427 1935-2012 Withdrawals 3,325,013 3,374,338 2,966,180 3,274,385 3,074,251 2,818,148 1944-2012 Salt Cavern Storage Fields Net Withdrawals 20,001 -42,044 -56,010 -58,295 -92,413 -19,528 1994-2012 Injections 400,244 440,262 459,330 510,691 532,893 465,005 1994-2012 Withdrawals 420,245 398,217 403,321 452,396 440,480 445,477 1994-2012 Nonsalt Cavern Storage Net Withdrawals 172,092 76,017 -292,710 41,286 -255,148 12,249 1994-2012 Injections 2,732,676 2,900,103 2,855,667 2,780,703 2,888,920 2,360,422 1994-2012 Withdrawals

245

Underground Natural Gas Storage by Storage Type  

U.S. Energy Information Administration (EIA) Indexed Site

2007 2008 2009 2010 2011 2012 View 2007 2008 2009 2010 2011 2012 View History All Operators Net Withdrawals 192,093 33,973 -348,719 -17,009 -347,562 -7,279 1967-2012 Injections 3,132,920 3,340,365 3,314,990 3,291,395 3,421,813 2,825,427 1935-2012 Withdrawals 3,325,013 3,374,338 2,966,180 3,274,385 3,074,251 2,818,148 1944-2012 Salt Cavern Storage Fields Net Withdrawals 20,001 -42,044 -56,010 -58,295 -92,413 -19,528 1994-2012 Injections 400,244 440,262 459,330 510,691 532,893 465,005 1994-2012 Withdrawals 420,245 398,217 403,321 452,396 440,480 445,477 1994-2012 Nonsalt Cavern Storage Net Withdrawals 172,092 76,017 -292,710 41,286 -255,148 12,249 1994-2012 Injections 2,732,676 2,900,103 2,855,667 2,780,703 2,888,920 2,360,422 1994-2012 Withdrawals

246

Flywheel Energy Storage Module  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

kWh/100 kW kWh/100 kW Flywheel Energy Storage Module * 100KWh - 1/8 cost / KWh vs. current State of the Art * Bonded Magnetic Bearings on Rim ID * No Shaft / Hub (which limits surface speed) * Flexible Motor Magnets on Rim ID * Develop Touch-down System for Earthquake Flying Rim Eliminate Shaft and Hub Levitate on Passive Magnetic Bearings Increase Rim Tip Speed Larger Diameter Thinner Rim Stores More Energy 4 X increase in Stored Energy with only 60% Increase in Weight Development of a 100 kWh/100 kW Flywheel Energy Storage Module High Speed, Low Cost, Composite Ring with Bore-Mounted Magnetics Current State of the Art Flywheel Limitations of Existing Flywheel * 15 Minutes of storage * Limited to Frequency Regulation Application * Rim Speed (Stored Energy) Limited by Hub Strain and Shaft Dynamics

247

NREL: Learning - Hydrogen Storage  

NLE Websites -- All DOE Office Websites (Extended Search)

Hydrogen Storage Hydrogen Storage On the one hand, hydrogen's great asset as a renewable energy carrier is that it is storable and transportable. On the other hand, its very low natural density requires storage volumes that are impractical for vehicles and many other uses. Current practice is to compress the gas in pressurized tanks, but this still provides only limited driving range for vehicles and is bulkier than desirable for other uses as well. Liquefying the hydrogen more than doubles the fuel density, but uses up substantial amounts of energy to lower the temperature sufficiently (-253°C at atmospheric pressure), requires expensive insulated tanks to maintain that temperature, and still falls short of desired driving range. One possible way to store hydrogen at higher density is in the spaces within the crystalline

248

Storage Ring Operation Modes  

NLE Websites -- All DOE Office Websites (Extended Search)

Longitudinal bunch profile and Up: APS Storage Ring Parameters Longitudinal bunch profile and Up: APS Storage Ring Parameters Previous: Source Parameter Table Storage Ring Operation Modes Standard Operating Mode, top-up Fill pattern: 102 mA in 24 singlets (single bunches) with a nominal current of 4.25 mA and a spacing of 153 nanoseconds between singlets. Lattice configuration: Low emittance lattice with effective emittance of 3.1 nm-rad and coupling of 1%. Bunch length (rms): 33.5 ps. Refill schedule: Continuous top-up with single injection pulses occurring at a minimum of two minute intervals, or a multiple of two minute intervals. Special Operating Mode - 324 bunches, non top-up Fill pattern: 102 mA in 324 uniformly spaced singlets with a nominal single bunch current of 0.31 mA and a spacing of 11.37 nanoseconds between singlets.

249

Inertial energy storage device  

DOE Patents (OSTI)

The inertial energy storage device of the present invention comprises a composite ring formed of circumferentially wound resin-impregnated filament material, a flanged hollow metal hub concentrically disposed in the ring, and a plurality of discrete filament bandsets coupling the hub to the ring. Each bandset is formed of a pair of parallel bands affixed to the hub in a spaced apart relationship with the axis of rotation of the hub being disposed between the bands and with each band being in the configuration of a hoop extending about the ring along a chordal plane thereof. The bandsets are disposed in an angular relationship with one another so as to encircle the ring at spaced-apart circumferential locations while being disposed in an overlapping relationship on the flanges of the hub. The energy storage device of the present invention has the capability of substantial energy storage due to the relationship of the filament bands to the ring and the flanged hub.

Knight, Jr., Charles E. (Knoxville, TN); Kelly, James J. (Oak Ridge, TN); Pollard, Roy E. (Powell, TN)

1978-01-01T23:59:59.000Z

250

TMI-2 accident: core heat-up analysis  

SciTech Connect

This report summarizes NSAC study of reactor core thermal conditions during the accident at Three Mile Island, Unit 2. The study focuses primarily on the time period from core uncovery (approximately 113 minutes after turbine trip) through the initiation of sustained high pressure injection (after 202 minutes). The transient analysis is based upon established sequences of events; plant data; post-accident measurements; interpretation or indirect use of instrument responses to accident conditions.

Ardron, K.H.; Cain, D.G.

1981-01-01T23:59:59.000Z

251

Concentrating Solar Program; Session: Thermal Storage - Overview (Presentation)  

DOE Green Energy (OSTI)

The project overview of this presentation is: (1) description--(a) laboratory R and D in advanced heat transfer fluids (HTF) and thermal storage systems; (b) FOA activities in solar collector and component development for use of molten salt as a heat transfer and storage fluid; (c) applications for all activities include line focus and point focus solar concentrating technologies; (2) Major FY08 Activities--(a) advanced HTF development with novel molten salt compositions with low freezing temperatures, nanofluids molecular modeling and experimental studies, and use with molten salt HTF in solar collector field; (b) thermal storage systems--cost analysis and updates for 2-tank and thermocline storage and model development and analysis to support near-term trought deployment; (c) thermal storage components--facility upgrade to support molten salt component testing for freeze-thaw receiver testing, long-shafted molten salt pump for parabolic trough and power tower thermal storage systems; (d) CSP FOA support--testing and evaluation support for molten salt component and field testing work, advanced fluids and storage solicitation preparation, and proposal evaluation for new advanced HTF and thermal storage FOA.

Glatzmaier, G.; Mehos, M.; Mancini, T.

2008-04-01T23:59:59.000Z

252

Preliminary dose assessment of the Chernobyl accident  

Science Conference Proceedings (OSTI)

From the major accident at Unit 4 of the Chernobyl nuclear power station, a plume of airborne radioactive fission products was initially carried northwesterly toward Poland, thence toward Scandinavia and into Central Europe. Reports of the levels of radioactivity in a variety of media and of external radiation levels were collected in the Department of Energy's Emergency Operations Center and compiled into a data bank. Portions of these and other data which were obtained directly from published and official reports were utilized to make a preliminary assessment of the extent and magnitude of the external dose to individuals downwind from Chernobyl. Radioactive /sup 131/I was the predominant fission product. The time of arrival of the plume and the maximum concentrations of /sup 131/I in air, vegetation and milk and the maximum reported depositions and external radiation levels have been tabulated country by country. A large amount of the total activity in the release was apparently carried to a significant elevation. The data suggest that in areas where rainfall occurred, deposition levels were from ten to one-hundred times those observed in nearby ''dry'' locations. Sufficient spectral data were obtained to establish average release fractions and to establish a reference spectra of the other nuclides in the release. Preliminary calculations indicated that the collective dose equivalent to the population in Scandinavia and Central Europe during the first year after the Chernobyl accident would be about 8 x 10/sup 6/ person-rem. From the Soviet report, it appears that a first year population dose of about 2 x 10/sup 7/ person-rem (2 x 10/sup 5/ Sv) will be received by the population who were downwind of Chernobyl within the U.S.S.R. during the accident and its subsequent releases over the following week. 32 refs., 14 figs., 20 tabs.

Hull, A.P.

1987-01-01T23:59:59.000Z

253

Thermal energy storage material  

DOE Patents (OSTI)

A thermal energy storage material which is stable at atmospheric temperature and pressure and has a melting point higher than 32.degree.F. is prepared by dissolving a specific class of clathrate forming compounds, such as tetra n-propyl or tetra n-butyl ammonium fluoride, in water to form a substantially solid clathrate. The resultant thermal energy storage material is capable of absorbing heat from or releasing heat to a given region as it transforms between solid and liquid states in response to temperature changes in the region above and below its melting point.

Leifer, Leslie (Hancock, MI)

1976-01-01T23:59:59.000Z

254

Sec. Herrington Leads Delegation in Response to Chernobyl Accident...  

NLE Websites -- All DOE Office Websites (Extended Search)

Sec. Herrington Leads Delegation in Response to Chernobyl Accident | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering...

255

Next-generation nuclear fuel withstands high-temperature accident...  

NLE Websites -- All DOE Office Websites (Extended Search)

(more than 200 degrees Celsius greater than postulated accident conditions) most fission products remained inside the fuel particles, which each boast their own primary...

256

HEALTH EFFECTS OF THE NUCLEAR ACCIDENT AT THREE MILE ISLAND  

E-Print Network (OSTI)

In) Symposium on Nuclear Reactor Safety: Perspective. Ahealth effects of the nuclear reactor accident at Three Mile50-mile radius of the nuclear reactor site, approximately

Fabrikant, J.I.

2010-01-01T23:59:59.000Z

257

Median Light Rail Crossing: Accident Causation And Countermeasures  

E-Print Network (OSTI)

Integration of Light Rail Transit Into City Streets. TCRPInfluencing Safety at Highway-Rail Grade Crossings. InK. , W. Hucke and W. Berg. Rail Highway Crossing Accident

Coifman, Benjamin; Bertini, Robert L.

1997-01-01T23:59:59.000Z

258

Storage Business Model White Paper  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Storage Business Model White Paper Storage Business Model White Paper Summary June 11 2013 Storage Business Model White Paper - Purpose  Identify existing business models for investors/operators, utilities, end users  Discuss alignment of storage "value proposition" with existing market designs and regulatory paradigms  Difficulties in realizing wholesale market product revenue streams for distributed storage - the "bundled applications" problem  Discuss risks/barriers to storage adoption and where existing risk mitigation measures fall down  Recommendations for policy/research steps - Alternative business models - Accelerated research into life span and failure modes

259

Spent-fuel-storage alternatives  

Science Conference Proceedings (OSTI)

The Spent Fuel Storage Alternatives meeting was a technical forum in which 37 experts from 12 states discussed storage alternatives that are available or are under development. The subject matter was divided into the following five areas: techniques for increasing fuel storage density; dry storage of spent fuel; fuel characterization and conditioning; fuel storage operating experience; and storage and transport economics. Nineteen of the 21 papers which were presented at this meeting are included in this Proceedings. These have been abstracted and indexed. (ATT)

Not Available

1980-01-01T23:59:59.000Z

260

Preliminary analysis of loss-of-coolant accident in Fukushima nuclear accident  

Science Conference Proceedings (OSTI)

Loss-of-Coolant Accident (LOCA) in Boiling Water Reactor (BWR) especially on Fukushima Nuclear Accident will be discussed in this paper. The Tohoku earthquake triggered the shutdown of nuclear power reactors at Fukushima Nuclear Power station. Though shutdown process has been completely performed, cooling process, at much smaller level than in normal operation, is needed to remove decay heat from the reactor core until the reactor reach cold-shutdown condition. If LOCA happen at this condition, it will cause the increase of reactor fuel and other core temperatures and can lead to reactor core meltdown and exposure of radioactive material to the environment such as in the Fukushima Dai Ichi nuclear accident case. In this study numerical simulation has been performed to calculate pressure composition, water level and temperature distribution on reactor during this accident. There are two coolant regulating system that operational on reactor unit 1 at this accident, Isolation Condensers (IC) system and Safety Relief Valves (SRV) system. Average mass flow of steam to the IC system in this event is 10 kg/s and could keep reactor core from uncovered about 3,2 hours and fully uncovered in 4,7 hours later. There are two coolant regulating system at operational on reactor unit 2, Reactor Core Isolation Condenser (RCIC) System and Safety Relief Valves (SRV). Average mass flow of coolant that correspond this event is 20 kg/s and could keep reactor core from uncovered about 73 hours and fully uncovered in 75 hours later. There are three coolant regulating system at operational on reactor unit 3, Reactor Core Isolation Condenser (RCIC) system, High Pressure Coolant Injection (HPCI) system and Safety Relief Valves (SRV). Average mass flow of water that correspond this event is 15 kg/s and could keep reactor core from uncovered about 37 hours and fully uncovered in 40 hours later.

Su'ud, Zaki; Anshari, Rio [Nuclear and Biophysics Research Group, Dept. of Physics, Bandung Institute of Technology, Jl.Ganesha 10, Bandung, 40132 (Indonesia)

2012-06-06T23:59:59.000Z

Note: This page contains sample records for the topic "line accidents storage" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Two Line Subject Title One Line Title  

NLE Websites -- All DOE Office Websites (Extended Search)

Sequestration Program Sequestration Program Sean I. Plasynski, PhD Sequestration Technology Manager November 12, 2009 Mostly CO 2 CO 2 Mostly H 2 Mixed Gas Stream and other gases 2 Key Challenges to Carbon Capture and Storage *Capture Technology - Existing Plants - New Plants (PC) - IGCC *Cost of CCS *Sufficient Storage Capacity *Permanence *Best Practices - Storage Site Characterization - Monitoring/Verification - Site Closure - Etc etc ... *Regulatory Framework - Permitting - Treatment of CO 2 *Infrastructure *Human Capital *Legal Framework - Liability - Ownership * pore space * CO 2 *Public Acceptance (NIMBY  NUMBY) Technical Issues Legal/Social Issues Projects helping to address both categories of issues 3 PC Boiler (With SCR) Sulfur Removal Particulate Removal Ash Coal 7,760 TPD STEAM CYCLE CO 2 Capture Process* ID Fan Air

262

REVIEW OF FAST FLUX TEST FACILITY (FFTF) FUEL EXPERIMENTS FOR STORAGE IN INTERIM STORAGE CASKS (ISC)  

SciTech Connect

Appendix H, Section H.3.3.10.11 of the Final Safety Analysis Report (FSAR), provides the limits to be observed for fueled components authorized for storage in the Fast Flux Test Facility (FFTF) spent fuel storage system. Currently, the authorization basis allows standard driver fuel assemblies (DFA), as described in the FSAR Chapter 17, Section 17.5.3.1, to be stored provided decay power per assembly is {le} 250 watts, post-irradiation time is four years minimum, average assembly burn-up is 150,000 MWD/MTHM maximum and the pre-irradiation enrichment is 29.3% maximum (per H.3.3.10.11). In addition, driver evaluation (DE), core characterizer assemblies (CCA), and run-to-cladding-breach (RTCB) assemblies are included based on their similarities to a standard DFA. Ident-69 pin containers with fuel pins from these DFAs can also be stored. Section H.3.3.10.11 states that fuel types outside the specification criteria above will be addressed on a case-by-case basis. There are many different types of fuel and blanket experiments that were irradiated in the FFTF which now require offload to the spent fuel storage system. Two reviews were completed for a portion of these special type fuel components to determine if placement into the Core Component Container (CCC)/Interim Storage Cask (ISC) would require any special considerations or changes to the authorization basis. Project mission priorities coupled with availability of resources and analysts prevented these evaluations from being completed as a single effort. Areas of review have included radiological accident release consequences, radiological shielding adequacy, criticality safety, thermal limits, confinement, and stress. The results of these reviews are available in WHC-SD-FF-RPT-005, Rev. 0 and 1, ''Review of FFTF Fuel Experiments for Storage at ISA'', (Reference I), which subsequently allowed a large portion of these components to be included in the authorization basis (Table H.3.3-21). The report also identified additional components and actions in Section 3.0 and Table 3 that require further evaluation. The purpose of this report is to evaluate another portion of the remaining inventory (i.e., delayed neutron signal fuel, blanket assemblies, highly enriched assemblies, newly loaded Ident-69 pin containers, and returned fuel) to ensure it can be safely off loaded to the FFTF spent fuel storage system.

CHASTAIN, S.A.

2005-10-24T23:59:59.000Z

263

Longitudinal review of state-level accident statistics for carriers of interstate freight  

Science Conference Proceedings (OSTI)

State-level accident rates by mode of freight transport have been developed and refined for application to the US Department of Energy`s (DOE`s) environmental mitigation program, which may involve large-quantity shipments of hazardous and mixed wastes from DOE facilities. These rates reflect multi-year data for interstate-registered highway earners, American Association of Railroads member carriers, and coastal and internal waterway barge traffic. Adjustments have been made to account for the share of highway combination-truck traffic actually attributable to interstate-registered carriers and for duplicate or otherwise inaccurate entries in the public-use accident data files used. State-to-state variation in rates is discussed, as is the stability of rates over time. Computed highway rates have been verified with actual carriers of high- and low-level nuclear materials, and the most recent truck accident data have been used, to ensure that the results are of the correct order of magnitude. Study conclusions suggest that DOE use the computed rates for the three modes until (1) improved estimation techniques for highway combination-truck miles by state become available; (2) continued evolution of the railroad industry significantly increases the consolidation of interstate rail traffic onto fewer high-capacity trunk lines; or (3) a large-scale off-site waste shipment campaign is imminent.

Saricks, C.; Kvitek, T.

1994-03-01T23:59:59.000Z

264

NGLW RCRA Storage Study  

Science Conference Proceedings (OSTI)

The Idaho Nuclear Technology and Engineering Center (INTEC) at the Idaho National Engineering and Environmental Laboratory contains radioactive liquid waste in underground storage tanks at the INTEC Tank Farm Facility (TFF). INTEC is currently treating the waste by evaporation to reduce the liquid volume for continued storage, and by calcination to reduce and convert the liquid to a dry waste form for long-term storage in calcine bins. Both treatment methods and activities in support of those treatment operations result in Newly Generated Liquid Waste (NGLW) being sent to TFF. The storage tanks in the TFF are underground, contained in concrete vaults with instrumentation, piping, transfer jets, and managed sumps in case of any liquid accumulation in the vault. The configuration of these tanks is such that Resource Conservation and Recovery Act (RCRA) regulations apply. The TFF tanks were assessed several years ago with respect to the RCRA regulations and they were found to be deficient. This study considers the configuration of the current tanks and the RCRA deficiencies identified for each. The study identifies four potential methods and proposes a means of correcting the deficiencies. The cost estimates included in the study account for construction cost; construction methods to minimize work exposure to chemical hazards, radioactive contamination, and ionizing radiation hazards; project logistics; and project schedule. The study also estimates the tank volumes benefit associated with each corrective action to support TFF liquid waste management planning.

R. J. Waters; R. Ochoa; K. D. Fritz; D. W. Craig

2000-06-01T23:59:59.000Z

265

Alkaline storage battery  

Science Conference Proceedings (OSTI)

An alkaline storage battery having located in a battery container a battery element comprising a positive electrode, a negative electrode, a separator and a gas ionizing auxiliary electrode, in which the gas ionizing electrode is contained in a bag of microporous film, is described.

Suzuki, S.

1984-02-28T23:59:59.000Z

266

Electrical Energy Storage  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Electrochemical Flow Storage System Typical Cell Power Density (Wcm 2 ) 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 UTRC Conventional Conventional flow battery cell UTRC flow battery...

267

Flash Storage Today  

Science Conference Proceedings (OSTI)

Can flash memory become the foundation for a new tier in the storage hierarchy? The past few years have been an exciting time for flash memory. The cost has fallen dramatically as fabrication has become more efficient and the market has grown; the density ...

Adam Leventhal

2008-07-01T23:59:59.000Z

268

Flywheel Energy Storage  

Science Conference Proceedings (OSTI)

Flywheels are under consideration as an alternative for electrochemical batteries in a variety of applications This summary report provides a discussion of the mechanics of flywheels and magnetic bearings, the general characteristics of inertial energy storage systems, design considerations for flywheel systems, materials for advanced flywheels, and cost considerations.

1997-09-03T23:59:59.000Z

269

Cryptographic cloud storage  

Science Conference Proceedings (OSTI)

We consider the problem of building a secure cloud storage service on top of a public cloud infrastructure where the service provider is not completely trusted by the customer. We describe, at a high level, several architectures that combine recent and ...

Seny Kamara; Kristin Lauter

2010-01-01T23:59:59.000Z

270

Pneumatic energy storage  

DOE Green Energy (OSTI)

An essential component to hybrid electric and electric vehicles is energy storage. A power assist device could also be important to many vehicle applications. This discussion focuses on the use of compressed gas as a system for energy storage and power in vehicle systems. Three possible vehicular applications for which these system could be used are discussed in this paper. These applications are pneumatically driven vehicles, series hybrid electric vehicles, and power boost for electric and conventional vehicles. One option for a compressed gas system is as a long duration power output device for purely pneumatic and hybrid cars. This system must provide enough power and energy to drive under normal conditions for a specified time or distance. The energy storage system for this use has the requirement that it will be highly efficient, compact, and have low mass. Use of a compressed gas energy storage as a short duration, high power output system for conventional motor vehicles could reduce engine size or reduce transient emissions. For electric vehicles this kind of system could lengthen battery life by providing battery load leveling during accelerations. The system requirements for this application are that it be compact and have low mass. The efficiency of the system is a secondary consideration in this application.

Flowers, D.

1995-09-19T23:59:59.000Z

271

BALLISTICS TESTING OF THE 9977 SHIPPING PACKAGE FOR STORAGE APPLICATIONS  

SciTech Connect

Radioactive materials are stored in a variety of locations throughout the DOE complex. At the Savannah River Site (SRS), materials are stored within dedicated facilities. Each of those facilities has a documented safety analysis (DSA) that describes accidents that the facility and the materials within it may encounter. Facilities at the SRS are planning on utilizing the certified Model 9977 Shipping Package as a long term storage package and one of these facilities required ballistics testing. Specifically, in order to meet the facility DSA, the radioactive materials (RAM) must be contained within the storage package after impact by a .223 caliber round. In order to qualify the Model 9977 Shipping Package for storage in this location, the package had to be tested under these conditions. Over the past two years, the Model 9977 Shipping Package has been subjected to a series of ballistics tests. The purpose of the testing was to determine if the 9977 would be suitable for use as a storage package at a Savannah River Site facility. The facility requirements are that the package must not release any of its contents following the impact in its most vulnerable location by a .223 caliber round. A package, assembled to meet all of the design requirements for a certified 9977 shipping configuration and using simulated contents, was tested at the Savannah River Site in March of 2011. The testing was completed and the package was examined. The results of the testing and examination are presented in this paper.

Loftin, B.; Abramczyk, G.; Koenig, R.

2012-06-06T23:59:59.000Z

272

Two Line Subject Title One Line Title  

NLE Websites -- All DOE Office Websites (Extended Search)

Research and Development Research and Development Project Review Meeting Presenter: John Litynski, PE United States Department of Energy, National Energy Technology Laboratory, U.S. DOE Office of Fossil Energy National Energy Technology Laboratory August 21-23, 2012 Pittsburgh, PA 2 WELCOME 3 * Annual requirement in all cooperative agreements and grants * First complete program review of 126 carbon storage projects - 7 Regional Partnerships (Large scale injection projects) - 14 Infrastructure (Injection, Characterization, systems modeling) - 38 Geologic Storage - 28 Simulation and Risk Assessment - 26 Monitoring, Verification, and Accounting (MVA) - 6 CO2 Use and Reuse - 7 Training Centers * Report on technical progress and financial status of projects * 55 Posters

273

NV Energy Electricity Storage Valuation  

SciTech Connect

This study examines how grid-level electricity storage may benet the operations of NV Energy in 2020, and assesses whether those benets justify the cost of the storage system. In order to determine how grid-level storage might impact NV Energy, an hourly production cost model of the Nevada Balancing Authority (\\BA") as projected for 2020 was built and used for the study. Storage facilities were found to add value primarily by providing reserve. Value provided by the provision of time-of-day shifting was found to be limited. If regulating reserve from storage is valued the same as that from slower ramp rate resources, then it appears that a reciprocating engine generator could provide additional capacity at a lower cost than a pumped storage hydro plant or large storage capacity battery system. In addition, a 25-MW battery storage facility would need to cost $650/kW or less in order to produce a positive Net Present Value (NPV). However, if regulating reserve provided by storage is considered to be more useful to the grid than that from slower ramp rate resources, then a grid-level storage facility may have a positive NPV even at today's storage system capital costs. The value of having storage provide services beyond reserve and time-of-day shifting was not assessed in this study, and was therefore not included in storage cost-benefit calculations.

Ellison, James F.; Bhatnagar, Dhruv; Samaan, Nader A.; Jin, Chunlian

2013-06-30T23:59:59.000Z

274

Silo Storage Preconceptual Design  

Science Conference Proceedings (OSTI)

The National Nuclear Security Administration (NNSA) has a need to develop and field a low-cost option for the long-term storage of a variety of radiological material. The storage options primary requirement is to provide both environmental and physical protection of the materials. Design criteria for this effort require a low initial cost and minimum maintenance over a 50-year design life. In 1999, Argonne National Laboratory-West was tasked with developing a dry silo storage option for the BN-350 Spent Fuel in Aktau Kazakhstan. Argons design consisted of a carbon steel cylinder approximately 16 ft long, 18 in. outside diameter and 0.375 in. wall thickness. The carbon steel silo was protected from corrosion by a duplex coating system consisting of zinc and epoxy. Although the study indicated that the duplex coating design would provide a design life well in excess of the required 50 years, the review board was concerned because of the novelty of the design and the lack of historical use. In 2012, NNSA tasked Idaho National Laboratory (INL) with reinvestigating the silo storage concept and development of alternative corrosion protection strategies. The 2012 study, Silo Storage Concepts, Cathodic Protection Options Study (INL/EST-12-26627), concludes that the option which best fits the design criterion is a passive cathotic protection scheme, consisting of a carbon steel tube coated with zinc or a zinc-aluminum alloy encapsulated in either concrete or a cement grout. The hot dipped zinc coating option was considered most efficient, but the flame-sprayed option could be used if a thicker zinc coating was determined to be necessary.

Stephanie L. Austad; Patrick W. Bragassa; Kevin M Croft; David S Ferguson; Scott C Gladson; Annette L Shafer; John H Weathersby

2012-09-01T23:59:59.000Z

275

AQUIFER THERMAL ENERGY STORAGE-A SURVEY  

E-Print Network (OSTI)

1978, High temperature underground thermal energy storage,in Proceedings, Thermal Energy Storage in Aquifers Workshop:High temperature underground thermal energy storage, in ATES

Tsang, Chin Fu

2012-01-01T23:59:59.000Z

276

THERMAL ENERGY STORAGE IN AQUIFERS WORKSHOP  

E-Print Network (OSTI)

B. Quale. Seasonal storage of thermal energy in water in theand J. Schwarz, Survey of Thermal Energy Storage in AquifersSecond Annual Thermal Energy Storage Contractors'

Authors, Various

2011-01-01T23:59:59.000Z

277

Carbon-based Materials for Energy Storage  

E-Print Network (OSTI)

Flexible, lightweight energy-storage devices are of greatstrategy to fabricate flexible energy-storage devices.Flexible, lightweight energy-storage devices (batteries and

Rice, Lynn Margaret

2012-01-01T23:59:59.000Z

278

AQUIFER THERMAL ENERGY STORAGE-A SURVEY  

E-Print Network (OSTI)

High temperature underground thermal energy storage, inProceedings, Thermal Energy Storage in Aquifers Workshop:underground thermal energy storage, in ATES newsletter:

Tsang, Chin Fu

2012-01-01T23:59:59.000Z

279

Storage/Handling | Department of Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

StorageHandling StorageHandling Records Management Procedures for Storage, Transfer & Retrieval of Records from the Washington National Records Center (WNRC) or Legacy Management...

280

Nanostructured Materials for Energy Generation and Storage  

E-Print Network (OSTI)

for Electrochemical Energy Storage Nanostructured Electrodesof Electrode Design for Energy Storage and Generation .batteries and their energy storage efficiency. vii Contents

Khan, Javed Miller

2012-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "line accidents storage" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Energy Storage Demonstration Project Locations | Department of...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Storage Demonstration Project Locations Energy Storage Demonstration Project Locations Map of the United States showing the location of Energy Storage Demonstration projects...

282

THERMAL ENERGY STORAGE IN AQUIFERS WORKSHOP  

E-Print Network (OSTI)

Survey of Thermal Energy Storage in Aquifers Coupled withGeneration and Energy Storage," presented at Frontiers ofStudy of Underground Energy Storage Using High-Pressure,

Authors, Various

2011-01-01T23:59:59.000Z

283

Nuclear Fuels Storage & Transportation Planning Project | Department...  

NLE Websites -- All DOE Office Websites (Extended Search)

Nuclear Fuels Storage & Transportation Planning Project Nuclear Fuels Storage & Transportation Planning Project Independent Spent Fuel Storage Installation (ISFSI) at the shutdown...

284

Fuel Cell Technologies Office: Hydrogen Storage  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

| Consumer Information Hydrogen Storage Search Search Help Hydrogen Storage EERE Fuel Cell Technologies Office Hydrogen Storage Printable Version Share this resource Send...

285

Distributed Generation with Heat Recovery and Storage  

E-Print Network (OSTI)

of electricity and natural gas DER No Heat Storage: therecovery and storage) utility electricity and natural gasbut no heat storage, a 200 kW natural gas reciprocating

Siddiqui, Afzal S.; Marnay, Chris; Firestone, Ryan M.; Zhou, Nan

2008-01-01T23:59:59.000Z

286

Natural Gas Underground Storage Capacity (Summary)  

Gasoline and Diesel Fuel Update (EIA)

Salt Caverns Storage Capacity Aquifers Storage Capacity Depleted Fields Storage Capacity Total Working Gas Capacity Working Gas Capacity of Salt Caverns Working Gas Capacity of...

287

Thermal energy storage application areas  

DOE Green Energy (OSTI)

The use of thermal energy storage in the areas of building heating and cooling, recovery of industrial process and waste heat, solar power generation, and off-peak energy storage and load management in electric utilities is reviewed. (TFD)

Not Available

1979-03-01T23:59:59.000Z

288

Storage Ring | Advanced Photon Source  

NLE Websites -- All DOE Office Websites (Extended Search)

The Electron Storage Ring The 7-GeV electrons are injected into the 1104-m-circumference storage ring, a circle of more than 1,000 electromagnets and associated equipment, located...

289

Hydrogen Storage Technologies Hydrogen Delivery  

E-Print Network (OSTI)

Hydrogen Storage Technologies Roadmap Hydrogen Delivery Technical Team Roadmap June 2013 #12;This.................................................................................. 13 6. Hydrogen Storage and Innovation for Vehicle efficiency and Energy sustainability) is a voluntary, nonbinding, and nonlegal

290

Part II Energy Storage Technologies  

NLE Websites -- All DOE Office Websites (Extended Search)

II. Energy Storage Technology Overview * Instructor - Haresh Kamath, EPRI PEAC * Short term - Flywheels, Cranking Batteries, Electrochemical Capacitors, SMES * Long term -...

291

DECONTAMINATION DRESSDOWN AT A TRANSPORTATION ACCIDENT INVOLVING RADIOACTIVE MATERIAL  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Video User' s Guide Video User' s Guide DECONTAMINATION DRESSDOWN AT A TRANSPORTATION ACCIDENT INVOLVING RADIOACTIVE MATERIAL DISCLAIMER Viewing this video and completing the enclosed printed study material do not by themselves provide sufficient skills to safely engage in or perform duties related to emergency response to a transportation accident involving radioactive material. Meeting that goal is beyond

292

Variable selection and ranking for analyzing automobile traffic accident data  

Science Conference Proceedings (OSTI)

Variable ranking and feature selection are important concepts in data mining and machine learning. This paper introduces a new variable ranking technique named Sum Max Gain Ratio (SMGR). The new technique is evaluated within the domain of traffic accident ... Keywords: decision tree, traffic accident data, variable and feature selection, variable ranking

Huanjing Wang; Allen Parrish; Randy K. Smith; Susan Vrbsky

2005-03-01T23:59:59.000Z

293

Assessment of Existing Plant Instrumentation for Severe Accident Management  

Science Conference Proceedings (OSTI)

During an accident, information would be needed for diagnosing a plant's status and confirming its response to mitigative actions. It is important to determine the information necessary for severe accident management and to ensure that this information could be derived from plant instrumentation.

1993-12-01T23:59:59.000Z

294

Web Based Course: SAF-230DE, Accident Investigation Overview Promotional Video  

Energy.gov (U.S. Department of Energy (DOE))

This course that provides an overview of the fundamentals of accident investigation. The course is intended to meet the every five year refresher training requirement for DOE Federal Accident Investigators under DOE O 225.1B, Accident Investigations.

295

Hydrogen storage-bed design for tritium systems test assembly  

DOE Green Energy (OSTI)

The Los Alamos National Laboratory has completed the design of a hydrogen storage bed for the Tritium Systems Test Assembly (TSTA). Our objective is to store hydrogen isotopes as uranium hydrides and recover them by dehydriding. The specific use of the storage bed is to store DT gas as U(D,T)/sub 3/ when it is required for the TSTA. The hydrogen storage bed consists of a primary container in which uranium powder is stored and a secondary container for a second level of safety in gas confinement. The primary container, inlet and outlet gas lines, cartridge heaters, and instrumentation are assembled in the secondary container. The design of the hydrogen storage bed is presented, along with the modeling and analysis of the bed behavior during hydriding-dehydriding cycles.

Cullingford, H.S.; Wheeler, M.G.; McMullen, J.W.

1981-01-01T23:59:59.000Z

296

Ridge Energy Storage and Grid Services LP | Open Energy Information  

Open Energy Info (EERE)

Energy Storage and Grid Services LP Energy Storage and Grid Services LP Jump to: navigation, search Name Ridge Energy Storage and Grid Services LP Place Houston, Texas Zip 77027 Product Developer of compressed air energy storage projects in the US and England. Coordinates 29.76045°, -95.369784° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":29.76045,"lon":-95.369784,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

297

Hybrid electrical energy storage systems  

Science Conference Proceedings (OSTI)

Electrical energy is a high quality form of energy that can be easily converted to other forms of energy with high efficiency and, even more importantly, it can be used to control lower grades of energy quality with ease. However, building a cost-effective ... Keywords: charge, electrical storage, energy, energy storage, hybrid storage, management

Massoud Pedram; Naehyuck Chang; Younghyun Kim; Yanzhi Wang

2010-08-01T23:59:59.000Z

298

Normal matter storage of antiprotons  

SciTech Connect

Various simple issues connected with the possible storage of anti p in relative proximity to normal matter are discussed. Although equilibrium storage looks to be impossible, condensed matter systems are sufficiently rich and controllable that nonequilibrium storage is well worth pursuing. Experiments to elucidate the anti p interactions with normal matter are suggested. 32 refs.

Campbell, L.J.

1987-01-01T23:59:59.000Z

299

Transportable Energy Storage Systems Project  

Science Conference Proceedings (OSTI)

This project will define the requirements and specification for a transportable energy storage system and then screen various energy storage options and assess their capability to meet that specification. The application will be designed to meet peak electrical loads (3-4 hours of storage) on the electrical distribution system.

2009-10-23T23:59:59.000Z

300

COSBench: cloud object storage benchmark  

Science Conference Proceedings (OSTI)

With object storage systems being increasingly recognized as a preferred way to expose one's storage infrastructure to the web, the past few years have witnessed an explosion in the acceptance of these systems. Unfortunately, the proliferation of available ... Keywords: benchmark tool, object storage

Qing Zheng; Haopeng Chen; Yaguang Wang; Jian Zhang; Jiangang Duan

2013-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "line accidents storage" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Naval Spent Fuel Rail Shipment Accident Exercise Objectives  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

NAVAL SPENT FUEL RAIL SHIPMENT NAVAL SPENT FUEL RAIL SHIPMENT ACCIDENT EXERCISE OBJECTIVES * Familiarize stakeholders with the Naval spent fuel ACCIDENT EXERCISE OBJECTIVES Familiarize stakeholders with the Naval spent fuel shipping container characteristics and shipping practices * Gain understanding of how the NNPP escorts who accompany the spent fuel shipments will interact with civilian emergency services representatives g y p * Allow civilian emergency services agencies the opportunity to evaluate their response to a pp y p simulated accident * Gain understanding of how the communications links that would be activated in an accident involving a Naval spent fuel shipment would work 1 NTSF May 11 ACCIDENT EXERCISE TYPICAL TIMELINE * Conceptual/Organizational Meeting - April 6 E R T i d it t t d TYPICAL TIMELINE

302

Energy Storage & Power Electronics 2008 Peer Review - Energy Storage  

NLE Websites -- All DOE Office Websites (Extended Search)

& Power Electronics 2008 Peer Review - Energy & Power Electronics 2008 Peer Review - Energy Storage Systems (ESS) Presentations Energy Storage & Power Electronics 2008 Peer Review - Energy Storage Systems (ESS) Presentations The 2008 Peer Review Meeting for the DOE Energy Storage and Power Electronics Program (ESPE) was held in Washington DC on Sept. 29-30, 2008. Current and completed program projects were presented and reviewed by a group of industry professionals. The 2008 agenda was composed of 28 projects that covered a broad range of new and ongoing, state-of-the-art, energy storage and power electronics technologies, including updates on the collaborations among DOE/ESPE, CEC in California, and NYSERDA in New York. Energy Storage Systems (ESS) presentations are available below. ESPE 2008 Peer Review - EAC Energy Storage Subcommittee - Brad Roberts, S&C

303

Superconducting magnetic energy storage for electric utilities and fusion systems  

DOE Green Energy (OSTI)

Superconducting inductors provide a compact and efficient means of storing electrical energy without an intermediate conversion process. Energy storage inductors are under development for load leveling and transmission line stabilization in electric utility systems and for driving magnetic confinement and plasma heating coils in fusion energy systems. Fluctuating electric power demands force the electric utility industry to have more installed generating capacity than the average load requires. Energy storage can increase the utilization of base-load fossil and nuclear power plants for electric utilities. The Los Alamos Scientific Laboratory and the University of Wisconsin are developing superconducting magnetic energy storage (SMES) systems, which will store and deliver electrical energy for load leveling, peak shaving, and the stabilization of electric utility networks. In the fusion area, inductive energy transfer and storage is being developed. Both 1-ms fast-discharge theta-pinch systems and 1-to-2-s slow energy transfer tokamak systems have been demonstrated. The major components and the method of operation of a SMES unit are described, and potential applications of different size SMES systems in electric power grids are presented. Results are given of a reference design for a 10-GWh unit for load leveling, of a 30-MJ coil proposed for system stabilization, and of tests with a small-scale, 100-kJ magnetic energy storage system. The results of the fusion energy storage and transfer tests are presented. The common technology base for the various storage systems is discussed.

Rogers, J.D.; Boenig, H.J.; Hassenzahl, W.V.

1978-01-01T23:59:59.000Z

304

MELCOR accident analysis for ARIES-ACT  

Science Conference Proceedings (OSTI)

We model a loss of flow accident (LOFA) in the ARIES-ACT1 tokamak design. ARIES-ACT1 features an advanced SiC blanket with LiPb as coolant and breeder, a helium cooled steel structural ring and tungsten divertors, a thin-walled, helium cooled vacuum vessel, and a room temperature water-cooled shield outside the vacuum vessel. The water heat transfer system is designed to remove heat by natural circulation during a LOFA. The MELCOR model uses time-dependent decay heats for each component determined by 1-D modeling. The MELCOR model shows that, despite periodic boiling of the water coolant, that structures are kept adequately cool by the passive safety system.

Paul W. Humrickhouse; Brad J. Merrill

2012-08-01T23:59:59.000Z

305

FAQs about Storage Capacity  

Gasoline and Diesel Fuel Update (EIA)

about Storage Capacity about Storage Capacity How do I determine if my tanks are in operation or idle or non-reportable? Refer to the following flowchart. Should idle capacity be included with working capacity? No, only report working capacity of tanks and caverns in operation, but not for idle tanks and caverns. Should working capacity match net available shell in operation/total net available shell capacity? Working capacity should be less than net available shell capacity because working capacity excludes contingency space and tank bottoms. What is the difference between net available shell capacity in operation and total net available shell capacity? Net available shell capacity in operation excludes capacity of idle tanks and caverns. What do you mean by transshipment tanks?

306

gas cylinder storage guidelines  

NLE Websites -- All DOE Office Websites (Extended Search)

Compressed Gas Cylinder Storage Guidelines Compressed Gas Cylinder Storage Guidelines All cylinders must be stored vertical, top up across the upper half the cylinder but below the shoulder. Small cylinder stands or other methods may be appropriate to ensure that the cylinders are secured from movement. Boxes, cartons, and other items used to support small cylinders must not allow water to accumulate and possible cause corrosion. Avoid corrosive chemicals including salt and fumes - keep away from direct sunlight and keep objects away that could fall on them. Use Gas pressure regulators that have been inspected in the last 5 years. Cylinders that contain fuel gases whether full or empty must be stored away from oxidizer cylinders at a minimum of 20 feet. In the event they are stored together, they must be separated by a wall 5 feet high with

307

Solar panel with storage  

SciTech Connect

A self contained, fully automatic, vertical wall panel, solar energy system characterized by having no moving parts in the panel. The panel is substantially a shallow rectangular box having a closed perimeter, an outer insulating chamber which is substantially a double glazed window, and an inner energy storage chamber which is provided with containers of phase change materials. The energy storage chamber is provided with air entrance and exit passages which communicate with the space to be heated. Thermostatically controlled blowers serve to move air from the space to be heated across the containers of phase change material and back to the space to be heated. Thermostatically controlled blowers also serve to move insulating material into and out of the insulating chamber at appropriate times.

Zilisch, K.P.

1984-05-08T23:59:59.000Z

308

Superconducting magnetic energy storage  

DOE Green Energy (OSTI)

Fusion power production requires energy storage and transfer on short time scales to create confining magnetic fields and for heating plasmas. The theta-pinch Scyllac Fusion Test Reactor (SFTR) requires 480 MJ of energy to drive the 5-T compression field with a 0.7-ms rise time. Tokamak Experimental Power Reactors (EPR) require 1 to 2 GJ of energy with a 1 to 2-s rise time for plasma ohmic heating. The design, development, and testing of four 300-kJ energy storage coils to satisfy the SFTR needs are described. Potential rotating machinery and homopolar energy systems for both the Reference Theta-Pinch Reactor (RTPR) and tokamak ohmic-heating are presented.

Rogers, J.D.

1976-01-01T23:59:59.000Z

309

Superconducting magnetic energy storage  

SciTech Connect

Recent programmatic developments in Superconducting Magnetic Energy Storage (SMES) have prompted renewed and widespread interest in this field. In mid 1987 the Defense Nuclear Agency, acting for the Strategic Defense Initiative Office, issued a request for proposals for the design and construction of SMES Engineering Test Model (ETM). Two teams, one led by Bechtel and the other by Ebasco, are now engaged in the first phase of the development of a 10 to 20 MWhr ETM. This report presents the rationale for energy storage on utility systems, describes the general technology of SMES, and explains the chronological development of the technology. The present ETM program is outlined; details of the two projects for ETM development are described in other papers in these proceedings. The impact of high T/sub c/ materials on SMES is discussed. 69 refs., 3 figs., 3 tabs.

Hassenzahl, W.

1988-08-01T23:59:59.000Z

310

Carbon Storage Review 2012  

NLE Websites -- All DOE Office Websites (Extended Search)

Sequestration Options in the Illinois Basin - Phase III DE-FC26-05NT42588 Robert J. Finley and the MGSC Project Team Illinois State Geological Survey (University of Illinois) and Schlumberger Carbon Services U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for CO 2 Storage August 21-23, 2012 * The Midwest Geological Sequestration Consortium is funded by the U.S. Department of Energy through the National Energy Technology Laboratory (NETL) via the Regional Carbon Sequestration Partnership Program (contract number DE-FC26-05NT42588) and by a cost share agreement with the Illinois Department of Commerce and Economic Opportunity, Office of Coal Development through the Illinois Clean Coal

311

Storage depot for radioactive material  

Science Conference Proceedings (OSTI)

Vertical drilling of cylindrical holes in the soil, and the lining of such holes, provides storage vaults called caissons. A guarded depot is provided with a plurality of such caissons covered by shielded closures preventing radiation from penetrating through any linear gap to the atmosphere. The heat generated by the radioactive material is dissipated through the vertical liner of the well into the adjacent soil and thus to the ground surface so that most of the heat from the radioactive material is dissipated into the atmosphere in a manner involving no significant amount of biologically harmful radiation. The passive cooling of the radioactive material without reliance upon pumps, personnel, or other factor which might fail, constitutes one of the most advantageous features of this system. Moreover this system is resistant to damage from tornadoes or earthquakes. Hermetically sealed containers of radioactive material may be positioned in the caissons. Loading vehicles can travel throughout the depot to permit great flexibility of loading and unloading radioactive materials. Radioactive material can be shifted to a more closely spaced caisson after ageing sufficiently to generate much less heat. The quantity of material stored in a caisson is restricted by the average capacity for heat dissipation of the soil adjacent such caisson.

Szulinski, Milton J. (Richland, WA)

1983-01-01T23:59:59.000Z

312

Storage depot for radioactive material  

SciTech Connect

Vertical drilling of cylindrical holes in the soil, and the lining of such holes, provides storage vaults called caissons. A guarded depot is provided with a plurality of such caissons covered by shielded closures preventing radiation from penetrating through any linear gap to the atmosphere. The heat generated by the radioactive material is dissipated through the vertical liner of the well into the adjacent soil and thus to the ground surface so that most of the heat from the radioactive material is dissipated into the atmosphere in a manner involving no significant amount of biologically harmful radiation. The passive cooling of the radioactive material without reliance upon pumps, personnel, or other factor which might fail, constitutes one of the most advantageous features of this system. Moreover this system is resistant to damage from tornadoes or earthquakes. Hermetically sealed containers of radioactive material may be positioned in the caissons. Loading vehicles can travel throughout the depot to permit great flexibility of loading and unloading radioactive materials. Radioactive material can be shifted to a more closely spaced caisson after ageing sufficiently to generate much less heat. The quantity of material stored in a caisson is restricted by the average capacity for heat dissipation of the soil adjacent such caisson.

Szulinski, M.J.

1983-10-18T23:59:59.000Z

313

NATURAL GAS STORAGE ENGINEERING Kashy Aminian  

E-Print Network (OSTI)

NATURAL GAS STORAGE ENGINEERING Kashy Aminian Petroleum & Natural Gas Engineering, West Virginia University, Morgantown, WV, USA. Keywords: Gas Storage, Natural Gas, Storage, Deliverability, Inventory Chapters Glossary Bibliography Biographical Sketch Summary Underground storage of natural gas

Mohaghegh, Shahab

314

Maui energy storage study.  

SciTech Connect

This report investigates strategies to mitigate anticipated wind energy curtailment on Maui, with a focus on grid-level energy storage technology. The study team developed an hourly production cost model of the Maui Electric Company (MECO) system, with an expected 72 MW of wind generation and 15 MW of distributed photovoltaic (PV) generation in 2015, and used this model to investigate strategies that mitigate wind energy curtailment. It was found that storage projects can reduce both wind curtailment and the annual cost of producing power, and can do so in a cost-effective manner. Most of the savings achieved in these scenarios are not from replacing constant-cost diesel-fired generation with wind generation. Instead, the savings are achieved by the more efficient operation of the conventional units of the system. Using additional storage for spinning reserve enables the system to decrease the amount of spinning reserve provided by single-cycle units. This decreases the amount of generation from these units, which are often operated at their least efficient point (at minimum load). At the same time, the amount of spinning reserve from the efficient combined-cycle units also decreases, allowing these units to operate at higher, more efficient levels.

Ellison, James; Bhatnagar, Dhruv; Karlson, Benjamin

2012-12-01T23:59:59.000Z

315

Fact Sheet: Energy Storage Technology Advancement Partnership...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Fact Sheet: Energy Storage Technology Advancement Partnership (October 2012) More Documents & Publications Webinar Presentation: Energy Storage Solutions for Microgrids (November...

316

Energy Storage Technologies Available for Licensing ...  

Energy Storage Technologies Available for Licensing U.S. Department of Energy laboratories and participating research institutions have energy storage ...

317

Energy Storage | Open Energy Information  

Open Energy Info (EERE)

Storage Storage Jump to: navigation, search TODO: Source information Contents 1 Introduction 2 Benefits 3 Technologies 4 References Introduction Energy storage is a tool that can be used by grid operators to help regulate the electrical grid and help meet demand. In its most basic form, energy storage "stores" excess energy that would otherwise be wasted so that it can be used later when demand is higher. Energy Storage can be used to balance microgrids, perform frequency regulation, and provide more reliable power for high tech industrial facilities.[1] Energy storage will also allow for the expansion of intermittent renewable energy, like wind and solar, to provide electricity around the clock. Some of the major issues concerning energy storage include cost, efficiency, and size.

318

Grid Applications for Energy Storage  

NLE Websites -- All DOE Office Websites (Extended Search)

Applications for Energy Storage Applications for Energy Storage Flow Cells for Energy Storage Workshop Washington DC 7-8 March 2012 Joe Eto jheto@lbl.gov (510) 486-7284 Referencing a Recent Sandia Study,* This Talk Will: Describe and illustrate selected grid applications for energy storage Time-of-use energy cost management Demand charge management Load following Area Regulation Renewables energy time shift Renewables capacity firming Compare Sandia's estimates of the economic value of these applications to the Electricity Storage Association's estimates of the capital costs of energy storage technologies *Eyer, J. and G. Corey. Energy Storage for the Electricity Grid: Benefits and Market Potential Assessment Guide. February 2010. SAND2010-0815 A Recent Sandia Study Estimates the Economic

319

Nuclear reactor overflow line  

DOE Patents (OSTI)

The overflow line for the reactor vessel of a liquid-metal-cooled nuclear reactor includes means for establishing and maintaining a continuous bleed flow of coolant amounting to 5 to 10% of the total coolant flow through the overflow line to prevent thermal shock to the overflow line when the reactor is restarted following a trip. Preferably a tube is disposed concentrically just inside the overflow line extending from a point just inside the reactor vessel to an overflow tank and a suction line is provided opening into the body of liquid metal in the reactor vessel and into the annulus between the overflow line and the inner tube.

Severson, Wayne J. (Pittsburgh, PA)

1976-01-01T23:59:59.000Z

320

Prediction of Severe Accident Counter Current Natural Circulation Flows in the Hot Leg of a Pressurized Water Reactor  

Science Conference Proceedings (OSTI)

During certain phases of a severe accident in a pressurized water reactor (PWR), the core becomes uncovered and steam carries heat to the steam generators through natural circulation. For PWR's with U-tube steam generators and loop seals filled with water, a counter current flow pattern is established in the hot leg. This flow pattern has been experimentally observed and has been predicted using computational fluid dynamics (CFD). Predictions of severe accident behavior are routinely carried out using severe accident system analysis codes such as SCDAP/RELAP5 or MELCOR. These codes, however, were not developed for predicting the three-dimensional natural circulation flow patterns during this phase of a severe accident. CFD, along with a set of experiments at 1/7. scale, have been historically used to establish the flow rates and mixing for the system analysis tools. One important aspect of these predictions is the counter current flow rate in the nearly 30 inch diameter hot leg between the reactor vessel and steam generator. This flow rate is strongly related to the amount of energy that can be transported away from the reactor core. This energy transfer plays a significant role in the prediction of core failures as well as potential failures in other reactor coolant system piping. CFD is used to determine the counter current flow rate during a severe accident. Specific sensitivities are completed for parameters such as surge line flow rates, hydrogen content, as well as vessel and steam generator temperatures. The predictions are carried out for the reactor vessel upper plenum, hot leg, a portion of the surge line, and a steam generator blocked off at the outlet plenum. All predictions utilize the FLUENT V6 CFD code. The volumetric flow in the hot leg is assumed to be proportional to the square root of the product of normalized density difference, gravity, and hydraulic diameter to the 5. power. CFD is used to determine the proportionality constant in the range from 0.11 to 0.13 and termed a discharge coefficient. The value is relatively unchanged for typical surge line flow rates as well as the hydrogen content in the flow. Over a significant range of expected temperature differences for the steam generator and reactor vessel upper plenum, the discharge coefficient also remained consistent. The discharge coefficient is a suitable model for determining the hot leg counter current flow rates during this type of severe accident. (author)

Boyd, Christopher F. [United States Nuclear Regulatory Commission, Washington, DC 20555-0001 (United States)

2006-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "line accidents storage" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

BlackLining Demo BlackLining Demo  

E-Print Network (OSTI)

BlackLining Demo BlackLining Demo BlackLining Demo YOUR PAYCHECKPAYROLL TAXES AND EMPLOYMENT LAW BY SPONSORED BY #12;BlackLining Demo e BlackLining Demo e BlackLining Demo e AMERICAN PAYROLL ASSOCIATION i Design by PRIWORKS.com. Images from Thinkstock.com. #12;BlackLining Demo BlackLining Demo Black

Harms, Kyle E.

322

Two Line Subject Title One Line Title  

NLE Websites -- All DOE Office Websites (Extended Search)

Grant S. Bromhal Grant S. Bromhal NRAP Technical Coordinator Geosciences Division NRAP (RUA Spring Mtg), March 5, 2013 National Risk Assessment Partnership (NRAP) 2 National Risk Assessment Program (NRAP) Elucidate key fundamental physics/chemistry Predict behavior of critical components Predict system behavior (reservoir to receptor) over space and time Quantify risk and safety relationships NRAP Stakeholder Group Wade, LLC NRAP Technical Team Develop a defensible, science-based methodology and platform for quantifying risk profiles at most types of CO 2 storage sites in order to guide decision making and risk management by reducing uncertainty in the business case for long-term storage. 3 National Risk Assessment Partnership: Leveraging DOE's Science-Based Prediction Capability

323

Two Line Subject Title One Line Title  

NLE Websites -- All DOE Office Websites (Extended Search)

Atlas II Atlas II Dawn M. Deel Project Manager - Carbon Sequestration 2 Atlas I - Background and Statistics * 2007 - DOE released the first version of the Carbon Sequestration Atlas of the U.S. and Canada * Result of cooperation and coordination among carbon sequestration experts from local, state, and government agencies, as well as industry and academia * Atlas presented the first coordinated assessment of carbon capture and storage (CCS) potential across the majority of the U.S. and portions of western Canada * Over 3,000 hardcopies released * 1,000 CDs mailed * Daily downloads from NETL website * Widespread media and industry attention * Continued public interest 3 Atlas II * Scheduled for release in November 2008 (GHGT9) * Purpose of this update: To update the CO 2 storage portfolio, document differences in CO

324

EIA - Natural Gas Storage Data & Analysis  

Gasoline and Diesel Fuel Update (EIA)

Storage Storage Weekly Working Gas in Underground Storage U.S. Natural gas inventories held in underground storage facilities by East, West, and Producing regions (weekly). Underground Storage - All Operators Total storage by base gas and working gas, and storage activity by State (monthly, annual). Underground Storage by Type U.S. storage and storage activity by all operators, salt cavern fields and nonsalt cavern (monthly, annual). Underground Storage Capacity Storage capacity, working gas capacity, and number of active fields for salt caverns, aquifers, and depleted fields by State (monthly, annual). Liquefied Natural Gas Additions to and Withdrawals from Storage By State (annual). Weekly Natural Gas Storage Report Estimates of natural gas in underground storage for the U.S. and three regions of the U.S.

325

North Australian Cloud Lines  

Science Conference Proceedings (OSTI)

A satellite classification and climatology of propagating mesoscale cloud fines in northern Australia is presented. These cloud fines range from long, narrow lines of shallow convection to extensive deep convective squall lines with mesoscale ...

W. Drosdowsky; G. J. Holland

1987-11-01T23:59:59.000Z

326

Lessons from shielding retrofits at the LAMPF/LANSCE/PSR accelerator, beam lines and target facilities  

SciTech Connect

The experience in the past 7 years to improve the shielding and radiation control systems at the Los Alamos Meson Physics Facility (LAMPF) and the Manuel Lujan Jr. Neutron Scattering Center (LANSCE) provides important lessons for the design of radiation control systems at future, high beam power proton accelerator facilities. Major issues confronted and insight gained in developing shielding criteria and in the use of radiation interlocks are discussed. For accelerators and beam lines requiring hands-on-maintenance, our experience suggests that shielding criteria based on accident scenarios will be more demanding than criteria based on routinely encountered beam losses. Specification and analysis of the appropriate design basis accident become all important. Mitigation by active protection systems of the consequences of potential, but severe, prompt radiation accidents has been advocated as an alternate choice to shielding retrofits for risk management at both facilities. Acceptance of active protection systems has proven elusive primarily because of the difficulty in providing convincing proof that failure of active systems (to mitigate the accident) is incredible. Results from extensive shielding assessment studies are presented including data from experimental beam spill tests, comparisons with model estimates, and evidence bearing on the limitations of line-of-sight attenuation models in complex geometries. The scope and significant characteristics of major shielding retrofit projects at the LAMPF site are illustrated by the project to improve the shielding beneath a road over a multiuse, high-intensity beam line (Line D).

Macek, R.J.

1994-07-01T23:59:59.000Z

327

NETL: Carbon Storage - NETL Carbon Capture and Storage Database  

NLE Websites -- All DOE Office Websites (Extended Search)

CCS Database CCS Database Carbon Storage NETL's Carbon Capture, Utilization, and Storage Database - Version 4 Welcome to NETL's Carbon Capture, Utilization, and Storage (CCUS) Database. The database includes active, proposed, canceled, and terminated CCUS projects worldwide. Information in the database regarding technologies being developed for capture, evaluation of sites for carbon dioxide (CO2) storage, estimation of project costs, and anticipated dates of completion is sourced from publically available information. The CCUS Database provides the public with information regarding efforts by various industries, public groups, and governments towards development and eventual deployment of CCUS technology. As of November 2012, the database contained 268 CCUS projects worldwide. The 268 projects include 68 capture, 61 storage, and 139 for capture and storage in more than 30 countries across 6 continents. While most of the projects are still in the planning and development stage, or have recently been proposed, 37 are actively capturing and injecting CO2

328

The Safe Storage Study for Autocatalytic Reactive Chemicals  

E-Print Network (OSTI)

In the U.S. Chemical Safety and Hazard Investigation Board (CSB) report, Improving Reactive Hazard Management, there are 37 out of 167 accidents, which occurred in a storage tank or a storage area. This fact demonstrates that thermal runaway problems in chemical storage processes have not been give enough attention. Hydroxylamine Nitrate (HAN) is an important member of the hydroxylamine compound family and its diluted aqueous solution is widely used in the nuclear industry for equipment decontamination. It is also used as a solid or aqueous propellant. Due to its instability and autocatalytic behavior, it has been involved in several incidents at the Hanford and Savannah River Sites (SRS). Much research has been conducted on HAN in different areas, such as combustion mechanism, decomposition mechanism, and runaway behavior. However, the autocatalytic behavior of HAN at runaway stage has not been fully addressed due to its highly exothermic and rapid decomposition behavior. This work focuses on extracting its autocatalytic kinetics mechanism and studying its critical behavior from adiabatic calorimetry measurements. The lumped autocatalytic kinetics model, the associated model parameters and HAN critical condition are determined for the first time. The contamination effect of iron ions and nitric acid on diluted hydroxylamine nitrate solution is also studied. This work also identified the safe storage conditions for a small quantity HAN diluted solution with thermal explosion theory. Computational Fluid Dynamics (CFD) was used to further study the influence of natural convection and system scale on the critical behavior for a large quantity of chemical and thus proposed the practical storage guidelines for industrial practice.

Liu, Lijun

2009-08-01T23:59:59.000Z

329

Investigation of Strategies for Mitigating Radiological Releases in Severe Accidents  

Science Conference Proceedings (OSTI)

The Fukushima Dai-ichi accident highlights the need to reduce the magnitude of radioactive fission product releases from BWR Mark I and II containments following beyond-design-basis events. There is no evidence that this accident has a long-term effect on public health and safety; however, the Fukushima Dai-ichi accident did result in widespread contamination of surrounding areas, both on-site and off-site. This report assesses various strategies that can be used to maintain BWR Mark I and II ...

2012-09-24T23:59:59.000Z

330

Severe accident sequences analyzed for a two-loop PWR  

Science Conference Proceedings (OSTI)

Different severe accident sequences have been analyzed for a two-loop Westinghouse pressurized water reactor (PWR) using the MELCOR code, version 1.8.4. The purpose of this study was to calculate source terms and the timing of events for severe accident sequences at this type of PWR to be used in the HAS-CAL code .The results calculated by MELCOR have been compared to results from the individual plant examination (IPE) of the Kewaunee nuclear power plant, also a two-loop Westinghouse PWR. The results of the Kewaunee IPE were obtained with the severe accident code MAAP.

Carbajo, J.J. [Oak Ridge National Lab., TN (United States)

1997-12-01T23:59:59.000Z

331

Characterization of Planar Transmission Lines  

Science Conference Proceedings (OSTI)

... References on: On-Wafer Measurement and Calibration, Planar Transmission Line Characterization and Multiconductor Transmission Lines. ...

2011-12-15T23:59:59.000Z

332

Methods for Detector Placement and Analysis of Criticality Accident Alarm Systems  

Science Conference Proceedings (OSTI)

Determining the optimum placement to minimize the number of detectors for a criticality accident alarm system (CAAS) in a large manufacturing facility is a complex problem. There is typically a target for the number of detectors that can be used over a given zone of the facility. A study to optimize detector placement typically begins with some initial guess at the placement of the detectors and is followed by either predictive calculations of accidents at specific locations or adjoint calculations based on preferred detector locations. Within an area of a facility, there may be a large number of potential criticality accident sites. For any given placement of the detectors, the list of accident sites can be reduced to a smaller number of locations at which accidents may be difficult for detectors to detect. Developing the initial detector placement and determining the list of difficult accident locations are both based on the practitioner's experience. Simulations following fission particles released from an accident location are called 'forward calculations.' These calculations can be used to answer the question 'where would an alarm be triggered?' by an accident at a specified location. Conversely, 'adjoint calculations' start at a detector site using the detector response function as a source and essentially run in reverse. These calculations can be used to answer the question 'where would an accident be detected?' by a specified detector location. If the number of accidents, P, is much less than the number of detectors, Q, then forward simulations may be more convenient and less time-consuming. If Q is large or the detectors are not placed yet, then a mesh tally of dose observed by a detector at any location must be computed over the entire zone. If Q is much less than P, then adjoint calculations may be more efficient. Adjoint calculations employing a mesh tally can be even more advantageous because they do not rely on a list of specific difficult-to-detect accident sites, which may not have included every possible accident location. Analog calculations (no biasing) simply follow particles naturally. For sparse buildings and line-of-sight calculations, analog Monte Carlo (MC) may be adequate. For buildings with internal walls or large amounts of heavy equipment (dense geometry), variance reduction may be required. Calculations employing the CADIS method use a deterministic calculation to create an importance map and a matching biased source distribution that optimize the final MC to quickly calculate one specific tally. Calculations employing the FW-CADIS method use two deterministic calculations (one forward and one adjoint) to create an importance map and a matching biased source distribution that are designed to make the MC calculate a mesh tally with more uniform uncertainties in both high-dose and low-dose areas. Depending on the geometry of the problem, the number of detectors, and the number of accident sites, different approaches to CAAS placement studies can be taken. These are summarized in Table I. SCALE 6.1 contains the MAVRIC sequence, which can be used to perform any of the forward-based approaches outlined in Table I. For analog calculations, MAVRIC simply calls the Monaco MC code. For CADIS and FW-CADIS, MAVRIC uses the Denovo discrete ordinates (SN) deterministic code to generate the importance map and biased source used by Monaco. An adjoint capability is currently being added to Monaco and should be available in the next release of SCALE. An adjoint-based approach could be performed with Denovo alone - although fine meshes, large amounts of memory, and long computation times may be required to obtain accurate solutions. Coarse-mesh SN simulations could be employed for adjoint-based scoping studies until the adjoint capability in Monaco is complete. CAAS placement studies, especially those dealing with mesh tallies, require some extra utilities to aid in the analysis. Detectors must receive a minimum dose rate in order to alarm; therefore, a simple yes/no plot could be more useful to the analyst t

Peplow, Douglas E. [ORNL; Wetzel, Larry [Babcock & Wilcox Nuclear Operations Group Inc.

2012-01-01T23:59:59.000Z

333

Interim storage study report  

SciTech Connect

High-level radioactive waste (HLW) stored at the Idaho Chemical Processing Plant (ICPP) in the form of calcine and liquid and liquid sodium-bearing waste (SBW) will be processed to provide a stable waste form and prepare the waste to be transported to a permanent repository. Because a permanent repository will not be available when the waste is processed, the waste must be stored at ICPP in an Interim Storage Facility (ISF). This report documents consideration of an ISF for each of the waste processing options under consideration.

Rawlins, J.K.

1998-02-01T23:59:59.000Z

334

Gas Storage Technology Consortium  

Science Conference Proceedings (OSTI)

The EMS Energy Institute at The Pennsylvania State University (Penn State) has managed the Gas Storage Technology Consortium (GSTC) since its inception in 2003. The GSTC infrastructure provided a means to accomplish industry-driven research and development designed to enhance the operational flexibility and deliverability of the nation's gas storage system, and provide a cost-effective, safe, and reliable supply of natural gas to meet domestic demand. The GSTC received base funding from the U.S. Department of Energy's (DOE) National Energy Technology Laboratory (NETL) Oil & Natural Gas Supply Program. The GSTC base funds were highly leveraged with industry funding for individual projects. Since its inception, the GSTC has engaged 67 members. The GSTC membership base was diverse, coming from 19 states, the District of Columbia, and Canada. The membership was comprised of natural gas storage field operators, service companies, industry consultants, industry trade organizations, and academia. The GSTC organized and hosted a total of 18 meetings since 2003. Of these, 8 meetings were held to review, discuss, and select proposals submitted for funding consideration. The GSTC reviewed a total of 75 proposals and committed co-funding to support 31 industry-driven projects. The GSTC committed co-funding to 41.3% of the proposals that it received and reviewed. The 31 projects had a total project value of $6,203,071 of which the GSTC committed $3,205,978 in co-funding. The committed GSTC project funding represented an average program cost share of 51.7%. Project applicants provided an average program cost share of 48.3%. In addition to the GSTC co-funding, the consortium provided the domestic natural gas storage industry with a technology transfer and outreach infrastructure. The technology transfer and outreach were conducted by having project mentoring teams and a GSTC website, and by working closely with the Pipeline Research Council International (PRCI) to jointly host technology transfer meetings and occasional field excursions. A total of 15 technology transfer/strategic planning workshops were held.

Joel Morrison; Elizabeth Wood; Barbara Robuck

2010-09-30T23:59:59.000Z

335

Third Generation Flywheels for electric storage  

Science Conference Proceedings (OSTI)

Electricity is critical to our economy, but growth in demand has saturated the power grid causing instability and blackouts. The economic penalty due to lost productivity in the US exceeds $100 billion per year. Opposition to new transmission lines and power plants, environmental restrictions, and an expected $100 billion grid upgrade cost have slowed system improvements. Flywheel electricity storage could provide a more economical, environmentally benign alternative and slash economic losses if units could be scaled up in a cost effective manner to much larger power and capacity than the present maximum of a few hundred kW and a few kWh per flywheel. The goal of this project is to design, construct, and demonstrate a small-scale third generation electricity storage flywheel using a revolutionary architecture scalable to megawatt-hours per unit. First generation flywheels are built from bulk materials such as steel and provide inertia to smooth the motion of mechanical devices such as engines. They can be scaled up to tens of tons or more, but have relatively low energy storage density. Second generation flywheels use similar designs but are fabricated with composite materials such as carbon fiber and epoxy. They are capable of much higher energy storage density but cannot economically be built larger than a few kWh of storage capacity due to structural and stability limitations. LaunchPoint is developing a third generation flywheel the "Power Ring" with energy densities as high or higher than second generation flywheels and a totally new architecture scalable to enormous sizes. Electricity storage capacities exceeding 5 megawatt-hours per unit appear both technically feasible and economically attractive. Our design uses a new class of magnetic bearing a radial gap shear-force levitator that we discovered and patented, and a thin-walled composite hoop rotated at high speed to store kinetic energy. One immediate application is power grid frequency regulation, where Power Rings could cut costs, reduce fuel consumption, eliminate emissions, and reduce the need for new power plants. Other applications include hybrid diesel-electric locomotives, grid power quality, support for renewable energy, spinning reserve, energy management, and facility deferral. Decreased need for new generation and transmission alone could save the nation $2.5 billion per year. Improved grid reliability could cut economic losses due to poor power quality by tens of billions of dollars per year. A large export market for this technology could also develop. Power Ring technology will directly support the EERE mission, and the goals of the Distributed Energy Technologies Subprogram in particular, by helping to reduce blackouts, brownouts, electricity costs, and emissions, by relieving transmission bottlenecks, and by greatly improving grid power quality.

Ricci, Michael, R.; Fiske, O. James

2008-02-29T23:59:59.000Z

336

US Recovery Act Smart Grid Energy Storage Demonstration Projects | Open  

Open Energy Info (EERE)

Storage Demonstration Projects Storage Demonstration Projects Jump to: navigation, search CSV Loading map... {"format":"googlemaps3","type":"ROADMAP","types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"limit":500,"offset":0,"link":"all","sort":[""],"order":[],"headers":"show","mainlabel":"","intro":"","outro":"","searchlabel":"\u2026 further results","default":"","geoservice":"google","zoom":false,"width":"600px","height":"350px","centre":false,"layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","icon":"","visitedicon":"","forceshow":true,"showtitle":true,"hidenamespace":false,"template":false,"title":"","label":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"locations":[{"text":"

337

Hydrogen Storage Materials Database Demonstration  

NLE Websites -- All DOE Office Websites (Extended Search)

| Fuel Cell Technologies Program Source: US DOE 4/25/2011 eere.energy.gov | Fuel Cell Technologies Program Source: US DOE 4/25/2011 eere.energy.gov Hydrogen Storage Materials Database Demonstration FUEL CELL TECHNOLOGIES PROGRAM Ned Stetson Storage Tech Team Lead Fuel Cell Technologies Program U.S. Department of Energy 12/13/2011 Hydrogen Storage Materials Database Marni Lenahan December 13, 2011 Database Background * The Hydrogen Storage Materials Database was built to retain information from DOE Hydrogen Storage funded research and make these data more accessible. * Data includes properties of hydrogen storage materials investigated such as synthesis conditions, sorption and release conditions, capacities, thermodynamics, etc. http://hydrogenmaterialssearch.govtools.us Current Status * Data continues to be collected from DOE funded research.

338

Flywheel energy storage workshop  

DOE Green Energy (OSTI)

Since the November 1993 Flywheel Workshop, there has been a major surge of interest in Flywheel Energy Storage. Numerous flywheel programs have been funded by the Advanced Research Projects Agency (ARPA), by the Department of Energy (DOE) through the Hybrid Vehicle Program, and by private investment. Several new prototype systems have been built and are being tested. The operational performance characteristics of flywheel energy storage are being recognized as attractive for a number of potential applications. Programs are underway to develop flywheels for cars, buses, boats, trains, satellites, and for electric utility applications such as power quality, uninterruptible power supplies, and load leveling. With the tremendous amount of flywheel activity during the last two years, this workshop should again provide an excellent opportunity for presentation of new information. This workshop is jointly sponsored by ARPA and DOE to provide a review of the status of current flywheel programs and to provide a forum for presentation of new flywheel technology. Technology areas of interest include flywheel applications, flywheel systems, design, materials, fabrication, assembly, safety & containment, ball bearings, magnetic bearings, motor/generators, power electronics, mounting systems, test procedures, and systems integration. Information from the workshop will help guide ARPA & DOE planning for future flywheel programs. This document is comprised of detailed viewgraphs.

O`Kain, D.; Carmack, J. [comps.

1995-12-31T23:59:59.000Z

339

Article for thermal energy storage  

DOE Patents (OSTI)

A thermal energy storage composition is provided which is in the form of a gel. The composition includes a phase change material and silica particles, where the phase change material may comprise a linear alkyl hydrocarbon, water/urea, or water. The thermal energy storage composition has a high thermal conductivity, high thermal energy storage, and may be used in a variety of applications such as in thermal shipping containers and gel packs.

Salyer, Ival O. (Dayton, OH)

2000-06-27T23:59:59.000Z

340

Gas hydrate cool storage system  

DOE Patents (OSTI)

The invention presented relates to the development of a process utilizing a gas hydrate as a cool storage medium for alleviating electric load demands during peak usage periods. Several objectives of the invention are mentioned concerning the formation of the gas hydrate as storage material in a thermal energy storage system within a heat pump cycle system. The gas hydrate was formed using a refrigerant in water and an example with R-12 refrigerant is included. (BCS)

Ternes, M.P.; Kedl, R.J.

1984-09-12T23:59:59.000Z

Note: This page contains sample records for the topic "line accidents storage" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Electricity Energy Storage Technology Options  

Science Conference Proceedings (OSTI)

A confluence of industry drivers8212including increased deployment of renewable generation, the high capital cost of managing grid peak demands, and large capital investments in grid infrastructure for reliability8212is creating new interest in electric energy storage systems. New EPRI research offers a current snapshot of the storage landscape and an analytical framework for estimating the benefits of applications and life-cycle costs of energy storage systems. This paper describes in detail 10 key appl...

2010-12-23T23:59:59.000Z

342

Electric storage cell or battery  

SciTech Connect

A lead storage cell comprises a storage jar, an electrolyte contained in the storage jar, negative and positive electrodes within the electrolyte and respectively having a negative electrode metal or active material and a positive electrode active material which are placed in contact with each other preferably a large-meshed woven or non-woven fabric having resistance to the electrolyte and inserted between the negative and positive electrodes.

Kosuga, J.

1981-11-17T23:59:59.000Z

343

Emergency Response to a Transportation Accident Involving Radioactive  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Response to a Transportation Accident Involving Response to a Transportation Accident Involving Radioactive Material Emergency Response to a Transportation Accident Involving Radioactive Material The purpose of this User's Guide is to provide instructors with an overview of the key points covered in the video. The Student Handout portion of this Guide is designed to assist the instructor in reviewing those points with students. The Student Handout should be distributed to students after the video is shown and the instructor should use the Guide to facilitate a discussion on each response disciplines' activities or duties at the scene. During this discussion, the instructor can present response scenarios, each of which would have a different discipline arriving first at the accident scene. The purpose of this discussion

344

Failsafe : living with man-made disaster and accident  

E-Print Network (OSTI)

"There is no progress with out progress of the catastrophe." Virilio. This thesis project proposes that technological solutions in the design of our systems are not enough to prevent 'man-made' accident. Social, organisational ...

Higgins, Saoirse, 1966-

2004-01-01T23:59:59.000Z

345

Environment/Health/Safety/Security (EHSS): Report an Accident...  

NLE Websites -- All DOE Office Websites (Extended Search)

Report an Accident or Incident car and foot The law and DOE require prompt notification of all work-related EHS incidentsaccidents. Report all such events immediately to your...

346

HEALTH EFFECTS OF THE NUCLEAR ACCIDENT AT THREE MILE ISLAND  

E-Print Network (OSTI)

within 50 miles of the nuclear power plant was estimated tothe radiation from the nuclear power plant accident. From anand the Peach Bottom nuclear power plants, like the general

Fabrikant, J.I.

2010-01-01T23:59:59.000Z

347

Accidents, engineering and history at NASA: 1967-2003  

E-Print Network (OSTI)

The manned spaceflight program of the National Aeronautics and Space Administration (NASA) has suffered three fatal accidents: one in the Apollo program and two in the Space Transportation System (the Shuttle). These were ...

Brown, Alexander F. G. (Alexander Frederic Garder), 1970-

2009-01-01T23:59:59.000Z

348

FAQ 30-Have there been accidents involving uranium hexafluoride...  

NLE Websites -- All DOE Office Websites (Extended Search)

UF6 was released, which reacted with steam from the process and created HF and uranyl fluoride. This accident resulted in two deaths from HF inhalation and three individuals...

349

Structural evaluation of electrosleeved tubes under severe accident transients.  

Science Conference Proceedings (OSTI)

A flow stress model was developed for predicting failure of Electrosleeved PWR steam generator tubing under severe accident transients. The Electrosleeve, which is nanocrystalline pure nickel, loses its strength at temperatures greater than 400 C during severe accidents because of grain growth. A grain growth model and the Hall-Petch relationship were used to calculate the loss of flow stress as a function of time and temperature during the accident. Available tensile test data as well as high temperature failure tests on notched Electrosleeved tube specimens were used to derive the basic parameters of the failure model. The model was used to predict the failure temperatures of Electrosleeved tubes with axial cracks in the parent tube during postulated severe accident transients.

Majumdar, S.

1999-11-12T23:59:59.000Z

350

Advanced Steels for Accident Tolerant Fuel Cladding in Commercial ...  

Science Conference Proceedings (OSTI)

... (depending on the LWR system and accident scenario) while maintaining or ... Analysis of the Fragmentation of AlON and Three MgAl2O4 Spinels under...

351

Geometry features measurement of traffic accident for reconstruction based on close-range photogrammetry  

Science Conference Proceedings (OSTI)

This paper studies the feasibility of investigating a traffic accident and offering initial data for traffic accident reconstruction (TAR) using a photogrammetric technique. Compared with the conventional roller tape applied by the traffic police of ... Keywords: Accident reconstruction, Close-range photogrammetry, Direct linear transformation, Traffic accident scene, Vehicle deformation

Xinguang Du; Xianlong Jin; Xiaoyun Zhang; Jie Shen; Xinyi Hou

2009-07-01T23:59:59.000Z

352

Enabling Utility-Scale Electrical Energy Storage through Underground Hydrogen-Natural Gas Co-Storage.  

E-Print Network (OSTI)

??Energy storage technology is needed for the storage of surplus baseload generation and the storage of intermittent wind power, because it can increase the flexibility (more)

Peng, Dan

2013-01-01T23:59:59.000Z

353

Underground Storage Tank Program (Vermont)  

Energy.gov (U.S. Department of Energy (DOE))

These rules are intended to protect public health and the environment by establishing standards for the design, installation, operation, maintenance, monitoring, and closure of underground storage...

354

Breakthrough Materials for Energy Storage  

Title: Breakthrough Materials for Energy Storage Subject: A presentation at the 22nd NREL Industry Growth Forum by Amprius about its lithium ion battery technology

355

NREL: Energy Storage - Technology Basics  

NLE Websites -- All DOE Office Websites (Extended Search)

Technology Basics Photo of an ultracapacitor. Electrochemical energy storage devices provide the power for many everyday devices-from cars, trains, and laptops to personal digital...

356

Nanoarchitecture Electrodes for Energy Storage  

Science Conference Proceedings (OSTI)

New materials such as Si nanowires anodes and high-energy layered-layered composite cathode materials have increased the energy storage, but are low in...

357

Energy storage in carbon nanoparticles.  

E-Print Network (OSTI)

??Hydrogen (H2) and methane (CH4) are clean energy sources, and their storage in carbonaceous materials is a promising technology for safe and cost effective usage (more)

Guan, Cong.

2009-01-01T23:59:59.000Z

358

SGDP Storage System Performance Supplement  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Program (ESS) November 3, 2010 Presenter: Jacquelyn Bean Organization: DOE-National Energy Technology Laboratory (NETL) Funded in part by the Energy Storage Systems Program...

359

Hydrogen Storage in Carbon Nanotubes  

NLE Websites -- All DOE Office Websites (Extended Search)

STORAGE IN CARBON NANOTUBES JOHN E. FISCHER UNIVERSITY OF PENNSYLVANIA * SOME BASIC NOTIONS * BINDING SITES AND ENERGIES * PROCESSING TO ENHANCE CAPACITY: EX: ELECTROCHEMICAL Li...

360

Advanced Concepts for Hydrogen Storage  

NLE Websites -- All DOE Office Websites (Extended Search)

Framework", Nature, 402, 276-279 (1999). Mesoporous Organosilica Material benzene-silica hybrid material Hydrogen storage behavior? S. Inagaki, S. Guan, T. Ohsuna, and...

Note: This page contains sample records for the topic "line accidents storage" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Energy Storage Laboratory (Fact Sheet)  

DOE Green Energy (OSTI)

This fact sheet describes the purpose, lab specifications, applications scenarios, and information on how to partner with NREL's Energy Storage Laboratory at the Energy Systems Integration Facility. At NREL's Energy Storage Laboratory in the Energy Systems Integration Facility (ESIF), research focuses on the integration of energy storage systems (both stationary and vehicle-mounted) and interconnection with the utility grid. Focusing on battery technologies, but also hosting ultra-capacitors and other electrical energy storage technologies, the laboratory will provide all resources necessary to develop, test, and prove energy storage system performance and compatibility with distributed energy systems. The laboratory will also provide robust vehicle testing capability, including a drive-in environmental chamber, which can accommodate commercial-sized hybrid, electric, biodiesel, ethanol, compressed natural gas, and hydrogen fueled vehicles. The Energy Storage Laboratory is designed to ensure personnel and equipment safety when testing hazardous battery systems or other energy storage technologies. Closely coupled with the research electrical distribution bus at ESIF, the Energy Storage Laboratory will offer megawatt-scale power testing capability as well as advanced hardware-in-the-loop and model-in-the-loop simulation capabilities. Some application scenarios are: The following types of tests - Performance, Efficiency, Safety, Model validation, and Long duration reliability. (2) Performed on the following equipment types - (a) Vehicle batteries (both charging and discharging V2G); (b) Stationary batteries; (c) power conversion equipment for energy storage; (d) ultra- and super-capacitor systems; and (e) DC systems, such as commercial microgrids.

Not Available

2011-10-01T23:59:59.000Z

362

The Fermilab data storage infrastructure  

SciTech Connect

Fermilab, in collaboration with the DESY laboratory in Hamburg, Germany, has created a petabyte scale data storage infrastructure to meet the requirements of experiments to store and access large data sets. The Fermilab data storage infrastructure consists of the following major storage and data transfer components: Enstore mass storage system, DCache distributed data cache, ftp and Grid ftp for primarily external data transfers. This infrastructure provides a data throughput sufficient for transferring data from experiments' data acquisition systems. It also allows access to data in the Grid framework.

Jon A Bakken et al.

2003-02-06T23:59:59.000Z

363

HTGR spent fuel storage study  

SciTech Connect

This report documents a study of alternate methods of storing high-temperature gas-cooled reactor (HTGR) spent fuel. General requirements and design considerations are defined for a storage facility integral to a fuel recycle plant. Requirements for stand-alone storage are briefly considered. Three alternate water-cooled storage conceptual designs (plug well, portable well, and monolith) are considered and compared to a previous air-cooled design. A concept using portable storage wells in racks appears to be the most favorable, subject to seismic analysis and economic evaluation verification.

Burgoyne, R.M.; Holder, N.D.

1979-04-01T23:59:59.000Z

364

LPG storage vessel cracking experience  

SciTech Connect

In order to evaluate liquefied petroleum gas (LPG) handling and storage hazards, Caltex Petroleum Corp. (Dallas) surveyed several installations for storage vessel cracking problems. Cracking was found in approximately one-third of the storage vessels. In most cases, the cracking appeared to be due to original fabrication problems and could be removed without compromising the pressure containment. Several in-service cracking problems found were due to exposure to wet hydrogen sulfide. Various procedures were tried in order to minimize the in-service cracking potential. One sphere was condemned because of extensive subsurface cracking. This article's recommendations concern minimizing cracking on new and existing LPG storage vessels.

Cantwell, J.E. (Caltex Petroleum Corp., P.O. Box 619500, Dallas, TX (US))

1988-10-01T23:59:59.000Z

365

LPG storage vessel cracking experience  

SciTech Connect

As part of an overall company program to evaluate LPG handling and storage hazards the authors surveyed several installations for storage vessel cracking problems. Cracking was found in approximately one third of the storage vessels. In most cases the cracking appeared due to original fabrication problems and could be removed without compromising the pressure containment. Several in-service cracking problems due to exposure to wet hydrogen sulfide were found. Various procedures were tried in order to minimize the in-service cracking potential. One sphere was condemned because of extensive subsurface cracking. Recommendations are made to minimize cracking on new and existing LPG storage vessels.

Cantwell, J.E.

1988-01-01T23:59:59.000Z

366

Heat storage materials. Final report  

DOE Green Energy (OSTI)

The properties of various alloys, eutectics, and salts in respect to their usefulness for latent and sensible heat storage are surveyed and reported. (TFD)

Birchenall, C.E.

1977-12-01T23:59:59.000Z

367

Carbon Capture & Storage in Canada  

NLE Websites -- All DOE Office Websites (Extended Search)

- Canada - Carbon Storage Program Infrastructure Annual Review Meeting Pittsburgh, PA November 16, 2011 Dr. Frank Mourits Office of Energy Research and Development Natural...

368

Powertech: Hydrogen Expertise Storage Needs  

NLE Websites -- All DOE Office Websites (Extended Search)

- Stations 700 bar Retail Stations 700 bar Retail Stations (Shell Newport Beach) Hydrogen Energy Storage Projects (BC Hydro Renewable Power - HARP) Lightweight Transport Trailers...

369

Fallen conductor accidents: The challenge to improve safety  

SciTech Connect

What is the worst nightmare of an electric utility manager or engineer Many respond that it is an electrocution resulting from a fallen conductor accident. Few subjects in the operation of an electric utility are more emotional and sobering than this. Traditionally, a utility could do little to prevent such accidents, but some answers from research are emerging, calling for a new look at this old problem.

Aucoin, B.M.; Russell, B.D.

1992-02-01T23:59:59.000Z

370

Modular Accident Analysis Program (MAAP5) Applications Assessment  

Science Conference Proceedings (OSTI)

The Modular Accident Analysis Program (MAAP) is widely used throughout North America, Europe, and the Far East to analyze plant responses over a broad spectrum of potential accident conditions. The use of MAAP continues to increase because its representation of integral plant response and short run times make this program ideal for supporting engineering evaluations. With greater use, however, the level of detail to be represented within the reactor core, reactor coolant system (RCS), and containment has...

2005-12-08T23:59:59.000Z

371

Study on drywell cooler applicability to severe accident management  

SciTech Connect

This paper concerns applicability of drywell cooler (DWC) heat removal under severe accident condition in BWR plants. Newly developed heat removal models based on DWC heat removal experiments were built into the MAAP3 code. And then, two types of Japanese BWR were selected to evaluate DWC heat removal performance under typical severe accident scenarios. According to the results of the evaluation, DWC delays or prevents containment failure or venting. (authors)

Nakagawa, Takahiro [Information and manufacturing systems division, Toshiba Plant Systems and Services Corporation, 8, Shinsugita-cho, Isogo-ku, Yokohama, 235-8523 (Japan); Akinaga, Makoto [Power and Industrial Systems R and D Center, Toshiba Corporation, 4-1 Ukishima-cho, Kawasaki-ku, Kawasaki, 210-0862 (Japan); Hamazaki, Ryoichi [Isogo Nuclear Engineering Center, Toshiba Corporation, 8, Shinsugita-cho, Isogo-ku, Yokohama, 235-8523 (Japan); Matsuo, Toshihiro [Nuclear Power Engineering Department, Tokyo Electric Power Company, 1-3 Uchisaiwai-cho 1-chome, Chiyoda-ku, Tokyo 100-0011 (Japan); Hashimoto, Kouji [Nuclear Plant Engineering Department, HITACHI, Ltd., 1-1, Saiwai-cho, 3-chome, Hitachi-shi, Ibaraki-ken, 317-8511 (Japan)

2004-07-01T23:59:59.000Z

372

Trees as Filters of Radioactive Fallout from the Chernobyl Accident  

E-Print Network (OSTI)

This paper is a copy of an unpublished study of the filtering effect of red maple trees (acer rubrum) on fission product fallout near Binghamton, NY, USA following the 1986 Chernobyl accident. The conclusions of this work may offer some insight into what is happening in the forests exposed to fallout from the Fukushima Daiichi Nuclear Plant accident. This posting is in memory of Noel K. Yeh.

Brownridge, James D

2011-01-01T23:59:59.000Z

373

Review of cladding-coolant interactions during LWR accident transients  

Science Conference Proceedings (OSTI)

Some of the coolant-cladding interactions that can take place during the design basis loss-of-coolant accident and the Three Mile Island loss-of-coolant accident are analyzed. The physical manifestations of the interactions are quite similar, but the time sequences involved can cause very different end results. These results are described and a listing is given of the main research programs that are involved in coolant-cladding interaction research.

Hobson, D.O.

1980-01-01T23:59:59.000Z

374

THERMAL ANALYSIS OF A 9975 PACKAGE IN A FACILITY FIRE ACCIDENT  

SciTech Connect

Surplus plutonium bearing materials in the U.S. Department of Energy (DOE) complex are stored in the 3013 containers that are designed to meet the requirements of the DOE standard DOE-STD-3013. The 3013 containers are in turn packaged inside 9975 packages that are designed to meet the NRC 10 CFR Part 71 regulatory requirements for transporting the Type B fissile materials across the DOE complex. The design requirements for the hypothetical accident conditions (HAC) involving a fire are given in 10 CFR 71.73. The 9975 packages are stored at the DOE Savannah River Site in the K-Area Material Storage (KAMS) facility for long term of up to 50 years. The design requirements for safe storage in KAMS facility containing multiple sources of combustible materials are far more challenging than the HAC requirements in 10 CFR 71.73. While the 10 CFR 71.73 postulates an HAC fire of 1475 F and 30 minutes duration, the facility fire calls for a fire of 1500 F and 86 duration. This paper describes a methodology and the analysis results that meet the design limits of the 9975 component and demonstrate the robustness of the 9975 package.

Gupta, N.

2011-02-14T23:59:59.000Z

375

Preliminary Hazards Analyses to Identify Bounding Accidents for...  

NLE Websites -- All DOE Office Websites (Extended Search)

of their occurrence. 1 The current design includes enough storage capacity for 250 kilograms of hydrogen. Storage pressures vary from 3,500 to 15,000 pounds per square inch...

376

Industry approach to seismic severe accident policy implementation  

Science Conference Proceedings (OSTI)

The Nuclear Regulatory Commission (NRC) issued a severe reactor accident policy for existing plants on August 8, 1985 which describes the formal basis by which the NRC intends to resolve issues related to potential severe reactor accidents. Examination of plant-specific vulnerabilities due to seismic and other externally initiated events was considered on a later schedule and is addressed in Supplement 4 of the NRC Generic Letter No. 88-20 and a NRC guidance document, NUREG-1407, issued in June 1991. This report was prepared to provide a coherent and effective approach for seismic severe accident review which meets the intent of Generic Letter No. 88-20, Supplement 4. The recommendations in this report provide guidance on plant review types and review implementations which is consistent with the limited-scope'' intent of systematic evaluations as described in the NRC's Severe Accident Policy Statement. In addition, to assist in implementing cost-effective modifications that reduce vulnerabilities, this report also presents specific guidelines for identification and treatment of vulnerabilities that may be used as a basis for defining closure of earthquake-related severe-accident issues. This report provides procedural instructions and guidance to support resolution of earthquake-related severe accident issues. More detailed background and technical justifications for the methods are documented elsewhere, and are referenced throughout this report as appropriate.

Reed, J.W. (Benjamin (Jack R.) and Associates, Inc., Mountain View, CA (United States)); O'Hara, T.F.; Jacobson, J.P. (Yankee Atomic Electric Co., Bolton, MA (United States)); Sewell, R.T.; Cornell, C.A. (Risk Engineering, Inc., Golden, CO (United States)); Buttemer, D.R. (Pickard, Lowe and Garrick, Inc., Encinitas, CA (United States)); Schmidt, W.R.; Freed, D.A. (MPR Associates, Inc., Washington, D

1991-11-01T23:59:59.000Z

377

DESIGN OF VISIBLE DIAGNOSTIC BEAMLINE FOR NSLS2 STORAGE RING  

SciTech Connect

A visible synchrotron light monitor (SLM) beam line has been designed at the NSLS2 storage ring, using the bending magnet radiation. A retractable thin absorber will be placed in front of the first mirror to block the central x-rays. The first mirror will reflect the visible light through a vacuum window. The light is guided by three 6-inch diameter mirrors into the experiment hutch. In this paper, we will describe design work on various optical components in the beamline. The ultra high brightness NSLS-II storage ring is under construction at Brookhaven National Laboratory. It will have 3GeV, 500mA electron beam circulating in the 792m ring, with very low emittance (0.9nm.rad horizontal and 8pm.rad vertical). The ring is composed of 30 DBA cells with 15 fold symmetry. Three damping wigglers will be installed in long straight sections 8, 18 and 28 to lower the emittance. While electrons pass through the bending magnet, synchrotron radiation will be generated covering a wide spectrum. There are other insertion devices in the storage ring which will generate shorter wavelength radiation as well. Synchrotron radiation has been widely used as diagnostic tool to measure the transverse and longitudinal profile. Three synchrotron light beam lines dedicated for diagnostics are under design and construction for the NSLS-II storage ring: two x-ray beam lines (pinhole and CRL) with the source points from Cell 22 BM{_}A (first bending in the DBA cell) and Cell22 three-pole wiggler; the third beam line is using visible part of radiation from Cell 30 BM{_}B (second bending magnet from the cell). Our paper focuses on the design of the visible beam line - SLM.

Cheng, W.; Fernandes, H.; Hseuh, H.; Kosciuk, B.; Krinsky, S.; Singh, O.

2011-03-28T23:59:59.000Z

378

NIAGARA FALLS STORAGE SITE  

Office of Legacy Management (LM)

:i" :i" _,, ' _~" ORISE 95/C-70 :E : i:; :' l,J : i.: RADIOLOGICAL SURVEY Op BUILDINGS 401, ' 403, AND ' m HITTMAN BUILDING $ <,' 2:. NIAGARA FALLS STORAGE SITE I .~~ ; " LEWISTON, ' NEW YORK : f? j:,:i I ,.J- ;b f" /: Li _e.*. ~,, I ,,~, ,:,,;:, Prepared by T. .I. Vitkus i,c Environmental Survey and Site Assessment Program Energy/Environment Systems Division ;>::; Oak Ridge Institute for Science and Education .,:, "Oak Ridge, Temressee 37831-0117 .F P ., ? :_ &,d ,,,, ;<:x,, Prepared for the 3 I. Office of Environmental Restoration I, U.S. Department of Energy i gy i. ~: ,,, "! ? ' :' : "' ,//, FINAL REPORT ".$ :,a ,,, MARCH 1995 ; m L ,, ,, ,,,. ., ,,. ' 1 jq ,Ij:,., .,~ _,I_ 1 This report is based on work performed under contract number DE-AC05-760R00033 with the

379

Superconducting energy storage  

DOE Green Energy (OSTI)

This report describes the status of energy storage involving superconductors and assesses what impact the recently discovered ceramic superconductors may have on the design of these devices. Our description is intended for R&D managers in government, electric utilities, firms, and national laboratories who wish an overview of what has been done and what remains to be done. It is assumed that the reader is acquainted with superconductivity, but not an expert on the topics discussed here. Indeed, it is the author`s aim to enable the reader to better understand the experts who may ask for the reader`s attention, support, or funding. This report may also inform scientists and engineers who, though expert in related areas, wish to have an introduction to our topic.

Giese, R.F.

1993-10-01T23:59:59.000Z

380

Germ-line Allele  

NLE Websites -- All DOE Office Websites (Extended Search)

Germ-line Allele Germ-line Allele Name: Rachel Location: N/A Country: N/A Date: N/A Question: Can you please explain a "germ-line allele" to me! It is very important for a research paper I am writing about breast cancer. Replies: Mutations in genes are only able to be passed to the offspring if they are found in gametes (egg, sperm) mutations that occur in body cells other than gametes are usually not important because the cells can be replaced and they die eventually. The only way a characteristic can be passed to the offspring is through the eggs and sperm, so if there is a mutation in one these cells, the offspring can inherit the mutation. So a germ-line cell is a gamete. And a germ line allele is a version of the trait that is passed to the offspring through the germ line cell (or gamete).

Note: This page contains sample records for the topic "line accidents storage" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Significant factors in rail freight accidents: A statistical analysis of predictive and severity indices in the FRA accident/incident data base  

Science Conference Proceedings (OSTI)

The Federal Railroad Association maintains a file of carrier-reported accidents and incidents that meet threshold criteria for damage cost and/or casualties. Using a five year period from this data base, an investigation was conducted into the relationship between quantifiable risk factors and accident frequency and severity. Specific objectives were to identify key variables in accidents, formulate a model to predict future accidents, and assess the relative importance of these variables from the perspective of routing and shipping decision making. The temporal factors YEAR and MONTH were found to be significant predictors of risk; accident severity was greatest for accidents caused by track and roadbed defects. Train speed was an indicator of accident severity; track class and training tonnage were inversely proportional to accident severity. Investigation of the data base is continuing, with a final report expected by late summer. 15 refs., 1 fig., 10 tabs.

Lee, Tze-San; Saricks, C.L.

1991-01-01T23:59:59.000Z

382

Series Transmission Line Transformer  

DOE Patents (OSTI)

A series transmission line transformer is set forth which includes two or more of impedance matched sets of at least two transmissions lines such as shielded cables, connected in parallel at one end ans series at the other in a cascading fashion. The cables are wound about a magnetic core. The series transmission line transformer (STLT) which can provide for higher impedance ratios and bandwidths, which is scalable, and which is of simpler design and construction.

Buckles, Robert A. (Livermore, CA); Booth, Rex (Livermore, CA); Yen, Boris T. (El Cerrito, CA)

2004-06-29T23:59:59.000Z

383

Chemical Hydrogen Storage Center Center of Excellence  

E-Print Network (OSTI)

Source Hydrogen H2 storage Hydrogen Stored Energy Point-of-use Chemical hydrogen storage #12;5 ChemicalChemical Hydrogen Storage Center Center of Excellence for Chemical Hydrogen Storage William Tumas proprietary or confidential information #12;2 Chemical Hydrogen Storage Center Overview Project Start Date: FY

Carver, Jeffrey C.

384

Hydrogen Trailer Storage Facility (Building 878). Consequence analysis  

DOE Green Energy (OSTI)

The Department of Energy Order 5500.3A requires facility-specific hazards assessments be prepared, maintained, and used for emergency planning purposes. This consequence analysis documents the impact that a hydrogen accident could have to employees, the general public, and nearby facilities. The computer model ARCHIE was utilized to determine discharge rates, toxic vapor dispersion analyses, flammable vapor cloud hazards, explosion hazards, and flame jets for the Hydrogen Trailer Storage Facility located at Building 878. To determine over pressurization effects, hand calculations derived from the Department of the Air Force Manual, ``Structures to Resist the Effects of Accidental Explosions,`` were utilized. The greatest distances at which a postulated facility event will produce the Lower Flammability and the Lower Detonation Levels are 1,721 feet and 882 feet, respectively. The greatest distance at which 10.0 psi overpressure (i.e., total building destruction) is reached is 153 feet.

Banda, Z.; Wood, C.L.

1994-12-01T23:59:59.000Z

385

Reversible Seeding in Storage Rings  

Science Conference Proceedings (OSTI)

We propose to generate steady-state microbunching in a storage ring with a reversible seeding scheme. High gain harmonic generation (HGHG) and echo-enabled harmonic generation (EEHG) are two promising methods for microbunching linac electron beams. Because both schemes increase the energy spread of the seeded beam, they cannot drive a coherent radiator turn-by-turn in a storage ring. However, reversing the seeding process following the radiator minimizes the impact on the electron beam and may allow coherent radiation at or near the storage ring repetition rate. In this paper we describe the general idea and outline a proof-of-principle experiment. Electron storage rings can drive high average power light sources, and free-electron lasers (FELs) are now producing coherent light sources of unprecedented peak brightness While there is active research towards high repetition rate FELs (for example, using energy recovery linacs), at present there are still no convenient accelerator-based sources of high repetition rate, coherent radiation. As an alternative avenue, we recently proposed to establish steady-state microbunching (SSMB) in a storage ring. By maintaining steady-state coherent microbunching at one point in the storage ring, the beam generates coherent radiation at or close to the repetition rate of the storage ring. In this paper, we propose a method of generating a microbunched beam in a storage ring by using reversible versions of linac seeding schemes.

Ratner, Daniel; Chao, Alex; /SLAC

2011-12-14T23:59:59.000Z

386

Commercial Cool Storage Design Guide  

Science Conference Proceedings (OSTI)

This state-of-the-art handbook provides comprehensive guidance for designing ice and chilled-water storage systems for commercial buildings. HVAC engineers can take advantage of attractive rates and incentives offered by utilities to increase the market for cool storage systems.

1985-05-01T23:59:59.000Z

387

Nanostructured materials for hydrogen storage  

DOE Patents (OSTI)

A system for hydrogen storage comprising a porous nano-structured material with hydrogen absorbed on the surfaces of the porous nano-structured material. The system of hydrogen storage comprises absorbing hydrogen on the surfaces of a porous nano-structured semiconductor material.

Williamson, Andrew J. (Pleasanton, CA); Reboredo, Fernando A. (Pleasanton, CA)

2007-12-04T23:59:59.000Z

388

Forecourt Storage and Compression Options  

E-Print Network (OSTI)

pressure, capacity ­ Compressor output, power, electric demand ­ Station and dispenser load profiles Pro > Station demand profiles > Operational analysis results ­ Compressor-storage relationships and On-Board Storage Analysis Workshop DOE Headquarters 25 January 2006 Mark E. Richards Gas Technology

389

Cryogenic Storage (Smart Grid Project) | Open Energy Information  

Open Energy Info (EERE)

Cryogenic Storage (Smart Grid Project) Cryogenic Storage (Smart Grid Project) Jump to: navigation, search Project Name Cryogenic Storage Country United Kingdom Coordinates 55.378052°, -3.435973° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":55.378052,"lon":-3.435973,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

390

Electricity storage for short term power system service (Smart Grid  

Open Energy Info (EERE)

storage for short term power system service (Smart Grid storage for short term power system service (Smart Grid Project) Jump to: navigation, search Project Name Electricity storage for short term power system service Country Denmark Coordinates 56.26392°, 9.501785° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":56.26392,"lon":9.501785,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

391

Phase Change Thermal Energy Storage and Recovery in a ...  

Science Conference Proceedings (OSTI)

Symposium, Energy Storage III: Materials, Systems and Applications Symposium ... storage (LHTES) devices, particularly for solar energy storage applications.

392

U.S. Weekly Natural Gas Storage Data  

U.S. Energy Information Administration (EIA)

... Production and Net Imports Natural Gas Storage Storage Reservoirs by Type Underground Natural Gas Storage Facilities in the ... (written copies ...

393

Complex Hydrides for Hydrogen Storage  

NLE Websites -- All DOE Office Websites (Extended Search)

Hydrides for Hydrides for Hydrogen Storage George Thomas, Consultant Sandia National Laboratories G. J. Thomas Efficient onboard hydrogen storage is a critical enabling technology for the use of hydrogen in vehicles * The low volumetric density of gaseous fuels requires a storage method which densifies the fuel. - This is particularly true for hydrogen because of its lower energy density relative to hydrocarbon fuels. * Storage methods result in additional weight and volume above that of the fuel. How do we achieve adequate stored energy in an efficient, safe and cost-effective system? G. J. Thomas However, the storage media must meet certain requirements: - reversible hydrogen uptake/release - lightweight - low cost - cyclic stability - rapid kinetic properties - equilibrium properties (P,T) consistent

394

NETL: Carbon Storage - Program Overview  

NLE Websites -- All DOE Office Websites (Extended Search)

Program Overview Program Overview Carbon Storage Program Overview The Carbon Storage Program involves three key elements for technology development: Core Research and Development (Core R&D), Infrastructure, and Global Collaborations. The image below displays the relationship among the three elements and provides a means for navigation throughout NETL's Storage Program Website. Click on Image to Navigate Storage Website Content on this page requires a newer version of Adobe Flash Player. Get Adobe Flash player NETL's Carbon Storage Program Structure CORE R&D Core R&D is driven by industry's technology needs and segregates those needs into focus areas to more efficiently obtain solutions that can then be tested and deployed in the field. The Core R&D Element contains four

395

Transphase cool storage test report  

DOE Green Energy (OSTI)

The Ice Storage Test Facility (ISTF) is designed to test commercial cool storage systems. Transphase, Inc. provided a prototype of a new storage tank design equipped with coils designed for use with a secondary fluid system and filled with a eutectic designed to freeze at 41{degree}F. The Transphase cool storage system was tested over a wide range of operating conditions. Measured system performance during charging showed the ability to freeze the tank with relatively constant brine temperatures over most of the charging cycle. During discharge cycles, the storage tank outlet temperature was governed mainly by the brine flow rate and the tank`s remaining charge. The discharge capacity was dependent upon both the selected discharge rate and maximum allowable tank outlet temperature. This prototype unit experienced several operational problems, not unexpected for the first full-size execution of a new design. Such prototype testing was one of EPRI`s primary goals in founding the ISTF.

Stovall, T.K.

1993-12-01T23:59:59.000Z

396

Hanford Tank Farm interim storage phase probabilistic risk assessment outline  

Science Conference Proceedings (OSTI)

This report is the second in a series examining the risks for the high level waste (HLW) storage facilities at the Hanford Site. The first phase of the HTF PSA effort addressed risks from Tank 101-SY, only. Tank 101-SY was selected as the initial focus of the PSA because of its propensity to periodically release (burp) a mixture of flammable and toxic gases. This report expands the evaluation of Tank 101-SY to all 177 storage tanks. The 177 tanks are arranged into 18 farms and contain the HLW accumulated over 50 years of weapons material production work. A centerpiece of the remediation activity is the effort toward developing a permanent method for disposing of the HLW tank`s highly radioactive contents. One approach to risk based prioritization is to perform a PSA for the whole HLW tank farm complex to identify the highest risk tanks so that remediation planners and managers will have a more rational basis for allocating limited funds to the more critical areas. Section 3 presents the qualitative identification of generic initiators that could threaten to produce releases from one or more tanks. In section 4 a detailed accident sequence model is developed for each initiating event group. Section 5 defines the release categories to which the scenarios are assigned in the accident sequence model and presents analyses of the airborne and liquid source terms resulting from different release scenarios. The conditional consequences measured by worker or public exposure to radionuclides or hazardous chemicals and economic costs of cleanup and repair are analyzed in section 6. The results from all the previous sections are integrated to produce unconditional risk curves in frequency of exceedance format.

Not Available

1994-05-19T23:59:59.000Z

397

New Construction of Distribution Lines, Service Lines, and Appurtenant...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Resources Outside Residential Subdivisions (New York) New Construction of Distribution Lines, Service Lines, and Appurtenant Facilities in Certain Visually Significant...

398

Small-Signal Analysis of Hybrid Distributed Generation System with HVDC-Link and Energy Storage Elements  

Science Conference Proceedings (OSTI)

A small-signal analysis of isolated autonomous hybrid system with high voltage direct current link (HVDC) or high voltage alternating current (HVAC) line for different energy storage combinations is proposed in this paper. The hybrid systems supplying ...

P. K. Ray; S. R. Mohanty; Nand Kishor; A. Mohanty

2009-12-01T23:59:59.000Z

399

Electrochemical Energy Storage for the Grid | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Electrochemical Energy Storage for the Grid Electrochemical Energy Storage for the Grid Electrochemical Energy Storage for the Grid Electrochemical Energy Storage for the Grid More...

400

Grid Storage and the Energy Frontier Research Centers | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Grid Storage and the Energy Frontier Research Centers Grid Storage and the Energy Frontier Research Centers DOE: Grid Storage and the Energy Frontier Research Centers Grid Storage...

Note: This page contains sample records for the topic "line accidents storage" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Energy Storage Systems 2007 Peer Review - International Energy...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

International Energy Storage Program Presentations Energy Storage Systems 2007 Peer Review - International Energy Storage Program Presentations The U.S. DOE Energy Storage Systems...

402

Overview of Carbon Storage Research | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Overview of Carbon Storage Research Overview of Carbon Storage Research The Carbon Storage Program is focused on ensuring the safe and permanent storage andor utilization of CO2...

403

Carbon Capture and Storage Research | Department of Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

Carbon Capture and Storage Research Carbon Capture and Storage Research Clean Coal Carbon Capture and Storage Capture Storage Utilization MVA Regional Partnerships Oil & Gas Atlas...

404

Two Line Subject Title One Line Title  

NLE Websites -- All DOE Office Websites (Extended Search)

Wellbores and Drilling Wellbores and Drilling Brian Strazisar NETL Title, Date ‹#› Technology or Capability Overview * 3 primary efforts related to wellbore cement - Risk of wellbore leakage in CO 2 storage/EOR - Stability of foamed cements in deep offshore wells - Shallow gas migration in shale gas wells * Extreme Drilling Laboratory (XDL) - NETL Facility to study drilling processes under conditions that exist at extreme depths ‹#› CO 2 and Wellbore Leakage Risk * Early NETL work defined mechanism for chemical reaction between CO 2 and wellbore cement. * Degradation of cement determined to be too slow to impact well integrity in the absence of preexisting flow paths CaCO 3(s) barrier (2) Degraded Zone (3) Propagation of Fronts Ca(OH) 2 depleted zone (1)

405

Electricity storage for grid-connected household dwellings with PV panels  

SciTech Connect

Classically electricity storage for PV panels is mostly designed for stand-alone applications. In contrast, we focus in this article on houses connected to the grid with a small-scale storage to store a part of the solar power for postponed consumption within the day or the next days. In this way the house owner becomes less dependent on the grid and does only pay for the net shortage of his energy production. Local storage solutions pave the way for many new applications like omitting over-voltage of the line and bridging periods of power-line black-out. Since 2009 using self-consumption of PV energy is publicly encouraged in Germany, which can be realised by electric storage. This paper develops methods to determine the optimal storage size for grid-connected dwellings with PV panels. From measurements in houses we were able to establish calculation rules for sizing the storage. Two situations for electricity storage are covered: - the storage system is an optimum to cover most of the electricity needs; - it is an optimum for covering the peak power need of a dwelling. After these calculation rules a second step is needed to determine the size of the real battery. The article treats the aspects that should be taken into consideration before buying a specific battery like lead-acid and lithium-ion batteries. (author)

Mulder, Grietus; Six, Daan [Vlaamse Instelling voor Technologisch Onderzoek, Unit Energy Technology, Mol (Belgium); Ridder, Fjo De [Vrije Universiteit Brussel (Belgium)

2010-07-15T23:59:59.000Z

406

MELCOR Analysis of Steam Generator Tube Creep Rupture in Station Blackout Severe Accident  

SciTech Connect

A pressurized water reactor steam generator tube rupture (SGTR) is of concern because it represents a bypass of the containment for radioactive materials to the environment. In a station blackout accident, tube integrity could be threatened by creep rupture, particularly if cracks are present in the tube walls. Methods are developed herein to improve assessment capabilities for SGTR by using the severe-accident code MELCOR. Best-estimate assumptions based on recent research and computational fluid dynamics calculations are applied in the MELCOR analysis to simulate two-dimensional natural circulation and to determine the relative creep-rupture timing in the reactor coolant pressure boundary components. A new method is developed to estimate the steam generator (SG) hottest tube wall temperature and the tube critical crack size for the SG tubes to fail first. The critical crack size for SG tubes to fail first is estimated to be 20% of the wall thickness larger than by a previous analysis. Sensitivity studies show that the failure sequence would change if some assumptions are modified. In particular, the uncertainty in the countercurrent flow limit model could reverse the failure sequence of the SG tubes and surge line.

Liao, Y.; Vierow, K. [Purdue University (United States)

2005-12-15T23:59:59.000Z

407

Analysis of Severe Accident Scenarios and Proposals for Safety Improvements for ADS Transmuters with Dedicated Fuel  

SciTech Connect

So-called dedicated fuels will be utilized to obtain maximum transmutation and incineration rates of minor actinides (MAs) in accelerator-driven systems (ADSs). These fuels are characterized by a high-MA content and the lack of the classical fertile materials such as {sup 238}U or {sup 232}Th. Dedicated fuels still have to be developed; however, programs are under way for their fabrication, irradiation, and testing. In Europe, mainly the oxide route is investigated and developed. A dedicated core will contain multiple 'critical' fuel masses, resulting in a certain recriticality potential under core degradation conditions. The use of dedicated fuels may also lead to strong deterioration of the safety parameters of the reactor core, such as, e.g., the void worth, Doppler or the kinetics quantities, neutron generation time, and {beta}{sub eff}. Critical reactors with this kind of fuel might encounter safety problems, especially under severe accident conditions. For ADSs, it is assumed that because of the subcriticality of the system, the poor safety features of such fuels could be coped with. Analyses reveal some safety problems for ADSs with dedicated fuels. Additional inherent and passive safety measures are proposed to achieve the required safety level. A safety strategy along the lines of a defense approach is presented where these measures can be integrated. The ultimate goal of these measures is to eliminate any mechanistic severe accident scenario and the potential for energetics.

Maschek, Werner [Forschungszentrum Karlsruhe Institute for Nuclear and Energy Technologies (Germany); Rineiski, Andrei [Forschungszentrum Karlsruhe Institute for Nuclear and Energy Technologies (Germany); Flad, Michael [Forschungszentrum Karlsruhe Institute for Nuclear and Energy Technologies (Germany); Morita, Koji [Kyushu University Institute of Environmental Systems (Japan); Coste, Pierre [Commissariat a l'Energie Atomique CE Grenoble (France)

2003-02-15T23:59:59.000Z

408

Distributed Generation with Heat Recovery and Storage  

E-Print Network (OSTI)

between heat storage costs and capacity can be determineda given kWh of heat storage capacity is worth to a typicalequation (22) sets the heat storage capacity to the maximum

Siddiqui, Afzal; Marnay, Chris; Firestone, Ryan M.; Zhou, Nan

2005-01-01T23:59:59.000Z

409

The Solar Storage Company | Open Energy Information  

Open Energy Info (EERE)

Storage Company Place Palo Alto, California Zip 1704 Product US-based start-up developing energy production and storage systems. References The Solar Storage Company1 LinkedIn...

410

Conventional Storage Water Heaters | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Conventional Storage Water Heaters Conventional Storage Water Heaters July 30, 2013 - 3:39pm Addthis Illustration showing the components of a storage water heater. On top of the...

411

Carbon Capture and Storage | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Carbon Capture and Storage Carbon Capture and Storage Through Office of Fossil Energy R&D the United States has become a world leader in carbon capture and storage science and...

412

Distributed Generation with Heat Recovery and Storage  

E-Print Network (OSTI)

of electricity and natural gas DER No Heat Storage: thefired natural gas AC (a) Capacity of heat storage unit (but no heat storage, a 200 kW natural gas reciprocating

Siddiqui, Afzal; Marnay, Chris; Firestone, Ryan M.; Zhou, Nan

2005-01-01T23:59:59.000Z

413

THERMAL ENERGY STORAGE IN AQUIFERS WORKSHOP  

E-Print Network (OSTI)

ground water was pumped into the storage tank from the well,be withdrawn from storage, HTW is pumped from the hot well,storage well. However, both wells are capable of being pumped and

Authors, Various

2011-01-01T23:59:59.000Z

414

Carbon Capture and Storage  

Science Conference Proceedings (OSTI)

Carbon capture and sequestration (CCS) is the long-term isolation of carbon dioxide from the atmosphere through physical, chemical, biological, or engineered processes. This includes a range of approaches including soil carbon sequestration (e.g., through no-till farming), terrestrial biomass sequestration (e.g., through planting forests), direct ocean injection of CO{sub 2} either onto the deep seafloor or into the intermediate depths, injection into deep geological formations, or even direct conversion of CO{sub 2} to carbonate minerals. Some of these approaches are considered geoengineering (see the appropriate chapter herein). All are considered in the 2005 special report by the Intergovernmental Panel on Climate Change (IPCC 2005). Of the range of options available, geological carbon sequestration (GCS) appears to be the most actionable and economic option for major greenhouse gas reduction in the next 10-30 years. The basis for this interest includes several factors: (1) The potential capacities are large based on initial estimates. Formal estimates for global storage potential vary substantially, but are likely to be between 800 and 3300 Gt of C (3000 and 10,000 Gt of CO{sub 2}), with significant capacity located reasonably near large point sources of the CO{sub 2}. (2) GCS can begin operations with demonstrated technology. Carbon dioxide has been separated from large point sources for nearly 100 years, and has been injected underground for over 30 years (below). (3) Testing of GCS at intermediate scale is feasible. In the US, Canada, and many industrial countries, large CO{sub 2} sources like power plants and refineries lie near prospective storage sites. These plants could be retrofit today and injection begun (while bearing in mind scientific uncertainties and unknowns). Indeed, some have, and three projects described here provide a great deal of information on the operational needs and field implementation of CCS. Part of this interest comes from several key documents written in the last three years that provide information on the status, economics, technology, and impact of CCS. These are cited throughout this text and identified as key references at the end of this manuscript. When coupled with improvements in energy efficiency, renewable energy supplies, and nuclear power, CCS help dramatically reduce current and future emissions (US CCTP 2005, MIT 2007). If CCS is not available as a carbon management option, it will be much more difficult and much more expensive to stabilize atmospheric CO{sub 2} emissions. Recent estimates put the cost of carbon abatement without CCS to be 30-80% higher that if CCS were to be available (Edmonds et al. 2004).

Friedmann, S

2007-10-03T23:59:59.000Z

415

OSSA - An optimized approach to severe accident management: EPR application  

SciTech Connect

There is a recognized need to provide nuclear power plant technical staff with structured guidance for response to a potential severe accident condition involving core damage and potential release of fission products to the environment. Over the past ten years, many plants worldwide have implemented such guidance for their emergency technical support center teams either by following one of the generic approaches, or by developing fully independent approaches. There are many lessons to be learned from the experience of the past decade, in developing, implementing, and validating severe accident management guidance. Also, though numerous basic approaches exist which share common principles, there are differences in the methodology and application of the guidelines. AREVA/Framatome-ANP is developing an optimized approach to severe accident management guidance in a project called OSSA ('Operating Strategies for Severe Accidents'). There are still numerous operating power plants which have yet to implement severe accident management programs. For these, the option to use an updated approach which makes full use of lessons learned and experience, is seen as a major advantage. Very few of the current approaches covers all operating plant states, including shutdown states with the primary system closed and open. Although it is not necessary to develop an entirely new approach in order to add this capability, the opportunity has been taken to develop revised full scope guidance covering all plant states in addition to the fuel in the fuel building. The EPR includes at the design phase systems and measures to minimize the risk of severe accident and to mitigate such potential scenarios. This presents a difference in comparison with existing plant, for which severe accidents where not considered in the design. Thought developed for all type of plants, OSSA will also be applied on the EPR, with adaptations designed to take into account its favourable situation in that field. This revised approach will incorporate a number of new features which will simplify and streamline the guidance material while ensuring comprehensive guidance for response to any severe accident. Examples of such features include : - Identification of severe accident challenges based on plant specific studies. - Revision of the split of responsibilities between operations and technical support center staff. - Fixed setpoint entry conditions, ensuring that the transition from emergency procedures takes place at a consistent core/fuel condition (regardless of scenario), and which fixes the time window available to attempt ultimate preventive measures. - A safety function concept for monitoring plant conditions (in the control room). - An integrated graphic-based diagnostic tool including entry condition, challenge prioritization, and exit condition monitoring to be used by the technical support team. This paper describes the basic features of OSSA, and project status. (authors)

Sauvage, E. C.; Prior, R.; Coffey, K. [AREVA, FRAMATOME-ANP SAS, Paris, 92084 La Defense (France); Mazurkiewicz, S. M. [AREVA, FRAMATOME-ANP Inc, Lynchburg, VA 24506-0935 (United States)

2006-07-01T23:59:59.000Z

416

PNNL Results from 2010 CALIBAN Criticality Accident Dosimeter Intercomparison Exercise  

SciTech Connect

This document reports the results of the Hanford personnel nuclear accident dosimeter (PNAD) and fixed nuclear accident dosimeter (FNAD) during a criticality accident dosimeter intercomparison exercise at the CEA Valduc Center on September 20-23, 2010. Pacific Northwest National Laboratory (PNNL) participated in a criticality accident dosimeter intercomparison exercise at the Commissariat a Energie Atomique (CEA) Valduc Center near Dijon, France on September 20-23, 2010. The intercomparison exercise was funded by the U.S. Department of Energy, Nuclear Criticality Safety Program, with Lawrence Livermore National Laboratory as the lead Laboratory. PNNL was one of six invited DOE Laboratory participants. The other participating Laboratories were: Lawrence Livermore National Laboratory (LLNL), Los Alamos National Laboratory (LANL), Savannah River Site (SRS), the Y-12 National Security Complex at Oak Ridge, and Sandia National Laboratory (SNL). The goals of PNNL's participation in the intercomparison exercise were to test and validate the procedures and algorithm currently used for the Hanford personnel nuclear accident dosimeters (PNADs) on the metallic reactor, CALIBAN, to test exposures to PNADs from the side and from behind a phantom, and to test PNADs that were taken from a historical batch of Hanford PNADs that had varying degrees of degradation of the bare indium foil. Similar testing of the PNADs was done on the Valduc SILENE test reactor in 2009 (Hill and Conrady, 2010). The CALIBAN results are reported here.

Hill, Robin L.; Conrady, Matthew M.

2011-10-28T23:59:59.000Z

417

A review of monitoring, sampling and analysis of reactor coolant, reactor containment atmosphere and airborne reactor effluents in post accident concentrations  

Science Conference Proceedings (OSTI)

A post-implementation review has been made in NRC Region I of the post-accident sampling systems (PASS), the gaseous effluent monitors, and the provisions for sampling effluent particulates and radioiodines which were required by the NRC subsequent to the TMI-2 accident (NUREG-0737). Prefabricated PASS systems were predominant. Problems included insufficient purge times, inadequate separation of dissolved gases, excessive dilution and the accuracy of analytical techniques in the presence of interferences. Microprocessor-controlled high-range gas monitors with integral provisions for sampling particulates and radioiodines in high concentrations were widely used. Calibration information was generally insufficient for the unambiguous conversion of monitor readings to release rates for a varying postaccident mixture of radiogases. The referenced sampling guidance (ANSI-N 13.1-1969) was inappropriate for the long sampling lines customarily used. Generic research is needed to establish the behavior of particulates and radioiodines in these lines.

Hull, A.P.; White, J.R.; Knox, W.H.

1986-01-01T23:59:59.000Z

418

Superconducting magnetic energy storage  

SciTech Connect

The U.S. electric utility industry transmits power to customers at a rate equivalent to only 60% of generating capacity because, on an annual basis, the demand for power is not constant. Load leveling and peak shaving units of various types are being used to increase the utilization of the base load nuclear and fossil power plants. The Los Alamos Scientific Laboratory (LASL) is developing superconducting magnetic energy storage (SMES) systems which will store and deliver electrical energy for the purpose of load leveling, peak shaving, and the stabilization of electric utility networks. This technology may prove to be an effective means of storing energy for the electric utilities because (1) it has a high efficiency (approximately 90%), (2) it may improve system stability through the fast response of the converter, and (3) there should be fewer siting restrictions than for other load leveling systems. A general SMES system and a reference design for a 10-GWh unit for load leveling are described; and the results of some recent converter tests are presented.

Hassenzahl, W.V.; Boenig, H.J.

1977-01-01T23:59:59.000Z

419

Recombinant electric storage battery  

SciTech Connect

This patent describes a recombinant storage battery. It comprises: a plurality of positive plates containing about 2 to 4 percent of antimony based upon the total weight of the alloy and positive active material, and essentially antimony free negative plates in a closed case; a fibrous sheet plate separator between adjacent ones of the plates, and a body of an electrolyte to which the sheet separators are inert absorbed by each of the separators and maintained in contact with each of the adjacent ones of the plates. Each of the separator sheets comprising first fibers which impart to the sheet a given absorbency greater than 90 percent relative to the electrolyte and second fibers which impart to the sheet a different absorbency less than 80 percent relative to the electrolyte. The first and second fibers being present in such proportions that each of the sheet separators has an absorbency with respect to the electrolyte of from 75 to 95 percent and the second fibers being present in such proportions that the battery has a recombination rate adequate to compensate for gassing.

Flicker, R.P.; Fenstermacher, S.

1989-10-10T23:59:59.000Z

420

Energy Storage Laboratory (Fact Sheet)  

SciTech Connect

This fact sheet describes the purpose, lab specifications, applications scenarios, and information on how to partner with NREL's Energy Storage Laboratory at the Energy Systems Integration Facility. At NREL's Energy Storage Laboratory in the Energy Systems Integration Facility (ESIF), research focuses on the integration of energy storage systems (both stationary and vehicle-mounted) and interconnection with the utility grid. Focusing on battery technologies, but also hosting ultra-capacitors and other electrical energy storage technologies, the laboratory will provide all resources necessary to develop, test, and prove energy storage system performance and compatibility with distributed energy systems. The laboratory will also provide robust vehicle testing capability, including a drive-in environmental chamber, which can accommodate commercial-sized hybrid, electric, biodiesel, ethanol, compressed natural gas, and hydrogen fueled vehicles. The Energy Storage Laboratory is designed to ensure personnel and equipment safety when testing hazardous battery systems or other energy storage technologies. Closely coupled with the research electrical distribution bus at ESIF, the Energy Storage Laboratory will offer megawatt-scale power testing capability as well as advanced hardware-in-the-loop and model-in-the-loop simulation capabilities. Some application scenarios are: The following types of tests - Performance, Efficiency, Safety, Model validation, and Long duration reliability. (2) Performed on the following equipment types - (a) Vehicle batteries (both charging and discharging V2G); (b) Stationary batteries; (c) power conversion equipment for energy storage; (d) ultra- and super-capacitor systems; and (e) DC systems, such as commercial microgrids.

2011-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "line accidents storage" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Energy Storage Computational Tool | Open Energy Information  

Open Energy Info (EERE)

Energy Storage Computational Tool Energy Storage Computational Tool Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Energy Storage Computational Tool Agency/Company /Organization: Navigant Consulting Sector: Energy Focus Area: Grid Assessment and Integration Resource Type: Software/modeling tools User Interface: Desktop Application Website: www.smartgrid.gov/recovery_act/program_impacts/energy_storage_computat Country: United States Web Application Link: www.smartgrid.gov/recovery_act/program_impacts/energy_storage_computat Cost: Free Northern America Language: English Energy Storage Computational Tool Screenshot References: Energy Storage Computational Tool[1] SmartGrid.gov[2] Logo: Energy Storage Computational Tool This tool is used for identifying, quantifying, and monetizing the benefits

422

Illinois Natural Gas Underground Storage Withdrawals (Million...  

Gasoline and Diesel Fuel Update (EIA)

Gas Underground Storage Withdrawals (Million Cubic Feet) Illinois Natural Gas Underground Storage Withdrawals (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov...

423

Subsea Pumped Hydro Storage -A Technology Assessment.  

E-Print Network (OSTI)

??A novel technology for energy storage called Subsea Pumped Hydro Storage (SPHS) has been evaluated from a techno-economical point of view. Intermittent renewable energy sources (more)

Falk, Johan

2013-01-01T23:59:59.000Z

424

Energy Storage Demonstration Project Locations | Department of...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Demonstration Project Locations Energy Storage Demonstration Project Locations Map of the United States showing the location of Energy Storage Demonstration projects created with...

425

DRAFT "Energy Advisory Committee" - Energy Storage Subcommittee...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Report: Revision 2 DRAFT "Energy Advisory Committee" - Energy Storage Subcommittee Report: Revision 2 Energy storage plays a vital role in all forms of business and affects the...

426

Energy Storage Systems 2010 Update Conference Presentations ...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

0 Update Conference Presentations - Day 1, Session 2 Energy Storage Systems 2010 Update Conference Presentations - Day 1, Session 2 The U.S. DOE Energy Storage Systems Program...

427

Ultrafine hydrogen storage powders - Energy Innovation Portal  

A method of making hydrogen storage powder resistant to fracture in service involves forming a melt having the appropriate composition for the hydrogen storage ...

428

Smart Storage Pty Ltd | Open Energy Information  

Open Energy Info (EERE)

"Smart Storage Pty Ltd" Retrieved from "http:en.openei.orgwindex.php?titleSmartStoragePtyLtd&oldid351195" Categories: Clean Energy Organizations Companies...

429

High Capacity Hydrogen Storage Nanocomposite - Energy ...  

Energy Storage Advanced Materials High Capacity Hydrogen Storage Nanocomposite Processes to add metal hydrideds to nanocarbon structures to yield high capacity ...

430

Ultrafine Hydrogen Storage Powders - Energy Innovation Portal  

Patent 6,074,453: Ultrafine hydrogen storage powders A method of making hydrogen storage powder resistant to fracture in service involves forming a melt having the ...

431

Webinar Presentation: Energy Storage Solutions for Microgrids...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Webinar Presentation: Energy Storage Solutions for Microgrids (November 2012) Webinar Presentation: Energy Storage Solutions for Microgrids (November 2012) On November 7, 2012,...

432

Policy Questions on Energy Storage Technologies | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Policy Questions on Energy Storage Technologies Policy Questions on Energy Storage Technologies Memorandum from the Electricity Advisory Committee to Secretary Chu and Assistant...

433

Underground Natural Gas Working Storage Capacity - Energy ...  

U.S. Energy Information Administration (EIA)

... (see Table 1), and why any given week's storage ... Demonstrated maximum working gas volume is the sum of the highest storage inventory levels of ...

434

NETL: Carbon Storage - Monitoring, Verification, and Accounting...  

NLE Websites -- All DOE Office Websites (Extended Search)

MVA Carbon Storage Monitoring, Verification, and Accounting (MVA) Focus Area An MVA program is designed to confirm permanent storage of carbon dioxide (CO2) in geologic formations...

435

Massachusetts Natural Gas Underground Storage Injections All...  

U.S. Energy Information Administration (EIA) Indexed Site

Underground Storage Injections All Operators (Million Cubic Feet) Massachusetts Natural Gas Underground Storage Injections All Operators (Million Cubic Feet) Decade Year-0 Year-1...

436

THERMAL ENERGY STORAGE IN AQUIFERS WORKSHOP  

E-Print Network (OSTI)

M.R. Tek. 1970. Storage of Natural Gas in Saline Aquifers.petroleum, underground storage of natural gas, large scale

Authors, Various

2011-01-01T23:59:59.000Z

437

Hydrogen Compression, Storage, and Dispensing Cost Reduction...  

NLE Websites -- All DOE Office Websites (Extended Search)

of Materials. Storage Respondents submitted additional needs for R&D in the area of hydrogen storage: Advanced metal alloys in order to lower the cost of hydrogen...

438

Hydrogen Storage II - Programmaster.org  

Science Conference Proceedings (OSTI)

Aug 3, 2010 ... Symposium L: Energy Generation, Harvesting and Storage Materials: Hydrogen Storage II Program Organizers: Jian-Feng Nie, Monash...

439

Fuel Cell Technologies Office: Hydrogen Compression, Storage...  

NLE Websites -- All DOE Office Websites (Extended Search)

Hydrogen Compression, Storage, and Dispensing Cost Reduction Workshop to someone by E-mail Share Fuel Cell Technologies Office: Hydrogen Compression, Storage, and Dispensing Cost...

440

Energy Storage Technologies - Energy Innovation Portal  

Energy Storage Technology Marketing Summaries Here youll find marketing summaries of energy storage technologies available for licensing from U.S. Department of ...

Note: This page contains sample records for the topic "line accidents storage" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Energy Storage Technologies Available for Licensing - Energy ...  

Energy Storage Technologies Available for Licensing U.S. Department of Energy laboratories and participating research institutions have energy storage technologies ...

442

Energy Storage Technologies - Energy Innovation Portal  

Energy Storage Technology Marketing Summaries Here youll find marketing summaries of energy storage technologies available for licensing from U.S. ...

443

California Working Natural Gas Underground Storage Capacity ...  

U.S. Energy Information Administration (EIA) Indexed Site

Working Natural Gas Underground Storage Capacity (Million Cubic Feet) California Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Decade Year-0 Year-1 Year-2...

444

Washington Natural Gas Underground Storage Acquifers Capacity...  

U.S. Energy Information Administration (EIA) Indexed Site

Underground Storage Acquifers Capacity (Million Cubic Feet) Washington Natural Gas Underground Storage Acquifers Capacity (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3...

445

Missouri Natural Gas Underground Storage Acquifers Capacity ...  

U.S. Energy Information Administration (EIA) Indexed Site

Underground Storage Acquifers Capacity (Million Cubic Feet) Missouri Natural Gas Underground Storage Acquifers Capacity (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3...

446

Mississippi Working Natural Gas Underground Storage Capacity...  

U.S. Energy Information Administration (EIA) Indexed Site

Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Mississippi Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Decade Year-0 Year-1 Year-2...

447

Pennsylvania Natural Gas Underground Storage Depleted Fields...  

U.S. Energy Information Administration (EIA) Indexed Site

Underground Storage Depleted Fields Capacity (Million Cubic Feet) Pennsylvania Natural Gas Underground Storage Depleted Fields Capacity (Million Cubic Feet) Decade Year-0 Year-1...

448

Minnesota Natural Gas Underground Storage Acquifers Capacity...  

U.S. Energy Information Administration (EIA) Indexed Site

Underground Storage Acquifers Capacity (Million Cubic Feet) Minnesota Natural Gas Underground Storage Acquifers Capacity (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3...

449

Pennsylvania Working Natural Gas Underground Storage Capacity...  

U.S. Energy Information Administration (EIA) Indexed Site

Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Pennsylvania Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Decade Year-0 Year-1 Year-2...

450

Washington Working Natural Gas Underground Storage Capacity ...  

U.S. Energy Information Administration (EIA) Indexed Site

Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Washington Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Decade Year-0 Year-1 Year-2...

451

NERSC Nick Balthaser NERSC Storage Systems Group  

NLE Websites -- All DOE Office Websites (Extended Search)

Archival Storage at NERSC Nick Balthaser NERSC Storage Systems Group nabalthaser@lbl.gov NERSC User Training March 8, 2011 * NERSC Archive Technologies Overview * Use Cases for the...

452

Advanced Vehicle Testing Activity: Energy Storage Testing  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Storage Testing to someone by E-mail Share Advanced Vehicle Testing Activity: Energy Storage Testing on Facebook Tweet about Advanced Vehicle Testing Activity: Energy...

453

Advanced Vehicle Testing Activity: Energy Storage Testing  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Storage Testing The Advanced Vehicle Testing Activity is tasked by the U.S. Department of Energy's Vehicle Technologies Office to conduct various types of energy storage...

454

ADVANCED UNDERGROUND GAS STORAGE CONCEPTS REFRIGERATED-MINED CAVERN STORAGE  

Science Conference Proceedings (OSTI)

Limited demand and high cost has prevented the construction of hard rock caverns in this country for a number of years. The storage of natural gas in mined caverns may prove technically feasible if the geology of the targeted market area is suitable; and economically feasible if the cost and convenience of service is competitive with alternative available storage methods for peak supply requirements. It is believed that mined cavern storage can provide the advantages of high delivery rates and multiple fill-withdrawal cycles in areas where salt cavern storage is not possible. In this research project, PB-KBB merged advanced mining technologies and gas refrigeration techniques to develop conceptual designs and cost estimates to demonstrate the commercialization potential of the storage of refrigerated natural gas in hard rock caverns. Five regions of the U.S.A. were studied for underground storage development and PB-KBB reviewed the literature to determine if the geology of these regions was suitable for siting hard rock storage caverns. Area gas market conditions in these regions were also studied to determine the need for such storage. Based on an analysis of many factors, a possible site was determined to be in Howard and Montgomery Counties, Maryland. The area has compatible geology and a gas industry infrastructure for the nearby market populous of Baltimore and Washington D.C.. As Gas temperature is lowered, the compressibility of the gas reaches an optimum value. The compressibility of the gas, and the resultant gas density, is a function of temperature and pressure. This relationship can be used to commercial advantage by reducing the size of a storage cavern for a given working volume of natural gas. This study looks at this relationship and and the potential for commercialization of the process in a storage application. A conceptual process design, and cavern design were developed for various operating conditions. Potential site locations were considered and a typical plant layout was developed. In addition a geomechanical review of the proposed cavern design was performed, evaluating the stability of the mine rooms and shafts, and the effects of the refrigerated gas temperatures on the stability of the cavern. Capital and operating cost estimates were also developed for the various temperature cases considered. The cost estimates developed were used to perform a comparative market analysis of this type of gas storage system to other systems that are commercially used in the region of the study.

NONE

1998-09-01T23:59:59.000Z

455

Part II Energy Storage Technologies  

NLE Websites -- All DOE Office Websites (Extended Search)

II. II. Energy Storage Technology Overview * Instructor - Haresh Kamath, EPRI PEAC * Short term - Flywheels, Cranking Batteries, Electrochemical Capacitors, SMES * Long term - Compressed Air, Pumped Hydro storage, Stationary, Flow Batteries 2 Overview * Technology Types - Batteries, flywheels, electrochemical capacitors, SMES, compressed air, and pumped hydro * Theory of Operation - Brief description of the technologies and the differences between them * State-of-the-art - Past demonstrations, existing hurdles and performance targets for commercialization * Cost and cost projections: - Prototype cost vs. fully commercialized targets Technology Choice for Discharge Time and Power Rating (From ESA) 4 Maturity Levels for Energy Storage Technologies * Mature Technologies - Conventional pumped hydro

456

Storage containers for radioactive material  

DOE Patents (OSTI)

A radioactive material storage system is claimed for use in the laboratory having a flat base plate with a groove in one surface thereof and a hollow pedestal extending perpendicularly away from the other surface thereof, a sealing gasket in the groove, a cover having a filter therein and an outwardly extending flange which fits over the plate, the groove and the gasket, and a clamp for maintaining the cover and the plate sealed together. The plate and the cover and the clamp cooperate to provide a storage area for radioactive material readily accessible for use or inventory. Wall mounts are provided to prevent accidental formation of critical masses during storage.

Groh, E.F.; Cassidy, D.A.; Dates, L.R.

1980-07-31T23:59:59.000Z

457

Industry Spent Fuel Storage Handbook  

Science Conference Proceedings (OSTI)

The Industry Spent Fuel Storage Handbook (8220the Handbook8221) addresses the relevant aspects of at-reactor spent (or used) nuclear fuel (SNF) storage in the United States. With the prospect of SNF being stored at reactor sites for the foreseeable future, it is expected that all U.S. nuclear power plants will have to implement at-reactor dry storage by 2025 or shortly thereafter. The Handbook provides a broad overview of recent developments for storing SNF at U.S. reactor sites, focusing primarily on at...

2010-07-29T23:59:59.000Z

458

Batteries for energy storage: part 2  

SciTech Connect

Explores 4 large battery RandD programs. Two are individual electrochemical systems for electric utility energy storage: zinc-chlorine and sodium sulfur. The third is a high-temperature battery, lithium-iron sulfide, which is expected to be applicable in electric vehicles. Reviews the nearer term EV battery development programs, which include zinc-nickel oxide, iron-nickel oxide, and lead-acid batteries. Suggests that batteries appear to be an ideal companion to coal- and nuclear power-derived electrical energy, to play a key role in electrical generation and distribution networks and to power vehicles. Batteries could augment solarderived electrical energy to attain continuity and reliability of power. Battery systems now under development represent a broad range of possible approaches encompassing extremes of the periodical table, a wide variety of operating temperatures, and limitless design concepts. Along with substantial international emphasis on battery development, this range of approaches suggests that one or more candidate systems can be demonstrated to have commercial viability. While commercial viability can be demonstrated, actual implementation will be deterred by high capital cost, substantial commercialization costs, and buyer reluctance. Concludes that because oil has an unstable future, legislation or regulation coupled with personal inconvenience (rationing or waiting in gas lines) can override the economics of utility battery energy storage.

Douglas, D.L.; Birk, J.R.

1983-02-01T23:59:59.000Z

459

TRANSIENT ACCIDENT ANALYSIS OF THE GLOVEBOX SYSTEM IN A LARGE PROCESS ROOM  

DOE Green Energy (OSTI)

Local transient hydrogen concentrations were evaluated inside a large process room when the hydrogen gas was released by three postulated accident scenarios associated with the process tank leakage and fire leading to a loss of gas confinement. The three cases considered in this work were fire in a room, loss of confinement from a process tank, and loss of confinement coupled with fire event. Based on these accident scenarios in a large and unventilated process room, the modeling calculations of the hydrogen migration were performed to estimate local transient concentrations of hydrogen due to the sudden leakage and release from a glovebox system associated with the process tank. The modeling domain represented the major features of the process room including the principal release or leakage source of gas storage system. The model was benchmarked against the literature results for key phenomena such as natural convection, turbulent behavior, gas mixing due to jet entrainment, and radiation cooling because these phenomena are closely related to the gas driving mechanisms within a large air space of the process room. The modeling results showed that at the corner of the process room, the gas concentrations migrated by the Case 2 and Case 3 scenarios reached the set-point value of high activity alarm in about 13 seconds, while the Case 1 scenario takes about 90 seconds to reach the concentration. The modeling results were used to estimate transient radioactive gas migrations in an enclosed process room installed with high activity alarm monitor when the postulated leakage scenarios are initiated without room ventilation.

Lee, S

2008-01-11T23:59:59.000Z

460

Numerical Simulations of Leakage from Underground LPG Storage Caverns  

SciTech Connect

To secure a stable supply of petroleum gas, underground storage caverns for liquified petroleum gas (LPG) are commonly used in many countries worldwide. Storing LPG in underground caverns requires that the surrounding rock mass remain saturated with groundwater and that the water pressure be higher than the liquid pressure inside the cavern. In previous studies, gas containment criteria for underground gas storage based on hydraulic gradient and pressure have been discussed, but these studies do not consider the physicochemical characteristics and behavior of LPG such as vaporization and dissolution in groundwater. Therefore, while these studies are very useful for designing storage caverns, they do not provide better understanding of the either the environmental effects of gas contamination or the behavior of vaporized LPG. In this study, we have performed three-phase fluid flow simulations of gas leakage from underground LPG storage caverns, using the multiphase multicomponent nonisothermal simulator TMVOC (Pruess and Battistelli, 2002), which is capable of solving the three-phase nonisothermal flow of water, gas, and a multicomponent mixture of volatile organic chemicals (VOCs) in multidimensional heterogeneous porous media. A two-dimensional cross-sectional model resembling an actual underground LPG facility in Japan was developed, and gas leakage phenomena were simulated for three different permeability models: (1) a homogeneous model, (2) a single-fault model, and (3) a heterogeneous model. In addition, the behavior of stored LPG was studied for the special case of a water curtain suddenly losing its function because of operational problems, or because of long-term effects such as clogging of boreholes. The results of the study indicate the following: (1) The water curtain system is a very powerful means for preventing gas leakage from underground storage facilities. By operating with appropriate pressure and layout, gas containment can be ensured. (2) However , in highly heterogeneous media such as fractured rock and fault zones, local flow paths within which the gas containment criterion is not satisfied could be formed. To eliminate such zones, treatments such as pre/post grouting or an additional installment of water-curtain boreholes are essential. (3) Along highly conductive features such as faults, even partially saturated zones possess certain effects that can retard or prevent gas leakage, while a fully unsaturated fault connected to the storage cavern can quickly cause a gas blowout. This possibility strongly suggests that ensuring water saturation of the rock surrounding the cavern is a very important requirement. (4) Even if an accident should suddenly impair the water curtain, the gas plume does not quickly penetrate the ground surface. In these simulations, the plume takes several months to reach the ground surface.

Yamamoto, Hajime; Pruess, Karsten

2004-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "line accidents storage" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

An application of probabilistic safety assessment methods to model aircraft systems and accidents  

DOE Green Energy (OSTI)

A case study modeling the thrust reverser system (TRS) in the context of the fatal accident of a Boeing 767 is presented to illustrate the application of Probabilistic Safety Assessment methods. A simplified risk model consisting of an event tree with supporting fault trees was developed to represent the progression of the accident, taking into account the interaction between the TRS and the operating crew during the accident, and the findings of the accident investigation. A feasible sequence of events leading to the fatal accident was identified. Several insights about the TRS and the accident were obtained by applying PSA methods. Changes proposed for the TRS also are discussed.

Martinez-Guridi, G.; Hall, R.E.; Fullwood, R.R.

1998-08-01T23:59:59.000Z

462

Accident Investigation at the Idaho National Laboratory Engineering  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Accident Investigation at the Idaho National Laboratory Engineering Accident Investigation at the Idaho National Laboratory Engineering Demonstration Facility, February 2013 Accident Investigation at the Idaho National Laboratory Engineering Demonstration Facility, February 2013 On Monday, February 12, 2013, a principal investigator at the Idaho National Laboratory (INL) Engineering Demonstration Facility (IEDF) was testing the system configuration of experimental process involving liquid sodium carbonate. An unanticipated event occurred that resulted in the ejection of the 900° C liquid sodium carbonate from the system. The ejected liquid came into contact with the principal investigator and caused multiple second and third degree burn injuries to approximately 10 percent of his body. The Office of Health, Safety and Security (HSS) Site Lead for

463

Sec. Herrington Leads Delegation in Response to Chernobyl Accident |  

National Nuclear Security Administration (NNSA)

Sec. Herrington Leads Delegation in Response to Chernobyl Accident | Sec. Herrington Leads Delegation in Response to Chernobyl Accident | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > About Us > Our History > NNSA Timeline > Sec. Herrington Leads Delegation in Response to ... Sec. Herrington Leads Delegation in Response to Chernobyl Accident

464

Underground Storage Technology Consortium  

NLE Websites -- All DOE Office Websites (Extended Search)

U U U N N D D E E R R G G R R O O U U N N D D G G A A S S S S T T O O R R A A G G E E T T E E C C H H N N O O L L O O G G Y Y C C O O N N S S O O R R T T I I U U M M R R & & D D P P R R I I O O R R I I T T Y Y R R E E S S E E A A R R C C H H N N E E E E D D S S WORKSHOP PROCEEDINGS February 3, 2004 Atlanta, Georgia U U n n d d e e r r g g r r o o u u n n d d G G a a s s S S t t o o r r a a g g e e T T e e c c h h n n o o l l o o g g y y C C o o n n s s o o r r t t i i u u m m R R & & D D P P r r i i o o r r i i t t y y R R e e s s e e a a r r c c h h N N e e e e d d s s OVERVIEW As a follow up to the development of the new U.S. Department of Energy-sponsored Underground Gas Storage Technology Consortium through Penn State University (PSU), DOE's National Energy Technology Center (NETL) and PSU held a workshop on February 3, 2004 in Atlanta, GA to identify priority research needs to assist the consortium in developing Requests for Proposal (RFPs). Thirty-seven

465

B Plant ion exchange feed line leak  

SciTech Connect

>One of the objectives of the Waste Management Program is to separate the long-lived heat emitter /aup 137/Cs from the bulk of the high-level Iiquid wastes. This separation is accomplished by the ion exchange process in the 221-B Building. Interim storage of the cesium is in solution as a nitrate. The feed for the B Plant cesinm ion exchange process is pumped from the lag storage tank, 105-C, through a pipeline and several diversion boxes to the 221-B Building. On December 19, 1969, a leak was discovered near the 241-C-152 diversion box in the section of this line, V-122, from the 105-C tank. Although the leak represented a loss of feed for the processing of /sup 137/Cs, more important was the consequence of environmental contmination to the soil from the line leak. For this reason, an investigation was made to estblish the extent of the radioactivity spread. The results of a well drilling operation undertaken to define the boundary and to estimate the extent of the leak are summarized. (CR)

Tanaka, K.H.

1971-01-25T23:59:59.000Z

466

Energy Storage and Distributed Resources  

NLE Websites -- All DOE Office Websites (Extended Search)

diagram of molecular structure, spectrocscopic data, low-swirl flame diagram of molecular structure, spectrocscopic data, low-swirl flame Energy Storage and Distributed Resources Energy Storage and Distributed Resources application/pdf icon esdr-org-chart-03-2013.pdf EETD researchers in the energy storage and distributed resources area conduct R&D and develops technologies that provide the electricity grid with significant storage capability for energy generated from renewable sources; real-time monitoring and response technologies for the "smart grid" to optimize energy use and communication between electricity providers and consumers; and technologies for improved electricity distribution reliability. Their goal is to identify and develop technologies, policies and strategies to enable a shift to renewable energy sources at $1 per watt for a

467

NREL: Energy Storage - Laboratory Capabilities  

NLE Websites -- All DOE Office Websites (Extended Search)

Laboratory Capabilities Laboratory Capabilities Photo of NREL's Energy Storage Laboratory. NREL's Energy Storage Laboratory. Welcome to our Energy Storage Laboratory at the National Renewable Energy Laboratory (NREL) in Golden, Colorado. Much of our testing is conducted at this state-of-the-art laboratory, where researchers use cutting-edge modeling and analysis tools to focus on thermal management systems-from the cell level to the battery pack or ultracapacitor stack-for electric, hybrid electric, and fuel cell vehicles (EVs, HEVs, and FCVs). In 2010, we received $2 million in funding from the U.S. Department of Energy under the American Recovery and Reinvestment Act of 2009 (ARRA) to enhance and upgrade the NREL Battery Thermal and Life Test Facility. The Energy Storage Laboratory houses two unique calorimeters, along with

468

NREL: Learning - Energy Storage Basics  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Storage Basics Energy Storage Basics The demand for electricity is seldom constant over time. Excess generating capacity available during periods of low demand can be used to energize an energy storage device. The stored energy can then be used to provide electricity during periods of high demand, helping to reduce power system loads during these times. Energy storage can improve the efficiency and reliability of the electric utility system by reducing the requirements for spinning reserves to meet peak power demands, making better use of efficient baseload generation, and allowing greater use of renewable energy technologies. A "spinning reserve" is a generator that is spinning and synchronized with the grid, ready for immediate power generation - like a car engine running with the gearbox

469

The Power of Energy Storage  

E-Print Network (OSTI)

including composite materials, mechanical energy storage, nondestructive evaluation, and synchrotronNSEL NuclearScienceandEngineeringLaboratory Nanoscale Science Nano-Bio Interface Sustainable Energy. It draws the expertise of faculty members from different disciplines and promotes nuclear education

Sadoulet, Elisabeth

470

Device-transparent personal storage  

E-Print Network (OSTI)

Users increasingly store data collections such as digital photographs on multiple personal devices, each of which typically presents the user with a storage management interface isolated from the contents of all other ...

Strauss, Jacob A. (Jacob Alo), 1979-

2010-01-01T23:59:59.000Z

471

Integrating portable and distributed storage  

Science Conference Proceedings (OSTI)

We describe a technique called lookaside caching that combines the strengths of distributed file systems and portable storage devices, while negating their weaknesses. In spite of its simplicity, this technique proves to be powerful and versatile. By ...

Niraj Tolia; Jan Harkes; Michael Kozuch; M. Satyanarayanan

2004-03-01T23:59:59.000Z

472

Integrating Portable and Distributed Storage  

Science Conference Proceedings (OSTI)

We describe a technique called lookaside caching that combines the strengths of distributed file systems and portable storage devices, while negating their weaknesses. In spite of its simplicity, this technique proves to be powerful and versatile. By ...

Niraj Tolia; Jan Harkes; Michael Kozuch; M. Satyanarayanan

2004-03-01T23:59:59.000Z

473

Complex Hydrides for Hydrogen Storage  

DOE Green Energy (OSTI)

This report describes research into the use of complex hydrides for hydrogen storage. The synthesis of a number of alanates, (AIH4) compounds, was investigated. Both wet chemical and mechano-chemical methods were studied.

Slattery, Darlene; Hampton, Michael

2003-03-10T23:59:59.000Z

474

Energy Storage | Department of Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Storage Energy Storage Energy Storage One of the distinctive characteristics of the electric power sector is that the amount of electricity that can be generated is relatively fixed over short periods of time, although demand for electricity fluctuates throughout the day. Developing technology to store electrical energy so it can be available to meet demand whenever needed would represent a major breakthrough in electricity distribution. Helping to try and meet this goal, electricity storage devices can manage the amount of power required to supply customers at times when need is greatest, which is during peak load. These devices can also help make renewable energy, whose power output cannot be controlled by grid operators, smooth and dispatchable. They can also balance microgrids to achieve a good match between generation

475

Power line detection system  

DOE Patents (OSTI)

A short-range, radio frequency (RF) transmitting-receiving system that provides both visual and audio warnings to the pilot of a helicopter or light aircraft of an up-coming power transmission line complex. Small, milliwatt-level narrowband transmitters, powered by the transmission line itself, are installed on top of selected transmission line support towers or within existing warning balls, and provide a continuous RF signal to approaching aircraft. The on-board receiver can be either a separate unit or a portion of the existing avionics, and can also share an existing antenna with another airborne system. Upon receipt of a warning signal, the receiver will trigger a visual and an audio alarm to alert the pilot to the potential power line hazard. 4 figs.

Latorre, V.R.; Watwood, D.B.

1994-09-27T23:59:59.000Z

476

Electric Transmission Lines (Iowa)  

Energy.gov (U.S. Department of Energy (DOE))

Electric transmission lines capable of operating at 69 kV or greater cannot be constructed along, across, or over any public highways or grounds outside of cities without a franchise from the...

477

Power line detection system  

DOE Patents (OSTI)

A short-range, radio frequency (RF) transmitting-receiving system that provides both visual and audio warnings to the pilot of a helicopter or light aircraft of an up-coming power transmission line complex. Small, milliwatt-level narrowband transmitters, powered by the transmission line itself, are installed on top of selected transmission line support towers or within existing warning balls, and provide a continuous RF signal to approaching aircraft. The on-board receiver can be either a separate unit or a portion of the existing avionics, and can also share an existing antenna with another airborne system. Upon receipt of a warning signal, the receiver will trigger a visual and an audio alarm to alert the pilot to the potential power line hazard.

Latorre, Victor R. (Tracy, CA); Watwood, Donald B. (Tracy, CA)

1994-01-01T23:59:59.000Z

478

Comparison of fusedose and MACCS2 accident dose codes  

Science Conference Proceedings (OSTI)

The purpose of this paper is to present and document the differences discovered when comparing the two accident dose codes FUSEDOSE and MACCS2. Each code`s methodology is first discussed. With this background, the important comparison parameters are discussed and the resulting differences are presented. It is not the purpose of this paper to draw conclusions as to which code is more reliable but, it is hoped that the data presented will help in deciding upon further actions to be taken, if at all, to improve accident dose calculations. 7 refs., 1 fig., 1 tab.

Sevigny, L.M. [Univ. of California, Berkeley, CA (United States)

1996-12-31T23:59:59.000Z

479

Substation Energy Storage Product Specification  

Science Conference Proceedings (OSTI)

This substation energy storage specification is intended to facilitate utility procurement of large grid-connected electrical energy storage systems that would typically be connected at medium voltage at distribution substations. Few utilities have experience with devices of this type, and industry practices are not extensively developed. Therefore, this update report may be used as a guide to suppliers of these devices (who may be unfamiliar with utility practices) as well as distribution utilities ...

2012-10-25T23:59:59.000Z

480

Compressed air energy storage system  

DOE Patents (OSTI)

An internal combustion reciprocating engine is operable as a compressor during slack demand periods utilizing excess power from a power grid to charge air into an air storage reservoir and as an expander during peak demand periods to feed power into the power grid utilizing air obtained from the air storage reservoir together with combustible fuel. Preferably the internal combustion reciprocating engine is operated at high pressure and a low pressure turbine and compressor are also employed for air compression and power generation.

Ahrens, Frederick W. (Naperville, IL); Kartsounes, George T. (Naperville, IL)

1981-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "line accidents storage" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Lih thermal energy storage device  

DOE Patents (OSTI)

A thermal energy storage device for use in a pulsed power supply to store waste heat produced in a high-power burst operation utilizes lithium hydride as the phase change thermal energy storage material. The device includes an outer container encapsulating the lithium hydride and an inner container supporting a hydrogen sorbing sponge material such as activated carbon. The inner container is in communication with the interior of the outer container to receive hydrogen dissociated from the lithium hydride at elevated temperatures.

Olszewski, Mitchell (Knoxville, TN); Morris, David G. (Knoxville, TN)

1994-01-01T23:59:59.000Z

482

COLD STORAGE DESIGN REFRIGERATION EQUIPMENT  

E-Print Network (OSTI)

COLD STORAGE DESIGN AND REFRIGERATION EQUIPMENT REFRIGERATION OF FISH - PART 1 \\ "..\\- ,,, T I Fishery Leaflet 427 Washington 25, D. C. June 1956 REFRIGERATION OF FISH - PART em; COlD STORAGE DESIGN · · · · · 18 Specific design features 0 0 · · · · · · · · · · · · · · 19 Refrigerated surfaces 0 · · 0 0 0 · 0

483

Transmission Line Grounding  

Science Conference Proceedings (OSTI)

In 2008, the Electric Power Research Institute (EPRI) published a comprehensive grounding report. Published in two parts, the report covered the theoretical and practical aspects of transmission line grounding practices. To further improve the tools available for grounding analysis, an investigation into practical ways to calculate the fault current distribution and ground potential rise of the transmission line grounding system was conducted. Furthermore, a survey of utilities has documented industry pr...

2011-12-23T23:59:59.000Z

484

Calmac Ice Storage Test report  

DOE Green Energy (OSTI)

The Ice Storage Test Facility (ISTF) is designed to test commercial ice storage systems. Calmac provided a storage tank equipped with coils designed for use with a secondary fluid system. The Calmac ice storage system was tested over a wide range of operating conditions. Measured system performance during charging was similar to that reported by the manufacturer. Both the measured average and minimum brine temperatures were in close agreement with Calmac's literature values, and the ability to fully charge the tank was relatively unaffected by charging rate and brine flow rate. During discharge cycles, the storage tank outlet temperature was strongly affected by the discharge rate. The discharge capacity was dependent upon both the selected discharge rate and maximum allowable tank outlet temperature. Based on these tests, storage tank selection must depend most strongly on the discharge conditions required to serve the load. This report describes Calmac system performance fully under both charging and discharging conditions. Companion reports describe ISTF test procedures and ice-making efficiency test results that are common to many of the units tested. 11 refs., 31 figs., 9 tabs.

Stovall, T.K.

1991-08-01T23:59:59.000Z

485

Use of burnup credit for transportation and storage  

SciTech Connect

Burnup credit is the application of the effects of fuel burnup to nuclear criticality design. When burnup credit is considered in the design of storage facilities and transportation casks for spent fuel, the objectives are to reduce the requirements for storage space and to increase the payload of casks with acceptable nuclear criticality safety margins. The spent-fuel carrying capacities of previous-generation transport casks have been limited primarily by requirements to remove heat and/or to provide shielding. Shielding and heat transfer requirements for casks designed to transport older spent fuel with longer decay times are reduced significantly. Thus a considerable weight margin is available to the designer for increasing the payload capacity. One method to achieve an increase in capacity is to reduce fuel assembly spacing. The amount of reduction in assembly spacing is limited by criticality and fuel support structural concerns. The optimum fuel assembly spacing provides the maximum cask loading within a basket that has adequate criticality control and sufficient structural integrity for regulatory accident scenarios. The incorporation of burnup credit in cask designs could result in considerable benefits in the transport of spent fuel. The acceptance of burnup credit for the design of transport casks depends on the resolution of system safety issues and the uncertainties that affect the determination of criticality safety margins. The remainder of this report will examine these issues and the integrated approach under way to resolve them. 20 refs., 2 figs.

Sanders, T.L.; Ewing, R.I. (Sandia National Labs., Albuquerque, NM (USA)); Lake, W.H. (USDOE Office of Civilian Radioactive Waste Management, Washington, DC (USA))