Powered by Deep Web Technologies
Note: This page contains sample records for the topic "linac accelerator system" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Reliable-linac design for accelerator-driven subcritical reactor systems.  

Science Conference Proceedings (OSTI)

Accelerator reliability corresponding to a very low frequency of beam interrupts is an important new accelerator requirement for accelerator-driven subcritical reactor systems. In this paper we review typical accelerator-reliability requirements and discuss possible methods for meeting these goals with superconducting proton-linac technology.

Wangler, Thomas P.,

2002-01-01T23:59:59.000Z

2

RF and Beam Diagnostic Instrumentation at the Advanced Photon Source (APS) Linear Accelerator (Linac)  

E-Print Network (OSTI)

RF and Beam Diagnostic Instrumentation at the Advanced Photon Source (APS) Linear Accelerator (Linac)

Grelick, A E; Arnold, N; White, M

1996-01-01T23:59:59.000Z

3

Overview and status of RF systems for the SSC Linac  

SciTech Connect

The Superconducting Super Collider (SSC) Linear Accelerator (Linac) produces a 600-MeV, 35-{mu}s, H-beam at a 10-Hz repetition rate. The beam is accelerated by a series of RF cavities. These consist of a Radio Frequency Quadrupole (RFQ), two bunchers, and four Drift Tube Linac (DTL) tanks at 427.617 MHz, and two bunchers, nine side-coupled Linac modules, and an energy compressor at 1282.851 MHz. The RFQ amplifier and the low-frequency buncher cavity amplifiers use gridded tubes, while the other cavities use klystron amplifier systems. The RF control system consists of a reference line and cavity feedback and feedforward loops for each amplifier. The RF amplifier system for each of these accelerator cavities is described, and the current status of each system is presented.

Mynk, J.; Grippe, J.; Cutler, R.I.; Rodriguez, R.

1993-05-01T23:59:59.000Z

4

New Post-Linac Collimation System  

NLE Websites -- All DOE Office Websites (Extended Search)

Post-Linac Post-Linac Collimation System for the Next Linear Collider NLC Post-Linac Collimation Task Force LCC-Note-0052 21-Feb-2001 Abstract We present a new design for the NLC post-linac collimation system. The new design sepa- rates the collimation of off-energy particles and particles with large betatron amplitudes. The energy collimation system achieves passive protection against damage by an errant bunch train via large horizontal dispersion and vertical betatron functions, and makes use of optical symme- tries to reduce jitter amplification. The betatron collimation system permits infrequent damage to the thin "spoiler" collimators, while the thick "absorber" collimators have a much larger aperture and are thus more difficult to hit. The physical phenomena which are relevant to the design and operation of the collimation system are reviewed, and

5

Transverse Beam Emittance Measurements of a 16 MeV Linac at the Idaho Accelerator Center  

SciTech Connect

A beam emittance measurement of the 16 MeV S-band High Repetition Rate Linac (HRRL) was performed at Idaho State University's Idaho Accelerator Center (IAC). The HRRL linac structure was upgraded beyond the capabilities of a typical medical linac so it can achieve a repetition rate of 1 kHz. Measurements of the HRRL transverse beam emittance are underway that will be used to optimize the production of positrons using HRRL's intense electron beam on a tungsten converter. In this paper, we describe a beam imaging system using on an OTR screen and a digital CCD camera, a MATLAB tool to extract beamsize and emittance, detailed measurement procedures, and the measured transverse emittances for an arbitrary beam energy of 15 MeV.

S. Setiniyaz, T.A. Forest, K. Chouffani, Y. Kim, A. Freyberger

2012-07-01T23:59:59.000Z

6

EA-1904: Linac Coherent Light Source II at Stanford Linear Accelerator  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

04: Linac Coherent Light Source II at Stanford Linear 04: Linac Coherent Light Source II at Stanford Linear Accelerator Laboratory, San Mateo, California EA-1904: Linac Coherent Light Source II at Stanford Linear Accelerator Laboratory, San Mateo, California Summary This EA evaluates the environmental impacts of the proposed construction of the Linac Coherent Light Source at SLAC National Accelerator Laboratory, Menlo Park, California. Public Comment Opportunities None available at this time. For more information, contact: Mr. Dave Osugi DOE SLAC Site Office 2575 Sand Hill Road, MS8A Menlo Park, CA 94025 Electronic mail: dave.osugi@sso.science.doe.gov Documents Available for Download March 7, 2012 EA-1904: Finding of No Significant Impact Linac Coherent Light Source II at Stanford Linear Accelerator Laboratory, San Mateo, CA

7

EA-1904: Linac Coherent Light Source II at Stanford Linear Accelerator  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

4: Linac Coherent Light Source II at Stanford Linear 4: Linac Coherent Light Source II at Stanford Linear Accelerator Laboratory, San Mateo, California EA-1904: Linac Coherent Light Source II at Stanford Linear Accelerator Laboratory, San Mateo, California Summary This EA evaluates the environmental impacts of the proposed construction of the Linac Coherent Light Source at SLAC National Accelerator Laboratory, Menlo Park, California. Public Comment Opportunities None available at this time. For more information, contact: Mr. Dave Osugi DOE SLAC Site Office 2575 Sand Hill Road, MS8A Menlo Park, CA 94025 Electronic mail: dave.osugi@sso.science.doe.gov Documents Available for Download March 7, 2012 EA-1904: Finding of No Significant Impact Linac Coherent Light Source II at Stanford Linear Accelerator Laboratory, San Mateo, CA

8

HINS Linac front end focusing system R&D  

SciTech Connect

This report summarizes current status of an R&D program to develop a focusing system for the front end of a superconducting RF linac. Superconducting solenoids will be used as focusing lenses in the low energy accelerating sections of the front end. The development of focusing lenses for the first accelerating section is in the production stage, and lens certification activities are in preparation at FNAL. The report contains information about the focusing lens design and performance, including solenoid, dipole corrector, and power leads, and about cryogenic system design and performance. It also describes the lens magnetic axis position measurement technique and discusses scope of an acceptance/certification process.

Apollinari, G.; Carcagno, R.H.; Dimarco, J.; Huang, Y.; Kashikhin, V.V.; Orris, D.F.; Page, T.M.; Rabehl, R.; Sylvester, C.; Tartaglia, M.A.; Terechkine, I.; /Fermilab /Argonne

2008-08-01T23:59:59.000Z

9

Induction Linac Systems Experiments for heavy ion fusion  

Science Conference Proceedings (OSTI)

The Lawrence Berkeley Laboratory and the Lawrence Livermore National Laboratory propose to build at LBL the Induction Linac Systems Experiments (ILSE), the next logical step toward the eventual goal of a heavy ion induction accelerator powerful enough to implode or drive inertial confinement fusion targets. Though much smaller than a driver, ILSE will be at full driver scale in several important parameters. Nearly all accelerator components and beam manipulations required for a driver will be tested. It is expected that ILSE will be built in stages as funds and technical progress allow. The first stage, called Elise will include all of the electrostatic quadrupole focused parts of ILSE.

Herrmannsfeldt, W.B. [Stanford Linear Accelerator Center, Menlo Park, CA (United States); Bangerter, R.O. [Lawrence Berkeley Lab., CA (United States). Accelerator and Fusion Research Div.

1994-06-01T23:59:59.000Z

10

LLRF System Upgrade for the SLAC Linac  

SciTech Connect

The Linac Coherent Light Source (LCLS) at SLAC is in full user operation and has met the stability goals for stable lasing. The 250pC bunch can be compressed to below 100fS before passing through an undulator. In a new mode of operation a 20pC bunch is compressed to about 10fS. Experimenters are regularly using this shorter X-ray pulse and getting pristine data. The 10fS bunch has timing jitter on the order of 100fS. Physicists are requesting that the RF system achieve better stability to reduce timing jitter. Drifts in the RF system require longitudinal feedbacks to work over large ranges and errors result in reduced performance of the LCLS. A new RF system is being designed to help diagnose and reduce jitter and drift in the SLAC linac.

Hong, Bo; /SLAC; Akre, Ron; /SLAC; Pacak, Vojtech; /SLAC

2012-07-06T23:59:59.000Z

11

SLAC National Accelerator Laboratory - Linac Coherent Light Source...  

NLE Websites -- All DOE Office Websites (Extended Search)

LCLS - Linac Coherent Light Source Banner image of LCLS undulator hall. LCLS, the world's first hard X-ray free-electron laser, pushes science to new extremes with ultrabright,...

12

EA-1087: Proposed Induction Linac System Experiments in Building 51B at  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

7: Proposed Induction Linac System Experiments in Building 7: Proposed Induction Linac System Experiments in Building 51B at Lawrence Berkeley National Laboratory, Berkeley, California EA-1087: Proposed Induction Linac System Experiments in Building 51B at Lawrence Berkeley National Laboratory, Berkeley, California SUMMARY This EA evaluates the environmental impacts of a proposal to modify existing Building 51B at the U.S. Department of Energy's Lawrence Berkeley National Laboratory to install and conduct experiments on a new Induction Linear Accelerator System. PUBLIC COMMENT OPPORTUNITIES None available at this time. DOCUMENTS AVAILABLE FOR DOWNLOAD September 8, 1995 EA-1087: Finding of No Significant Impact Proposed Induction Linac System Experiments in Building 51B at Lawrence Berkeley National Laboratory, Berkeley, California

13

Testing and Implementation Progress on the Advanced Photon Source (APS) Linear Accelerator (Linac) High-Power S-band Switching System  

E-Print Network (OSTI)

An S-band linear accelerator is the source of particles and the front end of the Advanced Photon Source injector. In addition, it supports a low-energy undulator test line (LEUTL) and drives a free-electron laser (FEL). A waveguide-switching and distribution system is now under construction. The system configuration was revised to be consistent with the recent change to electron-only operation. There are now six modulator-klystron subsystems, two of which are being configured to act as hot spares for two S-band transmitters each, so that no single failure will prevent injector operation. The two subsystems are also used to support additional LEUTL capabilities and off-line testing. Design considerations for the waveguide-switching subsystem, topology selection, control and protection provisions, high-power test results, and current status are described

Grelick, A E; Berg, S; Dohan, D A; Goeppner, G A; Kang, Y W; Nassiri, A; Pasky, S; Pile, G; Smith, T; Stein, S J

2000-01-01T23:59:59.000Z

14

LANSCE Drift Tube Linac Water Control System Refurbishment  

Science Conference Proceedings (OSTI)

There are several refurbishment projects underway at the Los Alamos National Laboratory LANSCE linear accelerator. Systems involved are: RF, water cooling, networks, diagnostics, timing, controls, etc. The Drift Tube Linac (DTL) portion of the accelerator consists of four DTL tanks, each with three independent water control systems. The systems are about 40 years old, use outdated and non-replaceable equipment and NIM bin control modules, are beyond their design life and provide unstable temperature control. Insufficient instrumentation and documentation further complicate efforts at maintaining system performance. Detailed design of the replacement cooling systems is currently in progress. Previous design experience on the SNS accelerator water cooling systems will be leveraged, see the SNS DTL FDR. Plans call for replacement of water piping, manifolds, pumps, valves, mix tanks, instrumentation (flow, pressure and temperature) and control system hardware and software. This presentation will focus on the control system design with specific attention on planned use of the National Instruments Compact RIO platform with the Experimental Physics and Industrial Control system (EPICS) software toolkit.

Marroquin, Pilar S. [Los Alamos National Laboratory

2011-01-01T23:59:59.000Z

15

Advanced test accelerator: a high-current induction linac  

SciTech Connect

The Advanced Test Accelerator (ATA) is a linear induction accelerator being built at Lawrence Livermore National Laboratory. The aim of the ATA, together with its associated physics program is the research and development necessary to resolve whether particle-beam propagation is possible. Since the accelerator is the tool needed to do the basic propagation experiment, many of its design parameters are specified by the physics. The accelerator parameters are: 50 MeV, 10 kA, 70 ns pulse width (FWHM), and a 1 kHz rep-rate during a ten-pulse burst. In addition, beam quality and pulse-to-pulse repeatability must be excellent. The unique features of the accelerator are the 10 kA beam and the 1 kHz burst frequency.

Cook, E.G.; Birx, D.L.; Reginato, L.L.

1982-11-01T23:59:59.000Z

16

Upgrading the Data Acquisition and Control System of the LANSCE LINAC  

SciTech Connect

Los Alamos National Laboratory LANL is in the process of upgrading the control system for the Los Alamos Neutron Science Center (LANSCE) linear accelerator. The 38 year-old data acquisition and control equipment is being replaced with COTS hardware. An overview of the current system requirements and how the National Instruments cRIO system meets these requirements will be given, as well as an update on the installation and operation of a prototype system in the LANSCE LINAC.

Baros, Dolores [Los Alamos National Laboratory

2011-01-01T23:59:59.000Z

17

Upgrade of the Drive LINAC for the AWA Facility Dielectric Two-Beam Accelerator  

SciTech Connect

We report on the design of a seven-cell, standing-wave, 1.3-GHz rf cavity and the associated beam dynamics studies for the upgrade of the drive beamline LINAC at the Argonne Wakefield Accelerator (AWA) facility. The LINAC design is a compromise between single-bunch operation (100 nC {at} 75 MeV) and minimization of the energy droop along the bunch train during bunch-train operation. The 1.3-GHz drive bunch-train target parameters are 75 MeV, 10-20-ns macropulse duration, and 16 x 60 nC microbunches; this is equivalent to a macropulse current and beam power of 80 A and 6 GW, respectively. Each LINAC structure accelerates approximately 1000 nC in 10 ns by a voltage of 11 MV at an rf power of 10 MW. Due to the short bunch-train duration desired ({approx}10 ns) and the existing frequency (1.3 GHz), compensation of the energy droop along the bunch train is difficult to accomplish by means of the two standard techniques: time-domain or frequency-domain beam loading compensation. Therefore, to minimize the energy droop, our design is based on a large stored energy rf cavity. In this paper, we present our rf cavity optimization method, detailed rf cavity design, and beam dynamics studies of the drive beamline.

Power, John; /Argonne; Conde, Manoel; /Argonne; Gai, Wei; /Argonne; Li, Zenghai; /SLAC; Mihalcea, Daniel; /Northern Illinois U.

2012-07-02T23:59:59.000Z

18

Measurements of H/sup 0/ and H/sup +/ ion yields during H/sup -/ acceleration in a 50-MeV linac  

DOE Green Energy (OSTI)

Unlike proton linacs where the only particles that can be transported are protons, an H/sup -/ linac can produce H/sup 0/ and protons by stripping off one or both electrons of H/sup -/ ions during acceleration. We have measured yields of these ions as a function of linac tank pressures.

Cho, Y.; Madsen, J.; Shin, S.A.; Stipp, V.

1981-01-01T23:59:59.000Z

19

Status of the Linac Coherent Light Source  

Science Conference Proceedings (OSTI)

The Linac Coherent Light Source (LCLS) is a free electron laser facility in construction at Stanford Linear Accelerator Center. It is designed to operate in the wavelength range 0.15-1.5 nanometers. At the time of this conference, civil construction of new tunnels and buildings is complete, the necessary modifications to the SLAC linac are complete, and the undulator system and x-ray optics/diagnostics are being installed. The electron gun, 135 MeV injector linac and 250 MeV bunch compressor were commissioned in 2007. Accelerator commissioning activities are presently devoted to the achievement of performance goals for the completed 14 GeV linac.

Galayda, John N.; /SLAC

2011-11-04T23:59:59.000Z

20

New high power 200 MHz RF system for the LANSCE drift tube linac  

SciTech Connect

The Los Alamos Neutron Science Center (LANSCE) linac provides an 800 MeV direct H{sup +} proton beam, and injects H{sup {minus}} to the upgraded proton storage ring for charge accumulation for the Short Pulse Spallation Source. Accelerating these interlaced beams requires high average power from the 201.25 MHz drift tube linac (DTL) RF system. Three power amplifiers have operated at up to three Megawatts with 12% duty factor. The total number of electron power tubes in the RF amplifiers and their modulators has been reduced from fifty-two to twenty-four. The plant continues to utilize the original design of a tetrode driving a super power triode. Further increases in the linac duty factor are limited, in part, by the maximum dissipation ratings of the triodes. A description of the system modifications proposed to overcome these limitations includes new power amplifiers using low-level RF modulation for tank field control. The first high power Diacrode{reg_sign} is being delivered and a new amplifier cavity is being designed. With only eight power tubes, the new system will deliver both peak power and high duty factor, with lower mains power and cooling requirements. The remaining components needed for the new RF system will be discussed.

Lyles, J.; Friedrichs, C.; Lynch, M.

1998-12-31T23:59:59.000Z

Note: This page contains sample records for the topic "linac accelerator system" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

RFQ accelerator tuning system  

DOE Patents (OSTI)

A cooling system is provided for maintaining a preselected operating temperature in a device, which may be an RFQ accelerator, having a variable heat removal requirement, by circulating a cooling fluid through a cooling system remote from the device. Internal sensors in the device enable an estimated error signal to be generated from parameters which are indicative of the heat removal requirement from the device. Sensors are provided at predetermined locations in the cooling system for outputting operational temperature signals. Analog and digital computers define a control signal functionally related to the temperature signals and the estimated error signal, where the control signal is defined effective to return the device to the preselected operating temperature in a stable manner. The cooling system includes a first heat sink responsive to a first portion of the control signal to remove heat from a major portion of the circulating fluid. A second heat sink is responsive to a second portion of the control signal to remove heat from a minor portion of the circulating fluid. The cooled major and minor portions of the circulating fluid are mixed in response to a mixing portion of the control signal, which is effective to proportion the major and minor portions of the circulating fluid to establish a mixed fluid temperature which is effective to define the preselected operating temperature for the remote device. In an RFQ environment the stable temperature control enables the resonant frequency of the device to be maintained at substantially a predetermined value during transient operations.

Bolie, Victor W. (Albuquerque, NM)

1990-01-01T23:59:59.000Z

22

SLAC Linac Coherent Light Source  

NLE Websites -- All DOE Office Websites (Extended Search)

LCLS Sign In Launch the Developer Dashboard SLAC National Accelerator Laboratory DOE | Stanford | SLAC | SSRL | LCLS | AD | PPA | Photon Science | PULSE | SIMES LCLS : Linac...

23

Accelerator technology for the LANL ATW system  

Science Conference Proceedings (OSTI)

The Los Alamos National Laboratory concept for accelerator transmutation of nuclear waste (ATW) employs a high-power proton linear accelerator to generate intense fluxes of thermal neutrons (> 10{sup 16} n/cm{sup 20} {center dot} s) through spallation on a lead-bismuth target. The nominal beam energy for a ATW accelerator is 1.6 GeV, and the average current requirements range from 250 to 30 mA, depending on application specifics. A recent study of accelerator production of tritium (APT) led to the development of a detailed point design for a 1.6-GeV, 250-mA cw proton linac. The accelerator design was reviewed by the Energy Research Advisory Board and found to be technically sound. The panel concluded that a linac of this power level could now be implemented within the existing technology base, given an adequate component development program and an integrated engineering demonstration of the front end. The APT linac can be taken as representing the upper bound of ATW power requirements.

Lawrence, G.P. (Los Alamos National Lab., NM (United States))

1991-01-01T23:59:59.000Z

24

ANNUAL REPORT, ACCELERATOR and FUSION RESEARCH DIVISION. FISCAL YEAR 1978  

E-Print Network (OSTI)

Accelerator Conceptual Design, HI-FAN-58, 9/6/78. L.J.and Example Design of 1 MJ RF Linac System, HI-FAN-45, (LBL-

Lofgren, E.J.

2010-01-01T23:59:59.000Z

25

Electron Linac Offers Safe, Affordable Production Method for ...  

Biomass and Biofuels; Building Energy Efficiency; ... The electron beam in Linac 2 is also transmitted through the same target then collected in Linac 1 to accelerate ...

26

The CEBAF cryogenic system: Continuous Electron Beam Accelerator Facility  

SciTech Connect

The CEBAF superconducting linear accelerator incorporates cryogenic refrigeration equipment at three locations within the site: the Central Helium Liquefier, located in the center of the accelerator; the experimental end station refrigerator; and the test laboratory refrigerator located in the Cryogenic Test Facility (CTF) adjacent to the test laboratory. The CEBAF cryogenic system will provide 2K refrigeration to the linacs of the accelerator and test laboratory and 4.5K refrigeration for the end station experimental halls. The Central Helium Liquefier and the test laboratory systems will produce 45K supercritical gaseous helium for shield refrigeration. Liquid nitrogen shields will also be incorporated in the test laboratory and end stations. 6 refs., 5 figs.

Chronis, W.C.; Arenius, D.; Kashy, D.; Keesee, M.; Rode, C.H.

1989-01-01T23:59:59.000Z

27

Argonne Accelerator Institute  

NLE Websites -- All DOE Office Websites (Extended Search)

Useful Links Useful Links Argonne National Laboratory Accelerator Sites Conferences Advanced Photon Source (APS) Argonne Wakefield Accelerator (AWA) Argonne Tandem Linear Accelerator System (ATLAS) High Energy Physics Division RIA (????) Link to JACoW (Joint Accelerator Conferences Website) Fermi National Accelerator Laboratory Fermilab-Argonne Collaboration Accelerator Physics Center Workshops Other Accelerator Institutes Energy Recovering Linacs Center for Advance Studies of Accelerators (Jefferson Labs) Center for Beam Physics (LBNL) Accelerator Test Facility (BNL) The Cockcroft Institute (Daresbury, UK) John Adams Institute (Rutherford, UK) ERL2009 to be held at Cornell ERL2007 ERL2005 DOE Laboratory with Accelerators Fermilab Stanford Linear Accelerator Center Brookhaven National Laboratory

28

IMPACT simulation and the SNS linac beam  

E-Print Network (OSTI)

dynamics studies of the SNS linac systems were performedIMPACT SIMULATION AND THE SNS LINAC BEAM * Y. Zhang 1 , J.tracking simulations for the SNS linac beam dynamics studies

Zhang, Y.

2009-01-01T23:59:59.000Z

29

ION ACCELERATION SYSTEM  

DOE Patents (OSTI)

Well focused, intense ion beams are obtained by providing a multi- apertured source grid in front of an ion source chamber and an accelerating multi- apertured grid closely spaced from and in alignment with the source grid. The longest dimensions of the elongated apertures in the grids are normal to the direction of the magnetic field used with the device. Large ion currents may be withdrawn from the source, since they do not pass through any small focal region between the grids.

Luce, J.S.; Martin, J.A.

1960-02-23T23:59:59.000Z

30

Electron Linacs for High Energy Physics  

Science Conference Proceedings (OSTI)

The purpose of this article is to introduce some of the basic physical principles underlying the operation of electron linear accelerators (electron linacs). Electron linacs have applications ranging from linacs with an energy of a few MeV, such that the electrons are approximately relativistic, to future electron-positron linear colliders having a collision energy in the several-TeV energy range. For the most part, only the main accelerating linac is treated in this article.

Wilson, Perry B.; /SLAC

2011-11-08T23:59:59.000Z

31

500 MW X-Band RF System of a 0.25 GeV Electron LINAC for Advanced Compton Scattering Source Application  

SciTech Connect

A Mono-Energetic Gamma-Ray (MEGa-Ray) Compton scattering light source is being developed at LLNL in collaboration with the SLAC National Accelerator Laboratory. The electron beam for the Compton scattering interaction will be generated by a X-band RF gun and a X-band LINAC at the frequency of 11.424 GHz. High power RF in excess of 500 MW is needed to accelerate the electrons to energy of 250 MeV or greater for the interaction. Two high power klystron amplifiers, each capable of generating 50 MW, 1.5 msec pulses, will be the main high power RF sources for the system. These klystrons will be powered by state of the art solid-state high voltage modulators. A RF pulse compressor, similar to the SLED II pulse compressor, will compress the klystron output pulse with a power gain factor of five. For compactness consideration, we are looking at a folded waveguide setup. This will give us 500 MW at output of the compressor. The compressed pulse will then be distributed to the RF gun and to six traveling wave accelerator sections. Phase and amplitude control are located at the RF gun input and additional control points along the LINAC to allow for parameter control during operation. This high power RF system is being designed and constructed. In this paper, we will present the design, layout, and status of this RF system.

Chu, Tak Sum; /LLNL, Livermore; Anderson, Scott; /LLNL, Livermore; Barty, Christopher; /LLNL, Livermore; Gibson, David; /LLNL, Livermore; Hartemann, Fred; /LLNL, Livermore; Marsh, Roark; /LLNL, Livermore; Siders, Craig; /LLNL, Livermore; Adolphsen, Chris; /SLAC; Jongewaard, Erik; /SLAC; Raubenheimer, Tor; /SLAC; Tantawi, Sami; /SLAC; Vlieks, Arnold; /SLAC; Wang, Juwen; /SLAC

2012-07-03T23:59:59.000Z

32

500 MW X-BAND RF SYSTEM OF A 0.25 GEV ELECTRON LINAC FOR ADVANCED COMPTON SCATTERING SOURCE APPLICATION  

Science Conference Proceedings (OSTI)

A Mono-Energetic Gamma-Ray (MEGa-Ray) Compton scattering light source is being developed at LLNL in collaboration with SLAC National Accelerator Laboratory. The electron beam for the Compton scattering interaction will be generated by a X-band RF gun and a X-band LINAC at the frequency of 11.424 GHz. High power RF in excess of 500 MW is needed to accelerate the electrons to energy of 250 MeV or greater for the interaction. Two high power klystron amplifiers, each capable of generating 50 MW, 1.5 msec pulses, will be the main high power RF sources for the system. These klystrons will be powered by state of the art solid-state high voltage modulators. A RF pulse compressor, similar to the SLED II pulse compressor, will compress the klystron output pulse with a power gain factor of five. For compactness consideration, we are looking at a folded waveguide setup. This will give us 500 MW at output of the compressor. The compressed pulse will then be distributed to the RF gun and to six traveling wave accelerator sections. Phase and amplitude control are located at the RF gun input and additional control points along the LINAC to allow for parameter control during operation. This high power RF system is being designed and constructed. In this paper, we will present the design, layout, and status of this RF system.

Chu, T S; Anderson, S G; Gibson, D J; Hartemann, F V; Marsh, R A; Siders, C; Barty, C P; Adolphsen, C; Jongewaard, E; Tantawi, S; Vlieks, A; Wang, J W; Raubenheimer, T

2010-05-12T23:59:59.000Z

33

BEAM TRANSVERSE ISSUES AT THE SNS LINAC  

Science Conference Proceedings (OSTI)

The Spallation Neutron Source (SNS) linac system is designed to deliver 1 GeV pulsed H- beams up to 1.56 MW. As beam power was increased from 10 kW to 680 kW in less than three years, beam loss in the accelerator systems C particularly in the superconducting linac (SCL), became more critical. In the previous studies, beam loss in the SCL was mainly attributed to longitudinal problems. However, our most recent simulations have focused on the transverse issues. These include multipole components from magnet imperfections and from dipole corrector windings of the SNS linac quadrupoles. The effects of these multipoles coupled with other transverse errors and a new possible cause of beam loss will be discussed.

Zhang, Yan [ORNL; Allen, Christopher K [ORNL; Holmes, Jeffrey A [ORNL; Galambos, John D [ORNL; Wang, Jian-Guang [ORNL

2010-01-01T23:59:59.000Z

34

Accelerator technology for the Los Alamos ATW (accelerator transmutation of nuclear waste) system  

SciTech Connect

The Los Alamos concept for accelerator transmutation of nuclear waste (ATW) employs a high-power proton linear accelerator to generate intense fluxes of thermal neutrons (>10{sup 16} n/cm{sup 2}-s) through spallation on a lead-bismuth target. The nominal beam energy for an ATW accelerator is 1.6 GeV, with average current requirements ranging from 250 mA to 30 mA, depending on application specifics. A recent study of accelerator production of tritium (APT) led to the development of a detailed point design for a 1.6 GeV, 250 mA cw proton linac. The accelerator design was reviewed by the Energy Research Advisory Board (ERAB) and found to be technically sound. The Panel concluded that linac of this power level could now be implemented within the existing technology base, given an adequate component development program and an integrated engineering demonstration of the front end.

Lawrence, G.P.

1991-01-01T23:59:59.000Z

35

NSLS Booster & Linac Ring  

NLE Websites -- All DOE Office Websites (Extended Search)

Booster & Linac Ring Booster & Linac Ring Booster Operating Parameters (pdf) Lattice Information (pdf) Mechanical Drawing (pdf) Standard Operating Mode Electrons are injected into the NSLS storage rings from a 750 MeV booster synchrotron fed by a 120 MeV linac. The electrons are first produced in a 100 KeV triode electron gun. The gun is pulsed at the booster revolution period, 94.6 nsec, seven times per booster cycle. Each pulse is 5 nsec long and supplies about 17 microbunches in the linac. After acceleration in the linac, the beam is injected into the booster on seven successive turns. Multi-turn injection in the booster is accomplished in the following way: The beam is deflected into the booster by a septum magnet. The first linac pulse goes around the booster and returns to the injection point just as

36

The machine protection system for the R&D energy recovery LINAC  

SciTech Connect

The Machine Protection System (MPS) is a device-safety system that is designed to prevent damage to hardware by generating interlocks, based upon the state of input signals generated by selected sub-systems. It protects all the key machinery in the R&D Project called the Energy Recovery LINAC (ERL) against the high beam current. The MPS is capable of responding to a fault with an interlock signal within several microseconds. The ERL MPS is based on a National Instruments CompactRIO platform, and is programmed by utilizing National Instruments' development environment for a visual programming language. The system also transfers data (interlock status, time of fault, etc.) to the main server. Transferred data is integrated into the pre-existing software architecture which is accessible by the operators. This paper will provide an overview of the hardware used, its configuration and operation, as well as the software written both on the device and the server side.

Altinbas, Z.; Kayran, D.; Jamilkowski, J.; Lee, R.C.; Oerter, B.

2011-03-28T23:59:59.000Z

37

RHIC sextant test: Accelerator systems and performance  

SciTech Connect

One sextant of the RHIC Collider was commissioned in early 1997 with beam. We describe here the performance of the accelerator systems, instrumentation subsystems and application software. We also describe a ramping test without beam that took place after the commissioning with beam. Finally, we analyze the implications of accelerator systems performance and their impact on the planning for RHIC installation and commissioning.

Pilat, F.; Trbojevic, D.; Ahrens, L. [and others

1997-08-01T23:59:59.000Z

38

BEAM DYNAMICS ISSUES IN THE SNS LINAC  

Science Conference Proceedings (OSTI)

A review of the Spallation Neutron Source (SNS) linac beam dynamics is presented. It describes transverse and longitudinal beam optics, losses, activation, and comparison between the initial design and the existing accelerator. The SNS linac consists of normal conducting and superconducting parts. The peculiarities in operations with the superconducting part of the SNS linac (SCL), estimations of total losses in SCL, the possible mechanisms of these losses, and the progress in the transverse matching are discussed.

Shishlo, Andrei P [ORNL

2011-01-01T23:59:59.000Z

39

APS Accelerator Systems Division Home  

NLE Websites -- All DOE Office Websites (Extended Search)

Photon Source and pursues research and development profitable to the science of accelerators and future light source technologies. Featured Image Two 352-MHz1-kW CW solid...

40

Solar system constraints on Rindler acceleration  

E-Print Network (OSTI)

We discuss the classical tests of general relativity in the presence of Rindler acceleration. Among these tests the perihelion shifts give the tightest constraints and indicate that the Pioneer anomaly cannot be caused by a universal solar system Rindler acceleration. We address potential caveats for massive test-objects. Our tightest bound on Rindler acceleration that comes with no caveats is derived from radar echo delay and yields |a|<3nm/s^2.

Sante Carloni; Daniel Grumiller; Florian Preis

2011-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "linac accelerator system" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Cryogenic system for the Energy Recovery Linac and vertical test facility at BNL  

SciTech Connect

A small cryogenic system and warm helium vacuum pumping system provides cooling to either the Energy Recovery Linac's (ERL) cryomodules that consist of a 5-cell cavity and an SRF gun or a large Vertical Test Dewar (VTD) at any given time. The cryogenic system consists of a model 1660S PSI piston plant, a 3800 liter storage dewar, subcooler, a wet expander, a 50 g/s main helium compressor, and a 170 m{sup 3} storage tank. A system description and operating plan of the cryogenic plant and cryomodules is given. The cryogenic system for ERL and the Vertical Test Dewar has a plant that can produce the equivalent of 300W at 4.5K with the addition of a wet expander 350 W at 4.5K. Along with this system, a sub-atmospheric, warm compression system provides pumping to produce 2K at the ERL cryomodules or the Vertical Test Dewar. The cryogenic system for ERL and the Vertical Test Dewar makes use of existing equipment for putting a system together. It can supply either the ERL side or the Vertical Test Dewar side, but not both at the same time. Double valve isolation on the liquid helium supply line allows one side to be warmed to room temperature and worked on while the other side is being held at operating temperature. The cryogenic system maintain the end loads from 4.4K to 2K or colder depending on capacity. Liquid helium storage dewar capacity allows ERL or the VTD to operate above the plant's capacity when required and ERL cryomodules ballast reservoirs and VTD reservoir allows the end loads to operate on full vacuum pump capacity when required.

Than, R.; Soria, V.; Lederle, D.; Orfin, P.; Porqueddu, R.; Talty, P.; Zhang, Y.; Tallerico, T.; Masi, L.

2011-03-28T23:59:59.000Z

42

Finding of No Significant Impact for the Construction and Operation of the Linac Coherent Light Source (LCLS) at the Stanford Linear Accelerator Center (SLAC), California (DOE/EA-1426) (2/28/03)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

U.S. Department of Energy (DOE) U.S. Department of Energy (DOE) Finding of No Significant Impact Construction and Operation of the Linac Coherent Light Source (LCLS) at the Stanford Linear Accelerator Center (SLAC), California. AGENCY: U.S. Department of Energy (DOE) ACTION: Finding of No Significant Impact (FONSI) SUMMARY: The U.S. Department of Energy (DOE) has prepared an Environmental Assessment (EA), DOE/EA-1426, evaluating the proposed action to construct and operate the Linac Coherent Light Source (LCLS) at the Stanford Linear Accelerator Center (SLAC). Based upon the information and analyses in the EA, the DOE has determined that the proposed federal action does not significantly affect the quality of the human environment within the meaning of the National Environmental Policy Act of 1969.

43

BNL | S-band Linac  

NLE Websites -- All DOE Office Websites (Extended Search)

S-band Linac S-band Linac Some experiments at the ATF require higher energies than what is available from the photoinjector. We use two traveling wave linac structures, known as 'SLAC sections' (from the famous 2-mile SLAC linac). Each section provides an acceleration given by: Energy gain (in MeV) = 10.8*SQRT(Power in MW)-39.5*Current(in amps) The current to be used is an equivalent steady state current. The microwave drive power, at a frequency of 2856 MHz, is provided by a single XK5 klystron tube (the old SLAC klystron). This tube can provide up to 25 MW. The ATF modulator can provide the XK5 klystron with high voltage for about 3 microseconds. This 3 microsecond pulse is called the macropulse. The repetition rate for the macropulses is from 1 to 6 per second. Within each

44

Accelerator Update | Archive | 2010  

NLE Websites -- All DOE Office Websites (Extended Search)

10 Accelerator Update Archive 10 Accelerator Update Archive December 20, 2010 - December 22, 2010 - Three stores provided !32 hours of luminosity - Problems with two Linac quadrupole power supplies - Cryo system technicians work on TEV sector D1 wet engine - TEV quench during checkout - JASMIN's run at MTest ends December 17, 2010 - December 20, 2010 The Integrated Luminosity for the period from 12/13/10 to 12/20/10 was 66.31 inverse picobarns. NuMI reported receiving 7.62E18 protons on target during this same period. - Five Stores provided ~62 hours of luminosity - Operations had trouble with a Linac RF station (LRF3) - Operators tuned the Linac backup source (I- Source) December 15, 2010 - December 17, 2010 - Three stores provided ~36.1 hours of luminosity - MI-52 Septa repaired - NuMI recovered its target LCW system

45

Induction Linac Pulsers  

DOE Green Energy (OSTI)

The pulsers used in most of the induction linacs evolved from the very large body of work that was done in the U.S. and Great Britain during the development of the pulsed magnetron for radar. The radar modulators started at {approx}100 kW and reached >10 MW by 1945. A typical pulse length was 1 {mu}s at a repetition rate of 1,000 pps. A very comprehensive account of the modulator development is Pulse Generators by Lebacqz and Glasoe, one of the Radiation Laboratory Series. There are many permutations of possible modulators, two of the choices being tube type and line type. In earlier notes I wrote that technically the vacuum tube pulser met all of our induction linac needs, in the sense that a number of tubes, in series and parallel if required, could produce our pulses, regulate their voltage, be useable in feed-forward correctors, and provide a low source impedance. At a lower speed, an FET array is similar, and we have obtained and tested a large array capable of >10 MW switching. A modulator with an electronically controlled output only needs a capacitor for energy storage and in a switched mode can transfer the energy from the capacitor to the load at high efficiency. Driving a full size Astron induction core and a simulated resistive 'beam load' we achieved >50% efficiency. These electronically controlled output pulses can produce the pulses we desire but are not used because of their high cost. The second choice, the line type pulser, visually comprises a closing switch and a distributed or a lumped element transmission line. The typical switch cannot open or stop conducting after the desired pulse has been produced, and consequently all of the initially stored energy is dissipated. This approximately halves the efficiency, and the original cost estimating program LIACEP used this factor of two, even though our circuits are usually worse, and even though our inveterate optimists often omit it. The 'missing' energy is that which is reflected back into the line from mismatches, the energy left in the accelerator module's capacitance, the energy lost in the switch during switching and during the pulse, and the energy lost in the pulse line charging circuit. For example, a simple resistor-limited power supply dissipates as much energy as it delivers to the pulse forming line, giving a factor if two by itself, therefore efficiency requires a more complicated charging system.

Faltens, Andris

2011-01-07T23:59:59.000Z

46

Muon Acceleration - RLA and FFAG  

SciTech Connect

Various acceleration schemes for muons are presented. The overall goal of the acceleration systems: large acceptance acceleration to 25 GeV and 'beam shaping' can be accomplished by various fixed field accelerators at different stages. They involve three superconducting linacs: a single pass linear Pre-accelerator followed by a pair of multi-pass Recirculating Linear Accelerators (RLA) and finally a non-scaling FFAG ring. The present baseline acceleration scenario has been optimized to take maximum advantage of appropriate acceleration scheme at a given stage. The solenoid based Pre-accelerator offers very large acceptance and facilitates correction of energy gain across the bunch and significant longitudinal compression trough induced synchrotron motion. However, far off-crest acceleration reduces the effective acceleration gradient and adds complexity through the requirement of individual RF phase control for each cavity. The RLAs offer very efficient usage of high gradient superconducting RF and ability to adjust path-length after each linac pass through individual return arcs with uniformly periodic FODO optics suitable for chromatic compensation of emittance dilution with sextupoles. However, they require spreaders/recombiners switchyards at both linac ends and significant total length of the arcs. The non-scaling Fixed Field Alternating Gradient (FFAG) ring combines compactness with very large chromatic acceptance (twice the injection energy) and it allows for large number of passes through the RF (at least eight, possibly as high as 15).

Alex Bogacz

2011-10-01T23:59:59.000Z

47

The EMMA Accelerator, a Diagnostic Systems Overview  

Science Conference Proceedings (OSTI)

The 'EMMA' Non-Scaling Fixed Field Alternating Gradient (ns-FFAG) international project is currently being commissioned at Daresbury Laboratory, UK. This accelerator has been equipped with a number of diagnostic systems to facilitate this. These systems include a novel time-domain-multiplexing BPM system, moveable screen systems, a time-of-flight instrument, Faraday cups, and injection/extraction tomography sections to analyze the single bunch beams. An upgrade still to implement includes the installation of wall current monitors. This paper gives an overview of these systems and shows some data and results from the diagnostics that have contributed to the successful demonstration of a serpentine acceleration by this novel accelerator.

Kalinin, A.; Berg, J.; Bliss, N. Cox, G.; Dufau, M.; Gallagher, A.; Hill, C.; Jones, J.; Ma, L.; McIntosh, P.; Muratori, B.; Oates, A.; Shepherd B.; Smith, R.; Hock, K.; Holder, D.; Ibison, M., Kirkman I.; Borrell, R.; Crisp, J.; Fellenz, B.; Wendt, M.

2011-09-04T23:59:59.000Z

48

Linac Coherent Light SourCe  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Linac Linac Coherent Light SourCe after the Stanford Linear Accelerator Center (now the SLAC National Accelerator Laboratory) developed its two- mile-long linear accelerator (linac), it received approval from the Department of Energy to construct the Linac Coherent Light Source (LCLS), the first free electron laser (FEL) facility that would be able to produce x-rays short and bright enough that individual molecules could be imaged in their natural states. 40 years Genesis of the idea In 1992, Dr. Claudio Pellegrini, a professor at UCLA, first developed a proposal for a facility that would eventually become LCLS. The idea generated interest within the scientific community, and a design study report conducted by SLAC in the late 1990s led to the first

49

Linear Accelerator | Advanced Photon Source  

NLE Websites -- All DOE Office Websites (Extended Search)

electrons emitted from a cathode heated to 1100 C. The electrons are accelerated by high-voltage alternating electric fields in a linear accelerator (linac; photo below)....

50

SLAC Linac RF Performance for LCLS *  

E-Print Network (OSTI)

The Linac Coherent Light Source (LCLS) project at SLAC uses a dense 15 GeV electron beam passing through a long undulator to generate extremely bright x-rays at 1.5 angstroms. The project requires electron bunches with a nominal peak current of 3.5kA and bunch lengths of 0.020mm (70fs). The bunch compression techniques used to achieve the high brightness impose challenging tolerances on the accelerator RF phase and amplitude. The results of measurements on the existing SLAC linac RF phase and amplitude stability are summarised and improvements needed to meet the LCLS tolerances are discussed. 1 LCLS RF REQUIREMENTS LCLS requires the SLAC linac to perform with tolerances on RF phase and amplitude stability which are beyond all previous requirements. The LCLS is divided into four linacs L0, L1, L2, and L3 [1]. The phase and amplitude tolerances for the four linacs operated at S-

unknown authors

2000-01-01T23:59:59.000Z

51

A CONCEPTUAL 3-GEV LANSCE LINAC UPGRADE FOR ENHANCED PROTON RADIOGRAPHY  

Science Conference Proceedings (OSTI)

A conceptual design of a 3-GeV linac upgrade that would enable enhanced proton radiography at the Los Alamos Neutron Science Center (LANSCE) is presented. The upgrade is based on the use of superconducting accelerating cavities to increase the present LANSCE linac output energy from 800 MeV to 3 GeV. The LANSCE linac currently provides negative hydrogen ion (H{sup -}) and proton (H{sup +}) beams to several user facilities that support Isotope Production, NNSA Stockpile Stewardship, and Basic Energy Science programs. Required changes to the front-end, the accelerating structures, and to the RF systems to meet the new performance goals, and changes to the existing beam switchyard to maintain operations for a robust user program are also described.

Garnett, Robert W [Los Alamos National Laboratory; Rybarcyk, Lawrence J. [Los Alamos National Laboratory; Merrill, Frank E. [Los Alamos National Laboratory; O'Hara, James F. [Los Alamos National Laboratory; Rees, Daniel E. [Los Alamos National Laboratory; Walstrom, Peter L. [Los Alamos National Laboratory

2012-05-14T23:59:59.000Z

52

Experimental study of new laser-based alignment system at the KEK B-factory injector linear accelerator  

Science Conference Proceedings (OSTI)

A new laser-based alignment system for the precise alignment of accelerator components along an ideal straight line at the KEK B-factory injector linear accelerator (linac) is under development. This system is strongly required in the next generation of B-factories for the stable acceleration of high-brightness electron and positron beams with high bunch charges and also for maintaining the stability of injection beams with high quality. A new laser optics for the generation of a so-called Airy beam has been developed for the laser-based alignment system. The laser propagation characteristics both in vacuum and at atmospheric pressure have been systematically investigated in an 82-m-long straight section of the injector linac. The laser-based alignment measurements based on the new laser optics have been carried out with a measurement resolution of {+-}0.1 mm level by using an existing laser detection electronics. The horizontal and vertical displacements from a reference laser line measured using this system are in good agreement with those measured using a standard telescope-based optical alignment technique. In this report, we describe the experimental study in detail along with the basic designs and the recent developments in the new laser-based alignment system.

Suwada, T.; Satoh, M.; Kadokura, E. [Accelerator Laboratory, High Energy Accelerator Research Organization (KEK), 1-1 Oho, Tsukuba, Ibaraki 305-0801 (Japan)

2010-12-15T23:59:59.000Z

53

The MedAustron Accelerator Control System  

E-Print Network (OSTI)

This paper presents the architecture and design of the MedAustron accelerator control system. This ion therapy and research facility is currently under construction in Wr. Neustadt, Austria. The accelerator and its control system are designed at CERN. This class of machine is characterized by rich sets of configuration data, real-time reconfiguration needs and high stability requirements. The machine is operated according to a pulse-to-pulse modulation scheme. Each beam cycle is described in terms of ion type, energy, beam dimensions, intensity and spill length. The control system is based on a multi-tier architecture with the aim to achieve a clear separation between front-end devices and their controllers. In-house developments cover a main timing system, a light-weight layer to standardize operation and communication of front-end controllers, fast and slow control of power converters and a procedure programming framework for automating high-level control and data analysis tasks.

Gutleber, J; Marchhart, M; Torcato de Matos, C; Dedic, J; Moser, R

2011-01-01T23:59:59.000Z

54

A HIGH PERFORMANCE/LOW COST ACCELERATOR CONTROL SYSTEM  

E-Print Network (OSTI)

LOW COST ACCELERATOR CONTROL SYSTEM S. Hagyary, J. Glat£» H.LOW COST ACCELERATOR CONTROL SYSTEM S. Magyary, J. Glatz, H.a high performance computer control system tailored to the

Magyary, S.

2010-01-01T23:59:59.000Z

55

Creating an EPICS Based Test Stand Development System for a BPM Digitizer of the Linac Coherent Light Source  

SciTech Connect

The Linac Coherent Light Source (LCLS) is required to deliver a high quality electron beam for producing coherent X-rays. As a result, high resolution beam position monitoring is required. The Beam Position Monitor (BPM) digitizer acquires analog signals from the beam line and digitizes them to obtain beam position data. Although Matlab is currently being used to test the BPM digitizer?s functions and capability, the Controls Department at SLAC prefers to use Experimental Physics and Industrial Control Systems (EPICS). This paper discusses the transition of providing similar as well as enhanced functionalities, than those offered by Matlab, to test the digitizer. Altogether, the improved test stand development system can perform mathematical and statistical calculations with the waveform signals acquired from the digitizer and compute the fast Fourier transform (FFT) of the signals. Finally, logging of meaningful data into files has been added.

Not Available

2011-06-22T23:59:59.000Z

56

SNS LINAC MODULATOR OPERATIONAL HISTORY AND PERFOMANCE  

Science Conference Proceedings (OSTI)

Fourteen High Voltage Converter Modulators (HVCM) were initially installed at the Spallation Neutron Source Linear Accelerator (SNS Linac) at the Oak Ridge National Laboratory in 2005. A fifteenth HVCM was added in 2009. Each modulator provides a pulse of up to 140 kV at a maximum width of 1.35 msec. Peak power level is 11 MW with an 8% duty factor. The HVCM system must be available for neutron production (NP) 24/7 with the exception being two, 6-week maintenance periods per year. HVCM reliability is one of the most important factors to maximize Linac availability and achieve SNS performance goals. During the last few years several modifications have been implemented to improve the overall system reliability. This paper presents operational history of the HVCM systems and examines failure mode statistical data since the modulators began operating at 60 Hz. System enhancements and upgrades aimed at providing long term reliable operation with minimal down time are also discussed in the paper.

Peplov, Vladimir V [ORNL; Anderson, David E [ORNL; Cutler, Roy I [ORNL; Hicks, Jim [ORNL; Saethre, Robert B [ORNL; Wezensky, Mark W [ORNL

2011-01-01T23:59:59.000Z

57

Fermilab Tevatron high level rf accelerating systems  

SciTech Connect

Eight tuned rf cavities have been installed and operated in the F0 straight section of the Tevatron. Their mechanical placement along the beam line enables them to be operated for colliding beams as two independent groups of four cavities, group 1-4 accelerating antiprotons and group 5-8 accelerating protons. The only difference is that the spacing between cavities 4 and 5 was increased to stay clear of the F0 colliding point. The cavities can easily be rephased by switching cables in a low-level distribution system (fan-out) so that the full accelerating capability of all eight cavities can be used during fixed target operations. Likewise, the cables from capacitive probes on each cavity gap can be switched to proper lengths and summed in a fan-back system to give an rf signal representing the amplitude and phase as ''seen by the beam,'' separately for protons and antiprotons. Such signals have been used to phase lock the Tevatron to the Main Ring for synchronous transfer.

Kerns, Q.; Kerns, C.; Miller, H.; Tawser, S.; Reid, J.; Webber, R.; Wildman, D.

1985-06-01T23:59:59.000Z

58

High-power accelerator technology and requirements  

SciTech Connect

Designs of high-power proton linear accelerators (linacs) for accelerator transmutation of waste (ATW) are being actively studied at Los Alamos National Laboratory and at several other laboratories worldwide. Beam parameters cover the 100- to 300-mA range in average current and 800 to 1600 MeV in energy. While ideas for such accelerators have been discussed for decades, the technology base has recently advanced to the point that the feasibility of machines in the ATW power class is now generally conceded. Factors contributing to this advance have been the following: experience gained with medium-power research accelerators, especially the LAMPF linac at Los Alamos; major improvements in the theory and technology of high-intensity high-brightness accelerators fostered by the SDIO Neutral Particle Beam program; and development of high-power continuous-wave (cw) radio-frequency (rf) generators for high-energy colliding-beam rings. The reference ATW accelerator concept described in this paper is based on room-temperature copper accelerating cavities. Advances in superconducting niobium cavity technology have opened the possibility of application to ATW-type linacs. Useful efficiency gains could be realized, especially for lower current systems, and there may be technical advantages as well. Technology issues that need to be addressed for superconducting rf linac designs include the development of high-power rf couplers, appropriate cavity designs, and superconducting focusing elements, as well as concerns about beam damage of niobium structures and dynamic rf control with high beam currents.

Lawrence, G.P. (Los Alamos National Lab., NM (United States))

1993-01-01T23:59:59.000Z

59

Accelerator and rf system development for NLC  

Science Conference Proceedings (OSTI)

An experimental station for an X-band Next Linear Collider has been constructed at SLAC. This station consists of a klystron and modulator, a low-loss waveguide system for rf power distribution, a SLED II pulse-compression and peak-power multiplication system, acceleration sections and beam-line components (gun, prebuncher, preaccelerator, focussing elements and spectrometer). An extensive program of experiments to evaluate the performance of all components is underway. The station is described in detail in this paper, and results to date are presented.

Vlieks, A.E.; Callin, R.; Deruyter, H. [Stanford Linear Accelerator Center, Menlo Park, CA (United States)] [and others

1993-04-01T23:59:59.000Z

60

Coupled-cavity drift-tube linac  

DOE Patents (OSTI)

A coupled-cavity drift-tube linac (CCDTL) combines features of the Alvarez drift-tube linac (DTL) and the .pi.-mode coupled-cavity linac (CCL). In one embodiment, each accelerating cavity is a two-cell, 0-mode DTL. The center-to-center distance between accelerating gaps is .beta..lambda., where .lambda. is the free-space wavelength of the resonant mode. Adjacent accelerating cavities have oppositely directed electric fields, alternating in phase by 180 degrees. The chain of cavities operates in a .pi./2 structure mode so the coupling cavities are nominally unexcited. The CCDTL configuration provides an rf structure with high shunt impedance for intermediate velocity charged particles, i.e., particles with energies in the 20-200 MeV range.

Billen, James H. (Los Alamos, NM)

1996-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "linac accelerator system" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

1. Accelerator Driven Systems and Their Applications 1.1 History of Accelerator Driven System Activities  

E-Print Network (OSTI)

Since the early 1990’s, accelerator driven systems (ADS) – subcritical assemblies driven by high power proton accelerators through a spallation target which is neutronically coupled to the core – have been proposed for addressing certain missions in advanced nuclear fuel cycles. Institutes throughout the world have conducted numerous programs evaluating the role of ADS in nuclear waste transmutation and energy production. In 1995, the National Research Council (NRC) issued a report on transmutation technologies [1], which included an evaluation of one ADS concept that was under study at that time: a large-scale system that proposed using a ~100-MW accelerator to drive a thermal, molten salt subcritical core. The NRC recognized the numerous complexities associated with the system, including the fact that, at that time, much of the high-power accelerator technology required for that ADS system had yet to be demonstrated. Consequently, the NRC report did not look favorably upon ADS. In 1999 the US Congress directed the DOE to evaluate Accelerator Transmutation of Waste (ATW) concepts and prepare a “roadmap ” to develop the technology. This roadmap [2] identified the technical issues to be resolved, assessed the impact of ATW on high-level waste disposition, and estimated the scale and cost of deploying ATW to close the fuel cycle. It also recommended that Congress fund a $281M six-year program of trade studies and R&D on key technology issues that would support a future

Mueller G; S. Nagaitsev C; J. Nolen A; E. Pitcher E; R. Rimmer F; R. Sheffield E; M. Todosow B

2010-01-01T23:59:59.000Z

62

Linac Energy Management for LCLS  

SciTech Connect

Linac Energy Management (LEM) is a control system program that scales magnet field set-point settings following a change in beam energy. LEM is necessary because changes in the number, phase, and amplitude of the active klystrons change the beam's rigidity, and therefore, to maintain constant optics, one has to change focusing gradients and bend fields accordingly. This paper describes the basic process, the control system application programs we developed for LEM, and some of the implementation lessons learned at the Linac Coherent Light Source (LCLS).

Chu, Chungming; /SLAC; Iverson, Richard; /SLAC; Krejcik, Patrick; /SLAC; Rogind, Deborah; /SLAC; White, Greg; /SLAC; Woodley, Mark; /SLAC

2012-07-05T23:59:59.000Z

63

BNL | Accelerator Test Facility  

NLE Websites -- All DOE Office Websites (Extended Search)

Accelerator Test Facility Accelerator Test Facility Home Core Capabilities Photoinjector S-Band Linac Laser Systems CO2 Laser Nd:Yag Laser Beamlines Beamline Simulation Data Beamline Parameters Beam Diagnostics Detectors Beam Schedule Operations Resources Fact Sheet (.pdf) Image Library Upgrade Proposal (.pdf) Publications ES&H Experiment Start-up ATF Handbook Laser Safety Collider-Accelerator Dept. C-AD ES&H Resources Staff Users' Place Apply for Access ATF photo ATF photo ATF photo ATF photo ATF photo A user facility for advanced accelerator research The Brookhaven Accelerator Test Facility (ATF) is a proposal driven, steering committee reviewed facility that provides users with high-brightness electron- and laser-beams. The ATF pioneered the concept of a user facility for studying complex properties of modern accelerators and

64

A post accelerator for the U.S. rare isotope accelerator facility.  

SciTech Connect

The proposed Rare Isotope Accelerator (RIA) Facility includes a post-accelerator for rare isotopes (RIB linac) which must produce high-quality beams of radioactive ions over the full mass range, including uranium, at energies above the coulomb barrier, and have high transmission and efficiency. The latter requires the RIB linac to accept at injection ions in the 1+ charge state. A concept for such a post accelerator suitable for ions up to mass 132 has been previously described [1]. This paper presents a modified concept which extends the mass range to uranium. A high resolution separator for purifying beams at the isobaric level precedes the RIB linac. The mass filtering process will provide high purity beams while preserving transmission. For most cases a resolution of about m/{Delta}m=20,000 is adequate at mass A=100 to obtain a separation between isobars of mass excess difference of 5 MeV. The design for a device capable of purifying beams at the isobaric level included calculations up to 5th order. The RIB linac will utilize existing superconducting heavy-ion linac technology for all but a small portion of the accelerator system. The exceptional piece, a very-low-charge-state injector, section needed for just the first few MV of the RIB accelerator, consists of a pre-buncher followed by several sections of cw, normally-conducting RFQ. Two stages of charge stripping are provided: helium gas stripping at energies of a few keV/u, and additional foil stripping at {approx}680 keV/u for the heavier ions. In extending the mass range to uranium, however, for best efficiency the helium gas stripping must be performed at different energies for different mass ions. We present numerical simulations of the beam dynamics of a design for the complete RIB linac which provides for several stripping options and uses cost-effective solenoid focusing elements in the drift-tube linac.

Ostroumov, P. N.; Kelly, M. P.; Kolomiets, A. A.; Nolen, J. A.; Portillo, M.; Shepard, K. W.; Vinogradov, N. E.

2002-06-11T23:59:59.000Z

65

Resonance Excitation of Longitudinal High Order Modes in Project X Linac  

SciTech Connect

Results of simulation of power loss due to excitation of longitudinal high order modes (HOMs) in the accelerating superconducting RF system of CW linac of Project X are presented. Beam structures corresponding to the various modes of Project X operation are considered: CW regime for 3 GeV physics program; pulsed mode for neutrino experiments; and pulsed regime, when Project X linac operates as a driver for Neutrino Factory/Muon Collider. Power loss and associated heat load due to resonance excitation of longitudinal HOMs are shown to be small in all modes of operation. Conclusion is made that HOM couplers can be removed from the design of superconducting RF cavities of Project X linac.

Khabiboulline, T.N.; Sukhanov, A.AUTHOR = Awida, M.; Gonin, I.; Lunin, A.AUTHOR = Solyak, N.; Yakovlev, V.; /Fermilab

2012-05-01T23:59:59.000Z

66

The Fast Lane: Fermilab's Accelerators  

NLE Websites -- All DOE Office Websites (Extended Search)

Lane: Accelerators at Fermilab Introduction Introduction to Accelerators Accelerator Chain Cockcroft-Walton How it works How it looks Linac How it works How it looks Booster How it...

67

Hardware Accelerator for MIMO Wireless Systems  

E-Print Network (OSTI)

Ever increasing demand for higher data rates and better Quality of Service (QoS) for a growing number of users requires new transceiver algorithms and architectures to better exploit the available spectrum and to efficiently counter the impairments of the radio channel. Multiple-Input Multiple-Output (MIMO) communication systems employ multiple antennas at both transmitter and at the receiver to meet the requirements of next-generation wireless systems. It is a promising technology to provide increased data rates while not involving an equivalent increase in the spectral requirements. However, practical implementation of MIMO detectors poses a significant challenge and has been consistently identified as the major bottleneck for realizing the full potential that multiple antenna systems promise. Furthermore, in order to make judicious use of the available bandwidth, the baseband units have to dynamically adapt to different modes (modulation schemes, code rates etc) of operations. Flexibility and high throughput requirements often place conflicting demands on the Very Large Scale Integration (VLSI) system designer. The major focus of this dissertation is to present efficient VLSI architectures for configurable MIMO detectors that can serve as accelerators to enable the realization of next generation wireless devices feasible. Both, hard output and soft output detector architectures are considered.

Bhagawat, Pankaj

2011-12-01T23:59:59.000Z

68

Linac Coherent Light Source Overview | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Linac Coherent Light Source Overview Linac Coherent Light Source Overview Linac Coherent Light Source Overview Addthis Description Take an animated tour of the Linac Coherent Light Source (LCLS). Follow the laser pulse from the injector gun all the way through to the Far Experimental Hall. Duration 5:50 Topic Physics Credit Energy Department Video MR. : The SLAC National Accelerator Laboratory is located in the heart of California's beautiful San Francisco Bay Area. Operated by Stanford University for the U.S. Department of Energy, SLAC has been home to the world's longest particle accelerator for nearly 50 years. In 2009 SLAC ushered in a new era in its long history of physics research with a new kind of laser called the Linac Coherent Light Source, or LCLS. The LCLS is the first laser in the world to produce hard X-rays, which can

69

Acceleration  

NLE Websites -- All DOE Office Websites (Extended Search)

Acceleration Acceleration of porous media simulations on the Cray XE6 platform Kirsten M. Fagnan, Michael Lijewski, George Pau, Nicholas J. Wright Lawrence Berkeley National Laboratory 1 Cyclotron Road Berkeley, CA 94720 May 18, 2011 1 Introduction In this paper we investigate the performance of the Porous Media with Adaptive Mesh Refinment (PMAMR) code which was developed in the Center for Computational Science and Engineering at Lawrence Berkeley National Laboratory. This code is being used to model carbon sequestration and contaminant transport as part of the Advanced Simulation Capability for Environmental Management (ASCEM) project. The goal of the ASCEM project is to better understand and quantify flow and contaminant transport behavior in complex geological systems. It will also address the long-term performance of engineered components including cementitious materials in

70

Accelerators  

NLE Websites -- All DOE Office Websites (Extended Search)

Accelerators Elementary Particles Detectors Accelerators Visit World Labs For Children - for younger people For Children The Electric Force For Children Electric Force Fields For...

71

Mission of the Accelerator Systems Division  

NLE Websites -- All DOE Office Websites (Extended Search)

Photon Source and to pursue research and development profitable to the science of accelerators and future light source technologies. This mission is accomplished by pursuing the...

72

NSLS-II: Accelerator Systems Advisory Committee (ASAC)  

NLE Websites -- All DOE Office Websites (Extended Search)

construction, and operations of major accelerator systems. This group will advise the NSLS-II Associate Laboratory Director (ALD) and the NSLS-II Associate Director for...

73

A Program for Optimizing SRF Linac Costs  

Science Conference Proceedings (OSTI)

Every well-designed machine goes through the process of cost optimization several times during its design, production and operation. The initial optimizations are done during the early proposal stage of the project when none of the systems have been engineered. When a superconducting radio frequency (SRF) linac is implemented as part of the design, it is often a difficult decision as to the frequency and gradient that will be used. Frequently, such choices are made based on existing designs, which invariably necessitate moderate to substantial modifications so that they can be used in the new accelerator. Thus the fallacy of using existing designs is that they will frequently provide a higher cost machine or a machine with sub-optimal beam physics parameters. This paper describes preliminary results of a new software tool that allows one to vary parameters and understand the effects on the optimized costs of construction plus 10 year operations of an SRF linac, the associated cryogenic facility, and controls, where operations includes the cost of the electrical utilities but not the labor or other costs. It derives from collaborative work done with staff from Accelerator Science and Technology Centre, Daresbury, UK [1] several years ago while they were in the process of developing a conceptual design for the New Light Source project. The initial goal was to convert a spread sheet format to a graphical interface to allow the ability to sweep different parameter sets. The tools also allow one to compare the cost of the different facets of the machine design and operations so as to better understand the tradeoffs.

Powers, Thomas J. [JLAB

2013-04-01T23:59:59.000Z

74

EBIS as an injector for heavy-ion linacs  

SciTech Connect

The Electron Beam Ion Source (EBIS), because of its high-charge states and pulsed operation, is ideally suited as an injector for a heavy-ion linac operating at a low duty factor. Although presently in use with conventional linacs, the low emittance and the large yield of highly charged ions in each pulse make the EBIS even more interesting as an injector for the new linac accelerating structures such as the alternating-phase-focusing (APF) structure or the radio-frequency quadrupole (RFQ) structure. These new structures could be used with an EBIS to produce a small, efficient, low-duty-cycle accelerator. Coupled to a conventional linac, the resulting accelerator could be used for heavy-ion medical therapy or nuclear physics, or it could be used as an injector for a synchrotron or storage ring.

Hamm, R.W.

1979-01-01T23:59:59.000Z

75

Magnet innovations for linacs  

Science Conference Proceedings (OSTI)

It is possible to produce large magnetic fields at the aperture of permanent magnet quadrupoles, even when the magnetic aperture is very small. That, combined with their compactness, makes permanent magnet quadrupoles very powerful components of small aperture linacs. Results will be presented about past and present work on both fixed and variable strength permanent magnets suitable for use in and around linacs.

Halbach, K.

1986-06-01T23:59:59.000Z

76

Automated Operation of the APS LINAC using the Procedure Execution Manager  

E-Print Network (OSTI)

The Advanced Photon Source (APS) linear accelerator has two thermionic cathode rf guns and one photocathode rf gun. The thermionic guns are used primarily for APS operations while the photocathode gun is used as a free-electron laser (FEL) driver. With each gun requiring a different lattice and timing configuration, the need to change quickly between guns puts great demands on the accelerator operators. Using the Procedure Execution Manager (PEM), a software environment for managing automated procedures, we have made start-up and switch-over of the linac systems both easier and more reliable. The PEM is a graphical user interface written in Tcl/Tk that permits the user to invoke "machine procedures" and control their execution. It allows construction of procedures in a hierarchical, parallel fashion, which makes for efficient execution and development. In this paper, we discuss the features and advantages of the PEM environment as well the specifics of our procedures for the APS linac.

Soliday, R; Borland, M

2000-01-01T23:59:59.000Z

77

Feasibility studies of an accelerator for the intense pulsed neutron source (IPNS)  

SciTech Connect

A proton linac plus synchrotron system was studied for the proposed Intense Pulsed Neutron Source (IPNS) at Argonne. An Alvarez H$sup -$ linac of 70 MeV and a high intensity fast cycling proton synchrotron to accelerate protons to 800 MeV will be the best choice to give a flux of 10$sup 16$ thermal neutron/sec cm$sup 2$ at the surface of moderator with a spallation neutron target of W or $sup 238$U. (auth)

Khoe, T.K.; Kimura, M.

1974-11-01T23:59:59.000Z

78

Small system for tritium accelerator mass spectrometry  

DOE Patents (OSTI)

Apparatus for ionizing and accelerating a sample containing isotopes of hydrogen and detecting the ratios of hydrogen isotopes contained in the sample is disclosed. An ion source generates a substantially linear ion beam including ions of tritium from the sample. A radio-frequency quadrupole accelerator is directly coupled to and axially aligned with the source at an angle of substantially zero degrees. The accelerator accelerates species of the sample having different mass to different energy levels along the same axis as the ion beam. A spectrometer is used to detect the concentration of tritium ions in the sample. In one form of the invention, an energy loss spectrometer is used which includes a foil to block the passage of hydrogen, deuterium and .sup.3 He ions, and a surface barrier or scintillation detector to detect the concentration of tritium ions. In another form of the invention, a combined momentum/energy loss spectrometer is used which includes a magnet to separate the ion beams, with Faraday cups to measure the hydrogen and deuterium and a surface barrier or scintillation detector for the tritium ions.

Roberts, Mark L. (Livermore, CA); Davis, Jay C. (Livermore, CA)

1993-01-01T23:59:59.000Z

79

Small system for tritium accelerator mass spectrometry  

DOE Patents (OSTI)

Apparatus for ionizing and accelerating a sample containing isotopes of hydrogen and detecting the ratios of hydrogen isotopes contained in the sample is disclosed. An ion source generates a substantially linear ion beam including ions of tritium from the sample. A radio-frequency quadrupole accelerator is directly coupled to and axially aligned with the source at an angle of substantially zero degrees. The accelerator accelerates species of the sample having different mass to different energy levels along the same axis as the ion beam. A spectrometer is used to detect the concentration of tritium ions in the sample. In one form of the invention, an energy loss spectrometer is used which includes a foil to block the passage of hydrogen, deuterium and [sup 3]He ions, and a surface barrier or scintillation detector to detect the concentration of tritium ions. In another form of the invention, a combined momentum/energy loss spectrometer is used which includes a magnet to separate the ion beams, with Faraday cups to measure the hydrogen and deuterium and a surface barrier or scintillation detector for the tritium ions.

Roberts, M.L.; Davis, J.C.

1993-02-23T23:59:59.000Z

80

Small system for tritium accelerator mass spectrometry  

DOE Patents (OSTI)

This invention is comprised of an apparatus for ionizing and accelerating a sample containing isotopes of hydrogen and detecting the ratios of hydrogen isotopes contained in the sample. An ion source generates a substantially linear ion beam including ions of tritium from the sample. A radiofrequency quadrupole accelerator is directly coupled to and axially aligned with the source at an angle of substantially zero degrees. The accelerator accelerates species of the sample having different mass to different energy levels along the same axis as the ion beam. A spectrometer is used to detect the concentration of tritium ions in the sample. In one form of the invention, an energy loss spectrometer is used which includes a foil to block the passage of hydrogen, deuterium and {sup 3}He ions, and a surface barrier or scintillation detector to detect the concentration of tritium ions. In another form of the invention, a combined momentum/energy loss spectrometer is used which includes a magnet to separate the ion beams, with Faraday cups to measure the hydrogen and deuterium and a surface barrier or scintillation detector for the tritium ions.

Roberts, M.L.; Davis, J.C.

1991-12-31T23:59:59.000Z

Note: This page contains sample records for the topic "linac accelerator system" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Brief evaluation of the control and rf systems in the Clinton P. Anderson Meson Physics Facility  

SciTech Connect

- From seminar on high-energy accelerator science; Tokyo and Tsukuba, Japan (5 Nov 1973). The design and operating experience with the computer control system and the rf power systems for the LAMPF linac are outlined. (WHK)

Hagerman, D.C.

1973-01-01T23:59:59.000Z

82

acceleration  

NLE Websites -- All DOE Office Websites (Extended Search)

middle name. The head of Fermilab's Accelerator Division explains a basic idea of high-energy physics in everyday language. Painless Physics Articles BEAM COOLING August 2, 1996...

83

Modified Accelerated Cost-Recovery System (MACRS) + Bonus Depreciation  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Modified Accelerated Cost-Recovery System (MACRS) + Bonus Modified Accelerated Cost-Recovery System (MACRS) + Bonus Depreciation (2008-2012) Modified Accelerated Cost-Recovery System (MACRS) + Bonus Depreciation (2008-2012) < Back Eligibility Agricultural Commercial Industrial Savings Category Bioenergy Commercial Heating & Cooling Manufacturing Buying & Making Electricity Alternative Fuel Vehicles Hydrogen & Fuel Cells Wind Water Solar Heating & Cooling Heating Water Heating Program Info Start Date 1986 Program Type Corporate Depreciation Provider U.S. Internal Revenue Service Under the federal Modified Accelerated Cost-Recovery System (MACRS), businesses may recover investments in certain property through depreciation deductions. The MACRS establishes a set of class lives for various types of property, ranging from three to 50 years, over which the property may be

84

Optimizing a Mobile Robot Control System using GPU Acceleration  

E-Print Network (OSTI)

Optimizing a Mobile Robot Control System using GPU Acceleration Nat Tuck, Michael Mc (IGVC) by running computationally intensive portions of the system on a commodity graphics processing competition our Robot Operating System (ROS) based control system would not run comfortably on the multicore

85

C-AD Accelerator Division  

NLE Websites -- All DOE Office Websites (Extended Search)

Accelerator Division Accelerator Division The Accelerator Division operates and continually upgrades a complex of eight accelerators: 2 Tandem Van de Graaff electrostatic accelerators, an Electron Beam Ion Source (EBIS), a 200 MeV proton Linac, the AGS Booster, the Alternating Gradient Synchrotron (AGS), and the 2 rings of the Relativistic Heavy Ion Collider (RHIC). These machines serve user programs at the Tandems, the Brookhaven Linac Isotope Producer (BLIP), the NASA Space Radiation Laboratory (NSRL), and the 2 RHIC experiments STAR, and PHENIX. The Division also supports the development of new accelerators and accelerator components. Contact Personnel Division Head: Wolfram Fischer Deputy Head: Joe Tuozzolo Division Secretary: Anna Petway Accelerator Physics: Michael Blaskiewicz

86

Design Optimization for an X-Ray Free Electron Laser Driven by SLAC Linac  

E-Print Network (OSTI)

FREE ELECTRON LASER DRIVEN BY SLAC LINAC Ming Xie, LawrenceLaser (FEL) driven by the SLAC linac. The study assumes theis carried out for the SLAC FEL over all independent system

Xie, Ming

1994-01-01T23:59:59.000Z

87

Accelerator  

NLE Websites -- All DOE Office Websites (Extended Search)

1. ACCELERATOR PHYSICS OF COLLIDERS Revised July 2011 by D. A. Edwards (DESY) and M. J. Syphers (MSU) 1.1. Luminosity This article provides background for the High-Energy Collider...

88

System Design Document: Hardware Accelerated Market Order Packet Generation  

E-Print Network (OSTI)

This document specifies the design of Hardware Accelerated Market Order Packet Generator. The designed system aims at accelerating the release of packets on the network. Optimization is acheived in terms of reducing the latency, decreasing the data uploaded on the Avalon bus which will eventually lead to power optimization. A software application running on a soft-processor would change the transaction-data going over the network in runtime. This document describes the overall architecture of the system, along with describing the design of the custom ethernet accelerator. Typically the ethernet controller should be capable of receiving and sending data over the network. Our implementation will accelerate the sending of data to the network. The receiving of data will still be handled in software.

Ankur Gupta; Dhananjay Palshikar; Mithila Paryekar; Sushant Bhardwaj

2012-01-01T23:59:59.000Z

89

Formation of electron bunches with tailored current profiles using multi-frequency linacs  

SciTech Connect

Tailoring an electron bunch with specific current profile can provide substantial enhancement of the transformer ratio in beam-driven acceleration methods. We present a method relying on the use of a linac with accelerating sections operating at different frequencies followed by a magnetic bunch compressor. The experimental verfification of the technique in a two-frequency linac is presented. The compatibility of the proposed technique with the formation and acceleration of a drive and witness bunches is numerically demonstrated.

Piot, P.; Behrens, C.; Gerth, C.; Lemery, F.; Mihalcea, D.; Stoltz, P. [Northern Illinois Center for Accelerator and Detector Development and Department of Physics, Northern Illinois University, DeKalb, IL 60115 (United States) and Accelerator Physics Center, Fermi National Accelerator Laboratory, Batavia, IL 60510 (United States); Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85 D-22607 Hamburg (Germany); Northern Illinois Center for Accelerator and Detector Development and Department of Physics, Northern Illinois University, DeKalb, IL 60115 (United States); Tech-X Corporation, Boulder, CO 80303 (United States)

2012-12-21T23:59:59.000Z

90

Performance of the intense pulsed neutron source accelerator system  

Science Conference Proceedings (OSTI)

The Intense Pulsed Neutron Source (IPNS) facility has now been operating in a routine way for outside users since November 1, 1981. From that date through December of 1982, the accelerator system was scheduled for neutron science for 4500 hours. During this time the accelerator achieved its short-term goals by delivering about 380,000,000 pulses of beam totaling over 6 x 10/sup 20/ protons. The changes in equipment and operating practices that evolved during this period of intense running are described. The intensity related instability threshold was increased by a factor of two and the accelerator beam current has been ion source limited. Plans to increase the accelerator intensity are also described. Initial operating results with a new H/sup -/ ion source are discussed.

Potts, C.; Brumwell, F.; Rauchas, A.; Stipp, V.; Volk, G.

1983-01-01T23:59:59.000Z

91

S-Band Loads for SLAC Linac  

SciTech Connect

The S-Band loads on the current SLAC linac RF system were designed, in some cases, 40+ years ago to terminate 2-3 MW peak power into a thin layer of coated Kanthal material as the high power absorber [1]. The technology of the load design was based on a flame-sprayed Kanthal wire method onto a base material. During SLAC linac upgrades, the 24 MW peak klystrons were replaced by 5045 klystrons with 65+ MW peak output power. Additionally, SLED cavities were introduced and as a result, the peak power in the current RF setup has increased up to 240 MW peak. The problem of reliable RF peak power termination and RF load lifetime required a careful study and adequate solution. Results of our studies and three designs of S-Band RF load for the present SLAC RF linac system is discussed. These designs are based on the use of low conductivity materials.

Krasnykh, A.; Decker, F.-J.; /SLAC; LeClair, R.; /INTA Technologies, Santa Clara

2012-08-28T23:59:59.000Z

92

On-Line Measurement and Tuning of Multi-Pass Recirculation Time in the CEBAF Linacs  

E-Print Network (OSTI)

On-Line Measurement and Tuning of Multi-Pass Recirculation Time in the CEBAF Linacs Michael, USA Abstract CEBAF is a CW, recirculating electron accelerator, us- ing on-crest RF acceleration the beam to drift off-crest with respect to the accelerating fields. Figure 1: Layout of CEBAF Accelerator

93

Development of a Low-Energy Proton Accelerator System for the Proton Engineering Frontier Project (PEFP)  

E-Print Network (OSTI)

Development of a Low-Energy Proton Accelerator System for the Proton Engineering Frontier Project (PEFP)

Han, J M

2003-01-01T23:59:59.000Z

94

FIRST EXPERIMENTS WITH THE RF GUN BASED INJECTOR FOR THE TESLA TEST FACILITY LINAC  

E-Print Network (OSTI)

FIRST EXPERIMENTS WITH THE RF GUN BASED INJECTOR FOR THE TESLA TEST FACILITY LINAC S. Schreiber for the TESLA Collaboration, DESY, 22603 Hamburg, Germany Abstract During 1997 and 1998 a first accelerator module was tested successfully at the TESLA Test Facility Linac (TTFL) at DESY. Eight superconducting

95

PERFORMANCE STATUS OF THE RF-GUN BASED INJECTOR OF THE TESLA TEST FACILITY LINAC  

E-Print Network (OSTI)

PERFORMANCE STATUS OF THE RF-GUN BASED INJECTOR OF THE TESLA TEST FACILITY LINAC S. Schreiber£ for the TESLA Collaboration, DESY, 22603 Hamburg, Germany Abstract The TESLA Test Facility Linac (TTFL) at DESY uses two modules with 8 TESLA superconducting accelerat- ing structures each to accelerate an electron

96

Measurement of ion beam profiles in a superconducting linac with a laser wire  

Science Conference Proceedings (OSTI)

A laser wire ion beam profile monitor system has been developed at the Spallation Neutron Source accelerator complex. The laser wire system uses a single laser source to measure the horizontal and vertical profiles of a pulsed hydrogen ion (H{sup -}) beam along a 230 m long superconducting linac, which accelerates H{sup -} from 200 MeV to 1 GeV. In this paper, we describe the laser optics requirement for the system, the performance of the profile measurement, and the effects of laser parameters on the measurement reliability. The result provides a practical guideline for the development of a large-scale, operational, laser-based diagnostics in accelerator facilities.

Liu Yun; Long, Cary; Peters, Charles; Aleksandrov, Alexander

2010-12-10T23:59:59.000Z

97

A post accelerator for the U.S. rare isotope accelerator facility.  

Science Conference Proceedings (OSTI)

Work supported by the U. S. Department of Energy under contract W-31-109-ENG-38. The proposed Rare Isotope Accelerator (RIA) Facility includes a post-accelerator for rare isotopes (RIB linac) which must produce high-quality beams of radioactive ions over the full mass range, including uranium, at energies above the coulomb barrier, and have high transmission and efficiency. The latter requires the RIB linac to accept at injection ions in the 1+ charge state. A concept for such a post accelerator suitable for ions up to mass 132 has been previously described [1]. This paper presents a modified concept which extends the mass range to uranium. A high resolution separator for purifying beams at the isobaric level precedes the RIB linac. The mass filtering process will provide high purity beams while preserving transmission. For most cases a resolution of about m/{Delta}m=20,000 is adequate at mass A=100 to obtain a separation between isobars of mass excess difference of 5 MeV. The design for a device capable of purifying beams at the isobaric level included calculations up to 5th order. The RIB linac will utilize existing superconducting heavy-ion linac technology for all but a small portion of the accelerator system. The exceptional piece, a very-low-charge-state injector, section needed for just the first few MV of the RIB accelerator, consists of a pre-buncher followed by several sections of cw, normally-conducting RFQ. Two stages of charge stripping are provided: helium gas stripping at energies of a few keV/u, and additional foil stripping at {approx}680 keV/u for the heavier ions. In extending the mass range to uranium, however, for best efficiency the helium gas stripping must be performed at different energies for different mass ions. We present numerical simulations of the beam dynamics of a design for the complete RIB linac which provides for several stripping options and uses cost-effective solenoid focusing elements in the drift-tube linac.

Ostroumov, P. N.; Kelly, M. P.; Kolomiets, A. A.; Nolen, J. A.; Portillo, M.; Shepard, K. W.; Vinogradov, N. E.

2002-06-11T23:59:59.000Z

98

HIGH CURRENT ENERGY RECOVERY LINAC AT BNL.  

SciTech Connect

We present the design and parameters of an energy recovery linac (ERL) facility, which is under construction in the Collider-Accelerator Department at BNL. This R&D facility has the goal of demonstrating CW operation of an ERL with an average beam current in the range of 0.1-1 ampere and with very high efficiency of energy recovery. The possibility of a future upgrade to a two-pass ERL is also being considered. The heart of the facility is a 5-cell 703.75 MHz super-conducting RF linac with strong Higher Order Mode (HOM) damping. The flexible lattice of the ERL provides a test-bed for exploring issues of transverse and longitudinal instabilities and diagnostics of intense CW electron beams. This ERL is also perfectly suited for a far-IR FEL. We present the status and plans for construction and commissioning of this facility.

LITVINENKO,V.N.; BEN-ZVI,I.; BARTON,D.S.; ET AL.

2005-05-16T23:59:59.000Z

99

An Automatic Control System for Conditioning 30 GHz Accelerating Structures  

E-Print Network (OSTI)

A software application programme has been developed to allow fast and automatic high-gradient conditioning of accelerating structures at 30 GHz in CTF3. The specificity of the application is the ability to control the high-power electron beam which produces the 30 GHz RF power used to condition the accelerating structures. The programme permits operation round the clock with minimum manpower requirements. In this paper the fast control system, machine control system, logging system, graphical user control interface and logging data visualization are described. An outline of the conditioning control system itself and of the feedback controlling peak power and pulse length is given. The software allows different types of conditioning strategies to be programmed

Dubrovskiy, A

2008-01-01T23:59:59.000Z

100

Survey of Advanced Dielectric Wakefield Accelerators  

NLE Websites -- All DOE Office Websites (Extended Search)

out wakefield accelerator research. Wakefield Acceleration at AATF The AATF had an electron beam produced by an L- band thermionic RF gun followed by two traveling-wave linac...

Note: This page contains sample records for the topic "linac accelerator system" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Phase and amplitude detection system for the Stanford Linear Accelerator  

Science Conference Proceedings (OSTI)

A computer controlled phase and amplitude detection system to measure and stabilize the rf power sources in the Stanford Linear Accelerator is described. This system measures the instantaneous phase and amplitude of a 1 microsecond 2856 MHz rf pulse and will be used for phase feedback control and for amplitude and phase jitter detection. This paper discusses the measurement system performance requirements for the operation of the Stanford Linear Collider, and the design and implementation of the phase and amplitude detection system. The fundamental software algorithms used in the measurement are described, as is the performance of the prototype phase and amplitude detector system.

Fox, J.D.; Schwarz, H.D.

1983-01-01T23:59:59.000Z

102

Argonne Accelerator Institute  

NLE Websites -- All DOE Office Websites (Extended Search)

CWDD - Continuous Wave Deuterium Demonstrator CWDD - Continuous Wave Deuterium Demonstrator The Continuous Wave Deuterium Demonstrator (CWDD) accelerator, a cryogenically-cooled (26K) linac, was designed to accelerate 80 mA cw of D to 7.5 MeV. CWDD was being built to demonstrate the lauching of a beam with characteristics suitable for a space-based neutral particle-beam (NPB). A considerable amount of hardware was constructed and installed in the Argonne-based facility, and major performance milestones were achieved before program funding ended in October 1993. References - Document Access Guide Continuous Wave Deuterium Demonstrator Final Design Review, Grumman Space Systems, Grumman-Culham Laboratory, Los Alamos (1989). (Located in the Argonne Research Library) Recommissioning and first operation of the CWDD injector at Argonne

103

Critical design issues of high intensity proton linacs  

SciTech Connect

Medium-energy proton linear accelerators are being studied as drivers for spallation applications requiring large amounts of beam powder. Important design factors for such high-intensity linacs are reviewed, and issues and concerns specific to this unprecedented power regime are discussed.

Lawrence, G.P.

1994-08-01T23:59:59.000Z

104

Compensation of Beam Loading in the ALS Injector Linac  

E-Print Network (OSTI)

to offset the beam loading. ALS Injector Requirements Gun.gun, bunchers, and 50 MeV linac of the ALS injection system.The ALS injector design has been described in previous

Selph, F.

1988-01-01T23:59:59.000Z

105

Conceptual Design for Replacement of the DTL and CCL with Superconducting RF Cavities in the Spallation Neutron Source Linac  

Science Conference Proceedings (OSTI)

The Spallation Neutron Source Linac utilizes normal conducting RF cavities in the low energy section from 2.5 MeV to 186 MeV. Six Drift Tube Linac (DTL) structures accelerate the beam to 87 MeV, and four Coupled Cavity Linac (CCL) structures provide further acceleration to 186 MeV. The remainder of the Linac is comprised of 81 superconducting cavities packaged in 23 cryomodules to provide final beam energy of approximately 1 GeV. The superconducting Linac has proven to be substantially more reliable than the normal conducting Linac despite the greater number of stations and the complexity associated with the cryogenic plant and distribution. A conceptual design has been initiated on a replacement of the DTL and CCL with superconducting RF cavities. The motivation, constraints, and conceptual design are presented.

Champion, Mark S [ORNL; Doleans, Marc [ORNL; Kim, Sang-Ho [ORNL

2013-01-01T23:59:59.000Z

106

An overview of LINAC ion sources  

SciTech Connect

This paper discusses ion sources used in high-duty-factor proton and H{sup -} Linacs as well as in accelerators utilizing multi-charged heavy ions, mostly for nuclear physics applications. The included types are Electron Cyclotron Resonance (ECR) sources as well as filament and rf driven multicusp sources. The paper does not strive to attain encyclopedic character but rather to highlight major lines of development, peak performance parameters and type-specific limitations and problems of these sources. The main technical aspects being discussed are particle feed, plasma generation and ion production by discharges, and plasma confinement.

Keller, Roderich [Los Alamos National Laboratory

2008-01-01T23:59:59.000Z

107

Quick setup of unit test for accelerator controls system  

SciTech Connect

Testing a single hardware unit of an accelerator control system often requires the setup of a program with graphical user interface. Developing a dedicated application for a specific hardware unit test could be time consuming and the application may become obsolete after the unit tests. This paper documents a methodology for quick design and setup of an interface focused on performing unit tests of accelerator equipment with minimum programming work. The method has three components. The first is a generic accelerator device object (ADO) manager which can be used to setup, store, and log testing controls parameters for any unit testing system. The second involves the design of a TAPE (Tool for Automated Procedure Execution) sequence file that specifies and implements all te testing and control logic. The sting third is the design of a PET (parameter editing tool) page that provides the unit tester with all the necessary control parameters required for testing. This approach has been used for testing the horizontal plane of the Stochastic Cooling Motion Control System at RHIC.

Fu, W.; D'Ottavio, T.; Gassner, D.; Nemesure, S.; Morris, J.

2011-03-28T23:59:59.000Z

108

High-Performance Beam Simulator for the LANSCE Linac  

SciTech Connect

A high performance multiparticle tracking simulator is currently under development at Los Alamos. The heart of the simulator is based upon the beam dynamics simulation algorithms of the PARMILA code, but implemented in C++ on Graphics Processing Unit (GPU) hardware using NVIDIA's CUDA platform. Linac operating set points are provided to the simulator via the EPICS control system so that changes of the real time linac parameters are tracked and the simulation results updated automatically. This simulator will provide valuable insight into the beam dynamics along a linac in pseudo real-time, especially where direct measurements of the beam properties do not exist. Details regarding the approach, benefits and performance are presented.

Pang, Xiaoying [Los Alamos National Laboratory; Rybarcyk, Lawrence J. [Los Alamos National Laboratory; Baily, Scott A. [Los Alamos National Laboratory

2012-05-14T23:59:59.000Z

109

PERFORMANCE OF THE DIAGNOSTICS FOR NSLS-II LINAC COMMISSIONING  

Science Conference Proceedings (OSTI)

The National Synchrotron Light Source II (NSLS-II) is a state of the art 3-GeV third generation light source currently under construction at Brookhaven National Laboratory. The NSLS-II injection system consists of a 200 MeV linac, a 3-GeV booster synchrotron and associated transfer lines. The transfer lines not only provide a means to deliver the beam from one machine to another, they also provide a suite of diagnostics and utilities to measure the properties of the beam to be delivered. In this paper we discuss the suite of diagnostics that will be used to commission the NSLS-II linac and measure the beam properties. The linac to booster transfer line can measure the linac emittance with a three screens measurement or a quadrupole scan. Energy and energy spread are measured in a dispersive section. Total charge and charge uniformity are measured with wall current monitors in the linac and transformers in the transfer line. We show that the performance of the diagnostics in the transfer line will be sufficient to ensure the linac meets its specifications and provides a means of trouble shooting and studying the linac in future operation.

Fliller III, R.; Padrazo, D.; Wang, G.M.; Heese, R.; Hseuh H.-C.; Johanson, M.; Kosciuk, B.N.; Pinayev, I.; Rose, J.; Shaftan, T.; Singh, O.

2011-03-28T23:59:59.000Z

110

Status and Future Developments in Large Accelerator Control Systems  

Science Conference Proceedings (OSTI)

Over the years, accelerator control systems have evolved from small hardwired systems to complex computer controlled systems with many types of graphical user interfaces and electronic data processing. Today's control systems often include multiple software layers, hundreds of distributed processors, and hundreds of thousands of lines of code. While it is clear that the next generation of accelerators will require much bigger control systems, they will also need better systems. Advances in technology will be needed to ensure the network bandwidth and CPU power can provide reasonable update rates and support the requisite timing systems. Beyond the scaling problem, next generation systems face additional challenges due to growing cyber security threats and the likelihood that some degree of remote development and operation will be required. With a large number of components, the need for high reliability increases and commercial solutions can play a key role towards this goal. Future control systems will operate more complex machines and need to present a well integrated, interoperable set of tools with a high degree of automation. Consistency of data presentation and exception handling will contribute to efficient operations. From the development perspective, engineers will need to provide integrated data management in the beginning of the project and build adaptive software components around a central data repository. This will make the system maintainable and ensure consistency throughout the inevitable changes during the machine lifetime. Additionally, such a large project will require professional project management and disciplined use of well-defined engineering processes. Distributed project teams will make the use of standards, formal requirements and design and configuration control vital. Success in building the control system of the future may hinge on how well we integrate commercial components and learn from best practices used in other industries.

Karen S. White

2006-10-31T23:59:59.000Z

111

Klystron-linac combination  

DOE Patents (OSTI)

A combination klystron-linear accelerator which utilizes anti-bunch electrons generated in the klystron section as a source of electrons to be accelerated in the accelerator section. Electron beam current is controlled by second harmonic bunching, constrictor aperture size and magnetic focusing. Rf coupling is achieved by internal and external coupling.

Stein, W.E.

1980-04-24T23:59:59.000Z

112

Alternating phase focused linacs  

SciTech Connect

A heavy particle linear accelerator employing rf fields for transverse and ongitudinal focusing as well as acceleration. Drift tube length and gap positions in a standing wave drift tube loaded structure are arranged so that particles are subject to acceleration and succession of focusing and defocusing forces which contain the beam without additional magnetic or electric focusing fields.

Swenson, Donald A. (Los Alamos, NM)

1980-01-01T23:59:59.000Z

113

Accelerator Update | Archive | 2012  

NLE Websites -- All DOE Office Websites (Extended Search)

2 Accelerator Update Archive 2 Accelerator Update Archive April 27, 2012 - April 30, 2012 NuMI reported receiving 7.67E18 protons on target for the period from 4/23/12 to 4/30/12. The Booster developed an aperture restriction that required lower beam intensity Main Injector personnel completed their last study The shutdown begins Linac, MTA, and Booster will continue using beam for one or two more weeks Linac will supply the Neutron Therapy Facility beam for most of the shutdown April 25, 2012 - April 27, 2012 Booster beam stop problem repaired Beam to all experiments will shut off at midnight on Monday morning, 4/30/12. Main Injector will continue to take beam until 6 AM on Monday morning. Linac, the Neutron Therapy Facility, MTA, and Booster will continue using beam for one or two more weeks. The Fermi Accelerator Complex will be in shutdown for approximately one year

114

SNS/BNL Accelerator Physics Group page  

NLE Websites -- All DOE Office Websites (Extended Search)

SNS/BNL Accelerator Systems group SNS/BNL Accelerator Systems group CA-Department Bldg 817 Upton, NY 11973, USA The Spallation Neutron Source project is a collaboration between six national laboratories of the United states to build a MegaWatt neutrons source driven by a proton accelerator. The complex is going to be build in Oak Ridge (Tennessee) and consists of a full energy (1GeV) linac, an accumulator ring and a mercury target with several instruments for neutron scattering. All the information in the project can be found here. At Brookhaven national laboratory we work mainly in the accumulator ring and transfer lines. Our group is part or the Collider Accelerator Division also in charge of RHIC and the AGS complex. If you are looking for information in a particular topic you can contact the persons working on

115

Pulse power linac  

DOE Patents (OSTI)

A linear acceleration for charged particles is constructed of a plurality of transmission line sections that extend between a power injection region and an accelerating region. Each line section is constructed of spaced plate-like conductors and is coupled to an accelerating gap located at the accelerating region. Each gap is formed between a pair of apertured electrodes, with all of the electrode apertures being aligned along a particle accelerating path. The accelerating gaps are arranged in series, and at the injection region the line sections are connected in parallel. At the injection region a power pulse is applied simultaneously to all line sections. The line sections are graduated in length so that the pulse reaches the gaps in a coordinated sequence whereby pulse energy is applied to particles as they reach each of the gaps along the accelerating path.

Villa, Francesco (Alameda, CA)

1990-01-01T23:59:59.000Z

116

Preparing accelerator systems for the RHIC sextant commissioning  

Science Conference Proceedings (OSTI)

The Relativistic Heavy Ion Collider (RHIC) construction is progressing steadily towards completion in 1999 when beams will circulate in both collider rings. One of the major tests of the RHIC project was the commissioning of the first sextant with gold ion beams in early 1997. This is a report on preparation of the RHIC accelerator systems for the first sextant test. It includes beam position monitors, timing, injection correction through the magnetic septum and kickers, current transformers, flags and the ionization beam profile monitors, beam loss monitors, beam and quench permit link system, power supply controls, and the configuration database system. The software and hardware development and coordination of the different systems before commissioning were regularly checked during bi-weekly, and (later) weekly, progress report meetings.

Trbojevic, D.; Pilat, F.; Ahrens, L. [and others

1997-07-01T23:59:59.000Z

117

Novel Approach to Linear Accelerator Superconducting Magnet System  

SciTech Connect

Superconducting Linear Accelerators include a superconducting magnet system for particle beam transportation that provides the beam focusing and steering. This system consists of a large number of quadrupole magnets and dipole correctors mounted inside or between cryomodules with SCRF cavities. Each magnet has current leads and powered from its own power supply. The paper proposes a novel approach to magnet powering based on using superconducting persistent current switches. A group of magnets is powered from the same power supply through the common, for the group of cryomodules, electrical bus and pair of current leads. Superconducting switches direct the current to the chosen magnet and close the circuit providing the magnet operation in a persistent current mode. Two persistent current switches were fabricated and tested. In the paper also presented the results of magnetic field simulations, decay time constants analysis, and a way of improving quadrupole magnetic center stability. Such approach substantially reduces the magnet system cost and increases the reliability.

Kashikhin, Vladimir; /Fermilab

2011-11-28T23:59:59.000Z

118

BEAM STUDIES AT THE SNS LINAC  

Science Conference Proceedings (OSTI)

The most recent beam dynamics studies at the Spallation Neutron Source (SNS) linac, including major beam loss reduction efforts in the normal conducting linac and in the superconducting linac (SCL), and the simulation and measurement of longitudinal beam halo and longitudinal acceptance at the entrance of the SCL are discussed. Oscillation of the beam centroid around the linac synchronous phase and the phase adiabatic damping curves in the SNS linac are investigated with linac longitudinal models and measured with all the linac beam phase monitors.

Zhang, Yan [ORNL

2009-01-01T23:59:59.000Z

119

The Linac Injector For The ANL 7 Ge V Advanced Photon Source  

NLE Websites -- All DOE Office Websites (Extended Search)

Injector For The ANL 7 Ge V Injector For The ANL 7 Ge V Advanced Photon Source A. Nassiri, W. Wesolowski, and G. Mavrogenes Argonne National Laboratory Submitted to the 1990 LINAC Conferece Albuquerque, New Mexico LS-154 9/28/90 TEE LINAC INJECTOR FOR TEE ANL 7 G<.iJ,V ADVANCED PHOTON SOORCE* A. Nassiri, W. Wesolowski, and G. Mavrogenes Argonne National Laboratory 9700 South Cass Avenue Argonne, IL 60439 USA Abstract The Argonne Advanced Photon Source (APS) linac system consists of a 200 MeV electron linac, a positron converter, and a 450 MeV positron linac. Design parameters and computer simulations of the two linac systems are presented. Introduction The Argonne Advanced Photon Source is a 7 GeV synchrotron X-Ray facility. The APS machine parameters have been described.

120

Intensity Effects of the FACET Beam in the SLAC Linac  

SciTech Connect

The beam for FACET (Facility for Advanced aCcelerator Experimental Tests) at SLAC requires an energy-time correlation ('chirp') along the linac, so it can be compressed in two chicanes, one at the midpoint in sector 10 and one W-shaped chicane just before the FACET experimental area. The induced correlation has the opposite sign to the typical used for BNS damping, and therefore any orbit variations away from the center kick the tail of the beam more than the head, causing a shear in the beam and emittance growth. Any dispersion created along the linac has similar effects due to the high (>1.2% rms) energy spread necessary for compression. The initial huge emittances could be reduced by a factor of 10, but were still bigger than expected by a factor of 2-3. Normalized emittance of 3 {micro}m-rad in Sector 2 blew up to 150 {micro}m-rad in Sector 11 but could be reduced to about 6-12 {micro}m-rad, for the vertical plane although the results were not very stable. Investigating possible root causes for this, we found locations where up to 10 mm dispersion was created along the linac, which were finally verified with strong steering and up to 7 mm settling of the linac accelerator at these locations.

Decker, F.-J.; Lipkowitz, N.; Sheppard, J.; White, G.R.; Wienands, U.; Woodley, M.; Yocky, G.; /SLAC

2012-07-03T23:59:59.000Z

Note: This page contains sample records for the topic "linac accelerator system" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Overview of the High Intensity Neutrino Source Linac R&D program at Fermilab  

SciTech Connect

The Fermilab High Intensity Neutrino Source (HINS) Linac R&D program is building a first-of-a-kind 60 MeV superconducting H- linac. The HINS Linac incorporates superconducting solenoids for transverse focusing, high power RF vector modulators for independent control of multiple cavities powered from a single klystron, and superconducting spoke-type accelerating cavities starting at 10 MeV. This will be the first application and demonstration of any of these technologies in a low-energy, high-intensity proton/H- linear accelerator. The HINS effort is relevant to a high intensity, superconducting H- linac that might serve the next generation of neutrino physics and muon storage ring/collider experiments. An overview of the HINS program, machine design, status, and outlook is presented.

Webber, R.C.; Appollinari, G.; Carneiro, J.P.; Gonin, I.; Hanna, B.; Hays, S.; Khabiboulline, T.; Lanfranco, G.; Madrak, R.L.; Moretti, A.; Nicol, T.; /Fermilab /Argonne

2008-09-01T23:59:59.000Z

122

RELWAY: a process data highway system optimized for accelerators  

SciTech Connect

The command/control scheme for the Isabelle accelerator, specifically the process data highway are discussed. (GHT)J

Frankel, R.; Buxton, W,; Kohler, K.; Warkentien, R.; White, A.

1981-01-01T23:59:59.000Z

123

AUTOMATED OPERATION OF THE APS LINAC USING THE PROCEDURE EXECUTION MANAGER  

E-Print Network (OSTI)

The Advanced Photon Source (APS) linear accelerator has two thermionic cathode rf guns and one photocathode rf gun. The thermionic guns are used primarily for APS operations while the photocathode gun is used as a freeelectron laser (FEL) driver. With each gun requiring a different lattice and timing configuration, the need to change quickly between guns puts great demands on the accelerator operators. Using the Procedure Execution Manager (PEM), a software environment for managing automated procedures, we have made start-up and switchover of the linac systems both easier and more reliable. The PEM is a graphical user interface written in Tcl/Tk that permits the user to invoke ‘machine procedures ’ and control their execution. It allows

unknown authors

2000-01-01T23:59:59.000Z

124

Microprocessor based system for roll-down and acceleration tests  

DOE Green Energy (OSTI)

A microprocessor-based, road-test system for measuring and recording roll-down and acceleration data has been designed and built. The system provides for rapid testing of vehicles, can be operated by a single individual, and allows detailed data acquisition when required. Digital data storage and output capability allows direct exchange of data with other computers or calculators for data analysis and reduction. System input is distance from a fith wheel and elapsed time. The microcomputer system records time to the nearest 0.01 second, distance to the nearest foot, and calculates velocity to the nearest 0.1 mile per hour. Data can be stored at specified time, distance, and velocity intervals. Current time, distance, and velocity are displayed on a liquid crystal display panel. A printing calculator prints a summary of the run. Detailed data is stored in RAM and is output to magnetic tape at the end of the run. The tapes are used to obtain plots and as input for data reduction programs that calculate rolling friction and aerodynamic drag. The road-test system has been used to test a number of vehicles. In most of the tests one person drove the vehicle and operated the system.

Lynn, D.K.; Derouin, C.; Lamar, P.

1979-01-01T23:59:59.000Z

125

INCREASED UNDERSTANDING OF BEAM LOSSES FROM THE SNS LINAC PROTON EXPERIMENT  

Science Conference Proceedings (OSTI)

Beam loss is a major concern for high power hadron accelerators such as the Spallation Neutron Source (SNS). An unexpected beam loss in the SNS superconducting linac (SCL) was observed during the power ramp up and early operation. Intra-beam-stripping (IBS) loss, in which interactions between H- particles within the accelerated bunch strip the outermost electron, was recently identified as a possible cause of the beam loss. A set of experiments using proton beam acceleration in the SNS linac was conducted, which supports IBS as the primary beam loss mechanism in the SNS SCL.

Aleksandrov, Alexander V [ORNL; Shishlo, Andrei P [ORNL; Plum, Michael A [ORNL; Lebedev, Valerie [FNAL; Laface, Emanuele [ESS; Galambos, John D [ORNL

2013-01-01T23:59:59.000Z

126

Design features of high-intensity medium-energy superconducting heavy-ion Linac.  

DOE Green Energy (OSTI)

The proposed Rare Isotope Accelerator (RIA) requires the construction of a cw 1.4 GV superconducting (SC) linac that is capable of producing 400 kW beams of all ions from protons at 900 MeV to uranium at 400 MeV/u. The design of such a linac was outlined at the previous Linac conference. This linac will accelerate multiple-charge-states (multi-q) of the heaviest ion beams, for which the beam current is limited by ion-source performance. The linac consists of two different types of accelerating and focusing lattice: for uranium below {approx}85 MeV/u the focusing is provided by SC solenoids installed in cryostats with the SC resonators while in the high-beta section the focusing elements are located outside of the cryostats. A detailed design has been developed for the focusing-accelerating lattice of the linac. Beam dynamics studies have been performed with the goal of optimization of the linac structure in order to reduce a possible effective emittance growth of the multi-q uranium beam. A wide tuning range of the accelerating and focusing fields is required for acceleration of the variety of ions with different charge-to-mass ratios to the highest possible energy in single charge state mode. The focusing must be retuned for different ion masses to avoid resonance coupling between the transverse and longitudinal motions. Any visible impact of this coupling on the formation of beam halo must be avoided due to the high beam power.

Ostroumov, P. N.

2002-09-20T23:59:59.000Z

127

Use of off-axis injection as an alternative to geometrically merging beams in an energy-recovering linac  

DOE Patents (OSTI)

A method of using off-axis particle beam injection in energy-recovering linear accelerators that increases operational efficiency while eliminating the need to merge the high energy re-circulating beam with an injected low energy beam. In this arrangement, the high energy re-circulating beam and the low energy beam are manipulated such that they are within a predetermined distance from one another and then the two immerged beams are injected into the linac and propagated through the system. The configuration permits injection without geometric beam merging as well as decelerated beam extraction without the use of typical beamline elements.

Douglas, David R. (York County, VA)

2012-01-10T23:59:59.000Z

128

BEAM SIMULATIONS USING VIRTUAL DIAGNOSTICS FOR THE DRIVER LINAC  

Science Conference Proceedings (OSTI)

End-to-end beam simulations for the driver linac have shown that the design meets the necessary performance requirements including having adequate transverse and longitudinal acceptances. However, to achieve reliable operational performance, the development of appropriate beam diagnostic systems and control room procedures are crucial. With limited R&D funding, beam simulations provide a cost effective tool to evaluate candidate beam diagnostic systems and to provide a critical basis for developing early commissioning and later operational activities. We propose to perform beam dynamic studies and engineering analyses to define the requisite diagnostic systems of the driver linac and through simulation to develop and test commissioning and operational procedures.

R. C. York; X. Wu; Q. Zhao

2011-12-21T23:59:59.000Z

129

Transmutation of nuclear waste in accelerator-driven systems  

E-Print Network (OSTI)

Today more than ever energy is not only a cornerstone of human development, but also a key to the environmental sustainability of economic activity. In this context, the role of nuclear power may be emphasized in the years to come. Nevertheless, the problems of nuclear waste, safety and proliferation still remain to be solved. It is believed that the use of accelerator-driven systems (ADSs) for nuclear waste transmutation and energy production would address these problems in a simple, clean and economically viable, and therefore sustainable, manner. This thesis covers the major nuclear physics aspects of ADSs, in particular the spallation process and the core neutronics specific to this type of systems. The need for accurate nuclear data is described, together with a detailed analysis of the specific isotopes and energy ranges in which this data needs to be improved and the impact of their uncertainty. Preliminary experimental results for some of these isotopes, produced by the Neutron Time-of-Flight (n_TOF) ...

Herrera-Martínez, A

2004-01-01T23:59:59.000Z

130

Beam Loss Studies for Rare Isotope Driver Linacs Final Report  

Science Conference Proceedings (OSTI)

The Fortran 90 RIAPMTQ/IMPACT code package is a pair of linked beam-dynamics simulation codes that have been developed for end-to-end computer simulations of multiple-charge-state heavy-ion linacs for future exotic-beam facilities. These codes have multiple charge-state capability, and include space-charge forces. The simulations can extend from the low-energy beam-transport line after an ECR ion source to the end of the linac. The work has been performed by a collaboration including LANL, LBNL, ANL, and MSU. The code RIAPMTQ simulates the linac front-end beam dynamics including the LEBT, RFQ, and MEBT. The code IMPACT simulates the beam dynamics of the main superconducting linac. The codes have been benchmarked for rms beam properties against previously existing codes at ANL and MSU. The codes allow high-statistics runs on parallel supercomputing platforms, particularly at NERSC at LBNL, for studies of beam losses. The codes also run on desktop PC computers for low-statistics work. The code package is described in more detail in a recent publication [1] in the Proceedings of PAC07 (2007 US Particle Accelerator Conference). In this report we describe the main activities for the FY07 beam-loss studies project using this code package.

Wangler, T P; Kurennoy, S S; Billen, J H; Crandall, K R; Qiang, J; Ryne, R D; Mustapha, B; Ostroumov, P; Zhao, Q; York, and R. C.

2008-03-26T23:59:59.000Z

131

RHIC | Accelerator Complex  

NLE Websites -- All DOE Office Websites (Extended Search)

RHIC Accelerators RHIC Accelerators The Relativistic Heavy Ion Collider complex is actually composed of a long "chain" of particle accelerators Heavy ions begin their travels in the Electron Beam Ion Source accelerator (1). The ions then travel to the small, circular Booster (3) where, with each pass, they are accelerated to higher energy. From the Booster, ions travel to the Alternating Gradient Synchrotron (4), which then injects the beams via a beamline (5) into the two rings of RHIC (6). In RHIC, the beams get a final accelerator "kick up" in energy from radio waves. Once accelerated, the ions can "orbit" inside the rings for hours. RHIC can also conduct colliding-beam experiments with polarized protons. These are first accelerated in the Linac (2), and further in the Booster (3), AGS (4), and

132

Disposition of Nuclear Waste Using Subcritical Accelerator-Driven Systems  

SciTech Connect

ATW destroys virtually all the plutonium and higher actinides without reprocessing the spent fuel in a way that could lead to weapons material diversion. An ATW facility consists of three major elements: (1) a high-power proton linear accelerator; (2) a pyrochemical spent fuel treatment i waste cleanup system; (3) a liquid lead-bismuth cooled burner that produces and utilizes an intense source-driven neutron flux for transmutation in a heterogeneous (solid fuel) core. The concept is the result of many years of development at LANL as well as other major international research centers. Once demonstrated and developed, ATW could be an essential part of a global non-proliferation strategy for countries that could build up large quantities of plutonium from their commercial reactor waste. ATW technology, initially proposed in the US, has received wide and rapidly increasing attention abroad, especially in Europe and the Far East with major programs now being planned, organized and tided. Substantial convergence presently exists on the technology choices among the programs, opening the possibility of a strong and effective international collaboration on the phased development of the ATW technology.

Doolen, G.D.; Venneri, F.; Li, N.; Williamson, M.A.; Houts, M.; Lawrence, G.

1998-06-27T23:59:59.000Z

133

Intrabeam stripping in H- Linacs  

Science Conference Proceedings (OSTI)

A beam loss in the superconducting part of the SNS linac has been observed during its commissioning and operation. Although the loss does not prevent the SNS high power operation, it results in an almost uniform irradiation of linac components and increased radiation levels in the tunnel. Multi-particle tracking could neither account for the magnitude of the observed loss nor its dependence on machine parameters. It was recently found that the loss is consistent with the intrabeam particle collisions resulting in stripping of H{sup -} ions. The paper describes experimental observations and corresponding analytical estimates of the intrabeam stripping.

Lebedev, V.; Solyak, N.; Ostigy, J.-F.; /Fermilab; Alexandrov, A.; Shishlo, A.; /Oak Ridge

2010-09-01T23:59:59.000Z

134

Novel linac structures for low-beta ions and for muons  

SciTech Connect

Development of two innovative linacs is discussed. (1) High-efficiency normal-conducting accelerating structures for ions with beam velocities in the range of a few percent of the speed of light. Two existing accelerator technologies - the H-mode resonator cavities and transverse beam focusing by permanent-magnet quadrupoles (PMQ) - are merged to create efficient structures for light-ion beams of considerable currents. The inter-digital H-mode accelerator with PMQ focusing (IH-PMQ) has the shunt impedance 10-20 times higher than the standard drift-tube linac. Results of the combined 3-D modeling for an IH-PMQ accelerator tank - electromagnetic computations, beam-dynamics simulations, and thermal-stress analysis - are presented. H-PMQ structures following a short RFQ accelerator can be used in the front end of ion linacs or in stand-alone applications like a compact mobile deuteron-beam accelerator up to a few MeV. (2) A large-acceptance high-gradient linac for accelerating low-energy muons in a strong solenoidal magnetic field. When a proton beam hits a target, many low-energy pions are produced almost isotropically, in addition to a small number of high-energy pions in the forward direction. We propose to collect and accelerate copious muons created as the low-energy pions decay. The acceleration should bring muons to a kinetic energy of {approx}200 MeV in about 10 m, where both an ionization cooling of the muon beam and its further acceleration in a superconducting linac become feasible. One potential solution is a normal-conducting linac consisting of independently fed O-mode RF cavities with wide apertures closed by thin metal windows or grids. The guiding magnetic field is provided by external superconducting solenoids. The cavity choice, overall linac design considerations, and simulation results of muon acceleration are presented. Potential applications range from basic research to homeland defense to industry and medicine.

Kurennoy, Sergey S [Los Alamos National Laboratory

2010-01-01T23:59:59.000Z

135

THE POWER SUPPLY SYSTEM FOR THE ACCELERATING COLUMN OF THE 2 MEV ELECTRON COOLER FOR COSY  

E-Print Network (OSTI)

filter, and various power supplies for these elements. The cascade transformer is to provide a requiredTHE POWER SUPPLY SYSTEM FOR THE ACCELERATING COLUMN OF THE 2 MEV ELECTRON COOLER FOR COSY D a high-energy electron beam. The power supply for the accelerating column of the electron cooling system

Kozak, Victor R.

136

Dynamic MLC leaf sequencing for integrated linear accelerator control systems  

Science Conference Proceedings (OSTI)

Purpose: Leaf positions for dynamic multileaf collimator (DMLC) intensity modulated radiation therapy must be closely synchronized with MU delivery. For the Varian C3 series MLC controller, if the planned trajectory (leaf position vs. MU) requires velocities exceeding the capability of the MLC, the leaves fall behind the planned positions, causing the controller to momentarily hold the beam and thereby introduce dosimetric errors. We investigated the merits of a new commercial linear accelerator, TrueBeam, that integrates MLC control with prospective dose rate modulation. If treatment is delivered at dose rates so high that leaves would fall behind, the controller reduces the dose rate such that harmony between MU and leaf position is preserved. Methods: For three sets of DMLC leaf trajectories, point doses and two-dimensional dose distributions were measured in phantom using an ionization chamber and film, respectively. The first set, delivered using both a TrueBeam and a conventional C3 controller, comprised a single leaf bank closing at planned velocities of 2.4, 7.1, and 14 cm/s. The maximum achievable leaf velocity for both systems was 3 cm/s. The remaining two sets were derived from clinical fluence maps using a commercial treatment planning system for a range of planned dose rates and were delivered using TrueBeam set to the maximum dose rate, 600 MU/min. Generating trajectories using a planned dose rate that is lower than the delivery dose rate effectively increased the leaf velocity constraint used by the planning system for trajectory calculation. The second set of leaf trajectories was derived from two fluence maps containing regions of zero fluence obtained from representative beams of two different patient treatment plans. The third set was obtained from all nine fields of a head and neck treatment plan. For the head and neck plan, dose-volume histograms of the spinal cord and target for each planned dose rate were obtained. Results: For the single closing leaf bank trajectories, the TrueBeam control system reduced the dose rate such that the leaf velocity was less than the maximum. Dose deviations relative to the 2.4 cm/s trajectory were less than 3%. For the conventional controller, the leaves repeatedly fell behind the planned positions until the beam hold threshold was reached, resulting in deviations of up to 19% relative to the 2.4 cm/s trajectory. For the two clinical fluence maps, reducing the planned dose rate reduced the dose in the zero fluence regions by 15% and 24% and increased the delivery time by 5 s and 14 s. No significant differences were noted in the high and intermediate dose regions measured using film. The DVHs for the head and neck plan showed a 10% reduction in cord dose for 20 MU/min relative to 600 MU/min sequencing dose rate, which was confirmed by measurement. No difference in target DVHs were observed. The reduction in cord dose increased total treatment time by 1.8 min. Conclusions: Leaf sequencing algorithms for integrated control systems should be modified to reflect the reduced importance of maximum leaf velocity for accurate dose delivery.

Popple, Richard A.; Brezovich, Ivan A. [Department of Radiation Oncology, University of Alabama at Birmingham, 1700 6th Avenue South, Birmingham, Alabama 35249-6832 (United States)

2011-11-15T23:59:59.000Z

137

Low energy improvements to the Fermilab 400-MeV linear accelerator  

SciTech Connect

Improvements in the Fermilab operating 400-MeV linear accelerator injector are required to achieve the beam intensity and emittance requirement of the Proton Driver design study [5]. It has been determined that these requirements can be achieved by replacing the components in the Linac below 10 MeV. An improved H{sup {minus}} ion source with an electrostatic transport to a two-section Radio-Frequency Quadrupole (RFQ) accelerator, with the RFQ sections separated by a magnetic five-dimensional phase-space imaging system as used in an earlier Fermilab/SAIC PET Project, and a new 10-MeV drift-tube linac cavity have been studied. It appears possible that an H{sup {minus}} intensity of 4.5 x 10{sup 13} ions per pulse with an improvement in beam emittance from the present system can be achieved with the proposed changes.

Don E. Young et al.

2001-07-02T23:59:59.000Z

138

Linac Alignment Algorithm: Analysis on 1-to-1 Steering  

SciTech Connect

In a linear accelerator, it is important to achieve a good alignment between all of its components (such as quadrupoles, RF cavities, beam position monitors et al.), in order to better preserve the beam quality during acceleration. After the survey of the main linac components, there are several beam-based alignment (BBA) techniques to be applied, to further optimize the beam trajectory and calculate the corresponding steering magnets strength. Among these techniques the most simple and straightforward one is the one-to-one (1-to-1) steering technique, which steers the beam from quad center to center, and removes the betatron oscillation from quad focusing. For a future linear collider such as the International Linear Collider (ILC), the initial beam emittance is very small in the vertical plane (flat beam with {gamma}{epsilon}{sub y} = 20-40nm), which means the alignment requirement is very tight. In this note, we evaluate the emittance growth with one-to-one correction algorithm employed, both analytically and numerically. Then the ILC main linac accelerator is taken as an example to compare the vertical emittance growth after 1-to-1 steering, both from analytical formulae and multi-particle tracking simulation. It is demonstrated that the estimated emittance growth from the derived formulae agrees well with the results from numerical simulation, with and without acceleration, respectively.

Sun, Yipeng; Adolphsen, Chris; /SLAC

2011-08-19T23:59:59.000Z

139

Beam energy tracking system on Optima XEx high energy ion implanter  

SciTech Connect

The Axcelis Optima XEx high energy implanter is an RF linac-based implanter with 12 RF resonators for beam acceleration. Even though each acceleration field is an alternating, sinusoidal RF field, the well known phase-focusing principle produces a beam with a sharp quasi-monoenergetic energy spectrum. A magnetic energy filter after the linac further attenuates the low energy continuum in the energy spectrum often associated with RF acceleration. The final beam energy is a function of the phase and amplitude of the 12 resonators in the linac. When tuning a beam, the magnetic energy filter is set to the desired energy, and each linac parameter is tuned to maximize the transmission through the filter. Once a beam is set up, all the parameters are stored in a recipe, which can be easily tuned and has proven to be quite repeatable. The magnetic field setting of the energy filter selects the beam energy from the RF Linac accelerator, and in-situ verification of beam energy in addition to the magnetic energy filter setting has long been desired. An independent energy tracking system was developed for this purpose, using the existing electrostatic beam scanner as a deflector to construct an in-situ electrostatic energy analyzer. This paper will describe the system and performance of the beam energy tracking system.

David, Jonathan; Satoh, Shu; Wu Xiangyang; Geary, Cindy; Deluca, James [Axcelis Technologies, Inc., 108 Cherry Hill Dr, Beverly, MA 01915 (United States)

2012-11-06T23:59:59.000Z

140

ACCELERATOR SAFETY ENVELOPE  

NLE Websites -- All DOE Office Websites (Extended Search)

LCASE-001, Ver. 3 LCASE-001, Ver. 3 Linac Commissioning Accelerator Safety Envelope For the National Synchrotron Light Source II Photon Sciences Directorate Version 3 December 8, 2011 Prepared by Brookhaven National Laboratory P.O. Box 5000 Upton, NY 11973-5000 managed by Brookhaven Science Associates for the U.S. Department of Energy Office of Science Basic Energy Science under contract DE-AC02-98CD10886 Linac Commissioning Accelerator Safety Envelope (LCASE) ii Photon Sciences Directorate ii DISCLAIMER This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, nor any of their contractors, subcontractors, or their employees, makes any warranty,

Note: This page contains sample records for the topic "linac accelerator system" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Accelerators for Cancer Therapy  

DOE R&D Accomplishments (OSTI)

The vast majority of radiation treatments for cancerous tumors are given using electron linacs that provide both electrons and photons at several energies. Design and construction of these linacs are based on mature technology that is rapidly becoming more and more standardized and sophisticated. The use of hadrons such as neutrons, protons, alphas, or carbon, oxygen and neon ions is relatively new. Accelerators for hadron therapy are far from standardized, but the use of hadron therapy as an alternative to conventional radiation has led to significant improvements and refinements in conventional treatment techniques. This paper presents the rationale for radiation therapy, describes the accelerators used in conventional and hadron therapy, and outlines the issues that must still be resolved in the emerging field of hadron therapy.

Lennox, Arlene J.

2000-05-30T23:59:59.000Z

142

Linac Coherent Light Source Video and Multimedia Collection  

DOE Data Explorer (OSTI)

The Linac Coherent Light Source (LCLS), a DOE Scientific User Facility, began operation in 2009. SLAC's two-mile-long linear accelerator (linac) has long produced high-energy electrons for physics experiments. Now the linac is driving a new kind of laser, creating X-ray pulses more than a billion times brighter than the most powerful existing sources. Intense x-ray beams are not new. However, atoms are constantly moving or vibrating, and synchrotron X-ray sources produce long pulses which yield only blurred images of these motions. LCLS is the first source to produce X-rays that are both very intense and clumped into ultrafast pulses. By sequencing together images of the ultrasmall, taken with the ultrafast pulses of the LCLS, scientists are for the first time creating molecular movies, revealing the frenetic action of the atomic world for us to see. [Extracted, with edits, from http://lcls.slac.stanford.edu/WhatIsLCLS_1.aspx] The LCLS Multimedia gallery currently includes four short videos about the science and several clips that provide animated tours or flyovers of the facility and its instruments. Podcasts are an opportunity to hear key staff members address details of LCLS operations, and blog entries from five team members provide behind-the-scenes glimpses of this physics adventure.

143

Disposition of nuclear waste using subcritical accelerator-driven systems  

Science Conference Proceedings (OSTI)

Spent fuel from nuclear power plants contains large quantities of Pu, other actinides, and fission products (FP). This creates challenges for permanent disposal because of the long half-lives of some isotopes and the potential for diversion of the fissile material. Two issues of concern for the US repository concept are: (1) long-term radiological risk peaking tens-of-thousands of years in the future; and (2) short-term thermal loading (decay heat) that limits capacity. An accelerator-driven neutron source can destroy actinides through fission, and can convert long-lived fission products to shorter-lived or stable isotopes. Studies over the past decade have established that accelerator transmutation of waste (ATW) can have a major beneficial impact on the nuclear waste problem. Specifically, the ATW concept the authors are evaluating: (1) destroys over 99.9% of the actinides; (2) destroys over 99.9% of the Tc and I; (3) separates Sr-90 and Cs-137; (4) separates uranium from the spent fuel; (5) produces electric power.

Venneri, F.; Li, N.; Williamson, M.; Houts, M.; Lawrence, G.

1998-12-31T23:59:59.000Z

144

AMPERE AVERAGE CURRENT PHOTOINJECTOR AND ENERGY RECOVERY LINAC.  

SciTech Connect

High-power Free-Electron Lasers were made possible by advances in superconducting linac operated in an energy-recovery mode. In order to get to much higher power levels, say a fraction of a megawatt average power, many technological barriers are yet to be broken. We describe work on CW, high-current and high-brightness electron beams. This will include a description of a superconducting, laser-photocathode RF gun employing a new secondary-emission multiplying cathode, an accelerator cavity, both capable of producing of the order of one ampere average current and plans for an ERL based on these units.

BEN-ZVI,I.; BURRILL,A.; CALAGA,R.; ET AL.

2004-08-17T23:59:59.000Z

145

An “NLC-Style ” Short Bunch Length Compressor in the SLAC Linac*  

E-Print Network (OSTI)

Experimental tests of a “second bunch length compressor” in a linac is important for the next generation of linear colliders and for other future accelerators. These future accelerators need bunches with lengths of order 0.06- 0.2 mni. At these lengths, new accelerator dynamics will be encountered. We have studied the possibility of constructing a second compressor with the present SLAC linac and have found a reasonable design’. The core of this project is to recontigure an old beamline (BL-90) at the 1OOOm location in the linac to: (1) extract a 10 GeV bunch, (2) pass it through a new 96 m long transport line in which length compression is done, and (3) reinject the beam into the main linac in an available drift section. Using the resulting compressed bunch, accelerator physics tests would be performed in the remaining downstream linac with the resulting very high charge density. The bunch compression in this transport line results Erom ExWiq BASlWBL90 aipor the TRANSPORT element R56 as determined from the optics of the transport line. AZ = R56 AEJE. For example, if AZ =.-0.5 mm, AIYE = OS%, R56 =-0.1 m, a bunch of 5 x lOlo particles would have a final length (03 of about 0.08 mm with apeakcurrentof96OOA. II. Decription of the Project This project would use as much existing SLAC equipment as possible: including the SLC accelerator complex, old SPEAR injection line magnets, spare power supplies and diagnostics. No civil construction is required. The design is aimed at a rapid construction and installation schedule, maintaining flexibility and with no operational impact on other SLAC programs: SLC, FFTB, or B-Factory. A schematic layout of the bunch compressor is shown in Fig. 1. The basic beam parameters are listed in Table 1. The

John T. Seeman; John T. Seeman

1993-01-01T23:59:59.000Z

146

BNL | Accelerators for Applied Research  

NLE Websites -- All DOE Office Websites (Extended Search)

Accelerators for Applied Research Accelerators for Applied Research Brookhaven National Lab operates several accelerator facilities dedicated to applied research. These facilities directly address questions and concerns on a tremendous range of fields, including medical imaging, cancer therapy, computation, and space exploration. Leading scientists lend their expertise to these accelerators and offer crucial assistant to collaborating researchers, pushing the limits of science and technology. Interested in gaining access to these facilities for research? See the contact number listed for each facility. RHIC tunnel Brookhaven Linac Isotope Producer The Brookhaven Linac Isoptope Producer (BLIP)-positioned at the forefront of research into radioisotopes used in cancer treatment and diagnosis-produces commercially unavailable radioisotopes for use by the

147

Collider-Accelerator Department  

NLE Websites -- All DOE Office Websites (Extended Search)

RHIC Tunnel and Magnets RHIC Tunnel and Magnets RHIC Tunnel and Magnets AGS Tunnel and Magnets NSRL Beamline RF Kicker Snake 200-MeV LINAC AGS Cold Snake Magnet About the Collider-Accelerator Department The mission of the Collider-Accelerator Department is to develop, improve and operate the suite of particle / heavy ion accelerators used to carry out the program of accelerator-based experiments at BNL; to support the experimental program including design, construction and operation of the beam transports to the experiments plus support of detector and research needs of the experiments; to design and construct new accelerator facilities in support of the BNL and national missions. The C-A Department supports an international user community of over 1500 scientists. The department performs all these functions in an environmentally responsible and safe manner under a rigorous conduct of operations approach.

148

Improvements in dose accuracy delivered with static-MLC IMRT on an integrated linear accelerator control system  

Science Conference Proceedings (OSTI)

Purpose: Dose accuracy has been shown to vary with dose per segment and dose rate when delivered with static multileaf collimator (SMLC) intensity modulated radiation therapy (IMRT) by Varian C-series MLC controllers. The authors investigated the impact of monitor units (MUs) per segment and dose rate on the dose delivery accuracy of SMLC-IMRT fields on a Varian TrueBeam linear accelerator (LINAC), which delivers dose and manages motion of all components using a single integrated controller. Methods: An SMLC sequence was created consisting of ten identical 10 x 10 cm{sup 2} segments with identical MUs. Beam holding between segments was achieved by moving one out-of-field MLC leaf pair. Measurements were repeated for various combinations of MU/segment ranging from 1 to 40 and dose rates of 100-600 MU/min for a 6 MV photon beam (6X) and dose rates of 800-2400 MU/min for a 10 MV flattening-filter free photon (10XFFF) beam. All measurements were made with a Farmer (0.6 cm{sup 3}) ionization chamber placed at the isocenter in a solid-water phantom at 10 cm depth. The measurements were performed on two Varian LINACs: C-series Trilogy and TrueBeam. Each sequence was delivered three times and the dose readings for the corresponding segments were averaged. The effects of MU/segment, dose rate, and LINAC type on the relative dose variation ({Delta}{sub i}) were compared using F-tests ({alpha} = 0.05). Results: On the Trilogy, large {Delta}{sub i} was observed in small MU segments: at 1 MU/segment, the maximum {Delta}{sub i} was 10.1% and 57.9% at 100 MU/min and 600 MU/min, respectively. Also, the first segment of each sequence consistently overshot ({Delta}{sub i} > 0), while the last segment consistently undershot ({Delta}{sub i} dose rates greater than 100 MU/min. The linear trend of decreasing dose accuracy as a function of increasing dose rate on the Trilogy is no longer apparent on TrueBeam, even for dose rates as high as 2400 MU/min. Dose inaccuracy averaged over all ten segments in each beam delivery sequence was larger for Trilogy than TrueBeam, with the largest discrepancy (0.2% vs 3%) occurring for 1 MU/segment beams at both 300 and 600 MU/min. Conclusions: Earlier generations of Varian LINACs exhibited large dose variations for small MU segments in SMLC-IMRT delivery. Our results confirmed these findings. The dose delivery accuracy for SMLC-IMRT is significantly improved on TrueBeam compared to Trilogy for every combination of low MU/segment (1-10) and high dose rate (200-600 MU/min), in part due to the faster sampling rate (100 vs 20 Hz) and enhanced electronic integration of the MLC controller with the LINAC. SMLC-IMRT can be implemented on TrueBeam with higher dose accuracy per beam ({+-}0.2% vs {+-}3%) than previous generations of Varian C-series LINACs for 1 MU/segment delivered at 600 MU/min).

Li Ji; Wiersma, Rodney D.; Stepaniak, Christopher J.; Farrey, Karl J.; Al-Hallaq, Hania A. [Department of Radiation and Cellular Oncology, University of Chicago, 5758 South Maryland Avenue, MC9006, Chicago, Illinois 60637 (United States)

2012-05-15T23:59:59.000Z

149

SLAC National Accelerator Laboratory - All Systems Go: A New...  

NLE Websites -- All DOE Office Websites (Extended Search)

All Systems Go: A New High-energy Record for LCLS By Glenn Roberts Jr. June 18, 2013 John Hill watched with eager anticipation as controllers ramped up the power systems driving...

150

Beam loading compensation of traveling wave linacs through the time dependence of the rf drive  

SciTech Connect

Beam loading in traveling-wave linear accelerating structures leads to unacceptable spread of particle energies across an extended train of bunched particles due to beam-induced field and dispersion. Methods for modulating the rf power driving linacs are effective at reducing energy spread, but for general linacs do not have a clear analytic foundation. We report here methods for calculating how to modulate the rf drive in arbitrarily nonuniform traveling-wave linacs within the convective-transport (power-diffusion) model that results in no additional energy spread due to beam loading (but not dispersion). Varying group velocity, loss factor, and cell quality factor within a structure, and nonzero particle velocity, are handled.

Towne N.; Rose J.

2011-09-30T23:59:59.000Z

151

Convergence acceleration techniques in CAD systems for grounding analysis in layered soils  

E-Print Network (OSTI)

by ground rods vertically thrusted in certain places of the substation site. Thus, when a fault conditionConvergence acceleration techniques in CAD systems for grounding analysis in layered soils I a numerical formulation based on the Boundary Element Method for the analysis of grounding systems embedded

Colominas, Ignasi

152

Beam dynamics studies in the driver LINAC pre-Stripper section of the RIA facility.  

SciTech Connect

The RIA facility driver linac consists of about 400 superconducting (SC) independently phased rf cavities. The linac is designed to accelerate simultaneously several-charge-state beams to generate as much as 400 kW of uranium beam power. The linac beam dynamics is most sensitive to the focusing and accelerating-structure parameters of the prestripper section, where the uranium beam is accelerated from 0.17 keV/u to 9.4 MeV/u. This section is designed to accept and accelerate 2 charge states (28 and 29) of uranium beam from an ECR ion source. The prestripper section must be designed to minimize the beam emittance distortion of this two-charge-state beam. In particular, the inter-cryostat spaces must be minimized and beam parameters near transitions of the accelerating and focusing lattices must be matched carefully. Several sources of possible effective emittance growth are considered in the design of the prestripper section and a tolerance budget is established. Numerical beam dynamics studies include realistic electric and magnetic 3-dimensional field distributions in the SC rf cavities and SC solenoids. Error effects in the longitudinal beam parameters are studied.

Lessner, E. S.; Ostroumov, P. N.

2003-07-10T23:59:59.000Z

153

Accelerating improvement of fuzzy rules induction with artificial immune systems  

Science Conference Proceedings (OSTI)

The paper introduces an algorithmic improvement to IFRAIS, an existing Artificial Immune System method for fuzzy rule mining. The improvement presented consists of using rule buffering during the computation of fitness of rules. This is achieved using ... Keywords: artificial immune system, data mining, fuzzy rules induction

Edward Mezyk; Olgierd Unold

2008-10-01T23:59:59.000Z

154

Towards dense linear algebra for hybrid GPU accelerated manycore systems  

Science Conference Proceedings (OSTI)

We highlight the trends leading to the increased appeal of using hybrid multicore+GPU systems for high performance computing. We present a set of techniques that can be used to develop efficient dense linear algebra algorithms for these systems. We illustrate ... Keywords: Dense linear algebra, Graphics processing units, Hybrid computing, Multicore processors, Parallel algorithms

Stanimire Tomov; Jack Dongarra; Marc Baboulin

2010-06-01T23:59:59.000Z

155

Nuclear Data for Criticality Safety and Reactor Applications at the Gaerttner LINAC Center Y. Danon, R.M. Bahran, E.J. Blain, A.M. Daskalakis, B.J. McDermott, D.G. Williams  

E-Print Network (OSTI)

Nuclear Data for Criticality Safety and Reactor Applications at the Gaerttner LINAC Center Y. Danon INTRODUCTION The Rensselaer Polytechnic Institute (RPI) nuclear data program utilizes a 60 MeV pulsed electron Linear Accelerator (LINAC) to produce short pulses of neutrons for nuclear data measurements1 . Neutron

Danon, Yaron

156

Comparison of accelerator technologies for use in ADSS  

SciTech Connect

Accelerator Driven Subcritical (ADS) fission is an interesting candidate basis for nuclear waste transmutation and for nuclear power generation. ADS can use either thorium or depleted uranium as fuel, operate below criticality, and consume rather than produce long-lived actinides. A case study with a hypothetical, but realistic nuclear core configuration is used to evaluate the performance requirements of the driver proton accelerator in terms of beam energy, beam current, duty factor, beam distribution delivered to the fission core, reliability, and capital and operating cost. Comparison between a CW IC and that of a SRF proton linac is evaluated. Future accelerator R&D required to improve each candidate accelerator design is discussed. ADS fission has interesting potential for electric power generation and also for destruction of long-lived actinide waste produced by conventional critical reactors. ADS systems offer several interesting advantages in comparison to critical reactors: (1) ADS provides greater flexibility for the composition and placement of fissile, fertile, or fission product waste within the core, and require less enrichment of fissile content; (2) The core can be operated with a reactivity k{sub eff} that cannot reach criticality by any failure mode; (3) When the beam is shut off fission ceases in the core; (4) Coupling the fast neutron spectrum of the spallation drive to fast core neutronics offers a basis for more complete burning of long-lived actinides; and (5) ADS designs can provide sufficient thermal mass that meltdown cannot occur from radioactive heat after fission is stopped. In order to drive a {approx}GW{sub e} fission core a CW proton beam of >700 MeV and {approx}15 MW beam power is required. A previous study of the accelerator performance required for ADS systems concluded that present accelerator performance is approaching those requirements, but accelerator system cost and reliability remain particular concerns. The obvious candidates for accelerators that can provide intense CW proton beams are isochronous cyclotrons (IC) and superconducting linacs. We have examined a case study using a hypothetical ADS core configuration to guide our thinking in evaluating those two accelerator technologies for use in ADS systems. Issues of accelerator power, multiplicity of accelerators, and options for core neutronics and fuel form are discussed.

Weng, W.T.; Ludewig, H.; Raparia, D.; Trbojevic, D.; Todosow, M.; McIntyre, P.; Sattarov, A.

2011-03-28T23:59:59.000Z

157

Dynamics of the accelerator-driven system as a variable gain amplifier  

Science Conference Proceedings (OSTI)

Historically, subcritical accelerator-driven systems have been called electronuclear devices. Interest in these devices has been revived for numerous nuclear applications, such as boron neutron capture therapy, accelerator transmutation of waste (ATW), and accelerator-based conversion (ABC). The latter systems are being investigated at Los Alamos National Laboratory for energy production and radioactive waste transmutation. The ATW and ABC in particular are accelerator-(source)-driven subcritical fluid-fueled systems. System dynamics are affected by movement of delayed neutron precursors and poisons into and out of the active multiplying region, giving both a reactivity effect and reduced {Beta} (called {Beta}{sub eff}). A salient dynamic characteristic of the system is that the neutron population (power) is very sensitive to the level of subcritical reactivity, which can depend on poisoning, depletion, and thermal feedback over short operational time scales. Ruby has pointed out that the dynamic behavior of systems containing sources is not fully appreciated. It is our purpose here to illustrate some of the more interesting dynamic characteristics of systems like ATW or ABC.

Woosley, M.L. Jr.; Rydin, R.A. [Univ. of Virginia, Charlottesville, VA (United States)

1995-12-31T23:59:59.000Z

158

Energy Recovery Linac cavity at BNL | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

Energy Recovery Linac cavity at BNL Energy Recovery Linac cavity at BNL Nuclear Physics (NP) NP Home About Research Facilities Science Highlights Benefits of NP Spinoff Applications Spinoff Archives SBIR/STTR Applications of Nuclear Science and Technology Funding Opportunities Nuclear Science Advisory Committee (NSAC) News & Resources Contact Information Nuclear Physics U.S. Department of Energy SC-26/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-3613 F: (301) 903-3833 E: sc.np@science.doe.gov More Information » Spinoff Archives Energy Recovery Linac cavity at BNL Print Text Size: A A A RSS Feeds FeedbackShare Page Application/instrumentation: Energy Recovery Linac cavity Developed at: Brookhaven National Laboratory, New York and Advanced Energy Systems, New York Developed in:

159

High Current Energy Recovery Linac at BNL | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

High Current Energy Recovery Linac at High Current Energy Recovery Linac at BNL Nuclear Physics (NP) NP Home About Research Facilities Science Highlights Benefits of NP Spinoff Applications Spinoff Archives SBIR/STTR Applications of Nuclear Science and Technology Funding Opportunities Nuclear Science Advisory Committee (NSAC) News & Resources Contact Information Nuclear Physics U.S. Department of Energy SC-26/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-3613 F: (301) 903-3833 E: sc.np@science.doe.gov More Information » Spinoff Archives High Current Energy Recovery Linac at BNL Print Text Size: A A A RSS Feeds FeedbackShare Page Application/instrumentation: High Current Energy Recovery Linac Developed at: Brookhaven National Laboratory, New York and Advanced Energy Systems, New

160

Solving Large Sparse Linear Systems in End-to-end Accelerator Structure Simulations  

Science Conference Proceedings (OSTI)

This paper presents a case study of solving very large sparse linear systems in end-to-end accelerator structure simulations. Both direct solvers and iterative solvers are investigated. A parallel multilevel preconditioner based on hierarchical finite element basis functions is considered and has been implemented to accelerate the convergence of iterative solvers. A linear system with matrix size 93,147,736 and with 3,964,961,944 non-zeros from 3D electromagnetic finite element discretization has been solved in less than 8 minutes with 1024 CPUs on the NERSC IBM SP. The resource utilization as well as the application performance for these solvers is discussed.

Lee, L

2004-01-23T23:59:59.000Z

Note: This page contains sample records for the topic "linac accelerator system" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

RHIC Superconducting Accelerator and Electron Cooling Group  

NLE Websites -- All DOE Office Websites (Extended Search)

Organization Chart (PDF) Organization Chart (PDF) Accelerator R&D Division eRHIC R&D Energy Recovery Linac Photocathode R&D Superconducting RF Electron Cooling LARP Center for Accelerator Science and Education C-AD Accelerator R&D Division Superconducting RF Group Group Headed By: Sergey Belomestnykh This web site presents information on the Superconducting Accelerator and RHIC Electron Cooling Group, which is in the Accelerator R&D Division of the Collider-Accelerator Department of Brookhaven National Laboratory. Work is supported mainly by the Division of Nuclear Physics of the US Department of Energy. Upcoming Events: TBD Most recent events: 56 MHz 2nd External Review, March 8-9, 2011 External Review of the Energy Recovery Linac, February 17-18, 2010. Report of the Review Committee

162

Protecting Accelerator Control Systems in the Face of Sophisticated Cyber Attacks  

SciTech Connect

Cyber security for industrial control systems has received significant attention in the past two years. The news coverage of the Stuxnet attack, believed to be targeted at the control system for a uranium enrichment plant, brought the issue to the attention of news media and policy makers. This has led to increased scrutiny of control systems for critical infrastructure such as power generation and distribution, and industrial systems such as chemical plants and petroleum refineries. The past two years have also seen targeted network attacks aimed at corporate and government entities including US Department of Energy National Laboratories. Both of these developments have potential repercussions for the control systems of particle accelerators. The need to balance risks from potential attacks with the operational needs of an accelerator present a unique challenge for the system architecture and access model.

Hartman, Steven M [ORNL

2012-01-01T23:59:59.000Z

163

Accelerator Technology Division progress report, FY 1993  

Science Conference Proceedings (OSTI)

This report discusses the following topics: A Next-Generation Spallation-Neutron Source; Accelerator Performance Demonstration Facility; APEX Free-Electron Laser Project; The Ground Test Accelerator (GTA) Program; Intense Neutron Source for Materials Testing; Linac Physics and Special Projects; Magnetic Optics and Beam Diagnostics; Radio-Frequency Technology; Accelerator Controls and Automation; Very High-Power Microwave Sources and Effects; and GTA Installation, Commissioning, and Operation.

Schriber, S.O.; Hardekopf, R.A.; Heighway, E.A.

1993-12-31T23:59:59.000Z

164

Asynchronous data change notification between database server and accelerator controls system  

SciTech Connect

Database data change notification (DCN) is a commonly used feature. Not all database management systems (DBMS) provide an explicit DCN mechanism. Even for those DBMS's which support DCN (such as Oracle and MS SQL server), some server side and/or client side programming may be required to make the DCN system work. This makes the setup of DCN between database server and interested clients tedious and time consuming. In accelerator control systems, there are many well established software client/server architectures (such as CDEV, EPICS, and ADO) that can be used to implement data reflection servers that transfer data asynchronously to any client using the standard SET/GET API. This paper describes a method for using such a data reflection server to set up asynchronous DCN (ADCN) between a DBMS and clients. This method works well for all DBMS systems which provide database trigger functionality. Asynchronous data change notification (ADCN) between database server and clients can be realized by combining the use of a database trigger mechanism, which is supported by major DBMS systems, with server processes that use client/server software architectures that are familiar in the accelerator controls community (such as EPICS, CDEV or ADO). This approach makes the ADCN system easy to set up and integrate into an accelerator controls system. Several ADCN systems have been set up and used in the RHIC-AGS controls system.

Fu, W.; Morris, J.; Nemesure, S.

2011-10-10T23:59:59.000Z

165

The NREL Outdoor Accelerated-Weathering Tracking System Photovoltaic Module Exposure Results  

DOE Green Energy (OSTI)

Status results are presented for the Outdoor Accelerated-Weathering Tracking System (OATS) first study on photovoltaic (PV) modules. Studies began in November 1997 on pairs of commercially available crystalline silicon and amorphous silicon (a-Si) PV modules kept at constant resistive load.

Basso, T. S.

2000-01-01T23:59:59.000Z

166

Profiling Heterogeneous Multi-GPU Systems to Accelerate Cortically Inspired Learning Algorithms  

E-Print Network (OSTI)

Profiling Heterogeneous Multi-GPU Systems to Accelerate Cortically Inspired Learning Algorithms Andrew Nere, Atif Hashmi, and Mikko Lipasti Department of Electrical and Computer Engineering University a plausible, attractive, fault-tolerant, and energy- efficient possibility. Such attributes have once again

Lipasti, Mikko H.

167

Design of the NSLS-II Linac Front End Test Stand  

SciTech Connect

The NSLS-II operational parameters place very stringent requirements on the injection system. Among these are the charge per bunch train at low emittance that is required from the linac along with the uniformity of the charge per bunch along the train. The NSLS-II linac is a 200 MeV linac produced by Research Instruments Gmbh. Part of the strategy for understanding to operation of the injectors is to test the front end of the linac prior to its installation in the facility. The linac front end consists of a 100 kV electron gun, 500 MHz subharmonic prebuncher, focusing solenoids and a suite of diagnostics. The diagnostics in the front end need to be supplemented with an additional suite of diagnostics to fully characterize the beam. In this paper we discuss the design of a test stand to measure the various properties of the beam generated from this section. In particular, the test stand will measure the charge, transverse emittance, energy, energy spread, and bunching performance of the linac front end under all operating conditions of the front end.

Fliller III, R.; Johanson, M.; Lucas, M.; Rose, J.; Shaftan, T.

2011-03-28T23:59:59.000Z

168

Chromaticity of the lattice and beam stability in energy-recovery linacs  

Science Conference Proceedings (OSTI)

Energy recovery linacs (ERLs) are an emerging generation of accelerators promising to revolutionize the fields of high-energy physics and photon sciences. These accelerators combine the advantages of linear accelerators with that of storage rings, and hold the promise of delivering electron beams of unprecedented power and quality. Use of superconducting radio-frequency (SRF) cavities converts ERLs into nearly perfect 'perpetuum mobile' accelerators, wherein the beam is accelerated to a desirable energy, used, and then gives the energy back to the RF field. One potential weakness of these devices is transverse beam break-up instability that could severely limit the available beam current. In this paper, I present a method of suppressing these dangerous effects using a natural phenomenon in the accelerators, viz., the chromaticity of the transverse motion.

Litvinenko, V.N.

2011-12-23T23:59:59.000Z

169

The accelerated site technology deployment program presents the segmented gate system  

Science Conference Proceedings (OSTI)

The Department of Energy (DOE) is working to accelerate the acceptance and application of innovative technologies that improve the way the nation manages its environmental remediation problems. The DOE Office of Science and Technology established the Accelerated Site Technology Deployment Program (ASTD) to help accelerate the acceptance and implementation of new and innovative soil and ground water remediation technologies. Coordinated by the Department of Energy's Idaho Office, the ASTD Program reduces many of the classic barriers to the deployment of new technologies by involving government, industry, and regulatory agencies in the assessment, implementation, and validation of innovative technologies. The paper uses the example of the Segmented Gate System (SGS) to illustrate how the ASTD program works. The SGS was used to cost effectively separate clean and contaminated soil for four different radionuclides: plutonium, uranium, thorium, and cesium. Based on those results, it has been proposed to use the SGS at seven other DOE sites across the country.

PATTESON,RAYMOND; MAYNOR,DOUG; CALLAN,CONNIE

2000-02-24T23:59:59.000Z

170

Beam Dynamics Study of X-Band Linac Driven X-Ray FELS  

Science Conference Proceedings (OSTI)

Several linac driven X-ray Free Electron Lasers (XFELs) are being developed to provide high brightness photon beams with very short, tunable wavelengths. In this paper, three XFEL configurations are proposed that achieve LCLS-like performance using X-band linac drivers. These linacs are more versatile, efficient and compact than ones using S-band or C-band rf technology. For each of the designs, the overall accelerator layout and the shaping of the bunch longitudinal phase space are described briefly. During the last 40 years, the photon wavelengths from linac driven FELs have been pushed shorter by increasing the electron beam energy and adopting shorter period undulators. Recently, the wavelengths have reached the X-ray range, with FLASH (Free-Electron Laser in Hamburg) and LCLS (Linac Coherent Light Source) successfully providing users with soft and hard X-rays, respectively. FLASH uses a 1.2 GeV L-band (1.3 GHz) superconducting linac driver and can deliver 10-70 fs FWHM long photon pulses in a wavelength range of 44 nm to 4.1 nm. LCLS uses the last third of the SLAC 3 km S-band (2.856 GHz) normal-conducting linac to produce 3.5 GeV to 15 GeV bunches to generate soft and hard X-rays with good spatial coherence at wavelengths from 2.2 nm to 0.12 nm. Newer XFELs (at Spring8 and PSI) use C-band (5.7 GHz) normal-conducting linac drivers, which can sustain higher acceleration gradients, and hence shorten the linac length, and are more efficient at converting rf energy to bunch energy. The X-band (11.4 GHz) rf technology developed for NLC/GLC offers even higher gradients and efficiencies, and the shorter rf wavelength allows more versatility in longitudinal bunch phase space compression and manipulation. In the following sections, three different configurations of X-band linac driven XFELs are described that operate from 6 to 14 GeV. The first (LOW CHARGE DESIGN) has an electron bunch charge of only 10 pC; the second (OPTICS LINEARIZATION DESIGN) is based on optics linearization of the longitudinal phase space in the first stage bunch compressor and can operate with either a high (250 pC) or low (20 pC) bunch charge; and the third (LCLS INJECTOR DESIGN) is similar to LCLS but uses an X-band linac after the first stage bunch compressor at 250 MeV to achieve a final beam energy up to 14 GeV. Compared with LCLS, these X-band linacs are at least a factor of three shorter.

Adolphsen, C.; Limborg-Deprey, C.; Raubenheimer, T.O.; Wu, J.; /SLAC; Sun, Y.; /SLAC

2011-12-13T23:59:59.000Z

171

G-NetMon: a GPU-accelerated network performance monitoring system  

SciTech Connect

At Fermilab, we have prototyped a GPU-accelerated network performance monitoring system, called G-NetMon, to support large-scale scientific collaborations. In this work, we explore new opportunities in network traffic monitoring and analysis with GPUs. Our system exploits the data parallelism that exists within network flow data to provide fast analysis of bulk data movement between Fermilab and collaboration sites. Experiments demonstrate that our G-NetMon can rapidly detect sub-optimal bulk data movements.

Wu, Wenji; DeMar, Phil; Holmgren, Don; Singh, Amitoj; /Fermilab

2011-06-01T23:59:59.000Z

172

HIGH-POWER PRECISION CURRENT SUPPLY IST2-1000M FOR ELEMENTS OF MAGNETIC SYSTEMS OF ACCELERATORS AND  

E-Print Network (OSTI)

BF), a detached supply transformer and power switch. Power box PB comprises the following: - a threeHIGH-POWER PRECISION CURRENT SUPPLY IST2-1000M FOR ELEMENTS OF MAGNETIC SYSTEMS OF ACCELERATORS. These supplies are intended to power magnetic systems of accelerators, requiring high stability and low ripples

Kozak, Victor R.

173

FINDING OF NO SIGNIFICANT IMPACT FOR LINAC COHERENT LIGHT SOURCE-Il  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

FINDING FINDING OF NO SIGNIFICANT IMPACT FOR LINAC COHERENT LIGHT SOURCE-Il PROJECT SLAC NATIONAL ACCELERATOR LABORATORY AGENCY: U. S. Department of Energy (DOE) ACTION: Finding of No Significant Impact (FONSI) SUMMARY: The U. S. Department of Energy (DOE) has completed an Environmental Assessment (DOE/EA-1904) on a project to expand the existing Linac Coherent Light Source (LCLS) facility at the SLAC National Accelerator Laboratory (SLAC). One of SLAC's major scientific facilities is the LCLS, the world's first hard X-ray free electron laser. The LCLS X-ray laser beams enable the simultaneous investigation of a material's electronic and structural properties on the size (sub-nanometer) and time (femto-second) scales that determine their function. Research programs at SLAC include materials science, catalytic sciences, structural molecular biology, and molecular environmental

174

Centrifugal accelerator, system and method for removing unwanted layers from a surface  

DOE Patents (OSTI)

A cryoblasting process having a centrifugal accelerator for accelerating frozen pellets of argon or carbon dioxide toward a target area utilizes an accelerator throw wheel designed to induce, during operation, the creation of a low-friction gas bearing within internal passages of the wheel which would otherwise retard acceleration of the pellets as they move through the passages. An associated system and method for removing paint from a surface with cryoblasting techniques involves the treating, such as a preheating, of the painted surface to soften the paint prior to the impacting of frozen pellets thereagainst to increase the rate of paint removal. A system and method for producing large quantities of frozen pellets from a liquid material, such as liquid argon or carbon dioxide, for use in a cryoblasting process utilizes a chamber into which the liquid material is introduced in the form of a jet which disintegrates into droplets. A non-condensible gas, such as inert helium or air, is injected into the chamber at a controlled rate so that the droplets freeze into bodies of relatively high density.

Foster, Christopher A. (Clinton, TN); Fisher, Paul W. (Heiskell, TN)

1995-01-01T23:59:59.000Z

175

Solving large-scale sparse eigenvalue problems and linear systems of equations for accelerator modeling  

SciTech Connect

The solutions of sparse eigenvalue problems and linear systems constitute one of the key computational kernels in the discretization of partial differential equations for the modeling of linear accelerators. The computational challenges faced by existing techniques for solving those sparse eigenvalue problems and linear systems call for continuing research to improve on the algorithms so that ever increasing problem size as required by the physics application can be tackled. Under the support of this award, the filter algorithm for solving large sparse eigenvalue problems was developed at Stanford to address the computational difficulties in the previous methods with the goal to enable accelerator simulations on then the world largest unclassified supercomputer at NERSC for this class of problems. Specifically, a new method, the Hemitian skew-Hemitian splitting method, was proposed and researched as an improved method for solving linear systems with non-Hermitian positive definite and semidefinite matrices.

Gene Golub; Kwok Ko

2009-03-30T23:59:59.000Z

176

Above-60-MeV proton acceleration with a 150 TW laser system.  

Science Conference Proceedings (OSTI)

Laser-accelerated proton beams can be used in a variety of applications, e.g. ultrafast radiography of dense objects or strong electromagnetic fields. Therefore high energies of tens of MeV are required. We report on proton-acceleration experiments with a 150 TW laser system using mm-sized thin foils and mass-reduced targets of various thicknesses. Thin- foil targets yielded maximum energies of 50 MeV. A further reduction of the target dimensions from mm-size to 250 x 250 x 25 microns increased the maximum proton energy to >65 MeV, which is comparable to proton energies measured only at higher-energy, Petawatt-class laser systems. The dependence of the maximum energy on target dimensions was investigated, and differences between mm-sized thin foils and mass-reduced targets will be reported.

Sefkow, Adam B.; Atherton, Briggs W.; Geissel, Matthias; Schollmeier, Marius; Rambo, Patrick K.; Schwarz, Jens

2010-12-01T23:59:59.000Z

177

A recirculating linac-based facility for ultrafast X-ray science  

SciTech Connect

We present an updated design for a proposed source of ultra-fast synchrotron radiation pulses based on a recirculating superconducting linac, in particular the incorporation of EUV and soft x-ray production. The project has been named LUX - Linac-based Ultrafast X-ray facility. The source produces intense x-ray pulses with duration of 10-100 fs at a 10 kHz repetition rate, with synchronization of 10 s fs, optimized for the study of ultra-fast dynamics. The photon range covers the EUV to hard x-ray spectrum by use of seeded harmonic generation in undulators, and a specialized technique for ultra-short-pulse photon production in the 1-10 keV range. High-brightness rf photocathodes produce electron bunches which are optimized either for coherent emission in free-electron lasers, or to provide a large x/y emittance ration and small vertical emittance which allows for manipulation to produce short-pulse hard x-rays. An injector linac accelerates the beam to 120 MeV, and is followed by four passes through a 600-720 MeV recirculating linac. We outline the major technical components of the proposed facility.

Corlett, J.N; Barletta, W.A.; DeSantis, S.; Doolittle, L.; Fawley, W.M.; Green, M.A.; Heimann, P.; Leone, S.; Lidia, S.; Li, D.; Ratti, A.; Robinson, K.; Schoenlein, R.; Staples, J.; Wan, W.; Wells, R.; Wolski, A.; Zholents, A.; Placidi, M.; Pirkl, W.; Parmigiani, F.

2003-05-06T23:59:59.000Z

178

Disposition of Nuclear Waste Using Subcritical Accelerator-Driven Systems: Technology Choices and Implementation Scenarios  

SciTech Connect

Los Alamos National Laboratory has led the development of accelerator-driven transmutation of waste (ATW) to provide an alternative technological solution to the disposition of nuclear waste. While ATW will not eliminate the need for a high-level waste repository, it offers a new technology option for altering the nature of nuclear waste and enhancing the capability of a repository. The basic concept of ATW focuses on reducing the time horizon for the radiological risk from hundreds of thousands of years to a few hundred years and on reducing the thermal loading. As such, ATW will greatly reduce the amount of transuranic elements that will be disposed of in a high-level waste repository. The goal of the ATW nuclear subsystem is to produce three orders of magnitude reduction in the long-term radiotoxicity of the waste sent to a repository, including losses through processing. If the goal is met, the radiotoxicity of ATW-treated waste after 300 yr would be less than that of untreated waste after 100 000 yr.These objectives can be achieved through the use of high neutron fluxes produced in accelerator-driven subcritical systems. While critical fission reactors can produce high neutron fluxes to destroy actinides and select fission products, the effectiveness of the destruction is limited by the criticality requirement. Furthermore, a substantial amount of excess reactivity would have to be supplied initially and compensated for by control poisons. To overcome these intrinsic limitations, we searched for solutions in subcritical systems freed from the criticality requirement by taking advantage of the recent breakthroughs in accelerator technology and the release of liquid lead/bismuth nuclear coolant technology from Russia. The effort led to the selection of an accelerator-driven subcritical system that results in the destruction of the actinides and fission products of concern as well as permitting easy operational control through the external control of the neutron source.

Venneri, Francesco; Williamson, Mark A.; Li Ning; Houts, Michael G.; Morley, Richard A.; Beller, Denis E.; Sailor, William; Lawrence, George [Los Alamos National Laboratory (United States)

2000-10-15T23:59:59.000Z

179

The Advanced Superconducting Test Accelerator (ASTA) at Fermilab: A User-Driven Facility Dedicated to Accelerator Science \\& Technology  

E-Print Network (OSTI)

Fermilab is currently constructing a superconducting electron linac that will eventually serve as the backbone of a user-driven facility for accelerator science. This contribution describes the accelerator and summarizes the enabled research thrusts. A detailed description of the facility can be found at [\\url{http://apc.fnal.gov/programs2/ASTA_TEMP/index.shtml}].

Piot, P; Nagaitsev, S; Church, M; Garbincius, P; Henderson, S; Leibfritz, J

2013-01-01T23:59:59.000Z

180

Development of digital feedback systems for beam position and energy at the Thomas Jefferson National Accelerator Facility  

SciTech Connect

The development of beam-based digital feedback systems for the CEBAF accelerator has gone through several stages. As the accelerator moved from commissioning to operation for the nuclear physics program, the top priority was to stabilize the beam against slow energy and position drifts (<1 Hz). These slow drifts were corrected using the existing accelerator monitors and actuators driven by software running on top of the EPICS control system. With slow drifts corrected, attention turned to quantifying the higher frequency disturbances on the beam and to designing the required feedback systems needed to achieve the CEBAF design stability requirements. Results from measurements showed the major components in position and energy to be at harmonics of the power line frequencies of 60, 120, and 180 Hz. Hardware and software was installed in two locations of the accelerator as prototypes for the faster feedback systems needed. This paper gives an overview of the measured beam disturbances and the feedback systems developed.

Karn, J.; Chowdhary, M.; Hutton, A. [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States)] [and others

1997-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "linac accelerator system" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

HILBILAC development for accelerator?driven transmutation  

Science Conference Proceedings (OSTI)

High?Intensity Low?Beta Ion Linac (HILBILAC) is intended for acceleration of ion beams with current of about 1 A and higher. The CW HILBILAC with beam current of 250 mA is under development at MRTI. Concept of parameters choice is presented along with results of beam dynamics and resonator parameters calculations. A pulse prototype HILBILAC?TEST will have to be constructed and tested for the CW accelerator development

Vitaly Pirozhenko; Oleg Plink; HILBILAC Study Team

1995-01-01T23:59:59.000Z

182

Multidimensional study of a 50-MeV, 1500-rad/pulse radiographic linac, using the stagger-tuning concept  

Science Conference Proceedings (OSTI)

Stagger tuning of accelerator cavities, or blocks of cavities, can significantly enhance the achievable charge transfer through an electron linac operating in the stored-energy mode. The output bremsstrahlung flux can be increased over a conventional approach by an order of magnitude without any significant degradation in emittance growth or energy spread. Given a suitable injector, a 1500-rad/pulse, 50-MeV radiographic linac appears to be practical at a 400-MHz operating frequency; a 150-rad/pulse, 50-MeV radiographic linac will operate at 1300 MHz. A multidimensional study was made using the PARMELA code where several parameters, including beam current, synchronous phase angle, and beam radius, were varied while observing the effects on emittance and transmission efficiency.

Owen, R.K.; Fazio, M.V.; Boyd, T.J.

1983-01-01T23:59:59.000Z

183

Electron bunch energy and phase feed-forward stabilization system for the Mark V RF-linac free-electron laser  

SciTech Connect

An amplitude and phase compensation system has been developed and tested at the University of Hawai'i for the optimization of the RF drive system to the Mark V free-electron laser. Temporal uniformity of the RF drive is essential to the generation of an electron beam suitable for optimal free-electron laser performance and the operation of an inverse Compton scattering x-ray source. The design of the RF measurement and compensation system is described in detail and the results of RF phase compensation are presented. Performance of the free-electron laser was evaluated by comparing the measured effects of phase compensation with the results of a computer simulation. Finally, preliminary results are presented for the effects of amplitude compensation on the performance of the complete system.

Hadmack, M. R.; Kowalczyk, J. M. D.; Lienert, B. R.; Madey, J. M. J.; Szarmes, E. B. [Department of Physics and Astronomy, University of Hawai'i at Manoa, Honolulu, Hawaii 96822 (United States); Jacobson, B. T. [RadiaBeam Technologies, Santa Monica, California 90404 (United States)

2013-06-15T23:59:59.000Z

184

Electron bunch energy and phase feed-forward stabilization system for the Mark V RF-linac free-electron laser  

E-Print Network (OSTI)

An amplitude and phase compensation system has been developed and tested at the University of Hawai`i for the optimization of the RF drive system to the Mark V Free-Electron Laser. Temporal uniformity of the RF drive is essential to the generation of an electron beam suitable for optimal free-electron laser performance and the operation of an inverse Compton scattering x-ray source. The design of the RF measurement and compensation system is described in detail and the results of RF phase compensation are presented. Performance of the free-electron laser was evaluated by comparing the measured effects of phase compensation with the results of a computer simulation. Finally, preliminary results are presented for the effects of amplitude compensation on the performance of the complete system.

Hadmack, M R; Kowalczyk, J M D; Lienert, B R; Madey, J M J; Szarmes, E B

2013-01-01T23:59:59.000Z

185

Method for generating a plasma wave to accelerate electrons  

DOE Patents (OSTI)

The invention provides a method and apparatus for generating large amplitude nonlinear plasma waves, driven by an optimized train of independently adjustable, intense laser pulses. In the method, optimal pulse widths, interpulse spacing, and intensity profiles of each pulse are determined for each pulse in a series of pulses. A resonant region of the plasma wave phase space is found where the plasma wave is driven most efficiently by the laser pulses. The accelerator system of the invention comprises several parts: the laser system, with its pulse-shaping subsystem; the electron gun system, also called beam source, which preferably comprises photo cathode electron source and RF-LINAC accelerator; electron photo-cathode triggering system; the electron diagnostics; and the feedback system between the electron diagnostics and the laser system. The system also includes plasma source including vacuum chamber, magnetic lens, and magnetic field means. The laser system produces a train of pulses that has been optimized to maximize the axial electric field amplitude of the plasma wave, and thus the electron acceleration, using the method of the invention.

Umstadter, Donald (Ann Arbor, MI); Esarey, Eric (Chevy Chase, MD); Kim, Joon K. (Ann Arbor, MI)

1997-01-01T23:59:59.000Z

186

Method for generating a plasma wave to accelerate electrons  

DOE Patents (OSTI)

The invention provides a method and apparatus for generating large amplitude nonlinear plasma waves, driven by an optimized train of independently adjustable, intense laser pulses. In the method, optimal pulse widths, interpulse spacing, and intensity profiles of each pulse are determined for each pulse in a series of pulses. A resonant region of the plasma wave phase space is found where the plasma wave is driven most efficiently by the laser pulses. The accelerator system of the invention comprises several parts: the laser system, with its pulse-shaping subsystem; the electron gun system, also called beam source, which preferably comprises photo cathode electron source and RF-LINAC accelerator; electron photo-cathode triggering system; the electron diagnostics; and the feedback system between the electron diagnostics and the laser system. The system also includes plasma source including vacuum chamber, magnetic lens, and magnetic field means. The laser system produces a train of pulses that has been optimized to maximize the axial electric field amplitude of the plasma wave, and thus the electron acceleration, using the method of the invention. 21 figs.

Umstadter, D.; Esarey, E.; Kim, J.K.

1997-06-10T23:59:59.000Z

187

LINEAR ACCELERATOR  

DOE Patents (OSTI)

Improvements in linear particle accelerators are described. A drift tube system for a linear ion accelerator reduces gap capacity between adjacent drift tube ends. This is accomplished by reducing the ratio of the diameter of the drift tube to the diameter of the resonant cavity. Concentration of magnetic field intensity at the longitudinal midpoint of the external sunface of each drift tube is reduced by increasing the external drift tube diameter at the longitudinal center region.

Christofilos, N.C.; Polk, I.J.

1959-02-17T23:59:59.000Z

188

Models of f(R) Cosmic Acceleration that Evade Solar-System Tests  

E-Print Network (OSTI)

We study a class of metric-variation f(R) models that accelerates the expansion without a cosmological constant and satisfies both cosmological and solar-system tests in the small-field limit of the parameter space. Solar-system tests alone place only weak bounds on these models, since the additional scalar degree of freedom is locked to the high-curvature general-relativistic prediction across more than 25 orders of magnitude in density, out through the solar corona. This agreement requires that the galactic halo be of sufficient extent to maintain the galaxy at high curvature in the presence of the low-curvature cosmological background. If the galactic halo and local environment in f(R) models do not have substantially deeper potentials than expected in LCDM, then cosmological field amplitudes |f_R| > 10^{-6} will cause the galactic interior to evolve to low curvature during the acceleration epoch. Viability of large-deviation models therefore rests on the structure and evolution of the galactic halo, requiring cosmological simulations of f(R) models, and not directly on solar-system tests. Even small deviations that conservatively satisfy both galactic and solar-system constraints can still be tested by future, percent-level measurements of the linear power spectrum, while they remain undetectable to cosmological-distance measures. Although we illustrate these effects in a specific class of models, the requirements on f(R) are phrased in a nearly model-independent manner.

Wayne Hu; Ignacy Sawicki

2007-05-08T23:59:59.000Z

189

Development of a comprehensive reporting system for a school reform organization: The Accelerated Schools Project  

E-Print Network (OSTI)

Given the conflicting research results on the effectiveness of whole-school reform models (Nunnery, 1998; Stringfield & Herman, 1997; American Institutes for Research, 1999; U.S. Department of Education, 2004), there is a need to focus on the evaluation procedures of whole-school reform organizations. Because the ultimate goal is to improve school performance, it should also be a goal of each whole-school reform organization to design a comprehensive data collection system to evaluate each schoolÂ?s performance. A comprehensive reporting system was developed for a school reform organization, the Accelerated Schools Project (ASP). Using the steps of the research and development process recommended by Borg and Gall (1989), this study: (a) developed a theoretical framework for the reporting system, (b) identified data that should be collected in the reporting system, (c) performed a field test with an expert panel of educational professionals, (d) developed a preliminary form of the reporting system, (e) performed a main field test with principals and coaches in the ASP network, (f) reported field test results, (g) revised the preliminary reporting system, (h) developed a website for the reporting system, and (i) provided recommendations for the completion, dissemination and implementation of the system in accelerated schools across the nation. This study has important implications for both the ASP community and for the entire whole-school reform community. For the ASP community, the reporting system could be used: (a) to collect data in all accelerated schools across the nation (b) as a longitudinal database of information to monitor data on each ASP school, and (c) to generate school summary reports on ASP schools. These data will assist researchers in measuring the effectiveness of the ASP model on student achievement and other important variables. For the whole-school reform community, the method used in this study could be replicated in other school reform organizations to develop a comprehensive reporting system. By providing consistent data for school reform organizations to evaluate the impact of their models on students and schools, educational researchers will be better equipped to understand each modelÂ?s impact, and thus will better understand the diverse research results on school reform effectiveness.

Stephens, Jennifer Anne

2004-12-01T23:59:59.000Z

190

A Stability of LCLS Linac Modulators  

SciTech Connect

Information concerning to a stability of LCLS RF linac modulators is allocated in this paper. In general a 'pulse-to-pulse' modulator stability (and RF phase as well) is acceptable for the LCLS commission and FEL programs. Further modulator stability improvements are possible and approaches are discussed based on our experimental results.

Decker, F.-J.; Krasnykh, A.; Morris, B.; Nguyen, M.; /SLAC

2012-06-13T23:59:59.000Z

191

LANSCE Wire Scanner System Prototype: Switchyard Test  

Science Conference Proceedings (OSTI)

On November 19, 2011, the beam diagnostics team of Los Alamos National Laboratory's LANSCE accelerator facility conducted a test of a prototype wire scanner system for future deployment within the accelerator's switchyard area. The primary focus of this test was to demonstrate the wire scanner control system's ability to extend its functionality beyond acquiring lower energy linac beam profile measurements to acquiring data in the switchyard. This study summarizes the features and performance characteristics of the electronic and mechanical implementation of this system with details focusing on the test results.

Sedillo, James D [Los Alamos National Laboratory

2012-04-11T23:59:59.000Z

192

Electron acceleration during three-dimensional relaxation of an electron beam-return current plasma system in a magnetic field  

E-Print Network (OSTI)

We investigate the effects of acceleration during non-linear electron-beam relaxation in magnetized plasma in the case of electron transport in solar flares. The evolution of electron distribution functions is computed using a three-dimensional particle-in-cell electromagnetic code. Analytical estimations under simplified assumptions are made to provide comparisons. We show that, during the non-linear evolution of the beam-plasma system, the accelerated electron population appears. We found that, although the electron beam loses its energy efficiently to the thermal plasma, a noticeable part of the electron population is accelerated. For model cases with initially monoenergetic beams in uniform plasma, we found that the amount of energy in the accelerated electrons above the injected beam-electron energy varies depending the plasma conditions and could be around 10-30% of the initial beam energy. This type of acceleration could be important for the interpretation of non-thermal electron populations in solar f...

Karlicky, M

2012-01-01T23:59:59.000Z

193

RF System Upgrades to the Advanced Photon Source Linear Accelerator in Support of the Fel Operation  

E-Print Network (OSTI)

The S-band linear accelerator, which was built to be the source of particles and the front end of the Advanced Photon Source injector, is now also being used to support a low-energy undulator test line (LEUTL) and to drive a free-electron laser (FEL). The more severe rf stability requirements of the FEL have resulted in an effort to identify sources of phase and amplitude instability and implement corresponding upgrades to the rf generation chain and the measurement system. Test data and improvements implemented and planned are described

Smith, T L; Grelick, A E; Pile, G; Nassiri, A; Arnold, N

2000-01-01T23:59:59.000Z

194

Commissioning of the Electron Line of the Linac Coherent Light Source. Dose Rate Measurements and Simulations  

Science Conference Proceedings (OSTI)

The Linac Coherent Light Source at the SLAC National Accelerator Laboratory (operated by Stanford University for the US Department of Energy) is the world's first hard X-ray Free Electron Laser machine. It uses high energy electrons delivered by a linac to create ultrafast and brilliant X-ray pulses that can be used as a 'high-speed' camera to obtain images of atoms and molecules. LCLS is a pioneer machine and, as such, its design has encountered unprecedented challenges, the solutions to which will benefit future facilities of its kind across the globe. This article describes the radiation protection aspects of LCLS electron beamlines. Special emphasis is put on the successful commissioning of the LCLS electron line, where, for all examined loss sources, the measured prompt and residual dose rates are in agreement with or below the values predicted through detailed Monte Carlo simulations, used earlier to design the shielding.

Santana Leitner, M; Bauer, J.M.; Fasso, A.; Liu, J.C.; Mao, X.S.; Prinz, A.; Rokni, H.; /SLAC; Sanami, T.; /SLAC /KEK, Tsukuba; Vollaire, J.; /SLAC

2009-05-20T23:59:59.000Z

195

Compact Dielectric Wall Accelerator Development For Intensity Modulated Proton Therapy And Homeland Security Applications  

Science Conference Proceedings (OSTI)

Compact dielectric wall (DWA) accelerator technology is being developed at the Lawrence Livermore National Laboratory. The DWA accelerator uses fast switched high voltage transmission lines to generate pulsed electric fields on the inside of a high gradient insulating (HGI) acceleration tube. Its high electric field gradients are achieved by the use of alternating insulators and conductors and short pulse times. The DWA concept can be applied to accelerate charge particle beams with any charge to mass ratio and energy. Based on the DWA system, a novel compact proton therapy accelerator is being developed. This proton therapy system will produce individual pulses that can be varied in intensity, energy and spot width. The system will be capable of being sited in a conventional linac vault and provide intensity modulated rotational therapy. The status of the developmental new technologies that make the compact system possible will be reviewed. These include, high gradient vacuum insulators, solid dielectric materials, SiC photoconductive switches and compact proton sources. Applications of the DWA accelerator to problems in homeland security will also be discussed.

Chen, Y -; Caporaso, G J; Guethlein, G; Sampayan, S; Akana, G; Anaya, R; Blackfield, D; Cook, E; Falabella, S; Gower, E; Harris, J; Hawkins, S; Hickman, B; Holmes, C; Horner, A; Nelson, S; Paul, A; Pearson, D; Poole, B; Richardson, R; Sanders, D; Stanley, J; Sullivan, J; Wang, L; Watson, J; Weir, J

2009-06-17T23:59:59.000Z

196

Parametric systems studies of the aqueous-based (slurry) blanket concept for accelerator transmutation of waste  

Science Conference Proceedings (OSTI)

Transmutation of long-lived nuclear waste currently stored in spent reactor fuels may represent an attractive alternative to deep geologic disposal. The aqueous-based accelerator transmutation of waste (ATW) concept uses a proton accelerator to produce a 1.6-GeV, 250-mA ( ca. 400 MW) beam that is split four ways and directed to four D{sub 2}O-cooled solid W-Pb composite targets. Each target in turn is centered in a heavy water moderated, highly multiplying, actinide (oxide)-slurry blanket. The target-blanket system for ATW resides at an interface separating two major systems that are crucial to the economic and technical success of the concept: (a) the high-energy (power-intensive) accelerator delivering 0.8 to 1.6 GeV protons to the high-Z spallation neutron source and (b) the chemical-plant equipment (CPE) that provides feedstock appropriate for efficient and effective transmutation. Parametric studies have been performed to assess the effects of the target-blanket on overall system performance with regard to neutron economy, chemical-processing efficiency and thermal-hydraulic design options. Based on these parametric evaluations, an interim base-case aqueous-slurry ATW design was selected for more detailed analysis. This base-case target-blanket consists of an array of Zr-Nb pressure tubes placed in a heavy water moderator surrounding a heavy-water-cooled W-Pb target. Neutronics and thermal-hydraulic calculations indicate that each of the four ATW target-blanket modules operating with a neutron multiplication k{sub eff} = 0.95 can transmute the actinide waste and the technetium and iodine waste from ca. 2.5 light water reactors. By recovering the fission heat, sufficient electricity can be produced both to operate the accelerator and to supply power to the grid for revenue generation. These broad-based parametric studies have provided guidance to a preliminary conceptual engineering design of the aqueous-slurry ATW blanket concept.

Beard, C.A.; Davidson, J.W.; Krakowski, R.A.; Battat, M.E. [Los Alamos National Lab., NM (United States)

1995-06-01T23:59:59.000Z

197

Rf System for the NLCTA  

Science Conference Proceedings (OSTI)

This paper describes an X-Band RF system for the Next Linear Collider Test Accelerator. The RF system consists of a 90 MeV injector and a 540 MeV linac. The main components of the injector are two low-Q single-cavity prebunchers and two 0.9-m-long detuned accelerator sections. The linac system consists of six 1.8-m-long detuned and damped detuned accelerator sections powered in pairs. The rf power generation, compression, delivery, distribution and measurement systems consist of klystrons, SLEDII energy compression systems, rectangular waveguides, magic-T's, and directional couplers. The phase and amplitude for each prebuncher is adjusted via a magic-T type phase shifter/attenuator. Correct phasing between the two 0.9 m accelerator sections is obtained by properly aligning the sections and adjusting two squeeze type phase shifters. Bunch phase and bunch length can be monitored with special microwave cavities and measurement systems. The design, fabrication, microwave measurement, calibration, and operation of the sub-systems and their components are briefly presented.

Wang, J.W.; /SLAC; Adolphsen, C.; Eichner, J.; Fuller, R.W.; Gold, S.L.; Hanna, S.M.; Hoag, H.A.; Holmes, S.G.; Koontz, R.F.; Lavine, Theodore L.; Loewen, R.J.; Miller, R.H.; Nantista, C.D.; Pope, R.; Rifkin, J.; Ruth, R.D.; Tantawi, S.G.; Vlieks, A.E.; Wilson, Z.; Yeremian, A.; /SLAC

2011-08-26T23:59:59.000Z

198

Heavy ion fusion accelerator research (HIFAR) half-year report: October 1, 1986-March 31, 1987  

Science Conference Proceedings (OSTI)

For this report we have collected the papers presented by the HIFAR group at the IEEE Particle Accelerator Conference held in Washington, DC, on March 16-19, 1987, which essentially coincides with the end of the reporting period. In addition, we report on research to determine the cause of the failures of Re-X insulator that are used as the high-voltage feed-through for the electrostatic quadrupoles on MBE-4. This report contains papers on the following topics: LBL multiple beam experiments, pulsers for the induction linac experiment (MBE-4), HIF insulator failure, experimental measurement of emittance growth in mismatched space-charge dominated beams, the effect of nonlinear forces on coherently oscillating space-charge dominated beams, space-charge effects in a bending magnet system, transverse combining of nonrelativistic beams in a multiple beam induction linac, comparison of electric and magnetic quadrupole focusing for the low energy end of an induction-linac-ICF driver. Eight individual papers have been indexed separately. (LSP)

Not Available

1987-04-01T23:59:59.000Z

199

ILC cryogenic systems reference design  

SciTech Connect

A Global Design Effort (GDE) began in 2005 to study a TeV scale electron-positron linear accelerator based on superconducting radio-frequency (RF) technology, called the International Linear Collider (ILC). In early 2007, the design effort culminated in a reference design for the ILC, closely based on the earlier TESLA design. The ILC will consist of two 250 GeV linacs, which provide positron-electron collisions for high energy physics research. The particle beams will be accelerated to their final energy in superconducting niobium RF cavities operating at 2 kelvin. At a length of about 12 km each, the main linacs will be the largest cryogenic systems in the ILC. Positron and electron sources, damping rings, and beam delivery systems will also have a large number and variety of other superconducting RF cavities and magnets, which require cooling at liquid helium temperatures. Ten large cryogenic plants with 2 kelvin refrigeration are envisioned to cool the main linacs and the electron and positron sources. Three smaller cryogenic plants will cool the damping rings and beam delivery system components predominately at 4.5 K. This paper describes the cryogenic systems concepts for the ILC.

Peterson, T.J.; Geynisman, M.; Klebaner, A.; Theilacker, J.; /Fermilab; Parma, V.; Tavian, L.; /CERN

2008-01-01T23:59:59.000Z

200

Prospects for high power Linac Coherent Light Source (LCLS) development in the 1000{angstrom} {minus} 1{angstrom} wavelength range  

Science Conference Proceedings (OSTI)

Electron bunch requirements for single-pass saturation of a Free-Electron Laser (FEL) operating at full transverse coherence in the Self-Amplified Spontaneous Emission (SASE) mode include: (1) a high peak current, (2) a sufficiently low relative energy spread, and (3) a transverse emittance {var_epsilon}[r-m] satisfying the condition {var_epsilon} {le} {lambda}A/4{pi}, where {lambda}[m] is the output wavelength of the FEL. In the insertion device that induces the coherent amplification, the prepared electron bunch must be kept on a trajectory sufficiently collinear with the amplified photons without significant dilution of its transverse density. In this paper we discuss a Linac Coherent Light Source (LCLS) based on a high energy accelerator such as, e.g., the 3km S-band structure at the Stanford Linear Accelerator Center (SLAC), followed by a long high-precision undulator with superimposed quadrupole (FODO) focusing, to fulfill the given requirements for SASE operation in the 1000{Angstrom}--1{Angstrom} range. The electron source for the linac, an RF gun with a laser-excited photocathode featuring a normalized emittance in the 1--3 mm-mrad range, a longitudinal bunch duration of the order of 3 ps, and approximately 10{sup {minus}9} C/bunch, is a primary determinant of the required low transverse and longitudinal emittances. Acceleration of the injected bunch to energies in the 5--25 GeV range is used to reduce the relative longitudinal energy spread in the bunch, as well as to reduce the transverse emittance to values consistent with the cited wavelength regime. Two longitudinal compression stages are employed to increase the peak bunch current to the 2--5 kA levels required for sufficiently rapid saturation. The output radiation is delivered, via a grazing-incidence mirror bank, to optical instrumentation and a multi-user beam line system. Technological requirements for LCLS operation at 40{Angstrom}, 4.5{Angstrom}, and 1.5{Angstrom} are examined.

Tatchyn, R.; Bane, K.; Boyce, R. [and others

1994-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "linac accelerator system" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Pyrochemical separations technologies envisioned for the U. S. accelerator transmutation of waste system  

SciTech Connect

A program has been initiated for the purpose of developing the chemical separations technologies necessary to support a large Accelerator Transmutation of Waste (ATW) system capable of dealing with the projected inventory of spent fuel from the commercial nuclear power stations in the United States. The baseline process selected combines aqueous and pyrochemical processes to enable the efficient separation of uranium, technetium, iodine, and the transuranic elements from LWR spent fuel. The diversity of processing methods was chosen for both technical and economic factors. A six-year technology evaluation and development program is foreseen, by the end of which an informed decision can be made on proceeding with demonstration of the ATW system.

Laidler, J. J.

2000-02-17T23:59:59.000Z

202

Bunch Shape Monitor for SSCL linac  

SciTech Connect

The Superconducting Super Collider Laboratory and the Institute for Nuclear Research ore collaboratively developing a Bunch Shape Monitor diagnostics for commission the SSCL linac. The Bunch Shape Monitor is designed to measure the intensity of beam as a function of time over the micro-bunch of the beam. Design resolution for the SSCL monitors is approximately 7 psec. The first monitor will operate at the fundamental frequency of 428 MHz and will be used to measure the output beam of the RFQ Linac. First available results will be presented and compared with predictions. Further development will allow the monitors to fit in a standard SSCL beam box and one will operate at the third harmonic of 428 MHz. Proposals to use the Bunch Shape Monitor to measure the longitudinal phase space distribution of the beam will be discussed.

Hurd, J.W.; Arbique, G.M.; Crist, C.E.; Guy, F.W.; Leifeste, G.T.; Raparia, D.; Saadatmand, K.; Swenson, D.A. [Superconducting Super Collider Lab., Dallas, TX (United States); Esin, S.; Feschenko, A.; Stepanov, A.; Mirzojan, A. [AN SSSR, Moscow (Russian Federation). Inst. Yadernykh Issledovanij

1993-05-01T23:59:59.000Z

203

The SNS front-end, an injector for a high-power hydrogen-ion accelerator  

DOE Green Energy (OSTI)

The Spallation Neutron Source (SNS) will be an accelerator-based facility in Oak Ridge, TN, delivering pulsed neutron beams to experimenters. Negative hydrogen ion-beams are generated and pre-accelerated in a 2.5-MeV linac injector, or front end (FE), accelerated to 1 GeV energy by a linear accelerator system, converted into protons and accumulated in a ring accelerator, and then directed towards a mercury target to generate the neutrons. The proton beam arrives at the target in bursts of less than 1 {micro}s duration and with more than 1 MW average power. The front end has been built and commissioned by LBNL in Berkeley; shipment to ORNL is essentially complete. This paper provides an overview of FE major design features and experimental results obtained during the commissioning process. The SNS-FE can be viewed as a prototype of a high-current, high duty-factor injector for other accelerator projects or, without the elaborate MEBT, as an independent 2.5-MeV accelerator for various applications.

Keller, R.

2002-02-01T23:59:59.000Z

204

The LCLS Timing Event System  

Science Conference Proceedings (OSTI)

The Linac Coherent Light Source requires precision timing trigger signals for various accelerator diagnostics and controls at SLAC-NAL. A new timing system has been developed that meets these requirements. This system is based on COTS hardware with a mixture of custom-designed units. An added challenge has been the requirement that the LCLS Timing System must co-exist and 'know' about the existing SLC Timing System. This paper describes the architecture, construction and performance of the LCLS timing event system.

Dusatko, John; Allison, S.; Browne, M.; Krejcik, P.; /SLAC

2012-07-23T23:59:59.000Z

205

Validation of a virtual source model for Monte Carlo dose calculations of a flattening filter free linac  

SciTech Connect

Purpose: A linac delivering intensity-modulated radiotherapy (IMRT) can benefit from a flattening filter free (FFF) design which offers higher dose rates and reduced accelerator head scatter than for conventional (flattened) delivery. This reduction in scatter simplifies beam modeling, and combining a Monte Carlo dose engine with a FFF accelerator could potentially increase dose calculation accuracy. The objective of this work was to model a FFF machine using an adapted version of a previously published virtual source model (VSM) for Monte Carlo calculations and to verify its accuracy. Methods: An Elekta Synergy linear accelerator operating at 6 MV has been modified to enable irradiation both with and without the flattening filter (FF). The VSM has been incorporated into a commercially available treatment planning system (Monaco Trade-Mark-Sign v 3.1) as VSM 1.6. Dosimetric data were measured to commission the treatment planning system (TPS) and the VSM adapted to account for the lack of angular differential absorption and general beam hardening. The model was then tested using standard water phantom measurements and also by creating IMRT plans for a range of clinical cases. Results: The results show that the VSM implementation handles the FFF beams very well, with an uncertainty between measurement and calculation of <1% which is comparable to conventional flattened beams. All IMRT beams passed standard quality assurance tests with >95% of all points passing gamma analysis ({gamma} < 1) using a 3%/3 mm tolerance. Conclusions: The virtual source model for flattened beams was successfully adapted to a flattening filter free beam production. Water phantom and patient specific QA measurements show excellent results, and comparisons of IMRT plans generated in conventional and FFF mode are underway to assess dosimetric uncertainties and possible improvements in dose calculation and delivery.

Cashmore, Jason; Golubev, Sergey; Dumont, Jose Luis; Sikora, Marcin; Alber, Markus; Ramtohul, Mark [Hall-Edwards Radiotherapy Research Group, University Hospital Birmingham NHS Foundation Trust, United Kingdom, B15 2TH (United Kingdom); Elekta CMS Software, St. Louis, Missouri 63043 (United States); Department of Oncology and Medical Physics, Haukeland University Hospital, Bergen 5021 (Norway); Section for Biomedical Physics, University Hospital for Radiation Oncology, Hoppe-Seyler-Str 3, 72076, Tuebingen (Germany); Hall-Edwards Radiotherapy Research Group, University Hospital Birmingham NHS Foundation Trust, United Kingdom, B15 2TH (United Kingdom)

2012-06-15T23:59:59.000Z

206

Analysis on linac quadrupole misalignment in FACET commissioning 2012  

Science Conference Proceedings (OSTI)

In this note, the analysis on linac quadrupole misalignment is presented for the FACET linac section LI05-09 plus LI11-19. The effectiveness of the beam-based alignment technique is preliminarily confirmed by the measurement. Beam-based alignment technique was adopted at SLAC linac since SLC time. Here the beam-based alignment algorithms are further developed and applied in the FACET commissioning during 2012 run.

Sun, Yipeng; /SLAC

2012-07-05T23:59:59.000Z

207

Measurement and correction of accelerator optics  

SciTech Connect

This report reviews procedures and techniques for measuring, correcting and controlling various optics parameters of an accelerator, including the betatron tune, beta function, betatron coupling, dispersion, chromaticity, momentum compaction factor, and beam orbit. The techniques described are not only indispensable for the basic set-up of an accelerator, but in addition the same methods can be used to study more esoteric questions as, for instance, dynamic aperture limitations or wakefield effects. The different procedures are illustrated by examples from several accelerators, storage rings, as well as linacs and transport lines.

Zimmerman, F.

1998-06-01T23:59:59.000Z

208

Accelerator Operations and Physics - Advanced Photon Source  

NLE Websites -- All DOE Office Websites (Extended Search)

Accelerator Operations & Physics Accelerator Systems Division---Argonne National Laboratory Mission Statement Safe, reliable, attentive, and responsive operation of APS accelerator...

209

Science and Instrumentation for the Linac Coherent Light Source...  

NLE Websites -- All DOE Office Websites (Extended Search)

Science and Instrumentation for the Linac Coherent Light Source WB00852.GIF (317 bytes) Where: SLAC Panofsky Auditorium When: Friday, October 15, 1999 (1:30 pm) Saturday,...

210

Emittance Measurement and Modeling of the ALS 50 MeV Linac to Booster Line  

E-Print Network (OSTI)

Measurement and Modeling of the ALS 50 Me V Linac to Boosterhave been measured for the ALS LINAC through non-linear X2Measurement and Modeling of the ALS 50 Me V Linac to Booster

Bengtsson, J.

2011-01-01T23:59:59.000Z

211

X-ray Sources by Energy Recovered Linacs and Their Needed R&D  

Science Conference Proceedings (OSTI)

In this paper we review the current state of research on energy recovered linacs as drivers for future X-ray sources. For many types of user experiments, such sources may have substantial advantages compared to the workhorse sources of the present: high energy storage rings. Energy recovered linacs need to be improved beyond present experience in both energy and average current to support this application. To build an energy recovered linac based X-ray user facility presents many interesting challenges. We present summaries on the Research and Development (R&D) topics needed for full development of such a source, including the discussion at the Future Light Sources Workshop held in Gaithersburg, Maryland on September 15- 17, 2009. A #12;rst iteration of an R&D plan is presented that is founded on the notion of building a set of succeedingly larger test accelerators exploring cathode physics, high average current injector physics, and beam recirculation and beam energy recovery at high average current. Our basic conclusion is that a reviewable design of such a source can be developed after an R&D period of #12;ve to ten years.

Benson, Stephen; Douglas, David; Dowell, David; Hernandez-Garcia, Carlos; Kayran, D; Krafft, Geoffrey; Legg, Robert; Moog, E; Obina, T; Rimmer, Robert

2011-05-01T23:59:59.000Z

212

Overview of the RF Systems for LCLS  

SciTech Connect

The Linac Coherent Light Source (LCLS) at SLAC, when it becomes operational in 2009, will provide its user community with an X-ray source many orders of magnitude brighter than anything available in the world at that time [1]. The electron beam acceleration will be provided by existing and new RF systems capable of maintaining the amplitude and phase stability of each bunch to extremely tight tolerances. RF feedback control of the various RF systems will be fundamental in ensuring the beam arrives at the LCLS undulator at precisely the required energy and peak current phase. This paper details the requirements for RF stability for the various LCLS RF systems and also highlights proposals for how these injector and Linac RF systems can meet these tight constraints.

McIntosh, P.; Akre, R.; Boyce, R.; Emma, P.; Hill, A.; Rago, C.; /SLAC

2005-06-15T23:59:59.000Z

213

Overview of the RF Systems for LCLS  

E-Print Network (OSTI)

The Linac Coherent Light Source (LCLS) at SLAC, when it becomes operational in 2009, will provide its user community with an X-ray source many orders of magnitude brighter than anything available in the world at that time. The electron beam acceleration will be provided by existing and new RF systems capable of maintaining the amplitude and phase stability of each bunch to extremely tight tolerances. RF feedback control of the various RF systems will be fundamental in ensuring the beam arrives at the LCLS undulator at precisely the required energy and phase. This paper details the requirements for RF stability for the various LCLS RF systems and also highlights proposals for how these injector and Linac RF systems can meet these constraints.

McIntosh, Peter; Boyce, Richard; Emma, Paul; Hill, Alan; Rago, Carl

2005-01-01T23:59:59.000Z

214

A Compact X-Band Linac for an X-Ray FEL  

SciTech Connect

With the growing demand for FEL light sources, cost issues are being reevaluated. To make the machines more compact, higher frequency room temperature linacs are being considered, specifically ones using C-band (5.7 GHz) rf technology, for which 40 MV/m gradients are achievable. In this paper, we show that an X-band (11.4 GHz) linac using the technology developed for NLC/GLC can provide an even lower cost solution. In particular, stable operation is possible at gradients of 100 MV/m for single bunch operation and 70 MV/m for multibunch operation. The concern, of course, is whether the stronger wakefields will lead to unacceptable emittance dilution. However, we show that the small emittances produced in a 250 MeV, low bunch charge, LCLS-like S-band injector and bunch compressor can be preserved in a multi-GeV X-band linac with reasonable alignment tolerances. The successful lasing and operation of the LCLS [1] has generated world-wide interest in X-ray FELs. The demand for access to such a light source by researchers eager to harness the capabilities of this new tool far exceeds the numbers that can be accommodated, spurring plans for additional facilities. Along with cost, spatial considerations become increasingly important for a hard X-ray machine driven by a multi-GeV linac. The consequent need for high acceleration gradient focuses attention on higher frequency normal conducting accelerator technology, rather than the superconducting technology of a soft X-ray facility like FLASH. C-band technology, such as used by Spring-8, is a popular option, capable of providing 40 MV/m. However, more than a decade of R&D toward an X-band linear collider, centered at SLAC and KEK, has demonstrated that this frequency option can extend the gradient reach to the 70-100 MV/m range. The following design and beam dynamics calculations show an X-band linac to be an attractive choice on which to base an X-ray FEL.

Adolphsen, Chris; Huang, Zhirong; Bane, Karl L.F.; Li, Zenghai; Zhou, Feng; Wang, Faya; Nantista, Christopher D.; /SLAC

2011-09-12T23:59:59.000Z

215

RECENT PROGRESS TOWARD A MUON RECIRCULATING LINEAR ACCELERATOR  

SciTech Connect

Both Neutrino Factories (NF) and Muon Colliders (MC) require very rapid acceleration due to the short lifetime of muons. After a capture and bunching section, a linac raises the energy to about 900 MeV, and is followed by one or more Recirculating Linear Accelerators (RLA), possibly followed by a Rapid Cycling Synchnotron (RCS) or Fixed-Field Alternating Gradient (FFAG) ring. A RLA reuses the expensive RF linac section for a number of passes at the price of having to deal with different energies within the same linac. Various techniques including pulsed focusing quadruopoles, beta frequency beating, and multipass arcs have been investigated via simulations to improve the performance and reduce the cost of such RLAs.

Slawomir Bogacz, Vasiliy Morozov, Yves Roblin, Kevin Beard

2012-07-01T23:59:59.000Z

216

Proposal for the award of a contract for the design, supply, installation and commissioning of Heating, Ventilation and Air-Conditioning (HVAC) systems for the PS accelerator infrastructure  

E-Print Network (OSTI)

Proposal for the award of a contract for the design, supply, installation and commissioning of Heating, Ventilation and Air-Conditioning (HVAC) systems for the PS accelerator infrastructure

2012-01-01T23:59:59.000Z

217

Proton Driver Linac for the Frankfurt Neutron Source  

SciTech Connect

The Frankfurt Neutron Source at the Stern-Gerlach-Zentrum (FRANZ) will deliver high neutron fluxes in the energy range of 1 to 500 keV. The Activation Mode provides a high averaged neutron flux created by a cw proton beam of up to 5 mA, while in the Compressor Mode intense neutron pulses of 1 ns length are formed with a repetition rate of up to 250 kHz. The Compressor Mode is well-suited for energy-dependent neutron capture measurements using the Time-of-Flight method in combination with a 4{pi} BaF{sub 2} detector array. The design of the proton driver linac for both operation modes is presented. This includes the volume type ion source, the ExB chopper located in the low energy section, the RFQ-IH combination for beam acceleration and the bunch compressor. Finally, the neutron production at the lithium-7 target and the resulting energy spectrum is described.

Wiesner, C.; Chau, L. P.; Dinter, H.; Droba, M.; Heilmann, M.; Joshi, N.; Maeder, D.; Metz, A.; Meusel, O.; Noll, D.; Podlech, H.; Ratzinger, U.; Reichau, H.; Schempp, A.; Schmidt, S.; Schweizer, W.; Volk, K.; Wagner, C. [Institut fuer Angewandte Physik, Goethe-Universitaet, Max-von-Laue-Str. 1, 60438 Frankfurt/Main (Germany); Reifarth, R. [Institut fuer Angewandte Physik, Goethe-Universitaet, Max-von-Laue-Str. 1, 60438 Frankfurt/Main (Germany); GSI Helmholtzzentrum fuer Schwerionenforschung, Planckstr. 1, 64291 Darmstadt (Germany); Mueller, I.

2010-08-04T23:59:59.000Z

218

SLAC Linac Coherent Light Source User Site  

NLE Websites -- All DOE Office Websites (Extended Search)

Welcome to the LCLS User Resources Site Welcome to the LCLS User Resources Site User Portal | Agreements | Data Collection & Analysis | Logistics | Policies | Proposals | Safety | Schedules | Shipping The Linac Coherent Light Source (LCLS) encourages scientists from diverse fields to submit proposals for experiments that utilize the LCLS's unique capabilities. Interested scientists are encouraged to learn more about the latest developments by contacting LCLS staff scientists and by reviewing the instrument descriptions. Step-By-Step Instructions to Working at LCLS Review LCLS Policies Review Machine FAQ & Parameters Register and Submit Proposals Confirm User Agreement Reserve Accommodations Complete Safety Training Request Computer Account Establish User Account Ship Samples/Equipment Review Check-in Procedures

219

Superconducting radiofrequency linac development at Fermilab  

SciTech Connect

As the Fermilab Tevatron Collider program draws to a close, a strategy has emerged of an experimental program built around the high intensity frontier. The centerpiece of this program is a superconducting H- linac that will support world leading programs in long baseline neutrino experimentation and the study of rare processes. Based on technology shared with the International Linear Collider, Project X will provide multi-MW beams at 60-120 GeV from the Main Injector, simultaneous with very high intensity beams at lower energies. Project X also supports development of a Muon Collider as a future facility at the energy frontier.

Holmes, Stephen D.; /Fermilab

2009-10-01T23:59:59.000Z

220

Argonne Accelerator Institute  

NLE Websites -- All DOE Office Websites (Extended Search)

Chemistry Division Electron Linac (operation: 1969 - ongoing) This high peak current 22 MeV L-band linac was primarily used to study the time profile of chemical reactions. For...

Note: This page contains sample records for the topic "linac accelerator system" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Design of RF Feed System for Standing-Wave Accelerator Structures  

Science Conference Proceedings (OSTI)

We are investigating a standing wave accelerator structure that uses a rf feed to each individual cell. This approach minimizes rf power flow and electromagnetic energy absorbed by an rf breakdown. The objective of this work is a robust high-gradient (above 100 MV/m) X-band accelerator structure.

Neilson, J.; Tantawi, S.; Dolgashev, V.; /SLAC

2012-05-25T23:59:59.000Z

222

Neutron-induced electronic failures around a high-energy linear accelerator  

Science Conference Proceedings (OSTI)

Purpose: After a new in-vault CT-on-rails system repeatedly malfunctioned following use of a high-energy radiotherapy beam, we investigated the presence and impact of neutron radiation on this electronic system, as well as neutron shielding options. Methods: We first determined the CT scanner's failure rate as a function of the number of 18 MV monitor units (MUs) delivered. We then re-examined the failure rate with both 2.7-cm-thick and 7.6-cm-thick borated polyethylene (BPE) covering the linac head for neutron shielding. To further examine shielding options, as well as to explore which neutrons were relevant to the scanner failure, Monte Carlo simulations were used to calculate the neutron fluence and spectrum in the bore of the CT scanner. Simulations included BPE covering the CT scanner itself as well as covering the linac head. Results: We found that the CT scanner had a 57% chance of failure after the delivery of 200 MUs. While the addition of neutron shielding to the accelerator head reduced this risk of failure, the benefit was minimal and even 7.6 cm of BPE was still associated with a 29% chance of failure after the delivery of 200 MU. This shielding benefit was achieved regardless of whether the linac head or CT scanner was shielded. Additionally, it was determined that fast neutrons were primarily responsible for the electronic failures. Conclusions: As illustrated by the CT-on-rails system in the current study, physicists should be aware that electronic systems may be highly sensitive to neutron radiation. Medical physicists should therefore monitor electronic systems that have not been evaluated for potential neutron sensitivity. This is particularly relevant as electronics are increasingly common in the therapy vault and newer electronic systems may exhibit increased sensitivity.

Kry, Stephen F.; Johnson, Jennifer L.; White, R. Allen; Howell, Rebecca M.; Kudchadker, Rajat J.; Gillin, Michael T. [Department of Radiation Physics, M. D. Anderson Cancer Center, University of Texas, 1515 Holcombe Boulevard, Houston, Texas 77030 and Health Science Center Houston, Graduate School of Biomedical Sciences, University of Texas Health Science Center Houston, Houston, Texas 77030 (United States); Department of Radiation Physics, M. D. Anderson Cancer Center, University of Texas, 1515 Holcombe Boulevard, Houston, Texas 77030 (United States); Department of Biostatistics and Applied Mathematics, M. D. Anderson Cancer Center, University of Texas, 1515 Holcombe Boulevard, Houston, Texas 77030 (United States) and Health Science Center Houston, Graduate School of Biomedical Sciences, University of Texas, Houston, Texas 77030 (United States); Department of Radiation Physics, M. D. Anderson Cancer Center, University of Texas, 1515 Holcombe Boulevard, Houston, Texas 77030 (United States) and Health Science Center Houston, Graduate School of Biomedical Sciences, University of Texas, Houston, Texas 77030 (United States); Department of Radiation Physics, M. D. Anderson Cancer Center, University of Texas, 1515 Holcombe Boulevard, Houston, Texas 77030 (United States)

2011-01-15T23:59:59.000Z

223

WindoWorks: A flexible program for computerized testing of accelerator control system electronic circuit boards  

SciTech Connect

Since most accelerator control system circuit boards reside in a commercial bus architecture, such as CAMAC or VMEbus, a computerized test station is needed for exercising the boards. This test station is needed for the development of newly designed prototypes, for commissioning newly manufactured boards, for diagnosing boards which have failed in service, and for long term testing of boards with intermittent failure problems. WindoWorks was created to address these needs. It is a flexible program which runs on a PC compatible computer and uses a PC to bus crate interface. WindoWorks was designed to give the user a flexible way to test circuit boards. Each test is incapsulated into a window. By bringing up several different windows the user can run several different tests simultaneously. The windows are sizable, and moveable. They have data entry boxes so that the test can be customized to the users preference. The windows can be used in conjunction with each other in order to create supertests. There are several windows which are generic. They can be used to test basic functions on any VME (or CAMAC) board. There are other windows which have been created to test specific boards. New windows for testing specific boards can be easily created by a Pascal programmer using the WindoWorks framework.

Utterback, J.

1993-09-01T23:59:59.000Z

224

Absolute reactivity calibration of accelerator-driven systems after RACE-T experiments  

Science Conference Proceedings (OSTI)

The RACE-T experiments that were held in november 2005 in the ENEA-Casaccia research center near Rome allowed us to improve our knowledge of the experimental techniques for absolute reactivity calibration at either startup or shutdown phases of accelerator-driven systems. Various experimental techniques for assessing a subcritical level were inter-compared through three different subcritical configurations SC0, SC2 and SC3, about -0.5, -3 and -6 dollars, respectively. The area-ratio method based of the use of a pulsed neutron source appears as the most performing. When the reactivity estimate is expressed in dollar unit, the uncertainties obtained with the area-ratio method were less than 1% for any subcritical configuration. The sensitivity to measurement location was about slightly more than 1% and always less than 4%. Finally, it is noteworthy that the source jerk technique using a transient caused by the pulsed neutron source shutdown provides results in good agreement with those obtained from the area-ratio technique. (authors)

Jammes, C. C. [Commissariat a l'Energie Atomique CEA, Centre de Cadarache, DEN/CAD/DER/SPEx/LPE, 13108 Saint Paul-Lez-Durance (France); Imel, G. R. [Argonne National Laboratory, 9700 S. Cass Avenue, Argonne, IL 60439 (United States); Geslot, B. [Commissariat a l'Energie Atomique CEA, Centre de Cadarache, DEN/CAD/DER/SPEx/LPE, 13108 Saint Paul-Lez-Durance (France); Rosa, R. [Ente per le Nuove Tecnologie, L'Energia e l'Ambiente, Centro della Casaccia, Via Anguillarese, 301, 00060 Roma I (Italy)

2006-07-01T23:59:59.000Z

225

SLAC National Accelerator Laboratory - SLAC's X-ray Laser Explores...  

NLE Websites -- All DOE Office Websites (Extended Search)

X-ray Laser Explores Big Data Frontier By Glenn Roberts Jr. June 12, 2013 It's no surprise that the data systems for SLAC's Linac Coherent Light Source X-ray laser have drawn...

226

PARTICLE ACCELERATOR  

DOE Patents (OSTI)

ABS>A combination of two accelerators, a cyclotron and a ring-shaped accelerator which has a portion disposed tangentially to the cyclotron, is described. Means are provided to transfer particles from the cyclotron to the ring accelerator including a magnetic deflector within the cyclotron, a magnetic shield between the ring accelerator and the cyclotron, and a magnetic inflector within the ring accelerator.

Teng, L.C.

1960-01-19T23:59:59.000Z

227

A Quest for Measuring Ion Bunch Longitudinal Profiles with One Picosecond Accuracy in the SNS Linac.  

Science Conference Proceedings (OSTI)

The SNS linac utilizes several accelerating structures operating at different frequencies and with different transverse focusing structures. Low-loss beam transport requires a careful matching at the transition points in both the transverse and longitudinal axes. Longitudinal beam parameters are measured using four Bunch Shape Monitors (used at many ion accelerator facilities, aka Feschenko devices). These devices, as initially delivered to the SNS, provided an estimated accuracy of about 5 picoseconds, which was sufficient for the initial beam commissioning. New challenges of improving beam transport for higher power operation will require measuring bunch profiles with 1-2 picoseconds accuracy. We have successfully implemented a number of improvements to maximize the performance characteristics of the delivered devices. We will discuss the current status of this instrument, its ultimate theoretical limit of accuracy, and how we measure its accuracy and resolution with real beam conditions.

Aleksandrov, Alexander V [ORNL; Dickson, Richard W [ORNL

2012-01-01T23:59:59.000Z

228

Optical Design of a Broadband Infrared Spectrometer for Bunch Length Measurement at the Linac Coherent Light Source  

SciTech Connect

The electron pulses generated by the Linac Coherent Light Source at the SLAC National Accelerator Laboratory occur on the order of tens of femtoseconds and cannot be directly measured by conventional means. The length of the pulses can instead be reconstructed by measuring the spectrum of optical transition radiation emitted by the electrons as they move toward a conducting foil. Because the emitted radiation occurs in the mid-infrared from 0.6 to 30 microns a novel optical layout is required. Using a helium-neon laser with wavelength 633 nm, a series of gold-coated off-axis parabolic mirrors were positioned to direct a beam through a zinc selenide prism and to a focus at a CCD camera for imaging. Constructing this layout revealed a number of novel techniques for reducing the aberrations introduced into the system by the off-axis parabolic mirrors. The beam had a recorded radius of less than a millimeter at its final focus on the CCD imager. This preliminary setup serves as a model for the spectrometer that will ultimately measure the LCLS electron pulse duration.

Williams, Kiel; /SLAC

2012-09-07T23:59:59.000Z

229

PHYSICS RESULTS OF THE NSLS-II LINAC FRONT END TEST STAND  

Science Conference Proceedings (OSTI)

The Linac Front End Test Stand (LFETS) was installed at the Source Development Laboratory (SDL) in the fall of 2011 in order to test the Linac Front End. The goal of these tests was to test the electron source against the specifications of the linac. In this report, we discuss the results of these measurements and the effect on linac performance.

Fliller R. P.; Gao, F.; Yang, X.; Rose, J.; Shaftan, T.; Piel, C

2012-05-20T23:59:59.000Z

230

Short-pulse limits in optical instrumentation design for the SLAC Linac Cohereent Light Source (LCLS)  

E-Print Network (OSTI)

Short-pulse limits in optical instrumentation design for the SLAC Linac Cohereent Light Source (LCLS)

Tatchyn, R

1999-01-01T23:59:59.000Z

231

Can Accelerators Accelerate Learning?  

Science Conference Proceedings (OSTI)

The 'Young Talented' education program developed by the Brazilian State Funding Agency (FAPERJ)[1] makes it possible for high-schools students from public high schools to perform activities in scientific laboratories. In the Atomic and Molecular Physics Laboratory at Federal University of Rio de Janeiro (UFRJ), the students are confronted with modern research tools like the 1.7 MV ion accelerator. Being a user-friendly machine, the accelerator is easily manageable by the students, who can perform simple hands-on activities, stimulating interest in physics, and getting the students close to modern laboratory techniques.

Santos, A. C. F.; Fonseca, P.; Coelho, L. F. S. [Instituto de Fisica, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil, Caixa Postal 68528, 21941-972 (Brazil)

2009-03-10T23:59:59.000Z

232

CLIC simulations from the start of the linac to the interaction point  

E-Print Network (OSTI)

Simulations for linear colliders are traditionally performed separately for the different sub-systems, like damping ring, bunch compressor, linac, and beam delivery. The beam properties are usually passed from one sub-system to the other via bunch charge, RMS transverse emittances, RMS bunch length, average energy and RMS energy spread. It is implicitly assumed that the detailed 6D correlations in the beam distribution are not relevant for the achievable luminosity. However, it has recently been shown that those correlations can have a strong effect on the beam-beam interaction. We present first results on CLIC simulations that integrate linac, beam delivery, and beam-beam interaction. These integrated simulations also allow a better simulation of time-dependent effects, like ground perturbations and interference between several beam-based feedbacks.

Schulte, Daniel; Blair, G A; D'Amico, T E; Leros, Nicolas; Redaelli, S; Risselada, Thys; Zimmermann, Frank

2002-01-01T23:59:59.000Z

233

Conceptual design of minor actinides burner with an accelerator-driven subcritical system.  

SciTech Connect

In the environmental impact study of the Yucca Mountain nuclear waste repository, the limit of spent nuclear fuel (SNF) for disposal is assessed at 70,000 metric tons of heavy metal (MTHM), among which 63,000 MTHM are the projected SNF discharge from U.S. commercial nuclear power plants though 2011. Within the 70,000 MTHM of SNF in storage, approximately 115 tons would be minor actinides (MAs) and 585 tons would be plutonium. This study describes the conceptual design of an accelerator-driven subcritical (ADS) system intended to utilize (burn) the 115 tons of MAs. The ADS system consists of a subcritical fission blanket where the MAs fuel will be burned, a spallation neutron source to drive the fission blanket, and a radiation shield to reduce the radiation dose to an acceptable level. The spallation neutrons are generated from the interaction of a 1 GeV proton beam with a lead-bismuth eutectic (LBE) or liquid lead target. In this concept, the fission blanket consists of a liquid mobile fuel and the fuel carrier can be LBE, liquid lead, or molten salt. The actinide fuel materials are dissolved, mixed, or suspended in the liquid fuel carrier. Therefore, fresh fuel can be fed into the fission blanket to adjust its reactivity and to control system power during operation. Monte Carlo analyses were performed to determine the overall parameters of an ADS system utilizing LBE as an example. Steady-state Monte Carlo simulations were studied for three fission blanket configurations that are similar except that the loaded amount of actinide fuel in the LBE is either 5, 7, or 10% of the total volume of the blanket, respectively. The neutron multiplication factor values of the three configurations are all approximately 0.98 and the MA initial inventories are each approximately 10 tons. Monte Carlo burnup simulations using the MCB5 code were performed to analyze the performance of the three conceptual ADS systems. Preliminary burnup analysis shows that all three conceptual ADS systems consume about 1.2 tons of actinides per year and produce 3 GW thermal power, with a proton beam power of 25 MW. Total MA fuel that would be consumed in the first 10 years of operation is 9.85, 11.80, or 12.68 tons, respectively, for the systems with 5, 7, or 10% actinide fuel particles loaded in the LBE. The corresponding annual MA fuel transmutation rate after reaching equilibrium at 10 years of operation is 0.83, 0.94, or 1.02 tons/year, respectively. Assuming that the ADS systems can be operated for 35 full-power years, the total MAs consumed in the three ADS systems are 30.6, 35.3, and 37.2 tons, respectively. For the three configurations, it is estimated that 3.8, 3.3, or 3.1 ADS system units are required to utilize the entire 115 tons of MA fuel in the SNF inventory, respectively.

Cao, Y.; Gohar, Y. (Nuclear Engineering Division)

2011-11-04T23:59:59.000Z

234

Technology development for high power induction accelerators  

SciTech Connect

The marriage of Induction Linac technology with Nonlinear Magnetic Modulators has produced some unique capabilities. It appears possible to produce electron beams with average currents measured in amperes, at gradients exceeding 1 MeV/meter, and with power efficiencies approaching 50%. A 2 MeV, 5 kA electron accelerator has been constructed at the Lawrence Livermore National Laboratory (LLNL) to demonstrate these concepts and to provide a test facility for high brightness sources. The pulse drive for the accelerator is based on state-of-the-art magnetic pulse compressors with very high peak power capability, repetition rates exceeding a kilohertz and excellent reliability.

Birx, D.L.; Reginato, L.L.

1985-06-11T23:59:59.000Z

235

A Low-Charge, Hard X-Ray FEL Driven with an X-band Injector and Accelerator  

Science Conference Proceedings (OSTI)

After the successful operation of FLASH (Free-Electron Laser in Hamburg) and LCLS (Linac Coherent Light Source), soft and hard X-ray Free Electron Lasers (FELs) are being built, designed or proposed at many accelerator laboratories. Acceleration employing lower frequency RF cavities, ranging from L-band to C-band, is usually adopted in these designs. In the first stage bunch compression, higher-frequency harmonic RF system is employed to linearize the beam's longitudinal phase space, which is nonlinearly chirped during the lower frequency RF acceleration process. In this paper, a hard X-ray FEL design using an all X-band accelerator at 11.424 GHz (from photo-cathode RF gun to linac end) is presented, without the assistance of any harmonic RF linearization. It achieves LCLS-like performance at low charge using X-band linac drivers, which is more versatile, efficient and compact than ones using S-band or C-band rf technology. It employs initially 42 microns long (RMS), low charge (10 pC) electron bunches from an X-band photoinjector. An overall bunch compression ratio of roughly 100 times is proposed in a two stage bunch compressor system. The start-to-end macro-particle 3-D simulation employing several computer codes is presented in this paper, where space charge, wakefields, incoherent and coherent synchrotron radiation (ISR and CSR) effects are included. Employing an undulator with a short period of 1.5 cm, a Genesis FEL simulation shows successful lasing at a wavelength of 0.15 nm with a pulse length of 2 fs and a power saturation length as short as 20 meters, which is equivalent to LCLS low charge mode. Its overall length of both accelerators and undulators is 180 meters (much shorter than the effective LCLS overall length of 1230 meters, including an accelerator length of 1100 meters and an undulator length of 130 meters), which makes it possible to be built in places where only limited space is available.

Sun, Yipeng; Adolphsen, Chris; Limborg-Deprey, Cecile; Raubenheimer, Tor; Wu, Juhao; /SLAC

2012-02-17T23:59:59.000Z

236

Low-Charge, Hard X-Ray Free Electron Laser Driven with an X-Band Injector and Accelerator  

Science Conference Proceedings (OSTI)

After the successful operation of the Free Electron Laser in Hamburg (FLASH) and the Linac Coherent Light Source (LCLS), soft and hard x-ray free electron lasers (FELs) are being built, designed, or proposed at many accelerator laboratories. Acceleration employing lower frequency rf cavities, ranging from L-band to C-band, is usually adopted in these designs. In the first stage bunch compression, higher-frequency harmonic rf system is employed to linearize the beam's longitudinal phase space, which is nonlinearly chirped during the lower frequency rf acceleration process. In this paper, a hard x-ray FEL design using an all X-band accelerator at 11.424 GHz (from photocathode rf gun to linac end) is presented, without the assistance of any harmonic rf linearization. It achieves LCLS-like performance at low charge using X-band linac drivers, which is more versatile, efficient, and compact than ones using S-band or C-band rf technology. It employs initially 42 microns long (rms), low-charge (10 pC) electron bunches from an X-band photoinjector. An overall bunch compression ratio of roughly 100 times is proposed in a two stage bunch compressor system. The start-to-end macroparticle 3D simulation employing several computer codes is presented in this paper, where space charge, wakefields, and incoherent and coherent synchrotron radiation effects are included. Employing an undulator with a short period of 1.5 cm, a Genesis FEL simulation shows successful lasing at a wavelength of 0.15 nm with a pulse length of 2 fs and a power saturation length as short as 20 meters, which is equivalent to LCLS low-charge mode. Its overall length of both accelerators and undulators is 180 meters (much shorter than the effective LCLS overall length of 1230 meters, including an accelerator length of 1100 meters and an undulator length of 130 meters), which makes it possible to be built in places where only limited space is available.

Sun, Yipeng; Adolphsen, Chris; Limborg-Deprey, Cecile; Raubenheimer, Tor; Wu, Juhao; /SLAC

2012-04-17T23:59:59.000Z

237

TRANSVERSE MATCHING PROGRESS OF THE SNS SUPERCONDUCTING LINAC  

Science Conference Proceedings (OSTI)

Experience using laser-wire beam profile measurement to perform transverse beam matching in the SNS superconducting linac is discussed. As the SNS beam power is ramped up to 1 MW, transverse beam matching becomes a concern to control beam loss and residual activation in the linac. In our experiments, however, beam loss is not very sensitive to the matching condition. In addition, we have encountered difficulties in performing a satisfactory transverse matching with the envelope model currently available in the XAL software framework. Offline data analysis from multi-particle tracking simulation shows that the accuracy of the current online model may not be sufficient for modeling the SC linac.

Zhang, Yan [ORNL; Cousineau, Sarah M [ORNL; Liu, Yun [ORNL

2011-01-01T23:59:59.000Z

238

PARTICLE ACCELERATOR  

DOE Patents (OSTI)

A fixed-field alternating gradient accelerator for simultaneous acceleration of two particle beams in opposite directions is described. (T.R.H.)

Ohkawa, T.

1959-06-01T23:59:59.000Z

239

The Linac Coherent Light Source is  

NLE Websites -- All DOE Office Websites (Extended Search)

Coherent Light Source is Coherent Light Source is a revolution in x-ray science. Just as the invention of x-ray machines a century ago astonishingly revealed the inside of our bodies and began new sciences, the world's first x-ray laser will open up unprecedented opportunities. Pioneering experiments will advance our understand ing of everything from the hidden physics inside planets, to how proteins function as the engines of life, to building nanotechnology devices for the backbone of future industry and technology. The applications are legion: medicine, electronics, biology, solid-state physics, nanotechnology, energy production, industry and fields that do not yet exist. Linac Coherent Light Source New Tools Create New Science The LCLS is dramatically different from any x-ray

240

Modeling Investigation on a Deflecting-Accelerating Composite RF-cavity System for Phase Space Beam Control  

SciTech Connect

Phase space manipulations between the longitudinal and transverse degrees of freedom hold great promise toward the precise control of electron beams. Transverse-to-longitudinal phase space exchange has been shown to be capable of exchanging the transverse and horizontal emittance or controlling the charge distribution of an electron bunch for beam-driven advanced accelerator methods. The main limitation on the performance of this exchange mechanism stems from the external coupling nature of a realistic deflecting cavity, compared to a thin-lens model. As an extended idea from [A. Zholents, PAC11], this paper presents the design of a composite 3.9-GHz RF system consisting of a deflecting and accelerating-mode cavity. The system design analysis is discussed with particle-in-cell (PIC) simulations of the device performance.

Church, M.D.; /Fermilab; Piot, P.; /Fermilab; Shin, Y.-M.; /Fermilab

2012-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "linac accelerator system" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

The Accelerated Site Technology Deployment Program/Segmented Gate System Project  

Science Conference Proceedings (OSTI)

The Department of Energy (DOE) is working to accelerate the acceptance and application of innovative technologies that improve the way the nation manages its environmental remediation problems. The DOE Office of Science and Technology established the Accelerated Site Technology Deployment Program (ASTD) to help accelerate the acceptance and implementation of new and innovative soil and ground water remediation technologies. Coordinated by the Department of Energy's Idaho Office, the ASTD Program reduces many of the classic barriers to the deployment of new technologies by involving government, industry, and regulatory agencies in the assessment, implementation, and validation of innovative technologies. Funding is provided through the ASTD Program to assist participating site managers in implementing innovative technologies. The program provides technical assistance to the participating DOE sites by coordinating DOE, industry, and regulatory participation in each project; providing finds for optimizing full-scale operating parameters; coordinating technology performance monitoring; and by developing cost and performance reports on the technology applications.

PATTESON,RAYMOND

2000-09-18T23:59:59.000Z

242

Program on Technology Innovation: Mitigation of Flow-Accelerated Corrosion by Titanium Injection in PWR Secondary Systems  

Science Conference Proceedings (OSTI)

This report summarizes the results of a study to determine the potential of titanium-containing compounds for mitigating the flow-accelerated corrosion (FAC) of carbon steel piping in the feedwater train of PWRs. Currently, plants of all types are investigating methods to reduce the severity of FAC in vulnerable systems. Titanium dioxide (TiO2) has been a promising additive under Canadian deuterium/uranium (CANDU) primary conditions, and Ti has been used routinely to mitigate localized corrosion in steam...

2010-03-30T23:59:59.000Z

243

Development of an In Situ System for Monitoring or Indicating Flow-Accelerated Corrosion in Fossil Plant Feedwater  

Science Conference Proceedings (OSTI)

This report provides the results of the development of an in situ system for monitoring or indicating flow-accelerated corrosion (FAC) in fossil plant feedwater. The main goals of this program were to develop and test a probe, formulate a model based on the existing understanding and proven mechanisms for extrapolating measurements to actual piping, and evaluate the effectiveness of a probe to be designed for a side stream in a working plant.Operation of the experimental test loop under ...

2014-01-16T23:59:59.000Z

244

Design Construction and Test Results of a HTS Solenoid for Energy Recovery Linac  

NLE Websites -- All DOE Office Websites (Extended Search)

DESIGN CONSTRUCTION AND TEST RESULTS OF A HTS SOLENOID DESIGN CONSTRUCTION AND TEST RESULTS OF A HTS SOLENOID FOR ENERGY RECOVERY LINAC* R. Gupta # , M. Anerella, I. Ben-Zvi, G. Ganetis, D. Kayran, G. McIntyre, J. Muratore, S. Plate and W. Sampson, Brookhaven National Laboratory, Upton, NY, 11973 USA and M. Cole and D. Holmes, Advanced Energy Systems, Inc., Medord, NY, 11763 USA Abstract An innovative feature of the proposed Energy Recovery Linac (ERL) is the use of a solenoid made with High Temperature Superconductor (HTS) with the Superconducting RF cavity. The use of HTS allows solenoid to be placed in close proximity to the cavity and thus provides early focusing of the electron beam. In addition, cryogenic testing at ~77 K is simpler and cheaper than 4 K testing. This paper will present the

245

Energy Spread Compensation for Multi-Bunch Linac Operation Mode  

NLE Websites -- All DOE Office Websites (Extended Search)

ENERGY SPREAD COMPENSATION FOR MULTI-BUNCH LINAC OPERATION MODE D. Mihalcea, Northern Illinois University, DeKalb, IL 60115, USA W. Gai, J. G. Power, ANL, Argonne, IL 60439, USA...

246

High Power Superconducting Continuous Wave Linacs for Protons...  

Office of Science (SC) Website

(ANL) Developed in: Current Result of NP research: Spin-off of high power driver linac R&D for the FRIB project Application currently being supported by: DOE Office of Nuclear...

247

Acceleration Mechanisms  

E-Print Network (OSTI)

Glossary I. Background and context of the subject II. Stochastic acceleration III. Resonant scattering IV. Diffusive shock acceleration V. DSA at multiple shocks VI. Applications of DSA VII. Acceleration by parallel electric fields VIII. Other acceleration mechanisms IX. Future directions X. Appendix: Quasilinear equations XI. Bibliography

Melrose, D B

2009-01-01T23:59:59.000Z

248

Antiproton acceleration in the Fermilab Main Injector using 2.5 MHz (H=28) and 53 MHz (H=588) rf systems  

Science Conference Proceedings (OSTI)

During the Run II era at Fermilab, the Recycler stores antiprotons at 8 GeV and the Main Injector accelerates the antiprotons and the protons from 8 GeV to 150 GeV for Tevatron injection. The Recycler injects antiprotons to the Main Injector in 2.5 MHz rf buckets. This report presents an acceleration scheme for the antiprotons that involves a slow ramp with initial 2.5 MHz acceleration and subsequent fast acceleration with 53 MHz rf system. Beam acceleration and rf manipulation with space charge and beam loading effects are simulated using the longitudinal simulation code ESME. Simulation suggests that one can expect about 15% emittance growth for the entire acceleration cycle with beam loading compensations. Preliminary experimental results with proton beam will also be presented.

Vincent Wu et al.

2003-06-10T23:59:59.000Z

249

The NREL Outdoor Accelerated-weathering Tracking System and Photovoltaic Module Exposure Results  

DOE Green Energy (OSTI)

This paper describes the Outdoor Accelerated-weathering Tracking System (OATS) and interim results for the first OATS study on photovoltaic (PV) modules. With two test planes measuring 1.52 x 1.83 m, OATS provides a unique solar-concentrating exposure capability. Test sample temperatures are moderated by air blowers. Water spray capability exists for wetting samples. The OATS two-axis tracker points to the sun using software calculations. Non-imaging aluminum reflectors give a nominal clear-sky optical concentration ratio of three. Field-qualification measurements in the test plane under reflector conditions showed its relative irradiance non-uniformity was '' 15% for a clear-sky summer day with '' 75 mm as the smallest distance for that non-uniformity. Exposure studies began in November 1997 on seven pairs of commercially available ribbon silicon, crystalline silicon and amorphous silicon PV modules kept at constant resistive load. The modules were periodically removed from OATS for visual inspection and solar simulator performance measurements. There were no module failures. This PV module study is ongoing and later results will be compared to other testing techniques. Through July 1998, the modules under reflector conditions received 392 MJ/m2 of total ultraviolet (TUV) exposure. That was 2.07 times the TUV exposure compared to a south-facing fixed array tilted 40{sup o} up from horizontal at NREL. Similarly, the modules in the test plane under the covered reflectors received 1.04 times the fixed array TUV exposure. For the test plane under the covered reflectors there was a loss of 13% TUV exposure attributed to the reflectors blocking some of the diffuse-sky UV light. Also through July 1998, the OATS sunlight availability measured 95% compared to the cumulative global normal exposure at the NREL Solar Radiation Research Laboratory (SRRL). The OATS sunlight availability losses included downtime when the PV modules were removed, and when there were OAT S tracking problems, maintenance, and repair. For December 1997 through July 1998, the SRRL cumulative exposure was 99% compared to the respective monthly averages from years 1961 through 1990 at Boulder, Colorado.

Basso, T. S.

1998-10-31T23:59:59.000Z

250

SuperB Progress Report for Accelerator  

Science Conference Proceedings (OSTI)

This report details the progress made in by the SuperB Project in the area of the Collider since the publication of the SuperB Conceptual Design Report in 2007 and the Proceedings of SuperB Workshop VI in Valencia in 2008. With this document we propose a new electron positron colliding beam accelerator to be built in Italy to study flavor physics in the B-meson system at an energy of 10 GeV in the center-of-mass. This facility is called a high luminosity B-factory with a project name 'SuperB'. This project builds on a long history of successful e+e- colliders built around the world, as illustrated in Figure 1.1. The key advances in the design of this accelerator come from recent successes at the DAFNE collider at INFN in Frascati, Italy, at PEP-II at SLAC in California, USA, and at KEKB at KEK in Tsukuba Japan, and from new concepts in beam manipulation at the interaction region (IP) called 'crab waist'. This new collider comprises of two colliding beam rings, one at 4.2 GeV and one at 6.7 GeV, a common interaction region, a new injection system at full beam energies, and one of the two beams longitudinally polarized at the IP. Most of the new accelerator techniques needed for this collider have been achieved at other recently completed accelerators including the new PETRA-3 light source at DESY in Hamburg (Germany) and the upgraded DAFNE collider at the INFN laboratory at Frascati (Italy), or during design studies of CLIC or the International Linear Collider (ILC). The project is to be designed and constructed by a worldwide collaboration of accelerator and engineering staff along with ties to industry. To save significant construction costs, many components from the PEP-II collider at SLAC will be recycled and used in this new accelerator. The interaction region will be designed in collaboration with the particle physics detector to guarantee successful mutual use. The accelerator collaboration will consist of several groups at present universities and national laboratories. In Italy these may include INFN Frascati and the University of Pisa, in the United States SLAC, LBNL, BNL and several universities, in France IN2P3, LAPP, and Grenoble, in Russia BINP, in Poland Krakow University, and in the UK the Cockcroft Institute. The construction time for this collider is a total of about four years. The new tunnel can be bored in about a year. The new accelerator components can be built and installed in about 4 years. The shipping of components from PEP-II at SLAC to Italy will take about a year. A new linac and damping ring complex for the injector for the rings can be built in about three years. The commissioning of this new accelerator will take about a year including the new electron and positron sources, new linac, new damping ring, new beam transport lines, two new collider rings and the Interaction Region. The new particle physics detector can be commissioned simultaneously with the accelerator. Once beam collisions start for particle physics, the luminosity will increase with time, likely reaching full design specifications after about two to three years of operation. After construction, the operation of the collider will be the responsibility of the Italian INFN governmental agency. The intent is to run this accelerator about ten months each year with about one month for accelerator turn-on and nine months for colliding beams. The collider will need to operate for about 10 years to provide the required 50 ab{sup -1} requested by the detector collaboration. Both beams as anticipated in this collider will have properties that are excellent for use as sources for synchrotron radiation (SR). The expected photon properties are comparable to those of PETRA-3 or NSLS-II. The beam lines and user facilities needed to carry out this SR program are being investigated.

Biagini, M.E.; Boni, R.; Boscolo, M.; Buonomo, B.; Demma, T.; Drago, A.; Esposito, M.; Guiducci, S.; Mazzitelli, G.; Pellegrino, L.; Preger, M.A.; Raimondi, P.; Ricci, R.; Rotundo, U.; Sanelli, C.; Serio, M.; Stella, A.; Tomassini, S.; Zobov, M.; /Frascati; Bertsche, K.; Brachman, A.; /SLAC /Novosibirsk, IYF /INFN, Pisa /Pisa U. /Orsay, LAL /Annecy, LAPP /LPSC, Grenoble /IRFU, SPP, Saclay /DESY /Cockroft Inst. Accel. Sci. Tech. /U. Liverpool /CERN

2012-02-14T23:59:59.000Z

251

SNEAP 80: symposium of Northeastern Accelerator personnel  

SciTech Connect

Reports of operations are presented for twenty-seven facilities, along with reports on accelerators in progress, ion sources, insulating gases, charging systems, stripping foils, accelerating tubes, and upgraded accelerator systems. (GHT)

Billen, J.H. (ed.) ed.

1980-01-01T23:59:59.000Z

252

The rare isotope accelerator (RIA) facility project  

DOE Green Energy (OSTI)

The envisioned Rare-Isotope Accelerator (RIA) facility would add substantially to research opportunities for nuclear physics and astrophysics by combining increased intensities with a greatly expanded variety of high-quality rare-isotope beams. A flexible superconducting driver linac would provide 100 kW, 400 MeV/nucleon beams of any stable isotope from hydrogen to uranium onto production targets. Combinations of projectile fragmentation, target fragmentation, fission, and spallation would produce the needed broad assortment of short-lived secondary beams. This paper describes the project's background, purpose, and status, the envisioned facility, and the key subsystem, the driver linac. RIA's scientific purposes are to advance current theoretical models, reveal new manifestations of nuclear behavior, and probe the limits of nuclear existence [3]. Figures 1 and 2 show, respectively, examples of RIA research opportunities and the yields projected for pursuing them. Figure 3 outlines a conceptual approach for delivering the needed beams.

Christoph Leemann

2000-08-01T23:59:59.000Z

253

Main Linac Single Bunch Emittance Preservation  

NLE Websites -- All DOE Office Websites (Extended Search)

linear accelerator design which was considered in this study was an adaptation of the TESLA TDR design 1 to the requirements of the parameters document of the US Linear...

254

CCSI and the role of advanced computing in accelerating the commercial deployment of carbon capture systems  

SciTech Connect

The Carbon Capture Simulation Initiative is developing state-of-the-art computational modeling and simulation tools to accelerate the commercialization of carbon capture technology. The CCSI Toolset consists of an integrated multi-scale modeling and simulation framework, which includes extensive use of reduced order models (ROMs) and a comprehensive uncertainty quantification (UQ) methodology. This paper focuses on the interrelation among high performance computing, detailed device simulations, ROMs for scale-bridging, UQ and the integration framework.

Miller, D.; Agarwal, D.; Sun, X.; Tong, C.

2011-01-01T23:59:59.000Z

255

H- Beam Loss and Evidence for Intrabeam Stripping in the LANSCE Linac  

SciTech Connect

The LANSCE accelerator complex is a multi-beam, multi-user facility that provides high-intensity H{sup +} and H{sup -} particle beams for a variety of user programs. At the heart of the facility is a room temperature linac that is comprised of 100-MeV drift tube and 800-MeV coupled cavity linac (CCL) structures. Although both beams are similar in intensity and emittance at 100 MeV, the beam-loss monitors along the CCL show a trend of increased loss for H{sup -} that is not present for H{sup +}. This difference is attributed to stripping mechanisms that affect H{sup -} and not H{sup +}. We present the results of an analysis of H{sup -} beam loss along the CCL that incorporates beam spill measurements, beam dynamics simulations, analytical models and radiation transport estimates using the MCNPX code. The results indicate a significant fraction of these additional losses result from intrabeam stripping.

Rybarcyk, Lawrence J. [Los Alamos National Laboratory; Kelsey, Charles T. IV [Los Alamos National Laboratory; McCrady, Rodney C. [Los Alamos National Laboratory; Pang, Xiaoying [Los Alamos National Laboratory

2012-05-15T23:59:59.000Z

256

The hot prototype of the Pi-mode structure for LINAC4  

E-Print Network (OSTI)

The PIMS (Pi-Mode-Structure) cavities for Linac4 are made of 7 coupled cells operating in !-mode at a frequency of 352 MHz. The mechanical concept is derived from the 5-cell cavities used in the LEP machine, whereas cell length and coupling are adapted for proton acceleration in the range from 50 to 160 MeV. Linac4 will be the first machine to employ this type of cavities for low-beta protons. During the first years of operation the PIMS will be used at low duty cycle (0.1%) as part of the consolidated LHC proton injector complex. It is designed, however, to operate eventually in a high duty cycle (10%) proton injector, which could be used as proton front-end for neutrino or RIB applications. To prepare for the series construction of the 12 PIMS units the first cavity (102 MeV beam energy) has been designed and constructed at CERN, to be used as a hot prototype for RF tests and as a pre-series mechanical unit. In this paper we report on some of the design features, the construction experience, and first measu...

Gerigk, F; Bourquin, P; Dallocchio, A; Favre, G; Geisser, J M; Gentini, L; Giguet, J M; Mathot, S; Polini, M; Pugnat, D; Riffaud, B; Sgobba, S; Tardy, T; Ugena Tirado, P; Vretenar, M

2010-01-01T23:59:59.000Z

257

Comparison of electric and magnetic quadrupole focusing for the low energy end of an induction-linac-ICF (Inertial-Confinement-Fusion) driver  

SciTech Connect

This report compares two physics designs of the low energy end of an induction linac-ICF driver: one using electric quadrupole focusing of many parallel beams followed by transverse combining; the other using magnetic quadrupole focusing of fewer beams without beam combining. Because of larger head-to-tail velocity spread and a consequent rapid current amplification in a magnetic focusing channel, the overall accelerator size of the design using magnetic focusing is comparable to that using electric focusing.

Kim, C.H.

1987-04-01T23:59:59.000Z

258

Status of the plasma generator of the superconducting proton linac  

SciTech Connect

In the framework of the superconducting proton linac (SPL) study at CERN, a new non-cesiated H{sup -} plasma generator driven by an external 2 MHz RF antenna has been developed and successfully operated at repetition rates of 50 Hz, pulse lengths of up to 3 ms, and average RF powers of up to 3 kW. The coupling efficiency of RF power into the plasma was determined by the cooling water temperatures and the analysis of the RF forward and reflected power and the antenna current and amounts to 50%-60%. The plasma resistance increases between 10 kW and 40 kW RF power from about 0.45 {Omega} to 0.65 {Omega}. Measurements of RF power dissipated in the ferrites and the magnets on a test bench show a 5-fold decrease of the power losses for the magnets when they are contained in a Cu box, thus validating the strategy of shielding the magnets with a high electrical conductivity material. An air cooling system was installed in the SPL plasma generator to control the temperatures of the ferrites despite hysteresis losses of several Watts.

Kronberger, M.; Lettry, J.; Paoluzzi, M.; Pereira, H.; Arias, J. Sanchez; Schmitzer, C.; Scrivens, R. [European Organisation for Nuclear Research, CERN, 1211 Geneva 23 (Switzerland); Faircloth, D. [STFC, Rutherford Appleton Laboratory, Chilton, Oxon OX11 0QX (United Kingdom)

2012-02-15T23:59:59.000Z

259

Beam-based Feedback for the Linac Coherent Light Source  

SciTech Connect

Beam-based feedback control loops are required by the Linac Coherent Light Source (LCLS) program in order to provide fast, single-pulse stabilization of beam parameters. Eight transverse feedback loops, a 6 x 6 longitudinal feedback loop, and a loop to maintain the electron bunch charge were successfully prototyped in MATLAB for the LCLS, and have been maintaining stability of the LCLS electron beam at beam rates up to 30Hz. In the final commissioning phase of LCLS the beam will be operating at up to 120Hz. In order to run the feedback loops at beam rate, the feedback loops will be implemented in EPICS IOCs with a dedicated ethernet multi-cast network. This paper will discuss the design of the beam-based Fast Feedback System for LCLS. Topics include MATLAB feedback prototyping, algorithm for 120Hz feedback, network design for fast data transport, actuator and sensor design for single-pulse control and sensor readback, and feedback configuration and runtime control.

Fairley, D.; Allison, S.; Chevtsov, S.; Chu, P.; Decker, F.J.; Emma, P.; Frisch, J.; Himel, T.; Kim, K.; Krejcik, P.; Loos, H.; Lahey, T.; Natampalli, P.; Peng, S.; Rogind, D.; Shoaee, H.; Straumann, T.; Williams, E.; White, G.; Wu, J.; Zelazney, M.; /SLAC

2010-02-11T23:59:59.000Z

260

#LabChat: Particle Accelerators, Lasers and Discovery Science, May 17 at  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Particle Accelerators, Lasers and Discovery Science, May Particle Accelerators, Lasers and Discovery Science, May 17 at 1pm EST #LabChat: Particle Accelerators, Lasers and Discovery Science, May 17 at 1pm EST May 15, 2012 - 2:03pm Addthis SLAC’s linac accelerates very short pulses of electrons to 99.9999999 percent the speed of light through a slalom that causes the electrons to emit X-rays, which become synchronized as they interact with the electron pulses and create the world’s brightest X-ray laser pulse. | Photo by Brad Plummer, SLAC. SLAC's linac accelerates very short pulses of electrons to 99.9999999 percent the speed of light through a slalom that causes the electrons to emit X-rays, which become synchronized as they interact with the electron pulses and create the world's brightest X-ray laser pulse. | Photo by

Note: This page contains sample records for the topic "linac accelerator system" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

High-power proton linac for APT facility  

Science Conference Proceedings (OSTI)

In one of two options being considered for a new source of tritium, the US Department of Energy (DOE) is planning an Accelerator Production of Tritium (APT) plant that would be built at its Savannah River Site in South Carolina. The project Conceptual Design Report was issued in April, 1997, and formal design of the plant technical and conventional systems has now begun. A program of engineering development and demonstration (ED and D) has been underway since 1995 to support the plant design and subsequent construction; the accelerator portion of this program is summarized.

Lawrence, G.P.

1998-12-01T23:59:59.000Z

262

Analysis of a Cyclotron Based 400 MeV/u Driver System for a Radioactive Beam Facility  

E-Print Network (OSTI)

The creation of intense radioactive beams requires intense and energetic primary beams. A task force analysis of this subject recommended an acceleration system capable of 400 MeV/u uranium at 1 particle uA as an appropriate driver for such a facility. The driver system should be capable of accelerating lighter ions at higher intensity such that a constant final beam power (~100kW) is maintained. This document is a more detailed follow on to the previous analysis of such a system incorporating a cyclotron. The proposed driver pre-acceleration system consists of an ion source, radio frequency quadrupole, and linac chain capable of producing a final energy of 30 MeV/u and a charge (Q) to mass (A) of Q/A ~1/3. This acceleration system would be followed by a Separated Sector Cyclotron with a final output energy of 400 MeV/u. This system provides a more cost-effective solution in terms of initial capital investment as well as of operation compared to a fully linac system with the same primary beam output parameters.

F. Marti; R. C. York; H. Blosser; M. M. Gordon; D. Gorelov; T. Grimm; D. Johnson; P. Miller; E. Pozdeyev; J. Vincent; X. Wu; A. Zeller

1999-08-20T23:59:59.000Z

263

High Power Superconducting Continuous Wave Linacs for Protons and  

Office of Science (SC) Website

Power Superconducting Continuous Power Superconducting Continuous Wave Linacs for Protons and Heavy-Ions Nuclear Physics (NP) NP Home About Research Facilities Science Highlights Benefits of NP Spinoff Applications Spinoff Archives SBIR/STTR Applications of Nuclear Science and Technology Funding Opportunities Nuclear Science Advisory Committee (NSAC) News & Resources Contact Information Nuclear Physics U.S. Department of Energy SC-26/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-3613 F: (301) 903-3833 E: sc.np@science.doe.gov More Information » Spinoff Archives High Power Superconducting Continuous Wave Linacs for Protons and Heavy-Ions Print Text Size: A A A RSS Feeds FeedbackShare Page Application/instrumentation: High Power Superconducting Continuous Wave Linacs for Protons and Heavy-Ions

264

DIAGNOSTIC TOOLS FOR BEAM HALO INVESTIGATION IN SNS LINAC  

Science Conference Proceedings (OSTI)

Uncontrolled beam loss is a major concern in the operation of a high intensity hadron linac. A low density cloud of particles with large oscillation amplitudes, so called halo, can form around the dense regular beam core. This halo can be a direct or indirect cause of beam loss. There is experimental evidence of halo growing in the SNS linac and limiting the further reduction of beam loss. A set of tools is being developed for detecting of the halo and investigating its origin and dynamics. The set includes high resolution emittance measurements in the injector, laser based emittance measurements at 1 GeV, and high resolution profile measurements along the linac. We will present our experience with useful measurement techniques and data analysis algorithms.

Aleksandrov, Alexander V [ORNL; Blokland, Willem [ORNL; Liu, Yun [ORNL; Long, Cary D [ORNL; Zhukov, Alexander P [ORNL

2012-01-01T23:59:59.000Z

265

A New Control Room for SLAC Accelerators  

SciTech Connect

We are planning to construct a new control room at SLAC to unify and improve the operation of the LCLS, SPEAR3, and FACET accelerator facilities, and to provide the space and flexibility needed to support the LCLS-II and proposed new test beam facilities. The existing control rooms for the linac and SPEAR3 have been upgraded in various ways over the last decade, but their basic features have remained unchanged. We propose to build a larger modern Accelerator Control Room (ACR) in the new Research Support Building (RSB) which is currently under construction at SLAC. Shifting the center of control for the accelerator facilities entails both technical and administrative challenges. In this paper, we describe the history, concept, and status of this project.

Erickson, Roger; Guerra, E.; Stanek, M.; Hoover, Z.Van; Warren, J.; /SLAC

2012-06-04T23:59:59.000Z

266

Development of a Rating System for a Comparative Accelerated Test Standard (Presentation)  

Science Conference Proceedings (OSTI)

This presentation discusses methods of developing and structuring a useful rating system and communicating the results.

Kurtz, S.

2013-06-01T23:59:59.000Z

267

LINAC BEAM DYNAMICS SIMULATIONS WITH PY-ORBIT  

Science Conference Proceedings (OSTI)

Linac dynamics simulation capabilities of the PyORBIT code are discussed. PyORBIT is an open source code and a further development of the original ORBIT code that was created and used for design, studies, and commissioning of the SNS ring. The PyORBIT code, like the original one, has a two-layer structure. C++ is used to perform time-consuming computations, and the program flow is controlled from a Python language shell. The flexible structure makes it possible to use PyORBIT also for linac dynamics simulations. A benchmark of PyORBIT with Parmila and the XAL Online model is presented.

Shishlo, Andrei P [ORNL

2012-01-01T23:59:59.000Z

268

FEL-accelerator related diagnostics  

SciTech Connect

Free Electron Lasers (FEL) present a unique set of beam parameters to the diagnostics suite. The FEL requires characterization of the full six dimensional phase space of the electron beam at the wiggler and accurate alignment of the electron beam to the optical mode of the laser. In addition to the FEL requirements on the diagnostics suite, the Jefferson Lab FEL is operated as an Energy Recovered Linac (ERL) which imposes additional requirements on the diagnostics. The ERL aspect of the Jefferson Lab FEL requires that diagnostics operate over a unique dynamic range and operate with simultaneous transport of the accelerated and energy recovered beams. This talk will present how these challenges are addressed at the Jefferson Lab FEL.

Kevin Jordan; David Douglas; Stephen V. Benson; Pavel Evtuschenko

2007-08-02T23:59:59.000Z

269

Neutronics-processing interface analyses for the Accelerator Transmutation of Waste (ATW) aqueous-based blanket system  

Science Conference Proceedings (OSTI)

Neutronics-processing interface parameters have large impacts on the neutron economy and transmutation performance of an aqueous-based Accelerator Transmutation of Waste (ATW) system. A detailed assessment of the interdependence of these blanket neutronic and chemical processing parameters has been performed. Neutronic performance analyses require that neutron transport calculations for the ATW blanket systems be fully coupled with the blanket processing and include all neutron absorptions in candidate waste nuclides as well as in fission and transmutation products. The effects of processing rates, flux levels, flux spectra, and external-to-blanket inventories on blanket neutronic performance were determined. In addition, the inventories and isotopics in the various subsystems were also calculated for various actinide and long-lived fission product transmutation strategies.

Davidson, J.W.; Battat, M.E.

1993-07-01T23:59:59.000Z

270

Tightly Coupled Accelerators Architecture for Minimizing Communication Latency among Accelerators  

Science Conference Proceedings (OSTI)

In recent years, heterogeneous clusters using accelerators have been widely used in high performance computing systems. In such clusters, inter-node communication among accelerators requires several memory copies via CPU memory, and the communication ... Keywords: GPGPU, Accelerator Computing, Interconnection Network, PCI Express, Remote DMA, CUDA, GPU Direct

Toshihiro Hanawa, Yuetsu Kodama, Taisuke Boku, Mitsuhisa Sato

2013-05-01T23:59:59.000Z

271

Design of a superconducting linear accelerator for an Infrared Free Electron Laser of the proposed Chemical Dynamics Research Laboratory at LBL  

Science Conference Proceedings (OSTI)

An accelerator complex has recently been designed at LBL as part of an Infrared Free Electron Laser facility in support of a proposed Chemical Dynamics Research Laboratory. We will outline the choice of parameters and design philosophy, which are strongly driven by the demand of reliable and spectrally stable operation of the FEL for very special scientific experiments. The design is based on a 500 MHz recirculating superconducting electron linac with highest energy reach of about 60 MeV. The accelerator is injected with beams prepared by a specially designed gun-buncher system and incorporates a near-isochronous and achromatic recirculation line tunable over a wide range of beam energies. The stability issues considered to arrive at the specific design will be outlined.

Chattopadhyay, S.; Byrns, R.; Donahue, R.; Edighoffer, J.; Gough, R.; Hoyer, E.; Kim, K.J.; Leemans, W.; Staples, J.; Taylor, B.; Xie, M.

1992-08-01T23:59:59.000Z

272

Preliminary investigation of actinide and xenon reactivity effects in accelerator transmutation of waste high-flux systems  

SciTech Connect

The possibility of an unstable positive reactivity growth in an accelerator transmutation of waste (ATW)-type high-flux system is investigated. While it has always been clear that xenon is an important actor in the reactivity response of a system to flux changes, it has been suggested that in very high thermal flux transuranic burning systems, a positive, unstable reactivity growth could be caused by the actinides alone. Initial system reactivity response to flux changes caused by the actinides and xenon are investigated separately. The maximum change in reactivity after a flux change caused by the effect of the changing quantities of actinides is generally at least two orders of magnitude smaller than either the positive or negative reactivity effect associated with xenon after a shutdown or startup. In any transient flux event, the reactivity response of the system to xenon will generally occlude the response caused by the actinides. The capabilities and applications of both the current actinide model and the xenon model are discussed. Finally, the need for a complete dynamic model for the high-flux fluid-fueled ATW system is addressed.

Olson, K.R.; Henderson, D.L. [Univ. of Wisconsin, Madison, WI (United States). Dept. of Nuclear Engineering and Engineering Physics; Woosley, M.L. Jr. [Univ. of virginia, Charlottesville, VA (United States). Dept. of Mechanical, Aerospace, and Nuclear Engineering; Sailor, W.C. [Los Alamos National Lab., NM (United States)

1995-04-01T23:59:59.000Z

273

Fast Accelerator Driven Subcritical System for Energy Production Using Burned Fuel  

Science Conference Proceedings (OSTI)

Fusion-Fission Hybrids and Transmutation / Proceedings of the Fifteenth International Conference on Emerging Nuclear Energy Systems

Graiciany de Paula Barros; Claubia Pereira; Maria A. F. Veloso; Renan Cunha; Antonella L. Costa

274

Accelerator Need  

NLE Websites -- All DOE Office Websites (Extended Search)

Need for Large Accelerators An Article Written Originally for Midlevel Teachers Back In order to study small particles, a high energy beam of particles must be generated. The...

275

USING THE ONLINE SINGLE PARTICLE MODEL FOR SNS ACCELERATOR TUNING  

Science Conference Proceedings (OSTI)

This paper describes the usage of the XAL online model for transverse and longitudinal tuning of the SNS linac. Most of the SNS control room physics applications are based on the XAL online model, which can be synchronized with an accelerator live state and used to tune the machine. Advantages of a simple and fast single particle model for orbit correction and longitudinal dynamics control in the SNS control room are discussed.

Shishlo, Andrei P [ORNL; Aleksandrov, Alexander V [ORNL

2008-01-01T23:59:59.000Z

276

A 4 to 0.1 nm FEL Based on the SLAC Linac  

Science Conference Proceedings (OSTI)

The author show that using existing electron gun technology and a high energy linac like the one at SLAC, it is possible to build a Free Electron Laser operating around the 4 nm water window. A modest improvement in the gun performance would further allow to extend the FEL to the 0.1 nm region. Such a system would produce radiation with a brightness many order of magnitude above that of any synchrotron radiation source, existing or under construction, with laser power in the multigawatt region and subpicosecond pulse length.

Pellegrini, C.; /UCLA

2012-06-05T23:59:59.000Z

277

A High Precision Double Tubed Hydrostatic Leveling System for Accelerator Alignment Applications  

Science Conference Proceedings (OSTI)

Since 1998 several hydrostatic leveling systems (HLS) have been installed in different locations at Fermilab. This work was in collaboration with Budker Institute and SLAC. All systems were either half-filled pipe (HF) or full-filled pipe (FF). Issues assembling HLS are covered in this article. An improved and cost-effective water system with temperature stabilized of water media is presented. This proposal is a double-tube full-filled DT-FF system. Examples of hardware configurations are included for systems located at Fermilab.

Singatulin, Shavkat; Volk, J.; Shiltsev, V.; /Fermilab; Chupyra, A.; Medvedko, A.; Kondaurov, M.; /Novosibirsk, IYF

2006-09-01T23:59:59.000Z

278

System for Nuclear Waste Transmutation Driven by Target-Distributed Accelerators  

E-Print Network (OSTI)

A design concept and characteristics for an epithermal breeder controlled by variable feedback and external neutron source intensity are presented. By replacing the control rods with neutron sources, we could improve safety and perform radioactive waste burning in high flux subcritical reactors (HFSR). To increase neutron source intensity the HFSR is divided into two zones: a booster and a blanket operating with solid and liquid fuels. Use of a liquid actinide fuel permits transport of the delayed-neutron emitters from the blanket to the booster where they can provide additional neutrons or all the necessary excitation. With blanket and booster multiplication factors of k=0.95 and 0.98, respectively, an external photoneutron source rate of at least 10.sup.15 n/s (electron beam power 2.5MW) is needed to control the HFSR that produces 300MWt. An inexpensive method of obtaining large neutron fluxes is target-distributed accelerators (TDA), in which a fission electrical cell (FEC) compensates for lost beam energy...

Blanovsky, A

2004-01-01T23:59:59.000Z

279

Status of Hybrid Target R&D at KEK LINAC  

E-Print Network (OSTI)

A hybrid positron source, consisting of a crystal as electron to photon converter and a amorphous target, is a candidate to relax heat load problem for high intensity positron sources. In this article we report status of experimental study using the 8 GeV electron beam at KEKB LINAC.

Tohru Takahashi

2012-02-27T23:59:59.000Z

280

Accelerating PV Cost Effectiveness Through Systems Design, Engineering, and Quality Assurance: Final Subcontract Report, June 2007  

SciTech Connect

This report describes PowerLight Corporation's significant progress toward the reduction of installed costs for commercial-scale, rooftop PV systems.

Botkin, J.

2007-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "linac accelerator system" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Accelerating PV Cost Effectiveness Through Systems Design, Engineering, and Quality Assurance: Final Subcontract Report, June 2007  

DOE Green Energy (OSTI)

This report describes PowerLight Corporation's significant progress toward the reduction of installed costs for commercial-scale, rooftop PV systems.

Botkin, J.

2007-12-01T23:59:59.000Z

282

Argonne Accelerator Institute  

NLE Websites -- All DOE Office Websites (Extended Search)

AAI Home AAI Home Welcome Accelerators at Argonne Mission Organization History Document Collection Conferences & Workshops Beams and Applications Seminar Argonne-Fermilab Collaboration Lee Teng Scholarship Program Useful Links Organization The Argonne Accelerator Institute is a matrixed organization. Its members and fellows reside in programmatic Argonne divisions. The Institute reports to the Associate Laboratory Director for Photon Science), and the administrative functions of the Institute are within the PSC directorate. Director: Rodney Gerig Associate Director: Hendrik Weerts ( Director of High Energy Physics Division) Associate Director: Sasha Zholents (Director of Accelerator Systems Division) Associate Director: Robert Janssens ( Director of Argonne Physics Division)

283

SLAC National Accelerator Laboratory - Accelerators and Society  

NLE Websites -- All DOE Office Websites (Extended Search)

Accelerators and Society PHOTO: An accelerator at SLAC. SLAC has been developing, running and studying the basic physics of particle accelerators for half a century. Thousands of...

284

SLAC National Accelerator Laboratory - Accelerator Directorate  

NLE Websites -- All DOE Office Websites (Extended Search)

physics. Today, the Accelerator Directorate operates and maintains SLAC's existing accelerators to provide the highest possible level of performance. Accelerator employees improve...

285

Toward simulation-time data analysis and I/O acceleration on leadership-class systems  

E-Print Network (OSTI)

infrastructure on the systems at the Argonne Leadership Computing Facility (ALCF). We use the 40-rack Intrepid applications in the ALCF environment, we set up a temporary PVFS2 storage cluster on Eureka and mounted by a U.S. Department of Energy INCITE award and an ALCF Director's Discretionary Allocation. #12

286

R&D ERL: Controls System  

SciTech Connect

This paper examines the equipment and software from which the controls system interface for the Energy Recovery Linac (ERL) will be implemented at the Brookhaven National Laboratory.

Hoff, L.; Jamilkowski, J.

2010-01-01T23:59:59.000Z

287

ION ACCELERATOR  

DOE Patents (OSTI)

An arrangement for the drift tubes in a linear accelerator is described whereby each drift tube acts to shield the particles from the influence of the accelerating field and focuses the particles passing through the tube. In one embodiment the drift tube is splii longitudinally into quadrants supported along the axis of the accelerator by webs from a yoke, the quadrants. webs, and yoke being of magnetic material. A magnetic focusing action is produced by energizing a winding on each web to set up a magnetic field between adjacent quadrants. In the other embodiment the quadrants are electrically insulated from each other and have opposite polarity voltages on adjacent quadrants to provide an electric focusing fleld for the particles, with the quadrants spaced sufficienily close enough to shield the particles within the tube from the accelerating electric field.

Bell, J.S.

1959-09-15T23:59:59.000Z

288

Can the Chameleon mechanism explain cosmic acceleration while satisfying Solar System constraints ?  

E-Print Network (OSTI)

The chameleon mechanism appearing in massive tensor-scalar theory of gravity can effectively reduce the nonminimal coupling between the scalar field and matter. This mechanism is invoked to reconcile cosmological data requiring introduction of Dark Energy with small-scale stringent constraints on General Relativity. In this communication, we present constraints on this mechanism obtained by a cosmological analysis (based on Supernovae Ia data) and by a Solar System analysis (based on PPN formalism).

A. Hees; A. Füzfa

2013-02-26T23:59:59.000Z

289

Overview of recent trends and developments for BPM systems  

SciTech Connect

Beam position monitoring (BPM) systems are the workhorse of beam diagnostics for almost any kind of charged particle accelerator: linear, circular or transport-lines, operating with leptons, hadrons or heavy ions. BPMs are essential for beam commissioning, accelerator fault analysis and trouble shooting, machine optics, as well as lattice measurements, and finally, for accelerator optimization, in order to achieve the ultimate beam quality. This presentation summarizes the efforts of the beam instrumentation community on recent developments and advances on BPM technologies, i.e. BPM pickup monitors and front-end electronics (analog and digital). Principles, examples, and state-of-the-art status on various BPM techniques, serving hadron and heavy ion machines, sync light synchrotron's, as well as electron linacs for FEL or HEP applications are outlined.

Wendt, M.; /Fermilab

2011-08-01T23:59:59.000Z

290

A scalable messaging system for accelerating discovery from large scale scientific simulations  

SciTech Connect

Emerging scientific and engineering simulations running at scale on leadership-class High End Computing (HEC) environments are producing large volumes of data, which has to be transported and analyzed before any insights can result from these simulations. The complexity and cost (in terms of time and energy) associated with managing and analyzing this data have become significant challenges, and are limiting the impact of these simulations. Recently, data-staging approaches along with in-situ and in-transit analytics have been proposed to address these challenges by offloading I/O and/or moving data processing closer to the data. However, scientists continue to be overwhelmed by the large data volumes and data rates. In this paper we address this latter challenge. Specifically, we propose a highly scalable and low-overhead associative messaging framework that runs on the data staging resources within the HEC platform, and builds on the staging-based online in-situ/in- transit analytics to provide publish/subscribe/notification-type messaging patterns to the scientist. Rather than having to ingest and inspect the data volumes, this messaging system allows scientists to (1) dynamically subscribe to data events of interest, e.g., simple data values or a complex function or simple reduction (max()/min()/avg()) of the data values in a certain region of the application domain is greater/less than a threshold value, or certain spatial/temporal data features or data patterns are detected; (2) define customized in-situ/in-transit actions that are triggered based on the events, such as data visualization or transformation; and (3) get notified when these events occur. The key contribution of this paper is a design and implementation that can support such a messaging abstraction at scale on high- end computing (HEC) systems with minimal overheads. We have implemented and deployed the messaging system on the Jaguar Cray XK6 machines at Oak Ridge National Laboratory and the Lonestar system at the Texas Advanced Computing Center (TACC), and we present the experimental performance evaluation using these HEC platforms in the paper.

Jin, Tong [Rutgers University; Zhang, Fan [Rutgers University; Parashar, Manish [Rutgers University; Klasky, Scott A [ORNL; Podhorszki, Norbert [ORNL; Abbasi, Hasan [ORNL

2012-01-01T23:59:59.000Z

291

ANNUAL REPORT ACCELERATOR DIVISION  

E-Print Network (OSTI)

the facility is LBL and SLAC. The six-sided sto- the end ofstorage ring at in SLAC. ',hich colI ide The two-mile-longActual work began with the SLAC linac The contract involved

Authors, Various

2011-01-01T23:59:59.000Z

292

H- AND PROTON BEAM LOSS COMPARISON AT SNS SUPERCONDUCTING LINAC  

Science Conference Proceedings (OSTI)

A comparison of beam loss in the superconducting part (SCL) of the Spallation Neutron Source (SNS) linac for H- and protons is presented. During the experiment the nominal beam of negative hydrogen ions in the SCL was replaced by a proton beam created by insertion of a thin stripping carbon foil placed in the low energy section of the linac. The observed significant reduction in the beam loss for protons is explained by a domination of the intra beam stripping mechanism of the beam loss for H-. The details of the experiment are discussed, and a preliminary estimation of the cross section of the reaction H- + H- -> H- + H0 + e is presented. Earlier, a short description of these studies was presented in [1].

Aleksandrov, Alexander V [ORNL; Galambos, John D [ORNL; Plum, Michael A [ORNL; Shishlo, Andrei P [ORNL

2012-01-01T23:59:59.000Z

293

BEAM POSITION AND PHASE MONITORS FOR THE LANSCE LINAC  

SciTech Connect

New beam-position and phase monitors are under development for the linac at the Los Alamos Neutron Science Center (LANSCE). Transducers have been designed and are being fabricated. We are considering many options for the electronic instrumentation to process the signals and provide position and phase data with the necessary precision and flexibility to serve the various required functions. We'll present the various options under consideration for instrumentation along with the advantages and shortcomings of these options.

McCrady, Rodney C. [Los Alamos National Laboratory; Gilpatrick, John D. [Los Alamos National Laboratory; Power, John F. [AOT-IC

2011-01-01T23:59:59.000Z

294

HIGH DYNAMIC-RANGE HIGH SPEED LINAC CURRENT MEASUREMENTS  

SciTech Connect

It is desired to measure the linac current of a charged particle beam with a consistent accuracy over a dynamic range of over 120 dB. Conventional current transformers suffer from droop, can be susceptible to electromagnetic interference (EMI), and can be bandwidth limited. A novel detector and electronics were designed to maximize dynamic range of about 120 dB and measure rise-times on the order of 10 nanoseconds.

Deibele, Craig Edmond [ORNL; Curry, Douglas E [ORNL; Dickson, Richard W [ORNL

2012-01-01T23:59:59.000Z

295

BEAM POSITION AND PHASE MONITORS FOR THE LANSCE LINAC  

Science Conference Proceedings (OSTI)

New beam-position and phase monitors are under development for the linac at the Los Alamos Neutron Science Center (LANSCE.) Transducers have been designed and are being installed. We are considering many options for the electronic instrumentation to process the signals and provide position and phase data with the necessary precision and flexibility to serve the various required functions. We'll present the various options under consideration for instrumentation along with the advantages and shortcomings of these options.

McCrady, Rodney C. [Los Alamos National Laboratory; Gilpatrick, John D. [Los Alamos National Laboratory; Watkins, Heath A. [Los Alamos National Laboratory

2012-04-11T23:59:59.000Z

296

Materials considerations for molten salt accelerator-based plutonium conversion systems  

Science Conference Proceedings (OSTI)

A Molten-Salt Reactor Program for power applications was initiated at the Oak Ridge National Laboratory in 1956. In 1965 the Molten Salt Reactor Experiment (MSRE) went critical and was successfully operated for several years. Operation of the MSRE revealed two deficiencies in the Hastelloy N alloy that had been developed specifically for molten-salt systems. The alloy embrittled at elevated temperatures as a result of exposure to thermal neutrons (radiation damage) and grain boundary embrittlement occurred in materials to fuel salt. Intergranular cracking was found to be associated with fission products, viz. tellurium. An improved Hastelloy N composition was subsequently developed that had better resistance to both of these problems. However, the discovery that fission product cracking could be significantly decreased by making the salt sufficiently reducing offers the prospect of improved compatibility with molten salts containing fission products and resistance to radiation damage in ABC applications. Recommendations are made regarding the types of corrosion tests and mechanistic studies needed to qualify materials for operation with PuF{sub 3}-containing molten salts.

DeVan, J.H.; DiStefano, J.R.; Eatherly, W.P.; Keiser, J.R.; Klueh, R.L.

1994-12-31T23:59:59.000Z

297

Materials considerations for molten salt accelerator-based plutonium conversion systems  

Science Conference Proceedings (OSTI)

A Molten-Salt Reactor Program for civilian power applications was initiated at the Oak Ridge National Laboratory in 1956. In 1965 the Molten Salt Reactor Experiment (MSRE) went critical and was successfully operated for several years. Operation of the MSRE revealed two deficiencies in the Hastelloy N alloy that had been developed specifically for molten-salt systems. The alloy embrittled at elevated temperatures as a result of exposure to thermal neutrons (radiation damage) and grain boundary embrittlement occurred in materials exposed to fuel salt. Intergranular cracking was found to be associated with fission products, viz. tellurium. An improved Hastelloy N composition was subsequently developed that had better resistance to both of these problems. However, the discovery that fission product cracking could be significantly decreased by making the salt sufficiently reducing offers the prospect of improved compatibility with molten salts containing fission products and resistance to radiation damage in ABC applications. Recommendations are made regarding the types of corrosion tests and mechanistic studies needed to qualify materials for operation with PuF3-containing molten salts.

De Van, J. H.; Di Stefano, J. R.; Eatherly, W. P.; Keiser, J. R.; Klueh, R. L. [Oak Ridge National Laboratory P.O. Box 2008 Oak Ridge, Tennessee 37831 (United States)

1995-09-15T23:59:59.000Z

298

Interconnection Network for Tightly Coupled Accelerators Architecture  

Science Conference Proceedings (OSTI)

In recent years, heterogeneous clusters using accelerators have entered widespread use in high-performance computing systems. In such clusters, inter-node communication between accelerators normally requires several memory copies via CPU memory, which ... Keywords: PCI Express, Interconnect for accelerators, GPU cluster, Accelerator computing, Remote DMA

Toshihiro Hanawa, Yuetsu Kodama, Taisuke Boku, Mitsuhisa Sato

2013-08-01T23:59:59.000Z

299

Application Acceleration  

NLE Websites -- All DOE Office Websites (Extended Search)

Acceleration Acceleration on Current and Future Cray Platforms Alice Koniges, Robert Preissl, Jihan Kim, Lawrence Berkeley National Laboratory David Eder, Aaron Fisher, Nathan Masters, Velimir Mlaker, Lawrence Livermore National Laboratory Stephane Ethier, Weixing Wang, Princeton Plasma Physics Laboratory Martin Head-Gordon, University of California, Berkeley and Nathan Wichmann, Cray Inc. ABSTRACT: Application codes in a variety of areas are being updated for performance on the latest architectures. We describe current bottlenecks and performance improvement areas for applications including plasma physics, chemistry related to carbon capture and sequestration, and material science. We include a variety of methods including advanced hybrid parallelization using multi-threaded MPI, GPU acceleration, libraries and auto- parallelization compilers. KEYWORDS: hybrid

300

Superconducting Resonators Development for the FRIB and ReA Linacs at MSU: Recent Achievements and Future Goals  

Science Conference Proceedings (OSTI)

The superconducting driver and post-accelerator linacs of the FRIB project, the large scale radioactive beam facility under construction at MSU, require the construction of about 400 low-{beta} Quarter-wave (QWR) and Half-wave resonators (HWR) with four different optimum velocities. 1st and 2nd generation prototypes of {beta}{sub 0} = 0.041 and 0.085 QWRs and {beta}{sub 0} = 0.53 HWRs have been built and tested, and have more than fulfilled the FRIB and ReA design goals. The present cavity surface preparation at MSU allowed production of low-{beta} cavities nearly free from field emission. The first two cryostats of {beta}{sub 0} = 0.041 QWRs are now in operation in the ReA3 linac. A 3rd generation design of the FRIB resonators allowed to further improve the cavity parameters, reducing the peak magnetic field in operation and increasing the possible operation gradient, with consequent reduction of the number of required resonators. The construction of the cavities for FRIB, which includes three phases for each cavity type (development, pre-production and production runs) has started. Cavity design, construction, treatment and performance will be described and discussed.

Facco, A; Binkowski, J; Compton, C; Crisp, J L; Dubbs, L J; Elliot, K; Harle, L L; Hodek, M; Johnson, M J; Leitner, D; Leitner, M; Malloch, I M; Miller, S J; Oweiss, R; Popielarski, J; Popielarski, L; Saito, K; Wei, J; Wlodarczak, J; Xu, Y; Zhang, Y; Zheng, Z; Burrill, A; Davis, G K; Macha, K

2012-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "linac accelerator system" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Experimental studies of multipass beam breakup and energy recovery using the CEBAF injector linac.  

E-Print Network (OSTI)

??Beam breakup (BBU) instabilities in superconducting linacs are a significant issue due to the potentially high Q of the cavity higher-order modes (HOMs). The CEBAF… (more)

Sereno, Nicholas S. R.

1994-01-01T23:59:59.000Z

302

Energy Recovery Linac cavity at BNL | U.S. DOE Office of Science...  

Office of Science (SC) Website

Energy Recovery Linac cavity at BNL Nuclear Physics (NP) NP Home About Research Facilities Science Highlights Benefits of NP Spinoff Applications Spinoff Archives SBIRSTTR...

303

High Current Energy Recovery Linac at BNL | U.S. DOE Office of...  

Office of Science (SC) Website

High Current Energy Recovery Linac at BNL Nuclear Physics (NP) NP Home About Research Facilities Science Highlights Benefits of NP Spinoff Applications Spinoff Archives SBIRSTTR...

304

Precise system stabilization at SLC using dither techniques  

SciTech Connect

A data acquisition method has been developed at the SLAC Linear Collider (SLC) that provides accurate beam parameter information using sub-tolerance excitation and synchronized detection. This is being applied to several SLC sub-systems to provide high speed feedback on beam parameters such as linac output energy spread. The method has significantly improved control of the linac energy spread. The linac average phase offset ({phi}), used to compensate the effects of longitudinal wakefields, is adjusted {plus_minus}1 control bit (about 0.18{degree} S-band or 20% of tolerance), in a continuous fashion. Properly coordinated beam energy measurements provide a measure of the derivative of the accelerating voltage (dE/d{phi}). The position of the beam on the RF wave can thus be determined to {plus_minus} 0.3{degree} in about 5 seconds. The dithering does not contribute significantly to the energy jitter of the SLC and therefore does not adversely affect routine operation. Future applications include control of the interaction region beam size and orientation.

Ross, M.C.; Hendrickson, L.; Himel, T.; Miller, E.

1993-04-01T23:59:59.000Z

305

Interfacing to accelerator instrumentation  

SciTech Connect

As the sensory system for an accelerator, the beam instrumentation provides a tremendous amount of diagnostic information. Access to this information can vary from periodic spot checks by operators to high bandwidth data acquisition during studies. In this paper, example applications will illustrate the requirements on interfaces between the control system and the instrumentation hardware. A survey of the major accelerator facilities will identify the most popular interface standards. The impact of developments such as isochronous protocols and embedded digital signal processing will also be discussed.

Shea, T.J.

1995-12-31T23:59:59.000Z

306

Scientific issues in future induction linac accelerators for heavy ion fusion  

E-Print Network (OSTI)

Miller, M. Tabak, Nuc. Fusion, 39, 883 (1999). [2] S.S. Yu,W.M. Sharp, D.R. Welch, Fusion Science and Technology, 44,Transport for Heavy Ion Fusion", in these proceedings. [18

Celata, C.M.

2004-01-01T23:59:59.000Z

307

Design of an RFQ-based, H/sup -/ injector for the BNL/FNAL 200 MeV proton linacs  

SciTech Connect

An LBL/BNL/FNAL collaboration has been formed to design an RFQ-based Cockcroft-Walton replacement, suitable for use at the Brookhaven and Fermilab 200 MeV proton linacs. A common design for the ion source and the RFQ will result in an economical construction and testing program compatible with both applications. The technical requirements have been evaluated and it appears that they can be satisfied with identical RFQs, capable of accelerating 50 mA of H/sup -/ from 35 to 750 keV, at a nominal frequency of 200 MHz.

Gough, R.A.; Staples, J.; Tanabe, J.; Yee, D.; Howard, D.; Curtis, C.; Prelec, K.

1986-06-01T23:59:59.000Z

308

Compact accelerator  

DOE Patents (OSTI)

A compact linear accelerator having at least one strip-shaped Blumlein module which guides a propagating wavefront between first and second ends and controls the output pulse at the second end. Each Blumlein module has first, second, and third planar conductor strips, with a first dielectric strip between the first and second conductor strips, and a second dielectric strip between the second and third conductor strips. Additionally, the compact linear accelerator includes a high voltage power supply connected to charge the second conductor strip to a high potential, and a switch for switching the high potential in the second conductor strip to at least one of the first and third conductor strips so as to initiate a propagating reverse polarity wavefront(s) in the corresponding dielectric strip(s).

Caporaso, George J. (Livermore, CA); Sampayan, Stephen E. (Manteca, CA); Kirbie, Hugh C. (Los Alamos, NM)

2007-02-06T23:59:59.000Z

309

MUON ACCELERATION  

Science Conference Proceedings (OSTI)

One of the major motivations driving recent interest in FFAGs is their use for the cost-effective acceleration of muons. This paper summarizes the progress in this area that was achieved leading up to and at the FFAG workshop at KEK from July 7-12, 2003. Much of the relevant background and references are also given here, to give a context to the progress we have made.

BERG,S.J.

2003-11-18T23:59:59.000Z

310

Portable Linear Accelerator Development  

Science Conference Proceedings (OSTI)

This report describes Minac-3, a miniaturized linear accelerator system. It covers the current equipment capabilities and achievable modifications, applications information for prospective users, and technical information on high-energy radiography that is useful for familiarization and planning. The design basis, development, and applications history of Minac are also summarized.

1982-12-01T23:59:59.000Z

311

What is an accelerator?  

NLE Websites -- All DOE Office Websites (Extended Search)

world of physics though, 'accelerator' means something a little more specific. Our accelerators are a whole class of machines that accelerate atoms, or more often, pieces of...

312

Argonne Accelerator Institute  

NLE Websites -- All DOE Office Websites (Extended Search)

Argonne Accelerator Institute: Mission The mission of the Argonne Accelerator Institute is centered upon the following related goals: Locate next generation accelerator facilities...

313

An Overview of near-field vs. far-field radiation characteristics of the Linac Coherent Light Sources (LCLS)  

E-Print Network (OSTI)

An Overview of near-field vs. far-field radiation characteristics of the Linac Coherent Light Sources (LCLS)

Tatchyn, R

2005-01-01T23:59:59.000Z

314

Acceleration of dormant storage effects to address the reliability of silicon surface micromachined Micro-Electro-Mechanical Systems (MEMS).  

SciTech Connect

Qualification of microsystems for weapon applications is critically dependent on our ability to build confidence in their performance, by predicting the evolution of their behavior over time in the stockpile. The objective of this work was to accelerate aging mechanisms operative in surface micromachined silicon microelectromechanical systems (MEMS) with contacting surfaces that are stored for many years prior to use, to determine the effects of aging on reliability, and relate those effects to changes in the behavior of interfaces. Hence the main focus was on 'dormant' storage effects on the reliability of devices having mechanical contacts, the first time they must move. A large number ({approx}1000) of modules containing prototype devices and diagnostic structures were packaged using the best available processes for simple electromechanical devices. The packaging processes evolved during the project to better protect surfaces from exposure to contaminants and water vapor. Packages were subjected to accelerated aging and stress tests to explore dormancy and operational environment effects on reliability and performance. Functional tests and quantitative measurements of adhesion and friction demonstrated that the main failure mechanism during dormant storage is change in adhesion and friction, precipitated by loss of the fluorinated monolayer applied after fabrication. The data indicate that damage to the monolayer can occur at water vapor concentrations as low as 500 ppm inside the package. The most common type of failure was attributed to surfaces that were in direct contact during aging. The application of quantitative methods for monolayer lubricant analysis showed that even though the coverage of vapor-deposited monolayers is generally very uniform, even on hidden surfaces, locations of intimate contact can be significantly depleted in initial concentration of lubricating molecules. These areas represent defects in the film prone to adsorption of water or contaminants that can cause movable structures to adhere. These analysis methods also indicated significant variability in the coverage of lubricating molecules from one coating process to another, even for identical processing conditions. The variability was due to residual molecules left in the deposition chamber after incomplete cleaning. The coating process was modified to result in improved uniformity and total coverage. Still, a direct correlation was found between the resulting static friction behavior of MEMS interfaces, and the absolute monolayer coverage. While experimental results indicated that many devices would fail to start after aging, the modeling approach used here predicted that all the devices should start. Adhesion modeling based upon values of adhesion energy from cantilever beams is therefore inadequate. Material deposition that bridged gaps was observed in some devices, and potentially inhibits start-up more than the adhesion model indicates. Advances were made in our ability to model MEMS devices, but additional combined experimental-modeling studies will be needed to advance the work to a point of providing predictive capability. The methodology developed here should prove useful in future assessments of device aging, however. Namely, it consisted of measuring interface properties, determining how they change with time, developing a model of device behavior incorporating interface behavior, and then using the age-aware interface behavior model to predict device function.

Cox, James V.; Candelaria, Sam A.; Dugger, Michael Thomas; Duesterhaus, Michelle Ann; Tanner, Danelle Mary; Timpe, Shannon J.; Ohlhausen, James Anthony; Skousen, Troy J.; Jenkins, Mark W.; Jokiel, Bernhard, Jr.; Walraven, Jeremy Allen; Parson, Ted Blair

2006-06-01T23:59:59.000Z

315

PROCEEDING OF WORKSHOP ON PHOTO-INJECTOR FOR ENERGY RECOVERY LINAC.  

SciTech Connect

Workshop on Photo-injectors for Energy Recovery Linac was held at National Synchrotron Light Source (NSLS) of Brookhaven National Laboratory (BNL) on January 22 and 23, 2001. Fifty people attended the workshop; they came from three countries, representing universities, industries and national laboratories. This is the first workshop ever held on photo-injectors for CW operation, and for the first time, both DC and RF photo-injectors were discussed at the workshop. Workshop covered almost all major issues of photo-injectors, photocathode, laser system, vacuum, DC, 433 MHz/B-factory cavities based RF gun, 1.3 GHz RF gun and beam instrumentation. High quantum efficiency and long live time photocathode is the issue discussed during the workshop. Four working group leaders have done great jobs summarizing the workshop discussion, and identifying the major issues for future R and D.

WANG,X.J.

2001-01-22T23:59:59.000Z

316

An accelerator technology legacy  

Science Conference Proceedings (OSTI)

Accelerator technology has been a major beneficiary of the investment made over the last decade. It is the intention of this paper to provide the reader with a glimpse of the broad nature of those advances. Development has been on a broad front and this paper can highlight only a few of those. Two spin-off applications will be outlined -- a concept for a compact, active, beam probe for solar body exploration and the concept for an accelerator-driven transmutation system for energy production.

Heighway, E.A.

1994-11-01T23:59:59.000Z

317

NDCX-II, an Induction Linac for HEDP and IFE Research  

SciTech Connect

The Heavy Ion Fusion Science Virtual National Laboratory in the USA is constructing a new Neutralized Drift Compression eXperiment (NDCX-II) at LBNL. This facility is being developed for high energy density physics and inertial fusion energy research. The 12 m long induction linac in NDCX-II will produce a Li{sup +} beam pulse, at energies of 1.2-3 MeV, to heat target material to the warm dense matter regime ({approx} 1 eV). By making use of special acceleration voltage waveforms, 2.5T solenoid focusing, and neutralized drift compression, 20 - 50 nC of beam charge from the ion source will be compressed longitudinally and radially to achieve a subnanosecond pulse length and mm-scale target spot size. The original Neutralized Drift Compression Experiment (NDCX-I) has successfully demonstrated simultaneous radial and longitudinal compression by imparting a velocity ramp to the ion beam, which then drifts in a neutralizing plasma to and through the final focussing solenoid and onto the target. At higher kinetic energy and current, NDCX-II will offer more than 100 times the peak energy fluence on target of NDCX-I. NDCX-II makes use of many parts from the decommissioned Advanced Test Accelerator (ATA) at LLNL. It includes 27 lattice periods between the injector and the neutralized drift compression section (Figure 1). There are 12 energized induction cells, 9 inactive cells which provide drift space, and 6 diagnostic cells which provide beam diagnostics and pumping. Custom pulsed power systems generate ramped waveforms for the first 7 induction cells, so as to quickly compress the beam from 600 ns at the injector down to 70 ns. After this compression, the high voltages of the ATA Blumleins are then used to rapidly add energy to the beam. The Blumleins were designed to match the ferrite core volt-seconds with pulses up to 250 kV and a fixed FWHM of 70 ns. The machine is limited to a pulse repetition rate of once every 20 seconds due to cooling requirements. The NDCX-II beam is highly space-charge dominated. The 1-D ASP code was used to synthesize high voltage waveform for acceleration, while the 3-D Warp particle-in-cell code was used for detailed design of the lattice. The Li{sup +} ion was chosen because its Bragg Peak energy (at {approx} 2 MeV) coincides with the NDCX-II beam energy. The 130 keV injector will have a 10.9 cm diameter ion source. Testing of small (0.64 cm diameter) lithium doped alumino-silicate ion sources has demonstrated the current density ({approx} 1 mA/cm{sup 2}) used in the design, with acceptable lifetime. A 7.6 cm diameter source has been successfully produced to verify that the coating method can be applied to such a large emitting area. The ion source will operate at {approx} 1275 C; thus a significant effort was made in the design to manage the 4 kW heating power and the associated cooling requirements. In modifying the ATA induction cells for NDCX-II, the low-field DC solenoids were replaced with 2.5 T pulsed solenoids. The beam pipe diameter was decreased in order to reduce the axial extent of the solenoid fringe fields and to make room for water cooling. In addition, an outer copper cylinder (water-cooled) was used to exclude the solenoid magnetic flux from the ferrite cores. Precise alignment is essential because the beam has a large energy spread due to the rapid pulse compression, such that misalignments lead to corkscrew deformation of the beam and reduced intensity at focus. A novel pulsed-wire measurement method is used to align the pulsed solenoid magnets. Alignment accuracy has been demonstrated to within 100 {micro}m of the induction cell axis. The neutralized drift compression region after the last induction cell is approximately 1.2 m long and includes ferroelectric plasma sources (FEPS) fabricated by PPPL similar to those successfully operating in NDCX-I. The 8-T final focus pulsed solenoid, filtered cathodic arc plasma sources (FCAPS), and target chamber from NDCX-I are to be relocated to NDCX-II. The NDCX-II project started in July 2009 and is expected to complete in fall of 2011.

Kwan, J.W.; Arbelaez, D.; Bieniosek, F.M.; Faltens, A.; Friedman, A.; Galvin, J.; Greenway, W.; Gilson, E. P.; Grote, D. P.; Jung, J.Y.; Lee, E.P.; Leitner, M.; Lidia, S.M.; Logan, B.G.; Lund, S. M.; Reginato, L.L.; Roy, P.K.; Seidl, P.A.; Sharp, W. M.; Takakuwa, J.; Waldron, W.L.

2011-04-20T23:59:59.000Z

318

SLAC National Accelerator Laboratory - Accelerator Research  

NLE Websites -- All DOE Office Websites (Extended Search)

An image of the FACET equipment and a man examining it. ACCELERATOR PHYSICS Accelerators form the backbone of SLAC's on-site experimental program. They are complicated...

319

EA-1147: Low Energy Demonstration Accelerator Tech Area 53, Los...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

design, build, and test critical prototypical components of the accelerator system for tritium production, specifically the front-end low-energy section of the accelerator, at the...

320

International Conference on Accelerator and Large Experimental...  

NLE Websites -- All DOE Office Websites (Extended Search)

and Large Experimental Physics Control Systems Covering control system topics for accelerators, telescopes, fusion, physics detectors, space exploration, and more Proceedings...

Note: This page contains sample records for the topic "linac accelerator system" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Accelerators and the Accelerator Community  

Science Conference Proceedings (OSTI)

In this paper, standing back--looking from afar--and adopting a historical perspective, the field of accelerator science is examined. How it grew, what are the forces that made it what it is, where it is now, and what it is likely to be in the future are the subjects explored. Clearly, a great deal of personal opinion is invoked in this process.

Malamud, Ernest; Sessler, Andrew

2008-06-01T23:59:59.000Z

322

Alternate Tunings for the Linac Coherent Light Source Photoinjector  

SciTech Connect

The Linac Coherent Light Source (LCLS) is an x-ray free-electron laser (FEL) project based on the SLAC linac. The LCLS Photoinjector beamline has been designed to deliver 10-ps long electron bunches of 1 nC with a normalized projected transverse emittance smaller than 1.2 mm-mrad at 135 MeV. Tolerances and regulation requirements are tight for this tuning. Half of the total emittance at the end of the injector comes from the ''cathode emittance'' which is 0.7 mm-mrad for our nominal 1nC tuning. As the ''cathode emittance'' scales linearly with laser spot radius, the emittance will be dramatically reduced for smaller radius, but this is only possible at lower charge. In particular, for a 0.2 nC charge, we believe we can achieve an emittance closer to 0.4 mm-mrad. This working point will be easier to tune and the beam quality should be much easier to maintain than for the 1 nC case. In the second half of this paper, we discuss optimum laser pulse shapes. We demonstrate that the benefits of the ellipsoidal shapes seem to be important enough so that serious investigations should be carried out in the production of such pulses.

Limborg-Deprey, C.; Emma, P.; /SLAC

2006-03-17T23:59:59.000Z

323

TRACKING ACCELERATOR SETTINGS.  

Science Conference Proceedings (OSTI)

Recording setting changes within an accelerator facility provides information that can be used to answer questions about when, why, and how changes were made to some accelerator system. This can be very useful during normal operations, but can also aid with security concerns and in detecting unusual software behavior. The Set History System (SHS) is a new client-server system developed at the Collider-Accelerator Department of Brookhaven National Laboratory to provide these capabilities. The SHS has been operational for over two years and currently stores about IOOK settings per day into a commercial database management system. The SHS system consists of a server written in Java, client tools written in both Java and C++, and a web interface for querying the database of setting changes. The design of the SHS focuses on performance, portability, and a minimal impact on database resources. In this paper, we present an overview of the system design along with benchmark results showing the performance and reliability of the SHS over the last year.

D OTTAVIO,T.; FU, W.; OTTAVIO, D.P.

2007-10-15T23:59:59.000Z

324

Transverse emittance dilution due to coupler kicks in linear accelerators  

E-Print Network (OSTI)

One of the main concerns in the design of low emittance linear accelerators (linacs) is the preservation of beam emittance. Here we discuss one possible source of emittance dilution due to transverse electromagnetic fields in the accelerating cavities of the linac caused by the power coupler geometry. It is common wisdom that emittance growth from coupler kicks can be strongly reduced by having the coupler location alternate from above to below the beam pipe so that the coupler kick from one cavity is compensated by that of the next. While this is correct, alternating the coupler location requires large technical changes in superconducting cryomodules where cryogenic pipes are arranged parallel to a string of several cavities. We show here that cavities with high external $Q$ have coupler kicks that change the sign of their phase when the coupler is moved from before to after the cavity, as long as one accelerates on crest. This implies that the emittance growth from one cavity can be canceled by the next, pr...

Buckley, Brandon

2007-01-01T23:59:59.000Z

325

Recent Developments on ALICE (Accelerators and Lasers In Combined Experiments) at Daresbury Laboratory  

SciTech Connect

Progress made in ALICE (Accelerators and Lasers In Combined Experiments) commissioning and a summary of the latest experimental results are presented in this paper. After an extensive work on beam loading effects in SC RF linac (booster) and linac cavities conditioning, ALICE can now operate in full energy recovery mode at the bunch charge of 40pC, the beam energy of 30MeV and train lengths of up to 100us. This improved operation of the machine resulted in generation of coherently enhanced broadband THz radiation with the energy of several tens of uJ per pulse and in successful demonstration of the Compton Backscattering x-ray source experiment. The next steps in the ALICE scientific programme are commissioning of the IR FEL and start of the research on the first non-scaling FFAG accelerator EMMA. Results from both projects will be also reported.

Saveliev, Y M; Buckley, R K; Buckley, S R; Clarke, J A; Corlett, P A; Dunning, D J; Goulden, A R; Hill, S F; Jackson, F; Jamison, S P; Jones, J K; Jones, L B; Leonard, S; McIntosh, P A; McKenzie, J W; Middleman, K J; Militsyn, B L; Moss, A J; Muratori, B D; Orrett, J F; Pattalwar, S M; Phillips, P J; Scott, D J; Seddon, E A; Shepherd, B.J.A.; Smith, S L; Thompson, N; Wheelhouse, A E; Williams, P H; Harrison, P; Holder, D J; Holder, G M; Schofield, A L; Weightman, P; Williams, R L; Laundry, D; Powers, T; Priebe, G

2010-05-01T23:59:59.000Z

326

Accelerator technology program. Progress report, January-June 1981  

Science Conference Proceedings (OSTI)

This report covers the activities of Los Alamos National Laboratory's Accelerator Technology Division during the first 6 months of calendar 1981. We discuss the Division's major projects, which reflect a variety of applications and sponsors. The varied technologies concerned with the Proton Storage ring are concerned with the Proton Storage Ring are continuing and are discussed in detail. For the racetrack microtron (RTM) project, the major effort has been the design and construction of the demonstration RTM. Our development of the radio-frequency quadrupole (RFQ) linear accelerator continues to stimulate interest for many possible applications. Frequent contacts from other laboratories have revealed a wide acceptance of the RFQ principle in solving low-velocity acceleration problems. In recent work on heavy ion fusion we have developed ideas for funneling beams from RFQ linacs; the funneling process is explained. To test as many aspects as possible of a fully integrated low-energy portion of a Pion generator for Medical Irradiation (PIGMI) Accelerator, a prototype accelerator was designed to take advantage of several pieces of existing accelerator hardware. The important principles to be tested in this prototype accelerator are detailed. Our prototype gyrocon has been extensively tested and modified; we discuss results from our investigations. Our work with the Fusion Materials Irradiation Test Facility is reviewed in this report.

Knapp, E.A.; Jameson, R.A. (comps.)

1982-05-01T23:59:59.000Z

327

Accelerating Solutions  

NLE Websites -- All DOE Office Websites (Extended Search)

Solutions From vehicles on the road to the energy that powers them, Oak Ridge National Laboratory innovations are advancing American transportation. Oak Ridge National Laboratory is making an impact on everyday America by enhancing transportation choices and quality of life. Through strong collaborative partnerships with industry, ORNL research and development efforts are helping accelerate the deployment of a new generation of energy efficient vehicles powered by domestic, renewable, clean energy. EPA ultra-low sulfur diesel fuel rule ORNL and the National Renewable Energy Laboratory co-led a comprehensive research and test program to determine the effects of diesel fuel sulfur on emissions and emission control (catalyst) technology. In the course of this program, involving

328

Acceleration Modules in Linear Induction Accelerators  

E-Print Network (OSTI)

Linear Induction Accelerator (LIA) is a unique type of accelerator, which is capable to accelerate kiloAmpere charged particle current to tens of MeV energy. The present development of LIA in MHz busting mode and successful application into synchrotron broaden LIAs usage scope. Although transformer model is widely used to explain the acceleration mechanism of LIAs, it is not appropriate to consider the induction electric field as the field which accelerates charged particles for many modern LIAs. Authors examined the transition of the magnetic cores functions during LIA acceleration modules evolution, distinguished transformer type and transmission line type LIA acceleration modules, and reconsidered several related issues based on transmission line type LIA acceleration module. The clarified understanding should be helpful in the further development and design of the LIA acceleration modules.

Wang, Shaoheng

2013-01-01T23:59:59.000Z

329

Energy recovery linacs in high-energy and nuclear physics  

Science Conference Proceedings (OSTI)

Energy Recovery Linacs (ERL) have significant potential uses in High Energy Physics and Nuclear Physics. We describe some of the potential applications which are under development by our laboratories in this area and the technology issues that are associated with these applications. The applications that we discuss are electron cooling of high-energy hadron beams and electron-nucleon colliders. The common issues for some of these applications are high currents of polarized electrons, high-charge and high-current electron beams and the associated issues of High-Order Modes. The advantages of ERLs for these applications are numerous and will be outlined in the text. It is worth noting that some of these advantages are the high-brightness of the ERL beams and their relative immunity to beam-beam disturbances.

I. Ben-Zvi; Ya. Derbenev; V. Litvinenko; L. Merminga

2005-03-01T23:59:59.000Z

330

Linear induction accelerator  

DOE Patents (OSTI)

A linear induction accelerator includes a plurality of adder cavities arranged in a series and provided in a structure which is evacuated so that a vacuum inductance is provided between each adder cavity and the structure. An energy storage system for the adder cavities includes a pulsed current source and a respective plurality of bipolar converting networks connected thereto. The bipolar high-voltage, high-repetition-rate square pulse train sets and resets the cavities. 4 figs.

Buttram, M.T.; Ginn, J.W.

1988-06-21T23:59:59.000Z

331

Power plant and system for accelerating a cross compound turbine in such plant, especially one having an HTGR steam supply  

SciTech Connect

An electric power plant having a cross compound steam turbine and a steam source that includes a high temperature gas-cooled nuclear reactor is described. The steam turbine includes high and intermediate-pressure portions which drive a first generating means, and a low-pressure portion which drives a second generating means. The steam source supplies superheat steam to the high-pressure turbine portion, and an associated bypass permits the superheat steam to flow from the source to the exhaust of the high-pressure portion. The intermediate and low-pressure portions use reheat steam; an associated bypass permits reheat steam to flow from the source to the low-pressure exhaust. An auxiliary turbine driven by steam exhausted from the high-pressure portion and its bypass drives a gas blower to propel the coolant gas through the reactor. While the bypass flow of reheat steam is varied to maintain an elevated pressure of reheat steam upon its discharge from the source, both the first and second generating means and their associated turbines are accelerated initially by admitting steam to the intermediate and low-pressure portions. The electrical speed of the second generating means is equalized with that of the first generating means, whereupon the generating means are connected and acceleration proceeds under control of the flow through the high-pressure portion. 29 claims, 2 figures.

Jaegtnes, K.O.; Braytenbah, A.S.

1977-02-15T23:59:59.000Z

332

Accelerated life test of the USDOE OC-OTEC experimental system refurbished with magnetic bearings for the 3rd stage vacuum compressor. Final report  

DOE Green Energy (OSTI)

This report documents the accelerated life test (time-to-failure) performed, at the request of DOE, to evaluate the viability of the magnetic bearing system installed in the stage 3 vacuum pump. To this effect the plant was successfully operated for over 500 hours during the period September-November 1996. The first part of this report discusses system performance by deriving subsystem and system performance parameters from a typical record. This is followed by the discussion of the life tests. The instrumentation used to estimate the performance parameters given here is depicted. The third stage pump was operated for 535 hours without incident. It is concluded that magnetic bearings are the preferable choice for the OC-OTEC centrifugal vacuum pumps.

Vega, L.A.

1997-04-01T23:59:59.000Z

333

Summary of sessions B and F: High intensity linacs and frontend & proton drivers  

SciTech Connect

This paper summarizes the sessions B&F of the 33rd ICFA Advanced Beam Dynamics Workshop on High Intensity & High Brightness Hadron Beams held in Bensheim, Germany. It covers high intensity linacs, front ends and proton driver topics.

Ferdinand, R.; /Saclay; Chou, W.; /Fermilab; Galambos, J.; /Oak Ridge

2005-01-01T23:59:59.000Z

334

IRIDE White Book, An Interdisciplinary Research Infrastructure based on Dual Electron linacs&lasers  

E-Print Network (OSTI)

This report describes the scientific aims and potentials as well as the preliminary technical design of IRIDE, an innovative tool for multi-disciplinary investigations in a wide field of scientific, technological and industrial applications. IRIDE will be a high intensity 'particle factory', based on a combination of a high duty cycle radio-frequency superconducting electron linac and of high energy lasers. Conceived to provide unique research possibilities for particle physics, for condensed matter physics, chemistry and material science, for structural biology and industrial applications, IRIDE will open completely new research possibilities and advance our knowledge in many branches of science and technology. IRIDE will contribute to open new avenues of discoveries and to address most important riddles: What does matter consist of? What is the structure of proteins that have a fundamental role in life processes? What can we learn from protein structure to improve the treatment of diseases and to design more efficient drugs? But also how does an electronic chip behave under the effect of radiations? How can the heat flow in a large heat exchanger be optimized? The scientific potential of IRIDE is far reaching and justifies the construction of such a large facility in Italy in synergy with the national research institutes and companies and in the framework of the European and international research. It will impact also on R&D work for ILC, FEL, and will be complementarity to other large scale accelerator projects. IRIDE is also intended to be realized in subsequent stages of development depending on the assigned priorities.

D. Alesini; M. Alessandroni; M. P. Anania; S. Andreas; M. Angelone; A. Arcovito; F. Arnesano; M. Artioli; L. Avaldi; D. Babusci; A. Bacci; A. Balerna; S. Bartalucci; R. Bedogni; M. Bellaveglia; F. Bencivenga; M. Benfatto; S. Biedron; V. Bocci; M. Bolognesi; P. Bolognesi; R. Boni; R. Bonifacio; M. Boscolo; F. Boscherini; F. Bossi; F. Broggi; B. Buonomo; V. Calo'; D. Catone; M. Capogni; M. Capone; M. Castellano; A. Castoldi; L. Catani; G. Cavoto; N. Cherubini; G. Chirico; M. Cestelli-Guidi; E. Chiadroni; V. Chiarella; A. Cianchi; M. Cianci; R. Cimino; F. Ciocci; A. Clozza; M. Collini; G. Colo'; A. Compagno; G. Contini; M. Coreno; R. Cucini; C. Curceanu; S. Dabagov; E. Dainese; I. Davoli; G. Dattoli; L. De Caro; P. De Felice; S. Della Longa; G. Delle Monache; M. De Spirito; A. Di Cicco; C. Di Donato; D. Di Gioacchino; D. Di Giovenale; E. Di Palma; G. Di Pirro; A. Dodaro; A. Doria; U. Dosselli; A. Drago; R. Escribano; A. Esposito; R. Faccini; A. Ferrari; M. Ferrario; A. Filabozzi; D. Filippetto; F. Fiori; O. Frasciello; L. Fulgentini; G. P. Gallerano; A. Gallo; M. Gambaccini; C. Gatti; G. Gatti; P. Gauzzi; A. Ghigo; G. Ghiringhelli; L. Giannessi; G. Giardina; C. Giannini; F. Giorgianni; E. Giovenale; L. Gizzi; C. Guaraldo; C. Guazzoni; R. Gunnella; K. Hatada; S. Ivashyn; F. Jegerlehner; P. O. Keeffe; W. Kluge; A. Kupsc; M. Iannone; L. Labate; P. Levi Sandri; V. Lombardi; P. Londrillo; S. Loreti; M. Losacco; S. Lupi; A. Macchi; S. Magazu'; G. Mandaglio; A. Marcelli; G. Margutti; C. Mariani; P. Mariani; G. Marzo; C. Masciovecchio; P. Masjuan; M. Mattioli; G. Mazzitelli; N. P. Merenkov; P. Michelato; F. Migliardo; M. Migliorati; C. Milardi; E. Milotti; S. Milton; V. Minicozzi; S. Mobilio; S. Morante; D. Moricciani; A. Mostacci; V. Muccifora; F. Murtas; P. Musumeci; F. Nguyen; A. Orecchini; G. Organtini; P. L. Ottaviani; E. Pace; M. Paci; C. Pagani; S. Pagnutti; V. Palmieri; L. Palumbo; G. C. Panaccione; C. F. Papadopoulos; M. Papi; M. Passera; L. Pasquini; M. Pedio; A. Perrone; A. Petralia; C. Petrillo; V. Petrillo; M. Pillon; P. Pierini; A. Pietropaolo; A. D. Polosa; R. Pompili; J. Portoles; T. Prosperi; C. Quaresima; L. Quintieri; J. V. Rau; M. Reconditi; A. Ricci; R. Ricci; G. Ricciardi; E. Ripiccini; S. Romeo; C. Ronsivalle; N. Rosato; J. B. Rosenzweig; G. Rossi; A. A. Rossi; A. R. Rossi; F. Rossi; D. Russo; A. Sabatucci; E. Sabia; F. Sacchetti; S. Salducco; F. Sannibale; G. Sarri; T. Scopigno; L. Serafini; D. Sertore; O. Shekhovtsova; I. Spassovsky; T. Spadaro; B. Spataro; F. Spinozzi; A. Stecchi; F. Stellato; V. Surrenti; A. Tenore; A. Torre; L. Trentadue; S. Turchini; C. Vaccarezza; A. Vacchi; P. Valente; G. Venanzoni; S. Vescovi; F. Villa; G. Zanotti; N. Zema; M. Zobov

2013-07-30T23:59:59.000Z

335

A Wire Position Monitor System for the 1.3 FHZ Tesla-Style Cryomodule at the Fermilab New-Muon-Lab Accelerator  

Science Conference Proceedings (OSTI)

The first cryomodule for the beam test facility at the Fermilab New-Muon-Lab building is currently under RF commissioning. Among other diagnostics systems, the transverse position of the helium gas return pipe with the connected 1.3 GHz SRF accelerating cavities is measured along the {approx}15 m long module using a stretched-wire position monitoring system. An overview of the wire position monitor system technology is given, along with preliminary results taken at the initial module cooldown, and during further testing. As the measurement system offers a high resolution, we also discuss options for use as a vibration detector. An electron beam test facility, based on superconducting RF (SRF) TESLA-style cryomodules is currently under construction at the Fermilab New-Muon-Lab (NML) building. The first, so-called type III+, cryomodule (CM-1), equipped with eight 1.3 GHz nine-cell accelerating cavities was recently cooled down to 2 K, and is currently under RF conditioning. The transverse alignment of the cavity string within the cryomodule is crucial for minimizing transverse kick and beam break-up effects, generated by the high-order dipole modes of misaligned accelerating structures. An optimum alignment can only be guaranteed during the assembly of the cavity string, i.e. at room temperatures. The final position of the cavities after cooldown is uncontrollable, and therefore unknown. A wire position monitoring system (WPM) can help to understand the transverse motion of the cavities during cooldown, their final location and the long term position stability after cryo-temperatures are settled, as well as the position reproducibility for several cold-warm cycles. It also may serve as vibration sensor, as the wire acts as a high-Q resonant detector for mechanical vibrations in the low-audio frequency range. The WPM system consists out of a stretched-wire position detection system, provided with help of INFN-Milano and DESY Hamburg, and RF generation and read-out electronics, developed at Fermilab.

Eddy, N.; Fellenz, B.; Prieto, P.; Semenov, A.; Voy, D.C.; Wendt, M.; /Fermilab

2011-08-17T23:59:59.000Z

336

Tech Acceleration  

Science Conference Proceedings (OSTI)

... on a National basis that will identify manufacturers' production and technical ... to scout for suppliers of components for alternative energy systems. ...

2012-09-20T23:59:59.000Z

337

WIPP Accelerating Cleanup  

NLE Websites -- All DOE Office Websites (Extended Search)

ACCELERATING CLEANUP: ACCELERATING CLEANUP: PATHS TO CLOSURE CARLSBAD AREA OFFICE JUNE 1998 I. Operations/Field Overview CAO Mission The mission of the Carlsbad Area Office (CAO) is to protect human health and the environment by opening and operating the Waste Isolation Pilot Plant (WIPP) for safe disposal of transuranic (TRU) waste and by establishing an effective system for management of TRU waste from generation to disposal. It includes personnel assigned to CAO, WIPP site operations, transportation, and other activities associated with the National TRU Program (NTP). The CAO develops and directs implementation of the TRU waste program, and assesses compliance with the program guidance, as well as the commonality of activities and assumptions among all TRU waste sites. NTP Program Management

338

APT/LEDA RFQ vacuum pumping system  

DOE Green Energy (OSTI)

This paper describes the design and fabrication of a vacuum pumping system for the ATP/LEDA (Low Energy Demonstration Accelerator) RFQ (Radio Frequency Quadrupole) linac. Resulted from the lost proton beam, gas streaming from the LEBT (Low Energy Beam Transport) and out-gassing from the surfaces of the RFQ cavity and vacuum plumbing, the total gas load will be on the order of 7.2 x 10{sup -4} Torr-liters/sec, consisting mainly of hydrogen. The system is designed to pump on a continual basis with redundancy to ensure that the minimal operating vacuum level of 1 x 10{sup -6} Torr is maintained even under abnormal conditions. Details of the design, performance analysis and the preliminary test results of the cryogenic pumps are presented.

Shen, S., LLNL

1997-07-21T23:59:59.000Z

339

Controls system developments for the ERL facility  

SciTech Connect

The BNL Energy Recovery LINAC (ERL) is a high beam current, superconducting RF electron accelerator that is being commissioned to serve as a research and development prototype for a RHIC facility upgrade for electron-ion collision (eRHIC). Key components of the machine include a laser, photocathode, and 5-cell superconducting RF cavity operating at a frequency of 703 MHz. Starting with a foundation based on existing ADO software running on Linux servers and on the VME/VxWorks platforms developed for RHIC, we are developing a controls system that incorporates a wide range of hardware I/O interfaces that are needed for machine R&D. Details of the system layout, specifications, and user interfaces are provided.

Jamilkowski, J.; Altinbas, Z.; Gassner, D.; Hoff, L.; Kankiya, P.; Kayran, D.; Miller, T.; Olsen, R.; Sheehy, B.; Xu, W.

2011-10-07T23:59:59.000Z

340

Argonne Accelerator Institute  

NLE Websites -- All DOE Office Websites (Extended Search)

AAI Home AAI Home Welcome Accelerators at Argonne Mission Organization History Document Collection Conferences & Workshops Beams and Applications Seminar Argonne-Fermilab Collaboration Lee Teng Scholarship Program Useful Links Argonne Accelerator Institute In 2006, Argonne Laboratory Director Robert Rosner formed the AAI as a focal point for accelerator initiatives. The institute works to utilize Argonne's extensive accelerator resources, to enhance existing facilities, to determine the future of accelerator development and construction, and to oversee a dynamic and acclaimed accelerator physics portfolio. More Information for: Members * Students Industrial Collaborators - Working with Argonne Link to: Accelerators for America's Future Upcoming Events and News 4th International Particle Accelerator Conference (IPAC'13)

Note: This page contains sample records for the topic "linac accelerator system" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Science Accelerator Widget  

Office of Scientific and Technical Information (OSTI)

Science Accelerator Widget You can now explore multiple Science Accelerator features through the new tabbed widget. Download this tool via the 'Get Widget Options' link or by...

342

Argonne Accelerator Institute  

NLE Websites -- All DOE Office Websites (Extended Search)

Accelerators at Argonne Argonne has a long and continuing history of participation in accelerator based, and user oriented facilities. The Zero-Gradient Synchrotron, which began...

343

Focusing in Linear Accelerators  

DOE R&D Accomplishments (OSTI)

Review of the theory of focusing in linear accelerators with comments on the incompatibility of phase stability and first-order focusing in a simple accelerator.

McMillan, E. M.

1950-08-24T23:59:59.000Z

344

Accelerating Solutions  

NLE Websites -- All DOE Office Websites (Extended Search)

C.W. Ayers, J.N. Chiasson, T.A. Burress, and L.D. Marlino. 2006. Evaluation of 2004 Toyota Prius Hybrid Electric Drive System. ORNLTM- 2006423. Oak Ridge, Tennessee: Oak Ridge...

345

Comparisons of the Calculations Using Different Codes Implemented in MCNPX Monte Carlo Transport Code for Accelerator Driven System Target  

Science Conference Proceedings (OSTI)

Modeling and Simulations / Proceedings of the Fifteenth International Conference on Emerging Nuclear Energy Systems

Basar Sarer; Sümer Sahin; Mehtap Günay; Yurdunaz Çelik

346

Accelerator Technology Division progress report, FY 1992  

SciTech Connect

This report briefly discusses the following topics: The Ground Test Accelerator Program; Defense Free-Electron Lasers; AXY Programs; A Next Generation High-Power Neutron-Scattering Facility; JAERI OMEGA Project and Intense Neutron Sources for Materials Testing; Advanced Free-Electron Laser Initiative; Superconducting Supercollider; The High-Power Microwave (HPM) Program; Neutral Particle Beam (NPB) Power Systems Highlights; Industrial Partnering; Accelerator Physics and Special Projects; Magnetic Optics and Beam Diagnostics; Accelerator Design and Engineering; Radio-Frequency Technology; Accelerator Theory and Free-Electron Laser Technology; Accelerator Controls and Automation; Very High-Power Microwave Sources and Effects; and GTA Installation, Commissioning, and Operations.

Schriber, S.O.; Hardekopf, R.A.; Heighway, E.A.

1993-07-01T23:59:59.000Z

347

Unfolding linac photon spectra and incident electron energies from experimental transmission data, with direct independent validation  

SciTech Connect

Purpose: In a recent computational study, an improved physics-based approach was proposed for unfolding linac photon spectra and incident electron energies from transmission data. In this approach, energy differentiation is improved by simultaneously using transmission data for multiple attenuators and detectors, and the unfolding robustness is improved by using a four-parameter functional form to describe the photon spectrum. The purpose of the current study is to validate this approach experimentally, and to demonstrate its application on a typical clinical linac. Methods: The validation makes use of the recent transmission measurements performed on the Vickers research linac of National Research Council Canada. For this linac, the photon spectra were previously measured using a NaI detector, and the incident electron parameters are independently known. The transmission data are for eight beams in the range 10-30 MV using thick Be, Al and Pb bremsstrahlung targets. To demonstrate the approach on a typical clinical linac, new measurements are performed on an Elekta Precise linac for 6, 10 and 25 MV beams. The different experimental setups are modeled using EGSnrc, with the newly added photonuclear attenuation included. Results: For the validation on the research linac, the 95% confidence bounds of the unfolded spectra fall within the noise of the NaI data. The unfolded spectra agree with the EGSnrc spectra (calculated using independently known electron parameters) with RMS energy fluence deviations of 4.5%. The accuracy of unfolding the incident electron energy is shown to be {approx}3%. A transmission cutoff of only 10% is suitable for accurate unfolding, provided that the other components of the proposed approach are implemented. For the demonstration on a clinical linac, the unfolded incident electron energies and their 68% confidence bounds for the 6, 10 and 25 MV beams are 6.1 {+-} 0.1, 9.3 {+-} 0.1, and 19.3 {+-} 0.2 MeV, respectively. The unfolded spectra for the clinical linac agree with the EGSnrc spectra (calculated using the unfolded electron energies) with RMS energy fluence deviations of 3.7%. The corresponding measured and EGSnrc-calculated transmission data agree within 1.5%, where the typical transmission measurement uncertainty on the clinical linac is 0.4% (not including the uncertainties on the incident electron parameters). Conclusions: The approach proposed in an earlier study for unfolding photon spectra and incident electron energies from transmission data is accurate and practical for clinical use.

Ali, E. S. M.; McEwen, M. R.; Rogers, D. W. O. [Carleton Laboratory for Radiotherapy Physics, Department of Physics, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario K1S 5B6 (Canada); Ionizing Radiation Standards, Institute for National Measurement Standards, National Research Council, M-35 Montreal Road, Ottawa, Ontario K1A 0R5 (Canada); Carleton Laboratory for Radiotherapy Physics, Department of Physics, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario K1S 5B6 (Canada)

2012-11-15T23:59:59.000Z

348

Preliminary Analysis on Linac Oscillation Data LI05-19 and Wake Field Energy Loss in FACET Commissioning 2012  

SciTech Connect

In this note, preliminary analysis on linac ocsillation data in FACET linac LI05-09 plus LI11-19 is presented. Several quadrupoles are identified to possibly have different strength, compared with their designed strength in the MAD optics model. The beam energy loss due to longitudinal wake fields in the S-band linac is also analytically calculated, also by LITRACK numerical simulations.

Sun, Yipeng; /SLAC

2012-07-23T23:59:59.000Z

349

The Coherent X-ray Imaging (CXI) Instrument at the Linac Coherent Light Source (LCLS)  

Science Conference Proceedings (OSTI)

The Linac Coherent Light Source (LCLS) has become the first ever operational hard X-ray Free Electron Laser in 2009. It will operate as a user facility capable of delivering unique research opportunities in multiple fields of science. The LCLS and the LCLS Ultrafast Science Instruments (LUSI) construction projects are developing instruments designed to make full use of the capabilities afforded by the LCLS beam. One such instrument is being designed to utilize the LCLS coherent beam to image with high resolution any sub-micron object. This instrument is called the Coherent X-ray Imaging (CXI) instrument. This instrument will provide a flexible optical system capable of tailoring key beam parameters for the users. A suite of shot-to-shot diagnostics will also be provided to characterize the beam on every pulse. The provided instrumentation will include multi-purpose sample environments, sample delivery and a custom detector capable of collecting 2D data at 120 Hz. In this article, the LCLS will be briefly introduced along with the technique of Coherent X-ray Diffractive Imaging (CXDI). A few examples of scientific opportunities using the CXI instrument will be described. Finally, the conceptual layout of the instrument will be presented along with a description of the key requirements for the overall system and specific devices required.

Boutet, Sebastien

2011-08-16T23:59:59.000Z

350

Post-accelerator issues at the IsoSpin Laboratory  

SciTech Connect

The workshop on ``Post-Accelerator Issues at the Isospin Laboratory`` was held at the Lawrence Berkeley Laboratory from October 27--29, 1993. It was sponsored by the Center for Beam Physics in the Accelerator and Fusion Research Division and the ISL Studies Group in the Nuclear Science Division. About forty scientists from around the world participated vigorously in this two and a half day workshop, (c.f. Agenda, Appendix D). Following various invited review talks from leading practitioners in the field on the first day, the workshop focussed around two working groups: (1) the Ion Source and Separators working group and (2) the Radio Frequency Quadrupoles and Linacs working group. The workshop closed with the two working groups summarizing and outlining the tasks for the future. This report documents the proceedings of the workshop and includes the invited review talks, the two summary talks from the working groups and individual contributions from the participants. It is a complete assemblage of state-of-the-art thinking on ion sources, low-{beta}, low(q/A) accelerating structures, e.g. linacs and RFQS, isobar separators, phase-space matching, cyclotrons, etc., as relevant to radioactive beam facilities and the IsoSpin Laboratory. We regret to say that while the fascinating topic of superconducting low-velocity accelerator structure was covered by Dr. K. Shepard during the workshop, we can only reproduce the copies of the transparencies of his talk in the Appendix, since no written manuscript was available at the time of publication of this report. The individual report have been catologed separately elsewhere.

Chattopadhyay, S.; Nitschke, J.M. [eds.

1994-05-01T23:59:59.000Z

351

ACCELERATION INTEGRATING MEANS  

DOE Patents (OSTI)

An acceleration responsive device is described. A housing has at one end normally open electrical contacts and contains a piston system with a first part of non-magnetic material having metering orifices in the side walls for forming an air bearing between it and the walls of the housing; this first piston part is normally held against the other end of the housing from the noted contacts by a second piston or reset part. The reset part is of partly magnetic material, is separable from the flrst piston part, and is positioned within the housing intermediate the contacts and the first piston part. A magnet carried by the housing imposes a retaining force upon the reset part, along with a helical compression spring that is between the reset part and the end with the contacts. When a predetermined acceleration level is attained, the reset part overcomes the bias or retaining force provided by the magnet and the spring'' snaps'' into a depression in the housing adjacent the contacts. The first piston part is then free to move toward the contacts with its movement responsive tc acceleration forces and the metering orifices. (AEC)

Wilkes, D.F.

1961-08-29T23:59:59.000Z

352

Facility for Advanced Accelerator Experimental Tests at SLAC (FACET) Conceptual Design Report  

Science Conference Proceedings (OSTI)

This Conceptual Design Report (CDR) describes the design of FACET. It will be updated to stay current with the developing design of the facility. This CDR begins as the baseline conceptual design and will evolve into an 'as-built' manual for the completed facility. The Executive Summary, Chapter 1, gives an introduction to the FACET project and describes the salient features of its design. Chapter 2 gives an overview of FACET. It describes the general parameters of the machine and the basic approaches to implementation. The FACET project does not include the implementation of specific scientific experiments either for plasma wake-field acceleration for other applications. Nonetheless, enough work has been done to define potential experiments to assure that the facility can meet the requirements of the experimental community. Chapter 3, Scientific Case, describes the planned plasma wakefield and other experiments. Chapter 4, Technical Description of FACET, describes the parameters and design of all technical systems of FACET. FACET uses the first two thirds of the existing SLAC linac to accelerate the beam to about 20GeV, and compress it with the aid of two chicanes, located in Sector 10 and Sector 20. The Sector 20 area will include a focusing system, the generic experimental area and the beam dump. Chapter 5, Management of Scientific Program, describes the management of the scientific program at FACET. Chapter 6, Environment, Safety and Health and Quality Assurance, describes the existing programs at SLAC and their application to the FACET project. It includes a preliminary analysis of safety hazards and the planned mitigation. Chapter 7, Work Breakdown Structure, describes the structure used for developing the cost estimates, which will also be used to manage the project. The chapter defines the scope of work of each element down to level 3.

Amann, J.; Bane, K.; /SLAC

2009-10-30T23:59:59.000Z

353

Identifying Longitudinal Jitter Sources in the LCLS Linac  

Science Conference Proceedings (OSTI)

The Linac Coherent Light Source (LCLS) at SLAC is an x-ray Free Electron Laser (FEL) with wavelengths of 0.15 nm to 1.5 nm. The electron beam stability is important for good lasing. While the transverse jitter of the beam is about 10-20% of the rms beam sizes, the jitter in the longitudinal phase space is a multiple of the energy spread and bunch length. At the lower energy of 4.3 GeV (corresponding to the longest wavelength of 1.5 nm) the relative energy jitter can be 0.125%, while the rms energy spread is with 0.025% five times smaller. An even bigger ratio exists for the arrival time jitter of 50 fs and the bunch duration of about 5 fs (rms) in the low charge (20 pC) operating mode. Although the impact to the experiments is reduced by providing pulse-by-pulse data of the measured energy and arrival time, it would be nice to understand and mitigate the root causes of this jitter. The thyratron of the high power supply of the RF klystrons is one of the main contributors. Another suspect is the multi-pacting in the RF loads. Phase measurements down to 0.01 degree (equals 10 fs) along the RF pulse were achieved, giving hints to the impact of the different sources.

Decker, Franz-Josef; /SLAC; Akre, Ron; /SLAC; Brachmann, Axel; /SLAC; Craft, Jim; /SLAC; Ding, Yuantao; /SLAC; Dowell, David; /SLAC; Emma, Paul; /SLAC; Frisch, Josef; /SLAC; Huang, Zhirong; /SLAC; Iverson, Richard; /SLAC; Krasnykh, Anatoly; /SLAC; Loos, Henrik; /SLAC; Nuhn, Heinz-Dieter; /SLAC; Ratner, Daniel; /SLAC; Smith, Tonee; /SLAC; Turner, James; /SLAC; Welch, James; /SLAC; White, William; /SLAC; Wu, Juhao; /SLAC

2012-07-06T23:59:59.000Z

354

Wakefield and RF Kicks Due to Coupler Asymmetry in TESLA-Type Accelerating Cavities  

SciTech Connect

In a future linear collider, such as the International Linear Collider (ILC), trains of high current, low emittance bunches will be accelerated in a linac before colliding at the interaction point. Asymmetries in the accelerating cavities of the linac will generate fields that will kick the beam transversely and degrade the beam emittance and thus the collider performance. In the main linac of the ILC, which is filled with TESLA-type superconducting cavities, it is the fundamental (FM) and higher mode (HM) couplers that are asymmetric and thus the source of such kicks. The kicks are of two types: one, due to (the asymmetry in) the fundamental RF fields and the other, due to transverse wakefields that are generated by the beam even when it is on axis. In this report we calculate the strength of these kicks and estimate their effect on the ILC beam. The TESLA cavity comprises nine cells, one HM coupler in the upstream end, and one (identical, though rotated) HM coupler and one FM coupler in the downstream end (for their shapes and location see Figs. 1, 2) [1]. The cavity is 1.1 m long, the iris radius 35 mm, and the coupler beam pipe radius 39 mm. Note that the couplers reach closer to the axis than the irises, down to a distance of 30 mm.

Bane, K.L.F.; Adolphsen, C.; Li, Z.; /SLAC; Dohlus, M.; Zagorodnov, I.; /DESY; Gonin, I.; Lunin, A.; Solyak, N.; Yakovlev, V.; /Fermilab; Gjonaj, E.; Weiland, T.; /Darmstadt, Tech. Hochsch.

2008-07-07T23:59:59.000Z

355

Advanced Materials for Energy Systems | Global and Regional Solutions  

NLE Websites -- All DOE Office Websites (Extended Search)

Advanced Materials for Energy Systems Advanced Materials for Energy Systems The Advanced Materials Group's mission is to conduct research on materials in extreme environments for advanced energy systems. As part of that mission, the group utilizes synchrotron characterization techniques such as diffraction, spectroscopy, and imaging and is developing sample chambers for the in situ study of materials at the National Synchrotron Light Source (NSLS). The 200 MeV proton beam of the BNL Linac and the target facility of the Brookhaven Linear Isotope Producer (BLIP) is being extensively used for irradiation damage studies on materials for fast !ssion and fusion reactors as well as high particle accelerator elements such as pion production targets for neutrino experiments. The irradiation facility is augmented with post-irradiation hot labs where analysis and

356

Design of the Advanced Light Source timing system  

SciTech Connect

The Advanced Light Source (ALS) is a third generation synchrotron radiation facility, and as such, has several unique timing requirements. Arbitrary Storage Ring filling patterns and high single bunch purity requirements demand a highly stable, low jitter timing system with the flexibility to reconfigure on a pulse-to-pulse basis. This modular system utilizes a highly linear Gauss Clock with ``on the fly`` programmable setpoints to track a free-running Booster ramping magnet and provides digitally programmable sequencing and delay for Electron Gun, Linac, Booster Ring, and Storage Ring RF, Pulsed Magnet, and Instrumentation systems. It has proven itself over the last year of accelerator operation to be reliable and rock solid.

Fahmie, M.

1993-05-01T23:59:59.000Z

357

TESTING METGLAS FOR USE IN DARHT ACCELERATOR CELLS  

SciTech Connect

The Dual Axis Radiographic Hydrotest Facility [DARHT] at Los Alamos will use two induction linacs to produce high-energy electron beams. The electron beams will be used to generate x-rays from bremsstrahlung targets. The x-rays will be used to produce radiographs. The first accelerator is operational now, producing a 60-nanosecond electron beam. The second accelerator is under construction. It will produce a 2-microsecond electron beam. The 78 induction cells of the second axis accelerator require a total Metglas capacity of approximately 40 volt seconds of flux. Four Metglas cores are used in each of the 5-foot diameter accelerator cells. Each Metglas core weighs approximately 3000 pounds. This paper presents the measurement techniques and results of the Metglas tests. Routine automated analysis and archival of the pulse data provided hysteresis curves, energy loss curves and total flux swing in the operating regime. Results of the tests were used to help the manufacturer improve quality control and increase the average flux swing of the cores. Results of the tests were used to match Metglas cores and to assemble accelerator cells with equal volt-second ratings.

E.A. ROSE; D.A. DALMAS; J.N. DOWNING; R.D. TEMPLE

2001-06-01T23:59:59.000Z

358

NIST MIRF - Accelerator Radiation Physics  

Science Conference Proceedings (OSTI)

Accelerator Radiation Physics. Medium-energy accelerators are under investigation for production of channeling radiation ...

359

Evolution of pulse shapes during compressor scans in a CPA system and control of electron acceleration in plasmas  

E-Print Network (OSTI)

of pulse shapes during compressor scans in a CPA system andused optical pulse compressor, the grating pair – withis the grating pulse compressor. In contrast to the most

2002-01-01T23:59:59.000Z

360

Fermilab | Illinois Accelerator Research Center | Illinois Accelerator  

NLE Websites -- All DOE Office Websites (Extended Search)

photo: IARC photo: IARC As envisioned, the Illinois Accelerator Research Center will provide approximately 83,000 square feet of technical, office and classroom space for scientists and industrial partners. The Illinois Accelerator Research Center (IARC) is a new accelerator research facility being built at Fermi National Accelerator Laboratory. At the Illinois Accelerator Research Center, scientists and engineers from Fermilab, Argonne and Illinois universities will work side by side with industrial partners to research and develop breakthroughs in accelerator science and translate them into applications for the nation's health, wealth and security. Located on the Fermilab campus this 83,000 square foot, state-of-the-art facility will house offices, technical and educational space to study

Note: This page contains sample records for the topic "linac accelerator system" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Conceptual design for a linear-transformer driver (LTD)-based refurbishment and upgrade of the Saturn accelerator pulse-power system.  

Science Conference Proceedings (OSTI)

The purpose of this work was to develop a conceptual design for the Saturn accelerator using the modular Liner-Transformer Driver (LTD) technology to identify risks and to focus development and research for this new technology. We present a reference design for a Saturn class driver based on a number of linear inductive voltage adders connected in parallel. This design is very similar to a design reported five years ago [1]. However, with the design reported here we use 1-MA, 100-kV LTD cavities as building blocks. These cavities have already been built and are currently in operation at the HCEI in Tomsk, Russia [2]. Therefore, this new design integrates already-proven individual components into a full system design.

Mazarakis, Michael Gerrassimos; Struve, Kenneth William

2006-09-01T23:59:59.000Z

362

SLAC National Accelerator Laboratory - SLAC National Accelerator...  

NLE Websites -- All DOE Office Websites (Extended Search)

Security Notice and Terms of Use Updated January 3, 2005 PRIVACY NOTICE Welcome to the SLAC National Accelerator Laboratory website. We collect no personal information about you...

363

Design Construction and Test Results of a HTS Solenoid For Energy Recovery Linac  

SciTech Connect

An innovative feature of the proposed Energy Recovery Linac (ERL) is the use of a solenoid made with High Temperature Superconductor (HTS) with the Superconducting RF cavity. The use of HTS allows solenoid to be placed in close proximity to the cavity and thus provides early focusing of the electron beam. In addition, cryogenic testing at {approx}77 K is simpler and cheaper than 4 K testing. This paper will present the design, construction and test results of this HTS solenoid. The HTS solenoid in the proposed ERL will be situated in the transition region between the superconducting cavity at {approx}4 K and the cryostat at the room temperature. Solenoid inside the cryogenic structure provides an early focusing and hence low emittance beam. The temperature in the transition region will be too high for a conventional low temperature superconductor and resistive heat load from copper coils will be too high on cryogenic system. HTS coils also allow much higher current density and significant reduction in size as compared to copper coils. Hence HTS solenoid provide a unique and technically superior solution. The use of a HTS solenoid with superconducting cavity offers a unique option as it can be placed in a cold to warm transition region to provide early focussing without using additional space. Construction and test results so far are very encouraging for its use in the ERL project.

Anerella, M; Ben-Zvi, I; Kayran, D; McIntyre, G; Muratore, J; Plate, S; Sampson, W; Cole, M

2011-03-28T23:59:59.000Z

364

X-ray-optical cross-correlator for gas-phase experiments at the Linac Coherent Light Source free-electron laser  

Science Conference Proceedings (OSTI)

X-ray-optical pump-probe experiments at the Linac Coherent Light Source (LCLS) have so far been limited to a time resolution of 280 fs fwhm due to timing jitter between the accelerator-based free-electron laser (FEL) and optical lasers. We have implemented a single-shot cross-correlator for femtosecond x-ray and infrared pulses. A reference experiment relying only on the pulse arrival time information from the cross-correlator shows a time resolution better than 50 fs fwhm (22 fs rms) and also yields a direct measurement of the maximal x-ray pulse length. The improved time resolution enables ultrafast pump-probe experiments with x-ray pulses from LCLS and other FEL sources.

Schorb, S.; Cryan, J. P.; Glownia, J. M.; Bionta, M. R.; Coffee, R. N.; Swiggers, M.; Carron, S.; Castagna, J.-C.; Bozek, J. D.; Messerschmidt, M.; Schlotter, W. F.; Bostedt, C. [Linac Coherent Light Source, SLAC National Accelerator Laboratory, P.O. Box 20450, Stanford, California 94309 (United States); Gorkhover, T. [Institut fuer Optik und Atomare Physik, Technische Universitaet Berlin, Hardenbergstr. 36, 10623 Berlin (Germany); Erk, B.; Boll, R.; Schmidt, C.; Rudenko, A. [Max-Planck Advanced-Study-Group at CFEL, Notkestr. 85, 22607 Hamburg (Germany); Max-Planck-Institut f. Kernphysik, Saupfercheckweg 1, 69117 Heidelberg (Germany); Rolles, D. [Max-Planck Advanced-Study-Group at CFEL, Notkestr. 85, 22607 Hamburg (Germany); Max-Planck-Institut f. med. Forschung, Jahnstr. 29, 69120 Heidelberg (Germany); Rouzee, A. [Max-Born-Institut, Max-Born-Str. 2, 12489 Berlin (Germany)

2012-03-19T23:59:59.000Z

365

An Iterative Solver with a Convergence-Acceleration Technique for Pressure Field in an Uneven-Spacing Grid System  

Science Conference Proceedings (OSTI)

A straightforward iterative method is developed for solving the pressure field in three-dimensional, anelastic, nonhydrostatic, mesoscale models with uneven-spacing grid systems for which direct FFT (fan Fourier transform) schemes cannot be ...

Chih-Yue Jim Kao; Lawrence H. Auer

1990-07-01T23:59:59.000Z

366

Broadband accelerator control network  

SciTech Connect

A broadband data communications network has been implemented at BNL for control of the Alternating Gradient Synchrotron (AG) proton accelerator, using commercial CATV hardware, dual coaxial cables as the communications medium, and spanning 2.0 km. A 4 MHz bandwidth Digital Control channel using CSMA-CA protocol is provided for digital data transmission, with 8 access nodes available over the length of the RELWAY. Each node consists of an rf modem and a microprocessor-based store-and-forward message handler which interfaces the RELWAY to a branch line implemented in GPIB. A gateway to the RELWAY control channel for the (preexisting) AGS Computerized Accelerator Operating system has been constructed using an LSI-11/23 microprocessor as a device in a GPIB branch line. A multilayer communications protocol has been defined for the Digital Control Channel, based on the ISO Open Systems Interconnect layered model, and a RELWAY Device Language defined as the required universal language for device control on this channel.

Skelly, J.; Clifford, T.; Frankel, R.

1983-01-01T23:59:59.000Z

367

Argonne Accelerator Institute  

NLE Websites -- All DOE Office Websites (Extended Search)

Research and Development Research and Development Click to download a PDF version of this document. PDF Focus Research Areas Fundamental Accelerator Physics: Theory Importance Accelerator physics research is normally associated with specific accelerator projects. As a scientific discipline, however, it is useful to study fundamental accelerator phenomena decoupled, as much as possible, from specific project aspects. Pursuit of fundamental accelerator physics in this sense has contributed significantly to the advance of the accelerator physics knowledgebase during the last several decades, clarifying the limitations and suggesting ways to overcome those limitations. Such basic research tends to be discouraged in a project-driven environment. For sustained and significant progress in

368

H-mode Accelerating Structures with PMQ Focusing for Low-Beta Beams  

SciTech Connect

We report on results of the project developing high-efficiency normal-conducting RF accelerating structures based on inter-digital H-mode (IH) cavities and the transverse beam focusing with permanent-magnet quadrupoles (PMQ), for beam velocities in the range of a few percent of the speed of light. The shunt impedance of IH-PMQ structures is 10-20 times higher than that of a conventional drift-tube linac, while the transverse size is 4-5 times smaller. The H-PMQ accelerating structures following a short RFQ can be used both in the front end of ion linacs or in stand-alone applications. Results of the combined 3-D modeling -- electromagnetic computations, beam-dynamics simulations with high currents, and thermal-stress analysis -- for a full IH-PMQ accelerator tank are presented. The accelerating field profile in the tank is tuned to provide the best propagation of a 50-mA deuteron beam using coupled iterations of EM and beamdynamics modeling. Multi-particle simulations withParmela and CST Particle Studio have been used to confirm the design. Measurement results of a cold model of the IH-PMQ tank are presented.

Kurennoy, Sergey S. [Los Alamos National Laboratory; O'Hara, James F. [Los Alamos National Laboratory; Olivas, Eric R. [Los Alamos National Laboratory; Rybarcyk, Lawrence J. [Los Alamos National Laboratory

2011-01-01T23:59:59.000Z

369

Electromagnetic Design of RF Cavities for Accelerating Low-Energy Muons  

Science Conference Proceedings (OSTI)

A high-gradient linear accelerator for accelerating low-energy muons and pions in a strong solenoidal magnetic field has been proposed for homeland defense and industrial applications. The acceleration starts immediately after collection of pions from a target in a solenoidal magnetic field and brings decay muons, which initially have kinetic energies mostly around 15-20 MeV, to 200 MeV over a distance of {approx}10 m. At this energy, both ionization cooling and further, more conventional acceleration of the muon beam become feasible. A normal-conducting linac with external-solenoid focusing can provide the required large beam acceptances. The linac consists of independently fed zero-mode (TM{sub 010}) RF cavities with wide beam apertures closed by thin conducting edge-cooled windows. Electromagnetic design of the cavity, including its RF coupler, tuning and vacuum elements, and field probes, has been developed with the CST MicroWave Studio, and is presented.

Kurennoy, Sergey S. [Los Alamos National Laboratory

2012-05-14T23:59:59.000Z

370

The RHIC and RHIC pre-injectors controls systems: status and plans  

SciTech Connect

For the past twelve years experiments at the Relativistic Heavy Ion Collider (RHIC) have recorded data from collisions of heavy ions and polarized protons, leading to important discoveries in nuclear physics and the spin dynamics of quarks and gluons. BNL is the site of one of the first and still operating alternating gradient synchrotrons, the AGS, which first operated in 1960. The accelerator controls systems for these instruments span multiple generations of technologies. In this report we will describe the current status of the Collider-Accelerator Department controls systems, which are used to control seven different accelerator facilities and multiple science programs (high energy nuclear physics, high energy polarized proton physics, NASA programs, isotope production, and multiple accelerator research and development projects). We will describe the status of current projects, such as the just completed Electron Beam Ion Source (EBIS), our R&D programs in superconducting RF and an Energy Recovery LINAC (ERL), innovations in feedback systems and bunched beam stochastic cooling at RHIC, and plans for future controls system developments.

Brown, K.A.; Altinbas, Z.; Aronson, J.; Binello, S.; Campbell, I.; Costanzo, M.; D

2011-10-10T23:59:59.000Z

371

Advanced beam-dynamics simulation tools for the RIA driver linac,Part I: Low energy beam transport and radiofrequency quadrupole  

Science Conference Proceedings (OSTI)

Advanced Beam-Dynamics Simulation Tools for the RIA Driver Linac; Low Energy Beam Transport and Radiofrequency Quadrupole.

Wangler, Thomas P.; Crandall, Kenneth R.; Garnett, Robert W.; Gorelov, Dmitry; Ostroumov, Petr; Qiang, Ji; Ryne, Robert; York, Richard

2003-08-26T23:59:59.000Z

372

Topology-aware data movement and staging for I/O acceleration on Blue Gene/P supercomputing systems  

Science Conference Proceedings (OSTI)

There is growing concern that I/O systems will be hard pressed to satisfy the requirements of future leadership-class machines. Even current machines are found to be I/O bound for some applications. In this paper, we identify existing performance bottlenecks ...

Venkatram Vishwanath; Mark Hereld; Vitali Morozov; Michael E. Papka

2011-11-01T23:59:59.000Z

373

Accelerating Acceptance of Fuel Cell Backup Power Systems - DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

NLE Websites -- All DOE Office Websites (Extended Search)

4 4 DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report James Petrecky Plug Power 968 Albany Shaker Road Latham, NY 12110 Phone: (518) 782-7700 ext: 1799 Email: james_petrecky@plugpower.com DOE Managers HQ: Jason Marcinkoski Phone: (202) 586-7466 Email: Jason.Marcinkoski@ee.doe.gov GO: Reg Tyler Phone: (720) 356-1805 Email: Reginald.Tyler@go.doe.gov Subcontractor: IdaTech LLC, Bend, OR Project Start Date: October 1, 2009 Project End Date: September 15, 2013 Objectives Quantify the performance of 20 low-temperature fuel * cell systems at two locations Optimize the maintenance of the systems and data * collection practices The project is intended to increase distributed power * generation, improve reliability and efficiency of

374

Argonne Accelerator Institute  

NLE Websites -- All DOE Office Websites (Extended Search)

GEM - GeV Electron Microtron (design report 1982) The GEM design report describes a novel six-sided CW microtron for accelerating electrons to 4 GeV. This accelerator design was...

375

High-Brightness Beams from a Light Source Injector The Advanced Photon Source Low-Energy Undulator Test Line Linac  

E-Print Network (OSTI)

The use of existing linacs, and in particular light source injectors, for free-electron laser (FEL) experiments is becoming more common due to the desire to test FELs at ever shorter wavelengths. The high-brightness, high-current beams required by high-gain FELs impose technical specifications that most existing linacs were not designed to meet. Moreover, the need for specialized diagnostics, especially shot-to-shot data acquisition, demands substantial modification and upgrade of conventional linacs. Improvements have been made to the Advanced Photon Source (APS) injector linac in order to produce and characterize high-brightness beams. Specifically, effort has been directed at generating beams suitable for use in the low-energy undulator test line (LEUTL) FEL in support of fourth-generation light source research. The enhancements to the linac technical and diagnostic capabilities that allowed for self-amplified spontaneous emission (SASE) operation of the FEL at 530 nm are described. Recent results, includi...

Travish, G; Borland, M; Hahne, M; Harkay, K C; Lewellen, J W; Lumpkin, Alex H; Milton, S V; Sereno, N S

2000-01-01T23:59:59.000Z

376

Accelerating Electric Vehicle Deployment | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Accelerating Electric Vehicle Deployment Accelerating Electric Vehicle Deployment Accelerating Electric Vehicle Deployment Accelerating Electric Vehicle Deployment More Documents &...

377

Far field acceleration  

SciTech Connect

Far fields are propagating electromagnetic waves far from their source, boundary surfaces, and free charges. The general principles governing the acceleration of charged particles by far fields are reviewed. A survey of proposed field configurations is given. The two most important schemes, Inverse Cerenkov acceleration and Inverse free electron laser acceleration, are discussed in detail.

Fernow, R.C.

1995-07-01T23:59:59.000Z

378

Toward laser ablation Accelerator Mass Spectrometry of actinides  

Science Conference Proceedings (OSTI)

A project to measure neutron capture cross sections of a number of actinides in a reactor environment by Accelerator Mass Spectrometry (AMS) at the ATLAS facility of Argonne National Laboratory is underway. This project will require the precise and accurate measurement of produced actinide isotopes in many (>30) samples irradiated in the Advanced Test Reactor at Idaho National Laboratory with neutron fluxes having different energy distributions. The AMS technique at ATLAS is based on production of highlycharged positive ions in an electron cyclotron resonance (ECR) ion source followed by acceleration in the ATLAS linac and mass-to-charge (m/q) measurement at the focus of the Fragment Mass Analyzer. Laser ablation was selected as the method of feeding the actinide material into the ion source because we expect it will have higher efficiency and lower chamber contamination than either the oven or sputtering techniques, because of a much narrower angular distribution of emitted material. In addition, a new multi-sample holder/changer to allow quick change between samples and a computer-controlled routine allowing fast tuning of the accelerator for different beams, are being developed. An initial test run studying backgrounds, detector response, and accelerator scaling repeatability was conducted in December 2010. The project design, schedule, and results of the initial test run to study backgrounds are discussed.

R. C. Pardo; F. G. Kondev; S. Kondrashev; C. Nair; T. Palchan; R. Scott; D. Seweryniak; R. Vondrasek; M. Paul; P. Collon; C. Deibel; M. Salvatores; G. Palmiotti; J. Berg; J. Fonnesbeck; G. Imel

2013-01-01T23:59:59.000Z

379

What is an accelerator operator?  

NLE Websites -- All DOE Office Websites (Extended Search)

is an accelerator operator? First I'll explain the education one must have in order to be considered for an Accelerator Operator position. Jefferson Lab's typical Accelerator...

380

Community Petascale Project for Accelerator Science and Simulation: Advancing Computational Science for Future Accelerators and Accelerator Technologies  

SciTech Connect

The design and performance optimization of particle accelerators are essential for the success of the DOE scientific program in the next decade. Particle accelerators are very complex systems whose accurate description involves a large number of degrees of freedom and requires the inclusion of many physics processes. Building on the success of the SciDAC-1 Accelerator Science and Technology project, the SciDAC-2 Community Petascale Project for Accelerator Science and Simulation (ComPASS) is developing a comprehensive set of interoperable components for beam dynamics, electromagnetics, electron cooling, and laser/plasma acceleration modelling. ComPASS is providing accelerator scientists the tools required to enable the necessary accelerator simulation paradigm shift from high-fidelity single physics process modeling (covered under SciDAC1) to high-fidelity multiphysics modeling. Our computational frameworks have been used to model the behavior of a large number of accelerators and accelerator R&D experiments, assisting both their design and performance optimization. As parallel computational applications, the ComPASS codes have been shown to make effective use of thousands of processors. ComPASS is in the first year of executing its plan to develop the next-generation HPC accelerator modeling tools. ComPASS aims to develop an integrated simulation environment that will utilize existing and new accelerator physics modules with petascale capabilities, by employing modern computing and solver technologies. The ComPASS vision is to deliver to accelerator scientists a virtual accelerator and virtual prototyping modeling environment, with the necessary multiphysics, multiscale capabilities. The plan for this development includes delivering accelerator modeling applications appropriate for each stage of the ComPASS software evolution. Such applications are already being used to address challenging problems in accelerator design and optimization. The ComPASS organization for software development and applications accounts for the natural domain areas (beam dynamics, electromagnetics, and advanced acceleration), and all areas depend on the enabling technologies activities, such as solvers and component technology, to deliver the desired performance and integrated simulation environment. The ComPASS applications focus on computationally challenging problems important for design or performance optimization to all major HEP, NP, and BES accelerator facilities. With the cost and complexity of particle accelerators rising, the use of computation to optimize their designs and find improved operating regimes becomes essential, potentially leading to significant cost savings with modest investment.

Spentzouris, P.; /Fermilab; Cary, J.; /Tech-X, Boulder; McInnes, L.C.; /Argonne; Mori, W.; /UCLA; Ng, C.; /SLAC; Ng, E.; Ryne, R.; /LBL, Berkeley

2011-11-14T23:59:59.000Z

Note: This page contains sample records for the topic "linac accelerator system" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

YALINA facility a sub-critical Accelerator- Driven System (ADS) for nuclear energy research facility description and an overview of the research program (1997-2008).  

SciTech Connect

The YALINA facility is a zero-power, sub-critical assembly driven by a conventional neutron generator. It was conceived, constructed, and put into operation at the Radiation Physics and Chemistry Problems Institute of the National Academy of Sciences of Belarus located in Minsk-Sosny, Belarus. This facility was conceived for the purpose of investigating the static and dynamic neutronics properties of accelerator driven sub-critical systems, and to serve as a neutron source for investigating the properties of nuclear reactions, in particular transmutation reactions involving minor-actinide nuclei. This report provides a detailed description of this facility and documents the progress of research carried out there during a period of approximately a decade since the facility was conceived and built until the end of 2008. During its history of development and operation to date (1997-2008), the YALINA facility has hosted several foreign groups that worked with the resident staff as collaborators. The participation of Argonne National Laboratory in the YALINA research programs commenced in 2005. For obvious reasons, special emphasis is placed in this report on the work at YALINA facility that has involved Argonne's participation. Attention is given here to the experimental program at YALINA facility as well as to analytical investigations aimed at validating codes and computational procedures and at providing a better understanding of the physics and operational behavior of the YALINA facility in particular, and ADS systems in general, during the period 1997-2008.

Gohar, Y.; Smith, D. L.; Nuclear Engineering Division

2010-04-28T23:59:59.000Z

382

Ion effects in future circular and linear accelerators  

SciTech Connect

In this paper, the author discusses ion effects relevant to future storage rings and linear colliders. The author first reviews the conventional ion effects observed in present storage rings and then discusses how these effects will differ in the next generation of rings and linacs. These future accelerators operate in a new regime because of the high current long bunch trains and the very small transverse beam emittances. Usually, storage rings are designed with ion clearing gaps to prevent ion trapping between bunch trains or beam revolutions. Regardless, ions generated within a single bunch train can have significant effects. The same is true in transport lines and linacs, where typical vacuum pressures are relatively high. Amongst other effects, the author addresses the tune spreads due to the ions and the resulting filamentation which can severely limit emittance correction techniques in future linear colliders, the bunch-to-bunch coupling due to the ions which can cause a multi-bunch instability with fast growth rates, and the betatron coupling and beam halo creation which limit the vertical emittance and beam lifetimes.

Raubenheimer, T.O.

1995-05-01T23:59:59.000Z

383

Cohesion: a hybrid memory model for accelerators  

Science Conference Proceedings (OSTI)

Two broad classes of memory models are available today: models with hardware cache coherence, used in conventional chip multiprocessors, and models that rely upon software to manage coherence, found in compute accelerators. In some systems, both types ... Keywords: accelerator, cache coherence, computer architecture

John H. Kelm; Daniel R. Johnson; William Tuohy; Steven S. Lumetta; Sanjay J. Patel

2010-06-01T23:59:59.000Z

384

Argonne Accelerator Institute  

NLE Websites -- All DOE Office Websites (Extended Search)

AAI Homepage Lee Teng Scholarship Program USPAS Argonne Department of Education Fermilab Education Office For Students Many scientific advances are made using accelerators. The world of High Energy Particle Physics has driven this field and continues to depend largely on accelerators. Increasingly advances in materials science, chemistry, biology and environmental science are being made at accelerators using x-ray and neutrons to probe matter. Accelerators have a number of commercial applications including isotope production for use in medicine, cancer treatment, processing semiconductor chips, and so on. Presently there are around 15,000 accelerators worldwide. Approximately 97% of these are used for commercial applications. However several hundred are in use

385

The soft x-ray instrument for materials studies at the linac coherent light source x-ray free-electron laser  

Science Conference Proceedings (OSTI)

The soft x-ray materials science instrument is the second operational beamline at the linac coherent light source x-ray free electron laser. The instrument operates with a photon energy range of 480-2000 eV and features a grating monochromator as well as bendable refocusing mirrors. A broad range of experimental stations may be installed to study diverse scientific topics such as: ultrafast chemistry, surface science, highly correlated electron systems, matter under extreme conditions, and laboratory astrophysics. Preliminary commissioning results are presented including the first soft x-ray single-shot energy spectrum from a free electron laser.

Schlotter, W. F.; Turner, J. J.; Rowen, M.; Holmes, M.; Messerschmidt, M.; Moeller, S.; Krzywinski, J.; Lee, S.; Coffee, R.; Hays, G. [LCLS, SLAC National Accelerator Laboratory, 2575 Sand Hill Rd., Menlo Park, California 94025 (United States); Heimann, P. [LCLS, SLAC National Accelerator Laboratory, 2575 Sand Hill Rd., Menlo Park, California 94025 (United States); Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Krupin, O. [LCLS, SLAC National Accelerator Laboratory, 2575 Sand Hill Rd., Menlo Park, California 94025 (United States); European XFEL GmbH, Albert-Einstein-Ring 19, 22761 Hamburg (Germany); Soufli, R.; Fernandez-Perea, M.; Hau-Riege, S. [Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, California 94550 (United States); Kelez, N. [Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Beye, M.; Gerken, N.; Sorgenfrei, F.; Wurth, W. [Institute for Experimental Physics and CFEL, University of Hamburg, Luruper Chaussee 149, 22761 Hamburg (Germany); and others

2012-04-15T23:59:59.000Z

386

SLAC National Accelerator Laboratory - Director of Accelerator...  

NLE Websites -- All DOE Office Websites (Extended Search)

Committee on Appropriations asked the US Department of Energy (DOE) to submit a strategic plan for accelerator R&D by June 2012. The DOE asked me to lead a task force to...

387

INTERNATIONAL SYMPOSIUM ON ULTRAFAST ACCELERATORS FOR PULSE RADIOLYSIS  

NLE Websites -- All DOE Office Websites (Extended Search)

and poster set-up 8:20 Introductory remarks (J. F. Wishart, J. R. Miller) Session I: Ultrafast radiolysis facilities: Photocathode systems (Including accelerator system designs...

388

High brightness electron accelerator  

DOE Patents (OSTI)

A compact high brightness linear accelerator is provided for use, e.g., in a free electron laser. The accelerator has a first plurality of acclerating cavities having end walls with four coupling slots for accelerating electrons to high velocities in the absence of quadrupole fields. A second plurality of cavities receives the high velocity electrons for further acceleration, where each of the second cavities has end walls with two coupling slots for acceleration in the absence of dipole fields. The accelerator also includes a first cavity with an extended length to provide for phase matching the electron beam along the accelerating cavities. A solenoid is provided about the photocathode that emits the electrons, where the solenoid is configured to provide a substantially uniform magnetic field over the photocathode surface to minimize emittance of the electrons as the electrons enter the first cavity.

Sheffield, R.L.; Carlsten, B.E.; Young, L.M.

1992-12-31T23:59:59.000Z

389

Acceleration in astrophysics  

SciTech Connect

The origin of cosmic rays and applicable laboratory experiments are discussed. Some of the problems of shock acceleration for the production of cosmic rays are discussed in the context of astrophysical conditions. These are: The presumed unique explanation of the power law spectrum is shown instead to be a universal property of all lossy accelerators; the extraordinary isotropy of cosmic rays and the limited diffusion distances implied by supernova induced shock acceleration requires a more frequent and space-filling source than supernovae; the near perfect adiabaticity of strong hydromagnetic turbulence necessary for reflecting the accelerated particles each doubling in energy roughly 10{sup 5} to {sup 6} scatterings with negligible energy loss seems most unlikely; the evidence for acceleration due to quasi-parallel heliosphere shocks is weak. There is small evidence for the expected strong hydromagnetic turbulence, and instead, only a small number of particles accelerate after only a few shock traversals; the acceleration of electrons in the same collisionless shock that accelerates ions is difficult to reconcile with the theoretical picture of strong hydromagnetic turbulence that reflects the ions. The hydromagnetic turbulence will appear adiabatic to the electrons at their much higher Larmor frequency and so the electrons should not be scattered incoherently as they must be for acceleration. Therefore the electrons must be accelerated by a different mechanism. This is unsatisfactory, because wherever electrons are accelerated these sites, observed in radio emission, may accelerate ions more favorably. The acceleration is coherent provided the reconnection is coherent, in which case the total flux, as for example of collimated radio sources, predicts single charge accelerated energies much greater than observed.

Colgate, S.A.

1993-12-31T23:59:59.000Z

390

Commnity Petascale Project for Accelerator Science and Simulation: Advancing Computational Science for Future Accelerators and Accelerator Technologies  

SciTech Connect

The design and performance optimization of particle accelerators is essential for the success of the DOE scientific program in the next decade. Particle accelerators are very complex systems whose accurate description involves a large number of degrees of freedom and requires the inclusion of many physics processes. Building on the success of the SciDAC1 Accelerator Science and Technology project, the SciDAC2 Community Petascale Project for Accelerator Science and Simulation (ComPASS) is developing a comprehensive set of interoperable components for beam dynamics, electromagnetics, electron cooling, and laser/plasma acceleration modeling. ComPASS is providing accelerator scientists the tools required to enable the necessary accelerator simulation paradigm shift from high-fidelity single physics process modeling (covered under SciDAC1) to high-fidelity multi-physics modeling. Our computational frameworks have been used to model the behavior of a large number of accelerators and accelerator R&D experiments, assisting both their design and performance optimization. As parallel computational applications, the ComPASS codes have been shown to make effective use of thousands of processors.

Spentzouris, Panagiotis; /Fermilab; Cary, John; /Tech-X, Boulder; Mcinnes, Lois Curfman; /Argonne; Mori, Warren; /UCLA; Ng, Cho; /SLAC; Ng, Esmond; Ryne, Robert; /LBL, Berkeley

2008-07-01T23:59:59.000Z

391

Commnity Petascale Project for Accelerator Science And Simulation: Advancing Computational Science for Future Accelerators And Accelerator Technologies  

SciTech Connect

The design and performance optimization of particle accelerators are essential for the success of the DOE scientific program in the next decade. Particle accelerators are very complex systems whose accurate description involves a large number of degrees of freedom and requires the inclusion of many physics processes. Building on the success of the SciDAC-1 Accelerator Science and Technology project, the SciDAC-2 Community Petascale Project for Accelerator Science and Simulation (ComPASS) is developing a comprehensive set of interoperable components for beam dynamics, electromagnetics, electron cooling, and laser/plasma acceleration modelling. ComPASS is providing accelerator scientists the tools required to enable the necessary accelerator simulation paradigm shift from high-fidelity single physics process modeling (covered under SciDAC1) to high-fidelity multiphysics modeling. Our computational frameworks have been used to model the behavior of a large number of accelerators and accelerator R&D experiments, assisting both their design and performance optimization. As parallel computational applications, the ComPASS codes have been shown to make effective use of thousands of processors.

Spentzouris, Panagiotis; /Fermilab; Cary, John; /Tech-X, Boulder; Mcinnes, Lois Curfman; /Argonne; Mori, Warren; /UCLA; Ng, Cho; /SLAC; Ng, Esmond; Ryne, Robert; /LBL, Berkeley

2011-10-21T23:59:59.000Z

392

Accelerator Operators and Software Development  

SciTech Connect

At Thomas Jefferson National Accelerator Facility, accelerator operators perform tasks in their areas of specialization in addition to their machine operations duties. One crucial area in which operators contribute is software development. Operators with programming skills are uniquely qualified to develop certain controls applications because of their expertise in the day-to-day operation of the accelerator. Jefferson Lab is one of the few laboratories that utilizes the skills and knowledge of operators to create software that enhances machine operations. Through the programs written; by operators, Jefferson Lab has improved machine efficiency and beam availability. Because many of these applications involve automation of procedures and need graphical user interfaces, the scripting language Tcl and the Tk toolkit have been adopted. In addition to automation, some operator-developed applications are used for information distribution. For this purpose, several standard web development tools such as perl, VBScript, and ASP are used. Examples of applications written by operators include injector steering, spin angle changes, system status reports, magnet cycling routines, and quantum efficiency measurements. This paper summarizes how the unique knowledge of accelerator operators has contributed to the success of the Jefferson Lab control system. *This work was supported by the U.S. DOE contract No. DE-AC05-84-ER40150.

April Miller; Michele Joyce

2001-11-01T23:59:59.000Z

393

INJECTORS H. Hayano and M. Ross, Chairmen Presentations H. Hayano, "Linac Beam Stability"  

NLE Websites -- All DOE Office Websites (Extended Search)

2 2 INJECTORS H. Hayano and M. Ross, Chairmen Presentations H. Hayano, "Linac Beam Stability" S. Takeda, "Injector Linac Performance" S. Kashiwagi, "ECS Performance" K. Kubo, "Lattice Diagnostic (Linear Optics and Beta-Match)" T. Naito, "Performance of SR Monitor" . . . H. Hayano, "Performance of Alignment Method" J. Urakawa, "Summary of Ring Circumference Issue (Including Wiggler Issue)" N. Terunuma, "Summary of Vacuum Chamber Design Including Ring Impedance" T. Okugi, "Performance of Orbit Measurement" J. Urakawa, "Summary of Emittance Tuning" T. Raubenheimer, "Parameters - Combined Session" D. Yeremian, "Bunching Stability" J. Turner, "Injector Linac Performance"

394

Argonne Accelerator Institute  

NLE Websites -- All DOE Office Websites (Extended Search)

Mission Mission The mission of the Argonne Accelerator Institute is centered upon the following related goals: Locate next generation accelerator facilities in Northern Illinois Advance accelerator technology Oversee a selected, strategic, lab-wide, and acclaimed accelerator R&D portfolio In order to accomplish the above goals, the institute has established five objectives. These are coupled to programmatic objectives, and are dependent on each other, but they serve to identify important areas for the institute to focus its activities. Educate the "next generation" of accelerator physicists and engineers Work with area Universities to establish Joint Appointments and Adjunct Professorships Identify students Provide research opportunities at Argonne Work with the US Particle Accelerator School

395

Argonne Accelerator Institute  

NLE Websites -- All DOE Office Websites (Extended Search)

Welcome Welcome In 2006, Argonne laboratory director Robert Rosner formed the AAI as a focal point for accelerator initiatives. The institute works to utilize Argonne's extensive accelerator resources, to enhance existing facilities, to determine the future of accelerator development and construction, and to oversee a dynamic and acclaimed accelerator physics portfolio. I invite you to look around the content of this web site. Accelerators at Argonne describes our rich heritage in this field, particularly with respect to the development and support of user facilities. Initiatives describes the things we are hoping to do, and Research & Development discusses our research portfolio. If you are a graduate or undergraduate student wishing to pursue a career in accelerator science or technology, please see Educational

396

North Linear Accelerator  

NLE Websites -- All DOE Office Websites (Extended Search)

North Linear Accelerator North Linear Accelerator Building Exterior Beam Enclosure Level Walk to the North Spreader North Recombiner Extras! North Linear Accelerator The North Linear Accelerator is one of the two long, straight sections of Jefferson Lab's accelerator. Electrons gain energy in this section by passing through acceleration cavities. There are 160 cavities in this straightaway, all lined up end to end. That's enough cavities to increase an electron's energy by 400 million volts each time it passes through this section. Electrons can pass though this section as many as five times! The cavities are powered by microwaves that travel down the skinny rectangular pipes from the service buildings above ground. Since the cavities won't work right unless they are kept very cold, they

397

Argonne Accelerator Institute  

NLE Websites -- All DOE Office Websites (Extended Search)

The Argonne Accelerator History Document Collection The Argonne Accelerator History Document Collection The Argonne Accelerator Institute (AAI) has established a special collection of archived documents which describe notable Argonne accelerator work of the past 50 years. A list of such Argonne Accelerator Projects is given below. Each project is described briefly, with links to archived documents in this collection. This collection includes important Argonne accelerator documents which may have become difficult to locate, as well as ones which have broad scope. In keeping with its historical purpose, this collection only covers work done 10 or more years ago. Many of the listed documents are available online. We hope to make more of them available online in the future. [For several of the projects, interesting additional online documents can be found by

398

accelerators for ATI  

NLE Websites -- All DOE Office Websites (Extended Search)

Building Accelerator Analogs Building Accelerator Analogs Some QuarkNet centers have built "accelerators." No, they are not real but can be used as analogs to real particle accelerators. The real learning comes, of course, when you plan and experiment on your own, but this may give you some starting points. Things to Think About What are your objectives? To make an analogy for particle accelerators? To use classical physics qualitatively? To use classical physics quantitatively? To measure forces, speed, etc.? _______________ Who is your target audience— in an Associate Teacher Institute or their students or both? What do the participants need to know before beginning? Jawbreaker Accelerator Pressurized gas shoots jawbreakers through PVC pipe into a fixed target (brick) or into each other. The original speeds and masses are measured as are those of the resulting particles.

399

A Los Alamos concept for accelerator transmutation of waste and energy production (ATW)  

SciTech Connect

This document contains the diagrams presented at the ATW (Accelerator Transmutation of Waste and Energy Production) External Review, December 10-12, 1990, held at Los Alamos National Laboratory. Included are the charge to the committee and the presentations for the committee`s review. Topics of the presentations included an overview of the concept, LINAC technology, near-term application -- high-level defense wastes (intense thermal neutron source, chemistry and materials), advanced application of the ATW concept -- fission energy without a high-level waste stream (overview, advanced technology, and advanced chemistry), and a summary of the research issues.

Not Available

1990-12-31T23:59:59.000Z

400

Using The SLAC Two-Mile Accelerator for Powering an FEL  

Science Conference Proceedings (OSTI)

A parameter survey is made, employing the recently developed 2D formalism for an FEL, of the characteristics of an FEL using the SLAC accelerator. Attention is focused upon a wavelength of 40 {angstrom} (the water window) and 1 {angstrom} case is also presented. They consider employing the SLAC linac with its present operating parameters and with improved parameters such as would be supplied by a new photo-cathode injector. They find that improved parameters are necessary, but that the parameters presently achieved with present-day photo-cathode guns are adequate to reach the water window.

Barletta, W.A.; /LLNL, Livermore; Sessler, A.M.; /LBL, Berkeley; Yu, L.H.; /Brookhaven

2012-06-29T23:59:59.000Z

Note: This page contains sample records for the topic "linac accelerator system" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

rf modulator design and phase amplitude control for a high-power free-electron-laser linac  

SciTech Connect

The continued interest for building tunable lasers using an electron accelerator as the source of primary energy has resulted in the design of a new accelerator. Earlier work by other members of the Los Alamos team has demonstrated that this design does work in an amplifier mode. The accelerator is to be upgraded for use in an oscillator experiment and the new rf power amplifier system must meet some of the very stringent demands for power and stability placed on the electron beam for the free-electron laser (FEL) interaction to be observed. These demands are particularly stringent because the electron beam energy ultimately will be circulated back through the accelerator so that the electron beam energy not used in the FEL interaction is not wasted. These considerations have to some measure been incorporated into the design of the second FEL system at Los Alamos and are discussed.

Hoeberling, R.F.; Tallerico, P.J.

1981-01-01T23:59:59.000Z

402

Coordinate Conditions for a Uniformly Accelerated or Static Plane Symmetric  

E-Print Network (OSTI)

The coordinate conditions for three exact solutions for the metric components of a coordinate system with constant acceleration or of a static plane symmetric gravitational field are presented. First, the coordinate condition that the acceleration of light is constant is applied to the field equations to derive the metric of a coordinate system of constant acceleration. Second, the coordinate conditions required to produce the metrics of Rindler and Lass are applied to the field equations to calculate the components of these two metrics and the coordinate velocities and coordinate accelerations for light of these two metrics are compared to the coordinate system of constant acceleration. 1 I.

unknown authors

2004-01-01T23:59:59.000Z

403

SLAC National Accelerator Laboratory - 20th Anniversary of a...  

NLE Websites -- All DOE Office Websites (Extended Search)

theoretical work on using linacs and storage rings as drivers for X-ray free electron lasers. But his suggestion that it would be possible to modify and use part of the SLAC linac...

404

SLAC National Accelerator Laboratory - Ultrafast Lasers at the...  

NLE Websites -- All DOE Office Websites (Extended Search)

Lasers at the Linac Coherent Light Source By Alan Fry, LCLS Laser Group July 5, 2011 The Linac Coherent Light Source at SLAC is the world's first hard X-ray free-electron laser, or...

405

Optically pulsed electron accelerator  

DOE Patents (OSTI)

An optically pulsed electron accelerator can be used as an injector for a free electron laser and comprises a pulsed light source, such as a laser, for providing discrete incident light pulses. A photoemissive electron source emits electron bursts having the same duration as the incident light pulses when impinged upon by same. The photoemissive electron source is located on an inside wall of a radiofrequency-powered accelerator cell which accelerates the electron burst emitted by the photoemissive electron source.

Fraser, J.S.; Sheffield, R.L.

1985-05-20T23:59:59.000Z

406

Optically pulsed electron accelerator  

DOE Patents (OSTI)

An optically pulsed electron accelerator can be used as an injector for a free electron laser and comprises a pulsed light source, such as a laser, for providing discrete incident light pulses. A photoemissive electron source emits electron bursts having the same duration as the incident light pulses when impinged upon by same. The photoemissive electron source is located on an inside wall of a radio frequency powered accelerator cell which accelerates the electron burst emitted by the photoemissive electron source.

Fraser, John S. (Los Alamos, NM); Sheffield, Richard L. (Los Alamos, NM)

1987-01-01T23:59:59.000Z

407

ACCELERATION RESPONSIVE SWITCH  

DOE Patents (OSTI)

An acceleration-responsive device with dual channel capabilities whereby a first circuit is actuated upon attainment of a predetermined maximum acceleration level and when the acceleration drops to a predetermined minimum acceleriltion level another circuit is actuated is described. A fluid-damped sensing mass slidably mounted in a relatively frictionless manner on a shaft through the intermediation of a ball bushing and biased by an adjustable compression spring provides inertially operated means for actuating the circuits. (AEC)

Chabrek, A.F.; Maxwell, R.L.

1963-07-01T23:59:59.000Z

408

TESLA Report 2003-10 Studies of Electromagnetic Cascade Showers Development in the TESLA Main Linac Initiated by Electron Field Emission in RF Cavities  

E-Print Network (OSTI)

this paper, and, in order to see this point more clearly, none of the other possible particle multiplication processes will be included in our simulations. 2 Simulation Procedure and Code Design The process of particle transport in our computer code DUST (DUnkel STrom, in German) is organized in such a way that it naturally breaks down into two parts, Monte Carlo simulation of the electromagnetic shower development when a particle impacts the inner vacuum surface of the accelerator, and particle dynamics in an electromagnetic field inside the accelerator vacuum. As usual, the accelerator to be studied is described as a sequence of physical elements. The user specifies the element geometry, materials and electromagnetic fields. And although we have not implemented something similar to the MAD [20] lattice description language yet, to simplify the accelerator description, elements in our program can be grouped into di#erent modules, from modules one constructs cells, and a sequence of cells forms the linac. 2.1 Particle Transport in Nonvacuum Media When an energetic primary particle incidents on a mass of material of su#cient thickness a cascade of particles and electromagnetic radiation of great complexity results, and the most practical way to obtain the characteristics of this cascade, the distribution and parameters of secondary particles, especially for complicated material geometries, is through Monte Carlo simulations. Even though a code for the transport of high energy particles (in GeV range) can be developed without too great complications (see, for example, [21], [22]), the accurate simulation of the low energy particles is a very demanding e#ort. So, it is obvious, that it is better to use a thoroughly tested, standard programme, based on an extensive and r...

Balandin Brinkmann Flottmann; V. Bal; R. Brinkmann; K. Flöttmann; N. Golubeva

2003-01-01T23:59:59.000Z

409

Analysis of Performance Accelerator Running ETMSP  

Science Conference Proceedings (OSTI)

This study investigates new approaches to parallel computer processing capable of accelerating certain classes of power system problems. The results show that a speedup of 30 times over conventional workstation computers is possible.

1993-11-01T23:59:59.000Z

410

Fermilab Project X nuclear energy application: Accelerator, spallation target and transmutation technology demonstration  

SciTech Connect

The recent paper 'Accelerator and Target Technology for Accelerator Driven Transmutation and Energy Production' and report 'Accelerators for America's Future' have endorsed the idea that the next generation particle accelerators would enable technological breakthrough needed for nuclear energy applications, including transmutation of waste. In the Fall of 2009 Fermilab sponsored a workshop on Application of High Intensity Proton Accelerators to explore in detail the use of the Superconducting Radio Frequency (SRF) accelerator technology for Nuclear Energy Applications. High intensity Continuous Wave (CW) beam from the Superconducting Radio Frequency (SRF) Linac (Project-X) at beam energy between 1-2 GeV will provide an unprecedented experimental and demonstration facility in the United States for much needed nuclear energy Research and Development. We propose to carry out an experimental program to demonstrate the reliability of the accelerator technology, Lead-Bismuth spallation target technology and a transmutation experiment of spent nuclear fuel. We also suggest that this facility could be used for other Nuclear Energy applications.

Gohar, Yousry; /Argonne; Johnson, David; Johnson, Todd; Mishra, Shekhar; /Fermilab

2011-04-01T23:59:59.000Z

411

Muon Collider Progress: Accelerators  

SciTech Connect

A muon collider would be a powerful tool for exploring the energy-frontier with leptons, and would complement the studies now under way at the LHC. Such a device would offer several important benefits. Muons, like electrons, are point particles so the full center-of-mass energy is available for particle production. Moreover, on account of their higher mass, muons give rise to very little synchrotron radiation and produce very little beamstrahlung. The first feature permits the use of a circular collider that can make efficient use of the expensive rf system and whose footprint is compatible with an existing laboratory site. The second feature leads to a relatively narrow energy spread at the collision point. Designing an accelerator complex for a muon collider is a challenging task. Firstly, the muons are produced as a tertiary beam, so a high-power proton beam and a target that can withstand it are needed to provide the required luminosity of ~1 × 10{sup 34} cm{sup –2}s{sup –1}. Secondly, the beam is initially produced with a large 6D phase space, which necessitates a scheme for reducing the muon beam emittance (“cooling”). Finally, the muon has a short lifetime so all beam manipulations must be done very rapidly. The Muon Accelerator Program, led by Fermilab and including a number of U.S. national laboratories and universities, has undertaken design and R&D activities aimed toward the eventual construction of a muon collider. Design features of such a facility and the supporting R&D program are described.

Zisman, Michael S.

2011-09-10T23:59:59.000Z

412

Science Accelerator : User Account  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Office of Science Office of Scientific and Technical Information Website PoliciesImportant Links Science Accelerator science.gov WorldWideScience.org Deep Web Technologies...

413

Argonne Accelerator Institute  

NLE Websites -- All DOE Office Websites (Extended Search)

ICFA Beam Dynamics Mini-Workshop on DeflectingCrabbing Cavity Applications in Accelerators April 21-23, 2010, Cockcroft Institute, Daresbury Laboratory, Warrington, UK Sixth...

414

Argonne Accelerator Institute  

NLE Websites -- All DOE Office Websites (Extended Search)

Welcome Accelerators at Argonne Mission Organization History Document Collection Conferences & Workshops Beams and Applications Seminar Argonne-Fermilab Collaboration Lee Teng...

415

Human Accelerator - Teacher Overview  

NLE Websites -- All DOE Office Websites (Extended Search)

electrons. The cavities are arranged in two long, straight sections called Linear Accelerators. In this activity, students pass tennis balls down a line like Jefferson Lab's...

416

Argonne Accelerator Institute  

NLE Websites -- All DOE Office Websites (Extended Search)

(1971). (Located in the Argonne Research Library) Lee Teng Autobiography: Accelerators and I, Beam Dynamics Newsletter, No. 35, p 8-19, December (2004). (Located in Beam...

417

Market Acceleration (Fact Sheet)  

DOE Green Energy (OSTI)

The fact sheet summarizes the goals and activities of the DOE Solar Energy Technologies Program efforts within its market acceleration subprogram.

Not Available

2010-09-01T23:59:59.000Z

418

Argonne Accelerator Institute  

NLE Websites -- All DOE Office Websites (Extended Search)

- Document Access Guide ATLAS: A Proposal for a Precision Heavy Ion Accelerator, Argonne National Laboratory, February (1978). (Located in the DOE Information Bridge) The...

419

Argonne Accelerator Institute  

NLE Websites -- All DOE Office Websites (Extended Search)

Fermilab Collaboration Lee Teng Scholarship Program Useful Links Argonne Accelerator Institute: For Industrial Collaborators -- Working with Argonne This link is addressed to...

420

The Accelerator Chain  

NLE Websites -- All DOE Office Websites (Extended Search)

Watch video of Fermilab's Accelerators to learn more. Project Contact: Thomas Jordan - jordant@fnal.gov Web Maintainer: qnet-webmaster@fnal.gov Last Update: April 22, 2001...

Note: This page contains sample records for the topic "linac accelerator system" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

WIPP - CBFO Accelerating Cleanup  

NLE Websites -- All DOE Office Websites (Extended Search)

more information, access DOE Environmental Management site at: http:www.em.doe.govclosure For more information regarding the Accelerating Cleanup: Paths to Closure, contact...

422

Acceleration of polarized protons in circular accelerators  

SciTech Connect

The theory of depolarization in circular accelerators is presented. The spin equation is first expressed in terms of the particle orbit and then converted to the equivalent spinor equation. The spinor equation is then solved for three different situations: (1) a beam on a flat top near a resonance, (2) uniform acceleration through an isolated resonance, and (3) a model of a fast resonance jump. Finally, the depolarization coefficient, epsilon, is calculated in terms of properties of the particle orbit and the results are applied to a calculation of depolarization in the AGS.

Courant, E.D.; Ruth, R.D.

1980-09-12T23:59:59.000Z

423

SNS/BNL Diagnostics System Group, Spallation Neutron Source, SNS  

NLE Websites -- All DOE Office Websites (Extended Search)

SNS/BNL Diagnostics System Group SNS/BNL Diagnostics System Group Homepage The Spallation Neutron Source project is a collaboration between six national laboratories of the United states to build a Mega Watt neutrons source driven by a proton accelerator. The complex is going to be build in Oak Ridge (Tennessee) and consists of a full energy (1 Gev) linac, an accumulator ring and a mercury target with several instruments for neutron scattering. Information on the project can be found at http://www.sns.gov. At Brookhaven National Laboratory we work mainly on the accumulator ring and transfer lines diagnostics (HEBT, Ring, RTBT). Some of the systems are SNS-wide ie: the Beam Loss Monitor system and Beam Current Monitor system. In addition our group provides parts of other systems to our partner laboratories. Our group is part or the Collider Accelerator Division that is also in charge of RHIC and the AGS complex. If you are looking for information on a particular topic you can contact the persons working on it.

424

High Gradient Operation with the CEBAF Upgrade RF Control System  

SciTech Connect

The CEBAF Accelerator at Jefferson Lab is presently a 6 GeV five pass electron accelerator consisting of two superconducting linacs joined by independent magnetic transport arcs. Energy will be upgraded to 12 GeV with the addition of 10 new high gradient cryomodules (17+ MV/m). The higher gradients pose significant challenges beyond what the present analog low level RF (LLRF) control systems can handle reliably; therefore, a new LLRF control system is needed. A prototype system has been developed incorporating a large FPGA and using digital down and up conversion to minimize the need for analog components. The new system is more flexible and less susceptible to drifts and component nonlinearities. Because resonance control is critical to reach high gradients quickly, the new cryomodules will include a piezoelectric tuner for each cavity, and the LLRF controls must incorporate both feedback and feed-forward methods to achieve optimal resonance control performance. This paper discusses development of the new RF system, system performance for phase and amplitude stability and resonance control under Lorentz detuning measured during recent tests on a prototype cryomodule.

J. Hovater; G. Davis; Hai Dong; Alicia Hofler; Lawrence King; John Musson; Tomasz Plawski

2006-08-16T23:59:59.000Z

425

Development of a one-stop beam verification system using electronic portal imaging devices for routine quality assurance  

Science Conference Proceedings (OSTI)

In this study, a computer-based system for routine quality assurance (QA) of a linear accelerator (linac) was developed by using the dosimetric properties of an amorphous silicon electronic portal imaging device (EPID). An acrylic template phantom was designed such that it could be placed on the EPID and be aligned with the light field of the collimator. After irradiation, portal images obtained from the EPID were transferred in DICOM format to a computer and analyzed using a program we developed. The symmetry, flatness, field size, and congruence of the light and radiation fields of the photon beams from the linac were verified simultaneously. To validate the QA system, the ion chamber and film (X-Omat V2; Kodak, New York, NY) measurements were compared with the EPID measurements obtained in this study. The EPID measurements agreed with the film measurements. Parameters for beams with energies of 6 MV and 15 MV were obtained daily for 1 month using this system. It was found that our QA tool using EPID could substitute for the film test, which is a time-consuming method for routine QA assessment.

Lim, Sangwook, E-mail: medicalphysics@hotmail.com [Department of Radiation Oncology, Kosin University College of Medicine, Seo-gu, Busan (Korea, Republic of); Ma, Sun Young; Jeung, Tae Sig [Department of Radiation Oncology, Kosin University College of Medicine, Seo-gu, Busan (Korea, Republic of); Yi, Byong Yong [Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD (United States); Lee, Sang Hoon [Department of Radiation Oncology, Cheil General Hospital and Women's Healthcare Center, Kwandong University College of Medicine, Jung-gu, Seoul (Korea, Republic of); Lee, Suk [Department of Radiation Oncology, College of Medicine, Korea University, Seongbuk-gu, Seoul (Korea, Republic of); Cho, Sam Ju [Department of Radiation Oncology, Eulji University School of Medicine, Eulji General Hospital, Nowon-gu, Seoul (Korea, Republic of); Choi, Jinho [Department of Radiation Oncology, Gachon University of Medicine and Science, Namdong-gu, Incheon (Korea, Republic of)

2012-10-01T23:59:59.000Z

426

Accelerator technology program. Progress report, July-December 1980  

SciTech Connect

The activities of Los Alamos National Laboratory's Accelerator Technology Division are discussed. This report covers the last six months of calendar 1980 and is organized around the Division's major projects. These projects reflect a wide variety of applications and sponsors. The major technological innovations promoted by the Pion Generator for Medical Irradiation (PIGMI) program have been developed; accelerator technologies relevant to the design of a medically practical PIGMI have been identified. A new group in AT Division deals with microwave and magnet studies; we describe the status of some of their projects. We discuss the prototype gyrocon, which has been completed, and the development of the radio-frequency quadrupole linear accelerator, which continues to stimulate interest for many possible applications. One section of this report briefly describes the results of a design study for an electron beam ion source that is ideally suited as an injector for a heavy ion linac; another section reports on a turbine engine test facility that will expose operating turbine engines to simulated maneuver forces. In other sections we discuss various activities: the Fusion Materials Irradiation Test program, the free-electron laser program, the racetrack microtron project, the Proton Storage ring, and H/sup -/ ion sources and injectors.

Knapp, E.A.; Jameson, R.A. (comp.)

1982-01-01T23:59:59.000Z

427

Argonne Accelerator Institute  

NLE Websites -- All DOE Office Websites (Extended Search)

LEUTL: Low Energy Undulator Test Line (operation: 1997-2002) LEUTL: Low Energy Undulator Test Line (operation: 1997-2002) The Low Energy Undulator Test Line (LEUTL) is an experimental hall and associated hardware that was built shortly after the completion of the Advanced Photon Source, and was attached to the APS so that the linac beam could be delivered to the LEUTL hall. LEUTL was configured as a Free Electron Laser (FEL) and was the first experiment to demonstrate Self Amplified Spontaneous Emission in the visible and UV. References - Document Access Guide Description of LEUTL by S. G. Biedron (Argonne National Laboratory Document ) High-Gain Harmonic-Generation Free-Electron Laser, L.-H. Yu, M. Babzien, I. Ben-Zvi, L.F. DiMauro, A. Doyuran, W. Graves, E. Johnson, S. Krinsky, R. Malone, I. Pogorelsky, J. Skaritka, G. Rakowsky, L. Solomon,

428

Preparation of a technology development roadmap for the Accelerator Transmutation of Waste (ATW) System : report of the ATW separations technologies and waste forms technical working group.  

Science Conference Proceedings (OSTI)

In response to a Congressional mandate to prepare a roadmap for the development of Accelerator Transmutation of Waste (ATW) technology, a Technical Working Group comprised of members from various DOE laboratories was convened in March 1999 for the purpose of preparing that part of the technology development roadmap dealing with the separation of certain radionuclides for transmutation and the disposal of residual radioactive wastes from these partitioning operations. The Technical Working Group for ATW Separations Technologies and Waste Forms completed its work in June 1999, having carefully considered the technology options available. A baseline process flowsheet and backup process were identified for initial emphasis in a future research, development and demonstration program. The baseline process combines aqueous and pyrochemical processes to permit the efficient separation of the uranium, technetium, iodine and transuranic elements from the light water reactor (LWR) fuel in the head-end step. The backup process is an all- pyrochemical system. In conjunction with the aqueous process, the baseline flowsheet includes a pyrochemical process to prepare the transuranic material for fabrication of the ATW fuel assemblies. For the internal ATW fuel cycle the baseline process specifies another pyrochemical process to extract the transuranic elements, Tc and 1 from the ATW fuel. Fission products not separated for transmutation and trace amounts of actinide elements would be directed to two high-level waste forms, one a zirconium-based alloy and the other a glass/sodalite composite. Baseline cost and schedule estimates are provided for a RD&D program that would provide a full-scale demonstration of the complete separations and waste production flowsheet within 20 years.

Collins, E.; Duguid, J.; Henry, R.; Karell, E.; Laidler, J.; McDeavitt, S.; Thompson, M.; Toth, M.; Williamson, M.; Willit, J.

1999-08-12T23:59:59.000Z

429

Accelerators, Beams And Physical Review Special Topics - Accelerators And Beams  

SciTech Connect

Accelerator science and technology have evolved as accelerators became larger and important to a broad range of science. Physical Review Special Topics - Accelerators and Beams was established to serve the accelerator community as a timely, widely circulated, international journal covering the full breadth of accelerators and beams. The history of the journal and the innovations associated with it are reviewed.

Siemann, R.H.; /SLAC

2011-10-24T23:59:59.000Z

430

Microscale acceleration history discriminators  

DOE Patents (OSTI)

A new class of micromechanical acceleration history discriminators is claimed. These discriminators allow the precise differentiation of a wide range of acceleration-time histories, thereby allowing adaptive events to be triggered in response to the severity (or lack thereof) of an external environment. Such devices have applications in airbag activation, and other safety and surety applications.

Polosky, Marc A. (Albuquerque, NM); Plummer, David W. (Albuquerque, NM)

2002-01-01T23:59:59.000Z

431

Dielectric Wakefield Accelerator to drive the future FEL Light Source.  

SciTech Connect

X-ray free-electron lasers (FELs) are expensive instruments and a large part of the cost of the entire facility is driven by the accelerator. Using a high-energy gain dielectric wake-field accelerator (DWA) instead of the conventional accelerator may provide a significant cost saving and reduction of the facility size. In this article, we investigate using a collinear dielectric wakefield accelerator to provide a high repetition rate, high current, high energy beam to drive a future FEL x-ray light source. As an initial case study, a {approx}100 MV/m loaded gradient, 850 GHz quartz dielectric based 2-stage, wakefield accelerator is proposed to generate a main electron beam of 8 GeV, 50 pC/bunch, {approx}1.2 kA of peak current, 10 x 10 kHz (10 beamlines) in just 100 meters with the fill factor and beam loading considered. This scheme provides 10 parallel main beams with one 100 kHz drive beam. A drive-to-main beam efficiency {approx}38.5% can be achieved with an advanced transformer ratio enhancement technique. rf power dissipation in the structure is only 5 W/cm{sup 2} in the high repetition rate, high gradient operation mode, which is in the range of advanced water cooling capability. Details of study presented in the article include the overall layout, the transform ratio enhancement scheme used to increase the drive to main beam efficiency, main wakefield linac design, cooling of the structure, etc.

Jing, C.; Power, J.; Zholents, A. (Accelerator Systems Division (APS)); ( HEP); (LLC)

2011-04-20T23:59:59.000Z

432

Proceedings ol'tlie 1999 Particle Accelerator Conl'erencc,New York, 1999 THE DESIGN OF A IJQUID LITHIUM LENS  

E-Print Network (OSTI)

LITHIUM LENS FOR A MUON COLLIDER* A. Hassancin, J. Norem", C. Reed, ANL; R. Palmer, BNL; G. Silvestrov, T a multistage liquid lithium lens. This system uses a large (-0.5 MA) pulsed current through liquid lithium to I'ociis the bcam while energy loss in the lithium rcmovcs iiiomeiitmii which will lie replaced by linacs. The beam

Harilal, S. S.

433

Optimal focusing for a linac-based hard x-ray source  

Science Conference Proceedings (OSTI)

In spite of having a small average beam current limit, a linac can have features that make it attractive as an x-ray source: high energy, ultralow emittance and energy spread, and flexible beamline optics. Unlike a storage ring, in which an (undulator) radiation source is necessarily short and positioned at an electron beam waist, in a linac the undulator can be long and the electron beam can be adjusted to have a (virtual) waist far downstream toward the x-ray target. Using a planned CEBAF beamline as an example, this paper shows that a factor of 2000 in beam current can be overcome to produce a monochromatic hard x-ray source comparable with, or even exceeding, the performance of an x-ray line at a third generation storage ring. Optimal electron beam focusing conditions for x-ray flux density and brilliance are derived, and are verified by simulations using the SRW code.

Liu, C.; Krafft, G.; Talman, R.

2011-03-28T23:59:59.000Z

434

Progress with the SNS front-end systems  

E-Print Network (OSTI)

47317 PROGRESS WITH THE SNS FRONT-END SYSTEMS* R. Keller,**the FES Team, “Status of the SNS Front-End Sys- tems, Paperof the LEBT Layout for SNS,” Paper MOD19, Linac 2000,

2001-01-01T23:59:59.000Z

435

Jar mechanism accelerator  

SciTech Connect

This patent describes an accelerator for use with a jar mechanism in a well pipe string to enhance the jarring impact delivered to a stuck object wherein the jar mechanism includes inner and outer members for connection, respectively, between the well pipe string the stuck object. The jar mechanism members are constructed to (1) restrict relative longitudinal movement therebetween to build up energy in the well pipe string and accelerator and then (2) to release the jar mechanism members for unrestrained, free relative longitudinal movement therebetween to engage jarring surfaces on the jar mechanism members for delivering a jarring impact to the stuck object. The accelerator includes: inner and outer telescopically connected members relatively movable longitudinally to accumulate energy in the accelerator; the inner and outer accelerator members each having means for connecting the accelerator in the well pipe string; means associated with the inner and outer members for initially accomodating a predetermined minimum length of unrestrained, free relative longitudinal movement between the inner and outer accelerator members.

Anderson, E.A.; Webb, D.D.

1989-07-11T23:59:59.000Z

436

Environmental Assessment for Linac Coherent Light Source Experimental Facility (12/02)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Stanford Stanford Linear A ccelerator Center DOE/EA-1426 Environmental Assessment for Linac Coherent Light Source Experimental Facility LCLS December 2002 LCLS Environmental Assessment DOE/EA-1426 December 2002 Page - i - Environmental Assessment for LCLS Experimental Facility Table of Contents Preface ............................................................................................................................................ iii 1.0 Summary ................................................................................................................................... 1 2.0 Purpose and Need for LCLS ..................................................................................................... 6 3.0 Description of Proposed Action and Alternatives

437

BNL | Accelerating Particles Accelerates Science - With Big Benefits...  

NLE Websites -- All DOE Office Websites (Extended Search)

program focused on developing the next crop of bold accelerator scientists and engineers. Photo of CASE participants The Center for Accelerator Science and Education (CASE)...

438

Accelerate Oklahoma (Oklahoma) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Accelerate Oklahoma (Oklahoma) Accelerate Oklahoma (Oklahoma) Accelerate Oklahoma (Oklahoma) < Back Eligibility Agricultural Commercial Construction Developer Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Low-Income Residential Multi-Family Residential Retail Supplier Systems Integrator Transportation Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Oklahoma Program Type Equity Investment Provider i2E Three new funds that each offer equity and growth investment capital for state-based entrepreneurs, depending on the lifecycle stage of their business, were appropriated through the Oklahoma Commerce Department by the U.S. Treasury Department and are managed by i2E.

439

Superfund accelerated cleanup model  

SciTech Connect

In an effort to speed and maximize cleanup of the worst sites first, the Environmental Protection Agency (EPA) developed the Superfund Accelerated Cleanup Model (SACM). SACM streamlines the Superfund process so hazardous waste sites can be addressed quicker and in a more cost effective manner. EPA Regional offices developed a number of pilot projects to test the principles of SACM. Although many pilots are underway in the Regions, the pilots described here involve four areas: accelerating cleanup through early actions; integrating site assessments; using Regional Decision Teams to establish priorities; and accelerating cleanup through the use of new technology.

Not Available

1994-08-01T23:59:59.000Z

440

Acceleration of Radiance for Lighting Simulation by using Parallel...  

NLE Websites -- All DOE Office Websites (Extended Search)

Conference Location Sydney, Australia Abstract This study attempted to accelerate annual daylighting simulations for fenestration systems in Radiance ray-tracing program. The...

Note: This page contains sample records for the topic "linac accelerator system" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

HILO: Quasi Diffusion Accelerated Monte Carlo on Hybrid Architectures  

NLE Websites -- All DOE Office Websites (Extended Search)

HILO: Quasi Diffusion Accelerated Monte Carlo on Hybrid Architectures The Boltzmann transport equation provides high fidelity simulation of a diverse range of kinetic systems....

442

The Klynac: An Integrated Klystron and Linear Accelerator  

SciTech Connect

The Klynac concept integrates an electron gun, a radio frequency (RF) power source, and a coupled-cavity linear accelerator into a single resonant system

Potter, J. M., Schwellenbach, D., Meidinger, A.

2012-08-07T23:59:59.000Z