National Library of Energy BETA

Sample records for likes sh coatings

  1. Optically transparent, scratch-resistant, diamond-like carbon coatings

    DOE Patents [OSTI]

    He, Xiao-Ming; Lee, Deok-Hyung; Nastasi, Michael A.; Walter, Kevin C.; Tuszewski, Michel G.

    2003-06-03

    A plasma-based method for the deposition of diamond-like carbon (DLC) coatings is described. The process uses a radio-frequency inductively coupled discharge to generate a plasma at relatively low gas pressures. The deposition process is environmentally friendly and scaleable to large areas, and components that have geometrically complicated surfaces can be processed. The method has been used to deposit adherent 100-400 nm thick DLC coatings on metals, glass, and polymers. These coatings are between three and four times harder than steel and are therefore scratch resistant, and transparent to visible light. Boron and silicon doping of the DLC coatings have produced coatings having improved optical properties and lower coating stress levels, but with slightly lower hardness.

  2. SH Coatings LP | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... that play an important role in a wide range of energy technologies, including battery electrodes, petroleum catalysts, solar cell materials, and organisms for bio fuel growth. ...

  3. Does the Use of Diamond-Like Carbon Coating and Organophosphate Lubricant Additive Together Cause Excessive Tribochemical Material Removal?

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Zhou, Yan; Leonard, Donovan N.; Meyer, Harry M.; Luo, Huimin; Qu, Jun

    2015-08-22

    We observe unexpected wear increase on a steel surface that rubbed against diamond-like carbon (DLC) coatings only when lubricated by phosphate-based antiwear additives. Contrary to the literature hypothesis of a competition between zinc dialkyldithiophosphate produced tribofilms and DLC-induced carbon transfer, here a new wear mechanism based on carbon-catalyzed tribochemical interactions supported by surface characterization is proposed

  4. Plasma spraying method for forming diamond and diamond-like coatings

    DOE Patents [OSTI]

    Holcombe, C.E.; Seals, R.D.; Price, R.E.

    1997-06-03

    A method and composition is disclosed for the deposition of a thick layer of diamond or diamond-like material. The method includes high temperature processing wherein a selected composition including at least glassy carbon is heated in a direct current plasma arc device to a selected temperature above the softening point, in an inert atmosphere, and is propelled to quickly quenched on a selected substrate. The softened or molten composition crystallizes on the substrate to form a thick deposition layer comprising at least a diamond or diamond-like material. The selected composition includes at least glassy carbon as a primary constituent and may include at least one secondary constituent. Preferably, the secondary constituents are selected from the group consisting of at least diamond powder, boron carbide (B{sub 4}C) powder and mixtures thereof. 9 figs.

  5. Plasma spraying method for forming diamond and diamond-like coatings

    DOE Patents [OSTI]

    Holcombe, Cressie E. (Farragut, TN); Seals, Roland D. (Oak Ridge, TN); Price, R. Eugene (Knoxville, TN)

    1997-01-01

    A method and composition for the deposition of a thick layer (10) of diamond or diamond-like material. The method includes high temperature processing wherein a selected composition (12) including at least glassy carbon is heated in a direct current plasma arc device to a selected temperature above the softening point, in an inert atmosphere, and is propelled to quickly quenched on a selected substrate (20). The softened or molten composition (18) crystallizes on the substrate (20) to form a thick deposition layer (10) comprising at least a diamond or diamond-like material. The selected composition (12) includes at least glassy carbon as a primary constituent (14) and may include at least one secondary constituent (16). Preferably, the secondary constituents (16) are selected from the group consisting of at least diamond powder, boron carbide (B.sub.4 C) powder and mixtures thereof.

  6. Superhydrophobic Surface Coatings for Microfluidics and MEMs.

    SciTech Connect (OSTI)

    Branson, Eric D.; Singh, Seema [Sandia National Laboratories, Livermore, CA] [Sandia National Laboratories, Livermore, CA; Houston, Jack E.; van Swol, Frank B.; Brinker, C. Jeffrey

    2006-11-01

    Low solid interfacial energy and fractally rough surface topography confer to Lotus plants superhydrophobic (SH) properties like high contact angles, rolling and bouncing of liquid droplets, and self-cleaning of particle contaminants. This project exploits the porous fractal structure of a novel, synthetic SH surface for aerosol collection, its self-cleaning properties for particle concentration, and its slippery nature 3 to enhance the performance of fluidic and MEMS devices. We propose to understand fundamentally the conditions needed to cause liquid droplets to roll rather than flow/slide on a surface and how this %22rolling transition%22 influences the boundary condition describing fluid flow in a pipe or micro-channel. Rolling of droplets is important for aerosol collection strategies because it allows trapped particles to be concentrated and transported in liquid droplets with no need for a pre-defined/micromachined fluidic architecture. The fluid/solid boundary condition is important because it governs flow resistance and rheology and establishes the fluid velocity profile. Although many research groups are exploring SH surfaces, our team is the first to unambiguously determine their effects on fluid flow and rheology. SH surfaces could impact all future SNL designs of collectors, fluidic devices, MEMS, and NEMS. Interfaced with inertial focusing aerosol collectors, SH surfaces would allow size-specific particle populations to be collected, concentrated, and transported to a fluidic interface without loss. In microfluidic systems, we expect to reduce the energy/power required to pump fluids and actuate MEMS. Plug-like (rather than parabolic) velocity profiles can greatly improve resolution of chip-based separations and enable unprecedented control of concentration profiles and residence times in fluidic-based micro-reactors. Patterned SH/hydrophilic channels could induce mixing in microchannels and enable development of microflow control elements. Acknowledgements This work was funded by Sandia National Laboratory's Laboratory Directed Research & Development program (LDRD). Some coating processes were conducted in the cleanroom facility located at the University of New Mexico's Center for High Technology Materials (CHTM). SEM images were performed at UNM's Center for Micro-Engineering on equipment funded by a NSF New Mexico EPSCoR grant. 4

  7. Characterization of a novel weak interaction between MUC1 and Src-SH3 using nuclear magnetic resonance spectroscopy

    SciTech Connect (OSTI)

    Gunasekara, Nirosha; Sykes, Brian; Hugh, Judith

    2012-05-18

    Highlights: Black-Right-Pointing-Pointer MUC1 binds the Src-SH3 domain potentially triggering Src dependent cell migration. Black-Right-Pointing-Pointer NMR Spectroscopy was used to monitor MUC1-CD and Src SH3 domain titrations. Black-Right-Pointing-Pointer MUC1-CD peptides bind with a low affinity (K{sub d} of 2-3 mM) to a non-canonical site. Black-Right-Pointing-Pointer Weak interactions may mediate dynamic processes like migration. Black-Right-Pointing-Pointer The MUC1-CD and Src-SH3 interaction may be a prime target to inhibit cell migration. -- Abstract: Breast cancer causes death through cancer cell migration and subsequent metastasis to distant organs. In vitro, the MUC1 mucin can mediate breast cancer cell migration by binding to intercellular adhesion molecule-1 (ICAM-1). This migration is dependent on MUC1 cytoplasmic domain (MUC1-CD) activation of the non-receptor tyrosine kinase, Src, possibly through competitive displacement of an inhibitory Src intramolecular SH3 binding. Therefore, we characterized the binding site and affinity of the MUC1-CD for Src-SH3 using multidimensional nuclear magnetic resonance (NMR) spectroscopy to monitor the titration of the {sup 15}N labeled Src-SH3 domain with synthetic native and mutant peptides of MUC1-CD. The results revealed that the dissociation constant (K{sub d}) for the interaction of the native MUC1-CD peptides and Src-SH3 domain was weak with a K{sub d} of 2-3 mM. Notably, the SH3 residues most perturbed upon peptide binding were located outside the usual hydrophobic binding cleft in a previously described alternate binding site on the Src-SH3, suggesting that MUC1-CD binds to a non-canonical site. The binding characteristics outlined here suggest that the interaction between Src-SH3 and MUC1-CD represents a novel weak electrostatic interaction of the type which is increasingly recognized as important in transient and dynamic protein complexes required for cell migration and signal transduction. As such, this study forms the foundation for the design of specific inhibitors of this interaction which may target breast cancer metastases with exquisite specificity.

  8. Friction behavior of a multi-interface system and improved performance by AlMgB14–TiB2–C and diamond-like-carbon coatings

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Qu, Jun; Blau, Peter J.; Higdon, Clifton; Cook, Bruce A.

    2016-03-29

    We investigated friction behavior of a bearing system with two interfaces involved: a roller component experiencing rolling–sliding interaction against twin cylinders under point contacts while simultaneously undergoing pure sliding interaction against a socket under a conformal contact. Lubrication modeling predicted a strong correlation between the roller's rolling condition and the system's friction behavior. Experimental observations first validated the analytical predictions using steel and iron components. Diamond-like-carbon (DLC) coating and AlMgB14–TiB2 coating with a carbon topcoat (BAMC) were then applied to the roller and twin cylinders, respectively. In conclusion, testing and analysis results suggest that the coatings effectively decreased the slipmore » ratio for the roller–cylinder contact and the sliding friction at both bearing interfaces and, as a result, significantly reduced the system frictional torque.« less

  9. COATED ALLOYS

    DOE Patents [OSTI]

    Harman, C.G.; O'Bannon, L.S.

    1958-07-15

    A coating is described for iron group metals and alloys, that is particularly suitable for use with nickel containing alloys. The coating is glassy in nature and consists of a mixture containing an alkali metal oxide, strontium oxide, and silicon oxide. When the glass coated nickel base metal is"fired'' at less than the melting point of the coating, it appears the nlckel diffuses into the vitreous coating, thus providing a closely adherent and protective cladding.

  10. Aluminide coatings

    DOE Patents [OSTI]

    Henager, Jr; Charles, H [Kennewick, WA; Shin, Yongsoon [Richland, WA; Samuels, William D [Richland, WA

    2009-08-18

    Disclosed herein are aluminide coatings. In one embodiment coatings are used as a barrier coating to protect a metal substrate, such as a steel or a superalloy, from various chemical environments, including oxidizing, reducing and/or sulfidizing conditions. In addition, the disclosed coatings can be used, for example, to prevent the substantial diffusion of various elements, such as chromium, at elevated service temperatures. Related methods for preparing protective coatings on metal substrates are also described.

  11. Insights into substrate specificity of NlpC/P60 cell wall hydrolases containing bacterial SH3 domains

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Xu, Qingping; Mengin-Lecreulx, Dominique; Liu, Xueqian W.; Patin, Delphine; Farr, Carol L.; Grant, Joanna C.; Chiu, Hsiu -Ju; Jaroszewski, Lukasz; Knuth, Mark W.; Godzik, Adam; et al

    2015-09-15

    Bacterial SH3 (SH3b) domains are commonly fused with papain-like Nlp/P60 cell wall hydrolase domains. To understand how the modular architecture of SH3b and NlpC/P60 affects the activity of the catalytic domain, three putative NlpC/P60 cell wall hydrolases were biochemically and structurally characterized. In addition, these enzymes all have γ-d-Glu-A2pm (A2pm is diaminopimelic acid) cysteine amidase (ordl-endopeptidase) activities but with different substrate specificities. One enzyme is a cell wall lysin that cleaves peptidoglycan (PG), while the other two are cell wall recycling enzymes that only cleave stem peptides with an N-terminall-Ala. Their crystal structures revealed a highly conserved structure consisting ofmore » two SH3b domains and a C-terminal NlpC/P60 catalytic domain, despite very low sequence identity. Interestingly, loops from the first SH3b domain dock into the ends of the active site groove of the catalytic domain, remodel the substrate binding site, and modulate substrate specificity. Two amino acid differences at the domain interface alter the substrate binding specificity in favor of stem peptides in recycling enzymes, whereas the SH3b domain may extend the peptidoglycan binding surface in the cell wall lysins. Remarkably, the cell wall lysin can be converted into a recycling enzyme with a single mutation.Peptidoglycan is a meshlike polymer that envelops the bacterial plasma membrane and bestows structural integrity. Cell wall lysins and recycling enzymes are part of a set of lytic enzymes that target covalent bonds connecting the amino acid and amino sugar building blocks of the PG network. These hydrolases are involved in processes such as cell growth and division, autolysis, invasion, and PG turnover and recycling. To avoid cleavage of unintended substrates, these enzymes have very selective substrate specificities. Our biochemical and structural analysis of three modular NlpC/P60 hydrolases, one lysin, and two recycling enzymes, show that they may have evolved from a common molecular architecture, where the substrate preference is modulated by local changes. These results also suggest that new pathways for recycling PG turnover products, such as tracheal cytotoxin, may have evolved in bacteria in the human gut microbiome that involve NlpC/P60 cell wall hydrolases.« less

  12. Insights into substrate specificity of NlpC/P60 cell wall hydrolases containing bacterial SH3 domains

    SciTech Connect (OSTI)

    Xu, Qingping; Mengin-Lecreulx, Dominique; Liu, Xueqian W.; Patin, Delphine; Farr, Carol L.; Grant, Joanna C.; Chiu, Hsiu -Ju; Jaroszewski, Lukasz; Knuth, Mark W.; Godzik, Adam; Lesley, Scott A.; Elsliger, Marc -André; Deacon, Ashley M.; Wilson, Ian A.

    2015-09-15

    Bacterial SH3 (SH3b) domains are commonly fused with papain-like Nlp/P60 cell wall hydrolase domains. To understand how the modular architecture of SH3b and NlpC/P60 affects the activity of the catalytic domain, three putative NlpC/P60 cell wall hydrolases were biochemically and structurally characterized. In addition, these enzymes all have γ-d-Glu-A2pm (A2pm is diaminopimelic acid) cysteine amidase (ordl-endopeptidase) activities but with different substrate specificities. One enzyme is a cell wall lysin that cleaves peptidoglycan (PG), while the other two are cell wall recycling enzymes that only cleave stem peptides with an N-terminall-Ala. Their crystal structures revealed a highly conserved structure consisting of two SH3b domains and a C-terminal NlpC/P60 catalytic domain, despite very low sequence identity. Interestingly, loops from the first SH3b domain dock into the ends of the active site groove of the catalytic domain, remodel the substrate binding site, and modulate substrate specificity. Two amino acid differences at the domain interface alter the substrate binding specificity in favor of stem peptides in recycling enzymes, whereas the SH3b domain may extend the peptidoglycan binding surface in the cell wall lysins. Remarkably, the cell wall lysin can be converted into a recycling enzyme with a single mutation.

    Peptidoglycan is a meshlike polymer that envelops the bacterial plasma membrane and bestows structural integrity. Cell wall lysins and recycling enzymes are part of a set of lytic enzymes that target covalent bonds connecting the amino acid and amino sugar building blocks of the PG network. These hydrolases are involved in processes such as cell growth and division, autolysis, invasion, and PG turnover and recycling. To avoid cleavage of unintended substrates, these enzymes have very selective substrate specificities. Our biochemical and structural analysis of three modular NlpC/P60 hydrolases, one lysin, and two recycling enzymes, show that they may have evolved from a common molecular architecture, where the substrate preference is modulated by local changes. These results also suggest that new pathways for recycling PG turnover products, such as tracheal cytotoxin, may have evolved in bacteria in the human gut microbiome that involve NlpC/P60 cell wall hydrolases.

  13. Superhydrophobic Coatings - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Wind Energy Wind Energy Startup America Startup America Solar Photovoltaic Solar Photovoltaic Industrial Technologies Industrial Technologies Advanced Materials Advanced Materials Find More Like This Return to Search Superhydrophobic Coatings Oak Ridge National Laboratory Contact ORNL About This Technology Publications: PDF Document Publication Sea Water Desalination using Superhydrophobic Coatings.pdf (852 KB) Technology Marketing SummaryORNL researchers have developed a variety of materials

  14. Solar Selective Absorption Coatings - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Solar Thermal Solar Thermal Solar Photovoltaic Solar Photovoltaic Find More Like This Return to Search Solar Selective Absorption Coatings Sandia National Laboratories Contact SNL ...

  15. polyurethane foam Goods, S.H.; Neuschwanger, C.L.; Henderson...

    Office of Scientific and Technical Information (OSTI)

    Mechanical properties and energy absorption characteristics of a polyurethane foam Goods, S.H.; Neuschwanger, C.L.; Henderson, C.; Skala, D.M. 36 MATERIALS SCIENCE; FOAMS;...

  16. ITP Nanomanufacturing: Nanostructured Superhydrophobic Coatings

    Broader source: Energy.gov [DOE]

    Large-scale Implementation of Nanostructured Superhydrophobic (SH) Powders for Breakthrough Energy Savings

  17. LAKESHORE AVON BR ANT-EDEN ALD EN-LANC ASTER AU BURN W SH ELDON

    U.S. Energy Information Administration (EIA) Indexed Site

    81 81 LAKESHORE AVON BR ANT-EDEN ALD EN-LANC ASTER AU BURN W SH ELDON CALEDONIA HURON C REEK LEIC EST ER COL DEN ASH FORD INDIAN FALLS LAWTONS SAR DINIA RPD-037 -2 ...

  18. COATING METHOD

    DOE Patents [OSTI]

    Townsend, R.G.

    1959-08-25

    A method is described for protectively coating beryllium metal by etching the metal in an acid bath, immersing the etched beryllium in a solution of sodium zincate for a brief period of time, immersing the beryllium in concentrated nitric acid, immersing the beryhlium in a second solution of sodium zincate, electroplating a thin layer of copper over the beryllium, and finally electroplating a layer of chromium over the copper layer.

  19. Deposition of Graded Thermal Barrier Coatings for Gas Turbine...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Find More Like This Return to Search Deposition of Graded Thermal Barrier Coatings for Gas Turbine Blades Sandia National Laboratories Contact SNL About This Technology ...

  20. NICKEL COATED URANIUM ARTICLE

    DOE Patents [OSTI]

    Gray, A.G.

    1958-10-01

    Nickel coatings on uranium and various methods of obtaining such coatings are described. Specifically disclosed are such nickel or nickel alloy layers as barriers between uranium and aluminum- silicon, chromium, or copper coatings.

  1. Structure of the SH3 domain of human osteoclast-stimulating factor at atomic resolution

    SciTech Connect (OSTI)

    Chen, Liqing Wang, Yujun; Wells, David; Toh, Diana; Harold, Hunt; Zhou, Jing; DiGiammarino, Enrico; Meehan, Edward J.

    2006-09-01

    The crystal structure of the SH3 domain of human osteoclast-stimulating factor has been determined and refined to the ultrahigh resolution of 1.07 . The structure at atomic resolution provides an accurate framework for structure-based design of its inhibitors. Osteoclast-stimulating factor (OSF) is an intracellular signaling protein, produced by osteoclasts themselves, that enhances osteoclast formation and bone resorption. It is thought to act via an Src-related signaling pathway and contains SH3 and ankyrin-repeat domains which are involved in proteinprotein interactions. As part of a structure-based anti-bone-loss drug-design program, the atomic resolution X-ray structure of the recombinant human OSF SH3 domain (hOSF-SH3) has been determined. The domain, residues 1272, yielded crystals that diffracted to the ultrahigh resolution of 1.07 . The overall structure shows a characteristic SH3 fold consisting of two perpendicular ?-sheets that form a ?-barrel. Structure-based sequence alignment reveals that the putative proline-rich peptide-binding site of hOSF-SH3 consists of (i) residues that are highly conserved in the SH3-domain family, including residues Tyr21, Phe23, Trp49, Pro62, Asn64 and Tyr65, and (ii) residues that are less conserved and/or even specific to hOSF, including Thr22, Arg26, Thr27, Glu30, Asp46, Thr47, Asn48 and Leu60, which might be key to designing specific inhibitors for hOSF to fight osteoporosis and related bone-loss diseases. There are a total of 13 well defined water molecules forming hydrogen bonds with the above residues in and around the peptide-binding pocket. Some of those water molecules might be important for drug-design approaches. The hOSF-SH3 structure at atomic resolution provides an accurate framework for structure-based design of its inhibitors.

  2. Ectopic expression of anti-HIV-1 shRNAs protects CD8{sup +} T cells

    Office of Scientific and Technical Information (OSTI)

    modified with CD4ζ CAR from HIV-1 infection and alleviates impairment of cell proliferation (Journal Article) | SciTech Connect Ectopic expression of anti-HIV-1 shRNAs protects CD8{sup +} T cells modified with CD4ζ CAR from HIV-1 infection and alleviates impairment of cell proliferation Citation Details In-Document Search Title: Ectopic expression of anti-HIV-1 shRNAs protects CD8{sup +} T cells modified with CD4ζ CAR from HIV-1 infection and alleviates impairment of cell proliferation

  3. Corrosion resistant coating

    DOE Patents [OSTI]

    Wrobleski, D.A.; Benicewicz, B.C.; Thompson, K.G.; Bryan, C.J.

    1997-08-19

    A method of protecting a metal substrate from corrosion including coating a metal substrate of, e.g., steel, iron or aluminum, with a conductive polymer layer of, e.g., polyaniline, coating upon said metal substrate, and coating the conductive polymer-coated metal substrate with a layer of a topcoat upon the conductive polymer coating layer, is provided, together with the resultant coated article from said method.

  4. Corrosion resistant coating

    DOE Patents [OSTI]

    Wrobleski, Debra A.; Benicewicz, Brian C.; Thompson, Karen G.; Bryan, Coleman J.

    1997-01-01

    A method of protecting a metal substrate from corrosion including coating a metal substrate of, e.g., steel, iron or aluminum, with a conductive polymer layer of, e.g., polyaniline, coating upon said metal substrate, and coating the conductive polymer-coated metal substrate with a layer of a topcoat upon the conductive polymer coating layer, is provided, together with the resultant coated article from said method.

  5. ITP Nanomanufacturing: Nanostructured Superhydrophobic Coatings...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Nanomanufacturing: Nanostructured Superhydrophobic Coatings ITP Nanomanufacturing: Nanostructured Superhydrophobic Coatings nanostructuredsuperhydrophobiccoatings.pdf More...

  6. Targeting the SH2-Kinase Interface in Bcr-Abl Inhibits Leukemogenesis

    SciTech Connect (OSTI)

    Grebien, Florian; Hantschel, Oliver; Wojcik, John; Kaupe, Ines; Kovacic, Boris; Wyrzucki, Arkadiusz M.; Gish, Gerald D.; Cerny-Reiterer, Sabine; Koide, Akiko; Beug, Hartmut; Pawson, Tony; Valent, Peter; Koide, Shohei; Superti-Furga, Giulio

    2012-10-25

    Chronic myelogenous leukemia (CML) is caused by the constitutively active tyrosine kinase Bcr-Abl and treated with the tyrosine kinase inhibitor (TKI) imatinib. However, emerging TKI resistance prevents complete cure. Therefore, alternative strategies targeting regulatory modules of Bcr-Abl in addition to the kinase active site are strongly desirable. Here, we show that an intramolecular interaction between the SH2 and kinase domains in Bcr-Abl is both necessary and sufficient for high catalytic activity of the enzyme. Disruption of this interface led to inhibition of downstream events critical for CML signaling and, importantly, completely abolished leukemia formation in mice. Furthermore, disruption of the SH2-kinase interface increased sensitivity of imatinib-resistant Bcr-Abl mutants to TKI inhibition. An engineered Abl SH2-binding fibronectin type III monobody inhibited Bcr-Abl kinase activity both in vitro and in primary CML cells, where it induced apoptosis. This work validates the SH2-kinase interface as an allosteric target for therapeutic intervention.

  7. The insensitivity of reflected sh waves to anisotropy in an underlaying layered medium

    SciTech Connect (OSTI)

    Schoenberg, M.; Costa, J. )

    1991-11-01

    This paper reports on propagation in the plane of mirror symmetry of a monoclinic medium, with displacement normal to the plane which is the most general circumstance in anisotropic media for which pure shear-wave propagation can occur at all angles. Because the pure shear mode is uncoupled from the other two modes, its slowness surface in the plane is an ellipse. When the mirror symmetry plane is vertical the pure shear waves in this plane are SH waves and the elliptical SH sheet of the slowness surface is, in general, tilted with respect to the vertical axis. Consider a half-space of such a monoclinic medium, called medium M, overlain by a halfspace of isotropic medium I with plane SH waves incident on medium M propagating in the vertical symmetry plane of M. Contrary to the appearance of a lack of symmetry about the vertical axis due to the tilt of the SH-wave slowness ellipse, the reflection and transmission coefficients are symmetrical functions of the angle of incidence, and further, there exists an isotropic medium E with uniquely determined density and shear speed which gives exactly the same reflection and transmission coefficients underlying medium I as does monoclinic medium M. This means that the underlying monoclinic medium M can be replaced by isotropic medium E without changing the reflection and transmission coefficients for all values of the angle of incidence.

  8. Electrocurtain coating process for coating solar mirrors

    DOE Patents [OSTI]

    Kabagambe, Benjamin; Boyd, Donald W.; Buchanan, Michael J.; Kelly, Patrick; Kutilek, Luke A.; McCamy, James W.; McPheron, Douglas A.; Orosz, Gary R.; Limbacher, Raymond D.

    2013-10-15

    An electrically conductive protective coating or film is provided over the surface of a reflective coating of a solar mirror by flowing or directing a cation containing liquid and an anion containing liquid onto the conductive surface. The cation and the anion containing liquids are spaced from, and preferably out of contact with one another on the surface of the reflective coating as an electric current is moved through the anion containing liquid, the conductive surface between the liquids and the cation containing liquid to coat the conductive surface with the electrically conductive coating.

  9. SITEWIDE ENVIRONMENTAL ASSESSMENT EA-1008

    Energy Savers [EERE]

    SH Coatings LP America's Next Top Energy Innovator Challenge 10147 likes SH Coatings LP Oak Ridge National Laboratory SH Coating protects power lines from inclement weather as well as contamination from salt deposits that often cause flashovers in coastal environments. The coating can be applied to existing power lines and equipment in any field condition. The most important application is coating power lines in ice storm threatened areas. Power lines coated with SHC prevent the ice build-up

  10. Flow coating apparatus and method of coating

    DOE Patents [OSTI]

    Hanumanthu, Ramasubrahmaniam; Neyman, Patrick; MacDonald, Niles; Brophy, Brenor; Kopczynski, Kevin; Nair, Wood

    2014-03-11

    Disclosed is a flow coating apparatus, comprising a slot that can dispense a coating material in an approximately uniform manner along a distribution blade that increases uniformity by means of surface tension and transfers the uniform flow of coating material onto an inclined substrate such as for example glass, solar panels, windows or part of an electronic display. Also disclosed is a method of flow coating a substrate using the apparatus such that the substrate is positioned correctly relative to the distribution blade, a pre-wetting step is completed where both the blade and substrate are completed wetted with a pre-wet solution prior to dispensing of the coating material onto the distribution blade from the slot and hence onto the substrate. Thereafter the substrate is removed from the distribution blade and allowed to dry, thereby forming a coating.

  11. Apparatus for coating powders

    DOE Patents [OSTI]

    Makowiecki, Daniel M.; Kerns, John A.; Alford, Craig S.; McKernan, Mark A.

    2000-01-01

    A process and apparatus for coating small particles and fibers. The process involves agitation by vibrating or tumbling the particles or fibers to promote coating uniformly, removing adsorbed gases and static charges from the particles or fibers by an initial plasma cleaning, and coating the particles or fibers with one or more coatings, a first coating being an adhesion coating, and with subsequent coatings being deposited in-situ to prevent contamination at layer interfaces. The first coating is of an adhesion forming element (i.e. W, Zr, Re, Cr, Ti) of a 100-10,000 .ANG. thickness and the second coating or final coating of a multiple (0.1-10 microns) being Cu or Ag, for example for brazing processes, or other desired materials that defines the new surface related properties of the particles. An essential feature of the coating process is the capability to deposit in-situ without interruption to prevent the formation of a contaminated interface that could adversely affect the coating adhesion. The process may include screening of the material to be coated and either continuous or intermittent vibration to prevent agglomeration of the material to be coated.

  12. Superhydrophobic Coating for Evaporative Purification and Minerals

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Extraction - Energy Innovation Portal Energy Storage Energy Storage Early Stage R&D Early Stage R&D Advanced Materials Advanced Materials Find More Like This Return to Search Superhydrophobic Coating for Evaporative Purification and Minerals Extraction Oak Ridge National Laboratory Contact ORNL About This Technology Publications: PDF Document Publication 12-G00204_2744_2400.pdf (845 KB) Technology Marketing SummaryResearchers at ORNL are using their superhydrophobic coating

  13. Pedestal substrate for coated optics

    DOE Patents [OSTI]

    Hale, Layton C.; Malsbury, Terry N.; Patterson, Steven R.

    2001-01-01

    A pedestal optical substrate that simultaneously provides high substrate dynamic stiffness, provides low surface figure sensitivity to mechanical mounting hardware inputs, and constrains surface figure changes caused by optical coatings to be primarily spherical in nature. The pedestal optical substrate includes a disk-like optic or substrate section having a top surface that is coated, a disk-like base section that provides location at which the substrate can be mounted, and a connecting cylindrical section between the base and optics or substrate sections. The connecting cylindrical section may be attached via three spaced legs or members. However, the pedestal optical substrate can be manufactured from a solid piece of material to form a monolith, thus avoiding joints between the sections, or the disk-like base can be formed separately and connected to the connecting section. By way of example, the pedestal optical substrate may be utilized in the fabrication of optics for an extreme ultraviolet (EUV) lithography imaging system, or in any optical system requiring coated optics and substrates with reduced sensitivity to mechanical mounts.

  14. Microsoft Word - CU-ShEEP Information Exchange Webinar_Venayagamoorthy.docx

    Energy Savers [EERE]

    CSATCourseCatalog_02.doc Microsoft Word - CSATCourseCatalog_02.doc classroom-1008856_960_720.jpg PDF icon Microsoft Word - CSATCourseCatalog_02.doc More Documents & Publications CSAT Course Catalog Headquarters Facilities Master Security Plan - Chapter 17, Headquarters Security Officer Program Headquarters Facilities Master Security Plan - Chapter 8, Operations Security Program

    DE-OE0000660 Page 1 of 3 Project Title: CU-ShEEP Clemson University's Synchrophasor Engineering Education

  15. Technical Qualification Program Self-Assessment Report- NA-SH- 2013

    Broader source: Energy.gov [DOE]

    The Office of the Associate Administrator for Safety and Health (NA-SH) TQP applies to those personnel who oversee defense nuclear facilities, to support the mission of NNSA. The requirement for this SA comes from DOE O 426.1A that states "Headquarters and Field Elements must conduct self-assessment of TQP and FTCP implementation within their organization at least every 4 years."

  16. METHOD FOR TESTING COATINGS

    DOE Patents [OSTI]

    Johns, I.B.; Newton, A.S.

    1958-09-01

    A method is described for detecting pin hole imperfections in coatings on uranium-metal objects. Such coated objects are contacted with a heated atmosphere of gaseous hydrogen and imperfections present in the coatings will allow the uranlum to react with the hydrogen to form uranium hydride. Since uranium hydride is less dense than uranium metal it will swell, causing enlargement of the coating defeot and rendering it visible.

  17. Spin coating of electrolytes

    DOE Patents [OSTI]

    Stetter, Joseph R.; Maclay, G. Jordan

    1989-01-01

    Methods for spin coating electrolytic materials onto substrates are disclosed. More particularly, methods for depositing solid coatings of ion-conducting material onto planar substrates and onto electrodes are disclosed. These spin coating methods are employed to fabricate electrochemical sensors for use in measuring, detecting and quantifying gases and liquids.

  18. Antibacterial polymer coatings.

    SciTech Connect (OSTI)

    Wilson, Mollye C.; Allen, Ashley N.; Barnhart, Meghan; Tucker, Mark David; Hibbs, Michael R.

    2009-09-01

    A series of poly(sulfone)s with quaternary ammonium groups and another series with aldehyde groups are synthesized and tested for biocidal activity against vegetative bacteria and spores, respectively. The polymers are sprayed onto substrates as coatings which are then exposed to aqueous suspensions of organisms. The coatings are inherently biocidal and do not release any agents into the environment. The coatings adhere well to both glass and CARC-coated coupons and they exhibit significant biotoxicity. The most effective quaternary ammonium polymers kills 99.9% of both gram negative and gram positive bacteria and the best aldehyde coating kills 81% of the spores on its surface.

  19. Preparation and characterization of beryllium coatings

    SciTech Connect (OSTI)

    Dua, A.K.; Agarwala, R.P.; Desai, P.B.

    1985-11-01

    The application of low Z coatings on various structurally strong components of a controlled thermonuclear tokamak fusion reactor is expected to reduce the plasma contamination and power loss. With this view, coatings of beryllium have been given on different substrates like (304 and 316) stainless steel, monel-400, molybdenum, copper, and graphite in a specially designed vacuum deposition unit employing physical vapor deposition technique, and its morphology studied as a function of deposition parameters such as substrate temperature, coating thickness, deposition rate, and angle of deposition. It has been characterized using various analytical techniques. Its morphology has been studied with the help of a scanning electron microscope. Coating adherence and hardness have been measured. Results obtained have been analyzed and discussed.

  20. Superhydrophobic powder additives to enhance chemical agent resistant coating systems for military equipment for the U.S. Marine Corps (USMC) Corrosion Prevention and Control (CPAC) Program

    SciTech Connect (OSTI)

    Pawel, Steven J.; Armstrong, Beth L.; Haynes, James A.

    2015-07-01

    The primary goal of the CPAC program at ORNL was to explore the feasibility of introducing various silica-based superhydrophobic (SH) powder additives as a way to improve the corrosion resistance of US Department of Defense (DOD) military-grade chemical agent resistant coating (CARC) systems. ORNL had previously developed and patented several SH technologies of interest to the USMC, and one of the objectives of this program was to identify methods to incorporate these technologies into the USMC’s corrosion-resistance strategy. This report discusses findings of the CPAC and their application.

  1. LAKESHORE AVON BR ANT-EDEN ALD EN-LANC ASTER AU BURN W SH ELDON

    U.S. Energy Information Administration (EIA) Indexed Site

    81 § ¨ ¦ 81 LAKESHORE AVON BR ANT-EDEN ALD EN-LANC ASTER AU BURN W SH ELDON CALEDONIA HURON C REEK LEIC EST ER COL DEN ASH FORD INDIAN FALLS LAWTONS SAR DINIA RPD-037 -2 GLENWOOD PU LASKI PAVILION CON CORD COL LINS N ELM A ORC HARD PARK-H AMBU RG DANLEY CORNERS ST ILLWAT ER CHAFF EE-ARCAD E FAYETT E-WATERLOO LAKEVIEW JAVA SEN EC A W ELLER Y AU RORA E ZOAR BU FFALO TIOGA SILVER LAKE AKR ON ROM E RAT HBON E ALM A BET HANY WYOMING ULYSSES BR ANCH W SAN DY CREEK COL LINS BLOOMFIELD E LEBANON

  2. Coating Surfaces with Superhydrophobic Powder - Energy Innovation...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    to superhydrophobic, anti-corrosion, anti-icing, and antibacterial coatings.Benefits ... Applications and Industries Marine coatings Torpedo coatings Anti-icing coatings ...

  3. Solar selective absorption coatings

    DOE Patents [OSTI]

    Mahoney, Alan R.; Reed, Scott T.; Ashley, Carol S.; Martinez, F. Edward

    2004-08-31

    A new class of solar selective absorption coatings are disclosed. These coatings comprise a structured metallic overlayer such that the overlayer has a sub-micron structure designed to efficiently absorb solar radiation, while retaining low thermal emissivity for infrared thermal radiation. A sol-gel layer protects the structured metallic overlayer from mechanical, thermal, and environmental degradation. Processes for producing such solar selective absorption coatings are also disclosed.

  4. Solar selective absorption coatings

    DOE Patents [OSTI]

    Mahoney, Alan R.; Reed, Scott T.; Ashley, Carol S.; Martinez, F. Edward

    2003-10-14

    A new class of solar selective absorption coatings are disclosed. These coatings comprise a structured metallic overlayer such that the overlayer has a sub-micron structure designed to efficiently absorb solar radiation, while retaining low thermal emissivity for infrared thermal radiation. A sol-gel layer protects the structured metallic overlayer from mechanical, thermal, and environmental degradation. Processes for producing such solar selective absorption coatings are also disclosed.

  5. COPPER COATED URANIUM ARTICLE

    DOE Patents [OSTI]

    Gray, A.G.

    1958-10-01

    Various techniques and methods for obtaining coppercoated uranium are given. Specifically disclosed are a group of complex uranium coatings having successive layers of nickel, copper, lead, and tin.

  6. Zinc phosphate conversion coatings

    DOE Patents [OSTI]

    Sugama, Toshifumi

    1997-01-01

    Zinc phosphate conversion coatings for producing metals which exhibit enhanced corrosion prevention characteristics are prepared by the addition of a transition-metal-compound promoter comprising a manganese, iron, cobalt, nickel, or copper compound and an electrolyte such as polyacrylic acid, polymethacrylic acid, polyitaconic acid and poly-L-glutamic acid to a phosphating solution. These coatings are further improved by the incorporation of Fe ions. Thermal treatment of zinc phosphate coatings to generate .alpha.-phase anhydrous zinc phosphate improves the corrosion prevention qualities of the resulting coated metal.

  7. Zinc phosphate conversion coatings

    DOE Patents [OSTI]

    Sugama, T.

    1997-02-18

    Zinc phosphate conversion coatings for producing metals which exhibit enhanced corrosion prevention characteristics are prepared by the addition of a transition-metal-compound promoter comprising a manganese, iron, cobalt, nickel, or copper compound and an electrolyte such as polyacrylic acid, polymethacrylic acid, polyitaconic acid and poly-L-glutamic acid to a phosphating solution. These coatings are further improved by the incorporation of Fe ions. Thermal treatment of zinc phosphate coatings to generate {alpha}-phase anhydrous zinc phosphate improves the corrosion prevention qualities of the resulting coated metal. 33 figs.

  8. Spray-on anti-soiling coatings that exhibit high transparency and mechanical durability

    SciTech Connect (OSTI)

    Schaeffer, Daniel A; Polyzos, Georgios; Smith, Barton; Lee, Dominic F; Rajic, Slobodan; Datskos, Panos G; Hunter, Scott Robert

    2014-01-01

    A superhydrophobic (SH) surface has many characteristics, one of which is its self-cleaning, anti-soiling functionality, that are desirable across various industries. A transparent, self-cleaning surface utilizes the right combination of surface chemistry and roughness that force water droplets to form high water contact angles (CA). This in turn allows droplets to easily roll off and pick up dirt and debris across the surface. In theory this is simple but in practice this can be very difficult as superhydrophobicity and optical transparency are competitive. We have developed a simple, spray-on coating based on functionalized SiO2 nanoparticles that can easily be applied to surfaces whose application requires high transparency including, but not limited to, optical sensors, photovoltaics, sights, and lenses. In addition, these coatings exhibit practical mechanical and environmental durability that allow prolonged use of the coatings in harsh environments.

  9. Architecture for coated conductors (Patent) | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    Patent: Architecture for coated conductors Citation Details In-Document Search Title: Architecture for coated conductors Articles are provided including a base substrate having a layer of an oriented cubic oxide material with a rock-salt-like structure layer thereon, and, a layer of epitaxial titanium nitride upon the layer of an oriented cubic oxide material having a rock-salt-like structure. Such articles can further include thin films of high temperature superconductive oxides such as YBCO

  10. Thermal barrier coating

    DOE Patents [OSTI]

    Bowker, Jeffrey Charles; Sabol, Stephen M.; Goedjen, John G.

    2001-01-01

    A thermal barrier coating for hot gas path components of a combustion turbine based on a zirconia-scandia system. A layer of zirconium scandate having the hexagonal Zr.sub.3 Sc.sub.4 O.sub.12 structure is formed directly on a superalloy substrate or on a bond coat formed on the substrate.

  11. Coated ceramic breeder materials

    DOE Patents [OSTI]

    Tam, Shiu-Wing; Johnson, Carl E.

    1987-01-01

    A breeder material for use in a breeder blanket of a nuclear reactor is disclosed. The breeder material comprises a core material of lithium containing ceramic particles which has been coated with a neutron multiplier such as Be or BeO, which coating has a higher thermal conductivity than the core material.

  12. Catalytic thermal barrier coatings

    DOE Patents [OSTI]

    Kulkarni, Anand A.; Campbell, Christian X.; Subramanian, Ramesh

    2009-06-02

    A catalyst element (30) for high temperature applications such as a gas turbine engine. The catalyst element includes a metal substrate such as a tube (32) having a layer of ceramic thermal barrier coating material (34) disposed on the substrate for thermally insulating the metal substrate from a high temperature fuel/air mixture. The ceramic thermal barrier coating material is formed of a crystal structure populated with base elements but with selected sites of the crystal structure being populated by substitute ions selected to allow the ceramic thermal barrier coating material to catalytically react the fuel-air mixture at a higher rate than would the base compound without the ionic substitutions. Precious metal crystallites may be disposed within the crystal structure to allow the ceramic thermal barrier coating material to catalytically react the fuel-air mixture at a lower light-off temperature than would the ceramic thermal barrier coating material without the precious metal crystallites.

  13. Thermal barrier coatings

    DOE Patents [OSTI]

    Alvin, Mary Anne

    2010-06-22

    This disclosure addresses the issue of providing a metallic-ceramic overlay coating that potentially serves as an interface or bond coat layer to provide enhanced oxidation resistance to the underlying superalloy substrate via the formation of a diffusion barrier regime within the supporting base material. Furthermore, the metallic-ceramic coating is expected to limit the growth of a continuous thermally grown oxide (TGO) layer that has been primarily considered to be the principal cause for failure of existing TBC systems. Compositional compatibility of the metallic-ceramic with traditional yttria-stabilized zirconia (YSZ) top coats is provided to further limit debond or spallation of the coating during operational use. A metallic-ceramic architecture is disclosed wherein enhanced oxidation resistance is imparted to the surface of nickel-based superalloy or single crystal metal substrate, with simultaneous integration of the yttria stabilized zirconia (YSZ) within the metallic-ceramic overlayer.

  14. Nanolens Window Coatings for Daylighting

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    approach for rapid progress. Key Issues: * High coating performance for light redirection (30-60% light redirection) * Broad wavelength coating response * Scalability and ...

  15. COATING URANIUM FROM CARBONYLS

    DOE Patents [OSTI]

    Gurinsky, D.H.; Storrs, S.S.

    1959-07-14

    Methods are described for making adherent corrosion resistant coatings on uranium metal. According to the invention, the uranium metal is heated in the presence of an organometallic compound such as the carbonyls of nickel, molybdenum, chromium, niobium, and tungsten at a temperature sufficient to decompose the metal carbonyl and dry plate the resultant free metal on the surface of the uranium metal body. The metal coated body is then further heated at a higher temperature to thermally diffuse the coating metal within the uranium bcdy.

  16. Multilayer optical dielectric coating

    DOE Patents [OSTI]

    Emmett, John L.

    1990-01-01

    A highly damage resistant, multilayer, optical reflective coating includes alternating layers of doped and undoped dielectric material. The doping levels are low enough that there are no distinct interfaces between the doped and undoped layers so that the coating has properties nearly identical to the undoped material. The coating is fabricated at high temperature with plasma-assisted chemical vapor deposition techniques to eliminate defects, reduce energy-absorption sites, and maintain proper chemical stoichiometry. A number of differently-doped layer pairs, each layer having a thickness equal to one-quarter of a predetermined wavelength in the material are combined to form a narrowband reflective coating for a predetermined wavelength. Broadband reflectors are made by using a number of narrowband reflectors, each covering a portion of the broadband.

  17. Aluminum phosphate coatings

    DOE Patents [OSTI]

    Sambasivan, Sankar; Steiner, Kimberly A.; Rangan, Krishnaswamy K.

    2007-12-25

    Aluminophosphate compounds and compositions as can be used for substrate or composite films and coating to provide or enhance, without limitation, planarization, anti-biofouling and/or anti-microbial properties.

  18. Friction surfaced Stellite6 coatings

    SciTech Connect (OSTI)

    Rao, K. Prasad; Damodaram, R.; Rafi, H. Khalid; Ram, G.D. Janaki; Reddy, G. Madhusudhan; Nagalakshmi, R.

    2012-08-15

    Solid state Stellite6 coatings were deposited on steel substrate by friction surfacing and compared with Stellite6 cast rod and coatings deposited by gas tungsten arc and plasma transferred arc welding processes. Friction surfaced coatings exhibited finer and uniformly distributed carbides and were characterized by the absence of solidification structure and compositional homogeneity compared to cast rod, gas tungsten arc and plasma transferred coatings. Friction surfaced coating showed relatively higher hardness. X-ray diffraction of samples showed only face centered cubic Co peaks while cold worked coating showed hexagonally close packed Co also. - Highlights: Black-Right-Pointing-Pointer Stellite6 used as coating material for friction surfacing. Black-Right-Pointing-Pointer Friction surfaced (FS) coatings compared with casting, GTA and PTA processes. Black-Right-Pointing-Pointer Finer and uniformly distributed carbides in friction surfaced coatings. Black-Right-Pointing-Pointer Absence of melting results compositional homogeneity in FS Stellite6 coatings.

  19. METAL COATING BATHS

    DOE Patents [OSTI]

    Robinson, J.W.

    1958-08-26

    A method is presented for restoring the effectiveness of bronze coating baths used for hot dip coating of uranium. Such baths, containing a high proportion of copper, lose their ability to wet uranium surfaces after a period of use. The ability of such a bath to wet uranium can be restored by adding a small amount of metallic aluminum to the bath, and skimming the resultant hard alloy from the surface.

  20. Spin coating apparatus

    DOE Patents [OSTI]

    Torczynski, John R.

    2000-01-01

    A spin coating apparatus requires less cleanroom air flow than prior spin coating apparatus to minimize cleanroom contamination. A shaped exhaust duct from the spin coater maintains process quality while requiring reduced cleanroom air flow. The exhaust duct can decrease in cross section as it extends from the wafer, minimizing eddy formation. The exhaust duct can conform to entrainment streamlines to minimize eddy formation and reduce interprocess contamination at minimal cleanroom air flow rates.

  1. Ceramic electrolyte coating methods

    DOE Patents [OSTI]

    Seabaugh, Matthew M.; Swartz, Scott L.; Dawson, William J.; McCormick, Buddy E.

    2004-10-12

    Processes for preparing aqueous suspensions of a nanoscale ceramic electrolyte material such as yttrium-stabilized zirconia. The invention also includes a process for preparing an aqueous coating slurry of a nanoscale ceramic electrolyte material. The invention further includes a process for depositing an aqueous spray coating slurry including a ceramic electrolyte material on pre-sintered, partially sintered, and unsintered ceramic substrates and products made by this process.

  2. Multilayer thermal barrier coating systems

    DOE Patents [OSTI]

    Vance, Steven J.; Goedjen, John G.; Sabol, Stephen M.; Sloan, Kelly M.

    2000-01-01

    The present invention generally describes multilayer thermal barrier coating systems and methods of making the multilayer thermal barrier coating systems. The thermal barrier coating systems comprise a first ceramic layer, a second ceramic layer, a thermally grown oxide layer, a metallic bond coating layer and a substrate. The thermal barrier coating systems have improved high temperature thermal and chemical stability for use in gas turbine applications.

  3. Laser ablated hard coating for microtools

    DOE Patents [OSTI]

    McLean, W. II; Balooch, M.; Siekhaus, W.J.

    1998-05-05

    Wear-resistant coatings composed of laser ablated hard carbon films, are deposited by pulsed laser ablation using visible light, on instruments such as microscope tips and micro-surgical tools. Hard carbon, known as diamond-like carbon (DLC), films produced by pulsed laser ablation using visible light enhances the abrasion resistance, wear characteristics, and lifetimes of small tools or instruments, such as small, sharp silicon tips used in atomic probe microscopy without significantly affecting the sharpness or size of these devices. For example, a 10--20 nm layer of diamond-like carbon on a standard silicon atomic force microscope (AFM) tip, enables the useful operating life of the tip to be increased by at least twofold. Moreover, the low inherent friction coefficient of the DLC coating leads to higher resolution for AFM tips operating in the contact mode. 12 figs.

  4. Laser ablated hard coating for microtools

    DOE Patents [OSTI]

    McLean, II, William; Balooch, Mehdi; Siekhaus, Wigbert J.

    1998-05-05

    Wear-resistant coatings composed of laser ablated hard carbon films, are deposited by pulsed laser ablation using visible light, on instruments such as microscope tips and micro-surgical tools. Hard carbon, known as diamond-like carbon (DLC), films produced by pulsed laser ablation using visible light enhances the abrasion resistance, wear characteristics, and lifetimes of small tools or instruments, such as small, sharp silicon tips used in atomic probe microscopy without significantly affecting the sharpness or size of these devices. For example, a 10-20 nm layer of diamond-like carbon on a standard silicon atomic force microscope (AFM) tip, enables the useful operating life of the tip to be increased by at least twofold. Moreover, the low inherent friction coefficient of the DLC coating leads to higher resolution for AFM tips operating in the contact mode.

  5. METHOD OF PROTECTIVELY COATING URANIUM

    DOE Patents [OSTI]

    Eubank, L.D.; Boller, E.R.

    1959-02-01

    A method is described for protectively coating uranium with zine comprising cleaning the U for coating by pickling in concentrated HNO/sub 3/, dipping the cleaned U into a bath of molten zinc between 430 to 600 C and containing less than 0 01% each of Fe and Pb, and withdrawing and cooling to solidify the coating. The zinccoated uranium may be given a; econd coating with another metal niore resistant to the corrosive influences particularly concerned. A coating of Pb containing small proportions of Ag or Sn, or Al containing small proportions of Si may be applied over the zinc coatings by dipping in molten baths of these metals.

  6. RAPID-CURE COATINGS SYSTEM - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Industrial Technologies Industrial Technologies Advanced Materials Advanced Materials Find More Like This Return to Search RAPID-CURE COATINGS SYSTEM Naval Research Laboratory Contact NRL About This Technology Publications: PDF Document Publication MAT14FactSheet (55 KB) Technology Marketing SummaryThe Naval Research Laboratory has developed a durable, rapid cure coatings system that is designed for harsh environments. Developed for the maritime industry, it is suit-able for the interior &

  7. Engine Friction Reduction Through Surface Finish and Coatings | Department

    Broader source: Energy.gov (indexed) [DOE]

    of Energy Opportunities exist for friction reduction in piston rings and valve trains using durable, advanced material technologies, such as diamond-like carbon (DLC) coatings, and new lubricants. PDF icon deer12_gangopadhyay.pdf More Documents & Publications Low-Friction Hard Coatings Vehicle Technologies Office Merit Review 2014: Development of Modified PAG (polyalkylene glycol) High VI High Fuel Efficient Lubricant for LDV Applications Low-Friction Engineered Surfaces

  8. Surface figure control for coated optics

    DOE Patents [OSTI]

    Ray-Chaudhuri, Avijit K.; Spence, Paul A.; Kanouff, Michael P.

    2001-01-01

    A pedestal optical substrate that simultaneously provides high substrate dynamic stiffness, provides low surface figure sensitivity to mechanical mounting hardware inputs, and constrains surface figure changes caused by optical coatings to be primarily spherical in nature. The pedestal optical substrate includes a disk-like optic or substrate section having a top surface that is coated, a disk-like base section that provides location at which the substrate can be mounted, and a connecting cylindrical section between the base and optics or substrate sections. The optic section has an optical section thickness.sup.2 /optical section diameter ratio of between about 5 to 10 mm, and a thickness variation between front and back surfaces of less than about 10%. The connecting cylindrical section may be attached via three spaced legs or members. However, the pedestal optical substrate can be manufactured from a solid piece of material to form a monolith, thus avoiding joints between the sections, or the disk-like base can be formed separately and connected to the connecting section. By way of example, the pedestal optical substrate may be utilized in the fabrication of optics for an extreme ultraviolet (EUV) lithography imaging system, or in any optical system requiring coated optics and substrates with reduced sensitivity to mechanical mounts.

  9. Fiber coating method

    DOE Patents [OSTI]

    Corman, Gregory Scot

    2003-04-15

    A coating is applied to reinforcing fibers arranged into a tow by coaxially aligning the tow with an adjacent separation layer and winding or wrapping the tow and separation layer onto a support structure in an interleaved manner so that the separation layer separates a wrap of the tow from an adjacent wrap of the tow. A coating can then be uniformly applied to the reinforcing fibers without defects caused by fiber tow to fiber tow contact. The separation layer can be a carbon fiber veil.

  10. Fiber coating method

    DOE Patents [OSTI]

    Corman, Gregory Scot

    2001-01-01

    A coating is applied to reinforcing fibers arranged into a tow by coaxially aligning the tow with an adjacent separation layer and winding or wrapping the tow and separation layer onto a support structure in an interleaved manner so that the separation layer separates a wrap of the tow from an adjacent wrap of the tow. A coating can then be uniformly applied to the reinforcing fibers without defects caused by fiber tow to fiber tow contact. The separation layer can be a carbon fiber veil.

  11. Preparation of hydrophobic coatings

    DOE Patents [OSTI]

    Branson, Eric D.; Shah, Pratik B.; Singh, Seema; Brinker, C. Jeffrey

    2009-02-03

    A method for preparing a hydrophobic coating by preparing a precursor sol comprising a metal alkoxide, a solvent, a basic catalyst, a fluoroalkyl compound and water, depositing the precursor sol as a film onto a surface, such as a substrate or a pipe, heating, the film and exposing the film to a hydrophobic silane compound to form a hydrophobic coating with a contact angle greater than approximately 150.degree.. The contact angle of the film can be controlled by exposure to ultraviolet radiation to reduce the contact angle and subsequent exposure to a hydrophobic silane compound to increase the contact angle.

  12. Contact metasomatic and hydrothermal minerals in the SH2 deep well, Sabatini Volcanic District, Latium, Italy

    SciTech Connect (OSTI)

    Cavarretta, G.; Tecce, F.

    1987-01-01

    Metasomatic and hydrothermal minerals were logged throughout the SH2 geothermal well, which reached a depth of 2498 m in the Sabatini volcanic district. Below 460 m of volcanics, where the newly formed minerals were mainly chlorite, calcite and zeolites (mostly phillipsite), drilling entered the Allochthonous Flysch Complex. Evidence of the ''Cicerchina facies'' was found down to 1600 m depth. Starting from 1070 m, down to hole bottom, a contact metasomatic complex was defined by the appearance of garnet. Garnet together with K-fledspar, vesuvianite, wilkeite, cuspidine, harkerite, wollastonite and apatite prevail in the top part of the contact metasomatic complex. Vesuvianite and phlogopite characterize the middle part. Phlogopite, pyroxene, spinel and cancrinite predominate in the bottom part. The 1500 m thick metasomatic complex indicates the presence at depth of the intrusion of a trachytic magma which released hot fluids involved in metasomatic mineral-forming reactions. Minerals such as harkerite, wilkeite, cuspidine, cancrinite, vesuvianite and phlogopite indicate the intrusive melt had a high volatile content which is in agreement with the very high explosivity index of this volcanic district. The system is at present sealed by abundant calcite and anhydrite. It is proposed that most, if not all, of the sulphates formed after reaction of SO/sub 2/ with aqueous calcium species rather than from sulphates being remobilized from evaporitic (Triassic) rocks as previously inferred. The hypothesis of a CO/sub 2/-rich deep-derived fluid ascending through major fracture systems and contrasting cooling in the hottest areas of Latium is presented.

  13. Thermal barrier coating for alloy systems

    DOE Patents [OSTI]

    Seals, Roland D. (Oak Ridge, TN); White, Rickey L. (Harriman, TN); Dinwiddie, Ralph B. (Knoxville, TN)

    2000-01-01

    An alloy substrate is protected by a thermal barrier coating formed from a layer of metallic bond coat and a top coat formed from generally hollow ceramic particles dispersed in a matrix bonded to the bond coat.

  14. AntiReflection Coating D

    SciTech Connect (OSTI)

    AIKEN,DANIEL J.

    1999-09-23

    Analytical expressions used to optimize AR coatings for single junction solar cells are extended for use in monolithic, series interconnected multi-junction solar cell AR coating design. The result is an analytical expression which relates the solar cell performance (through J{sub sc}) directly to the AR coating design through the device reflectance. It is also illustrated how AR coating design be used to provide an additional degree of freedom for current matching multi-junction devices.

  15. Coating method for graphite

    DOE Patents [OSTI]

    Banker, John G.; Holcombe, Jr., Cressie E.

    1977-01-01

    A method of limiting carbon contamination from graphite ware used in induction melting of uranium alloys is provided comprising coating the graphite surface with a suspension of Y.sub.2 O.sub.3 particles in water containing about 1.5 to 4% by weight sodium carboxymethylcellulose.

  16. Coating method for graphite

    DOE Patents [OSTI]

    Banker, J.G.; Holcombe, C.E. Jr.

    1975-11-06

    A method of limiting carbon contamination from graphite ware used in induction melting of uranium alloys is provided. The graphite surface is coated with a suspension of Y/sub 2/O/sub 3/ particles in water containing about 1.5 to 4 percent by weight sodium carboxymethylcellulose.

  17. Biodegradation of polymer coatings

    SciTech Connect (OSTI)

    Jones, W.R.; Walch, M.; Jones-Meehan, J.

    1994-12-31

    Conventional paint removal methods include chemical stripping with VOCs blasting with plastic media, and delamination with high pressure water. These methods have many limitations, in that they are labor intensive, pose human health risks, are relatively expensive and pose significant waste disposal problems. However, polymeric coatings are known to contain structural components, such as ester, amide and urea linkages, that can be degraded biologically. The authors are working to develop a stable, enzyme-based, non-toxic paint stripping strategy that will be environmentally safe and cost effective. The specific objectives are to identify and characterize microbial systems capable of degrading polymeric coatings, to develop a quantitative degradation assay and to optimize activity levels for subsequent purification and concentration of the biological products required for rapid degradation of coatings. A water-dispersed colloid of an ester-based polyurethane polymer has been used in solid growth medium to screen about 100 different bacteria for microbial degradation activity. Those with demonstrable activity have been grown in the presence of epoxy-polyamide paint- and polyester polyurethane paint-coated aluminum coupons. The authors have demonstrated delamination under certain conditions and have developed a spectrophotometric method for quantitating degradation activity as a function of dye release.

  18. REFRACTORY COATING FOR GRAPHITE MOLDS

    DOE Patents [OSTI]

    Stoddard, S.D.

    1958-06-24

    Refractory coating for graphite molds used in the casting of uranium is described. The coating is an alumino-silicate refractory composition which may be used as a mold surface in solid form or as a coating applied to the graphite mold. The composition consists of a mixture of ball clay, kaolin, alumina cement, alumina, water, sodium silicate, and sodium carbonate.

  19. Low friction and galling resistant coatings and processes for coating

    DOE Patents [OSTI]

    Johnson, Roger N.

    1987-01-01

    The present invention describes coating processes and the resultant coated articles for use in high temperature sodium environments, such as those found in liquid metal fast breeder reactors and their associated systems. The substrate to which the coating is applied may be either an iron base or nickel base alloy. The coating itself is applied to the substrate by electro-spark deposition techniques which result in metallurgical bonding between the coating and the substrate. One coating according to the present invention involves electro-spark depositing material from a cemented chromium carbide electrode and an aluminum electrode. Another coating according to the present invention involves electro-spark depositing material from a cemented chromium carbide electrode and a nickel-base hardfacing alloy electrode.

  20. Final Technical Report - Recovery Act: Organic Coatings as Encapsulants for Low Cost, High Performance PV Modules

    SciTech Connect (OSTI)

    Stuart Hellring; Jiping Shao; James Poole

    2011-12-05

    The objective of this project was to evaluate the feasibility of utilizing PPG's commercial organic coatings systems as efficient, modernized encapsulants for low cost, high performance, thin film photovoltaic modules. Our hypothesis was that the combination of an anticorrosive coating with a more traditional barrier topcoat would mitigate many electrochemical processes that are now responsible for the significant portion of photovoltaic (PV) failures, thereby nullifying the extremely high moisture barrier requirements of currently used encapsulation technology. Nine commercially available metal primer coatings and six commercially available top coatings were selected for screening. Twenty-one different primer/top coat combinations were evaluated. The primer coatings were shown to be the major contributor to corrosion inhibition, adhesion, and barrier properties. Two primer coatings and one top coating were downselected for testing on specially-fabricated test modules. The coated test modules passed initial current leakage and insulation testing. Damp Heat testing of control modules showed visible corrosion to the bus bar metal, whereas the coated modules showed none. One of the primer/top coat combinations retained solar power performance after Damp Heat testing despite showing some delamination at the EVA/solar cell interface. Thermal Cycling and Humidity Freeze testing resulted in only one test module retaining its power performance. Failure modes depended on the particular primer/top coating combination used. Overall, this study demonstrated that a relatively thin primer/top coating has the potential to replace the potting film and backsheet in crystalline silicon-based photovoltaic modules. Positive signals were received from commercially available coatings developed for applications having performance requirements different from those required for photovoltaic modules. It is likely that future work to redesign and customize these coatings would result in a coating system meeting the requirements for photovoltaic module encapsulation.

  1. SULFUR CHEMISTRY IN THE INTERSTELLAR MEDIUM: THE EFFECT OF VIBRATIONAL EXCITATION OF H{sub 2} IN THE REACTION S{sup +}+H{sub 2} →SH{sup +}+H

    SciTech Connect (OSTI)

    Zanchet, Alexandre; Herrero, Victor J.; Agúndez, Marcelino; Aguado, Alfredo; Roncero, Octavio

    2013-11-01

    Specific rate constants for the S{sup +}+H{sub 2} reaction are calculated using the ground quartet state potential energy surface and quasi-classical trajectories method. The calculations are performed for H{sub 2} in different vibrational states v = 0-4 and thermal conditions for rotational and translational energies. The calculations lead to slow rate constants for the H{sub 2} vibrational levels v = 0, 1, but a significant enhancement of reactivity is observed when v > 1. The inverse reaction is also studied and rate constants for v = 0 are presented. For comparison, we also recompile previous results of state-to-state rate constants of the C{sup +}+H{sub 2} for H{sub 2} in rovibrational state v, j = (0,0), (1,0), (1,1), and (2,0). The calculated rate coefficients are fitted using an improved form of the standard three-parameter Arrhenius-like equation, which is found to be very accurate in fitting rate constants over a wide range of temperatures (10-4000 K). We investigate the impact of the calculated rate coefficients on the formation of SH{sup +} in the photon-dominated region Orion Bar and find an abundance enhancement of nearly three orders of magnitude when the reaction of S{sup +} with vibrationally excited H{sub 2} is taken into account. The title reaction is thus one of the principal mechanisms in forming SH{sup +} in interstellar clouds.

  2. Brazing titanium-vapor-coated zirconia

    SciTech Connect (OSTI)

    Santella, M.L. ); Pak, J.J. )

    1993-04-01

    Partially stabilized zirconia was vacuum furnace brazed to itself, to nodular cast iron, and to commercially pure titanium with a Ag-30Cu-10Sn wt% filler metal. Wetting was obtained by coating the ZrO[sub 2] surfaces with Ti prior to brazing by RF sputtering or electron beam evaporation. Braze joints made with Ti-sputter-coated ZrO[sub 2] contained high levels of porosity, but those made with Ti coatings deposited by evaporation, referred to as Ti-vapor-coated, contained little or no porosity. Brazing caused the ZrO[sub 2] within about 1 mm (0.04 in.) of the joint surfaces to turn black in color, and thermodynamic analysis indicated that the discoloration was likely due to oxygen diffusion out of the ZrO[sub 2] into the Ti vapor coating during brazing. Braze joint strength was determined by flexure testing in the four-point bend arrangement, and on a more limited basis, by shear testing. The latter method was used mainly as a screening test for ZrO[sub 2]-Fe and ZrO[sub 2]-Ti joints. Flexure testing of ZrO[sub 2]-ZrO[sub 2] and ZrO[sub 2]-Fe braze joints was done at 25, 200, 400, and 575 C (77, 392, 752 and 1,067 F) in air. For flexure testing, average strengths of joint specimens decreased with increasing test temperature. The lower average strengths of ZrO[sub 2]-Fe specimens compared to those from ZrO[sub 2]-ZrO[sub 2] joints was attributed to higher residual stresses in the ceramic-to-metal joints.

  3. Antithrombogenic Polymer Coating.

    DOE Patents [OSTI]

    Huang, Zhi Heng; McDonald, William F.; Wright, Stacy C.; Taylor, Andrew C.

    2003-01-21

    An article having a non-thrombogenic surface and a process for making the article are disclosed. The article is formed by (i) coating a polymeric substrate with a crosslinked chemical combination of a polymer having at least two amino substituted side chains, a crosslinking agent containing at least two crosslinking functional groups which react with amino groups on the polymer, and a linking agent containing a first functional group which reacts with a third functional group of the crosslinking agent, and (ii) contacting the coating on the substrate with an antithrombogenic agent which covalently bonds to a second functional group of the linking agent. In one example embodiment, the polymer is a polyamide having amino substituted alkyl chains on one side of the polyamide backbone, the crosslinking agent is a phosphine having the general formula (A).sub.3 P wherein A is hydroxyalkyl, the linking agent is a polyhydrazide and the antithrombogenic agent is heparin.

  4. Hard, infrared black coating with very low outgassing

    SciTech Connect (OSTI)

    Kuzmenko, P J; Behne, D M; Casserly, T; Boardman, W; Upadhyaya, D; Boinapally, K; Gupta, M; Cao, Y

    2008-06-02

    Infrared astronomical instruments require absorptive coatings on internal surfaces to trap scattered and stray photons. This is typically accomplished with any one of a number of black paints. Although inexpensive and simple to apply, paint has several disadvantages. Painted surfaces can be fragile, prone to shedding particles, and difficult to clean. Most importantly, the vacuum performance is poor. Recently a plasma enhanced chemical vapor deposition (PECVD) process was developed to apply thick (30 {micro}m) diamond-like carbon (DLC) based protective coatings to the interior of oil pipelines. These DLC coatings show much promise as an infrared black for an ultra high vacuum environment. The coatings are very robust with excellent cryogenic adhesion. Their total infrared reflectivity of < 10% at normal incidence approaches that of black paints. We measured outgas rates of <10{sup -12} Torr liter/sec cm{sup 2}, comparable to bare stainless steel.

  5. Synthesis of carbon-coated iron nanoparticles by detonation technique

    SciTech Connect (OSTI)

    Sun, Guilei, E-mail: sunguilei@126.com [Department of Safety Engineering, China Institute of Industrial Relations, Beijing 100037 (China)] [Department of Safety Engineering, China Institute of Industrial Relations, Beijing 100037 (China); Li, Xiaojie, E-mail: dalian03@vip.sina.com [State Key Laboratory of Structural Analysis for Industrial Equipment, Department of Engineering Mechanics, Dalian University of Technology, Dalian 116023 (China)] [State Key Laboratory of Structural Analysis for Industrial Equipment, Department of Engineering Mechanics, Dalian University of Technology, Dalian 116023 (China); Wang, Qiquan [Department of Safety Engineering, China Institute of Industrial Relations, Beijing 100037 (China)] [Department of Safety Engineering, China Institute of Industrial Relations, Beijing 100037 (China); Yan, Honghao [State Key Laboratory of Structural Analysis for Industrial Equipment, Department of Engineering Mechanics, Dalian University of Technology, Dalian 116023 (China)] [State Key Laboratory of Structural Analysis for Industrial Equipment, Department of Engineering Mechanics, Dalian University of Technology, Dalian 116023 (China)

    2010-05-15

    Carbon-coated iron nanoparticles were synthesized by detonating a mixture of ferrocene, naphthalene and hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) in an explosion vessel under low vacuum conditions (8.1 kPa). The RDX functioned as an energy source for the decomposition of ferrocene and naphthalene. The carbon-coated iron nanoparticles were formed as soot-like deposits on the inner surface of the reactor, which were characterized by XRD, TEM, HRTEM, Raman spectroscopy and vibrating sample magnetometer. And a portion of the detonation soot was treated with hydrochloric acid. The product was carbon-coated nanoparticles in perfect core-shell structures with graphitic shells and bcc-Fe cores. The detonation technique offers an energy-saving route to the synthesis of carbon-coated nanomaterials.

  6. Thermal barrier and overlay coating systems comprising composite metal/metal oxide bond coating layers

    DOE Patents [OSTI]

    Goedjen, John G.; Sabol, Stephen M.; Sloan, Kelly M.; Vance, Steven J.

    2001-01-01

    The present invention generally describes multilayer coating systems comprising a composite metal/metal oxide bond coat layer. The coating systems may be used in gas turbines.

  7. Plasma-sprayed coatings

    SciTech Connect (OSTI)

    Herman, H.

    1988-09-01

    Plasma spraying is one way to apply protective coatings. The hot, high-speed flame of a plasma gun can melt a powder of almost any ceramic or metal and spray it to form a coating for protection against corrosion, wear or high temperature. The technique carries much less risk of degrading the coating and substrate than many other high-temperature processes do, because the gas in the plasma flame is chemically inert and the target can be kept fairly cool. And yet a plasma gun can be only a little more cumbersome than a paint sprayer. Investigators are applying this technique to new materials. The General Electric Company is using vacuum plasma spraying to make freestanding components: intricate aircraft engine parts formed by plasma-spraying a superalloy on a removable substrate. Other workers spray ceramic particles or fibers and metal powder simulatious wrong, stiff composite materials: the ceramic particles dispersed in a matrix of metal. The author and colleagues at the U.S. Naval Research Laboratory have fabricated a thick film of high-temperature superconductor by plasma-spraying the compound in the form of a powder. 7 figs.

  8. Coating and curing apparatus and methods

    DOE Patents [OSTI]

    Brophy, Brenor L; Maghsoodi, Sina; Neyman, Patrick J; Gonsalves, Peter R; Hirsch, Jeffrey G; Yang, Yu S

    2015-02-24

    Disclosed are coating apparatus including flow coating and roll-coating that may be used for uniform sol-gel coating of substrates such as glass, solar panels, windows or part of an electronic display. Also disclosed are methods for substrate preparation, flow coating and roll coating. Lastly systems and methods for skin curing sol-gel coatings deposited onto the surface of glass substrates using a high temperature air-knife are disclosed.

  9. Coating and curing apparatus and methods

    DOE Patents [OSTI]

    Brophy, Brenor L.; Gonsalves, Peter R.; Maghsoodi, Sina; Colson, Thomas E.; Yang, Yu S.; Abrams, Ze'ev R.

    2016-04-19

    Disclosed is a coating apparatus including flow coating and roll-coating that may be used for uniform sol-gel coating of substrates such as glass, solar panels, windows or part of an electronic display. Also disclosed are methods for substrate preparation, flow coating and roll coating. Lastly, systems and methods for curing sol-gel coatings deposited onto the surface of glass substrates using high temperature air-knives, infrared emitters and direct heat applicators are disclosed.

  10. Method and apparatus for measuring on-line failure of turbine thermal barrier coatings

    DOE Patents [OSTI]

    Zombo, Paul J.; Lemieux, Dennis; Diatzikis, Evangelos

    2010-04-06

    A method of remotely monitoring the radiant energy (6) emitted from a turbine component such as a turbine blade (1) having a low-reflective surface coating (3) which may be undergoing potential degradation is used to determine whether erosion, spallation, delamination, or the like, of the coating (3) is occurring.

  11. Method and apparatus for measuring on-line failure of turbine thermal barrier coatings

    DOE Patents [OSTI]

    Zombo, Paul J.; Lemieux, Dennis; Diatzikis, Evangelos

    2010-04-06

    A method of remotely monitoring the radiant energy (6) emitted from a turbine component such as a turbine blade (1) having a low-reflective surface coating (3) which may be undergoing potential degradation is used to determine whether erosion, spallation, delamination, or the like, of the coating (3) is occurring.

  12. QUARTER SH OR T-T ER M EN ER GY OU TL OO K QUAR TERL Y PROJ

    Gasoline and Diesel Fuel Update (EIA)

    1 2 QUARTER SH OR T-T ER M EN ER GY OU TL OO K QUAR TERL Y PROJ ECTIO NS ENERGY INFORMA TION ADMINIST RATION May 1991 This publication may be purchased from the Superintendent of Documents, U.S. Government Printing Office. Purchasing in formation for this or other Energy Information Administration (EIA) publications may be obtained from the Government Printing Office or ElA's National Energy Information Center. Questions on energy statistics should be directed to the Center by mail, telephone,

  13. Innovative Cathode Coating Enables Faster Battery Charging, Dischargin...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Innovative Cathode Coating Enables Faster Battery Charging, Discharging Technology available for licensing: Coating increases electrical conductivity of cathode materials Coating...

  14. Dense protective coatings, methods for their preparation and coated articles

    DOE Patents [OSTI]

    Tulyani, Sonia; Bhatia, Tania; Smeggil, John G.

    2015-12-29

    A method for depositing a protective coating on a complex shaped substrate includes the steps of: (1) dipping a complex shaped substrate into a slurry to form a base coat thereon, the slurry comprising an aqueous solution, at least one refractory metal oxide, and at least one transient fluid additive present in an amount of about 0.1 percent to 10 percent by weight of the slurry; (2) curing the dipped substrate; (3) dipping the substrate into a precursor solution to form a top barrier coat thereon; and (4) heat treating the dipped, cured substrate to form a protective coating.

  15. ITP Nanomanufacturing: Nanostructured Superhydrophobic Coatings

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... wood, and other products such as rubber and shingles; (3) test the coated product ... INDUSTRIAL TECHNOLOGIES PROGRAM fberglass, metal, wood, rubber, and concrete. In addition, ...

  16. Ceramic electrolyte coating and methods

    DOE Patents [OSTI]

    Seabaugh, Matthew M.; Swartz, Scott L.; Dawson, William J.; McCormick, Buddy E.

    2007-08-28

    Aqueous coating slurries useful in depositing a dense coating of a ceramic electrolyte material (e.g., yttrium-stabilized zirconia) onto a porous substrate of a ceramic electrode material (e.g., lanthanum strontium manganite or nickel/zirconia) and processes for preparing an aqueous suspension of a ceramic electrolyte material and an aqueous spray coating slurry including a ceramic electrolyte material. The invention also includes processes for depositing an aqueous spray coating slurry including a ceramic electrolyte material onto pre-sintered, partially sintered, and unsintered ceramic substrates and products made by this process.

  17. Surface coatings. Science and technology

    SciTech Connect (OSTI)

    Paul, S.

    1985-01-01

    This book covers the coating field from the latest industry developments to current energy and pollution regulations. It explains the composition of coatings, how they are prepared and applied and the factors that control their ultimate performance. The author discusses the synthesis of polymeric binders, industrial resins, pigments, paints and paint properties, types of coatings, and new technologies. CONTENTS: Binders: Synthesis of Polymeric Binders; Industrial Resins; Pigments; Paints and Paint Properties: Pigment Dispersion; Surface Preparation and Paint Application; Paint Properties and Their Evaluation; Types of Coatings; New Technolgies.

  18. Carbonaceous film coating

    DOE Patents [OSTI]

    Maya, Leon

    1989-01-01

    A method of making a carbonaceous film comprising heating tris(1,3,2-benzodiazaborolo)borazine or dodecahydro tris[1,3,2]diazaborine[1,2-a:1'2'-c:1"2"-e]borazine in an inert atmosphere in the presence of a substrate to a temperature at which the borazine compound decomposes, and the decomposition products deposit onto the substrate to form a thin, tenacious, highly reflective conductive coating having a narrow band gap which is susceptible of modification and a relatively low coefficient of friction.

  19. Carbonaceous film coating

    DOE Patents [OSTI]

    Maya, L.

    1988-04-27

    A method of making a carbonaceous film comprising heating tris(1,3,2-benzodiazaborolo)borazine or dodecahydro tris(1,3,2)diazaborine(1,2-a:1'2'-c:1''2''-e)borazine in an inert atmosphere in the presence of a substrate to a temperature at which the borazine compound decomposes, and the decomposition products deposit onto the substrate to form a thin, tenacious, highly reflective conductive coating having a narrow band gap which is susceptible of modification and a relatively low coefficient of friction.

  20. Method for simultaneously coating a plurality of filaments

    DOE Patents [OSTI]

    Miller, P.A.; Pochan, P.D.; Siegal, M.P.; Dominguez, F.

    1995-07-11

    Methods and apparatuses are disclosed for coating materials, and the products and compositions produced thereby. Substances, such as diamond or diamond-like carbon, are deposited onto materials, such as a filament or a plurality of filaments simultaneously, using one or more cylindrical, inductively coupled, resonator plasma reactors. 3 figs.

  1. Method for simultaneously coating a plurality of filaments

    DOE Patents [OSTI]

    Miller, Paul A.; Pochan, Paul D.; Siegal, Michael P.; Dominguez, Frank

    1995-01-01

    Methods and apparatuses for coating materials, and the products and compositions produced thereby. Substances, such as diamond or diamond-like carbon, are deposited onto materials, such as a filament or a plurality of filaments simultaneously, using one or more cylindrical, inductively coupled, resonator plasma reactors.

  2. Coating Active Materials for Applications in Electrochemical...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    carbon precursor on the electro-active material to form a carbon-coated electro-active material Process reduces manufacturing cost Coating process produces carbon-coated metal...

  3. Nanofilm Coatings Improve Battery Performance - Energy Innovation...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    nano-coated ultrathin film on lithium-ion cathode particle surface; coating is ... TEM 2.5-nm-thick nano-coated ultrathin film on lithium-ion cathode particle surface; ...

  4. XeroCoat Inc | Open Energy Information

    Open Energy Info (EERE)

    Name: XeroCoat Inc Place: California Product: US manufacturer of anti-reflective coatings for PV systems. References: XeroCoat Inc1 This article is a stub. You can help...

  5. Westinghouse thermal barrier coatings development

    SciTech Connect (OSTI)

    Goedjen, J.G.; Wagner, G.

    1995-10-01

    Westinghouse, in conjunction with the Department of Energy and Oak Ridge National Laboratory, has embarked upon a program for the development of advanced thermal barrier coatings for industrial gas turbines. Development of thermal barrier coatings (TBC`s) for industrial gas turbines has relied heavily on the transfer of technology from the aerospace industry. Significant differences in the time/temperature/stress duty cycles exist between these two coating applications. Coating systems which perform well in aerospace applications may not been optimized to meet power generation performance requirements. This program will focus on development of TBC`s to meet the specific needs of power generation applications. The program is directed at developing a state-of-the-art coating system with a minimum coating life of 25,000 hours at service temperatures required to meet increasing operating efficiency goals. Westinghouse has assembled a team of university and industry leaders to accomplish this goal. Westinghouse will coordinate the efforts of all program participants. Chromalloy Turbine Technologies, Inc. and Sermatech International, Inc. will be responsible for bond coat and TBC deposition technology. Praxair Specialty Powders, Inc. will be responsible for the fabrication of all bond coat and ceramic powders for the program. Southwest Research Institute will head the life prediction modelling effort; they will also be involved in coordinating nondestructive evaluation (NDE) efforts. Process modelling will be provided by the University of Arizona.

  6. Thin film ion conducting coating

    DOE Patents [OSTI]

    Goldner, Ronald B.; Haas, Terry; Wong, Kwok-Keung; Seward, George

    1989-01-01

    Durable thin film ion conducting coatings are formed on a transparent glass substrate by the controlled deposition of the mixed oxides of lithium:tantalum or lithium:niobium. The coatings provide durable ion transport sources for thin film solid state storage batteries and electrochromic energy conservation devices.

  7. Coatings on reflective mask substrates

    DOE Patents [OSTI]

    Tong, William Man-Wai; Taylor, John S.; Hector, Scott D.; Mangat, Pawitter J. S.; Stivers, Alan R.; Kofron, Patrick G.; Thompson, Matthew A.

    2002-01-01

    A process for creating a mask substrate involving depositing: 1) a coating on one or both sides of a low thermal expansion material EUVL mask substrate to improve defect inspection, surface finishing, and defect levels; and 2) a high dielectric coating, on the backside to facilitate electrostatic chucking and to correct for any bowing caused by the stress imbalance imparted by either other deposited coatings or the multilayer coating of the mask substrate. An film, such as TaSi, may be deposited on the front side and/or back of the low thermal expansion material before the material coating to balance the stress. The low thermal expansion material with a silicon overlayer and a silicon and/or other conductive underlayer enables improved defect inspection and stress balancing.

  8. Protective coatings for sensitive materials

    DOE Patents [OSTI]

    Egert, Charles M.

    1997-01-01

    An enhanced protective coating to prevent interaction between constituents of the environment and devices that can be damaged by those constituents. This coating is provided by applying a synergistic combination of diffusion barrier and physical barrier materials. These materials can be, for example, in the form of a plurality of layers of a diffusion barrier and a physical barrier, with these barrier layers being alternated. Further protection in certain instances is provided by including at least one layer of a getter material to actually react with one or more of the deleterious constituents. The coating is illustrated by using alternating layers of an organic coating (such as Parylene-C.TM.) as the diffusion barrier, and a metal coating (such as aluminum) as the physical barrier. For best results there needs to be more than one of at least one of the constituent layers.

  9. Protective coatings for sensitive materials

    DOE Patents [OSTI]

    Egert, C.M.

    1997-08-05

    An enhanced protective coating is disclosed to prevent interaction between constituents of the environment and devices that can be damaged by those constituents. This coating is provided by applying a synergistic combination of diffusion barrier and physical barrier materials. These materials can be, for example, in the form of a plurality of layers of a diffusion barrier and a physical barrier, with these barrier layers being alternated. Further protection in certain instances is provided by including at least one layer of a getter material to actually react with one or more of the deleterious constituents. The coating is illustrated by using alternating layers of an organic coating (such as Parylene-C{trademark}) as the diffusion barrier, and a metal coating (such as aluminum) as the physical barrier. For best results there needs to be more than one of at least one of the constituent layers. 4 figs.

  10. Coated Conductors Cylinder Ltd | Open Energy Information

    Open Energy Info (EERE)

    Ltd Jump to: navigation, search Name: Coated Conductors Cylinder Ltd. Place: Malvern, England, United Kingdom Zip: WR14 3SZ Product: Coated Conductors Consultancy Ltd. (3-Cs)...

  11. Reduced AC losses in HTS coated conductors

    DOE Patents [OSTI]

    Ashworth, Stephen P.

    2004-10-05

    Methods for reducing hysteresis losses in superconductor coated ribbons where a flux distribution is set into the superconductor coated ribbon prior to the application of alternating current.

  12. Development of Industrially Viable Battery Electrode Coatings...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Industrially Viable Battery Electrode Coatings Development of Industrially Viable Battery Electrode Coatings 2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies ...

  13. North American Coating Laboratories | Open Energy Information

    Open Energy Info (EERE)

    Coating Laboratories Jump to: navigation, search Name: North American Coating Laboratories Address: 9450 Pineneedle Drive Place: Mentor, Ohio Zip: 44060 Sector: Services, Solar...

  14. Superhydrophobic Thin Film Coatings - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Optical devices subject to the elements (e.g., windshields, windows) Eye glasses, sports goggles, camera lenses Durable, water repellant coatings Self-cleaning coatings More...

  15. Ceramic composite coating

    DOE Patents [OSTI]

    Wicks, G.G.

    1997-01-21

    A thin, room-temperature-curing, ceramic composite for coating and patching metal substrates comprises a sol gel silica glass matrix filled with finely ground particles or fibers, preferably alumina. The sol gel glass is made by adding ethanol to water to form a first mixture, then separately adding ethanol to tetraethyl orthosilicate to form a second mixture, then slowly adding the first to the second mixture to make a third mixture, and making a slurry by adding the finely ground particles or fibers to the third mixture. The composite can be applied by spraying, brushing or trowelling. If applied to patch fine cracks, densification of the ceramic composite may be obtained to enhance sealing by applying heat during curing.

  16. Ceramic composite coating

    DOE Patents [OSTI]

    Wicks, George G.

    1997-01-01

    A thin, room-temperature-curing, ceramic composite for coating and patching etal substrates comprises a sol gel silica glass matrix filled with finely ground particles or fibers, preferably alumina. The sol gel glass is made by adding ethanol to water to form a first mixture, then separately adding ethanol to tetraethyl orthosilicate to form a second mixture, then slowly adding the first to the second mixture to make a third mixture, and making a slurry by adding the finely ground particles or fibers to the third mixture. The composite can be applied by spraying, brushing or trowelling. If applied to patch fine cracks, densification of the ceramic composite may be obtained to enhance sealing by applying heat during curing.

  17. Metasurface optical antireflection coating

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Zhang, Boyang; Hendrickson, Joshua; Nader, Nima; Chen, Hou -Tong; Guo, Junpeng

    2014-12-15

    Light reflection at the boundary of two different media is one of the fundamental phenomena in optics, and reduction of reflection is highly desirable in many optical systems. Traditionally, optical antireflection has been accomplished using single- or multiple-layer dielectric films and graded index surface structures in various wavelength ranges. However, these approaches either impose strict requirements on the refractive index matching and film thickness, or involve complicated fabrication processes and non-planar surfaces that are challenging for device integration. Here, we demonstrate an antireflection coating strategy, both experimentally and numerically, by using metasurfaces with designer optical properties in the mid-wave infrared.more » Our results show that the metasurface antireflection is capable of eliminating reflection and enhancing transmission over a broad spectral band and a wide incidence angle range. The demonstrated antireflection technique has no requirement on the choice of materials and is scalable to other wavelengths.« less

  18. Coated substrates and process

    DOE Patents [OSTI]

    Chu, Wei-kan; Childs, Charles B.

    1991-01-01

    Disclosed herein is a coated substrate and a process for forming films on substrates and for providing a particularly smooth film on a substrate. The method of this invention involves subjecting a surface of a substrate to contact with a stream of ions of an inert gas having sufficient force and energy to substantially change the surface characteristics of said substrate, and then exposing a film-forming material to a stream of ions of an inert gas having sufficient energy to vaporize the atoms of said film-forming material and to transmit the vaporized atoms to the substrate surface with sufficient force to form a film bonded to the substrate. This process is particularly useful commercially because it forms strong bonds at room temperature. This invention is particularly useful for adhering a gold film to diamond and forming ohmic electrodes on diamond, but also can be used to bond other films to substrates.

  19. Metasurface optical antireflection coating

    SciTech Connect (OSTI)

    Zhang, Boyang; Hendrickson, Joshua; Nader, Nima; Chen, Hou -Tong; Guo, Junpeng

    2014-12-15

    Light reflection at the boundary of two different media is one of the fundamental phenomena in optics, and reduction of reflection is highly desirable in many optical systems. Traditionally, optical antireflection has been accomplished using single- or multiple-layer dielectric films and graded index surface structures in various wavelength ranges. However, these approaches either impose strict requirements on the refractive index matching and film thickness, or involve complicated fabrication processes and non-planar surfaces that are challenging for device integration. Here, we demonstrate an antireflection coating strategy, both experimentally and numerically, by using metasurfaces with designer optical properties in the mid-wave infrared. Our results show that the metasurface antireflection is capable of eliminating reflection and enhancing transmission over a broad spectral band and a wide incidence angle range. The demonstrated antireflection technique has no requirement on the choice of materials and is scalable to other wavelengths.

  20. Architecture for coated conductors

    DOE Patents [OSTI]

    Foltyn, Stephen R.; Arendt, Paul N.; Wang, Haiyan; Stan, Liliana

    2010-06-01

    Articles are provided including a base substrate having a layer of an oriented cubic oxide material with a rock-salt-like structure layer thereon, and, a layer of epitaxial titanium nitride upon the layer of an oriented cubic oxide material having a rock-salt-like structure. Such articles can further include thin films of high temperature superconductive oxides such as YBCO upon the layer of epitaxial titanium nitride or upon a intermediate buffer layer upon the layer of epitaxial titanium nitride.

  1. Method for producing fluorinated diamond-like carbon films

    DOE Patents [OSTI]

    Hakovirta, Marko J.; Nastasi, Michael A.; Lee, Deok-Hyung; He, Xiao-Ming

    2003-06-03

    Fluorinated, diamond-like carbon (F-DLC) films are produced by a pulsed, glow-discharge plasma immersion ion processing procedure. The pulsed, glow-discharge plasma was generated at a pressure of 1 Pa from an acetylene (C.sub.2 H.sub.2) and hexafluoroethane (C.sub.2 F.sub.6) gas mixture, and the fluorinated, diamond-like carbon films were deposited on silicon <100>substrates. The film hardness and wear resistance were found to be strongly dependent on the fluorine content incorporated into the coatings. The hardness of the F-DLC films was found to decrease considerably when the fluorine content in the coatings reached about 20%. The contact angle of water on the F-DLC coatings was found to increase with increasing film fluorine content and to saturate at a level characteristic of polytetrafluoroethylene.

  2. Method of measuring metal coating adhesion

    DOE Patents [OSTI]

    Roper, J.R.

    A method for measuring metal coating adhesion to a substrate material comprising the steps of preparing a test coupon of substrate material having the metal coating applied to one surface thereof, applying a second metal coating of gold or silver to opposite surfaces of the test coupon by hot hollow cathode process, applying a coating to one end of each of two pulling rod members, joining the coated ends of the pulling rod members to said opposite coated surfaces of the test coupon by a solid state bonding technique and finally applying instrumented static tensile loading to the pulling rod members until fracture of the metal coating adhesion to the substrate material occurs.

  3. Method of measuring metal coating adhesion

    DOE Patents [OSTI]

    Roper, John R.

    1985-01-01

    A method for measuring metal coating adhesion to a substrate material comprising the steps of preparing a test coupon of substrate material having the metal coating applied to one surface thereof, applying a second metal coating of gold or silver to opposite surfaces of the test coupon by hot hollow cathode process, applying a coating to one end of each of two pulling rod members, joining the coated ends of the pulling rod members to said opposite coated surfaces of the test coupon by a solid state bonding technique and finally applying instrumented static tensile loading to the pulling rod members until fracture of the metal coating adhesion to the substrate material occurs.

  4. SuperhydrophobicCoatings.indd

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Superhydrophobic Coating 1 S S S S S S S S S Su u u u u u u u u u u u u u u u u up p p p p p p p p p p p p p p p p p pe e e e e e e e e e e e e e e e e e e e e e e e e e e er r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r rh h h h h h h h h h h h h h h h h h h h h h h h h h hy y y y y y y yd d d d d d d d d dr r r r r r ro o o op p p p ph h h h h h h ho o o o o o o o o ob b b b b bi i i ic c c c C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C Co o o

  5. Corrosion resistant neutron absorbing coatings

    DOE Patents [OSTI]

    Choi, Jor-Shan; Farmer, Joseph C; Lee, Chuck K; Walker, Jeffrey; Russell, Paige; Kirkwood, Jon; Yang, Nancy; Champagne, Victor

    2013-11-12

    A method of forming a corrosion resistant neutron absorbing coating comprising the steps of spray or deposition or sputtering or welding processing to form a composite material made of a spray or deposition or sputtering or welding material, and a neutron absorbing material. Also a corrosion resistant neutron absorbing coating comprising a composite material made of a spray or deposition or sputtering or welding material, and a neutron absorbing material.

  6. Corrosion resistant neutron absorbing coatings

    DOE Patents [OSTI]

    Choi, Jor-Shan; Farmer, Joseph C.; Lee, Chuck K.; Walker, Jeffrey; Russell, Paige; Kirkwood, Jon; Yang, Nancy; Champagne, Victor

    2012-05-29

    A method of forming a corrosion resistant neutron absorbing coating comprising the steps of spray or deposition or sputtering or welding processing to form a composite material made of a spray or deposition or sputtering or welding material, and a neutron absorbing material. Also a corrosion resistant neutron absorbing coating comprising a composite material made of a spray or deposition or sputtering or welding material, and a neutron absorbing material.

  7. Electrically conductive polymer concrete coatings

    DOE Patents [OSTI]

    Fontana, J.J.; Elling, D.; Reams, W.

    1990-03-13

    A sprayable electrically conductive polymer concrete coating for vertical d overhead applications is described. The coating is permeable yet has low electrical resistivity (<10 ohm-cm), good bond strength to concrete substrates, and good weatherability. A preferred formulation contains about 60 wt % calcined coke breeze, 40 wt % vinyl ester with 3.5 wt % modified bentonite clay. Such formulations apply evenly and provide enough rigidity for vertical or overhead structures so there is no drip or sag.

  8. Electrically conductive polymer concrete coatings

    DOE Patents [OSTI]

    Fontana, Jack J.; Elling, David; Reams, Walter

    1990-01-01

    A sprayable electrically conductive polymer concrete coating for vertical d overhead applications is described. The coating is permeable yet has low electrical resistivity (<10 ohm-cm), good bond strength to concrete substrates, and good weatherability. A preferred formulation contains about 60 wt % calcined coke breeze, 40 wt % vinyl ester with 3.5 wt % modified bentonite clay. Such formulations apply evenly and provide enough rigidity for vertical or overhead structures so there is no drip or sag.

  9. Electrically conductive polymer concrete coatings

    DOE Patents [OSTI]

    Fontana, J.J.; Elling, D.; Reams, W.

    1988-05-26

    A sprayable electrically conductive polymer concrete coating for vertical and overhead applications is described. The coating is permeable yet has low electrical resistivity (<10 ohm-cm), good bond strength to concrete substrates, and good weatherability. A preferred formulation contains about 60 wt% calcined coke breeze, 40 wt% vinyl ester resin with 3.5 wt% modified bentonite clay. Such formulations apply evenly and provide enough rigidity for vertical or overhead structures so there is no drip or sag. 4 tabs.

  10. Vanadium Carbide Coating Process | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Vanadium Carbide Coating Process Vanadium Carbide Coating Process Innovative Process Enhances Wear Resistance of Metals, Saving Energy, Waste, and Costs Traditional methods of coating steel surfaces with a layer of hard metal carbide require large capital investment, produce toxic and hazardous gases, are costly to operate, and require multiple heat-treatment steps during processing. Vanadium carbide (VC) coating technology provides a superior protective coating for steel surfaces and eliminates

  11. Effect of SOFC Interconnect-Coating Interactions on Coating Properties and Performance

    SciTech Connect (OSTI)

    Jeffrey W. Fergus

    2012-09-05

    The high operating temperature of solid oxide fuel cells (SOFCs) provides good fuel flexibility which expands potential applications, but also creates materials challenges. One such challenge is the interconnect material, which was the focus of this project. In particular, the objective of the project was to understand the interaction between the interconnect alloy and ceramic coatings which are needed to minimize chromium volatilization and the associated chromium poisoning of the SOFC cathode. This project focused on coatings based on manganese cobalt oxide spinel phases (Mn,Co)3O4, which have been shown to be effective as coatings for ferritic stainless steel alloys. Analysis of diffusion couples was used to develop a model to describe the interaction between (Mn,Co)3O4 and Cr2O3 in which a two-layer reaction zone is formed. Both layers form the spinel structure, but the concentration gradients at the interface appear like a two-phase boundary suggesting that a miscibility gap is present in the spinel solid solution. A high-chromium spinel layer forms in contact with Cr2O3 and grows by diffusion of manganese and cobalt from the coating material to the Cr2O3. The effect of coating composition, including the addition of dopants, was evaluated and indicated that the reaction rate could be decreased with additions of iron, titanium, nickel and copper. Diffusion couples using stainless steel alloys (which form a chromia scale) had some similarities and some differences as compared to those with Cr2O3. The most notable difference was that the high-chromium spinel layer did not form in the diffusion couples with stainless steel alloys. This difference can be explained using the reaction model developed in this project. In particular, the chromia scale grows at the expense of the alloy, the high-chromia layer grows at the expense of chromia scale and the high-chromia layer is consumed by diffusion of chromium into the coating material. If the last process (dissolution of high-chromium spinel phase) is faster than the second process (formation of high-chromium spinel phase), the high-chromium layer may be consumed. The other important result of this mechanism is that it could result in a constant scale thickness if the scale forms at the same rate as it is consumed. This helps to explain the unexpected observation that the area specific resistance (ASR) of a SOFC with a (Mn,Co)3O4-coated ferritic stainless steel cathode becomes constant after long exposures. The project also evaluated the possibility of reducing the chromium content in a stainless steel alloy using experimental alloys. The conclusion of this evaluation is that at least 17-18% chromium is needed for good oxidation resistance is needed even if the alloy is coated with a spinel coating. Additional details on these findings are provided in a later section of this report and in the publications listed below.

  12. Binding of flexible and constrained ligands to the Grb2 SH2 domain: structural effects of ligand preorganization

    SciTech Connect (OSTI)

    Clements, John H.; DeLorbe, John E.; Benfield, Aaron P.; Martin, Stephen F.

    2010-10-01

    Structures of the Grb2 SH2 domain complexed with a series of flexible and constrained replacements of the phosphotyrosine residue in tripeptides derived from Ac-pYXN (where X = V, I, E and Q) were compared to determine what, if any, structural differences arise as a result of ligand preorganization. Structures of the Grb2 SH2 domain complexed with a series of pseudopeptides containing flexible (benzyl succinate) and constrained (aryl cyclopropanedicarboxylate) replacements of the phosphotyrosine (pY) residue in tripeptides derived from Ac-pYXN-NH{sub 2} (where X = V, I, E and Q) were elucidated by X-ray crystallography. Complexes of flexible/constrained pairs having the same pY + 1 amino acid were analyzed in order to ascertain what structural differences might be attributed to constraining the phosphotyrosine replacement. In this context, a given structural dissimilarity between complexes was considered to be significant if it was greater than the corresponding difference in complexes coexisting within the same asymmetric unit. The backbone atoms of the domain generally adopt a similar conformation and orientation relative to the ligands in the complexes of each flexible/constrained pair, although there are some significant differences in the relative orientations of several loop regions, most notably in the BC loop that forms part of the binding pocket for the phosphate group in the tyrosine replacements. These variations are greater in the set of complexes of constrained ligands than in the set of complexes of flexible ligands. The constrained ligands make more direct polar contacts to the domain than their flexible counterparts, whereas the more flexible ligand of each pair makes more single-water-mediated contacts to the domain; there was no correlation between the total number of proteinligand contacts and whether the phosphotyrosine replacement of the ligand was preorganized. The observed differences in hydrophobic interactions between the complexes of each flexible/constrained ligand pair were generally similar to those observed upon comparing such contacts in coexisting complexes. The average adjusted B factors of the backbone atoms of the domain and loop regions are significantly greater in the complexes of constrained ligands than in the complexes of the corresponding flexible ligands, suggesting greater thermal motion in the crystalline state in the former complexes. There was no apparent correlation between variations in crystal packing and observed structural differences or similarities in the complexes of flexible and constrained ligands, but the possibility that crystal packing might result in structural variations cannot be rigorously excluded. Overall, it appears that there are more variations in the three-dimensional structure of the protein and the ligand in complexes of the constrained ligands than in those of their more flexible counterparts.

  13. Sputtering process and apparatus for coating powders

    DOE Patents [OSTI]

    Makowiecki, Daniel M.; Kerns, John A.; Alford, Craig S.; McKernan, Mark A.

    2002-01-01

    A process and apparatus for coating small particles and fibers. The process involves agitation by vibrating or tumbling the particles or fibers to promote coating uniformly, removing adsorbed gases and static charges from the particles or fibers by an initial plasma cleaning, and coating the particles or fibers with one or more coatings, a first coating being an adhesion coating, and with subsequent coatings being deposited in-situ to prevent contamination at layer interfaces. The first coating is of an adhesion forming element (i.e. W, Zr, Re, Cr, Ti) of a 100-10,000 .ANG. thickness and the second coating or final coating of a multiple (0.1-10 microns) being Cu or Ag, for example for brazing processes, or other desired materials that defines the new surface related properties of the particles. An essential feature of the coating process is the capability to deposit in-situ without interruption to prevent the formation of a contaminated interface that could adversely affect the coating adhesion. The process may include screening of the material to be coated and either continuous or intermittent vibration to prevent agglomeration of the material to be coated.

  14. Graphitized Conductive Carbon Coatings for Composite Electrodes - Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Innovation Portal Energy Storage Energy Storage Advanced Materials Advanced Materials Find More Like This Return to Search Graphitized Conductive Carbon Coatings for Composite Electrodes Lawrence Berkeley National Laboratory Contact LBL About This Technology Technology Marketing SummaryRobert Kostecki and Marek Marcinek of Lawrence Berkeley National Laboratory have developed a method to improve the performance and operational life of composite electrodes by direct deposition of a continuous,

  15. Article coated with flash bonded superhydrophobic particles - Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Innovation Portal 754,279 Site Map Printable Version Share this resource About Search Categories (15) Advanced Materials Biomass and Biofuels Building Energy Efficiency Electricity Transmission Energy Analysis Energy Storage Geothermal Hydrogen and Fuel Cell Hydropower, Wave and Tidal Industrial Technologies Solar Photovoltaic Solar Thermal Startup America Vehicles and Fuels Wind Energy Partners (27) Visual Patent Search Success Stories Find More Like This Return to Search Article coated

  16. Platinum- and Platinum Alloy-Coated Palladium and Palladium Alloy Particles

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and Uses Thereof - Energy Innovation Portal Hydrogen and Fuel Cell Hydrogen and Fuel Cell Find More Like This Return to Search Platinum- and Platinum Alloy-Coated Palladium and Palladium Alloy Particles and Uses Thereof Brookhaven National Laboratory Contact BNL About This Technology Publications: PDF Document Publication Electrocatalysts for Fuel Cells - Accelerating Innovation Webinar Presentation - June 2012 (1,907 KB) <p> Schematic cross-section of a palladium nanoparticle coated

  17. Evaluation of End Mill Coatings

    SciTech Connect (OSTI)

    L. J. Lazarus; R. L. Hester,

    2005-08-01

    Milling tests were run on families of High Speed Steel (HSS) end mills to determine their lives while machining 304 Stainless Steel. The end mills tested were made from M7, M42 and T15-CPM High Speed Steels. The end mills were also evaluated with no coatings as well as with Titanium Nitride (TiN) and Titanium Carbo-Nitride (TiCN) coatings to determine which combination of HSS and coating provided the highest increase in end mill life while increasing the cost of the tool the least. We found end mill made from M42 gave us the largest increase in tool life with the least increase in cost. The results of this study will be used by Cutting Tool Engineering in determining which end mill descriptions will be dropped from our tool catalog.

  18. Coated carbon nanotube array electrodes

    DOE Patents [OSTI]

    Ren, Zhifeng; Wen, Jian; Chen, Jinghua; Huang, Zhongping; Wang, Dezhi

    2006-12-12

    The present invention provides conductive carbon nanotube (CNT) electrode materials comprising aligned CNT substrates coated with an electrically conducting polymer, and the fabrication of electrodes for use in high performance electrical energy storage devices. In particular, the present invention provides conductive CNTs electrode material whose electrical properties render them especially suitable for use in high efficiency rechargeable batteries. The present invention also provides methods for obtaining surface modified conductive CNT electrode materials comprising an array of individual linear, aligned CNTs having a uniform surface coating of an electrically conductive polymer such as polypyrrole, and their use in electrical energy storage devices.

  19. High-Performance Nanostructured Coating

    Broader source: Energy.gov [DOE]

    The High-Performance Nanostructured Coating fact sheet details a SunShot project led by a University of California, San Diego research team working to develop a new high-temperature spectrally selective coating for receiver surfaces. These receiver surfaces, used in concentrating solar power systems, rely on high-temperature SSCs to effectively absorb solar energy without emitting much blackbody radiation.The optical properties of the SSC directly determine the efficiency and maximum attainable temperature of solar receivers, which in turn influence the power-conversion efficiency and overall system cost.

  20. Coated carbon nanotube array electrodes

    DOE Patents [OSTI]

    Ren, Zhifeng; Wen, Jian; Chen, Jinghua; Huang, Zhongping; Wang, Dezhi

    2008-10-28

    The present invention provides conductive carbon nanotube (CNT) electrode materials comprising aligned CNT substrates coated with an electrically conducting polymer, and the fabrication of electrodes for use in high performance electrical energy storage devices. In particular, the present invention provides conductive CNTs electrode material whose electrical properties render them especially suitable for use in high efficiency rechargeable batteries. The present invention also provides methods for obtaining surface modified conductive CNT electrode materials comprising an array of individual linear, aligned CNTs having a uniform surface coating of an electrically conductive polymer such as polypyrrole, and their use in electrical energy storage devices.

  1. Coated foams, preparation, uses and articles

    DOE Patents [OSTI]

    Duchane, D.V.; Barthell, B.L.

    1982-10-21

    Hydrophobic cellular material is coated with a thin hydrophilic polymer skin which stretches tightly over the foam but which does not fill the cells of the foam, thus resulting in a polymer-coated foam structure having a smoothness which was not possible in the prior art. In particular, when the hydrophobic cellular material is a specially chosen hydrophobic polymer foam and is formed into arbitrarily chosen shapes prior to the coating with hydrophilic polymer, inertial confinement fusion (ICF) targets of arbitrary shapes can be produced by subsequently coating the shapes with metal or with any other suitable material. New articles of manufacture are produced, including improved ICF targets, improved integrated circuits, and improved solar reflectors and solar collectors. In the coating method, the cell size of the hydrophobic cellular material, the viscosity of the polymer solution used to coat, and the surface tension of the polymer solution used to coat are all very important to the coating.

  2. Friction- and wear-reducing coating

    DOE Patents [OSTI]

    Zhu, Dong; Milner, Robert; Elmoursi, Alaa AbdelAzim

    2011-10-18

    A coating includes a first layer of a ceramic alloy and a second layer disposed on the first layer and including carbon. The coating has a hardness of from 10 to 20 GPa and a coefficient of friction of less than or equal to 0.12. A method of coating a substrate includes cleaning the substrate, forming the first layer on the substrate, and depositing the second layer onto the first layer to thereby coat the substrate.

  3. Sputter coating of microspherical substrates by levitation

    DOE Patents [OSTI]

    Lowe, Arthur T.; Hosford, Charles D.

    1981-01-01

    Microspheres are substantially uniformly coated with metals or nonmetals by simultaneously levitating them and sputter coating them at total chamber pressures less than 1 torr. A collimated hole structure 12 comprising a parallel array of upwardly projecting individual gas outlets 16 is machined out to form a dimple 11. Glass microballoons, which are particularly useful in laser fusion applications, can be substantially uniformly coated using the coating method and apparatus.

  4. Sputter coating of microspherical substrates by levitation

    DOE Patents [OSTI]

    Lowe, A.T.; Hosford, C.D.

    Microspheres are substantially uniformly coated with metals or nonmetals by simltaneously levitating them and sputter coating them at total chamber pressures less than 1 torr. A collimated hole structure comprising a parallel array of upwardly projecting individual gas outlets is machined out to form a dimple. Glass microballoons,, which are particularly useful in laser fusion applications, can be substantially uniformly coated using the coating method and apparatus.

  5. Coated woven materials and method of preparation

    DOE Patents [OSTI]

    McCreary, W.J.; Carroll, D.W.

    Coating of woven materials so that not only the outer surfaces are coated has been a problem. Now, a solution to that problem is by coating with materials, with metals or with pyrolytic carbon. Materials are deposited in Chemical Vapor Deposition (CND) reactions using a fluidized bed so that the porosity of the woven materials is retained and the tiny filaments which make up the strands which are woven (including inner as well as outer filaments) are substantially uniformly coated.

  6. Chemical vapor deposition of mullite coatings

    DOE Patents [OSTI]

    Sarin, Vinod (Lexington, MA); Mulpuri, Rao (Boston, MA)

    1998-01-01

    This invention is directed to the creation of crystalline mullite coatings having uniform microstructure by chemical vapor deposition (CVD). The process comprises the steps of establishing a flow of reactants which will yield mullite in a CVD reactor, and depositing a crystalline coating from the reactant flow. The process will yield crystalline coatings which are dense and of uniform thickness.

  7. Insulator coating for high temperature alloys method for producing insulator coating for high temperature alloys

    DOE Patents [OSTI]

    Park, Jong Hee

    1998-01-01

    A method for fabricating an electrically insulating coating on a surface is disclosed comprising coating the surface with a metal, and reacting the metal coated surface with a nonmetal so as to create a film on the metal-coated surface. Alternatively, the invention provides for a method for producing a noncorrosive, electrically insulating coating on a surface saturated with a nonmetal comprising supplying a molten fluid, dissolving a metal in the molten fluid to create a mixture, and contacting the mixture with the saturated surface. Lastly, the invention provides an electrically insulative coating comprising an underlying structural substrate coated with an oxide or nitride compound

  8. Insulator coating for high temperature alloys method for producing insulator coating for high temperature alloys

    DOE Patents [OSTI]

    Park, J.H.

    1998-06-23

    A method for fabricating an electrically insulating coating on a surface is disclosed comprising coating the surface with a metal, and reacting the metal coated surface with a nonmetal so as to create a film on the metal-coated surface. Alternatively, the invention provides for a method for producing a noncorrosive, electrically insulating coating on a surface saturated with a nonmetal comprising supplying a molten fluid, dissolving a metal in the molten fluid to create a mixture, and contacting the mixture with the saturated surface. Lastly, the invention provides an electrically insulative coating comprising an underlying structural substrate coated with an oxide or nitride compound. 2 figs.

  9. UNDERWATER COATINGS FOR CONTAMINATION CONTROL

    SciTech Connect (OSTI)

    Julia L. Tripp; Kip Archibald; Ann Marie Phillips; Joseph Campbell

    2004-02-01

    The Idaho National Laboratory (INL) deactivated several aging nuclear fuel storage basins. Planners for this effort were greatly concerned that radioactive contamination present on the basin walls could become airborne as the sides of the basins became exposed during deactivation and allowed to dry after water removal. One way to control this airborne contamination was to fix the contamination in place while the pool walls were still submerged. There are many underwater coatings available on the market for marine, naval and other applications. A series of tests were run to determine whether the candidate underwater fixatives were easily applied and adhered well to the substrates (pool wall materials) found in INL fuel pools. Lab-scale experiments were conducted by applying fourteen different commercial underwater coatings to four substrate materials representative of the storage basin construction materials, and evaluating their performance. The coupons included bare concrete, epoxy painted concrete, epoxy painted carbon steel, and stainless steel. The evaluation criteria included ease of application, adherence to the four surfaces of interest, no change on water clarity or chemistry, non-hazardous in final applied form and be proven in underwater applications. A proprietary two-part, underwater epoxy owned by S. G. Pinney and Associates was selected from the underwater coatings tested for application to all four pools. Divers scrubbed loose contamination off the basin walls and floors using a ship hull scrubber and vacuumed up the sludge. The divers then applied the coating using a special powered roller with two separate heated hoses that allowed the epoxy to mix at the roller surface was used to eliminate pot time concerns. The walls were successfully coated and water was removed from the pools with no detectable airborne contamination releases.

  10. Atomically Bonded Transparent Superhydrophobic Coatings

    SciTech Connect (OSTI)

    Aytug, Tolga

    2015-08-01

    Maintaining clarity and avoiding the accumulation of water and dirt on optically transparent surfaces such as US military vehicle windshields, viewports, periscope optical head windows, and electronic equipment cover glasses are critical to providing a high level of visibility, improved survivability, and much-needed safety for warfighters in the field. Through a combination of physical vapor deposition techniques and the exploitation of metastable phase separation in low-alkali borosilicate, a novel technology was developed for the fabrication of optically transparent, porous nanostructured silica thin film coatings that are strongly bonded to glass platforms. The nanotextured films, initially structurally superhydrophilic, exhibit superior superhydrophobicity, hence antisoiling ability, following a simple but robust modification in surface chemistry. The surfaces yield water droplet contact angles as high as 172°. Moreover, the nanostructured nature of these coatings provides increased light scattering in the UV regime and reduced reflectivity (i.e., enhanced transmission) over a broad range of the visible spectrum. In addition to these functionalities, the coatings exhibit superior mechanical resistance to abrasion and are thermally stable to temperatures approaching 500°C. The overall process technology relies on industry standard equipment and inherently scalable manufacturing processes and demands only nontoxic, naturally abundant, and inexpensive base materials. Such coatings, applied to the optical components of current and future combat equipment and military vehicles will provide a significant strategic advantage for warfighters. The inherent self-cleaning properties of such superhydrophobic coatings will also mitigate biofouling of optical windows exposed to high-humidity conditions and can help decrease repair/replacement costs, reduce maintenance, and increase readiness by limiting equipment downtime.

  11. Method for making nanoporous hydrophobic coatings

    DOE Patents [OSTI]

    Fan, Hongyou

    2013-04-23

    A simple coating method is used to form nanoporous hydrophobic films that can be used as optical coatings. The method uses evaporation-induced self-assembly of materials. The coating method starts with a homogeneous solution comprising a hydrophobic polymer and a surfactant polymer in a selective solvent. The solution is coated onto a substrate. The surfactant polymer forms micelles with the hydrophobic polymer residing in the particle core when the coating is dried. The surfactant polymer can be dissolved and selectively removed from the separated phases by washing with a polar solvent to form the nanoporous hydrophobic film.

  12. Corrosion prevention by protective coatings, Second edition

    SciTech Connect (OSTI)

    Munger, C.G.; Vincent, L.D.

    1999-07-01

    This much-used and relied upon book has been revised and updated by Louis D. Vincent to create the second edition. The comprehensive text covers all aspects of the use of high-performance coatings, including an introduction to corrosion as related to coatings, coating characteristics, influence of substrates, organic and zinc coatings, inspection, training, and others. Two new chapters, on elastomeric linings and computer-assisted coatings project management programs, treat new technology developed since the first edition was published. The book is a comprehensive reference tool for engineers, paint superintendents, and maintenance personnel.

  13. High efficiency turbine blade coatings.

    SciTech Connect (OSTI)

    Youchison, Dennis L.; Gallis, Michail A.

    2014-06-01

    The development of advanced thermal barrier coatings (TBCs) of yttria stabilized zirconia (YSZ) that exhibit lower thermal conductivity through better control of electron beam - physical vapor deposition (EB-PVD) processing is of prime interest to both the aerospace and power industries. This report summarizes the work performed under a two-year Lab-Directed Research and Development (LDRD) project (38664) to produce lower thermal conductivity, graded-layer thermal barrier coatings for turbine blades in an effort to increase the efficiency of high temperature gas turbines. This project was sponsored by the Nuclear Fuel Cycle Investment Area. Therefore, particular importance was given to the processing of the large blades required for industrial gas turbines proposed for use in the Brayton cycle of nuclear plants powered by high temperature gas-cooled reactors (HTGRs). During this modest (~1 full-time equivalent (FTE)) project, the processing technology was developed to create graded TBCs by coupling ion beam-assisted deposition (IBAD) with substrate pivoting in the alumina-YSZ system. The Electron Beam - 1200 kW (EB-1200) PVD system was used to deposit a variety of TBC coatings with micron layered microstructures and reduced thermal conductivity below 1.5 W/m.K. The use of IBAD produced fully stoichiometric coatings at a reduced substrate temperature of 600 oC and a reduced oxygen background pressure of 0.1 Pa. IBAD was also used to successfully demonstrate the transitioning of amorphous PVD-deposited alumina to the -phase alumina required as an oxygen diffusion barrier and for good adhesion to the substrate Ni2Al3 bondcoat. This process replaces the time consuming thermally grown oxide formation required before the YSZ deposition. In addition to the process technology, Direct Simulation Monte Carlo plume modeling and spectroscopic characterization of the PVD plumes were performed. The project consisted of five tasks. These included the production of layered periodic microstructures in the coating, the Direct Simulation Monte Carlo (DSMC) modeling of particle transport in the PVD plume, functional graded layer development, the deposition of all layers to form a complete coating, and materials characterization including thermal testing. Ion beam-assisted deposition, beam sharing through advanced digital rastering, substrate pivoting, hearth calorimetry, infrared imaging, fiber optic-enabled optical emission spectroscopy and careful thermal management were used to achieve all the milestones outlined in the FY02 LDRD proposal.

  14. Electrical contact arrangement for a coating process

    DOE Patents [OSTI]

    Kabagambe, Benjamin; McCamy, James W; Boyd, Donald W

    2013-09-17

    A protective coating is applied to the electrically conductive surface of a reflective coating of a solar mirror by biasing a conductive member having a layer of a malleable electrically conductive material, e.g. a paste, against a portion of the conductive surface while moving an electrodepositable coating composition over the conductive surface. The moving of the electrodepositable coating composition over the conductive surface includes moving the solar mirror through a flow curtain of the electrodepositable coating composition and submerging the solar mirror in a pool of the electrodepositable coating composition. The use of the layer of a malleable electrically conductive material between the conductive member and the conductive surface compensates for irregularities in the conductive surface being contacted during the coating process thereby reducing the current density at the electrical contact area.

  15. Armor systems including coated core materials

    DOE Patents [OSTI]

    Chu, Henry S.; Lillo, Thomas M.; McHugh, Kevin M.

    2012-07-31

    An armor system and method involves providing a core material and a stream of atomized coating material that comprises a liquid fraction and a solid fraction. An initial layer is deposited on the core material by positioning the core material in the stream of atomized coating material wherein the solid fraction of the stream of atomized coating material is less than the liquid fraction of the stream of atomized coating material on a weight basis. An outer layer is then deposited on the initial layer by positioning the core material in the stream of atomized coating material wherein the solid fraction of the stream of atomized coating material is greater than the liquid fraction of the stream of atomized coating material on a weight basis.

  16. Armor systems including coated core materials

    DOE Patents [OSTI]

    2013-10-08

    An armor system and method involves providing a core material and a stream of atomized coating material that comprises a liquid fraction and a solid fraction. An initial layer is deposited on the core material by positioning the core material in the stream of atomized coating material wherein the solid fraction of the stream of atomized coating material is less than the liquid fraction of the stream of atomized coating material on a weight basis. An outer layer is then deposited on the initial layer by positioning the core material in the stream of atomized coating material wherein the solid fraction of the stream of atomized coating material is greater than the liquid fraction of the stream of atomized coating material on a weight basis.

  17. High temperature solar selective coatings

    DOE Patents [OSTI]

    Kennedy, Cheryl E

    2014-11-25

    Improved solar collectors (40) comprising glass tubing (42) attached to bellows (44) by airtight seals (56) enclose solar absorber tubes (50) inside an annular evacuated space (54. The exterior surfaces of the solar absorber tubes (50) are coated with improved solar selective coatings {48} which provide higher absorbance, lower emittance and resistance to atmospheric oxidation at elevated temperatures. The coatings are multilayered structures comprising solar absorbent layers (26) applied to the meta surface of the absorber tubes (50), typically stainless steel, topped with antireflective Savers (28) comprising at least two layers 30, 32) of refractory metal or metalloid oxides (such as titania and silica) with substantially differing indices of refraction in adjacent layers. Optionally, at least one layer of a noble metal such as platinum can be included between some of the layers. The absorbent layers cars include cermet materials comprising particles of metal compounds is a matrix, which can contain oxides of refractory metals or metalloids such as silicon. Reflective layers within the coating layers can comprise refractory metal silicides and related compounds characterized by the formulas TiSi. Ti.sub.3SiC.sub.2, TiAlSi, TiAN and similar compounds for Zr and Hf. The titania can be characterized by the formulas TiO.sub.2, Ti.sub.3O.sub.5. TiOx or TiO.sub.xN.sub.1-x with x 0 to 1. The silica can be at least one of SiO.sub.2, SiO.sub.2x or SiO.sub.2xN.sub.1-x with x=0 to 1.

  18. Development of Recycling Compatible Pressure-Sensitive Adhesives and Coatings

    SciTech Connect (OSTI)

    Steven J. Severtson

    2010-02-15

    The objective of this project was the design of new water-based pressure-sensitive adhesive (PSA) products and coatings engineered for enhanced removal during the processing of recycled fiber. Research included the formulation, characterization, and performance measurements of new screenable coatings, testing of modified paper and board substrates and the design of test methods to characterize the inhibition of adhesive and coating fragmentation and relative removal efficiencies of developed formulations. This project was operated under the requirements that included commercially viable approaches be the focus, that findings be published in the open literature and that new strategies could not require changes in the methods and equipment used to produce PSA and PS labels or in the recycling process. The industrial partners benefited through the building of expertise in their company that they would not, and likely could not, have pursued if it had not been for the partnership. Results of research on water-based PSAs clearly identifies which PSA and paper facestock properties govern the fragmentation of the adhesive and provide multiple strategies for making (pressure-sensitive) PS labels for which the PSA is removed at very high efficiencies from recycling operations. The application of these results has led to the identification of several commercial products in Franklin Internationals (industrial partner) product line that are recycling compatible. Several new formulations were also designed and are currently being scaled-up. Work on recycling compatible barrier coatings for corrugated containers examined the reinforcement of coatings using a small amount of exfoliated organically modified montmorillonite (OMMT). These OMMT/paraffin wax nanocomposites demonstrated significantly improved mechanical properties. Paraffin waxes containing clay were found to have significantly higher Youngs moduli and yield stress relative to the wax matrix, but the most impressive finding was the impact of the clay on the elongation at break; a nearly 400% increase was observed for a clay concentration of 0.5 wt.%. These coatings also demonstrate a number of other property enhancements, which make them a good candidate for continued research. Another approach explored in this research was the use of structured and self-cleaning surfaces. If the amount of coating utilized can be significantly reduced, the environmental impact is diminished.

  19. TiN coated aluminum electrodes for DC high voltage electron guns

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Mamun, Md Abdullah A.; Elmustafa, Abdelmageed A.; Taus, Rhys; Forman, Eric; Poelker, Matthew

    2015-05-01

    Preparing electrodes made of metals like stainless steel, for use inside DC high voltage electron guns, is a labor-intensive and time-consuming process. In this paper, the authors report the exceptional high voltage performance of aluminum electrodes coated with hard titanium nitride (TiN). The aluminum electrodes were comparatively easy to manufacture and required only hours of mechanical polishing using silicon carbide paper, prior to coating with TiN by a commercial vendor. The high voltage performance of three TiN-coated aluminum electrodes, before and after gas conditioning with helium, was compared to that of bare aluminum electrodes, and electrodes manufactured from titanium alloymore » (Ti-6AI-4V). Following gas conditioning, each TiN-coated aluminum electrode reached -225 kV bias voltage while generating less than 100 pA of field emission (<10 pA) using a 40 mm cathode/anode gap, corresponding to field strength of 13.7 MV/m. Smaller gaps were studied to evaluate electrode performance at higher field strength with the best performing TiN-coated aluminum electrode reaching ~22.5 MV/m with field emission less than 100 pA. These results were comparable to those obtained from our best-performing electrodes manufactured from stainless steel, titanium alloy and niobium, as reported in references cited below. The TiN coating provided a very smooth surface and with mechanical properties of the coating (hardness and modulus) superior to those of stainless steel, titanium-alloy, and niobium electrodes. These features likely contributed to the improved high voltage performance of the TiN-coated aluminum electrodes.« less

  20. TiN coated aluminum electrodes for DC high voltage electron guns

    SciTech Connect (OSTI)

    Mamun, Md Abdullah A.; Elmustafa, Abdelmageed A.; Taus, Rhys; Forman, Eric; Poelker, Matthew

    2015-05-15

    Preparing electrodes made of metals like stainless steel, for use inside DC high voltage electron guns, is a labor-intensive and time-consuming process. In this paper, the authors report the exceptional high voltage performance of aluminum electrodes coated with hard titanium nitride (TiN). The aluminum electrodes were comparatively easy to manufacture and required only hours of mechanical polishing using silicon carbide paper, prior to coating with TiN by a commercial vendor. The high voltage performance of three TiN-coated aluminum electrodes, before and after gas conditioning with helium, was compared to that of bare aluminum electrodes, and electrodes manufactured from titanium alloy (Ti-6Al-4V). Following gas conditioning, each TiN-coated aluminum electrode reached −225 kV bias voltage while generating less than 100 pA of field emission (<10 pA) using a 40 mm cathode/anode gap, corresponding to field strength of 13.7 MV/m. Smaller gaps were studied to evaluate electrode performance at higher field strength with the best performing TiN-coated aluminum electrode reaching ∼22.5 MV/m with field emission less than 100 pA. These results were comparable to those obtained from our best-performing electrodes manufactured from stainless steel, titanium alloy and niobium, as reported in references cited below. The TiN coating provided a very smooth surface and with mechanical properties of the coating (hardness and modulus) superior to those of stainless steel, titanium-alloy, and niobium electrodes. These features likely contributed to the improved high voltage performance of the TiN-coated aluminum electrodes.

  1. TiN coated aluminum electrodes for DC high voltage electron guns

    SciTech Connect (OSTI)

    Mamun, Md Abdullah A.; Elmustafa, Abdelmageed A.; Taus, Rhys; Forman, Eric; Poelker, Matthew

    2015-05-01

    Preparing electrodes made of metals like stainless steel, for use inside DC high voltage electron guns, is a labor-intensive and time-consuming process. In this paper, the authors report the exceptional high voltage performance of aluminum electrodes coated with hard titanium nitride (TiN). The aluminum electrodes were comparatively easy to manufacture and required only hours of mechanical polishing using silicon carbide paper, prior to coating with TiN by a commercial vendor. The high voltage performance of three TiN-coated aluminum electrodes, before and after gas conditioning with helium, was compared to that of bare aluminum electrodes, and electrodes manufactured from titanium alloy (Ti-6AI-4V). Following gas conditioning, each TiN-coated aluminum electrode reached -225 kV bias voltage while generating less than 100 pA of field emission (<10 pA) using a 40 mm cathode/anode gap, corresponding to field strength of 13.7 MV/m. Smaller gaps were studied to evaluate electrode performance at higher field strength with the best performing TiN-coated aluminum electrode reaching ~22.5 MV/m with field emission less than 100 pA. These results were comparable to those obtained from our best-performing electrodes manufactured from stainless steel, titanium alloy and niobium, as reported in references cited below. The TiN coating provided a very smooth surface and with mechanical properties of the coating (hardness and modulus) superior to those of stainless steel, titanium-alloy, and niobium electrodes. These features likely contributed to the improved high voltage performance of the TiN-coated aluminum electrodes.

  2. Coated metal articles and method of making

    DOE Patents [OSTI]

    Boller, Ernest R. (Van Buren Township, IN); Eubank, Lowell D. (Wilmington, DE)

    2004-07-06

    The method of protectively coating metallic uranium which comprises dipping the metallic uranium in a molten alloy comprising about 20-75% of copper and about 80-25% of tin, dipping the coated uranium promptly into molten tin, withdrawing it from the molten tin and removing excess molten metal, thereupon dipping it into a molten metal bath comprising aluminum until it is coated with this metal, then promptly withdrawing it from the bath.

  3. Coated Metal Articles and Method of Making

    DOE Patents [OSTI]

    Boller, Ernest R.; Eubank, Lowell D.

    2004-07-06

    The method of protectively coating metallic uranium which comprises dipping the metallic uranium in a molten alloy comprising about 20-75% of copper and about 80-25% of tin, dipping the coated uranium promptly into molten tin, withdrawing it from the molten tin and removing excess molten metal, thereupon dipping it into a molten metal bath comprising aluminum until it is coated with this metal, then promptly withdrawing it from the bath.

  4. Optical coatings for laser fusion applications

    SciTech Connect (OSTI)

    Lowdermilk, W.H.; Milam, D.; Rainer, F.

    1980-04-24

    Lasers for fusion experiments use thin-film dielectric coatings for reflecting, antireflecting and polarizing surface elements. Coatings are most important to the Nd:glass laser application. The most important requirements of these coatings are accuracy of the average value of reflectance and transmission, uniformity of amplitude and phase front of the reflected or transmitted light, and laser damage threshold. Damage resistance strongly affects the laser's design and performance. The success of advanced lasers for future experiments and for reactor applications requires significant developments in damage resistant coatings for ultraviolet laser radiation.

  5. Gold ink coating of thermocouple sheaths

    DOE Patents [OSTI]

    Ruhl, H. Kenneth

    1992-01-01

    A method is provided for applying a gold ink coating to a thermocouple sheath which includes the steps of electropolishing and oxidizing the surface of the thermocouple sheath, then dipping the sheath into liquid gold ink, and finally heat curing the coating. The gold coating applied in this manner is highly reflective and does not degrade when used for an extended period of time in an environment having a temperature over 1000.degree. F. Depending on the application, a portion of the gold coating covering the tip of the thermocouple sheath is removed by abrasion.

  6. Customized Nanoengineered Coatings for Science and Industry ...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    coatings have diverse applications in the manufacture of microelectronics, optics, sensors and solid-state detectors, to name a few. Of the many techniques for...

  7. Degradation Mechanisms and Development of Protective Coatings...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    PDF icon cspreviewmeeting042413gomez.pdf More Documents & Publications Degradation Mechanisms and Development of Protective Coatings for TES and HTF Containment Materials - F13 ...

  8. Dynamically Responsive Infrared Window Coatings | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Dynamically Responsive Infrared Window Coatings Addthis 1 of 5 An oxygen plasma etcher is ... Kyle Alvine checks on the progress of the plasma etch. Image: Pacific Northwest National ...

  9. Precise Application of Transparent Conductive Oxide Coatings...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Precise Application of Transparent Conductive Oxide Coatings for Flat Panel Displays and Photovoltaic Cells Technology available for licensing: New transparent conducting oxide ...

  10. Precise Application of Transparent Conductive Oxide Coatings...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Precise Application of Transparent Conductive Oxide Coatings for Flat Panel Displays and ... transparent conducting oxides (TCOs) to large panel displays and photovoltaic (PV) cells. ...

  11. Nanocomposite protective coatings for battery anodes (Patent...

    Office of Scientific and Technical Information (OSTI)

    Nanocomposite protective coatings for battery anodes Title: Nanocomposite protective ... USDOE Country of Publication: United States Language: English Subject: 25 ENERGY STORAGE

  12. Coated woven materials and method of preparation

    DOE Patents [OSTI]

    McCreary, William J.; Carroll, David W.

    1981-01-01

    Coating of woven materials so that not only the outer surfaces are coated has been a problem. Now, a solution to that problem is the following: Woven materials are coated with materials, for example with metals or with pyrolytic carbon, which materials are deposited in Chemical Vapor Deposition (CVD) reactions using a fluidized bed so that the porosity of the woven material is retained and so that the tiny filaments which make up the strands which are woven (including inner as well as outer filaments) are substantially uniformly coated.

  13. Method of identifying defective particle coatings

    DOE Patents [OSTI]

    Cohen, Mark E.; Whiting, Carlton D.

    1986-01-01

    A method for identifying coated particles having defective coatings desig to retain therewithin a build-up of gaseous materials including: (a) Pulling a vacuum on the particles; (b) Backfilling the particles at atmospheric pressure with a liquid capable of wetting the exterior surface of the coated particles, said liquid being a compound which includes an element having an atomic number higher than the highest atomic number of any element in the composition which forms the exterior surface of the particle coating; (c) Drying the particles; and (d) Radiographing the particles. By television monitoring, examination of the radiographs is substantially enhanced.

  14. Scalable superhydrophobic coatings based on fluorinated diatomaceous...

    Office of Scientific and Technical Information (OSTI)

    on fluorinated diatomaceous earth Citation Details In-Document Search Title: Scalable superhydrophobic coatings based on fluorinated diatomaceous earth Authors: Polyzos, Georgios ...

  15. Boron hydride polymer coated substrates

    DOE Patents [OSTI]

    Pearson, Richard K.; Bystroff, Roman I.; Miller, Dale E.

    1987-01-01

    A method is disclosed for coating a substrate with a uniformly smooth layer of a boron hydride polymer. The method comprises providing a reaction chamber which contains the substrate and the boron hydride plasma. A boron hydride feed stock is introduced into the chamber simultaneously with the generation of a plasma discharge within the chamber. A boron hydride plasma of ions, electrons and free radicals which is generated by the plasma discharge interacts to form a uniformly smooth boron hydride polymer which is deposited on the substrate.

  16. Boron hydride polymer coated substrates

    DOE Patents [OSTI]

    Pearson, R.K.; Bystroff, R.I.; Miller, D.E.

    1986-08-27

    A method is disclosed for coating a substrate with a uniformly smooth layer of a boron hydride polymer. The method comprises providing a reaction chamber which contains the substrate and the boron hydride plasma. A boron hydride feed stock is introduced into the chamber simultaneously with the generation of a plasma discharge within the chamber. A boron hydride plasma of ions, electrons and free radicals which is generated by the plasma discharge interacts to form a uniformly smooth boron hydride polymer which is deposited on the substrate.

  17. Underwater Coatings for Contamination Control

    SciTech Connect (OSTI)

    Julia L. Tripp; Kip Archibald; Ann-Marie Phillips; Joseph Campbell

    2004-02-01

    The Idaho National Engineering and Environmental Laboratory (INEEL) is deactivating several fuel storage basins. Airborne contamination is a concern when the sides of the basins are exposed and allowed to dry during water removal. One way of controlling this airborne contamination is to fix the contamination in place while the pool walls are still submerged. There are many underwater coatings available on the market that are used in marine, naval and other applications. A series of tests were run to determine whether the candidate underwater fixatives are easily applied and adhere well to the substrates (pool wall materials) found in INEEL fuel pools. The four pools considered included 1) Test Area North (TAN-607) with epoxy painted concrete walls; 2) Idaho Nuclear Technology and Engineering Center (INTEC) (CPP-603) with bare concrete walls; 3) Materials Test Reactor (MTR) Canal with stainless steel lined concrete walls; and 4) Power Burst Facility (PBF-620) with stainless steel lined concrete walls on the bottom and epoxy painted carbon steel lined walls on the upper portions. Therefore, the four materials chosen for testing included bare concrete, epoxy painted concrete, epoxy painted carbon steel, and stainless steel. The typical water temperature of the pools varies from 55oF to 80oF dependent on the pool and the season. These tests were done at room temperature. The following criteria were used during this evaluation. The underwater coating must: Be easy to apply Adhere well to the four surfaces of interest Not change or have a negative impact on water chemistry or clarity Not be hazardous in final applied form Be proven in other underwater applications. In addition, it is desirable for the coating to have a high pigment or high cross-link density to prevent radiation from penetrating. This paper will detail the testing completed and the test results. A proprietary two-part, underwater epoxy owned by S. G. Pinney and Associates was selected to be applied by divers after scrubbing loose contamination off the basin walls and floors using a ship hull scrubber and vacuuming up the sludge. A special powered roller with two separate heated hoses that allowed the epoxy to mix at the roller surface was used to eliminate pot time concerns. The walls were successfully coated and water was removed from the pool with no airborne contamination problems.

  18. A study of cooling time reduction of interferometric cryogenic gravitational wave detectors using a high-emissivity coating

    SciTech Connect (OSTI)

    Sakakibara, Y.; Yamamoto, K.; Chen, D.; Tokoku, C.; Uchiyama, T.; Ohashi, M.; Kuroda, K.; Kimura, N.; Suzuki, T.; Koike, S.

    2014-01-29

    In interferometric cryogenic gravitational wave detectors, there are plans to cool mirrors and their suspension systems (payloads) in order to reduce thermal noise, that is, one of the fundamental noise sources. Because of the large payload masses (several hundred kg in total) and their thermal isolation, a cooling time of several months is required. Our calculation shows that a high-emissivity coating (e.g. a diamond-like carbon (DLC) coating) can reduce the cooling time effectively by enhancing radiation heat transfer. Here, we have experimentally verified the effect of the DLC coating on the reduction of the cooling time.

  19. Phase transformation and wear studies of plasma sprayed yttria stabilized zirconia coatings containing various mol% of yttria

    SciTech Connect (OSTI)

    Aruna, S.T. Balaji, N.; Rajam, K.S.

    2011-07-15

    Plasma sprayable grade zirconia powders doped with various mol% of yttria (0, 2, 3, 4, 6, 8 and 12 mol%) were synthesized by a chemical co-precipitation route. The coprecipitation conditions were adjusted such that the powders possessed good flowability in the as calcined condition and thus avoiding the agglomeration step like spray drying. Identical plasma spray parameters were used for plasma spraying all the powders on stainless steel plates. The powders and plasma sprayed coatings were characterized by X-ray diffractometry, Scanning Electron Microscopy and Raman spectroscopy. Zirconia powders are susceptible to phase transformations when subjected to very high temperatures during plasma spraying and XRD is insensitive to the presence of some non crystalline phases and hence Raman spectroscopy was used as an important tool. The microstructure of the plasma sprayed coatings showed a bimodal distribution containing fully melted and unmelted zones. The microhardness and wear resistance of the plasma sprayed coatings were determined. Among the plasma sprayed coatings, 3 mol% yttria stabilized zirconia coating containing pure tetragonal zirconia showed the highest wear resistance. - Research Highlights: {yields} Preparation plasma sprayable YSZ powders without any agglomeration process and plasma spraying {yields} Phase transformation studies of plasma sprayed YSZ coatings by XRD and Raman spectroscopy {yields} Microstructure of the plasma sprayed coatings exhibited bimodal distribution {yields} Plasma sprayed 3 mol% YSZ coating exhibited the highest wear resistance {yields} Higher wear resistance is due to the higher fracture toughness of tetragonal 3 mol% YSZ phase.

  20. Functioning mechanism of AlF3 coating on the Li- and Mn-rich cathode materials

    SciTech Connect (OSTI)

    Zheng, Jianming; Gu, Meng; Xiao, Jie; Polzin, Bryant; Yan, Pengfei; Chen, Xilin; Wang, Chong M.; Zhang, Jiguang

    2014-11-25

    Li- and Mn-rich (LMR) material is a very promising cathode for lithium ion batteries because of their high theoretical energy density (~900 Wh kg-1) and low cost. However, their poor long-term cycling stability, voltage fade, and low rate capability are significant barriers hindered their practical applications. Surface coating, e.g. AlF3 coating, can significantly improve the capacity retention and enhance the rate capability. However, the fundamental mechanism of this improvement and the microstructural evolution related to the surface coating is still not well understood. Here, we report systematic studies of the microstructural changes of uncoated and AlF3-coated materials before and after cycling using aberration-corrected scanning/transmission electron microscopy and electron energy loss spectroscopy. The results reveal that surface coating can reduce the oxidation of electrolyte at high voltage, thus suppressing the accumulation of SEI layer on electrode particle surface. Surface coating also enhances structural stability of the surface region (especially the electrochemically transformed spinel-like phase), and protects the electrode from severe etching/corrosion by the acidic species in the electrolyte, therefore limiting the degradation of the material. Moreover, surface coating can alleviate the undesirable voltage fade by minimize layered-spinel phase transformation in the bulk region of the materials. These fundamental findings may also be widely applied to explain the functioning mechanism of other surface coatings used in a broad range of electrode materials.

  1. Tissue-like phantoms

    DOE Patents [OSTI]

    Frangioni, John V.; De Grand, Alec M.

    2007-10-30

    The invention is based, in part, on the discovery that by combining certain components one can generate a tissue-like phantom that mimics any desired tissue, is simple and inexpensive to prepare, and is stable over many weeks or months. In addition, new multi-modal imaging objects (e.g., beads) can be inserted into the phantoms to mimic tissue pathologies, such as cancer, or merely to serve as calibration standards. These objects can be imaged using one, two, or more (e.g., four) different imaging modalities (e.g., x-ray computed tomography (CT), positron emission tomography (PET), single photon emission computed tomography (SPECT), and near-infrared (NIR) fluorescence) simultaneously.

  2. W-Coating for MEMS

    SciTech Connect (OSTI)

    Fleming, J.G.; Mani, S.S.; Sniegowski, J.J.

    1999-07-08

    The integration of miniaturized mechanical components has spawned a new technology known as microelectromechanical systems (MEMS). Surface micromachining, defined as the fabrication of micromechanical structures from deposited thin films, is one of the core technological processes underlying MEMS. Surface micromachined structures have a large ratio of surface area to volume which makes them particularly vulnerable to adhesion to the substrate or adjacent structures during release or in use--a problem is called stiction. Since microactuators can have surfaces in normal or sliding contact, function and wear are critical issues for reliable operation of MEMS devices. Surface modifications are needed to reduce adhesion and friction in micromechanical structures. In this paper, we will present a process used to selectively coat MEMS devices with Tungsten using a CVD (Chemical Vapor Deposition) process. We will discuss the effect of wet and vapor phase cleans along with different process variables. Endurance of the W coating is important, especially in applications where wear due to repetitive contacts with the film may occur. Further, tungsten is hard and chemically inert, Tungsten CVD is used in the integrated-circuit industry, which makes this, approach manufacturable.

  3. ALS Capabilities Reveal How Like Can Attract Like

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ALS Capabilities Reveal How Like Can Attract Like ALS Capabilities Reveal How Like Can Attract Like Print Wednesday, 26 March 2014 00:00 A Berkeley Lab research team working at the ALS has observed an unusual pairing that seems to go against a universal scientific truth-that opposite charges attract and like charges repel. Led by Berkeley Lab chemist Richard Saykally and theorist David Prendergast, researchers demonstrated that, when hydrated in water, positively charged ions (cations) can

  4. Process to minimize cracking of pyrolytic carbon coatings

    DOE Patents [OSTI]

    Lackey, Jr., Walter J.; Sease, John D.

    1978-01-01

    Carbon-coated microspheroids useful as fuels in nuclear reactors are produced with a low percentage of cracked coatings and are imparted increased strength and mechanical stability characteristics by annealing immediately after the carbon coating processes.

  5. Effect of Lithium PFC Coatings on NSTX Density Control (Journal...

    Office of Scientific and Technical Information (OSTI)

    Effect of Lithium PFC Coatings on NSTX Density Control Citation Details In-Document Search Title: Effect of Lithium PFC Coatings on NSTX Density Control Lithium coatings on the ...

  6. Development of Industrially Viable Battery Electrode Coatings | Department

    Broader source: Energy.gov (indexed) [DOE]

    of Energy 62_tenent_2012_o.pdf More Documents & Publications Development of Industrially Viable Battery Electrode Coatings Development of Industrially Viable Battery Electrode Coatings Development of Industrially Viable Battery Electrode Coatings

  7. Measure Guideline. Transitioning From Three-Coat Stucco to One-Coat Stucco With EPS

    SciTech Connect (OSTI)

    Brozyna, K.; Davis, G.; Rapport, A.

    2012-04-01

    This measure guideline has been developed to help builders transition from using a traditional three-coat stucco wall-cladding system to a one-coat stucco wall-cladding system with expanded polystyrene (EPS) insulated sheathing. The one-coat system maintains the look of a traditional stucco system but uses only a base layer and a finish coat over EPS insulation that achieves higher levels of energy efficiency. Potential risks associated with the installation of a one-coat stucco system are addressed in terms of design, installation, and warranty concerns such as cracking and delamination, along with mitigation strategies to reduce these risks.

  8. Method of Obtaining Uniform Coatings on Graphite

    DOE Patents [OSTI]

    Campbell, I. E.

    1961-04-01

    A method is given for obtaining uniform carbide coatings on graphite bodies. According to the invention a metallic halide in vapor form is passed over the graphite body under such conditions of temperature and pressure that the halide reacts with the graphite to form a coating of the metal carbide on the surface of the graphite.

  9. METHOD OF OBTAINING UNIFORM COATINGS ON GRAPHITE

    DOE Patents [OSTI]

    Campbell, I.E.

    1961-04-01

    A method is given for obtaining uniform carbide coatings on graphite bodies. According to the invention a metallic halide in vapor form is passed over the graphite body under such conditions of temperature and pressure that the halide reacts with the graphite to form a coating of the metal carbide on the surface of the graphite.

  10. Cationic electrodepositable coating composition comprising lignin

    DOE Patents [OSTI]

    Fenn, David; Bowman, Mark P; Zawacky, Steven R; Van Buskirk, Ellor J; Kamarchik, Peter

    2013-07-30

    A cationic electrodepositable coating composition is disclosed. The present invention in directed to a cationic electrodepositable coating composition comprising a lignin-containing cationic salt resin, that comprises (A) the reaction product of: lignin, an amine, and a carbonyl compound; (B) the reaction product of lignin, epichlorohydrin, and an amine; or (C) combinations thereof.

  11. Nanoscale Reinforced, Polymer Derived Ceramic Matrix Coatings

    SciTech Connect (OSTI)

    Rajendra Bordia

    2009-07-31

    The goal of this project was to explore and develop a novel class of nanoscale reinforced ceramic coatings for high temperature (600-1000 C) corrosion protection of metallic components in a coal-fired environment. It was focused on developing coatings that are easy to process and low cost. The approach was to use high-yield preceramic polymers loaded with nano-size fillers. The complex interplay of the particles in the polymer, their role in controlling shrinkage and phase evolution during thermal treatment, resulting densification and microstructural evolution, mechanical properties and effectiveness as corrosion protection coatings were investigated. Fe-and Ni-based alloys currently used in coal-fired environments do not possess the requisite corrosion and oxidation resistance for next generation of advanced power systems. One example of this is the power plants that use ultra supercritical steam as the working fluid. The increase in thermal efficiency of the plant and decrease in pollutant emissions are only possible by changing the properties of steam from supercritical to ultra supercritical. However, the conditions, 650 C and 34.5 MPa, are too severe and result in higher rate of corrosion due to higher metal temperatures. Coating the metallic components with ceramics that are resistant to corrosion, oxidation and erosion, is an economical and immediate solution to this problem. Good high temperature corrosion protection ceramic coatings for metallic structures must have a set of properties that are difficult to achieve using established processing techniques. The required properties include ease of coating complex shapes, low processing temperatures, thermal expansion match with metallic structures and good mechanical and chemical properties. Nanoscale reinforced composite coatings in which the matrix is derived from preceramic polymers have the potential to meet these requirements. The research was focused on developing suitable material systems and processing techniques for these coatings. In addition, we investigated the effect of microstructure on the mechanical properties and oxidation protection ability of the coatings. Coatings were developed to provide oxidation protection to both ferritic and austentic alloys and Ni-based alloys. The coatings that we developed are based on low viscosity pre-ceramic polymers. Thus they can be easily applied to any shape by using a variety of techniques including dip-coating, spray-coating and painting. The polymers are loaded with a variety of nanoparticles. The nanoparticles have two primary roles: control of the final composition and phases (and hence the properties); and control of the shrinkage during thermal decomposition of the polymer. Thus the selection of the nanoparticles was the most critical aspect of this project. Based on the results of the processing studies, the performance of selected coatings in oxidizing conditions (both static and cyclic) was investigated.

  12. Method of coating metal surfaces to form protective metal coating thereon

    DOE Patents [OSTI]

    Krikorian, Oscar H.; Curtis, Paul G.

    1992-01-01

    A process is disclosed for forming a protective metal coating on a metal surface using a flux consisting of an alkali metal fluoride, an alkaline earth metal fluoride, an alkali metal fluoaluminate, an alkali metal fluosilicate, and mixtures thereof. The flux, in particulate form, is mixed with particles of a metal coating material which may comprise aluminum, chromium, mixtures thereof, and alloys containing at least 50 wt. % aluminum and the particulate mixture is applied to the metal surface in a single step, followed by heating the coated metal surface to a temperature sufficient to cause the metal coating material to react with the metal surface to form a protective reaction product in the form of a metal coating bonded to the metal surface. The metal surface which reacts with the metal coating material to form the protective coating may comprise Fe, Co, Ni, Ti, V, Cr, Mn, Zr, Nb, Mo, Tc, Hf, Ta, W, Re and alloys thereof.

  13. Method of coating metal surfaces to form protective metal coating thereon

    DOE Patents [OSTI]

    Krikorian, O.H.; Curtis, P.G.

    1992-03-31

    A process is disclosed for forming a protective metal coating on a metal surface using a flux consisting of an alkali metal fluoride, an alkaline earth metal fluoride, an alkali metal fluoaluminate, an alkali metal fluosilicate, and mixtures thereof. The flux, in particulate form, is mixed with particles of a metal coating material which may comprise aluminum, chromium, mixtures thereof, and alloys containing at least 50 wt. % aluminum and the particulate mixture is applied to the metal surface in a single step, followed by heating the coated metal surface to a temperature sufficient to cause the metal coating material to react with the metal surface to form a protective reaction product in the form of a metal coating bonded to the metal surface. The metal surface which reacts with the metal coating material to form the protective coating may comprise Fe, Co, Ni, Ti, V, Cr, Mn, Zr, Nb, Mo, Tc, Hf, Ta, W, Re and alloys thereof. 1 figure.

  14. The HMDS Coating Flaw Removal Tool

    SciTech Connect (OSTI)

    Monticelli, M V; Nostrand, M C; Mehta, N; Kegelmeyer, L; Johnson, M A; Fair, J; Widmayer, C

    2008-10-24

    In many high energy laser systems, optics with HMDS sol gel antireflective coatings are placed in close proximity to each other making them particularly susceptible to certain types of strong optical interactions. During the coating process, halo shaped coating flaws develop around surface digs and particles. Depending on the shape and size of the flaw, the extent of laser light intensity modulation and consequent probability of damaging downstream optics may increase significantly. To prevent these defects from causing damage, a coating flaw removal tool was developed that deploys a spot of decane with a syringe and dissolves away the coating flaw. The residual liquid is evacuated leaving an uncoated circular spot approximately 1mm in diameter. The resulting uncoated region causes little light intensity modulation and thus has a low probability of causing damage in optics downstream from the mitigated flaw site.

  15. Multilayer coatings for solar energy control applications

    SciTech Connect (OSTI)

    Kivaisi, R.T.; Mbise, G.

    1993-12-31

    This work presents some results for window coatings that are suitable for solar control applications. Selected research results are given for metal/dielectric based coatings optimized for normal incidence. These coatings can be used to improve the performance of windows both for architectural and automobile sectors. Surface coatings which are transparent at 0.3 < {lambda} < 0.7 {micro}m can be used to solar control windows. A thin homogeneous noble metal film (eg Ag) can combine short wavelength transmittance with high long wavelength reflectance. By embedding the metal film between high refractive index dielectric layers one can optimize the transmittance in the desired spectral region. Transmittance data for multilayer stacks designed for normal and non normal incidence to the coating are presented.

  16. Zero discharge organic coatings, powder paint - UV curable paint - E-coat. Volume 1. Final report, June 1993-June 1995

    SciTech Connect (OSTI)

    Leal, J.; Martin, D.R.; Spadafora, S.J.; Eng, A.T.; Stark, H.

    1995-06-01

    Zero Discharge Organic Coatings project developed powder paint, Ultraviolet (UV) curable paint, and electro- coating (E-coat) paint for military Applications. These technologies offer potential for high performance coatings with little or no volatile organic compound (VOC) emissions or hazardous waste generation. The ZDOC project focused on formulating non-toxic corrosion inhibitors into these coating technologies, and the applications development of powder coatings. Non-toxic replacements for traditional lead and chromate inhibitors were selected based on a previous NAWCADWAR investigation. Once incorporated, the performance of the coatings with and without inhibitors was compared. Also, the protective mechanisms of these inhibitors were studied. The applications development for powder coatings analyzed technologies to allow powder coating of non-conductive substrates and evaluated the use of IR energy to cure powder coatings. Inhibitors were successfully incorporated into electrocoatings and powder coatings, however corrosion performance results varied with coating formulation.

  17. Method for smoothing the surface of a protective coating

    DOE Patents [OSTI]

    Sangeeta, D.; Johnson, Curtis Alan; Nelson, Warren Arthur

    2001-01-01

    A method for smoothing the surface of a ceramic-based protective coating which exhibits roughness is disclosed. The method includes the steps of applying a ceramic-based slurry or gel coating to the protective coating surface; heating the slurry/gel coating to remove volatile material; and then further heating the slurry/gel coating to cure the coating and bond it to the underlying protective coating. The slurry/gel coating is often based on yttria-stabilized zirconia, and precursors of an oxide matrix. Related articles of manufacture are also described.

  18. Table III: Technical Targets for Catalyst Coated Membranes (CCMs...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    III: Technical Targets for Catalyst Coated Membranes (CCMs): Stationary Table III: Technical Targets for Catalyst Coated Membranes (CCMs): Stationary Technical targets for CCMs in ...

  19. Development of Steel Fastener Nano-Ceramic Coatings for Corrosion...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Steel Fastener Nano-Ceramic Coatings for Corrosion Protection of Magnesium Parts (AMD-704) Development of Steel Fastener Nano-Ceramic Coatings for Corrosion Protection of Magnesium ...

  20. Lubricant-infused nanoparticulate coatings assembled by layer...

    Office of Scientific and Technical Information (OSTI)

    Lubricant-infused nanoparticulate coatings assembled by layer-by-layer deposition Title: Lubricant-infused nanoparticulate coatings assembled by layer-by-layer deposition ...

  1. Sacrificial Protective Coating Materials That Can Be Regenerated...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Sacrificial Protective Coating Materials That Can Be Regenerated In-Situ to Enable High-Performance Membranes Sacrificial Protective Coating Materials That Can Be Regenerated ...

  2. Photovoltaic Electrical Contact and Cell Coating Basics | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Electrical Contact and Cell Coating Basics Photovoltaic Electrical Contact and Cell Coating Basics August 19, 2013 - 4:12pm Addthis The outermost layers of photovoltaic (PV) cell, ...

  3. Project Profile: High-Temperature Solar Selective Coating Development...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Solar Selective Coating Development for Power Tower Receivers Project Profile: High-Temperature Solar Selective Coating Development for Power Tower Receivers Sandia National ...

  4. High-Temperatuer Solar Selective Coating Development for Power...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    High-Temperatuer Solar Selective Coating Development for Power Tower Receivers High-Temperatuer Solar Selective Coating Development for Power Tower Receivers This presentation was ...

  5. The commercial development of water repellent coatings for high...

    Office of Scientific and Technical Information (OSTI)

    coatings for high voltage transmission lines Citation Details In-Document Search Title: The commercial development of water repellent coatings for high voltage transmission lines ...

  6. Coated Gold Nanoparticles Found to be Speedy Electron Sponges...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Coated Gold Nanoparticles Found to be Speedy Electron Sponges Gold-coated nanoparticles capture electrons at an unprecedented rate in solution. Gold nanoparticles demonstrate the...

  7. Coated Fiber Neutron Detector Test

    SciTech Connect (OSTI)

    Lintereur, Azaree T.; Ely, James H.; Kouzes, Richard T.; Stromswold, David C.

    2009-10-23

    Radiation portal monitors used for interdiction of illicit materials at borders include highly sensitive neutron detection systems. The main reason for having neutron detection capability is to detect fission neutrons from plutonium. The currently deployed radiation portal monitors (RPMs) from Ludlum and Science Applications International Corporation (SAIC) use neutron detectors based upon 3He-filled gas proportional counters, which are the most common large neutron detector. There is a declining supply of 3He in the world, and thus, methods to reduce the use of this gas in RPMs with minimal changes to the current system designs and sensitivity to cargo-borne neutrons are being investigated. Reported here are the results of tests of the 6Li/ZnS(Ag)-coated non-scintillating plastic fibers option. This testing measured the required performance for neutron detection efficiency and gamma ray rejection capabilities of a system manufactured by Innovative American Technology (IAT).

  8. Effect of Superalloy Substrate and Bond Coating on TBC Lifetime

    SciTech Connect (OSTI)

    Pint, Bruce A; Haynes, James A; Zhang, Ying

    2010-01-01

    Several different single-crystal superalloys were coated with different bond coatings to study the effect of composition on the cyclic oxidation lifetime of an yttria-stabilized zirconia (YSZ) top coating deposited by electron beam physical vapor deposition from a commercial source. Three different superalloys were coated with a 7 {micro}m Pt layer that was diffused into the surface prior to YSZ deposition. One of the superalloys, N5, was coated with a low activity, Pt-modified aluminide coating and Pt-diffusion coatings with 3 and 7 {micro}m of Pt. Three coatings of each type were furnace cycled to failure in 1 h cycles at 1150 C to assess average coating lifetime. The 7 {micro}m Pt diffusion coating on N5 had an average YSZ coating lifetime >50% higher than a Pt-modified aluminide coating on N5. Without a YSZ coating, the Pt-modified aluminide coating on N5 showed the typical surface deformation during cycling, however, the deformation was greatly reduced when constrained by the YSZ coating. The 3 {micro}m Pt diffusion coating had a similar average lifetime as the Pt-modified aluminide coating but a much wider scatter. The Pt diffusion bond coating on superalloy X4 containing Ti exhibited the shortest YSZ coating lifetime, this alloy-coating combination also showed the worst alumina scale adhesion without a YSZ coating. The third generation superalloy N6 exhibited the longest coating lifetime with a 7 {micro}m Pt diffusion coating.

  9. Y-12's Protective Force donates coats to VMC | Y-12 National Security

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Complex 's Protective Force ... Y-12's Protective Force donates coats to VMC Posted: January 25, 2016 - 1:17pm Veterans and current Y-12 Security Police Officers delivered former uniform coats to the Volunteer Ministry Center. A few years ago, Y-12's Protective Force changed from solid gray uniforms to their current digital camouflage gear. The old uniforms-some of which were actually new, with tags still on-were considered excess and likely headed toward a landfill. Around that same time,

  10. Capacitively coupled RF diamond-like-carbon reactor

    DOE Patents [OSTI]

    Devlin, David James; Coates, Don Mayo; Archuleta, Thomas Arthur; Barbero, Robert Steven

    2000-01-01

    A process of coating a non-conductive fiber with diamond-like carbon, including passing a non-conductive fiber between a pair of parallel metal grids within a reaction chamber, introducing a hydrocarbon gas into the reaction chamber, forming a plasma within the reaction chamber for a sufficient period of time whereby diamond-like carbon is formed upon the non-conductive fiber, is provided together with a reactor chamber for deposition of diamond-like carbon upon a non-conductive fiber, including a vacuum chamber, a cathode assembly including a pair of electrically isolated opposingly parallel metal grids spaced apart at a distance of less than about 1 centimeter, an anode, a means of introducing a hydrocarbon gas into said vacuum chamber, and a means of generating a plasma within said vacuum chamber.

  11. Biocompatible Coating (Parylene) Deposition System

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Metal Containing Diamond-Like Carbon Deposition System Varshni Singh and Jost Goettert Center for Advanced Microstructures & Devices, Louisiana State University, 6980 Jefferson Hwy., Baton Rouge, LA-70806 Summary CAMD/LSU received funds from the Board of Regents' Enhancement Program for modifying and upgrading of a diamond like carbon (DLC) deposition system. This included a magnetron with shield, DC power supply and pulsing unit, mass flow controllers and in-situ thin film deposition

  12. Facile synthesis of one-dimensional peapod-like Sb@C submicron-structures

    SciTech Connect (OSTI)

    Luo, W; Lorger, S; Wang, B; Bommier, C; Ji, XL

    2014-01-01

    We demonstrate a novel synthetic route to fabricate a one-dimensional peapod-like Sb@C structure with disperse Sb submicron-particles encapsulated in carbon submicron-tubes. The synthetic route may well serve as a general methodology for fabricating carbon/metallic fine structures by thermally reducing their carbon-coated metal oxide composites.

  13. Carbon nanotube coatings as chemical absorbers

    DOE Patents [OSTI]

    Tillotson, Thomas M.; Andresen, Brian D.; Alcaraz, Armando

    2004-06-15

    Airborne or aqueous organic compound collection using carbon nanotubes. Exposure of carbon nanotube-coated disks to controlled atmospheres of chemical warefare (CW)-related compounds provide superior extraction and retention efficiencies compared to commercially available airborne organic compound collectors. For example, the carbon nanotube-coated collectors were four (4) times more efficient toward concentrating dimethylmethyl-phosphonate (DMMP), a CW surrogate, than Carboxen, the optimized carbonized polymer for CW-related vapor collections. In addition to DMMP, the carbon nanotube-coated material possesses high collection efficiencies for the CW-related compounds diisopropylaminoethanol (DIEA), and diisopropylmethylphosphonate (DIMP).

  14. METHOD OF APPLYING NICKEL COATINGS ON URANIUM

    DOE Patents [OSTI]

    Gray, A.G.

    1959-07-14

    A method is presented for protectively coating uranium which comprises etching the uranium in an aqueous etching solution containing chloride ions, electroplating a coating of nickel on the etched uranium and heating the nickel plated uranium by immersion thereof in a molten bath composed of a material selected from the group consisting of sodium chloride, potassium chloride, lithium chloride, and mixtures thereof, maintained at a temperature of between 700 and 800 deg C, for a time sufficient to alloy the nickel and uranium and form an integral protective coating of corrosion-resistant uranium-nickel alloy.

  15. HIGH TEMPERATURE REFRACTORY COATING FOR GRAPHITE MOLDS

    DOE Patents [OSTI]

    Stoddard, S.D.

    1958-10-21

    An improved foundry mold coating for use with graphite molds used in the casting of uranium is presented. The refractory mold coating serves to keep the molten uranium from contact with graphite of the mold and thus prevents carbon pickup by the molten metal. The refractory coating is made by dry mixing certain specific amounts of aluminum oxide, bentonite, Tennessee ball clay, and a soluble silicate salt. Water is then added to the mixture and the suspension thus formed is applied by spraying onto the mold.

  16. Void forming pyrolytic carbon coating process

    DOE Patents [OSTI]

    Beatty, Ronald L.; Cook, Jackie L.

    2000-01-01

    A pyrolytic carbon coated nuclear fuel particle and method of making it. The fuel particle has a core composed of a refractory compound of an actinide metal. The pyrolytic carbon coating surrounds the core so as to provide a void volume therebetween. The coating has an initial density of no greater than 1.45 grams/cm.sup.3 and an anisotropy factor than 3.0 and a final density upon heat treatment above about 2000.degree. C. of greater than 1.7 grams/cm.sup.3 and an anisotropy factor greater than 5.

  17. Advanced Fuels Campaign Cladding & Coatings Meeting Summary

    SciTech Connect (OSTI)

    Not Listed

    2013-03-01

    The Fuel Cycle Research and Development (FCRD) Advanced Fuels Campaign (AFC) organized a Cladding and Coatings operational meeting February 12-13, 2013, at Oak Ridge National Laboratory (ORNL). Representatives from the U.S. Department of Energy (DOE), national laboratories, industry, and universities attended the two-day meeting. The purpose of the meeting was to discuss advanced cladding and cladding coating research and development (R&D); review experimental testing capabilities for assessing accident tolerant fuels; and review industry/university plans and experience in light water reactor (LWR) cladding and coating R&D.

  18. METHOD OF PREPARING COATED REFRACTORY WARE

    DOE Patents [OSTI]

    Perlman, M.L.; Lipkin, D.; Weissman, S.I.

    1959-07-21

    A method is presented for preparing a dense, refractory coating on a vessel adapted to the handling of molten metals such as uranium and plutonium. According to the invention, the inner surface of a heat stable container formed of a refractory metal of either niobium, molybdenum, tantalum, or tungsten is coated with molten thorium within 10 minutes so as to present alloying with the refractory metal and then exposed to a reactive atmosphere of nitrogen at a temperature of about 1750 deg for 30 minutes to form a refractory thorium nitride coating.

  19. Corrosion control of metals by organic coatings

    SciTech Connect (OSTI)

    Ooij, W.J. van; Bierwagen, G.P.; Skerry, B.S.; Mills, D.

    1999-01-01

    The authors present a comprehensive treatment of the entire field of corrosion control of metals, from mechanisms and testing procedures to modification of metal surfaces and interfaces by silanes and plasma techniques. They discuss the new, sophisticated analytical tools, such as Time-of-Flight SIMS and electrochemical impedance spectroscopy, and all materials -- metals, pretreatments, and paint systems. The contents include: (1) Corrosion under organic coatings; (2) Mechanisms of corrosion control by organic coatings; (3) Metal pretreatments; (4) Techniques to study organic coating-metal interfaces; (5) Modification of metal surfaces and interfaces; (6) corrosion testing; (7) Adhesion testing; (8) Paint systems; (9) Conclusions and prospects references.

  20. Self-assembled nanolaminate coatings (SV)

    SciTech Connect (OSTI)

    Fan, H.

    2012-03-01

    Sandia National Laboratories (Sandia) and Lockheed Martin Aeronautics (LM Aero) are collaborating to develop affordable, self-assembled, nanocomposite coatings and associated fabrication processes that will be tailored to Lockheed Martin product requirements. The purpose of this project is to develop a family of self-assembled coatings with properties tailored to specific performance requirements, such as antireflective (AR) optics, using Sandia-developed self-assembled techniques. The project met its objectives by development of a simple and economic self-assembly processes to fabricate multifunctional coatings. Specifically, materials, functionalization methods, and associated coating processes for single layer and multiple layers coatings have been developed to accomplish high reflective coatings, hydrophobic coatings, and anti-reflective coatings. Associated modeling and simulations have been developed to guide the coating designs for optimum optical performance. The accomplishments result in significant advantages of reduced costs, increased manufacturing freedom/producibility, improved logistics, and the incorporation of new technology solutions not possible with conventional technologies. These self-assembled coatings with tailored properties will significantly address LMC's needs and give LMC a significant competitive lead in new engineered materials. This work complements SNL's LDRD and BES programs aimed at developing multifunctional nanomaterials for microelectronics and optics as well as structure/property investigations of self-assembled nanomaterials. In addition, this project will provide SNL with new opportunities to develop and apply self-assembled nanocomposite optical coatings for use in the wavelength ranges of 3-5 and 8-12 micrometers, ranges of vital importance to military-based sensors and weapons. The SANC technologies will be applied to multiple programs within the LM Company including the F-35, F-22, ADP (Future Strike Bomber, UAV, UCAV, etc.). The SANC technologies will establish LMA and related US manufacturing capability for commercial and military applications therefore reducing reliance on off-shore development and production of related critical technologies. If these technologies are successfully licensed, production of these coatings in manufactory will create significant technical employment opportunities.

  1. Method of applying coatings to substrates

    DOE Patents [OSTI]

    Hendricks, Charles D.

    1991-01-01

    A method for applying novel coatings to substrates is provided. The ends of multiplicity of rods of different materials are melted by focused beams of laser light. Individual electric fields are applied to each of the molten rod ends, thereby ejecting charged particles that include droplets, atomic clusters, molecules, and atoms. The charged particles are separately transported, by the accelerations provided by electric potentials produced by an electrode structure, to substrates where they combine and form the coatings. Layered and thickness graded coatings comprised of hithereto unavailable compositions, are provided.

  2. Near-infrared radiation curable multilayer coating systems and methods for applying same

    DOE Patents [OSTI]

    Bowman, Mark P; Verdun, Shelley D; Post, Gordon L

    2015-04-28

    Multilayer coating systems, methods of applying and related substrates are disclosed. The coating system may comprise a first coating comprising a near-IR absorber, and a second coating deposited on a least a portion of the first coating. Methods of applying a multilayer coating composition to a substrate may comprise applying a first coating comprising a near-IR absorber, applying a second coating over at least a portion of the first coating and curing the coating with near infrared radiation.

  3. Measure Guideline: Transitioning from Three-Coat Stucco to One-Coat Stucco with EPS

    SciTech Connect (OSTI)

    Brozyna, K.; Davis, G.; Rapport, A.

    2012-04-01

    This Measure Guideline has been developed to help builders transition from using a traditional three-coat stucco wall-cladding system to a one-coat stucco wall-cladding system with expanded polystyrene (EPS) insulated sheathing. The three-coat system uses a base layer, a fill layer, and a finish layer. The one-coat system maintains the look of a traditional stucco system but uses only a base layer and a finish coat over EPS insulation that achieves higher levels of energy efficiency. Potential risks associated with the installation of a one-coat stucco system are addressed in terms of design, installation, and warranty concerns such as cracking and delamination, along with mitigation strategies to reduce these risks.

  4. Electron-stimulated desorption from polished and vacuum fired 316LN stainless steel coated with Ti-Zr-Hf-V

    SciTech Connect (OSTI)

    Malyshev, Oleg B. Valizadeh, Reza; Hogan, Benjamin T.; Hannah, Adrian N.

    2014-11-01

    In this study, two identical 316LN stainless steel tubular samples, which had previously been polished and vacuum-fired and then used for the electron-stimulated desorption (ESD) experiments, were coated with Ti-Zr-Hf-V with different morphologies: columnar and dense. ESD measurement results after nonevaporable getter (NEG) activation to 150, 180, 250, and 350?C indicated that the values for the ESD yields are significantly (220 times) lower than the data from our previous study with similar coatings on nonvacuum-fired samples. Based on these results, the lowest pressure and best long-term performance in particle accelerators will be achieved with a vacuum-fired vacuum chamber coated with dense Ti-Zr-Hf-V coating activated at 180?C. This is likely due to the following facts: after NEG activation, the hydrogen concentration inside the NEG was lower than in the bulk stainless steel substrate; the NEG coating created a barrier for gas diffusion from the sample bulk to vacuum; the dense NEG coating performed better as a barrier than the columnar NEG coating.

  5. Effects of alpha-zirconium phosphate on thermal degradation and flame retardancy of transparent intumescent fire protective coating

    SciTech Connect (OSTI)

    Xing, Weiyi; Zhang, Ping; Song, Lei; Wang, Xin; Hu, Yuan

    2014-01-01

    Graphical abstract: - Highlights: A transparent intumescent fire protective coating was obtained by UV-cured technology. OZrP could enhance the thermal stability and anti-oxidation of the coating. OZrP could reduce the combustion properties of the coatings. - Abstract: Organophilic alpha-zirconium phosphate (OZrP) was used to improve the thermal and fire retardant behaviors of the phenyl di(acryloyloxyethyl)phosphate (PDHA)-triglycidyl isocyanurate acrylate (TGICA)-2-phenoxyethyl acrylate (PHEA) (PDHA-TGICA-PHEA) coating. The morphology of nanocomposite coating was characterized by X-ray diffraction (XRD) and transmission electron microscopy (TEM). The effect of OZrP on the flame retardancy, thermal stability, fireproofing time and char formation of the coatings was investigated by microscale combustion calorimeter (MCC), thermogravimetric analysis (TGA), X-ray photoelectron spectroscopy (XPS), laser Raman spectroscopy (LRS) and scanning electric microscope (SEM). The results showed that by adding OZrP, the peak heat release rate and total heat of combustion were significantly reduced. The highest improvement was achieved with 0.5 wt% OZrP. XPS analysis indicated that the performance of anti-oxidation of the coating was improved with the addition of OZrP, and SEM images showed that a good synergistic effect was obtained through a ceramic-like layer produced by OZrP covered on the surface of char.

  6. Method for improving the oxidation-resistance of metal substrates coated with thermal barrier coatings

    DOE Patents [OSTI]

    Thompson, Anthony Mark; Gray, Dennis Michael; Jackson, Melvin Robert

    2002-01-01

    A method for providing a protective coating on a metal-based substrate is disclosed. The method involves the application of an aluminum-rich mixture to the substrate to form a discontinuous layer of aluminum-rich particles, followed by the application of a second coating over the discontinuous layer of aluminum-rich particles. Aluminum diffuses from the aluminum-rich layer into the substrate, and into any bond coat layer which is subsequently applied. Related articles are also described.

  7. Superoleophilic Particles and Coatings - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    In addition, the pinned oil layer can also mitigate or prevent icing. It also provides a ... limited to anti-corrosion, marine, anti-icing, and antibacterial coatings.Benefits Keeps ...

  8. Pilot demonstration of cerium oxide coated anodes

    SciTech Connect (OSTI)

    Gregg, J.S.; Frederick, M.S.; Shingler, M.J.; Alcorn, T.R.

    1992-10-01

    Cu cermet anodes were tested for 213 to 614 hours with an in-situ deposited CEROX coating in a pilot cell operated by Reynolds Manufacturing Technology Laboratory. At high bath ratio ([approximately]1.5) and low current density (0.5 A/cm[sup 2]), a [ge]1 mm thick dense CEROX coating was deposited on the anodes. At lower bath ratios and higher current density, the CEROX coating was thinner and less dense, but no change in corrosion rate was noted. Regions of low current density on the anodes and sides adjacent to the carbon anode sometimes had thin or absent CEROX coatings. Problems with cracking and oxidation of the cermet substrates led to higher corrosion rates in a pilot cell than would be anticipated from lab scale results.

  9. Optical coatings for HF overtone laser

    SciTech Connect (OSTI)

    Xiong, S.; Zhang, Y.

    1996-12-31

    Optical components which highly reflect the hydrogen fluoride (HF) overtone wavelengths (near 1.3{micro}m) and transmit or absorb the HF fundamental wavelengths (2.6 to 3.1{micro}m) can be used to obtain high intensity 1.3{micro}m radiation with HF chemical laser technology. This paper describes the development of the HF overtone laser resonator mirrors. Also presented are the designs of the coatings for laser resonator and the optical performance results for the coatings which includes separated coatings that are highly reflected in 1.3--1.4{micro}m wavelengths and highly transmitted or low reflected in 2.6--3.1{micro}m wavelengths and the double band antireflection coating for 1.3--1.4{micro}m and 2.6--3.1{micro}m.

  10. Sol-gel antireflective coating on plastics

    DOE Patents [OSTI]

    Ashley, Carol S.; Reed, Scott T.

    1990-01-01

    An antireflection film made from a reliquified sol-gel hydrolyzation, condensation polymeric reaction product of a silicon, alkoxides and/or metal alkoxides, or mixtures thereof. The film is particularly useful for coating plastics.

  11. Sol-gel antireflective coating on plastics

    DOE Patents [OSTI]

    Ashley, C.S.; Reed, S.T.

    1988-01-26

    An antireflection film made from reliquified sol-gel hydrolyzation, condensation polymeric reaction product of a silicon, alkoxides and/or metal alkoxides, or mixtures thereof. The film is particularly useful for coating plastics.

  12. Neutron absorbing coating for nuclear criticality control

    DOE Patents [OSTI]

    Mizia, Ronald E.; Wright, Richard N.; Swank, William D.; Lister, Tedd E.; Pinhero, Patrick J.

    2007-10-23

    A neutron absorbing coating for use on a substrate, and which provides nuclear criticality control is described and which includes a nickel, chromium, molybdenum, and gadolinium alloy having less than about 5% boron, by weight.

  13. Nickel coated aluminum battery cell tabs

    DOE Patents [OSTI]

    Bucchi, Robert S.; Casoli, Daniel J.; Campbell, Kathleen M.; Nicotina, Joseph

    2014-07-29

    A battery cell tab is described. The battery cell tab is anodized on one end and has a metal coating on the other end. Battery cells and methods of making battery cell tabs are also described.

  14. Thin film-coated polymer webs

    DOE Patents [OSTI]

    Wenz, Robert P.; Weber, Michael F.; Arudi, Ravindra L.

    1992-02-04

    The present invention relates to thin film-coated polymer webs, and more particularly to thin film electronic devices supported upon a polymer web, wherein the polymer web is treated with a purifying amount of electron beam radiation.

  15. Conformal chemically resistant coatings for microflow devices

    DOE Patents [OSTI]

    Folta, James A.; Zdeblick, Mark

    2003-05-13

    A process for coating the inside surfaces of silicon microflow devices, such as electrophoresis microchannels, with a low-stress, conformal (uniform) silicon nitride film which has the ability to uniformly coat deeply-recessed cavities with, for example, aspect ratios of up to 40:1 or higher. The silicon nitride coating allows extended exposure to caustic solutions. The coating enables a microflow device fabricated in silicon to be resistant to all classes of chemicals: acids, bases, and solvents. The process involves low-pressure (vacuum) chemical vapor deposition. The ultra-low-stress silicon nitride deposition process allows 1-2 .mu.m thick films without cracks, and so enables extended chemical protection of a silicon microflow device against caustics for up to 1 year. Tests have demonstrated the resistance of the films to caustic solutions at both ambient and elevated temperatures to 65.degree. C.

  16. Method for fluidizing and coating ultrafine particles, device for fluidizing and coating ultrafine particles

    DOE Patents [OSTI]

    Li, Jie; Liu, Yung Y

    2015-01-20

    The invention provides a method for dispersing particles within a reaction field, the method comprising confining the particles to the reaction field using a standing wave. The invention also provides a system for coating particles, the system comprising a reaction zone; a means for producing fluidized particles within the reaction zone; a fluid to produce a standing wave within the reaction zone; and a means for introducing coating moieties to the reaction zone. The invention also provides a method for coating particles, the method comprising fluidizing the particles, subjecting the particles to a standing wave; and contacting the subjected particles with a coating moiety.

  17. HIGH-PERFORMANCE COATING MATERIALS

    SciTech Connect (OSTI)

    SUGAMA,T.

    2007-01-01

    Corrosion, erosion, oxidation, and fouling by scale deposits impose critical issues in selecting the metal components used at geothermal power plants operating at brine temperatures up to 300 C. Replacing these components is very costly and time consuming. Currently, components made of titanium alloy and stainless steel commonly are employed for dealing with these problems. However, another major consideration in using these metals is not only that they are considerably more expensive than carbon steel, but also the susceptibility of corrosion-preventing passive oxide layers that develop on their outermost surface sites to reactions with brine-induced scales, such as silicate, silica, and calcite. Such reactions lead to the formation of strong interfacial bonds between the scales and oxide layers, causing the accumulation of multiple layers of scales, and the impairment of the plant component's function and efficacy; furthermore, a substantial amount of time is entailed in removing them. This cleaning operation essential for reusing the components is one of the factors causing the increase in the plant's maintenance costs. If inexpensive carbon steel components could be coated and lined with cost-effective high-hydrothermal temperature stable, anti-corrosion, -oxidation, and -fouling materials, this would improve the power plant's economic factors by engendering a considerable reduction in capital investment, and a decrease in the costs of operations and maintenance through optimized maintenance schedules.

  18. Metal alloy coatings and methods for applying

    DOE Patents [OSTI]

    Merz, Martin D. (Richland, WA); Knoll, Robert W. (Kennewick, WA)

    1991-01-01

    A method of coating a substrate comprises plasma spraying a prealloyed feed powder onto a substrate, where the prealloyed feed powder comprises a significant amount of an alloy of stainless steel and at least one refractory element selected from the group consisting of titanium, zirconium, hafnium, niobium, tantalum, molybdenum, and tungsten. The plasma spraying of such a feed powder is conducted in an oxygen containing atmosphere and forms an adherent, corrosion resistant, and substantially homogenous metallic refractory alloy coating on the substrate.

  19. Thermal Spray Coatings for Coastal Infrastructure

    SciTech Connect (OSTI)

    Holcomb, G.R.; Covino, BernardS. Jr.; Cramer, S.D.; Bullard, S.J.

    1997-11-01

    Several protection strategies for coastal infrastructure using thermal-spray technology are presented from research at the Albany Research Center. Thermal-sprayed zinc coatings for anodes in impressed current cathodic protection systems are used to extend the service lives of reinforced concrete bridges along the Oregon coast. Thermal-sprayed Ti is examined as an alternative to the consumable zinc anode. Sealed thermal-sprayed Al is examined as an alternative coating to zinc dust filled polyurethane paint for steel structures.

  20. Thermal sensor with an improved coating

    DOE Patents [OSTI]

    LaDelfe, Peter C.; Stotlar, Suzanne C.

    1986-01-01

    The disclosure is directed to an apparatus for detecting radiation having wavelengths from about 0.4 .mu.m to about 5.6 .mu.m. An optical coating is applied to a thermal sensor that is normally transparent to radiation with such wavelengths. The optical coating is thin and light and includes a modifier and an absorber. The thermal sensor can be a pyroelectric detector such as strontium barium niobate.

  1. Optically transparent and environmentally durable superhydrophobic coating

    Office of Scientific and Technical Information (OSTI)

    based on functionalized SiO2 nanoparticles (Journal Article) | SciTech Connect Journal Article: Optically transparent and environmentally durable superhydrophobic coating based on functionalized SiO2 nanoparticles Citation Details In-Document Search Title: Optically transparent and environmentally durable superhydrophobic coating based on functionalized SiO2 nanoparticles Optical surfaces such as mirrors and windows that are exposed to outdoor environmental conditions are susceptible to dust

  2. METHOD OF COATING SURFACES WITH BORON

    DOE Patents [OSTI]

    Martin, G.R.

    1949-10-11

    A method of forming a thin coating of boron on metallic, glass, or other surfaces is described. The method comprises heating the article to be coated to a temperature of about 550 d C in an evacuated chamber and passing trimethyl boron, triethyl boron, or tripropyl boron in the vapor phase and under reduced pressure into contact with the heated surface causing boron to be deposited in a thin film.

  3. Strain-tolerant ceramic coated seal

    DOE Patents [OSTI]

    Schienle, James L. (Phoenix, AZ); Strangman, Thomas E. (Phoenix, AZ)

    1994-01-01

    A metallic regenerator seal is provided having multi-layer coating comprising a NiCrAlY bond layer, a yttria stabilized zirconia (YSZ) intermediate layer, and a ceramic high temperature solid lubricant surface layer comprising zinc oxide, calcium fluoride, and tin oxide. An array of discontinuous grooves is laser machined into the outer surface of the solid lubricant surface layer making the coating strain tolerant.

  4. Modelling the microstructure of thermal barrier coatings

    SciTech Connect (OSTI)

    Cirolini, S.; Marchese, M.; Jacucci, G.; Harding, J.H.; Mulheran, P.A.

    1994-12-31

    Thermal barrier coatings produced by plasma spraying have a characteristic microstructure of lamellae, pores and cracks. The lamellae are produced by the splashing of particles onto the substrate. As the coating grows, the lamellae pile on top of each other, producing an interlocking structure. In most cases the growth is rapid and chaotic. The result is a microstructure characterized by pores and cracks. The authors present an improved model for the deposition process of thermal barrier coatings. The task of modeling the coating growth is split into two parts: first the authors consider a description of the particle on arrival at the film, based on the available theoretical, numerical and experimental findings. Second they define and discuss a set of physically-based rules for combining these events to obtain the film. The splats run along the surface and are permitted to curl up (producing pores) or interlock. The computer model uses a mesh to combine these processes and build the coating. They discuss the use of the proposed model in predicting microstructures and hence in correlating the properties of these coatings with the parameters of the process used to make them.

  5. Embedded Optical Sensors for Thermal Barrier Coatings

    SciTech Connect (OSTI)

    David R. Clarke

    2006-07-31

    The third year of this program on developing embedded optical sensors for thermal barrier coatings has been devoted to two principal topics: (i) continuing the assessment of the long-term, thermal cycle stability of the Eu{sup 3+} doped 8YSZ temperature sensor coatings, and (ii) improving the fiber-optic based luminescence detector system. Following the earlier, preliminary findings, it has been found that not only is the luminescence from the sensors not affected by prolonged thermal cycling, even after 195 hours at 1425 C, but the variation in luminescence lifetime with temperature remains unchanged. As the temperature of 1425 C is much higher than present engines attain or even planned in the foreseeable future, our findings indicate that the Eu{sup 3+} doped thermal barrier coating sensors are very robust and have the potential of being stable throughout the life of coatings. Investigation of Eu{sup 3+} doped coatings prepared by plasma-spraying exhibited the same luminescence characteristics as those prepared by electron-beam evaporation. This is of major significance since thermal barrier coatings can be prepared by both process technologies. A fiber-optic based luminescence system has been constructed in which the hottest section of fiber operates to at least 1250 C.

  6. ALS Capabilities Reveal How Like Can Attract Like

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ALS Capabilities Reveal How Like Can Attract Like Print A Berkeley Lab research team working at the ALS has observed an unusual pairing that seems to go against a universal scientific truth-that opposite charges attract and like charges repel. Led by Berkeley Lab chemist Richard Saykally and theorist David Prendergast, researchers demonstrated that, when hydrated in water, positively charged ions (cations) can actually pair up with one another. A New Law of Water Affinities Late 19th century

  7. ALS Capabilities Reveal How Like Can Attract Like

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ALS Capabilities Reveal How Like Can Attract Like Print A Berkeley Lab research team working at the ALS has observed an unusual pairing that seems to go against a universal scientific truth-that opposite charges attract and like charges repel. Led by Berkeley Lab chemist Richard Saykally and theorist David Prendergast, researchers demonstrated that, when hydrated in water, positively charged ions (cations) can actually pair up with one another. A New Law of Water Affinities Late 19th century

  8. ALS Capabilities Reveal How Like Can Attract Like

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ALS Capabilities Reveal How Like Can Attract Like Print A Berkeley Lab research team working at the ALS has observed an unusual pairing that seems to go against a universal scientific truth-that opposite charges attract and like charges repel. Led by Berkeley Lab chemist Richard Saykally and theorist David Prendergast, researchers demonstrated that, when hydrated in water, positively charged ions (cations) can actually pair up with one another. A New Law of Water Affinities Late 19th century

  9. ALS Capabilities Reveal How Like Can Attract Like

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ALS Capabilities Reveal How Like Can Attract Like Print A Berkeley Lab research team working at the ALS has observed an unusual pairing that seems to go against a universal scientific truth-that opposite charges attract and like charges repel. Led by Berkeley Lab chemist Richard Saykally and theorist David Prendergast, researchers demonstrated that, when hydrated in water, positively charged ions (cations) can actually pair up with one another. A New Law of Water Affinities Late 19th century

  10. ALS Capabilities Reveal How Like Can Attract Like

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ALS Capabilities Reveal How Like Can Attract Like Print A Berkeley Lab research team working at the ALS has observed an unusual pairing that seems to go against a universal scientific truth-that opposite charges attract and like charges repel. Led by Berkeley Lab chemist Richard Saykally and theorist David Prendergast, researchers demonstrated that, when hydrated in water, positively charged ions (cations) can actually pair up with one another. A New Law of Water Affinities Late 19th century

  11. ALS Capabilities Reveal How Like Can Attract Like

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ALS Capabilities Reveal How Like Can Attract Like Print A Berkeley Lab research team working at the ALS has observed an unusual pairing that seems to go against a universal scientific truth-that opposite charges attract and like charges repel. Led by Berkeley Lab chemist Richard Saykally and theorist David Prendergast, researchers demonstrated that, when hydrated in water, positively charged ions (cations) can actually pair up with one another. A New Law of Water Affinities Late 19th century

  12. ALS Capabilities Reveal How Like Can Attract Like

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ALS Capabilities Reveal How Like Can Attract Like Print A Berkeley Lab research team working at the ALS has observed an unusual pairing that seems to go against a universal scientific truth-that opposite charges attract and like charges repel. Led by Berkeley Lab chemist Richard Saykally and theorist David Prendergast, researchers demonstrated that, when hydrated in water, positively charged ions (cations) can actually pair up with one another. A New Law of Water Affinities Late 19th century

  13. Final Report - Integrated Glass Coating Manufacturing Line | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Integrated Glass Coating Manufacturing Line Final Report - Integrated Glass Coating Manufacturing Line Awardee: Enki Technology Location: San Jose, CA Subprogram: Technology to Market Funding Program: Solar Manufacturing Technology 2 This project aims to enable US module manufacturers to coat glass with Enki's state of the art tunable functionalized AR coatings at the lowest possible cost and highest possible performance by encapsulating Enki's coating process in an integrated tool

  14. Progress to Develop an Advanced Solar-Selective Coating

    SciTech Connect (OSTI)

    Kennedy, C. E.

    2008-03-01

    The progress to develop a durable advanced solar-selective coating will be described. Experimental work has focused on modeling high-temperature, solar-selective coatings; depositing the individual layers and modeled coatings; measuring the optical, thermal, morphology, and compositional properties and using the data to validate the modeled and deposited properties; re-optimizing the coating; and testing the coating performance and durability.

  15. Assessment of ceramic coatings for metal fuel melting crucible

    SciTech Connect (OSTI)

    Kim, Ki-Hwan; Song, Hoon; Kim, Jong-Hwan; Oh, Seok-Jin; Kim, Hyung-Tae; Lee, Chan-Bock

    2013-07-01

    The objective of this study is to develop a coating method and material for crucibles to prevent material interactions with the U-Zr/U-TRU-Zr fuels during the manufacturing of SFR fuels. Refractory coatings were applied to niobium substrates by vacuum plasma-spray coating method. Melt dipping tests conducted were the coated rods lowered into the fuel melt at 1600 C. degrees, and withdrawn and cooled outside the crucible in the inert atmosphere of the induction furnace. Melt dipping tests of the coated Nb rods indicated that plasma-sprayed Y{sub 2}O{sub 3} coating doesn't form significant reaction layer between fuel melt and coating layer. Melt dipping tests of the coated Nb rods showed that TiC, TaC, and Y{sub 2}O{sub 3} coatings exhibited the promising performance among other ceramic coatings. These materials could be promising candidate materials for the reusable melt crucible of metal fuel for SFR. In addition, in order to develop the vacuum plasma-spray coating method for re-usable crucible of metal fuel slugs to be overcome the issue of thermal expansion mismatch between coating material and crucible, various combinations of coating conditions were investigated to find the bonding effect on the substrate in pursuit of more effective ways to withstand the thermal stresses. It is observed that most coating methods maintained sound coating state in U-Zr melt. (authors)

  16. Advanced protective coatings for gas turbine blading

    SciTech Connect (OSTI)

    Czech, N.; Stamm, W.

    1998-07-01

    The new gas turbines now being marketed are characterized by outputs and efficiencies which were unthinkable just a few years ago. A key factor for achieving efficiency is the highest possible turbine inlet temperature, currently approx. 1,400 C. In such a machine, it is the turbine blades which are subjected to the greatest thermal and mechanical stresses. They are also subjected to extreme chemical stress in the form of oxidation, which in the following is understood as the corrosive action due almost exclusively to the temperature of the turbine blade surface and (to a much lesser degree) the pressure and oxygen content of the hot gas. In many cases, this is compounded by hot corrosion, which results in accelerated oxidation due to impurities in the fuel and air. In terms of physics, this demanding challenge requires the use of cooling techniques which push the envelope of feasibility. In terms of materials engineering, an innovative multifaceted solution is called for. In more concrete terms, this means a combination of convection, impingement and film cooling of blades made of the strongest high-temperature alloy materials and coated with one or possibly multiple coatings. The base material ensures the blade's mechanical integrity while the coating(s) provide(s) protection against the oxidizing and corrosive attack, as well as the thermal stresses which cannot be sufficiently mitigated by cooling. The superiority of single crystal materials over polycrystalline or directionally solidified nickel-base superalloys is illustrated. The coating is a third-generation NiCoCrAIY VPS (vacuum plasma spray) coating. In the paper, the authors discuss the current status of coating developments for large, stationary gas turbines and present solutions for achieving important development objectives.

  17. Spore Coat Architecture of Clostridium novyi-NT spores

    SciTech Connect (OSTI)

    Plomp, M; McCafferey, J; Cheong, I; Huang, X; Bettegowda, C; Kinzler, K; Zhou, S; Vogelstein, B; Malkin, A

    2007-05-07

    Spores of the anaerobic bacterium Clostridium novyi-NT are able to germinate in and destroy hypoxic regions of tumors in experimental animals. Future progress in this area will benefit from a better understanding of the germination and outgrowth processes that are essential for the tumorilytic properties of these spores. Towards this end, we have used both transmission electron microscopy and atomic force microscopy to determine the structure of dormant as well as germinating spores. We found that the spores are surrounded by an amorphous layer intertwined with honeycomb parasporal layers. Moreover, the spore coat layers had apparently self-assembled and this assembly was likely to be governed by crystal growth principles. During germination and outgrowth, the honeycomb layers as well as the underlying spore coat and undercoat layers sequentially dissolved until the vegetative cell was released. In addition to their implications for understanding the biology of C. novyi-NT, these studies document the presence of proteinaceous growth spirals in a biological organism.

  18. Issues for conversion coating of aluminum alloys with hydrotalcite

    SciTech Connect (OSTI)

    Drewien, C.A.; Buchheit, R.G.

    1993-12-01

    Hydrotalcite coatings on aluminum alloys are being developed for corrosion protection of aluminum in aggressive saline environments. Coating bath composition, surface pretreatment, and alloying elements in aluminum all influence the performance of these coatings during salt spray testing. The coating bath, comprised of lithium carbonate, requires aging by dissolution of aluminum into the bath in order to grow corrosion resistant coatings. Coatings formed in non- aged baths do not perform well in salt spray testing. The alloying elements in aluminum alloys, especially copper, influence the coating growth and formation leading to thin coatings. The effect of the alloy elements is to limit the supply of aluminum to the coating/electrolyte interface and hinder growth of hydrotalcite upon aluminum alloys.

  19. Tantalum coatings for the petrochemical industry

    SciTech Connect (OSTI)

    Hays, C.; Watson, J.L. Sr.; Walker, J.P. Jr.

    1995-12-31

    Tantalum coatings have never been a cost attractive item for the petrochemical industry but corrosion-resistant tantalum coatings have been and continue to be a very cost effective solution for many complex metallurgical applications. There are certain environments where thermally-sprayed tantalum has little or no competition from all other corrosion-resistant-alloy-coatings (CRAC). This paper reviews tantalum technology in terms of the relevant petrochemical needs and priorities. Selected properties of both tantalum (Ta) and Ta{sub 2}O{sub 5} are given along with a brief history of tantalum and Ta coatings. Some important discussion is also given about the very difficult development path that tantalum has been forced to overcome. This characterization study involves 2 different applicators and two competitive processes; i.e., plasma and high velocity oxygen flame (HVOF) spraying. Test coupons from this cooperative effort by Watson and Gartner are evaluated in terms of structure, properties and composition. Electron and optical metallography are both used with microhardness and associated methods of characterization for thermal spray coatings.

  20. Platelet composite coatings for tin whisker mitigation

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Rohwer, Lauren E. S.; Martin, James E.

    2015-09-14

    In this study, reliable methods for tin whisker mitigation are needed for applications that utilize tin-plated commercial components. Tin can grow whiskers that can lead to electrical shorting, possibly causing critical systems to fail catastrophically. The mechanisms of tin whisker growth are unclear and this makes prediction of the lifetimes of critical components uncertain. The development of robust methods for tin whisker mitigation is currently the best approach to eliminating the risk of shorting. Current mitigation methods are based on unfilled polymer coatings that are not impenetrable to tin whiskers. In this paper we report tin whisker mitigation results formore » several filled polymer coatings. The whisker-penetration resistance of the coatings was evaluated at elevated temperature and high humidity and under temperature cycling conditions. The composite coatings comprised Ni and MgF2-coated Al/Ni/Al platelets in epoxy resin or silicone rubber. In addition to improved whisker mitigation, these platelet composites have enhanced thermal conductivity and dielectric constant compared with unfilled polymers.« less

  1. Platelet composite coatings for tin whisker mitigation

    SciTech Connect (OSTI)

    Rohwer, Lauren E. S.; Martin, James E.

    2015-09-14

    In this study, reliable methods for tin whisker mitigation are needed for applications that utilize tin-plated commercial components. Tin can grow whiskers that can lead to electrical shorting, possibly causing critical systems to fail catastrophically. The mechanisms of tin whisker growth are unclear and this makes prediction of the lifetimes of critical components uncertain. The development of robust methods for tin whisker mitigation is currently the best approach to eliminating the risk of shorting. Current mitigation methods are based on unfilled polymer coatings that are not impenetrable to tin whiskers. In this paper we report tin whisker mitigation results for several filled polymer coatings. The whisker-penetration resistance of the coatings was evaluated at elevated temperature and high humidity and under temperature cycling conditions. The composite coatings comprised Ni and MgF2-coated Al/Ni/Al platelets in epoxy resin or silicone rubber. In addition to improved whisker mitigation, these platelet composites have enhanced thermal conductivity and dielectric constant compared with unfilled polymers.

  2. Plasma sprayed and electrospark deposited zirconium metal diffusion barrier coatings

    SciTech Connect (OSTI)

    Hollis, Kendall J; Pena, Maria I

    2010-01-01

    Zirconium metal coatings applied by plasma spraying and electrospark deposition (ESD) have been investigated for use as diffusion barrier coatings on low enrichment uranium fuel for research nuclear reactors. The coatings have been applied to both stainless steel as a surrogate and to simulated nuclear fuel uranium-molybdenum alloy substrates. Deposition parameter development accompanied by coating characterization has been performed. The structure of the plasma sprayed coating was shown to vary with transferred arc current during deposition. The structure of ESD coatings was shown to vary with the capacitance of the deposition equipment.

  3. Passivation coating for flexible substrate mirrors

    DOE Patents [OSTI]

    Tracy, C. Edwin (Golden, CO); Benson, David K. (Golden, CO)

    1990-01-01

    A protective diffusion barrier for metalized mirror structures is provided by a layer or coating of silicon nitride which is a very dense, transparent, dielectric material that is impervious to water, alkali, and other impurities and corrosive substances that typically attack the metal layers of mirrors and cause degradation of the mirrors' reflectivity. The silicon nitride layer can be deposited on the substrate before metal deposition thereon to stabilize the metal/substrate interface, and it can be deposited over the metal to encapsulate it and protect the metal from corrosion or other degradation. Mirrors coated with silicon nitride according to this invention can also be used as front surface mirrors. Also, the silver or other reflective metal layer on mirrors comprising thin, lightweight, flexible substrates of metal or polymer sheets coated with glassy layers can be protected with silicon nitride according to this invention.

  4. Bioactive glass coatings for orthopedic metallic implants

    SciTech Connect (OSTI)

    Lopez-Esteban, Sonia; Saiz, Eduardo; Fujino, Sigheru; Oku, Takeo; Suganuma, Katsuaki; Tomsia, Antoni P.

    2003-06-30

    The objective of this work is to develop bioactive glass coatings for metallic orthopedic implants. A new family of glasses in the SiO2-Na2O-K2O-CaO-MgO-P2O5 system has been synthesized and characterized. The glass properties (thermal expansion, softening and transformation temperatures, density and hardness) are in line with the predictions of established empirical models. The optimized firing conditions to fabricate coatings on Ti-based and Co-Cr alloys have been determined and related to the glass properties and the interfacial reactions. Excellent adhesion to alloys has been achieved through the formation of 100-200 nm thick interfacial layers (Ti5Si3 on Ti-based alloys and CrOx on Co-Cr). Finally, glass coatings, approximately 100 mu m thick, have been fabricated onto commercial Ti alloy-based dental implants.

  5. Method of fabricating boron containing coatings

    DOE Patents [OSTI]

    Makowiecki, D.M.; Jankowski, A.F.

    1999-04-27

    Hard coatings are fabricated from boron nitride, cubic boron nitride, and multilayer boron/cubic boron nitride, and the fabrication thereof involves magnetron sputtering in a selected atmosphere. These hard coatings may be applied to tools and engine and other parts, as well to reduce wear on tribological surfaces and electronic devices. These boron coatings contain no morphological growth features. For example, the boron is formed in an inert (e.g. argon) atmosphere, while the cubic boron nitride is formed in a reactive (e.g. nitrogen) atmosphere. The multilayer boron/cubic boron nitride, is produced by depositing alternate layers of boron and cubic boron nitride, with the alternate layers having a thickness of 1 nanometer to 1 micrometer, and at least the interfaces of the layers may be discrete or of a blended or graded composition. 3 figs.

  6. Method of fabricating boron containing coatings

    DOE Patents [OSTI]

    Makowiecki, Daniel M.; Jankowski, Alan F.

    1999-01-01

    Hard coatings are fabricated from boron nitride, cubic boron nitride, and multilayer boron/cubic boron nitride, and the fabrication thereof involves magnetron sputtering in a selected atmosphere. These hard coatings may be applied to tools and engine and other parts, as well to reduce wear on tribological surfaces and electronic devices. These boron coatings contain no morphological growth features. For example, the boron is formed in an inert (e.g. argon) atmosphere, while the cubic boron nitride is formed in a reactive (e.g. nitrogen) atmosphere. The multilayer boron/cubic boron nitride, is produced by depositing alternate layers of boron and cubic boron nitride, with the alternate layers having a thickness of 1 nanometer to 1 micrometer, and at least the interfaces of the layers may be discrete or of a blended or graded composition.

  7. Metallic and nonmetallic coatings for ICF targets

    SciTech Connect (OSTI)

    Hendricks, C.D.; Crane, J.K.; Hsieh, E.J.; Meyer, S.F.

    1981-04-17

    Some fusion targets designed to be driven by 0.35 to 1 ..mu..m laser light are glass spheres coated with layers of various materials such as hydrocarbons, fluorocarbons, beryllium, copper, gold, platinum, etc. The glass shell, which is filled with gas, liquid or solid deuterium-tritium fuel, must have remarkably good surface and wall thickness uniformity. Methods for depositing the various materials will be discussed. They include plasma polymerization, electro-deposition, sputtering and evaporation. Many of the difficulties encountered in the coating processes are the result of coating on free spheres with very small radii - 35 to 500 micrometers. Several means of overcoming the problems will be described and experimental results presented.

  8. Figure correction of multilayer coated optics

    DOE Patents [OSTI]

    Chapman; Henry N. , Taylor; John S.

    2010-02-16

    A process is provided for producing near-perfect optical surfaces, for EUV and soft-x-ray optics. The method involves polishing or otherwise figuring the multilayer coating that has been deposited on an optical substrate, in order to correct for errors in the figure of the substrate and coating. A method such as ion-beam milling is used to remove material from the multilayer coating by an amount that varies in a specified way across the substrate. The phase of the EUV light that is reflected from the multilayer will be affected by the amount of multilayer material removed, but this effect will be reduced by a factor of 1-n as compared with height variations of the substrate, where n is the average refractive index of the multilayer.

  9. Glass/ceramic coatings for implants

    DOE Patents [OSTI]

    Tomsia, Antoni P.; Saiz, Eduardo; Gomez-Vega, Jose M.; Marshall, Sally J.; Marshall, Grayson W.

    2011-09-06

    Glass coatings on metals including Ti, Ti6A14V and CrCo were prepared for use as implants. The composition of the glasses was tailored to match the thermal expansion of the substrate metal. By controlling the firing atmosphere, time, and temperature, it was possible to control the reactivity between the glass and the alloy and to fabricate coatings (25-150 .mu.m thick) with excellent adhesion to the substrate. The optimum firing temperatures ranged between 800 and 840.degree. C. at times up to 1 min in air or 15 min in N.sub.2. The same basic technique was used to create multilayered coatings with concentration gradients of hydroxyapatite (HA) particles and SiO.sub.2.

  10. Multilayer ultra-high-temperature ceramic coatings

    DOE Patents [OSTI]

    Loehman, Ronald E.; Corral, Erica L.

    2012-03-20

    A coated carbon-carbon composite material with multiple ceramic layers to provide oxidation protection from ultra-high-temperatures, where if the carbon-carbon composite material is uninhibited with B.sub.4C particles, then the first layer on the composite material is selected from ZrB.sub.2 and HfB.sub.2, onto which is coated a layer of SiC coated and if the carbon-carbon composite material is inhibited with B.sub.4C particles, then protection can be achieved with a layer of SiC and a layer of either ZrB.sub.2 and HfB.sub.2 in any order.

  11. Polymeric complexes of polyaniline as anticorrosion coatings

    SciTech Connect (OSTI)

    Racicot, R.J.; Yang, S.C.; Brown, R.

    1998-07-01

    During the past few years there has been a strong interest in developing conducting polymers as an alternative to the traditional anticorrosion coatings. One of the driving forces for this research comes from the need for an environmentally friendly chromate-free anticorrosion coating for high-strength light weight aluminum alloys. The possibilities for a new scratch-tolerant paint for steel prompted the development of conductive polymer anticorrosion paints. By molecular engineering, the authors have synthesized a double-strand polymeric complex of polyaniline that is suitable as an anticorrosion paint on metals in low pH environments. In this article, the authors will discuss (1) the molecular design for solubility and adhesion, (2) the effectiveness of the electroactive coating under electrochemical impedance tests, and (3) a mechanistic study of the anticorrosion mechanism by examining the polymer/metal interfacial interactions.

  12. Analysis of Wear Mechanisms in Low Friction, Nanocomposite AlMgB14-TiB2 Coatings

    SciTech Connect (OSTI)

    Cook, Bruce A; Harringa, J; Anderegg, A; Russell, A M; Qu, Jun; Blau, Peter Julian; Higdon, Clifton; Elmoursi, Alaa A

    2010-01-01

    Recent developments in coating science and technology offer new opportunities to enhance the energy-efficiency and performance of industrial machinery such as hydraulic fluid pumps and motors. The lubricated friction and wear characteristics of two wear-resistant coatings, diamond-like carbon and a nanocomposite material based on AlMgB{sub 14}-50 vol.% TiB{sub 2}, were compared in pin-on-disk tribotests using Mobil DTE-24{trademark} oil as the lubricant. In each case, the pins were fixed 9.53 mm diameter spheres of AISI 52100 steel, the load was 10 N, and the speed 0.5 m/s in all tests. Average steady-state friction coefficient values of 0.10 and 0.08 were measured for the DLC and nanocomposite, respectively. The coatings and their 52100 steel counterfaces were analyzed after the tests by X-ray photoelectron and Auger spectroscopy for evidence of material transfer or tribo-chemical reactions. The low-friction behavior of the boride nanocomposite coating is due to the formation of lubricative boric acid, B(OH){sub 3}. In contrast, the low-friction behavior of the DLC coating is related to the relatively low dielectric constant of the oil-based lubricant, leading to desorption of surface hydrogen from the coating.

  13. Colloidal spray method for low cost thin coating deposition

    DOE Patents [OSTI]

    Pham, Ai-Quoc; Glass, Robert S.; Lee, Tae H.

    2002-01-01

    A dense or porous coating of material is deposited onto a substrate by forcing a colloidal suspension through an ultrasonic nebulizer and spraying a fine mist of particles in a carrier medium onto a sufficiently heated substrate. The spraying rate is essentially matched to the evaporation rate of the carrier liquid from the substrate to produce a coating that is uniformly distributed over the surface of the substrate. Following deposition to a sufficient coating thickness, a single sintering step may be used to produce a dense ceramic coating. Using this method, coatings ranging in thickness from about one to several hundred microns can be obtained. By using a plurality of compounds in the colloidal suspension, coatings of mixed composition can be obtained. By using a plurality of solutions and separate pumps and a single or multiple ultrasonic nebulizer(s), and varying the individual pumping rates and/or the concentrations of the solutions, a coating of mixed and discontinuously graded (e.g., stepped) or continuously graded layers may be obtained. This method is particularly useful for depositing ceramic coatings. Dense ceramic coating materials on porous substrates are useful in providing improved electrode performance in devices such as high power density solid oxide fuel cells. Dense ceramic coatings obtained by the invention are also useful for gas turbine blade coatings, sensors, steam electrolyzers, etc. The invention has general use in preparation of systems requiring durable and chemically resistant coatings, or coatings having other specific chemical or physical properties.

  14. Colloidal spray method for low cost thin coating deposition

    DOE Patents [OSTI]

    Pham, Ai-Quoc; Glass, Robert S.; Lee, Tae H.

    2005-01-25

    A dense or porous coating of material is deposited onto a substrate by forcing a colloidal suspension through an ultrasonic nebulizer and spraying a fine mist of particles in a carrier medium onto a sufficiently heated substrate. The spraying rate is essentially matched to the evaporation rate of the carrier liquid from the substrate to produce a coating that is uniformly distributed over the surface of the substrate. Following deposition to a sufficient coating thickness, a single sintering step may be used to produce a dense ceramic coating. Using this method, coatings ranging in thickness from about one to several hundred microns can be obtained. By using a plurality of compounds in the colloidal suspension, coatings of mixed composition can be obtained. By using a plurality of solutions and separate pumps and a single or multiple ultrasonic nebulizer(s), and varying the individual pumping rates and/or the concentrations of the solutions, a coating of mixed and discontinuously graded (e.g., stepped) or continuously graded layers may be obtained. This method is particularly useful for depositing ceramic coatings. Dense ceramic coating materials on porous substrates are useful in providing improved electrode performance in devices such as high power density solid oxide fuel cells. Dense ceramic coatings obtained by the invention are also useful for gas turbine blade coatings, sensors, steam electrolyzers, etc. The invention has general use in preparation of systems requiring durable and chemically resistant coatings, or coatings having other specific chemical or physical properties.

  15. Production of porous coating on a prosthesis

    DOE Patents [OSTI]

    Sump, Kenneth R.

    1987-01-01

    Preselected surface areas of a prosthesis are covered by a blend of matching primary metallic particles and expendable particles. The particles are compressed and heated to assure that deformation and metallurgical bonding occurs between them and between the primary particles and the surface boundaries of the prosthesis. Porosity is achieved by removal of the expendable material. The result is a coating including discrete bonded particles separated by a network of interconnected voids presenting a homogeneous porous coating about the substrate. It has strength suitable for bone implant usage without intermediate adhesives, and adequate porosity to promote subsequent bone ingrowth.

  16. Monolayer coated aerogels and method of making

    DOE Patents [OSTI]

    Zemanian, Thomas Samuel (Richland, WA); Fryxell, Glen (Kennwick, WA); Ustyugov, Oleksiy A. (Spokane, WA)

    2006-03-28

    Aerogels having a monolayer coating are described. The aerogel and a monolayer forming precursor are provided in a supercritical fluid, whereupon the aerogel and the monolayer forming precursor are reacted in said supercritical fluid to form a covalent bond between the aerogel and the monolayer forming precursor. Suitable aerogels are ceramic oxides such as silica, alumina, aluminosilicate, and combinations thereof. Suitable monolayer forming precursors include alkyl silanes, chlorosilanes, boranes, chloroboranes, germanes, and combinations thereof. The method may also include providing a surface preparation agent such as water, or hydroetching an aerogel to enhance the coating of the monolayer.

  17. ALLOY COATINGS AND METHOD OF APPLYING

    DOE Patents [OSTI]

    Eubank, L.D.; Boller, E.R.

    1958-08-26

    A method for providing uranium articles with a pro tective coating by a single dip coating process is presented. The uranium article is dipped into a molten zinc bath containing a small percentage of aluminum. The resultant product is a uranium article covered with a thin undercoat consisting of a uranium-aluminum alloy with a small amount of zinc, and an outer layer consisting of zinc and aluminum. The article may be used as is, or aluminum sheathing may then be bonded to the aluminum zinc outer layer.

  18. Study of the microstructure of plasma sprayed coatings obtained from Al{sub 2}O{sub 3}13TiO{sub 2} nanostructured and conventional powders

    SciTech Connect (OSTI)

    Gral, A.; ?rawski, W.; Lity?ska-Dobrzy?ska, L.

    2014-10-15

    The microstructure of coatings obtained from nanostructured or conventional Al{sub 2}O{sub 3}13TiO{sub 2} powders and deposited by plasma spraying technique on low-carbon steel was examined by transmission electron microscopy techniques. The dominating phase in both coatings was ?-Al{sub 2}O{sub 3} phase. It has been observed that the grains of ?-Al{sub 2}O{sub 3} grew in various shapes and sizes, that are particularly visible in the case of coating sprayed from nanostructured powder. The coatings obtained from the fully melted conventional powders exhibited a typical lamellar microstructure, into which the strips of TiO{sub 2} phase were extended. The microstructure of coatings produced from agglomerates of nanostructured particles also revealed the regions consisting of partially melted ?-Al{sub 2}O{sub 3} powders surrounded by the net-like structure formed from fully melted oxides that improved the coating properties. Along with the observed morphology diversity some changes in the chemical composition on the cross sections of obtained coatings have been also noticed. - Highlights: Plasma sprayed Al{sub 2}O{sub 3}13TiO{sub 2} coatings reveal diversity of microstructure. Microstructure of conventional coating was formed from fully melted crushed powders. Nanostructured coating contains completely and partially melted initial agglomerates.

  19. Iron-Based Amorphous Coatings Produced by HVOF Thermal Spray Processing-Coating Structure and Properties

    SciTech Connect (OSTI)

    Beardsley, M B

    2008-03-26

    The feasibility to coat large SNF/HLW containers with a structurally amorphous material (SAM) was demonstrated on sub-scale models fabricated from Type 316L stainless steel. The sub-scale model were coated with SAM 1651 material using kerosene high velocity oxygen fuel (HVOF) torch to thicknesses ranging from 1 mm to 2 mm. The process parameters such as standoff distance, oxygen flow, and kerosene flow, were optimized in order to improve the corrosion properties of the coatings. Testing in an electrochemical cell and long-term exposure to a salt spray environment were used to guide the selection of process parameters.

  20. Method of applying coatings to substrates and the novel coatings produced thereby

    DOE Patents [OSTI]

    Hendricks, C.D.

    1987-09-15

    A method for applying novel coatings to substrates is provided. The ends of a multiplicity of rods of different materials are melted by focused beams of laser light. Individual electric fields are applied to each of the molten rod ends, thereby ejecting charged particles that include droplets, atomic clusters, molecules, and atoms. The charged particles are separately transported, by the accelerations provided by electric potentials produced by an electrode structure, to substrates where they combine and form the coatings. Layered and thickness graded coatings comprised of hitherto unavailable compositions, are provided. 2 figs.

  1. Process for the formation of wear- and scuff-resistant carbon coatings

    DOE Patents [OSTI]

    Malaczynski, Gerard W. (Bloomfield Hills, MI); Qiu, Xiaohong (Sterling Heights, MI); Mantese, Joseph V. (Troy, MI); Elmoursi, Alaa A. (Troy, MI); Hamdi, Aboud H. (Warren, MI); Wood, Blake P. (Los Alamos, NM); Walter, Kevin C. (Los Alamos, NM); Nastasi, Michael A. (Espanola, NM)

    1995-01-01

    A process for forming an adherent diamond-like carbon coating on a workpiece of suitable material such as an aluminum alloy is disclosed. The workpiece is successively immersed in different plasma atmospheres and subjected to short duration, high voltage, negative electrical potential pulses or constant negative electrical potentials or the like so as to clean the surface of oxygen atoms, implant carbon atoms into the surface of the alloy to form carbide compounds while codepositing a carbonaceous layer on the surface, bombard and remove the carbonaceous layer, and to thereafter deposit a generally amorphous hydrogen-containing carbon layer on the surface of the article.

  2. Thermal Multi-layer Coating Analysis | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Thermal Multi-layer Coating Analysis Key to Argonne's thermal multi-layer analysis method is the numerical algorithm used for automated analysis of thermal imaging data for multi-layer materials. PDF icon multilayer-coating-analysis

  3. MOF Coating a Promising Path to White LEDs

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    MOF Coating a Promising Path to White LEDs MOF Coating a Promising Path to White LEDs Print Friday, 27 February 2015 17:11 Hu et al. designed a new yellow phosphor with high...

  4. The possibility of forming a sacrificial anode coating for Mg

    SciTech Connect (OSTI)

    Dudney, Nancy J; Li, Juchuan; Sacci, Robert L; Thomson, Jeffery K

    2014-01-01

    Mg is the most active engineering metal, and is often used as a sacrificial anode/coating to protect other engineering metals from corrosion attack. So far no sacrificial anode coating has been developed or considered for Mg. This study explores the possibility of forming a sacrificial coating for Mg. A lithiated carbon coating and a metaphosphated coating are applied on the Mg surface, respectively, and their open-circuit-potentials are measured in saturated Mg(OH)2 solution. They exhibit more negative potentials than bare Mg. SEM reveals that the metaphosphated coating offers more effective and uniform protection for Mg than the lithiated carbon coating. These preliminary results indicate that development of a sacrificial anode coating for Mg is indeed possible.

  5. Apparatus for coating and impregnating filament with resin

    DOE Patents [OSTI]

    Robinson, S.C.; Pollard, R.E.

    1986-12-17

    The present invention is directed to an apparatus for evenly coating and impregnating a filament with binder material. Dimension control and repeatability of the coating and impregnating characteristics are obtained with the apparatus.

  6. Parasitic oscillation suppression in solid state lasers using optical coatings

    DOE Patents [OSTI]

    Honea, Eric C.; Beach, Raymond J.

    2005-06-07

    A laser gain medium having a layered coating on at least certain surfaces of the laser gain medium. The layered coating having a reflective inner material and an absorptive scattering outside material.

  7. Hydrogen permeable protective coating for a catalytic surface

    DOE Patents [OSTI]

    Liu, Ping; Tracy, C. Edwin; Pitts, J. Roland; Lee, Se-Hee

    2007-06-19

    A protective coating for a surface comprising a layer permeable to hydrogen, said coating being deposited on a catalyst layer; wherein the catalytic activity of the catalyst layer is preserved.

  8. Low-Friction Hard Coatings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    11 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation PDF icon pm030_erdemir_2011_p.pdf More Documents & Publications Low-Friction Hard Coatings Super Hard Coating Systems

  9. Effect of Lithium PFC Coatings on NSTX Density Control (Journal...

    Office of Scientific and Technical Information (OSTI)

    Effect of Lithium PFC Coatings on NSTX Density Control Citation Details In-Document Search Title: Effect of Lithium PFC Coatings on NSTX Density Control You are accessing a ...

  10. Innovative Cathode Coating Enables Faster Battery Charging, Discharging |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Argonne National Laboratory Innovative Cathode Coating Enables Faster Battery Charging, Discharging Technology available for licensing: Coating increases electrical conductivity of cathode materials Coating does not hinder battery performance Provides two coating processes that yield surface-treated, electro-active materials for a variety of applications, such as in a rechargeable lithium battery in both processes, and primary and secondary lithium battery applications in another process.

  11. Cube-corner reflectors with interference dielectric coating

    SciTech Connect (OSTI)

    Sokolov, A L; Murashkin, V V; Akent'ev, A S; Karaseva, E A

    2013-09-30

    The cube-corner reflectors (CCRs) with a special interference dielectric coating intended for ring retroreflector systems of space vehicles with uniaxial orientation are considered. The diffraction patterns of radiation reflected from the CCRs with different face coatings are studied. It is shown that the choice of the angle between the faces, the size and the coating of CCR faces allow essential variation in the diffraction pattern, thereby providing its optimisation for solving different navigation problems. (nanogradient dielectric coatings and metamaterials)

  12. Coating Active Materials for Applications in Electrochemical Devices |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Argonne National Laboratory Coating Active Materials for Applications in Electrochemical Devices Technology available for licensing: A process that includes suspending/dissolving an electro-active material and a carbon precursor in a solvent; and then depositing the carbon precursor on the electro-active material to form a carbon-coated electro-active material Process reduces manufacturing cost Coating process produces carbon-coated metal oxides without the problems associated with

  13. Lithium battery electrodes with ultra-thin alumina coatings

    DOE Patents [OSTI]

    Se-Hee, Lee; George, Steven M.; Cavanagh, Andrew S.; Yoon Seok, Jung; Dillon, Anne C.

    2015-11-24

    Electrodes for lithium batteries are coated via an atomic layer deposition process. The coatings can be applied to the assembled electrodes, or in some cases to particles of electrode material prior to assembling the particles into an electrode. The coatings can be as thin as 2 .ANG.ngstroms thick. The coating provides for a stable electrode. Batteries containing the electrodes tend to exhibit high cycling capacities.

  14. Precise Application of Transparent Conductive Oxide Coatings for Flat Panel

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Displays and Photovoltaic Cells | Argonne National Laboratory Precise Application of Transparent Conductive Oxide Coatings for Flat Panel Displays and Photovoltaic Cells Technology available for licensing: New transparent conducting oxide (TCO) coatings are deposited using atomic layer deposition (ALD). Provides uniform coating of complex, 3D nanostructures such as electrodes for next-generation PV cells Improved coating precision uses less material and reduces cost PDF icon

  15. In-situ formation of multiphase deposited thermal barrier coatings

    DOE Patents [OSTI]

    Subramanian, Ramesh

    2004-01-13

    A multiphase ceramic thermal barrier coating is provided. The coating is adapted for use in high temperature applications in excess of about 1200.degree. C., for coating superalloy components of a combustion turbine engine. The coating comprises a ceramic single or two oxide base layer disposed on the substrate surface; and a ceramic oxide reaction product material disposed on the base layer, the reaction product comprising the reaction product of the base layer with a ceramic single or two oxide overlay layer.

  16. Project Profile: High-Performance Nanostructured Coating

    Broader source: Energy.gov [DOE]

    The University of California San Diego, under the 2012 SunShot Concentrating Solar Power (CSP) R&D funding opportunity announcement (FOA), is developing a new low-cost and scalable process for fabricating spectrally selective coatings (SSCs) to be used in solar absorbers for high-temperature CSP systems.

  17. Organosiloxane-grafted natural polymer coatings

    DOE Patents [OSTI]

    Sugama, Toshifumi

    1998-01-01

    A new family of polysaccharide graft polymers are provided as corrosion resistant coatings having antimicrobial properties which are useful on light metals such as aluminum, magnesium, zinc, steel and their alloys. Methods of making the polysaccharide graft polymers are also included. The methods of making the polysaccharide graft polymers involve reacting a polysaccharide source with an antimicrobial agent under conditions of hydrolysis-condensation.

  18. Polyorganometallosiloxane-2- or -4-pyridine coatings

    DOE Patents [OSTI]

    Sugama, Toshifumi

    1997-01-01

    A new family of polyorganometallosiloxane-2- or -4-pyridine compounds are provided for corrosion resistant coatings on light metals such as aluminum, magnesium, zinc, steel and their allows. The novel compounds contain backbones modified by metal alkoxides, metallocenes and metallophthalocyanates where the metal is Zr, Ti, Mo, V, Hf, Nb, Si, B and combinations thereof. Methods of making the new compounds are also provided.

  19. Shirley Coates Brostmeyer: Changing the (Engineering) Game

    Broader source: Energy.gov [DOE]

    In honor of Women’s History Month, we’ve brought you the stories of several women in the energy and science industries -- past, present and future. This week we spoke with Shirley Coates Brostmeyer, co-founder, CEO and owner of Florida Turbine Technologies, to find out what it takes to run a large engineering company.

  20. Coated semiconductor devices for neutron detection

    SciTech Connect (OSTI)

    Klann, Raymond T.; McGregor, Douglas S.

    2002-01-01

    A device for detecting neutrons includes a semi-insulated bulk semiconductor substrate having opposed polished surfaces. A blocking Schottky contact comprised of a series of metals such as Ti, Pt, Au, Ge, Pd, and Ni is formed on a first polished surface of the semiconductor substrate, while a low resistivity ("ohmic") contact comprised of metals such as Au, Ge, and Ni is formed on a second, opposed polished surface of the substrate. In one embodiment, n-type low resistivity pinout contacts comprised of an Au/Ge based eutectic alloy or multi-layered Pd/Ge/Ti/Au are also formed on the opposed polished surfaces and in contact with the Schottky and ohmic contacts. Disposed on the Schottky contact is a neutron reactive film, or coating, for detecting neutrons. The coating is comprised of a hydrogen rich polymer, such as a polyolefin or paraffin; lithium or lithium fluoride; or a heavy metal fissionable material. By varying the coating thickness and electrical settings, neutrons at specific energies can be detected. The coated neutron detector is capable of performing real-time neutron radiography in high gamma fields, digital fast neutron radiography, fissile material identification, and basic neutron detection particularly in high radiation fields.

  1. Corrosion protective coating for metallic materials

    DOE Patents [OSTI]

    Buchheit, R.G.; Martinez, M.A.

    1998-05-26

    Corrosion protective coatings for metallic materials, particularly aluminum and aluminum alloys, produced with simple, low-cost equipment and materials other than toxic metals or metal salts, or metal cyanides is disclosed. The metallic material is cleaned, degreased, and deoxidized, the surface is converted to a substantially alkaline condition, and the surface is chemically sealed with inorganic metal compounds. 1 fig.

  2. Corrosion protective coating for metallic materials

    DOE Patents [OSTI]

    Buchheit, Rudolph G.; Martinez, Michael A.

    1998-01-01

    Corrosion protective coatings for metallic materials, particularly aluminum and aluminum alloys, produced with simple, low-cost equipment and materials other than toxic metals or metal salts, or metal cyanides. The metallic material is cleaned, degreased, and deoxidized, the surface is converted to a substantially alkaline condition, and the surface is chemically sealed with inorganic metal compounds.

  3. Coatings with controlled porosity and chemical properties

    DOE Patents [OSTI]

    Frye, G.C.; Brinker, C.J.; Doughty, D.H.; Bein, T.; Moller, K.

    1996-12-31

    Coatings and sensors are disclosed having both steric and chemical selectivity. Controlled porosity provides the steric selectivity, whereas chemically tailored film properties, using controlled composition or modification by coupling agents, chemical species replacement, or chemical species within pores, provide the chemical selectivity. Single or multiple layers may be provided. 7 figs.

  4. Coatings with controlled porosity and chemical properties

    DOE Patents [OSTI]

    Frye, G.C.; Brinker, C.J.; Doughty, D.H.; Bein, T.; Moller, K.

    1993-07-06

    Coatings and sensors are described having both steric and chemical selectivity. Controlled porosity provides the steric selectivity, whereas chemically tailored film properties, using controlled composition or modification by coupling agents, chemical species replacement, or chemical species within pores, provide the chemical selectivity. Single or multiple layers may be provided.

  5. Coatings with controlled porosity and chemical properties

    DOE Patents [OSTI]

    Frye, Gregory C.; Brinker, C. Jeffrey; Doughty, Daniel H.; Bein, Thomas; Moller, Karin

    1993-01-01

    Coatings and sensors having both steric and chemical selectivity. Controlled porosity provides the steric selectivity, whereas chemically tailored film properties, using controlled composition or modification by coupling agents, chemical species replacement, or chemical species within pores, provide the chemical selectivity. Single or multiple layers may be provided.

  6. Coatings with controlled porosity and chemical properties

    DOE Patents [OSTI]

    Frye, Gregory C.; Brinker, C. Jeffrey; Doughty, Daniel H.; Bein, Thomas; Moller, Karin

    1996-01-01

    Coatings and sensors having both steric and chemical selectivity. Controlled porosity provides the steric selectivity, whereas chemically tailored film properties, using controlled composition or modification by coupling agents, chemical species replacement, or chemical species within pores, provide the chemical selectivity. Single or multiple layers may be provided.

  7. Biocatalytic material comprising multilayer enzyme coated fiber

    DOE Patents [OSTI]

    Kim, Jungbae [Richland, WA; Kwak, Ja Hun [Richland, WA; Grate, Jay W [West Richland, WA

    2009-11-03

    The present invention relates generally to high stability, high activity biocatalytic materials and processes for using the same. The materials comprise enzyme aggregate coatings having high biocatalytic activity and stability useful in heterogeneous environment. These new materials provide a new biocatalytic immobilized enzyme system with applications in bioconversion, bioremediation, biosensors, and biofuel cells.

  8. Pentek metal coating removal system: Baseline report

    SciTech Connect (OSTI)

    1997-07-31

    The Pentek coating removal technology was tested and is being evaluated at Florida International University (FIU) as a baseline technology. In conjunction with FIU`s evaluation of efficiency and cost, this report covers evaluation conducted for safety and health issues. It is a commercially available technology and has been used for various projects at locations throughout the country. The Pentek coating removal system consisted of the ROTO-PEEN Scaler, CORNER-CUTTER{reg_sign}, and VAC-PAC{reg_sign}. They are designed to remove coatings from steel, concrete, brick, and wood. The Scaler uses 3M Roto Peen tungsten carbide cutters while the CORNER-CUTTER{reg_sign} uses solid needles for descaling activities. These hand tools are used with the VAC-PAC{reg_sign} vacuum system to capture dust and debris as removal of the coating takes place. The safety and health evaluation during the testing demonstration focused on two main areas of exposure: dust and noise. Dust exposure minimal, but noise exposure was significant. Further testing for each exposure is recommended because of the environment where the testing demonstration took place. It is feasible that the dust and noise levels will be higher in an enclosed operating environment of different construction. In addition, other areas of concern found were arm-hand vibration, whole-body, ergonomics, heat stress, tripping hazards, electrical hazards, machine guarding, and lockout/tagout.

  9. IRON COATED URANIUM AND ITS PRODUCTION

    DOE Patents [OSTI]

    Gray, A.G.

    1960-03-15

    A method of applying a protective coating to a metallic uranium article is given. The method comprises etching the surface of the article with an etchant solution containlng chloride ions, such as a solution of phosphoric acid and hydrochloric acid, cleaning the etched surface, electroplating iron thereon from a ferrous ammonium sulfate electroplating bath, and soldering an aluminum sheath to the resultant iron layer.

  10. Fiber metal interlayer improves ceramic coating performance

    SciTech Connect (OSTI)

    Jarrabet, G.P.

    1994-11-01

    This article is a review of the use of a compliant fiber metal inner layer between a ceramic coating and metal. The material used is Zirconia with phase stabilizers of magnesium oxide, calcium oxide, and yttrium oxide. Design, fabrication, and testing of the stabilized zirconia is discussed.

  11. Surface coating for prevention of crust formation

    DOE Patents [OSTI]

    Kronberg, James W.

    1994-01-01

    A flexible surface coating which promotes the removal of deposits as they reach the surface by preventing adhesion and crust formation. Flexible layers are attached to each side of a flexible mesh substrate comprising of a plurality of zones composed of one or more neighboring cells, each zone having a different compressibility than its adjacent zones. The substrate is composed of a mesh made of strands and open cells. The cells may be filled with foam. Studs or bearings may also be positioned in the cells to increase the variation in compressibility and thus the degree of flexing of the coating. Surface loading produces varying amounts of compression from point to point causing the coating to flex as deposits reach it, breaking up any hardening deposits before a continuous crust forms. Preferably one or more additional layers are also used, such as an outer layer of a non-stick material such as TEFLON, which may be pigmented, and an inner, adhesive layer to facilitate applying the coating to a surface.

  12. Pyrolytic carbon-coated nuclear fuel

    DOE Patents [OSTI]

    Lindemer, Terrence B.; Long, Jr., Ernest L.; Beatty, Ronald L.

    1978-01-01

    An improved nuclear fuel kernel having at least one pyrolytic carbon coating and a silicon carbon layer is provided in which extensive interaction of fission product lanthanides with the silicon carbon layer is avoided by providing sufficient UO.sub.2 to maintain the lanthanides as oxides during in-reactor use of said fuel.

  13. Oxidation resistant nanocrystalline MCrAl(Y) coatings and methods of forming such coatings

    DOE Patents [OSTI]

    Cheruvu, Narayana S.; Wei, Ronghua

    2014-07-29

    The present disclosure relates to an oxidation resistant nanocrystalline coating and a method of forming an oxidation resistant nanocrystalline coating. An oxidation resistant coating comprising an MCrAl(Y) alloy may be deposited on a substrate, wherein M, includes iron, nickel, cobalt, or combinations thereof present greater than 50 wt % of the MCrAl(Y) alloy, chromium is present in the range of 15 wt % to 30 wt % of the MCrAl(Y) alloy, aluminum is present in the range of 6 wt % to 12 wt % of the MCrAl(Y) alloy and yttrium, is optionally present in the range of 0.1 wt % to 0.5 wt % of the MCrAl(Y) alloy. In addition, the coating may exhibit a grain size of 200 nm or less as deposited.

  14. Investigation of damage behavior of thermally sprayed coatings depending on coating thickness

    SciTech Connect (OSTI)

    Crostack, H.A.; Beller, U.

    1995-12-31

    In order to increase the lifetime of components used for diesel engines or gas turbines surfaces are coated by ceramics. In recent years it succeeded in spraying thermal barrier coatings based on zirconia up to a thickness of a few millimeters. A comparison of the damage behavior between yttria partially stabilized zirconia coatings with different thickness will be presented. The coatings are produced by atmospheric plasma spraying. The thickness is varied from 0.5 mm up to 2 mm. In order to characterize the mechanical as well as the damage processes different methods of destructive testing (tensile, bending, and loading test) are applied. Additionally, non-destructive testing methods were used to investigate the damage processes on micro structural level. The results will be discussed according to the microstructure.

  15. Nanolens Window Coatings for Daylighting | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Nanolens Window Coatings for Daylighting Nanolens Window Coatings for Daylighting Emerging Technologies Project for the 2013 Building Technologies Office's Program Peer Review PDF icon emrgtech18_alvine_040413.pdf More Documents & Publications Dynamically Responsive Infrared Window Coatings Advanced Facades, Daylighting, and Complex Fenestration Systems Window Daylighting Demo

  16. Optimizing High-Z Coatings for Inertial Fusion Energy Shells

    SciTech Connect (OSTI)

    Stephens, Elizabeth H.; Nikroo, Abbas; Goodin, Daniel T.; Petzoldt, Ronald W.

    2003-05-15

    Inertial fusion energy (IFE) reactors require shells with a high-Z coating that is both permeable, for timely filling with deuterium-tritium, and reflective, for survival in the chamber. Previously, gold was deposited on shells while they were agitated to obtain uniform, reproducible coatings. However, these coatings were rather impermeable, resulting in unacceptably long fill times. We report here on an initial study on Pd coatings on shells in the same manner. We have found that these palladium-coated shells are substantially more permeable than gold. Pd coatings on shells remained stable on exposure to deuterium. Pd coatings had lower reflectivity compared to gold that leads to a lower working temperature, and efficiency, of the proposed fusion reactor. Seeking to combine the permeability of Pd coatings and high reflectivity of gold, AuPd-alloy coatings were produced using a cosputtering technique. These alloys demonstrated higher permeability than Au and higher reflectivity than Pd. However, these coatings were still less reflective than the gold coatings. To improve the permeability of gold's coatings, permeation experiments were performed at higher temperatures. With the parameters of composition, thickness, and temperature, we have the ability to comply with a large target design window.

  17. FABRICATION OF GAS-FILLED TUNGSTEN-COATED GLASS SHELLS

    SciTech Connect (OSTI)

    NIKROO,A; BAUGH,W; STEINMAN,D.A

    2003-06-01

    OAK-B135 Deuterium (D{sub 2}) filled glass shells coated with a high Z element are needed for high energy density (HED) experiments by researchers at Los Alamos National Laboratory. They report here on our initial attempt to produce such shells. Glass shells made using the drop tower technique were coated with gold, palladium or tungsten, or a mixture of two of these elements. It was found that gold and palladium coatings did not stick well to the glass and resulted in poor or delaminated films. Tungsten coatings resulted in films suitable for these targets. Bouncing of shells during coating resulted in uniform tungsten coatings, but the surface of such coatings were filled with small nodules. Proper agitation of shells using a tapping technique resulted in smooth films with minimal particulate contamination. For coating rates of {approx} 0.15 {micro}m/hr coatings with {approx} 2 nm RMS surface finish could be deposited. The surface roughness of coatings at higher rates, 0.7 {micro}m/hr, was considerably worse ({approx} 100 nm RMS). The columnar structure of the coatings allowed permeation filling of the tungsten coated glass shells with deuterium at 300 C.

  18. Fabrication of Gas-Filled Tungsten-Coated Glass Shells

    SciTech Connect (OSTI)

    Nikroo, A.; Baugh, W.; Steinman, D.A.

    2004-03-15

    Deuterium (D{sub 2}) filled glass shells coated with a high Z element are needed for high energy density (HED) experiments by researchers at Los Alamos National Laboratory. We report here on our initial attempt to produce such shells. Glass shells made using the drop tower technique were coated with gold, palladium or tungsten, or a mixture of two of these elements. It was found that gold and palladium coatings did not stick well to the glass and resulted in poor or delaminated films. Tungsten coatings resulted in films suitable for these targets. Bouncing of shells during coating resulted in uniform tungsten coatings, but the surface of such coatings were filled with small nodules. Proper agitation of shells using a tapping technique resulted in smooth films with minimal particulate contamination. For coating rates of {approx}0.15 {mu}m/hr coatings with {approx}2 nm RMS surface finish could be deposited. The surface roughness of coatings at higher rates, 0.7 {mu}m/hr, was considerably worse ({approx}100 nm RMS). The columnar structure of the coatings allowed permeation filling of the tungsten coated glass shells with deuterium at 300 deg. C.

  19. Sodium sulfur container with chromium/chromium oxide coating

    DOE Patents [OSTI]

    Ludwig, Frank A.; Higley, Lin R.

    1981-01-01

    A coating of chromium/chromium oxide is disclosed for coating the surfaces of electrically conducting components of a sodium sulfur battery. This chromium/chromium oxide coating is placed on the surfaces of the electrically conducting components of the battery which are in contact with molten polysulfide and sulfur reactants during battery operation.

  20. High temperature ceramic articles having corrosion resistant coating

    DOE Patents [OSTI]

    Stinton, David P.; Lee, Woo Y.

    1997-01-01

    A ceramic article which includes a porous body of SiC fibers, Si.sub.3 N.sub.4 fibers, SiC coated fibers or Si.sub.3 N.sub.4 coated fibers, having at least one surface, the article having a coating of AlN adherently disposed throughout at least a portion of the porous body.

  1. High Temperature coatings based on {beta}-NiAI

    SciTech Connect (OSTI)

    Severs, Kevin

    2012-07-10

    High temperature alloys are reviewed, focusing on current superalloys and their coatings. The synthesis, characerization, and oxidation performance of a NiAl–TiB{sub 2} composite are explained. A novel coating process for Mo–Ni–Al alloys for improved oxidation performance is examined. The cyclic oxidation performance of coated and uncoated Mo–Ni–Al alloys is discussed.

  2. Method for forming hermetic coatings for optical fibers

    DOE Patents [OSTI]

    Michalske, Terry A.; Rye, Robert R.; Smith, William L.

    1993-01-01

    A method for forming hermetic coatings on optical fibers by hot filament assisted chemical vapor deposition advantageously produces a desirable coating while maintaining the pristine strength of the pristine fiber. The hermetic coatings may be formed from a variety of substances, such as, for example, boron nitride and carbon.

  3. Evaluation of metallized paint coatings for composite spacecraft structures

    SciTech Connect (OSTI)

    Brzuskiewicz, J.E. )

    1990-04-01

    Thermal control coatings are needed to minimize temperature excursions of composite spacecraft structures in low earth orbit. Coatings prepared with combinations of metal flake and metal oxide pigments were prepared to obtain a range of solar absorptance and emittance properties. These coatings were subjected to screening tests to characterize their ultraviolet stability, atomic oxygen resistance and outgassing properties.

  4. Gaseous modification of MCrAlY coatings

    DOE Patents [OSTI]

    Vance, Steven J.; Goedjen, John G.; Sabol, Stephen M.; Sloan, Kelly M.

    2000-01-01

    The present invention generally describes methods for modifying MCrAlY coatings by using gaseous carburization, gaseous nitriding or gaseous carbonitriding. The modified MCrAlY coatings are useful in thermal barrier coating systems, which may be used in gas turbine engines.

  5. Bond Coating Performance of Thermal Barrier Coatings for Industrial Gas Turbines

    SciTech Connect (OSTI)

    Wright, Ian G; Pint, Bruce A

    2005-01-01

    Thermal barrier coatings are intended to work in conjunction with internal cooling schemes to reduce the metal temperature of critical hot gas path components in gas turbine engines. The thermal resistance is typically provided by a 100--250 {mu}m thick layer of ceramic (most usually zirconia stabilized with an addition of 7--8 wt% of yttria), and this is deposited on to an approximately 50 {mu} thick, metallic bond coating that is intended to anchor the ceramic to the metallic surface, to provide some degree of mechanical compliance, and to act as a reservoir of protective scale-forming elements (Al) to protect the underlying superalloy from high-temperature corrosion. A feature of importance to the durability of thermal barrier coatings is the early establishment of a continuous, protective oxide layer (preferably {alpha}-alumina) at the bond coating-ceramic interface. Because zirconia is permeable to oxygen, this oxide layer continues to grow during service. Some superalloys are inherently resistant to high-temperature oxidation, so a separate bond coating may not be needed in those cases. Thermal barrier coatings have been in service in aeroengines for a number of years, and the use of this technology for increasing the durability and/or efficiency of industrial gas turbines is currently of significant interest. The data presented were taken from an investigation of routes to optimize bond coating performance, and the focus of the paper is on the influences of reactive elements and Pt on the oxidation behaviour of NiAl-based alloys determined in studies using cast versions of bond coating compositions.

  6. Method For Improving The Oxidation Resistance Of Metal Substrates Coated With Thermal Barrier Coatings

    DOE Patents [OSTI]

    Thompson, Anthony Mark; Gray, Dennis Michael; Jackson, Melvin Robert

    2003-05-13

    A method for providing a protective coating on a metal-based substrate is disclosed. The method involves the application of an aluminum-rich mixture to the substrate to form a discontinuous layer of aluminum-rich particles, followed by the application of a second coating over the discontinuous layer of aluminum-rich particles. Aluminum diffuses from the aluminum-rich layer into the substrate, and into any bond coat layer which is subsequently applied. Related articles are also described. A method for providing a protective coating on a metal-based substrate is disclosed. The method involves the application of an aluminum-rich mixture to the substrate to form a discontinuous layer of aluminum-rich particles, followed by the application of a second coating over the discontinuous layer of aluminum-rich particles. Aluminum diffuses from the aluminum-rich layer into the substrate, and into any bond coat layer which is subsequently applied. Related articles are also described.

  7. Thermal barrier coatings: Coating methods, performance, and heat engine applications. (Latest citations from the EI Compendex*plus database). Published Search

    SciTech Connect (OSTI)

    1997-02-01

    The bibliography contains citations concerning conference proceedings on coating methods, performance evaluations, and applications of thermal barrier coatings as protective coatings for heat engine components against high temperature corrosions and chemical erosions. The developments of thermal barrier coating techniques for high performance and reliable gas turbines, diesel engines, jet engines, and internal combustion engines are presented. Topics include plasma sprayed coating methods, yttria stabilized zirconia coatings, coating life models, coating failure and durability, thermal shock and cycling, and acoustic emission analysis of coatings. (Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

  8. Thermal barrier coatings: Coating methods, performance, and heat engine applications. (Latest citations from the EI Compendex*plus database). Published Search

    SciTech Connect (OSTI)

    Not Available

    1994-11-01

    The bibliography contains citations concerning conference proceedings on coating methods, performance evaluations, and applications of thermal barrier coatings as protective coatings for heat engine components against high temperature corrosions and chemical erosions. The developments of thermal barrier coating techniques for high performance and reliable gas turbines, diesel engines, jet engines, and internal combustion engines are presented. Topics include plasma sprayed coating methods, yttria stabilized zirconia coatings, coating life models, coating failure and durability, thermal shock and cycling, and acoustic emission analysis of coatings. (Contains a minimum of 243 citations and includes a subject term index and title list.)

  9. Thermal barrier coatings: Coating methods, performance, and heat engine applications. (Latest citations from the EI compendex*plus database). Published Search

    SciTech Connect (OSTI)

    Not Available

    1993-11-01

    The bibliography contains citations concerning conference proceedings on coating methods, performance evaluations, and applications of thermal barrier coatings as protective coatings for heat engine components against high temperature corrosions and chemical erosions. The developments of thermal barrier coating techniques for high performance and reliable gas turbines, diesel engines, jet engines, and internal combustion engines are presented. Topics include plasma sprayed coating methods, yttria stabilized zirconia coatings, coating life models, coating failure and durability, thermal shock and cycling, and acoustic emission analysis of coatings. (Contains 250 citations and includes a subject term index and title list.)

  10. Thermal barrier coatings: Coating methods, performance, and heat engine applications. (Latest citations from the EI Compendex*plus database). Published Search

    SciTech Connect (OSTI)

    1995-11-01

    The bibliography contains citations concerning conference proceedings on coating methods, performance evaluations, and applications of thermal barrier coatings as protective coatings for heat engine components against high temperature corrosions and chemical erosions. The developments of thermal barrier coating techniques for high performance and reliable gas turbines, diesel engines, jet engines, and internal combustion engines are presented. Topics include plasma sprayed coating methods, yttria stabilized zirconia coatings, coating life models, coating failure and durability, thermal shock and cycling, and acoustic emission analysis of coatings. (Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

  11. Ground plane insulating coating for proximity focused devices

    DOE Patents [OSTI]

    Power, G.D.

    1998-07-14

    A thin layer of alumina (aluminum oxide) is coated onto the ground plane of a microchannel plate (MCP) without covering the pores of the MCP so it does not effect the performance. The coating is sputtered onto the ground plane at a very steep angle. The addition of the thin dielectric coating of alumina greatly improves the spatial resolution of proximity focused image intensifiers using a narrow gap between the phosphor screen and the MCP. With the coating on the ground plane and the same gap the phosphor screen can be ran at 9000 volts, as compared to 3 kV without the coating. 3 figs.

  12. Ground plane insulating coating for proximity focused devices

    DOE Patents [OSTI]

    Power, Gary D.

    1998-01-01

    A thin layer of alumina (aluminum oxide) is coated onto the ground plane of a microchannel plate (MCP) without covering the pores of the MCP so it does not effect the performance. The coating is sputtered onto the ground plane at a very steep angle. The addition of the thin dielectric coating of alumina greatly improves the spatial resolution of proximity focused image intensifiers using a narrow gap between the phosphor screen and the MCP. With the coating on the ground plane and the same gap the phosphor screen can be ran at 9000 volts, as compared to 3 kV without the coating.

  13. Paint selection for coating radioactive-waste drums

    SciTech Connect (OSTI)

    Briggs, J.L.

    1980-07-01

    It is concluded that although the white epoxy Paint Sample E is suitable for coating waste drums, the additional pretreated costs of grit blasting prior to paint application would preclude adoption of that paint system. The specified 10.0-mil coating thickness of that coating would also incur higher costs. The Vorac epoxy-phenolic base paint (buff or yellow) was the only other paint that exhibited suitable corrosion and impact resistance required for coating the waste drums. In addition, that paint does not require a grit-blasted substrate or other costly pretreatment prior to coating.

  14. Selective emission multilayer coatings for a molybdenum thermophotovoltaic radiator

    DOE Patents [OSTI]

    Cockeram, Brian Vern

    2004-01-27

    Multilayer coating designs have been developed to provide selective emission for a molybdenum thermophotovoltaic (TPV) radiator surface. These coatings increase the surface emissivity of a molybdenum TPV radiator substrate in the wavelength range that matches the bandgap of the TPV cells to increase the power density of the TPV system. Radiator emission at wavelengths greater than the bandgap energy of the TPV cells is greatly reduced through the use of these coatings, which significantly increases the efficiency of the TPV system. The use of this coating greatly improves the performance of a TPV system, and the coating can be tailored to match the bandgap of any practical TPV system.

  15. Microstructure, Processing, Performance Relationships for High Temperature Coatings

    SciTech Connect (OSTI)

    Thomas M. Lillo

    2011-04-01

    This work evaluates the suitability of iron aluminide coatings for use in high temperature fossil fuel combustion environments, such as boiler applications. The coatings are applied using High Velocity Oxy-Fuel (HVOF) thermal spray techniques. Iron aluminide coatings, with the nominal composition of Fe3Al, were applied to various high temperature structural materials (316 Stainless Steel, 9Cr-1Mo steel and Inconel 600) that typically lack inherent resistance to environmental degradation found in fossil fuel combustion atmospheres. Coating/substrate combinations were subjected to thermal cycling to evaluate the effect of HVOF parameters, coating thickness, substrate material and substrate surface roughness on the resistance to coating delamination and cracking. It was found that substrate surface roughness had a profound influence on the performance of a given substrate/coating system and that surface preparation techniques will need to be tailored to the specific substrate material. Also, higher particle velocity during HVOF thermal spray deposition of the iron aluminide coatings tended to result in better-performing coating/substrate systems with less delamination at the coating/substrate interface. Some combinations of HVOF parameters, coating thickness and substrate materials were found to perform extremely well even at temperatures up to 900oC. However, in some cases, substantial reactions at the interface were observed.

  16. Corrosion behavior of magnetic ferrite coating prepared by plasma spraying

    SciTech Connect (OSTI)

    Liu, Yi; Wei, Shicheng Tong, Hui; Tian, Haoliang; Liu, Ming; Xu, Binshi

    2014-12-15

    Graphical abstract: The saturation magnetization (M{sub s}) of the ferrite coating is 34.417 emu/g while the M{sub s} value of the ferrite powder is 71.916 emu/g. It can be seen that plasma spray process causes deterioration of the room temperature soft magnetic properties. - Highlights: Spinel ferrite coatings have been prepared by plasma spraying. The coating consists of nanocrystalline grains. The saturation magnetization of the ferrite coating is 34.417 emu/g. Corrosion behavior of the ferrite coating was examined in NaCl solution. - Abstract: In this study, spray dried spinel ferrite powders were deposited on the surface of mild steel substrate through plasma spraying. The structure and morphological studies on the ferrite coatings were carried out using X-ray diffraction, scanning electron microscope and Raman spectroscopy. It was showed that spray dried process was an effective method to prepare thermal spraying powders. The coating showed spinel structure with a second phase of LaFeO{sub 3}. The magnetic property of the ferrite samples were measured by vibrating sample magnetometer. The saturation magnetization (M{sub s}) of the ferrite coating was 34.417 emu/g. The corrosion behavior of coating samples was examined by electrochemical impedance spectroscopy. EIS diagrams showed three corrosion processes as the coating immersed in 3.5 wt.% NaCl solution. The results suggested that plasma spraying was a promising technology for the production of magnetic ferrite coatings.

  17. Radiation pressure efficiency measurements of nanoparticle coated microspheres

    SciTech Connect (OSTI)

    Kim, Soo Y.; Taylor, Joseph D.; Ladouceur, Harold D.; Hart, Sean J.; Terray, Alex

    2013-12-02

    Experimental measurements of the radiation pressure efficiency (Q{sub pr}) for several microparticles have been compared to theoretical calculations extrapolated from the Bohren-Huffman code for Mie scattering of coated particles. An increased shift of the Q{sub pr} parameter was observed for 2??m SiO{sub 2} core particles coated with nanoparticles of higher refractive indices. Coatings of 14?nm melamine particles were found to increase the Q{sub pr} parameter 135 times over similar coatings using SiO{sub 2} particles of the same size. While a coating of 100?nm polystyrene particles also showed a significant increase, they did not agree well with theoretical values. It is hypothesized that other factors such as increased scatter, drag, and finite coating coverage are no longer negligible for coatings using nanoparticles in this size regime.

  18. Coated armor system and process for making the same

    DOE Patents [OSTI]

    Chu, Henry S.; Lillo, Thomas M.; McHugh, Kevin M.

    2010-11-23

    An armor system and method involves providing a core material and a stream of atomized coating material that comprises a liquid fraction and a solid fraction. An initial layer is deposited on the core material by positioning the core material in the stream of atomized coating material wherein the solid fraction of the stream of atomized coating material is less than the liquid fraction of the stream of atomized coating material on a weight basis. An outer layer is then deposited on the initial layer by positioning the core material in the stream of atomized coating material wherein the solid fraction of the stream of atomized coating material is greater than the liquid fraction of the stream of atomized coating material on a weight basis.

  19. Balloon Coating with Rapamycin Using an On-site Coating Device

    SciTech Connect (OSTI)

    Schmehl, Joerg; Ruhr, Juergen von der; Dobratz, Markus; Kehlbach, Rainer; Braun, Isabelle; Greiner, Tim-Oliver; Claussen, Claus D.; Behnisch, Boris

    2013-06-15

    Purpose. The efficacy of drug-eluting balloons has been demonstrated in clinical trials. The drug predominantly used is paclitaxel because of its lipophilic properties and the rapid onset of action. The aim of the investigation was to evaluate the feasibility and efficacy of an alternative balloon coating with rapamycin that can be applied on site.MethodsThe balloon coating (3.0/18 and 3.0/12 mm, Cathy No. 4, Translumina GmbH) with rapamycin was conducted with a coating machine (Translumina GmbH). Concentrations were 2, 2 Multiplication-Sign 2, 3, and 4 %. Measurements regarding the amount of substance released to the vessel wall were carried out on explanted porcine coronaries by means of ultraviolet and visible-light spectroscopy. Inflation time varied between 30 and 120 s. The biological effect of the coating was evaluated in a porcine peripheral overstretch and stent implantation model. Results. The amount of rapamycin on the balloon surface ranged from 558 {+-} 108 {mu}g for the 2 % solution to 1,441 {+-} 228 {mu}g in the 4 % solution. An amount of 95 {+-} 63-193 {+-} 113 {mu}g was released into the vessel wall. The quantitative measurements of the angiographic examinations 4 weeks after treatment revealed a reduction of diameter stenosis from 20.6 {+-} 17.4 % in the control group to 11.6 {+-} 5.5 % in the drug-eluting balloon group. Conclusion. A balloon coating with rapamycin omitting an excipient is possible with a dose-adjustable coating machine. However, the biological effects are moderate, which make further optimization of the coating process and evaluation of appropriate excipients necessary.

  20. Method of applying a bond coating and a thermal barrier coating on a metal substrate, and related articles

    DOE Patents [OSTI]

    Hasz, Wayne Charles; Borom, Marcus Preston

    2002-01-01

    A method for applying at least one bond coating on a surface of a metal-based substrate is described. A foil of the bond coating material is first attached to the substrate surface and then fused thereto, e.g., by brazing. The foil is often initially prepared by thermally spraying the bond coating material onto a removable support sheet, and then detaching the support sheet. Optionally, the foil may also include a thermal barrier coating applied over the bond coating. The substrate can be a turbine engine component.

  1. Self-cleaning skin-like prosthetic polymer surfaces

    DOE Patents [OSTI]

    Simpson, John T. (Clinton, TN); Ivanov, Ilia N. (Knoxville, TN); Shibata, Jason (Manhattan Beach, CA)

    2012-03-27

    An external covering and method of making an external covering for hiding the internal endoskeleton of a mechanical (e.g., prosthetic) device that exhibits skin-like qualities is provided. The external covering generally comprises an internal bulk layer in contact with the endoskeleton of the prosthetic device and an external skin layer disposed about the internal bulk layer. The external skin layer is comprised of a polymer composite with carbon nanotubes embedded therein. The outer surface of the skin layer has multiple cone-shaped projections that provide the external skin layer with superhydrophobicity. The carbon nanotubes are preferably vertically aligned between the inner surface and outer surface of the external skin layer in order to provide the skin layer with the ability to transmit heat. Superhydrophobic powders may optionally be used as part of the polymer composite or applied as a coating to the surface of the skin layer to enhance superhydrophobicity.

  2. Diamond coated silicon field emitter array

    SciTech Connect (OSTI)

    S. Albin; W. Fu; A. Varghese; A. C. Lavarias; G. R. Myneni

    1999-07-01

    Diamond coated silicon tip arrays, with and without a self-aligned gate, were fabricated, and current-voltage characteristics of 400 tips were measured. Diamond films were grown uniformly on Si tips using microwave plasma after nucleation with 10 nm diamond suspension and substrate bias. An emission current of 57 ?A was obtained at 5 V from the ungated array tips separated from an anode at 2 ?m. In the case of the gated arrays with 1.5 ?m aperture, an emission current of 3.4 ?A was measured at a gate voltage of 80 V for an anode separation of 200 ?m. The turn-on voltages for these two types of devices were 0.2 and 40 V, respectively. Diamond coated Si tip arrays have potential applications in field emission based low voltage vacuum electronic devices and microsensors.

  3. Anti-stiction coating for microelectromechanical devices

    DOE Patents [OSTI]

    Hankins, Matthew G.; Mayer, Thomas M.; Wheeler, David R.

    2006-05-16

    A method for depositing an anti-stiction coating on a MEMS device comprises reacting the vapor of an amino-functionalized silane precursor with a silicon surface of the MEMS device in a vacuum chamber. The method can further comprise cleaning the silicon surface of the MEMS device to form a clean hydroxylated silicon surface prior to reacting the precursor vapor with the silicon surface. The amino-functionalized silane precursor comprises at least one silicon atom, at least one reactive amino (or imine) pendant, and at least one hydrophobic pendant. The amino-functionalized silane precursor is highly reactive with the silicon surface, thereby eliminating the need for a post-process anneal step and enabling the reaction to occur at low pressure. Such vapor-phase deposition of the amino-functionalized silane coating provides a uniform surface morphology and strong adhesion to the silicon surface.

  4. Nanocomposite protective coatings for battery anodes

    DOE Patents [OSTI]

    Lemmon, John P; Xiao, Jie; Liu, Jun

    2014-01-21

    Modified surfaces on metal anodes for batteries can help resist formation of malfunction-inducing surface defects. The modification can include application of a protective nanocomposite coating that can inhibit formation of surface defects. such as dendrites, on the anode during charge/discharge cycles. For example, for anodes having a metal (M'), the protective coating can be characterized by products of chemical or electrochemical dissociation of a nanocomposite containing a polymer and an exfoliated compound (M.sub.a'M.sub.b''X.sub.c). The metal, M', comprises Li, Na, or Zn. The exfoliated compound comprises M' among lamella of M.sub.b''X.sub.c, wherein M'' is Fe, Mo, Ta, W, or V, and X is S, O, or Se.

  5. Sol-gel coatings for optoelectronic devices

    SciTech Connect (OSTI)

    Avellaneda, C.O.; Macedo, M.A.; Florentino, A.O.; Aegerter, M.A. [Univ. of Sao Paulo, Sao Carlos (Brazil). Inst. de Fisica e Quimica

    1994-12-31

    Nb{sub 2}O{sub 5} prepared by a sol-gel process in form of coatings and aerogels are new materials which present interesting properties: (a) The coatings present electrochromic properties and exhibit a blue coloration under Li{sup +} insertion with 100% reversible variation of the optical transmission in the visible and near infrared range between 80% and 200% and have a high chemical stability (tested up to 2,000 cycles). (b) They are semiconductor and present a photoelectric effect when illuminating in the UV region ({lambda} < 360 nm). These films are therefore very promising to be used in electrochromic devices, as electrodes for photoelectrochemical purpose and the development of nanocrystalline solar cell. (c) When prepared in aerogel form, the high BET surface area of the powders is a promising asset to use these new materials for catalytic purposes for air pollution control.

  6. Method of producing thermally sprayed metallic coating

    DOE Patents [OSTI]

    Byrnes, Larry Edward; Kramer, Martin Stephen; Neiser, Richard A.

    2003-08-26

    The cylinder walls of light metal engine blocks are thermally spray coated with a ferrous-based coating using an HVOF device. A ferrous-based wire is fed to the HVOF device to locate a tip end of the wire in a high temperature zone of the device. Jet flows of oxygen and gaseous fuel are fed to the high temperature zone and are combusted to generate heat to melt the tip end. The oxygen is oversupplied in relation to the gaseous fuel. The excess oxygen reacts with and burns a fraction of the ferrous-based feed wire in an exothermic reaction to generate substantial supplemental heat to the HVOF device. The molten/combusted metal is sprayed by the device onto the walls of the cylinder by the jet flow of gases.

  7. Coating considerations for mirrors of CPV devices

    SciTech Connect (OSTI)

    Schmauder, Torsten; Sauer, Peter; Ickes, Gerd

    2014-09-26

    One of the different optical concepts for concentrator devices is to place a focussing primary mirror behind a transparent front plate. In addition (also in case of Fresnel-diffractive main optics), further 'secondary' reflectors may be used further along the beam path. Such mirrors are usually implemented as coating stacks of a highly reflective metal - usually silver - and protective layers. The protective layers are preferably designed as reflection enhancing interference stack. The design of such protective layer stacks yields two difficulties, which are addressed in this paper: (a) vacuum coating of three-dimensional parts will result in a thickness distribution and the optical design of the stack should thus be tolerant to layer thickness variations, and (b) different places of the mirror will have different angle-of-incidence of the sunlight under operating conditions. As result, the layer stack has a different design at different places of the mirror.

  8. High temperature low friction surface coating

    DOE Patents [OSTI]

    Bhushan, Bharat

    1980-01-01

    A high temperature, low friction, flexible coating for metal surfaces which are subject to rubbing contact includes a mixture of three parts graphite and one part cadmium oxide, ball milled in water for four hours, then mixed with thirty percent by weight of sodium silicate in water solution and a few drops of wetting agent. The mixture is sprayed 12-15 microns thick onto an electro-etched metal surface and air dried for thirty minutes, then baked for two hours at 65.degree. C. to remove the water and wetting agent, and baked for an additional eight hours at about 150.degree. C. to produce the optimum bond with the metal surface. The coating is afterwards burnished to a thickness of about 7-10 microns.

  9. Article coated with flash bonded superhydrophobic particles

    DOE Patents [OSTI]

    Simpson, John T (Clinton, TN) [Clinton, TN; Blue, Craig A (Knoxville, TN) [Knoxville, TN; Kiggans, Jr., James O [Oak Ridge, TN

    2010-07-13

    A method of making article having a superhydrophobic surface includes: providing a solid body defining at least one surface; applying to the surface a plurality of diatomaceous earth particles and/or particles characterized by particle sizes ranging from at least 100 nm to about 10 .mu.m, the particles being further characterized by a plurality of nanopores, wherein at least some of the nanopores provide flow through porosity, the particles being further characterized by a plurality of spaced apart nanostructured features that include a contiguous, protrusive material; flash bonding the particles to the surface so that the particles are adherently bonded to the surface; and applying a hydrophobic coating layer to the surface and the particles so that the hydrophobic coating layer conforms to the nanostructured features.

  10. EMBEDDED OPTICAL SENSORS FOR THERMAL BARRIER COATINGS

    SciTech Connect (OSTI)

    David R. Clarke

    2004-12-16

    In this first year of the program we have focused on the selection of rare-earth dopants for luminescent sensing in thermal barrier coating materials, the effect of dopant concentration on several of the luminescence characteristics and initial fabrication of one type of embedded sensor, the ''red-line'' sensor. We have initially focused on erbium as the lanthanide dopant for luminescence doping of yttria-stabilized zirconia and europium as the lanthanide for luminescence doping of gadolinium zirconate. The latter exhibits a temperature-dependent luminescence lifetime up to at least 1100 C. A buried layer, ''red-line'' sensor in an electron-beam deposited yttria-stabilized zirconia coating with erbium has been demonstrated and exhibits a temperature-dependent luminescence lifetime up to at least 400 C.

  11. Polyorganometallosiloxane-2- or -4-pyridine coatings

    DOE Patents [OSTI]

    Sugama, T.

    1997-12-30

    A new family of polyorganometallosiloxane-2- or -4-pyridine compounds are provided for corrosion resistant coatings on light metals such as aluminum, magnesium, zinc, steel and their alloys. The novel compounds contain backbones modified by metal alkoxides, metallocenes and metallophthalocyanates where the metal is Zr, Ti, Mo, V, Hf, Nb, Si, B and combinations thereof. Methods of making the new compounds are also provided. 13 figs.

  12. biofouling studies on Sandia's marine hydrokinetic coatings

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    biofouling studies on Sandia's marine hydrokinetic coatings - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense

  13. Organosiloxane-grafted natural polymer coatings

    DOE Patents [OSTI]

    Sugama, Toshifumi

    1998-12-01

    A new family of polysaccharide graft polymers are provided as corrosion resistant coatings having antimicrobial properties which are useful on light metals such as aluminum, magnesium, zinc, steel and their alloys. Methods of making the polysaccharide graft polymers are also included. The methods of making the polysaccharide graft polymers involve reacting a polysaccharide source with an antimicrobial agent under conditions of hydrolysis-condensation. 17 figs.

  14. METAL COATED ARTICLES AND METHOD OF MAKING

    DOE Patents [OSTI]

    Eubank, L.D.

    1958-08-26

    A method for manufacturing a solid metallic uranium body having an integral multiple layer protective coating, comprising an inner uranium-aluminum alloy firmly bonded to the metallic uranium is presented. A third layer of silver-zinc alloy is bonded to the zinc-aluiminum layer and finally a fourth layer of lead-silver alloy is firmly bonded to the silver-zinc layer.

  15. Thermal barrier coating resistant to sintering

    DOE Patents [OSTI]

    Subramanian, Ramesh; Seth, Brij B.

    2004-06-29

    A device (10) is made, having a ceramic thermal barrier coating layer (16) characterized by a microstructure having gaps (18) with a sintering inhibiting material (22) disposed on the columns (20) within the gaps (18). The sintering resistant material (22) is stable over the range of operating temperatures of the device (10), is not soluble with the underlying ceramic layer (16) and is applied by a process that is not an electron beam physical vapor deposition process.

  16. Molybdenum Coatings with Filtration of Plasma Flow

    SciTech Connect (OSTI)

    Gasilin, V. V.; Nezovibat'ko, Y. N.; Shvets, O. M.; Taran, V. S.; Tereshin, V. I.; Timoshenko, A. I.; Zavaleev, V. A.

    2008-03-19

    Deposition of molybdenum coatings in arc discharge with assistance of HF one is analyzed in this paper. To avoid substrate heating to high temperature and micro-arc formation during cleaning process, the surface cleaning was carried out with HF plasma only. For reduction of droplet fraction in plasma the 'freestanding' filter was utilized. As a filter a solenoid was used, which generated a curvilinear (with the angle of 90 deg.) transportation magnetic field. The effective crosssectional area of the plasma flow at which was observed the uniform distribution of the thickness of the applied coating, was equal to 113 sm{sup 2}. The coating on the base of arc discharge, filter and HF-biasing of substrate were deposited on different substrates, including glass and stainless steel.The optical (refractive index) properties of molybdenum films are presented. The reflective characteristics of the obtained molybdenum films in the range of wavelengths from 200 to 700 nm were measured.Molybdenum films were also investigated under the effect of the plasma emission, using an ECR discharge in a simple double-mirror magnetic trap. The time varying negative potential was supplied to sample holder what provided a wide energy distribution of ions bombarded the sample surface in range 30...1500V.

  17. Ceramic wash-coat for catalyst support

    DOE Patents [OSTI]

    Kulkarni, Anand A.; Subramanian, Ramesh; Sabol, Stephen M.

    2012-08-14

    Abstract A wash-coat (16) for use as a support for an active catalyst species (18) and a catalytic combustor component (10) incorporating such wash-coat. The wash-coat is a solid solution of alumina or alumina-based material (Al.sub.2O.sub.3-0-3 wt % La.sub.2O.sub.3) and a further oxide exhibiting a coefficient of thermal expansion that is lower than that exhibited by alumina. The further oxide may be silicon dioxide (2-30 wt % SiO.sub.2), zirconia silicate (2-30 wt % ZrSiO.sub.4), neodymium oxide (0-4 wt %), titania (Al.sub.2O.sub.3-3-40% TiO.sub.2) or alumina-based magnesium aluminate spinel (Al.sub.2O.sub.3-25 wt % MgO) in various embodiments. The active catalyst species may be palladium and a second metal in a concentration of 10-50% of the concentration of the palladium.

  18. Method of coating the interior surface of hollow objects with a diffusion coating

    DOE Patents [OSTI]

    Knowles, Shawn D.; Senor, David J.; Forbes, Steven V.; Johnson, Roger N.; Hollenberg, Glenn W.

    2005-03-15

    A method for forming a diffusion coating on the interior of surface of a hollow object wherein a filament, extending through a hollow object and adjacent to the interior surface of the object, is provided, with a coating material, in a vacuum. An electrical current is then applied to the filament to resistively heat the filament to a temperature sufficient to transfer the coating material from the filament to the interior surface of the object. The filament is electrically isolated from the object while the filament is being resistively heated. Preferably, the filament is provided as a tungsten filament or molybdenum filament. Preferably, the coating materials are selected from the group consisting of Ag, Al, As, Au, Ba, Be, Bi, Ca, Cd, Co, Cr, Cu, Dy, Er, Eu, Fe, Ga, Ge, Hg, In, K, Li, Mg, Mn, Na, Ni P, Pb, Pd, Pr, S, Sb, Sc, Se, Si, Sn, Sr, Te, Tl, Y, Yb, Zn, and combinations thereof. The invention additionally allows for the formation of nitrides, hydrides, or carbides of all the possible coating materials, where such compounds exist, by providing a partial pressure of nitrogen, hydrogen, hydrocarbons, or combination thereof, within the vacuum.

  19. Analyzing the performance of diamond-coated micro end mills.

    SciTech Connect (OSTI)

    Torres, C. D.; Heaney, P. J.; Sumant, A. V.; Hamilton, M. A.; Carpick, R. W.; Pfefferkorn, F. E.; Univ. of Wisconsin at Madison; Univ. of Pennsylvania

    2009-06-01

    A method is presented to improve the tool life and cutting performance of 300 {micro}m diameter tungsten carbide (WC) micro end mills by applying thin (<300 nm) fine-grained diamond (FGD) and nanocrystalline diamond (NCD) coatings using the hot-filament chemical vapor deposition (HF-CVD) process. The performance of the diamond-coated tools has been evaluated by comparing their performance in dry slot milling of 6061-T6 aluminum against uncoated WC micro end mills. Tool wear, coating integrity, and chip morphology were characterized using SEM and white light interferometry. The initial test results show a dramatic improvement in the tool integrity (i.e., corners not breaking off), a lower wear rate, no observable adhesion of aluminum to the diamond-coated tool, and a significant reduction in the cutting forces (>50%). Reduction of the cutting forces is attributed to the low friction and adhesion of the diamond coating. However, approximately 80% of the tools coated with the larger FGD coatings failed during testing due to delamination. Additional machining benefits were attained for the NCD films, which was obtained by using a higher nucleation density seeding process for diamond growth. This process allowed for thinner, smaller grained diamond coatings to be deposited on the micro end mills, and enabled continued operation of the tool even after the integrity of the diamond coating had been compromised. As opposed to the FGD-coated end mills, only 40% of the NCD-tools experienced delamination issues.

  20. TRANSPARENT COATINGS FOR SOLAR CELLS RESEARCH

    SciTech Connect (OSTI)

    Glatkowski, P.J.; Landis, D.A.

    2013-04-16

    Todays solar cells are fabricated using metal oxide based transparent conductive coatings (TCC) or metal wires with optoelectronic performance exceeding that currently possible with Carbon Nanotube (CNT) based TCCs. The motivation for replacing current TCC is their inherent brittleness, high deposition cost, and high deposition temperatures; leading to reduced performance on thin substrates. With improved processing, application and characterization techniques Nanofiber and/or CNT based TCCs can overcome these shortcomings while offering the ability to be applied in atmospheric conditions using low cost coating processes At todays level of development, CNT based TCC are nearing commercial use in touch screens, some types of information displays (i.e. electronic paper), and certain military applications. However, the resistivity and transparency requirements for use in current commercial solar cells are more stringent than in many of these applications. Therefore, significant research on fundamental nanotube composition, dispersion and deposition are required to reach the required performance commanded by photovoltaic devices. The objective of this project was to research and develop transparent conductive coatings based on novel nanomaterial composite coatings, which comprise nanotubes, nanofibers, and other nanostructured materials along with binder materials. One objective was to show that these new nanomaterials perform at an electrical resistivity and optical transparency suitable for use in solar cells and other energy-related applications. A second objective was to generate new structures and chemistries with improved resistivity and transparency performance. The materials also included the binders and surface treatments that facilitate the utility of the electrically conductive portion of these composites in solar photovoltaic devices. Performance enhancement venues included: CNT purification and metallic tube separation techniques, chemical doping, CNT patterning and alignment, advances in commercial and research materials and field effect schemes. In addition, Eikos continued to develop improved efficiency coating materials and transfer methods suitable for batch and continuous roll-to-roll fabrication requirements. Finally, Eikos collaborated with NREL and the PV-community at large in fabricating and characterizing Invisicon???® enabled solar cells.

  1. Microstructure, Processing, Performance Relationships for High Temperature Coatings

    SciTech Connect (OSTI)

    Thomas Lillo; Richard Wright

    2009-05-01

    HVOF coatings have shown high resistance to corrosion in fossil energy applications and it is generally accepted that mechanical failure, e.g. cracking or spalling, ultimately will determine coating lifetime. The high velocity oxygen-fuel method (HVOF) for applying coatings is one of the most commercially viable and allows the control of various parameters including powder particle velocity and temperature which influence coating properties, such as residual stress, bond coat strength and microstructure. The mechanical durability of coatings is being assessed using a dual eddy current coil method to monitor crack formation in real time during thermal cycling. Absolute impedence signals from two coils, which interrogate two different areas on the sample, are collected. Crack detection can be determined from the differential signal generated from these absolute signals. The coils are operated at two different frequencies, resulting in two differential signals used for crack detection. Currently this crack detection method is being used to elucidate the influence of thermal cycling temperature and coating thickness on cracking. Recent results (cycles to failure) will be presented for FeAl coatings thermally sprayed (HVOF) onto carbon steel to two coating thicknesses (160 microns and 250 microns thick) and subsequently cycled at temperatures up to 700oC. Thinner coatings exhibit greater resistance to cracking. Ultimately the resistance to cracking will be used to explore the relationship between HVOF spraying parameters, the mechanical properties of the coating and coating bond strength to develop optimized thermal spray parameters. To this end thermal spray coatings (FeAl and Fe3Al) have been applied to additional alloy substrates (Grade 91 steel, 316 SS, etc.) relevant to the fossil industry. Future plans also include a direct comparison to conventional weld overlay coatings currently used in the industry as well as exploration of new coatings. The room temperature mechanical strength and coating adhesion to the substrate is also of considerable importance. Eddy current methods are being developed to detect coating failure during room temperature tensile tests to optimize surface preparation as well as aid in the optimization of the HVOF thermal spray parameters.

  2. Composite neutron absorbing coatings for nuclear criticality control

    DOE Patents [OSTI]

    Wright, Richard N.; Swank, W. David; Mizia, Ronald E.

    2005-07-19

    Thermal neutron absorbing composite coating materials and methods of applying such coating materials to spent nuclear fuel storage systems are provided. A composite neutron absorbing coating applied to a substrate surface includes a neutron absorbing layer overlying at least a portion of the substrate surface, and a corrosion resistant top coat layer overlying at least a portion of the neutron absorbing layer. An optional bond coat layer can be formed on the substrate surface prior to forming the neutron absorbing layer. The neutron absorbing layer can include a neutron absorbing material, such as gadolinium oxide or gadolinium phosphate, dispersed in a metal alloy matrix. The coating layers may be formed by a plasma spray process or a high velocity oxygen fuel process.

  3. Method for adhering a coating to a substrate structure

    DOE Patents [OSTI]

    Taxacher, Glenn Curtis; Crespo, Andres Garcia; Roberts, III, Herbert Chidsey

    2015-02-17

    A method for adhering a coating to a substrate structure comprises selecting a substrate structure having an outer surface oriented substantially parallel to a direction of radial stress, modifying the outer surface to provide a textured region having steps to adhere a coating thereto, and applying a coating to extend over at least a portion of the textured region, wherein the steps are oriented substantially perpendicular to the direction of radial stress to resist deformation of the coating relative to the substrate structure. A rotating component comprises a substrate structure having an outer surface oriented substantially parallel to a direction of radial stress. The outer surface defines a textured region having steps to adhere a coating thereto, and a coating extends over at least a portion of the textured region. The steps are oriented substantially perpendicular to the direction of radial stress to resist creep.

  4. Degradation and Failure Characteristics of NPP Containment Protective Coating Systems

    SciTech Connect (OSTI)

    Sindelar, R.L.

    2001-02-22

    A research program to investigate the performance and potential for debris formation of Service Level I coating systems used in nuclear power plant containment is being performed at the Savannah River Technology Center. The research activities are aligned to address phenomena important to cause coating disbondment as identified by the Industry Coatings Expert Panel. The period of interest for performance covers the time from application of the coating through 40 years of service, followed by a medium-to-large break loss-of-coolant accident scenario, which is a design basis accident (DBA) scenario. The interactive program elements are described in this report and the application of these elements to evaluate the performance of the specific coating system of Phenoline 305 epoxy-phenolic topcoat over Carbozinc 11 primer on a steel substrate. This system is one of the predominant coating systems present on steel substrates in NPP containment.

  5. Young, Jupiter-like planet discovered

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Young, Jupiter-like planet discovered Young, Jupiter-like planet discovered A team of researchers has discovered a Jupiter-like planet within a young system that could provide a...

  6. Low gloss UV-cured coatings for aircraft

    DOE Patents [OSTI]

    Bowman, Mark; Muschar, Harry

    2014-12-09

    A method of applying a low gloss coating to a substrate such as the exterior surface of an aircraft is disclosed. The coating composition comprising a polyene, a polythiol, a flatting agent and a coloring pigment is applied to the substrate and given a first dosage of UV radiation followed by a second dosage in which the second dosage is greater than the first resulting in an ultralow gloss coating.

  7. COMPOSITION AND METHOD FOR COATING A CERAMIC BODY

    DOE Patents [OSTI]

    Blanchard, M.K.

    1958-11-01

    A method is presented for protecting a beryllium carbide-graphite body. The method consists in providing a ceramic coating which must contain at least one basic oxide component, such as CaO, at least one amphoteric oxide component, such as Al/sub 2/O/sub 3/, and at least one acidic oxide component, such as SiO/ sub 2/. Various specific formulations for this ceramic coating are given and the coating is applied by conventional ceramic techniques.

  8. Low Cost Nanostructured Smart Window Coatings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Low Cost Nanostructured Smart Window Coatings Low Cost Nanostructured Smart Window Coatings Addthis 1 of 3 A Heliotrope scientist prepares slot die coater for solution based deposition of electrochromic layer. Image: Heliotrope Technologies 2 of 3 A Heliotrope scientist investigates the coating quality of a slot die deposition of electrochromic layer. Image: Heliotrope Technologies 3 of 3 A Heliotrope scientist investigates the spray coater for a solution based deposition of electrochromic

  9. Low Cost Nanostructured Smart Window Coatings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Nanostructured Smart Window Coatings Low Cost Nanostructured Smart Window Coatings 1 of 3 A Heliotrope scientist prepares slot die coater for solution based deposition of electrochromic layer. Image: Heliotrope Technologies 2 of 3 A Heliotrope scientist investigates the coating quality of a slot die deposition of electrochromic layer. Image: Heliotrope Technologies 3 of 3 A Heliotrope scientist investigates the spray coater for a solution based deposition of electrochromic layer. Image:

  10. METHOD AND COATING COMPOSITION FOR PROTECTING AND DECONTAMINATING SURFACES

    DOE Patents [OSTI]

    Overhold, D.C.; Peterson, M.D.

    1959-03-10

    A protective coating useful in the decontamination of surfaces exposed to radioactive substances is presented. This coating is placed on the surface before use and is soluble in waters allowing its easy removal in the event decontamination becomes necessary. Suitable coating compositions may be prepared by mixing a water soluble carbohydrate such as sucrose or dextrin, together with a hygroscopic agent such as calcium chloride or zinc chloride.

  11. Method and coating composition for protecting and decontaminating surfaces

    DOE Patents [OSTI]

    Overhold, D C; Peterson, M D

    1959-03-10

    A protective coating useful in the decontamination of surfaces exposed to radioactive substances is described. This coating is placed on the surface before use and is soluble in water, allowing its easy removal in the event decontamination becomes necessary. Suitable coating compositions may be prepared by mixing a water soluble carbohydrate such as sucrose or dextrin, together with a hygroscopic agent such as calcium chloride or zinc chloride.

  12. Dissipation factor as a predictor of anodic coating performance

    DOE Patents [OSTI]

    Panitz, Janda K. G.

    1995-01-01

    A dissipation factor measurement is used to predict as-anodized fixture performance prior to actual use of the fixture in an etching environment. A dissipation factor measurement of the anodic coating determines its dielectric characteristics and correlates to the performance of the anodic coating in actual use. The ability to predict the performance of the fixture and its anodized coating permits the fixture to be repaired or replaced prior to complete failure.

  13. Resistive coating for current conductors in cryogenic applications

    DOE Patents [OSTI]

    Hirayama, Chikara; Wagner, George R.

    1982-05-18

    This invention relates to a resistive or semiconducting coating for use on current conductors in cryogenic applications. This includes copper-clad superconductor wire, copper wire used for stabilizing superconductor magnets, and for hyperconductors. The coating is a film of cuprous sulfide (Cu.sub.2 S) that has been found not to degrade the properties of the conductors. It is very adherent to the respective conductors and satisfies the mechanical, thermal and electrical requirements of coatings for the conductors.

  14. Development of a removable conformal coating through the synthetic

    Office of Scientific and Technical Information (OSTI)

    incorporation of Diels-Adler thermally reversible adducts into an epoxy resin. (Conference) | SciTech Connect Conference: Development of a removable conformal coating through the synthetic incorporation of Diels-Adler thermally reversible adducts into an epoxy resin. Citation Details In-Document Search Title: Development of a removable conformal coating through the synthetic incorporation of Diels-Adler thermally reversible adducts into an epoxy resin. An epoxy-based conformal coating with a

  15. Sealed glass coating of high temperature ceramic superconductors

    DOE Patents [OSTI]

    Wu, Weite; Chu, Cha Y.; Goretta, Kenneth C.; Routbort, Jules L.

    1995-01-01

    A method and article of manufacture of a lead oxide based glass coating on a high temperature superconductor. The method includes preparing a dispersion of glass powders in a solution, applying the dispersion to the superconductor, drying the dispersion before applying another coating and heating the glass powder dispersion at temperatures below oxygen diffusion onset and above the glass melting point to form a continuous glass coating on the superconductor to establish compressive stresses which enhance the fracture strength of the superconductor.

  16. Corrosion resistant coatings suitable for elevated temperature application

    DOE Patents [OSTI]

    Chan, Kwai S.; Cheruvu, Narayana Sastry; Liang, Wuwei

    2012-07-31

    The present invention relates to corrosion resistance coatings suitable for elevated temperature applications, which employ compositions of iron (Fe), chromium (Cr), nickel (Ni) and/or aluminum (Al). The compositions may be configured to regulate the diffusion of metals between a coating and a substrate, which may then influence coating performance, via the formation of an inter-diffusion barrier layer. The inter-diffusion barrier layer may comprise a face-centered cubic phase.

  17. High temperature ceramic articles having corrosion resistant coating

    DOE Patents [OSTI]

    Stinton, D.P.; Lee, W.Y.

    1997-09-30

    A ceramic article is disclosed which includes a porous body of SiC fibers, Si{sub 3}N{sub 4} fibers, SiC coated fibers or Si{sub 3}N{sub 4} coated fibers, having at least one surface, the article having a coating of AlN adherently disposed throughout at least a portion of the porous body. 1 fig.

  18. The commercial development of water repellent coatings for high voltage

    Office of Scientific and Technical Information (OSTI)

    transmission lines (Technical Report) | SciTech Connect The commercial development of water repellent coatings for high voltage transmission lines Citation Details In-Document Search Title: The commercial development of water repellent coatings for high voltage transmission lines The purpose of the Cooperative Research and Development Agreement (CRADA) between UT-Battelle, LLC and Southwire Company was to jointly develop a low cost, commercially viable, water-repellant anti-icing coating

  19. Structurally Integrated Coatings for Wear and Corrosion

    SciTech Connect (OSTI)

    Beardsley, M. Brad; Sebright, Jason L.

    2008-11-18

    Wear and corrosion of structures cuts across industries and continues to challenge materials scientists and engineers to develop cost effective solutions. Industries typically seek mature technologies that can be implemented for production with rapid or minimal development and have little appetite for the longer-term materials research and development required to solve complex problems. The collaborative work performed in this project addressed the complexity of this problem in a multi-year program that industries would be reluctant to undertake without government partnership. This effort built upon the prior development of Advanced Abrasion Resistant Materials conduct by Caterpillar Inc. under DOE Cooperative Agreement No. DE-FC26-01NT41054. In this referenced work, coatings were developed that exhibited significant wear life improvements over standard carburized heat treated steel in abrasive wear applications. The technology used in this referenced work, arc lamp fusing of thermal spray coatings, was one of the primary technical paths in this work effort. In addition to extending the capability of the coating technology to address corrosion issues, additional competitive coating technologies were evaluated to insure that the best technology was developed to meet the goals of the program. From this, plasma transferred arc (PTA) welding was selected as the second primary technology that was investigated. Specifically, this project developed improved, cost effective surfacing materials and processes for wear and corrosion resistance in both sliding and abrasive wear applications. Materials with wear and corrosion performance improvements that are 4 to 5 times greater than heat treated steels were developed. The materials developed were based on low cost material systems utilizing ferrous substrates and stainless steel type matrix with hard particulates formed from borides and carbides. Affordability was assessed against other competing hard surfacing or coating techniques, balanced with overall materials performance. State-of-the-art design and simulation capabilities were used to guide materials and process refinement. Caterpillar was the lead of the multi-partner collaborative project. Specific tasks were performed by the partners base on their unique capabilities. The project team was selected to include leaders in the field of material development, processing, modeling, and material characterization. Specifically, industrial members include the suppliers Deloro Stellite and Powder Alloy Corporation., who provided the experimental alloys and who aided in the development of the costs for the alloys, the Missouri University of Science and Technology and Iowa State University, who provided help in the alloy development and material characterization, QuesTek Innovations, a small company specializing the microstructural modeling of materials, and the DOE laboratories, Oak Ridge National Laboratory and National Energy Technology Laboratory (Albany), who provided unique coating process capability and wear characterization testing. The technologies developed in this program are expected to yield energy savings of about 50% over existing technologies, or 110 trillion BTUs per year by 2020 when fully implemented. Primary applications by Caterpillar are to replace the surface of machine components which are currently carburized and heat treated with new cladding materials with double the wear life. The new cladding technologies will consume less energy than carburizing. Thus, nearly 50% energy savings can be expected as a result from elimination of the heat treat process and the reduce wear of the materials. Additionally, when technologies from this project are applied on titanium or other non-ferrous substrates to make lighter weight, more wear resistant, and more efficient structures, significant fuel savings can be realized. With the anticipated drastic reduction in cost for refining titanium-containing ores, the usage of titanium alloys in earthmoving and related machinery is expected to increase multiple folds in the next d

  20. Template:FacebookLike | Open Energy Information

    Open Energy Info (EERE)

    FacebookLike Jump to: navigation, search This template puts a Facebook "Like" button onto the current page. Parameters Parameter Type Required? Example Description url URL Y...

  1. Method of fabricating silicon carbide coatings on graphite surfaces

    DOE Patents [OSTI]

    Varacalle, Jr., Dominic J.; Herman, Herbert; Burchell, Timothy D.

    1994-01-01

    The vacuum plasma spray process produces well-bonded, dense, stress-free coatings for a variety of materials on a wide range of substrates. The process is used in many industries to provide for the excellent wear, corrosion resistance, and high temperature behavior of the fabricated coatings. In this application, silicon metal is deposited on graphite. This invention discloses the optimum processing parameters for as-sprayed coating qualities. The method also discloses the effect of thermal cycling on silicon samples in an inert helium atmosphere at about 1600.degree.C. which transforms the coating to silicon carbide.

  2. Method of fabricating silicon carbide coatings on graphite surfaces

    DOE Patents [OSTI]

    Varacalle, D.J. Jr.; Herman, H.; Burchell, T.D.

    1994-07-26

    The vacuum plasma spray process produces well-bonded, dense, stress-free coatings for a variety of materials on a wide range of substrates. The process is used in many industries to provide for the excellent wear, corrosion resistance, and high temperature behavior of the fabricated coatings. In this application, silicon metal is deposited on graphite. This invention discloses the optimum processing parameters for as-sprayed coating qualities. The method also discloses the effect of thermal cycling on silicon samples in an inert helium atmosphere at about 1,600 C which transforms the coating to silicon carbide. 3 figs.

  3. COMPOSITION AND STRUCTURAL STUDIES OF STRONG GLOW DISCHARGE POLYMER COATINGS

    SciTech Connect (OSTI)

    CZECHOWICZ, DG; CASTILLO, ER; NIKROO, A

    2002-04-01

    OAK A271 COMPOSITION AND STRUCTURAL STUDIES OF STRONG GLOW DISCHARGE POLYMER COATINGS. An investigation of the chemical composition and structure of strong glow discharge (GDP) polymer shells made for cryogenic experiments at OMEGA is described. The investigation was carried out using combustion and Fourier Transform Infrared Spectroscopy (FTIR) analysis. The strongest coatings were observed to have the lowest hydrogen content or hydrogen/carbon H/C ratio, whereas the weakest coatings had the highest hydrogen content or H/C ratio. Chemical composition results from combustion were used to complement FTIR analysis to determine the relative hydrogen content of as-fabricated coatings. Good agreement was observed between composition results obtained from combustion and FTIR analysis. FTIR analysis of coating structures showed the strongest coatings to have less terminal methyl groups and a more double bond or olefinic structure. Strong GDP coatings that were aged in air react more with oxygen and moisture than standard GDP coatings. In addition to a more olefinic structure, there may also be more free-radial sites present in strong GDP coatings, which leads to greater oxygen uptake.

  4. Superhydrophobic Metal-Oxide Thin Film Coatings - Energy Innovation...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ...anti-icing coatings Superhydrophobic pattern printing More Information Patent: Tolga Aytug, Daniela Florentina Bogorin, Mariappan Parans Paranthaman, and John T. Simpson. ...

  5. Coating thickness and coverage effects on the forces between...

    Office of Scientific and Technical Information (OSTI)

    forces between silica nanoparticles in water. Citation Details In-Document Search Title: Coating thickness and coverage effects on the forces between silica nanoparticles in water. ...

  6. Application of Super-Hydrophobic Coating for Enhanced Water Repellency...

    Office of Scientific and Technical Information (OSTI)

    for Enhanced Water Repellency of Ballistic Fabric Citation Details In-Document Search Title: Application of Super-Hydrophobic Coating for Enhanced Water Repellency of ...

  7. The commercial development of water repellent coatings for high...

    Office of Scientific and Technical Information (OSTI)

    The commercial development of water repellent coatings for high voltage transmission lines Citation Details In-Document Search Title: The commercial development of water repellent ...

  8. Apparatus and method for measuring the thickness of a coating

    DOE Patents [OSTI]

    Carlson, Nancy M.; Johnson, John A.; Tow, David M.; Walter, John B

    2002-01-01

    An apparatus and method for measuring the thickness of a coating adhered to a substrate. An electromagnetic acoustic transducer is used to induce surface waves into the coating. The surface waves have a selected frequency and a fixed wavelength. Interpolation is used to determine the frequency of surface waves that propagate through the coating with the least attenuation. The phase velocity of the surface waves having this frequency is then calculated. The phase velocity is compared to known phase velocity/thickness tables to determine the thickness of the coating.

  9. Engine Friction Reduction Through Surface Finish and Coatings...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Engine Friction Reduction Through Surface Finish and Coatings Opportunities exist for friction reduction in piston rings and valve trains using durable, advanced material ...

  10. Surface coating for prevention of metallic seed migration in tissues

    SciTech Connect (OSTI)

    Lee, Hyunseok; Park, Jong In; Lee, Won Seok; Park, Min; Son, Kwang-Jae; Bang, Young-bong; Choy, Young Bin E-mail: sye@snu.ac.kr; Ye, Sung-Joon E-mail: sye@snu.ac.kr

    2015-06-15

    Purpose: In radiotherapy, metallic implants often detach from their deposited sites and migrate to other locations. This undesirable migration could cause inadequate dose coverage for permanent brachytherapy and difficulties in image-guided radiation delivery for patients. To prevent migration of implanted seeds, the authors propose a potential strategy to use a biocompatible and tissue-adhesive material called polydopamine. Methods: In this study, nonradioactive dummy seeds that have the same geometry and composition as commercial I-125 seeds were coated in polydopamine. Using scanning electron microscopy and x-ray photoelectron spectroscopy, the surface of the polydopamine-coated and noncoated seeds was characterized. The detachment stress between the two types of seeds and the tissue was measured. The efficacy of polydopamine-coated seed was investigated through in vitro migration tests by tracing the seed location after tissue implantation and shaking for given times. The cytotoxicity of the polydopamine coating was also evaluated. Results: The results of the coating characterization have shown that polydopamine was successfully coated on the surface of the seeds. In the adhesion test, the polydopamine-coated seeds had 2.1-fold greater detachment stress than noncoated seeds. From the in vitro test, it was determined that the polydopamine-coated seed migrated shorter distances than the noncoated seed. This difference was increased with a greater length of time after implantation. Conclusions: The authors suggest that polydopamine coating is an effective technique to prevent migration of implanted seeds, especially for permanent prostate brachytherapy.

  11. Ion beam assisted deposition of thermal barrier coatings

    DOE Patents [OSTI]

    Youchison, Dennis L.; McDonald, Jimmie M.; Lutz, Thomas J.; Gallis, Michail A.

    2010-11-23

    Methods and apparatus for depositing thermal barrier coatings on gas turbine blades and vanes using Electron Beam Physical Vapor Deposition (EBPVD) combined with Ion Beam Assisted Deposition (IBAD).

  12. Multiphase Nano-Composite Coatings for Achieving Energy Optimization

    SciTech Connect (OSTI)

    Dr. Jose Nainaparampil

    2012-03-26

    UES Inc. and ANL teamed in this work to develop novel coating systems for the protection of surfaces from thermal degradation mainly in two applications; Machining and Die casting. These coatings were specifically designed for the purpose by incorporating required material phases and the overall architecture, which led to reduce the energy usage and increase efficiency of the operations. Following the UES/ANL'?s feasibility work, the coatings were developed utilizing High power impulse magnetron sputtering (HiPMS) and Large area filtered arc deposition (LAFAD) techniques. Toughness, hardness and oxidation resistance: contrasting qualities have been mixed in the right proportion to attain the suitable material characteristic for the cause. Hafnium diboride (HfB2) based materials provided such a system and its properties were tamed to attain the right combination of toughness and hardness by working on the microstructure and architecture of coatings. An effective interfacing material (graded concentrations of topcoat) was also achieved in this work to provide the required adhesion between the substrate and the coating. Combination of an appropriate bond coat and a functional top coat provided the present thermal degradation resistant coating for cutting tools and die-casting applications. Laboratory level performance tests and industrial level application tests by partner companies (Beta Site Testing) were used for the development of these coatings.

  13. Deuterium Retention in Tungsten-Coated Reduced Activation Ferritic...

    Office of Environmental Management (EM)

    material (PFM) in fusion reactor Development of tungsten coating on PFM (such as F82H) Bulk W is heavy Influences density control of fusion plasma, and safety ...

  14. Stay-Clean and Durable White Elastomeric Roof Coatings | Department...

    Energy Savers [EERE]

    Stay-Clean and Durable White Elastomeric Roof Coatings Lead Performer: Lawrence Berkeley National Laboratory - Berkeley, CA Partner: Dow Chemical - Midland, MI DOE Funding: ...

  15. Preparation and uses of amorphous boron carbide coated substrates

    DOE Patents [OSTI]

    Riley, Robert E.; Newkirk, Lawrence R.; Valencia, Flavio A.

    1981-09-01

    Cloth is coated at a temperature below about 1000.degree. C. with amorphous boron-carbon deposits in a process which provides a substantially uniform coating on all the filaments making up each yarn fiber bundle of the cloth. The coated cloths can be used in the as-deposited condition for example as wear surfaces where high hardness values are needed; or multiple layers of coated cloths can be hot-pressed to form billets useful for example in fusion reactor wall armor. Also provided is a method of controlling the atom ratio of B:C of boron-carbon deposits onto any of a variety of substrates, including cloths.

  16. Preparation and uses of amorphous boron carbide coated substrates

    DOE Patents [OSTI]

    Riley, R.E.; Newkirk, L.R.; Valencia, F.A.; Wallace, T.C.

    1979-12-05

    Cloth is coated at a temperature below about 1000/sup 0/C with amorphous boron-carbon deposits in a process which provides a substantially uniform coating on all the filaments making up each yarn fiber bundle of the cloth. The coated cloths can be used in the as-deposited condition for example as wear surfaces where high hardness values are needed; or multiple layers of coated cloths can be hot-pressed to form billets useful for example in fusion reactor wall armor. Also provided is a method of controlling the atom ratio of B:C of boron-carbon deposits onto any of a variety of substrates, including cloths.

  17. Thin film coating process using an inductively coupled plasma

    DOE Patents [OSTI]

    Kniseley, Richard N.; Schmidt, Frederick A.; Merkle, Brian D.

    1990-01-30

    Thin coatings of normally solid materials are applied to target substrates using an inductively coupled plasma. Particles of the coating material are vaporized by plasma heating, and pass through an orifice to a first vacuum zone in which the particles are accelerated to a velocity greater than Mach 1. The shock wave generated in the first vacuum zone is intercepted by the tip of a skimmer cone that provides a second orifice. The particles pass through the second orifice into a second zone maintained at a higher vacuum and impinge on the target to form the coating. Ultrapure coatings can be formed.

  18. Mickey Leland Energy Fellowship Report: Development of Advanced Window Coatings

    SciTech Connect (OSTI)

    Bolton, Ladena A.; Alvine, Kyle J.; Schemer-Kohrn, Alan L.

    2014-08-05

    Advanced fenestration technologies for light and thermal management in building applications are of great recent research interest for improvements in energy efficiency. Of these technologies, there is specific interest in advanced window coating technologies that have tailored control over the visible and infrared (IR) scattering into a room for both static and dynamic applications. Recently, PNNL has investigated novel subwavelength nanostructured coatings for both daylighting, and IR thermal management applications. Such coatings rese still in the early stages and additional research is needed in terms of scalable manufacturing. This project investigates aspects of a potential new methodology for low-cost scalable manufacture of said subwavelength coatings.

  19. Final Project Report G-Plus Windshield Coatings

    SciTech Connect (OSTI)

    Matson, Dean W.; Koram, Kwaku

    2002-08-01

    Samples of Sungate windshield material provided by PPG were analyzed to ascertain failure mechanisms observed at the interface between a copper busbar and the electrically conductive coating in use. Samples of failed windshield material were characterized using optical and electron microscopy, as well as surface analysis methods. These were compared to corresponding samples of good coatings. The primary failure mechanism of the coated windshield appears to be related to electrical discharges that originate where air-filled gaps are present between the copper busbar and the conductive coating. Gaps are produced by irregularities or wrinkles in the copper busbar that may result from the installation process.

  20. Sacrificial Protective Coating Materials That Can Be Regenerated...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Among the various manufacturing processes employed across all U.S. industries, the process of ... A protective coating (yellow) on the polymer membrane will provide chemical and ...

  1. Boron nitride nanosheets as oxygen-atom corrosion protective coatings

    SciTech Connect (OSTI)

    Yi, Min; Shen, Zhigang; Zhao, Xiaohu; Liang, Shuaishuai; Liu, Lei

    2014-04-07

    The research of two-dimensional nanomaterials for anticorrosion applications is just recently burgeoning. Herein, we demonstrate the boron nitride nanosheets (BNNSs) coatings for protecting polymer from oxygen-atom corrosion. High-quality BNNSs, which are produced by an effective fluid dynamics method with multiple exfoliation mechanisms, can be assembled into coatings with controlled thickness by vacuum filtration. After exposed in atom oxygen, the naked polymer is severely corroded with remarkable mass loss, while the BNNSs-coated polymer remains intact. Barrier and bonding effects of the BNNSs are responsible for the coating's protective performance. These preliminary yet reproducible results pave a way for resisting oxygen-atom corrosion.

  2. Corrosion investigation of coatings for surface protection of military hardware

    SciTech Connect (OSTI)

    Lindsey, N.; Vasanth, K.L.

    1996-10-01

    A product improvement program (PIP) for the surface finish of some steel military hardware has been recently initiated by the Navy. Presently the metal cleaning methods, interior and exterior surface finishes and corrosion protection requirements for such hardware are specified in MIL-P-18948. The coated hardware are stored in a warehouse structure for long durations. Because these storage places are not environmentally controlled (that is, no temperature or humidity control) the corrosion protection has not been adequate. The exterior surfaces of the hardware are coated with a corrosion inhibiting alkyd primer coating (TT-P-664) or a rust inhibiting lacquer primer coating (MIL-P-11414) to a thickness of 0.4 to 0.6 mils. The exterior color paint, (MIL-E-52891 or MIL-P11195), is applied to a thickness of 1.5 mils. The investigation of various coatings to replace the present system is an ongoing effort. The coatings have been examined from a corrosion protection vantage point and results have been correlated. The coatings were evaluated by exposing them to natural marine atmosphere and seawater wetdown tests. The coatings were also exposed to a 5.0% sodium chloride solution in a laboratory environmental salt fog chamber for 500 hours. Selected coatings were examined using Electrochemical Impedance Spectroscopy (EIS). The results obtained from field tests, salt fog, and EIS measurements are discussed.

  3. Self-Healing Polymeric Coatings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The coating industry is moving towards solvent and volatile-organic-compound-free, ... impact of repainting (e.g., waste disposal and volatile-organic-compound emissions). ...

  4. Novel seed coat lignins in the Cactaceae: structure, distribution...

    Office of Scientific and Technical Information (OSTI)

    evolution of lignin diversity Citation Details In-Document Search Title: Novel seed coat lignins in the Cactaceae: structure, distribution and implications for the evolution of ...

  5. Project Profile: Low-Cost Self-Cleaning Reflector Coatings for...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The team is working to improve the technology using a suspension of SH silica nanoparticles, polymeric binders, and solvents that can be applied to large area surfaces using simple ...

  6. Embedded Optical Sensors for Thermal Barrier Coatings

    SciTech Connect (OSTI)

    David R. Clarke

    2005-11-09

    In the second year of this program on developing embedded optical sensors for thermal barrier coatings, our research has focused three topics: (1) Eu{sup 3+} doping for temperature sensing, (2) the effect of long-term, high-temperature aging on the characteristics of the luminescence from the Eu{sup 3+} ions of 8YSZ materials, (3) construction of a fiber-optic based luminescence detector system. It has been demonstrated that the variation in luminescence lifetime with temperature is identical for electron-beam evaporated Eu-doped YSZ coatings as for bulk ceramics of the same composition. Experiments indicate that the luminescence lifetime method of measuring temperatures is sensitive up to 1150 C for both Eu-doped YSZ coatings and Eu-doped Gd{sub 2}Zr{sub 2}O{sub 7}. Furthermore, the technique is sensitive up to 1250 C for the composition Eu{sub 2}Zr{sub 2}O{sub 7}. The luminescence spectra Eu-doped YSZ are insensitive to long-term aging at high-temperatures, even to 195 hours at 1425 C, except for a small frequency shift that is probably too small in measure except with instruments of the highest spectral resolution. The temperature of 1425 C is much higher than present engines attain or even planned in the foreseeable future. Nevertheless, experiments are on-going to explore longer term exposures. A fiber-optic based luminescence system has been constructed in which the hottest section of fiber operates to at least 1250 C.

  7. Clamshell microwave cavities having a superconductive coating

    DOE Patents [OSTI]

    Cooke, D. Wayne; Arendt, Paul N.; Piel, Helmut

    1994-01-01

    A microwave cavity including a pair of opposing clamshell halves, such halves comprised of a metal selected from the group consisting of silver, copper, or a silver-based alloy, wherein the cavity is further characterized as exhibiting a dominant TE.sub.011 mode is provided together with an embodiment wherein the interior concave surfaces of the clamshell halves are coated with a superconductive material. In the case of copper clamshell halves, the microwave cavity has a Q-value of about 1.2.times.10.sup.5 as measured at a temperature of 10K and a frequency of 10 GHz.

  8. Thermal barrier coating resistant to sintering

    DOE Patents [OSTI]

    Subramanian, Ramesh; Sabol, Stephen M.

    2001-01-01

    A device (10) having a ceramic thermal barrier coating layer (16) characterized by a microstructure having gaps (18) with a sintering inhibiting material (22) disposed on the columns (20) within the gaps (18). The sintering resistant material (22) is stable over the range of operating temperatures of the device (10) and is not soluble with the underlying ceramic layer (16). For a YSZ ceramic layer (16) the sintering resistant layer (22) may preferably be aluminum oxide or yttrium aluminum oxide, deposited as a continuous layer or as nodules.

  9. Platinum-Coated Nickel Nanowires as Oxygen-Reducing Electrocatalysts

    SciTech Connect (OSTI)

    Alia, Shaun M; Larsen, Brian A; Pylypenko, Svitlana; Cullen, David A; Diercks, David R; Neyerlin, Kenneth C; Kocha, Shyam S; Pivovar, Bryan

    2014-01-01

    Platinum (Pt)-coated nickel (Ni) nanowires (PtNiNWs) are synthesized by the partial spontaneous galvanic displacement of NiNWs, with a diameter of 150 250 nm and a length of 100 200 m. PtNiNWs are electrochemically characterized for oxygen reduction (ORR) in rotating disk electrode half-cells with an acidic electrolyte and compared to carbon-supported Pt (Pt/HSC) and a polycrystalline Pt electrode. Like other extended surface catalysts, the nanowire morphology yields significant gains in ORR specific activity compared to Pt/HSC. Unlike other extended surface approaches, the resultant materials have yielded exceptionally high surface areas, greater than 90 m2 gPt 1. These studies have found that reducing the level of Pt displacement increases Pt surface area and ORR mass activity. PtNiNWs produce a peak mass activity of 917 mA mgPt 1, 3.0 times greater than Pt/HSC and 2.1 times greater than the U.S. Department of Energy target for proton-exchange membrane fuel cell activity.

  10. Method of evaluating the integrity of the outer carbon layer of triso-coated reactor fuel particles

    DOE Patents [OSTI]

    Caputo, Anthony J.; Costanzo, Dante A.; Lackey, Jr., Walter J.; Layton, Frank L.; Stinton, David P.

    1980-01-01

    This invention relates to a method for determining defective final layers of carbon on triso-coated fuel particles and the like. Samples of the particles are subjected to a high temperature treatment with gaseous chlorine and thereafter radiographed. The chlorine penetrates through any defective carbon layer and reacts with the underlying silicon carbide resulting in the volatilization of the silicon as SiCl.sub.4 leaving carbon as a porous layer. This porous carbon layer is easily detected by the radiography.

  11. Development of Abrasion-Resistant Coating for Solar Reflective Films. Cooperative Research and Development Final Report, CRADA Number CRD-07-247

    SciTech Connect (OSTI)

    Gray, Matthew

    2015-10-01

    The purpose of this CRADA is to develop an abrasion-resistant coating, suitable for use on polymeric-based reflective films (e.g., the ReflecTech reflective film), that allows for improved scratch resistance and enables the use of aggressive cleaning techniques (e.g., direct contact methods like brushing) without damaging the specular reflectance properties of the reflective film.

  12. Novel Fouling-Reducing Coatings for Ultrafiltration, Nanofiltration, and Reverse Osmosis Membranes

    SciTech Connect (OSTI)

    Benny Freeman

    2008-08-31

    Polymeric membranes could potentially be the most flexible and viable long-term strategy for treatment of produced water from oil and gas production. However, widespread use of membranes, including reverse osmosis (RO) membranes, for produced water purification is hindered due to fouling caused by the impurities present in the water. Fouling of RO membranes is likely caused by surface properties including roughness, hydrophilicity, and charge, so surface modification is the most widely considered approach to improve the fouling properties of current RO membranes. This project focuses on two main approaches to surface modification: coating and grafting. Hydrophilic coating and grafting materials based on poly(ethylene glycol) (PEG) are applied to commercial RO membranes manufactured by Dow FilmTec and GE. Crossflow filtration experiments are used to determine the fouling resistance of modified membranes, and compare their performance to that of unmodified commercial RO membranes. Grafting and coating are shown to be two alternative methods of producing modified membranes with improved fouling resistance.

  13. Workshop on coatings needs in the auto industry

    SciTech Connect (OSTI)

    Courtright, E.L.

    1993-05-01

    New lightweight materials continue to be of great interest to the automotive industry. Compared to 20 years ago, the average vehicle weight has been reduced by almost a fourth, and fuel economy has nearly doubled. While continued improvements are both desirable and possible, materials choices are narrowing and the manufacturing methods needed to produce advanced materials systems are much more costly. The incentives remain high, however; particularly in view of large payoffs associated with minimizing structural weight in electric and hybrid-type vehicles. One generic solution is to develop coatings that will enable the use of lower cost materials. A workshop on coatings needs in the auto industry was held in Detroit, Michigan on October 27 and 28, 1992 with the objective of identifying research needs where coatings could enhance the use of energy efficient lightweight materials for automotive applications. Four generic areas had previously been identified auto manufacturers and industry suppliers. These were: Wear Coatings, Hard Protective Coatings for Plastics, Solar Control Coatings, and Process Manufacturing Issues. The development of coatings and coating technologies for lightweight metals and metal matrix composites emerged as the number one research needs. This need underscores the interest in making better use of existing lightweight metals, e.g. magnesium, aluminum, and their alloys. Coatings to protect plastics and reinforced plastic composites were also identified as a major area of importance. Protection from automotive liquids and gases. Coatings that will improve mar resistance, resist UV degradation, or eliminate degradation due to moisture absorption are also needed. Accordingly, manufacturability issues associated with coating light metals, e.g. aluminum, magnesium, and metal matrix composites with wear and corrosion resistant materials, were identified as a high priority research need.

  14. Full Scale Coated Fiber Neutron Detector Measurements

    SciTech Connect (OSTI)

    Kouzes, Richard T.; Ely, James H.; Erikson, Luke E.; Kernan, Warnick J.; Stromswold, David C.; Woodring, Mitchell L.

    2010-03-17

    Radiation portal monitors used for interdiction of illicit materials at borders include highly sensitive neutron detection systems. The main reason for having neutron detection capability is to detect fission neutrons from plutonium. The currently deployed radiation portal monitors (RPMs) from Ludlum and Science Applications International Corporation (SAIC) use neutron detectors based upon 3He-filled gas proportional counters, which are the most common large neutron detector. There is a declining supply of 3He in the world, and thus, methods to reduce the use of this gas in RPMs with minimal changes to the current system designs and sensitivity to cargo-borne neutrons are being investigated. Four technologies have been identified as being currently commercially available, potential alternative neutron detectors to replace the use of 3He in RPMs. These technologies are: 1) Boron trifluoride (BF3)-filled proportional counters, 2) Boron-lined proportional counters, 3) Lithium-loaded glass fibers, and 4) Coated non-scintillating plastic fibers. Reported here are the results of tests of the full-scale 6Li/ZnS(Ag)-coated non-scintillating plastic fibers option. This testing measured the required performance for neutron detection efficiency and gamma ray rejection capabilities of a system manufactured by Innovative American Technology (IAT) and Saint Gobain, and is a follow-up report to an earlier one on a smaller prototype system.

  15. Thermal barrier coating having high phase stability

    DOE Patents [OSTI]

    Subramanian, Ramesh

    2001-01-01

    A device (10) comprising a substrate (22) having a deposited ceramic thermal barrier coating layer (20) characterized by a microstructure having gaps (28) where the thermal barrier coating (20) consists essentially of a pyrochlore crystal structure having a chemical formula consisting essentially of A.sup.n+.sub.2-x B.sup.m+.sub.2+x O.sub.7-y, where A is selected from the group of elements selected from La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, and mixtures thereof; where B is selected from the group of elements selected from Zr, Hf, Ti and mixtures thereof; n and m are the valence of A and B respectively, and for -0.5.ltoreq.x.ltoreq.0.5, ##EQU1## and excluding the following combinations for x=0, y=0: A=La and B=Zr; A=La and B=Hf; A=Gd and B=Hf; and A=Yb and B=Ti.

  16. Thermal barrier coating having high phase stability

    DOE Patents [OSTI]

    Subramanian, Ramesh

    2002-01-01

    A device (10) comprising a substrate (22) having a deposited ceramic thermal barrier coating characterized by a microstructure having gaps (28) where the thermal barrier coating comprises a first thermal barrier layer (40), and a second thermal barrier layer (30) with a pyrochlore crystal structure having a chemical formula of A.sup.n+.sub.2-x B.sup.m+.sub.2+x O.sub.7-y, where A is selected from the group of elements consisting of La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, and mixtures thereof, where B is selected from the group of elements consisting of Zr, Hf, Ti and mixtures thereof, where n and m are the valence of A and B respectively, and for -0.5.ltoreq.x.ltoreq.0.5, ##EQU1## and excluding the following combinations for x=0, y=0: A=La and B=Zr; A=La and B=Hf; A=Gd and B=Hf; and A=Yb and B=Ti.

  17. Paint coatings: Controlled field and chamber experiments

    SciTech Connect (OSTI)

    Edney, E.O.

    1989-04-01

    To determine the impact of pollution levels on the weathering rates of coatings, laboratory chamber experiments and controlled field exposures at North Carolina and Ohio sites were conducted in such a manner to separate the contributions due to dry deposition, wet deposition, precipitation pH, etc. The results of these studies confirm that acidic gases such as SO/sub 2/ and HNO/sub 3/, as well as acids within rain, promote the dissolution of alkaline components including CaCO/sub 3/, ZnO, and Al flake from paint films. It is unclear from these studies whether the removal of these components reduces the service life or protective properties of the paint film. Other researchers within the Coatings Effects Program are conducting subsequent analyses to determine micro-damage of these paints. The uptake of acidic gases to painted surfaces is a complex process that depends on several factors. The deposition rate of SO/sub 2/ to a wet, painted surface may be controlled by the level of oxidants such as H/sub 2/O/sub 2/.

  18. In situ treatment of arsenic contaminated groundwater by aquifer iron coating: Experimental Study

    SciTech Connect (OSTI)

    Xie, Xianjun; Wang, Yanxin; Pi, Kunfu; Liu, Chongxuan; Li, Junxia; Liu, Yaqing; Wang, Zhiqiang; Duan, Mengyu

    2015-09-15

    In situ arsenic removal from groundwater by an iron coating method has great potential to be a cost effective and simple groundwater remediation technique, especially in rural and remote areas where groundwater is used as the main source of drinking water. The in situ arsenic removal technique was first optimized by simulating arsenic removal in various quartz sand columns under anoxic conditions., Its effectiveness was then evaluated in an actual high-arsenic groundwater environment. The mechanism of arsenic removal by the iron coating was investigated under different conditions using scanning electron microscopy (SEM)/X-ray absorption spectroscopy, an electron microprobe, and Fourier transformation infrared spectroscopy. A 4-step alternative cycle aquifer iron coating method was developed. A continuous injection of 5 mmol/L FeSO4 and 2.5 mmol/L NaClO for 96 hours can create a uniform coating of crystalline goethite on the surface of quartz sand in the columns without causing clogging. At a flow rate of 0.45 cm/min of the injection reagents (vi), the time for arsenic (as Na2HAsO4) to pass through the iron-coated quartz sand column was approximately 35 hours, which was much longer than that for tracer fluorescein sodium (approximately 2 hours). The retardation factor of arsenic was 23, and its adsorption capacity was 0.11 mol As per mol Fe, leading to an excellent arsenic removal. In situ arsenic removal from groundwater in an aquifer was achieved by simultaneous injections of As (V) and Fe (II) reagents. When the arsenic content in the groundwater was 233 ?g/L, the aqueous phase arsenic was completely removed with an arsenic adsorption of 0.05 mol As per mol Fe. Arsenic fixation resulted from a process of adsorption/co-precipitation, in which arsenic and iron likely formed the arsenic-bearing iron mineral phases with poor crystallinity by way of bidentate binuclear complexes. Thus, the high arsenic removal efficiency of the technique likely resulted from the expanded specific iron oxide/hydroxide surface area with poor crystallinity and from coprecipitation.

  19. Materials Analysis of CED Nb Films Being Coated on Bulk Nb Single Cell SRF Cavities

    SciTech Connect (OSTI)

    Zhao, Xin; Reece, Charles; Palczewski, Ari; Ciovati, Gianluigi; Krishnan, Mahadevan; James, Colt; Irfan, Irfan

    2013-09-01

    This study is an on-going research on depositing a Nb film on the internal wall of bulk Nb single cell SRF cavities, via a cathodic arc Nb plasma ions source, an coaxial energetic condensation (CED) facility at AASC company. The motivation is to firstly create a homoepitaxy-like Nb/Nb film in a scale of a ~1.5GHz RF single cell cavity. Next, through SRF measurement and materials analysis, it might reveal the baseline properties of the CED-type homoepitaxy Nb films. Literally, a top-surface layer of Nb films which sustains SRF function, always grows up in homo-epitaxy mode, on top of a Nb nucleation layer. Homo-epitaxy growth of Nb must be the final stage (a crystal thickening process) of any coatings of Nb film on alternative cavity structure materials. Such knowledge of Nb-Nb homo-epitaxy is useful to create future realistic SRF cavity film coatings, such as hetero-epitaxy Nb/Cu Films, or template-layer-mitigated Nb films. One large-grain, and three fine grain bulk Nb cavities were coated. They went through cryogenic RF measurement. Preliminary results show that the Q0 of a Nb film could be as same as the pre-coated bulk Nb surface (which received a chemically-buffered polishing plus a light electro-polishing); but quality factor of two tested cavities dropped quickly. We are investigating if the severe Q-slope is caused by hydrogen incorporation before deposition, or is determined by some structural defects during Nb film growth.

  20. Lubricant-Friendly, Superhard and Low-Friction Coatings by Design...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Lubricant-Friendly, Superhard and Low-Friction Coatings by Design Lubricant-Friendly, Superhard and Low-Friction Coatings by Design Superhard and low-friction coatings and surface ...

  1. Young, Jupiter-like planet discovered

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Young, Jupiter-like planet discovered Young, Jupiter-like planet discovered A team of researchers has discovered a Jupiter-like planet within a young system that could provide a new understanding of how planets formed around our sun. August 13, 2015 A team of researchers has discovered a Jupiter-like planet within a young system that could provide a new understanding of how planets formed around our sun. Jupiter-like planet Contact Los Alamos National Laboratory Nancy Ambrosiano Communications

  2. Method of producing adherent metal oxide coatings on metallic surfaces

    DOE Patents [OSTI]

    Lane, Michael H. (Clifton Park, NY); Varrin, Jr., Robert D. (McLean, VA)

    2001-01-01

    Provided is a process of producing an adherent synthetic corrosion product (sludge) coating on metallic surfaces. The method involves a chemical reaction between a dry solid powder mixture of at least one reactive metal oxide with orthophosphoric acid to produce a coating in which the particles are bound together and the matrix is adherent to the metallic surface.

  3. Anti-diffusion metal coated O-rings

    DOE Patents [OSTI]

    Biallas, George Herman; Boyce, James Reid

    2016-03-22

    A method for inhibiting diffusion of gases and/or transmission of photons through elastomeric seals and a diffusion inhibiting elastomeric seal wherein at least a portion of the surface of a diffusion inhibiting elastomeric seal is coated with a compatibly-deformable, malleable metal coating.

  4. Gold-coated nanoparticles for use in biotechnology applications

    DOE Patents [OSTI]

    Berning, Douglas E.; Kraus, Jr., Robert H.; Atcher; Robert W.; Schmidt, Jurgen G.

    2009-07-07

    A process of preparing gold-coated magnetic nanoparticles is disclosed and includes forming a suspension of magnetic nanoparticles within a suitable liquid, adding an amount of a reducible gold compound and a reducing agent to the suspension, and, maintaining the suspension for time sufficient to form gold-coated magnetic nanoparticles.

  5. Gold-coated nanoparticles for use in biotechnology applications

    DOE Patents [OSTI]

    Berning, Douglas E.; Kraus, Jr., Robert H.; Atcher, Robert W.; Schmidt, Jurgen G.

    2007-06-05

    A process of preparing gold-coated magnetic nanoparticles is disclosed and includes forming a suspension of magnetic nanoparticles within a suitable liquid, adding an amount of a reducible gold compound and a reducing agent to the suspension, and, maintaining the suspension for time sufficient to form gold-coated magnetic nanoparticles.

  6. Method of coating graphite tubes with refractory metal carbides

    DOE Patents [OSTI]

    Wohlberg, C.

    1973-12-11

    A method of coating graphite tubes with a refractory metal carbide is described. An alkali halide is reacted with a metallic oxide, the metallic portion being selected from the IVth or Vth group of the Periodic Table, the resulting salt reacting in turn with the carbon to give the desired refractory metal carbide coating. (Official Gazette)

  7. Low-Friction Hard Coatings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    09 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting, May 18-22, 2009 -- Washington D.C. PDF icon vssp_04_erdemir.pdf More Documents & Publications Super Hard Coating Systems Low-Friction Hard Coatings

  8. Composite ceria-coated aerogels and methods of making the same

    DOE Patents [OSTI]

    Eyring, Edward M; Ernst, Richard D; Turpin, Gregory C; Dunn, Brian C

    2013-05-07

    Ceria-coated aerogels can include an aerogel support material having a stabilized ceria coating thereon. The ceria coating can be formed by solution or vapor deposition of alcogels or aerogels. Additional catalytic metal species can also be incorporated into the coating to form multi-metallic compounds having improved catalytic activity. Further, the ceria coated aerogels retain high surface areas at elevated temperatures. Thus, improvements in catalytic activity and thermal stability can be achieved using these ceria-coated composite aerogels.

  9. Process for forming a metal compound coating on a substrate

    DOE Patents [OSTI]

    Sharp, Donald J.; Vernon, Milton E.; Wright, Steven A.

    1991-01-01

    A method of coating a substrate with a thin layer of a metal compound by forming a dispersion of an electrophoretically active organic colloid and a precursor of the metal compound in an electrolytic cell in which the substrate is an electrode. Upon application of an electric potential, the electrode is coated with a mixture of the organic colloid and the precursor to the metal compound, and the coated substrate is then heated in the presence of an atmosphere or vacuum to decompose the organic colloid and form a coating of either a combination of metal compound and carbon, or optionally forming a porous metal compound coating by heating to a temperature high enough to chemically react the carbon.

  10. Process for forming a metal compound coating on a substrate

    DOE Patents [OSTI]

    Sharp, D.J.; Vernon, M.E.; Wright, S.A.

    1988-06-29

    A method of coating a substrate with a thin layer of a metal compound by forming a dispersion of an electrophoretically active organic colloid and a precursor of the metal compound in an electrolytic cell in which the substrate is an electrode. Upon application of an electric potential, the electrode is coated with a mixture of the organic colloid and the precursor to the metal compound, and the coated substrate is then heated in the presence of an atmosphere or vacuum to decompose the organic colloid and form a coating of either a combination of metal compound and carbon, or optionally forming a porous metal compound coating by heating to a temperature high enough to chemically react the carbon.

  11. Influence of insulating coating on aluminum wire explosions

    SciTech Connect (OSTI)

    Li, Yang; Wu, Jian; Sheng, Liang; Zhao, Jizhen; Zhang, Mei; Yuan, Yuan; Peng, Bodong; Li, Xingwen

    2014-10-15

    Single wire explosions are widely used in understanding the early stages of z-pinch experiments. This paper presents a serial of experiments conducted on the pulse power generator with ?1?kA peak current and ?10?ns rising time in Xi'an Jiao Tong University. Polyimide coated aluminum wires and uncoated ones were tested under three different voltages to analyze the effect of insulating coating. Experimental results showed that insulating coating can increase the energy deposition 10%?30% in aluminum wires by delaying the voltage collapse and raising the maximum load resistance. The substantial energy deposition resulted in about 20% faster expansion rates for coated wires. Experimental evidence that plasma channel shunts the current from the wire core was observed by streak camera and schlieren graphs. This paper also briefly discussed the influence of nonuniform coating on the morphology of wire expansion.

  12. Durable polymer-aerogel based superhydrophobic coatings: a composite material

    DOE Patents [OSTI]

    Kissel, David J.; Brinker, Charles Jeffrey

    2016-02-02

    Provided are polymer-aerogel composite coatings, devices and articles including polymer-aerogel composite coatings, and methods for preparing the polymer-aerogel composite. The exemplary article can include a surface, wherein the surface includes at least one region and a polymer-aerogel composite coating disposed over the at least one region, wherein the polymer-aerogel composite coating has a water contact angle of at least about 140.degree. and a contact angle hysteresis of less than about 1.degree.. The polymer-aerogel composite coating can include a polymer and an ultra high water content catalyzed polysilicate aerogel, the polysilicate aerogel including a three dimensional network of silica particles having surface functional groups derivatized with a silylating agent and a plurality of pores.

  13. Durable polymer-aerogel based superhydrophobic coatings, a composite material

    DOE Patents [OSTI]

    Kissel, David J; Brinker, Charles Jeffrey

    2014-03-04

    Provided are polymer-aerogel composite coatings, devices and articles including polymer-aerogel composite coatings, and methods for preparing the polymer-aerogel composite. The exemplary article can include a surface, wherein the surface includes at least one region and a polymer-aerogel composite coating disposed over the at least one region, wherein the polymer-aerogel composite coating has a water contact angle of at least about 140.degree. and a contact angle hysteresis of less than about 1.degree.. The polymer-aerogel composite coating can include a polymer and an ultra high water content catalyzed polysilicate aerogel, the polysilicate aerogel including a three dimensional network of silica particles having surface functional groups derivatized with a silylating agent and a plurality of pores.

  14. New capabilities and applications for electrophoretically deposited coatings

    SciTech Connect (OSTI)

    Sharp, D.J.

    1991-01-01

    Our primary purpose in this test is to provide a brief general description of a few applications of various electrophoretic systems which have been investigated and have found use in various coating applications at Sandia National Laboratories. Both organic and inorganic suspensions in aqueous and non-aqueous media have been considered in these studies. Applications include high voltage insulating dielectrics, thermally conductive/electrically insulating films, adherent lubricating films, uniform photoresist films, glass coatings, and fissile uranium oxide/carbon composite films for studies of nuclear powered lasers. More recently, we have become interested in the beneficial environmental aspects of being able to provide protective polymer coatings which reduce or minimize the use of organic solvents required by traditional spray coat processes. Important practical factors which relate to film uniformity, adhesion, and composition are related to unique coating or plating capabilities and applications. 6 refs., 2 figs., 1 tab.

  15. Improving Accident Tolerance of Nuclear Fuel with Coated Mo-alloy...

    Office of Scientific and Technical Information (OSTI)

    Improving Accident Tolerance of Nuclear Fuel with Coated Mo-alloy Cladding Citation Details In-Document Search Title: Improving Accident Tolerance of Nuclear Fuel with Coated ...

  16. Pre-Ceramic Monocomposite and Ceramic Coatings by Sol-Gel-Pyrolysis and Slurry-Pyrolysis Processing

    SciTech Connect (OSTI)

    Sugama, T

    1997-01-29

    This presentation provides information on the relevant coating systems, the starting materials, and properties of the coatings.

  17. High temperature coatings for gas turbines

    DOE Patents [OSTI]

    Zheng, Xiaoci Maggie

    2003-10-21

    Coating for high temperature gas turbine components that include a MCrAlX phase, and an aluminum-rich phase, significantly increase oxidation and cracking resistance of the components, thereby increasing their useful life and reducing operating costs. The aluminum-rich phase includes aluminum at a higher concentration than aluminum concentration in the MCrAlX alloy, and an aluminum diffusion-retarding composition, which may include cobalt, nickel, yttrium, zirconium, niobium, molybdenum, rhodium, cadmium, indium, cerium, iron, chromium, tantalum, silicon, boron, carbon, titanium, tungsten, rhenium, platinum, and combinations thereof, and particularly nickel and/or rhenium. The aluminum-rich phase may be derived from a particulate aluminum composite that has a core comprising aluminum and a shell comprising the aluminum diffusion-retarding composition.

  18. Ceramic coating system or water oxidation environments

    DOE Patents [OSTI]

    Hong, Glenn T.

    1996-01-01

    A process for water oxidation of combustible materials in which during at least a part of the oxidation corrosive material is present and makes contact with at least a portion of the apparatus over a contact area on the apparatus. At least a portion of the contact surface area comprises titanium dioxide coated onto a titanium metal substrate. Such ceramic composites have been found to be highly resistant to environments encountered in the process of supercritical water oxidation. Such environments typically contain greater than 50 mole percent water, together with oxygen, carbon dioxide, and a wide range of acids, bases, and salts. Pressures are typically about 27.5 to about 1000 bar while temperatures range as high as 700.degree. C. The ceramic composites are also resistant to degradation mechanisms caused by thermal stresses.

  19. Composite of coated magnetic alloy particle

    DOE Patents [OSTI]

    Moorhead, Arthur J.; Kim, Hyoun-Ee

    2000-01-01

    A composite structure and method for manufacturing same, the composite structure being comprised of metal particles and an inorganic bonding media. The method comprises the steps of coating particles of a metal powder with a thin layer of an inorganic bonding media selected from the group of powders consisting of a ceramic, glass, and glass-ceramic. The particles are assembled in a cavity and heat, with or without the addition of pressure, is thereafter applied to the particles until the layer of inorganic bonding media forms a strong bond with the particles and with the layer of inorganic bonding media on adjacent particles. The resulting composite structure is strong and remains cohesive at high temperatures.

  20. Thermal barrier coatings for turbine components

    DOE Patents [OSTI]

    Subramanian, Ramesh; Sabol, Stephen M.; Goedjen, John G.; Sloan, Kelly M.; Vance, Steven J.

    2002-01-01

    A turbine component, such as a turbine blade having a metal substrate (22) is coated with a metal MCrAlY alloy layer (24) and then a thermal barrier layer (20) selected from LaAlO.sub.3, NdAlO.sub.3, La.sub.2 Hf.sub.2 O.sub.7, Dy.sub.3 Al.sub.5 O.sub.12, HO.sub.3 Al.sub.3 O.sub.12, ErAlO.sub.3, GdAlO.sub.3, Yb.sub.2 Ti.sub.2 O.sub.7, LaYbO.sub.3, Gd.sub.2 Hf.sub.2 O.sub.7 or Y.sub.3 Al.sub.5 O.sub.12.

  1. Conformal coating of highly structured surfaces

    DOE Patents [OSTI]

    Ginley, David S.; Perkins, John; Berry, Joseph; Gennett, Thomas

    2012-12-11

    Method of applying a conformal coating to a highly structured substrate and devices made by the disclosed methods are disclosed. An example method includes the deposition of a substantially contiguous layer of a material upon a highly structured surface within a deposition process chamber. The highly structured surface may be associated with a substrate or another layer deposited on a substrate. The method includes depositing a material having an amorphous structure on the highly structured surface at a deposition pressure of equal to or less than about 3 mTorr. The method may also include removing a portion of the amorphous material deposited on selected surfaces and depositing additional amorphous material on the highly structured surface.

  2. Thermal barrier coating resistant to sintering

    DOE Patents [OSTI]

    Subramanian, Ramesh; Seth, Brig B.

    2005-08-23

    A device (10) is made, having a ceramic thermal barrier coating layer (16) characterized by a microstructure having gaps (18) with a sintering inhibiting material (22) disposed on the columns (20) within the gaps (18). The sintering resistant material (22) is stable over the range of operating temperatures of the device (10), is not soluble with the underlying ceramic layer (16) and is applied by a process that is not an electron beam physical vapor deposition process. The sintering inhibiting material (22) has a morphology adapted to improve the functionality of the sintering inhibiting material (22), characterized as continuous, nodule, rivulet, grain, crack, flake and combinations thereof and being disposed within at least some of the vertical and horizontal gaps.

  3. Interface Science of Thermal Barrier Coatings

    SciTech Connect (OSTI)

    Besmann, Theodore M

    2009-01-01

    The drive for greater efficiency in propulsion and industrial/power production machinery has pushed metallurgy to develop ever better alloys and taken existing metallic components to their reliability threshold. Nowhere is that better illustrated than in turbine engine materials. The nickel-based superalloys currently in use for the most demanding areas of the engines melt at 1230-1315 aC and yet see combustion environments >1600 aC. The result is that these components require thermal protection to avoid failure from phenomena such as melting, creep, oxidation, thermal fatigue, and so on [1]. The stakes are high as the equipment must remain reliable for thousands of take-offs and landings for aircraft turbine engines, and up to 40,000 hours of operation in power generating land-based gas turbines [2, 3]. One of the most critical items that see both the greatest temperatures and experience the highest stresses is the hot-section turbine blades. Two strategies have been adopted to help the superalloy turbine blades survive the demanding environment: Active air cooling and ceramic thermal protection coatings, which together can reduce metal surface temperatures by >300 aC.[2]. The combination of turbine blade external film cooling and internal air cooling requires an exceptionally complex structure with flow passages and sets of small holes in the blades where air bled from a matching stage of the compressor is directed over the surface. Stecura [4] was among the first to describe a successful coating system, and today s the ceramic insulating layer alone is credited with reducing metal temperatures as much as 165 aC [1, 5].

  4. Oxide Dispersion Strengthened Iron Aluminide by CVD Coated Powders

    SciTech Connect (OSTI)

    Asit Biswas Andrew J. Sherman

    2006-09-25

    This I &I Category2 program developed chemical vapor deposition (CVD) of iron, aluminum and aluminum oxide coated iron powders and the availability of high temperature oxidation, corrosion and erosion resistant coating for future power generation equipment and can be used for retrofitting existing fossil-fired power plant equipment. This coating will provide enhanced life and performance of Coal-Fired Boilers components such as fire side corrosion on the outer diameter (OD) of the water wall and superheater tubing as well as on the inner diameter (ID) and OD of larger diameter headers. The program also developed a manufacturing route for readily available thermal spray powders for iron aluminide coating and fabrication of net shape component by powder metallurgy route using this CVD coated powders. This coating can also be applid on jet engine compressor blade and housing, industrial heat treating furnace fixtures, magnetic electronic parts, heating element, piping and tubing for fossil energy application and automotive application, chemical processing equipment , heat exchanger, and structural member of aircraft. The program also resulted in developing a new fabrication route of thermal spray coating and oxide dispersion strengthened (ODS) iron aluminide composites enabling more precise control over material microstructures.

  5. Initial Assessment of Environmental Barrier Coatings for the Prometheus Project

    SciTech Connect (OSTI)

    M. Frederick

    2005-12-15

    Depending upon final design and materials selections, a variety of engineering solutions may need to be considered to avoid chemical degradation of components in a notional space nuclear power plant (SNPP). Coatings are one engineered approach that was considered. A comprehensive review of protective coating technology for various space-reactor structural materials is presented, including refractory metal alloys [molybdenum (Mo), tungsten (W), rhenium (Re), tantalum (Ta), and niobium (Nb)], nickel (Ni)-base superalloys, and silicon carbide (Sic). A summary description of some common deposition techniques is included. A literature survey identified coatings based on silicides or iridium/rhenium as the primary methods for environmental protection of refractory metal alloys. Modified aluminide coatings have been identified for superalloys and multilayer ceramic coatings for protection of Sic. All reviewed research focused on protecting structural materials from extreme temperatures in highly oxidizing conditions. Thermodynamic analyses indicate that some of these coatings may not be protective in the high-temperature, impure-He environment expected in a Prometheus reactor system. Further research is proposed to determine extensibility of these coating materials to less-oxidizing or neutral environments.

  6. Proceedings of the 1987 coatings for advanced heat engines workshop

    SciTech Connect (OSTI)

    Not Available

    1987-01-01

    This Workshop was conducted to enhance communication among those involved in coating development for improved heat engine performance and durability. We were fortunate to have Bill Goward review the steady progress and problems encountered along the way in the use of thermal barrier coatings (TBC) in aircraft gas turbine engines. Navy contractors discussed their work toward the elusive goal of qualifying TBC for turbine airfoil applications. In the diesel community, Caterpillar and Cummins are developing TBC for combustion chamber components as part of the low heat rejection diesel engine concept. The diesel engine TBC work is based on gas turbine technology with a goal of more than twice the thickness used on gas turbine engine components. Adoption of TBC in production for diesel engines could justify a new generation of plasma spray coating equipment. Increasing interests in tribology were evident in this Workshop. Coatings have a significant role in reducing friction and wear under greater mechanical loadings at higher temperatures. The emergence of a high temperature synthetic lubricant could have an enormous impact on diesel engine design and operating conditions. The proven coating processes such as plasma spray, electron-beam physical vapor deposition, sputtering, and chemical vapor deposition have shown enhanced capabilities, particularly with microprocessor controls. Also, the newer coating schemes such as ion implantation and cathodic arc are demonstrating intriguing potential for engine applications. Coatings will play an expanding role in higher efficiency, more durable heat engines.

  7. Environmental Barrier Coatings for the Energy Efficient Heat Engines Program

    SciTech Connect (OSTI)

    Katherine Faber

    2004-10-31

    This program aimed to develop a fundamental understanding of the microstructural, mechanical, and chemical properties of Ta{sub 2}O{sub 5}-based coatings for Si{sub 3}N{sub 4} (AS800) substrates and optimize such coatings for environmental barriers. The program consisted of three tasks: processing of Ta{sub 2}O{sub 5} coatings, phase and microstructural development, and life-limiting phenomena. Northwestern University formed a cross-functional team with Lehigh University, Honeywell Inc., and Oak Ridge National Laboratory. The major accomplishments are: (1) Conditions for the plasma spray of Ta{sub 2}O{sub 5} and its alloys were optimized to provide maximum density and thickness. (2) Adherent small particle plasma spray coatings of Ta{sub 2}O{sub 5} can be routinely prepared. (3) Ta{sub 2}O{sub 5} can be stabilized against its disruptive phase transformation to 1400 C by the addition of one or more oxides of Al, La, and/or Nb. (4) Residual stresses in the Ta{sub 2}O{sub 5} coatings were measured using X-rays and changed with thermal exposure. (5) Properly doped coatings are more resistant against thermal cycling than undoped coatings, and can be cycled many thousand times without spallation. (6) Water vapor testing in the ORNL Keiser Rig of adherent coatings showed that undoped Ta{sub 2}O{sub 5} is not an effective barrier at preventing chemical changes to the AS800. (7) Limited water vapor testing of doped and adherent coatings, which had successfully survived many thermal cycles, showed that in the water vapor environment, de-cohesion may occur.

  8. Radiation control coatings installed on federal buildings at Tyndall Air Force Base. Volume 1: Pre-coating monitoring and fresh coating results

    SciTech Connect (OSTI)

    Petrie, T.W.; Childs, P.W.

    1997-02-01

    The US Department of Energy`s (DOE`s) Federal Energy Management Program (FEMP) supports efforts to reduce energy use and associated expenses in the federal sector. One such effort, the New Technology Demonstration Program (NTDP), seeks to evaluate new energy-saving US technologies and secure their more timely adoption by the US government. Through a partnership with a federal site, the utility serving the site, a manufacturer of an energy-related technology, and other organizations associated with these interests, DOE can evaluate a new technology. The results of the program give federal agency decision makers more hands-on information with which to validate a decision to utilize a new technology in their facilities. The partnership of these interests is secured through a cooperative research and development agreement (CRADA), in this case between Lockheed Martin Energy Research Corporation, the manager of the Oak Ridge National Laboratory (ORNL), Oak Ridge, Tennessee, and ThermShield International, Ltd., the manufacturer of the technology. This is the first volume of a two-volume report that describes the effects of radiation control coatings installed on federal buildings at Tyndall Air Force Base (AFB) in Florida by ThermShield International. ORNL`s Buildings Technology Center (BTC) was assigned the responsibility for gathering, analyzing, and reporting on the data to describe the effects of the coatings. This volume describes the monitoring plan and its implementation, the results of pre-coating monitoring, the coating installation, results from fresh coatings compared to pre-coating results, and a plan to decommission the monitoring equipment. By including results from roofs at Tyndall AFB and from an outdoor test facility at the BTC, the data cover the range from poorly insulated to well-insulated roofs and two kinds of radiation control coatings on various roof membranes.

  9. Protective coatings for metal alloys and methods incorporating the same

    DOE Patents [OSTI]

    Seabaugh, Matthew M.; Ibanez, Sergio; Swartz, Scott L.

    2015-06-09

    An electrochemical device having one or more solid oxide fuel cells (SOFCs), each of the SOFCs including a cathode, an anode, and an electrolyte layer positioned between the cathode and anode; and at least one additional component comprising a metallic substrate having an electronically conductive, chromium-free perovskite coating deposited directly thereon. The perovskite coating has the formula ABO.sub.3, wherein A is a lanthanide element or Y, and B is a mixture of two or more transition elements, with the A site undoped by any alkaline earth element, and the perovskite coating exhibits limited or no ionic transport of oxygen.

  10. Coating power RF components with TiN

    SciTech Connect (OSTI)

    Kuchnir, M.; Hahn, E.

    1995-03-01

    A facility for coating RF power components with thin films of Ti and/or TiN has been in operation for some time at Fermilab supporting the Accelerator Division RF development work and the TESLA program. It has been experimentally verified that such coatings improve the performance of these components as far as withstanding higher electric fields. This is attributed to a reduction in the secondary electron emission coefficient of the surfaces when coated with a thin film containing titanium. The purpose of this Technical Memorandum is to describe the facility and the procedure used.

  11. Sealed glass coating of high temperature ceramic superconductors

    DOE Patents [OSTI]

    Wu, W.; Chu, C.Y.; Goretta, K.C.; Routbort, J.L.

    1995-05-02

    A method and article of manufacture of a lead oxide based glass coating on a high temperature superconductor is disclosed. The method includes preparing a dispersion of glass powders in a solution, applying the dispersion to the superconductor, drying the dispersion before applying another coating and heating the glass powder dispersion at temperatures below oxygen diffusion onset and above the glass melting point to form a continuous glass coating on the superconductor to establish compressive stresses which enhance the fracture strength of the superconductor. 8 figs.

  12. Method and apparatus for laser scribing glass sheet substrate coatings

    DOE Patents [OSTI]

    Borgeson, Frank A.; Hanak, Joseph J.; Harju, Ricky S.; Harju, Karen M.; Helman, Norman L.; Hecht, Kenneth R.

    2005-07-19

    A method and apparatus (42) for laser scribing coatings on glass sheet substrates by conveying the substrate adjacent a laser source (83) that provides a pulsed laser beam (84) with a wavelength at a near-infrared fundamental frequency and having a frequency in the range of 50 to 100 kilohertz and a pulse duration in the range of 8 to 70 nanoseconds, and by reflecting the beam by an XYZ galvanometer controlled mirror system (90) toward an uncoated surface of the substrate for passage therethrough to the coating on the other surface to provide overlapping ablations through the coating and scribing at a speed of at least 1000 millimeters per second.

  13. Method and apparatus for laser scribing glass sheet substrate coatings

    DOE Patents [OSTI]

    Borgeson, Frank A.; Hanak, Joseph J.; Harju, Ricky S.; Helman, Norman L.; Hecht, Kenneth R.

    2003-05-06

    A method and apparatus (42) for laser scribing coatings on glass sheet substrates by conveying the substrate adjacent a laser source (83) that provides a pulsed laser beam (84) with a wavelength at a near-infrared fundamental frequency and having a frequency in the range of 50 to 100 kilohertz and a pulse duration in the range of 8 to 70 nanoseconds, and by reflecting the beam by an XYZ galvanometer controlled mirror system (90) toward an uncoated surface of the substrate for passage therethrough to the coating on the other surface to provide overlapping ablations through the coating and scribing at a speed of at least 1000 millimeters per second.

  14. MOF Coating a Promising Path to White LEDs

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    MOF Coating a Promising Path to White LEDs MOF Coating a Promising Path to White LEDs Print Friday, 27 February 2015 17:11 Hu et al. designed a new yellow phosphor with high quantum yield by immobilizing a preslected chromophore into the rigid framework of a metal-organic framework (MOF); the structure was determined at Beamline 11.3.1. Coating a blue light-emitting diode (LED) with this compound readily generates white light with high luminous efficacy. The new yellow phosphor demonstrates

  15. Conductive polymeric cable anodes for pipelines with deteriorating coatings

    SciTech Connect (OSTI)

    Gibson, W.F.; Pikas, J.L. )

    1993-03-01

    Deteriorating pipeline coating systems have been a dilemma in the industry for many years. The interaction between coatings and cathodic protection (CP) is based on the type of coating and the amount of deterioration. There are two primary strategies to approach the problem: recoat, which is very expensive and may require taking the line out of service and cause loss of revenue; or install additional conventional CP groundbed systems. This article presents a state-of-the-art groundbed system using close-coupled conductive polymeric cable anodes that eliminate the problems of conventional groundbeds.

  16. Preparation of high-strength nanometer scale twinned coating and foil

    DOE Patents [OSTI]

    Zhang, Xinghang; Misra, Amit; Nastasi, Michael A.; Hoagland, Richard G.

    2006-07-18

    Very high strength single phase stainless steel coating has been prepared by magnetron sputtering onto a substrate. The coating has a unique microstructure of nanometer spaced twins that are parallel to each other and to the substrate surface. For cases where the coating and substrate do not bind strongly, the coating can be peeled off to provide foil.

  17. Installation and commissioning of a large area coating system for neutron and X-ray optical devices

    SciTech Connect (OSTI)

    Biswas, A. Haque, Sk. Maidul Misal, J. Sampathkumar, R.; Ajaykumar,; Bhattacharyya, D.; Sahoo, N. K.; Lagoo, K. D.; Veerapur, R. D.; Padmanabhan, M.; Puri, R. K.; Bhattacharya, Debarati

    2014-04-24

    A 9 meter long DC/RF sputtering cylindrical coating system which is designed and built indigenously for coating of neutron supermirrors and grazing incidence hard X-ray mirrors on large area substrates has been installed and commissioned recently. The performance of the system has been tested by depositing Ti films on glass substrate of 1500mm X 150mm size. By depositing Ti films on several small area c-Si substrates placed over the length and breadth of the substrate holder, and by subsequent characterization by GIXR measurement, it has been observed that films with bulk-like density and very low surface roughness can be obtained in the above system. The thickness uniformity achieved in the deposited films is within 3.5% over the 1500mm length and within 4.8% over the 150mm width.

  18. Damage threshold of platinum coating used for optics for self...

    Office of Scientific and Technical Information (OSTI)

    used for optics for self-seeding of soft x-ray free electron laser Citation Details In-Document Search Title: Damage threshold of platinum coating used for optics for ...

  19. Atomic Layer Deposition for the Conformal Coating of Nanoporous Materials

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Elam, Jeffrey W.; Xiong, Guang; Han, Catherine Y.; Wang, H. Hau; Birrell, James P.; Welp, Ulrich; Hryn, John N.; Pellin, Michael J.; Baumann, Theodore F.; Poco, John F.; et al

    2006-01-01

    Amore » tomic layer deposition ( ALD ) is ideal for applying precise and conformal coatings over nanoporous materials. We have recently used ALD to coat two nanoporous solids: anodic aluminum oxide ( AAO ) and silica aerogels. AAO possesses hexagonally ordered pores with diameters d ∼ 40 nm and pore length L ∼ 70 microns. The AAO membranes were coated by ALD to fabricate catalytic membranes that demonstrate remarkable selectivity in the oxidative dehydrogenation of cyclohexane.dditional AAO membranes coated with ALD Pd films show promise as hydrogen sensors. Silica aerogels have the lowest density and highest surface area of any solid material. Consequently, these materials serve as an excellent substrate to fabricate novel catalytic materials and gas sensors by ALD .« less

  20. Chemical conversion coating for protecting magnesium alloys from corrosion

    DOE Patents [OSTI]

    Bhargava, Gaurang; Allen, Fred M.; Skandan, Ganesh; Hornish, Peter; Jain, Mohit

    2016-01-05

    A chromate-free, self-healing conversion coating solution for magnesium alloy substrates, composed of 10-20 wt. % Mg(NO.sub.3).sub.2.6H.sub.2O, 1-5 wt. % Al(NO.sub.3).sub.3.9H.sub.2O, and less than 1 wt. % of [V.sub.10O.sub.28].sup.6- or VO.sub.3.sup.- dissolved in water. The corrosion resistance offered by the resulting coating is in several hundreds of hours in salt-spray testing. This prolonged corrosion protection is attributed to the creation of a unique structure and morphology of the conversion coating that serves as a barrier coating with self-healing properties. Hydroxoaluminates form the backbone of the barrier protection offered while the magnesium hydroxide domains facilitate the "slow release" of vanadium compounds as self-healing moieties to defect sites, thus providing active corrosion protection.

  1. Protective coating for alumina-silicon carbide whisker composites

    DOE Patents [OSTI]

    Tiegs, Terry N.

    1989-01-01

    Ceramic composites formed of an alumina matrix reinforced with silicon carbide whiskers homogenously dispersed therein are provided with a protective coating for preventing fracture strength degradation of the composite by oxidation during exposure to high temperatures in oxygen-containing atmospheres. The coating prevents oxidation of the silicon carbide whiskers within the matrix by sealing off the exterior of the matrix so as to prevent oxygen transport into the interior of the matrix. The coating is formed of mullite or mullite plus silicon oxide and alumina and is formed in place by heating the composite in air to a temperature greater than 1200.degree. C. This coating is less than about 100 microns thick and adequately protects the underlying composite from fracture strength degradation due to oxidation.

  2. Degradation and failure characteristics of NPP containment protective coating systems

    SciTech Connect (OSTI)

    Sindelar, R.L.

    2000-03-30

    A research program to investigate the performance and potential for failure of Service Level 1 coating systems used in nuclear power plant containment is in progress. The research activities are aligned to address phenomena important to cause failure as identified by the industry coatings expert panel. The period of interest for performance covers the time from application of the coating through 40 years of service, followed by a medium-to-large break loss-of-coolant accident scenario, which is a design basis accident (DBA) scenario. The interactive program elements are discussed in this report and the application of these elements to the System 5 coating system (polyamide epoxy primer, carbon steel substrate) is used to evaluate performance.

  3. The impact of carbon coating on the synthesis and properties...

    Office of Scientific and Technical Information (OSTI)

    Journal Article: The impact of carbon coating on the synthesis and properties of Fe16N2 powders Citation Details In-Document Search This content will become publicly available on ...

  4. New Sustainable Chemistries for Low-VOC Coatings

    SciTech Connect (OSTI)

    2004-07-01

    New Novel Polymers Offer Significant Reduction in Use of Raw Materials. The North American architectural coatings industry sold over 700 million gallons of paint in 2002 for a value of $7 billion dollars.

  5. Bond strength and stress measurements in thermal barrier coatings

    SciTech Connect (OSTI)

    Gell, M.; Jordan, E.

    1995-12-31

    Thermal barrier coatings have been used extensively in aircraft gas turbines for more than 15 years to insulate combustors and turbine vanes from the hot gas stream. Plasma sprayed thermal barrier coatings (TBCs) provide metal temperature reductions as much as 300{degrees}F, with improvements in durability of two times or more being achieved. The introduction of TBCs deposited by electron beam physical vapor deposition (EB-PVD) processes in the last five years has provided a major improvement in durability and also enabled TBCs to be applied to turbine blades for improved engine performance. This program evaluates the bond strength of yttria stabilized zirconia coatings with MCrAlY and Pt-Al bond coats utilizing diffraction and fluorescence methods.

  6. Durability of Metallic Interconnects and Protective Coatings

    SciTech Connect (OSTI)

    Yang, Zhenguo; Stevenson, Jeffry W.

    2009-12-15

    To build up a useful voltage, a number of solid oxide fuel cells (SOFCs) are electrically connected into series in a stack via interconnects, which are placed between adjacent cells. In addition to functioning as a bi-polar electrical connector, the interconnect also acts as a separator plate that separates the fuel at the anode side of one cell from the air at the cathode side on an adjacent cell. During SOFC operation at the high temperatures, the interconnects are thus simultaneously exposed to the oxidizing air at one side and a reducing fuel that can be either hydrogen or hydrocarbon at the other. Besides, they are in contact with adjacent components, such as electrodes or electrical contacts, seals, etc. With steady reduction in SOFC operating temperatures into the low or intermediate range 600-850oC, oxidation resistant alloys are often used to construct interconnects. However, the metallic interconnects may degrade via interactions at their interfaces with surrounding environments or adjacent components, potentially affecting the stability and performance of interconnects and the SOFC stacks. Thus protection layers are applied to metallic interconnects that also intend to mitigate or prevent chromium migration into cells and the cell poisoning. This chapter provides a comprehensive review of materials for metallic interconnects, their degradation and coating protection.

  7. Determination of Elastic Properties and Characterization of Thermal Barrier Coatings using Resonant Ultrasound Spectroscopy

    SciTech Connect (OSTI)

    Shyam, Amit; Lara-Curzio, Edgar

    2009-01-01

    Mechanical properties of plasma sprayed ceramic coatings are extremely important to engine design. However, the determination of these properties is often difficult because of the unique and complicated microstructure of the coatings. In this presentation the determination of the elastic constants of plasma sprayed Yttria stabilized Zirconia thermal barrier coatings using resonant ultrasound spectroscopy will be described along with an analysis that enables the determination of the elastic constants as a function of temperature and coating direction. In this work, results on the following issues will be discussed: 1) the elastic anisotropy of thermal barrier coatings, which is associated with coating failure modes; 2) sintering effects on coating compliance comparing with thermal behavior, which is important to coating performance on engineering structures, such as turbine engines; 3) coating elastic modulus at high temperatures close to the service condition, which provides insights of coating mechanical behavior in both fundamental and practical studies.

  8. Coated graphite articles useful in metallurgical processes and method for making same

    DOE Patents [OSTI]

    Holcombe, Cressie E. (Knoxville, TN); Bird, Eugene L. (Knoxville, TN)

    1995-01-01

    Graphite articles including crucibles and molds used in metallurgical processes involving the melting and the handling of molten metals and alloys that are reactive with carbon when in a molten state and at process temperatures up to about 2000.degree. C. are provided with a multiple-layer coating for inhibiting carbon diffusion from the graphite into the molten metal or alloys. The coating is provided by a first coating increment of a carbide-forming metal on selected surfaces of the graphite, a second coating increment of a carbide forming metal and a refractory metal oxide, and a third coating increment of a refractory metal oxide. The second coating increment provides thermal shock absorbing characteristics to prevent delamination of the coating during temperature cycling. A wash coat of unstabilized zirconia or titanium nitride can be applied onto the third coating increment to facilitate release of melts from the coating.

  9. Enhanced structural color generation in aluminum metamaterials coated with

    Office of Scientific and Technical Information (OSTI)

    a thin polymer layer (Journal Article) | SciTech Connect Enhanced structural color generation in aluminum metamaterials coated with a thin polymer layer Citation Details In-Document Search Title: Enhanced structural color generation in aluminum metamaterials coated with a thin polymer layer Authors: Cheng, Fei ; Yang, Xiaodong ; Rosenmann, Daniel ; Stan, Liliana ; Czaplewski, David ; Gao, Jie Publication Date: 2015-09-18 OSTI Identifier: 1221855 Grant/Contract Number: AC02-06CH11357 Type:

  10. Integrated superhard and metallic coatings for MEMS : LDRD 57300 final

    Office of Scientific and Technical Information (OSTI)

    report. (Technical Report) | SciTech Connect Integrated superhard and metallic coatings for MEMS : LDRD 57300 final report. Citation Details In-Document Search Title: Integrated superhard and metallic coatings for MEMS : LDRD 57300 final report. Two major research areas pertinent to microelectromechanical systems (MEMS) materials and material surfaces were explored and developed in this 5-year PECASE LDRD project carried out by Professor Roya Maboudian and her collaborators at the University

  11. Molten carbonate fuel cell cathode with mixed oxide coating

    DOE Patents [OSTI]

    Hilmi, Abdelkader; Yuh, Chao-Yi

    2013-05-07

    A molten carbonate fuel cell cathode having a cathode body and a coating of a mixed oxygen ion conductor materials. The mixed oxygen ion conductor materials are formed from ceria or doped ceria, such as gadolinium doped ceria or yttrium doped ceria. The coating is deposited on the cathode body using a sol-gel process, which utilizes as precursors organometallic compounds, organic and inorganic salts, hydroxides or alkoxides and which uses as the solvent water, organic solvent or a mixture of same.

  12. Final Report- Low Cost High Performance Nanostructured Spectrally Selective Coating

    Broader source: Energy.gov [DOE]

    Solar absorbing coating is a key enabling technology to achieve hightemperature high-efficiency concentrating solar power operation. A high-performance solar absorbing material must simultaneously meet all the following three stringent requirements: high thermal efficiency (usually measured by figure of merit), hightemperature durability, and oxidation resistance. The objective of this research is to employ a highly scalable process to fabricate and coat black oxide nanoparticles onto solar absorber surface to achieve ultra-high thermal efficiency.

  13. Novel seed coat lignins in the Cactaceae: structure, distribution and

    Office of Scientific and Technical Information (OSTI)

    implications for the evolution of lignin diversity (Journal Article) | SciTech Connect Novel seed coat lignins in the Cactaceae: structure, distribution and implications for the evolution of lignin diversity Citation Details In-Document Search Title: Novel seed coat lignins in the Cactaceae: structure, distribution and implications for the evolution of lignin diversity Authors: Fang,Chen ; Yuki,Tobimatsu ; Lisa,Jackson ; Jin,Nakashima ; John,Ralph ; Richard A.,Dixon Publication Date:

  14. Novel seed coat lignins in the Cactaceae: structure, distribution and

    Office of Scientific and Technical Information (OSTI)

    implications for the evolution of lignin diversity (Journal Article) | SciTech Connect Novel seed coat lignins in the Cactaceae: structure, distribution and implications for the evolution of lignin diversity Citation Details In-Document Search Title: Novel seed coat lignins in the Cactaceae: structure, distribution and implications for the evolution of lignin diversity Authors: Fang,Chen ; Yuki,Tobimatsu ; Lisa,Jackson ; Jin,Nakashima ; John,Ralph ; Richard A.,Dixon Publication Date:

  15. Coating thickness and coverage effects on the forces between silica

    Office of Scientific and Technical Information (OSTI)

    nanoparticles in water. (Journal Article) | SciTech Connect Coating thickness and coverage effects on the forces between silica nanoparticles in water. Citation Details In-Document Search Title: Coating thickness and coverage effects on the forces between silica nanoparticles in water. Abstract not provided. Authors: Salerno, Kenneth Michael ; Lane, J. Matthew ; Grest, Gary S. ; Ismail, Ahmed E. Publication Date: 2014-01-01 OSTI Identifier: 1140719 Report Number(s): SAND2014-0781J Journal

  16. Controlled Uniform Coating from the Interplay of Marangoni Flows and

    Office of Scientific and Technical Information (OSTI)

    Surface-Adsorbed Macromolecules (Journal Article) | SciTech Connect Controlled Uniform Coating from the Interplay of Marangoni Flows and Surface-Adsorbed Macromolecules Citation Details In-Document Search This content will become publicly available on March 24, 2017 Title: Controlled Uniform Coating from the Interplay of Marangoni Flows and Surface-Adsorbed Macromolecules Authors: Kim, Hyoungsoo ; Boulogne, François ; Um, Eujin ; Jacobi, Ian ; Button, Ernie ; Stone, Howard A. Publication

  17. Reproducibility of electrochemical noise data from coated metal systems

    SciTech Connect (OSTI)

    Bierwagen, G.P.; Mills, D.J.; Tallman, D.E.; Skerry, B.S.

    1996-12-31

    The use of electrochemical noise (ECN) as a method to characterize the corrosion-protection properties of organic coatings on metal substrates was pioneered by Skerry and Eden, and since then has been used by others as a probe for coating metal corrosion studies. However, no statistical examination of the reproducibility of the data from such measurements has been published. In the data the authors present, they have done a systematic analysis of important experimental variables in such systems. They have examined the method for accuracy and reproducibility with respect to sample preparation, sample immersion, and metal substrate preparation. They have taken several marine coatings systems typical of US Navy use, prepared duplicate samples of coating metal systems, and examined them under the same immersion exposure. The variables they considered for reproducibility are paint application (in three-coat systems), metal panel preparation (grit-blasted steel), and immersion conditions. The authors present ECN data with respect to immersion time on the values of noise voltage standard deviation {sigma}{sub V}, noise current standard deviation {sigma}{sub I}, and the noise resistance R{sub n} as given by {sigma}{sub V}/{sigma}{sub I}. The variation among supposedly identical sample pairs in identical immersion monitored under identical conditions is presented. The statistics of the time records of the data are considered, and the variations with respect to specific coatings classes are also considered within the limits of the data. Based on these data, comments concerning ECN on coated metal systems as a predictive test method are presented along with special considerations that must be made to properly use the method for coating ranking and lifetime prediction.

  18. Porous coatings from wire mesh for bone implants

    DOE Patents [OSTI]

    Sump, Kenneth R.

    1986-01-01

    A method of coating areas of bone implant elements and the resulting implant having a porous coating are described. Preselected surface areas are covered by a preform made from continuous woven lengths of wire. The preform is compressed and heated to assure that diffusion bonding occurs between the wire surfaces and between the surface boundaries of the implant element and the wire surfaces in contact with it. Porosity is achieved by control of the resulting voids between the bonded wire portions.

  19. YBCO Coated Conductors (Book) | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    Book: YBCO Coated Conductors Citation Details In-Document Search Title: YBCO Coated Conductors Authors: Paranthaman, Mariappan Parans [1] ; Aytug, Tolga [1] ; Stan, Liliana [2] ; Jia, Quanxi [2] ; Cantoni, Claudia [1] + Show Author Affiliations ORNL Los Alamos National Laboratory (LANL) Publication Date: 2015-01-01 OSTI Identifier: 1185451 DOE Contract Number: DE-AC05-00OR22725 Resource Type: Book Publisher: Wiley-VCH, Weinheim, Germany Research Org: Oak Ridge National Laboratory (ORNL); Center

  20. DEVELOPMENT OF NEG COATING FOR RHIC EXPERIMENTAL BEAMTUBES.

    SciTech Connect (OSTI)

    WEISS, D.; HE, P.; HSEUH, H.C.; TODD, R.

    2005-05-16

    As RHIC beam intensity increases beyond original scope, pressure rises have been observed in some regions. The luminosity limiting pressure rises are associated with electron multi-pacting, electron stimulated desorption and beam induced desorption. Non-Evaporable Getter (NEG) coated beamtubes have been proven effective to suppress pressure rise in synchrotron radiation facilities. Standard beamtubes have been NEG coated by a vendor and added to many RHIC UHV regions. BNL is developing a cylindrical magnetron sputtering system to NEG coat special beryllium beamtubes installed in RHIC experimental regions, It features a hollow, liquid cooled cathode producing power density of 500 W/m and deposition rate of 5000 Angstrom/hr on 7.5cm OD beamtube. The cathode, a titanium tube partially covered with zirconium and vanadium ribbons, is oriented for horizontal coating of 4m long chambers. Ribbons and magnets are arranged to provide uniform sputtering distribution and deposited NEG composition. Vacuum performance of NEG coated tubes was measured. Coating was analyzed with energy dispersion spectroscopy, auger electron spectroscopy and scanning electron microscopy. System design, development, and analysis results are presented.

  1. Chromium Vaporization Reduction by Nickel Coatings For SOEC Interconnect Materials

    SciTech Connect (OSTI)

    Michael V. Glazoff; Sergey N. Rashkeev; J. Stephen Herring

    2014-09-01

    The vaporization of Cr-rich volatile species from interconnect materials is a major source of degradation that limits the lifetime of planar solid oxide devices systems with metallic interconnects, including Solid Oxide Electrolysis Cells, or SOECs. Some metallic coatings (Ni, Co, and Cu) significantly reduce the Cr release from interconnects and slow down the oxide scale growth on the steel substrate. To shed additional light upon the mechanisms of such protection and find a suitable coating material for ferritic stainless steel materials, we used a combination of first-principles calculations, thermodynamics, and diffusion modeling to investigate which factors determine the quality of the Ni metallic coating at stainless steel interconnector. We found that the Cr migration in Ni coating is determined by a delicate combination of the nickel oxidation, Cr diffusion, and phase transformation processes. Although the formation of Cr2O3 oxide is more exothermic than that of NiO, the kinetic rate of the chromia formation in the coating layer and its surface is significantly reduced by the low mobility of Cr in nickel oxide and in NiCr2O4 spinel. These results are in a good agreement with diffusion modeling for Cr diffusion through Ni coating layer on the ferritic 441 steel substrate.

  2. Coating system to permit direct brazing of ceramics

    DOE Patents [OSTI]

    Cadden, Charles H.; Hosking, F. Michael

    2003-01-01

    This invention relates to a method for preparing the surface of a ceramic component that enables direct brazing using a non-active braze alloy. The present invention also relates to a method for directly brazing a ceramic component to a ceramic or metal member using this method of surface preparation, and to articles produced by using this brazing method. The ceramic can be high purity alumina. The method comprises applying a first coating of a silicon-bearing oxide material (e.g. silicon dioxide or mullite (3Al.sub.2 O.sub.3.2SiO.sub.2) to the ceramic. Next, a thin coating of active metal (e.g. Ti or V) is applied. Finally, a thicker coating of a non-active metal (e.g. Au or Cu) is applied. The coatings can be applied by physical vapor deposition (PVD). Alternatively, the active and non-active metals can be co-deposited (e.g. by sputtering a target made of mullite). After all of the coatings have been applied, the ceramic can be fired at a high temperature in a non-oxidizing environment to promote diffusion, and to enhance bonding of the coatings to the substrate. After firing, the metallized ceramic component can be brazed to other components using a conventional non-active braze alloy. Alternatively, the firing and brazing steps can be combined into a single step. This process can replace the need to perform a "moly-manganese" metallization step.

  3. Abrasion resistant coating and method of making the same

    DOE Patents [OSTI]

    Sordelet, Daniel J.; Besser, Matthew F.

    2001-06-05

    An abrasion resistant coating is created by adding a ductile phase to a brittle matrix phase during spray coating where an Al--Cu--Fe quasicrystalline phase (brittle matrix) and an FeAl intermetallic (ductile phase) are combined. This composite coating produces a coating mostly of quasicrystal phase and an inter-splat layer of the FeAl phase to help reduce porosity and cracking within the coating. Coatings are prepared by plasma spraying unblended and blended quasicrystal and intermetallic powders. The blended powders contain 1, 5, 10 and 20 volume percent of the intermetallic powders. The unblended powders are either 100 volume percent quasicrystalline or 100 volume percent intermetallic; these unblended powders were studied for comparison to the others. Sufficient ductile phase should be added to the brittle matrix to transform abrasive wear mode from brittle fracture to plastic deformation, while at the same time the hardness of the composite should not be reduced below that of the original brittle phase material.

  4. Process for depositing hard coating in a nozzle orifice

    DOE Patents [OSTI]

    Flynn, P.L.; Giammarise, A.W.

    1991-10-29

    The present invention is directed to a process for coating the interior surfaces of an orifice in a substrate that forms a slurry fuel injection nozzle. In a specific embodiment, the nozzle is part of a fuel injection system for metering a coal-water slurry into a large, medium-speed, multi-cylinder diesel engine. In order to retard erosion of the orifice, the substrate is placed in a chemical vapor deposition (CVD) reaction chamber. A reaction gas is passed into the chamber at a gas temperature below its reaction temperature and is directed through the orifice in the substrate. The gas reaction temperature is a temperature at and above which the reaction gas deposits as a coating, and the reaction gas is of a composition whereby improved resistance to erosion by flow of the particulates in the slurry fuel is imparted by the deposited coating. Only the portion of the substrate in proximity to the orifice to be coated is selectively heated to at least the gas reaction temperature for effecting coating of the orifice's interior surfaces by the vapor deposited coating formed from the reaction gas. 2 figures.

  5. Apparatus for depositing hard coating in a nozzle orifice

    DOE Patents [OSTI]

    Flynn, P.L.; Giammarise, A.W.

    1995-02-21

    The present invention is directed to a process for coating the interior surfaces of an orifice in a substrate that forms a slurry fuel injection nozzle. In a specific embodiment, the nozzle is part of a fuel injection system for metering a coal-water slurry into a large, medium-speed, multi-cylinder diesel engine. In order to retard erosion of the orifice, the substrate is placed in a chemical vapor deposition (CVD) reaction chamber. A reaction gas is passed into the chamber at a gas temperature below its reaction temperature and is directed through the orifice in the substrate. The gas reaction temperature is a temperature at and above which the reaction gas deposits as a coating, and the reaction gas is of a composition whereby improved resistance to erosion by flow of the particulates in the slurry fuel is imparted by the deposited coating. Only the portion of the substrate in proximity to the orifice to be coated is selectively heated to at least the gas reaction temperature for effecting coating of the orifice`s interior surfaces by the vapor deposited coating formed from the reaction gas. 2 figs.

  6. Apparatus for depositing hard coating in a nozzle orifice

    DOE Patents [OSTI]

    Flynn, Paul L.; Giammarise, Anthony W.

    1995-01-01

    The present invention is directed to a process for coating the interior surfaces of an orifice in a substrate that forms a slurry fuel injection nozzle. In a specific embodiment, the nozzle is part of a fuel injection system for metering a coal-water slurry into a large, medium-speed, multi-cylinder diesel engine. In order to retard erosion of the orifice, the substrate is placed in a chemical vapor deposition (CVD) reaction chamber. A reaction gas is passed into the chamber at a gas temperature below its reaction temperature and is directed through the orifice in the substrate. The gas reaction temperature is a temperature at and above which the reaction gas deposits as a coating, and the reaction gas is of a composition whereby improved resistance to erosion by flow of the particulates in the slurry fuel is imparted by the deposited coating. Only the portion of the substrate in proximity to the orifice to be coated is selectively heated to at least the gas reaction temperature for effecting coating of the orifice's interior surfaces by the vapor deposited coating formed from the reaction gas.

  7. Pipeline coating impedance effects on powerline fault current coupling

    SciTech Connect (OSTI)

    Dabkowski, J.

    1989-12-01

    Prior research leading to the development of predictive electromagnetic coupling computer codes has shown that the coating conductance is the principal factor in determining the response of a pipeline to magnetic induction from an overhead power transmission line. Under power line fault conditions, a high voltage may stress the coating causing a significant change in its conductance, and hence, the coupling response. Based upon laboratory experimentation and analysis, a model has been developed which allows prediction of the modified coating characteristics when subjected to high voltage during fault situations. Another program objective was the investigation of a method to determine the high voltage behavior of an existing coating from low voltage in situ field measurements. Such a method appeared conceptually feasible for non-porous coatings whose conductance is primarily a result of current leakage through existing holidays. However, limited testing has shown that difficulties in determining the steel-electrolyte capacitance limit the application of the method Methods for field measurement of the pipeline coating conductance were also studied for both dc ad ac signal excitation. Ac techniques offer the advantage that cathodic protection current interruption is not required, thus eliminating depolarization effects. However, ac field measurement techniques need additional refinement before these methods can be generally applied. 53 figs.

  8. Process for depositing hard coating in a nozzle orifice

    DOE Patents [OSTI]

    Flynn, Paul L.; Giammarise, Anthony W.

    1991-01-01

    The present invention is directed to a process for coating the interior surfaces of an orifice in a substrate that forms a slurry fuel injection nozzle. In a specific embodiment, the nozzle is part of a fuel injection system for metering a coal-water slurry into a large, medium-speed, multi-cylinder diesel engine. In order to retard erosion of the orifice, the substrate is placed in a chemical vapor deposition (CVD) reaction chamber. A reaction gas is passed into the chamber at a gas temperature below its reaction temperature and is directed through the orifice in the substrate. The gas reaction temperature is a temperature at and above which the reaction gas deposits as a coating, and the reaction gas is of a composition whereby improved resistance toerosion by flow of the particulates in the slurry fuel is imparted by the deposited coating. Only the portion of the substrate in proximity to the orifice to be coated is selectively heated to at least the gas reaction temperature for effecting coating of the orifice's interior surfaces by the vapor deposited coating formed from the reaction gas.

  9. POLYETHERSULFONE COATING FOR MITIGATING CORROSION OF STEEL IN GEOTHERMAL ENVIRONMENT.

    SciTech Connect (OSTI)

    SUGAMA, T.

    2005-06-01

    Emphasis was directed toward evaluating the usefulness of a polyethersulfone (PES)-dissolved N-methyl pyrrolidone (NMP) solvent precursor as a low-temperature film-forming anti-corrosion coating for carbon steel in simulated geothermal environments at brine temperatures up to 300 C. A {approx} 75 {micro}m thick PES coating performed well in protecting the steel against corrosion in brine at 200 C. However, at {>=} 250 C, the PES underwent severe hydrothermal oxidation that caused the cleavage of sulfone- and ether-linkages, and the opening of phenyl rings. These, in turn, led to sulfone {yields} benzosulfonic acid and ether {yields} benzophenol-type oxidation derivative transformations, and the formation of carbonyl-attached open rings, thereby resulting in the incorporation of the functional groups, hydroxyl and carbonyl, into the coating. The presence of these functional groups raised concerns about the diminutions in water-shedding and water-repellent properties that are important properties of the anti-corrosion coatings; such changes were reflected in an enhancement of the magnitude of susceptibility of the coatings surfaces to moisture. Consequently, the disintegration of the PES structure by hydrothermal oxidation was detrimental to the maximum efficacy of the coating in protecting the steel against corrosion, allowing the corrosive electrolytes to infiltrate easily through it.

  10. Sol-gel optical coatings for lasers, 3

    SciTech Connect (OSTI)

    Floch, H.G.; Belleville, P.F.; Priotton, J.J.; Pegon, P.M.; Dijonneau, C.S.; Guerain, J.

    1995-12-01

    The planned megajoule-class neodymium-glass laser system will be the world`s largest. The proposed CEL-V design, based on the use of 240 beams, will use 50--150 times more optical material than did Phebus. Almost 10,000 m{sup 2} of coated area are required for optical coatings; this is a factor of almost 500 increase over Phebus. Lens, flashlamp, blastshield, harmonic converter, debris shield, window and cavity-end mirror coatings by the sol-gel process represent >96% of the entire coated area. The remaining <4% are high-rejection-ratio polarizers, pick-off cavity mirrors and transport mirrors. Cost estimates show that, for coating deposition, the sol-gel technique provides considerable saving compared to the more conventional e-beam deposition technique. Highly reflective and polarizing sol-gel-derived optical coatings have been prepared and tested for the proposed French megajoule neodymium-glass laser. Laser damage studies are reported here.

  11. DEVELOPMENT AND ASSESSMENT OF COATINGS FOR FUTURE POWER GENERATION TURBINES

    SciTech Connect (OSTI)

    Alvin, Maryanne; Klotz, K.; McMordie, B.; Gleeson, B.; Zhu, D.; Warnes, B.; Kang, B.; Tannenbaum, J.

    2012-01-01

    The NETL-Regional University Alliance (RUA) continues to advance technology development critical to turbine manufacturer efforts for achieving DOE Fossil Energy (FE's) Advanced Turbine Program Goals. In conjunction with NETL, Coatings for Industry (CFI), the University of Pittsburgh, NASA GRC, and Corrosion Control Inc., efforts have been focused on development of composite thermal barrier coating (TBC) architectures that consist of an extreme temperature coating, a commercially applied 7-8 YSZ TBC, a reduced cost bond coat, and a diffusion barrier coating that are applied to nickel-based superalloys or single crystal airfoil substrate materials for use at temperatures >1450 C (> 2640 F). Additionally, construction of a unique, high temperature ({approx}1100 C; {approx}2010 F), bench-scale, micro-indentation, nondestructive (NDE) test facility at West Virginia University (WVU) was completed to experimentally address in-situ changes in TBC stiffness during extended cyclic oxidation exposure of coated single crystal coupons in air or steam containing environments. The efforts and technical accomplishments in these areas are presented in the following sections of this paper.

  12. Boron carbide coating deposition on tungsten and testing of tungsten layers and coating under intense plasma load

    SciTech Connect (OSTI)

    Airapetov, A. A.; Begrambekov, L. B.; Buzhinskiy, O. I.; Grunin, A. V.; Gordeev, A. A.; Zakharov, A. M.; Kalachev, A. M.; Sadovskiy, Ya. A.; Shigin, P. A.

    2015-12-15

    A device intended for boron carbide coating deposition and material testing under high heat loads is presented. A boron carbide coating 5 μm thick was deposited on the tungsten substrate. These samples were subjected to thermocycling loads in the temperature range of 400–1500°C. Tungsten layers deposited on tungsten substrates were tested in similar conditions. Results of the surface analysis are presented.

  13. S-H bond activation in H{sub 2}S and thiols by [RhMn(CO){sub 4}(Ph{sub 2}PCH{sub 2}PPh{sub 2}){sub 2}]. Compounds containing terminal or bridging sulfhydryl and thiolato groups

    SciTech Connect (OSTI)

    Li-Sheng Wang; McDonald, R.; Cowie, M. [Univ. of Alberta, Edmonton (Canada)

    1994-08-17

    A rhodium-magnesium carbonyl-phosphines reacted with thiols to yield the products of S-H addition. Further reactions result in bridging sulfide can be alkylated or protonated at the sulfur. The compound, [RhMn(CO){sub 4}({mu}-S)(dppm){sub 2}], was structurally characterized by X-ray crystallography.

  14. Thermal-barrier coatings: coating methods, performance, and heat-engine applications. July 1982-April 1989 (Citations from the EI Engineering Meetings data base). Report for July 1982-April 1989

    SciTech Connect (OSTI)

    Not Available

    1989-04-01

    This bibliography contains citations from conference proceedings concerning coating methods, performance evaluations, and applications of thermal-barrier coatings as protective coatings for heat-engine components against high temperature corrosions and chemical erosions. The developments of thermal barrier-coating techniques for high performance and reliable gas turbines, diesel engines, jet engines, and internal combustion engines are presented. Topics include plasma-sprayed-coating methods, yttria-stabilized zirconia coatings, coating-life models, coating failure and durability, thermal shock and cycling, and acoustic-emission analysis of coatings. (Contains 101 citations fully indexed and including a title list.)

  15. Dehydration processes using membranes with hydrophobic coating

    DOE Patents [OSTI]

    Huang, Yu; Baker, Richard W; Aldajani, Tiem; Ly, Jennifer

    2013-07-30

    Processes for removing water from organic compounds, especially polar compounds such as alcohols. The processes include a membrane-based dehydration step, using a membrane that has a dioxole-based polymer selective layer or the like and a hydrophilic selective layer, and can operate even when the stream to be treated has a high water content, such as 10 wt % or more. The processes are particularly useful for dehydrating ethanol.

  16. Temporary coatings for protection of microelectronic devices during packaging

    DOE Patents [OSTI]

    Peterson, Kenneth A.; Conley, William R.

    2005-01-18

    The present invention relates to a method of protecting a microelectronic device during device packaging, including the steps of applying a water-insoluble, temporary protective coating to a sensitive area on the device; performing at least one packaging step; and then substantially removing the protective coating, preferably by dry plasma etching. The sensitive area can include a released MEMS element. The microelectronic device can be disposed on a wafer. The protective coating can be a vacuum vapor-deposited parylene polymer, silicon nitride, metal (e.g. aluminum or tungsten), a vapor deposited organic material, cynoacrylate, a carbon film, a self-assembled monolayered material, perfluoropolyether, hexamethyldisilazane, or perfluorodecanoic carboxylic acid, silicon dioxide, silicate glass, or combinations thereof. The present invention also relates to a method of packaging a microelectronic device, including: providing a microelectronic device having a sensitive area; applying a water-insoluble, protective coating to the sensitive area; providing a package; attaching the device to the package; electrically interconnecting the device to the package; and substantially removing the protective coating from the sensitive area.

  17. Microfabricated alkali vapor cell with anti-relaxation wall coating

    SciTech Connect (OSTI)

    Straessle, R.; Ptremand, Y.; Briand, D.; Rooij, N. F. de; Pellaton, M.; Affolderbach, C.; Mileti, G.

    2014-07-28

    We present a microfabricated alkali vapor cell equipped with an anti-relaxation wall coating. The anti-relaxation coating used is octadecyltrichlorosilane and the cell was sealed by thin-film indium-bonding at a low temperature of 140?C. The cell body is made of silicon and Pyrex and features a double-chamber design. Depolarizing properties due to liquid Rb droplets are avoided by confining the Rb droplets to one chamber only. Optical and microwave spectroscopy performed on this wall-coated cell are used to evaluate the cell's relaxation properties and a potential gas contamination. Double-resonance signals obtained from the cell show an intrinsic linewidth that is significantly lower than the linewidth that would be expected in case the cell had no wall coating but only contained a buffer-gas contamination on the level measured by optical spectroscopy. Combined with further experimental evidence this proves the presence of a working anti-relaxation wall coating in the cell. Such cells are of interest for applications in miniature atomic clocks, magnetometers, and other quantum sensors.

  18. Sol-gel optical coatings for lasers, 2

    SciTech Connect (OSTI)

    Floch, H.G.; Belleville, P.F.; Priotton, J.J.; Pegon, P.M.; Dijonneau, C.S.; Guerain, J.

    1995-11-01

    There are three basic types of antireflective (AR) coatings. The first is a single-layer coating in which the coating index is equal to the square root of the index of the substrate, assuming air is the external medium. The second type is a system of two or more layers of different indexes. The third type is a graded-index system, where the index is uniformly and continuously graded from the substrate to the external medium. Low reflection ranges from narrow for the single-layer to broad for the graded-layer and multilayered with a large number of layers. Four types of sol-gel AR coatings have been developed at CEL-V. They are based on single-layer or multilayer designs. They consist mainly of amorphous silica in the polymeric and/or colloidal state, combined in certain cases with other metallic oxides, binders, fillers, hydrophobic and lubricating agents, and adhesion promoters. These antireflective sol-gel-derived optical coatings have been prepared and tested for the proposed French megajoule neodymium-glass laser.

  19. Antireflective graded index silica coating, method for making

    DOE Patents [OSTI]

    Yoldas, Bulent E.; Partlow, Deborah P.

    1985-01-01

    Antireflective silica coating for vitreous material is substantially non-reflecting over a wide band of radiations. This is achieved by providing the coating with a graded degree of porosity which grades the index of refraction between that of air and the vitreous material of the substrate. To prepare the coating, there is first prepared a silicon-alkoxide-based coating solution of particular polymer structure produced by a controlled proportion of water to alkoxide and a controlled concentration of alkoxide to solution, along with a small amount of catalyst. The primary solvent is alcohol and the solution is polymerized and hydrolized under controlled conditions prior to use. The prepared solution is applied as a film to the vitreous substrate and rapidly dried. It is thereafter heated under controlled conditions to volatilize the hydroxyl radicals and organics therefrom and then to produce a suitable pore morphology in the residual porous silica layer. The silica layer is then etched in order to enlarge the pores in a graded fashion, with the largest of the pores remaining being sufficiently small that radiations to be passed through the substrate are not significantly scattered. For use with quartz substrates, extremely durable coatings which display only 0.1% reflectivity have been prepared.

  20. Metallic coatings on silicon substrates, and methods of forming metallic coatings on silicon substrates

    DOE Patents [OSTI]

    Branagan, Daniel J.; Hyde, Timothy A.; Fincke, James R.

    2008-03-11

    The invention includes methods of forming a metallic coating on a substrate which contains silicon. A metallic glass layer is formed over a silicon surface of the substrate. The invention includes methods of protecting a silicon substrate. The substrate is provided within a deposition chamber along with a deposition target. Material from the deposition target is deposited over at least a portion of the silicon substrate to form a protective layer or structure which contains metallic glass. The metallic glass comprises iron and one or more of B, Si, P and C. The invention includes structures which have a substrate containing silicon and a metallic layer over the substrate. The metallic layer contains less than or equal to about 2 weight % carbon and has a hardness of at least 9.2 GPa. The metallic layer can have an amorphous microstructure or can be devitrified to have a nanocrystalline microstructure.