Adding an energy-like conservation law to the leapfrog integrator
A. C. Maggs
2013-01-09
The leapfrog integrator is widely used because of its excellent stability in molecular dynamics simulation. This is recognized as being due to the existence of a discrete variational structure of the equations. We introduce a modified leapfrog method which includes an additional energy-like conservation law by embedding a molecular dynamics simulation within a larger dynamical system.
Proportional Integral Distributed Optimization for Dynamic Network Topologies
Egerstedt, Magnus
Proportional Integral Distributed Optimization for Dynamic Network Topologies Greg Droge, Magnus Egerstedt Abstract--This paper investigates proportional-integral distributed optimization when the underlying informa- tion exchange network is dynamic. Proportional-integral distributed optimization
Integrability in the mesoscopic dynamics
Artur Sowa
2004-09-12
The Mesoscopic Mechanics (MeM), which has been introduced in a previous paper, is relevant to the electron gas confined to two spatial dimensions. It predicts a special way of collective response of correlated electrons to the external magnetic field. The dynamic variable of this theory is a finite-dimensional operator, which is required to satisfy the mesoscopic Schr\\"{o}dinger equation (cf. text). In this article, we describe general solutions of the mesoscopic Schr\\"{o}dinger equation. Our approach is specific to the problem at hand. It relies on the unique structure of the equation and makes no reference to any other techniques, with the exception of the geometry of unitary groups. In conclusion, a surprising fact comes to light. Namely, the mesoscopic dynamics "filters" through the (microscopic) Schr\\"odinger dynamics as the latter turns out to be a clearly separable part, in fact an autonomous factor, of the evolution. This is a desirable result also from the physical standpoint.
Nonlinear dynamics of a system of particle-like wavepackets
A. Babin; A. Figotin
2007-08-13
This work continues our studies of nonlinear evolution of a system of wavepackets. We study a wave propagation governed by a nonlinear system of hyperbolic PDE's with constant coefficients with the initial data being a multi-wavepacket. By definition a general wavepacket has a well defined principal wave vector, and, as we proved in previous works, the nonlinear dynamics preserves systems of wavepackets and their principal wave vectors. Here we study the nonlinear evolution of a special class of wavepackets, namely particle-like wavepackets. A particle-like wavepacket is of a dual nature: on one hand, it is a wave with a well defined principal wave vector, on the other hand, it a particle in the sense that it can be assigned a well defined position in the space. We prove that under the nonlinear evolution a generic multi-particle wavepacket remains to be a multi-particle wavepacket with a high accuracy, and every constituting single particle-like wavepacket not only preserves its principal wave number but also it has a well-defined space position evolving with a constant velocity which is its group velocity. Remarkably the described properties hold though the involved single particle-like wavepackets undergo nonlinear interactions and multiple collisions in the space. We also prove that if principal wavevectors of multi-particle wavepacket are generic, the result of nonlinear interactions between different wavepackets is small and the approximate linear superposition principle holds uniformly with respect to the initial spatial positions of wavepackets.
DYNAMIC DATABASE INTEGRATION IN A JDBC DRIVER Terrence Mason
Lawrence, Ramon
-lawrence@uiowa.edu Keywords: integration, database, schema, metadata, annotation, evolution, dynamic, JDBC, conceptualDYNAMIC DATABASE INTEGRATION IN A JDBC DRIVER Terrence Mason Iowa Database and Emerging Iowa Database and Emerging Applications Laboratory, Computer Science University of Iowa Email: ramon
Integrated substation looks like one RTU to dispatchers
Koch, W.
1995-12-01
Traditionally, supervisory control and data acquisition systems (Scada) use a master/slave arrangement. The master Scada computer polls individual circuit devices for information, or the devices may report (by exception) to the computer. The substation engineering department of Portland General Electric Co (PCE) is now pioneering a new arrangement in which all devices in a substation communicate with each other and a local computer over a data bus. A single communications line connects the Scada master to the same bus for control and/or monitoring. The new approach is known as a substation integration system (SIS). Thus, for a lower initial cost, substation integration: eliminates the need for redundant equipment - such as panel meters, annunciators, transducers, sequence-of-event recorders, auxiliary tripping relays. Scada RTU, control, and transfer switches; reduces control house size by 25% by reducing wiring and using panel space more efficiently; provides a standardized user interface for easy data access, both locally and remotely; is flexible and expandable because of its modularity and use of non-proprietary hardware and software; improves operability, maintainability and reliability through immediate access to key data; and, reduces overall life-cycle costs by reducing travel and outage time through remote access to substation information. 5 figs.
Dynamics of Synaptically Interacting Integrate-and-Fire Neurons
Coombes, Stephen
Dynamics of Synaptically Interacting Integrate-and-Fire Neurons by Matthew Philip James A DOCTORAL evidence which suggests that the response of a neuron is strongly dependent upon its previous activity of integrate-and-fire neurons. Self-consistent speeds and periods are determined from integro
Integrated Dynamic Simulation for Process Optimization and Control
Rubloff, Gary W.
Integrated Dynamic Simulation for Process Optimization and Control G. Brian Lu, Laura L. Tedder Film Deposition · Applications in Process Optimization for Manufacturing and the Environment Process efficient processes, equipment, sensor, and control systems #12;Dynamic Simulators for Sensor-Based Process
Dynamic Genomes of Eukaryotes and the Maintenance of Genomic Integrity
Katz, Laura
Dynamic Genomes of Eukaryotes and the Maintenance of Genomic Integrity Eukaryotes specify a genome to be inherited stably, enabling dynamic rearrangements and amplifications of other genomic elements Laura Wegener Parfrey and Laura A. Katz M any biologists assume that eu- karyotic genomes are transmit- ted stably
Towards Better Integrators for Dissipative Particle Dynamics Simulations
Gerhard Besold; Ilpo Vattulainen; Mikko Karttunen; James M. Polson
2000-10-16
Coarse-grained models that preserve hydrodynamics provide a natural approach to study collective properties of soft-matter systems. Here, we demonstrate that commonly used integration schemes in dissipative particle dynamics give rise to pronounced artifacts in physical quantities such as the compressibility and the diffusion coefficient. We assess the quality of these integration schemes, including variants based on a recently suggested self-consistent approach, and examine their relative performance. Implications of integrator-induced effects are discussed.
Dynamical many-body localization in an integrable model
Aydin Cem Keser; Sriram Ganeshan; Gil Refael; Victor Galitski
2015-06-17
We investigate dynamical many-body localization and delocalization in an integrable system of periodically-kicked, interacting linear rotors. The Hamiltonian we investigate is linear in momentum, and its Floquet evolution operator is analytically tractable for arbitrary interaction strengths. One of the hallmarks of this model is that depending on certain parameters, it manifest both localization and delocalization in momentum space. We explicitly show that, for this model, the energy being bounded at long times is not a sufficient condition for dynamical localization. Besides integrals of motion associated to the integrability, this model manifests additional integrals of motion, which are the exclusive consequence of dynamical many-body localization. We also propose an experimental scheme, involving voltage-biased Josephson junctions, to realize such many-body kicked models.
The spin glass-like dynamics of gelatin gels
Alan Parker; Valery Normand
2003-06-03
We show that there are several striking parallels between the dynamics of gelatin gels and spin glasses. In general, glassy systems retain a memory of their past history. A key characteristic differentiating spin glasses from most other glassy systems is that on cooling they appear to "forget" what happened just below the glass transition temperature, but the memory is recovered on heating. We show that gelatin gels also behave in this way. Both systems show critical scaling of the kinetics with temperature and undergo physical aging, that is they never reach equilibrium, but continue to harden indefinitely at a rate which is linear in log(time). The parallels between the dynamics of these two completely different kinds of condensed matter strongly suggest that they share an underlying theory.
When Like Charges Attract: Interactions and Dynamics in Charge-Stabilized Colloidal
Grier, David
When Like Charges Attract: Interactions and Dynamics in Charge-Stabilized Colloidal Suspensions as protein folding, DNA complexation, and the stability of industrial suspensions. Since the goal highly charged colloidal spheres dispersed in simple electrolytes yield several surprises. Isolated pairs
A Dynamic Solar Core model: the SSM-like solution
Attila Grandpierre
1998-08-31
I point out that the all the arguments against an astrophysical solution do not exclude a yet not recognised class of solar models, in which an explosive energy source is present in the solar core besides the standard pp and CNO cycle. It is shown from first principle physics that stars have a non-pp,CNO source: local thermonuclear runaways. I derive a model independent inequality, which shows that the problem of the missing beryllium neutrinos lies in that the SuperKamiokande contains a term arising from neutrinos from a runaway source which can produce high-energy electrons and high-energy axions, and muon and tau neutrinos. I point out, that the temperature dependence of the individual neutrino fluxes is related to pure nuclear physics but the usual luminosity constraint is model dependent and actually is a questionable assumption. Allowing non-pp,CNO reaction chains a new approach arises to interpret the neutrino detector data. The explicit temperature dependence leads to $\\Phi_{pp} \\propto T^4$ instead of the usual $\\Phi_{pp} \\propto T^{-1/2}$ for the SSM luminosity constraint. I assume a Sun analogue to the SSM with a different $T_c$. The separate neutrino detector equations lead to separate detector-related temperatures with the neutrino detector data. The results show a slightly lower than standard central temperature. I attempt to show that helioseismology is not in a necessary conflict with the dynamic solar model presented here. The results of the calculations may propose solutions to the problems of solar and atmospheric neutrino oscillations without an ad hoc introduction of sterile neutrinos and present predictions to Borexino and SNO measurements. {\\it PACS numbers}: 26.65+t, 26.30.+k, 96.60Jw, 95.30.Cq
MIDAS: Multi-device Integrated Dynamic Activity Spaces
Karadkar, Unmil Purushottam
2012-02-14
users to jointly harness the characteristics of all their appliances for a richer information access environment. In this dissertation, I report on the design and development of Multi-device Integrated Dynamic Activity Spaces (MIDAS), a software... example, large images or PDF files cannot be displayed effectively on a mobile phone), another could render these without compromising quality. Thus, the first goal is to design a software architecture that will deliver documents to multiple appliances...
Parameters of Integral Circulant Graphs and Periodic Quantum Dynamics
Nitin Saxena; Simone Severini; Igor Shparlinski
2007-03-26
The intention of the paper is to move a step towards a classification of network topologies that exhibit periodic quantum dynamics. We show that the evolution of a quantum system, whose hamiltonian is identical to the adjacency matrix of a circulant graph, is periodic if and only if all eigenvalues of the graph are integers (that is, the graph is integral). Motivated by this observation, we focus on relevant properties of integral circulant graphs. Specifically, we bound the number of vertices of integral circulant graphs in terms of their degree, characterize bipartiteness and give exact bounds for their diameter. Additionally, we prove that circulant graphs with odd order do not allow perfect state transfer.
Quantifying chaotic dynamics from integrate-and-fire processes
Pavlov, A. N.; Pavlova, O. N.; Mohammad, Y. K.; Kurths, J.
2015-01-15
Characterizing chaotic dynamics from integrate-and-fire (IF) interspike intervals (ISIs) is relatively easy performed at high firing rates. When the firing rate is low, a correct estimation of Lyapunov exponents (LEs) describing dynamical features of complex oscillations reflected in the IF ISI sequences becomes more complicated. In this work we discuss peculiarities and limitations of quantifying chaotic dynamics from IF point processes. We consider main factors leading to underestimated LEs and demonstrate a way of improving numerical determining of LEs from IF ISI sequences. We show that estimations of the two largest LEs can be performed using around 400 mean periods of chaotic oscillations in the regime of phase-coherent chaos. Application to real data is discussed.
Discrete molecular dynamics studies of the folding of a protein-like model
Buldyrev, Sergey
Discrete molecular dynamics studies of the folding of a protein-like model Nikolay V Dokholyan1 to resolve in time the folding of model proteins in computer simulations. Different computational approaches). Results: We used the recently proposed approach of Zhou and Karplus to study the folding of a protein
The Notch ligand Delta-like 1 integrates inputs from TGFbeta/Activin and Wnt pathways
Bordonaro, Michael Tewari, Shruti Atamna, Wafa Lazarova, Darina L.
2011-06-10
Unlike the well-characterized nuclear function of the Notch intracellular domain, it has been difficult to identify a nuclear role for the ligands of Notch. Here we provide evidence for the nuclear function of the Notch ligand Delta-like 1 in colon cancer (CC) cells exposed to butyrate. We demonstrate that the intracellular domain of Delta-like 1 (Dll1icd) augments the activity of Wnt signaling-dependent reporters and that of the promoter of the connective tissue growth factor (CTGF) gene. Data suggest that Dll1icd upregulates CTGF promoter activity through both direct and indirect mechanisms. The direct mechanism is supported by co-immunoprecipitation of endogenous Smad2/3 proteins and Dll1 and by chromatin immunoprecipitation analyses that revealed the occupancy of Dll1icd on CTGF promoter sequences containing a Smad binding element. The indirect upregulation of CTGF expression by Dll1 is likely due to the ability of Dll1icd to increase Wnt signaling, a pathway that targets CTGF. CTGF expression is induced in butyrate-treated CC cells and results from clonal growth assays support a role for CTGF in the cell growth-suppressive role of butyrate. In conclusion, integration of the Notch, Wnt, and TGFbeta/Activin signaling pathways is in part mediated by the interactions of Dll1 with Smad2/3 and Tcf4.
Optimization of hybrid dynamic/steady-state processes using process integration
Grooms, Daniel Douglas
2009-06-02
PROBLEM STATEMENT................................................................ 5 III OPTIMAL SYNTHESIS AND SCHEDULING OF HYBRID DYNAMIC/STEADY-STATE MASS EXCHANGE NETWORKS..................................................................................... 23 IV OPTIMAL SYNTHESIS AND SCHEDULING OF HYBRID DYNAMIC/STEADY-STATE PROPERTY INTEGRATION NETWORKS ......................................................... 24 4.1 Introduction...
Finite Temperature Dynamical Correlations in Massive Integrable Quantum Field Theories
F. H. L. Essler; R. M. Konik
2009-10-07
We consider the finite-temperature frequency and momentum dependent two-point functions of local operators in integrable quantum field theories. We focus on the case where the zero temperature correlation function is dominated by a delta-function line arising from the coherent propagation of single particle modes. Our specific examples are the two-point function of spin fields in the disordered phase of the quantum Ising and the O(3) nonlinear sigma models. We employ a Lehmann representation in terms of the known exact zero-temperature form factors to carry out a low-temperature expansion of two-point functions. We present two different but equivalent methods of regularizing the divergences present in the Lehmann expansion: one directly regulates the integral expressions of the squares of matrix elements in the infinite volume whereas the other operates through subtracting divergences in a large, finite volume. Our central results are that the temperature broadening of the line shape exhibits a pronounced asymmetry and a shift of the maximum upwards in energy ("temperature dependent gap"). The field theory results presented here describe the scaling limits of the dynamical structure factor in the quantum Ising and integer spin Heisenberg chains. We discuss the relevance of our results for the analysis of inelastic neutron scattering experiments on gapped spin chain systems such as CsNiCl3 and YBaNiO5.
OPTICAL AND DYNAMICAL CHARACTERIZATION OF COMET-LIKE MAIN-BELT ASTEROID (596) SCHEILA
Hsieh, Henry H.; Yang Bin; Haghighipour, Nader, E-mail: hsieh@ifa.hawaii.edu, E-mail: yangbin@ifa.hawaii.edu, E-mail: nader@ifa.hawaii.edu [Institute for Astronomy, Univ. of Hawaii, 2680 Woodlawn Drive, Honolulu, HI 96822 (United States)
2012-01-01
We present observations and a dynamical analysis of the comet-like main-belt object, (596) Scheila. V-band photometry obtained on UT 2010 December 12 indicates that Scheila's dust cloud has a scattering cross-section {approx}1.4 times larger than that of the nucleus, corresponding to a dust mass of M{sub d} {approx} 3 Multiplication-Sign 10{sup 7} kg. V-R color measurements indicate that both the nucleus and dust are redder than the Sun, with no significant color differences between the dust cloud's northern and southern plumes. We also undertake an ultimately unsuccessful search for CN emission, where we find CN and H{sub 2}O production rates of Q{sub CN} < 9 Multiplication-Sign 10{sup 23} s{sup -1} and Q{sub H{sub 2O}}<10{sup 27} s{sup -1}. Numerical simulations indicate that Scheila is dynamically stable for >100 Myr, suggesting that it is likely native to its current location. We also find that it does not belong to a dynamical asteroid family of any significance. We consider sublimation-driven scenarios that could produce the appearance of multiple plumes of dust emission, but reject them as being physically implausible. Instead, we concur with previous studies that the unusual morphology of Scheila's dust cloud is most simply explained by a single oblique impact, meaning that this object is likely not a main-belt comet but is instead the second disrupted asteroid after P/2010 A2 (LINEAR) to be discovered.
Integration and Dynamics of a Renewable Regenerative Hydrogen Fuel Cell System
Victoria, University of
Integration and Dynamics of a Renewable Regenerative Hydrogen Fuel Cell System by Alvin Peter, hydrogen and electricity storage, and fuel cells. A special design feature of this test bed is the ability of the author. #12;ii Supervisory Committee Integration and Dynamics of a Renewable Regenerative Hydrogen Fuel
Integrated system dynamics toolbox for water resources planning.
Reno, Marissa Devan; Passell, Howard David; Malczynski, Leonard A.; Peplinski, William J.; Tidwell, Vincent Carroll; Coursey, Don; Hanson, Jason; Grimsrud, Kristine; Thacher, Jennifer; Broadbent, Craig; Brookshire, David; Chemak, Janie; Cockerill, Kristan; Aragon, Carlos , Socorro, NM); Hallett, Heather , Socorro, NM); Vivoni, Enrique , Socorro, NM); Roach, Jesse
2006-12-01
Public mediated resource planning is quickly becoming the norm rather than the exception. Unfortunately, supporting tools are lacking that interactively engage the public in the decision-making process and integrate over the myriad values that influence water policy. In the pages of this report we document the first steps toward developing a specialized decision framework to meet this need; specifically, a modular and generic resource-planning ''toolbox''. The technical challenge lies in the integration of the disparate systems of hydrology, ecology, climate, demographics, economics, policy and law, each of which influence the supply and demand for water. Specifically, these systems, their associated processes, and most importantly the constitutive relations that link them must be identified, abstracted, and quantified. For this reason, the toolbox forms a collection of process modules and constitutive relations that the analyst can ''swap'' in and out to model the physical and social systems unique to their problem. This toolbox with all of its modules is developed within the common computational platform of system dynamics linked to a Geographical Information System (GIS). Development of this resource-planning toolbox represents an important foundational element of the proposed interagency center for Computer Aided Dispute Resolution (CADRe). The Center's mission is to manage water conflict through the application of computer-aided collaborative decision-making methods. The Center will promote the use of decision-support technologies within collaborative stakeholder processes to help stakeholders find common ground and create mutually beneficial water management solutions. The Center will also serve to develop new methods and technologies to help federal, state and local water managers find innovative and balanced solutions to the nation's most vexing water problems. The toolbox is an important step toward achieving the technology development goals of this center.
Non-hypersingular boundary integral equations for 3-D non-planar crack dynamics
Madariaga, RaÃºl
Non-hypersingular boundary integral equations for 3-D non-planar crack dynamics T. Tada, E, are removed by way of a technique of regu- larization based on integration by parts. The variables are denoted, in time and space, of the slip along the crack and a set of integration kernels. Then a limiting process
Calculation of heat capacities of light and heavy water by path-integral molecular dynamics
Nielsen, Steven O.
Calculation of heat capacities of light and heavy water by path-integral molecular dynamics 30 September 2005 As an application of atomistic simulation methods to heat capacities, path-integral has estimated the heat capacities too high, the quantum simulation based on path-integral molecular
Notes on Feynman path integral-like methods of quantization on Riemannian manifolds
Yoshihisa Miyanishi
2015-12-20
We propose an alternative method for Feynman path integrals on compact Riemannian manifolds. Our method employs action integrals along the shortest paths. In the case of rank 1 locally symmetric Riemannian manifolds, we prove the strong convergence of time slicing products of oscillatory integrals for low energy functions. Moreover, the strong limit includes Dewitt curvature $R/6$, where $R$ denotes the scalar curvature of a Riemannian manifold.
AP Theory III: Cone-like Graded SUSY, Dynamic Dark Energy and the YM Millenium Problem
H. E. Winkelnkemper
2010-03-26
Artin Presentation Theory, (AP Theory), is a new, direct infusion, via pure braid theory, of discrete group theory, (i.e., symmetry in its purest form), into the theory of {\\it smooth} 4-manifolds, (i.e.,$(3+1)$-Quantum Gravity in its purest topological form), thus exhibiting the most basic, rigorous, universal, model-free intrinsic {\\it gauge-gravity} duality in a non-infinitesimal, cone-like graded, as holographic as possible, model-independent, non-perturbative, background-independent, parameter-free manner. {\\it In AP Theory even smooth topology change becomes gauge-theoretic, setting the stage for a rigorous smooth topological $(3+1)$-QFT of Dynamic Dark Energy.} In this theory, the rigid $\\infty$ of the dimension of classical Hilbert space is substituted by the dynamic $\\infty$ of the $\\infty$ generation at each stage of a cone-like graded subgroup of topology-changing transitions/interactions. As a corollary, the Cosmological Constant problem and the YM Millenium Mass Gap problem, two of the most perplexing main problems of modern physics, become rigorously, intimately mathematically related, by having the same qualitative {\\it dynamical} roots. Ultimately our main point is meta-mathematical, as far as modern physics is concerned: due to the discrete group-theoretic conceptual simplicity of the theory, with its group-theoretic 'Planckian membrane/discreteness' starting point, {\\it the fact that it is not just a mere mathematical model,} and all its properties above, any other {\\it mathematically rigorous} approach has to built on AP Theory and be topologically absorbed and enveloped by it.
Towards Baseline Operation Integrating ITER-Relevant Core and Edge Plasma within the Constraint of the ITER-Like Wall at JET
(Re-)integration dynamics of the PC platform
Ong, Chin-Ann, 1972-
2004-01-01
Since the 1990's, the PC has come under increasing integration pressure. Many electronic components which had previously existed as separate standalone components have been integrated onto the PC mainboard. Examples include ...
Be Migration Studies at JET and their Interpretation by an Integrated Model for Plasma Impurity Transport and Wall Composition Dynamics
Self-propelled Worm-like Filaments: Spontaneous Spiral Formation, Structure, and Dynamics
Rolf E. Isele-Holder; Jens Elgeti; Gerhard Gompper
2015-08-06
Worm-like filaments that are propelled homogeneously along their tangent vector are studied by Brownian dynamics simulations. Systems in two dimensions are investigated, corresponding to filaments adsorbed to interfaces or surfaces. A large parameter space covering weak and strong propulsion, as well as flexible and stiff filaments is explored. For strongly propelled and flexible filaments, the free-swimming filaments spontaneously form stable spirals. The propulsion force has a strong impact on dynamic properties, such as the rotational and translational mean square displacement and the rate of conformational sampling. In particular, when the active self-propulsion dominates thermal diffusion, but is too weak for spiral formation, the rotational diffusion coefficient has an activity-induced contribution given by $v_c/\\xi_P$, where $v_c$ is the contour velocity and $\\xi_P$ the persistence length. In contrast, structural properties are hardly affected by the activity of the system, as long as no spirals form. The model mimics common features of biological systems, such as microtubules and actin filaments on motility assays or slender bacteria, and artificially designed microswimmers.
Rojas Paico, Danny H.
2001-01-01
The integration of dynamic data into reservoir models is known as automatic history matching, and it requires the solution of an inverse problem through the minimization of an objective function. The objective function to ...
Integrated Dynamic Electron Solutions, Inc. | Department of Energy
Broader source: Energy.gov (indexed) [DOE]
Laboratory 10147 likes SH Coatings, based in Dallas, Texas, employs Super Hydrophobic Coating (SHC) technology that protects power systems by preventing ice accumulation on power...
PhD Position Available: integrative biomechanics, computational modeling, nonlinear dynamics
Clewley, Robert
PhD Position Available: integrative biomechanics, computational modeling, nonlinear dynamics and mathematical analysis of biomechanical and neural control systems. We are looking for an excellent and highly.edu/~biodhe/#Research). These are being used to study the Crayfish swim escape mechanism as a case study in integrative biomechanical
DYNAMICS OF CURRENT-BASED, POISSON DRIVEN, INTEGRATE-AND-FIRE NEURONAL NETWORKS
Kramer, Peter
DYNAMICS OF CURRENT-BASED, POISSON DRIVEN, INTEGRATE-AND-FIRE NEURONAL NETWORKS KATHERINE A-based, integrate-and-fire (I&F) neurons with delta-impulse coupling currents and Poisson spike-train external drive are studied. Repeating synchronous total firing events, during which all the neurons fire simultaneously
Dynamic Phase Filtering with Integrated Optical Ring Resonators
Adams, Donald Benjamin
2011-10-21
Coherent optical signal processing systems typically require dynamic, low-loss phase changes of an optical signal. Waveform generation employing phase modulation is an important application area. In particular, laser radar systems have been shown...
Human Growth and Body Weight Dynamics: An Integrative Systems Model
Rahmandad, Hazhir
Quantifying human weight and height dynamics due to growth, aging, and energy balance can inform clinical practice and policy analysis. This paper presents the first mechanism-based model spanning full individual life and ...
INDDGO: Integrated Network Decomposition & Dynamic programming for Graph Optimization
Groer, Christopher S; Sullivan, Blair D; Weerapurage, Dinesh P
2012-10-01
It is well-known that dynamic programming algorithms can utilize tree decompositions to provide a way to solve some \\emph{NP}-hard problems on graphs where the complexity is polynomial in the number of nodes and edges in the graph, but exponential in the width of the underlying tree decomposition. However, there has been relatively little computational work done to determine the practical utility of such dynamic programming algorithms. We have developed software to construct tree decompositions using various heuristics and have created a fast, memory-efficient dynamic programming implementation for solving maximum weighted independent set. We describe our software and the algorithms we have implemented, focusing on memory saving techniques for the dynamic programming. We compare the running time and memory usage of our implementation with other techniques for solving maximum weighted independent set, including a commercial integer programming solver and a semi-definite programming solver. Our results indicate that it is possible to solve some instances where the underlying decomposition has width much larger than suggested by the literature. For certain types of problems, our dynamic programming code runs several times faster than these other methods.
Integrated Dynamic Electron Solutions, Inc. | Department of Energy
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousMathematicsEnergy HeadquartersFuelBConservationEnergy5975-01 REPORT ONInstitutionalIntegrated2011
Integrated Dynamic Electron Solutions, Inc. | Department of Energy
Broader source: Energy.gov (indexed) [DOE]
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i nA Guide toIMPROVEMENT OFBarriersInstitutional changeWebVPNof333 likes
Integrated Dynamic Electron Solutions, Inc. | Department of Energy
Broader source: Energy.gov (indexed) [DOE]
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i nA Guide toIMPROVEMENT OFBarriersInstitutional changeWebVPNof333 likes333
Integrated Dynamic Electron Solutions, Inc. | Department of Energy
Broader source: Energy.gov (indexed) [DOE]
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i nA Guide toIMPROVEMENT OFBarriersInstitutional changeWebVPNof333 likes333333
An Efficient and Accurate Car-Parrinello-like Approach to Born-Oppenheimer Molecular Dynamics
Thomas D. Kühne; Matthias Krack; Fawzi R. Mohamed; Michele Parrinello
2006-12-20
We present a new method which combines Car-Parrinello and Born-Oppenheimer molecular dynamics in order to accelerate density functional theory based ab-initio simulations. Depending on the system a gain in efficiency of one to two orders of magnitude has been observed, which allows ab-initio molecular dynamics of much larger time and length scales than previously thought feasible. It will be demonstrated that the dynamics is correctly reproduced and that high accuracy can be maintained throughout for systems ranging from insulators to semiconductors and even to metals in condensed phases. This development considerably extends the scope of ab-initio simulations.
Integrating Dynamic Pricing of Electricity into Energy Aware Scheduling for HPC Systems
Sun, Xian-He
Integrating Dynamic Pricing of Electricity into Energy Aware Scheduling for HPC Systems Xu Yang, Zhou Zhou, Sean Wallace, Zhiling Lan Illinois Institute of Technology, Chicago, IL, USA {xyang56, zzhou Laboratory, Argonne, IL, USA {wtang, smc, papka}@anl.gov ABSTRACT The research literature to date mainly
Demand Side Management for Wind Power Integration in Microgrid Using Dynamic Potential Game Theory
Huang, Jianwei
Demand Side Management for Wind Power Integration in Microgrid Using Dynamic Potential Game Theory the intermittency in wind power generation. Our focus is on an isolated microgrid with one wind turbine, one fast supply and demand in an isolated microgrid [2], which is an important concept for renewable energy
Integrating Renewable Energy Contracts and Wholesale Dynamic Pricing to Serve Aggregate
Oren, Shmuel S.
1 Integrating Renewable Energy Contracts and Wholesale Dynamic Pricing to Serve Aggregate Flexible batteries, with renewable energy resources. We formulate a stochastic optimal control problem that describes that renewable energy supply varies unpredictable and beyond the control of the system operator. The impacts
Instabilities in Molecular Dynamics Integrators used in Hybrid Monte Carlo Simulations
B. Joo; UKQCD Collaboration
2001-10-11
We discuss an instability in the leapfrog integration algorithm, widely used in current Hybrid Monte Carlo (HMC) simulations of lattice QCD. We demonstrate the instability in the simple harmonic oscillator (SHO) system where it is manifest. We demonstrate the instability in HMC simulations of lattic QCD with dynamical Wilson-Clover fermions and discuss implications for future simulations of lattice QCD.
Yarema A. Prykarpatsky; Nikolai N. Bogolubov Jr; Anatoliy K. Prykarpatsky; Valeriy H. Samoylenko
2011-05-22
A gradient-holonomic approach for the Lax type integrability analysis of differentialdiscrete dynamical systems is devised. The asymptotical solutions to the related Lax equation are studied, the related gradient identity is stated. The integrability of a discrete nonlinear Schredinger type dynamical system is treated in detail.
A. Prados; J. J. Brey
2001-07-02
The dynamical behavior of a kind of models with hierarchically constrained dynamics is investigated. The models exhibit many properties resembling real structural glasses. In particular, we focus on the study of time-dependent temperature processes. In cooling processes, a phenomenon analogous to the laboratory glass transition appears. The residual properties are analytically evaluated, and the concept of fictive temperature is discussed on a physical base. The evolution of the system in heating processes is governed by the existence of a normal solution of the evolution equations, which is approached by all the other solutions. This trend of the system is directly related to the glassy hysteresis effects shown by these systems. The existence of the normal solution is not restricted to the linear regime around equilibrium, but it is defined for any arbitrary, far from equilibrium, situation.
Puliafito, Vito Azzerboni, Bruno; Finocchio, Giovanni; Torres, Luis; Ozatay, Ozhan
2014-05-07
Dynamical bubble-like solitons have been recently investigated in nanocontact-based spin-torque oscillators with a perpendicular free layer. Those magnetic configurations can be excited also in different geometries as long as they consist of perpendicular materials. Thus, in this paper, a systematic study of the influence of both external field and high current on that kind of dynamics is performed for a spin-valve point-contact geometry where both free and fixed layers present strong perpendicular anisotropy. The usage of the topological density tool highlights the excitation of complex bubble/antibubble configurations. In particular, at high currents, a deformation of the soliton and its simultaneous shift from the contact area are observed and can be ascribable to the Oersted field. Results provide further detailed information on the excitation of solitons in perpendicular materials for application in spintronics, magnonics, and domain wall logic.
Anatolij K. Prykarpatski
2015-01-03
The Calogero type matrix discretization scheme is applied to constructing the Lax type integrable discretizations of one wide enough class of nonlinear integrable dynamical systems on functional manifolds. Their Lie-algebraic structure and complete integrability related with co-adjoint orbits on the Markov co-algebras is discussed. It is shown that a set of conservation laws and the associated Poisson structure ensue as a byproduct of the approach devised. Based on the Lie algebras quasi-representation property the limiting procedure of finding the nonlinear dynamical systems on the corresponding functional spaces is demonstrated.
Dynamical Heating Induced by Dwarf Planets on Cold Kuiper Belt-like Debris Disks
Muñoz-Gutiérrez, Marco A; Reyes-Ruiz, Mauricio; Peimbert, Antonio
2015-01-01
With the use of long-term numerical simulations, we study the evolution and orbital behavior of cometary nuclei in cold Kuiper belt-like debris disks under the gravitational influence of dwarf planets (DPs); we carry out these simulations with and without the presence of a Neptune-like giant planet. This exploratory study shows that in the absence of a giant planet, 10 DPs are enough to induce strong radial and vertical heating on the orbits of belt particles. On the other hand, the presence of a giant planet close to the debris disk, acts as a stability agent reducing the radial and vertical heating. With enough DPs, even in the presence of a Neptune-like giant planet some radial heating remains; this heating grows steadily, re-filling resonances otherwise empty of cometary nuclei. Specifically for the solar system, this secular process seems to be able to provide material that, through resonant chaotic diffusion, increase the rate of new comets spiraling into the inner planetary system, but only if more tha...
Integrating GIS with Distributed Applications Using Dynamic Data-Sharing Mechanisms
Burnett, Robert A. ); Tzemos, Spyridon ); Stoops, LaMar R. )
2002-08-21
Effective integration of a stand-alone GIS (e.g., ArcView 3.x) into a complex distributed software application requires an efficient, reliable mechanism for passing data and function requests to and from the GIS component. This paper describes the use of dynamic data-sharing and inter-process communication mechanisms to integrate GIS capability into a multi-jurisdictional distributed emergency management information system. These mechanisms include dynamic layer updates from spatial and attribute information shared via a distributed relational database across multiple sites; storage of private and shared ViewMarks to facilitate consistent GIS views; and asynchronous inter-process communication using function queuing and a data sharing library.
Hamilton dynamics for the Lefschetz thimble integration akin to the complex Langevin method
Fukushima, Kenji
2015-01-01
The Lefschetz thimble method, i.e., the integration along the steepest descent cycles, is an idea to evade the sign problem by complexifying the theory. We discuss that such steepest descent cycles can be identified as ground-state wave-functions of a supersymmetric Hamilton dynamics, which is described with a framework akin to the complex Langevin method. We numerically construct the wave-functions on a grid using a toy model and confirm their well-localized behavior.
Hamilton dynamics for the Lefschetz thimble integration akin to the complex Langevin method
Kenji Fukushima; Yuya Tanizaki
2015-09-11
The Lefschetz thimble method, i.e., the integration along the steepest descent cycles, is an idea to evade the sign problem by complexifying the theory. We discuss that such steepest descent cycles can be identified as ground-state wave-functions of a supersymmetric Hamilton dynamics, which is described with a framework akin to the complex Langevin method. We numerically construct the wave-functions on a grid using a toy model and confirm their well-localized behavior.
Dynamic Complexity Study of Nuclear Reactor and Process Heat Application Integration
J'Tia Patrice Taylor; David E. Shropshire
2009-09-01
Abstract This paper describes the key obstacles and challenges facing the integration of nuclear reactors with process heat applications as they relate to dynamic issues. The paper also presents capabilities of current modeling and analysis tools available to investigate these issues. A pragmatic approach to an analysis is developed with the ultimate objective of improving the viability of nuclear energy as a heat source for process industries. The extension of nuclear energy to process heat industries would improve energy security and aid in reduction of carbon emissions by reducing demands for foreign derived fossil fuels. The paper begins with an overview of nuclear reactors and process application for potential use in an integrated system. Reactors are evaluated against specific characteristics that determine their compatibility with process applications such as heat outlet temperature. The reactor system categories include light water, heavy water, small to medium, near term high-temperature, and far term high temperature reactors. Low temperature process systems include desalination, district heating, and tar sands and shale oil recovery. High temperature processes that support hydrogen production include steam reforming, steam cracking, hydrogen production by electrolysis, and far-term applications such as the sulfur iodine chemical process and high-temperature electrolysis. A simple static matching between complementary systems is performed; however, to gain a true appreciation for system integration complexity, time dependent dynamic analysis is required. The paper identifies critical issues arising from dynamic complexity associated with integration of systems. Operational issues include scheduling conflicts and resource allocation for heat and electricity. Additionally, economic and safety considerations that could impact the successful integration of these systems are considered. Economic issues include the cost differential arising due to an integrated system and the economic allocation of electricity and heat resources. Safety issues include changes in regulatory constraints imposed on the facilities. Modeling and analysis tools, such as System Dynamics for time dependent operational and economic issues and RELAP5 3D for chemical transient affects, are evaluated. The results of this study advance the body of knowledge toward integration of nuclear reactors and process heat applications.
Gravitational instabilities in a protosolar-like disc I: dynamics and chemistry
Evans, M G; Boley, A C; Caselli, P; Durisen, R H; Hartquist, T W; Rawlings, J M C
2015-01-01
To date, most simulations of the chemistry in protoplanetary discs have used 1+1D or 2D axisymmetric $\\alpha$-disc models to determine chemical compositions within young systems. This assumption is inappropriate for non-axisymmetric, gravitationally unstable discs, which may be a significant stage in early protoplanetary disc evolution. Using 3D radiative hydrodynamics, we have modelled the physical and chemical evolution of a 0.17 M$_{\\odot}$ self-gravitating disc over a period of 2000 yr. The 0.8 M$_{\\odot}$ central protostar is likely to evolve into a solar-like star, and hence this Class 0 or early Class I young stellar object may be analogous to our early Solar System. Shocks driven by gravitational instabilities enhance the desorption rates, which dominate the changes in gas-phase fractional abundances for most species. We find that at the end of the simulation, a number of species distinctly trace the spiral structure of our relatively low-mass disc, particularly CN. We compare our simulation to that o...
Integrability and nonintegrability of quantum systems. II. Dynamics in quantum phase space
Zhang, Weimin (Department of Physics, FM-15, University of Washington, Seattle, WA (USA) Department of Physics and Atmospheric Science, Drexel University, Philadelphia, PA (USA)); Feng, D.H.; Yuan, Jianmin (Department of Physics and Atmospheric Science, Drexel University, Philadelphia, PA (USA))
1990-12-15
Based on the concepts of integrability and nonintegrability of a quantum system presented in a previous paper (Zhang, Feng, Yuan, and Wang, Phys. Rev. A 40, 438 (1989)), a realization of the dynamics in the quantum phase space is now presented. For a quantum system with dynamical group {ital G-script} and in one of its unitary irreducible-representation carrier spaces {ital h-german}{sub {Lambda}}, the quantum phase space is a 2{ital M}{sub {Lambda}}-dimensional topological space, where {ital M}{sub {Lambda}} is the quantum-dynamical degrees of freedom. This quantum phase space is isomorphic to a coset space {ital G-script}/{ital H-script} via the unitary exponential mapping of the elementary excitation operator subspace of {ital g-script} (algebra of {ital G-script}), where {ital H-script} ({contained in}{ital G-script}) is the maximal stability subgroup of a fixed state in {ital h-german}{sub {Lambda}}. The phase-space representation of the system is realized on {ital G-script}/{ital H-script}, and its classical analogy can be obtained naturally. It is also shown that there is consistency between quantum and classical integrability. Finally, a general algorithm for seeking the manifestation of quantum chaos'' via the classical analogy is provided. Illustrations of this formulation in several important quantum systems are presented.
Phoha, Vir V.
An Interactive Dynamic Model for Integrating Knowledge Management Methods and Knowledge Sharing Technology in a Traditional Classroom Vir V. Phoha Computer Science Louisiana Tech University Ruston, LA Management methods and Knowledge Sharing technology to integrate the acquisition of skills and relevant
Design method of dynamical decoupling sequences integrated with optimal control theory
Yutaka Tabuchi; Masahiro Kitagawa
2012-08-26
A method for synthesizing dynamical decoupling (DD) sequences is presented, which can tailor these sequences to a given set of qubits, environments, instruments, and available resources using partial information of the system. The key concept behind the generation of the DD sequences involves not only extricating the strong dependence on the coupling strengths according to the "optimal control," but also exploiting the "refocus" technique used conventionally to obtain DD sequences. The concept is a generalized one that integrates optimal control and designing of DD sequences.
E. Palle; Eric B. Ford; S. Seager; P. Montanes-Rodriguez; M. Vazquez
2008-02-18
With the recent discoveries of hundreds of extrasolar planets, the search for planets like Earth and life in the universe, is quickly gaining momentum. In the future, large space observatories could directly detect the light scattered from rocky planets, but they would not be able to spatially resolve a planet's surface. Using reflectance models and real cloud data from satellite observations, here we show that, despite Earth's dynamic weather patterns, the light scattered by the Earth to a hypothetical distant observer as a function of time contains sufficient information to accurately measure Earth's rotation period. This is because ocean currents and continents result in relatively stable averaged global cloud patterns. The accuracy of these measurements will vary with the viewing geometry and other observational constraints. If the rotation period can be measured with accuracy, data spanning several months could be coherently combined to obtain spectroscopic information about individual regions of the planetary surface. Moreover, deviations from a periodic signal can be used to infer the presence of relatively short-live structures in its atmosphere (i.e., clouds). This could provide a useful technique for recognizing exoplanets that have active weather systems, changing on a timescale comparable to their rotation. Such variability is likely to be related to the atmospheric temperature and pressure being near a phase transition and could support the possibility of liquid water on the planet's surface.
Deymier, Pierre
Ab initio molecular-dynamics method based on the restricted path integral: Application on the discretized path-integral representation of quantum particles. Fermi statistics is automatically generated by an effective exchange potential. This path-integral molecular-dynamics method is able to simulate electron
Initial-state dependence of the quench dynamics in integrable quantum systems
Rigol, Marcos [Department of Physics,Georgetown University, Washington, DC 20057 (United States); Fitzpatrick, Mattias [Department of Physics,Georgetown University, Washington, DC 20057 (United States); Department of Physics, Middlebury College, Middlebury, Vermont 05753 (United States)
2011-09-15
We identify and study classes of initial states in integrable quantum systems that, after the relaxation dynamics following a sudden quench, lead to near-thermal expectation values of few-body observables. In the systems considered here, those states are found to be insulating ground states of lattice hard-core boson Hamiltonians. We show that, as a suitable parameter in the initial Hamiltonian is changed, those states become closer to Fock states (products of single site states) as the outcome of the relaxation dynamics becomes closer to the thermal prediction. At the same time, the energy density approaches a Gaussian. Furthermore, the entropy associated with the generalized canonical and generalized grand-canonical ensembles, introduced to describe observables in integrable systems after relaxation, approaches that of the conventional canonical and grand-canonical ensembles. We argue that those classes of initial states are special because a control parameter allows one to tune the distribution of conserved quantities to approach the one in thermal equilibrium. This helps in understanding the approach of all the quantities studied to their thermal expectation values. However, a finite-size scaling analysis shows that this behavior should not be confused with thermalization as understood for nonintegrable systems.
Hua Y. Geng
2014-12-19
A multilevel approach to sample the potential energy surface in a path integral formalism is proposed. The purpose is to reduce the required number of ab initio evaluations of energy and forces in ab initio path integral molecular dynamics (AI-PIMD) simulation, without compromising the overall accuracy. To validate the method, the internal energy and free energy of an Einstein crystal are calculated and compared with the analytical solutions. As a preliminary application, we assess the performance of the method in a realistic model, the FCC phase of dense atomic hydrogen, in which the calculated result shows that the acceleration rate is about 3 to 4 fold for a two-level implementation, and can be increased to 10 times if extrapolation is used. With only 16 beads used for the ab initio potential sampling, this method gives a well converged internal energy. The residual error in pressure is just about 3 GPa, whereas it is about 20 GPa for a plain AI-PIMD calculation with the same number of beads. The vibrational free energy of the FCC phase of dense hydrogen at 300 K is also calculated with an AI-PIMD thermodynamic integration method, which gives a result of about 0.51 eV/proton at a density of $r_{s}=0.912$.
Morozovska, Anna N.; Morozovsky, Nicholas V.; Eliseev, Eugene A.; Varenyk, Olexandr V.; Kim, Yunseok; Strelcov, Evgheni; Tselev, Alexander; Kalinin, Sergei V.
2014-08-14
We performed self-consistent modelling of nonlinear electrotransport and electromechanical response of thin films of mixed ionic-electronic conductors (MIEC) allowing for steric effects of mobile charged defects (ions, protons, or vacancies), electron degeneration, and Vegard stresses. We establish correlations between the features of the nonlinear space-charge dynamics, current-voltage, and bending-voltage curves for different types of the film electrodes. A pronounced ferroelectric-like hysteresis of the bending-voltage loops and current maxima on the double hysteresis current-voltage loops appear for the electron-transport electrodes. The double hysteresis loop with pronounced humps indicates a memristor-type resistive switching. The switching occurs due to the strong nonlinear coupling between the electronic and ionic subsystems. A sharp meta-stable maximum of the electron density appears near one open electrode and moves to another one during the periodic change of applied voltage. Our results can explain the nonlinear nature and correlation of electrical and mechanical memory effects in thin MIEC films. The analytical expression proving that the electrically induced bending of MIEC films can be detected by interferometric methods is derived.
Elio Conte; Orlando Todarello; Antonio Federici; Francesco Vitiello; Michele Lopane; Andrei Khrennikov; Joseph P. Zbilut
2007-10-26
We have executed for the first time an experiment on mental observables concluding that there exists equivalence (that is to say, quantum like behavior) between quantum and cognitive entities.Such result has enabled us to formulate an abstract quantum mechanical formalism that is able to describe cognitive entities and their time dynamics.
Magnetization dynamics: path-integral formalism for the stochastic Landau-Lifshitz-Gilbert equation
Camille Aron; Daniel G. Barci; Leticia F. Cugliandolo; Zochil Gonzalez Arenas; Gustavo S. Lozano
2014-12-31
We construct a path-integral representation of the generating functional for the dissipative dynamics of a classical magnetic moment as described by the stochastic generalization of the Landau-Lifshitz-Gilbert equation proposed by Brown, with the possible addition of spin-torque terms. In the process of constructing this functional in the Cartesian coordinate system, we critically revisit this stochastic equation. We present it in a form that accommodates for any discretization scheme thanks to the inclusion of a drift term. The generalized equation ensures the conservation of the magnetization modulus and the approach to the Gibbs-Boltzmann equilibrium in the absence of non-potential and time-dependent forces. The drift term vanishes only if the mid-point Stratonovich prescription is used. We next reset the problem in the more natural spherical coordinate system. We show that the noise transforms non-trivially to spherical coordinates acquiring a non-vanishing mean value in this coordinate system, a fact that has been often overlooked in the literature. We next construct the generating functional formalism in this system of coordinates for any discretization prescription. The functional formalism in Cartesian or spherical coordinates should serve as a starting point to study different aspects of the out-of-equilibrium dynamics of magnets. Extensions to colored noise, micro-magnetism and disordered problems are straightforward.
Jan L. Cie?li?ski; Anatolij K. Prykarpatski
2014-03-27
We investigate discretizations of the integrable discrete nonlinear Schr\\"odinger dynamical system and related symplectic structures. We develop an effective scheme of invariant reducing the corresponding infinite system of ordinary differential equations to an equivalent finite system of ordinary differential equations with respect to the evolution parameter. We construct a finite set of recurrent algebraic regular relations allowing to generate solutions of the discrete nonlinear Schr\\"odinger dynamical system and we discuss the related functional spaces of solutions. Finally, we discuss the Fourier transform approach to studying the solution set of the discrete nonlinear Schr\\"odinger dynamical system and its functional-analytical aspects.
Movileanu, Liviu
Utilization of Smart Materials and Predictive Modeling to Integrate Intracellular Dynamics polarization will be induced in individual cells using "smart substrates" and patterns in intracellular important structures inside cells. New "smart" material will be used to trigger changes to cell movement
Prinari, Barbara
Dynamics of PDE, Vol.1, No.3, 239-299, 2004 Integrable Nonlinear Schr¨odinger Systems 16, 2004. Abstract. Nonlinear Schr¨odinger (NLS) systems are important examples of physically; Secondary 78. Key words and phrases. Nonlinear Schr¨odinger systems, inverse scattering transform, soliton
Integrated two-dimensional simulations of dynamic hohlraum driven inertial fusion capsule implosions
Slutz, S. A.; Peterson, K. J.; Vesey, R. A.; Lemke, R. W.; Bailey, J. E.; Varnum, W.; Ruiz, C. L.; Cooper, G. W.; Chandler, G. A.; Rochau, G. A.; Mehlhorn, T. A. [Sandia National Laboratories, Albuquerque, New Mexico 87185-1186 (United States)
2006-10-15
Simulations have been useful for improving the design of dynamic hohlraums for the purpose of imploding inertial fusion capsules [S. A. Slutz, J. E. Bailey, G. A. Chandler et al., Phys. Plasmas 10, 1875 (2003)]. These design changes, which have resulted in capsule implosions with hot dense cores [J. E. Bailey, G. A. Chandler, S. A. Slutz et al., Phys. Rev. Lett. 92, 085002 (2004)] and the production of thermonuclear neutrons [C. L. Ruiz, G. Cooper, S. A. Slutz et al., Phys. Rev. Lett. 93, 015001 (2005)], were based primarily on a series of one-dimensional numerical simulations, which treated the dynamic hohlraum and the capsule implosion separately. In this paper we present simulations which are fully integrated to include the implosion of wire arrays onto foam convertors, the implosion of the capsule imbedded in the foam, and the absorption of radiation into the electrodes. These simulations yield predictions that are in remarkably good agreement with measured values considering the complexity of the problem, which spans more than 100 ns of wire implosion with the subsequent capsule implosion on a few ns timescale. For example, the predicted neutron yields are less than a factor of 2 higher than the measured values, while the predicted shock velocity is about 30% higher than the measured value. The spectroscopically inferred imploded capsule gas core temperatures are somewhat lower than predicted by the simulations, while the gas densities are about a factor of 2 higher. Simulations indicate that a more slowly rising radiation drive temperature yields higher core densities and lower temperatures and thus better agreement with experimental measurements. Possible reasons for a more slowly rising radiation drive are discussed.
Klippel, Alexander
Institute of Water Resources and Hydropower Research (IWHR) A1 Fuxing Road, Haidian District Beijing, P of this representation with scientific modeling of dynamic hazard development, and (3) application of automated reasoning, such as drought, tsunami, hurricane, flood, wildfire, and earthquake, are likely to become ever more costly
Vardi, Amichay
, making the solution no more complex than the solution of a two-mode BoseEinstein condensate and allowing in the dynamics of coupled atomic and molecular BoseEinstein condensates (BECs) has been extensively studied rights reserved. PACS: 05.30.Fk; 05.30.Jp; 3.75.Kk 1. Introduction The role of Bose stimulation
Schofield, Jeremy
in the article. Reuse of AIP content is subject to the terms at: http of a stochastic model of the dynamics of bond formation. Finally, the Markov model is studied by analyzing profile as the temperature is lowered can be understood in terms of the number of relaxation modes
Goddard III, William A.
Wax Inhibition by Comb-like Polymers: Support of the Incorporation-Perturbation Mechanism from ReceiVed: April 10, 2007; In Final Form: July 26, 2007 Deposition of wax on a cold surface is a serious problem in oil production. Progress in developing more effective wax inhibitors has been impeded
Integrating high-precision U-Pb geochronologic data with dynamic models of earth processes
Blackburn, Terrence (Terrence Joseph)
2012-01-01
Radioisotopic dating can provide critical constraints for understanding the rates of tectonic, dynamic and biologic processes operating on our planet. Improving the interpretation and implementation of geochronologic data ...
A Dynamic Market Mechanism for Integration of Renewables and Demand Response
Knudsen, Jesper
2015-04-21
The most formidable challenge in assembling a Smart Grid is the integration of a high penetration of renewables. Demand Response, a largely promising concept, is increasingly discussed as a means to cope with the intermittent ...
Noll, Daniel; Stancari, Giulio
2015-11-17
An electron lens is planned for the Fermilab Integrable Optics Test Accelerator as a nonlinear element for integrable dynamics, as an electron cooler, and as an electron trap to study space-charge compensation in rings. We present the main design principles and constraints for nonlinear integrable optics. A magnetic configuration of the solenoids and of the toroidal section is laid out. Singleparticle tracking is used to optimize the electron path. Electron beam dynamics at high intensity is calculated with a particle-in-cell code to estimate current limits, profile distortions, and the effects on the circulating beam. In the conclusions, we summarize the main findings and list directions for further work.
Polis, Gary A.; Anderson, Wendy B.; Holt, Robert D.
1997-01-01
We focus on the implications of movement, landscape variables, and spatial heterogeneity for food web dynamics. Movements of nutrients, detritus, prey, and consumers among habitats are ubiquitous in diverse biomes and can ...
Integrated method to create optimal dynamic strategic plans for corporate technology start-ups
Mikati, Samir Omar
2009-01-01
This thesis presents an innovative method for evaluating and dynamically planning the development of uncertain technology investments. Its crux centers on a paradigm shift in the way managers assess investments, toward an ...
Zhai, Zhiqiang, 1971-
2003-01-01
Building energy simulation (ES) and computational fluid dynamics (CFD) can play important roles in building design by providing essential information to help design energy-efficient, thermally comfortable and healthy ...
Dynamic stability of the Solar System: Statistically inconclusive results from ensemble integrations
Zeebe, Richard E
2015-01-01
Due to the chaotic nature of the Solar System, the question of its long-term stability can only be answered in a statistical sense, for instance, based on numerical ensemble integrations of nearby orbits. Destabilization of the inner planets, leading to close encounters and/or collisions can be initiated through a large increase in Mercury's eccentricity, with a currently assumed likelihood of ~1%. However, little is known at present about the robustness of this number. Here I report ensemble integrations of the full equations of motion of the eight planets and Pluto over 5 Gyr, including contributions from general relativity. The results show that different numerical algorithms lead to statistically different results for the evolution of Mercury's eccentricity (eM). For instance, starting at present initial conditions (eM ~= 0.21), Mercury's maximum eccentricity achieved over 5 Gyr is on average significantly higher in symplectic ensemble integrations using heliocentricthan Jacobi coordinates and stricter er...
Naseer Ahmed; Muhammad Usman
2007-09-28
Based on the d'Alembert-Lagrange-Poincar\\'{e} variational principle, we formulate general equations of motion for mechanical systems subject to nonlinear nonholonomic constraints, that do not involve Lagrangian undetermined multipliers. We write these equations in a canonical form called the Poincar\\'{e}-Hamilton equations, and study a version of corresponding Poincar\\'{e}-Cartan integral invariant which are derived by means of a type of asynchronous variation of the Poincar\\'{e} variables of the problem that involve the variation of the time. As a consequence, it is shown that the invariance of a certain line integral under the motion of a mechanical system of the type considered characterizes the Poincar\\'{e}-Hamilton equations as underlying equations of the motion. As a special case, an invariant analogous to Poincar\\'{e} linear integral invariant is obtained.
Ganesh, Panchapakesan; Kent, Paul R; Mochalin, Vadym N
2011-01-01
We simulate the experimentally observed graphitization of nanodiamonds into multi-shell onion-like carbon nanostructures, also called carbon onions, at different temperatures, using reactive force fields. The simulations include long-range Coulomb and van der Waals interactions. Our results suggest that long-range interactions play a crucial role in the phase-stability and the graphitization process. Graphitization is both enthalpically and entropically driven and can hence be controlled with temperature. The outer layers of the nanodiamond have a lower kinetic barrier toward graphitization irrespective of the size of the nanodiamond and graphitize within a few-hundred picoseconds, with a large volume increase. The inner core of the nanodiamonds displays a large size-dependent kinetic barrier, and graphitizes much more slowly with abrupt jumps in the internal energy. It eventually graphitizes by releasing pressure and expands once the outer shells have graphitized. The degree of transformation at a particular temperature is thereby determined by a delicate balance between the thermal energy, long-range interactions, and the entropic/enthalpic free energy gained by graphitization. Upon full graphitization, a multi-shell carbon nanostructure appears, with a shell-shell spacing of about {approx}3.4 {angstrom} for all sizes. The shells are highly defective with predominantly five- and seven-membered rings to curve space. Larger nanodiamonds with a diameter of 4 nm can graphitize into spiral structures with a large ({approx}29-atom carbon ring) pore opening on the outermost shell. Such a large one-way channel is most attractive for a controlled insertion of molecules/ions such as Li ions, water, or ionic liquids, for increased electrochemical capacitor or battery electrode applications.
Ganesh, P.; Kent, P. R. C.; Mochalin, V.
2011-10-01
We simulate the experimentally observed graphitization of nanodiamonds into multi-shell onion-like carbonnanostructures, also called carbon onions, at different temperatures, using reactive force fields. The simulations include long-range Coulomb and van der Waals interactions. Our results suggest that long-range interactions play a crucial role in the phase-stability and the graphitization process. Graphitization is both enthalpically and entropically driven and can hence be controlled with temperature. The outer layers of the nanodiamond have a lower kinetic barrier toward graphitization irrespective of the size of the nanodiamond and graphitize within a few-hundred picoseconds, with a large volume increase. The inner core of the nanodiamonds displays a large size-dependent kinetic barrier, and graphitizes much more slowly with abrupt jumps in the internal energy. It eventually graphitizes by releasing pressure and expands once the outer shells have graphitized. The degree of transformation at a particular temperature is thereby determined by a delicate balance between the thermal energy, long-range interactions, and the entropic/enthalpic free energy gained by graphitization. Upon full graphitization, a multi-shell carbonnanostructure appears, with a shell-shell spacing of about ~3.4 Å for all sizes. The shells are highly defective with predominantly five- and seven-membered rings to curve space. Larger nanodiamonds with a diameter of 4 nm can graphitize into spiral structures with a large (~29-atom carbon ring) pore opening on the outermost shell. Such a large one-way channel is most attractive for a controlled insertion of molecules/ions such as Li ions, water, or ionic liquids, for increased electrochemical capacitor or battery electrode applications.
Simulation Algorithms in Vehicle System Dynamics MARTIN ARNOLD
be considered as integration platform for simulation in vehicle system dynamics. In the present report we report the analysis of distributed physical phenomena like the elastic deformation of car components
Integrating Models and Simulations of Continuous Dynamics into SysML
In this paper, we combine modeling constructs from SysML and Modelica to improve the support for Model, structures, functions, and behaviors. Complementing these SysML constructs, the Modelica language has emerged and the corresponding Modelica models; and the integration of simulation experiments with other SysML constructs
Mapping of Reservoir Properties and Facies Through Integration of Static and Dynamic Data
Reynolds, Albert C.; Oliver, Dean S.; Zhang, Fengjun; Dong, Yannong; Skjervheim, Jan Arild; Liu, Ning
2003-03-10
The goal of this project was to develop computationally efficient automatic history matching techniques for generating geologically plausible reservoir models which honor both static and dynamic data. Solution of this problem was necessary for the quantification of uncertainty in future reservoir performance predictions and for the optimization of reservoir management.
Towards an Integrated Framework for Development and Environment Policy: The Dynamics of
Kammen, Daniel M.
of Environmental Kuznets Curves MAJID EZZATI Resources for the Future, Washington, DC, USA, and World Health * University of California, Berkeley, USA Summary. Ð Environmental Kuznets curves (EKCs) have recently received policy, environmental change, economic growth, environmental Kuznets curves, system dynamics 1
Coarse-gradient Langevin algorithms for dynamic data integration and uncertainty quantification
Hou, Thomas Yizhao
greatly affect the production and decision making on well drilling. Better decisions can be made online 22 May 2006 Abstract The main goal of this paper is to design an efficient sampling technique- tions of the permeability field conditioned to the dynamic data, such as the production data, as well
DYNAMIC STABILITY OF THE SOLAR SYSTEM: STATISTICALLY INCONCLUSIVE RESULTS FROM ENSEMBLE INTEGRATIONS
Zeebe, Richard E.
2015-01-01
Due to the chaotic nature of the solar system, the question of its long-term stability can only be answered in a statistical sense, for instance, based on numerical ensemble integrations of nearby orbits. Destabilization of the inner planets, leading to close encounters and/or collisions can be initiated through a large increase in Mercury's eccentricity, with a currently assumed likelihood of ?1%. However, little is known at present about the robustness of this number. Here I report ensemble integrations of the full equations of motion of the eight planets and Pluto over 5 Gyr, including contributions from general relativity. The results show that different numerical algorithms lead to statistically different results for the evolution of Mercury's eccentricity (e{sub M}). For instance, starting at present initial conditions (e{sub M}?0.21), Mercury's maximum eccentricity achieved over 5 Gyr is, on average, significantly higher in symplectic ensemble integrations using heliocentric rather than Jacobi coordinates and stricter error control. In contrast, starting at a possible future configuration (e{sub M}?0.53), Mercury's maximum eccentricity achieved over the subsequent 500 Myr is, on average, significantly lower using heliocentric rather than Jacobi coordinates. For example, the probability for e{sub M} to increase beyond 0.53 over 500 Myr is >90% (Jacobi) versus only 40%-55% (heliocentric). This poses a dilemma because the physical evolution of the real system—and its probabilistic behavior—cannot depend on the coordinate system or the numerical algorithm chosen to describe it. Some tests of the numerical algorithms suggest that symplectic integrators using heliocentric coordinates underestimate the odds for destabilization of Mercury's orbit at high initial e{sub M}.
R. Osterbart; Y. Balega; T. Bloecker; A. Men'shchikov; G. Weigelt
2000-03-22
We present high-resolution J-, H-, and K-band observations and the first H-K color image of the carbon star IRC +10216. The images were reconstructed from 6m telescope speckle interferograms using the bispectrum speckle interferometry method. The H and K images with resolutions between 70mas and 92mas consist of several compact components within a 0.2" radius and a fainter asymmetric nebula. The brightest four components are denoted with A to D in the order of decreasing brightness in the 1996 image. A comparison of our images from 1995, 1996, 1997, and 1998 gives - almost like a movie of five frames - insight into the dynamical evolution of the inner nebula. For instance, the separation of the two brightest components A and B increased from 191 mas in 1995 to 265 mas in 1998. At the same time, component B is fading and the components C and D become brighter. The X-shaped bipolar structure of the nebula, most prominently present in the J-band image, implies an asymmetric mass loss. Such asymmetries are often present in protoplanetary nebulae but are unexpected for AGB stars. IRC +10216 is thus likely to be very advanced in its AGB evolution, shortly before turning into a protoplanetary nebula. The cometary shapes of A in the H and J images and in the 0.79 micron and 1.06 micron HST images suggest that the core of A is not the central star, but the southern lobe of a bipolar structure. The position of the central star is probably at or near the position of component B, where the H-K color has a value of 4.2. If the star is at or near B, then the components A, C, and D are likely to be located at the inner boundary of the dust shell.
Integrating Random Matrix Theory Predictions with Short-Time Dynamical Effects in Chaotic Systems
A. Matthew Smith; Lev Kaplan
2010-06-29
We discuss a modification to Random Matrix Theory eigenstate statistics, that systematically takes into account the non-universal short-time behavior of chaotic systems. The method avoids diagonalization of the Hamiltonian, instead requiring only a knowledge of short-time dynamics for a chaotic system or ensemble of similar systems. Standard Random Matrix Theory and semiclassical predictions are recovered in the limits of zero Ehrenfest time and infinite Heisenberg time, respectively. As examples, we discuss wave function autocorrelations and cross-correlations, and show that significant improvement in accuracy is obtained for simple chaotic systems where comparison can be made with brute-force diagonalization. The accuracy of the method persists even when the short-time dynamics of the system or ensemble is known only in a classical approximation. Further improvement in the rate of convergence is obtained when the method is combined with the correlation function bootstrapping approach introduced previously.
Jake P. Gentle; Kurt S Myers; Tyler B Phillips; Inanc Senocak; Phil Anderson
2014-08-01
Dynamic Line Rating (DLR) is a smart grid technology that allows the rating of power line to be based on real-time conductor temperature dependent on local weather conditions. In current practice overhead power lines are generally given a conservative rating based on worst case weather conditions. Using historical weather data collected over a test bed area, we demonstrate there is often additional transmission capacity not being utilized with the current static rating practice. We investigate a new dynamic line rating methodology using computational fluid dynamics (CFD) to determine wind conditions along transmission lines at dense intervals. Simulated results are used to determine conductor temperature by calculating the transient thermal response of the conductor under variable environmental conditions. In calculating the conductor temperature, we use both a calculation with steady-state assumption and a transient calculation. Under low wind conditions, steady-state assumption predicts higher conductor temperatures that could lead to curtailments, whereas transient calculations produce conductor temperatures that are significantly lower, implying the availability of additional transmission capacity.
An integral manifold approach to reduced order dynamic modeling of synchronous machines
Sauer, P.W.; Ahmed-Zaid, S.; Kokotovic, P.V.
1988-02-01
The concept of integral manifolds is used to systematically create improved reduced order models of synchronous machines. The approach is illustrated through a detailed example of a single machine connected to an infinite bus. The example shows the advantages of the manifold approach and also clarifies several issues about reduced order models of synchronous machines. The basic objective of the method is to include the effects of more complex models without actually including the additional differential equations. This is illustrated by including the effects of stator transients and damper windings on the swing equation without including the differential equations.
Jung, Jinwoo; Lee, Jewon; Song, Hanjung [School of Nano Engineering, Inje University, Gimhae, Gyungnam (Korea, Republic of)
2011-03-15
This paper presents a fully integrated circuit implementation of an operational amplifier (op-amp) based chaotic neuron model with a bipolar output function, experimental measurements, and analyses of its chaotic behavior. The proposed chaotic neuron model integrated circuit consists of several op-amps, sample and hold circuits, a nonlinear function block for chaotic signal generation, a clock generator, a nonlinear output function, etc. Based on the HSPICE (circuit program) simulation results, approximated empirical equations for analyses were formulated. Then, the chaotic dynamical responses such as bifurcation diagrams, time series, and Lyapunov exponent were calculated using these empirical equations. In addition, we performed simulations about two chaotic neuron systems with four synapses to confirm neural network connections and got normal behavior of the chaotic neuron such as internal state bifurcation diagram according to the synaptic weight variation. The proposed circuit was fabricated using a 0.8-{mu}m single poly complementary metal-oxide semiconductor technology. Measurements of the fabricated single chaotic neuron with {+-}2.5 V power supplies and a 10 kHz sampling clock frequency were carried out and compared with the simulated results.
Quantum path integral molecular dynamics simulations on transport properties of dense liquid helium
Kang, Dongdong; Sun, Huayang; Yuan, Jianmin
2015-01-01
Transport properties of dense liquid helium under the conditions of planet's core and cool atmosphere of white dwarfs have been investigated by using the improved centroid path-integral simulations combined with density functional theory. The self-diffusion is largely higher and the shear viscosity is notably lower predicted with the quantum mechanical description of the nuclear motion compared with the description by Newton equation. The results show that nuclear quantum effects (NQEs), which depends on the temperature and density of the matter via the thermal de Broglie wavelength and the ionization of electrons, are essential for the transport properties of dense liquid helium at certain astrophysical conditions. The Stokes-Einstein relation between diffusion and viscosity in strongly coupled regime is also examined to display the influences of NQEs.
Integrated Dynamic Gloabal Modeling of Land Use, Energy and Economic Growth
Atul Jain, University of Illinois, Urbana-Champaign, IL Brian O'Neill, NCAR, Boulder, CO
2009-10-14
The overall objective of this collaborative project is to integrate an existing general equilibrium energy-economic growth model with a biogeochemical cycles and biophysical models in order to more fully explore the potential contribution of land use-related activities to future emissions scenarios. Land cover and land use change activities, including deforestation, afforestation, and agriculture management, are important source of not only CO2, but also non-CO2 GHGs. Therefore, contribution of land-use emissions to total emissions of GHGs is important, and consequently their future trends are relevant to the estimation of climate change and its mitigation. This final report covers the full project period of the award, beginning May 2006, which includes a sub-contract to Brown University later transferred to the National Center for Atmospheric Research (NCAR) when Co-PI Brian O'Neill changed institutional affiliations.
B. G. Konopelchenko; G. Ortenzi
2012-06-13
Quasiclassical approximation in the intrinsic description of the vortex filament dynamics is discussed. Within this approximation the governing equations are given by elliptic system of quasi-linear PDEs of the first order. Dispersionless Da Rios system and dispersionless Hirota equation are among them. They describe motion of vortex filament with slow varying curvature and torsion without or with axial flow. Gradient catastrophe for governing equations is studied. It is shown that geometrically this catastrophe manifests as a fast oscillation of a filament curve around the rectifying plane which resembles the flutter of airfoils. Analytically it is the elliptic umbilic singularity in the terminology of the catastrophe theory. It is demonstrated that its double scaling regularization is governed by the Painleve' I equation.
Integrated Dynamic Analysis of Floating Offshore Wind Turbines Bjørn Skaare*, Tor David Hanson of floating wind turbines exposed to forces from wind, waves and current has been developed for Hydro Oil & Energy's floating wind turbine concept, HYWIND. Two existing, independent, computer program systems
Integrated Study of the Nonlinear Dynamics of Collisional Drift Wave Turbulence
George R. Tynan
2012-04-24
An existing linear magnetized plasma device, the Controlled Shear Decorrelation experiment (CSDX) was used to study the transition from a state of coherent wave like activity to a state of turbulent activity using the magnetic field and thus magnetization of the plasma as the control parameter. The results show the onset of coherent drift waves consistent with linear stability analysis. As the magnetization is raised, at first multiple harmonics appear, consistent with wave steepening. This period is then followed by the beginning of nonlinear interactions between different wave modes, which then results in the formation of narrow frequency but distributed azimuthal wave number fluctuations that are consistent with the formation of long-lived coherent nonlinear structures within the plasmas. These structures, termed quasicoherent modes, persist as the magnetic field is raised. Measurements of turbulent momentum flux indicate that the plasma is also forming an azimuthally symmetric radially sheared fluid flow that is nonlinearly driven by smaller scaled turbulent fluctuations. Further increases in the magnetic field result in the breakup of the quasicoherent mode, and the clear formation of the sheared flow. Numerical simulations of the experiment reproduce the formation of the sheared flow via a vortex merging process, and confirm that the experiment is providing the first clear experimental evidence of the formation of sheared zonal flows from drift turbulent fluctuations in a magnetized plasma.
Shankaran, Harish; Zhang, Yi; Chrisler, William B.; Ewald, Jonathan A.; Wiley, H. S.; Resat, Haluk
2012-10-02
The epidermal growth factor receptor (EGFR) belongs to the ErbB family of receptor tyrosine kinases, and controls a diverse set of cellular responses relevant to development and tumorigenesis. ErbB activation is a complex process involving receptor-ligand binding, receptor dimerization, phosphorylation, and trafficking (internalization, recycling and degradation), which together dictate the spatio-temporal distribution of active receptors within the cell. The ability to predict this distribution, and elucidation of the factors regulating it, would help to establish a mechanistic link between ErbB expression levels and the cellular response. Towards this end, we constructed mathematical models for deconvolving the contributions of receptor dimerization and phosphorylation to EGFR activation, and to examine the dependence of these processes on sub-cellular location. We collected experimental datasets for EGFR activation dynamics in human mammary epithelial cells, with the specific goal of model parameterization, and used the data to estimate parameters for several alternate models. Model-based analysis indicated that: 1) signal termination via receptor dephosphorylation in late endosomes, prior to degradation, is an important component of the response, 2) less than 40% of the receptors in the cell are phosphorylated at any given time, even at saturating ligand doses, and 3) receptor dephosphorylation rates at the cell surface and early endosomes are comparable. We validated the last finding by measuring EGFR dephosphorylation rates at various times following ligand addition both in whole cells, and in endosomes using ELISAs and fluorescent imaging. Overall, our results provide important information on how EGFR phosphorylation levels are regulated within cells. Further, the mathematical model described here can be extended to determine receptor dimer abundances in cells co-expressing various levels of ErbB receptors. This study demonstrates that an iterative cycle of experiments and modeling can be used to gain mechanistic insight regarding complex cell signaling networks.
Onken, Christopher A.; Ferrarese, Laura [Herzberg Institute of Astrophysics, National Research Council of Canada, 5071 West Saanich Road, Victoria, BC V9E 2E7 (Canada); Valluri, Monica; Brown, Jonathan S. [Department of Astronomy, University of Michigan, 500 Church Street, Ann Arbor, MI 48109-1042 (United States); McGregor, Peter J. [Research School of Astronomy and Astrophysics, The Australian National University, Canberra, ACT 2611 (Australia); Peterson, Bradley M.; Pogge, Richard W. [Department of Astronomy, The Ohio State University, 140 West 18th Avenue, Columbus, OH 43210 (United States); Bentz, Misty C. [Department of Physics and Astronomy, Georgia State University, 25 Park Place, Office 610, Atlanta, GA 30303 (United States); Vestergaard, Marianne [Dark Cosmology Centre, The Niels Bohr Institute, Copenhagen University, Juliane Maries Vej 30, DK-2100 Copenhagen Ø (Denmark); Storchi-Bergmann, Thaisa [Universidade Federal do Rio Grande do Sul, Instituto de Física, CP 15051, Porto Alegre 91501-970, RS (Brazil); Riffel, Rogemar A., E-mail: christopher.onken@anu.edu.au, E-mail: mvalluri@umich.edu [Departamento de Física, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, 97105-900 Santa Maria, RS (Brazil)
2014-08-10
We present a revised measurement of the mass of the central black hole (M{sub BH} ) in the Seyfert 1 galaxy NGC 4151. The new stellar dynamical mass measurement is derived by applying an axisymmetric orbit-superposition code to near-infrared integral field data obtained using adaptive optics with the Gemini Near-infrared Integral Field Spectrograph (NIFS). When our models attempt to fit both the NIFS kinematics and additional low spatial resolution kinematics, our results depend sensitively on how ?{sup 2} is computed—probably a consequence of complex bar kinematics that manifest immediately outside the nuclear region. The most robust results are obtained when only the high spatial resolution kinematic constraints in the nuclear region are included in the fit. Our best estimates for the black hole mass and H-band mass-to-light ratio are M{sub BH} ? 3.76 ± 1.15 × 10{sup 7} M{sub ?} (1? error) and Y{sub H} ? 0.34 ± 0.03 M{sub ?}/L{sub ?} (3? error), respectively (the quoted errors reflect the model uncertainties). Our black hole mass measurement is consistent with estimates from both reverberation mapping (3.57{sub ?0.37}{sup +0.45}×10{sup 7} M{sub ?}) and gas kinematics (3.0{sub ?2.2}{sup +0.75}×10{sup 7} M{sub ?}; 1? errors), and our best-fit mass-to-light ratio is consistent with the photometric estimate of Y{sub H} = 0.4 ± 0.2 M{sub ?}/L{sub ?}. The NIFS kinematics give a central bulge velocity dispersion ?{sub c} = 116 ± 3 km s{sup –1}, bringing this object slightly closer to the M{sub BH}-? relation for quiescent galaxies. Although NGC 4151 is one of only a few Seyfert 1 galaxies in which it is possible to obtain a direct dynamical black hole mass measurement—and thus, an independent calibration of the reverberation mapping mass scale—the complex bar kinematics makes it less than ideally suited for this purpose.
Deymier, Pierre
VOLUME 81, NUMBER 15 P H Y S I C A L R E V I E W L E T T E R S 12 OCTOBER 1998 Path-Integral method based on the discretized path integral representation of quantum particles. Fermi statistics is automatically generated by an effective exchange potential. This path-integral molecular dynamics method is able
Kjelstrup, Signe
Interface Film Resistivities for Heat and Mass TransferssIntegral Relations Verified by Non; In Final Form: July 6, 2006 Integral relations that predict interface film transfer coefficients) the interface film, where transport processes are driven by jumps in temperature and chemical potential; and (3
Paluh, Janet L.; Nogales, Eva; Oakley, Berl R.; McDonald, Kent; Pidoux, Alison; Cande, W.Z.
2000-04-01
., 1999). Human g-tubulin can replace the endogenous protein in fission yeast (Horio and Oakley, 1994), suggesting that key aspects of g-tubulin function are broadly conserved. Microtubule motors play important roles in spindle as- sembly and dynamics. A.... The following strains and plasmids were kind gifts: mad22 strain (h2 ade6-M210, leu1-32, ura4-D18, mad2::ura41) from Dr. Shelly Sazar (Verna and Marrs McLean Departments of Biochemistry and Cell Biology, Baylor College of Medicine, Houston, TX; He et al., 1997...
Masciola, M.; Jonkman, J.; Robertson, A.
2014-03-01
Techniques to model dynamic mooring lines come in various forms. The most widely used models include either a heuristic representation of the physics (such as a Lumped-Mass, LM, system), a Finite-Element Analysis (FEA) discretization of the lines (discretized in space), or a Finite-Difference (FD) model (which is discretized in both space and time). In this paper, we explore the features of the various models, weigh the advantages of each, and propose a plan for implementing one dynamic mooring line model into the open-source Mooring Analysis Program (MAP). MAP is currently used as a module for the FAST offshore wind turbine computer-aided engineering (CAE) tool to model mooring systems quasi-statically, although dynamic mooring capabilities are desired. Based on the exploration in this manuscript, the lumped-mass representation is selected for implementation in MAP based on its simplicity, computational cost, and ability to provide similar physics captured by higher-order models.
Jessica L.M. Gutknecht and Kathryn M. Docherty
2011-11-01
Microorganisms (Bacteria, Archaea and Fungi) are the gate-keepers of many ecosystem-scale biogeochemical cycles. Although there have been measurable changes in ecosystem function due to human activities such as greenhouse gas production, nutrient loading, land-use change, and water consumption, few studies have connected microbial community dynamics with these changes in ecosystem function. Specifically, very little is known about how global changes will induce important functional changes in microbial biodiversity. Even less is known about how microbial functional changes could alter rates of nutrient cycling or whether microbial communities have enough functional redundancy that changes will have little impact on overall process rates. The proposed symposium will provide an overview of this emerging research area, with emphasis on linking the microorganisms directly to important ecological functions under the influence of global change dynamics. The session will include both broad overviews as well as specific case-studies by researchers who examine microbial communities from a variety of taxonomic levels and from various environments. The session will begin broadly, with speakers discussing how microbial communities may inform ecosystem-scale global change studies, and help to make microbial ecological knowledge more tangible for a broad range of ecologists. The session will continue with case studies of microbial community information informing process in global change experiments. Finally, the session will close with speakers discussing how microbial community information might fit into global change models, and what types of information are useful for future studies. We have requested that speakers particularly incorporate their views on what types of microbial data is useful and informative in the context of larger ecosystem processes. We foresee that this session could serve as a focal point for global change microbial ecologists to meet and discuss their field at the ESA 2010 General Meeting. However, more importantly, the session will provide for a broad range of interests for ecosystem ecologists, theoretical ecologists, and global change biologists, and will foster communication between these groups to generate informative microbial community data in the future.
J. Zhou; S.-K. Rhee; C. Schadt; T. Gentry; Z. He; X. Li; X. Liu; J. Liebich; S.C. Chong; L. Wu
2004-03-17
To effectively monitor microbial populations involved in various important processes, a 50-mer-based oligonucleotide microarray was developed based on known genes and pathways involved in: biodegradation, metal resistance and reduction, denitrification, nitrification, nitrogen fixation, methane oxidation, methanogenesis, carbon polymer decomposition, and sulfate reduction. This array contains approximately 2000 unique and group-specific probes with <85% similarity to their non-target sequences. Based on artificial probes, our results showed that at hybridization conditions of 50 C and 50% formamide, the 50-mer microarray hybridization can differentiate sequences having <88% similarity. Specificity tests with representative pure cultures indicated that the designed probes on the arrays appeared to be specific to their corresponding target genes. Detection limits were about 5-10ng genomic DNA in the absence of background DNA, and 50-100ng ({approx}1.3{sup o} 10{sup 7} cells) in the presence background DNA. Strong linear relationships between signal intensity and target DNA and RNA concentration were observed (r{sup 2} = 0.95-0.99). Application of this microarray to naphthalene-amended enrichments and soil microcosms demonstrated that composition of the microflora varied depending on incubation conditions. While the naphthalene-degrading genes from Rhodococcus-type microorganisms were dominant in enrichments, the genes involved in naphthalene degradation from Gram-negative microorganisms such as Ralstonia, Comamonas, and Burkholderia were most abundant in the soil microcosms (as well as those for polyaromatic hydrocarbon and nitrotoluene degradation). Although naphthalene degradation is widely known and studied in Pseudomonas, Pseudomonas genes were not detected in either system. Real-time PCR analysis of 4 representative genes was consistent with microarray-based quantification (r{sup 2} = 0.95). Currently, we are also applying this microarray to the study of several different microbial communities and processes at the NABIR-FRC in Oak Ridge, TN. One project involves the monitoring of the development and dynamics of the microbial community of a fluidized bed reactor (FBR) used for reducing nitrate and the other project monitors microbial community responses to stimulation of uranium reducing populations via ethanol donor additions in situ and in a model system. Additionally, we are developing novel strategies for increasing microarray hybridization sensitivity. Finally, great improvements to our methods of probe design were made by the development of a new computer program, CommOligo. CommOligo designs unique and group-specific oligo probes for whole-genomes, metagenomes, and groups of environmental sequences and uses a new global alignment algorithm to design single or multiple probes for each gene or group. We are now using this program to design a more comprehensive functional gene array for environmental studies. Overall, our results indicate that the 50mer-based microarray technology has potential as a specific and quantitative tool to reveal the composition of microbial communities and their dynamics important to processes within contaminated environments.
Timothy J. H. Hele
2015-08-24
We obtain thermostatted ring polymer molecular dynamics (TRPMD) from exact quantum dynamics via Matsubara dynamics, a recently-derived form of linearization which conserves the quantum Boltzmann distribution. Performing a contour integral in the complex quantum Boltzmann distribution of Matsubara dynamics, replacement of the imaginary Liouvillian which results with a Fokker-Planck term gives TRPMD. We thereby provide error terms between TRPMD and quantum dynamics and predict the systems in which they are likely to be small. Using a harmonic analysis we show that careful addition of friction causes the correct oscillation frequency of the higher ring-polymer normal modes in a harmonic well, which we illustrate with calculation of the position-squared autocorrelation function. However, no physical friction parameter will produce the correct fluctuation dynamics for a parabolic barrier. The results in this paper are consistent with previous numerical studies and advise the use of TRPMD for the computation of spectra.
Hele, Timothy J H
2015-01-01
We obtain thermostatted ring polymer molecular dynamics (TRPMD) from exact quantum dynamics via Matsubara dynamics, a recently-derived form of linearization which conserves the quantum Boltzmann distribution. Performing a contour integral in the complex quantum Boltzmann distribution of Matsubara dynamics, replacement of the imaginary Liouvillian which results with a Fokker-Planck term gives TRPMD. We thereby provide error terms between TRPMD and quantum dynamics and predict the systems in which they are likely to be small. Using a harmonic analysis we show that careful addition of friction causes the correct oscillation frequency of the higher ring-polymer normal modes in a harmonic well, which we illustrate with calculation of the position-squared autocorrelation function. However, no physical friction parameter will produce the correct fluctuation dynamics for a parabolic barrier. The results in this paper are consistent with previous numerical studies and advise the use of TRPMD for the computation of spe...
Casimir force between integrable and chaotic pistons
Alvarez, Ezequiel; Mazzitelli, Francisco D.; Wisniacki, Diego A. [Departamento de Fisica, Facultad de Ciencias Exactas y Naturales Universidad de Buenos Aires, and Instituto de Fisica de Buenos Aires, Concejo Nacional de Investigaciones Cientificas y Tecnicas, Ciudad Universitaria, Pabellon I, 1428 Buenos Aires (Argentina); Monastra, Alejandro G. [Gerencia de Investigacion y Aplicaciones, Comision Nacional de Energia Atomica, Concejo Nacional de Investigaciones Cientificas y Tecnicas, Avenida General Paz 1499, 1650 San Martin (Argentina)
2010-11-15
We have computed numerically the Casimir force between two identical pistons inside a very long cylinder, considering different shapes for the pistons. The pistons can be considered quantum billiards, whose spectrum determines the vacuum force. The smooth part of the spectrum fixes the force at short distances and depends only on geometric quantities like the area or perimeter of the piston. However, correcting terms to the force, coming from the oscillating part of the spectrum which is related to the classical dynamics of the billiard, could be qualitatively different for classically integrable or chaotic systems. We have performed a detailed numerical analysis of the corresponding Casimir force for pistons with regular and chaotic classical dynamics. For a family of stadium billiards, we have found that the correcting part of the Casimir force presents a sudden change in the transition from regular to chaotic geometries. This suggests that there could be signatures of quantum chaos in the Casimir effect.
Necessity of integral formalism
Yong Tao
2011-10-06
To describe the physical reality, there are two ways of constructing the dynamical equation of field, differential formalism and integral formalism. The importance of this fact is firstly emphasized by Yang in case of gauge field [Phys. Rev. Lett. 33 (1974) 445], where the fact has given rise to a deeper understanding for Aharonov-Bohm phase and magnetic monopole [Phys. Rev. D. 12 (1975) 3845]. In this paper we shall point out that such a fact also holds in general wave function of matter, it may give rise to a deeper understanding for Berry phase. Most importantly, we shall prove a point that, for general wave function of matter, in the adiabatic limit, there is an intrinsic difference between its integral formalism and differential formalism. It is neglect of this difference that leads to an inconsistency of quantum adiabatic theorem pointed out by Marzlin and Sanders [Phys. Rev. Lett. 93 (2004) 160408]. It has been widely accepted that there is no physical difference of using differential operator or integral operator to construct the dynamical equation of field. Nevertheless, our study shows that the Schrodinger differential equation (i.e., differential formalism for wave function) shall lead to vanishing Berry phase and that the Schrodinger integral equation (i.e., integral formalism for wave function), in the adiabatic limit, can satisfactorily give the Berry phase. Therefore, we reach a conclusion: There are two ways of describing physical reality, differential formalism and integral formalism; but the integral formalism is a unique way of complete description.
Bailey, David H.; Borwein, Jonathan M.; Crandall, Richard E.
2006-01-01
Box integrals D.H. Bailey ? J.M. Borwein † April 3,Abstract. By a “box integral” we mean here an expectation |r· dr n . The study of box integrals leads one naturally into
TRIPLE INTEGRALS Studying triple integrals
Knopf, Dan
TRIPLE INTEGRALS Studying triple integrals of functions of three variables is a natural step up from the two variable case. It's a very important one for applications. Now the domain of integration in 3- space as double integrals, which in turn were expressed as repeated integrals. As a result
Danilov, Viatcheslav; /Oak Ridge; Nagaitsev, Sergei; /Fermilab
2011-11-01
Many quantum integrable systems are obtained using an accelerator physics technique known as Ermakov (or normalized variables) transformation. This technique was used to create classical nonlinear integrable lattices for accelerators and nonlinear integrable plasma traps. Now, all classical results are carried over to a nonrelativistic quantum case. In this paper we have described an extension of the Ermakov-like transformation to the Schroedinger and Pauli equations. It is shown that these newly found transformations create a vast variety of time dependent quantum equations that can be solved in analytic functions, or, at least, can be reduced to time-independent ones.
What is the Ocean Like off Oregon?
Kurapov, Alexander
meters. The sampling grid was reminiscent of the more ambitious CalCOFI survey grid off California, begunWhat is the Ocean Like off Oregon? Exploring, Monitoring, and Understanding the Northern California g o 76 Introduction The dynamic, ever-changing ocean off Oregon is home to a rich, productive
Pedram, Massoud
Dynamic Driver Supply Voltage Scaling for Organic Light Emitting Diode Displays Donghwa Shin, Student, Fellow, IEEE Abstract--Organic light emitting diode (OLED) display is a self-illuminating device]. On the other hand, an organic light emitting diode (OLED) is self-illuminating using organic light emission
Masciola, M.; Robertson, A.; Jonkman, J.; Driscoll, F.
2011-10-01
To enable offshore floating wind turbine design, the following are required: accurate modeling of the wind turbine structural dynamics, aerodynamics, platform hydrodynamics, a mooring system, and control algorithms. Mooring and anchor design can appreciably affect the dynamic response of offshore wind platforms that are subject to environmental loads. From an engineering perspective, system behavior and line loads must be studied well to ensure the overall design is fit for the intended purpose. FAST (Fatigue, Aerodynamics, Structures and Turbulence) is a comprehensive simulation tool used for modeling land-based and offshore wind turbines. In the case of a floating turbine, continuous cable theory is used to emulate mooring line dynamics. Higher modeling fidelity can be gained through the use of finite element mooring theory. This can be achieved through the FASTlink coupling module, which couples FAST with OrcaFlex, a commercial simulation tool used for modeling mooring line dynamics. In this application, FAST is responsible for capturing the aerodynamic loads and flexure of the wind turbine and its tower, and OrcaFlex models the mooring line and hydrodynamic effects below the water surface. This paper investigates the accuracy and stability of the FAST/OrcaFlex coupling operation.
Life-Like Characters. Tools, Affective Functions, and Applications
Kawamoto, Shin ichi; Shimodaira, Hiroshi; Nitta, Tsuneo; Nishimoto, Takuya; Nakamura, Satoshi; Itou, Katsunobu; Morishima, Shigeo; Yotsukura, Tatsuo; Kai, Atsuhiko; Lee, Akinobu; Yamashita, Yoichi; Kobayashi, Takao; Tokuda, Keiichi; Hirose, Keikichi; Minematsu, Nobuaki; Yamada, Atsushi; Den, Yasuharu; Utsuro, Takehito; Sagayama, Shigeki
2003-01-01
Galatea is a software toolkit to develop a human-like spoken dialog agent. In order to easily integrate the modules of different characteristics including speech recognizer, speech synthesizer, facial animation synthesizer[ ...
International Association for Cryptologic Research (IACR)
FlexDPDP: FlexList-based Optimized Dynamic Provable Data Possession Ertem Esiner, Adilet Kachkeev the integrity of data stored at an untrusted server has become significant. Authenticated Skip Lists and Rank-based an underlying authenticated data structure based on a skip list [49]. A skip list [49] is a tree-like hierar
Not Available
2008-09-01
Summarizes the goals and activities of the DOE Solar Energy Technologies Program efforts within its grid integration subprogram.
MOND-like acceleration in integrable Weyl geometric gravity
Erhard Scholz
2015-10-15
In this paper a Weyl geometric scalar tensor theory of gravity with scalar field $\\Phi$ and scale invariant cubic ("aquadratic") kinetic Lagrangian is introduced. Einstein gauge (comparable to Einstein frame in Jordan-Brans-Dicke theory) is most natural for studying trajectories. In it, the Weylian scale connection induces an additional acceleration which in the weak field, static, low velocity limit acquires the deep MOND form of Milgrom/Bekenstein's gravity. The energy momentum of $\\Phi$ leads to another add on to Newton acceleration. Both additional accelerations together imply a MOND-ian phenomenology of the model. It has unusual transition functions. They imply higher phantom energy density than in the case of the more common MOND models with transition functions $\\mu_1(x), \\, \\mu_2(x)$. A considerable part of it is due to the scalar field's energy density which, in our model, gives a scale and generally covariant expression for the self-energy of the gravitational field.
Integrating Program Component Executables
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would likeUniverseIMPACT EVALUATION PLANIs gravity aOverviewISM IntegratedIntegrating Program
V. A. Fateev; R. De Pietri; E. Onofri
2004-07-13
A class of singular integral operators, encompassing two physically relevant cases arising in perturbative QCD and in classical fluid dynamics, is presented and analyzed. It is shown that three special values of the parameters allow for an exact eigenfunction expansion; these can be associated to Riemannian symmetric spaces of rank one with positive, negative or vanishing curvature. For all other cases an accurate semiclassical approximation is derived, based on the identification of the operators with a peculiar Schroedinger-like operator.
Dougherty, John J. (Norristown, PA); Rudge, George T. (Lansdale, PA)
1980-01-01
An electric signal representative of the rate of insolation is integrated to determine if it is adequate for operation of a solar energy collection system.
Frangioni, John V. (Wayland, MA); De Grand, Alec M. (Boston, MA)
2007-10-30
The invention is based, in part, on the discovery that by combining certain components one can generate a tissue-like phantom that mimics any desired tissue, is simple and inexpensive to prepare, and is stable over many weeks or months. In addition, new multi-modal imaging objects (e.g., beads) can be inserted into the phantoms to mimic tissue pathologies, such as cancer, or merely to serve as calibration standards. These objects can be imaged using one, two, or more (e.g., four) different imaging modalities (e.g., x-ray computed tomography (CT), positron emission tomography (PET), single photon emission computed tomography (SPECT), and near-infrared (NIR) fluorescence) simultaneously.
Mathematics 658 Nonlinear Dynamics and Geometic Mechanics
Bloch, Anthony
Mathematics 658 Nonlinear Dynamics and Geometic Mechanics Instructor: Anthony M. Bloch. Office of ordinary differential equations and dynamical systems, with applications to various mechanical and physical geometry, nonlinear stability theory, Lagrangian and Hamiltonian mechanics, integrable systems, reduction
Protein-directed dynamic combinatorial chemistry
Bhat, Venugopal T.
2011-11-23
Dynamic combinatorial chemistry (DCC) is a novel approach to medicinal chemistry which integrates the synthesis and screening of small molecule libraries into a single step. The concept uses reversible chemical reactions to present a dynamic library...
ContentsContents1133integration integration
Vickers, James
ContentsContents1133integration integration 1. Basic concepts of integration 2. Definite integrals 3. The area bounded by a curve 4. Integration by parts 5. Integration by substitution and using partial fractions 6. Integration of trigonometric functions Learning outcomes In this workbook you
Defining integrals over connections in the discretized gravitational functional integral
V. M. Khatsymovsky
2010-05-01
Integration over connection type variables in the path integral for the discrete form of the first order formulation of general relativity theory is studied. The result (a generalized function of the rest of variables of the type of tetrad or elementary areas) can be defined through its moments, i. e. integrals of it with the area tensor monomials. In our previous paper these moments have been defined by deforming integration contours in the complex plane as if we had passed to an Euclidean-like region. In the present paper we define and evaluate the moments in the genuine Minkowsky region. The distribution of interest resulting from these moments in this non-positively defined region contains the divergences. We prove that the latter contribute only to the singular (\\dfun like) part of this distribution with support in the non-physical region of the complex plane of area tensors while in the physical region this distribution (usual function) confirms that defined in our previous paper which decays exponentially at large areas. Besides that, we evaluate the basic integrals over which the integral over connections in the general path integral can be expanded.
Integrability Singular reduction
Patrick, George
Motivation Integrability Singular reduction Integration of Singular quotients Summary References Singular reduction of Poisson manifolds and integrability Rui L. Fernandes1 Joint work with J.P. Ortega Fernandes Singular reduction and integrability #12;Motivation Integrability Singular reduction Integration
Exploring genomic medicine using integrative biology
Butte, Atul J
2004-01-01
Instead of focusing on the cell, or the genotype, or on any single measurement modality, using integrative biology allows us to think holistically and horizontally. A disease like diabetes can lead to myocardial infarction, ...
On the Topic of Motion Integrals
Bertinato, Christopher
2013-04-02
An integral of motion is a function of the states of a dynamical system that is constant along the system’s trajectories. Integrals are known for their utility as a means of reducing the dimension of a system, effectively leaving only one...
AN INTEGRATED ENVIRONMENT FOR CONCEPTUAL DESIGN, SYNTHESIS
Utah, University of
. Methodology for dynamic analysis of open kinematic chains which is indepen- dent of speci c joint trajectoriesAN INTEGRATED ENVIRONMENT FOR CONCEPTUAL DESIGN, SYNTHESIS AND ANALYSIS OF DYNAMIC FRAME STRUCTURES llment of the requirements for the degree of Doctor of Philosophy Department of Mechanical Engineering
Traveling Waves with Paraboloid Like Interfaces for Balanced Bistable Dynamics
Hamel, FranÃ§ois
University 88, S-4, Ting Chou Road, Taipei 116, Taiwan c UniversitÂ´e Aix-Marseille III, LATP (UMR CNRS 6632 e Laboratoire M.I.P. (UMR CNRS 5640) and Institut Universitaire de France UniversitÂ´e Paul Sabatier
A continuous gradient-like dynamical approach to Pareto ...
2013-04-26
Apr 26, 2013 ... objective function (scalar case); it makes use of Lyapunov analysis and Opial's lemma. ii) In Theorem 2.4, we ... Let S be a non empty subset of K and u : [0,+?) ? K a map. Assume that. (i) ... Proof. The inclusion Tw ? Tc in item i) is obtained by a direct application of the ... ii) Finite energy property: ? +?. 0.
BDF-like methods for nonlinear dynamic analysis
"S. Dong"
2010-02-06
Jan 4, 2010 ... Although a nonlinear stability analysis of these algorithms for general ..... analysis using the damping-free linear vibration Eq. (16) similar to the ...
Integrating Environmental Stewardship
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would likeUniverseIMPACT EVALUATION PLANIs gravity aOverviewISM Integrated
Smart Grid Integration Laboratory
Wade Troxell
2011-09-30
The initial federal funding for the Colorado State University Smart Grid Integration Laboratory is through a Congressionally Directed Project (CDP), DE-OE0000070 Smart Grid Integration Laboratory. The original program requested in three one-year increments for staff acquisition, curriculum development, and instrumentation â?? all which will benefit the Laboratory. This report focuses on the initial phase of staff acquisition which was directed and administered by DOE NETL/ West Virginia under Project Officer Tom George. Using this CDP funding, we have developed the leadership and intellectual capacity for the SGIC. This was accomplished by investing (hiring) a core team of Smart Grid Systems engineering faculty focused on education, research, and innovation of a secure and smart grid infrastructure. The Smart Grid Integration Laboratory will be housed with the separately funded Integrid Laboratory as part of CSUâ??s overall Smart Grid Integration Center (SGIC). The period of performance of this grant was 10/1/2009 to 9/30/2011 which included one no cost extension due to time delays in faculty hiring. The Smart Grid Integration Laboratoryâ??s focus is to build foundations to help graduate and undergraduates acquire systems engineering knowledge; conduct innovative research; and team externally with grid smart organizations. Using the results of the separately funded Smart Grid Workforce Education Workshop (May 2009) sponsored by the City of Fort Collins, Northern Colorado Clean Energy Cluster, Colorado State University Continuing Education, Spirae, and Siemens has been used to guide the hiring of faculty, program curriculum and education plan. This project develops faculty leaders with the intellectual capacity to inspire its students to become leaders that substantially contribute to the development and maintenance of Smart Grid infrastructure through topics such as: (1) Distributed energy systems modeling and control; (2) Energy and power conversion; (3) Simulation of electrical power distribution system that integrates significant quantities of renewable and distributed energy resources; (4) System dynamic modeling that considers end-user behavior, economics, security and regulatory frameworks; (5) Best practices for energy management IT control solutions for effective distributed energy integration (including security with the underlying physical power systems); (6) Experimental verification of effects of various arrangements of renewable generation, distributed generation and user load types along with conventional generation and transmission. Understanding the core technologies for enabling them to be used in an integrated fashion within a distribution network remains is a benefit to the future energy paradigm and future and present energy engineers.
Paying for Likes? Understanding Facebook Like Fraud Using Honeypots
De Cristofaro, Emiliano; Jourjon, Guillaume; Kaafar, Mohamed Ali; Shafiq, M Zubair
2014-01-01
Facebook pages offer an easy way to reach out to a very large audience as they can easily be promoted using Facebook's advertising platform. Recently, the number of likes of a Facebook page has become a measure of its popularity and profitability, and an underground market of services boosting page likes, aka like farms, has emerged. Some reports have suggested that like farms use a network of profiles that also like other pages to elude fraud protection algorithms, however, to the best of our knowledge, there has been no systematic analysis of Facebook pages' promotion methods. This paper presents a comparative measurement study of page likes garnered via Facebook ads and by a few like farms. We deploy a set of honeypot pages, promote them using both methods, and analyze garnered likes based on likers' demographic, temporal, and social characteristics. We highlight a few interesting findings, including that some farms seem to be operated by bots and do not really try to hide the nature of their operations, w...
DYNAMIC MODELING Commercial Office Building Measurements and Dynamic Integrated
Mease, Kenneth D.
mean higher capital costs · Currently, non-renewable generators cannot sell power back to the grid the gas infrastructure handle DG (both on the micro and macro scales)? 3.Natural gas or other fuel costs Distributed Energy Resources · Absorption cooling and heating equipment · Thermal energy storage · Electrical
Water-like solvation thermodynamics in a spherically symmetric solvent model
Buldyrev, Sergey
Water-like solvation thermodynamics in a spherically symmetric solvent model with two. The Jagla fluid has been recently shown to possess water-like structural, dynamic, and thermodynamic and thereby show that the Jagla fluid also displays water-like solvation thermodynamics. We further find low
Magmatic "Quantum-Like" Systems
Elemer E Rosinger
2008-12-16
Quantum computation has suggested, among others, the consideration of "non-quantum" systems which in certain respects may behave "quantum-like". Here, what algebraically appears to be the most general possible known setup, namely, of {\\it magmas} is used in order to construct "quantum-like" systems. The resulting magmatic composition of systems has as a well known particular case the tensor products.
Integrated structural health monitoring.
Farrar, C. R. (Charles R.)
2001-01-01
Structural health monitoring is the implementation of a damage detection strategy for aerospace, civil and mechanical engineering infrastructure. Typical damage experienced by this infrastructure might be the development of fatigue cracks, degradation of structural connections, or bearing wear in rotating machinery. The goal of the research effort reported herein is to develop a robust and cost-effective structural health monitoring solution by integrating and extending technologies from various engineering and information technology disciplines. It is the authors opinion that all structural health monitoring systems must be application specific. Therefore, a specific application, monitoring welded moment resisting steel frame connections in structures subjected to seismic excitation, is described along with the motivation for choosing this application. The structural health monitoring solution for this application will integrate structural dynamics, wireless data acquisition, local actuation, micro-electromechanical systems (MEMS) technology, and statistical pattern recognition algorithms. The proposed system is based on an assessment of the deficiencies associated with many current structural health monitoring technologies including past efforts by the authors. This paper provides an example of the integrated approach to structural health monitoring being undertaken at Los Alamos National Laboratory and summarizes progress to date on various aspects of the technology development.
Eto, Joseph; Budhraja, Vikram; Ballance, John; Dyer, Jim; Mobasheri, Fred; Eto, Joseph
2008-07-01
California is on a path to increase utilization of renewable resources. California will need to integrate approximately 30,000 megawatts (MW) of new renewable generation in the next 20 years. Renewable resources are typically located in remote locations, not near the load centers. Nearly two/thirds or 20,000 MW of new renewable resources needed are likely to be delivered to Los Angeles Basin transmission gateways. Integration of renewable resources requires interconnection to the power grid, expansion of the transmission system capability between the backbone power grid and transmission gateways, and increase in delivery capacity from transmission gateways to the local load centers. To scope the transmission, operations, and reliability issues for renewables integration, this research focused on the Los Angeles Basin Area transmission gateways where most of new renewables are likely. Necessary actions for successful renewables integration include: (1) Expand Los Angeles Basin Area transmission gateway and nomogram limits by 10,000 to 20,000 MW; (2) Upgrade local transmission network for deliverability to load centers; (3) Secure additional storage, demand management, automatic load control, dynamic pricing, and other resources that meet regulation and ramping needed in real time operations; (4) Enhance local voltage support; and (5) Expand deliverability from Los Angeles to San Diego and Northern California.
Critical Review of Path Integral Formulation
Takehisa Fujita
2008-01-13
The path integral formulation in quantum mechanics corresponds to the first quantization since it is just to rewrite the quantum mechanical amplitude into many dimensional integrations over discretized coordinates $x_n$. However, the path integral expression cannot be connected to the dynamics of classical mechanics, even though, superficially, there is some similarity between them. Further, the field theory path integral in terms of many dimensional integrations over fields does not correspond to the field quantization. We clarify the essential difference between Feynman's original formulation of path integral in QED and the modern version of the path integral method prevailing in lattice field theory calculations, and show that the former can make a correct second quantization while the latter cannot quantize fields at all and its physical meaning is unknown.
Residential Buildings Integration (RBI)
Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site
7 RBI Priorities for FY15 and Beyond Integrating Advanced Technologies for Homes: * Building integrated renewables * IAQVentilation solutions * Integrated high performance...
Gasoline and Diesel Fuel Update (EIA)
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)DecadeYear Jan Feb Mar Apr MayYearYear JanDecade Year-0per6,167,3715) Integrating
Liu, Jian; Miller, William H.
2008-01-01
in a single phase space integral—beyond the linearizedreplace the phase space integral in Eq. (2.1) by a timeclassical dynamics of the path integral beads of the quantum
Apparatus for insulating windows and the like
Mitchell, Robert A. (R.D. #1, Box 462-A, Voorheesville, NY 12186)
1984-01-01
Apparatus for insulating window openings through walls and the like includes a thermal shutter, a rail for mounting the shutter adjacent to the window opening and a coupling for connecting the shutter to the rail. The thermal shutter includes an insulated panel adhered to frame members which surround the periphery of the panel. The frame members include a hard portion for providing the frame and a soft portion for providing a seal with that portion of the wall adjacent to the periphery of the opening. The coupling means is preferably integral with the attachment rail. According to a preferred embodiment, the coupling means includes a continuous hinge of reduced thickness. The thermal shutter can be permanently attached, hinged, bi-folded, or sliding with respect to the window and wall. A distribution method is to market the apparatus in "kit" form.
Apparatus for insulating windows and the like
Mitchell, R.A.
1984-06-19
Apparatus for insulating window openings through walls and the like includes a thermal shutter, a rail for mounting the shutter adjacent to the window opening and a coupling for connecting the shutter to the rail. The thermal shutter includes an insulated panel adhered to frame members which surround the periphery of the panel. The frame members include a hard portion for providing the frame and a soft portion for providing a seal with that portion of the wall adjacent to the periphery of the opening. The coupling means is preferably integral with the attachment rail. According to a preferred embodiment, the coupling means includes a continuous hinge of reduced thickness. The thermal shutter can be permanently attached, hinged, bi-folded, or sliding with respect to the window and wall. A distribution method is to market the apparatus in kit'' form. 11 figs.
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would likeUniverseIMPACT EVALUATION PLANIs gravity aOverview ARMDistribution Performance Program
Kerby, L.A. [Calpine Corp., San Jose, CA (United States)
1995-11-01
A continuing challenge facing the independent power industry is building better plants at lower cost. Price considerations have forced many developers to re-focus their capabilities to create viable, new alternatives to traditional turnkey project contracts. Prompted by such pressures, Calpine Corp. recently created its own internal, integrated solution to project development which provides more control and input for a project owner and manager while establishing a solid set of guarantees to non-recourse lenders through a program of warranties and overall insurance coverage. The proof case for Calpine-Construct is the Sumas Project, a 125 MW gas-fired cogeneration plant in Sumas, WA, near the Canadian border. The Sumas project demonstrates how owners, suppliers and contractors, working together on site, can be readily able to solve construction problems.
String theory and integrable systems
Nissimov, Emil R; Nissimov, Emil; Pacheva, Svetlana
1993-01-01
This is mainly a brief review of some key achievements in a `hot'' area of theoretical and mathematical physics. The principal aim is to outline the basic structures underlying {\\em integrable} quantum field theory models with {\\em infinite-dimensional} symmetry groups which display a radically new type of {\\em quantum group} symmetries. Certain particular aspects are elaborated upon with some detail: integrable systems of Kadomtsev-Petviashvili type and their reductions appearing in matrix models of strings; Hamiltonian approach to Lie-Poisson symmetries; quantum field theory approach to two-dimensional relativistic integrable models with dynamically broken conformal invariance. All field-theoretic models in question are of primary relevance to diverse branches of physics ranging from nonlinear hydrodynamics to string theory of fundamental particle interactions at ultra-high energies.
Tokamak-like Vlasov equilibria
Tasso, H
2014-01-01
Vlasov equilibria of axisymmetric plasmas with vacuum toroidal magnetic field can be reduced, up to a selection of ions and electrons distributions functions, to a Grad-Shafranov-like equation. Quasineutrality narrow the choice of the distributions functions. In contrast to two-dimensional translationally symmetric equilibria whose electron distribution function consists of a displaced Maxwellian, the toroidal equilibria need deformed Maxwellians. In order to be able to carry through the calculations, this deformation is produced by means of either a Heaviside step function or an exponential function. The resulting Grad-Shafranov-like equations are established explicitly.
Black Holes and Galaxy Dynamics
David Merritt
1999-06-02
The consequences of nuclear black holes for the structure and dynamics of stellar spheroids are reviewed. Slow growth of a black hole in a pre-existing core produces a steep power-law density profile similar to the cusps seen in faint elliptical galaxies. The weaker cusps in bright ellipticals may result from ejection of stars by a coalescing black-hole binary; there is marginal kinematical evidence for such a process having occurred in M87. Stellar orbits in a triaxial nucleus are mostly regular at radii where the gravitational force is dominated by the black hole; however the orbital shapes are not conducive to reinforcing the triaxial figure, hence nuclei are likely to be approximately axisymmetric. In triaxial potentials, a ``zone of chaos'' extends outward to a radius where the enclosed stellar mass is roughly 100 times the mass of the black hole; in this chaotic zone, no regular, box-like orbits exist. At larger radii, the phase space in triaxial potentials is complex, consisting of stochastic orbits as well as regular orbits associated with stable resonances. Figure rotation tends to increase the degree of stochasticity. Both test-particle integrations and N-body simulations suggest that a triaxial galaxy responds globally to the presence of a central mass concentration by evolving toward more axisymmetric shapes; the evolution occurs rapidly when the mass of the central object exceeds roughly 2% of the mass in stars. The lack of significant triaxiality in most early-type galaxies may be a consequence of orbital evolution induced by nuclear black holes.
Hydrodynamic simulations of captured protoatmospheres around Earth-like planets
Stoekl, Alexander; Lammer, Helmut
2015-01-01
Young terrestrial planets, when they are still embedded in a circumstellar disk, accumulate an atmosphere of nebula gas. The evolution and eventual evaporation of the protoplanetary disk affect the structure and dynamics of the planetary atmosphere. These processes, combined with other mass loss mechanisms, such as thermal escape driven by extreme ultraviolet and soft X-ray radiation (XUV) from the young host star, determine how much of the primary atmosphere, if anything at all, survives into later stages of planetary evolution. Our aim is to explore the structure and the dynamic outflow processes of nebula-accreted atmospheres in dependency on changes in the planetary environment. We integrate stationary hydrostatic models and perform time-dependent dynamical simulations to investigate the effect of a changing nebula environment on the atmospheric structure and the timescales on which the protoatmosphere reacts to these changes. We find that the behavior of the atmospheres strongly depends on the mass of th...
Sandia Energy - Scattering Dynamics
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Scattering Dynamics Home Transportation Energy Predictive Simulation of Engines Combustion Chemistry Chemical Dynamics Scattering Dynamics Scattering DynamicsAshley...
Volume Ignition via Time-like Detonation in Pellet Fusion
Csernai, L P
2015-01-01
Relativistic fluid dynamics and the theory of relativistic detonation fronts are used to estimate the space-time dynamics of the burning of the D-T fuel in Laser driven pellet fusion experiments. The initial "High foot" heating of the fuel makes the compressed target transparent to radiation, and then a rapid ignition pulse can penetrate and heat up the whole target to supercritical temperatures in a short time, so that most of the interior of the target ignites almost simultaneously and instabilities will have no time to develop. In these relativistic, radiation dominated processes both the interior, time-like burning front and the surrounding space-like part of the front will be stable against Rayleigh-Taylor instabilities. To achieve this rapid, volume ignition the pulse heating up the target to supercritical temperature should provide the required energy in less than ~ 10 ps.
Dynamics and architectures of innovation systems
Chen, Po Chia, S.M. Massachusetts Institute of Technology
2011-01-01
Innovation processes are multifaceted. Different studies usually focus on different facets of innovations without being integrated into a complete innovation system. In this thesis, system dynamics and system architecture ...
Dynamic Transmission Electron Microscopy
Evans, James E.; Jungjohann, K. L.; Browning, Nigel D.
2012-10-12
Dynamic transmission electron microscopy (DTEM) combines the benefits of high spatial resolution electron microscopy with the high temporal resolution of ultrafast lasers. The incorporation of these two components into a single instrument provides a perfect platform for in situ observations of material processes. However, previous DTEM applications have focused on observing structural changes occurring in samples exposed to high vacuum. Therefore, in order to expand the pump-probe experimental regime to more natural environmental conditions, in situ gas and liquid chambers must be coupled with Dynamic TEM. This chapter describes the current and future applications of in situ liquid DTEM to permit time-resolved atomic scale observations in an aqueous environment, Although this chapter focuses mostly on in situ liquid imaging, the same research potential exists for in situ gas experiments and the successful integration of these techniques promises new insights for understanding nanoparticle, catalyst and biological protein dynamics with unprecedented spatiotemporal resolution.
Integrated field emission array for ion desorption
Resnick, Paul J; Hertz, Kristin L; Holland, Christopher; Chichester, David; Schwoebel, Paul
2013-09-17
An integrated field emission array for ion desorption includes an electrically conductive substrate; a dielectric layer lying over the electrically conductive substrate comprising a plurality of laterally separated cavities extending through the dielectric layer; a like plurality of conically-shaped emitter tips on posts, each emitter tip/post disposed concentrically within a laterally separated cavity and electrically contacting the substrate; and a gate electrode structure lying over the dielectric layer, including a like plurality of circular gate apertures, each gate aperture disposed concentrically above an emitter tip/post to provide a like plurality of annular gate electrodes and wherein the lower edge of each annular gate electrode proximate the like emitter tip/post is rounded. Also disclosed herein are methods for fabricating an integrated field emission array.
Requirements for a Dynamic Solvent Extraction Module to Support...
Office of Scientific and Technical Information (OSTI)
FUELS; PERFORMANCE; SAFEGUARDS; SAFETY; SECURITY; SIMULATION; SOLVENT EXTRACTION; SOLVENTS; WASTE FORMS dynamic; model; solvent extraction Word Cloud More Like This Full Text...
S. Manay; A. J. Yezzi; B. W. Hong; S. Soatto
2004-01-01
Projective curvature and integral invariants. IJCV, 40(3):a database of 23 shapes. Integral Invariant Signatures 7. A.C. Lopez, and J. M. Morel. Integral and local a?ne invariant
Manay, S; Hong, B W; Yezzi, A J; Soatto, Stefano
2004-01-01
Projective curvature and integral invariants. IJCV, 40(3):a database of 23 shapes. Integral Invariant Signatures 7. A.C. Lopez, and J. M. Morel. Integral and local a?ne invariant
Susmita Roy; Subramanian Yashonath; Biman Bagchi
2015-01-08
A self-consistent mode coupling theory (MCT) with microscopic inputs of equilibrium pair correlation functions is developed to analyze electrolyte dynamics. We apply the theory to calculate concentration dependence of (i) time dependent ion diffusion, (ii) dynamic structure factor of the constituent ions, and (iii) ion solvation dynamics in electrolyte solution. Brownian dynamics (BD) with implicit water molecules and molecular dynamics (MD) method with explicit water are used to check the theoretical predictions. The time dependence of ionic self-diffusion coefficient and the corresponding dynamic structure factor evaluated from our MCT approach show quantitative agreement with early experimental and present Brownian dynamic simulation results. With increasing concentration, the dispersion of electrolyte friction is found to occur at increasingly higher frequency, due to the faster relaxation of the ion atmosphere. The wave number dependence of total dynamic structure factor F(k,t), exhibits markedly different relaxation dynamics at different length scales. At small wave numbers, we find the emergence of a step-like relaxation, indicating the presence of both fast and slow time scales in the system. Such behaviour allows an intriguing analogy with temperature dependent relaxation dynamics of supercooled liquids. We find that solvation dynamics of a tagged ion exhibits a power law decay at long times- the decay can also be fitted to a stretched exponential form. The emergence of the power law in solvation dynamics has been tested by carrying out long Brownian dynamics simulations with varying ionic concentrations. This solvation time correlation and ion-ion dynamic structure factor indeed exhibits highly interesting, non-trivial dynamical behaviour at intermediate to longer times that require further experimental and theoretical studies.
Connecting curves for dynamical systems
R. Gilmore; Jean-Marc Ginoux; Timothy Jones; C. Letellier; U. S. Freitas
2010-03-08
We introduce one dimensional sets to help describe and constrain the integral curves of an $n$ dimensional dynamical system. These curves provide more information about the system than the zero-dimensional sets (fixed points) do. In fact, these curves pass through the fixed points. Connecting curves are introduced using two different but equivalent definitions, one from dynamical systems theory, the other from differential geometry. We describe how to compute these curves and illustrate their properties by showing the connecting curves for a number of dynamical systems.
Broader source: Energy.gov [DOE]
The DOE Systems Integration team funds distribution grid integration research and development (R&D) activities to address the technical issues that surround distribution grid planning,...
Thermal Control & System Integration
Broader source: Energy.gov [DOE]
The thermal control and system integration activity focuses on issues such as the integration of motor and power control technologies and the development of advanced thermal control technologies....
Steve Bell
2009-06-24
Feb 23, 2009 ... Cauchy Integral Formula basics. I'm using the enumerate environment on this slide. 1. The Cauchy Integral Formula was discovered by Cauchy ...
Feb 23, 2009 ... Cauchy Integral Formula basics I'm using the enumerate environment on this slide. The Cauchy Integral Formula was discovered by Cauchy.
Integrated assessment of the sustainability of biomass
Pennycook, Steve
Integrated assessment of the sustainability of biomass supply chains Dr. Floor van der Hilst · Previous work on sustainable biomass supply chains: Land use change modeling Dynamic Cost supply chains Future work and potential collaboration #12;Rationale · The total demand for biomass for energy
Giant Impacts on Earth-like Worlds
Quintana, Elisa V; Borucki, William; Rowe, Jason F; Chambers, John E
2015-01-01
The late stages of terrestrial planet formation are dominated by giant impacts that collectively influence the growth, dynamical stability, composition and habitability of any planets that form. Hitherto, numerical models designed to explore these late stage collisions have been limited in two major ways. First, nearly all N-body models have assumed that two-body collisions lead to perfect accretion. Second, many of these studies lack the large number of realizations needed to account for the chaotic nature of these N-body systems. In this article we perform hundreds of simulations of late stage terrestrial planet formation using an N-body algorithm that includes fragmentation and hit-and-run collisions. We performed 140 simulations of planet accretion around a Sun-like star with Jupiter and Saturn analogs with and without this new collision model. We find that when fragmentation is included, the final planets formed are similar to those formed in the perfect-accretion model in terms of mass and number, howev...
DYNAMIC RISK MANAGEMENT IN ELECTRICITY PORTFOLIO OPTIMIZATION
Römisch, Werner
DYNAMIC RISK MANAGEMENT IN ELECTRICITY PORTFOLIO OPTIMIZATION VIA POLYHEDRAL RISK FUNCTIONALS the dynamic decision structure appropriately. In energy risk management, which is typically carried out ex, for integrating risk management into a stochastic optimization framework, risk has to be quantified in a definite
Schroeder, Charles Grant
1996-01-01
Due to the needs of real-time, bandwidth intensive applications like videoconferencing, several resource reservation infrastructures like the Integrated Services Packet Network (ISPN) are currently being developed. These ...
M. Zyskin
2010-05-12
For nice functions, invariant means over integral currents (certain generalized surfaces), can be uniquely defined.
Video Analysis and Modeling Performance Task to promote becoming like scientists in classrooms
Wee, Loo Kang
2015-01-01
This paper aims to share the use of Tracker a free open source video analysis and modeling tool that is increasingly used as a pedagogical tool for the effective learning and teaching of Physics for Grade 9 Secondary 3 students in Singapore schools to make physics relevant to the real world. We discuss the pedagogical use of Tracker, guided by the Framework for K-12 Science Education by National Research Council, USA to help students to be more like scientists. For a period of 6 to 10 weeks, students use a video analysis coupled with the 8 practices of sciences such as 1. Ask question, 2. Use models, 3. Plan and carry out investigation, 4. Analyse and interpret data, 5. Use mathematical and computational thinking, 6. Construct explanations, 7. Argue from evidence and 8. Communicate information. This papers focus in on discussing some of the performance task design ideas such as 3.1 flip video, 3.2 starting with simple classroom activities, 3.3 primer science activity, 3.4 integrative dynamics and kinematics l...
Natural Dynamics for Combinatorial Optimization
Ovchinnikov, Igor V
2015-01-01
Stochastic and or natural dynamical systems (DSs) are dominated by sudden nonlinear processes such as neuroavalanches, gamma-ray bursts, solar flares, earthquakes etc. that exhibit scale-free statistics. These behaviors also occur in many nanosystems. On phase diagrams, these DSs belong to a finite-width phase that separates the phases of thermodynamic equilibrium and ordinary chaotic dynamics, and that is known under such names as intermittency, noise-induced chaos, and self-organized criticality. Within the recently formulated approximation-free cohomological theory of stochastic differential equations, the noise-induced chaos can be roughly interpreted as a noise-induced overlap between regular (integrable) and chaotic (non-integrable) deterministic dynamics so that DSs in this phase inherit the properties of the both. Here, we analyze this unique set of properties and conclude that such DSs must be the most efficient natural optimizers. Based on this understanding, we propose the method of the natural dyn...
L. R. G. Fontes; C. M. Newman; K. Ravishankar; E. Schertzer
2007-04-20
The dynamical discrete web (DDW), introduced in recent work of Howitt and Warren, is a system of coalescing simple symmetric one-dimensional random walks which evolve in an extra continuous dynamical parameter s. The evolution is by independent updating of the underlying Bernoulli variables indexed by discrete space-time that define the discrete web at any fixed s. In this paper, we study the existence of exceptional (random) values of s where the paths of the web do not behave like usual random walks and the Hausdorff dimension of the set of such exceptional s. Our results are motivated by those about exceptional times for dynamical percolation in high dimension by H\\"aggstrom, Peres and Steif, and in dimension two by Schramm and Steif. The exceptional behavior of the walks in DDW is rather different from the situation for dynamical random walks of Benjamini, H\\"aggstrom, Peres and Steif. In particular, we prove that there are exceptional values of s for which the walk from the origin S^s(n) has limsup S^s(n)/\\sqrt n \\leq K with a nontrivial dependence of the Hausdorff dimension on K. We also discuss how these and other results extend to the dynamical Brownian web, a natural scaling limit of DDW. The scaling limit is the focus of a paper in preparation; it was studied by Howitt and Warren and is related to the Brownian net of Sun and Swart.
The University of New Mexico An NSF Integrative Graduate
New Mexico, University of
chemical calculations are capable to describe the electronic structure and complex dynamics in such complex ligands on the electronic structure and observe strong surface-ligand interactions leading to formation.chtm.unm.edu/incbnigert/ Integrating Nanotechnology with Cell Biology and Neuroscience Excited State Dynamics and Energy Transfer
Integrative Biosurveillance at Bio Symposium
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would likeUniverseIMPACT EVALUATION PLANIs gravity aOverviewISMscientist discusses Integrative
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would likeUniverseIMPACT EVALUATION PLANIs gravity aOverviewISMscientist discussesIntegrity
Cosmological dynamics of viable f(R) theories of gravity
Kandhai, Sulona
2015-01-01
A complete analysis of the dynamics of the Hu-Sawicki modification to General Relativity is presented. In particular, the full phase-space is given for the case in which the model parameters are taken to be n=1, c1=1, and several stable de Sitter equilibrium points together with an unstable "matter-like" point are identified. We find that if the cosmological parameters are chosen to take on their Lambda CDM values today, this results in a universe which, until very low redshifts, is dominated by an equation of state parameter equal t1/3, leading to an expansion history very different from Lambda CDM. We demonstrate that this problem can be resolved by choosing Lambda CDM initial conditions at high redshifts and integrating the equations to the present day.
Wind Integration Study Methods (Presentation)
Milligan, M.; Kirby, B.
2011-04-01
This presentation provides an overview of common elements, differences, integration costs, and errors in integration analysis.
Dynamical synapses causing self-organized criticality in neural networks
Loss, Daniel
LETTERS Dynamical synapses causing self-organized criticality in neural networks A. LEVINA1,2,3 , J more realistic) dynamical synapses14 in a spiking neural network, the neuronal avalanches turn from dynamics is robust to parameter changes. Consider a network of N integrate-and-fire neurons. Each neuron
Hedging and Vertical Integration in Electricity Markets Gilles Chemla
Touzi, Nizar
Hedging and Vertical Integration in Electricity Markets Ren´e A¨id Gilles Chemla Arnaud Porchet) spot, retail, and forward markets and vertical integration in electricity markets. We develop risk averse. We illustrate our analysis with data from the French electricity market. We would like
Cost-Causation and Integration Cost Analysis for Variable Generation
Milligan, M.; Ela, E.; Hodge, B. M.; Kirby, B.; Lew, D.; Clark, C.; DeCesaro, J.; Lynn, K.
2011-06-01
This report examines how wind and solar integration studies have evolved, what analysis techniques work, what common mistakes are still made, what improvements are likely to be made in the near future, and why calculating integration costs is such a difficult problem and should be undertaken carefully, if at all.
Order, chaos and nuclear dynamics: An introduction
Swiatecki, W.J.
1990-08-01
This is an introductory lecture illustrating by simple examples the anticipated effect on collective nuclear dynamics of a transition from order to chaos in the motions of nucleons inside an idealized nucleus. The destruction of order is paralleled by a transition from a rubber-like to a honey-like behaviour of the independent-particle nuclear model. 10 refs., 6 figs.
Piezo-antiferromagnetic effect of sawtooth-like graphene nanoribbons
Zhao, Shangqian; Lu, Yan; Zhang, Yuchun; Lu, Wengang Liang, Wenjie
2014-05-19
A type of sawtooth-like graphene nanoribbon (SGNR) with piezo-antiferromagnetic effect is studied numerically. The ground state of the studied SGNR changes from nonmagnetic state to antiferromagnetic state with uniaxial strain. The changes of the spin-charge distributions during the stretching are investigated. The Hubbard model reveals that the hopping integrals between the ?-orbitals of the carbon atoms are responsible to the piezo-antiferromagnetic effect. The study sheds light on the application of graphene-based structures to nanosensors and spintronic devices.
WORLDLY | IntegRateD | peRsOnaLIzeD MBa Message from the Director 4
Shoubridge, Eric
WORLDLY | IntegRateD | peRsOnaLIzeD MBa beyond business as usual #12;Contents WoRLDLY Message from: An International & Dynamic City 16 InteGRAteD What is Integrated Management? 18 Our Unique Integrated Approach Program 29 PeRsonALIzeD Message from Career Services 30 Employment Statistics 32 Our Mentoring Program 33
AnonyFacebook -Liking Facebook Posts Anonymously
Ferreira, Paulo
AnonyFacebook - Liking Facebook Posts Anonymously Pedro Alves1 and Paulo Ferreira2 1 Opensoft the simple act of liking (on Facebook) an anti-government article or video can be (and has already been) used to anonymously "like" any post. In this paper we present anonyFacebook, a system that allows Face- book users
INTEGRATING PHOTOVOLTAIC SYSTEMS
Delaware, University of
INTEGRATING PHOTOVOLTAIC SYSTEMS INTO PUBLIC SECTOR PERFORMANCE CONTRACTS IN DELAWARE FINAL for Energy and Environmental Policy University of Delaware February 2006 #12;INTEGRATING PHOTOVOLTAIC..................................................................................................... 1 1.2 Photovoltaics in Performance Contracts: An Overview
Research Misconduct (Research Integrity
Wapstra, Erik
Research Misconduct (Research Integrity Coordinator report) Glossary ADR Associate Dean Research ANDS Australian National Data Sharing ITS Information Technology Services NeCTAR National eResearch Collaboration Tools and Resources RSDI Research Storage Data Infrastructure input Research Integrity Advisors
Transmission Commercial Project Integration
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Market Generator Interconnection Reform Implementation Network Integration Transmission Service (NT Service) Network Open Season (NOS) PTSA Reform North American Energy...
Wolcott, J; Bellantoni, L; Bercellie, A; Betancourt, M; Bodek, A; Bravar, A; Budd, H; Carneiro, M F; Chvojka, J; da Motta, H; Devan, J; Dytman, S A; Diaz, G A; Eberly, B; Felix, J; Fields, L; Fine, R; Galindo, R; Gallagher, H; Ghosh, A; Golan, T; Gran, R; Harris, D A; Higuera, A; Kiveni, M; Kleykamp, J; Kordosky, M; Le, T; Maher, E; Manly, S; Mann, W A; Marshall, C M; Caicedo, D A Martinez; McFarland, K S; McGivern, C L; McGowan, A M; Messerly, B; Miller, J; Mislivec, A; Morfin, J G; Mousseau, J; Muhlbeier, T; Naples, D; Nelson, J K; Norrick, A; Osta, J; Paolone, V; Park, J; Patrick, C E; Perdue, G N; Rakotondravohitra, L; Ransome, R D; Ray, H; Ren, L; Rimal, D; Rodrigues, P A; Ruterbories, D; Schellman, H; Schmitz, D W; Salinas, C J Solano; Tagg, N; Tice, B G; Valencia, E; Walton, T; Wospakrik, M; Zavala, G; Zhang, D; Ziemer, B P
2015-01-01
The first direct measurement of electron-neutrino quasielastic and quasielastic-like scattering on hydrocarbon in the few-GeV region of incident neutrino energy has been carried out using the MINERvA detector in the NuMI beam at Fermilab. The flux-integrated differential cross sections in electron production angle, electron energy and $Q^{2}$ are presented. The ratio of the quasielastic, flux-integrated differential cross section in $Q^{2}$ for $\
Danuso, Francesco [University of Udine, Italy
2010-01-08
A major bottleneck for improving the governance of complex systems, rely on our ability to integrate different forms of knowledge into a decision support system (DSS). Preliminary aspects are the classification of different types of knowledge (a priori or general, a posteriori or specific, with uncertainty, numerical, textual, algorithmic, complete/incomplete, etc.), the definition of ontologies for knowledge management and the availability of proper tools like continuous simulation models, event driven models, statistical approaches, computational methods (neural networks, evolutionary optimization, rule based systems etc.) and procedure for textual documentation. Following these views at University of Udine, a computer language (SEMoLa, Simple, Easy Modelling Language) for knowledge integration has been developed. SEMoLa can handle models, data, metadata and textual knowledge; it implements and extends the system dynamics ontology (Forrester, 1968; Jørgensen, 1994) in which systems are modelled by the concepts of material, group, state, rate, parameter, internal and external events and driving variables. As an example, a SEMoLa model to improve management and sustainability (economical, energetic, environmental) of the agricultural farms is presented. The model (X-Farm) simulates a farm in which cereal and forage yield, oil seeds, milk, calves and wastes can be sold or reused. X-Farm is composed by integrated modules describing fields (crop and soil), feeds and materials storage, machinery management, manpower management, animal husbandry, economic and energetic balances, seed oil extraction, manure and wastes management, biogas production from animal wastes and biomasses.
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would like submit theCovalentLaboratory |Sectorfor $1.14 Per1-ENuclearDynamic Switching
Horn, Berthold Klaus Paul
Dynamic reconstruction is a method for generating images or image sequences from data obtained using moving radiation detection systems. While coded apertures are used as examples of the underlying information collection ...
Integrated rural energy planning
El Mahgary, Y.; Biswas, A.K.
1985-01-01
This book presents papers on integrated community energy systems in developing countries. Topics considered include an integrated rural energy system in Sri Lanka, rural energy systems in Indonesia, integrated rural food-energy systems and technology diffusion in India, bringing energy to the rural sector in the Philippines, the development of a new energy village in China, the Niaga Wolof experimental rural energy center, designing a model rural energy system for Nigeria, the Basaisa village integrated field project, a rural energy project in Tanzania, rural energy development in Columbia, and guidelines for the planning, development and operation of integrated rural energy projects.
NUMERICAL SIMULATION OF ELECTROMECHANICAL DYNAMICS IN PACED CARDIAC TISSUE Xiaopeng Zhao
Zhao, Xiaopeng
NUMERICAL SIMULATION OF ELECTROMECHANICAL DYNAMICS IN PACED CARDIAC TISSUE Henian Xia Xiaopeng Zhao of Tennessee Knoxville, TN 37996 kwong@utk.edu ABSTRACT We study electromechanical dynamics in paced cardiac physics fields are integrated, including electrophysiology, electromechanics, and mechanoelectrical
Seth Lloyd; Olaf Dreyer
2013-02-12
Path integrals represent a powerful route to quantization: they calculate probabilities by summing over classical configurations of variables such as fields, assigning each configuration a phase equal to the action of that configuration. This paper defines a universal path integral, which sums over all computable structures. This path integral contains as sub-integrals all possible computable path integrals, including those of field theory, the standard model of elementary particles, discrete models of quantum gravity, string theory, etc. The universal path integral possesses a well-defined measure that guarantees its finiteness, together with a method for extracting probabilities for observable quantities. The universal path integral supports a quantum theory of the universe in which the world that we see around us arises out of the interference between all computable structures.
Integrating Variable Renewable Energy: Challenges and Solutions
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would likeUniverseIMPACT EVALUATION PLANIs gravity aOverviewISM IntegratedIntegrating
Integrable Supersymmetric Fluid Mechanics from Superstrings
Y. Bergner; R. Jackiw
2001-05-03
Following the construction of a model for the planar supersymmetric Chaplygin gas, supersymmetric fluid mechanics in (1+1)-dimensions is obtained from the light-cone parametrized Nambu-Goto superstring in (2+1)-dimensions. The lineal model is completely integrable and can be formulated neatly using Riemann coordinates. Infinite towers of conserved charges and supercharges are exhibited. They form irreducible representations of a dynamical (hidden) SO(2,1) symmetry group.
Saving the Coherent State Path Integral
Yariv Yanay; Erich J. Mueller
2013-03-19
By returning to the underlying discrete time formalism, we relate spurious results in coherent state path integral calculations to the high frequency structure of their propagators. We show how to modify the standard expressions for thermodynamic quantities to yield correct results. These expressions are relevant to a broad range of physical problems, from the thermodynamics of Bose lattice gases to the dynamics of spin systems.
Dynamic load balancing of applications
Wheat, S.R.
1997-05-13
An application-level method for dynamically maintaining global load balance on a parallel computer, particularly on massively parallel MIMD computers is disclosed. Global load balancing is achieved by overlapping neighborhoods of processors, where each neighborhood performs local load balancing. The method supports a large class of finite element and finite difference based applications and provides an automatic element management system to which applications are easily integrated. 13 figs.
Dynamic load balancing of applications
Wheat, Stephen R. (Albuquerque, NM)
1997-01-01
An application-level method for dynamically maintaining global load balance on a parallel computer, particularly on massively parallel MIMD computers. Global load balancing is achieved by overlapping neighborhoods of processors, where each neighborhood performs local load balancing. The method supports a large class of finite element and finite difference based applications and provides an automatic element management system to which applications are easily integrated.
Integral and Euclidean Ramsey theory
Tressler, Eric
2010-01-01
CALIFORNIA, SAN DIEGO Integral and Euclidean Ramsey Theory Ax ABSTRACT OF THE DISSERTATION Integral and Euclidean Ramsey
Evolution of entanglement under echo dynamics
Prosen, Tomaz; Znidaric, Marko [Physics Department, FMF, University of Ljubljana, Ljubljana (Slovenia); Seligman, Thomas H. [Centro de Ciencias Fisicas, University of Mexico (UNAM), Cuernavaca (Mexico)
2003-04-01
Echo dynamics and fidelity are often used to discuss stability in quantum-information processing and quantum chaos. Yet fidelity yields no information about entanglement, the characteristic property of quantum mechanics. We study the evolution of entanglement in echo dynamics. We find qualitatively different behavior between integrable and chaotic systems on one hand and between random and coherent initial states for integrable systems on the other. For the latter the evolution of entanglement is given by a classical time scale. Analytic results are illustrated numerically in a Jaynes-Cummings model.
Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site
and controlling floods. So far as may be consistent with such purposes, ...for the generation of electric energy... TVA Power Service Area TVA'S INTEGRATED RIVER SYSTEM | 3...
2009-06-24
Feb 23, 2009 ... Integral. Formula. Steve Bell. A slide with a definition and a theorem. Definition. The residue of an analytic function f at an isolated singularity.
Sandia Energy - Grid Integration
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
cybersecurity, energy storage, materials science, advanced controls, and microgrids, and is an integral part of Sandia's larger portfolio of renewable energy technology...
Commercial Buildings Integration
Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site
Buildings Integration Images courtesy CREE, True Manufacturing, A.O. Smith, Bernstein Associates, Cambridge Engineering, Alliance Laundry Systems, NREL 2 Strategic Fit within...
Delone dynamical systems and associated random operators
Daniel Lenz; Peter Stollmann
2002-05-13
We carry out a careful study of basic topological and ergodic features of Delone dynamical systems. We then investigate the associated topological groupoids and in particular their representations on certain direct integrals with non constant fibres. Via non-commutative-integration theory these representations give rise to von Neumann algebras of random operators. Features of these algebras and operators are discussed. Restricting our attention to a certain subalgebra of tight binding operators, we then discuss a Shubin trace formula.
Implementing TMN-like Management Services in a TINA Compliant Architecture
Griffin, David
Implementing TMN-like Management Services in a TINA Compliant Architecture: A Case Study Abstract TINA aims to provide an architecture to enable telecommunications networks to support the flex in an integrated fashion. While the specifications in the TINA Service Architecture are well advanced, network
Damage to nearby divertor components of ITER-like devices during giant ELMs and disruptions
Harilal, S. S.
Damage to nearby divertor components of ITER-like devices during giant ELMs and disruptions. Fusion 50 (2010) 115004 (7pp) doi:10.1088/0029-5515/50/11/115004 Damage to nearby divertor components. The simulation results of the integrated modelling indicate a significant potential damage of the divertor nearby
Origami-like Folded MEMS for Realization of TIMU: Fabrication Technology and Initial
Chen, Zhongping
single-axis sensors and then folding them into a 3-D Fig. 1. Commercial MEMS IMUs Performance Fig. 2 for assembly of the integrated MEMS sensor cluster in a 3-D configuration, or folding in a 3-D shape. FoldedOrigami-like Folded MEMS for Realization of TIMU: Fabrication Technology and Initial Demonstration
The Challenges of Hardware Synthesis from C-like Languages Stephen A. Edwards
The Challenges of Hardware Synthesis from C-like Languages Stephen A. Edwards Department of integrated circuits we can fabricate imposes a continuing need for ways to de- scribe complex hardware as specification languages for digital hardware. Yet, tools based on this idea have seen little commercial interest
What does water look like? Marta Kryven
Waterloo, University of
is shallow and pure it is transparent. Deep water is a saturated blue-green colour [Pope and Fry 1997]. MuddyWhat does water look like? Marta Kryven William Cowan University of Waterloo (a) (b) (c) (d) (e) (f of water look like water? We conducted four psychophysical experiments to isolate perceptual qualities
Rossen I. Ivanov
2007-07-12
The Euler's equations describe the motion of inviscid fluid. In the case of shallow water, when a perturbative asymtotic expansion of the Euler's equations is taken (to a certain order of smallness of the scale parameters), relations to certain integrable equations emerge. Some recent results concerning the use of integrable equation in modeling the motion of shallow water waves are reviewed in this contribution.
Systems Integration (Fact Sheet)
Not Available
2011-10-01
The Systems Integration (SI) subprogram works closely with industry, universities, and the national laboratories to overcome technical barriers to the large-scale deployment of solar technologies. To support these goals, the subprogram invests primarily in four areas: grid integration, technology validation, solar resource assessment, and balance of system development.
Systems Integration (Fact Sheet)
DOE Solar Energy Technologies Program
2011-10-13
The Systems Integration (SI) subprogram works closely with industry, universities, and the national laboratories to overcome technical barriers to the large-scale deployment of solar technologies. To support these goals, the subprogram invests primarily in four areas: grid integration, technology validation, solar resource assessment, and balance of system development.
Applicative Notions in ML-like Programs
Ling, Budi H
Pure functional languages are expressive tools for writing modular and reliable code. State in programming languages is a useful tool for programming dynamic systems. However, their combination yields programming languages that are difficult...
Can the ring polymer molecular dynamics method be interpreted as real time quantum dynamics?
Jang, Seogjoo; Sinitskiy, Anton V.; Voth, Gregory A.
2014-04-21
The ring polymer molecular dynamics (RPMD) method has gained popularity in recent years as a simple approximation for calculating real time quantum correlation functions in condensed media. However, the extent to which RPMD captures real dynamical quantum effects and why it fails under certain situations have not been clearly understood. Addressing this issue has been difficult in the absence of a genuine justification for the RPMD algorithm starting from the quantum Liouville equation. To this end, a new and exact path integral formalism for the calculation of real time quantum correlation functions is presented in this work, which can serve as a rigorous foundation for the analysis of the RPMD method as well as providing an alternative derivation of the well established centroid molecular dynamics method. The new formalism utilizes the cyclic symmetry of the imaginary time path integral in the most general sense and enables the expression of Kubo-transformed quantum time correlation functions as that of physical observables pre-averaged over the imaginary time path. Upon filtering with a centroid constraint function, the formulation results in the centroid dynamics formalism. Upon filtering with the position representation of the imaginary time path integral, we obtain an exact quantum dynamics formalism involving the same variables as the RPMD method. The analysis of the RPMD approximation based on this approach clarifies that an explicit quantum dynamical justification does not exist for the use of the ring polymer harmonic potential term (imaginary time kinetic energy) as implemented in the RPMD method. It is analyzed why this can cause substantial errors in nonlinear correlation functions of harmonic oscillators. Such errors can be significant for general correlation functions of anharmonic systems. We also demonstrate that the short time accuracy of the exact path integral limit of RPMD is of lower order than those for finite discretization of path. The present quantum dynamics formulation also serves as the basis for developing new quantum dynamical methods that utilize the cyclic nature of the imaginary time path integral.
Circuit Theory for Analysis and Design of Spintronic Integrated Circuits
Manipatruni, Sasikanth; Young, Ian A
2011-01-01
We present a theoretical and a numerical formalism for analysis and design of spintronic integrated circuits (SPINICs). The proposed formalism encompasses a generalized circuit theory for spintronic integrated circuits based on nanomagnetic dynamics and spin transport. We derive the circuit models for vector spin conduction in non-magnetic and magnetic components. We then propose an extension to the modified nodal analysis for the analysis of spin circuits. We demonstrate the applicability of the proposed theory using an example spin logic circuit.
Pulse-like and crack-like ruptures in experiments mimicking crustal earthquakes
Lapusta, Nadia
Pulse-like and crack-like ruptures in experiments mimicking crustal earthquakes Xiao Lu , Nadia ruptures may propagate in a self-healing pulse-like mode. A number of expla- nations for the existence of slip pulses have been proposed and continue to be vigorously debated. This study presents experimen
Dynamics of Triaxial Stellar Systems
David Merritt
1996-11-11
Recent work on the dynamics of triaxial stellar systems is reviewed. The motion of boxlike orbits in realistic triaxial potentials is generically stochastic. The degree to which the stochasticity manifests itself in the dynamics depends on the chaotic mixing timescale, which is a small multiple of the crossing time in triaxial models with steep cusps or massive central singularities. Low-luminosity ellipticals, which have the steepest cusps and the shortest dynamical times, are less likely than bright ellipticals to have strongly triaxial shapes. The observational evidence for triaxiality is reviewed; departures from axisymmetry in early-type galaxies are often found to be associated with evidence of recent interactions or with the presence of a bar.
Indirect signatures for axion(-like) particles
K. Zioutas; K. Dennerl; M. Grande; D. H. H. Hoffmann; J. Huovelin; B. Lakic; S. Orlando; A. Ortiz; Th. Papaevangelou; Y. Semertzidis; Sp. Tzamarias; O. Vilhu
2006-03-18
Magnetic field dependent transient solar observations are suggestive for axion-photon oscillations with light axion(-like) particle involvement. Novel dark-moon measurements with the SMART X-ray detectors can be conclusive for radiatively decaying massive exotica like the generic solar Kaluza-Klein axions. Furthermore, the predicted intrinsic strong solar magnetic fields could be the reason of enhanced low energy axion production. Such an axion component could be the as yet unknown origin of the strong quiet Sun X-ray luminosity at energies below 1 keV. Solar axion telescopes should lower their threshold, aiming to copy processes that might occur near the solar surface, be it due to spontaneous or magnetically induced radiative decay of axion(-like) particles. This is motivated also by the recent claim of an axion-like particle detection by the laser experiment PVLAS.
'Like cupcakes melting in the sun...' /
Skaller, Philip Emmanuel; Skaller, Philip Emmanuel.
2014-01-01
cupcakes melting in the sun’ A Dissertation submitted incupcakes melting in the sun’ by Philip Emmanuel SkallerLike cupcakes melting in the sun ’ was a performance of 7
SIAM conference on applications of dynamical systems
Not Available
1992-01-01
A conference (Oct.15--19, 1992, Snowbird, Utah; sponsored by SIAM (Society for Industrial and Applied Mathematics) Activity Group on Dynamical Systems) was held that highlighted recent developments in applied dynamical systems. The main lectures and minisymposia covered theory about chaotic motion, applications in high energy physics and heart fibrillations, turbulent motion, Henon map and attractor, integrable problems in classical physics, pattern formation in chemical reactions, etc. The conference fostered an exchange between mathematicians working on theoretical issues of modern dynamical systems and applied scientists. This two-part document contains abstracts, conference program, and an author index.
1995-04-01
Integrated assessment can be used to evaluate and clarify resource management policy options and outcomes for decision makers. The defining characteristics of integrated assessment are (1) focus on providing information and analysis that can be understood and used by decision makers rather than for merely advancing understanding and (2) its multidisciplinary approach, using methods, styles of study, and considerations from a broader variety of technical areas than would typically characterize studies produced from a single disciplinary standpoint. Integrated assessment may combine scientific, social, economic, health, and environmental data and models. Integrated assessment requires bridging the gap between science and policy considerations. Because not everything can be valued using a single metric, such as a dollar value, the integrated assessment process also involves evaluating trade-offs among dissimilar attributes. Scientists at Oak Ridge National Laboratory (ORNL) recognized the importance and value of multidisciplinary approaches to solving environmental problems early on and have pioneered the development of tools and methods for integrated assessment over the past three decades. Major examples of ORNL`s experience in the development of its capabilities for integrated assessment are given.
Manifold Integration: Data Integration on Multiple Manifolds
Choi, Hee Youl
2011-08-08
. Hammond, 2008, Association for the Advanced of Artiflcial Intelligence (AAAI-08), Copyright 2008 by AAAI. c 2005 IEEE. Partially reprinted, with permission, from IEEE Int. Conf. on Devel- opment and Learning \\Kernel Isomap on Noisy Manifold" H. Choi... and S. Choi. For more information go to http://thesis.tamu.edu/forms/IEEE permission note.pdf. c 2010 IEEE. Partially reprinted, with permission, from IEEE Int. Conf. Acoustics, Speech and Signal Processing \\Learning Alpha-Integration with Partially...
New Soft-Core Potential Function for Molecular Dynamics Based Alchemical Free Energy Calculations
de Groot, Bert
New Soft-Core Potential Function for Molecular Dynamics Based Alchemical Free Energy Calculations accurate free energy calculations based on molecular dynamics simulations. A thermodynamic integration scheme is often used to calculate changes in the free energy of a system by integrating the change
PEV Integration with Renewables (Presentation)
Markel, T.
2014-06-18
This presentation discusses current research at NREL on integrating plug-in electric vehicles with the grid and using renewable energy to charge the grid. The Electric Vehicle Grid Integration (EVGI) and Integrated Network Testbed for Energy Grid Research and Technology Experimentation (INTEGRATE) are addressing the opportunities and technical requirements for vehicle grid integration that will increase marketability and lead to greater petroleum reduction.
Geographical Information Systems and Dynamic Modeling via Agent Based Systems
de Figueiredo, Luiz Henrique
Geographical Information Systems and Dynamic Modeling via Agent Based Systems Cláudio Antônio da fariasol@eng.uerj.br ABSTRACT A full integration among Geographical Information Systems and Agent Based integrated with Geographical Information Systems (GIS). The first one is the movement of pedestrians
Heins, S.
2007-01-01
II – Energy Management System Demand Meter Integration Measurement and Verification Automated Set-points Internet Enabled 9 Phase III – Direct Renewable Minimal Conversion Loss Delivers When Grid is in Need Cost Competitive to Grid Daylight Harvesting... 10 Off The Grid Sensor Integration Natural Daylight Base and Peak Energy Reduction 11 Lowest Cost Renewable Solar Integrated Lighting $1.0 million/MW $6 – 9 million/MW Wind $1.3 - 1.9 million/MW Biomass $1.5 – 2.5 million/MW Geothermal $1.6 million...
The resonance absorption probability function for neutron and multiplicative integral
V. D. Rusov; V. A. Tarasov; S. I. Kosenko; S. A. Chernegenko
2012-08-05
The analytical approximations for the moderating neutrons flux density like Fermi spectra, widely used in reactor physics, involve the probability function for moderating neutron to avoid the resonant absorption obtained using some restrictive assumptions regarding the acceptable resonances width. By means of multiplicative integral (Volterra integral) theory for a commutative algebra an analytical expression for the probability function is obtained rigorously without any restrictive assumptions.
Ford, David N.
phase project was built using the system dynamics methodology. The model integrates several previously in Dynamic Engineering Systems at the Massachusetts Institute of Technology August, 1995 ©1995 Massachusetts by ....................................................................................................................................................... John D. Sterman Professor of Management Science Research Advisor Certified
N=2 supersymmetric gauge theories and quantum integrable systems
Yuan Luo; Meng-Chwan Tan; Junya Yagi
2014-04-01
We study N=2 supersymmetric gauge theories on the product of a two-sphere and a cylinder. We show that the low-energy dynamics of a BPS sector of such a theory is described by a quantum integrable system, with the Planck constant set by the inverse of the radius of the sphere. If the sphere is replaced with a hemisphere, then our system reduces to an integrable system of the type studied by Nekrasov and Shatashvili. In this case we establish a correspondence between the effective prepotential of the gauge theory and the Yang-Yang function of the integrable system.
Path Integral of Bianchi I models in Loop Quantum Cosmology
Xiao Liu; Fei Huang; Jian-Yang Zhu
2013-02-01
A path integral formulation of the Bianchi I models containing a massless scalar field in loop quantum cosmology is constructed. Following the strategy used in the homogenous and isotropic case, the calculation is extended to the simplest non-isotropic models according to the $\\bar{\\mu}$ and $\\bar{\\mu}^{\\prime}$ scheme. It is proved from the path integral angle that the quantum dynamic lacks the full invariance with respect to fiducial cell scaling in the $\\bar{\\mu}$ scheme, but it does not in the $\\bar{\\mu}^{\\prime}$ scheme. The investigation affirms the equivalence of the canonical approach and the path integral approach in loop quantum cosmology.
Hamiltonian dynamics and constrained variational calculus: continuous and discrete settings
Manuel de Leon; Fernando Jimenez; David Martin de Diego
2012-01-01
The aim of this paper is to study the relationship between Hamiltonian dynamics and constrained variational calculus. We describe both using the notion of Lagrangian submanifolds of convenient symplectic manifolds and using the so-called Tulczyjew's triples. The results are also extended to the case of discrete dynamics and nonholonomic mechanics. Interesting applications to geometrical integration of Hamiltonian systems are obtained.
Distributed Control of Networked Dynamical Systems: Static Feedback,
Dimarogonas, Dimos
1 Distributed Control of Networked Dynamical Systems: Static Feedback, Integral Action--This paper analyzes distributed control protocols for first- and second-order networked dynamical systems. We systems. The PI controllers successfully attenuate constant disturbances in the network. We prove
Stochastic modeling of lift and drag dynamics under turbulent conditions
Peinke, Joachim
Matthias Wächter Joachim Peinke ForWind - Center for Wind Energy Research University of Oldenburg, Germany measurement. The model is being developed with the aim to integrate it into a general wind energy converter dynamics, drag dynamics. 1 Introduction Wind energy converters (WECs) are permanently exposed to turbulent
Penny, Will
Hierarchical Dynamic Models Will Penny OU Processes Embedding OU(2) process Dynamic Models Hierarchical Dynamic Models Will Penny 26th May 2011 #12;Hierarchical Dynamic Models Will Penny OU Processes Dynamic Models Will Penny OU Processes Embedding OU(2) process Dynamic Models Generalised coordinates
Dynamic Resource Provisioning Condor Week 2012
Wisconsin at Madison, University of
to the Grid Highly available facility Testbed for network and storage fabrics · Condor is important part (JDEM analysis development, Grid Developers and Integration test stands, Storage/dCache Developers, LQCDFermiCloud Dynamic Resource Provisioning Condor Week 2012 Steven Timm timm@fnal.gov Fermilab Grid
Global Dynamic Optimization Adam Benjamin Singer
in Chemical Engineering Abstract My thesis focuses on global optimization of nonconvex integral objectiveGlobal Dynamic Optimization by Adam Benjamin Singer Submitted to the Department of Chemical Engineering in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Chemical
DYNAMICS OF AN AGE-STRUCTURED METAPOPULATION ...
2005-10-28
an ordinary differential equation model that incorporates changes in the .... equation. The system (2) can be reformulated as a system of Volterra integral equations. ...... The research of Feng was supported in part by the James S. McDonnell ... G. Merriam, K. Henein and K. Stuart-Smith [1991], Landscape Dynamics Models,.
Zhang, Dell
We address the problem of integrating objects from a source taxonomy into a master taxonomy. This problem is not only pervasive on the nowadays web, but also important to the emerging semantic web. A straightforward approach ...
Systems Integration Competitive Awards
Broader source: Energy.gov [DOE]
Through the SunShot Systems Integration efforts, DOE is funding a range of research and development (R&D) projects to advance balance of system hardware technologies, such as racking systems...
Integrated Facilities Disposition Program
Office of Environmental Management (EM)
Hole 8 Plume 6 Managed by UT-Battelle for the U.S. Department of Energy Remediating aging waste treatment and collection systems is an integral part of the Central Campus...
Bailey, David H.; Borwein, Jonathan M.; Crandall, Richard E.
2006-01-01
represents C 5 as a double integral, namely C 5 M(Q) M(Q) dxthat for any ? ? [0, 1] the integral is bounded below bynatural approximation of the integral over the sub-cube [0,
Nakayasu, Ernesto S.; Brown, Roslyn N.; Ansong, Charles; Sydor, Michael A.; Imtiaz, Sayed; Mihai, Cosmin; Sontag, Ryan L.; Hixson, Kim K.; Monroe, Matthew E.; Sobreira, Tiago; Orr, Galya; Petyuk, Vladislav A.; Yang, Feng; Smith, Richard D.; Adkins, Joshua N.
2013-08-12
Ubiquitination is a common protein post-translational modification that regulates many key cellular functions. Here we investigated the dynamics of ubiquitinated proteins after an inflammatory stimulation of RAW264.7 macrophage-like cells with bacterial lipopolysaccharide. We demonstrate that levels of global ubiquitination, and K48 and K63 polyubiquitination change after lipopolysaccharide stimulation. A quantitative proteomic analysis identified 1199 ubiquitinated proteins, 78 of which had significantly changed ubiquitination levels after lipopolysaccharide stimulation. We next identified a subset of proteins that were targeted for degradation after lipopolysaccharide stimulation, by integrating the ubiquitinome data with global proteomics and transcriptomics results. Using cellular assays and western blot analyses we biochemically validated DBC1, a histone deacetylase inhibitor not previously linked to inflammation, as a degradation substrate, which is targeted via an orchestrated mechanism utilizing caspases and the proteasome. The degradation of DBC1 releases histone deacetylase activity, linking lipopolysaccharide activation to chromatin remodeling in caspase- and proteasome-mediated signaling.
Clifford, David J.; Harris, James M.
2014-12-01
This is the IDC Re-Engineering Phase 2 project Integrated Master Plan (IMP). The IMP presents the major accomplishments planned over time to re-engineer the IDC system. The IMP and the associate Integrated Master Schedule (IMS) are used for planning, scheduling, executing, and tracking the project technical work efforts. REVISIONS Version Date Author/Team Revision Description Authorized by V1.0 12/2014 IDC Re- engineering Project Team Initial delivery M. Harris
Accurate and efficient spin integration for particle accelerators
Abell, Dan T; Ranjbar, Vahid H; Barber, Desmond P
2015-01-01
Accurate spin tracking is a valuable tool for understanding spin dynamics in particle accelerators and can help improve the performance of an accelerator. In this paper, we present a detailed discussion of the integrators in the spin tracking code gpuSpinTrack. We have implemented orbital integrators based on drift-kick, bend-kick, and matrix-kick splits. On top of the orbital integrators, we have implemented various integrators for the spin motion. These integrators use quaternions and Romberg quadratures to accelerate both the computation and the convergence of spin rotations. We evaluate their performance and accuracy in quantitative detail for individual elements as well as for the entire RHIC lattice. We exploit the inherently data-parallel nature of spin tracking to accelerate our algorithms on graphics processing units.
A bioclimatic approach to integrated design : form, technology, and architectural knowledge
O'Connell, Matthew J. (Mathew Jere)
1996-01-01
This thesis explores a holistic design process through which architectural elements can engage the dynamic forces of natural phenomena and integrate the spatial and temporal experience of building form with its physical ...
Coupling of Integrated Biosphere Simulator to Regional Climate Model Version 3
Winter, Jonathan (Jonathan Mark)
A description of the coupling of Integrated Biosphere Simulator (IBIS) to Regional Climate Model version 3 (RegCM3) is presented. IBIS introduces several key advantages to RegCM3, most notably vegetation dynamics, the ...
Average dynamics of a finite set of coupled phase oscillators
Dima, Germán C. Mindlin, Gabriel B.
2014-06-15
We study the solutions of a dynamical system describing the average activity of an infinitely large set of driven coupled excitable units. We compared their topological organization with that reconstructed from the numerical integration of finite sets. In this way, we present a strategy to establish the pertinence of approximating the dynamics of finite sets of coupled nonlinear units by the dynamics of its infinitely large surrogate.
Scales and Scale-like Structures
Landreneau, Eric Benjamin
2011-08-08
Scales are a visually striking feature that grows on many animals. These small, rigid plates embedded in the skin form an integral part of our description of ?sh and reptiles, some plants, and many extinct animals. Scales exist in many shapes...
Advanced Integrated Systems Technology Development
2013-01-01
Renewable Energy Technologies Transportation Advanced Integrated Systems Technology Development is the final report for the Advanced Integrated Systems Technology Development project (
Thomas D. Kühne
2013-03-26
Computer simulation methods, such as Monte Carlo or Molecular Dynamics, are very powerful computational techniques that provide detailed and essentially exact information on classical many-body problems. With the advent of ab-initio molecular dynamics, where the forces are computed on-the-fly by accurate electronic structure calculations, the scope of either method has been greatly extended. This new approach, which unifies Newton's and Schr\\"odinger's equations, allows for complex simulations without relying on any adjustable parameter. This review is intended to outline the basic principles as well as a survey of the field. Beginning with the derivation of Born-Oppenheimer molecular dynamics, the Car-Parrinello method and the recently devised efficient and accurate Car-Parrinello-like approach to Born-Oppenheimer molecular dynamics, which unifies best of both schemes are discussed. The predictive power of this novel second-generation Car-Parrinello approach is demonstrated by a series of applications ranging from liquid metals, to semiconductors and water. This development allows for ab-initio molecular dynamics simulations on much larger length and time scales than previously thought feasible.
Ghosh, Somnath
. New research initiatives like the Materials Genome Initiative (MGI) and the Integrated Computational Materials Science & Engineering (ICMSE) are creating unprecedented opportunities for unraveling new1 PREFACE The recent times have seen a surge in computational modeling of materials and processes
Integrated Transmission and Distribution Control
Kalsi, Karanjit; Fuller, Jason C.; Tuffner, Francis K.; Lian, Jianming; Zhang, Wei; Marinovici, Laurentiu D.; Fisher, Andrew R.; Chassin, Forrest S.; Hauer, Matthew L.
2013-01-16
Distributed, generation, demand response, distributed storage, smart appliances, electric vehicles and renewable energy resources are expected to play a key part in the transformation of the American power system. Control, coordination and compensation of these smart grid assets are inherently interlinked. Advanced control strategies to warrant large-scale penetration of distributed smart grid assets do not currently exist. While many of the smart grid technologies proposed involve assets being deployed at the distribution level, most of the significant benefits accrue at the transmission level. The development of advanced smart grid simulation tools, such as GridLAB-D, has led to a dramatic improvement in the models of smart grid assets available for design and evaluation of smart grid technology. However, one of the main challenges to quantifying the benefits of smart grid assets at the transmission level is the lack of tools and framework for integrating transmission and distribution technologies into a single simulation environment. Furthermore, given the size and complexity of the distribution system, it is crucial to be able to represent the behavior of distributed smart grid assets using reduced-order controllable models and to analyze their impacts on the bulk power system in terms of stability and reliability. The objectives of the project were to: • Develop a simulation environment for integrating transmission and distribution control, • Construct reduced-order controllable models for smart grid assets at the distribution level, • Design and validate closed-loop control strategies for distributed smart grid assets, and • Demonstrate impact of integrating thousands of smart grid assets under closed-loop control demand response strategies on the transmission system. More specifically, GridLAB-D, a distribution system tool, and PowerWorld, a transmission planning tool, are integrated into a single simulation environment. The integrated environment allows the load flow interactions between the bulk power system and end-use loads to be explicitly modeled. Power system interactions are modeled down to time intervals as short as 1-second. Another practical issue is that the size and complexity of typical distribution systems makes direct integration with transmission models computationally intractable. Hence, the focus of the next main task is to develop reduced-order controllable models for some of the smart grid assets. In particular, HVAC units, which are a type of Thermostatically Controlled Loads (TCLs), are considered. The reduced-order modeling approach can be extended to other smart grid assets, like water heaters, PVs and PHEVs. Closed-loop control strategies are designed for a population of HVAC units under realistic conditions. The proposed load controller is fully responsive and achieves the control objective without sacrificing the end-use performance. Finally, using the T&D simulation platform, the benefits to the bulk power system are demonstrated by controlling smart grid assets under different demand response closed-loop control strategies.
New insights on the Dynamic Cellular Metabolism
Ildefonso M. De la Fuente
2015-01-09
A large number of studies have shown the existence of metabolic covalent modifications in different molecular structures, able to store biochemical information that is not encoded by the DNA. Some of these covalent mark patterns can be transmitted across generations (epigenetic changes). Recently, the emergence of Hopfield-like attractor dynamics has been observed in the self-organized enzymatic networks, which have the capacity to store functional catalytic patterns that can be correctly recovered by the specific input stimuli. The Hopfield-like metabolic dynamics are stable and can be maintained as a long-term biochemical memory. In addition, specific molecular information can be transferred from the functional dynamics of the metabolic networks to the enzymatic activity involved in the covalent post-translational modulation so that determined functional memory can be embedded in multiple stable molecular marks. Both the metabolic dynamics governed by Hopfield-type attractors (functional processes) and the enzymatic covalent modifications of determined molecules (structural dynamic processes) seem to represent the two stages of the dynamical memory of cellular metabolism (metabolic memory). Epigenetic processes appear to be the structural manifestation of this cellular metabolic memory. Here, a new framework for molecular information storage in the cell is presented, which is characterized by two functionally and molecularly interrelated systems: a dynamic, flexible and adaptive system (metabolic memory) and an essentially conservative system (genetic memory). The molecular information of both systems seems to coordinate the physiological development of the whole cell.
Integration of Smart Home Data with Simulated Smart Grid
Collins, Gary S.
Integration of Smart Home Data with Simulated Smart Grid Introduction Data was generated using was simulated in the smart grid in RTDS. Objective Objective was to monitors or get real-time data about after getting the data. Objective is to model a dynamic load within simulated smart grid with live data
Towards Integrated Design of a Robust Feedback Controller and Topography
Van den Hof, Paul
Towards Integrated Design of a Robust Feedback Controller and Topography Estimator for Atomic Force of the sample topography. Dynamical uncertainties of the system pose a strong limitation on the achievable control bandwidth, and on the accuracy of the estimated topography. This contribution discusses
Integrability and the AdS/CFT correspondence
Adam Rej
2009-11-11
In this article we review the recently discovered asymptotic integrability in the planar N = 4 SYM theory and discuss its breakdown beyond the asymptotic region due to the wrapping interactions. We also discuss novel dynamical tests of the AdS/CFT correspondence one can perform in the special cases when the wrapping interactions may be neglected.
ASSESSMENT OF THE INTEGRATION OF ADVERTISING AND VARIABLE MESSAGE SIGNS
ASSESSMENT OF THE INTEGRATION OF ADVERTISING AND VARIABLE MESSAGE SIGNS FOR FUNDING PURPOSES in the use and costs of VMSs. One option is to advertise commercially on VMSs, using either dynamic messages, it is possible that advertising will make drivers more aware of the signs. The objective of this paper is to make
Integrating diverse methods to understand climateland interactions in East Africa
Integrating diverse methods to understand climateland interactions in East Africa Jennifer M-disciplinary scientists examining climateland dynamics at multiple scales in East Africa. East Africa is a region Ltd. All rights reserved. Keywords: Climate change; Land use; Africa; Modeling; Biocomplexity; Human
NONLINEAR DYNAMICS AND CONTROL OF INTEGRALLY ACTUATED HELICOPTER BLADES
Patil, Mayuresh
Helicopter Blades, Nonlinear Finite Elements, Intrinsic Formulation, Control Design Abstract: A set characteristics of the helicopter. The design and development of new `smart' blades requires accurate modeling of the active blade, coupled with appropriate control design methodology. Active blade models can be developed
Nonlinear Dynamics and Control of Integrally Actuated Helicopter Blades
Patil, Mayuresh
- bility of the blade is discussed under the influence of rigid body motion. In a final step, the design control design methodology. Active blade models can be developed based on pure three dimensional finite potential of a given active blade configuration and to design an optimal MIMO controller providing
Integration of electrostatic and fluid dynamics within a dust devil
Cummer, Steven A.
transfer and absorption of thermal radiation emitted by the ground. This temperature stratification as a mass stratification mechanism, with smaller, lighter grains tending to be lofted higher than the larger
Integrated Dynamic Electron Solutions, Inc. | Department of Energy
Broader source: Energy.gov (indexed) [DOE]
novel silicon graphene composite material that will substantially improve battery cycle life. When combined with other advanced battery materials, it could effectively lower...
Integrated Dynamic Electron Solutions, Inc. | Department of Energy
Broader source: Energy.gov (indexed) [DOE]
to recover and reclaim clean water from engines powered by diesel, gasoline or natural gas. Military and commercial applications include transport and stationery power plants,...
An impulse integrator for Langevin dynamics Robert D. Skeel ,
Izaguirre, Jesús A.
scheme of van Gunsteren and Berendsen [2] (vGB82). A third scheme considered here is a `Langevin impulse favouring LI and vGB82 over BBK for problems given by equation (1). The more general Langevin equation step as well as exponentials of i #1; where i = (k BT )=(D ii m i ) and the m i are masses. The vGB
Towards a Dynamic Neuropharmacology: Integrating Network and Receptor Levels
Tóth, János
of Technology and Economics, Egry J. u. 1., H-1111 Budapest, Hungary jtoth@math.bme.hu Abstract. Computational be interpreted as the renaissance of cybernetics [3] and of system theory [4], materialized in the works
Integrated Security Services for Dynamic Coalitions Himanshu Khurana1
Gligor, Virgil D.
, services for (1) private and shared resource management, (2) identity and attribute certificate management and development, health care, airline route management, public emergency response, and military joint task forces sequence associated with a disease and establishes a coalition with a pharmaceutical company, two research
Integrated Dynamic Electron Solutions, Inc. | Department of Energy
Broader source: Energy.gov (indexed) [DOE]
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i nA Guide toIMPROVEMENT OFBarriersInstitutional changeWebVPNof333
Commissioning of a beta* knob for dynamic IR correction at RHIC
Robert-Demolaize G.; Marusic, A.; Tepikian, S.; White, S.
2012-05-20
In addition to the recent optics correction technique demonstrated at CERN and applied at RHIC, it is important to have a separate tool to control the value of the beta functions at the collision point ({beta}*). This becomes even more relevant when trying to reach high level of integrated luminosity while dealing with emittance blow-up over the length of a store, or taking advantage of compensation processes like stochastic cooling. Algorithms have been developed to allow modifying independently the beta function in each plane for each beam without significant increase in beam losses. The following reviews the principle of such algorithms and their experimental implementation as a dynamic {beta}-squeeze procedure.
Single-molecule dynamic force spectroscopy of the fibronectin-heparin interaction
Mitchell, Gabriel; Lamontagne, Charles-Antoine; Lebel, Rejean; Grandbois, Michel Malouin, Francois
2007-12-21
The integrity of cohesive tissues strongly depends on the presence of the extracellular matrix, which provides support and anchorage for cells. The fibronectin protein and the heparin-like glycosaminoglycans are key components of this dynamic structural network. In this report, atomic force spectroscopy was used to gain insight into the compliance and the resistance of the fibronectin-heparin interaction. We found that this interaction can be described by an energetic barrier width of 3.1 {+-} 0.2 A and an off-rate of 0.2 {+-} 0.1 s{sup -1}. These dissociation parameters are similar to those of other carbohydrate-protein interactions and to off-rate values reported for more complex interactions between cells and extracellular matrix components. Our results indicate that the function of the fibronectin-heparin interaction is supported by its capacity to sustain significant deformations and considerable external mechanical forces.
Academic Integrity Leiden University Regulation on Complaints regarding Academic Integrity
Galis, Frietson
are personally responsible for maintaining academic integrity. This means that the general principles appointment. Confidential adviser: The person appointed as confidential adviser for academic integrity violations of academic integrity. #12;Academic Integrity Article 2 General 1. Every person has the right
Integrity Lessons from the WAAS Integrity Performance Panel (WIPP)
Stanford University
Integrity Lessons from the WAAS Integrity Performance Panel (WIPP) Todd Walter, Per Enge, Stanford that the integrity requirement would be met, the FAA formed the WAAS Integrity Performance Panel (WIPP). The role of the WIPP is to independently assess the safety of WAAS and to recommend system improvements. To accomplish
Eggl, Siegfried; Pilat-Lohinger, Elke; Haghighipour, Nader
2013-02-20
Given the considerable percentage of stars that are members of binaries or stellar multiples in the solar neighborhood, it is expected that many of these binaries host planets, possibly even habitable ones. The discovery of a terrestrial planet in the {alpha} Centauri system supports this notion. Due to the potentially strong gravitational interaction that an Earth-like planet may experience in such systems, classical approaches to determining habitable zones (HZ), especially in close S-type binary systems, can be rather inaccurate. Recent progress in this field, however, allows us to identify regions around the star permitting permanent habitability. While the discovery of {alpha} Cen Bb has shown that terrestrial planets can be detected in solar-type binary stars using current observational facilities, it remains to be shown whether this is also the case for Earth analogs in HZs. We provide analytical expressions for the maximum and rms values of radial velocity and astrometric signals, as well as transit probabilities of terrestrial planets in such systems, showing that the dynamical interaction of the second star with the planet may indeed facilitate the planets' detection. As an example, we discuss the detectability of additional Earth-like planets in the averaged, extended, and permanent HZs around both stars of the {alpha} Centauri system.
Computational dynamics of acoustically-driven microsphere systems
Glosser, Connor A; Dault, Daniel L; Piermarocchi, Carlo; Shanker, Balasubramaniam
2015-01-01
We propose a computational framework for the self-consistent dynamics of a microsphere system driven by a pulsed acoustic field in an ideal fluid. Our framework combines a molecular dynamics integrator describing the dynamics of the microsphere system with a time-dependent integral equation solver for the acoustic field that makes use of fields represented as surface expansions in spherical harmonic basis functions. The presented approach allows us to describe the inter-particle interaction induced by the field as well as the dynamics of trapping in counter-propagating acoustic pulses. The integral equation formulation leads to equations of motion for the microspheres describing the effect of non-dissipative drag forces. We show (1) that the field-induced interactions between the microspheres give rise to effective dipolar interactions, with effective dipoles defined by their velocities, and (2) that the dominant effect of an ultrasound pulse through a cloud of microspheres gives rise mainly to a translation ...
Ale-Ebrahim, Benjamin
2015-10-01
dynamics in a predominantly gender-segregated country like Iran. While most literature on the subject of gender in Iranian cinema focuses on women, little has been written explicitly about men and masculinity. This paper will attempt to close some...
A boundary integral formalism for stochastic ray tracing in billiards
David J. Chappell; Gregor Tanner
2014-11-06
Determining the flow of rays or particles driven by a force or velocity field is fundamental to modelling many physical processes, including weather forecasting and the simulation of molecular dynamics. High frequency wave energy distributions can also be approximated using flow or transport equations. Applications arise in underwater and room acoustics, vibro-acoustics, seismology, electromagnetics, quantum mechanics and in producing computer generated imagery. In many practical applications, the driving field is not known exactly and the dynamics are determined only up to a degree of uncertainty. This paper presents a boundary integral framework for propagating flows including uncertainties, which is shown to systematically interpolate between a deterministic and a completely random description of the trajectory propagation. A simple but efficient discretisation approach is applied to model uncertain billiard dynamics in an integrable rectangular domain.
Partially integrated exhaust manifold
Hayman, Alan W; Baker, Rodney E
2015-01-20
A partially integrated manifold assembly is disclosed which improves performance, reduces cost and provides efficient packaging of engine components. The partially integrated manifold assembly includes a first leg extending from a first port and terminating at a mounting flange for an exhaust gas control valve. Multiple additional legs (depending on the total number of cylinders) are integrally formed with the cylinder head assembly and extend from the ports of the associated cylinder and terminate at an exit port flange. These additional legs are longer than the first leg such that the exit port flange is spaced apart from the mounting flange. This configuration provides increased packaging space adjacent the first leg for any valving that may be required to control the direction and destination of exhaust flow in recirculation to an EGR valve or downstream to a catalytic converter.
INTEGRATED RIPARIAN AREA MANAGEMENT ON THE TULE LAKE ALLOTMENT, LASSEN COUNTY1
INTEGRATED RIPARIAN AREA MANAGEMENT ON THE TULE LAKE ALLOTMENT, LASSEN COUNTY1 Bill Flournoy, Don; Davis, California. 2 Rancher, Likely, California; Farm Advisor, U.C. Cooperative Extension, Modoc County
Fluid Dynamics IB Dr Natalia Berloff
are said to form the boundary of a vortex tube. We say that `stretching amplfies vorticity'. It is also as if they were material lines. Or, vortex tubes rotate and stretch just like the material line elementsFluid Dynamics IB Dr Natalia Berloff §2.6 Vorticity Definition: Vorticity = × u. A vortex line
THE IMPACT OF DYNAMICALLY HETEROGENEOUS MULTICORE
Sorin, Daniel J.
-Core Opteron, Sun Microsystems' Niagara,2 and IBM's Power5.3 These pro- cessors have between two and eight SHOWS THAT OPERATING SYSTEM SCHEDULERS MUST CONSIDER DYNAMIC HETEROGENEITY OR SUFFER SIGNIFICANT POWER of homogeneous cores.6,7 With core special- ization, runtime fault handling, and power management, it is likely
Huang, Wei
New Findings on Using Queue Occupancy to Integrate Runtime Power-Saving Techniques Across provides new insights on how to integrate power-saving techniques by using queue occupancies to dynamically match the power-saving modes of various pipeline stages with the current instruction throughput. (This
Integrated heterodyne terahertz transceiver
Lee, Mark (Albuquerque, NM); Wanke, Michael C. (Albuquerque, NM)
2009-06-23
A heterodyne terahertz transceiver comprises a quantum cascade laser that is integrated on-chip with a Schottky diode mixer. An antenna connected to the Schottky diode receives a terahertz signal. The quantum cascade laser couples terahertz local oscillator power to the Schottky diode to mix with the received terahertz signal to provide an intermediate frequency output signal. The fully integrated transceiver optimizes power efficiency, sensitivity, compactness, and reliability. The transceiver can be used in compact, fieldable systems covering a wide variety of deployable applications not possible with existing technology.
Bayesian Integrated Microbial Forensics
Jarman, Kristin H.; Kreuzer-Martin, Helen W.; Wunschel, David S.; Valentine, Nancy B.; Cliff, John B.; Petersen, Catherine E.; Colburn, Heather A.; Wahl, Karen L.
2008-06-01
In the aftermath of the 2001 anthrax letters, researchers have been exploring ways to predict the production environment of unknown source microorganisms. Different mass spectral techniques are being developed to characterize components of a microbe’s culture medium including water, carbon and nitrogen sources, metal ions added, and the presence of agar. Individually, each technique has the potential to identify one or two ingredients in a culture medium recipe. However, by integrating data from multiple mass spectral techniques, a more complete characterization is possible. We present a Bayesian statistical approach to integrated microbial forensics and illustrate its application on spores grown in different culture media.
Integrated heterodyne terahertz transceiver
Wanke, Michael C. (Albuquerque, NM); Lee, Mark (Albuquerque, NM); Nordquist, Christopher D. (Albuquerque, NM); Cich, Michael J. (Albuquerque, NM)
2012-09-25
A heterodyne terahertz transceiver comprises a quantum cascade laser that is integrated on-chip with a Schottky diode mixer. A terahertz signal can be received by an antenna connected to the mixer, an end facet or sidewall of the laser, or through a separate active section that can amplify the incident signal. The quantum cascade laser couples terahertz local oscillator power to the Schottky diode to mix with the received terahertz signal to provide an intermediate frequency output signal. The fully integrated transceiver optimizes power efficiency, sensitivity, compactness, and reliability. The transceiver can be used in compact, fieldable systems covering a wide variety of deployable applications not possible with existing technology.
Department, HR
2015-01-01
In the fulfillment of its mission, CERN relies upon the trust and material support of its Member States and partners, and is committed to exercising exemplary stewardship of the resources with which it is entrusted. Accordingly, CERN expects the highest level of integrity from all its contributors (whether members of the personnel, consultants, contractors working on site, or persons engaged in any other capacity at or on behalf of CERN). Integrity is a core value of CERN, defined in the Code of Conduct as “behaving ethically, with intellectual honesty and being accountable for one’s own actions”.
Chemical composition of Earth-like planets
Ronco, M P; Marboeuf, U; Alibert, Y; de Elía, G C; Guilera, O M
2015-01-01
Models of planet formation are mainly focused on the accretion and dynamical processes of the planets, neglecting their chemical composition. In this work, we calculate the condensation sequence of the different chemical elements for a low-mass protoplanetary disk around a solar-type star. We incorporate this sequence of chemical elements (refractory and volatile elements) in our semi-analytical model of planet formation which calculates the formation of a planetary system during its gaseous phase. The results of the semi-analytical model (final distributions of embryos and planetesimals) are used as initial conditions to develope N-body simulations that compute the post-oligarchic formation of terrestrial-type planets. The results of our simulations show that the chemical composition of the planets that remain in the habitable zone has similar characteristics to the chemical composition of the Earth. However, exist differences that can be associated to the dynamical environment in which they were formed.
Self-oscillation in spin torque oscillator stabilized by field-like torque
Taniguchi, Tomohiro; Tsunegi, Sumito; Kubota, Hitoshi; Imamura, Hiroshi
2014-04-14
The effect of the field-like torque on the self-oscillation of the magnetization in spin torque oscillator with a perpendicularly magnetized free layer was studied theoretically. A stable self-oscillation at zero field is excited for negative ? while the magnetization dynamics stops for ??=?0 or ??>?0, where ? is the ratio between the spin torque and the field-like torque. The reason why only the negative ? induces the self-oscillation was explained from the view point of the energy balance between the spin torque and the damping. The oscillation power and frequency for various ? were also studied by numerical simulation.
Integrating a discrete motion model into GMM based background subtraction
Wolf, Christian
consecutive frames minimizing a global energy function taking into account spatial and temporal re- lationships. A discrete approximative optical-flow like motion model is integrated into the energy function, for instance for track- ing algorithms. Most existing methods build an explicit background model either using
Title of Document: AMOEBOID SHAPE DYNAMICS ON FLAT AND TOPOGRAPHICALLY
Anlage, Steven
of Physics I present an analysis of the shape dynamics of the amoeba Dictyostelium discoideum, a model system was modeled as an interaction between wave-like processes internal to the cell and the periodicity to thank my advisor, Wolfgang Losert, who is genuinely kind and always enthusiastic. I would also like
AN INTEGRATED APPROACH TO SOLVING THE REAL-WORLD MULTIPLE TRAVELING ROBOT PROBLEM
Talay, Sanem Sarýel
dynamics. In this paper, we analyze the MTRP from real-world perspectives. In our solution, dynamic taskAN INTEGRATED APPROACH TO SOLVING THE REAL-WORLD MULTIPLE TRAVELING ROBOT PROBLEM Sanem Sariel, TURKEY + Georgia Institute of Technology, College of Computing, Atlanta, GA, USA, 30332 Key words: Multi
Modular initiator with integrated optical diagnostic
Alam, M. Kathleen (Cedar Crest, NM); Schmitt, Randal L. (Tijeras, NM); Welle, Eric J. (Niceville, FL); Madden, Sean P. (Arlington, MA)
2011-05-17
A slapper detonator which integrally incorporates an optical wavequide structure for determining whether there has been degradation of the explosive in the explosive device that is to be initiated by the detonator. Embodiments of this invention take advantage of the barrel-like character of a typical slapper detonator design. The barrel assembly, being in direct contact with the energetic material, incorporates an optical diagnostic device into the barrel assembly whereby one can monitor the state of the explosive material. Such monitoring can be beneficial because the chemical degradation of the explosive plays an important in achieving proper functioning of a detonator/initiator device.
Reducing differential equations for multiloop master integrals
Roman N. Lee
2015-04-21
We present an algorithm of the reduction of the differential equations for master integrals the Fuchsian form with the right-hand side matrix linearly depending on dimensional regularization parameter $\\epsilon$. We consider linear transformations of the functions column which are rational in the variable and in $\\epsilon$. Apart from some degenerate cases described below, the algorithm allows one to obtain the required transformation or to ascertain irreducibility to the form required. Degenerate cases are quite anticipated and likely to correspond to irreducible systems.
Integrated Safety Management- Building Mission Success
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would likeUniverseIMPACT EVALUATION PLANIs gravity aOverviewISM Integrated Safety Management-
Integrated Waste Management | Department of Energy
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would likeUniverseIMPACT EVALUATION PLANIs gravity aOverviewISM Integrated SafetyCooling
Science Application and Integration Program Spatial Variability of Wildland Fuel Wildland fuel fuel characteristics for dry forest and shrub ecosystems of the Mountain "Knowledge wildland fuel could revolutionize fire --Bob Keane We've always know What's different now? Although we've always known that fuels
Bioluminescent bioreporter integrated circuit
Simpson, Michael L. (Knoxville, TN); Sayler, Gary S. (Blaine, TN); Paulus, Michael J. (Knoxville, TN)
2000-01-01
Disclosed are monolithic bioelectronic devices comprising a bioreporter and an OASIC. These bioluminescent bioreporter integrated circuit are useful in detecting substances such as pollutants, explosives, and heavy-metals residing in inhospitable areas such as groundwater, industrial process vessels, and battlefields. Also disclosed are methods and apparatus for environmental pollutant detection, oil exploration, drug discovery, industrial process control, and hazardous chemical monitoring.
D. Gotz; S. Mereghetti; K. Hurley; I. F. Mirabel; P. Esposito; A. Tiengo; G. Weidenspointner; A. von Kienlin
2007-02-07
Thanks to INTEGRAL's long exposures of the Galactic Plane, the two brightest Soft Gamma-Ray Repeaters, SGR 1806-20 and SGR 1900+14, have been monitored and studied in detail for the first time at hard-X/soft-gamma rays. SGR 1806-20, lying close to the Galactic Centre, and being very active in the past two years, has provided a wealth of new INTEGRAL results, which we will summarise here: more than 300 short bursts have been observed from this source and their characteristics have been studied with unprecedented sensitivity in the 15-200 keV range. A hardness-intensity anticorrelation within the bursts has been discovered and the overall Number-Intensity distribution of the bursts has been determined. The increase of its bursting activity eventually led to the December 2004 Giant Flare for which a possible soft gamma-ray (>80 keV) early afterglow has been detected with INTEGRAL. The deep observations allowed us to discover the persistent emission in hard X-rays (20-150 keV) from 1806-20 and 1900+14, the latter being in quiescent state, and to directly compare the spectral characteristics of all Magnetars (two SGRs and three Anomalous X-ray Pulsars) detected with INTEGRAL.
Reliable Energy Integration of
Zeng, Ning
Engineering SustainabilityWorkshop #12;Cost of EnergyTrends Engineering SustainabilityWorkshop #12;Why GoReliable Energy Integration of Offshore Wind Aris Christou University of Maryland College Park MD Access is Difficult, and Costly: Require Minimum Maintenance and High Reliability Engineering
Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]
2011-04-25
The order ensures that DOE/NNSA, systematically integrates safety into management and work practices at all levels, so that missions are accomplished efficiently while protecting the workers, the public, and the environment. Supersedes DOE M 450.4-1 and DOE M 411.1-1C
Integrated Safety Management Policy
Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]
2011-04-25
The policy establishes DOE's expectation for safety, including integrated safety management that will enable the Department’s mission goals to be accomplished efficiently while ensuring safe operations at all departmental facilities and activities. Supersedes DOE P 450.4, DOE P 411.1, DOE P 441.1, DOE P 450.2A, and DOE P 450.7
Modular Integrated Energy Systems
Oak Ridge National Laboratory
recovery steam generator, and a waste heat fired absorption chiller. The key goals of the project are a large number of barracks and other buildings with steam for heating and domestic hot water, and chilled of Honeywell's data collection activity for the integrated energy system (or CHP -- Cooling, Heat and Power
Sandia Energy - Chemical Dynamics
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Chemical Dynamics Home Transportation Energy Predictive Simulation of Engines Combustion Chemistry Chemical Dynamics Chemical DynamicsAshley Otero2015-10-28T02:45:37+00:00...
Theoretical Treatment of the Thermophysical Properties of Fluids Containing Chain-like Molecules
Carol K. Hall
2008-11-14
This research program was designed to enhance our understanding of the behavior of fluids and fluid mixtures containing chain-like molecules. The original objective was to explain and predict the experimentally observed thermophysical properties, including phase equilibria and dynamics, of systems containing long flexible molecules ranging in length from alkanes to polymers. Over the years the objectives were expanded to include the treatment of molecules that were not chain-like. Molecular dynamics and Monte Carlo computer simulations were used to investigate how variations in molecular size, shape and architecture influence the types of phase equilibria, thermodynamic properties, structure and surface interactions that are observed experimentally. The molecular insights and theories resulting from this program could eventually serve as the foundation upon which to build correlations of the properties of fluids that are both directly and indirectly related to the Nation’s energy resources including: petroleum, natural gas, and polymer solutions, melts, blends, and materials.
Water Dynamics at Rough Interfaces
Markus Rosenstihl; Kerstin Kämpf; Felix Klameth; Matthias Sattig; Michael Vogel
2014-07-21
We use molecular dynamics computer simulations and nuclear magnetic resonance experiments to investigate the dynamics of water at interfaces of molecular roughness and low mobility. We find that, when approaching such interfaces, the structural relaxation of water, i.e., the $\\alpha$ process, slows down even when specific attractive interactions are absent. This prominent effect is accompanied by a smooth transition from Vogel to Arrhenius temperature dependence and by a growing importance of jump events. Consistently, at protein surfaces, deviations from Arrhenius behavior are weak when free water does not exist. Furthermore, in nanoporous silica, a dynamic crossover of liquid water occurs when a fraction of solid water forms near 225 K and, hence, the liquid dynamics changes from bulk-like to interface-dominated. At sufficiently low temperatures, water exhibits a quasi-universal $\\beta$ process, which is characterized by an activation energy of $E_a\\!=\\!0.5$ eV and involves anisotropic reorientation about large angles. As a consequence of its large amplitude, the faster $\\beta$ process destroys essentially all orientational correlation, rendering observation of a possible slower $\\alpha$ process difficult in standard experiments. Nevertheless, we find indications for the existence of structural relaxation down to a glass transition of interfacial water near 185 K. Hydrated proteins show a highly restricted backbone motion with an amplitude, which decreases upon cooling and vanishes at comparable temperatures, providing evidence for a high relevance of water rearrangements in the hydration shell for secondary protein relaxations.
LETTER Communicated by Daniel Bush Oscillator-Interference Models of Path Integration
Orchard, Jeffery J.
and long-range inhibition connectivity can spontaneously gen- erate grid-cell-like activity patterns of Technology doi:10.1162/NECO_a_00701 #12;Oscillator-Based Path Integration Without Theta 549 and long-rangeLETTER Communicated by Daniel Bush Oscillator-Interference Models of Path Integration Do
HINDI LANGUAGE KEYBOARD WITH VOICE SYNTHESIS FOR IPHONE (FACEBOOK AND TWITTER INTEGRATION)
Kassegne, Samuel Kinde
HINDI LANGUAGE KEYBOARD WITH VOICE SYNTHESIS FOR IPHONE (FACEBOOK AND TWITTER INTEGRATION Language Keyboard with Voice Synthesis for iPhone (Facebook and Twitter Integration) by Gaurav Kumar Master websites like Facebook and Twitter have proved to be an asset to the users for sharing their thoughts
Black Holes and Nuclear Dynamics
David Merritt
2006-02-17
Supermassive black holes inhabit galactic nuclei, and their presence influences in crucial ways the evolution of the stellar distribution. The low-density cores observed in bright galaxies are probably a result of black hole infall, while steep density cusps like those at the Galactic center are a result of energy exchange between stars moving in the gravitational field of the single black hole. Loss-cone dynamics are substantially more complex in galactic nuclei than in collisionally-relaxed systems like globular clusters due to the wider variety of possible geometries and orbital populations. The rate of star-black hole interactions has begun to be constrained through observations of energetic events associated with stellar tidal disruptions.
Fluid Dynamics and Solid Mechanics
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would likeUniverse (Journal Article) |FinalIndustrial Technologies Industrial3 Fluid Dynamics
Systems Analysis Systems Integration
include coal liquids, shale oil & biomass. #12;7 OPTIONS FOR FUTURE U.S. ENERGY - MY VIEW Coal Gasification to Liquid Fuels & Electricity Hundred + Modest Thousands Breeders Major Other Issues Likely Use Coal gasification Large Close Second Coal electric* Small/Medium/Large Poor Wind* Small
The hydrogen bond network of water supports propagating optical phonon-like modes
Daniel C. Elton; M. -V. Fernández-Serra
2015-11-03
The local structure of liquid water as a function of temperature is a source of intense research. This structure is intimately linked to the dynamics of water molecules, which can be measured using Raman and infrared spectroscopies. The assignment of spectral peaks depends on whether they are collective modes or single molecule motions. Vibrational modes in liquids are usually considered to be associated to the motions of single molecules or small clusters. Using molecular dynamics simulations we find dispersive optical phonon-like modes in the librational and OH stretching bands. We argue that on subpicosecond time scales these modes propagate through water's hydrogen bond network over distances of up to two nanometers. In the long wavelength limit these optical modes exhibit longitudinal-transverse splitting, indicating the presence of coherent long range dipole-dipole interactions, as in ice. Our results indicate the dynamics of liquid water have more similarities to ice than previously thought.
Balmer-Like Series for Baryon Resonances
Losanow-Kirchbach, M
1998-01-01
The pole positions of various baryon resonances have been found to reveal a well pronounced clustering, the so-called H"ohler cluster. In a previous work, the H"ohler clusters have been shown to be identical to Lorentz multiplets of the type (1/2+l', 1/2+l')*[(1/2,0)+(0,1/2)] with l' integer. Here we show that the cluster positions are well described by means of a Balmer-series like recursive mass formula.
Supersymmetry and Vector-like Extra Generation
Chun Liu
2009-07-17
Within the framework of supersymmetry, the particle content is extended in a way that each Higgs doublet is in a full generation. Namely in addition to ordinary three generations, there is an extra vector-like generation, and it is the extra slepton SU(2)_L doublets that are taken to be the two Higgs doublets. R-parity violating interactions contain ordinary Yukawa interactions. Breaking of supersymmetry and gauge symmetry are analyzed. Fermion and boson spectra are calculated. Phenomenological constraints and relevant new physics at Large Hadron Collider are discussed.
Template:FacebookLike | Open Energy Information
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-EnhancingEt Al., 2013) | Open EnergyDBpediaValue JumpFacebookLike Jump to: navigation,
Polymer-like Nanowires | The Ames Laboratory
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass mapSpeeding access|Post-Polymerization Modifications - Energy InnovationPolymer-like
Integrated turbomachine oxygen plant
Anand, Ashok Kumar; DePuy, Richard Anthony; Muthaiah, Veerappan
2014-06-17
An integrated turbomachine oxygen plant includes a turbomachine and an air separation unit. One or more compressor pathways flow compressed air from a compressor through one or more of a combustor and a turbine expander to cool the combustor and/or the turbine expander. An air separation unit is operably connected to the one or more compressor pathways and is configured to separate the compressed air into oxygen and oxygen-depleted air. A method of air separation in an integrated turbomachine oxygen plant includes compressing a flow of air in a compressor of a turbomachine. The compressed flow of air is flowed through one or more of a combustor and a turbine expander of the turbomachine to cool the combustor and/or the turbine expander. The compressed flow of air is directed to an air separation unit and is separated into oxygen and oxygen-depleted air.
Chapter 7: Integration and Packaging Page 127 Integration and Packaging
Wilson, Denise
Chapter 7: Integration and Packaging Page 127 Chapter 7 Integration and Packaging The collective in semiconductor fabrication processes. · Packaging: integrated circuits need to be protected from potentially of the feasibility of complete chemical microsystems. The issue of packaging for operating in unfriendly sensing
Integrated Deployment and the Energy Systems Integration Facility: Workshop Proceedings
Kroposki, B.; Werner, M.; Spikes, A.; Komomua, C.
2013-01-01
This report summarizes the workshop entitled: Integrated Deployment and the Energy Systems Integration Facility. In anticipation of the opening of the ESIF, NREL held the workshop August 21-23, 2012 and invited participants from utilities, government, industry, and academia to discuss renewable integration challenges and discover new ways to meet them by taking advantage of the ESIF's capabilities.
Integrated Architectural Concepts
Schossig, E.
2008-01-01
and questions on sustainability and the optimisation of resources, leading to the development of an intelligent and economised, architectural solution amid the border area between architecture and technology, is of great importance to Elmar Schossig?s... Richartzstrasse 10 50667 Cologne 00 49 22 1/ 92 58 21 - 0 info@gatermann-schossig.de Integrated Architectural Concepts Next to the aesthetic and functional aspects, an ecological approach which also pays great attention to energetical concerns...
Integrated Safety Management Policy
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousMathematicsEnergy HeadquartersFuelBConservationEnergy5975-01 REPORTDepartment ofINTEGRATED SAFETY
Fermilab | Newsroom | Press Releases | May 23, 2013: Run like...
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Images available here: http:www.fnal.govpubpresspasspressreleases2013Run-Like-Proton-20130523-images.html Run like a proton at Fermilabs new playground It's one thing...
Cost-Effectiveness Tests and Measuring Like a Utility | Department...
Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site
Cost-Effectiveness Tests and Measuring Like a Utility Cost-Effectiveness Tests and Measuring Like a Utility Better Buildings Residential Data and Evaluation Peer Exchange Call...
Glass-like thermal conductivity in high efficiency thermoelectric...
Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site
Glass-like thermal conductivity in high efficiency thermoelectric materials Glass-like thermal conductivity in high efficiency thermoelectric materials Discusses strategies to...
Master integrals for splitting functions from differential equations in QCD
O. Gituliar
2015-12-10
A method for calculating phase-space master integrals for the decay process $1 \\to n$ massless partons in QCD using integration-by-parts and differential equations techniques is discussed. The method is based on the appropriate choice of the basis for master integrals which leads to significant simplification of differential equations. We describe an algorithm how to construct the desirable basis, so that the resulting system of differential equations can be recursively solved in terms of (G)HPLs as a series in the dimensional regulator $\\epsilon$ to any order. We demonstrate its power by calculating master integrals for the NLO time-like splitting functions and discuss future applications of the proposed method at the NNLO precision.
Integrative Bioengineering Institute
Eddington, David; Magin,L,Richard; Hetling, John; Cho, Michael
2009-01-09
Microfabrication enables many exciting experimental possibilities for medicine and biology that are not attainable through traditional methods. However, in order for microfabricated devices to have an impact they must not only provide a robust solution to a current unmet need, but also be simple enough to seamlessly integrate into standard protocols. Broad dissemination of bioMEMS has been stymied by the common aim of replacing established and well accepted protocols with equally or more complex devices, methods, or materials. The marriage of a complex, difficult to fabricate bioMEMS device with a highly variable biological system is rarely successful. Instead, the design philosophy of my lab aims to leverage a beneficial microscale phenomena (e.g. fast diffusion at the microscale) within a bioMEMS device and adapt to established methods (e.g. multiwell plate cell culture) and demonstrate a new paradigm for the field (adapt instead of replace). In order for the field of bioMEMS to mature beyond novel proof-of-concept demonstrations, researchers must focus on developing systems leveraging these phenomena and integrating into standard labs, which have largely been ignored. Towards this aim, the Integrative Bioengineering Institute has been established.
Dynamical investigation of minor resonances for space debris
Alessandra Celletti; Catalin Gales
2015-04-20
We study the dynamics of the space debris in regions corresponding to minor resonances; precisely, we consider the resonances 3:1, 3:2, 4:1, 4:3, 5:1, 5:2, 5:3, 5:4, where a j:l resonance (with j, l integers) means that the periods of revolution of the debris and of rotation of the Earth are in the ratio j/l. We consider a Hamiltonian function describing the effect of the geopotential and we use suitable finite expansions of the Hamiltonian for the description of the different resonances. In particular, we determine the leading terms which dominate in a specific orbital region, thus limiting our computation to very few harmonics. Taking advantage from the pendulum-like structure associated to each term of the expansion, we are able to determine the amplitude of the islands corresponding to the different harmonics. By means of simple mathematical formulae, we can predict the occurrence of splitting or overlapping of the resonant islands for different values of the parameters. We also find several cases which exhibit a transcritical bifurcation as the inclination is varied. These results, which are based on a careful mathematical analysis of the Hamiltonian expansion, are confirmed by a numerical study of the dynamical behavior obtained by computing the so-called Fast Laypunov Indicators. Since the Hamiltonian approach includes just the effect of the geopotential, we validate our results by performing a numerical integration in Cartesian variables of a more complete model including the gravitational attraction of Sun and Moon, as well as the solar radiation pressure.
High Efficiency Integrated Package
Ibbetson, James
2013-09-15
Solid-state lighting based on LEDs has emerged as a superior alternative to inefficient conventional lighting, particularly incandescent. LED lighting can lead to 80 percent energy savings; can last 50,000 hours – 2-50 times longer than most bulbs; and contains no toxic lead or mercury. However, to enable mass adoption, particularly at the consumer level, the cost of LED luminaires must be reduced by an order of magnitude while achieving superior efficiency, light quality and lifetime. To become viable, energy-efficient replacement solutions must deliver system efficacies of ? 100 lumens per watt (LPW) with excellent color rendering (CRI > 85) at a cost that enables payback cycles of two years or less for commercial applications. This development will enable significant site energy savings as it targets commercial and retail lighting applications that are most sensitive to the lifetime operating costs with their extended operating hours per day. If costs are reduced substantially, dramatic energy savings can be realized by replacing incandescent lighting in the residential market as well. In light of these challenges, Cree proposed to develop a multi-chip integrated LED package with an output of > 1000 lumens of warm white light operating at an efficacy of at least 128 LPW with a CRI > 85. This product will serve as the light engine for replacement lamps and luminaires. At the end of the proposed program, this integrated package was to be used in a proof-of-concept lamp prototype to demonstrate the component’s viability in a common form factor. During this project Cree SBTC developed an efficient, compact warm-white LED package with an integrated remote color down-converter. Via a combination of intensive optical, electrical, and thermal optimization, a package design was obtained that met nearly all project goals. This package emitted 1295 lm under instant-on, room-temperature testing conditions, with an efficacy of 128.4 lm/W at a color temperature of ~2873K and 83 CRI. As such, the package’s performance exceeds DOE’s warm-white phosphor LED efficacy target for 2013. At the end of the program, we assembled an A19 sized demonstration bulb housing the integrated package which met Energy Star intensity variation requirements. With further development to reduce overall component cost, we anticipate that an integrated remote converter package such as developed during this program will find application in compact, high-efficacy LED-based lamps, particularly those requiring omnidirectional emission.
Hawai'i at Manoa, University of
Habitat modeling Movements Advectiondiffusion Tuna Katsuwonus pelamis Thunnus obesus Pacific Ocean a b with two tuna species showing different biological characteristics, skipjack (Katsuwonus pelamis
Tungsten dust impact on ITER-like plasma edge
Smirnov, R. D. Krasheninnikov, S. I.; Pigarov, A. Yu.; Rognlien, T. D.
2015-01-15
The impact of tungsten dust originating from divertor plates on the performance of edge plasma in ITER-like discharge is evaluated using computer modeling with the coupled dust-plasma transport code DUSTT-UEDGE. Different dust injection parameters, including dust size and mass injection rates, are surveyed. It is found that tungsten dust injection with rates as low as a few mg/s can lead to dangerously high tungsten impurity concentrations in the plasma core. Dust injections with rates of a few tens of mg/s are shown to have a significant effect on edge plasma parameters and dynamics in ITER scale tokamaks. The large impact of certain phenomena, such as dust shielding by an ablation cloud and the thermal force on tungsten ions, on dust/impurity transport in edge plasma and consequently on core tungsten contamination level is demonstrated. It is also found that high-Z impurities provided by dust can induce macroscopic self-sustained plasma oscillations in plasma edge leading to large temporal variations of edge plasma parameters and heat load to divertor target plates.
Smith, F.; Brown, K.; Flach, G.; Sarkar, S.
2011-09-30
The goal of the Cementitious Barriers Partnership (CBP) is to develop a reasonable and credible set of software tools to predict the structural, hydraulic, and chemical performance of cement barriers used in nuclear applications over extended time frames (greater than 100 years for operating facilities and greater than 1000 years for waste management). The simulation tools will be used to evaluate and predict the behavior of cementitious barriers used in near surface engineered waste disposal systems including waste forms, containment structures, entombments, and environmental remediation. These cementitious materials are exposed to dynamic environmental conditions that cause changes in material properties via (i) aging, (ii) chloride attack, (iii) sulfate attack, (iv) carbonation, (v) oxidation, and (vi) primary constituent leaching. A set of state-of-the-art software tools has been selected as a starting point to capture these important aging and degradation phenomena. Integration of existing software developed by the CBP partner organizations was determined to be the quickest method of meeting the CBP goal of providing a computational tool that improves the prediction of the long-term behavior of cementitious materials. These partner codes were selected based on their maturity and ability to address the problems outlined above. The GoldSim Monte Carlo simulation program (GTG 2010a, GTG 2010b) was chosen as the code integration platform (Brown & Flach 2009b). GoldSim (current Version 10.5) is a Windows based graphical object-oriented computer program that provides a flexible environment for model development (Brown & Flach 2009b). The linking of GoldSim to external codes has previously been successfully demonstrated (Eary 2007, Mattie et al. 2007). GoldSim is capable of performing deterministic and probabilistic simulations and of modeling radioactive decay and constituent transport. As part of the CBP project, a general Dynamic Link Library (DLL) interface was developed to link GoldSim with external codes (Smith III et al. 2010). The DLL uses a list of code inputs provided by GoldSim to create an input file for the external application, runs the external code, and returns a list of outputs (read from files created by the external application) back to GoldSim. In this way GoldSim provides: (1) a unified user interface to the applications, (2) the capability of coupling selected codes in a synergistic manner, and (3) the capability of performing probabilistic uncertainty analysis with the codes. GoldSim is made available by the GoldSim Technology Group as a free 'Player' version that allows running but not editing GoldSim models. The player version makes the software readily available to a wider community of users that would wish to use the CBP application but do not have a license for GoldSim.
Algorithm FIRE -- Feynman Integral REduction
A. V. Smirnov
2008-08-02
The recently developed algorithm FIRE performs the reduction of Feynman integrals to master integrals. It is based on a number of strategies, such as applying the Laporta algorithm, the s-bases algorithm, region-bases and integrating explicitly over loop momenta when possible. Currently it is being used in complicated three-loop calculations.
Path Integral for Quantum Operations
Vasily E. Tarasov
2007-06-14
In this paper we consider a phase space path integral for general time-dependent quantum operations, not necessarily unitary. We obtain the path integral for a completely positive quantum operation satisfied Lindblad equation (quantum Markovian master equation). We consider the path integral for quantum operation with a simple infinitesimal generator.
Completeness of Integrated Information Sources
Freytag, Johann-Christoph
Completeness of Integrated Information Sources Felix Naumann, Johann-Christoph Freytag, Ulf Leser attributes of these entities. Mediator-based information systems allow integrated access to such sources new merge operators, which formalize the integration of multiple source responses. A completeness
Lectures on integrable Hamiltonian systems
G. Sardanashvily
2013-03-21
We consider integrable Hamiltonian systems in a general setting of invariant submanifolds which need not be compact. For instance, this is the case a global Kepler system, non-autonomous integrable Hamiltonian systems and integrable systems with time-dependent parameters.
Hydrogen like classification for light nonstrange mesons
S. S. Afonin
2008-09-09
The recent experimental results on the spectrum of highly excited light nonstrange mesons are known to reveal a high degree of degeneracy among different groups of states. We revise some suggestions about the nature of the phenomenon and put the relevant ideas into the final shape. The full group of approximate mass degeneracies is argued to be $SU(2)_f\\times I\\times O(4)$, where $I$ is the degeneracy of isosinglets and isotriplets and O(4) is the degeneracy group of the relativistic hydrogen atom. We discuss the dynamical origin and consequences of considered symmetry with a special emphasis on distinctions of this symmetry from the so-called chiral symmetry restoration scenario.
Integrated intelligent systems in advanced reactor control rooms
Beckmeyer, R.R.
1989-01-01
An intelligent, reactor control room, information system is designed to be an integral part of an advanced control room and will assist the reactor operator's decision making process by continuously monitoring the current plant state and providing recommended operator actions to improve that state. This intelligent system is an integral part of, as well as an extension to, the plant protection and control systems. This paper describes the interaction of several functional components (intelligent information data display, technical specifications monitoring, and dynamic procedures) of the overall system and the artificial intelligence laboratory environment assembled for testing the prototype. 10 refs., 5 figs.
Nonlinear Dynamics of Coiling in Viscoelastic Jets
Trushant Majmudar; Matthieu Varagnat; William Hartt; Gareth McKinley
2010-12-09
Instabilities in free surface continuous jets of non-Newtonian fluids, although relevant for many industrial processes, remain less well understood in terms of fundamental fluid dynamics. Inviscid, and viscous Newtonian jets have been studied in great detail; buckling instability in viscous jets leads to regular periodic coiling of the jet that exhibits a non-trivial frequency dependence with the height of the fall. Very few experimental or theoretical studies exist for continuous viscoelastic jets beyond the onset of the first instability. Here, we present a systematic study of the effects of viscoelasticity on the dynamics of free surface continuous jets of surfactant solutions that form worm-like micelles. We observe complex nonlinear spatio-temporal dynamics of the jet and uncover a transition from periodic to doubly-periodic or quasi-periodic to a multi-frequency, possibly chaotic dynamics. Beyond this regime, the jet dynamics smoothly crosses over to exhibit the "leaping shampoo effect" or the Kaye effect. This enables us to view seemingly disparate jetting dynamics as one coherent picture of successive instabilities and transitions between them. We identify the relevant scaling variables as the dimensionless height, flow rate, and the elasto-gravity number and present a regime map of the dynamics of the jet in terms of these parameters.
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would likeUniverseIMPACT EVALUATION PLANIs gravity aOverview ARMDistribution
Earth materials and earth dynamics
Bennett, K; Shankland, T. [and others
2000-11-01
In the project ''Earth Materials and Earth Dynamics'' we linked fundamental and exploratory, experimental, theoretical, and computational research programs to shed light on the current and past states of the dynamic Earth. Our objective was to combine different geological, geochemical, geophysical, and materials science analyses with numerical techniques to illuminate active processes in the Earth. These processes include fluid-rock interactions that form and modify the lithosphere, non-linear wave attenuations in rocks that drive plate tectonics and perturb the earth's surface, dynamic recrystallization of olivine that deforms the upper mantle, development of texture in high-pressure olivine polymorphs that create anisotropic velocity regions in the convecting upper mantle and transition zone, and the intense chemical reactions between the mantle and core. We measured physical properties such as texture and nonlinear elasticity, equation of states at simultaneous pressures and temperatures, magnetic spins and bonding, chemical permeability, and thermal-chemical feedback to better characterize earth materials. We artificially generated seismic waves, numerically modeled fluid flow and transport in rock systems and modified polycrystal plasticity theory to interpret measured physical properties and integrate them into our understanding of the Earth. This is the final report of a three-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL).
Brownian dynamics without Green's functions
Delong, Steven; Donev, Aleksandar; Usabiaga, Florencio Balboa; Delgado-Buscalioni, Rafael; Griffith, Boyce E.; Leon H. Charney Division of Cardiology, Department of Medicine, New York University School of Medicine, New York, New York 10016
2014-04-07
We develop a Fluctuating Immersed Boundary (FIB) method for performing Brownian dynamics simulations of confined particle suspensions. Unlike traditional methods which employ analytical Green's functions for Stokes flow in the confined geometry, the FIB method uses a fluctuating finite-volume Stokes solver to generate the action of the response functions “on the fly.” Importantly, we demonstrate that both the deterministic terms necessary to capture the hydrodynamic interactions among the suspended particles, as well as the stochastic terms necessary to generate the hydrodynamically correlated Brownian motion, can be generated by solving the steady Stokes equations numerically only once per time step. This is accomplished by including a stochastic contribution to the stress tensor in the fluid equations consistent with fluctuating hydrodynamics. We develop novel temporal integrators that account for the multiplicative nature of the noise in the equations of Brownian dynamics and the strong dependence of the mobility on the configuration for confined systems. Notably, we propose a random finite difference approach to approximating the stochastic drift proportional to the divergence of the configuration-dependent mobility matrix. Through comparisons with analytical and existing computational results, we numerically demonstrate the ability of the FIB method to accurately capture both the static (equilibrium) and dynamic properties of interacting particles in flow.
Hwang, Kai
Semantic Information Integration and Processing for Demand Response Optimization Qunzhi Zhou Demand response optimization (DR) deals with curtailing power consumption when peak demand on the power for Dynamic Demand Response Optimization Existing DR programs are typically based on static planning
Fourier transforms of UD integrals
Igor Kondrashuk; Anatoly Kotikov
2008-02-23
UD integrals published by N. Usyukina and A. Davydychev in 1992-1993 are integrals corresponding to ladder-type Feynman diagrams. The results are UD functions $\\Phi^{(L)},$ where $L$ is the number of loops. They play an important role in N=4 supersymmetic Yang-Mills theory. The integrals were defined and calculated in the momentum space. In this paper the position space representation of UD functions is investigated. We show that Fourier transforms of UD functions are UD functions of space-time intervals but this correspondence is indirect. For example, the Fourier transform of the second UD integral is the second UD integral.
Integrating Safety into Design and Construction | Department...
Office of Environmental Management (EM)
Integrating Safety into Design and Construction Integrating Safety into Design and Construction DepSecMemoIntegratingSafetyInDesignAndConstruction05Dec2005.pdf More Documents &...
Iterated integrals of superconnections
Igusa, Kiyoshi
2009-01-01
Starting with a Z-graded superconnection on a graded vector bundle over a smooth manifold M, we show how Chen's iterated integration of such a superconnection over smooth simplices in M gives an A-infinity functor if and only if the superconnection is flat. If the graded bundle is trivial, this gives a twisting cochain. Very similar results were obtained by K.T. Chen using similar methods. This paper is intended to explain this from scratch beginning with the definition and basic properties of a connection and ending with an exposition of Chen's "formal connections" and a brief discussion of how this is related to higher Reidemeister torsion.
Integrating the Jacobian equation
Airton von Sohsten de Medeiros; Ráderson Rodrigues da Silva
2014-09-16
We show essentially that the differential equation $\\frac{\\partial (P,Q)}{\\partial (x,y)} =c \\in {\\mathbb C}$, for $P,\\,Q \\in {\\mathbb C}[x,y]$, may be "integrated", in the sense that it is equivalent to an algebraic system of equations involving the homogeneous components of $P$ and $Q$. Furthermore, the first equations in this system give explicitly the homogeneous components of $Q$ in terms of those of $P$. The remaining equations involve only the homogeneous components of $P$.
Vawter, G. Allen (Albuquerque, NM); Hadley, G. Ronald (Albuquerque, NM)
1997-01-01
An integrated optical XY coupler having two converging input waveguide arms meeting in a central section and a central output waveguide arm and two diverging flanking output waveguide arms emanating from the central section. In-phase light from the input arms constructively interfers in the central section to produce a single mode output in the central output arm with the rest of the light being collected in the flanking output arms. Crosstalk between devices on a substrate is minimized by this collection of the out-of-phase light by the flanking output arms of the XY coupler.
Integrated Assessment Modeling
Edmonds, James A.; Calvin, Katherine V.; Clarke, Leon E.; Janetos, Anthony C.; Kim, Son H.; Wise, Marshall A.; McJeon, Haewon C.
2012-10-31
This paper discusses the role of Integrated Assessment models (IAMs) in climate change research. IAMs are an interdisciplinary research platform, which constitutes a consistent scientific framework in which the large-scale interactions between human and natural Earth systems can be examined. In so doing, IAMs provide insights that would otherwise be unavailable from traditional single-discipline research. By providing a broader view of the issue, IAMs constitute an important tool for decision support. IAMs are also a home of human Earth system research and provide natural Earth system scientists information about the nature of human intervention in global biogeophysical and geochemical processes.
Sandia Energy - Grid Integration
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home RoomPreservation of Fe(II)Geothermal Energy & Drilling Technology HomeGrid CyberGrid Integration
Slow dynamics of a colloidal lamellar phase
Doru Constantin; Patrick Davidson; Éric Freyssingeas; Anders Madsen
2015-04-06
We used x-ray photon correlation spectroscopy to study the dynamics in the lamellar phase of a platelet suspension as a function of the particle concentration. We measured the collective diffusion coefficient along the director of the phase, over length scales down to the interparticle distance, and quantified the hydrodynamic interaction between the particles. This interaction sets in with increasing concentration and can be described qualitatively by a simplified model. No change in the microscopic structure or dynamics is observed at the transition between the fluid and the gel-like lamellar phases.
Micha? Lesiuk; Robert Moszynski
2015-01-08
In this paper, which constitutes the first part of the series, we consider calculation of two-centre Coulomb and hybrid integrals over Slater-type orbitals (STOs). General formulae for these integrals are derived with no restrictions on the values of the quantum numbers and nonlinear parameters. Direct integration over the coordinates of one of the electrons leaves us with the set of overlap-like integrals which are evaluated by using two distinct methods. The first one is based on the transformation to the ellipsoidal coordinates system and the second utilises a recursive scheme for consecutive increase of the angular momenta in the integrand. In both methods simple one-dimensional numerical integrations are used in order to avoid severe digital erosion connected with the straightforward use of the alternative analytical formulae. It is discussed that the numerical integration does not introduce a large computational overhead since the integrands are well-behaved functions, calculated recursively with decent speed. Special attention is paid to the numerical stability of the algorithms. Applicability of the resulting scheme over a large range of the nonlinear parameters is tested on examples of the most difficult integrals appearing in the actual calculations including at most 7i-type functions (l=6).
Web Services-Enhanced Agile Modeling and Integrating Business Processes
Belouadha, Fatima-Zahra; Roudiès, Ounsa
2012-01-01
In a global business context with continuous changes, the enterprises have to enhance their operational efficiency, to react more quickly, to ensure the flexibility of their business processes, and to build new collaboration pathways with external partners. To achieve this goal, they must use e-business methods, mechanisms and techniques while capitalizing on the potential of new information and communication technologies. In this context, we propose a standards, model and Web services-based approach for modeling and integrating agile enterprise business processes. The purpose is to benefit from Web services characteristics to enhance the processes design and realize their dynamic integration. The choice of focusing on Web services is essentially justified by their broad adoption by enterprises as well as their capability to warranty interoperability between both intra and inter-enterprises systems. Thereby, we propose in this chapter a metamodel for describing business processes, and discuss their dynamic in...
Integrating preconcentrator heat controller
Bouchier, Francis A. (Albuquerque, NM); Arakaki, Lester H. (Edgewood, NM); Varley, Eric S. (Albuquerque, NM)
2007-10-16
A method and apparatus for controlling the electric resistance heating of a metallic chemical preconcentrator screen, for example, used in portable trace explosives detectors. The length of the heating time-period is automatically adjusted to compensate for any changes in the voltage driving the heating current across the screen, for example, due to gradual discharge or aging of a battery. The total deposited energy in the screen is proportional to the integral over time of the square of the voltage drop across the screen. Since the net temperature rise, .DELTA.T.sub.s, of the screen, from beginning to end of the heating pulse, is proportional to the total amount of heat energy deposited in the screen during the heating pulse, then this integral can be calculated in real-time and used to terminate the heating current when a pre-set target value has been reached; thereby providing a consistent and reliable screen temperature rise, .DELTA.T.sub.s, from pulse-to-pulse.
Aditya Kumar
2010-12-30
This report summarizes the achievements and final results of this program. The objective of this program is to develop a comprehensive systems approach to integrated design of sensing and control systems for an Integrated Gasification Combined Cycle (IGCC) plant, using advanced model-based techniques. In particular, this program is focused on the model-based sensing and control system design for the core gasification section of an IGCC plant. The overall approach consists of (i) developing a first-principles physics-based dynamic model of the gasification section, (ii) performing model-reduction where needed to derive low-order models suitable for controls analysis and design, (iii) developing a sensing system solution combining online sensors with model-based estimation for important process variables not measured directly, and (iv) optimizing the steady-state and transient operation of the plant for normal operation as well as for startup using model predictive controls (MPC). Initially, available process unit models were implemented in a common platform using Matlab/Simulink{reg_sign}, and appropriate model reduction and model updates were performed to obtain the overall gasification section dynamic model. Also, a set of sensor packages were developed through extensive lab testing and implemented in the Tampa Electric Company IGCC plant at Polk power station in 2009, to measure temperature and strain in the radiant syngas cooler (RSC). Plant operation data was also used to validate the overall gasification section model. The overall dynamic model was then used to develop a sensing solution including a set of online sensors coupled with model-based estimation using nonlinear extended Kalman filter (EKF). Its performance in terms of estimating key unmeasured variables like gasifier temperature, carbon conversion, etc., was studied through extensive simulations in the presence sensing errors (noise and bias) and modeling errors (e.g. unknown gasifier kinetics, RSC fouling). In parallel, an MPC solution was initially developed using ideal sensing to optimize the plant operation during startup pre-heating as well as steady state and transient operation under normal high-pressure conditions, e.g. part-load, base-load, load transition and fuel changes. The MPC simulation studies showed significant improvements both for startup pre-heating and for normal operation. Finally, the EKF and MPC solutions were coupled to achieve the integrated sensing and control solution and its performance was studied through extensive steady state and transient simulations in the presence of sensor and modeling errors. The results of each task in the program and overall conclusions are summarized in this final report.
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would likeUniverseIMPACT EVALUATION PLANIs gravity aOverviewISMscientist discusses
Fairman, Randall S. (Randall Scott), 1967-
2002-01-01
An analysis of current computational fluid dynamics capabilities in predicting mean lift forces for two dimensional foils is conducted. It is shown that both integral boundary layer theory and Reynolds Averaged Navier ...
A model of lipid-free Apolipoprotein A-I revealed by iterative molecular dynamics simulation
Zhang, Xing; Lei, Dongsheng; Zhang, Lei; Rames, Matthew; Zhang, Shengli
2015-03-20
Apolipoprotein A-I (apo A-I), the major protein component of high-density lipoprotein, has been proven inversely correlated to cardiovascular risk in past decades. The lipid-free state of apo A-I is the initial stage which binds to lipids forming high-density lipoprotein. Molecular models of lipid-free apo A-I have been reported by methods like X-ray crystallography and chemical cross-linking/mass spectrometry (CCL/MS). Through structural analysis we found that those current models had limited consistency with other experimental results, such as those from hydrogen exchange with mass spectrometry. Through molecular dynamics simulations, we also found those models could not reach a stable equilibrium state. Therefore, by integrating various experimental results, we proposed a new structural model for lipidfree apo A-I, which contains a bundled four-helix N-terminal domain (1–192) that forms a variable hydrophobic groove and a mobile short hairpin C-terminal domain (193–243). This model exhibits an equilibrium state through molecular dynamics simulation and is consistent with most of the experimental results known from CCL/MS on lysine pairs, fluorescence resonance energy transfer and hydrogen exchange. This solution-state lipid-free apo A-I model may elucidate the possible conformational transitions of apo A-I binding with lipids in high-density lipoprotein formation.
A model of lipid-free Apolipoprotein A-I revealed by iterative molecular dynamics simulation
DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)
Zhang, Xing; Lei, Dongsheng; Zhang, Lei; Rames, Matthew; Zhang, Shengli
2015-03-20
Apolipoprotein A-I (apo A-I), the major protein component of high-density lipoprotein, has been proven inversely correlated to cardiovascular risk in past decades. The lipid-free state of apo A-I is the initial stage which binds to lipids forming high-density lipoprotein. Molecular models of lipid-free apo A-I have been reported by methods like X-ray crystallography and chemical cross-linking/mass spectrometry (CCL/MS). Through structural analysis we found that those current models had limited consistency with other experimental results, such as those from hydrogen exchange with mass spectrometry. Through molecular dynamics simulations, we also found those models could not reach a stable equilibrium state. Therefore,more »by integrating various experimental results, we proposed a new structural model for lipidfree apo A-I, which contains a bundled four-helix N-terminal domain (1–192) that forms a variable hydrophobic groove and a mobile short hairpin C-terminal domain (193–243). This model exhibits an equilibrium state through molecular dynamics simulation and is consistent with most of the experimental results known from CCL/MS on lysine pairs, fluorescence resonance energy transfer and hydrogen exchange. This solution-state lipid-free apo A-I model may elucidate the possible conformational transitions of apo A-I binding with lipids in high-density lipoprotein formation.« less
Clement, Prabhakar
1 LAB ASSIGNMENT 4 Notes to the TA: Demonstrate calculation of an integral by the trapezoidal function like f(x) = x2 . Numerical Integration Methods 1. Consider a function 0.2 25 200 675 900 400 . a. Plot the function on an Excel graph between x = 0 and x = 0.8. b. Evaluate the integral analytically
ON THE C-INTEGRAL BENEDETTO BONGIORNO
Talvila, Erik
ON THE C-INTEGRAL BENEDETTO BONGIORNO Let F with an integration process (called totalization) that includes the Lebesgue integral and the Riemann improper integral. Two years later, a second solution was obtained by O. Perron with a method based
National Renewable Energy Laboratory's Energy Systems Integration...
Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site
National Renewable Energy Laboratory's Energy Systems Integration Facility Overview National Renewable Energy Laboratory's Energy Systems Integration Facility Overview This...
Supertruck - Improving Transportation Efficiency through Integrated...
Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site
Improving Transportation Efficiency through Integrated Vehicle, Engine and Powertrain Research Supertruck - Improving Transportation Efficiency through Integrated Vehicle, Engine...
Transportation and Stationary Power Integration Workshop Session...
Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site
Transportation and Stationary Power Integration Workshop Agenda, October 27, 2008, Phoenix, Arizonia Transportation and Stationary Power Integration: Workshop Proceedings...
Integral Geometry and Holography
Czech, Bartlomiej; McCandlish, Samuel; Sully, James
2015-01-01
We present a mathematical framework which underlies the connection between information theory and the bulk spacetime in the AdS$_3$/CFT$_2$ correspondence. A key concept is kinematic space: an auxiliary Lorentzian geometry whose metric is defined in terms of conditional mutual informations and which organizes the entanglement pattern of a CFT state. When the field theory has a holographic dual obeying the Ryu-Takayanagi proposal, kinematic space has a direct geometric meaning: it is the space of bulk geodesics studied in integral geometry. Lengths of bulk curves are computed by kinematic volumes, giving a precise entropic interpretation of the length of any bulk curve. We explain how basic geometric concepts -- points, distances and angles -- are reflected in kinematic space, allowing one to reconstruct a large class of spatial bulk geometries from boundary entanglement entropies. In this way, kinematic space translates between information theoretic and geometric descriptions of a CFT state. As an example, we...
Watkins, Arthur D. (Idaho Falls, ID); Smartt, Herschel B. (Idaho Falls, ID); Taylor, Paul L. (Idaho Falls, ID)
1994-01-01
An integrated optical sensor for arc welding having multifunction feedback control. The sensor, comprising generally a CCD camera and diode laser, is positioned behind the arc torch for measuring weld pool position and width, standoff distance, and post-weld centerline cooling rate. Computer process information from this sensor is passed to a controlling computer for use in feedback control loops to aid in the control of the welding process. Weld pool position and width are used in a feedback loop, by the weld controller, to track the weld pool relative to the weld joint. Sensor standoff distance is used in a feedback loop to control the contact tip to base metal distance during the welding process. Cooling rate information is used to determine the final metallurgical state of the weld bead and heat affected zone, thereby controlling post-weld mechanical properties.
Watkins, A.D.; Smartt, H.B.; Taylor, P.L.
1994-01-04
An integrated optical sensor for arc welding having multifunction feedback control is described. The sensor, comprising generally a CCD camera and diode laser, is positioned behind the arc torch for measuring weld pool position and width, standoff distance, and post-weld centerline cooling rate. Computer process information from this sensor is passed to a controlling computer for use in feedback control loops to aid in the control of the welding process. Weld pool position and width are used in a feedback loop, by the weld controller, to track the weld pool relative to the weld joint. Sensor standoff distance is used in a feedback loop to control the contact tip to base metal distance during the welding process. Cooling rate information is used to determine the final metallurgical state of the weld bead and heat affected zone, thereby controlling post-weld mechanical properties. 6 figures.
Reedy, W.R.
1988-03-01
An integrated heat pump and hot water system is described that includes: a heat pump having an indoor heat exchanger and an outdoor heat exchanger that are selectively connected to the suction line and the discharge line respectively of a compressor by a flow reversing means, and to each other by a liquid line having an expansion device mounted therein, whereby heating and cooling is provided to an indoor comfort zone by cycling the flow reversing means, a refrigerant to water heat exchanger having a hot water flow circuit in heat transfer relation with a first refrigerant condensing circuit and a second refrigerant evaporating circuit, a connection mounted in the liquid between the indoor heat exchanger and the expansion device, control means for regulating the flow of refrigerant through the refrigerant to water heat exchanger to selectively transfer heat into and out of the hot water flow circuit.
Bailey, W.J.; Johnson, A.B. Jr.
1983-09-01
This report includes information from various studies performed under the Wet Storage Task of the Spent Fuel Integrity Project of the Commercial Spent Fuel Management (CSFM) Program at Pacific Northwest Laboratory. An overview of recent developments in the technology of wet storage of spent water reactor fuel is presented. Licensee Event Reports pertaining to spent fuel pools and the associated performance of spent fuel and storage components during wet storage are discussed. The current status of fuel that was examined under the CSFM Program is described. Assessments of the effect of boric acid in spent fuel pool water on the corrosion and stress corrosion cracking of stainless steel and the stress corrosion cracking of stainless steel piping containing stagnant water at spent fuel pools are discussed. A list of pertinent publications is included. 84 references, 21 figures, 11 tables.
Jahns, Jürgen
shrinkage may occur while the replication process like hot embossing or injection molding, this shrinkageVolume shrinkage effects on a planar integrated optical micro-channel system Christiane Gimkiewicz
Nucleosynthesis results from INTEGRAL
G. Weidenspointner
2006-01-15
Since its launch in October 2002, ESA's INTEGRAL observatory has enabled significant advances to be made in the study of Galactic nucleosynthesis. In particular, the imaging Ge spectrometer SPI combines for the first time the diagnostic powers of high resolution gamma-ray line spectroscopy and moderate spatial resolution. This review summarizes the major nucleosynthesis results obtained with INTEGRAL so far. Positron annihilation in our Galaxy is being studied in unprecented detail. SPI observations yield the first sky maps in both the 511 keV annihilation line and the positronium continuum emission, and the most accurate spectrum at 511 keV to date, thereby imposing new constraints on the source(s) of Galactic positrons which still remain(s) unidentified. For the first time, the imprint of Galactic rotation on the centroid and shape of the 1809 keV gamma-ray line due to the decay of 26Al has been seen, confirming the Galactic origin of this emission. SPI also provided the most accurate determination of the gamma-ray line flux due to the decay of 60Fe. The combined results for 26Al and 60Fe have important implications for nucleosynthesis in massive stars, in particular Wolf-Rayet stars. Both IBIS and SPI are searching the Galactic plane for young supernova remnants emitting the gamma-ray lines associated with radioactive 44Ti. None have been found so far, which raises important questions concerning the production of 44Ti in supernovae, the Galactic supernova rate, and the Galaxy's chemical evolution.
Dynamical real numbers and living systems
Dhurjati Prasad Datta
2010-01-11
Recently uncovered second derivative discontinuous solutions of the simplest linear ordinary differential equation define not only an nonstandard extension of the framework of the ordinary calculus, but also provide a dynamical representation of the ordinary real number system. Every real number can be visualized as a living cell -like structure, endowed with a definite evolutionary arrow. We discuss the relevance of this extended calculus in the study of living systems. We also present an intelligent version of the Newton's first law of motion.
The Microscopic Linear Dynamics
Penny, Will
The Microscopic Brain Will Penny Linear Dynamics Exponentials Matrix Exponential Eigendecomposition References The Microscopic Brain Will Penny 7th April 2011 #12;The Microscopic Brain Will Penny Linear;The Microscopic Brain Will Penny Linear Dynamics Exponentials Matrix Exponential Eigendecomposition
Model Predictive Control of Integrated Gasification Combined Cycle Power Plants
B. Wayne Bequette; Priyadarshi Mahapatra
2010-08-31
The primary project objectives were to understand how the process design of an integrated gasification combined cycle (IGCC) power plant affects the dynamic operability and controllability of the process. Steady-state and dynamic simulation models were developed to predict the process behavior during typical transients that occur in plant operation. Advanced control strategies were developed to improve the ability of the process to follow changes in the power load demand, and to improve performance during transitions between power levels. Another objective of the proposed work was to educate graduate and undergraduate students in the application of process systems and control to coal technology. Educational materials were developed for use in engineering courses to further broaden this exposure to many students. ASPENTECH software was used to perform steady-state and dynamic simulations of an IGCC power plant. Linear systems analysis techniques were used to assess the steady-state and dynamic operability of the power plant under various plant operating conditions. Model predictive control (MPC) strategies were developed to improve the dynamic operation of the power plants. MATLAB and SIMULINK software were used for systems analysis and control system design, and the SIMULINK functionality in ASPEN DYNAMICS was used to test the control strategies on the simulated process. Project funds were used to support a Ph.D. student to receive education and training in coal technology and the application of modeling and simulation techniques.
Categorical Introduction to Dynamical Systems Symbolic Dynamical Systems
Kahng, Byung-Jay
Categorical Introduction to Dynamical Systems Symbolic Dynamical Systems Symbolic Embedding Examples Results Embeddings in Symbolic Dynamical Systems Jonathan Jaquette Swarthmore College July 22, 2009 Jonathan Jaquette Embeddings in Symbolic Dynamical Systems #12;Categorical Introduction
Interaction Region Design and Detector Integration at JLab's MEIC
Lin, Fanglei; Brindza, Paul D.; Derbenev, Yaroslav S.; Ent, Rolf; Morozov, Vasiliy; Nadel-Turonski, Pawel A.; Zhang, Yuhong; Hyde, Charles E.; Sullivan, Michael
2013-12-01
The Electron Ion Collider (EIC) will be a next-generation facility for the study of the strong interaction (QCD). JLab?s MEIC is designed for high luminosities of up to 10^34 cm^-2 s^-1. This is achieved in part due to an aggressively small beta-star, which imposes stringent requirements on the collider rings? dynamical properties. Additionally, one of the unique features of MEIC is a full-acceptance detector with a dedicated, small-angle, high-resolution detection system, capable of covering a wide range of momenta (and charge-to-mass ratios) with respect to the original ion beam to enable access to new physics. The detector design relies on a number of features, such as a 50 mrad beam crossing angle, large-aperture ion and electron final focusing quads and spectrometer dipoles as well as a large machine-element-free detection space downstream of the final focusing quads. We present an interaction region design developed with close integration of the detector and beam dynamical aspects. The dynamical aspect of the design rests on a symmetry-based concept for compensation of non-linear effects. The optics and geometry have been optimized to accommodate the detection requirements and to ensure the interaction region?s modularity for easiness of integration into the collider ring lattices. As a result, the design offers an excellent detector performance combined with the necessary non-linear dynamical properties.
HLW System Integrated Project Team
Office of Environmental Management (EM)
Team Integrated Project Team Steve Schneider Steve Schneider Office of Engineering and Technology High Level Waste Corporate Board March 5, 2009 This document is intended for...
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
About ORNL Fact Sheet Brochure Diversity Leadership Team Organization History Honors and Awards Environmental Policy Environmental Aspects Corporate Giving Research Integrity Who...
Data Integration using Web Services
Hansen, Mark
2003-02-10
In this paper we examine the opportunities for data integration in the context of the emerging Web Services systems development paradigm. The paper introduces the ...
Integrative Biosurveillance at Bio Symposium
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Biosurveillance Symposium sponsored by Oak Ridge National Laboratory June 12 in Baltimore. - 2 - Biosurveillance requires the integration of complex data from a variety of...
Fuel Pathways Integration Tech Team
Office of Energy Efficiency and Renewable Energy (EERE)
Presentation on Fuel Pathways Integration Tech Team to the DOE Systems Analysis Workshop held in Washington, D.C. July 28-29, 2004.
Tank Integrity Reports - Hanford Site
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Documents > Tank Integrity Reports Documents DOE - RL ContractsProcurements DOE-ORP ContractsProcurements CERCLA Five-Year Review Hanford Site Safety Standards NEPA - Categorical...
Advanced Integrated Electric Traction System
Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site
Integrated Electric Traction System Greg S. Smith Email: gregory.3.smith@gm.com Phone: (310) 257-3812 Organization: General Motors Team members: Ames Laboratory Arnold Magnetics...
Integrated Energy System Dispatch Optimization
Firestone, Ryan; Stadler, Michael; Marnay, Chris
2006-01-01
Efficiency and Renewable Energy, Distributed Energy ProgramDistributed Energy Neural Network Integration System: Year One Final Report,” National Renewable Energy
OPTIMAL OPERATION OF INTEGRATED PROCESSES
Skogestad, Sigurd
OPTIMAL OPERATION OF INTEGRATED PROCESSES Studies on Heat Recovery Systems by Bjørn Glemmestad exchanger network (HEN) for heat recovery. Within the process engineering community, much attention has been
Intramolecular and nonlinear dynamics
Davis, M.J. [Argonne National Laboratory, IL (United States)
1993-12-01
Research in this program focuses on three interconnected areas. The first involves the study of intramolecular dynamics, particularly of highly excited systems. The second area involves the use of nonlinear dynamics as a tool for the study of molecular dynamics and complex kinetics. The third area is the study of the classical/quantum correspondence for highly excited systems, particularly systems exhibiting classical chaos.
Dynamics of assembly production flow
Ezaki, Takahiro; Nishinari, Katsuhiro
2015-01-01
Despite recent developments in management theory, maintaining a manufacturing schedule remains difficult because of production delays and fluctuations in demand and supply of materials. The response of manufacturing systems to such disruptions to dynamic behavior has been rarely studied. To capture these responses, we investigate a process that models the assembly of parts into end products. The complete assembly process is represented by a directed tree, where the smallest parts are injected at leaves and the end products are removed at the root. A discrete assembly process, represented by a node on the network, integrates parts, which are then sent to the next downstream node as a single part. The model exhibits some intriguing phenomena, including overstock cascade, phase transition in terms of demand and supply fluctuations, nonmonotonic distribution of stockout in the network, and the formation of a stockout path and stockout chains. Surprisingly, these rich phenomena result from only the nature of distr...
An approach to developing an integrated pyroprocessing simulator
Lee, Hyo Jik; Ko, Won Il; Choi, Sung Yeol; Kim, Sung Ki; Kim, In Tae; Lee, Han Soo [Korea Atomic Energy Research Institute, 989-111 Daedeok-daero, Yuseong-gu, Daejeon, 305-353 (Korea, Republic of)
2014-02-12
Pyroprocessing has been studied for a decade as one of the promising fuel recycling options in Korea. We have built a pyroprocessing integrated inactive demonstration facility (PRIDE) to assess the feasibility of integrated pyroprocessing technology and scale-up issues of the processing equipment. Even though such facility cannot be replaced with a real integrated facility using spent nuclear fuel (SF), many insights can be obtained in terms of the world's largest integrated pyroprocessing operation. In order to complement or overcome such limited test-based research, a pyroprocessing Modelling and simulation study began in 2011. The Korea Atomic Energy Research Institute (KAERI) suggested a Modelling architecture for the development of a multi-purpose pyroprocessing simulator consisting of three-tiered models: unit process, operation, and plant-level-model. The unit process model can be addressed using governing equations or empirical equations as a continuous system (CS). In contrast, the operation model describes the operational behaviors as a discrete event system (DES). The plant-level model is an integrated model of the unit process and an operation model with various analysis modules. An interface with different systems, the incorporation of different codes, a process-centered database design, and a dynamic material flow are discussed as necessary components for building a framework of the plant-level model. As a sample model that contains methods decoding the above engineering issues was thoroughly reviewed, the architecture for building the plant-level-model was verified. By analyzing a process and operation-combined model, we showed that the suggested approach is effective for comprehensively understanding an integrated dynamic material flow. This paper addressed the current status of the pyroprocessing Modelling and simulation activity at KAERI, and also predicted its path forward.
Biological implications of dynamical phases in non-equilibrium networks
Murugan, Arvind
2015-01-01
Biology achieves novel functions like error correction, ultra-sensitivity and accurate concentration measurement at the expense of free energy through Maxwell Demon-like mechanisms. The design principles and free energy trade-offs have been studied for a variety of such mechanisms. In this review, we emphasize a perspective based on dynamical phases that can explain commonalities shared by these mechanisms. Dynamical phases are defined by typical trajectories executed by non-equilibrium systems in the space of internal states. We find that coexistence of dynamical phases can have dramatic consequences for function vs free energy cost trade-offs. Dynamical phases can also provide an intuitive picture of the design principles behind such biological Maxwell Demons.
Electron lenses and cooling for the Fermilab Integrable Optics Test Accelerator
Stancari, G; Lebedev, V; Nagaitsev, S; Prebys, E; Valishev, A
2015-01-01
Recently, the study of integrable Hamiltonian systems has led to nonlinear accelerator lattices with one or two transverse invariants and wide stable tune spreads. These lattices may drastically improve the performance of high-intensity machines, providing Landau damping to protect the beam from instabilities, while preserving dynamic aperture. The Integrable Optics Test Accelerator (IOTA) is being built at Fermilab to study these concepts with 150-MeV pencil electron beams (single-particle dynamics) and 2.5-MeV protons (dynamics with self fields). One way to obtain a nonlinear integrable lattice is by using the fields generated by a magnetically confined electron beam (electron lens) overlapping with the circulating beam. The required parameters are similar to the ones of existing devices. In addition, the electron lens will be used in cooling mode to control the brightness of the proton beam and to measure transverse profiles through recombination. More generally, it is of great interest to investigate whet...
New formulas for Stirling-like numbers and Dobinski-like formulas
Kwasniewski, A K
2008-01-01
Extensions of the $Stirling$ numbers of the second kind and $Dobinski$ -like formulas are proposed in a series of exercises for graduates. Some of these new formulas recently discovered by me are to be found in the source paper $ [1]$. These extensions naturally encompass the well known $q$- extensions. The indicatory references are to point at a part of the vast domain of the foundations of computer science in arxiv affiliation.
WINS. Market Simulation Tool for Facilitating Wind Energy Integration
Shahidehpour, Mohammad
2012-10-30
Integrating 20% or more wind energy into the system and transmitting large sums of wind energy over long distances will require a decision making capability that can handle very large scale power systems with tens of thousands of buses and lines. There is a need to explore innovative analytical and implementation solutions for continuing reliable operations with the most economical integration of additional wind energy in power systems. A number of wind integration solution paths involve the adoption of new operating policies, dynamic scheduling of wind power across interties, pooling integration services, and adopting new transmission scheduling practices. Such practices can be examined by the decision tool developed by this project. This project developed a very efficient decision tool called Wind INtegration Simulator (WINS) and applied WINS to facilitate wind energy integration studies. WINS focused on augmenting the existing power utility capabilities to support collaborative planning, analysis, and wind integration project implementations. WINS also had the capability of simulating energy storage facilities so that feasibility studies of integrated wind energy system applications can be performed for systems with high wind energy penetrations. The development of WINS represents a major expansion of a very efficient decision tool called POwer Market Simulator (POMS), which was developed by IIT and has been used extensively for power system studies for decades. Specifically, WINS provides the following superiorities; (1) An integrated framework is included in WINS for the comprehensive modeling of DC transmission configurations, including mono-pole, bi-pole, tri-pole, back-to-back, and multi-terminal connection, as well as AC/DC converter models including current source converters (CSC) and voltage source converters (VSC); (2) An existing shortcoming of traditional decision tools for wind integration is the limited availability of user interface, i.e., decision results are often text-based demonstrations. WINS includes a powerful visualization tool and user interface capability for transmission analyses, planning, and assessment, which will be of great interest to power market participants, power system planners and operators, and state and federal regulatory entities; and (3) WINS can handle extended transmission models for wind integration studies. WINS models include limitations on transmission flow as well as bus voltage for analyzing power system states. The existing decision tools often consider transmission flow constraints (dc power flow) alone which could result in the over-utilization of existing resources when analyzing wind integration. WINS can be used to assist power market participants including transmission companies, independent system operators, power system operators in vertically integrated utilities, wind energy developers, and regulatory agencies to analyze economics, security, and reliability of various options for wind integration including transmission upgrades and the planning of new transmission facilities. WINS can also be used by industry for the offline training of reliability and operation personnel when analyzing wind integration uncertainties, identifying critical spots in power system operation, analyzing power system vulnerabilities, and providing credible decisions for examining operation and planning options for wind integration. Researches in this project on wind integration included (1) Development of WINS; (2) Transmission Congestion Analysis in the Eastern Interconnection; (3) Analysis of 2030 Large-Scale Wind Energy Integration in the Eastern Interconnection; (4) Large-scale Analysis of 2018 Wind Energy Integration in the Eastern U.S. Interconnection. The research resulted in 33 papers, 9 presentations, 9 PhD degrees, 4 MS degrees, and 7 awards. The education activities in this project on wind energy included (1) Wind Energy Training Facility Development; (2) Wind Energy Course Development.
Memristor comprising film with comb-like structure of nanocolumns...
Office of Scientific and Technical Information (OSTI)
film with comb-like structure of nanocolumns of metal oxide embedded in a metal oxide matrix Citation Details In-Document Search Title: Memristor comprising film with comb-like...
State Regulatory Framework Will Most Likely Result in Robust...
Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site
State Regulatory Framework Will Most Likely Result in Robust CO2 Pipeline System, New Study Says State Regulatory Framework Will Most Likely Result in Robust CO2 Pipeline System,...
Promise for Onion-Like Carbons as Supercapacitors
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Promise for Onion-Like Carbons as Supercapacitors Promise for Onion-Like Carbons as Supercapacitors JiangCummingsCoverLarge.gif Some of the capacitance and geometry effects...
Advanced Integrated Traction System
Greg Smith; Charles Gough
2011-08-31
The United States Department of Energy elaborates the compelling need for a commercialized competitively priced electric traction drive system to proliferate the acceptance of HEVs, PHEVs, and FCVs in the market. The desired end result is a technically and commercially verified integrated ETS (Electric Traction System) product design that can be manufactured and distributed through a broad network of competitive suppliers to all auto manufacturers. The objectives of this FCVT program are to develop advanced technologies for an integrated ETS capable of 55kW peak power for 18 seconds and 30kW of continuous power. Additionally, to accommodate a variety of automotive platforms the ETS design should be scalable to 120kW peak power for 18 seconds and 65kW of continuous power. The ETS (exclusive of the DC/DC Converter) is to cost no more than $660 (55kW at $12/kW) to produce in quantities of 100,000 units per year, should have a total weight less than 46kg, and have a volume less than 16 liters. The cost target for the optional Bi-Directional DC/DC Converter is $375. The goal is to achieve these targets with the use of engine coolant at a nominal temperature of 105C. The system efficiency should exceed 90% at 20% of rated torque over 10% to 100% of maximum speed. The nominal operating system voltage is to be 325V, with consideration for higher voltages. This project investigated a wide range of technologies, including ETS topologies, components, and interconnects. Each technology and its validity for automotive use were verified and then these technologies were integrated into a high temperature ETS design that would support a wide variety of applications (fuel cell, hybrids, electrics, and plug-ins). This ETS met all the DOE 2010 objectives of cost, weight, volume and efficiency, and the specific power and power density 2015 objectives. Additionally a bi-directional converter was developed that provides charging and electric power take-off which is the first step towards enabling a smart-grid application. GM under this work assessed 29 technologies; investigated 36 configurations/types power electronics and electric machines, filed 41 invention disclosures; and ensured technology compatibility with vehicle production. Besides the development of a high temperature ETS the development of industrial suppliers took place because of this project. Suppliers of industrial power electronic components are numerous, but there are few that have traction drive knowledge. This makes it difficult to achieve component reliability, durability, and cost requirements necessary of high volume automotive production. The commercialization of electric traction systems for automotive industry requires a strong diverse supplier base. Developing this supplier base is dependent on a close working relationship between the OEM and supplier so that appropriate component requirements can be developed. GM has worked closely with suppliers to develop components for electric traction systems. Components that have been the focus of this project are power modules, capacitors, heavy copper boards, current sensors, and gate drive and controller chip sets. Working with suppliers, detailed component specifications have been developed. Current, voltage, and operation environment during the vehicle drive cycle were evaluated to develop higher resolution/accurate component specifications.
Integrated broadband bowtie antenna on transparent substrate
Zhang, Xingyu; Subbaraman, Harish; Zhan, Qiwen; Pan, Zeyu; Chung, Chi-jui; Yan, Hai; Chen, Ray T
2015-01-01
The bowtie antenna is a topic of growing interest in recent years. In this paper, we design, fabricate, and characterize a modified gold bowtie antenna integrated on a transparent glass substrate. We numerically investigate the antenna characteristics, specifically its resonant frequency and enhancement factor. We simulate the dependence of resonance frequency on bowtie geometry, and verify the simulation results through experimental investigation, by fabricating different sets of bowtie antennas on glass substrates utilizing CMOS compatible processes and measuring their resonance frequencies. Our designed bowtie antenna provides a strong broadband electric field enhancement in its feed gap. The far-field radiation pattern of the bowtie antenna is measured, and it shows dipole-like characteristics with large beam width. Such a broadband antenna will be useful for a myriad of applications, ranging from wireless communications to electromagnetic wave detection.
Energy Resolution with the Lorentz integral transform
Winfried Leidemann
2015-06-08
A brief outline of the Lorentz Integral Transform (LIT) method is given. The method is well established and allows to treat reactions into the many-body continuum with bound-state like techniques. The energy resolution that can be achieved is studied by means of a simple two-body reaction. From the discussion it will become clear that the LIT method is an approach with a controlled resolution and that there is no principle problem to even resolve narrow resonances in the many-body continuum. As an example the isoscalar monopole resonance of 4He is considered. The importance of the choice of a proper basis for the expansion of the LIT states is pointed out. Employing such a basis a width of 180(70) keV is found for the 4He isoscalar monopole resonance when using a simple central nucleon-nucleon potential model.
Introduction Dynamical properties of (-)-transformation Dynamical properties of
/04/2010 Digital expansions, dynamics and tilings, Aussois Dynamical properties of the (-)-transformation 1/17 #12 of (-)-transformation Digital expansions, dynamics and tilings, Aussois Dynamical properties of the (-)-transformation 2/17 #12;Introduction Dynamical properties of (-)-transformation Introduction Digital expansions, dynamics
Quantum Dynamical Behaviour in Complex Systems - A Semiclassical Approach
Gliebe, Cheryn E; Ananth, Nandini
2008-05-22
One of the biggest challenges in Chemical Dynamics is describing the behavior of complex systems accurately. Classical MD simulations have evolved to a point where calculations involving thousands of atoms are routinely carried out. Capturing coherence, tunneling and other such quantum effects for these systems, however, has proven considerably harder. Semiclassical methods such as the Initial Value Representation (SC-IVR) provide a practical way to include quantum effects while still utilizing only classical trajectory information. For smaller systems, this method has been proven to be most effective, encouraging the hope that it can be extended to deal with a large number of degrees of freedom. Several variations upon the original idea of the SCIVR have been developed to help make these larger calculations more tractable; these range from the simplest, classical limit form, the Linearized IVR (LSC-IVR) to the quantum limit form, the Exact Forward-Backward version (EFB-IVR). In this thesis a method to tune between these limits is described which allows us to choose exactly which degrees of freedom we wish to treat in a more quantum mechanical fashion and to what extent. This formulation is called the Tuning IVR (TIVR). We further describe methodology being developed to evaluate the prefactor term that appears in the IVR formalism. The regular prefactor is composed of the Monodromy matrices (jacobians of the transformation from initial to finial coordinates and momenta) which are time evolved using the Hessian. Standard MD simulations require the potential surfaces and their gradients, but very rarely is there any information on the second derivative. We would like to be able to carry out the SC-IVR calculation without this information too. With this in mind a finite difference scheme to obtain the Hessian on-the-fly is proposed. Wealso apply the IVR formalism to a few problems of current interest. A method to obtain energy eigenvalues accurately for complex systems is described. We proposed the use of a semiclassical correction term to a preliminary quantum calculation using, for instance, a variational approach. This allows us to increase the accuracy significantly. Modeling Nonadiabatic dynamics has always been a challenge to classical simulations because the multi-state nature of the dynamics cannot be described accurately by the time evolution on a single average surface, as is the classical approach. We show that using the Meyer-Miller-Stock-Thoss (MMST) representation of the exact vibronic Hamiltonian in combination with the IVR allows us to accurately describe dynamics where the non Born-Oppenheimer regime. One final problem that we address is that of extending this method to the long time regime. We propose the use of a time independent sampling function in the Monte Carlo integration over the phase space of initial trajectory conditions. This allows us to better choose the regions of importance at the various points in time; by using more trajectories in the important regions, we show that the integration can be converged much easier. An algorithm based loosely on the methods of Diffusion Monte Carlo is developed that allows us to carry out this time dependent sampling in a most efficient manner.
Integration algorithms of elastoplasticity for ceramic powder compaction
M. Penasa; A. Piccolroaz; L. Argani; D. Bigoni
2014-04-24
Inelastic deformation of ceramic powders (and of a broad class of rock-like and granular materials), can be described with the yield function proposed by Bigoni and Piccolroaz (2004, Yield criteria for quasibrittle and frictional materials. Int. J. Solids and Structures, 41, 2855-2878). This yield function is not defined outside the yield locus, so that 'gradient-based' integration algorithms of elastoplasticity cannot be directly employed. Therefore, we propose two ad hoc algorithms: (i.) an explicit integration scheme based on a forward Euler technique with a 'centre-of-mass' return correction and (ii.) an implicit integration scheme based on a 'cutoff-substepping' return algorithm. Iso-error maps and comparisons of the results provided by the two algorithms with two exact solutions (the compaction of a ceramic powder against a rigid spherical cup and the expansion of a thick spherical shell made up of a green body), show that both the proposed algorithms perform correctly and accurately.
Fundamental studies in hydrogen-rich combustion : instability mechanisms and dynamic mode selection
Speth, Raymond L., 1981-
2010-01-01
Hydrogen-rich alternative fuels are likely to play a significant role in future power generation systems. The emergence of the integrated gasification combined cycle (IGCC) as one of the favored technologies for incorporating ...
Two-Settlement Electric Power Markets with Dynamic-Price Contracts
Tesfatsion, Leigh
Two-Settlement Electric Power Markets with Dynamic-Price Contracts 27 July 2011 IEEE PES GM: Personnel from PNNL/DOE, XM, RTE, MEC, & MISO IRW Project:IRW Project: Integrated Retail/Wholesale PowerIntegrated Retail/Wholesale Power System Operation with SmartSystem Operation with Smart--Grid Functionality
Dynamic Fusion of Web Data Erhard Rahm, Andreas Thor, David Aumueller
Schüler, Axel
Dynamic Fusion of Web Data Erhard Rahm, Andreas Thor, David Aumueller University of Leipzig integrate data and services from multiple web sources. Such integration workflows can build on existing services for web search, entity search, database querying, and information extraction and thus complement
June 23, 2009 RAMSEY-LIKE CARDINALS II
Welch, Philip
June 23, 2009 RAMSEY-LIKE CARDINALS II VICTORIA GITMAN AND PHILIP WELCH Abstract. This paper continues the study of the Ramsey-like large cardinals introduced in [Git09] and [WS08]. Ramsey-like cardinals are defined by gener- alizing the "existence of elementary embeddings" characterization of Ramsey
Transit light curves with finite integration time: Fisher information analysis
Price, Ellen M.; Rogers, Leslie A.
2014-10-10
Kepler has revolutionized the study of transiting planets with its unprecedented photometric precision on more than 150,000 target stars. Most of the transiting planet candidates detected by Kepler have been observed as long-cadence targets with 30 minute integration times, and the upcoming Transiting Exoplanet Survey Satellite will record full frame images with a similar integration time. Integrations of 30 minutes affect the transit shape, particularly for small planets and in cases of low signal to noise. Using the Fisher information matrix technique, we derive analytic approximations for the variances and covariances on the transit parameters obtained from fitting light curve photometry collected with a finite integration time. We find that binning the light curve can significantly increase the uncertainties and covariances on the inferred parameters when comparing scenarios with constant total signal to noise (constant total integration time in the absence of read noise). Uncertainties on the transit ingress/egress time increase by a factor of 34 for Earth-size planets and 3.4 for Jupiter-size planets around Sun-like stars for integration times of 30 minutes compared to instantaneously sampled light curves. Similarly, uncertainties on the mid-transit time for Earth and Jupiter-size planets increase by factors of 3.9 and 1.4. Uncertainties on the transit depth are largely unaffected by finite integration times. While correlations among the transit depth, ingress duration, and transit duration all increase in magnitude with longer integration times, the mid-transit time remains uncorrelated with the other parameters. We provide code in Python and Mathematica for predicting the variances and covariances at www.its.caltech.edu/?eprice.
Light-Like Noncommutativity, Light-Front Quantization and New Light on UV/IR Mixing
M. M. Sheikh-Jabbari; A. Tureanu
2010-10-02
We revisit the problem of quantizing field theories on noncommutative Moyal spacetime with \\emph{light-like} noncommutativity. To tackle the issues arising from noncommuting and hence nonlocal time, we argue that for this case light-front quantization procedure should be employed. In this appropriate quantization scheme we perform the non-planar loop analysis for the light-like noncommutative field theories. One of the important and peculiar features of light-front quantization is that the UV cutoff of the light-cone Hamiltonian manifests itself as an IR cutoff for the light-cone momentum, $p^+$. Due to this feature, the naive results of covariant quantization for the light-like case allude to the absence of the UV/IR mixing in the light-front quantization. However, by a careful analysis of non-planar loop integrals we show that this is not the case and the UV/IR mixing persists. In addition, we argue in favour of the perturbative unitarity of light-like noncommutative field theories in the light-front quantization scheme.
Frobenius manifolds and algebraic integrability
L. K. Hoevenaars
2007-06-26
We give a short review of Frobenius manifolds and algebraic integrability and study their intersection. The simplest case is the relation between the Frobenius manifold of simple singularities, which is almost dual to the integrable open Toda chain. New types of manifolds called extra special Kaehler and special F-manifolds are introduced which capture the intersection.
Energy Systems Integration Facility Overview
Arvizu, Dan; Chistensen, Dana; Hannegan, Bryan; Garret, Bobi; Kroposki, Ben; Symko-Davies, Martha; Post, David; Hammond, Steve; Kutscher, Chuck; Wipke, Keith
2014-06-10
The U.S. Department of Energy's Energy Systems Integration Facility (ESIF) is located at the National Renewable Energy Laboratory is the right tool, at the right time... a first-of-its-kind facility that addresses the challenges of large-scale integration of clean energy technologies into the energy systems that power the nation.
Information and integrity in the
De Montfort University
Information and integrity in the information age Converging technologies have changed the way we should look at information. Traditional paradigms of information suppliers and consumers no longer seem of information and its associated integrity using illustrations from the virtual world Converging technologies
Communication Needs and Integration Options
Communication Needs and Integration Options for AMI in the Smart Grid Future Grid Initiative White System #12;Communication Needs and Integration Options for AMI in the Smart Grid Prepared for the Project the current state of communications for the advanced metering infrastructure (AMI) and recommends
Energy Systems Integration Facility Overview
Arvizu, Dan; Chistensen, Dana; Hannegan, Bryan; Garret, Bobi; Kroposki, Ben; Symko-Davies, Martha; Post, David; Hammond, Steve; Kutscher, Chuck; Wipke, Keith
2014-02-28
The U.S. Department of Energy's Energy Systems Integration Facility (ESIF) is located at the National Renewable Energy Laboratory is the right tool, at the right time... a first-of-its-kind facility that addresses the challenges of large-scale integration of clean energy technologies into the energy systems that power the nation.
Journal club Multivariate Signal integration
Journal club Multivariate Signal integration A fundamental aspect of biological systems is that they are multivariate: cells receive, integrate and respond to hundreds or thousands of concurrent environmental cues in the context of the cell's multivariate network state. Because this depends on cues in the environment
Challenges in Integrating Renewable Technologies
costs and improving energy efficiencies of the various types of renewable resources, such as wind, solar reliability and econ- omy. The challenges of integrating high penetrations of renewable energy technologiesChallenges in Integrating Renewable Technologies into an Electric Power System White Paper Power
Topsoe integrated gasoline synthesis (TIGAS)
Hansen, H.K.; Joensen, F.
1987-01-01
Integration of Haldor Topsoe's oxygenate (MeOH, DME) synthesis and the MTG process into one single synthesis loop provides a new low investment route to gasoline from natural gas. The integrated process has been demonstrated in an industrial pilot with a capacity of 1 MTPD gasoline since 1984. The pilot has operated successfully for more than 10,000 hours.
A geometric approach to quantum control in a classical-like framework
Davide Pastorello
2015-08-28
A quantum theory in a finite-dimensional Hilbert space can be formulated as a proper Hamiltonian theory as explained in [2, 3, 7, 8]. From this point of view a quantum system can be described in a classical-like framework where quantum dynamics is represented by a Hamiltonian flow in the phase space given by Hilbert projective space. This paper is devoted to investigate how the notion of accessibility algebra from classical control theory can be applied within geometric classical-like formulation of Quanum Mechanics to study controllability of a quantum system in order to state the following conjecture: Under certain conditions, classical control theory provides a machinery which can be directly applied in quantum control within the geometric Hamiltonian picture.
3D climate modeling of Earth-like extrasolar planets orbiting different types of host stars
Godolt, M; Hamann-Reinus, A; Kitzmann, D; Kunze, M; Langematz, U; von Paris, P; Patzer, A B C; Rauer, H; Stracke, B
2015-01-01
The potential habitability of a terrestrial planet is usually defined by the possible existence of liquid water on its surface. The potential presence of liquid water depends on many factors such as, most importantly, surface temperatures. The properties of the planetary atmosphere and its interaction with the radiative energy provided by the planet's host star are thereby of decisive importance. In this study we investigate the influence of different main-sequence stars upon the climate of Earth-like extrasolar planets and their potential habitability by applying a 3D Earth climate model accounting for local and dynamical processes. The calculations have been performed for planets with Earth-like atmospheres at orbital distances where the total amount of energy received from the various host stars equals the solar constant. In contrast to previous 3D modeling studies, we include the effect of ozone radiative heating upon the vertical temperature structure of the atmospheres. The global orbital mean results o...
Electroweak symmetry breaking by strong dynamics and the collider phenomenology
Timothy L. Barklow et al.
2002-12-23
We discuss the possible signatures in the electroweak symmetry breaking sector by new strong dynamics at future hadron colliders such as the Tevatron upgrade, the LHC and VLHC, and e{sup +}e{sup -} linear colliders. Examples include a heavy Higgs-like scalar resonance, a heavy Technicolor-like vector resonance and pseudo-Goldstone states, non-resonance signatures via enhanced gauge-boson scattering and fermion compositeness.
The Localization and Dynamics of Actin in Aspergillus nidulans
Hilton, Angelyn Elizabeth
2013-02-04
AND DYNAMICS OF ACTIN IN ASPERGILLUS NIDULANS An Undergraduate Research Scholars Thesis by ANGELYN E HILTON Submitted to Honors and Undergraduate Research Texas A&M University in partial fulfillment of the requirements for the designation... observed. Like that of the SAW structure, the AAA is composed of actin cables organizing into a mesh-like stucture (Figure 18). In contrast to the SAW, the proximal face of the structure within the apex is stable, whereas the side distal to the apex...
Information survey for microcomputer systems integration
Hake, K.A.
1991-12-01
One goal of the PM-AIM is to provide US Army Project Managers (PMs) and Project Executive Officers (PEOs) with a fundamental microcomputing resource to help perform acquisition information management and its concomitant reporting requirements. Providing key application software represents one means of accomplishing this goal. This workstation would furnish a broad range of capabilities needed in the PM and PEO office settings as well as software tools for specific project management and acquisition information. Although still in the conceptual phase, the practical result of this exercise in systems integration will likely be a system called the Project Manager's Information System (PMIS) or the AIM workstation. It would include such software as, Project Manager's System Software (PMSS), Defense Acquisition Executive Summary (DAES), and Consolidated Acquisition Reporting System (CARS) and would conform to open systems architecture as accepted by the Department of Defense. ORNL has assisted PM-AIM in the development of technology ideas for the PMIS workstation concept. This paper represents the compilation of information gained during this process. This information is presented as a body of knowledge (or knowledge domain) defining the complex technology of microcomputing. The concept of systems integration or tying together all hardware and software components reflects the nature of PM-AIM's task in attempting to field a PMIS or AIM workstation.
Information survey for microcomputer systems integration
Hake, K.A.
1991-12-01
One goal of the PM-AIM is to provide US Army Project Managers (PMs) and Project Executive Officers (PEOs) with a fundamental microcomputing resource to help perform acquisition information management and its concomitant reporting requirements. Providing key application software represents one means of accomplishing this goal. This workstation would furnish a broad range of capabilities needed in the PM and PEO office settings as well as software tools for specific project management and acquisition information. Although still in the conceptual phase, the practical result of this exercise in systems integration will likely be a system called the Project Manager`s Information System (PMIS) or the AIM workstation. It would include such software as, Project Manager`s System Software (PMSS), Defense Acquisition Executive Summary (DAES), and Consolidated Acquisition Reporting System (CARS) and would conform to open systems architecture as accepted by the Department of Defense. ORNL has assisted PM-AIM in the development of technology ideas for the PMIS workstation concept. This paper represents the compilation of information gained during this process. This information is presented as a body of knowledge (or knowledge domain) defining the complex technology of microcomputing. The concept of systems integration or tying together all hardware and software components reflects the nature of PM-AIM`s task in attempting to field a PMIS or AIM workstation.
Dynamic Interactions of PV units in Low Volatge Distribution Systems
Pota, Himanshu Roy
Dynamic Interactions of PV units in Low Volatge Distribution Systems M. J. Hossain, J. Lu Griffith. Abstract--Photovoltaic (PV) units along with other distributed energy resources (DERs) are located close, robust control, stability. I. Introduction The integration level of PV units in low and medium voltage
Roadmap Query for Sensor Network Assisted Navigation in Dynamic Environments
Lu, Chenyang
Roadmap Query for Sensor Network Assisted Navigation in Dynamic Environments Sangeeta Bhattacharya approach that integrates a roadmap based navigation algorithm with a novel WSN query protocol called Roadmap Query (RQ). RQ enables collection of frequent, up-to- date information about the surrounding
MINERvA Collaboration; J. Wolcott; O. Altinok; L. Bellantoni; A. Bercellie; M. Betancourt; A. Bodek; A. Bravar; H. Budd; M. F. Carneiro; J. Chvojka; H. da Motta; J. Devan; S. A. Dytman; G. A. Diaz; B. Eberly; J. Felix; L. Fields; R. Fine; R. Galindo; H. Gallagher; A. Ghosh; T. Golan; R. Gran; D. A. Harris; A. Higuera; M. Kiveni; J. Kleykamp; M. Kordosky; T. Le; E. Maher; S. Manly; W. A. Mann; C. M. Marshall; D. A. Martinez Caicedo; K. S. McFarland; C. L. McGivern; A. M. McGowan; B. Messerly; J. Miller; A. Mislivec; J. G. Morfin; J. Mousseau; T. Muhlbeier; D. Naples; J. K. Nelson; A. Norrick; J. Osta; V. Paolone; J. Park; C. E. Patrick; G. N. Perdue; L. Rakotondravohitra; R. D. Ransome; H. Ray; L. Ren; D. Rimal; P. A. Rodrigues; D. Ruterbories; H. Schellman; D. W. Schmitz; C. J. Solano Salinas; N. Tagg; B. G. Tice; E. Valencia; T. Walton; M. Wospakrik; G. Zavala; D. Zhang; B. P. Ziemer
2015-11-09
The first direct measurement of electron-neutrino quasielastic and quasielastic-like scattering on hydrocarbon in the few-GeV region of incident neutrino energy has been carried out using the MINERvA detector in the NuMI beam at Fermilab. The flux-integrated differential cross sections in electron production angle, electron energy and $Q^{2}$ are presented. The ratio of the quasielastic, flux-integrated differential cross section in $Q^{2}$ for $\
Tchernev, Dimiter I. (9 Woodman Rd., Chestnut Hill, MA 02167)
1985-01-01
A solar collector having a copper panel in a contiguous space relationship with a condenser-evaporator heat exchanger located under the panel, the panel having a honeycomb-like structure on its interior defining individual cells which are filled with zeolite loaded, in its adsorbed condition, with 18 to 20% by weight of water. The interior of the panel and heat exchanger are maintained at subatmospheric pressure of about 0.1 to 1 psia. The panel and heat exchanger are insulated on their lateral sides and bottoms and on the top of the heat exchange. The panel has a black coating on its top which is exposed to and absorbs solar energy. Surrounding the insulation (which supports the panel) is an extruded aluminum framework which supports a pair of spaced-apart glass panels above the solar panel. Water in conduits from a system for heating or cooling or both is connected to flow into an inlet and discharge from outlet of a finned coil received within the heat exchanger. The collector panel provides heat during the day through desorption and condensing of water vapor from the heated solar panel in the heat exchanger and cools at night by the re-adsorption of the water vapor from the heat exchanger which lowers the absolute pressure within the system and cools the heat exchange coils by evaporation.
Butcher, Eric A.
2005-01-01
coefficients such as the dynamics of rotating systems, like helicopter blades, asymmetric rotor-bearing systems and structures subjected to periodic loadings, etc. For the purpose of modal analysis, control and model test
Effects of Supplemental Food on Population Dynamics of Cotton Rats, Sigmodon Hispidus
Doonan, Terry J.; Slade, Norman A.
1995-04-01
Variation in resource abundance affects population dynamics by altering demographic processes and interactions among individuals in the population. For small mammals, food is likely to be a critical resource. Population ...
Brownian Dynamics Simulation of Protein Solutions: Structural and Dynamical Properties
Mereghetti, Paolo; Gabdoulline, Razif; Wade, Rebecca C.
2010-12-01
The study of solutions of biomacromolecules provides an important basis for understanding the behavior of many fundamental cellular processes, such as protein folding, self-assembly, biochemical reactions, and signal transduction. Here, we describe a Brownian dynamics simulation procedure and its validation for the study of the dynamic and structural properties of protein solutions. In the model used, the proteins are treated as atomically detailed rigid bodies moving in a continuum solvent. The protein-protein interaction forces are described by the sum of electrostatic interaction, electrostatic desolvation, nonpolar desolvation, and soft-core repulsion terms. The linearized Poisson-Boltzmann equation is solved to compute electrostatic terms. Simulations of homogeneous solutions of three different proteins with varying concentrations, pH, and ionic strength were performed. The results were compared to experimental data and theoretical values in terms of long-time self-diffusion coefficients, second virial coefficients, and structure factors. The results agree with the experimental trends and, in many cases, experimental values are reproduced quantitatively. There are no parameters specific to certain protein types in the interaction model, and hence the model should be applicable to the simulation of the behavior of mixtures of macromolecules in cell-like crowded environments.
Dynamic Event Tree Analysis Through RAVEN
A. Alfonsi; C. Rabiti; D. Mandelli; J. Cogliati; R. A. Kinoshita; A. Naviglio
2013-09-01
Conventional Event-Tree (ET) based methodologies are extensively used as tools to perform reliability and safety assessment of complex and critical engineering systems. One of the disadvantages of these methods is that timing/sequencing of events and system dynamics is not explicitly accounted for in the analysis. In order to overcome these limitations several techniques, also know as Dynamic Probabilistic Risk Assessment (D-PRA), have been developed. Monte-Carlo (MC) and Dynamic Event Tree (DET) are two of the most widely used D-PRA methodologies to perform safety assessment of Nuclear Power Plants (NPP). In the past two years, the Idaho National Laboratory (INL) has developed its own tool to perform Dynamic PRA: RAVEN (Reactor Analysis and Virtual control ENvironment). RAVEN has been designed in a high modular and pluggable way in order to enable easy integration of different programming languages (i.e., C++, Python) and coupling with other application including the ones based on the MOOSE framework, developed by INL as well. RAVEN performs two main tasks: 1) control logic driver for the new Thermo-Hydraulic code RELAP-7 and 2) post-processing tool. In the first task, RAVEN acts as a deterministic controller in which the set of control logic laws (user defined) monitors the RELAP-7 simulation and controls the activation of specific systems. Moreover, RAVEN also models stochastic events, such as components failures, and performs uncertainty quantification. Such stochastic modeling is employed by using both MC and DET algorithms. In the second task, RAVEN processes the large amount of data generated by RELAP-7 using data-mining based algorithms. This paper focuses on the first task and shows how it is possible to perform the analysis of dynamic stochastic systems using the newly developed RAVEN DET capability. As an example, the Dynamic PRA analysis, using Dynamic Event Tree, of a simplified pressurized water reactor for a Station Black-Out scenario is presented.
Quantum diffusion dynamics in nonlinear systems: A modified kicked-rotor model
Gong Jiangbin [Department of Physics and Centre of Computational Science and Engineering, National University of Singapore, 117542 (Singapore); Wang Jiao [Temasek Laboratories and Beijing-Hong Kong-Singapore Joint Center for Nonlinear and Complex Systems (Singapore), National University of Singapore, 117542 (Singapore)
2007-09-15
Using a simple method analogous to a quantum rephasing technique, a simple modification to a paradigm of classical and quantum chaos is proposed. The interesting quantum maps thus obtained display remarkably rich quantum dynamics. Emphasis is placed on the destruction of dynamical localization without breaking periodicity, unbounded quantum anomalous diffusion in integrable systems, and transient dynamical localization. Experimental realizations of this work are also discussed.
Al Hanbali, Ahmad
differential equations bound together by integral transport laws. In particular, we show that this parcel formulation is the simplification of various calculations, in particular the derivation of the continuum the Hamiltonian dynamics of fluid parcels and the Hamiltonian system of partial differential equations. The parcel
Diana K. Grauer; Michael E. Reed
2011-11-01
This paper presents an investigation into integrated wind + combustion engine high penetration electrical generation systems. Renewable generation systems are now a reality of electrical transmission. Unfortunately, many of these renewable energy supplies are stochastic and highly dynamic. Conversely, the existing national grid has been designed for steady state operation. The research team has developed an algorithm to investigate the feasibility and relative capability of a reciprocating internal combustion engine to directly integrate with wind generation in a tightly coupled Hybrid Energy System. Utilizing the Idaho National Laboratory developed Phoenix Model Integration Platform, the research team has coupled demand data with wind turbine generation data and the Aspen Custom Modeler reciprocating engine electrical generator model to investigate the capability of reciprocating engine electrical generation to balance stochastic renewable energy.
On the Dynamical Origin of Bias in Clusters of Galaxies
S. Colafrancesco; V. Antonuccio-Delogu; A. Del Popolo
1994-10-29
We study the effect of the dynamical friction induced by the presence of substructure on the statistics of the collapse of density peaks. Applying the results of a former paper we show that within high density environments, like rich clusters of galaxies, the collapse of smaller peaks is strongly delayed until very late epochs. A bias of dynamical nature thus naturally arises because high density peaks preferentially collapse For a standard CDM model we find that this dynamical bias can account for a substantial part of the total bias required by observations on cluster scales.
Reaction Dynamics and Spectroscopy of Hydrocarbons in Plasma
Braams, Bastiaan J.
2014-03-24
This grant supported research in theoretical and computational Chemical Physics that resulted in numerous publications on fitting ab initio potential energy surfaces and dipole moment surfaces of polyatomic molecules and cations. This work made use of novel fitting methods that ensures that these surfaces are invariant with respect to all permutations of like atoms. The surfaces were used in various dynamics calculations, ranging from quantum vibrational dynamics to(quasi)classical trajectory calculations of reaction dynamics. A number of these studies were done in collaboration with experimental groups where the theoretical analyses turned out to be essential to give a proper understanding of the experimental results.
The Hidden Flat Like Universe: Starobinsky-like inflation induced by f(T) gravity
W. El Hanafy; G. G. L. Nashed
2015-06-02
We study a single fluid component in a flat like universe (FLU) governed by $f(T)$ gravity theories, where $T$ is the teleparallel torsion scalar. The FLU model, regardless the value of the spatial curvature $k$, identifies a special class of $f(T)$ gravity theories. Remarkably, the FLU $f(T)$ gravity does not reduce to teleparallel gravity theory. In large Hubble spacetime the theory is consistent with the inflationary universe scenario and respects the conservation principle. The equation of state (EoS) evolves similarly in all models $k=0, \\pm 1$. We study the case when the torsion tensor is made of a scalar field, which enables to derive a quintessence potential from the obtained $f(T)$ gravity theory. The potential produces Starobinsky-like model naturally without using a conformal transformation, with higher orders continuously interpolate between Starobinsky and quadratic inflation models. The slow-roll analysis shows double solutions so that for a single value of the scalar tilt (spectral index) $n_{s}$ the theory can predict double tensor-to-scalar ratios $r$ of $E$-mode and $B$-mode polarizations.
Hidden Symmetries of Dynamics in Classical and Quantum Physics
Marco Cariglia
2014-11-05
This article reviews the role of hidden symmetries of dynamics in the study of physical systems, from the basic concepts of symmetries in phase space to the forefront of current research. Such symmetries emerge naturally in the description of physical systems as varied as non-relativistic, relativistic, with or without gravity, classical or quantum, and are related to the existence of conserved quantities of the dynamics and integrability. In recent years their study has grown intensively, due to the discovery of non-trivial examples that apply to different types of theories and different numbers of dimensions. Applications encompass the study of integrable systems such as spinning tops, the Calogero model, systems described by the Lax equation, the physics of higher dimensional black holes, the Dirac equation, supergravity with and without fluxes, providing a tool to probe the dynamics of non-linear systems.
Path integral derivations of novel complex trajectory methods
Jeremy Schiff; Yair Goldfarb; David J. Tannor
2008-07-30
Path integral derivations are presented for two recently developed complex trajectory techniques for the propagation of wave packets, Complex WKB and BOMCA. Complex WKB is derived using a standard saddle point approximation of the path integral, but taking into account the hbar dependence of both the amplitude and the phase of the intial wave function, thus giving rise to the need for complex classical trajectories. BOMCA is derived using a modification of the saddle point technique, in which the path integral is approximated by expanding around a near-classical path, chosen so that up to some predetermined order there is no need to add any correction terms to the leading order approximation. Both Complex WKB and BOMCA give the same leading order approximation; in Complex WKB higher accuracy is achieved by adding correction terms, while in BOMCA no additional terms are ever added -higher accuracy is achieved by changing the path along which the original approximation is computed. The path integral derivation of the methods explains the need to incorporate contributions from more than one trajectory, as observed in previous numerical work. On the other hand, it emerges that the methods provide efficient schemes for computing the higher order terms in the asymptotic evaluation of path integrals. The understanding we develop of BOMCA suggests that there should exist near-classical trajectories that give exact quantum dynamical results when used in the computation of the path integral keeping just the leading order term. We also apply our path integral techniques to give a compact derivation of the semiclassical approximation to the coherent state propagator.
A Grassmann integral equation K. Scharnhorst a)
Scharnhorst, Klaus
A Grassmann integral equation K. Scharnhorst a) HumboldtÂUniversita Ë? t zu Berlin, Institut fu Ë? r Grassmann integral equation in analogy to integral equations studied in real analysis. A Grassmann integral equation is an equation which involves Grassmann #Berezin# integrations and which is to be obeyed
A Grassmann integral equation K. Scharnhorsta)
Scharnhorst, Klaus
A Grassmann integral equation K. Scharnhorsta) Humboldt-UniversitaÂ¨t zu Berlin, Institut fu Grassmann integral equation in analogy to integral equations studied in real analysis. A Grassmann integral equation is an equation which involves Grassmann Berezin integrations and which is to be obeyed
Structural Evaluation by Generalized Integral Property
International Association for Cryptologic Research (IACR)
Structural Evaluation by Generalized Integral Property Yosuke Todo NTT Secure Platform Laboratories cryptanalyses are distinguishing attacks by an improved integral distinguisher. The integral distinguisher the propagation characteristic of integral properties, e.g., the ALL or BALANCE property. However, the integral
MSc Integrated Petroleum Geoscience Programme Handbook
Neri, Peter
MSc Integrated Petroleum Geoscience Programme Handbook 2013-14 edition #12;Page 2 Contents Preface 3 1.MSc Integrated Petroleum Geoscience FAQ 4 1.1 Why should I do this programme? 4 1.2 What Integrated Petroleum Geoscience: 57F610B1 PgDip Integrated Petroleum Geoscience: 61F610VX PgCert Integrated
Search for new physics in high pT like-sign dilepton events at CDF II
DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)
Aaltonen, T.
2011-10-25
We present a search for new physics in events with two high pT leptons of the same electric charge, using data with an integrated luminosity of 6.1 fb-1. The observed data are consistent with standard model predictions. We set 95% C.L. lower limits on the mass of doubly-charged scalars decaying to like-sign dileptons, mH±± > 190 - 245 GeV/c2, depending on the decay mode and coupling.
Chinese Magic in Loop Integrals
B. F. L. Ward
2011-06-02
We present an approach to higher point loop integrals using Chinese magic in the virtual loop integration variable. We show, using the five point function in the important e^+e^-\\to f\\bar{f}+\\gamma process for ISR as a pedagogical vehicle, that we get an expression for it directly reduced to one scalar 5-point function and 4-, 3-, and 2- point integrals, thereby avoiding the computation of the usual three tensor 5-pt Passarino-Veltman reduction. We argue that this offers potential for greater numerical stability.
A Relativistic Dynamical Collapse Model
Philip Pearle
2014-12-21
A model is discussed where all operators are constructed from a quantum scalar field whose energy spectrum takes on all real values. The Schr\\"odinger picture wave function depends upon space and time coordinates for each particle, as well as an inexorably increasing evolution parameter $s$ which labels a foliation of space-like hypersurfaces. The model is constructed to be manifestly Lorentz invariant in the interaction picture. Free particle states and interactions are discussed in this framework. Then, the formalism of the CSL (Continuous Spontaneous Localization) theory of dynamical collapse is applied. The collapse-generating operator is chosen to to be the particle number space-time density. Unlike previous relativistically invariant models, the vacuum state is not excited. The collapse dynamics depends upon two parameters, a parameter $\\Lambda$ which represents the collapse rate/volume and a scale factor $\\ell$. A common example of collapse dynamics, involving a clump of matter in a superposition of two locations, is analyzed. The collapse rate is shown to be identical to that of non-relativistic CSL when the GRW-CSL choice of $\\ell=a=10^{-5}$cm, is made, along with $\\Lambda=\\lambda/a^{3}$ (GRW-CSL choice $\\lambda=10^{-16}s^{-1}$). However, it is also shown that the change of mass of a nucleon over the age of the universe is then unacceptably large. The case where $\\ell$ is the size of the universe is then considered. It is shown that the collapse behavior is satisfactory and the change of mass over the age of the universe is acceptably small, when $\\Lambda= \\lambda/\\ell a^{2}$.
Dynamical principles in neuroscience
Rabinovich, Mikhail I.; Varona, Pablo; Selverston, Allen I.; Abarbanel, Henry D. I.
2006-10-15
Dynamical modeling of neural systems and brain functions has a history of success over the last half century. This includes, for example, the explanation and prediction of some features of neural rhythmic behaviors. Many interesting dynamical models of learning and memory based on physiological experiments have been suggested over the last two decades. Dynamical models even of consciousness now exist. Usually these models and results are based on traditional approaches and paradigms of nonlinear dynamics including dynamical chaos. Neural systems are, however, an unusual subject for nonlinear dynamics for several reasons: (i) Even the simplest neural network, with only a few neurons and synaptic connections, has an enormous number of variables and control parameters. These make neural systems adaptive and flexible, and are critical to their biological function. (ii) In contrast to traditional physical systems described by well-known basic principles, first principles governing the dynamics of neural systems are unknown. (iii) Many different neural systems exhibit similar dynamics despite having different architectures and different levels of complexity. (iv) The network architecture and connection strengths are usually not known in detail and therefore the dynamical analysis must, in some sense, be probabilistic. (v) Since nervous systems are able to organize behavior based on sensory inputs, the dynamical modeling of these systems has to explain the transformation of temporal information into combinatorial or combinatorial-temporal codes, and vice versa, for memory and recognition. In this review these problems are discussed in the context of addressing the stimulating questions: What can neuroscience learn from nonlinear dynamics, and what can nonlinear dynamics learn from neuroscience?.
Lee, Ian
2012-01-01
SANTA CRUZ DYNAMIC INSTRUCTION FUSION A thesis submitted in4 2.2 Instruction Fusion & Complex10 3.1 Fusion Selection
David Merritt
1998-11-06
A review of elliptical galaxy dynamics, with a focus on nonintegrable models. Topics covered include torus construction; modelling axisymmetric galaxies; triaxiality; collisionless relaxation; and collective instabilities.
A Universal Magnetic Helicity Integral
Gunnar Hornig
2006-06-28
A magnetic helicity integral is proposed which can be applied to domains which are not magnetically closed, i.e. have a non-vanishing normal component of the magnetic field on the boundary. In contrast to the relative helicity integral, which was previously suggested for magnetically open domains, it does not rely on a reference field and thus avoids all problems related to the choice of a particular reference field. Instead it uses a gauge condition on the vector potential, which corresponds to a particular topologically unique closure of the magnetic field in the external space. The integral has additional elegant properties and is easy to compute numerically in practice. For magnetically closed domains it reduces to the classical helicity integral.
Optical waveguides for microfluidic integration
Ram, Rajeev J.
A scalable polymer backplane for dense integration of photonics with lab-on-a-chip systems is presented. A high-throughput cell culture chip employing waveguides for monitoring and control of culture conditions is used to ...
BPA Wind Integration Team Update
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
BPA Wind Integration Team Update Customer Supplied Generation Imbalance (CSGI) Pilot Transmission Services Customer Forum 29 July 28, 2010 B O N N E V I L L E P O W E R A D M I N...
Demonstration of integrated optimization software
NONE
2008-01-01
NeuCO has designed and demonstrated the integration of five system control modules using its proprietary ProcessLink{reg_sign} technology of neural networks, advanced algorithms and fuzzy logic to maximize performance of coal-fired plants. The separate modules control cyclone combustion, sootblowing, SCR operations, performance and equipment maintenance. ProcessLink{reg_sign} provides overall plant-level integration of controls responsive to plant operator and corporate criteria. Benefits of an integrated approach include NOx reduction improvement in heat rate, availability, efficiency and reliability; extension of SCR catalyst life; and reduced consumption of ammonia. All translate into cost savings. As plant complexity increases through retrofit, repowering or other plant modifications, this integrated process optimization approach will be an important tool for plant operators. 1 fig., 1 photo.
Microfluidic Systems Integrated Microfluidic Systems**
Ismagilov, Rustem F.
Microfluidic Systems Integrated Microfluidic Systems** Rustem F. Ismagilov* Keywords: analytical methods · enzymes · microfluidics · microreactors · protein structures Microfluidic systems use networks of channels thinner than a human hair to manipulate nanoliter volumes of re- agents. The goal of microfluidics
Integrated Safety Management System Manual
Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]
2006-11-01
This manual provides requirements and guidance for DOE and contractors to ensure development and implementation of an effective Integrated Safety Management system that is periodically reviewed and continuously improved. Canceled by DOE O 450.2.
Nebraska Statewide Wind Integration Study
none,
2010-03-01
This study of wind energy integration in Nebraska was conducted at the request of the Nebraska Power Association. Executive summary can be found here: http://www.nrel.gov/docs/fy10osti/47285.pdf
Analysis of Integrated Tropical Biorefineries
the integration of an anaerobic digester into each biochemical platform technology. The combustion of biogas not rely on biogas combustion to be thermally self- sufficient. However, their output of excess electricity
A survey of integral ?-helical membrane proteins
2009-01-01
opti- mum eukaryotic integral membrane proteins forLarge-scale identi?cation of yeast integral membrane protein009-9069-8 A survey of integral a-helical membrane proteins
Higher order integral stark-type conjectures
Emmons, Caleb J.
2006-01-01
D . Popescu. Rubin's integral refinement of the abelianS A N DIEGO Higher Order Integral Stark-Type Conjectures ADISSERTATION Higher Order Integral Stark-Type Conjectures by
Elliptic integral evaluations of Bessel moments
Bailey, David H.; Borwein, Jonathan M.; Broadhurst, David; Glasser, M.L.
2008-01-01
Bailey, “Some in?nite integrals involving Bessel functions,”Bailey, “Some in?nite integrals involving Bessel functions (G.N. Watson, “Three triple integrals,” Q. J. Math. (Oxford),
Limpasuvan, Varavut
Nighttime secondary ozone layer during major stratospheric sudden warmings in specified to the thermosphere. Currently, the role of atmospheric dynamics on polar ozone in the mesosphere-lower thermosphere "secondary" (90105 km) ozone maximum by examining the dynamics and distribution of key species (like H and O
Obradovic, Zoran
Towards understanding dominant processes in complex dynamical systems: Case of precipitation.obradovic@temple.edu ABSTRACT Complex dynamical systems like precipitation extremes under climate variability or change to characterize the effect of dominant processes on precipitation extremes, annually and seasonally, and from
Water-Like Properties of Soft Nanoparticle Suspensions | Advanced...
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
| 2004 | 2003 | 2002 2001 | 2000 | 1998 | Subscribe to APS Science Highlights rss feed Water-Like Properties of Soft Nanoparticle Suspensions November 25, 2013 Bookmark and Share...
Chaotic physics in ferroelectrics hints at brain-like computing...
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Morgan McCorkle Oak Ridge National Laboratory 865-574-7308 Chaotic physics in ferroelectrics hints at brain-like computing Unexpected behavior in ferroelectric materials explored...
Cost-Effectiveness Tests and Measuring Like a Utility | Department...
Broader source: Energy.gov (indexed) [DOE]
Data and Evaluation Peer Exchange Call Series: Cost-Effectiveness Tests and Measuring Like a Utility, April 10, 2014. Call Slides and Discussion Summary More Documents &...
Hydrodynamic interactions in metal rod-like particle suspensions...
Office of Scientific and Technical Information (OSTI)
Journal Article: Hydrodynamic interactions in metal rod-like particle suspensions due to induced charge electroosmosis Citation Details In-Document Search Title: Hydrodynamic...
The domain of the Fourier integral
V. N. Tibabishev
2011-02-19
We consider the problem of determining the Fourier integral in the Hilbert space of square integrable functions. Fourier integral is the scalar product of two functions belonging to the Hilbert space of square integrable functions and the Hilbert space of almost periodic functions. Scalar product for different Hilbert spaces defined at the intersection of these spaces, which contains only one zero element. Therefore, the Fourier integral is not defined in the Hilbert space of square integrable functions with nonzero norm.
SIMULATING MARKET TRANSFORMATION DYNAMICS USING A HYBRID ENERGY ECONOMY MODEL
ii SIMULATING MARKET TRANSFORMATION DYNAMICS USING A HYBRID ENERGY ECONOMY MODEL: A LOOK the likely effects of alternative policies, potential adoption rates of clean technologies, and costs to society in the long run. My goal was to use a "hybrid" energy economy model (CIMS), which combines
Microbial Dynamics and Control in Shale Gas Production Jason Gaspar,
Alvarez, Pedro J.
Microbial Dynamics and Control in Shale Gas Production Jason Gaspar, Jacques Mathieu, Yu Yang, Ross effects in shale gas production, such as reservoir souring, plugging, equipment corrosion, and a decrease fluids, drilling mud, and impoundment water likely introduce deleterious microorganisms into shale gas
Network Dynamics of City Sizes, Trade Networks, and Conflict
White, Douglas R.
Network Dynamics of City Sizes, Trade Networks, and Conflict Doug White In collaboration world, scale-free but they are not going to get us where we need to go What are the possibilites: city size hierarchies and how they are likely to be driven by trade networks Network realism
Double Integrals: GENERAL REGION The main difficulty in evaluating a double integral
Knopf, Dan
Double Integrals: GENERAL REGION The main difficulty in evaluating a double integral was being able to compute the single variable integrals that arose because the double integral could written as repeated single variable integrals and either choice of order of integration used. So we could always choose
Arpino, James A. J. [Cardiff University, Park Place, Cardiff CF10 3AT Wales (United Kingdom); Rizkallah, Pierre J., E-mail: rizkallahp@cardiff.ac.uk [Cardiff University, Heath Park, Cardiff CF14 4XN Wales (United Kingdom); Jones, D. Dafydd, E-mail: rizkallahp@cardiff.ac.uk [Cardiff University, Park Place, Cardiff CF10 3AT Wales (United Kingdom)
2014-08-01
The beneficial engineered single-amino-acid deletion variants EGFP{sup D190?} and EGFP{sup A227?} have been studied. Single-amino-acid deletions are a common part of the natural evolutionary landscape but are rarely sampled during protein engineering owing to limited and prejudiced molecular understanding of mutations that shorten the protein backbone. Single-amino-acid deletion variants of enhanced green fluorescent protein (EGFP) have been identified by directed evolution with the beneficial effect of imparting increased cellular fluorescence. Biophysical characterization revealed that increased functional protein production and not changes to the fluorescence parameters was the mechanism that was likely to be responsible. The structure EGFP{sup D190?} containing a deletion within a loop revealed propagated changes only after the deleted residue. The structure of EGFP{sup A227?} revealed that a ‘flipping’ mechanism was used to adjust for residue deletion at the end of a ?-strand, with amino acids C-terminal to the deletion site repositioning to take the place of the deleted amino acid. In both variants new networks of short-range and long-range interactions are generated while maintaining the integrity of the hydrophobic core. Both deletion variants also displayed significant local and long-range changes in dynamics, as evident by changes in B factors compared with EGFP. Rather than being detrimental, deletion mutations can introduce beneficial structural effects through altering core protein properties, folding and dynamics, as well as function.
A Blueprint for Urban Sustainability: Integrating Sustainable...
Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site
A Blueprint for Urban Sustainability: Integrating Sustainable Energy Practices into Metropolitan Planning, May 2004 A Blueprint for Urban Sustainability: Integrating Sustainable...
INTEGRATED SYSTEMS NANOFABRICATION CLEANROOM NEW USER APPLICATION
Jalali. Bahram
INTEGRATED SYSTEMS NANOFABRICATION CLEANROOM NEW USER APPLICATION interest in using the CNSI Integrated Systems Nanofabrication Cleanroom (ISNC). We ask you to carefully
Developing Integrated National Design Standards for Offshore...
Developing Integrated National Design Standards for Offshore Wind Plants Developing Integrated National Design Standards for Offshore Wind Plants January 6, 2014 - 10:00am Addthis...
Power Electronic Thermal System Performance and Integration ...
Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site
May 18-22, 2009 -- Washington D.C. ape13bennion.pdf More Documents & Publications Power Electronic Thermal System Performance and Integration Integrated Power Module...
Integrated Computational Materials Engineering (ICME) for Mg...
Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site
lm012li2011o.pdf More Documents & Publications Integrated Computational Materials Engineering (ICME) for Mg: International Pilot Project Integrated Computational Materials...
Integrated Computational Materials Engineering (ICME) for Mg...
Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site
lm012li2012o.pdf More Documents & Publications Integrated Computational Materials Engineering (ICME) for Mg: International Pilot Project Integrated Computational Materials...
Tank Waste System Integrated Project Team
Office of Environmental Management (EM)
to protect human health, the environment and national security are maintained. Tank Waste System Tank Waste System Integrated Project Team Integrated Project Team Steve...
Webinar: Potential Strategies for Integrating Solar Hydrogen...
Office of Environmental Management (EM)
Potential Strategies for Integrating Solar Hydrogen Production and Concentrating Solar Power: A Systems Analysis Webinar: Potential Strategies for Integrating Solar Hydrogen...
Opening Remarks, Grid Integration Initiative Overview
Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site
Loads Power Systems Integration Lab PV and Grid Simulators Energy Systems Integration Lab Fuel Cells, Electrolyzers Outdoor Test Area EVs, MV equipment Rooftop PV & Wind Energy...
Integrating Information, Science, and Technology for Prediction
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Integrating Information, Science, and Technology for Prediction Integrating Information, Science, and Technology for Prediction (IS&T) The Lab's four Science Pillars harness...
Economy Through Product Diversity: Integrated Biorefineries ...
Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site
Economy Through Product Diversity: Integrated Biorefineries Economy Through Product Diversity: Integrated Biorefineries Achieving national energy and climate goals will require an...
Distributed Energy Systems Integration Group (Fact Sheet)
Not Available
2009-10-01
Factsheet developed to describe the activites of the Distributed Energy Systems Integration Group within NREL's Electricity, Resources, and Buildings Systems Integration center.
Si-CMOS-Like Integration of AlGaN/GaN Dielectric-Gated High-Electron-Mobility Transistors
Johnson, Derek Wade
2014-07-31
production is projected to consume ~100,000 wafers per year by 2015 (Yole Development, “Power GaN – 2012 Edition”), this manufacturing breakthrough represents potential savings of ~$17 million per year....
Exact Path-Integral Representations for the $T$-Matrix in Nonrelativistic Potential Scattering
R. Rosenfelder
2011-03-24
Several path integral representations for the $T$-matrix in nonrelativistic potential scattering are given which produce the complete Born series when expanded to all orders and the eikonal approximation if the quantum fluctuations are suppressed. They are obtained with the help of "phantom" degrees of freedom which take away explicit phases that diverge for asymptotic times. Energy conservation is enforced by imposing a Faddeev-Popov-like constraint in the velocity path integral. An attempt is made to evaluate stochastically the real-time path integral for potential scattering and generalizations to relativistic scattering are discussed.
Electromagnetic Wave Dynamics in
Kaiser, Robin
Mesoscopic Electromagnetic Wave Dynamics in Ultracold Atomic Gases Robin Kaiser and Mark D. Havey Mesoscopic Electromagnetic Wave Dynamics in Ultracold Atomic Gases #12;39 E xperimental developments permit in the transport proper- ties of electromagnetic radiation in strongly scattering random media. Even in weakly
Integral Bases for the Universal Enveloping Algebras of Map Algebras
Chamberlin, Samuel Herron
2011-01-01
2.2 An Integral Formand Integral Basis . . . . . . . . . . . . .Loop Algebra 2 Integral Bases for the Map Algebras 2.1
Frame independence of the inhomogeneous mixmaster chaos via Misner-Chitre-like variables
Benini, Riccardo [Dipartimento di Fisica, Universita di Bologna and INFN, Sezione di Bologna, via Irnerio 46, 40126 Bologna (Italy); Montani, Giovanni [Dipartimento di Fisica, Universita di Roma 'La Sapienza', Piazza Aldo Moro, 5 00185 Rome (Italy); ICRA-International Center for Relativistic Astrophysics, c/o Dipartimento di Fisica (G9), Universita di Roma 'La Sapienza', Piazza Aldo Moro, 5 00185 Rome (Italy)
2004-11-15
We outline the covariant nature, with respect to the choice of a reference frame, of the chaos characterizing the generic cosmological solution near the initial singularity, i.e., the so-called inhomogeneous mixmaster model. Our analysis is based on a gauge independent Arnowitt-Deser-Misner reduction of the dynamics to the physical degrees of freedom. The resulting picture shows how the inhomogeneous mixmaster model is isomorphic point by point in space to a billiard on a Lobachevsky plane. Indeed, the existence of an asymptotic (energylike) constant of the motion allows one to construct the Jacobi metric associated with the geodesic flow and to calculate a nonzero Lyapunov exponent in each space point. The chaos covariance emerges from the independence of our scheme with respect to the form of the lapse function and the shift vector; the origin of this result relies on the dynamical decoupling of the space points which takes place near the singularity, due to the asymptotic approach of the potential term to infinite walls. At the ground of the obtained dynamical scheme is the choice of Misner-Chitre-like variables which allows one to fix the billiard potential walls.
. The generator and governor dynamics are considered in the simulation process. An index proposed earlier has been like generators hitting field current or reactive limits, tap changer limits, switchable shunt flow [13]. This indicator has been developed considering generator voltages as constant both
K-Shell Photoionization of B-like Oxygen (O$^{3+}$) Ions: Experiment and Theory
McLaughlin, B M; Cubaynes, D; Shorman, M M Al; Guilbaud, S; Sakho, I; Blancard, C; Gharaibeh, M F
2014-01-01
Absolute cross sections for the {\\it K}-shell photoionization of boron-like (B-like) O$^{3+}$ ions were measured by employing the ion-photon merged-beam technique at the SOLEIL synchrotron-radiation facility in Saint-Aubin, France. High-resolution spectroscopy with E/$\\Delta$E $\\approx$ 5000 ($\\approx$ 110 meV, FWHM) was achieved with photon energy from 540 eV up to 600 eV. Several theoretical approaches, including R-Matrix, Multi-Configuration Dirac-Fock and Screening Constant by Unit Nuclear Charge were used to identify and characterize the strong 1s $\\rightarrow$ 2p and the weaker 1s $\\rightarrow$ 3p resonances observed in the {\\it K}-shell spectra of this ion. The trend of the integrated oscillator strength and autoionisation width (natural line width) of the strong $\\rm 1s \\rightarrow 2p$ resonances along the first few ions of the B-like sequence is discussed.
Gautam, Natarajan
Integrating Virtualization, Speed Scaling and Powering On/Off Servers in Data Centers for Energy approach where virtualization, dynamic voltage/frequency scaling and powering off servers are done] and for their growth alone 10 new power plants would be needed by 2013 [27]. Corresponding Author: gautam@tamu.edu 1
Lie Group Integrators for Animation and Control of Vehicles Marin Kobilarov Keenan Crane
Grinspun, Eitan
dynamics such as helicopters, boats, and cars. Moti- vated by recent developments in discrete geometric environment, such as a car, helicopter, or boat. While vehicles constitute a highly visible component for all sorts of vehicles, including cars, boats, and helicopters. These Lie group-based integrators
Integrated proteomic and transcriptomic profiling of mouse lung development and Nmyc target genes
Frey, Brendan J.
Integrated proteomic and transcriptomic profiling of mouse lung development and Nmyc target genes provided information regarding the dynamics of gene expression during development of the mouse lung a global survey of protein expression during mouse lung organogenesis from embryonic day E13.5 until
Doctoral Defense "Big Data for Urban Sustainability:Integrating Human Mobility
Eustice, Ryan
Doctoral Defense "Big Data for Urban Sustainability:Integrating Human Mobility Dynamics data, neglecting the individual heterogeneity. Individual travel patterns affect charging behavior to be taken into account in environmental assessments. Using vehicle trajectory data of over 10,000 taxis