Agarwal, Animesh
2015-01-01T23:59:59.000Z
Quantum effects due to the spatial delocalization of light atoms are treated in molecular simulation via the path integral technique. Among several methods, Path Integral (PI) Molecular Dynamics (MD) is nowadays a powerful tool to investigate properties induced by spatial delocalization of atoms; however computationally this technique is very demanding. The abovementioned limitation implies the restriction of PIMD applications to relatively small systems and short time scales. One possible solution to overcome size and time limitation is to introduce PIMD algorithms into the Adaptive Resolution Simulation Scheme (AdResS). AdResS requires a relatively small region treated at path integral level and embeds it into a large molecular reservoir consisting of generic spherical coarse grained molecules. It was previously shown that the realization of the idea above, at a simple level, produced reasonable results for toy systems or simple/test systems like liquid parahydrogen. Encouraged by previous results, in this ...
Surface Plasmon Resonance-like integrated sensor at terahertz
Skorobogatiy, Maksim
Surface Plasmon Resonance-like integrated sensor at terahertz frequencies for gaseous analytes“ebec H3C3A7, Canada Abstract: Plasmon-like excitation at the interface between fully polymeric fiber sensor and gaseous analyte is demonstrated theoretically in terahertz regime. Such plasmonic excitation
Structure and Dynamics of Earth-like Planets
Structure and Dynamics of Earth-like Planets Jeudi 20 et vendredi 21 novembre 2014. Amphithéātre Antonangeli, UPMC, Paris 10h50 Coffee Break 11h20 Structure and Dynamics of the Interior of Mercury: What we 09h40 Moon Internal Structure from Apollo Seismic Data: a Corner Stone for Planetary Seismology
Nonclassical polarization dynamics in classical-like states
Alfredo Luis; Angel S. Sanz
2014-12-23T23:59:59.000Z
Quantum polarization is investigated by means of a trajectory picture based on the Bohmian formulation of quantum mechanics. Relevant examples of classical-like two-mode field states are thus examined, namely Glauber and SU(2) coherent states. Although these states are often regarded as classical, the analysis here shows that the corresponding electric-field polarization trajectories display topologies very different from those expected from classical electrodynamics. Rather than incompatibility with the usual classical model, this result demonstrates the dynamical richness of quantum motions, determined by local variations of the system quantum phase in the corresponding (polarization) configuration space, absent in classical-like models. These variations can be related to the evolution in time of the phase, but also to its dependence on configurational coordinates, which is the crucial factor to generate motion in the case of stationary states like those here considered. In this regard, for completeness these results are compared those obtained from nonclassical N00N states.
Integrated substation looks like one RTU to dispatchers
Koch, W.
1995-12-01T23:59:59.000Z
Traditionally, supervisory control and data acquisition systems (Scada) use a master/slave arrangement. The master Scada computer polls individual circuit devices for information, or the devices may report (by exception) to the computer. The substation engineering department of Portland General Electric Co (PCE) is now pioneering a new arrangement in which all devices in a substation communicate with each other and a local computer over a data bus. A single communications line connects the Scada master to the same bus for control and/or monitoring. The new approach is known as a substation integration system (SIS). Thus, for a lower initial cost, substation integration: eliminates the need for redundant equipment - such as panel meters, annunciators, transducers, sequence-of-event recorders, auxiliary tripping relays. Scada RTU, control, and transfer switches; reduces control house size by 25% by reducing wiring and using panel space more efficiently; provides a standardized user interface for easy data access, both locally and remotely; is flexible and expandable because of its modularity and use of non-proprietary hardware and software; improves operability, maintainability and reliability through immediate access to key data; and, reduces overall life-cycle costs by reducing travel and outage time through remote access to substation information. 5 figs.
Dynamic Phase Filtering with Integrated Optical Ring Resonators
Adams, Donald Benjamin
2011-10-21T23:59:59.000Z
can then help extract complex spectral information. Broadband photonic RF phase shifting for beam steering of a phased array antenna is also shown using dynamically tunable integrated optical ring resonators. Finally all-optical pulse compression...
Dynamics of Synaptically Interacting Integrate-and-Fire Neurons
Coombes, Stephen
Dynamics of Synaptically Interacting Integrate-and-Fire Neurons by Matthew Philip James A DOCTORAL evidence which suggests that the response of a neuron is strongly dependent upon its previous activity of integrate-and-fire neurons. Self-consistent speeds and periods are determined from integro
A closer look at non-uniqueness during dynamic data integration
Cobenas, Rafael H.
1997-01-01T23:59:59.000Z
Buenos Aires, Instituto Argentino del Petroleo and Valdez Rojas y Hogg S. A. for providing me the opportunity and the financial support to pursue my Master of Science degree at Texas ASM University. I would also like to thank the following individuals... Closer Look at Non-Uniqueness during Dynamic Data Integration. (December 1997) Rafael H. Cobenas, B. S. , Instituto Tecnologico de Buenos Aires Chair of Advisory Committee: Dr. Akhil Datta-Gupta Characterizing heterogeneous permeable media using...
DYNAMIC MODELING Commercial Office Building Measurements and Dynamic Integrated
Mease, Kenneth D.
in significantly increased consumption of natural gas (or other fuels). Implications: 1.Fuel risk · How do the gas infrastructure handle DG (both on the micro and macro scales)? 3.Natural gas or other fuel costs markets? Integration Issues: Regulation Regulation is necessary to make DG economical and safe
MODEST-1: Integrating Stellar Evolution and Stellar Dynamics
Piet Hut; Michael M. Shara; Sverre J. Aarseth; Ralf S. Klessen; James C. Lombardi Jr.; Junichiro Makino; Steve McMillan; Onno R. Pols; Peter J. Teuben; Ronald F. Webbink
2002-11-01T23:59:59.000Z
We summarize the main results from MODEST-1, the first workshop on MOdeling DEnse STellar systems. Our goal is to go beyond traditional population synthesis models, by introducing dynamical interactions between single stars, binaries, and multiple systems. The challenge is to define and develop a software framework to enable us to combine in one simulation existing computer codes in stellar evolution, stellar dynamics, and stellar hydrodynamics. With this objective, the workshop brought together experts in these three fields, as well as other interested astrophysicists and computer scientists. We report here our main conclusions, questions and suggestions for further steps toward integrating stellar evolution and stellar (hydro)dynamics.
Beam Dynamics Study for TESLA with the Integrated FEL
Beam Dynamics Study for TESLA with the Integrated FEL V.M. Tsakanov Yerevan Physics Institute : : : : : : : : : : : : : : : : : : : : : : : 7 2.3 Conclusion 1 : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 10 3 The TESLA high based trajectory correction : : : : : : : : : : : : 22 5 Summary 25 1 #12;. 1 Introduction In the TESLA
Pencil-Like Sketch Rendering of 3D Scenes Using Trajectory Planning and Dynamic Tracking
Kara, Levent Burak
Pencil-Like Sketch Rendering of 3D Scenes Using Trajectory Planning and Dynamic Tracking Günay non-photorealistic rendering method to render 3D scenes in the form of pencil-like sketches. This work then produces the rendered sketch, whose characteristics can be adjusted with a set of trajectory and tracking
Integrating Renewable Energy Contracts and Wholesale Dynamic Pricing to Serve Aggregate
Oren, Shmuel S.
1 Integrating Renewable Energy Contracts and Wholesale Dynamic Pricing to Serve Aggregate Flexible energy, dynamic programming. I. INTRODUCTION Dynamic pricing has the potential to materialize the poten many of the operational problems that arise from renewable energy integration through dynamic pricing
proteinsSTRUCTURE O FUNCTION O BIOINFORMATICS STITCHER: Dynamic assembly of likely
Gifford, David K.
the right conditions, a great many, perhaps most, proteins have the potential to form amyloids. The tendency. In addition, significant conformational heterogeneity is known or suspected to exist in many amyloid fibrilsproteinsSTRUCTURE O FUNCTION O BIOINFORMATICS STITCHER: Dynamic assembly of likely amyloid
NONLINEAR TRACKING CONTROL OF A CAR-LIKE MOBILE ROBOT VIA DYNAMIC FEEDBACK LINEARIZATION
Hu, Huosheng
NONLINEAR TRACKING CONTROL OF A CAR-LIKE MOBILE ROBOT VIA DYNAMIC FEEDBACK LINEARIZATION Erfu Yang Tokyo Institute of Technology, Tokyo 152-8552, Japan Keywords: Nonlinear tracking control, Mobile robot behaviour for mobile robots. This paper addresses the nonlinear trajectory tracking control problem
A LAGRANGIAN INTEGRATOR FOR PLANETARY ACCRETION AND DYNAMICS (LIPAD)
Levison, Harold F. [Department of Space Studies, Southwest Research Institute, Boulder, CO 80302 (United States); Duncan, Martin J. [Department of Physics, Engineering Physics and Astronomy, Queen's University Kingston, Ontario K7L 3N6 (Canada); Thommes, Edward, E-mail: hal@boulder.swri.edu [Department of Physics, University of Guelph, Guelph, Ontario N1G 2W1 (Canada)
2012-10-01T23:59:59.000Z
We present the first particle-based Lagrangian code that can follow the collisional/accretional/dynamical evolution of a large number of kilometer-sized planetesimals through the entire growth process of becoming planets. We refer to it as the Lagrangian Integrator for Planetary Accretion and Dynamics or LIPAD. LIPAD is built on top of SyMBA, which is a symplectic N-body integrator. In order to handle the very large number of planetesimals required by planet formation simulations, we introduce the concept of a tracer particle. Each tracer is intended to represent a large number of disk particles on roughly the same orbit and size as one another and is characterized by three numbers: the physical radius, the bulk density, and the total mass of the disk particles represented by the tracer. We developed statistical algorithms that follow the velocity and size evolution of the tracers due to close gravitational encounters and physical collisions with one another. The tracers mainly dynamically interact with the larger objects (planetary embryos) in the normal N-body way. LIPAD's greatest strength is that it can accurately model the wholesale redistribution of planetesimals due to gravitational interaction with the embryos, which has recently been shown to significantly affect the growth rate of planetary embryos. We verify the code via a comprehensive set of tests that compare our results with those of Eulerian and/or direct N-body codes.
Integrated Dynamic Electron Solutions, Inc. | Department of Energy
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed off Energy.gov.Energy02.pdf7 OPAMEnergy Innovation inInspectionIntegrated Dynamic Electron
Fast dynamics of an eel-like robot, comparisons with Navier-Stokes simulations
Boyer, Edmond
the head to the caudal 1 F. Boyer : EMN, IRCCyN, La Chantrerie 4, rue Alfred Kastler B.P. 20722 - 44307Fast dynamics of an eel-like robot, comparisons with Navier-Stokes simulations Frederic Boyer1 Nantes Cedex 3 France. Tel. : +00 33 2 51 85 83 08, Fax : +00 33 2 51 85 83 02, E-mail : frederic.boyer
The dynamics of planetary nebulae in the Galaxy: evidence for a third integral
S. Durand; H. Dejonghe; A. Acker
1995-12-08T23:59:59.000Z
We present a dynamical analysis of 673 galactic Planetary Nebulae, using a two-integral axisymmetric model with a Kuzmin-Kutuzov St\\"{a}ckel potential. The method fits the kinematics to the projected moments of a distribution function, by means of Quadratic Programming. The 2.2 $\\mu$m COBE brightness map has been used after correction for the interstellar extinction as a projected star counts map in the modeling, because it constitutes a galactic distribution view of evolved red populations which are considered to be the progenitors of PNe. The model we have obtained provides a 2-integral distribution function for the COBE 2.2 $\\mu$m map, and thus {\\it a fortiori} a deprojection of it, which allows moreover the identification of all the major Galactic components. We derive the density laws for them. The projected velocity dispersions are not well fitted though, especially in the disk, which points at the likely presence of a third integral. If this result can be confirmed by additional data, this would mean that for the first time the presence and importance of a third integral on a global scale is demonstrated.
Integrated dynamic landscape analysis and modeling system (IDLAMS) : installation manual.
Li, Z.; Majerus, K. A.; Sundell, R. C.; Sydelko, P. J.; Vogt, M. C.
1999-02-24T23:59:59.000Z
The Integrated Dynamic Landscape Analysis and Modeling System (IDLAMS) is a prototype, integrated land management technology developed through a joint effort between Argonne National Laboratory (ANL) and the US Army Corps of Engineers Construction Engineering Research Laboratories (USACERL). Dr. Ronald C. Sundell, Ms. Pamela J. Sydelko, and Ms. Kimberly A. Majerus were the principal investigators (PIs) for this project. Dr. Zhian Li was the primary software developer. Dr. Jeffrey M. Keisler, Mr. Christopher M. Klaus, and Mr. Michael C. Vogt developed the decision analysis component of this project. It was developed with funding support from the Strategic Environmental Research and Development Program (SERDP), a land/environmental stewardship research program with participation from the US Department of Defense (DoD), the US Department of Energy (DOE), and the US Environmental Protection Agency (EPA). IDLAMS predicts land conditions (e.g., vegetation, wildlife habitats, and erosion status) by simulating changes in military land ecosystems for given training intensities and land management practices. It can be used by military land managers to help predict the future ecological condition for a given land use based on land management scenarios of various levels of training intensity. It also can be used as a tool to help land managers compare different land management practices and further determine a set of land management activities and prescriptions that best suit the needs of a specific military installation.
Integrated dynamic landscape analysis and modeling system (IDLAMS) : programmer's manual.
Klaus, C. M.; Li, Z.; Majerus, K. A.; Sundell, R. C.; Sydelko, P. J.; Vogt, M. C.
1999-02-24T23:59:59.000Z
The Integrated Dynamic Landscape Analysis and Modeling System (IDLAMS) is a prototype, integrated land management technology developed through a joint effort between Argonne National Laboratory (ANL) and the US Army Corps of Engineers Construction Engineering Research Laboratories (USACERL). Dr. Ronald C. Sundell, Ms. Pamela J. Sydelko, and Ms. Kimberly A. Majerus were the principal investigators (PIs) for this project. Dr. Zhian Li was the primary software developer. Dr. Jeffrey M. Keisler, Mr. Christopher M. Klaus, and Mr. Michael C. Vogt developed the decision analysis component of this project. It was developed with funding support from the Strategic Environmental Research and Development Program (SERDP), a land/environmental stewardship research program with participation from the US Department of Defense (DoD), the US Department of Energy (DOE), and the US Environmental Protection Agency (EPA). IDLAMS predicts land conditions (e.g., vegetation, wildlife habitats, and erosion status) by simulating changes in military land ecosystems for given training intensities and land management practices. It can be used by military land managers to help predict the future ecological condition for a given land use based on land management scenarios of various levels of training intensity. It also can be used as a tool to help land managers compare different land management practices and further determine a set of land management activities and prescriptions that best suit the needs of a specific military installation.
Integration and Dynamics of a Renewable Regenerative Hydrogen Fuel Cell System
Victoria, University of
Integration and Dynamics of a Renewable Regenerative Hydrogen Fuel Cell System by Alvin Peter, hydrogen and electricity storage, and fuel cells. A special design feature of this test bed is the ability of the author. #12;ii Supervisory Committee Integration and Dynamics of a Renewable Regenerative Hydrogen Fuel
Path Integral Monte Carlo and Density Functional Molecular Dynamics Simulations of Hot, Dense Helium
Militzer, Burkhard
Path Integral Monte Carlo and Density Functional Molecular Dynamics Simulations of Hot, Dense integral Monte Carlo (PIMC) and density func- tional molecular dynamics (DFT-MD), are applied to study hot excitation mecha- nisms that determine their behavior at high temperature. The helium atom has two ionization
Demand Side Management for Wind Power Integration in Microgrid Using Dynamic Potential Game Theory
Huang, Jianwei
Demand Side Management for Wind Power Integration in Microgrid Using Dynamic Potential Game Theory, Wind Power Integration, Markov Chain, Dynamic Potential Game Theory, Nash Equilibrium. I. INTRODUCTION the intermittency in wind power generation. Our focus is on an isolated microgrid with one wind turbine, one fast
Integrated system dynamics toolbox for water resources planning.
Reno, Marissa Devan; Passell, Howard David; Malczynski, Leonard A.; Peplinski, William J.; Tidwell, Vincent Carroll; Coursey, Don (University of Chicago, Chicago, IL); Hanson, Jason (University of New Mexico, Albuquerque, NM); Grimsrud, Kristine (University of New Mexico, Albuquerque, NM); Thacher, Jennifer (University of New Mexico, Albuquerque, NM); Broadbent, Craig (University of New Mexico, Albuquerque, NM); Brookshire, David (University of New Mexico, Albuquerque, NM); Chemak, Janie (University of New Mexico, Albuquerque, NM); Cockerill, Kristan (Cockeril Consulting, Boone, NC); Aragon, Carlos (New Mexico Univeristy of Technology and Mining (NM-TECH), Socorro, NM); Hallett, Heather (New Mexico Univeristy of Technology and Mining (NM-TECH), Socorro, NM); Vivoni, Enrique (New Mexico Univeristy of Technology and Mining (NM-TECH), Socorro, NM); Roach, Jesse
2006-12-01T23:59:59.000Z
Public mediated resource planning is quickly becoming the norm rather than the exception. Unfortunately, supporting tools are lacking that interactively engage the public in the decision-making process and integrate over the myriad values that influence water policy. In the pages of this report we document the first steps toward developing a specialized decision framework to meet this need; specifically, a modular and generic resource-planning ''toolbox''. The technical challenge lies in the integration of the disparate systems of hydrology, ecology, climate, demographics, economics, policy and law, each of which influence the supply and demand for water. Specifically, these systems, their associated processes, and most importantly the constitutive relations that link them must be identified, abstracted, and quantified. For this reason, the toolbox forms a collection of process modules and constitutive relations that the analyst can ''swap'' in and out to model the physical and social systems unique to their problem. This toolbox with all of its modules is developed within the common computational platform of system dynamics linked to a Geographical Information System (GIS). Development of this resource-planning toolbox represents an important foundational element of the proposed interagency center for Computer Aided Dispute Resolution (CADRe). The Center's mission is to manage water conflict through the application of computer-aided collaborative decision-making methods. The Center will promote the use of decision-support technologies within collaborative stakeholder processes to help stakeholders find common ground and create mutually beneficial water management solutions. The Center will also serve to develop new methods and technologies to help federal, state and local water managers find innovative and balanced solutions to the nation's most vexing water problems. The toolbox is an important step toward achieving the technology development goals of this center.
AP Theory III: Cone-like Graded SUSY, Dynamic Dark Energy and the YM Millenium Problem
Winkelnkemper, H E
2010-01-01T23:59:59.000Z
Artin Presentation Theory, (AP Theory), is a new, direct infusion, via pure braid theory, of discrete group theory, (i.e., symmetry in its purest form), into the theory of {\\it smooth} 4-manifolds, (i.e.,$(3+1)$-Quantum Gravity in its purest topological form), thus exhibiting the most basic, rigorous, universal, model-free intrinsic {\\it gauge-gravity} duality in a non-infinitesimal, cone-like graded, as holographic as possible, model-independent, non-perturbative, background-independent, parameter-free manner. {\\it In AP Theory even smooth topology change becomes gauge-theoretic, setting the stage for a rigorous smooth topological $(3+1)$-QFT of Dynamic Dark Energy.} In this theory, the rigid $\\infty$ of the dimension of classical Hilbert space is substituted by the dynamic $\\infty$ of the $\\infty$ generation at each stage of a cone-like graded subgroup of topology-changing transitions/interactions. As a corollary, the Cosmological Constant problem and the YM Millenium Mass Gap problem, two of the most perpl...
AP Theory III: Cone-like Graded SUSY, Dynamic Dark Energy and the YM Millenium Problem
H. E. Winkelnkemper
2010-03-26T23:59:59.000Z
Artin Presentation Theory, (AP Theory), is a new, direct infusion, via pure braid theory, of discrete group theory, (i.e., symmetry in its purest form), into the theory of {\\it smooth} 4-manifolds, (i.e.,$(3+1)$-Quantum Gravity in its purest topological form), thus exhibiting the most basic, rigorous, universal, model-free intrinsic {\\it gauge-gravity} duality in a non-infinitesimal, cone-like graded, as holographic as possible, model-independent, non-perturbative, background-independent, parameter-free manner. {\\it In AP Theory even smooth topology change becomes gauge-theoretic, setting the stage for a rigorous smooth topological $(3+1)$-QFT of Dynamic Dark Energy.} In this theory, the rigid $\\infty$ of the dimension of classical Hilbert space is substituted by the dynamic $\\infty$ of the $\\infty$ generation at each stage of a cone-like graded subgroup of topology-changing transitions/interactions. As a corollary, the Cosmological Constant problem and the YM Millenium Mass Gap problem, two of the most perplexing main problems of modern physics, become rigorously, intimately mathematically related, by having the same qualitative {\\it dynamical} roots. Ultimately our main point is meta-mathematical, as far as modern physics is concerned: due to the discrete group-theoretic conceptual simplicity of the theory, with its group-theoretic 'Planckian membrane/discreteness' starting point, {\\it the fact that it is not just a mere mathematical model,} and all its properties above, any other {\\it mathematically rigorous} approach has to built on AP Theory and be topologically absorbed and enveloped by it.
DYNAMICS OF CURRENT-BASED, POISSON DRIVEN, INTEGRATE-AND-FIRE NEURONAL NETWORKS
Kramer, Peter
DYNAMICS OF CURRENT-BASED, POISSON DRIVEN, INTEGRATE-AND-FIRE NEURONAL NETWORKS KATHERINE A-based, integrate-and-fire (I&F) neurons with delta-impulse coupling currents and Poisson spike-train external drive are studied. Repeating synchronous total firing events, during which all the neurons fire simultaneously
Integrated Scheduling and Dynamic Optimization of Batch Processes Using State Equipment Networks
Grossmann, Ignacio E.
Integrated Scheduling and Dynamic Optimization of Batch Processes Using State Equipment Networks value to existing assets Improving plant reliability 1 J.M. Wassick and J. Ferrio. Extending A batch plant with existing equipment A time horizon to make products Dynamic models of process operations
Van den Hof, Paul
on dynamic real-time optimization (D- RTO) of waterflooding strategies in petroleum reservoirs haveIntegrated Dynamic Optimization and Control in Reservoir Engineering using Locally Identified, the used large-scale, nonlinear, physics-based reservoir models suffer from vast parametric uncertainty
Integration of dynamic data into reservoir description using streamline approaches
He, Zhong
2004-11-15T23:59:59.000Z
-suited for large-scale field applications. We can account for realistic field conditions, such as gravity, and changing field conditions, arising from infill drilling, pattern conversion, and recompletion, etc., during the integration of two-phase production data...
Human Growth and Body Weight Dynamics: An Integrative Systems Model
Rahmandad, Hazhir
Quantifying human weight and height dynamics due to growth, aging, and energy balance can inform clinical practice and policy analysis. This paper presents the first mechanism-based model spanning full individual life and ...
Dark energy and Chern-Simons like gravity from a dynamical four-form
Patrick Das Gupta
2011-12-02T23:59:59.000Z
We consider the dynamics of a four-form field $\\tilde {w} $, treating it as a distinct physical degree of freedom, independent of the metric. The equations of motion are derived from an action which, besides having the standard Hilbert-Einstein term and the matter part, consists of a new action for $\\tilde {w} $. The evolution of $\\tilde {w} $ in a flat FRW universe is studied, and it is shown that the parameters of the theory admit solutions wherein it is possible to have an equation of state $p_\\phi \\approx -\\epsilon_\\phi $, so that it leads to an accelerating universe. We also put forward electromagnetic as well as gravitational `Chern-Simons' like terms that arise naturally in 4D, entailing a modified Einstein-Maxwell equation and an enlarged system of Einstein equation involving a Cotton tensor. We demonstrate that the scalar-density associated with $\\tilde {w} $ can be employed to construct a generalized exterior derivative that converts a p-form density to a (p+1)-form density of identical weight.
Rincon-Mora, Gabriel A.
Improvement in battery life Low voltage Single cell operation (Li-ion/NiCd/NiMH/Fuel Cell) Integrated frequency 1 MHz ± 20% Closed-loop bandwidth 50 kHz 1-dB step change response time 20 µsec Full-load efficiency 90 % Control signal Output voltageTpower_change Tresponse Time 1 dB Typical transient response
Koschorke, Albrecht; Musanovic, Emina
2013-01-01T23:59:59.000Z
Integration By Albrecht Koschorkeby Emina Musanovic [Integration (from Lat. integrare, toa social unity. Social integration is distinct from systemic
Data Integrity and Dynamic Storage Way in Cloud Computing
Dinesh, C
2011-01-01T23:59:59.000Z
It is not an easy task to securely maintain all essential data where it has the need in many applications for clients in cloud. To maintain our data in cloud, it may not be fully trustworthy because client doesn't have copy of all stored data. But any authors don't tell us data integrity through its user and CSP level by comparison before and after the data update in cloud. So we have to establish new proposed system for this using our data reading protocol algorithm to check the integrity of data before and after the data insertion in cloud. Here the security of data before and after is checked by client with the help of CSP using our "effective automatic data reading protocol from user as well as cloud level into the cloud" with truthfulness. Also we have proposed the multi-server data comparison algorithm with the calculation of overall data in each update before its outsourced level for server restore access point for future data recovery from cloud data server. Our proposed scheme efficiently checks inte...
An Efficient and Accurate Car-Parrinello-like Approach to Born-Oppenheimer Molecular Dynamics
Thomas D. Kühne; Matthias Krack; Fawzi R. Mohamed; Michele Parrinello
2006-12-20T23:59:59.000Z
We present a new method which combines Car-Parrinello and Born-Oppenheimer molecular dynamics in order to accelerate density functional theory based ab-initio simulations. Depending on the system a gain in efficiency of one to two orders of magnitude has been observed, which allows ab-initio molecular dynamics of much larger time and length scales than previously thought feasible. It will be demonstrated that the dynamics is correctly reproduced and that high accuracy can be maintained throughout for systems ranging from insulators to semiconductors and even to metals in condensed phases. This development considerably extends the scope of ab-initio simulations.
A 3-DoF Experimental Test-Bed for Integrated Attitude Dynamics and Control Research
Tsiotras, Panagiotis
of the spacecraft are developed for the entire platform both for vari- able and fixed wheel configurations to the center of rotation of the platform for the fixed wheel configuration. The simulation and experimentalA 3-DoF Experimental Test-Bed for Integrated Attitude Dynamics and Control Research Dongwon Jung
Integrating Dynamic Pricing of Electricity into Energy Aware Scheduling for HPC Systems
Sun, Xian-He
Integrating Dynamic Pricing of Electricity into Energy Aware Scheduling for HPC Systems Xu Yang, Zhou Zhou, Sean Wallace, Zhiling Lan Illinois Institute of Technology, Chicago, IL, USA {xyang56, zzhou Laboratory, Argonne, IL, USA {wtang, smc, papka}@anl.gov ABSTRACT The research literature to date mainly
Integrated vehicle dynamics control via coordination of active front steering and rear braking
Paris-Sud XI, UniversitĆ© de
Integrated vehicle dynamics control via coordination of active front steering and rear brakingComputer and Automation Research Institue, Hungarian Academy of Sciences, Kende u. 13-17, H-1111, Budapest, Hungary, Email front steering and rear braking in a driver- assist system for vehicle yaw control. The proposed control
Instabilities in Molecular Dynamics Integrators used in Hybrid Monte Carlo Simulations
B. Joo; UKQCD Collaboration
2001-10-11T23:59:59.000Z
We discuss an instability in the leapfrog integration algorithm, widely used in current Hybrid Monte Carlo (HMC) simulations of lattice QCD. We demonstrate the instability in the simple harmonic oscillator (SHO) system where it is manifest. We demonstrate the instability in HMC simulations of lattic QCD with dynamical Wilson-Clover fermions and discuss implications for future simulations of lattice QCD.
A Behavioral Theory of the Merger Dynamics of the post-merger integration process
, organization performance, organizational culture, computer simulation, computational organization theory #12. This study employs computational organization theory (COT) techniques, such as agent-based modelingA Behavioral Theory of the Merger Dynamics of the post-merger integration process Terrill L. Frantz
Vermont, University of
2002-01-01T23:59:59.000Z
Ecological Economics 41 (2002) 393408 SPECIAL ISSUE: The Dynamics and Value of Ecosystem Services to the main ecological, sociocultural and economic valuation methods. © 2002 Elsevier Science B.V. All rights: Integrating Economic and Ecological Perspectives A typology for the classification, description and valuation
On the dynamics and morphology of extensive tidal mudflats: Integrating remote sensing data
Ezer,Tal
On the dynamics and morphology of extensive tidal mudflats: Integrating remote sensing data sensing data and inundation models allows the mapping of extensive tidal mudflats in a sub-Arctic estuary changes in mudflats morphology, and 3. mapping previously unobserved mud- flat topographies in order
Calculation of heat capacities of light and heavy water by path-integral molecular dynamics
Nielsen, Steven O.
reproduces the isotope effect. The heat capacity in the liquid D2O has been calculated to be 10% higher than important in the liquid phase. In fact, in many systems, the heat capacity has an isotope effect, whichCalculation of heat capacities of light and heavy water by path-integral molecular dynamics
Puliafito, Vito, E-mail: vpuliafito@unime.it; Azzerboni, Bruno; Finocchio, Giovanni [Department of Electronic Engineering, Industrial Chemistry and Engineering, University of Messina, 98166 Messina (Italy); Torres, Luis [Department of Applied Physics, University of Salamanca, 37008 Salamanca (Spain); Ozatay, Ozhan [Department of Physics, Bogazici University, 34342 Bebek/Istanbul (Turkey); Hauet, Thomas [Institut Jean Lamour, Université de Lorraine-CNRS UMR 7198, 54506 Nancy (France)
2014-05-07T23:59:59.000Z
Dynamical bubble-like solitons have been recently investigated in nanocontact-based spin-torque oscillators with a perpendicular free layer. Those magnetic configurations can be excited also in different geometries as long as they consist of perpendicular materials. Thus, in this paper, a systematic study of the influence of both external field and high current on that kind of dynamics is performed for a spin-valve point-contact geometry where both free and fixed layers present strong perpendicular anisotropy. The usage of the topological density tool highlights the excitation of complex bubble/antibubble configurations. In particular, at high currents, a deformation of the soliton and its simultaneous shift from the contact area are observed and can be ascribable to the Oersted field. Results provide further detailed information on the excitation of solitons in perpendicular materials for application in spintronics, magnonics, and domain wall logic.
Anatolij K. Prykarpatski
2015-01-03T23:59:59.000Z
The Calogero type matrix discretization scheme is applied to constructing the Lax type integrable discretizations of one wide enough class of nonlinear integrable dynamical systems on functional manifolds. Their Lie-algebraic structure and complete integrability related with co-adjoint orbits on the Markov co-algebras is discussed. It is shown that a set of conservation laws and the associated Poisson structure ensue as a byproduct of the approach devised. Based on the Lie algebras quasi-representation property the limiting procedure of finding the nonlinear dynamical systems on the corresponding functional spaces is demonstrated.
Integrating GIS with Distributed Applications Using Dynamic Data-Sharing Mechanisms
Burnett, Robert A. (BATTELLE (PACIFIC NW LAB)); Tzemos, Spyridon (BATTELLE (PACIFIC NW LAB)); Stoops, LaMar R. (BATTELLE (PACIFIC NW LAB))
2002-08-21T23:59:59.000Z
Effective integration of a stand-alone GIS (e.g., ArcView 3.x) into a complex distributed software application requires an efficient, reliable mechanism for passing data and function requests to and from the GIS component. This paper describes the use of dynamic data-sharing and inter-process communication mechanisms to integrate GIS capability into a multi-jurisdictional distributed emergency management information system. These mechanisms include dynamic layer updates from spatial and attribute information shared via a distributed relational database across multiple sites; storage of private and shared ViewMarks to facilitate consistent GIS views; and asynchronous inter-process communication using function queuing and a data sharing library.
A modified numerical integrator of ring polymer Hamiltonian dynamics with constraints
Yunfeng Xiong
2014-12-01T23:59:59.000Z
In this paper, a symplectic and time-reversible integrator is proposed of simulating the Hamiltonian dynamics with constraints in path integral molecular dynamics. The constraints are tackled by Matrix Inverted Linearized Constraint algorithm (MILC), while a slight modification is requested under normal mode representation, and the slow force is mollified by Equilibrium method (Equilibrium MOLLY) to ameliorate the numerical resonance. It is demonstrated that the slow force impulse can be evaluated only at the centroid of beads, instead of being evaluated at the positions of each bead independently. Therefore, it not only allows longer time step but also reduces the complexity of computation. The numerical experiment is performed using SPC/E model in 298K with eight beads. Further discussion will involve the application of Equilibrium MOLLY in flexible bond model.
"Particle-like" singular solutions in Einstein-Maxwell theory and in algebraic dynamics
V. V. Kassandrov; V. N. Trishin
2000-07-13T23:59:59.000Z
Foundations of algebrodynamics based on earlier proposed equations of biquaternionic holomorphy are briefly expounded. Free Maxwell and Yang-Mills Eqs. are satisfied identically on the solutions of primary system which is also related to the Eqs. of shear-free null congruences (SFC), and through them - to the Einstein-Maxwell electrovacuum system. Kerr theorem for SFC reduces the basic system to one algebraic equation, so that with each solution of the latter some (singular) solution of vacuum Eqs. may be associated. We present some exact solutions of basic algebraic and of related field Eqs. with compact structure of singularities of electromagnetic field, in particular having the form of figure "8" curve. Fundamental solution to primary system is analogous to the metric and fields of the Kerr-Newman solution. In addition, in the framework of algebraic dynamics the value of electric charge for this solution is strictly fixed in magnitude and may be set equal to the elementary charge.
Bloch-like wave dynamics in disordered potentials based on supersymmetry
Yu, Sunkyu; Hong, Jiho; Park, Namkyoo
2015-01-01T23:59:59.000Z
Bloch's theorem for the description of waves in crystals was a major milestone, establishing the principle of bandgaps for electrical, optical, and vibrational waves. Although it was once believed that bandgaps could form only under conditions of periodicity and long-range correlations as the prerequisites for Bloch's theorem, this restriction was disproven by the groundbreaking discoveries of amorphous media and quasicrystals. While network and liquid models have been suggested for the interpretation of Bloch-like waves in disordered media, these approaches 'searching' for random networks with bandgaps have failed in the deterministic creation of bandgaps. Here, we reveal a deterministic pathway to bandgap engineering in disordered media, by applying the notion of supersymmetry to the fundamental wave equation. Inspired by the problem for isospectrality, we follow a methodology in stark contrast to previous methods: we 'transform' ordered potentials into disordered potentials while 'preserving' bandgaps. Our...
The role of dynamics on the habitability of an Earth-like planet
Pilat-Lohinger, E
2015-01-01T23:59:59.000Z
From the numerous detected planets outside the Solar system, no terrestrial planet comparable to our Earth has been discovered so far. The search for an Exo-Earth is certainly a big challenge which may require the detections of planetary systems resembling our Solar system in order to find life like on Earth. However, even if we find Solar system analogues, it is not certain that a planet in Earth position will have similar circumstances as those of Earth. Small changes in the architecture of the giant planets can lead to orbital perturbations which may change the conditions of habitability for a terrestrial planet in the habitable zone (HZ). We present a numerical investigation where we first study the motion of test-planets in a particular Jupiter-Saturn configuration for which we can expect strong gravitational perturbations on the motion at Earth position according to a previous work. In this study, we show that these strong perturbations can be reduced significantly by the neighboring planets of Earth. I...
David A. Sivak; John D. Chodera; Gavin E. Crooks
2014-04-09T23:59:59.000Z
When simulating molecular systems using deterministic equations of motion (e.g., Newtonian dynamics), such equations are generally numerically integrated according to a well-developed set of algorithms that share commonly agreed-upon desirable properties. However, for stochastic equations of motion (e.g., Langevin dynamics), there is still broad disagreement over which integration algorithms are most appropriate. While multiple desiderata have been proposed throughout the literature, consensus on which criteria are important is absent, and no published integration scheme satisfies all desiderata simultaneously. Additional nontrivial complications stem from simulating systems driven out of equilibrium using existing stochastic integration schemes in conjunction with recently-developed nonequilibrium fluctuation theorems. Here, we examine a family of discrete time integration schemes for Langevin dynamics, assessing how each member satisfies a variety of desiderata that have been enumerated in prior efforts to construct suitable Langevin integrators. We show that the incorporation of a novel time step rescaling in the deterministic updates of position and velocity can correct a number of dynamical defects in these integrators. Finally, we identify a particular splitting that has essentially universally appropriate properties for the simulation of Langevin dynamics for molecular systems in equilibrium, nonequilibrium, and path sampling contexts.
Isotope effects in water as investigated by neutron diffraction and path integral molecular dynamics
Zeidler, Anita [University of Bath; Salmon, Phil [University of Bath; Fischer, Henry E [Institut Laue-Langevin (ILL); Neuefeind, Joerg C [ORNL; Simonson, J Michael {Mike} [ORNL; Markland, Thomas [Columbia University
2012-01-01T23:59:59.000Z
The structure of heavy and light water at 300 K was investigated by using a joint approach in which the method of neutron di raction with oxygen isotope substitution was combined with path integral molecular dynamics simulations. The di raction results, which give intra-molecular O-D and O-H bond distances of 0.985(5) and 0.990(5) A, were found to be in best agreement with those obtained by using the exible anharmonic TTM3-F water model. Both techniques show a di erence of '0.5% between the O-D and O-H intra-molecular bond lengths and the results support a competing quantum e ects model for water in which its structural and dynamical properties are governed by an o set between intra-molecular and inter-molecular quantum contributions. Further consideration of the O-O correlations is needed in order to improve agreement with experiment.
Ilpo Vattulainen; Mikko Karttunen; Gerhard Besold; J. M. Polson
2002-11-15T23:59:59.000Z
We examine the performance of various commonly used integration schemes in dissipative particle dynamics simulations. We consider this issue using three different model systems, which characterize a variety of different conditions often studied in simulations. Specifically we clarify the performance of integration schemes in hybrid models, which combine microscopic and meso-scale descriptions of different particles using both soft and hard interactions. We find that in all three model systems many commonly used integrators may give rise to surprisingly pronounced artifacts in physical observables such as the radial distribution function, the compressibility, and the tracer diffusion coefficient. The artifacts are found to be strongest in systems, where interparticle interactions are soft and predominated by random and dissipative forces, while in systems governed by conservative interactions the artifacts are weaker. Our results suggest that the quality of any integration scheme employed is crucial in all cases where the role of random and dissipative forces is important, including hybrid models where the solvent is described in terms of soft potentials.
Hua Y. Geng
2014-12-19T23:59:59.000Z
A multilevel approach to sample the potential energy surface in a path integral formalism is proposed. The purpose is to reduce the required number of ab initio evaluations of energy and forces in ab initio path integral molecular dynamics (AI-PIMD) simulation, without compromising the overall accuracy. To validate the method, the internal energy and free energy of an Einstein crystal are calculated and compared with the analytical solutions. As a preliminary application, we assess the performance of the method in a realistic model, the FCC phase of dense atomic hydrogen, in which the calculated result shows that the acceleration rate is about 3 to 4 fold for a two-level implementation, and can be increased to 10 times if extrapolation is used. With only 16 beads used for the ab initio potential sampling, this method gives a well converged internal energy. The residual error in pressure is just about 3 GPa, whereas it is about 20 GPa for a plain AI-PIMD calculation with the same number of beads. The vibrational free energy of the FCC phase of dense hydrogen at 300 K is also calculated with an AI-PIMD thermodynamic integration method, which gives a result of about 0.51 eV/proton at a density of $r_{s}=0.912$.
Shu He; Liwei Duan; Qing-Hu Chen
2015-03-14T23:59:59.000Z
In this paper, the finite size Dicke model of arbitrary number of qubits is solved analytically in an unified way within extended coherent states. For the $N=2k$ or $2k-1$ Dicke models ($k$ is an integer), the $G$-function, which is only an energy dependent $k \\times k$ determinant, is derived in a transparent manner. The regular spectrum is completely and uniquely given by stable zeros of the $G$-function. The closed-form exceptional eigenvalues are also derived. The level distribution controlled by the pole structure of the $G$-functions suggests non-integrability for $N>1$ model at any finite coupling in the sense of recent criterion in literature. A preliminary application to the exact dynamics of genuine multipartite entanglement in the finite $N$ Dicke model is presented using the obtained exact solutions.
Computational studies on the factors influencing stabilities of collagen-like peptides
Chang, Nai-yuan, 1973-
2004-01-01T23:59:59.000Z
In this study, thermodynamic integration and molecular dynamics methods were used to elucidate the factors affecting stabilities of collagen-like peptides. We proposed to investigate three specific aspects: (1) the stabilizing ...
TIME-INTEGRATED SEARCHES FOR POINT-LIKE SOURCES OF NEUTRINOS WITH THE 40-STRING IceCube DETECTOR
Abbasi, R.; Aguilar, J. A.; Andeen, K.; Baker, M.; BenZvi, S. [Department of Physics, University of Wisconsin, Madison, WI 53706 (United States); Abdou, Y. [Department of Subatomic and Radiation Physics, University of Gent, B-9000 Gent (Belgium); Abu-Zayyad, T. [Department of Physics, University of Wisconsin, River Falls, WI 54022 (United States); Adams, J. [Department of Physics and Astronomy, University of Canterbury, Private Bag 4800, Christchurch (New Zealand); Ahlers, M. [Department of Physics, University of Oxford, 1 Keble Road, Oxford OX1 3NP (United Kingdom); Auffenberg, J.; Becker, K.-H. [Department of Physics, University of Wuppertal, D-42119 Wuppertal (Germany); Bai, X. [Bartol Research Institute and Department of Physics and Astronomy, University of Delaware, Newark, DE 19716 (United States); Barwick, S. W. [Department of Physics and Astronomy, University of California, Irvine, CA 92697 (United States); Bay, R. [Department of Physics, University of California, Berkeley, CA 94720 (United States); Alba, J. L. Bazo; Benabderrahmane, M. L. [DESY, D-15735 Zeuthen (Germany); Beattie, K. [Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Beatty, J. J. [Department of Physics and Center for Cosmology and Astro-Particle Physics, Ohio State University, Columbus, OH 43210 (United States); Bechet, S. [Universite Libre de Bruxelles, Science Faculty CP230, B-1050 Brussels (Belgium); Becker, J. K. [Fakultaet fuer Physik and Astronomie, Ruhr-Universitaet Bochum, D-44780 Bochum (Germany)
2011-05-01T23:59:59.000Z
We present the results of time-integrated searches for astrophysical neutrino sources in both the northern and southern skies. Data were collected using the partially completed IceCube detector in the 40-string configuration recorded between 2008 April 5 and 2009 May 20, totaling 375.5 days livetime. An unbinned maximum likelihood ratio method is used to search for astrophysical signals. The data sample contains 36,900 events: 14,121 from the northern sky, mostly muons induced by atmospheric neutrinos, and 22,779 from the southern sky, mostly high-energy atmospheric muons. The analysis includes searches for individual point sources and stacked searches for sources in a common class, sometimes including a spatial extent. While this analysis is sensitive to TeV-PeV energy neutrinos in the northern sky, it is primarily sensitive to neutrinos with energy greater than about 1 PeV in the southern sky. No evidence for a signal is found in any of the searches. Limits are set for neutrino fluxes from astrophysical sources over the entire sky and compared to predictions. The sensitivity is at least a factor of two better than previous searches (depending on declination), with 90% confidence level muon neutrino flux upper limits being between E {sup 2} d{Phi}/dE {approx} 2-200 x 10{sup -12} TeV cm{sup -2} s{sup -1} in the northern sky and between 3-700 x 10{sup -12} TeV cm{sup -2} s{sup -1} in the southern sky. The stacked source searches provide the best limits to specific source classes. The full IceCube detector is expected to improve the sensitivity to d{Phi}/dE{proportional_to}E {sup -2} sources by another factor of two in the first year of operation.
Kessler, Jan; Spura, Thomas; Karhan, Kristof; Partovi-Azar, Pouya; Hassanali, Ali A; Kühne, Thomas D
2015-01-01T23:59:59.000Z
The structure and dynamics of the water/vapor interface is revisited by means of path-integral and second-generation Car-Parrinello ab-initio molecular dynamics simulations in conjunction with an instantaneous surface definition [A. P. Willard and D. Chandler, J. Phys. Chem. B 114, 1954 (2010)]. In agreement with previous studies, we find that one of the OH bonds of the water molecules in the topmost layer is pointing out of the water into the vapor phase, while the orientation of the underlying layer is reversed. Therebetween, an additional water layer is detected, where the molecules are aligned parallel to the instantaneous water surface.
Froyland, Gary
2012-01-01T23:59:59.000Z
grains for lateral support to maintain and find new stable states. However, the dynamics associated by buckling correspond to rearrangements among, or loss of, contacts which break the three-cycle topology. DOI
Krzysztof Gozdziewski; Maciej Konacki; Andrzej J. maciejewski
2005-11-15T23:59:59.000Z
We perform a dynamical analysis of the recently published radial velocity (RV) measurements of a few solar type stars which host multiple Jupiter-like planets. In particular, we re-analyze the data for HD 202206, 14 Her, HD 37124 and HD 108874. We derive dynamically stable configurations which reproduce the observed RV signals using our method called GAMP (an acronym of the Genetic Algorithm with MEGNO Penalty). The GAMP relies on the N-body dynamics and makes use of genetic algorithms merged with a stability criterion. For this purpose, we use the maximal Lyapunov exponent computed with the dynamical fast indicator MEGNO. Through a dynamical analysis of the phase-space in a neighborhood of the obtained best-fit solutions, we derive meaningful limits on the parameters of the planets. We demonstrate that GAMP is especially well suited for the analysis of the RV data which only partially cover the longest orbital period and/or correspond to multi-planet configurations involved in low-order mean motion resonances (MMRs). In particular, our analysis reveals a presence of a second Jupiter-like planet in the 14 Her system (14 Her c) involved in a 3:1 or 6:1 MMR with the known companion b. We also show that the dynamics of the HD 202206 system may be qualitatively different when coplanar and mutually-inclined orbits of the companions are considered. We demonstrate that the two outer planets in the HD 37124 system may reside in a close neighborhood of the 5:2 MMR. Finally, we found a clear indication that the HD 108874 system may be very close to, or locked in an exact 4:1 MMR.
Helal, Abdelsalam
of a dynamic workflow model and a dynamic workflow management system for modeling and controlling the execution model (DWM) described in this paper enables the specification of dynamic properties associated of an enterprise. It allows people and companies to model business processes and to control the execution
Saptarshi Das; Koushik Maharatna
2014-10-20T23:59:59.000Z
In this paper, an incommensurate fractional order (FO) model has been proposed to generate ECG like waveforms. Earlier investigation of ECG like waveform generation is based on two identical Van-der Pol (VdP) family of oscillators which are coupled by time delays and gains. In this paper, we suitably modify the three state equations corresponding to the nonlinear cross-product of states, time delay coupling of the two oscillators and low-pass filtering, using the concept of fractional derivatives. Our results show that a wide variety of ECG like waveforms can be simulated from the proposed generalized models, characterizing heart conditions under different physiological conditions. Such generalization of the modelling of ECG waveforms may be useful to understand the physiological process behind ECG signal generation in normal and abnormal heart conditions. Along with the proposed FO models, an optimization based approach is also presented to estimate the VdP oscillator parameters for representing a realistic ECG like signal.
2 Dynamic analysis of mixed ion beams/materials effects on the performance 3 of ITER-like devices
Harilal, S. S.
ions from the core plasma with impurities of 37 beryllium and carbon eroded from PFC can cause erosion from the surface layers, physical sputtering of target 47 atoms, and possible bubble formation of minute impurities like 59carbon, oxygen, or beryllium. These impurities will also influence 60hydrogen
Goddard III, William A.
Wax Inhibition by Comb-like Polymers: Support of the Incorporation-Perturbation Mechanism from ReceiVed: April 10, 2007; In Final Form: July 26, 2007 Deposition of wax on a cold surface is a serious problem in oil production. Progress in developing more effective wax inhibitors has been impeded
Rocco Duvenhage
2006-05-24T23:59:59.000Z
A framework analogous to path integrals in quantum physics is set up for abstract dynamical systems in a W*-algebraic setting. We consider spaces of evolutions, defined in a specific way, of a W*-algebra A as an analogue of spaces of classical paths, and show how integrals over such spaces, which we call ``evolution integrals'', lead to dynamics in a Hilbert space on a ``higher level'' which is viewed as an analogue of quantum dynamics obtained from path integrals. The measures with respect to which these integrals are performed are projection valued.
Integrating high-precision U-Pb geochronologic data with dynamic models of earth processes
Blackburn, Terrence (Terrence Joseph)
2012-01-01T23:59:59.000Z
Radioisotopic dating can provide critical constraints for understanding the rates of tectonic, dynamic and biologic processes operating on our planet. Improving the interpretation and implementation of geochronologic data ...
Jay, Laurent O.
An integral-balance nonlinear model to simulate changes in soil moisture, groundwater and surface-state integral-balance model for soil moisture and groundwater dynamics. Development of the model was motivated. Ć? 2014 Elsevier Ltd. All rights reserved. 1. Introduction Recent studies on the modeling
Ramanathan, Arvind [ORNL] [ORNL; Pullum, Laura L [ORNL] [ORNL; Steed, Chad A [ORNL] [ORNL; Quinn, Shannon [University of Pittsburgh School of Medicine, Pittsburgh PA] [University of Pittsburgh School of Medicine, Pittsburgh PA; Chennubhotla, Chakra [University of Pittsburgh School of Medicine, Pittsburgh PA] [University of Pittsburgh School of Medicine, Pittsburgh PA; Parker, Tara L [ORNL] [ORNL
2013-01-01T23:59:59.000Z
n this paper, we present an overview of the big data chal- lenges in disease bio-surveillance and then discuss the use of visual analytics for integrating data and turning it into knowl- edge. We will explore two integration scenarios: (1) combining text and multimedia sources to improve situational awareness and (2) enhancing disease spread model data with real-time bio-surveillance data. Together, the proposed integration methodologies can improve awareness about when, where and how emerging diseases can affect wide geographic regions.
Mubasher Jamil; Saqib Hussain; Bushra Majeed
2015-01-21T23:59:59.000Z
We investigate the dynamics of a neutral and a charged particle around a static and spherically symmetric black hole in the presence of quintessence matter and external magnetic field. We explore the conditions under which the particle moving around the black hole could escape to infinity after colliding with another particle. The innermost stable circular orbit (ISCO) for the particles are studied in detail. Mainly the dependence of ISCO on dark energy and on the presence of external magnetic field in the vicinity of black hole is discussed. By using the Lyapunov exponent, we compare the stabilities of the orbits of the particles in the presence and absence of dark energy and magnetic field. The expressions for the center of mass energies of the colliding particles near the horizon of the black hole are derived. The effective force on the particles due to dark energy and magnetic field in the vicinity of black hole is also discussed.
A Dynamic Market Mechanism for Integration of Renewables and Demand Response
Knudsen, Jesper
2015-04-21T23:59:59.000Z
The most formidable challenge in assembling a Smart Grid is the integration of a high penetration of renewables. Demand Response, a largely promising concept, is increasingly discussed as a means to cope with the intermittent ...
Zhai, Zhiqiang, 1971-
2003-01-01T23:59:59.000Z
Building energy simulation (ES) and computational fluid dynamics (CFD) can play important roles in building design by providing essential information to help design energy-efficient, thermally comfortable and healthy ...
Integrated method to create optimal dynamic strategic plans for corporate technology start-ups
Mikati, Samir Omar
2009-01-01T23:59:59.000Z
This thesis presents an innovative method for evaluating and dynamically planning the development of uncertain technology investments. Its crux centers on a paradigm shift in the way managers assess investments, toward an ...
Dynamic stability of the Solar System: Statistically inconclusive results from ensemble integrations
Zeebe, Richard E
2015-01-01T23:59:59.000Z
Due to the chaotic nature of the Solar System, the question of its long-term stability can only be answered in a statistical sense, for instance, based on numerical ensemble integrations of nearby orbits. Destabilization of the inner planets, leading to close encounters and/or collisions can be initiated through a large increase in Mercury's eccentricity, with a currently assumed likelihood of ~1%. However, little is known at present about the robustness of this number. Here I report ensemble integrations of the full equations of motion of the eight planets and Pluto over 5 Gyr, including contributions from general relativity. The results show that different numerical algorithms lead to statistically different results for the evolution of Mercury's eccentricity (eM). For instance, starting at present initial conditions (eM ~= 0.21), Mercury's maximum eccentricity achieved over 5 Gyr is on average significantly higher in symplectic ensemble integrations using heliocentricthan Jacobi coordinates and stricter er...
Integrating Models and Simulations of Continuous Dynamics into SysML
In this paper, we combine modeling constructs from SysML and Modelica to improve the support for Model, structures, functions, and behaviors. Complementing these SysML constructs, the Modelica language has emerged and the corresponding Modelica models; and the integration of simulation experiments with other SysML constructs
Towards an Integrated Framework for Development and Environment Policy: The Dynamics of
Kammen, Daniel M.
of Environmental Kuznets Curves MAJID EZZATI Resources for the Future, Washington, DC, USA, and World Health * University of California, Berkeley, USA Summary. Š Environmental Kuznets curves (EKCs) have recently received policy, environmental change, economic growth, environmental Kuznets curves, system dynamics 1
Vermont, University of
2002-01-01T23:59:59.000Z
synthesis of these concepts in order to address the issue of valuation of ecosystem services. We wantEcological Economics 41 (2002) 375392 SPECIAL ISSUE: The Dynamics and Value of Ecosystem Services is to elucidate concepts of value and methods of valuation that will assist in guiding human decisions vis
Mapping of Reservoir Properties and Facies Through Integration of Static and Dynamic Data
Reynolds, Albert C.; Oliver, Dean S.; Zhang, Fengjun; Dong, Yannong; Skjervheim, Jan Arild; Liu, Ning
2003-03-10T23:59:59.000Z
The goal of this project was to develop computationally efficient automatic history matching techniques for generating geologically plausible reservoir models which honor both static and dynamic data. Solution of this problem was necessary for the quantification of uncertainty in future reservoir performance predictions and for the optimization of reservoir management.
Variational integrators for the dynamics of thermo-elastic solids with finite speed thermal waves
Pablo Mata A; Adrian J Lew
2014-03-15T23:59:59.000Z
This paper formulates variational integrators for finite element discretizations of deformable bodies with heat conduction in the form of finite speed thermal waves. The cornerstone of the construction consists in taking advantage of the fact that the Green-Naghdi theory of type II for thermo-elastic solids has a Hamiltonian structure. Thus, standard techniques to construct variational integrators can be applied to finite element discretizations of the problem. The resulting discrete-in-time trajectories are then consistent with the laws of thermodynamics for these systems: for an isolated system, they exactly conserve the total entropy, and nearly exactly conserve the total energy over exponentially long periods of time. Moreover, linear and angular momenta are also exactly conserved whenever the exact system does. For definiteness, we construct an explicit second-order accurate algorithm for affine tetrahedral elements in two and three-dimensions, and demonstrate its performance with numerical examples.
Integrating Random Matrix Theory Predictions with Short-Time Dynamical Effects in Chaotic Systems
A. Matthew Smith; Lev Kaplan
2010-06-29T23:59:59.000Z
We discuss a modification to Random Matrix Theory eigenstate statistics, that systematically takes into account the non-universal short-time behavior of chaotic systems. The method avoids diagonalization of the Hamiltonian, instead requiring only a knowledge of short-time dynamics for a chaotic system or ensemble of similar systems. Standard Random Matrix Theory and semiclassical predictions are recovered in the limits of zero Ehrenfest time and infinite Heisenberg time, respectively. As examples, we discuss wave function autocorrelations and cross-correlations, and show that significant improvement in accuracy is obtained for simple chaotic systems where comparison can be made with brute-force diagonalization. The accuracy of the method persists even when the short-time dynamics of the system or ensemble is known only in a classical approximation. Further improvement in the rate of convergence is obtained when the method is combined with the correlation function bootstrapping approach introduced previously.
Jake P. Gentle; Kurt S Myers; Tyler B Phillips; Inanc Senocak; Phil Anderson
2014-08-01T23:59:59.000Z
Dynamic Line Rating (DLR) is a smart grid technology that allows the rating of power line to be based on real-time conductor temperature dependent on local weather conditions. In current practice overhead power lines are generally given a conservative rating based on worst case weather conditions. Using historical weather data collected over a test bed area, we demonstrate there is often additional transmission capacity not being utilized with the current static rating practice. We investigate a new dynamic line rating methodology using computational fluid dynamics (CFD) to determine wind conditions along transmission lines at dense intervals. Simulated results are used to determine conductor temperature by calculating the transient thermal response of the conductor under variable environmental conditions. In calculating the conductor temperature, we use both a calculation with steady-state assumption and a transient calculation. Under low wind conditions, steady-state assumption predicts higher conductor temperatures that could lead to curtailments, whereas transient calculations produce conductor temperatures that are significantly lower, implying the availability of additional transmission capacity.
A dynamic approach to integrated hedging for feedlots in the Texas High Plains
Johnston, Larry D
1977-01-01T23:59:59.000Z
. The dynamic approach to hedging involved broadening the feed- lot's planning horizon to include a two-month planning period prior to placing company owned cattle on feed as well as extending the decision- making process into the feeding peri. od once cattle... beginning each month. The strategies were evaluated in terms of mean and variability of per head returns. As a basis for comparison, the Cash Market Operation feeding company owned cattle without hedging was simu- lated over the same 47 periods, yielding...
Jung, Jinwoo; Lee, Jewon; Song, Hanjung [School of Nano Engineering, Inje University, Gimhae, Gyungnam (Korea, Republic of)
2011-03-15T23:59:59.000Z
This paper presents a fully integrated circuit implementation of an operational amplifier (op-amp) based chaotic neuron model with a bipolar output function, experimental measurements, and analyses of its chaotic behavior. The proposed chaotic neuron model integrated circuit consists of several op-amps, sample and hold circuits, a nonlinear function block for chaotic signal generation, a clock generator, a nonlinear output function, etc. Based on the HSPICE (circuit program) simulation results, approximated empirical equations for analyses were formulated. Then, the chaotic dynamical responses such as bifurcation diagrams, time series, and Lyapunov exponent were calculated using these empirical equations. In addition, we performed simulations about two chaotic neuron systems with four synapses to confirm neural network connections and got normal behavior of the chaotic neuron such as internal state bifurcation diagram according to the synaptic weight variation. The proposed circuit was fabricated using a 0.8-{mu}m single poly complementary metal-oxide semiconductor technology. Measurements of the fabricated single chaotic neuron with {+-}2.5 V power supplies and a 10 kHz sampling clock frequency were carried out and compared with the simulated results.
Integrated Dynamic Gloabal Modeling of Land Use, Energy and Economic Growth
Atul Jain, University of Illinois, Urbana-Champaign, IL
2009-10-14T23:59:59.000Z
The overall objective of this collaborative project is to integrate an existing general equilibrium energy-economic growth model with a biogeochemical cycles and biophysical models in order to more fully explore the potential contribution of land use-related activities to future emissions scenarios. Land cover and land use change activities, including deforestation, afforestation, and agriculture management, are important source of not only CO2, but also non-CO2 GHGs. Therefore, contribution of land-use emissions to total emissions of GHGs is important, and consequently their future trends are relevant to the estimation of climate change and its mitigation. This final report covers the full project period of the award, beginning May 2006, which includes a sub-contract to Brown University later transferred to the National Center for Atmospheric Research (NCAR) when Co-PI Brian O'Neill changed institutional affiliations.
Dynamic system characterization of an integral test facility of an advanced PWR
Smith, Simon Gregory
1995-01-01T23:59:59.000Z
gives: P = pph&+p gh + p RT Differentiating with respect to time leads to, dp dp/ dhf dp dh dp gh. + p g ? + ? gh + p g ? s+ ? sRT+ p R? dt dt t / dt d? s dt dt t dt For a fixed tank with area A, -dhf/dt can be substituted for dhs/dt, and (H - hf...) for hs, dp dp/ dh/ dp dh& dp dT gh + pg ? + ? sg(H ? h) ? p g ? + ? RT+ p R? dt dt / /g dt dt / s dt dt & dt (] 2) 16 Since pt is approximately constant, or changes very slowly compared to other dynamic changes in the system: dpf Substituting...
Integrated Dynamic Analysis of Floating Offshore Wind Turbines Bjųrn Skaare*, Tor David Hanson on land and in shallow waters offshore. Wind turbines at sea are a good solution because achieve better energy efficiency at sea than on land. Presently, offshore wind turbines are installed
Integrated Study of the Nonlinear Dynamics of Collisional Drift Wave Turbulence
George R. Tynan
2012-04-24T23:59:59.000Z
An existing linear magnetized plasma device, the Controlled Shear Decorrelation experiment (CSDX) was used to study the transition from a state of coherent wave like activity to a state of turbulent activity using the magnetic field and thus magnetization of the plasma as the control parameter. The results show the onset of coherent drift waves consistent with linear stability analysis. As the magnetization is raised, at first multiple harmonics appear, consistent with wave steepening. This period is then followed by the beginning of nonlinear interactions between different wave modes, which then results in the formation of narrow frequency but distributed azimuthal wave number fluctuations that are consistent with the formation of long-lived coherent nonlinear structures within the plasmas. These structures, termed quasicoherent modes, persist as the magnetic field is raised. Measurements of turbulent momentum flux indicate that the plasma is also forming an azimuthally symmetric radially sheared fluid flow that is nonlinearly driven by smaller scaled turbulent fluctuations. Further increases in the magnetic field result in the breakup of the quasicoherent mode, and the clear formation of the sheared flow. Numerical simulations of the experiment reproduce the formation of the sheared flow via a vortex merging process, and confirm that the experiment is providing the first clear experimental evidence of the formation of sheared zonal flows from drift turbulent fluctuations in a magnetized plasma.
Park,S.; Parise, J.; Franke, M.; Seydel, T.; Paulmann, C.
2008-01-01T23:59:59.000Z
The thermally induced modifications of the zeolite-like lithosilicate RUB-29 (Cs14Li24[Li18Si72O172] {center_dot} 14H2O, space group I222, a = 11.208(1), b = 17.286(1), c = 23.536(1) Angstroms, and V = 4660(1) Angstroms3) have been studied focusing on static and dynamical disorder of Li. After the water loss, dehydrated RUB-29 (HT-d-RUB-29) maintains the basic space group I222 at high temperatures from 473 up to 1073 K. However, the distribution of extra-framework Li and Cs cations in HT-d-RUB-29 became distinctly different from those in the original structure. In particular, extra-framework Li cations located within porous 8- and 10-membered ring-channels, where these Li cations were partially coordinated with zeolitic water in the original structure, migrate into densely packed Li2O-layers after dehydration. As a result of the migration, the number of empty sites relevant for Li hopping in Li2O-layers decreases, which give a negative effect on the long-range charge transfer in dehydrated RUB-29. Its DC conductivity values estimated from AC impedance spectra lie between 2 x 10-5 and 6 x 10-5 S cm-1 at 873 K, and a low activation energy of 51 kJ/mol (congruent with 0.53 eV) could be determined for the bulk charge transfer process in dehydrated RUB-29.
Brunel, Nicolas
inhibitory integrate-and-fire neurons Rüdiger Zillmer,1,2,3 Nicolas Brunel,1,2 and David Hansel1,2 1
I. I. Bigi
2015-02-25T23:59:59.000Z
Working with Kolya Uraltsev was a real `marvel' for me about CP & T violation, QCD & its impact on transitions in heavy flavor hadrons, EDMs. The goal was -- and still is -- to define fundamental parameters dynamics, how to measure them and compare SM forces with New Dynamics using the best theoretical tools including our brains. The correlations of them with accurate data were crucial for Kolya. Here is a review of CP asymmetries in $B$ & $D$ mesons and $\\tau$ decays, the impact of perturbative and non-perturbative QCD, about EDMs till 2013 -- and for the future.
Office of Legacy Management (LM)
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA group currentBradleyTableSelling7111AWell: Gas productionDynamic , and Static ,
Paluh, Janet L.; Nogales, Eva; Oakley, Berl R.; McDonald, Kent; Pidoux, Alison; Cande, W.Z.
2000-04-01T23:59:59.000Z
., 1999). Human g-tubulin can replace the endogenous protein in fission yeast (Horio and Oakley, 1994), suggesting that key aspects of g-tubulin function are broadly conserved. Microtubule motors play important roles in spindle as- sembly and dynamics. A.... The following strains and plasmids were kind gifts: mad22 strain (h2 ade6-M210, leu1-32, ura4-D18, mad2::ura41) from Dr. Shelly Sazar (Verna and Marrs McLean Departments of Biochemistry and Cell Biology, Baylor College of Medicine, Houston, TX; He et al., 1997...
Masciola, M.; Jonkman, J.; Robertson, A.
2014-03-01T23:59:59.000Z
Techniques to model dynamic mooring lines come in various forms. The most widely used models include either a heuristic representation of the physics (such as a Lumped-Mass, LM, system), a Finite-Element Analysis (FEA) discretization of the lines (discretized in space), or a Finite-Difference (FD) model (which is discretized in both space and time). In this paper, we explore the features of the various models, weigh the advantages of each, and propose a plan for implementing one dynamic mooring line model into the open-source Mooring Analysis Program (MAP). MAP is currently used as a module for the FAST offshore wind turbine computer-aided engineering (CAE) tool to model mooring systems quasi-statically, although dynamic mooring capabilities are desired. Based on the exploration in this manuscript, the lumped-mass representation is selected for implementation in MAP based on its simplicity, computational cost, and ability to provide similar physics captured by higher-order models.
Bhattacharyya, D,; Turton, R.; Zitney, S.
2012-01-01T23:59:59.000Z
Load-following control of future integrated gasification combined cycle (IGCC) plants with pre-combustion CO{sub 2} capture is expected to be far more challenging as electricity produced by renewable energy is connected to the grid and strict environmental limits become mandatory requirements. To study control performance during load following, a plant-wide dynamic simulation of a coal-fed IGCC plant with CO{sub 2} capture has been developed. The slurry-fed gasifier is a single-stage, downward-fired, oxygen-blown, entrained-flow type with a radiant syngas cooler (RSC). The syngas from the outlet of the RSC goes to a scrubber followed by a two-stage sour shift process with inter-stage cooling. The acid gas removal (AGR) process is a dual-stage physical solvent-based process for selective removal of H{sub 2}S in the first stage and CO{sub 2} in the second stage. Sulfur is recovered using a Claus unit with tail gas recycle to the AGR. The recovered CO{sub 2} is compressed by a split-shaft multistage compressor and sent for sequestration after being treated in an absorber with triethylene glycol for dehydration. The clean syngas is sent to two advanced F-class gas turbines (GTs) partially integrated with an elevated-pressure air separation unit. A subcritical steam cycle is used for heat recovery steam generation. A treatment unit for the sour water strips off the acid gases for utilization in the Claus unit. The steady-state model developed in Aspen Plus® is converted to an Aspen Plus Dynamics® simulation and integrated with MATLAB® for control studies. The results from the plant-wide dynamic model are compared qualitatively with the data from a commercial plant having different configuration, operating condition, and feed quality than what has been considered in this work. For load-following control, the GT-lead with gasifier-follow control strategy is considered. A modified proportionalintegralderivative (PID) control is considered for the syngas pressure control. For maintaining the desired CO{sub 2} capture rate while load-following, a linear model predictive controller (LMPC) is implemented in MATLAB®. A combined process and disturbance model is identified by considering a number of model forms and choosing the final model based on an information-theoretic criterion. The performance of the LMPC is found to be superior to the conventional PID control for maintaining CO{sub 2} capture rates in an IGCC power plant while load following.
Tao, Molei; Marsden, Jerrold E
2009-01-01T23:59:59.000Z
We introduce a new class of integrators for stiff ODEs as well as SDEs. These integrators are (i) {\\it Multiscale}: they are based on flow averaging and so do not resolve the fast variables but rather employ step-sizes determined by slow variables (ii) {\\it Basis}: the method is based on averaging the flow of the given dynamical system (which may have hidden slow and fast processes) instead of averaging the instantaneous drift of assumed separated slow and fast processes. This bypasses the need for identifying explicitly (or numerically) the slow or fast variables. (iii) {\\it Non intrusive}: A pre-existing numerical scheme resolving the microscopic time scale can be used as a black box and turned into one of the integrators in this paper by simply turning the large coefficients on over a microscopic timescale and off during a mesoscopic timescale. (iv) {\\it Convergent over two scales}: strongly over slow processes and in the sense of measures over fast ones. (v) {\\it Structure preserving}: For stiff Hamiltoni...
Gross, George
, Rethymnon, Greece A Production Simulation Tool for Systems with an Integrated Concentrated Solar Plant2013 IREP Symposium-Bulk Power System Dynamics and Control ĀIX (IREP), August 25-30, 2013 of the growing interest in effectively harnessing renewable energy resources. The concentrated solar plant (CSP
Dynamics of Anisotropic Universes
Jerome Perez
2006-03-30T23:59:59.000Z
We present a general study of the dynamical properties of Anisotropic Bianchi Universes in the context of Einstein General Relativity. Integrability results using Kovalevskaya exponents are reported and connected to general knowledge about Bianchi dynamics. Finally, dynamics toward singularity in Bianchi type VIII and IX universes are showed to be equivalent in some precise sence.
Sandia National Laboratories: Decision Support for Integrated...
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
platforms (i.e., system dynamics to detailed energywater management models) with geospatial databases and visualization tools. Further, this framework will integrate analysis...
Pedram, Massoud
Dynamic Driver Supply Voltage Scaling for Organic Light Emitting Diode Displays Donghwa Shin, Student, Fellow, IEEE Abstract--Organic light emitting diode (OLED) display is a self-illuminating device]. On the other hand, an organic light emitting diode (OLED) is self-illuminating using organic light emission
Shanbhag, Naresh R.
Dynamic Algorithm Transformations (DAT)--A Systematic Approach to Low-Power Reconfigurable Signal transformations (DAT's) for designing low-power reconfigurable signal-processing systems are presented. Index Terms-- Algorithm transformations, low-power, recon- figurable computing, signal processing. I
Berg, Matthew
2014-04-15T23:59:59.000Z
of such transitions and much more so regarding the effects on hydrology and sediment dynamics in these areas. Using a watershed approach in the Lampasas Cut Plain of Texas, we applied object-oriented classification methods and hand-digitizing of historical aerial...
Masciola, M.; Robertson, A.; Jonkman, J.; Driscoll, F.
2011-10-01T23:59:59.000Z
To enable offshore floating wind turbine design, the following are required: accurate modeling of the wind turbine structural dynamics, aerodynamics, platform hydrodynamics, a mooring system, and control algorithms. Mooring and anchor design can appreciably affect the dynamic response of offshore wind platforms that are subject to environmental loads. From an engineering perspective, system behavior and line loads must be studied well to ensure the overall design is fit for the intended purpose. FAST (Fatigue, Aerodynamics, Structures and Turbulence) is a comprehensive simulation tool used for modeling land-based and offshore wind turbines. In the case of a floating turbine, continuous cable theory is used to emulate mooring line dynamics. Higher modeling fidelity can be gained through the use of finite element mooring theory. This can be achieved through the FASTlink coupling module, which couples FAST with OrcaFlex, a commercial simulation tool used for modeling mooring line dynamics. In this application, FAST is responsible for capturing the aerodynamic loads and flexure of the wind turbine and its tower, and OrcaFlex models the mooring line and hydrodynamic effects below the water surface. This paper investigates the accuracy and stability of the FAST/OrcaFlex coupling operation.
Not Available
2008-09-01T23:59:59.000Z
Summarizes the goals and activities of the DOE Solar Energy Technologies Program efforts within its grid integration subprogram.
Polymer-like Nanowires | The Ames Laboratory
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for RenewableSpeedingBiomassPPPOPetroleum38Polaron BehaviorPolymer-like Nanowires Unique
Eric E. Roden
2009-07-08T23:59:59.000Z
This report summarizes research conducted in conjunction with a project entitled Integrated Nucleic Acid System for In-Field Monitoring of Microbial Community Dynamics and Metabolic Activity, which was funded through the Integrative Studies Element of the former NABIR Program (now the Environmental Remediation Sciences Program) within the Office of Biological and Environmental Research. Dr. Darrell Chandler (originally at Argonne National Laboratory, now with Akonni Biosystems) was the overall PI/PD for the project. The overall project goals were to (1) apply a model iron-reducer and sulfate-reducer microarray and instrumentation systems to sediment and groundwater samples from the Scheibe et al. FRC Area 2 field site, UMTRA sediments, and other DOE contaminated sites; (2) continue development and expansion of a 16S rRNA/rDNA¬-targeted probe suite for microbial community dynamics as new sequences are obtained from DOE-relevant sites; and (3) address the fundamental molecular biology and analytical chemistry associated with the extraction, purification and analysis of functional genes and mRNA in environmental samples. Work on the UW subproject focused on conducting detailed batch and semicontinuous culture reactor experiments with uranium-contaminated FRC Area 2 sediment. The reactor experiments were designed to provide coherent geochemical and microbiological data in support of microarray analyses of microbial communities in Area 2 sediments undergoing biostimulation with ethanol. A total of four major experiments were conducted (one batch and three semicontinuous culture), three of which (the batch and two semicontinuous culture) provided samples for DNA microarray analysis. A variety of other molecular analyses (clone libraries, 16S PhyloChip, RT-PCR, and T-RFLP) were conducted on parallel samples from the various experiments in order to provide independent information on microbial community response to biostimulation.
Dougherty, John J. (Norristown, PA); Rudge, George T. (Lansdale, PA)
1980-01-01T23:59:59.000Z
An electric signal representative of the rate of insolation is integrated to determine if it is adequate for operation of a solar energy collection system.
Frangioni, John V. (Wayland, MA); De Grand, Alec M. (Boston, MA)
2007-10-30T23:59:59.000Z
The invention is based, in part, on the discovery that by combining certain components one can generate a tissue-like phantom that mimics any desired tissue, is simple and inexpensive to prepare, and is stable over many weeks or months. In addition, new multi-modal imaging objects (e.g., beads) can be inserted into the phantoms to mimic tissue pathologies, such as cancer, or merely to serve as calibration standards. These objects can be imaged using one, two, or more (e.g., four) different imaging modalities (e.g., x-ray computed tomography (CT), positron emission tomography (PET), single photon emission computed tomography (SPECT), and near-infrared (NIR) fluorescence) simultaneously.
Non-Integrability of a weakly integrable Hamiltonian system
Giuseppe Pucacco; Kjell Rosquist
2003-08-29T23:59:59.000Z
The geometric approach to mechanics based on the Jacobi metric allows to easily construct natural mechanical systems which are integrable (actually separable) at a fixed value of the energy. The aim of the present paper is to investigate the dynamics of a simple prototype system outside the zero-energy hypersurface. We find that the general situation is that in which integrability is not preserved at arbitrary values of the energy. The structure of the Hamiltonian in the separating coordinates at zero energy allows a perturbation treatment of this system at energies slightly different from zero, by which we obtain an analytical proof of non-integrability.
Integrated Daylight Harvesting and Occupancy Detection Using Digital Imaging
Salvaggio, Carl
Integrated Daylight Harvesting and Occupancy Detection Using Digital Imaging Abhijit Sarkar dynamic range CMOS video camera to integrate daylight harvesting and occupancy sensing functionalities by these sensors. The prototype involves three algorithms, daylight estimation, occupancy detection and lighting
ERP SOURCE ESTIMATION BY INTEGRATION OF ANATOMICAL AND
ERP SOURCE ESTIMATION BY INTEGRATION OF ANATOMICAL AND DYNAMICAL CONSTRAINTS Thesis submitted a small EEG signal analysis project under his supervision, in which I applied blind source separation
Scientific Innovation Through Integration Investing in Innovation
of living tissues and cells as well as quantitative investigation of molecular interaction dynamics and molecular chemical-state information simultaneously. Next-generation metabolomics characterization-photon fluorescence microscope: Seamlessly integrates nonlinear two-photon excitation, laser scanning confocal
Time, dynamics and chaos. Integrating Poincare's "non-integrable systems"
Prigogine, I.
1990-01-01T23:59:59.000Z
This report discusses the nature of time. The author attempts to resolve the conflict between the concept of time reversibility in classical and quantum mechanics with the macroscopic world's irreversibility of time. (LSP)
On the Topic of Motion Integrals
Bertinato, Christopher
2013-04-02T23:59:59.000Z
An integral of motion is a function of the states of a dynamical system that is constant along the systems trajectories. Integrals are known for their utility as a means of reducing the dimension of a system, effectively leaving only one...
Paying for Likes? Understanding Facebook Like Fraud Using Honeypots
De Cristofaro, Emiliano; Jourjon, Guillaume; Kaafar, Mohamed Ali; Shafiq, M Zubair
2014-01-01T23:59:59.000Z
Facebook pages offer an easy way to reach out to a very large audience as they can easily be promoted using Facebook's advertising platform. Recently, the number of likes of a Facebook page has become a measure of its popularity and profitability, and an underground market of services boosting page likes, aka like farms, has emerged. Some reports have suggested that like farms use a network of profiles that also like other pages to elude fraud protection algorithms, however, to the best of our knowledge, there has been no systematic analysis of Facebook pages' promotion methods. This paper presents a comparative measurement study of page likes garnered via Facebook ads and by a few like farms. We deploy a set of honeypot pages, promote them using both methods, and analyze garnered likes based on likers' demographic, temporal, and social characteristics. We highlight a few interesting findings, including that some farms seem to be operated by bots and do not really try to hide the nature of their operations, w...
Smart Grid Integration Laboratory
Wade Troxell
2011-09-30T23:59:59.000Z
The initial federal funding for the Colorado State University Smart Grid Integration Laboratory is through a Congressionally Directed Project (CDP), DE-OE0000070 Smart Grid Integration Laboratory. The original program requested in three one-year increments for staff acquisition, curriculum development, and instrumentation ā?? all which will benefit the Laboratory. This report focuses on the initial phase of staff acquisition which was directed and administered by DOE NETL/ West Virginia under Project Officer Tom George. Using this CDP funding, we have developed the leadership and intellectual capacity for the SGIC. This was accomplished by investing (hiring) a core team of Smart Grid Systems engineering faculty focused on education, research, and innovation of a secure and smart grid infrastructure. The Smart Grid Integration Laboratory will be housed with the separately funded Integrid Laboratory as part of CSUā??s overall Smart Grid Integration Center (SGIC). The period of performance of this grant was 10/1/2009 to 9/30/2011 which included one no cost extension due to time delays in faculty hiring. The Smart Grid Integration Laboratoryā??s focus is to build foundations to help graduate and undergraduates acquire systems engineering knowledge; conduct innovative research; and team externally with grid smart organizations. Using the results of the separately funded Smart Grid Workforce Education Workshop (May 2009) sponsored by the City of Fort Collins, Northern Colorado Clean Energy Cluster, Colorado State University Continuing Education, Spirae, and Siemens has been used to guide the hiring of faculty, program curriculum and education plan. This project develops faculty leaders with the intellectual capacity to inspire its students to become leaders that substantially contribute to the development and maintenance of Smart Grid infrastructure through topics such as: (1) Distributed energy systems modeling and control; (2) Energy and power conversion; (3) Simulation of electrical power distribution system that integrates significant quantities of renewable and distributed energy resources; (4) System dynamic modeling that considers end-user behavior, economics, security and regulatory frameworks; (5) Best practices for energy management IT control solutions for effective distributed energy integration (including security with the underlying physical power systems); (6) Experimental verification of effects of various arrangements of renewable generation, distributed generation and user load types along with conventional generation and transmission. Understanding the core technologies for enabling them to be used in an integrated fashion within a distribution network remains is a benefit to the future energy paradigm and future and present energy engineers.
Studies of DNA dynamics in slit-like nanochannel confinement
Balducci, Anthony (Anthony G.)
2008-01-01T23:59:59.000Z
The ability to visually observe single DNA molecules has greatly improved our understanding of polymer physics, from gel electrophoresis to the theology of dilute (and even concentrated) polymer solutions. The use of DNA ...
A continuous gradient-like dynamical approach to Pareto ...
2013-04-26T23:59:59.000Z
Apr 26, 2013 ... [3] H. Attouch, Variational convergence for functions and operators, Pitman Ad- vanced Publishing Program, Applicable Mathematics Series, ...
Traveling Waves with Paraboloid Like Interfaces for Balanced Bistable Dynamics
Hamel, FranĆ§ois
University 88, S-4, Ting Chou Road, Taipei 116, Taiwan c UniversitĀ“e Aix-Marseille III, LATP (UMR CNRS 6632 e Laboratoire M.I.P. (UMR CNRS 5640) and Institut Universitaire de France UniversitĀ“e Paul Sabatier
Magmatic "Quantum-Like" Systems
Elemer E Rosinger
2008-12-16T23:59:59.000Z
Quantum computation has suggested, among others, the consideration of "non-quantum" systems which in certain respects may behave "quantum-like". Here, what algebraically appears to be the most general possible known setup, namely, of {\\it magmas} is used in order to construct "quantum-like" systems. The resulting magmatic composition of systems has as a well known particular case the tensor products.
Eto, Joseph; Budhraja, Vikram; Ballance, John; Dyer, Jim; Mobasheri, Fred; Eto, Joseph
2008-07-01T23:59:59.000Z
California is on a path to increase utilization of renewable resources. California will need to integrate approximately 30,000 megawatts (MW) of new renewable generation in the next 20 years. Renewable resources are typically located in remote locations, not near the load centers. Nearly two/thirds or 20,000 MW of new renewable resources needed are likely to be delivered to Los Angeles Basin transmission gateways. Integration of renewable resources requires interconnection to the power grid, expansion of the transmission system capability between the backbone power grid and transmission gateways, and increase in delivery capacity from transmission gateways to the local load centers. To scope the transmission, operations, and reliability issues for renewables integration, this research focused on the Los Angeles Basin Area transmission gateways where most of new renewables are likely. Necessary actions for successful renewables integration include: (1) Expand Los Angeles Basin Area transmission gateway and nomogram limits by 10,000 to 20,000 MW; (2) Upgrade local transmission network for deliverability to load centers; (3) Secure additional storage, demand management, automatic load control, dynamic pricing, and other resources that meet regulation and ramping needed in real time operations; (4) Enhance local voltage support; and (5) Expand deliverability from Los Angeles to San Diego and Northern California.
Numerical integration of variational equations
Ch. Skokos; E. Gerlach
2010-09-29T23:59:59.000Z
We present and compare different numerical schemes for the integration of the variational equations of autonomous Hamiltonian systems whose kinetic energy is quadratic in the generalized momenta and whose potential is a function of the generalized positions. We apply these techniques to Hamiltonian systems of various degrees of freedom, and investigate their efficiency in accurately reproducing well-known properties of chaos indicators like the Lyapunov Characteristic Exponents (LCEs) and the Generalized Alignment Indices (GALIs). We find that the best numerical performance is exhibited by the \\textit{`tangent map (TM) method'}, a scheme based on symplectic integration techniques which proves to be optimal in speed and accuracy. According to this method, a symplectic integrator is used to approximate the solution of the Hamilton's equations of motion by the repeated action of a symplectic map $S$, while the corresponding tangent map $TS$, is used for the integration of the variational equations. A simple and systematic technique to construct $TS$ is also presented.
Quantizing Horava-Lifshitz gravity via causal dynamical triangulations
DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)
Anderson, Christian; Carlip, Steven J.; Cooperman, Joshua H.; Ho?ava, Petr; Kommu, Rajesh K.; Zulkowski, Patrick R.
2012-02-01T23:59:59.000Z
We extend the discrete Regge action of causal dynamical triangulations to include discrete versions of the curvature squared terms appearing in the continuum action of (2+1)-dimensional projectable Horava-Lifshitz gravity. Focusing on an ensemble of spacetimes whose spacelike hypersurfaces are two-spheres, we employ Markov chain Monte Carlo simulations to study the path integral defined by this extended discrete action. We demonstrate the existence of known and novel macroscopic phases of spacetime geometry, and we present preliminary evidence for the consistency of these phases with solutions to the equations of motion of classical Horava-Lifshitz gravity. Apparently, the phase diagram contains a phase transition between a time-dependent de Sitter-like phase and a time-independent phase. We speculate that this phase transition may be understood in terms of deconfinement of the global gravitational Hamiltonian integrated over a spatial two-sphere.
Modal aerosol dynamics modeling
Whitby, E.R.; McMurry, P.H.; Shankar, U.; Binkowski, F.S.
1991-02-01T23:59:59.000Z
The report presents the governing equations for representing aerosol dynamics, based on several different representations of the aerosol size distribution. Analytical and numerical solution techniques for these governing equations are also reviewed. Described in detail is a computationally efficient numerical technique for simulating aerosol behavior in systems undergoing simultaneous heat transfer, fluid flow, and mass transfer in and between the gas and condensed phases. The technique belongs to a general class of models known as modal aerosol dynamics (MAD) models. These models solve for the temporal and spatial evolution of the particle size distribution function. Computational efficiency is achieved by representing the complete aerosol population as a sum of additive overlapping populations (modes), and solving for the time rate of change of integral moments of each mode. Applications of MAD models for simulating aerosol dynamics in continuous stirred tank aerosol reactors and flow aerosol reactors are provided. For the application to flow aerosol reactors, the discussion is developed in terms of considerations for merging a MAD model with the SIMPLER routine described by Patankar (1980). Considerations for incorporating a MAD model into the U.S. Environmental Protection Agency's Regional Particulate Model are also described. Numerical and analytical techniques for evaluating the size-space integrals of the modal dynamics equations (MDEs) are described. For multimodal logonormal distributions, an analytical expression for the coagulation integrals of the MDEs, applicable for all size regimes, is derived, and is within 20% of accurate numerical evaluation of the same moment coagulation integrals. A computationally efficient integration technique, based on Gauss-Hermite numerical integration, is also derived.
De tabellen zijn: likes(drinker, beer)
Sidorova, Natalia
De tabellen zijn: likes(drinker, beer) visits(drinker, bar) serves(bar, beer) De enige te maken die iemand lust die die bar bezoekt) bar(serves) - bar(serves - bar,beer(visits 1 likes))) 8. Geef(serves - bar,beer(visits 1 not likes)) not likes drinker(likes)× (beer(serves) beer(likes)) - likes Of: bar
Crystal-Like geometric modeling
Landreneau, Eric Benjamin
2006-08-16T23:59:59.000Z
faces, symmetry, and fractal geometry. The techniques have also been implemented in software, as a proof of concept. They are used in an interactive geometric modeling system, in which users can use these techniques to create crystal-like shapes...
Apparatus for insulating windows and the like
Mitchell, R.A.
1984-06-19T23:59:59.000Z
Apparatus for insulating window openings through walls and the like includes a thermal shutter, a rail for mounting the shutter adjacent to the window opening and a coupling for connecting the shutter to the rail. The thermal shutter includes an insulated panel adhered to frame members which surround the periphery of the panel. The frame members include a hard portion for providing the frame and a soft portion for providing a seal with that portion of the wall adjacent to the periphery of the opening. The coupling means is preferably integral with the attachment rail. According to a preferred embodiment, the coupling means includes a continuous hinge of reduced thickness. The thermal shutter can be permanently attached, hinged, bi-folded, or sliding with respect to the window and wall. A distribution method is to market the apparatus in kit'' form. 11 figs.
Apparatus for insulating windows and the like
Mitchell, Robert A. (R.D. #1, Box 462-A, Voorheesville, NY 12186)
1984-01-01T23:59:59.000Z
Apparatus for insulating window openings through walls and the like includes a thermal shutter, a rail for mounting the shutter adjacent to the window opening and a coupling for connecting the shutter to the rail. The thermal shutter includes an insulated panel adhered to frame members which surround the periphery of the panel. The frame members include a hard portion for providing the frame and a soft portion for providing a seal with that portion of the wall adjacent to the periphery of the opening. The coupling means is preferably integral with the attachment rail. According to a preferred embodiment, the coupling means includes a continuous hinge of reduced thickness. The thermal shutter can be permanently attached, hinged, bi-folded, or sliding with respect to the window and wall. A distribution method is to market the apparatus in "kit" form.
NREL: Energy Systems Integration - Energy Systems Integration...
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Printable Version Energy Systems Integration Facility Newsroom The Energy Systems Integration Facility (ESIF) will be one of the only megawatt-scale test facilities in the United...
California at Irvine, University of
CVSys: A Coordination Framework for Dynamic and Fully Distributed Cardiovascular Modeling and dynamic simulation control. This coordination framework uniquely incorporates attributes of open indigenous and a more integrated system representation. Dynamic simulation control serves to interject new
Global Dynamics in Galactic Triaxial Systems I
Pablo M. Cincotta; Claudia M. Giordano; Josefa Perez; .
2006-04-21T23:59:59.000Z
In this paper we present a theoretical analysis of the global dynamics in a triaxial galactic system using a 3D integrable Hamiltonian as a simple representation. We include a thorough discussion on the effect of adding a generic non--integrable perturbation to the global dynamics of the system. We adopt the triaxial Stackel Hamiltonian as the integrable model and compute its resonance structure in order to understand its global dynamics when a perturbation is introduced. Also do we take profit of this example in order to provide a theoretical discussion about diffussive processes taking place in phase space.
Volume Ignition via Time-like Detonation in Pellet Fusion
Csernai, L P
2015-01-01T23:59:59.000Z
Relativistic fluid dynamics and the theory of relativistic detonation fronts are used to estimate the space-time dynamics of the burning of the D-T fuel in Laser driven pellet fusion experiments. The initial "High foot" heating of the fuel makes the compressed target transparent to radiation, and then a rapid ignition pulse can penetrate and heat up the whole target to supercritical temperatures in a short time, so that most of the interior of the target ignites almost simultaneously and instabilities will have no time to develop. In these relativistic, radiation dominated processes both the interior, time-like burning front and the surrounding space-like part of the front will be stable against Rayleigh-Taylor instabilities. To achieve this rapid, volume ignition the pulse heating up the target to supercritical temperature should provide the required energy in less than ~ 10 ps.
Hydrodynamic simulations of captured protoatmospheres around Earth-like planets
Stoekl, Alexander; Lammer, Helmut
2015-01-01T23:59:59.000Z
Young terrestrial planets, when they are still embedded in a circumstellar disk, accumulate an atmosphere of nebula gas. The evolution and eventual evaporation of the protoplanetary disk affect the structure and dynamics of the planetary atmosphere. These processes, combined with other mass loss mechanisms, such as thermal escape driven by extreme ultraviolet and soft X-ray radiation (XUV) from the young host star, determine how much of the primary atmosphere, if anything at all, survives into later stages of planetary evolution. Our aim is to explore the structure and the dynamic outflow processes of nebula-accreted atmospheres in dependency on changes in the planetary environment. We integrate stationary hydrostatic models and perform time-dependent dynamical simulations to investigate the effect of a changing nebula environment on the atmospheric structure and the timescales on which the protoatmosphere reacts to these changes. We find that the behavior of the atmospheres strongly depends on the mass of th...
Hydrino like states in graphene and Aharonov-Bohm field
Pulak Ranjan Giri
2008-08-25T23:59:59.000Z
We study the dynamics of fermions on graphene in presence of Coulomb impurities and Aharonov-Bohm field. Special emphasis is given to the formation of hydrino like states and its lifting of degeneracy due to the presence of AB field. The flux of the AB field can be tuned to make the low angular momentum hydrino states stable against decay. The zero limit physics of the two coupling constants \\alpha_G and \\Phi involved in the system is discussed.
Hydrino like states in graphene and Aharonov-Bohm field
Giri, Pulak Ranjan
2008-01-01T23:59:59.000Z
We study the dynamics of fermions on graphene in presence of Coulomb impurities and Aharonov-Bohm field. Special emphasis is given to the formation of hydrino like states and its lifting of degeneracy due to the presence of AB field. The flux of the AB field can be tuned to make the low angular momentum hydrino states stable against decay. The zero limit physics of the two coupling constants \\alpha_G and \\Phi involved in the system is discussed.
Integrated field emission array for ion desorption
Resnick, Paul J; Hertz, Kristin L; Holland, Christopher; Chichester, David; Schwoebel, Paul
2013-09-17T23:59:59.000Z
An integrated field emission array for ion desorption includes an electrically conductive substrate; a dielectric layer lying over the electrically conductive substrate comprising a plurality of laterally separated cavities extending through the dielectric layer; a like plurality of conically-shaped emitter tips on posts, each emitter tip/post disposed concentrically within a laterally separated cavity and electrically contacting the substrate; and a gate electrode structure lying over the dielectric layer, including a like plurality of circular gate apertures, each gate aperture disposed concentrically above an emitter tip/post to provide a like plurality of annular gate electrodes and wherein the lower edge of each annular gate electrode proximate the like emitter tip/post is rounded. Also disclosed herein are methods for fabricating an integrated field emission array.
A new look for good old parton dynamics
Yu. L. Dokshitzer
2009-11-04T23:59:59.000Z
A short review is given of the idea and of the present status of recently proposed evolution equations that respect the Gribov-Lipatov reciprocity between space-like and time-like parton dynamics in all orders.
Manifold Integration: Data Integration on Multiple Manifolds
Choi, Hee Youl
2011-08-08T23:59:59.000Z
MANIFOLD INTEGRATION: DATA INTEGRATION ON MULTIPLE MANIFOLDS A Dissertation by HEE YOUL CHOI Submitted to the O?ce of Graduate Studies of Texas A&M University in partial fulflllment of the requirements for the degree of DOCTOR OF PHILOSOPHY... May 2010 Major Subject: Computer Science MANIFOLD INTEGRATION: DATA INTEGRATION ON MULTIPLE MANIFOLDS A Dissertation by HEE YOUL CHOI Submitted to the O?ce of Graduate Studies of Texas A&M University in partial fulflllment of the requirements...
Numerical Integration Numerical Summation
Cohen, Henri
Numerical Integration Numerical Summation Numerical Extrapolation Numerical Recipes for Multiprecision Computations #12;Numerical Integration Numerical Summation Numerical Extrapolation Multiprecision, integration, summation, extrapolation, evaluation of continued fractions, Euler products and sums, complete
Thermal Control & System Integration
Broader source: Energy.gov [DOE]
The thermal control and system integration activity focuses on issues such as the integration of motor and power control technologies and the development of advanced thermal control technologies....
Steve Bell
2009-06-24T23:59:59.000Z
Feb 23, 2009 ... Cauchy Integral Formula basics. I'm using the enumerate environment on this slide. 1. The Cauchy Integral Formula was discovered by Cauchy ...
Schroeder, Charles Grant
1996-01-01T23:59:59.000Z
Due to the needs of real-time, bandwidth intensive applications like videoconferencing, several resource reservation infrastructures like the Integrated Services Packet Network (ISPN) are currently being developed. These schemes provide applications...
Collective dynamics in sparse networks
Stefano Luccioli; Simona Olmi; Antonio Politi; Alessandro Torcini
2012-08-03T23:59:59.000Z
The microscopic and macroscopic dynamics of random networks is investigated in the strong-dilution limit (i.e. for sparse networks). By simulating chaotic maps, Stuart-Landau oscillators, and leaky integrate-and-fire neurons, we show that a finite connectivity (of the order of a few tens) is able to sustain a nontrivial collective dynamics even in the thermodynamic limit. Although the network structure implies a non-additive dynamics, the microscopic evolution is extensive (i.e. the number of active degrees of freedom is proportional to the number of network elements).
Connecting curves for dynamical systems
R. Gilmore; Jean-Marc Ginoux; Timothy Jones; C. Letellier; U. S. Freitas
2010-03-08T23:59:59.000Z
We introduce one dimensional sets to help describe and constrain the integral curves of an $n$ dimensional dynamical system. These curves provide more information about the system than the zero-dimensional sets (fixed points) do. In fact, these curves pass through the fixed points. Connecting curves are introduced using two different but equivalent definitions, one from dynamical systems theory, the other from differential geometry. We describe how to compute these curves and illustrate their properties by showing the connecting curves for a number of dynamical systems.
Systems integration for global sustainability
2015-01-01T23:59:59.000Z
Le, A. Z. Khan, Improving integration for integrated coastal347 ISSUE 6225 Systems integration for global sustainabilitySUSTAINABILITY Systems integration for global sustainability
Reptational dynamics in dissipative particle dynamics simulations of polymer melts
P. Nikunen; I. Vattulainen; M. Karttunen
2005-12-12T23:59:59.000Z
Understanding the complex viscoelastic properties of polymeric liquids remains a challenge in materials science and soft matter physics. Here, we present a simple and computationally efficient criterion for the topological constraints in polymeric liquids using the Dissipative Particle Dynamics (DPD). The same approach is also applicable in other soft potential models. For short chains the model correctly reproduces Rouse-like dynamics whereas for longer chains the dynamics becomes reptational as the chain length is increased - something that is not attainable using standard DPD or other coarse-grained soft potential methods. Importantly, no new length scales or forces need to be added.
DYNAMIC RISK MANAGEMENT IN ELECTRICITY PORTFOLIO OPTIMIZATION
Eichhorn, Andreas
DYNAMIC RISK MANAGEMENT IN ELECTRICITY PORTFOLIO OPTIMIZATION VIA POLYHEDRAL RISK FUNCTIONALS the dynamic decision structure appropriately. In energy risk management, which is typically carried out ex, for integrating risk management into a stochastic optimization framework, risk has to be quantified in a definite
Video Analysis and Modeling Performance Task to promote becoming like scientists in classrooms
Wee, Loo Kang
2015-01-01T23:59:59.000Z
This paper aims to share the use of Tracker a free open source video analysis and modeling tool that is increasingly used as a pedagogical tool for the effective learning and teaching of Physics for Grade 9 Secondary 3 students in Singapore schools to make physics relevant to the real world. We discuss the pedagogical use of Tracker, guided by the Framework for K-12 Science Education by National Research Council, USA to help students to be more like scientists. For a period of 6 to 10 weeks, students use a video analysis coupled with the 8 practices of sciences such as 1. Ask question, 2. Use models, 3. Plan and carry out investigation, 4. Analyse and interpret data, 5. Use mathematical and computational thinking, 6. Construct explanations, 7. Argue from evidence and 8. Communicate information. This papers focus in on discussing some of the performance task design ideas such as 3.1 flip video, 3.2 starting with simple classroom activities, 3.3 primer science activity, 3.4 integrative dynamics and kinematics l...
Turnitin Moodle Direct Integration
de Lijser, Peter
Turnitin Moodle® Direct Integration Instructor User Manual Turnitin Moodle Integration Manual: 1. Turnitin Moodle Integration Manual: 2 Contents Instructor User Manual 1 Creating a Turnitin Assignment 3 Accessing GradeMark® 15 Glossary 16 #12;Instructor User Manual Turnitin Moodle Integration Manual: 3
Extending SysML for Integration with Solver-based
Shapiro, Benjamin
by integrated models of: Model-based Systems Engineering Requirements Accelerate at of 4 m/s2 100 kw hydraulic;Overview Ā§ Motivation and approach Ā§ Dynamic simulation overview Ā§ SysML extension Ā§ Detailed example Ā§ Transforming to simulation formats Ā§ Summary #12;Overview Ā§ Motivation and approach Ā§ Dynamic simulation
The University of New Mexico An NSF Integrative Graduate
New Mexico, University of
chemical calculations are capable to describe the electronic structure and complex dynamics in such complex ligands on the electronic structure and observe strong surface-ligand interactions leading to formation.chtm.unm.edu/incbnigert/ Integrating Nanotechnology with Cell Biology and Neuroscience Excited State Dynamics and Energy Transfer
L. R. G. Fontes; C. M. Newman; K. Ravishankar; E. Schertzer
2007-04-20T23:59:59.000Z
The dynamical discrete web (DDW), introduced in recent work of Howitt and Warren, is a system of coalescing simple symmetric one-dimensional random walks which evolve in an extra continuous dynamical parameter s. The evolution is by independent updating of the underlying Bernoulli variables indexed by discrete space-time that define the discrete web at any fixed s. In this paper, we study the existence of exceptional (random) values of s where the paths of the web do not behave like usual random walks and the Hausdorff dimension of the set of such exceptional s. Our results are motivated by those about exceptional times for dynamical percolation in high dimension by H\\"aggstrom, Peres and Steif, and in dimension two by Schramm and Steif. The exceptional behavior of the walks in DDW is rather different from the situation for dynamical random walks of Benjamini, H\\"aggstrom, Peres and Steif. In particular, we prove that there are exceptional values of s for which the walk from the origin S^s(n) has limsup S^s(n)/\\sqrt n \\leq K with a nontrivial dependence of the Hausdorff dimension on K. We also discuss how these and other results extend to the dynamical Brownian web, a natural scaling limit of DDW. The scaling limit is the focus of a paper in preparation; it was studied by Howitt and Warren and is related to the Brownian net of Sun and Swart.
Natural Dynamics for Combinatorial Optimization
Ovchinnikov, Igor V
2015-01-01T23:59:59.000Z
Stochastic and or natural dynamical systems (DSs) are dominated by sudden nonlinear processes such as neuroavalanches, gamma-ray bursts, solar flares, earthquakes etc. that exhibit scale-free statistics. These behaviors also occur in many nanosystems. On phase diagrams, these DSs belong to a finite-width phase that separates the phases of thermodynamic equilibrium and ordinary chaotic dynamics, and that is known under such names as intermittency, noise-induced chaos, and self-organized criticality. Within the recently formulated approximation-free cohomological theory of stochastic differential equations, the noise-induced chaos can be roughly interpreted as a noise-induced overlap between regular (integrable) and chaotic (non-integrable) deterministic dynamics so that DSs in this phase inherit the properties of the both. Here, we analyze this unique set of properties and conclude that such DSs must be the most efficient natural optimizers. Based on this understanding, we propose the method of the natural dyn...
Cost-Causation and Integration Cost Analysis for Variable Generation
Milligan, M.; Ela, E.; Hodge, B. M.; Kirby, B.; Lew, D.; Clark, C.; DeCesaro, J.; Lynn, K.
2011-06-01T23:59:59.000Z
This report examines how wind and solar integration studies have evolved, what analysis techniques work, what common mistakes are still made, what improvements are likely to be made in the near future, and why calculating integration costs is such a difficult problem and should be undertaken carefully, if at all.
The ideal energy of classical lattice dynamics
Margolus, Norman
2015-01-01T23:59:59.000Z
We define, as local quantities, the least energy and momentum allowed by quantum mechanics and special relativity for physical realizations of some classical lattice dynamics. These definitions depend on local rates of finite-state change. In two example dynamics, we see that these rates evolve like classical mechanical energy and momentum.
Wind Integration Study Methods (Presentation)
Milligan, M.; Kirby, B.
2011-04-01T23:59:59.000Z
This presentation provides an overview of common elements, differences, integration costs, and errors in integration analysis.
HyperKhaler Metrics Building and Integrable Models
E. H. Saidi; M. B. Sedra
2005-12-18T23:59:59.000Z
Methods developed for the analysis of integrable systems are used to study the problem of hyperK\\"ahler metrics building as formulated in D=2 N=4 supersymmetric harmonic superspace. We show, in particular, that the constraint equation $\\beta\\partial^{++2}\\omega -\\xi^{++2}\\exp 2\\beta\\omega =0$ and its Toda like generalizations are integrable. Explicit solutions together with the conserved currents generating the symmetry responsible of the integrability of these equations are given. Other features are also discussed
Reservoir cross-over in entanglement dynamics
L. Mazzola; S. Maniscalco; K. -A. Suominen; B. M. Garraway
2009-08-28T23:59:59.000Z
We study the effects of spontaneous emission on the entanglement dynamics of two qubits interacting with a common Lorentzian structured reservoir. We assume that the qubits are initially prepared in a Bell-like state. We focus on the strong coupling regime and study the entanglement dynamics for different regions of the spontaneous emission decay parameter. This investigation allows us to explore the cross-over between common and independent reservoirs in entanglement dynamics.
Trajectory generation for car-like robots
Vasseur, H.A.; Pin, F.G.
1990-01-01T23:59:59.000Z
Autonomous robots or remotely operated vehicles have raised high hopes in the military and industrial communities because of the potential safety improvement and gain of productivity they may provide. Waste management on nuclear sites, pallet manipulation in factories, interventions on battle-fields, etc., are actively studied. A lot of these applications require powerful four-wheel vehicles, the kinematics of which is similar to that of a car. Such vehicles have three degrees of freedom: the (x,y) positions in a plane and the orientation of the vehicle. Path planning is often understood as only changing the position of the vehicle, whereas the tasks performed by this kind of robot requires a perfect orientation of the vehicle: forklifting a pallet or docking at a loading or unloading station requires accuracy in the orientation of the vehicle. It is this requirement and the kinematic constraints of the motion mode which have led to the path-planning algorithm presented in this paper. The velocity of the robot belongs to a two-dimensional vectorial space. However, we assume that there is no slipping of the wheels. Therefore, at a given position, the direction of the velocity of the rear axle, is colinear with that of the vehicle. The equation conveying this constraint is not integrable and affects the velocity but not the space of the configurations of the robot: it is a non-holonomic constraint. If the steering angle of the front wheels is constant, the vehicle moves along a circle. Since the steering angle of the car-like robots is limited, the radius of the circle is always greater than a certain value which is the minimum radius of curvature of any achievable trajectory. 3 refs., 8 figs.
Modelling and simulation of multidisciplinary dynamic systems Lead: A. Fakri.
Baudoin, GeneviĆØve
Modelling and simulation of multidisciplinary dynamic systems Lead: A. Fakri. Permanent members: P. Integration of various engineering disciplines and the consideration of the dynamic control need a concurrent suited for the energy exchanges to study multidisciplinary dynamic engineering systems modelling. Our
Stochastic modeling of lift and drag dynamics under turbulent conditions
Peinke, Joachim
measurement. The model is being developed with the aim to integrate it into a general wind energy converter dynamics, drag dynamics. 1 Introduction Wind energy converters (WECs) are permanently exposed to turbulent.peinke@forwind.de in every second, which imposes different risks. The dynamical nature of the wind has a significant impact
Complex Dynamics Bernardo Da Costa, Koushik Ramachandran, Jingjing Qu, and I had a two semester learning seminar in complex analysis and potential ...
Buried waste integrated demonstration technology integration process
Ferguson, J.S.; Ferguson, J.E.
1992-04-01T23:59:59.000Z
A Technology integration Process was developed for the Idaho National Energy Laboratories (INEL) Buried Waste Integrated Demonstration (BWID) Program to facilitate the transfer of technology and knowledge from industry, universities, and other Federal agencies into the BWID; to successfully transfer demonstrated technology and knowledge from the BWID to industry, universities, and other Federal agencies; and to share demonstrated technologies and knowledge between Integrated Demonstrations and other Department of Energy (DOE) spread throughout the DOE Complex. This document also details specific methods and tools for integrating and transferring technologies into or out of the BWID program. The document provides background on the BWID program and technology development needs, demonstrates the direction of technology transfer, illustrates current processes for this transfer, and lists points of contact for prospective participants in the BWID technology transfer efforts. The Technology Integration Process was prepared to ensure compliance with the requirements of DOE's Office of Technology Development (OTD).
Buried waste integrated demonstration technology integration process
Ferguson, J.S.; Ferguson, J.E.
1992-04-01T23:59:59.000Z
A Technology integration Process was developed for the Idaho National Energy Laboratories (INEL) Buried Waste Integrated Demonstration (BWID) Program to facilitate the transfer of technology and knowledge from industry, universities, and other Federal agencies into the BWID; to successfully transfer demonstrated technology and knowledge from the BWID to industry, universities, and other Federal agencies; and to share demonstrated technologies and knowledge between Integrated Demonstrations and other Department of Energy (DOE) spread throughout the DOE Complex. This document also details specific methods and tools for integrating and transferring technologies into or out of the BWID program. The document provides background on the BWID program and technology development needs, demonstrates the direction of technology transfer, illustrates current processes for this transfer, and lists points of contact for prospective participants in the BWID technology transfer efforts. The Technology Integration Process was prepared to ensure compliance with the requirements of DOE`s Office of Technology Development (OTD).
Integrated Energy Systems (IES) for Buildings: A Market Assessment
LeMar, P.
2002-10-29T23:59:59.000Z
Integrated Energy Systems (IES) combine on-site power or distributed generation technologies with thermally activated technologies to provide cooling, heating, humidity control, energy storage and/or other process functions using thermal energy normally wasted in the production of electricity/power. IES produce electricity and byproduct thermal energy onsite, with the potential of converting 80 percent or more of the fuel into useable energy. IES have the potential to offer the nation the benefits of unprecedented energy efficiency gains, consumer choice and energy security. It may also dramatically reduce industrial and commercial building sector carbon and air pollutant emissions and increase source energy efficiency. Applications of distributed energy and Combined heat and power (CHP) in ''Commercial and Institutional Buildings'' have, however, been historically limited due to insufficient use of byproduct thermal energy, particularly during summer months when heating is at a minimum. In recent years, custom engineered systems have evolved incorporating potentially high-value services from Thermally Activated Technologies (TAT) like cooling and humidity control. Such TAT equipment can be integrated into a CHP system to utilize the byproduct heat output effectively to provide absorption cooling or desiccant humidity control for the building during these summer months. IES can therefore expand the potential thermal energy services and thereby extend the conventional CHP market into building sector applications that could not be economically served by CHP alone. Now more than ever, these combined cooling, heating and humidity control systems (IES) can potentially decrease carbon and air pollutant emissions, while improving source energy efficiency in the buildings sector. Even with these improvements over conventional CHP systems, IES face significant technological and economic hurdles. Of crucial importance to the success of IES is the ability to treat the heating, ventilation, air conditioning, water heating, lighting, and power systems loads as parts of an integrated system, serving the majority of these loads either directly or indirectly from the CHP output. The CHP Technology Roadmaps (Buildings and Industry) have focused research and development on a comprehensive integration approach: component integration, equipment integration, packaged and modular system development, system integration with the grid, and system integration with building and process loads. This marked change in technology research and development has led to the creation of a new acronym to better reflect the nature of development in this important area of energy efficiency: Integrated Energy Systems (IES). Throughout this report, the terms ''CHP'' and ''IES'' will sometimes be used interchangeably, with CHP generally reserved for the electricity and heat generating technology subsystem portion of an IES. The focus of this study is to examine the potential for IES in buildings when the system perspective is taken, and the IES is employed as a dynamic system, not just as conventional CHP. This effort is designed to determine market potential by analyzing IES performance on an hour-by-hour basis, examining the full range of building types, their loads and timing, and assessing how these loads can be technically and economically met by IES.
Temperature of projectile like fragments in heavy ion collisions
Gupta, S Das; Chaudhuri, G
2013-01-01T23:59:59.000Z
A model in which a projectile like fragment can be simply regarded as a remnant after removal of some part of the projectile leads to an excited fragment. This excitation energy can be calculated with a Hamiltonian that gives correct nuclear matter binding, compressibility and density distribution in finite nuclei. In heavy ion collisions the model produces a dependence of excitation energy on impact parameter which appears to be correct but the magnitude of the excitation energy falls short. It is argued that dynamic effects left out in the model will increase this magnitude. The model can be directly extended to include dynamics but at the expense of increased computation. For many calculations for observables, a temperature is an easier tool to use rather than an excitation energy. Hence temperature dependences on impact parameter in heavy ion collisions are displayed.
Temperature of projectile like fragments in heavy ion collisions
S. Das Gupta; S. Mallik; G. Chaudhuri
2013-09-27T23:59:59.000Z
A model in which a projectile like fragment can be simply regarded as a remnant after removal of some part of the projectile leads to an excited fragment. This excitation energy can be calculated with a Hamiltonian that gives correct nuclear matter binding, compressibility and density distribution in finite nuclei. In heavy ion collisions the model produces a dependence of excitation energy on impact parameter which appears to be correct but the magnitude of the excitation energy falls short. It is argued that dynamic effects left out in the model will increase this magnitude. The model can be directly extended to include dynamics but at the expense of increased computation. For many calculations for observables, a temperature is an easier tool to use rather than an excitation energy. Hence temperature dependences on impact parameter in heavy ion collisions are displayed.
Effect of radiation-like solid on CMB anisotropies
Vladimķr Balek; Matej kovran
2015-01-28T23:59:59.000Z
We compute the power in the lowest multipoles of CMB anisotropies in the presence of radiation-like solid, a hypothetical new kind of radiation with nonzero shear modulus. If only the ordinary Sachs-Wolfe effect is taken into account, the shear modulus to energy density ratio must be in absolute value of order $10^{-5}$ or less for the theory to be consistent with observations within cosmic variance. With the integrated Sachs-Wolfe effect switched on, the constraint is relaxed almost by two orders of magnitude.
Promise for Onion-Like Carbons as Supercapacitors
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)IntegratedSpeedingTechnical News,Program DirectionProjectPromise for Onion-Like
Francesco Danuso
2010-01-08T23:59:59.000Z
A major bottleneck for improving the governance of complex systems, rely on our ability to integrate different forms of knowledge into a decision support system (DSS). Preliminary aspects are the classification of different types of knowledge (a priori or general, a posteriori or specific, with uncertainty, numerical, textual, algorithmic, complete/incomplete, etc.), the definition of ontologies for knowledge management and the availability of proper tools like continuous simulation models, event driven models, statistical approaches, computational methods (neural networks, evolutionary optimization, rule based systems etc.) and procedure for textual documentation. Following these views at University of Udine, a computer language (SEMoLa, Simple, Easy Modelling Language) for knowledge integration has been developed. SEMoLa can handle models, data, metadata and textual knowledge; it implements and extends the system dynamics ontology (Forrester, 1968; Jųrgensen, 1994) in which systems are modelled by the concepts of material, group, state, rate, parameter, internal and external events and driving variables. As an example, a SEMoLa model to improve management and sustainability (economical, energetic, environmental) of the agricultural farms is presented. The model (X-Farm) simulates a farm in which cereal and forage yield, oil seeds, milk, calves and wastes can be sold or reused. X-Farm is composed by integrated modules describing fields (crop and soil), feeds and materials storage, machinery management, manpower management, animal husbandry, economic and energetic balances, seed oil extraction, manure and wastes management, biogas production from animal wastes and biomasses.
Danuso, Francesco (University of Udine) [University of Udine
2008-06-18T23:59:59.000Z
A major bottleneck for improving the governance of complex systems, rely on our ability to integrate different forms of knowledge into a decision support system (DSS). Preliminary aspects are the classification of different types of knowledge (a priori or general, a posteriori or specific, with uncertainty, numerical, textual, algorithmic, complete/incomplete, etc.), the definition of ontologies for knowledge management and the availability of proper tools like continuous simulation models, event driven models, statistical approaches, computational methods (neural networks, evolutionary optimization, rule based systems etc.) and procedure for textual documentation. Following these views at University of Udine, a computer language (SEMoLa, Simple, Easy Modelling Language) for knowledge integration has been developed. SEMoLa can handle models, data, metadata and textual knowledge; it implements and extends the system dynamics ontology (Forrester, 1968; Joergensen, 1994) in which systems are modeled by the concepts of material, group, state, rate, parameter, internal and external events and driving variables. As an example, a SEMoLa model to improve management and sustainability (economical, energetic, environmental) of the agricultural farms is presented. The model (X-Farm) simulates a farm in which cereal and forage yield, oil seeds, milk, calves and wastes can be sold or reused. X-Farm is composed by integrated modules describing fields (crop and soil), feeds and materials storage, machinery management, manpower management, animal husbandry, economic and energetic balances, seed oil extraction, manure and wastes management, biogas production from animal wastes and biomasses.
Francesco Danuso
2008-06-18T23:59:59.000Z
A major bottleneck for improving the governance of complex systems, rely on our ability to integrate different forms of knowledge into a decision support system (DSS). Preliminary aspects are the classification of different types of knowledge (a priori or general, a posteriori or specific, with uncertainty, numerical, textual, algorithmic, complete/incomplete, etc.), the definition of ontologies for knowledge management and the availability of proper tools like continuous simulation models, event driven models, statistical approaches, computational methods (neural networks, evolutionary optimization, rule based systems etc.) and procedure for textual documentation. Following these views at University of Udine, a computer language (SEMoLa, Simple, Easy Modelling Language) for knowledge integration has been developed. SEMoLa can handle models, data, metadata and textual knowledge; it implements and extends the system dynamics ontology (Forrester, 1968; Jųrgensen, 1994) in which systems are modelled by the concepts of material, group, state, rate, parameter, internal and external events and driving variables. As an example, a SEMoLa model to improve management and sustainability (economical, energetic, environmental) of the agricultural farms is presented. The model (X-Farm) simulates a farm in which cereal and forage yield, oil seeds, milk, calves and wastes can be sold or reused. X-Farm is composed by integrated modules describing fields (crop and soil), feeds and materials storage, machinery management, manpower management, animal husbandry, economic and energetic balances, seed oil extraction, manure and wastes management, biogas production from animal wastes and biomasses.
Transmission Commercial Project Integration
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Improvement (CBPI) Customer Forum Energy Imbalance Market Generator Interconnection Reform Implementation Network Integration Transmission Service (NT Service) Network Open...
Wave regularity in curve integrable spacetimes
Yafet Sanchez Sanchez
2015-02-23T23:59:59.000Z
The idea of defining a gravitational singularity as an obstruction to the dynamical evolution of a test field (described by a PDE) rather than the dynamical evolution of a particle (described by a geodesics) is explored. In particular, the concept of wave regularity is introduced which serves to show that the classical singularities in curve integrable spacetimes do not interrupt the well-posedness of the wave equation. The techniques used also provide arguments that can be extended to establish when a classically singular spacetime remains singular in a semi-classical picture.
Free motion around black holes with discs or rings: between integrability and chaos -- IV
V. Witzany; O. Semerak; P. Sukova
2015-03-31T23:59:59.000Z
The dynamical system studied in previous papers of this series, namely a bound time-like geodesic motion in the exact static and axially symmetric space-time of an (originally) Schwarzschild black hole surrounded by a thin disc or ring, is considered to test whether the often employed "pseudo-Newtonian" approach (resorting to Newtonian dynamics in gravitational potentials modified to mimic the black-hole field) can reproduce phase-space properties observed in the relativistic treatment. By plotting Poincar\\'e surfaces of section and using two recurrence methods for similar situations as in the relativistic case, we find similar tendencies in the evolution of the phase portrait with parameters (mainly with mass of the disc/ring and with energy of the orbiters), namely those characteristic to weakly non-integrable systems. More specifically, this is true for the Paczy\\'nski--Wiita and a newly suggested logarithmic potential, whereas the Nowak--Wagoner potential leads to a different picture. The potentials and the exact relativistic system clearly differ in delimitation of the phase-space domain accessible to a given set of particles, though this mainly affects the chaotic sea whereas not so much the occurrence and succession of discrete dynamical features (resonances). In the pseudo-Newtonian systems, the particular dynamical features generally occur for slightly smaller values of the perturbation parameters than in the relativistic system, so one may say that the pseudo-Newtonian systems are slightly more prone to instability. We also add remarks on numerics (a different code is used than in previous papers), on the resemblance of dependence of the dynamics on perturbing mass and on orbital energy, on the difference between the Newtonian and relativistic Bach--Weyl rings, and on the relation between Poincar\\'e sections and orbital shapes within the meridional plane.
California Lithium Battery, Inc. | Department of Energy
Broader source: Energy.gov (indexed) [DOE]
Integrated Dynamic Electron Solutions, Inc. Lawrence Livermore National Laboratory 333 likes Integrated Dynamic Electron Solutions, Inc., based in Belmont, California, uses Dynamic...
Community-oriented information integration
Katsis, Ioannis
2009-01-01T23:59:59.000Z
2.6.1 Community-oriented Integration . . 2.6.2Chapter 5 Integration Conclusions and FutureFigure Community-oriented Integration Architecture . . . .
Art Integration and Cognitive Development
Baker, Dawn
2013-01-01T23:59:59.000Z
journal on arts integration in schools and communities. 1(Art Integration and Cognitive Development Dawn Baker,in the curriculum. Art integration involves learning core
Motion Integration Using Competitive Priors
Wu, Shuang; Lu, Hongjing; Lee, Alan; Yuille, Alan
2009-01-01T23:59:59.000Z
to investigate motion integration across orientation andspace. VSS 2006. Motion integration using competitive priorsMotion integration using competitive priors Shuang Wu 1 ,
Motion Integration Using Competitive Priors
Shuang Wu; Hongjing Lu; Alan Lee; Alan Yuille
2011-01-01T23:59:59.000Z
to investigate motion integration across orientation andspace. VSS 2006. Motion integration using competitive priorsMotion integration using competitive priors Shuang Wu 1 ,
Sandia National Laboratories: Grid Integration
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Grid Integration Energy Supply Transformation Needed On February 20, 2013, in DETL, Distribution Grid Integration, Energy, Energy Assurance, Energy Surety, Grid Integration,...
Dynamical Transition and Heterogeneous Hydration Dynamics in RNA
Jeseong Yoon; Jong-Chin Lin; Changbong Hyeon; D. Thirumalai
2014-04-24T23:59:59.000Z
Enhanced dynamical fluctuations of RNAs, facilitated by a network of water molecules with strong interactions with RNA, are suspected to be critical in their ability to respond to a variety of cellular signals. Using atomically detailed molecular dynamics simulations at various temperatures of purine (adenine)- and preQ$_1$ sensing riboswitch aptamers, we show that water molecules in the vicinity of RNAs undergo complex dynamics depending on the local structures of the RNAs. The overall lifetimes of hydrogen bonds (HBs) of surface bound waters are more than at least 1-2 orders of magnitude longer than bulk water. Slow hydration dynamics, revealed in non-Arrhenius behavior of the relaxation time, arises from high activation barriers to break water hydrogen bonds with a nucleotide and by reduced diffusion of water. The relaxation kinetics at specific locations in the two RNAs show a broad spectrum of time scales reminiscent of glass-like behavior, suggesting that the hydration dynamics is highly heterogeneous. Both RNAs undergo dynamic transition at $T = T_D \\gtrsim 200$ K as assessed by the mean square fluctuation of hydrogen atoms $\\langle x^2\\rangle$, which undergoes an abrupt harmonic-to-anharmonic transition at $T_D$. The near universal value of $T_D$ found for these RNAs and previously for tRNA is strongly correlated with changes in hydration dynamics as $T$ is altered. Hierarchical dynamics of waters associated with the RNA surface, revealed in the motions of distinct classes of water with well-separated time scales, reflects the heterogeneous local environment on the molecular surface of RNA. At low temperatures slow water dynamics predominates over structural transitions. Our study demonstrates that the complex interplay of dynamics between water and local environment in the RNA structures could be a key determinant of the functional activities of RNA.
Model Evaluation and Hindcasting: An Experiment with an Integrated Assessment Model
Chaturvedi, Vaibhav; Kim, Son H.; Smith, Steven J.; Clarke, Leon E.; Zhou, Yuyu; Kyle, G. Page; Patel, Pralit L.
2013-11-01T23:59:59.000Z
Integrated assessment models have been extensively used for analyzing long term energy and greenhouse emissions trajectories and have influenced key policies on this subject. Though admittedly these models are focused on the long term trajectories, how well these models are able to capture historical dynamics is an open question. In a first experiment of its kind, we present a framework for evaluation of such integrated assessment models. We use Global Change Assessment Model for this zero order experiment, and focus on the building sector results for USA. We calibrate the model for 1990 and run it forward up to 2095 in five year time steps. This gives us results for 1995, 2000, 2005 and 2010 which we compare to observed historical data at both fuel level and service level. We focus on bringing out the key insights for the wider process of model evaluation through our experiment with GCAM. We begin with highlighting that creation of an evaluation dataset and identification of key evaluation metric is the foremost challenge in the evaluation process. Our analysis highlights that estimation of functional form of the relationship between energy service demand, which is an unobserved variable, and its drivers is a significant challenge in the absence of adequate historical data for both the dependent and driver variables. Historical data availability for key metrics is a serious limiting factor in the process of evaluation. Interestingly, service level data against which such models need to be evaluated are itself a result of models. Thus for energy services, the best we can do is compare our model results with other model results rather than observed and measured data. We show that long term models, by the nature of their construction, will most likely underestimate the rapid growth in some services observed in a short time span. Also, we learn that modeling saturated energy services like space heating is easier than modeling unsaturated services like space cooling and understanding that how far a service is from its saturation level is a key question which we probably dont have an answer to. Finally and most importantly, even if long term models partially miss the short term dynamics, the long term insights provides by these models is fairly robust. We conclude by highlighting that our work is the first step in the much wider process of integrated assessment model evaluation and will hence have its own limitations. Future evaluation research work should build upon this zero order experiment for improving our modeling of human and coupled earth systems.
INTEGRATION OF JAPANESE AND UNITED STATES SABLEFISH DALE SQUIRES,! SAMUEL F. HERRICK, JR.,! AND
INTEGRATION OF JAPANESE AND UNITED STATES SABLEFISH MARKETS DALE SQUIRES,! SAMUEL F. HERRICK, JR conditions. If U.S. ex- vessel and Japanese markets are integrated by prices. then price information are not price integrated. U.S. market behavior is independent of price movements in Japan. To assess this likely
Ratcliffe, Toby; O'Shea, Thomas T; Fu, Thomas; Russell, Lauren; Dommermuth, Douglas G
2014-01-01T23:59:59.000Z
A 1/8.25 scale-model of the U.S. Navy Research Vessel ATHENA was tested in regular head-sea waves to obtain data for validation of computational fluid dynamics (CFD) predictive tools. The experiments were performed in the David Taylor Model Basin at the Naval Surface Warfare Center (NSWC). With the model towed fixed in head-seas, horizontal and vertical loads on the model were obtained at two Froude numbers, $F_r=0.25$ and $F_r=0.43$. The model was run at two conditions of head-sea wavelengths corresponding to $\\lambda=2L_o$ and $\\lambda=1/2L_o$ with $H/\\lambda=0.03$, where $L_o$ is the length of the model and $H=2 a$ is the wave height. The wave field perturbations induced by the head-sea waves were quantified from free-surface images generated by a laser light sheet. Predictions of the horizontal and vertical loads on the model in regular head sea waves were made with the Numerical Flow Analysis (NFA) code. Numerical predictions of the wave-field perturbations were compared with the experimental data and th...
De tabellen zijn: likes(drinker, beer)
Sidorova, Natalia
De tabellen zijn: likes(drinker, beer) visits(drinker, bar) serves(bar, beer) De enige te maken dat ze lusten. {t | x visits(t[drinker] = x[drinker] y serves(x[bar] = y[bar] z likes(y[beer] = z[beer(x[bar] = y[bar] z likes : y[beer] = z[beer] z[drinker] = x[drinker] ))} drinker(visits 1 serves 1 not
Zeghib, Abdelghani
Introduction Results Linear Dynamics Lorentz Dynamics Actions of discrete groups on stationary Piccione) Geodeycos Meeting, Lyon, 28-30 April 2010 Abdelghani Zeghib Dynamics on Lorentz manifolds #12;Introduction Results Linear Dynamics Lorentz Dynamics Motivations and questions Examples 1 Introduction
Damage to nearby divertor components of ITER-like devices during giant ELMs and disruptions
Harilal, S. S.
Damage to nearby divertor components of ITER-like devices during giant ELMs and disruptions. Fusion 50 (2010) 115004 (7pp) doi:10.1088/0029-5515/50/11/115004 Damage to nearby divertor components. The simulation results of the integrated modelling indicate a significant potential damage of the divertor nearby
A squeeze-like operator approach to position-dependent mass in quantum mechanics
Moya-Cessa, Héctor M.; Soto-Eguibar, Francisco [Instituto Nacional de Astrofķsica, Óptica y Electrónica, Calle Luis Enrique Erro No. 1, Santa Marķa Tonantzintla, San Andrés Cholula, Puebla CP 72840 (Mexico); Christodoulides, Demetrios N. [CREOL/College of Optics and Photonics, University of Central Florida, Orlando, Florida 32816-2700 (United States)
2014-08-15T23:59:59.000Z
We provide a squeeze-like transformation that allows one to remove a position dependent mass from the Hamiltonian. Methods to solve the Schrödinger equation may then be applied to find the respective eigenvalues and eigenfunctions. As an example, we consider a position-dependent-mass that leads to the integrable Morse potential and therefore to well-known solutions.
What is a seismic reflector like? Nathalie Favretto-Cristini1
Boyer, Edmond
What is a seismic reflector like? Nathalie Favretto-Cristini1 , Paul Cristini1 , and Eric de of reflectors from a seismic viewpoint. This region is repre- sented by a volume of integration of medium and syncline type. The maximum vertical extent might be larger than the seismic wavelengths for subcritical
NREL: Transmission Grid Integration - Wind Integration Datasets
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy: Grid IntegrationReportTransmission Planning andStudy PhaseWind
Dynamic load balancing of applications
Wheat, S.R.
1997-05-13T23:59:59.000Z
An application-level method for dynamically maintaining global load balance on a parallel computer, particularly on massively parallel MIMD computers is disclosed. Global load balancing is achieved by overlapping neighborhoods of processors, where each neighborhood performs local load balancing. The method supports a large class of finite element and finite difference based applications and provides an automatic element management system to which applications are easily integrated. 13 figs.
Chromatic and Dispersive Effects in Nonlinear Integrable Optics
Webb, Stephen D; Valishev, Alexander; Nagaitsev, Sergei N; Danilov, Viatcheslav V
2015-01-01T23:59:59.000Z
Proton accumulator rings and other circular hadron accelerators are susceptible to intensity-driven parametric instabilities because the zero-current charged particle dynamics are characterized by a single tune. Landau damping can suppress these instabilities, which requires energy spread in the beam or introducing nonlinear magnets such as octupoles. However, this approach reduces dynamic aperture. Nonlinear integrable optics can suppress parametric instabilities independent of energy spread in the distribution, while preserving the dynamic aperture. This novel approach promises to reduce particle losses and enable order-of-magnitude increases in beam intensity. In this paper we present results, obtained using the Lie operator formalism, on how chromaticity and dispersion affect particle orbits in integrable optics. We conclude that chromaticity in general breaks the integrability, unless the vertical and horizontal chromaticities are equal. Because of this, the chromaticity correcting magnets can be weaker ...
Technology Integration Overview
Broader source: Energy.gov (indexed) [DOE]
Technology Integration Overview Dennis A. Smith - Clean Cities Deployment Connie Bezanson - Vehicle Education June 17, 2014 VEHICLE TECHNOLOGIES OFFICE This presentation does not...
Integrated Technology Deployment
Office of Energy Efficiency and Renewable Energy (EERE)
Integrated technology deployment is a comprehensive approach to implementing solutions that increase the use of energy efficiency and renewable energy technologies. Federal, state, and local...
Technology Integration Overview
Broader source: Energy.gov (indexed) [DOE]
-Technology Integration Overview - Dennis A. Smith Connie Bezanson U. S. Department of Energy Headquarters Office - Washington, D.C. May 2013 Project ID: TI000 2013 Department of...
Algal Integrated Biorefineries
Broader source: Energy.gov [DOE]
The Algae Program works closely with the Demonstration and Deployment Program on projects that can validate advancements toward commercialization at increasing scales. Integrated biorefineries...
Estimates for temperature in projectile like fragment in geometric and transport models
Mallik, S; Chaudhuri, G
2013-01-01T23:59:59.000Z
Projectile like fragments emerging from heavy ion collision have an excitation energy which is often labeled by a temperature. This temperature was recently calculated using a geometric model. We expand the geometric model to include also dynamic effects using a transport model. The temperatures so deduced agree quite well with values of temperature needed to fit experimental data.
Exact dynamics of entanglement and entropy in structured environments
L. Mazzola; S. Maniscalco; J. Piilo; K. -A. Suominen
2009-04-18T23:59:59.000Z
We study the exact entanglement dynamics of two qubits interacting with a common zero-temperature non-Markovian reservoir. We consider the two qubits initially prepared in Bell-like states or extended Werner-like states. We study the dependence of the entanglement dynamics on both the degree of purity and the amount of entanglement of the initial state. We also explore the relation between the entanglement and the von Neumann entropy dynamics and find that these two quantities are correlated for initial Bell-like states.
Jacobi equations and particle accelerator beam dynamics
Ricardo Gallego Torrome
2012-03-27T23:59:59.000Z
A geometric formulation of the linear beam dynamics in accelerator physics is presented. In particular, it is proved that the linear transverse and longitudinal dynamics can be interpret geometrically as an approximation to the Jacobi equation of an affine averaged Lorentz connection. We introduce a specific notion reference trajectory as integral curves of the main velocity vector field. A perturbation caused by the statistical nature of the bunch of particles is considered.
Flip, A. [CEA, Cadarache (France); Pang, H.F. [Tsinghua Univ., Beijing (China); D`Angelo, A. [ENEA, Roma (Italy)
1995-12-31T23:59:59.000Z
Due to the persistent uncertainties: {approximately} 5 % (the uncertainty, here and there after, is at 1{sigma}) in the prediction of the `reactivity scale` ({beta}{sub eff}) for a fast power reactor, an international project was recently initiated in the framework of the OECD/NEA activities for reevaluation, new measurements and integral benchmarking of delayed neutron (DN) data and related kinetic parameters (principally {beta}{sub eff}). Considering that the major part of this uncertainty is due to uncertainties in the DN yields (v{sub d}) and the difficulty for further improvement of the precision in differential (e.g. Keepin`s method) measurements, an international cooperative strategy was adopted aiming at extracting and consistently interpreting information from both differential (nuclear) and integral (in reactor) measurements. The main problem arises from the integral side; thus the idea was to realize {beta}{sub eff} like measurements (both deterministic and noise) in `clean` assemblies. The `clean` calculational context permitted the authors to develop a theory allowing to link explicitly this integral experimental level with the differential one, via a unified `Master Model` which relates v{sub d} and measurables quantities (on both levels) linearly. The combined error analysis is consequently largely simplified and the final uncertainty drastically reduced (theoretically, by a factor {radical}3). On the other hand the same theoretical development leading to the `Master Model`, also resulted in a structured scheme of approximations of the general (stochastic) Boltzmann equation allowing a consistent analysis of the large range of measurements concerned (stochastic, dynamic, static ... ). This paper is focused on the main results of this theoretical development and its application to the analysis of the Preliminary results of the BERENICE program ({beta}{sub eff} measurements in MASURCA, the first assembly in CADARACHE-FRANCE).
Transmission Services WIST Task Force Dynamic Transfer Capability...
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
WIST Task Force Dynamic Transfer Capability Report - Phase I BPA is an active participant in the Wind Integration Study Team (WIST), especially the Task Force looking at DTC study...
DYNAMIC PARTIAL FPGA RECONFIGURATION IN A PROTOTYPE MICROPROCESSOR SYSTEM
Najjar, Walid A.
and dynamically loaded to run on the FPGA. 1. INTRODUCTION A Configurable System-on-a-Chip (CSoC) has one or more microprocessors integrated with a field programmable gate array (FPGA). These CSoC devices' high transistor
Rossen I. Ivanov
2007-07-12T23:59:59.000Z
The Euler's equations describe the motion of inviscid fluid. In the case of shallow water, when a perturbative asymtotic expansion of the Euler's equations is taken (to a certain order of smallness of the scale parameters), relations to certain integrable equations emerge. Some recent results concerning the use of integrable equation in modeling the motion of shallow water waves are reviewed in this contribution.
Systems Integration (Fact Sheet)
Not Available
2011-10-01T23:59:59.000Z
The Systems Integration (SI) subprogram works closely with industry, universities, and the national laboratories to overcome technical barriers to the large-scale deployment of solar technologies. To support these goals, the subprogram invests primarily in four areas: grid integration, technology validation, solar resource assessment, and balance of system development.
Applicative Notions in ML-like Programs
Ling, Budi H
Pure functional languages are expressive tools for writing modular and reliable code. State in programming languages is a useful tool for programming dynamic systems. However, their combination yields programming languages that are difficult...
Circuit Theory for Analysis and Design of Spintronic Integrated Circuits
Manipatruni, Sasikanth; Young, Ian A
2011-01-01T23:59:59.000Z
We present a theoretical and a numerical formalism for analysis and design of spintronic integrated circuits (SPINICs). The proposed formalism encompasses a generalized circuit theory for spintronic integrated circuits based on nanomagnetic dynamics and spin transport. We derive the circuit models for vector spin conduction in non-magnetic and magnetic components. We then propose an extension to the modified nodal analysis for the analysis of spin circuits. We demonstrate the applicability of the proposed theory using an example spin logic circuit.
Collective dynamics of active filament complexes
Nogucci, Hironobu
2015-01-01T23:59:59.000Z
Networks of biofilaments are essential for the formation of cellular structures and they support various biological functions. Previous studies have largely investigated the collective dynamics of rod-like biofilaments; however, the shapes of actual subcelluar componensts are often more elaborate. In this study, we investigated an active object composed of two active filaments, which represents a progression from rod-like biofilaments to complex-shaped biofilaments. Specifically, we numerically assessed the collective behaviors of these active objects and observed several types of dynamics depending on the density and the angle of the two filaments as shape parameters of the object. Among the observed collective dynamics, moving density bands that we named 'moving smectic' are reported here for the first time. By using statistical analyses of the orbits of individual objects and the interactions among them, the mechanisms underlying the rise of these dynamics patterns in the system were determined. This study...
Can the ring polymer molecular dynamics method be interpreted as real time quantum dynamics?
Jang, Seogjoo, E-mail: sjang@qc.cuny.edu [Department of Chemistry and Biochemistry, Queens College and the Graduate Center, City University of New York, 65-30 Kissena Boulevard, Flushing, New York 11367 (United States)] [Department of Chemistry and Biochemistry, Queens College and the Graduate Center, City University of New York, 65-30 Kissena Boulevard, Flushing, New York 11367 (United States); Sinitskiy, Anton V.; Voth, Gregory A., E-mail: gavoth@uchicago.edu [Department of Chemistry, James Franck Institute, Institute for Biophysical Dynamics and Computation Institute, University of Chicago, 5735 S. Ellis Avenue, Chicago, Illinois 60637 (United States)
2014-04-21T23:59:59.000Z
The ring polymer molecular dynamics (RPMD) method has gained popularity in recent years as a simple approximation for calculating real time quantum correlation functions in condensed media. However, the extent to which RPMD captures real dynamical quantum effects and why it fails under certain situations have not been clearly understood. Addressing this issue has been difficult in the absence of a genuine justification for the RPMD algorithm starting from the quantum Liouville equation. To this end, a new and exact path integral formalism for the calculation of real time quantum correlation functions is presented in this work, which can serve as a rigorous foundation for the analysis of the RPMD method as well as providing an alternative derivation of the well established centroid molecular dynamics method. The new formalism utilizes the cyclic symmetry of the imaginary time path integral in the most general sense and enables the expression of Kubo-transformed quantum time correlation functions as that of physical observables pre-averaged over the imaginary time path. Upon filtering with a centroid constraint function, the formulation results in the centroid dynamics formalism. Upon filtering with the position representation of the imaginary time path integral, we obtain an exact quantum dynamics formalism involving the same variables as the RPMD method. The analysis of the RPMD approximation based on this approach clarifies that an explicit quantum dynamical justification does not exist for the use of the ring polymer harmonic potential term (imaginary time kinetic energy) as implemented in the RPMD method. It is analyzed why this can cause substantial errors in nonlinear correlation functions of harmonic oscillators. Such errors can be significant for general correlation functions of anharmonic systems. We also demonstrate that the short time accuracy of the exact path integral limit of RPMD is of lower order than those for finite discretization of path. The present quantum dynamics formulation also serves as the basis for developing new quantum dynamical methods that utilize the cyclic nature of the imaginary time path integral.
Crossover transition in bag-like models
Ferroni, Lorenzo
2009-01-01T23:59:59.000Z
DE-AC02-05CH11231 Crossover transition in bag-like models L.We show that a crossover transition qualitatively similar toI. INTRODUCTION The phase transition of strongly interacting
The resonance absorption probability function for neutron and multiplicative integral
V. D. Rusov; V. A. Tarasov; S. I. Kosenko; S. A. Chernegenko
2012-08-05T23:59:59.000Z
The analytical approximations for the moderating neutrons flux density like Fermi spectra, widely used in reactor physics, involve the probability function for moderating neutron to avoid the resonant absorption obtained using some restrictive assumptions regarding the acceptable resonances width. By means of multiplicative integral (Volterra integral) theory for a commutative algebra an analytical expression for the probability function is obtained rigorously without any restrictive assumptions.
NONE
1995-04-01T23:59:59.000Z
Integrated assessment can be used to evaluate and clarify resource management policy options and outcomes for decision makers. The defining characteristics of integrated assessment are (1) focus on providing information and analysis that can be understood and used by decision makers rather than for merely advancing understanding and (2) its multidisciplinary approach, using methods, styles of study, and considerations from a broader variety of technical areas than would typically characterize studies produced from a single disciplinary standpoint. Integrated assessment may combine scientific, social, economic, health, and environmental data and models. Integrated assessment requires bridging the gap between science and policy considerations. Because not everything can be valued using a single metric, such as a dollar value, the integrated assessment process also involves evaluating trade-offs among dissimilar attributes. Scientists at Oak Ridge National Laboratory (ORNL) recognized the importance and value of multidisciplinary approaches to solving environmental problems early on and have pioneered the development of tools and methods for integrated assessment over the past three decades. Major examples of ORNL`s experience in the development of its capabilities for integrated assessment are given.
Doppler-like effect and doubtful expansion of universe
Edward Szaraniec
2003-10-01T23:59:59.000Z
The distance contraction, as observed in electrical soundings over horizontally stratified earth (static system), is identified as a counterpart of Doppler shift in dynamical systems. Identification of Doppler-like effect in a stock-still systems makes it possible to give an al-ternative answer to the question about an effective cause of the Doppler shift, which sounds: the inhomogeneities. This answer opens different static as well as kinematic possibilities, which challenge established theories of expanding universe and energizing big bang.The energy propagating in stratified universe of layers exhibits a shift which could be at-tributed not only to the expansion (Hubble's theory) but alternatively to fluctuations in material properties (inhomogeneities).
SIAM conference on applications of dynamical systems
Not Available
1992-01-01T23:59:59.000Z
A conference (Oct.15--19, 1992, Snowbird, Utah; sponsored by SIAM (Society for Industrial and Applied Mathematics) Activity Group on Dynamical Systems) was held that highlighted recent developments in applied dynamical systems. The main lectures and minisymposia covered theory about chaotic motion, applications in high energy physics and heart fibrillations, turbulent motion, Henon map and attractor, integrable problems in classical physics, pattern formation in chemical reactions, etc. The conference fostered an exchange between mathematicians working on theoretical issues of modern dynamical systems and applied scientists. This two-part document contains abstracts, conference program, and an author index.
PEV Integration with Renewables (Presentation)
Markel, T.
2014-06-18T23:59:59.000Z
This presentation discusses current research at NREL on integrating plug-in electric vehicles with the grid and using renewable energy to charge the grid. The Electric Vehicle Grid Integration (EVGI) and Integrated Network Testbed for Energy Grid Research and Technology Experimentation (INTEGRATE) are addressing the opportunities and technical requirements for vehicle grid integration that will increase marketability and lead to greater petroleum reduction.
Malkova, Natalia [Department of Physics and Astronomy, San Francisco State University, San Francisco, California 94132 (United States); National Institute of Standards and Technology and Joint Quantum Institute, University of Maryland, Gaithersburg, Maryland 20899 (United States); Hromada, Ivan; Wang Xiaosheng [Department of Physics and Astronomy, San Francisco State University, San Francisco, California 94132 (United States); Bryant, Garnett [National Institute of Standards and Technology and Joint Quantum Institute, University of Maryland, Gaithersburg, Maryland 20899 (United States); Chen Zhigang [Department of Physics and Astronomy, San Francisco State University, San Francisco, California 94132 (United States); Key Laboratory of Weak-Light Nonlinear Photonics, Ministry of Education and TEDA Applied Physics School, Nankai University, Tianjin 300457 (China)
2009-10-15T23:59:59.000Z
We study the formation of Shockley-like surface states and their transition into Tamm-like surface states in an optically induced semi-infinite photonic superlattice. While perfect Shockley-like states appear only when the induced superlattice with alternating strong and weak bonds is terminated properly with an unperturbed surface, deformed Shockley-like surface states often appear in the so-called inverted band gap when the surface perturbation is nonzero. Furthermore, transitions between linear Tamm-like, Shockley-like, and nonlinear Tamm-like surface states are also observed by fine tuning the surface perturbation. Using coupled-mode theory, we confirm the existence of these linear and nonlinear surface states in a finite array of N identical single-mode waveguides coupled with alternating strong and weak bonds.
Nakayasu, Ernesto S.; Brown, Roslyn N.; Ansong, Charles; Sydor, Michael A.; Imtiaz, Sayed; Mihai, Cosmin; Sontag, Ryan L.; Hixson, Kim K.; Monroe, Matthew E.; Sobreira, Tiago; Orr, Galya; Petyuk, Vladislav A.; Yang, Feng; Smith, Richard D.; Adkins, Joshua N.
2013-08-12T23:59:59.000Z
Ubiquitination is a common protein post-translational modification that regulates many key cellular functions. Here we investigated the dynamics of ubiquitinated proteins after an inflammatory stimulation of RAW264.7 macrophage-like cells with bacterial lipopolysaccharide. We demonstrate that levels of global ubiquitination, and K48 and K63 polyubiquitination change after lipopolysaccharide stimulation. A quantitative proteomic analysis identified 1199 ubiquitinated proteins, 78 of which had significantly changed ubiquitination levels after lipopolysaccharide stimulation. We next identified a subset of proteins that were targeted for degradation after lipopolysaccharide stimulation, by integrating the ubiquitinome data with global proteomics and transcriptomics results. Using cellular assays and western blot analyses we biochemically validated DBC1, a histone deacetylase inhibitor not previously linked to inflammation, as a degradation substrate, which is targeted via an orchestrated mechanism utilizing caspases and the proteasome. The degradation of DBC1 releases histone deacetylase activity, linking lipopolysaccharide activation to chromatin remodeling in caspase- and proteasome-mediated signaling.
New Soft-Core Potential Function for Molecular Dynamics Based Alchemical Free Energy Calculations
de Groot, Bert
New Soft-Core Potential Function for Molecular Dynamics Based Alchemical Free Energy Calculations accurate free energy calculations based on molecular dynamics simulations. A thermodynamic integration scheme is often used to calculate changes in the free energy of a system by integrating the change
Free motion around black holes with discs or rings: between integrability and chaos - II
O. Semerįk; P. Sukovį
2012-11-17T23:59:59.000Z
We continue the study of time-like geodesic dynamics in exact static, axially and reflection symmetric space-times describing the fields of a Schwarzschild black hole surrounded by thin discs or rings. In the previous paper, the rise (and decline) of geodesic chaos with ring/disc mass and position and with test particle energy was revealed on Poincar\\'e sections, on time series of position or velocity and their power spectra, and on time evolution of the orbital `latitudinal action'. In agreement with the KAM theory of nearly integrable dynamical systems and with the results observed in similar gravitational systems in the literature, we found orbits of very different degrees of chaoticity in the phase space of perturbed fields. Here we compare selected orbits in more detail and try to classify them according to the characteristics of the corresponding phase-variable time series, mainly according to the shape of the time-series power spectra, and also applying two recurrence methods: the method of `average directional vectors', which traces the directions in which the trajectory (recurrently) passes through a chosen phase-space cell, and the `recurrence-matrix' method, which consists of statistics over the recurrences themselves. All the methods proved simple and powerful, while it is interesting to observe how they differ in sensitivity to certain types of behaviour.
Introduction to Dynamic Distributed
Roma "La Sapienza", Universitą di
Introduction to Dynamic Distributed SystemsSystems #12;Outline Introduction Churn Building Applications in Dynamic Distributed Systems RegistersRegisters Eventual Leader election Connectivity in Dynamic Distributed Systems #12;Dynamic Distributed Systems: Context & Motivations Advent of Complex Distributed
Michael Murray; for the BRAHMS Collaboration
2007-10-24T23:59:59.000Z
The purpose of BRAHMS is to survey the dynamics of relativistic heavy ion (as well as pp and d-A) collisions over a very wide range of rapidity and transverse momentum. The sum of these data may give us a glimpse of the initial state of the system, its transverse and longitudinal evolution and how the nature of the system changes with time. Here I will concentrate on the origin and dynamics of the light flavors, i.e. the creation and transport of the up, down and strange quarks. The results presented here are certainly not the end of the story. It is my hope that in a few years new detectors will reveal the rapidity dependence of the charm and bottom quarks.
2007-07-02T23:59:59.000Z
INTEGRATION. V2.0. 1. One-liners. Problem 1. True of false: If f is a non-negative function defined on. R and. ?. R f dx < ?, then lim|x|?? f(x) = 0. Problem 2.
INTEGRATING PHOTOVOLTAIC SYSTEMS
Delaware, University of
for Energy and Environmental Policy University of Delaware February 2006 #12;INTEGRATING PHOTOVOLTAIC Delmarva Power Delaware Energy Office University of Delaware Center for Energy and Environmental Policy..................................................................................................... 5 3.3.1 Delaware's Solar Resource
Zhang, Dell
We address the problem of integrating objects from a source taxonomy into a master taxonomy. This problem is not only pervasive on the nowadays web, but also important to the emerging semantic web. A straightforward approach ...
SOLAR PROGRAM: SYSTEMS INTEGRATION
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
2010 2. Current Request for Information (RFI) 3. Questions 4 | Systems Integration eere.energy.gov Summary of 1W Workshop Date: August 11th and 12th, 2010 Attendees: 86 total;...
Zaman, Tauhid R
2005-01-01T23:59:59.000Z
Introduction: Optical isolators are important components in lasers. Their main function is to eliminate noise caused by back-reflections into these lasers. The need for integrated isolators comes from the continuing growth ...
Estimation of AUV dynamics for sensor fusion Kjell Magne Fauske
Gustafsson, Fredrik
are instrumental for model-based control system design, but also for integrated navigation systems. We motive our is used in control design [3]. The steering dynamics is the most crucial part, since depth is measured, Norway Email: hegrenas@unik.no Abstract--This contribution presents a method to identify dynamic models
Clifford, David J.; Harris, James M.
2014-12-01T23:59:59.000Z
This is the IDC Re-Engineering Phase 2 project Integrated Master Plan (IMP). The IMP presents the major accomplishments planned over time to re-engineer the IDC system. The IMP and the associate Integrated Master Schedule (IMS) are used for planning, scheduling, executing, and tracking the project technical work efforts. REVISIONS Version Date Author/Team Revision Description Authorized by V1.0 12/2014 IDC Re- engineering Project Team Initial delivery M. Harris
Simplistic Integration for Complex Wigglers
Forest, E.
2011-01-01T23:59:59.000Z
y (c) and (d) are for 35 integration steps, (e) and (f) arey p y plot for 15 integration steps which is equivalent to32792 UC-410 Symplectic Integration for Complex Wigglers E.
China's Civil-Military Integration
LAFFERTY, Brian; SHRABERG, Aaron; CLEMENS, Morgan
2013-01-01T23:59:59.000Z
Chinas civil-military integration, and Chinas high tech2013 Chinas Civil-Military Integration Brian LAFFERTY Aarons pursuit of civil-military integration (CMI) intensified in
A bioclimatic approach to integrated design : form, technology, and architectural knowledge
O'Connell, Matthew J. (Mathew Jere)
1996-01-01T23:59:59.000Z
This thesis explores a holistic design process through which architectural elements can engage the dynamic forces of natural phenomena and integrate the spatial and temporal experience of building form with its physical ...
Accurate and efficient spin integration for particle accelerators
Abell, Dan T; Ranjbar, Vahid H; Barber, Desmond P
2015-01-01T23:59:59.000Z
Accurate spin tracking is a valuable tool for understanding spin dynamics in particle accelerators and can help improve the performance of an accelerator. In this paper, we present a detailed discussion of the integrators in the spin tracking code gpuSpinTrack. We have implemented orbital integrators based on drift-kick, bend-kick, and matrix-kick splits. On top of the orbital integrators, we have implemented various integrators for the spin motion. These integrators use quaternions and Romberg quadratures to accelerate both the computation and the convergence of spin rotations. We evaluate their performance and accuracy in quantitative detail for individual elements as well as for the entire RHIC lattice. We exploit the inherently data-parallel nature of spin tracking to accelerate our algorithms on graphics processing units.
Fermi-Einstein condensation in dense QCD-like theories
Kurt Langfeld; Andreas Wipf
2011-09-02T23:59:59.000Z
While pure Yang-Mills theory feature the centre symmetry, this symmetry is explicitly broken by the presence of dynamical matter. We study the impact of the centre symmetry in such QCD-like theories. In the analytically solvable Schwinger model, centre transitions take place even under extreme conditions, temperature and/or density, and we show that they are key to the solution of the Silver-Blaze problem. We then develop an effective SU(3) quark model which confines quarks by virtue of centre sector transitions. The phase diagram by confinement is obtained as a function of the temperature and the chemical potential. We show that at low temperatures and intermediate values for the chemical potential the centre dressed quarks undergo condensation due to Bose like statistics. This is the Fermi Einstein condensation. To corroborate the existence of centre sector transitions in gauge theories with matter, we study (at vanishing chemical potential) the interface tension in the three-dimensional Z2 gauge theory with Ising matter, the distribution of the Polyakov line in the four-dimensional SU(2)-Higgs model and devise a new type of order parameter which is designed to detect centre sector transitions. Our analytical and numerical findings lead us to conjecture a new state of cold, but dense matter in the hadronic phase for which Fermi Einstein condensation is realised.
Nanowires and Nanostructures That Grow Like Polymer Molecules
Shaw, Santosh [Iowa State University; Cademartiri, Ludovico [Ames Laboratory
2013-09-20T23:59:59.000Z
Unique properties (e.g., rubber elasticity, viscoelasticity, folding, reptation) determine the utility of polymer molecules and derive from their morphology (i.e., one-dimensional connectivity and large aspect ratios) and flexibility. Crystals do not display similar properties because they have smaller aspect ratios, they are rigid, and they are often too large and heavy to be colloidally stable. We argue, with the support of recent experimental studies, that these limitations are not fundamental and that they might be overcome by growth processes that mimic polymerization. Furthermore, we (i) discuss the similarities between crystallization and polymerization, (ii) critically review the existing experimental evidence of polymer-like growth kinetic and behavior in crystals and nanostructures, and (iii) propose heuristic guidelines for the synthesis of polymer-like crystals and assemblies. Understanding these anisotropic materials at the boundary between molecules and solids will determine whether we can confer the unique properties of polymer molecules to crystals, expanding them with topology, dynamics, and information and not just tuning them with size.
Avalanche-like fluidization of an attractive dispersion
Aika Kurokawa; Valérie Vidal; Kei Kurita; Thibaut Divoux; Sébastien Manneville
2015-05-22T23:59:59.000Z
We report on the transient dynamics of an attractive silica dispersion that displays strong physical aging. Extensive rheology coupled to ultrasonic velocimetry allows us to characterize the global stress response together with the local dynamics of the gel during shear startup experiments. In practice, after being rejuvenated by a preshear, the dispersion is left to age during a time $t_w$ before being submitted to a constant shear rate $\\dot \\gamma$. We investigate in detail the effects of both $t_w$ and $\\dot \\gamma$ on the fluidization dynamics and build a complete phase diagram of the gel behavior. At large enough shear rates, the gel is fully fluidized and flows homogeneously independently of its age. Under lower shear rates, the strong interplay between aging and shear rejuvenation leads, together with wall slip, to a more complex phenomenology. The gel may either display transient shear banding towards complete fluidization, or steady-state shear banding. In the former case, we unravel that the progressive fluidization occurs by successive steps that appear as peaks on the global stress relaxation signal. Flow imaging reveals that the shear band grows up to complete fluidization of the material by sudden avalanche-like events that are correlated to large peaks in the slip velocity at the moving wall. In the case of steady-state shear banding, we recover the classical scenario involving a critical shear rate $ \\dot \\gamma_c$ below which no homogeneous steady flow is possible. We show here that $\\dot \\gamma_c$ displays a nonlinear behavior with $t_w$. Our work paves the way for a thorough description of transient flows of weak attractive gels, and highlights the subtle interplay between shear, wall slip and aging that constitutes a major challenge in terms of modeling that has yet not been met.
On the Dynamics of Inclined Neptune's Trojans
Li-Yong Zhou; Rudolf Dvorak; Yi-Sui Sun
2008-11-17T23:59:59.000Z
The dynamics of artificial asteroids on the Trojan-like orbits around Neptune is investigated in this paper. We describe the dependence of the orbital stability on the initial semimajor axis a and inclination i by constructing a dynamical map on the (a,i)-plane. Rich details are revealed in the dynamical map, especially a unstable gap at i=45 deg is determined and the mechanism triggering chaos in this region is figured out. Our investigation can be used to guide the observations.
Three-integral models for axisymmetric galactic discs
B. Famaey; K. Van Caelenberg; H. Dejonghe
2002-05-21T23:59:59.000Z
We present new equilibrium component distribution functions that depend on three analytic integrals in a Stackel potential, and that can be used to model stellar discs of galaxies. These components are generalizations of two-integral ones and can thus provide thin discs in the two-integral approximation. Their most important properties are the partly analytical expression for their moments, the disc-like features of their configuration space densities (exponential decline in the galactic plane and finite extent in the vertical direction) and the anisotropy of their velocity dispersions. We further show that a linear combination of such components can fit a van der Kruit disc.
Dynamic Resource Provisioning Condor Week 2012
Wisconsin at Madison, University of
to the Grid Highly available facility Testbed for network and storage fabrics · Condor is important part (JDEM analysis development, Grid Developers and Integration test stands, Storage/dCache Developers, LQCDFermiCloud Dynamic Resource Provisioning Condor Week 2012 Steven Timm timm@fnal.gov Fermilab Grid
MIDDLE ATMOSPHERE DYNAMICS ATS 708 (3 credits)
Academic Integrity Policy as found in the General Catalog (http://www.catalog.colostate.edu/FrontPDF/1, 1987, Andrews, Holton, Leovy, Academic Press. Ā· Atmospheric and Oceanic Fluid Dynamics, 2006, Vallis Articles (alphabetically): Ā· Baldwin et al., 2001: The quasi-biennial oscillation. Rev. Geophys., 39, 1979
Coarse Grained Quantum Dynamics
Cesar Agon; Vijay Balasubramanian; Skyler Kasko; Albion Lawrence
2014-12-09T23:59:59.000Z
We consider coarse graining a quantum system divided between short distance and long distance degrees of freedom, which are coupled by the Hamiltonian. Observations using purely long distance observables can be described by the reduced density matrix that arises from tracing out the short-distance observables. The dynamics of this density matrix is that of an open quantum system, and is nonlocal in time, on the order of some short time scale. We describe these dynamics in a model system with a simple hierarchy of energy gaps $\\Delta E_{UV} > \\Delta E_{IR}$, in which the coupling between high-and low-energy degrees of freedom is treated to second order in perturbation theory. We then describe the equations of motion under suitable time averaging, reflecting the limited time resolution of actual experiments, and find an expansion of the master equation in powers of $\\Delta E_{IR}/\\Delta E_{UV}$, in which the failure of the system to be Hamiltonian or even Markovian appears at higher orders in this ratio. We compute the evolution of the density matrix in two specific examples -- coupled spins, and linearly coupled simple harmonic oscillators. Finally, we discuss the evolution of the density matrix using the path integral approach, computing the Feynman-Vernon influence functional for the IR degrees of freedom in perturbation theory, and argue that this influence functional is the correct analog of the Wilsonian effective action for this problem.
NREL: Energy Systems Integration Facility - Systems Integration
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated CodesTransparency Visit |Infrastructure The foundation of
Physiological Integration and Phenotypic Variation
Arnold, Jonathan
Physiological Integration and Phenotypic Variation in Vertebrates Seminar and Roundtable Guest Speaker: Lynn "Marty" Martin, PhD Assistant Professor Department of Integrative Biology, University
Sandia National Laboratories: Grid Integration
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
IEC 61400-26 Availability Standard On June 12, 2014, in Analysis, Distribution Grid Integration, Energy, Grid Integration, Infrastructure Security, News, News & Events,...
Systems Integration | ornl.gov
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Systems Integration SHARE Systems Integration The Distributed Energy Communications and Controls (DECC) Laboratory offers a unique test bed for testing distributed energy...
Integrated Transmission and Distribution Control
Kalsi, Karanjit; Fuller, Jason C.; Tuffner, Francis K.; Lian, Jianming; Zhang, Wei; Marinovici, Laurentiu D.; Fisher, Andrew R.; Chassin, Forrest S.; Hauer, Matthew L.
2013-01-16T23:59:59.000Z
Distributed, generation, demand response, distributed storage, smart appliances, electric vehicles and renewable energy resources are expected to play a key part in the transformation of the American power system. Control, coordination and compensation of these smart grid assets are inherently interlinked. Advanced control strategies to warrant large-scale penetration of distributed smart grid assets do not currently exist. While many of the smart grid technologies proposed involve assets being deployed at the distribution level, most of the significant benefits accrue at the transmission level. The development of advanced smart grid simulation tools, such as GridLAB-D, has led to a dramatic improvement in the models of smart grid assets available for design and evaluation of smart grid technology. However, one of the main challenges to quantifying the benefits of smart grid assets at the transmission level is the lack of tools and framework for integrating transmission and distribution technologies into a single simulation environment. Furthermore, given the size and complexity of the distribution system, it is crucial to be able to represent the behavior of distributed smart grid assets using reduced-order controllable models and to analyze their impacts on the bulk power system in terms of stability and reliability. The objectives of the project were to: Develop a simulation environment for integrating transmission and distribution control, Construct reduced-order controllable models for smart grid assets at the distribution level, Design and validate closed-loop control strategies for distributed smart grid assets, and Demonstrate impact of integrating thousands of smart grid assets under closed-loop control demand response strategies on the transmission system. More specifically, GridLAB-D, a distribution system tool, and PowerWorld, a transmission planning tool, are integrated into a single simulation environment. The integrated environment allows the load flow interactions between the bulk power system and end-use loads to be explicitly modeled. Power system interactions are modeled down to time intervals as short as 1-second. Another practical issue is that the size and complexity of typical distribution systems makes direct integration with transmission models computationally intractable. Hence, the focus of the next main task is to develop reduced-order controllable models for some of the smart grid assets. In particular, HVAC units, which are a type of Thermostatically Controlled Loads (TCLs), are considered. The reduced-order modeling approach can be extended to other smart grid assets, like water heaters, PVs and PHEVs. Closed-loop control strategies are designed for a population of HVAC units under realistic conditions. The proposed load controller is fully responsive and achieves the control objective without sacrificing the end-use performance. Finally, using the T&D simulation platform, the benefits to the bulk power system are demonstrated by controlling smart grid assets under different demand response closed-loop control strategies.
New insights on the Dynamic Cellular Metabolism
Ildefonso M. De la Fuente
2015-01-09T23:59:59.000Z
A large number of studies have shown the existence of metabolic covalent modifications in different molecular structures, able to store biochemical information that is not encoded by the DNA. Some of these covalent mark patterns can be transmitted across generations (epigenetic changes). Recently, the emergence of Hopfield-like attractor dynamics has been observed in the self-organized enzymatic networks, which have the capacity to store functional catalytic patterns that can be correctly recovered by the specific input stimuli. The Hopfield-like metabolic dynamics are stable and can be maintained as a long-term biochemical memory. In addition, specific molecular information can be transferred from the functional dynamics of the metabolic networks to the enzymatic activity involved in the covalent post-translational modulation so that determined functional memory can be embedded in multiple stable molecular marks. Both the metabolic dynamics governed by Hopfield-type attractors (functional processes) and the enzymatic covalent modifications of determined molecules (structural dynamic processes) seem to represent the two stages of the dynamical memory of cellular metabolism (metabolic memory). Epigenetic processes appear to be the structural manifestation of this cellular metabolic memory. Here, a new framework for molecular information storage in the cell is presented, which is characterized by two functionally and molecularly interrelated systems: a dynamic, flexible and adaptive system (metabolic memory) and an essentially conservative system (genetic memory). The molecular information of both systems seems to coordinate the physiological development of the whole cell.
Adhikari, S.K.; Tomio, L.
1987-06-01T23:59:59.000Z
A class of functions having the same analytic properties as the Jost function is introduced. In momentum space these functions can be calculated through solutions of some auxiliary integral equations. The present approach is applicable for both local and nonlocal potentials and suggests an unified calculational scheme for bound states and scattering problems.
Thomas D. Kühne
2013-03-26T23:59:59.000Z
Computer simulation methods, such as Monte Carlo or Molecular Dynamics, are very powerful computational techniques that provide detailed and essentially exact information on classical many-body problems. With the advent of ab-initio molecular dynamics, where the forces are computed on-the-fly by accurate electronic structure calculations, the scope of either method has been greatly extended. This new approach, which unifies Newton's and Schr\\"odinger's equations, allows for complex simulations without relying on any adjustable parameter. This review is intended to outline the basic principles as well as a survey of the field. Beginning with the derivation of Born-Oppenheimer molecular dynamics, the Car-Parrinello method and the recently devised efficient and accurate Car-Parrinello-like approach to Born-Oppenheimer molecular dynamics, which unifies best of both schemes are discussed. The predictive power of this novel second-generation Car-Parrinello approach is demonstrated by a series of applications ranging from liquid metals, to semiconductors and water. This development allows for ab-initio molecular dynamics simulations on much larger length and time scales than previously thought feasible.
Trusted Integrity Measurement and Reporting for Virtualized Platforms
Ryan, Mark
Trusted Integrity Measurement and Reporting for Virtualized Platforms (Work-in-Progress) Serdar of the whole set of platform components. It is, however, difficult to use this technology directly in virtualized platforms because of com- plexity and dynamic changes of platform components. In this paper, we
Explicit Newmark/Verlet algorithm for Time Integration of the
Krysl, Petr
value problem of the rotational rigid body dynamics. We are motivated by a very practical problem: time integration of the equations of motion of drill bits as they cut through rock. The drill bit geometry is fully possess the desired properties, and is in fact one of the best-performing currently known explicit
Commissioning of a beta* knob for dynamic IR correction at RHIC
Robert-Demolaize G.; Marusic, A.; Tepikian, S.; White, S.
2012-05-20T23:59:59.000Z
In addition to the recent optics correction technique demonstrated at CERN and applied at RHIC, it is important to have a separate tool to control the value of the beta functions at the collision point ({beta}*). This becomes even more relevant when trying to reach high level of integrated luminosity while dealing with emittance blow-up over the length of a store, or taking advantage of compensation processes like stochastic cooling. Algorithms have been developed to allow modifying independently the beta function in each plane for each beam without significant increase in beam losses. The following reviews the principle of such algorithms and their experimental implementation as a dynamic {beta}-squeeze procedure.
Examining Implicit Acculturation and Bicultural Identity Integration
Miramontez, Daniel Robert
2010-01-01T23:59:59.000Z
Bicultural identity Integration (BII): Components, andBicultural identity integration (BII) and valence ofassimilation, separation, integration, and marginalization.
Transportation and Stationary Power Integration: Workshop Proceedings...
Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site
Integration: Workshop Proceedings Transportation and Stationary Power Integration: Workshop Proceedings Proceedings for the Transportation and Stationary Power Integration Workshop...
Integrated system for seismic evaluations
Xu, J.; Philippacopoulos, A.J.; Miller, C.A.; Costantino, C.J.; Graves, H.
1989-01-01T23:59:59.000Z
This paper describes the various features of the Seismic Module of the CARES system (Computer Analysis for Rapid Evaluation of Structures). This system was developed by Brookhaven National Laboratory (BNL) for the US Nuclear Regulatory Commission to perform rapid evaluations of structural behavior and capability of nuclear power plant facilities. The CARES is structured in a modular format. Each module performs a specific type of analysis i.e., static or dynamic, linear or nonlinear, etc. This paper describes the features of the Seismic Module in particular. The development of the Seismic Module of the CARES system is based on an approach which incorporates all major aspects of seismic analysis currently employed by the industry into an integrated system that allows for carrying out interactively computations of structural response to seismic motions. The code operates on a PC computer system and has multi-graphics capabilities. It has been designed with user friendly features and it allows for interactive manipulation of various analysis phases during the seismic design process. The capabilities of the seismic module include (a) generation of artificial time histories compatible with given design ground response spectra, (b) development of Power Spectral Density (PSD) functions associated with the seismic input, (c) deconvolution analysis using vertically propagating shear waves through a given soil profile, and (d) development of in-structure response spectra or corresponding PSD's. It should be pointed out that these types of analyses can also be performed individually by using available computer codes such as FLUSH, SAP, etc. The uniqueness of the CARES, however, lies on its ability to perform all required phases of the seismic analysis in an integrated manner. 5 refs., 6 figs.
Inverse patchy colloids with small patches: fluid structure and dynamical slowing down
Silvano Ferrari; Emanuela Bianchi; Yura V. Kalyuzhnyi; Gerhard Kahl
2014-12-11T23:59:59.000Z
Inverse Patchy Colloids (IPCs) differ from conventional patchy particles because their patches repel (rather than attract) each other and attract (rather than repel) the part of the colloidal surface that is free of patches. These particular features occur, .e.g., in heterogeneously charged colloidal systems. Here we consider overall neutral IPCs carrying two, relatively small, polar patches. Previous studies of the same model under planar confinement have evidenced the formation of branched, disordered aggregates composed of ring-like structures. We investigate here the bulk behavior of the system via molecular dynamics simulations, focusing on both the structure and the dynamics of the fluid phase in a wide region of the phase diagram. Additionally, the simulation results for the static observables are compared to the Associative Percus Yevick solution of an integral equation approach based on the multi-density Ornstein-Zernike theory. A good agreement between theoretical and numerical quantities is observed even in the region of the phase diagram where the slowing down of the dynamics occurs.
AdS String: Classical Solutions and Moduli Dynamics
Antal Jevicki; Kewang Jin
2010-01-29T23:59:59.000Z
We review some recent work and techniques for constructing dynamical string solutions in AdS spacetime. These solutions generalize the folded string and multi-spike solutions of GKP and Kruczenski. The methods developed for constructing these dynamical solutions are based on Pohlmeyer reduction to integrable sinh-Gordon type equations. The integrability of the equations is seen as the crucial tool for reconstruction of the string configurations. We discuss the physical meaning of these dynamical spike solutions and the question of their moduli space.
Running anti-de Sitter radius from QCD-like strings
Yu-tin Huang; Warren Siegel
2007-07-10T23:59:59.000Z
We consider renormalization effects for a bosonic QCD-like string, whose partons have $1/p^{2}$ propagators instead of Gaussian. Classically this model resembles (the bosonic part of) the projective light-cone (zero-radius) limit of a string on an AdS${}_5$ background, where Schwinger parameters give rise to the fifth dimension. Quantum effects generate dynamics for this dimension, producing an AdS${}_5$ background with a running radius. The projective light-cone is the high-energy limit: Holography is enforced dynamically.
Electron Cooling Dynamics progress update ( December 15, 2003)
Electron Cooling Dynamics progress update ( December 15, 2003) A. Fedotov #12;Goals of the meeting cooling dynamics issues we would like to get input on our present studies and understanding. 2. We would and benchmarking: Vorpal, SimCool and BetaCool this morning 3. We started to study friction force with the Vorpal
A microcomputer package for serial and nonserial integral dynamic programming
Wan, Yat-Wah
1986-01-01T23:59:59.000Z
VI Cost matrix for example 3 Page 10 47 50 53 54 vuI LIST OF FIGURES FIGURE 1 Elements in the ntk stage 2 Elements in the nth stage with stage inversion 3 Serial structure for a N decision variable problem 4 Simple nonserial structure 5... = Sp Figure 3. Serial Structure for a N Decision Variable Problem a) Converging Branch Structure b) Diverging Branch Structure c) Feed Forward Loop Structure Figure 4. Simple Nonserial Structure return functions are also used throughtout...
Integrated Dynamic Electron Solutions, Inc. | Department of Energy
Broader source: Energy.gov (indexed) [DOE]
is developing a low-cost, advanced lithium-ion battery that employs a novel silicon graphene composite material that will substantially improve battery cycle life. When combined...
MIDAS: Multi-device Integrated Dynamic Activity Spaces
Karadkar, Unmil Purushottam
2012-02-14T23:59:59.000Z
itself to several content distribution and interaction strategies by separating client- and server-side configuration. v To Flora, Eva, Meena, and Sushila?the women in my life. vi ACKNOWLEDGEMENTS This dissertation... cherish every moment that I get to spend with my beloved Eva and our daughter, Flora. In addition to relatives, I have been lucky to experience ?the Aggie family? firsthand. The pachucos are a family that has slowly spread all around the world. Luis...
THE DYNAMICS OF CHEMICAL REACTORS WITH HEAT INTEGRATION
Skogestad, Sigurd
1958 analyzed the stability of the steady states of autothermal reactors. Author to whom correspondence behavior in autothermal reactors was pre- sented by Reilly an Schmitz 1966,1967 and Pareja and Reilly 1969
THE DYNAMICS OF CHEMICAL REACTORS WITH HEAT INTEGRATION
Skogestad, Sigurd
) and Aris and Amundson (1958) analyzed the stability of the steady states of autothermal reactors. \\Lambda: 4773594080. Limit cycle behavior in autothermal reactors was pre sented by Reilly an Schmitz (1966
TINA WAKOLBINGER A Dynamic Theory for the Integration of
Nagurney, Anna
information asymmetry Reduce opportunism (cf. Baker and Faulkner (2004))Reduce opportunism (cf. Baker and Fensterseiferand Farhey (1999), Bernardes and Fensterseifer (2004), Baker and Faulkner (2004) Important role, Dong, and Hughes (1992) #12;Related Financial Literature Network models with financial intermediation
Integrated Dynamic Electron Solutions, Inc. | Department of Energy
Broader source: Energy.gov (indexed) [DOE]
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy ChinaofSchaeferApril 1, 1999 Inspection of SelectedIG-1CONFERENCE ofLandfill Gas to7AC
Integrated Dynamic Electron Solutions, Inc. | Department of Energy
Broader source: Energy.gov (indexed) [DOE]
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy ChinaofSchaeferApril 1, 1999 Inspection of SelectedIG-1CONFERENCE ofLandfill Gas
Integrated Dynamic Electron Solutions, Inc. | Department of Energy
Broader source: Energy.gov (indexed) [DOE]
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy ChinaofSchaeferApril 1, 1999 Inspection of SelectedIG-1CONFERENCE ofLandfill GasTrakLok
Integrated Dynamic Electron Solutions, Inc. | Department of Energy
Broader source: Energy.gov (indexed) [DOE]
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy ChinaofSchaeferApril 1, 1999 Inspection of SelectedIG-1CONFERENCE ofLandfill GasTrakLok333
The Aurora: What does it look like?
Mojzsis, Stephen J.
The Aurora: What does it look like? An introduction for elementary school-aged children #12 Eklund #12;Northern Hemisphere observers call them the Northern Lights or Aurora Borealis. Southern Hemisphere observers call them the Southern Lights or Aurora Australis. Courtesy of NASA #12;Courtesy of Tom
Brain as quantum-like computer
Andrei Khrennikov
2005-03-24T23:59:59.000Z
We present a contextualist statistical realistic model for quantum-like representations in physics, cognitive science and psychology. We apply this model to describe cognitive experiments to check quantum-like structures of mental processes. The crucial role is played by interference of probabilities for mental observables. Recently one of such experiments based on recognition of images was performed. This experiment confirmed our prediction on quantum-like behaviour of mind. In our approach ``quantumness of mind'' has no direct relation to the fact that the brain (as any physical body) is composed of quantum particles. We invented a new terminology ``quantum-like (QL) mind.'' Cognitive QL-behaviour is characterized by nonzero coefficient of interference $\\lambda.$ This coefficient can be found on the basis of statistical data. There is predicted not only $\\cos \\theta$-interference of probabilities, but also hyperbolic $\\cosh \\theta$-interference. This interference was never observed for physical systems, but we could not exclude this possibility for cognitive systems. We propose a model of brain functioning as QL-computer (there is discussed difference between quantum and QL computers).
Self-oscillation in spin torque oscillator stabilized by field-like torque
Taniguchi, Tomohiro; Tsunegi, Sumito; Kubota, Hitoshi; Imamura, Hiroshi [National Institute of Advanced Industrial Science and Technology (AIST), Spintronics Research Center, Tsukuba 305-8568 (Japan)
2014-04-14T23:59:59.000Z
The effect of the field-like torque on the self-oscillation of the magnetization in spin torque oscillator with a perpendicularly magnetized free layer was studied theoretically. A stable self-oscillation at zero field is excited for negative ? while the magnetization dynamics stops for ??=?0 or ??>?0, where ? is the ratio between the spin torque and the field-like torque. The reason why only the negative ? induces the self-oscillation was explained from the view point of the energy balance between the spin torque and the damping. The oscillation power and frequency for various ? were also studied by numerical simulation.
A boundary integral formalism for stochastic ray tracing in billiards
David J. Chappell; Gregor Tanner
2014-11-06T23:59:59.000Z
Determining the flow of rays or particles driven by a force or velocity field is fundamental to modelling many physical processes, including weather forecasting and the simulation of molecular dynamics. High frequency wave energy distributions can also be approximated using flow or transport equations. Applications arise in underwater and room acoustics, vibro-acoustics, seismology, electromagnetics, quantum mechanics and in producing computer generated imagery. In many practical applications, the driving field is not known exactly and the dynamics are determined only up to a degree of uncertainty. This paper presents a boundary integral framework for propagating flows including uncertainties, which is shown to systematically interpolate between a deterministic and a completely random description of the trajectory propagation. A simple but efficient discretisation approach is applied to model uncertain billiard dynamics in an integrable rectangular domain.
Dynamics of turbulence spreading in magnetically confined plasmas . D. Grcan and P. H. Diamonda
Lin, Zhihong
Dynamics of turbulence spreading in magnetically confined plasmas Ö. D. Gürcan and P. H. Diamonda A dynamical theory of turbulence spreading and nonlocal interaction phenomena is presented. The basic model to dynamics on scales larger than a mode or integral scale eddy size, but smaller than the system size
The Fourier-Like and Hartley-Like Wavelet Analysis Based on Hilbert Transforms
Soares, L R; Cintra, R J
2015-01-01T23:59:59.000Z
In continuous-time wavelet analysis, most wavelet present some kind of symmetry. Based on the Fourier and Hartley transform kernels, a new wavelet multiresolution analysis is proposed. This approach is based on a pair of orthogonal wavelet functions and is named as the Fourier-Like and Hartley-Like wavelet analysis. A Hilbert transform analysis on the wavelet theory is also included.
Scherer, Norbert F.
The First Events in Photosynthesis: Electronic Coupling and Energy Transfer Dynamics in photosynthesis. The reaction center contains six chlorophyll-like pigments arranged with approximate C2 symmetry
Numerical Integration Gordon K. Smyth
Smyth, Gordon K.
Numerical Integration Gordon K. Smyth in Encyclopedia of Biostatistics (ISBN 0471 975761) Edited by Peter Armitage and Theodore Colton John Wiley & Sons, Ltd, Chichester, 1998 #12;Numerical Integration Numerical integration is the study of how the numerical value of an integral can be found. Also called
Numerical Integration Gordon K. Smyth
Smyth, Gordon K.
Numerical Integration Gordon K. Smyth May 1997 Numerical integration is the study of how the numerical value of an integral can be found. Also called quadrature, which refers to finding a square whose \\Lambda . Of central interest is the process of approximating a definite integral from values of the in
Twisted symmetries and integrable systems
G. Cicogna; G. Gaeta
2010-02-07T23:59:59.000Z
Symmetry properties are at the basis of integrability. In recent years, it appeared that so called "twisted symmetries" are as effective as standard symmetries in many respects (integrating ODEs, finding special solutions to PDEs). Here we discuss how twisted symmetries can be used to detect integrability of Lagrangian systems which are not integrable via standard symmetries.
Department, HR
2015-01-01T23:59:59.000Z
In the fulfillment of its mission, CERN relies upon the trust and material support of its Member States and partners, and is committed to exercising exemplary stewardship of the resources with which it is entrusted. Accordingly, CERN expects the highest level of integrity from all its contributors (whether members of the personnel, consultants, contractors working on site, or persons engaged in any other capacity at or on behalf of CERN). Integrity is a core value of CERN, defined in the Code of Conduct as behaving ethically, with intellectual honesty and being accountable for ones own actions.
Integrated heterodyne terahertz transceiver
Lee, Mark (Albuquerque, NM); Wanke, Michael C. (Albuquerque, NM)
2009-06-23T23:59:59.000Z
A heterodyne terahertz transceiver comprises a quantum cascade laser that is integrated on-chip with a Schottky diode mixer. An antenna connected to the Schottky diode receives a terahertz signal. The quantum cascade laser couples terahertz local oscillator power to the Schottky diode to mix with the received terahertz signal to provide an intermediate frequency output signal. The fully integrated transceiver optimizes power efficiency, sensitivity, compactness, and reliability. The transceiver can be used in compact, fieldable systems covering a wide variety of deployable applications not possible with existing technology.
Integrated heterodyne terahertz transceiver
Wanke, Michael C. (Albuquerque, NM); Lee, Mark (Albuquerque, NM); Nordquist, Christopher D. (Albuquerque, NM); Cich, Michael J. (Albuquerque, NM)
2012-09-25T23:59:59.000Z
A heterodyne terahertz transceiver comprises a quantum cascade laser that is integrated on-chip with a Schottky diode mixer. A terahertz signal can be received by an antenna connected to the mixer, an end facet or sidewall of the laser, or through a separate active section that can amplify the incident signal. The quantum cascade laser couples terahertz local oscillator power to the Schottky diode to mix with the received terahertz signal to provide an intermediate frequency output signal. The fully integrated transceiver optimizes power efficiency, sensitivity, compactness, and reliability. The transceiver can be used in compact, fieldable systems covering a wide variety of deployable applications not possible with existing technology.
Heins, S.
2007-01-01T23:59:59.000Z
6 Customer Story Bemis Manufacturing Sheboygan Falls, WI Before After Energy & Financial Impacts Annual Energy Savings $317,897 Maintenance Savings $63,579 Payback Period Less than 2 years Annual Displaced Energy 6,300,289 kWh Displaced Capacity 731... 10 Off The Grid Sensor Integration Natural Daylight Base and Peak Energy Reduction 11 Lowest Cost Renewable Solar Integrated Lighting $1.0 million/MW $6 9 million/MW Wind $1.3 - 1.9 million/MW Biomass $1.5 2.5 million/MW Geothermal $1.6 million...
Modular initiator with integrated optical diagnostic
Alam, M. Kathleen (Cedar Crest, NM); Schmitt, Randal L. (Tijeras, NM); Welle, Eric J. (Niceville, FL); Madden, Sean P. (Arlington, MA)
2011-05-17T23:59:59.000Z
A slapper detonator which integrally incorporates an optical wavequide structure for determining whether there has been degradation of the explosive in the explosive device that is to be initiated by the detonator. Embodiments of this invention take advantage of the barrel-like character of a typical slapper detonator design. The barrel assembly, being in direct contact with the energetic material, incorporates an optical diagnostic device into the barrel assembly whereby one can monitor the state of the explosive material. Such monitoring can be beneficial because the chemical degradation of the explosive plays an important in achieving proper functioning of a detonator/initiator device.
INTEGRAL observations of Galaxy Clusters
Goldoni, P; Laurent, P; Cassé, M; Paul, J; Sarazin, C L
2000-01-01T23:59:59.000Z
Cluster of galaxies are the largest concentrations of visible mass in the Universe and therefore a fundamental topic of cosmology and astrophysics. Recent radio, EUV, and X-ray observations suggest that clusters contain large populations of diffuse nonthermal relativistic and/or superthermal particles. These particles may be produced by acceleration in cluster merger shocks, AGNs, and/or supernovae in cluster galaxies. Models for the nonthermal populations in clusters indicate that they should produce substantial hard X-ray and $\\gamma$ luminosities. The possible role of nonthermal particles in the dynamics of clusters is one of the greatest uncertainties in their use as cosmological probes. INTEGRAL offers, for the first time, the possibility of simultaneous medium resolution imaging (~ 12 arcmin) and high resolution spectroscopy (DeltaE/E ~ 2 keV @ 1.3 MeV) with exceptional sensitivity in the hard X-ray/soft gamma-ray band. The spatial resolution will allow discrete sources, such as AGNs, to be separated fr...
Chemical composition of Earth-like planets
Ronco, M P; Marboeuf, U; Alibert, Y; de Elķa, G C; Guilera, O M
2015-01-01T23:59:59.000Z
Models of planet formation are mainly focused on the accretion and dynamical processes of the planets, neglecting their chemical composition. In this work, we calculate the condensation sequence of the different chemical elements for a low-mass protoplanetary disk around a solar-type star. We incorporate this sequence of chemical elements (refractory and volatile elements) in our semi-analytical model of planet formation which calculates the formation of a planetary system during its gaseous phase. The results of the semi-analytical model (final distributions of embryos and planetesimals) are used as initial conditions to develope N-body simulations that compute the post-oligarchic formation of terrestrial-type planets. The results of our simulations show that the chemical composition of the planets that remain in the habitable zone has similar characteristics to the chemical composition of the Earth. However, exist differences that can be associated to the dynamical environment in which they were formed.
Hyperbolic Dynamics Todd Fisher
Fisher, Todd
Hyperbolic Dynamics Todd Fisher tfisher@math.umd.edu Department of Mathematics University of Maryland, College Park Hyperbolic Dynamics p. 1/3 #12;What is a dynamical system? Phase space X, elements possible states Hyperbolic Dynamics p. 2/3 #12;What is a dynamical system? Phase space X, elements
Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]
2011-04-25T23:59:59.000Z
The order ensures that DOE/NNSA, systematically integrates safety into management and work practices at all levels, so that missions are accomplished efficiently while protecting the workers, the public, and the environment. Cancels DOE M 450.4-1 and DOE M 411.1-1C
Integrated Safety Management Policy
Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]
2011-04-25T23:59:59.000Z
The policy establishes DOE's expectation for safety, including integrated safety management that will enable the Departments mission goals to be accomplished efficiently while ensuring safe operations at all departmental facilities and activities. Cancels DOE P 411.1, DOE P 441.1, DOE P 450.2A, DOE P 450.4, and DOE P 450.7
Bioluminescent bioreporter integrated circuit
Simpson, Michael L. (Knoxville, TN); Sayler, Gary S. (Blaine, TN); Paulus, Michael J. (Knoxville, TN)
2000-01-01T23:59:59.000Z
Disclosed are monolithic bioelectronic devices comprising a bioreporter and an OASIC. These bioluminescent bioreporter integrated circuit are useful in detecting substances such as pollutants, explosives, and heavy-metals residing in inhospitable areas such as groundwater, industrial process vessels, and battlefields. Also disclosed are methods and apparatus for environmental pollutant detection, oil exploration, drug discovery, industrial process control, and hazardous chemical monitoring.
Modular Integrated Energy Systems
Oak Ridge National Laboratory
Building 3147 Oak Ridge, TN 37831 April 27, 2006 Prepared by: Honeywell Laboratories 3660 Technology Drive Honeywell #12;Modular Integrated Energy Systems Task 5 Prototype Development Reference Design Documentation: Steve Gabel, Program Manager (612) 951-7555 Honeywell Laboratories 3660 Technology Drive Minneapolis
Modular Integrated Energy Systems
Oak Ridge National Laboratory
Building 3147 Oak Ridge, TN 37831 July 22, 2005 Prepared by: Honeywell Laboratories 3660 Technology DriveApril 2005 Honeywell #12;Modular Integrated Energy Systems Task 6 Field Monitoring Interim Report Period Oak Ridge, TN 37831 Prepared by: Steve Gabel, Program Manager (612) 951-7555 Honeywell Laboratories
Modular Integrated Energy Systems
Oak Ridge National Laboratory
Building 3147 Oak Ridge, TN 37831 March 24, 2005 Prepared by: Honeywell Laboratories 3660 Technology DriveDecember 2004 Honeywell #12;Modular Integrated Energy Systems Task 6 Field Monitoring Interim Report Period Oak Ridge, TN 37831 Prepared by: Steve Gabel, Program Manager (612) 951-7555 Honeywell Laboratories
Modular Integrated Energy Systems
Oak Ridge National Laboratory
Honeywell Modular Integrated Energy Systems Task 6 Field Monitoring Interim Report Period Covered 3147 Oak Ridge, TN 37831 Prepared by: Honeywell Laboratories 3660 Technology Drive Minneapolis, MN 3147 Oak Ridge, TN 37831 Prepared by: Steve Gabel, Program Manager (612) 951-7555 Honeywell
integration division Human Systems
integration division Human Systems Eye-Movement Metrics: Non-Intrusive Quantitative Tools for Monitoring Human Visual Performance Objective Approach Impact A reliable quantitative yet non-intrusive methodologies that provide quantitative yet non-intrusive measures of human visual performance for use
Integrated Optoelectronics in an Optical Fiber J. V. Badding*a,d
Gopalan, Venkatraman
Integrated Optoelectronics in an Optical Fiber J. V. Badding*a,d , P. J. Saziob , V. Gopalanc.d , A Integration of semiconductor and metal structures into optical fibers to enable fusion of semiconductor optoelectronic function with glass optical fibers is discussed. A chemical vapor deposition (CVD)-like process
Integrated optics for astronomical interferometry. I. Concept and astronomical applications
F. Malbet; P. Kern; I. Schanen-Duport; J. -P. Berger; K. Rousselet-Perraut
1999-07-02T23:59:59.000Z
We propose a new instrumental concept for long-baseline optical single-mode interferometry using integrated optics which were developed for telecommunication. Visible and infrared multi-aperture interferometry requires many optical functions (spatial filtering, beam combination, photometric calibration, polarization control) to detect astronomical signals at very high angular resolution. Since the 80's, integrated optics on planar substrate have become available for telecommunication applications with multiple optical functions like power dividing, coupling, multiplexing, etc. We present the concept of an optical / infrared interferometric instrument based on this new technology. The main advantage is to provide an interferometric combination unit on a single optical chip. Integrated optics are compact, provide stability, low sensitivity to external constrains like temperature, pressure or mechanical stresses, no optical alignment except for coupling, simplicity and intrinsic polarization control. The integrated optics devices are inexpensive compared to devices that have the same functionalities in bulk optics. We think integrated optics will fundamentally change single-mode interferometry. Integrated optics devices are in particular well-suited for interferometric combination of numerous beams to achieve aperture synthesis imaging or for space-based interferometers where stability and a minimum of optical alignments are wished.
Tectonic velocities, dynamic topography, and relative sea level Laurent Husson1,2
Husson, Laurent
] Dynamic topography is the vertical component of the response of an interface, like the surface may decrease dynamic topography amplitudes at the surface [Hager, 1984]. Thus, our use of a mantleTectonic velocities, dynamic topography, and relative sea level Laurent Husson1,2 and Clinton P
Toward Structural Dynamics: Protein Motions Viewed by Chemical Shift Modulations and Direct of anti-correlated fluctuations) in R-helices. This extends the prospects of structure- dynamics, several groups have proposed to investigate the existence of structure-dynamics relationships. We like
Direct numerical integration for multi-loop integrals
Sebastian Becker; Stefan Weinzierl
2013-03-18T23:59:59.000Z
We present a method to construct a suitable contour deformation in loop momentum space for multi-loop integrals. This contour deformation can be used to perform the integration for multi-loop integrals numerically. The integration can be performed directly in loop momentum space without the introduction of Feynman or Schwinger parameters. The method can be applied to finite multi-loop integrals and to divergent multi-loop integrals with suitable subtraction terms. The algorithm extends techniques from the one-loop case to the multi-loop case. Examples at two and three loops are discussed explicitly.
The Microscopic Linear Dynamics
Penny, Will
The Microscopic Brain Will Penny Linear Dynamics Exponentials Matrix Exponential Eigendecomposition Dynamical Modes Nodes State Space Saddles Oscillations Spirals Centres Offsets Retinal Circuit Nullclines Stability Spiking Neurons Fitzhugh-Nagumo Nonlinear Dynamics Linearization Nonlinear Oscillation Excitable
Water Dynamics at Rough Interfaces
Markus Rosenstihl; Kerstin Kämpf; Felix Klameth; Matthias Sattig; Michael Vogel
2014-07-21T23:59:59.000Z
We use molecular dynamics computer simulations and nuclear magnetic resonance experiments to investigate the dynamics of water at interfaces of molecular roughness and low mobility. We find that, when approaching such interfaces, the structural relaxation of water, i.e., the $\\alpha$ process, slows down even when specific attractive interactions are absent. This prominent effect is accompanied by a smooth transition from Vogel to Arrhenius temperature dependence and by a growing importance of jump events. Consistently, at protein surfaces, deviations from Arrhenius behavior are weak when free water does not exist. Furthermore, in nanoporous silica, a dynamic crossover of liquid water occurs when a fraction of solid water forms near 225 K and, hence, the liquid dynamics changes from bulk-like to interface-dominated. At sufficiently low temperatures, water exhibits a quasi-universal $\\beta$ process, which is characterized by an activation energy of $E_a\\!=\\!0.5$ eV and involves anisotropic reorientation about large angles. As a consequence of its large amplitude, the faster $\\beta$ process destroys essentially all orientational correlation, rendering observation of a possible slower $\\alpha$ process difficult in standard experiments. Nevertheless, we find indications for the existence of structural relaxation down to a glass transition of interfacial water near 185 K. Hydrated proteins show a highly restricted backbone motion with an amplitude, which decreases upon cooling and vanishes at comparable temperatures, providing evidence for a high relevance of water rearrangements in the hydration shell for secondary protein relaxations.
Off-Shell Scalar Supermultiplet in the Unfolded Dynamics Approach
N. G. Misuna; M. A. Vasiliev
2014-06-09T23:59:59.000Z
We show how manifestly supersymmetric action for Wess-Zumino model can be constructed within the unfolded dynamics approach. The off-shell unfolded system for N = 1, D = 4 scalar supermultiplet is found. The action is presented in the form of integral of a closed 4-form over any (4, 0) surface in superspace as well as a superspace integral of an integral form or a chiral integral form. The proposed method is argued to provide a most general tool for the analysis of manifestly supersymmetric functionals.
Near-Surface Engineered Environmental Barrier Integrity
Piet, S.J.; Breckenridge, R.P.
2002-05-15T23:59:59.000Z
The INEEL Environmental Systems Research and Analysis (ESRA) program has launched a new R and D project on Near-Surface Engineered Environmental Barrier Integrity to increase knowledge and capabilities for using engineering and ecological components to improve the integrity of near-surface barriers used to confine contaminants from the public and the environment. The knowledge gained and the capabilities built will help verify the adequacy of past remedial decisions and enable improved solutions for future cleanup decisions. The research is planned to (a) improve the knowledge of degradation mechanisms (weathering, biological, geological, chemical, radiological, and catastrophic) in times shorter than service life, (b) improve modeling of barrier degradation dynamics, (c) develop sensor systems to identify degradation prior to failure, and (d) provide a better basis for developing and testing of new barrier systems to increase reliability and reduce the risk of failure. Our project combine s selected exploratory studies (benchtop and field scale), coupled effects accelerated aging testing and the meso-scale, testing of new monitoring concepts, and modeling of dynamic systems. The performance of evapo-transpiration, capillary, and grout-based barriers will be examined.
Near-Surface Engineered Environmental Barrier Integrity
Piet, Steven James; Breckenridge, Robert Paul; Beller, John Michael; Geesey, Gill Gregroy; Glenn, David Frankie; Jacobson, Jacob Jordan; Martian, Pete; Matthern, Gretchen Elise; Mattson, Earl Douglas; Porro, Indrek; Southworth, Finis Hio; Steffler, Eric Darwin; Stormberg, Angelica Isabel; Stormberg, Gregory John; Versteeg, Roelof Jan; White, Gregory J
2002-08-01T23:59:59.000Z
The INEEL Environmental Systems Research and Analysis (ESRA) program has launched a new R&D project on Near-Surface Engineered Environmental Barrier Integrity to increase knowledge and capabilities for using engineering and ecological components to improve the integrity of near-surface barriers used to confine contaminants from the public and the environment. The knowledge gained and the capabilities built will help verify the adequacy of past remedial decisions and enable improved solutions for future cleanup decisions. The research is planned to (a) improve the knowledge of degradation mechanisms (weathering, biological, geological, chemical, radiological, and catastrophic) in times shorter than service life, (b) improve modeling of barrier degradation dynamics, (c) develop sensor systems to identify degradation prior to failure, and (d) provide a better basis for developing and testing of new barrier systems to increase reliability and reduce the risk of failure. Our project combines selected exploratory studies (benchtop and field scale), coupled effects accelerated aging testing and the meso-scale, testing of new monitoring concepts, and modeling of dynamic systems. The performance of evapo- transpiration, capillary, and grout-based barriers will be examined.
What will the Smart Grid Look Like?
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron SpinPrincetonUsingWhat is a ĀShut-downĀ in theWhat waters does
Glass-like thermal conductivity in high efficiency thermoelectric...
Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site
Glass-like thermal conductivity in high efficiency thermoelectric materials Glass-like thermal conductivity in high efficiency thermoelectric materials Discusses strategies to...
Watermelon-like iron nanoparticles: Cr doping effect on magnetism...
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Watermelon-like iron nanoparticles: Cr doping effect on magnetism and magnetization interaction reversal. Watermelon-like iron nanoparticles: Cr doping effect on magnetism and...
Cost-Effectiveness Tests and Measuring Like a Utility | Department...
Cost-Effectiveness Tests and Measuring Like a Utility Cost-Effectiveness Tests and Measuring Like a Utility Better Buildings Residential Data and Evaluation Peer Exchange Call...
Quantum measure and integration theory
Stan Gudder
2009-09-11T23:59:59.000Z
This article begins with a review of quantum measure spaces. Quantum forms and indefinite inner-product spaces are then discussed. The main part of the paper introduces a quantum integral and derives some of its properties. The quantum integral's form for simple functions is characterized and it is shown that the quantum integral generalizes the Lebesgue integral. A bounded, monotone convergence theorem for quantum integrals is obtained and it is shown that a Radon-Nikodym type theorem does not hold for quantum measures. As an example, a quantum-Lebesgue integral on the real line is considered.
Protein Dynamics and Biocatalysis
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Protein Dynamics and Biocatalysis Protein Dynamics and Biocatalysis 1998 Annual Report Grand Challenge Projects biocatalysis.gif A model of the Michaelis complex for the TEM-1...
Estimating Power System Dynamic States Using Extended Kalman Filter
Huang, Zhenyu; Schneider, Kevin P.; Nieplocha, Jaroslaw; Zhou, Ning
2014-10-31T23:59:59.000Z
AbstractThe state estimation tools which are currently deployed in power system control rooms are based on a steady state assumption. As a result, the suite of operational tools that rely on state estimation results as inputs do not have dynamic information available and their accuracy is compromised. This paper investigates the application of Extended Kalman Filtering techniques for estimating dynamic states in the state estimation process. The new formulated dynamic state estimation includes true system dynamics reflected in differential equations, not like previously proposed dynamic state estimation which only considers the time-variant snapshots based on steady state modeling. This new dynamic state estimation using Extended Kalman Filter has been successfully tested on a multi-machine system. Sensitivity studies with respect to noise levels, sampling rates, model errors, and parameter errors are presented as well to illustrate the robust performance of the developed dynamic state estimation process.
Skogestad, Sigurd
IMC-like Analytical H design with S/SP mixed sensitivity consideration: Utility in PID tuning methodology is also suitable for teaching purposes. Key words: H control, Weighted Sensitivity, IMC, PID, the Proportional-Integrative-Derivative (PID) controller is recognized to be the bread and butter of automatic
Fixed-Point-Like Theorems on Subspaces
Bich, Philippe; Cornet, Bernard
2004-08-26T23:59:59.000Z
denote by E? = {u ? Rn | ?x ? E, x · u = 0} the orthogonal space to E. If u1, . . . ,uk belong to E, a vector space, we denote by span{u1, . . . ,uk} the vector subspace of E spanned by u1, . . . ,uk. Let V be a Euclidean space and let k be an integer... Fixed-point-like theorems on subspaces Take I = {1},V1 =Rn+1, k1 = n, J =?, and apply Theorem 2.1 to the correspondences Hk, which clearly satisfy the assumptions of Theorem 2.1. So there exists EÆ ? Gn(Rn+1) such that EÆ?Hk(EÆ) #6;= ? for every k = 1...
Entanglement Teleportation Through Cat-like States
Sibasish Ghosh; Guruprasad Kar; Anirban Roy; Debasis Sarkar; Ujjwal Sen
2000-12-20T23:59:59.000Z
We first consider teleportation of entangled states shared between Claire and Alice to Bob1 and Bob2 when Alice and the two Bobs share a single copy of a GHZ-class state and where {\\it all} the four parties are at distant locations. We then generalize this situation to the case of teleportation of entangled states shared between Claire1, Claire2, ....., Claire(N-1) and Alice to Bob1, Bob2, ....., BobN when Alice and the N Bobs share a single copy of a Cat-like state and where again {\\it all} the 2N parties are at distant locations.
Template:FacebookLike | Open Energy Information
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries PvtStratosolar Jump to:HoldingsTechint SpasourceFacebookLike Jump to: navigation,
Integrated turbomachine oxygen plant
Anand, Ashok Kumar; DePuy, Richard Anthony; Muthaiah, Veerappan
2014-06-17T23:59:59.000Z
An integrated turbomachine oxygen plant includes a turbomachine and an air separation unit. One or more compressor pathways flow compressed air from a compressor through one or more of a combustor and a turbine expander to cool the combustor and/or the turbine expander. An air separation unit is operably connected to the one or more compressor pathways and is configured to separate the compressed air into oxygen and oxygen-depleted air. A method of air separation in an integrated turbomachine oxygen plant includes compressing a flow of air in a compressor of a turbomachine. The compressed flow of air is flowed through one or more of a combustor and a turbine expander of the turbomachine to cool the combustor and/or the turbine expander. The compressed flow of air is directed to an air separation unit and is separated into oxygen and oxygen-depleted air.
Brent Frogget, Douglas DeVore, Vincent Romero, David Esquibel, and David Holtkamp
2008-09-04T23:59:59.000Z
Optical probes used in velocimetry measurements have typically been individual probes that collect data for a single diagnostic at a single point. These probes have been used in diagnostics such as VISAR, PDV, and radiometry, which measure surface velocity, temperature, and other characteristics. When separate probes are used for these measurements, the different diagnostic points measured must be significantly separated. We have developed integrated probes that collect data for multiple optical diagnostics; these probes measure points in close proximity.
Heins, S.
Integrated Energy Efficiency Steve Heins VP Communications and Government Affairs Orion Energy Systems, Inc. 2 MegaTrend Convergence We need companies to commercialize technologies that use less energy without compromise to operations. Energy... Environment US electricity consumption growing 43% by 2030 Power generation expected to account for 50% of CO 2 emission increases 3 How Electricity Is Used 24 Hour Operation Midnight 6 a.m. Noon 6 p.m. Midnight kW 4 Lighting is a Major Component...
Integrated Deployment and the Energy Systems Integration Facility: Workshop Proceedings
Kroposki, B.; Werner, M.; Spikes, A.; Komomua, C.
2013-01-01T23:59:59.000Z
This report summarizes the workshop entitled: Integrated Deployment and the Energy Systems Integration Facility. In anticipation of the opening of the ESIF, NREL held the workshop August 21-23, 2012 and invited participants from utilities, government, industry, and academia to discuss renewable integration challenges and discover new ways to meet them by taking advantage of the ESIF's capabilities.
Integrative Bioengineering Institute
Eddington, David; Magin,L,Richard; Hetling, John; Cho, Michael
2009-01-09T23:59:59.000Z
Microfabrication enables many exciting experimental possibilities for medicine and biology that are not attainable through traditional methods. However, in order for microfabricated devices to have an impact they must not only provide a robust solution to a current unmet need, but also be simple enough to seamlessly integrate into standard protocols. Broad dissemination of bioMEMS has been stymied by the common aim of replacing established and well accepted protocols with equally or more complex devices, methods, or materials. The marriage of a complex, difficult to fabricate bioMEMS device with a highly variable biological system is rarely successful. Instead, the design philosophy of my lab aims to leverage a beneficial microscale phenomena (e.g. fast diffusion at the microscale) within a bioMEMS device and adapt to established methods (e.g. multiwell plate cell culture) and demonstrate a new paradigm for the field (adapt instead of replace). In order for the field of bioMEMS to mature beyond novel proof-of-concept demonstrations, researchers must focus on developing systems leveraging these phenomena and integrating into standard labs, which have largely been ignored. Towards this aim, the Integrative Bioengineering Institute has been established.
Sįnchez, Angel "Anxo"
Ratchet behavior in nonlinear Klein-Gordon systems with point-like inhomogeneities Luis Morales: February 14, 2005) We investigate the ratchet dynamics of nonlinear Klein-Gordon kinks in a periodic a collective coordinate framework, which shows that such system behaves as a rocking ratchet for point
Causal Dynamical Triangulations without Preferred Foliation
S. Jordan; R. Loll
2013-05-20T23:59:59.000Z
We introduce a generalized version of the Causal Dynamical Triangulations (CDT) formulation of quantum gravity, in which the regularized, triangulated path integral histories retain their causal properties, but do not have a preferred proper-time foliation. An extensive numerical study of the associated nonperturbative path integral in 2+1 dimensions shows that it can nevertheless reproduce the emergence of an extended de Sitter universe on large scales, a key feature of CDT quantum gravity. This suggests that the preferred foliation normally used in CDT is not a crucial (albeit convenient) part of its background structure.
High Efficiency Integrated Package
Ibbetson, James
2013-09-15T23:59:59.000Z
Solid-state lighting based on LEDs has emerged as a superior alternative to inefficient conventional lighting, particularly incandescent. LED lighting can lead to 80 percent energy savings; can last 50,000 hours 2-50 times longer than most bulbs; and contains no toxic lead or mercury. However, to enable mass adoption, particularly at the consumer level, the cost of LED luminaires must be reduced by an order of magnitude while achieving superior efficiency, light quality and lifetime. To become viable, energy-efficient replacement solutions must deliver system efficacies of ? 100 lumens per watt (LPW) with excellent color rendering (CRI > 85) at a cost that enables payback cycles of two years or less for commercial applications. This development will enable significant site energy savings as it targets commercial and retail lighting applications that are most sensitive to the lifetime operating costs with their extended operating hours per day. If costs are reduced substantially, dramatic energy savings can be realized by replacing incandescent lighting in the residential market as well. In light of these challenges, Cree proposed to develop a multi-chip integrated LED package with an output of > 1000 lumens of warm white light operating at an efficacy of at least 128 LPW with a CRI > 85. This product will serve as the light engine for replacement lamps and luminaires. At the end of the proposed program, this integrated package was to be used in a proof-of-concept lamp prototype to demonstrate the components viability in a common form factor. During this project Cree SBTC developed an efficient, compact warm-white LED package with an integrated remote color down-converter. Via a combination of intensive optical, electrical, and thermal optimization, a package design was obtained that met nearly all project goals. This package emitted 1295 lm under instant-on, room-temperature testing conditions, with an efficacy of 128.4 lm/W at a color temperature of ~2873K and 83 CRI. As such, the packages performance exceeds DOEs warm-white phosphor LED efficacy target for 2013. At the end of the program, we assembled an A19 sized demonstration bulb housing the integrated package which met Energy Star intensity variation requirements. With further development to reduce overall component cost, we anticipate that an integrated remote converter package such as developed during this program will find application in compact, high-efficacy LED-based lamps, particularly those requiring omnidirectional emission.
January 2005 INTEGRATING IT SECURITY
January 2005 INTEGRATING IT SECURITY INTO THE CAPITAL PLANNING AND INVESTMENT CONTROL PROCESS By Joan S. Hash, Computer Security Division, Information Technology Laboratory, National Institute of Standards and Technology Introduction To assist federal agencies with effec tively integrating security
Modeling the surface temperature of Earth-like planets
Vladilo, G; Murante, G; Filippi, L; Provenzale, A
2015-01-01T23:59:59.000Z
We introduce a novel Earth-like planet surface temperature model (ESTM) for habitability studies based on the spatial-temporal distribution of planetary surface temperatures. The ESTM adopts a surface Energy Balance Model complemented by: radiative-convective atmospheric column calculations, a set of physically-based parameterizations of meridional transport, and descriptions of surface and cloud properties more refined than in standard EBMs. The parameterization is valid for rotating terrestrial planets with shallow atmospheres and moderate values of axis obliquity (epsilon >= 45^o). Comparison with a 3D model of atmospheric dynamics from the literature shows that the equator-to-pole temperature differences predicted by the two models agree within ~5K when the rotation rate, insolation, surface pressure and planet radius are varied in the intervals 0.5 <= Omega/Omega_o <= 2, 0.75 <= S/S_o <= 1.25, 0.3 <= p/(1 bar) <= 10, and 0.5 <= R/R_o <= 2, respectively. The ESTM has an extremely l...
Smith, F.; Brown, K.; Flach, G.; Sarkar, S.
2011-09-30T23:59:59.000Z
The goal of the Cementitious Barriers Partnership (CBP) is to develop a reasonable and credible set of software tools to predict the structural, hydraulic, and chemical performance of cement barriers used in nuclear applications over extended time frames (greater than 100 years for operating facilities and greater than 1000 years for waste management). The simulation tools will be used to evaluate and predict the behavior of cementitious barriers used in near surface engineered waste disposal systems including waste forms, containment structures, entombments, and environmental remediation. These cementitious materials are exposed to dynamic environmental conditions that cause changes in material properties via (i) aging, (ii) chloride attack, (iii) sulfate attack, (iv) carbonation, (v) oxidation, and (vi) primary constituent leaching. A set of state-of-the-art software tools has been selected as a starting point to capture these important aging and degradation phenomena. Integration of existing software developed by the CBP partner organizations was determined to be the quickest method of meeting the CBP goal of providing a computational tool that improves the prediction of the long-term behavior of cementitious materials. These partner codes were selected based on their maturity and ability to address the problems outlined above. The GoldSim Monte Carlo simulation program (GTG 2010a, GTG 2010b) was chosen as the code integration platform (Brown & Flach 2009b). GoldSim (current Version 10.5) is a Windows based graphical object-oriented computer program that provides a flexible environment for model development (Brown & Flach 2009b). The linking of GoldSim to external codes has previously been successfully demonstrated (Eary 2007, Mattie et al. 2007). GoldSim is capable of performing deterministic and probabilistic simulations and of modeling radioactive decay and constituent transport. As part of the CBP project, a general Dynamic Link Library (DLL) interface was developed to link GoldSim with external codes (Smith III et al. 2010). The DLL uses a list of code inputs provided by GoldSim to create an input file for the external application, runs the external code, and returns a list of outputs (read from files created by the external application) back to GoldSim. In this way GoldSim provides: (1) a unified user interface to the applications, (2) the capability of coupling selected codes in a synergistic manner, and (3) the capability of performing probabilistic uncertainty analysis with the codes. GoldSim is made available by the GoldSim Technology Group as a free 'Player' version that allows running but not editing GoldSim models. The player version makes the software readily available to a wider community of users that would wish to use the CBP application but do not have a license for GoldSim.
Pendulum Integration and Elliptic Functions
P. L. Garrido; G. Gallavotti
2008-12-12T23:59:59.000Z
Revisiting canonical integration of the classical pendulum around its unstable equilibrium, normal hyperbolic canonical coordinates are constructed
Noncommutative integrable systems and quasideterminants
Hamanaka, Masashi [Department of Mathematics, Nagoya University, Chikusa-ku, Nagoya, 464-8602 (Japan)
2010-03-08T23:59:59.000Z
We discuss extension of soliton theories and integrable systems into noncommutative spaces. In the framework of noncommutative integrable hierarchy, we give infinite conserved quantities and exact soliton solutions for many noncommutative integrable equations, which are represented in terms of Strachan's products and quasi-determinants, respectively. We also present a relation to an noncommutative anti-self-dual Yang-Mills equation, and make comments on how 'integrability' should be considered in noncommutative spaces.
Integrated Biorefineries | Department of Energy
Broader source: Energy.gov (indexed) [DOE]
displayed. Integrated biorefineries use novel technologies and diverse biomass feedstocks-requiring significant investments in research, development, and deployment to...
Integrated diamond networks for quantum nanophotonics
Birgit J. M. Hausmann; Brendan Shields; Qimin Quan; Patrick Maletinsky; Murray McCutcheon; Jennifer T. Choy; Tom M. Babinec; Alexander Kubanek; Amir Yacoby; Mikhail D. Lukin; Marko Loncar
2012-01-05T23:59:59.000Z
Diamond is a unique material with exceptional physical and chemical properties that offers potential for the realization of high-performance devices with novel functionalities. For example diamond's high refractive index, transparency over wide wavelength range, and large Raman gain are of interest for the implementation of novel photonic devices. Recently, atom-like impurities in diamond emerged as an exceptional system for quantum information processing, quantum sensing and quantum networks. For these and other applications, it is essential to develop an integrated nanophotonic platform based on diamond. Here, we report on the realization of such an integrated diamond photonic platform, diamond on insulator (DOI), consisting of a thin single crystal diamond film on top of an insulating silicon dioxide/silicon substrate. Using this approach, we demonstrate diamond ring resonators that operate in a wide wavelength range, including the visible (630nm) and near-infrared (1,550nm). Finally, we demonstrate an integrated, on-chip quantum nanophotonic network, consisting of ring resonators coupled to low loss waveguides with grating couplers, that enables the generation and efficient routing of single photons at room temperature.
Integrated intelligent systems in advanced reactor control rooms
Beckmeyer, R.R.
1989-01-01T23:59:59.000Z
An intelligent, reactor control room, information system is designed to be an integral part of an advanced control room and will assist the reactor operator's decision making process by continuously monitoring the current plant state and providing recommended operator actions to improve that state. This intelligent system is an integral part of, as well as an extension to, the plant protection and control systems. This paper describes the interaction of several functional components (intelligent information data display, technical specifications monitoring, and dynamic procedures) of the overall system and the artificial intelligence laboratory environment assembled for testing the prototype. 10 refs., 5 figs.
Lectures on integrable Hamiltonian systems
G. Sardanashvily
2013-03-21T23:59:59.000Z
We consider integrable Hamiltonian systems in a general setting of invariant submanifolds which need not be compact. For instance, this is the case a global Kepler system, non-autonomous integrable Hamiltonian systems and integrable systems with time-dependent parameters.
Hydrogen like classification for light nonstrange mesons
S. S. Afonin
2008-09-09T23:59:59.000Z
The recent experimental results on the spectrum of highly excited light nonstrange mesons are known to reveal a high degree of degeneracy among different groups of states. We revise some suggestions about the nature of the phenomenon and put the relevant ideas into the final shape. The full group of approximate mass degeneracies is argued to be $SU(2)_f\\times I\\times O(4)$, where $I$ is the degeneracy of isosinglets and isotriplets and O(4) is the degeneracy group of the relativistic hydrogen atom. We discuss the dynamical origin and consequences of considered symmetry with a special emphasis on distinctions of this symmetry from the so-called chiral symmetry restoration scenario.
Knoll, Jörn
Dynamics of Resonances GSI, 18.05.2005 Motivations Thermal Equilibrium -N- vectormesons Di-leptons Towards dynamics Conserving -functional Gradient ap- proximation Quantum Kinetic Equation Summary Dynamics. Voskresensky1,3 1GSI 2Kurchatov Inst. (Moscow) 3Moscow Ins. for Physics and Engineering #12;Dynamics
Zeghib, Abdelghani
Dynamics on Lorentz manifolds Abdelghani Zeghib Introduction Motivations and questions Examples Results Results Previous results Linear Dynamics General considerations Furstenberg Lemma Lorentz Dynamics://www.umpa.ens-lyon.fr/~zeghib/ (joint work with Paolo Piccione) #12;Dynamics on Lorentz manifolds Abdelghani Zeghib Introduction
LaCasce, Joseph H.
Introduction Basic dynamics The Gulf Stream The thermohaline circulation Ocean currents: some misconceptions and some dynamics Joe LaCasce Dept. Geosciences October 30, 2012 Joe LaCasce Dept. Geosciences Ocean currents: some misconceptions and some dynamics #12;Introduction Basic dynamics The Gulf Stream
Computational Studies of Protein Structure, Dynamics, and Function in Native-like Environments
Rui, Huan
2013-05-31T23:59:59.000Z
Proteins are among the four unique organic constituents of cells. They are responsible for a variety of important cell functions ranging from providing structural support to catalyzing biological reactions. They vary in ...
An Application of Gradient-Like Dynamics to Neural Networks James W. Howse Chaouki T. Abdallah
Gregory L. Heileman Department of Electrical and Computer Engineering University of New Mexico, Albuquerque, NM 87131 Michael Georgiopoulos Department of Electrical and Computer Engineering University stable when the weights are con- stant and symmetric. As shown in [6] many neural net- This research
Discrete molecular dynamics studies of the folding of a protein-like model
Buldyrev, Sergey
for studying theoretical aspects of protein folding. The MC algorithm is based on a set of rules, it is useful to study off-lattice models of protein folding. Thus far, several off-lattice simulations have been performed [1921] that demonstrate the ability of the sim- plified models to study protein folding
Hawai'i at Manoa, University of
Habitat modeling Movements AdvectionĀdiffusion Tuna Katsuwonus pelamis Thunnus obesus Pacific Ocean a b with two tuna species showing different biological characteristics, skipjack (Katsuwonus pelamis
Bryan, Allen W.
The supersecondary structure of amyloids and prions, proteins of intense clinical and biological interest, are difficult to determine by standard experimental or computational means. In addition, significant conformational ...
The lightcone of Gödel-like spacetimes
G. Dautcourt
2010-09-27T23:59:59.000Z
A study of the lightcone of the G\\"odel universe is extended to the so-called G\\"odel-like spacetimes. This family of highly symmetric 4-D Lorentzian spaces is defined by metrics of the form $ds^2=-(dt+H(x)dy)^2+D^2(x)dy^2+dx^2+dz^2$, together with the requirement of spacetime homogeneity, and includes the G\\"odel metric. The quasi-periodic refocussing of cone generators with startling lens properties, discovered by Ozsv\\'{a}th and Sch\\"ucking for the lightcone of a plane gravitational wave and also found in the G\\"odel universe, is a feature of the whole G\\"odel family. We discuss geometrical properties of caustics and show that (a) the focal surfaces are two-dimensional null surfaces generated by non-geodesic null curves and (b) intrinsic differential invariants of the cone attain finite values at caustic subsets.
Shock waves in Lifshitz-like spacetimes
I. Ya. Aref'eva; A. A. Golubtsova
2015-03-23T23:59:59.000Z
We construct shock waves for Lifshitz-like geometries in four- and five-dimensional effective theories as well as in D3-D7 and D4-D6 brane systems. The solutions to the domain wall profile equations are found. Further, the study makes a connection with the implications for the quark-gluon plasma formation in heavy-ion collisions. According to the holographic approach, the multiplicity of particles produced in heavy-ion collisions can be estimated by the area of the trapped surface formed in shock wave collisions. We calculate the areas of trapped surfaces in the geometry of two colliding Lifshitz domain walls. Our estimates show that for five-dimensional cases with certain values of the critical exponent the dependence of multiplicity on the energy of colliding ions is rather close to the experimental data ${\\cal M} \\sim s^{\\,0.15}$ observed at RHIC and LHC.
Integrated Assessment Modeling
Edmonds, James A.; Calvin, Katherine V.; Clarke, Leon E.; Janetos, Anthony C.; Kim, Son H.; Wise, Marshall A.; McJeon, Haewon C.
2012-10-31T23:59:59.000Z
This paper discusses the role of Integrated Assessment models (IAMs) in climate change research. IAMs are an interdisciplinary research platform, which constitutes a consistent scientific framework in which the large-scale interactions between human and natural Earth systems can be examined. In so doing, IAMs provide insights that would otherwise be unavailable from traditional single-discipline research. By providing a broader view of the issue, IAMs constitute an important tool for decision support. IAMs are also a home of human Earth system research and provide natural Earth system scientists information about the nature of human intervention in global biogeophysical and geochemical processes.
Iterated integrals of superconnections
Igusa, Kiyoshi
2009-01-01T23:59:59.000Z
Starting with a Z-graded superconnection on a graded vector bundle over a smooth manifold M, we show how Chen's iterated integration of such a superconnection over smooth simplices in M gives an A-infinity functor if and only if the superconnection is flat. If the graded bundle is trivial, this gives a twisting cochain. Very similar results were obtained by K.T. Chen using similar methods. This paper is intended to explain this from scratch beginning with the definition and basic properties of a connection and ending with an exposition of Chen's "formal connections" and a brief discussion of how this is related to higher Reidemeister torsion.
Beebe, John
1992-01-01T23:59:59.000Z
to the common problem of colluding with the attitude that shame is something to be ashamed of. He agrees with Andrew Morrison that for any in dividual with major deficits of the self, shame, not rage, is the principal affect. Beebe advocates "a psychology... is "Working on Integrity." In its opening section, "Fidelity to Process," Beebe shares a poi gnant therapeutic interchange in which he makes a mistake that leads to the patient's being angry at him. This rage facilitates the patient's discovery of her own...
Transmission Commercial Project Integration
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2, 2003Tool ofTopoCarbon|default Sign In About |
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes | National Nuclear Security Administration Facebook
Integrated Support Center Jobs
Office of Science (SC) Website
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4 Self-Scrubbing:,,ofOpportunitieshighlights/ Theisc/about/jobs/ Below is
Integrated Safety Management Policy
Office of Environmental Management (EM)
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial602 1,39732on ArmedManufacturing | DepartmentINTEGRATED SAFETY MANAGEMENT
Integrating Program Component Executables
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn Other NewsSpin andInterim DataCooling - EnergyIntegrating
Sandia Energy - Grid Integration
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiationImplementing Nonlinear757 (1)Tara46EnergyPower SystemsCarbon CaptureBiofuels
Sandia Energy - Grid Integration
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiationImplementing Nonlinear757 (1)Tara46EnergyPower SystemsCarbon
Sandia Energy - Grid Integration
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiationImplementing Nonlinear757 (1)Tara46EnergyPower SystemsCarbonEnergy Sandia
Integrated Landscape Management
Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(FactDepartment of EnergyIndustry Research Project Integrated Laboratoryand
Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(FactDepartment of EnergyIndustry Research ProjectIntegrated Project Team (IPT)
Highly Integrated Quality Assurance An Empirical Case
Drake Kirkham; Amy Powell; Lucas Rich
2011-02-01T23:59:59.000Z
Highly Integrated Quality Assurance An Empirical Case Drake Kirkham1, Amy Powell2, Lucas Rich3 1Quality Manager, Radioisotope Power Systems (RPS) Program, Idaho National Laboratory, P.O. Box 1625 M/S 6122, Idaho Falls, ID 83415-6122 2Quality Engineer, RPS Program, Idaho National Laboratory 3Quality Engineer, RPS Program, Idaho National Laboratory Contact: Voice: (208) 533-7550 Email: Drake.Kirkham@inl.gov Abstract. The Radioisotope Power Systems Program of the Idaho National Laboratory makes an empirical case for a highly integrated Quality Assurance function pertaining to the preparation, assembly, testing, storage and transportation of 238Pu fueled radioisotope thermoelectric generators. Case data represents multiple campaigns including the Pluto/New Horizons mission, the Mars Science Laboratory mission in progress, and other related projects. Traditional Quality Assurance models would attempt to reduce cost by minimizing the role of dedicated Quality Assurance personnel in favor of either functional tasking or peer-based implementations. Highly integrated Quality Assurance adds value by placing trained quality inspectors on the production floor side-by-side with nuclear facility operators to enhance team dynamics, reduce inspection wait time, and provide for immediate, independent feedback. Value is also added by maintaining dedicated Quality Engineers to provide for rapid identification and resolution of corrective action, enhanced and expedited supply chain interfaces, improved bonded storage capabilities, and technical resources for requirements management including data package development and Certificates of Inspection. A broad examination of cost-benefit indicates highly integrated Quality Assurance can reduce cost through the mitigation of risk and reducing administrative burden thereby allowing engineers to be engineers, nuclear operators to be nuclear operators, and the cross-functional team to operate more efficiently. Applicability of this case extends to any high-value, long-term project where traceability and accountability are determining factors.
Fourier transforms of UD integrals
Igor Kondrashuk; Anatoly Kotikov
2008-02-23T23:59:59.000Z
UD integrals published by N. Usyukina and A. Davydychev in 1992-1993 are integrals corresponding to ladder-type Feynman diagrams. The results are UD functions $\\Phi^{(L)},$ where $L$ is the number of loops. They play an important role in N=4 supersymmetic Yang-Mills theory. The integrals were defined and calculated in the momentum space. In this paper the position space representation of UD functions is investigated. We show that Fourier transforms of UD functions are UD functions of space-time intervals but this correspondence is indirect. For example, the Fourier transform of the second UD integral is the second UD integral.
Earth materials and earth dynamics
Bennett, K; Shankland, T. [and others
2000-11-01T23:59:59.000Z
In the project ''Earth Materials and Earth Dynamics'' we linked fundamental and exploratory, experimental, theoretical, and computational research programs to shed light on the current and past states of the dynamic Earth. Our objective was to combine different geological, geochemical, geophysical, and materials science analyses with numerical techniques to illuminate active processes in the Earth. These processes include fluid-rock interactions that form and modify the lithosphere, non-linear wave attenuations in rocks that drive plate tectonics and perturb the earth's surface, dynamic recrystallization of olivine that deforms the upper mantle, development of texture in high-pressure olivine polymorphs that create anisotropic velocity regions in the convecting upper mantle and transition zone, and the intense chemical reactions between the mantle and core. We measured physical properties such as texture and nonlinear elasticity, equation of states at simultaneous pressures and temperatures, magnetic spins and bonding, chemical permeability, and thermal-chemical feedback to better characterize earth materials. We artificially generated seismic waves, numerically modeled fluid flow and transport in rock systems and modified polycrystal plasticity theory to interpret measured physical properties and integrate them into our understanding of the Earth. This is the final report of a three-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL).
Brownian dynamics without Green's functions
Delong, Steven; Donev, Aleksandar, E-mail: donev@courant.nyu.edu [Courant Institute of Mathematical Sciences, New York University, New York, New York 10012 (United States)] [Courant Institute of Mathematical Sciences, New York University, New York, New York 10012 (United States); Usabiaga, Florencio Balboa; Delgado-Buscalioni, Rafael [Departamento de Fķsica Teórica de la Materia Condensada and Condensed Matter Physics Center (IFIMAC), Univeridad Autónoma de Madrid, Madrid 28049 (Spain)] [Departamento de Fķsica Teórica de la Materia Condensada and Condensed Matter Physics Center (IFIMAC), Univeridad Autónoma de Madrid, Madrid 28049 (Spain); Griffith, Boyce E. [Courant Institute of Mathematical Sciences, New York University, New York, New York 10012 (United States) [Courant Institute of Mathematical Sciences, New York University, New York, New York 10012 (United States); Leon H. Charney Division of Cardiology, Department of Medicine, New York University School of Medicine, New York, New York 10016 (United States)
2014-04-07T23:59:59.000Z
We develop a Fluctuating Immersed Boundary (FIB) method for performing Brownian dynamics simulations of confined particle suspensions. Unlike traditional methods which employ analytical Green's functions for Stokes flow in the confined geometry, the FIB method uses a fluctuating finite-volume Stokes solver to generate the action of the response functions on the fly. Importantly, we demonstrate that both the deterministic terms necessary to capture the hydrodynamic interactions among the suspended particles, as well as the stochastic terms necessary to generate the hydrodynamically correlated Brownian motion, can be generated by solving the steady Stokes equations numerically only once per time step. This is accomplished by including a stochastic contribution to the stress tensor in the fluid equations consistent with fluctuating hydrodynamics. We develop novel temporal integrators that account for the multiplicative nature of the noise in the equations of Brownian dynamics and the strong dependence of the mobility on the configuration for confined systems. Notably, we propose a random finite difference approach to approximating the stochastic drift proportional to the divergence of the configuration-dependent mobility matrix. Through comparisons with analytical and existing computational results, we numerically demonstrate the ability of the FIB method to accurately capture both the static (equilibrium) and dynamic properties of interacting particles in flow.
Brownian Dynamics without Green's Functions
S. Delong; F. Balboa Usabiaga; R. Delgado-Buscalioni; B. E. Griffith; A. Donev
2015-05-27T23:59:59.000Z
We develop a Fluctuating Immersed Boundary (FIB) method for performing Brownian dynamics simulations of confined particle suspensions. Unlike traditional methods which employ analytical Green's functions for Stokes flow in the confined geometry, the FIB method uses a fluctuating finite-volume Stokes solver to generate the action of the response functions "on the fly". Importantly, we demonstrate that both the deterministic terms necessary to capture the hydrodynamic interactions among the suspended particles, as well as the stochastic terms necessary to generate the hydrodynamically-correlated Brownian motion, can be generated by solving the steady Stokes equations numerically only once per time step. This is accomplished by including a stochastic contribution to the stress tensor in the fluid equations consistent with fluctuating hydrodynamics. We develop novel temporal integrators that account for the multiplicative nature of the noise in the equations of Brownian dynamics and the strong dependence of the mobility on the configuration for confined systems. Notably, we propose a random finite difference approach to approximating the stochastic drift proportional to the divergence of the configuration-dependent mobility matrix. Through comparisons with analytical and existing computational results, we numerically demonstrate the ability of the FIB method to accurately capture both the static (equilibrium) and dynamic properties of interacting particles in flow.
European Integration, Nationalism, and European Identity
Fligstein, Neil; Polyakova, Alina; Sandholtz, Wayne
2011-01-01T23:59:59.000Z
the politicization of European integration be reversed? InOpinion and European Integration. European Union Politics,Politics of European Integration (London: Routledge). Sides,
Query Answering in Data Integration Systems
Salloum, Mariam
2011-01-01T23:59:59.000Z
the AbeBooks.com data collection. Data Integration Systemquery plans for data integration. In Data Engineering, 2002.Recursive query plans for data integration. Journal of Logic
Booly: a new data integration platform
Do, Long H; Esteves, Francisco F; Karten, Harvey J; Bier, Ethan
2010-01-01T23:59:59.000Z
of the nation in data integration for bioinformatics. JBooly: a new data integration platform. BMC BioinformaticsAccess Booly: a new data integration platform Long H Do 1* ,
Financial Integration in Emerging Market Economies
Pasricha, Gurnain
2008-01-01T23:59:59.000Z
Economies in Global Context: The Integration Process and itsGlobal Capital Markets: Integration, Crises And Growth. Cam-1 percent level. Table 7. Integration Index Country Denmark
Aditya Kumar
2010-12-30T23:59:59.000Z
This report summarizes the achievements and final results of this program. The objective of this program is to develop a comprehensive systems approach to integrated design of sensing and control systems for an Integrated Gasification Combined Cycle (IGCC) plant, using advanced model-based techniques. In particular, this program is focused on the model-based sensing and control system design for the core gasification section of an IGCC plant. The overall approach consists of (i) developing a first-principles physics-based dynamic model of the gasification section, (ii) performing model-reduction where needed to derive low-order models suitable for controls analysis and design, (iii) developing a sensing system solution combining online sensors with model-based estimation for important process variables not measured directly, and (iv) optimizing the steady-state and transient operation of the plant for normal operation as well as for startup using model predictive controls (MPC). Initially, available process unit models were implemented in a common platform using Matlab/Simulink{reg_sign}, and appropriate model reduction and model updates were performed to obtain the overall gasification section dynamic model. Also, a set of sensor packages were developed through extensive lab testing and implemented in the Tampa Electric Company IGCC plant at Polk power station in 2009, to measure temperature and strain in the radiant syngas cooler (RSC). Plant operation data was also used to validate the overall gasification section model. The overall dynamic model was then used to develop a sensing solution including a set of online sensors coupled with model-based estimation using nonlinear extended Kalman filter (EKF). Its performance in terms of estimating key unmeasured variables like gasifier temperature, carbon conversion, etc., was studied through extensive simulations in the presence sensing errors (noise and bias) and modeling errors (e.g. unknown gasifier kinetics, RSC fouling). In parallel, an MPC solution was initially developed using ideal sensing to optimize the plant operation during startup pre-heating as well as steady state and transient operation under normal high-pressure conditions, e.g. part-load, base-load, load transition and fuel changes. The MPC simulation studies showed significant improvements both for startup pre-heating and for normal operation. Finally, the EKF and MPC solutions were coupled to achieve the integrated sensing and control solution and its performance was studied through extensive steady state and transient simulations in the presence of sensor and modeling errors. The results of each task in the program and overall conclusions are summarized in this final report.
Web Services-Enhanced Agile Modeling and Integrating Business Processes
Belouadha, Fatima-Zahra; Roudičs, Ounsa
2012-01-01T23:59:59.000Z
In a global business context with continuous changes, the enterprises have to enhance their operational efficiency, to react more quickly, to ensure the flexibility of their business processes, and to build new collaboration pathways with external partners. To achieve this goal, they must use e-business methods, mechanisms and techniques while capitalizing on the potential of new information and communication technologies. In this context, we propose a standards, model and Web services-based approach for modeling and integrating agile enterprise business processes. The purpose is to benefit from Web services characteristics to enhance the processes design and realize their dynamic integration. The choice of focusing on Web services is essentially justified by their broad adoption by enterprises as well as their capability to warranty interoperability between both intra and inter-enterprises systems. Thereby, we propose in this chapter a metamodel for describing business processes, and discuss their dynamic in...
Building-integrated photovoltaics
NONE
1993-01-01T23:59:59.000Z
This is a study of the issues and opportunities for building-integrated PV products, seen primarily from the perspective of the design community. Although some quantitative analysis is included, and limited interviews are used, the essence of the study is qualitative and subjective. It is intended as an aid to policy makers and members of the technical community in planning and setting priorities for further study and product development. It is important to remember that the success of a product in the building market is not only dependent upon its economic value; the diverse group of building owners, managers, regulators, designers, tenants and users must also find it practical, aesthetically appealing and safe. The report is divided into 11 sections. A discussion of technical and planning considerations is followed by illustrative diagrams of different wall and roof assemblies representing a range of possible PV-integration schemes. Following the diagrams, several of these assemblies are then applied to a conceptual test building which is analyzed for PV performance. Finally, a discussion of mechanical/electrical building products incorporating PVs is followed by a brief surveys of cost issues, market potential and code implications. The scope of this report is such that most of the discussion does not go beyond stating the questions. A more detailed analysis will be necessary to establish the true costs and benefits PVs may provide to buildings, taking into account PV power revenue, construction costs, and hidden costs and benefits to building utility and marketability.
Integrating preconcentrator heat controller
Bouchier, Francis A. (Albuquerque, NM); Arakaki, Lester H. (Edgewood, NM); Varley, Eric S. (Albuquerque, NM)
2007-10-16T23:59:59.000Z
A method and apparatus for controlling the electric resistance heating of a metallic chemical preconcentrator screen, for example, used in portable trace explosives detectors. The length of the heating time-period is automatically adjusted to compensate for any changes in the voltage driving the heating current across the screen, for example, due to gradual discharge or aging of a battery. The total deposited energy in the screen is proportional to the integral over time of the square of the voltage drop across the screen. Since the net temperature rise, .DELTA.T.sub.s, of the screen, from beginning to end of the heating pulse, is proportional to the total amount of heat energy deposited in the screen during the heating pulse, then this integral can be calculated in real-time and used to terminate the heating current when a pre-set target value has been reached; thereby providing a consistent and reliable screen temperature rise, .DELTA.T.sub.s, from pulse-to-pulse.
A model of lipid-free Apolipoprotein A-I revealed by iterative molecular dynamics simulation
DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)
Zhang, Xing; Lei, Dongsheng; Zhang, Lei; Rames, Matthew; Zhang, Shengli
2015-03-20T23:59:59.000Z
Apolipoprotein A-I (apo A-I), the major protein component of high-density lipoprotein, has been proven inversely correlated to cardiovascular risk in past decades. The lipid-free state of apo A-I is the initial stage which binds to lipids forming high-density lipoprotein. Molecular models of lipid-free apo A-I have been reported by methods like X-ray crystallography and chemical cross-linking/mass spectrometry (CCL/MS). Through structural analysis we found that those current models had limited consistency with other experimental results, such as those from hydrogen exchange with mass spectrometry. Through molecular dynamics simulations, we also found those models could not reach a stable equilibrium state. Therefore,more »by integrating various experimental results, we proposed a new structural model for lipidfree apo A-I, which contains a bundled four-helix N-terminal domain (1192) that forms a variable hydrophobic groove and a mobile short hairpin C-terminal domain (193243). This model exhibits an equilibrium state through molecular dynamics simulation and is consistent with most of the experimental results known from CCL/MS on lysine pairs, fluorescence resonance energy transfer and hydrogen exchange. This solution-state lipid-free apo A-I model may elucidate the possible conformational transitions of apo A-I binding with lipids in high-density lipoprotein formation.« less
Holger Flechsig
2014-02-07T23:59:59.000Z
ATP-binding cassette (ABC) transporters are integral membrane proteins that mediate the exchange of diverse substrates across membranes powered by ATP hydrolysis. We report results of coarse-grained dynamical simulations performed for the bacterial heme transporter HmuUV. Based on the nucleotide-free structure, we have constructed a ligand-elastic-network description for this protein and investigated ATP-induced conformational motions in structurally resolved computer experiments. As we found, interactions with nucleotides resulted in generic motions which are functional and robust. Upon binding of ATP-mimicking ligands the structure changed from a conformation in which the nucleotide-binding domains formed an open shape, to a conformation in which they were found in tight contact and the transmembrane domains were rotated. The heme channel was broadened in the ligand-bound complex and the gate to the cytoplasm, which was closed in the nucleotide-free conformation, was rendered open by a mechanism that involved tilting motions of essential transmembrane helices. Based on our findings we propose that the HmuUV transporter behaves like a `simple' mechanical device in which, induced by binding of ATP ligands, linear motions of the nucleotide-binding domains are translated into rotational motions and internal tilting dynamics of the transmembrane domains that control gating inside the heme pathway.
Semiclassical analysis of quantum dynamics
Siyang Yang
2011-11-15T23:59:59.000Z
Simulating the molecular dynamics (MD) using classical or semi-classical trajectories provides important details for the understanding of many chemical reactions, protein folding, drug design, and solvation effects. MD simulations using trajectories have achieved great successes in the computer simulations of various systems, but it is difficult to incorporate quantum effects in a robust way. Therefore, improving quantum wavepacket dynamics and incorporating nonadiabatic transitions and quantum effects into classical and semi-classical molecular dynamics is critical as well as challenging. In this paper, we present a MD scheme in which a new set of equations of motion (EOM) are proposed to effectively propagate nuclear trajectories while conserving quantum mechanical energy which is critical for describing quantum effects like tunneling. The new quantum EOM is tested on a one-state one-dimensional and a two-state two-dimensional model nonadiabatic systems. The global quantum force experienced by each trajectory promotes energy redistribution among the bundle of trajectories, and thus helps the individual trajectory tunnel through the potential barrier higher than the energy of the trajectory itself. Construction of the new quantum force and EOM also provides a better way to treat the issue of back-reaction in mixed quantum-classical (MQC) methods, i.e. self-consistency between quantum degrees of freedom (DOF) and classical DOF.
Quantum integrals of motion for variable quadratic Hamiltonians
Cordero-Soto, Ricardo, E-mail: ricardojavier81@gmail.co [Mathematical, Computational and Modeling Sciences Center, Arizona State University, Tempe, AZ 85287-1804 (United States); Suazo, Erwin, E-mail: erwin.suazo@upr.ed [Department of Mathematical Sciences, University of Puerto Rico, Mayaquez, call box 9000, PR 00681-9000 (Puerto Rico); Suslov, Sergei K., E-mail: sks@asu.ed [School of Mathematical and Statistical Sciences and Mathematical, Computational and Modeling Sciences Center, Arizona State University, Tempe, AZ 85287-1804 (United States)
2010-09-15T23:59:59.000Z
We construct integrals of motion for several models of the quantum damped oscillators in a framework of a general approach to the time-dependent Schroedinger equation with variable quadratic Hamiltonians. An extension of the Lewis-Riesenfeld dynamical invariant is given. The time-evolution of the expectation values of the energy-related positive operators is determined for the oscillators under consideration. A proof of uniqueness of the corresponding Cauchy initial value problem is discussed as an application.
Mass distribution of highly flattened galaxies and modified Newtonian dynamics
W. F. Kao
2006-06-10T23:59:59.000Z
Dynamics of spiral galaxies derived from a given surface mass density has been derived earlier in a classic paper. We try to transform the singular elliptic function in the integral into a compact integral with regular elliptic function. Solvable models are also considered as expansion basis for RC data. The result makes corresponding numerical evaluations easier and analytic analysis possible. It is applied to the study of the dynamics of Newtonian system and MOND as well. Careful treatment is shown to be important in dealing with the cut-off of the input data.
Vertical Integration and Market Entry in the Generic Pharmaceutical Industry
Kubo, Kensuke
2011-01-01T23:59:59.000Z
Competitive Effects of Vertical Integration . . . . . . .2.2.3 Trend in Vertical Integration . . . . . . . . .for Vertical Integration . . . . . . . . . . . . . . . . . .
Comparative study of variational chaos indicators and ODEs' numerical integrators
Luciano A. Darriba; Nicolįs P. Maffione; Pablo M. Cincotta; Claudia M. Giordano
2012-05-08T23:59:59.000Z
The reader can find in the literature a lot of different techniques to study the dynamics of a given system and also, many suitable numerical integrators to compute them. Notwithstanding the recent work of Maffione et al. (2011a) for mappings, a detailed comparison among the widespread indicators of chaos in a general system is still lacking. Such a comparison could lead to select the most efficient algorithms given a certain dynamical problem. Furthermore, in order to choose the appropriate numerical integrators to compute them, more comparative studies among numerical integrators are also needed. This work deals with both problems. We first extend the work of Maffione et al. (2011) for mappings to the 2D H\\'enon & Heiles (1964) potential, and compare several variational indicators of chaos: the Lyapunov Indicator (LI); the Mean Exponential Growth Factor of Nearby Orbits (MEGNO); the Smaller Alignment Index (SALI) and its generalized version, the Generalized Alignment Index (GALI); the Fast Lyapunov Indicator (FLI) and its variant, the Orthogonal Fast Lyapunov Indicator (OFLI); the Spectral Distance (D) and the Dynamical Spectras of Stretching Numbers (SSNs). We also include in the record the Relative Lyapunov Indicator (RLI), which is not a variational indicator as the others. Then, we test a numerical technique to integrate Ordinary Differential Equations (ODEs) based on the Taylor method implemented by Jorba & Zou (2005) (called taylor), and we compare its performance with other two well-known efficient integrators: the Prince & Dormand (1981) implementation of a Runge-Kutta of order 7-8 (DOPRI8) and a Bulirsch-St\\"oer implementation. These tests are run under two very different systems from the complexity of their equations point of view: a triaxial galactic potential model and a perturbed 3D quartic oscillator.
NREL: Energy Systems Integration Facility - Integrated Deployment Workshop
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy: Grid Integration NREL is spearheadingIntegrated Deployment Workshop
Native-state dynamics of the ubiquitin family: implications for function
Jackson, Sophie
of Cambridge, Cambridge CB2 1EW, UK Protein dynamics are integral to protein function. In recent years, the use activity (Rasmussen et al. 1992; Vitagliano et al. 2002; Cui et al. 2004) are all determined, in part
Fairman, Randall S. (Randall Scott), 1967-
2002-01-01T23:59:59.000Z
An analysis of current computational fluid dynamics capabilities in predicting mean lift forces for two dimensional foils is conducted. It is shown that both integral boundary layer theory and Reynolds Averaged Navier ...
Watkins, A.D.; Smartt, H.B.; Taylor, P.L.
1994-01-04T23:59:59.000Z
An integrated optical sensor for arc welding having multifunction feedback control is described. The sensor, comprising generally a CCD camera and diode laser, is positioned behind the arc torch for measuring weld pool position and width, standoff distance, and post-weld centerline cooling rate. Computer process information from this sensor is passed to a controlling computer for use in feedback control loops to aid in the control of the welding process. Weld pool position and width are used in a feedback loop, by the weld controller, to track the weld pool relative to the weld joint. Sensor standoff distance is used in a feedback loop to control the contact tip to base metal distance during the welding process. Cooling rate information is used to determine the final metallurgical state of the weld bead and heat affected zone, thereby controlling post-weld mechanical properties. 6 figures.
Integral Geometry and Holography
Czech, Bartlomiej; McCandlish, Samuel; Sully, James
2015-01-01T23:59:59.000Z
We present a mathematical framework which underlies the connection between information theory and the bulk spacetime in the AdS$_3$/CFT$_2$ correspondence. A key concept is kinematic space: an auxiliary Lorentzian geometry whose metric is defined in terms of conditional mutual informations and which organizes the entanglement pattern of a CFT state. When the field theory has a holographic dual obeying the Ryu-Takayanagi proposal, kinematic space has a direct geometric meaning: it is the space of bulk geodesics studied in integral geometry. Lengths of bulk curves are computed by kinematic volumes, giving a precise entropic interpretation of the length of any bulk curve. We explain how basic geometric concepts -- points, distances and angles -- are reflected in kinematic space, allowing one to reconstruct a large class of spatial bulk geometries from boundary entanglement entropies. In this way, kinematic space translates between information theoretic and geometric descriptions of a CFT state. As an example, we...
Watkins, Arthur D. (Idaho Falls, ID); Smartt, Herschel B. (Idaho Falls, ID); Taylor, Paul L. (Idaho Falls, ID)
1994-01-01T23:59:59.000Z
An integrated optical sensor for arc welding having multifunction feedback control. The sensor, comprising generally a CCD camera and diode laser, is positioned behind the arc torch for measuring weld pool position and width, standoff distance, and post-weld centerline cooling rate. Computer process information from this sensor is passed to a controlling computer for use in feedback control loops to aid in the control of the welding process. Weld pool position and width are used in a feedback loop, by the weld controller, to track the weld pool relative to the weld joint. Sensor standoff distance is used in a feedback loop to control the contact tip to base metal distance during the welding process. Cooling rate information is used to determine the final metallurgical state of the weld bead and heat affected zone, thereby controlling post-weld mechanical properties.
Dynamical real numbers and living systems
Dhurjati Prasad Datta
2010-01-11T23:59:59.000Z
Recently uncovered second derivative discontinuous solutions of the simplest linear ordinary differential equation define not only an nonstandard extension of the framework of the ordinary calculus, but also provide a dynamical representation of the ordinary real number system. Every real number can be visualized as a living cell -like structure, endowed with a definite evolutionary arrow. We discuss the relevance of this extended calculus in the study of living systems. We also present an intelligent version of the Newton's first law of motion.
INTEGRAL observations of HER X-1
D. Klochkov; R. Staubert; S. Tsygankov; A. Lutovinov; K. P. Postnov; N. I. Shakura; S. A. Potanin; C. Ferrigno; I. Kreykenbohm; J. Wilms
2007-04-23T23:59:59.000Z
First results of observations of the low mass X-ray binary Her X-1/HZ Her performed by the INTEGRAL satellite in July-August 2005 are presented. A significant part of one 35 day main-on state was covered. The cyclotron line in the X-ray spectrum is well observed and its position and shape, as well as its variability with time and phase of the 1.24 s pulsation are explored. X-ray pulse profiles for different energy bands are studied throughout the observation. The pulse period is found to vary on short time scales revealing a dynamical spin-up/spin-down behavior. Results of simultaneous optical observations of HZ Her are also discussed.
Model Predictive Control of Integrated Gasification Combined Cycle Power Plants
B. Wayne Bequette; Priyadarshi Mahapatra
2010-08-31T23:59:59.000Z
The primary project objectives were to understand how the process design of an integrated gasification combined cycle (IGCC) power plant affects the dynamic operability and controllability of the process. Steady-state and dynamic simulation models were developed to predict the process behavior during typical transients that occur in plant operation. Advanced control strategies were developed to improve the ability of the process to follow changes in the power load demand, and to improve performance during transitions between power levels. Another objective of the proposed work was to educate graduate and undergraduate students in the application of process systems and control to coal technology. Educational materials were developed for use in engineering courses to further broaden this exposure to many students. ASPENTECH software was used to perform steady-state and dynamic simulations of an IGCC power plant. Linear systems analysis techniques were used to assess the steady-state and dynamic operability of the power plant under various plant operating conditions. Model predictive control (MPC) strategies were developed to improve the dynamic operation of the power plants. MATLAB and SIMULINK software were used for systems analysis and control system design, and the SIMULINK functionality in ASPEN DYNAMICS was used to test the control strategies on the simulated process. Project funds were used to support a Ph.D. student to receive education and training in coal technology and the application of modeling and simulation techniques.
National Renewable Energy Laboratory's Energy Systems Integration...
National Renewable Energy Laboratory's Energy Systems Integration Facility Overview National Renewable Energy Laboratory's Energy Systems Integration Facility Overview This...
Sandia National Laboratories: renewable energy integration
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Grid Integration, Infrastructure Security, Microgrid, News, News & Events, Partnership, Renewable Energy, SMART Grid, Transmission Grid Integration, Transportation Energy Under...
Stochastic Joint Inversion for Integrated Data Interpretation...
Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site
Stochastic Joint Inversion for Integrated Data Interpretation in Geothermal Exploration Stochastic Joint Inversion for Integrated Data Interpretation in Geothermal Exploration...
Integrated Hybrid-Simulation of Electric Power and Communications Systems
Nutaro, James J [ORNL; Kuruganti, Phani Teja [ORNL; Miller, Laurie E [ORNL; Mullen, Sara [ORNL; Shankar, Mallikarjun [ORNL
2007-01-01T23:59:59.000Z
The modern power grid is strongly integrated with its communication network. While a power system primarily consists of elements that are modeled by continuous equations, a communication system has discrete event dynamics. We model the integrated operation of these two systems with a hybrid modeling and simulation technique. Systematically combining continuous and discrete event system models is necessary for correctly simulating critical system behaviors. This paper discusses an approach based on the discrete event system specification (DEVS) that characterizes the interaction of the two systems formally to preserve simulation correctness. We demonstrate the implementation of our integrated hybrid simulation technique with detailed generator and network models in a wide-area cooperative automatic load-control scenario.
Tariffs with Dynamic Supply Response
Karp, Larry
1985-01-01T23:59:59.000Z
Giannini FDN iibrary TARIFFS WITH DYNAMIC SUPPLY RESWNSEpaper studies the optimal tariff in a dynamic framework. Thesellers, the optimal tariff is dynam- ically inconsistent;
Interaction Region Design and Detector Integration at JLab's MEIC
Lin, Fanglei [JLAB; Brindza, Paul D. [JLAB; Derbenev, Yaroslav S. [JLAB; Ent, Rolf [JLAB; Morozov, Vasiliy [JLAB; Nadel-Turonski, Pawel A. [JLAB; Zhang, Yuhong [JLAB; Hyde, Charles E. [ODU; Sullivan, Michael [SLAC
2013-12-01T23:59:59.000Z
The Electron Ion Collider (EIC) will be a next-generation facility for the study of the strong interaction (QCD). JLab?s MEIC is designed for high luminosities of up to 10^34 cm^-2 s^-1. This is achieved in part due to an aggressively small beta-star, which imposes stringent requirements on the collider rings? dynamical properties. Additionally, one of the unique features of MEIC is a full-acceptance detector with a dedicated, small-angle, high-resolution detection system, capable of covering a wide range of momenta (and charge-to-mass ratios) with respect to the original ion beam to enable access to new physics. The detector design relies on a number of features, such as a 50 mrad beam crossing angle, large-aperture ion and electron final focusing quads and spectrometer dipoles as well as a large machine-element-free detection space downstream of the final focusing quads. We present an interaction region design developed with close integration of the detector and beam dynamical aspects. The dynamical aspect of the design rests on a symmetry-based concept for compensation of non-linear effects. The optics and geometry have been optimized to accommodate the detection requirements and to ensure the interaction region?s modularity for easiness of integration into the collider ring lattices. As a result, the design offers an excellent detector performance combined with the necessary non-linear dynamical properties.
Sandia Energy - Renewable Energy Integration
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
need to integrate renewable energy, improve energy efficiency, and allow consumers more control over their energy consumption. One of the challenges of renewable power generation...
Buildings to Grid Integration & Interoperability
Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site
Buildings to Grid Integration & Interoperability Joe Hagerman, Senior Advisor DOE Building Technologies Office March 11, 2013 EERE: Office of Energy Efficiency and Renewable Energy...
Advanced Integrated Electric Traction System
Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site
Integrated Electric Traction System Greg S. Smith Email: gregory.3.smith@gm.com Phone: (310) 257-3812 Organization: General Motors Team members: Ames Laboratory Arnold Magnetics...
Sandia National Laboratories: Grid Integration
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
News, News & Events, Renewable Energy, SMART Grid, Systems Analysis, Transmission Grid Integration, Wind Energy Sandia finalized and submitted the updated "WECC Wind Power Plant...
Fuel Pathways Integration Tech Team
Broader source: Energy.gov [DOE]
Presentation on Fuel Pathways Integration Tech Team to the DOE Systems Analysis Workshop held in Washington, D.C. July 28-29, 2004.
Sandia National Laboratories: Grid Integration
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Sandia-Electric Power Research Institute Partnership Publishes Photovoltaic Reliability Report On January 21, 2014, in Energy, Facilities, Grid Integration, Modeling & Analysis,...
Arnold Schwarzenegger INTEGRATED FORECAST AND
Arnold Schwarzenegger Governor INTEGRATED FORECAST AND RESERVOIR MANAGEMENT (INFORM) FOR NORTHERN Manager Joseph O' Hagan Project Manager Kelly Birkinshaw Program Area Manager ENERGY-RELATED ENVIRONMENTAL
Sandia National Laboratories: Grid Integration
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Energy Efficiency, Grid Integration, Microgrid, Modeling & Analysis, News, Partnership, SMART Grid Vermont-a leader in energy efficiency and deployment of so-called smart-grid...
OPTIMAL OPERATION OF INTEGRATED PROCESSES
Skogestad, Sigurd
OPTIMAL OPERATION OF INTEGRATED PROCESSES Studies on Heat Recovery Systems by Bjųrn Glemmestad exchanger network (HEN) for heat recovery. Within the process engineering community, much attention has been
Sandia National Laboratories: Grid Integration
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Sandia Offers Approach to Help Utilities Understand Effects of PV Variability on the Grid On March 7, 2013, in DETL, Distribution Grid Integration, Energy, Energy Surety,...
Energy Resolution with the Lorentz integral transform
Winfried Leidemann
2015-03-24T23:59:59.000Z
A brief outline of the Lorentz Integral Transform (LIT) method is given. The method is well established and allows to treat reactions into the many-body continuum with bound-state like techniques. The energy resolution that can be achieved is studied by means of a simple two-body reaction. From the discussion it will become clear that the LIT method is an approach with a controlled resolution and that there is no principle problem to even resolve narrow resonances in the many-body continuum. As an example the isoscalar monopole resonance of 4He is considered. The importance of the choice of a proper basis for the expansion of the LIT states is pointed out. Employing such a basis a width of 180(70) keV is found for the 4He isoscalar monopole resonance when using a simple central nucleon-nucleon potential model.
Integrated broadband bowtie antenna on transparent substrate
Zhang, Xingyu; Subbaraman, Harish; Zhan, Qiwen; Pan, Zeyu; Chung, Chi-jui; Yan, Hai; Chen, Ray T
2015-01-01T23:59:59.000Z
The bowtie antenna is a topic of growing interest in recent years. In this paper, we design, fabricate, and characterize a modified gold bowtie antenna integrated on a transparent glass substrate. We numerically investigate the antenna characteristics, specifically its resonant frequency and enhancement factor. We simulate the dependence of resonance frequency on bowtie geometry, and verify the simulation results through experimental investigation, by fabricating different sets of bowtie antennas on glass substrates utilizing CMOS compatible processes and measuring their resonance frequencies. Our designed bowtie antenna provides a strong broadband electric field enhancement in its feed gap. The far-field radiation pattern of the bowtie antenna is measured, and it shows dipole-like characteristics with large beam width. Such a broadband antenna will be useful for a myriad of applications, ranging from wireless communications to electromagnetic wave detection.
Dysonian dynamics of the Ginibre ensemble
Zdzis?aw Burda; Jacek Grela; Maciej A. Nowak; Wojciech Tarnowski; Piotr Warcho?
2014-03-30T23:59:59.000Z
We study the time evolution of Ginibre matrices whose elements undergo Brownian motion. The non-Hermitian character of the Ginibre ensemble binds the dynamics of eigenvalues to the evolution of eigenvectors in a non-trivial way, leading to a system of coupled nonlinear equations resembling those for turbulent systems. We formulate a mathematical framework allowing simultaneous description of the flow of eigenvalues and eigenvectors, and we unravel a hidden dynamics as a function of new complex variable, which in the standard description is treated as a regulator only. We solve the evolution equations for large matrices and demonstrate that the non-analytic behavior of the Green's functions is associated with a shock wave stemming from a Burgers-like equation describing correlations of eigenvectors. We conjecture that the hidden dynamics, that we observe for the Ginibre ensemble, is a general feature of non-Hermitian random matrix models and is relevant to related physical applications.
Topology and Dynamics of Active Nematic Vesicles
Felix C. Keber; Etienne Loiseau; Tim Sanchez; Stephen J. DeCamp; Luca Giomi; Mark J. Bowick; M. Cristina Marchetti; Zvonimir Dogic; Andreas R. Bausch
2014-09-05T23:59:59.000Z
Engineering synthetic materials that mimic the remarkable complexity of living organisms is a fundamental challenge in science and technology. We study the spatiotemporal patterns that emerge when an active nematicfilm of microtubules and molecular motors is encapsulated within a shape-changing lipid vesicle. Unlike in equilibrium systems, where defects are largely static structures, in active nematics defects move spontaneously and can be described as self-propelled particles. The combination of activity, topological constraints and vesicle deformability produces a myriad of dynamical states. We highlight two dynamical modes: a tunable periodic state that oscillates between two defect configurations, and shape-changing vesicles with streaming filopodia-like protrusions. These results demonstrate how biomimetic materials can be obtained when topological constraints are used to control the non-equilibrium dynamics of active matter.
Dynamics of structural priming
Malhotra, Gaurav
2009-01-01T23:59:59.000Z
for understanding various aspects of syntactic priming. Cognitive processes are modelled as dynamical systems that can change their behaviour when they process information. We use these dynamical systems to investigate how each episode of language comprehension...
Structure of Human Toll-like Receptor 3 (TLR3) Ligand-binding Domain
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over Our InstagramStructure of All-Polymer Solar Cells ImpedesStructure ofHuman Toll-like
Categorical Introduction to Dynamical Systems Symbolic Dynamical Systems
Kahng, Byung-Jay
Categorical Introduction to Dynamical Systems Symbolic Dynamical Systems Symbolic Embedding Examples Results Embeddings in Symbolic Dynamical Systems Jonathan Jaquette Swarthmore College July 22, 2009 Jonathan Jaquette Embeddings in Symbolic Dynamical Systems #12;Categorical Introduction
WINS: Market Simulation Tool for Facilitating Wind Energy Integration
Shahidehpour, Mohammad [Illinois Institute of Technology
2012-10-30T23:59:59.000Z
Integrating 20% or more wind energy into the system and transmitting large sums of wind energy over long distances will require a decision making capability that can handle very large scale power systems with tens of thousands of buses and lines. There is a need to explore innovative analytical and implementation solutions for continuing reliable operations with the most economical integration of additional wind energy in power systems. A number of wind integration solution paths involve the adoption of new operating policies, dynamic scheduling of wind power across interties, pooling integration services, and adopting new transmission scheduling practices. Such practices can be examined by the decision tool developed by this project. This project developed a very efficient decision tool called Wind INtegration Simulator (WINS) and applied WINS to facilitate wind energy integration studies. WINS focused on augmenting the existing power utility capabilities to support collaborative planning, analysis, and wind integration project implementations. WINS also had the capability of simulating energy storage facilities so that feasibility studies of integrated wind energy system applications can be performed for systems with high wind energy penetrations. The development of WINS represents a major expansion of a very efficient decision tool called POwer Market Simulator (POMS), which was developed by IIT and has been used extensively for power system studies for decades. Specifically, WINS provides the following superiorities: (1) An integrated framework is included in WINS for the comprehensive modeling of DC transmission configurations, including mono-pole, bi-pole, tri-pole, back-to-back, and multi-terminal connection, as well as AC/DC converter models including current source converters (CSC) and voltage source converters (VSC). (2) An existing shortcoming of traditional decision tools for wind integration is the limited availability of user interface, i.e., decision results are often text-based demonstrations. WINS includes a powerful visualization tool and user interface capability for transmission analyses, planning, and assessment, which will be of great interest to power market participants, power system planners and operators, and state and federal regulatory entities. (3) WINS can handle extended transmission models for wind integration studies. WINS models include limitations on transmission flow as well as bus voltage for analyzing power system states. The existing decision tools often consider transmission flow constraints (dc power flow) alone which could result in the over-utilization of existing resources when analyzing wind integration. WINS can be used to assist power market participants including transmission companies, independent system operators, power system operators in vertically integrated utilities, wind energy developers, and regulatory agencies to analyze economics, security, and reliability of various options for wind integration including transmission upgrades and the planning of new transmission facilities. WINS can also be used by industry for the offline training of reliability and operation personnel when analyzing wind integration uncertainties, identifying critical spots in power system operation, analyzing power system vulnerabilities, and providing credible decisions for examining operation and planning options for wind integration. Researches in this project on wind integration included (1) Development of WINS; (2) Transmission Congestion Analysis in the Eastern Interconnection; (3) Analysis of 2030 Large-Scale Wind Energy Integration in the Eastern Interconnection; (4) Large-scale Analysis of 2018 Wind Energy Integration in the Eastern U.S. Interconnection. The research resulted in 33 papers, 9 presentations, 9 PhD degrees, 4 MS degrees, and 7 awards. The education activities in this project on wind energy included (1) Wind Energy Training Facility Development; (2) Wind Energy Course Development.
Fundamental studies in hydrogen-rich combustion : instability mechanisms and dynamic mode selection
Speth, Raymond L., 1981-
2010-01-01T23:59:59.000Z
Hydrogen-rich alternative fuels are likely to play a significant role in future power generation systems. The emergence of the integrated gasification combined cycle (IGCC) as one of the favored technologies for incorporating ...
Advanced Integrated Traction System
Greg Smith; Charles Gough
2011-08-31T23:59:59.000Z
The United States Department of Energy elaborates the compelling need for a commercialized competitively priced electric traction drive system to proliferate the acceptance of HEVs, PHEVs, and FCVs in the market. The desired end result is a technically and commercially verified integrated ETS (Electric Traction System) product design that can be manufactured and distributed through a broad network of competitive suppliers to all auto manufacturers. The objectives of this FCVT program are to develop advanced technologies for an integrated ETS capable of 55kW peak power for 18 seconds and 30kW of continuous power. Additionally, to accommodate a variety of automotive platforms the ETS design should be scalable to 120kW peak power for 18 seconds and 65kW of continuous power. The ETS (exclusive of the DC/DC Converter) is to cost no more than $660 (55kW at $12/kW) to produce in quantities of 100,000 units per year, should have a total weight less than 46kg, and have a volume less than 16 liters. The cost target for the optional Bi-Directional DC/DC Converter is $375. The goal is to achieve these targets with the use of engine coolant at a nominal temperature of 105C. The system efficiency should exceed 90% at 20% of rated torque over 10% to 100% of maximum speed. The nominal operating system voltage is to be 325V, with consideration for higher voltages. This project investigated a wide range of technologies, including ETS topologies, components, and interconnects. Each technology and its validity for automotive use were verified and then these technologies were integrated into a high temperature ETS design that would support a wide variety of applications (fuel cell, hybrids, electrics, and plug-ins). This ETS met all the DOE 2010 objectives of cost, weight, volume and efficiency, and the specific power and power density 2015 objectives. Additionally a bi-directional converter was developed that provides charging and electric power take-off which is the first step towards enabling a smart-grid application. GM under this work assessed 29 technologies; investigated 36 configurations/types power electronics and electric machines, filed 41 invention disclosures; and ensured technology compatibility with vehicle production. Besides the development of a high temperature ETS the development of industrial suppliers took place because of this project. Suppliers of industrial power electronic components are numerous, but there are few that have traction drive knowledge. This makes it difficult to achieve component reliability, durability, and cost requirements necessary of high volume automotive production. The commercialization of electric traction systems for automotive industry requires a strong diverse supplier base. Developing this supplier base is dependent on a close working relationship between the OEM and supplier so that appropriate component requirements can be developed. GM has worked closely with suppliers to develop components for electric traction systems. Components that have been the focus of this project are power modules, capacitors, heavy copper boards, current sensors, and gate drive and controller chip sets. Working with suppliers, detailed component specifications have been developed. Current, voltage, and operation environment during the vehicle drive cycle were evaluated to develop higher resolution/accurate component specifications.
Towards Integrated Design and Modeling of High Field Accelerator Magnets
Caspi, S.; Ferracin, P.
2006-06-01T23:59:59.000Z
The next generation of superconducting accelerator magnets will most likely use a brittle conductor (such as Nb{sub 3}Sn), generate fields around 18 T, handle forces that are 3-4 times higher than in the present LHC dipoles, and store energy that starts to make accelerator magnets look like fusion magnets. To meet the challenge and reduce the complexity, magnet design will have to be more innovative and better integrated. The recent design of several high field superconducting magnets have now benefited from the integration between CAD (e.g. ProE), magnetic analysis tools (e.g. TOSCA) and structural analysis tools (e.g. ANSYS). Not only it is now possible to address complex issues such as stress in magnet ends, but the analysis can be better detailed an extended into new areas previously too difficult to address. Integrated thermal, electrical and structural analysis can be followed from assembly and cool-down through excitation and quench propagation. In this paper we report on the integrated design approach, discuss analysis results and point out areas of future interest.
Eric Bergshoeff; Joaquim Gomis; Giorgio Longhi
2014-05-31T23:59:59.000Z
We investigate particles whose dynamics is invariant under the Carroll group. Although a single free such Carroll particle has no non-trivial dynamics (`the Carroll particle does not move') we show that there exists non-trivial dynamics for a set of interacting Carroll particles. Furthermore, we gauge the Carroll algebra and couple the Carroll particle to these gauge fields. It turns out that for such a coupled system even a single Carroll particle can have non-trivial dynamics.
RELAP-7 and PRONGHORN Initial Integration Plan
J. Ortensi; D. Andrs; A.A. Bingham; R.C. Martineau; J.W. Peterson
2012-05-01T23:59:59.000Z
Modern nuclear reactor safety codes require the ability to solve detailed coupled neutronicthermal fluids problems. For larger cores, this implies fully coupled 3-D spatial dynamics with appropriate feedback models that can provide enough resolution to accurately compute core heat generation and removal during steady and unsteady conditions. The reactor analyis code PRONGHORN is being coupled to RELAP-7 as a first step to extend RELAP's current capabilities. This report details the mathematical models, the type of coupling, and the testing that will be used to produce an integrated system. RELAP-7 is a MOOSE-based application that solves the continuity, momentum, and energy equations in 1-D for a compressible fluid. The pipe and joint capabilities enable it to model parts of the PCU system. The PRONGHORN application, also developed on the MOOSE infrastructure, solves the coupled equations that define the neutron diffusion, fluid flow, and heat transfer in a 3-D core model. Initially, the two systems will be loosely coupled to simplify the transition towards a more complex infrastructure. The integration will be tested with the OECD/NEA MHTGR-350 Coupled Neutronics-Thermal Fluids benchmark model.
3D climate modeling of Earth-like extrasolar planets orbiting different types of host stars
Godolt, M; Hamann-Reinus, A; Kitzmann, D; Kunze, M; Langematz, U; von Paris, P; Patzer, A B C; Rauer, H; Stracke, B
2015-01-01T23:59:59.000Z
The potential habitability of a terrestrial planet is usually defined by the possible existence of liquid water on its surface. The potential presence of liquid water depends on many factors such as, most importantly, surface temperatures. The properties of the planetary atmosphere and its interaction with the radiative energy provided by the planet's host star are thereby of decisive importance. In this study we investigate the influence of different main-sequence stars upon the climate of Earth-like extrasolar planets and their potential habitability by applying a 3D Earth climate model accounting for local and dynamical processes. The calculations have been performed for planets with Earth-like atmospheres at orbital distances where the total amount of energy received from the various host stars equals the solar constant. In contrast to previous 3D modeling studies, we include the effect of ozone radiative heating upon the vertical temperature structure of the atmospheres. The global orbital mean results o...
Quantum Dynamical Behaviour in Complex Systems - A Semiclassical Approach
Gliebe, Cheryn E; Ananth, Nandini
2008-05-22T23:59:59.000Z
One of the biggest challenges in Chemical Dynamics is describing the behavior of complex systems accurately. Classical MD simulations have evolved to a point where calculations involving thousands of atoms are routinely carried out. Capturing coherence, tunneling and other such quantum effects for these systems, however, has proven considerably harder. Semiclassical methods such as the Initial Value Representation (SC-IVR) provide a practical way to include quantum effects while still utilizing only classical trajectory information. For smaller systems, this method has been proven to be most effective, encouraging the hope that it can be extended to deal with a large number of degrees of freedom. Several variations upon the original idea of the SCIVR have been developed to help make these larger calculations more tractable; these range from the simplest, classical limit form, the Linearized IVR (LSC-IVR) to the quantum limit form, the Exact Forward-Backward version (EFB-IVR). In this thesis a method to tune between these limits is described which allows us to choose exactly which degrees of freedom we wish to treat in a more quantum mechanical fashion and to what extent. This formulation is called the Tuning IVR (TIVR). We further describe methodology being developed to evaluate the prefactor term that appears in the IVR formalism. The regular prefactor is composed of the Monodromy matrices (jacobians of the transformation from initial to finial coordinates and momenta) which are time evolved using the Hessian. Standard MD simulations require the potential surfaces and their gradients, but very rarely is there any information on the second derivative. We would like to be able to carry out the SC-IVR calculation without this information too. With this in mind a finite difference scheme to obtain the Hessian on-the-fly is proposed. Wealso apply the IVR formalism to a few problems of current interest. A method to obtain energy eigenvalues accurately for complex systems is described. We proposed the use of a semiclassical correction term to a preliminary quantum calculation using, for instance, a variational approach. This allows us to increase the accuracy significantly. Modeling Nonadiabatic dynamics has always been a challenge to classical simulations because the multi-state nature of the dynamics cannot be described accurately by the time evolution on a single average surface, as is the classical approach. We show that using the Meyer-Miller-Stock-Thoss (MMST) representation of the exact vibronic Hamiltonian in combination with the IVR allows us to accurately describe dynamics where the non Born-Oppenheimer regime. One final problem that we address is that of extending this method to the long time regime. We propose the use of a time independent sampling function in the Monte Carlo integration over the phase space of initial trajectory conditions. This allows us to better choose the regions of importance at the various points in time; by using more trajectories in the important regions, we show that the integration can be converged much easier. An algorithm based loosely on the methods of Diffusion Monte Carlo is developed that allows us to carry out this time dependent sampling in a most efficient manner.
Barrett, Jeffrey A.
Social Dynamics Introduction Part I: Correlation and the Social Contract Introduction to part I 1: University of Utah Press. 47-69. Part II: Importance of Dynamics Introduction to part II 1. Trust, Risk Significance of Some Simple Evolutionary Models (2000) Philosophy of Science 67: 94-113. 4. Dynamics
Atmospheric Dynamics II Instructor
AT602 Atmospheric Dynamics II 2 credits Instructor: David W. J. Thompson davet: An Introduction to Dynamic Meteorology, 5th Edition, Academic Press (recommended) Ā· Marshall, J., and Plumb, R. A., 2008: Atmosphere, Ocean, and Climate Dynamics: An Introductory Text, Academic Press. Ā· Vallis, G. K
Intramolecular and nonlinear dynamics
Davis, M.J. [Argonne National Laboratory, IL (United States)
1993-12-01T23:59:59.000Z
Research in this program focuses on three interconnected areas. The first involves the study of intramolecular dynamics, particularly of highly excited systems. The second area involves the use of nonlinear dynamics as a tool for the study of molecular dynamics and complex kinetics. The third area is the study of the classical/quantum correspondence for highly excited systems, particularly systems exhibiting classical chaos.
Cybersecurity Dynamics Shouhuai Xu
Xu, Shouhuai
Antonio ABSTRACT We explore the emerging field of Cybersecurity Dynamics, a candidate foundation been driving the study of security for decades -- the idea of cybersecurity dynamics emergedCybersecurity Dynamics Shouhuai Xu Department of Computer Science, University of Texas at San
17. METAPOPULATION DYNAMICS OF
17. METAPOPULATION DYNAMICS OF INFECTIOUS DISEASES Matt J. Keeling, Ottar N. Bjųrnstad, and Bryan T resonances for the dynamics of parasites. This is particularly true for microparasitic infections" growth of the parasite population. Thus, at the scale of the host popu- lation, infectious dynamics bears
Dynamics of assembly production flow
Ezaki, Takahiro; Nishinari, Katsuhiro
2015-01-01T23:59:59.000Z
Despite recent developments in management theory, maintaining a manufacturing schedule remains difficult because of production delays and fluctuations in demand and supply of materials. The response of manufacturing systems to such disruptions to dynamic behavior has been rarely studied. To capture these responses, we investigate a process that models the assembly of parts into end products. The complete assembly process is represented by a directed tree, where the smallest parts are injected at leaves and the end products are removed at the root. A discrete assembly process, represented by a node on the network, integrates parts, which are then sent to the next downstream node as a single part. The model exhibits some intriguing phenomena, including overstock cascade, phase transition in terms of demand and supply fluctuations, nonmonotonic distribution of stockout in the network, and the formation of a stockout path and stockout chains. Surprisingly, these rich phenomena result from only the nature of distr...
Seeing differently : cartography for subjective maps based on dynamic urban data
Chen, Xiaoji, S.M. Massachusetts Institute of Technology
2011-01-01T23:59:59.000Z
What should maps look like in the information age? This thesis proposes dynamic subjective map - maps that are tailored to the context of the observer - to digitally bridge the gap between man in cities and massive urban ...
Avalanche dynamics in model two-dimensional grain piles Surajit Sen1
Sen, Surajit
The dynamical behavior of dry granular materials such as sand, gravel, salt, and the like have fascinated in significant progress in the understand- ing of the packing of granular materials and in describing flowing
, which we refer to as dynamic covariate information. For example, even a small device like a power inverter that are used in solar panel arrays can gather and transmit information on the output of power
Integrated system checkout report
Not Available
1991-08-14T23:59:59.000Z
The planning and preparation phase of the Integrated Systems Checkout Program (ISCP) was conducted from October 1989 to July 1991. A copy of the ISCP, DOE-WIPP 90--002, is included in this report as an appendix. The final phase of the Checkout was conducted from July 10, 1991, to July 23, 1991. This phase exercised all the procedures and equipment required to receive, emplace, and retrieve contact handled transuranium (CH TRU) waste filled dry bins. In addition, abnormal events were introduced to simulate various equipment failures, loose surface radioactive contamination events, and personnel injury. This report provides a detailed summary of each days activities during this period. Qualification of personnel to safely conduct the tasks identified in the procedures and the abnormal events were verified by observers familiar with the Bin-Scale CH TRU Waste Test requirements. These observers were members of the staffs of Westinghouse WID Engineering, QA, Training, Health Physics, Safety, and SNL. Observers representing a number of DOE departments, the state of new Mexico, and the Defense Nuclear Facilities Safety Board observed those Checkout activities conducted during the period from July 17, 1991, to July 23, 1991. Observer comments described in this report are those obtained from the staff member observers. 1 figs., 1 tab.
Integral Geometry and Holography
Bartlomiej Czech; Lampros Lamprou; Samuel McCandlish; James Sully
2015-05-20T23:59:59.000Z
We present a mathematical framework which underlies the connection between information theory and the bulk spacetime in the AdS$_3$/CFT$_2$ correspondence. A key concept is kinematic space: an auxiliary Lorentzian geometry whose metric is defined in terms of conditional mutual informations and which organizes the entanglement pattern of a CFT state. When the field theory has a holographic dual obeying the Ryu-Takayanagi proposal, kinematic space has a direct geometric meaning: it is the space of bulk geodesics studied in integral geometry. Lengths of bulk curves are computed by kinematic volumes, giving a precise entropic interpretation of the length of any bulk curve. We explain how basic geometric concepts -- points, distances and angles -- are reflected in kinematic space, allowing one to reconstruct a large class of spatial bulk geometries from boundary entanglement entropies. In this way, kinematic space translates between information theoretic and geometric descriptions of a CFT state. As an example, we discuss in detail the static slice of AdS$_3$ whose kinematic space is two-dimensional de Sitter space.
Slow dynamics and anomalous nonlinear fast dynamics in diverse solids
Slow dynamics and anomalous nonlinear fast dynamics in diverse solids Paul Johnsona) Geophysics study of anomalous nonlinear fast dynamics and slow dynamics in a number of solids. Observations are presented from seven diverse materials showing that anomalous nonlinear fast dynamics ANFD and slow dynamics
Spatially resolved dynamic structure factor of finite systems from molecular dynamics simulations
Raitza, Thomas; Roepke, Gerd; Reinholz, Heidi; Morozov, Igor [Institut fuer Physik, Universitaet Rostock, D-18051 Rostock (Germany); Institut fuer Theoretische Physik, Johannes-Kepler-Universitaet Linz, A-4040 Linz, Austria and Institute of Physics, University of Western Australia, Perth, WA 6009 (Australia); Joint Institute for High Temperatures of RAS, 13 Izhorskaya Street, Building 2, Moscow RU-125412 (Russian Federation)
2011-09-15T23:59:59.000Z
The dynamical response of metallic clusters up to 10{sup 3} atoms is investigated using the restricted molecular dynamics simulations scheme. Exemplarily, a sodium like material is considered. Correlation functions are evaluated to investigate the spatial structure of collective electron excitations and the optical response of laser-excited clusters. In particular, the spectrum of bilocal correlation functions shows resonances representing different modes of collective excitations inside the nano plasma. The spatial structure, the resonance energy, and the width of the eigenmodes have been investigated for various values of electron density, temperature, cluster size, and ionization degree. Comparison with bulk properties is performed and the dispersion relation of collective excitations is discussed.
Energy Systems Integration Facility Overview
Arvizu, Dan; Chistensen, Dana; Hannegan, Bryan; Garret, Bobi; Kroposki, Ben; Symko-Davies, Martha; Post, David; Hammond, Steve; Kutscher, Chuck; Wipke, Keith
2014-02-28T23:59:59.000Z
The U.S. Department of Energy's Energy Systems Integration Facility (ESIF) is located at the National Renewable Energy Laboratory is the right tool, at the right time... a first-of-its-kind facility that addresses the challenges of large-scale integration of clean energy technologies into the energy systems that power the nation.
Communication Needs and Integration Options
Communication Needs and Integration Options for AMI in the Smart Grid Future Grid Initiative White System #12;Communication Needs and Integration Options for AMI in the Smart Grid Prepared for the Project #12;ii Executive Summary This white paper analyzes the current state of communications
Communication Needs and Integration Options
Communication Needs and Integration Options for AMI in the Smart Grid Future Grid Initiative White System #12;Communication Needs and Integration Options for AMI in the Smart Grid Prepared for the Project the current state of communications for the advanced metering infrastructure (AMI) and recommends
Energy Systems Integration Facility Overview
Arvizu, Dan; Chistensen, Dana; Hannegan, Bryan; Garret, Bobi; Kroposki, Ben; Symko-Davies, Martha; Post, David; Hammond, Steve; Kutscher, Chuck; Wipke, Keith
2014-06-10T23:59:59.000Z
The U.S. Department of Energy's Energy Systems Integration Facility (ESIF) is located at the National Renewable Energy Laboratory is the right tool, at the right time... a first-of-its-kind facility that addresses the challenges of large-scale integration of clean energy technologies into the energy systems that power the nation.
Integrated Transportation System Design Optimization
Integrated Transportation System Design Optimization by Christine Taylor B.S. Cornell University by . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Professor Jaime Peraire Chairman, Department Graduate Committee #12;2 #12;Integrated Transportation System Abstract Traditionally, the design of a transportation system has focused on either the vehicle design
Analysis of Integrated Tropical Biorefineries
the integration of an anaerobic digester into each biochemical platform technology. The combustion of biogas not rely on biogas combustion to be thermally self- sufficient. However, their output of excess electricity is enhanced by integrating anaerobic digestion into the conversion process. Consequently, all investigated
Dynamic Fusion of Web Data Erhard Rahm, Andreas Thor, David Aumueller
Schüler, Axel
Dynamic Fusion of Web Data Erhard Rahm, Andreas Thor, David Aumueller University of Leipzig integrate data and services from multiple web sources. Such integration workflows can build on existing services for web search, entity search, database querying, and information extraction and thus complement
Tchernev, Dimiter I. (9 Woodman Rd., Chestnut Hill, MA 02167)
1985-01-01T23:59:59.000Z
A solar collector having a copper panel in a contiguous space relationship with a condenser-evaporator heat exchanger located under the panel, the panel having a honeycomb-like structure on its interior defining individual cells which are filled with zeolite loaded, in its adsorbed condition, with 18 to 20% by weight of water. The interior of the panel and heat exchanger are maintained at subatmospheric pressure of about 0.1 to 1 psia. The panel and heat exchanger are insulated on their lateral sides and bottoms and on the top of the heat exchange. The panel has a black coating on its top which is exposed to and absorbs solar energy. Surrounding the insulation (which supports the panel) is an extruded aluminum framework which supports a pair of spaced-apart glass panels above the solar panel. Water in conduits from a system for heating or cooling or both is connected to flow into an inlet and discharge from outlet of a finned coil received within the heat exchanger. The collector panel provides heat during the day through desorption and condensing of water vapor from the heated solar panel in the heat exchanger and cools at night by the re-adsorption of the water vapor from the heat exchanger which lowers the absolute pressure within the system and cools the heat exchange coils by evaporation.
Exploring Euclidean Dynamical Triangulations with a Non-trivial Measure Term
Daniel Coumbe; John Laiho
2014-07-15T23:59:59.000Z
We investigate a nonperturbative formulation of quantum gravity defined via Euclidean dynamical triangulations (EDT) with a non-trivial measure term in the path integral. We are motivated to revisit this older formulation of dynamical triangulations by hints from renormalization group approaches that gravity may be asymptotically safe and by the emergence of a semiclassical phase in causal dynamical triangulations (CDT). We study the phase diagram of this model and identify the two phases that are well known from previous work: the branched polymer phase and the collapsed phase. We verify that the order of the phase transition dividing the branched polymer phase from the collapsed phase is almost certainly first-order. The nontrivial measure term enlarges the phase diagram, allowing us to explore a region of the phase diagram that has been dubbed the crinkled region. Although the collapsed and branched polymer phases have been studied extensively in the literature, the crinkled region has not received the same scrutiny. We find that the crinkled region is likely a part of the collapsed phase with particularly large finite-size effects. Intriguingly, the behavior of the spectral dimension in the crinkled region at small volumes is similar to that of CDT, but for sufficiently large volumes the crinkled region does not appear to have 4-dimensional semiclassical features. Thus, we find that a simple local measure term is not enough to reproduce the results of CDT within the original EDT formulation. This agrees with the recent results of arXiv:1307.2270 [hep-lat], in which the authors used a somewhat different discretization of EDT from the one presented here.
First principles molecular dynamics without self-consistent field optimization
Souvatzis, Petros
2013-01-01T23:59:59.000Z
We present a first principles molecular dynamics approach that is based on time-reversible ex- tended Lagrangian Born-Oppenheimer molecular dynamics [Phys. Rev. Lett. 100, 123004 (2008)] in the limit of vanishing self-consistent field optimization. The optimization-free dynamics keeps the computational cost to a minimum and typically provides molecular trajectories that closely follow the exact Born-Oppenheimer potential energy surface. Only one single diagonalization and Hamiltonian (or Fockian) costruction are required in each integration time step. The proposed dy- namics is derived for a general free-energy potential surface valid at finite electronic temperatures within hybrid density functional theory. Even in the event of irregular functional behavior that may cause a dynamical instability, the optimization-free limit represents an ideal starting guess for force calculations that may require a more elaborate iterative electronic ground state optimization. Our optimization-free dynamics thus represents ...
A Numerical Model for the Dynamic Simulation of a Recirculation Single-Effect Absorption Chiller
Paris-Sud XI, UniversitĆ© de
A Numerical Model for the Dynamic Simulation of a Recirculation Single- Effect Absorption Chiller A dynamic model for the simulation of a new single-effect water/lithium bromide absorption chiller is developed. The chiller is driven by two distinct heat sources, includes a custom integrated falling film
Choi, Min-Hyung
Simulation Systems Hongjun Jeon1 Min-Hyung Choi2 Min Hong3 1 Dept. of Electrical and Computer Engineering and trajectories of dynamically simulated entities. Therefore, effective and efficient enforcement and proper describes the formulation and integration of geometric constraints in a dynamic simulation and provides
Business Commitments for Dynamic E-business Solution Management: Concept and Specification
Li, Haifei
Business Commitments for Dynamic E-business Solution Management: Concept and Specification Haifei 134 Yorktown Heights, NY 10598, USA ABSTRACT Nowadays, enterprises have treated e-business as an integral part of their daily business operations. How to manage a dynamic e-business solution
Dynamic-tensile-extrusion response of fluoropolymers
Brown, Eric N [Los Alamos National Laboratory; Trujillo, Carl P [Los Alamos National Laboratory; Gray, George T [Los Alamos National Laboratory
2009-01-01T23:59:59.000Z
The current work applies the recently developed Dynamic-Tensile-Extrusion (Dyn-Ten-Ext) technique to polytetrafluoroethylene (PTFE) and polychlorotrifluoroethylene (PCTFE). Similar to the Taylor Impact Rod, Dynamic-Tensile-Extrusion is a strongly integrated test, probing a wide range of strain rates and stress states. However, the stress state is primarily tensile enabling investigation of dynamic tensile failure modes. Here we investigate the influence of this propensity to neck or not between PCTFE and PTFE on their response under dynamic tensile extrusion loading. The results of the Dyn-Ten-Ext technique are compared with two classic techniques. Both polymers have been investigated using Tensile Split Hopkinson Pressure Bar. The quasistatic and dynamic responses of both fluoro-polymers have been extensively characterized. The two polymers exhibit significantly different failure behavior under tensile loading at moderate strain rates. Polytetrafluoroethylene resists formation of a neck and exhibits significant strain hardening. Independent of temperature or strain rate, PTFE sustains true strains to failure of approximately 1.5. Polychlorotrifluoroethylene, on the other hand, consistently necks at true strains of approximately 0.05.
Asteroid secular dynamics: Ceres' fingerprint identified
Novakovi?, Bojan; Tsirvoulis, Georgios; Knezevi?, Zoran
2015-01-01T23:59:59.000Z
Here we report on the significant role of a so far overlooked dynamical aspect, namely a secular resonance between the dwarf planet Ceres and other asteroids. We demonstrate that this type of secular resonance can be the dominant dynamical factor in certain regions of the main asteroid belt. Specifically, we performed a dynamical analysis of the asteroids belonging to the (1726) Hoffmeister family. To identify which dynamical mechanisms are actually at work in this part of the main asteroid belt, i.e. to isolate the main perturber(s), we study the evolution of this family in time. The study is accomplished using numerical integrations of test particles performed within different dynamical models. The obtained results reveal that the post-impact evolution of the Hoffmeister asteroid family is a direct consequence of the nodal secular resonance with Ceres. This leads us to the conclusion that similar effects must exist in other parts of the asteroid belt. In this respect, the obtained results shed light on an i...
Dynamical failure of Turing patterns
Alon Manor; Nadav M. Shnerb
2006-05-21T23:59:59.000Z
The emergence of stable disordered patterns in reactive system on spatially homogenous substrate is studied in the context of vegetation patterns in the semi-arid climatic zone. It is shown that reaction-diffusion systems that allow for Turing instability may exhibit heterogeneous "glassy" steady state, with no characteristic wavelength, if the diffusion rate associated with the "slow" reactant is very small. Upon decreasing the diffusion constant of the slow reactant three phases are identified: strong diffusion yields a stable homogenous phase, intermediate diffusion implies Turing (crystal like) patterns while in the slow diffusion limit the glassy state is the generic stable solution. In this disordered phase the dynamics is of crucial importance, with strong differences between local and global initiation.
Chemo -- Dynamical evolution of disk galaxies, smoothed particles hydrodynamics approach
Peter Berczik
1998-10-20T23:59:59.000Z
A new Chemo -- Dynamical Smoothed Particle Hydrodynamic (CD -- SPH) code is presented. The disk galaxy is described as a multi -- fragmented gas and star system, embedded into the cold dark matter halo. The star formation (SF) process, SNII, SNIa and PN events as well as chemical enrichment of gas have been considered within the framework of standard SPH model. Using this model we try to describe the dynamical and chemical evolution of triaxial disk -- like galaxies. It is found that such approach provides a realistic description of the process of formation, chemical and dynamical evolution of disk galaxies over the cosmological timescale.
Reaction Dynamics and Spectroscopy of Hydrocarbons in Plasma
Braams, Bastiaan J.
2014-03-24T23:59:59.000Z
This grant supported research in theoretical and computational Chemical Physics that resulted in numerous publications on fitting ab initio potential energy surfaces and dipole moment surfaces of polyatomic molecules and cations. This work made use of novel fitting methods that ensures that these surfaces are invariant with respect to all permutations of like atoms. The surfaces were used in various dynamics calculations, ranging from quantum vibrational dynamics to(quasi)classical trajectory calculations of reaction dynamics. A number of these studies were done in collaboration with experimental groups where the theoretical analyses turned out to be essential to give a proper understanding of the experimental results.
Roadmap Query for Sensor Network Assisted Navigation in Dynamic Environments
Lu, Chenyang
Roadmap Query for Sensor Network Assisted Navigation in Dynamic Environments Sangeeta Bhattacharya approach that integrates a roadmap based navigation algorithm with a novel WSN query protocol called Roadmap Query (RQ). RQ enables collection of frequent, up-to- date information about the surrounding
Dynamic Interactions of PV units in Low Volatge Distribution Systems
Pota, Himanshu Roy
Dynamic Interactions of PV units in Low Volatge Distribution Systems M. J. Hossain, J. Lu Griffith. Abstract--Photovoltaic (PV) units along with other distributed energy resources (DERs) are located close, robust control, stability. I. Introduction The integration level of PV units in low and medium voltage
Harmonic moment dynamics in Laplacian growth Alexander Leshchiner,1
Texas at Austin. University of
Harmonic moment dynamics in Laplacian growth Alexander Leshchiner,1 Matthew Thrasher,1 Mark B received 12 November 2009; published 12 January 2010 Harmonic moments are integrals of integer powers of z horizontal closely spaced plates. Harmonic moments are a natural basis for such Laplacian growth phenomena
Modelling Dynamic Trust with Property Based Attestation in Trusted Platforms
Paris-Sud XI, Université de
Modelling Dynamic Trust with Property Based Attestation in Trusted Platforms Aarthi Nagarajan attestation in trusted computing provides the ability to reason about the state of a platform using integrity attestation by abstracting low level binary values to high level security properties or functions of platforms
Dynamical friction in modified Newtonian dynamics
C. Nipoti; L. Ciotti; J. Binney; P. Londrillo
2008-03-31T23:59:59.000Z
We have tested a previous analytical estimate of the dynamical friction timescale in Modified Newtonian Dynamics (MOND) with fully non-linear N-body simulations. The simulations confirm that the dynamical friction timescale is significantly shorter in MOND than in equivalent Newtonian systems, i.e. systems with the same phase-space distribution of baryons and additional dark matter. An apparent conflict between this result and the long timescales determined for bars to slow and mergers to be completed in previous N-body simulations of MOND systems is explained. The confirmation of the short dynamical-friction timescale in MOND underlines the challenge that the Fornax dwarf spheroidal poses to the viability of MOND.
Brownian Dynamics Simulation of Protein Solutions: Structural and Dynamical Properties
Mereghetti, Paolo; Gabdoulline, Razif; Wade, Rebecca C.
2010-12-01T23:59:59.000Z
The study of solutions of biomacromolecules provides an important basis for understanding the behavior of many fundamental cellular processes, such as protein folding, self-assembly, biochemical reactions, and signal transduction. Here, we describe a Brownian dynamics simulation procedure and its validation for the study of the dynamic and structural properties of protein solutions. In the model used, the proteins are treated as atomically detailed rigid bodies moving in a continuum solvent. The protein-protein interaction forces are described by the sum of electrostatic interaction, electrostatic desolvation, nonpolar desolvation, and soft-core repulsion terms. The linearized Poisson-Boltzmann equation is solved to compute electrostatic terms. Simulations of homogeneous solutions of three different proteins with varying concentrations, pH, and ionic strength were performed. The results were compared to experimental data and theoretical values in terms of long-time self-diffusion coefficients, second virial coefficients, and structure factors. The results agree with the experimental trends and, in many cases, experimental values are reproduced quantitatively. There are no parameters specific to certain protein types in the interaction model, and hence the model should be applicable to the simulation of the behavior of mixtures of macromolecules in cell-like crowded environments.
Forest, E.
2011-01-01T23:59:59.000Z
with the method of integration. This can be done withwe can use a standard integration method. Finally, it isexplicit and implicit integration. References R.D. Ruth ,
The Hidden Flat Like Universe: Starobinsky-like inflation induced by f(T) gravity
W. El Hanafy; G. G. L. Nashed
2015-06-02T23:59:59.000Z
We study a single fluid component in a flat like universe (FLU) governed by $f(T)$ gravity theories, where $T$ is the teleparallel torsion scalar. The FLU model, regardless the value of the spatial curvature $k$, identifies a special class of $f(T)$ gravity theories. Remarkably, the FLU $f(T)$ gravity does not reduce to teleparallel gravity theory. In large Hubble spacetime the theory is consistent with the inflationary universe scenario and respects the conservation principle. The equation of state (EoS) evolves similarly in all models $k=0, \\pm 1$. We study the case when the torsion tensor is made of a scalar field, which enables to derive a quintessence potential from the obtained $f(T)$ gravity theory. The potential produces Starobinsky-like model naturally without using a conformal transformation, with higher orders continuously interpolate between Starobinsky and quadratic inflation models. The slow-roll analysis shows double solutions so that for a single value of the scalar tilt (spectral index) $n_{s}$ the theory can predict double tensor-to-scalar ratios $r$ of $E$-mode and $B$-mode polarizations.
Dynamic Event Tree Analysis Through RAVEN
A. Alfonsi; C. Rabiti; D. Mandelli; J. Cogliati; R. A. Kinoshita; A. Naviglio
2013-09-01T23:59:59.000Z
Conventional Event-Tree (ET) based methodologies are extensively used as tools to perform reliability and safety assessment of complex and critical engineering systems. One of the disadvantages of these methods is that timing/sequencing of events and system dynamics is not explicitly accounted for in the analysis. In order to overcome these limitations several techniques, also know as Dynamic Probabilistic Risk Assessment (D-PRA), have been developed. Monte-Carlo (MC) and Dynamic Event Tree (DET) are two of the most widely used D-PRA methodologies to perform safety assessment of Nuclear Power Plants (NPP). In the past two years, the Idaho National Laboratory (INL) has developed its own tool to perform Dynamic PRA: RAVEN (Reactor Analysis and Virtual control ENvironment). RAVEN has been designed in a high modular and pluggable way in order to enable easy integration of different programming languages (i.e., C++, Python) and coupling with other application including the ones based on the MOOSE framework, developed by INL as well. RAVEN performs two main tasks: 1) control logic driver for the new Thermo-Hydraulic code RELAP-7 and 2) post-processing tool. In the first task, RAVEN acts as a deterministic controller in which the set of control logic laws (user defined) monitors the RELAP-7 simulation and controls the activation of specific systems. Moreover, RAVEN also models stochastic events, such as components failures, and performs uncertainty quantification. Such stochastic modeling is employed by using both MC and DET algorithms. In the second task, RAVEN processes the large amount of data generated by RELAP-7 using data-mining based algorithms. This paper focuses on the first task and shows how it is possible to perform the analysis of dynamic stochastic systems using the newly developed RAVEN DET capability. As an example, the Dynamic PRA analysis, using Dynamic Event Tree, of a simplified pressurized water reactor for a Station Black-Out scenario is presented.
Search for new physics in high pT like-sign dilepton events at CDF II
DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)
Aaltonen, T [Helsinki Inst. of Phys.; Alvarez Gonzalez, B [Oviedo U., Cantabria Inst. of Phys.; Amerio, S [INFN, Padua; Amidei, D [Michigan U.; Anastassov, A [Northwestern U.; Annovi, A [Frascati; Antos, J [Comenius U.; Apollinari, G [Fermilab; Appel, J A [Fermilab; Apresyan, A [Purdue U.; Arisawa, T [Waseda U., Dubna, JINR
2011-10-25T23:59:59.000Z
We present a search for new physics in events with two high pT leptons of the same electric charge, using data with an integrated luminosity of 6.1 fb-1. The observed data are consistent with standard model predictions. We set 95% C.L. lower limits on the mass of doubly-charged scalars decaying to like-sign dileptons, mH±± > 190 - 245 GeV/c2, depending on the decay mode and coupling.
Kulkarni, Aditi; Rybkowski, Zofia K.; Smith, James
2012-07-17T23:59:59.000Z
Proceedings of the 20th Conference of the International Group for Lean Construction July 17-22, 2012: San Diego, CA, U.S.A. 781 COST COMPARISON OF COLLABORATIVE AND IPD-LIKE PROJECT DELIVERY METHODS VERSUS COMPETITIVE NON... acceptance of IPD for public projects. KEYWORDS Collaboration, Project Delivery, CM-at-Risk (CMR; CMAR), Competitive Sealed Proposal (CSP), Integrated Project Delivery (IPD), Design-Bid-Build (DBB), Cost Comparison INTRODUCTION One of the most widely...
Using dynamic simulations and automated decision tools to design lunar habitats
Kortenkamp, David
be useful for systems analyses much earlier in the system development life cycle than has previously been-time integrated control in designing and sizing habitat life support systems. The integration of these three implications for general systems analyses and for life support systems. It is likely that transient models
Diana K. Grauer; Michael E. Reed
2011-11-01T23:59:59.000Z
This paper presents an investigation into integrated wind + combustion engine high penetration electrical generation systems. Renewable generation systems are now a reality of electrical transmission. Unfortunately, many of these renewable energy supplies are stochastic and highly dynamic. Conversely, the existing national grid has been designed for steady state operation. The research team has developed an algorithm to investigate the feasibility and relative capability of a reciprocating internal combustion engine to directly integrate with wind generation in a tightly coupled Hybrid Energy System. Utilizing the Idaho National Laboratory developed Phoenix Model Integration Platform, the research team has coupled demand data with wind turbine generation data and the Aspen Custom Modeler reciprocating engine electrical generator model to investigate the capability of reciprocating engine electrical generation to balance stochastic renewable energy.
Mathematical Review for Physical Chemistry 1. Integration
Peterson, Kirk A.
Mathematical Review for Physical Chemistry Outline: 1. Integration (a) Important Integrals (b) Tricks for evaluating integrals 2. Derivatives (a) Important derivatives (b) Tricks 3. Expansions 4 dierentials 6. Properties of Logs 7. Review of Trigonometry 1 Integration: 1.1 Integrals you should know: 1
MSc Integrated Petroleum Geoscience Programme Handbook
Levi, Ran
MSc Integrated Petroleum Geoscience Programme Handbook 2013-14 edition #12;Page 2 Contents Preface 3 1.MSc Integrated Petroleum Geoscience FAQ 4 1.1 Why should I do this programme? 4 1.2 What Integrated Petroleum Geoscience: 57F610B1 PgDip Integrated Petroleum Geoscience: 61F610VX PgCert Integrated
NREL: Transmission Grid Integration - Hawaii Solar Integration Study
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy: Grid IntegrationReport AvailableForecasting NREL
NREL: Transmission Grid Integration - Oahu Wind Integration and
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy: Grid IntegrationReport AvailableForecastingNews The following
NREL: Transmission Grid Integration - Solar Integration National Dataset
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy: Grid IntegrationReport AvailableForecastingNewsToolkit
NREL: Transmission Grid Integration - Solar Power Data for Integration
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy: Grid IntegrationReport
NREL: Transmission Grid Integration - Western Wind and Solar Integration
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy: Grid IntegrationReportTransmission Planning and
NREL: Transmission Grid Integration - Western Wind and Solar Integration
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy: Grid IntegrationReportTransmission Planning andStudy Phase 2
Dynamics of the Galaxy's Satellites
James Binney
2000-06-28T23:59:59.000Z
The Milky Way's satellites provide unique information about the density of the Galactic halo at large radii. The inclusion of even a few rather inaccurate proper motions resolves an ambiguity in older mass estimates in favour of higher values. Many of the satellites are concentrated into streams. The dynamics of the Magellanic Stream provided an early indication that the halo reaches out to beyond 100 kpc. Tidal forces between the Clouds are currently disturbing the Clouds' internal dynamics. One would expect this damage to worsen rapidly as the tidal field of the MW excites the eccentricity of the Clouds' mutual orbit. This process, which has yet to be completely modelled, is important for understanding the degree of self-lensing in searches for gravitational lensing events. The Sagittarius Dwarf galaxy very likely contributes significantly to the Galactic warp. The direction of the warp's line of nodes is incorrectly predicted by the simplest models of the Dwarf's orbit. More sophisticated models, in which a complex distribution of stripped dark matter is predicted, may be more successful.
Ultrafast, high precision gated integrator
Wang, X.
1995-01-01T23:59:59.000Z
An ultrafast, high precision gated integrator has been developed by introducing new design approaches that overcome the problems associated with earlier gated integrator circuits. The very high speed is evidenced by the output settling time of less than 50 ns and 20 MHz input pulse rate. The very high precision is demonstrated by the total output offset error of less than 0.2mV and the output droop rate of less than 10{mu}V/{mu}s. This paper describes the theory of this new gated integrator circuit operation. The completed circuit test results are presented.
Michael Vogel
2009-02-20T23:59:59.000Z
Molecular dynamics simulations are performed to study the temperature-dependent dynamics and structures of the hydration shells of elastin-like and collagen-like peptides. For both model peptides, it is consistently observed that, upon cooling, the mechanisms for water dynamics continuously change from small-step diffusive motion to large-step jump motion, the temperature dependence of water dynamics shows a weak crossover from fragile behavior to strong behavior, and the order of the hydrogen-bond network increases. The temperature of the weak crossover from fragile to strong behavior is found to coincide with the temperature at which maximum possible order of the hydrogen-bond network is reached so that the structure becomes temperature independent. In the strong regime, the temperature dependence of water translation and rotational dynamics is characterized by an activation energy of ca. E_a=0.43 eV, consistent with results from previous dielectric spectroscopy and nuclear magnetic resonance studies on protein hydration waters. At these temperatures, a distorted pi-flip motion about the twofold molecular symmetry axes, i.e., a water-specific beta process is an important aspect of water dynamics, at least at the water-peptide interfaces. In addition, it is shown that the hydration waters exhibit pronounced dynamical heterogeneities, which can be traced back to a strong slowdown of water motion in the immediate vicinity of peptide molecules due to formation of water-peptide hydrogen bonds.
Atmospheric Circulation and Tides of "51Peg b-like" Planets
Adam P. Showman; Tristan Guillot
2002-02-12T23:59:59.000Z
We examine the properties of the atmospheres of extrasolar giant planets at orbital distances smaller than 0.1 AU from their stars. We show that these ``51Peg b-like'' planets are rapidly synchronized by tidal interactions, but that small departures from synchronous rotation can occur because of fluid-dynamical torques within these planets. Previous radiative-transfer and evolution models of such planets assume a homogeneous atmosphere. Nevertheless, we show using simple arguments that, at the photosphere, the day-night temperature difference and characteristic wind speeds may reach ~500 K and ~2 km/s, respectively. Substantial departures from chemical equilibrium are expected. The cloud coverage depends sensitively on the dynamics; clouds could exist predominantly either on the dayside or nightside, depending on the circulation regime. Radiative-transfer models that assume homogeneous conditions are therefore inadequate in describing the atmospheric properties of 51Peg b-like planets. We present preliminary three-dimensional, nonlinear simulations of the atmospheric circulation of HD209458b that indicate plausible patterns for the circulation and generally agree with our simpler estimates. Furthermore, we show that kinetic energy production in the atmosphere can lead to the deposition of substantial energy in the interior, with crucial consequences for the evolution of these planets. Future measurements of reflected and thermally-emitted radiation from these planets will help test our ideas.
A Relativistic Dynamical Collapse Model
Philip Pearle
2014-12-21T23:59:59.000Z
A model is discussed where all operators are constructed from a quantum scalar field whose energy spectrum takes on all real values. The Schr\\"odinger picture wave function depends upon space and time coordinates for each particle, as well as an inexorably increasing evolution parameter $s$ which labels a foliation of space-like hypersurfaces. The model is constructed to be manifestly Lorentz invariant in the interaction picture. Free particle states and interactions are discussed in this framework. Then, the formalism of the CSL (Continuous Spontaneous Localization) theory of dynamical collapse is applied. The collapse-generating operator is chosen to to be the particle number space-time density. Unlike previous relativistically invariant models, the vacuum state is not excited. The collapse dynamics depends upon two parameters, a parameter $\\Lambda$ which represents the collapse rate/volume and a scale factor $\\ell$. A common example of collapse dynamics, involving a clump of matter in a superposition of two locations, is analyzed. The collapse rate is shown to be identical to that of non-relativistic CSL when the GRW-CSL choice of $\\ell=a=10^{-5}$cm, is made, along with $\\Lambda=\\lambda/a^{3}$ (GRW-CSL choice $\\lambda=10^{-16}s^{-1}$). However, it is also shown that the change of mass of a nucleon over the age of the universe is then unacceptably large. The case where $\\ell$ is the size of the universe is then considered. It is shown that the collapse behavior is satisfactory and the change of mass over the age of the universe is acceptably small, when $\\Lambda= \\lambda/\\ell a^{2}$.
Australian Mining carries rare-earth-like iron release | The...
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Australian Mining carries rare-earth-like iron release Australian Mining, the leading news source for the mining industry in Australia, carried a story on research Ames Lab...
Chaotic physics in ferroelectrics hints at brain-like computing...
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Oak Ridge National Laboratory 865-574-7308 Chaotic physics in ferroelectrics hints at brain-like computing Unexpected behavior in ferroelectric materials explored by researchers...
Water-Like Properties of Soft Nanoparticle Suspensions | Advanced...
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
| 2004 | 2003 | 2002 2001 | 2000 | 1998 | Subscribe to APS Science Highlights rss feed Water-Like Properties of Soft Nanoparticle Suspensions November 25, 2013 Bookmark and Share...
Incremental-like Bundle Methods with Application to Energy Planning
Gr gory Emiel
2008-11-18T23:59:59.000Z
Nov 18, 2008 ... Incremental-like Bundle Methods with Application to Energy Planning. Gr gory ... For a real-life application on the French power mix, we obtain ...
HGS Schedulers for Digital Audio Workstation like Applications
Poduval, Karthik Venugopal
2014-08-31T23:59:59.000Z
RT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 3.1.3 Libsynchro . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 3.1.4 Synchro SDF version 2 . . . . . . . . . . . . . . . . . . . . . . . . . . 23 3.2 JACK Integration... 4.1.4 Rt-app Load . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 v 4.2 JACK with SEQ SDF integration . . . . . . . . . . . . . . . . . . . . . . . . 48 4.2.1 No Load...
activity spindle dynamics: Topics by E-print Network
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
activity spindle dynamics First Page Previous Page 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Next Page Last Page Topic Index 1 5E) (36). Active spindle-like...
Controlling Social Dynamics with a Parametrized Model of Floor Regulation
Das, Suman
Controlling Social Dynamics with a Parametrized Model of Floor Regulation Crystal Chao, Andrea L is to build autonomous robot controllers for successfully engaging in human-like turn-taking interactions. Towards this end, we present CADENCE, a novel computational model and architecture that explicitly reasons
Modeling exchange rate dependence dynamics at different time horizons
Embrechts, Paul
, Copula-GARCH, Conditional dependence, Dynamic copula Corresponding author. Tel.: +44(0) 247 657 4297. Financial time-series are often modeled with GARCH type models. In the multivariate GARCH literature there exist several models, like CCC- GARCH, DVEC, matrix-diagonal GARCH, BEKK and principal components GARCH
Dynamic Memory Usage Optimization using ILP and J. Ramanujam2
Ramanujam, J. "Ram"
computing field such as electronic structure calculations, and in several other contexts. We are considering sizes M like those arising in scientific computing such as electronic structure calculations [1, 2, 3Dynamic Memory Usage Optimization using ILP A. Allam1 and J. Ramanujam2 1 Electrical Engineering
Dynamic management of water transfer between two interconnected river basins
Boyer, Edmond
Dynamic management of water transfer between two interconnected river basins Francisco Cabo Katrin cause environmental damage in the donor basin. The recipient faces a trade-off between paying the price of the irrigated soil, or demand for water for highly productive activities like tourism), then the existence
Integrated Safety Management System Manual
Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]
2006-11-01T23:59:59.000Z
This manual provides requirements and guidance for DOE and contractors to ensure development and implementation of an effective Integrated Safety Management system that is periodically reviewed and continuously improved. Canceled by DOE O 450.2.
Advancing Energy Systems through Integration
Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site
Oil 30 ever-greenenergy.com Ever-Green Energy Integrated Energy System Questions? Ken Smith, President and CEO ken.smith@ever-greenenergy.com www.districtenergy.com...
Optical waveguides for microfluidic integration
Ram, Rajeev J.
A scalable polymer backplane for dense integration of photonics with lab-on-a-chip systems is presented. A high-throughput cell culture chip employing waveguides for monitoring and control of culture conditions is used to ...
BPA Wind Integration Team Update
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
BPA Wind Integration Team Update Customer Supplied Generation Imbalance (CSGI) Pilot Transmission Services Customer Forum 29 July 28, 2010 B O N N E V I L L E P O W E R A D M I N...
Uniform asymptotic approximations of integrals
Khwaja, Sarah Farid
2014-07-01T23:59:59.000Z
In this thesis uniform asymptotic approximations of integrals are discussed. In order to derive these approximations, two well-known methods are used i.e., the saddle point method and the Bleistein method. To start with ...
Scattering theory with path integrals
Rosenfelder, R. [Particle Theory Group, Paul Scherrer Institute, CH-5232 Villigen PSI (Switzerland)] [Particle Theory Group, Paul Scherrer Institute, CH-5232 Villigen PSI (Switzerland)
2014-03-15T23:59:59.000Z
Starting from well-known expressions for the T-matrix and its derivative in standard nonrelativistic potential scattering, I rederive recent path-integral formulations due to Efimov and Barbashov et al. Some new relations follow immediately.
Demonstration of integrated optimization software
NONE
2008-01-01T23:59:59.000Z
NeuCO has designed and demonstrated the integration of five system control modules using its proprietary ProcessLink{reg_sign} technology of neural networks, advanced algorithms and fuzzy logic to maximize performance of coal-fired plants. The separate modules control cyclone combustion, sootblowing, SCR operations, performance and equipment maintenance. ProcessLink{reg_sign} provides overall plant-level integration of controls responsive to plant operator and corporate criteria. Benefits of an integrated approach include NOx reduction improvement in heat rate, availability, efficiency and reliability; extension of SCR catalyst life; and reduced consumption of ammonia. All translate into cost savings. As plant complexity increases through retrofit, repowering or other plant modifications, this integrated process optimization approach will be an important tool for plant operators. 1 fig., 1 photo.
Microfluidic Systems Integrated Microfluidic Systems**
Ismagilov, Rustem F.
Microfluidic Systems Integrated Microfluidic Systems** Rustem F. Ismagilov* Keywords: analytical methods · enzymes · microfluidics · microreactors · protein structures Microfluidic systems use networks of channels thinner than a human hair to manipulate nanoliter volumes of re- agents. The goal of microfluidics
Arnold Schwarzenegger INTEGRATED FORECAST AND
Arnold Schwarzenegger Governor INTEGRATED FORECAST AND RESERVOIR MANAGEMENT (INFORM) FOR NORTHERN with primary contributions in the area of decision support for reservoir planning and management Commission Energy-Related Environmental Research Joseph O' Hagan Contract Manager Joseph O' Hagan Project
Arnold Schwarzenegger INTEGRATED FORECAST AND
Arnold Schwarzenegger Governor INTEGRATED FORECAST AND RESERVOIR MANAGEMENT (INFORM) FOR NORTHERN: California Energy Commission Energy-Related Environmental Research Joseph O' Hagan Contract Manager Joseph O' Hagan Project Manager Kelly Birkinshaw Program Area Manager ENERGY-RELATED ENVIRONMENTAL RESEARCH Martha
"DOE O 450.2 INTEGRATED SAFETY MANAGEMENT AND DOE P 450.4A INTEGRATED...
Office of Environmental Management (EM)
"DOE O 450.2 INTEGRATED SAFETY MANAGEMENT AND DOE P 450.4A INTEGRATED SAFETY MANAGEMENT POLICY FAMILIAR LEVEL "DOE O 450.2 INTEGRATED SAFETY MANAGEMENT AND DOE P 450.4A INTEGRATED...
Signal Integrity Analysis of a 2-D and 3-D Integrated Potentiostat for Neurotransmitter Sensing
Stanacevic, Milutin
for the substrate, power network, and through silicon vias (TSVs). These models are combined integrated implantable systems. I. INTRODUCTION A multichannel potentiostat, integrated with micro and power dissipation. Signal integrity characteristics of a 2- D and 3-D integrated potentiostat
Spent fuel integrity during transportation
Funk, C.W.; Jacobson, L.D.
1980-01-01T23:59:59.000Z
The conditions of recent shipments of light water reactor spent fuel were surveyed. The radioactivity level of cask coolant was examined in an attempt to find the effects of transportation on LWR fuel assemblies. Discussion included potential cladding integrity loss mechanisms, canning requirements, changes of radioactivity levels, and comparison of transportation in wet or dry media. Although integrity loss or degradation has not been identified, radioactivity levels usually increase during transportation, especially for leaking assemblies.
NREL: Energy Systems Integration - Solectria
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy: Grid Integration NREL is spearheading engineering
NREL: Energy Systems Integration - Webmaster
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy: Grid Integration NREL is spearheading engineeringWebmaster Please
NREL: Transmission Grid Integration - Forecasting
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy: Grid IntegrationReport AvailableForecasting NREL researchers use
NREL: Transmission Grid Integration - News
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy: Grid IntegrationReport AvailableForecastingNews The following news