National Library of Energy BETA

Sample records for lignite waste consumed

  1. Waste reduction through consumer education. Final report

    SciTech Connect (OSTI)

    Harrison, E.Z.

    1996-05-01

    The Waste Reduction through Consumer Education research project was conducted to determine how environmental educational strategies influence purchasing behavior in the supermarket. The objectives were to develop, demonstrate, and evaluate consumer education strategies for waste reduction. The amount of waste generated by packaging size and form, with an adjustment for local recyclability of waste, was determined for 14 product categories identified as having more waste generating and less waste generating product choices (a total of 484 products). Using supermarket scan data and shopper identification numbers, the research tracked the purchases of shoppers in groups receiving different education treatments for 9 months. Statistical tests applied to the purchase data assessed patterns of change between the groups by treatment period. Analysis of the data revealed few meaningful statistical differences between study groups or changes in behavior over time. Findings suggest that broad brush consumer education about waste reduction is not effective in changing purchasing behaviors in the short term. However, it may help create a general awareness of the issues surrounding excess packaging and consumer responsibility. The study concludes that the answer to waste reduction in the future may be a combination of voluntary initiatives by manufacturers and retailers, governmental intervention, and better-informed consumers.

  2. Pelletizing lignite

    DOE Patents [OSTI]

    Goksel, Mehmet A. (Houghton, MI)

    1983-11-01

    Lignite is formed into high strength pellets having a calorific value of at least 9,500 Btu/lb by blending a sufficient amount of an aqueous base bituminous emulsion with finely-divided raw lignite containing its inherent moisture to form a moistened green mixture containing at least 3 weight % of the bituminous material, based on the total dry weight of the solids, pelletizing the green mixture into discrete green pellets of a predetermined average diameter and drying the green pellets to a predetermined moisture content, preferrably no less than about 5 weight %. Lignite char and mixture of raw lignite and lignite char can be formed into high strength pellets in the same general manner.

  3. Lignite Fuel Enhancement

    SciTech Connect (OSTI)

    Charles Bullinger; Nenad Sarunac

    2010-03-31

    Pulverized coal power plants which fire lignites and other low-rank high-moisture coals generally operate with reduced efficiencies and increased stack emissions due to the impacts of high fuel moisture on stack heat loss and pulverizer and fan power. A process that uses plant waste heat sources to evaporate a portion of the fuel moisture from the lignite feedstock in a moving bed fluidized bed dryer (FBD) was developed in the U.S. by a team led by Great River Energy (GRE). The demonstration was conducted with Department of Energy (DOE) funding under DOE Award Number DE-FC26-04NT41763. The objectives of GRE's Lignite Fuel Enhancement project were to demonstrate reduction in lignite moisture content by using heat rejected from the power plant, apply technology at full scale at Coal Creek Station (CCS), and commercialize it. The Coal Creek Project has involved several stages, beginning with lignite drying tests in a laboratory-scale FBD at the Energy Research Center (ERC) and development of theoretical models for predicting dryer performance. Using results from these early stage research efforts, GRE built a 2 ton/hour pilot-scale dryer, and a 75 ton/hour prototype drying system at Coal Creek Station. Operated over a range of drying conditions, the results from the pilot-scale and prototype-scale dryers confirmed the performance of the basic dryer design concept and provided the knowledge base needed to scale the process up to commercial size. Phase 2 of the GRE's Lignite Fuel Enhancement project included design, construction and integration of a full-scale commercial coal drying system (four FBDs per unit) with Coal Creek Units 1 and 2 heat sources and coal handling system. Two series of controlled tests were conducted at Coal Creek Unit 1 with wet and dried lignite to determine effect of dried lignite on unit performance and emissions. Wet lignite was fired during the first, wet baseline, test series conducted in September 2009. The second test series was performed in March/April 2010 after commercial coal drying system was commissioned. Preliminary tests with dried coal were performed in March/April 2010. During the test Unit 2 was in outage and, therefore, test unit (Unit 1) was carrying entire station load and, also, supplying all auxiliary steam extractions. This resulted in higher station service, lower gross power output, and higher turbine cycle heat rate. Although, some of these effects could be corrected out, this would introduce uncertainty in calculated unit performance and effect of dried lignite on unit performance. Baseline tests with dried coal are planned for second half of 2010 when both units at Coal Creek will be in service to establish baseline performance with dried coal and determine effect of coal drying on unit performance. Application of GRE's coal drying technology will significantly enhance the value of lignite as a fuel in electrical power generation power plants. Although existing lignite power plants are designed to burn wet lignite, the reduction in moisture content will increase efficiency, reduce pollution and CO{sub 2} emissions, and improve plant economics. Furthermore, the efficiency of ultra supercritical units burning high-moisture coals will be improved significantly by using dried coal as a fuel. To date, Great River Energy has had 63 confidentiality agreements signed by vendors and suppliers of equipment and 15 utilities. GRE has had agreements signed from companies in Canada, Australia, China, India, Indonesia, and Europe.

  4. Lignite Fuel Enhancement

    SciTech Connect (OSTI)

    Charles Bullinger

    2007-03-31

    This 11th quarterly Technical Progress Report for the Lignite Fuel Enhancement Project summarizes activities from January 1st through March 31st of 2007. It summarizes the completion of the Prototype testing activity and initial full-scale dryer design, Budget Period 2 activity during that time period. The Design Team completed process design and layouts of air, water, and coal systems. Heyl-Patterson completed dryer drawings and has sent RFPs to several fabricators for build and assembly. Several meetings were held with Barr engineers to finalize arrangement of the drying, air jig, and coal handling systems. Honeywell held meetings do discuss the control system logic and hardware location. By the end of March we had processed nearly 300,000 tons of lignite through the dryer. Outage preparation maintenance activities on a coal transfer hopper restricted operation of the dryer in February and March. The Outage began March 17th. We will not dry coal again until early May when the Outage on Unit No.2 completes. The Budget Period 1 (Phase 1) final report was submitted this quarter. Comments were received from NETL and are being reviewed. The Phase 2 Project Management Plan was submitted to NETL in January 2007. This deliverable also included the Financing Plan. An application for R&D 100 award was submitted in February. The project received an award from the Minnesota Professional Engineering Society's Seven Wonders of Engineering Award and Minnesota ACEC Grand Award in January. To further summarize, the focus this quarter has been on finalizing commercial design and the layout of four dryers behind each Unit. The modification to the coal handling facilities at Coal Creek and incorporation of air jigs to further beneficiate the segregated material the dryers will reject 20 to 30 % of the mercury and sulfur is segregated however this modification will recover the carbon in that stream.

  5. Thermal valorization of post-consumer film waste in a bubbling bed gasifier

    SciTech Connect (OSTI)

    Martnez-Lera, S., E-mail: susanamartinezlera@gmail.com; Torrico, J.; Pallars, J.; Gil, A.

    2013-07-15

    Highlights: Film waste from packaging is a common waste, a fraction of which is not recyclable. Gasification can make use of the high energy value of the non-recyclable fraction. This waste and two reference polymers were gasified in a bubbling bed reactor. This experimental research proves technical feasibility of the process. It also analyzes impact of composition and ER on the performance of the plant. - Abstract: The use of plastic bags and film packaging is very frequent in manifold sectors and film waste is usually present in different sources of municipal and industrial wastes. A significant part of it is not suitable for mechanical recycling but could be safely transformed into a valuable gas by means of thermal valorization. In this research, the gasification of film wastes has been experimentally investigated through experiments in a fluidized bed reactor of two reference polymers, polyethylene and polypropylene, and actual post-consumer film waste. After a complete experimental characterization of the three materials, several gasification experiments have been performed to analyze the influence of the fuel and of equivalence ratio on gas production and composition, on tar generation and on efficiency. The experiments prove that film waste and analogue polymer derived wastes can be successfully gasified in a fluidized bed reactor, yielding a gas with a higher heating value in a range from 3.6 to 5.6 MJ/m{sup 3} and cold gas efficiencies up to 60%.

  6. ACTIVATED CARBON FROM LIGNITE FOR WATER TREATMENT (Technical...

    Office of Scientific and Technical Information (OSTI)

    ACTIVATED CARBON FROM LIGNITE FOR WATER TREATMENT Citation Details In-Document Search Title: ACTIVATED CARBON FROM LIGNITE FOR WATER TREATMENT You are accessing a document from...

  7. Multiple-use marketing of lignite

    SciTech Connect (OSTI)

    Knudson, C.L.

    1993-09-01

    Marketing of lignite faces difficulties due to moisture and sulfur contents, as well as the sodium content, of the ash. The purpose of this study is to determine the economic viability of multiple-use marketing of lignite as a method to increase the use of North Dakota lignite by recapturing lost niche markets. Multiple-use marketing means using lignite and sulfur-capturing additives to clean agricultural wastewater followed by either direct steam and power generation or briquetting to produce a higher-Btu compliance fuel. Cooperative ownership of the resulting business by a coal company and an agriculture processing company helps ensure that lignite remains the coal of choice, especially when the ``good`` attributes of lignites are maximized, while the agricultural company obtains cleaner wastewater and a long-term supply of coal at a set price. The economic viabilities of the following scenarios were investigated: (1) Agriprocessing wastewater treatment using lignite and an additive followed by (2) the production of compliance fuel for resale or on-site cogeneration of steam and electricity. Laboratory tests were performed utilizing potato-processing plant wastewater with lignite and lime sludge.

  8. CHARACTERIZATION OF INDIVIDUAL CHEMICAL REACTIONS CONSUMING ACID DURING NUCLEAR WASTE PROCESSING AT THE SAVANNAH RIVER SITE - 136B

    SciTech Connect (OSTI)

    Koopman, D.; Pickenheim, B.; Lambert, D.; Newell, J.; Stone, M.

    2009-09-02

    Conversion of legacy radioactive high-level waste at the Savannah River Site into a stable glass waste form involves a chemical pretreatment process to prepare the waste for vitrification. Waste slurry is treated with nitric and formic acids to achieve certain goals. The total quantity of acid added to a batch of waste slurry is constrained by the catalytic activity of trace noble metal fission products in the waste that can convert formic acid into hydrogen gas at many hundreds of times the radiolytic hydrogen generation rate. A large block of experimental process simulations were performed to characterize the chemical reactions that consume acid prior to hydrogen generation. The analysis led to a new equation for predicting the quantity of acid required to process a given volume of waste slurry.

  9. COFIRING BIOMASS WITH LIGNITE COAL

    SciTech Connect (OSTI)

    Darren D. Schmidt

    2002-01-01

    The University of North Dakota Energy & Environmental Research Center, in support of the U.S. Department of Energy's (DOE) biomass cofiring program, completed a Phase 1 feasibility study investigating aspects of cofiring lignite coal with biomass relative to utility-scale systems, specifically focusing on a small stoker system located at the North Dakota State Penitentiary (NDSP) in Bismarck, North Dakota. A complete biomass resource assessment was completed, the stoker was redesigned to accept biomass, fuel characterization and fireside modeling tests were performed, and an engineering economic analysis was completed. In general, municipal wood residue was found to be the most viable fuel choice, and the modeling showed that fireside problems would be minimal. Experimental ash deposits from firing 50% biomass were found to be weaker and more friable compared to baseline lignite coal. Experimental sulfur and NO{sub x} emissions were reduced by up to 46%. The direct costs savings to NDSP, from cogeneration and fuel saving, results in a 15- to 20-year payback on a $1,680,000 investment, while the total benefits to the greater community would include reduced landfill burden, alleviation of fees for disposal by local businesses, and additional jobs created both for the stoker system as well as from the savings spread throughout the community.

  10. Bioprocessing of lignite coals using reductive microorganisms

    SciTech Connect (OSTI)

    Crawford, D.L.

    1992-03-29

    In order to convert lignite coals into liquid fuels, gases or chemical feedstock, the macromolecular structure of the coal must be broken down into low molecular weight fractions prior to further modification. Our research focused on this aspect of coal bioprocessing. We isolated, characterized and studied the lignite coal-depolymerizing organisms Streptomyces viridosporus T7A, Pseudomonas sp. DLC-62, unidentified bacterial strain DLC-BB2 and Gram-positive Bacillus megaterium strain DLC-21. In this research we showed that these bacteria are able to solubilize and depolymerize lignite coals using a combination of biological mechanisms including the excretion of coal solublizing basic chemical metabolites and extracellular coal depolymerizing enzymes.

  11. Reducing the environmental impact on solid wastes from a fluidized...

    Office of Scientific and Technical Information (OSTI)

    Subject: 01 COAL, LIGNITE, AND PEAT; COAL; FLUIDIZED-BED COMBUSTION; WASTE MANAGEMENT; AIR POLLUTION ABATEMENT; ALUMINIUM OXIDES; CALCIUM OXIDES; CHEMICAL ACTIVATION;...

  12. Survey of synfuel technology for lignite

    SciTech Connect (OSTI)

    Sondreal, E.A.

    1982-01-01

    The most important market for lignite will continue to be the electric utility industry, where it is used to fuel large pc-fired boilers serving major regional power grids. However, the growth of this market and thechnology is being challenged by new and more stringent environmental control requirements, including the international concern over acid rain. Environmental and economic issues could either encourage or limit the development of a synfuels market for lignite depending on the cost effectiveness of the technological solutions that are developed. Clearly the United States needs to develop its coal resources to reduce dependence on imported oil. However, demand for coal derived substitute petroleum will be constrained by cost for the forseeable future. Government policy initiatives and new technology will be the keys to removing these constraints in the decades ahead. A crossover point with respect to petroleum and natural gas will be reached at some point in the future, which will allow synthetic fuels to penetrate the markets now served by oil and gas. Those of us who are today concerned with the development of lignite resources can look forward to participating in the major synfuels market that will emerge when those economic conditions are realized.

  13. ENERGY PLANNING, POLICY AND ECONOMY; 02 PETROLEUM; 01 COAL, LIGNITE...

    Office of Scientific and Technical Information (OSTI)

    Philippines: Asia Pacific energy series: Country report Hoffman, S. 29 ENERGY PLANNING, POLICY AND ECONOMY; 02 PETROLEUM; 01 COAL, LIGNITE, AND PEAT; PHILIPPINES; ECONOMIC...

  14. POWDERED ACTIVATED CARBON FROM NORTH DAKOTA LIGNITE: AN OPTION...

    Office of Scientific and Technical Information (OSTI)

    CARBON FROM NORTH DAKOTA LIGNITE: AN OPTION FOR DISINFECTION BY-PRODUCT CONTROL IN WATER TREATMENT PLANTS Citation Details In-Document Search Title: POWDERED ACTIVATED...

  15. DOE Regional Partnership Initiates CO2 Injection in Lignite Coal...

    Broader source: Energy.gov (indexed) [DOE]

    begun injecting CO2 into a deep lignite coal seam in Burke County, North Dakota, to ... indicated that the region's low-rank coal seams have the capacity to store up to 8 ...

  16. The washability of lignites for clay removal

    SciTech Connect (OSTI)

    Oteyaka, B.; Yamik, A.; Ucar, A.; Sahbaz, O.; Demir, U.

    2008-07-01

    In the washability research of the Seyitomer Lignites (Kutahya-Turkey), with lower calorific value (1,863 kcal/kg) and high ash content (51.91%), by heavy medium separation, it was found out that middling clay in the coal had an effect to change the medium density. To prevent this problem, a trommel sieve with 18 and 5 mm aperture diameter was designed, and the clay in the coal was tried to be removed using it before the coal was released to heavy medium. Following that, the obtained coal in -100 + 18 mm and -18 + 5 mm fractions was subjected to sink and float test having 1.4 gcm{sup -3} and 1.7 gcm{sup -3} medium densities (-5 mm fraction will be evaluated in a separate work). Depending on the raw coal, with the floating of -100 + 18 mm and -18 + 5 mm size fraction in 1.4 gcm{sup -3} medium density, clean coal with 60.10% combustible matter recovery, 19.12% ash, and 3,150 kcal/kg was obtained. Also floating of the samples sinking in 1.4 gcm{sup -3} in the medium density (1.7 gcm{sup -3}), middling with 18.70% combustible matter recovery, 41.93% ash, 2,150 kcal/kg, and tailing having 78.31% ash were obtained.

  17. Advanced power assessment for Czech lignite task 3.6. Topical report

    SciTech Connect (OSTI)

    Sondreal, E.A.; Mann, M.D.; Weber, G.W.; Young, B.C.

    1995-12-01

    Major reforms in the Czech energy sector have been initiated to reverse 40 years of central planning, subsidized energy pricing, unchecked pollution from coal-fired plants, concerns over nuclear safety and fuel cycle management, and dependence on the former U.S.S.R. for oil, gas, and nuclear fuel processing. Prices for electricity, heat, and natural gas paid by industry are close to western levels, but subsidized prices for households are as much as 40% lower and below economic cost. State control of major energy enterprises is being reduced by moving toward government-regulated, investor-owned companies to raise needed capital, but with a strategic stake retained by the state. Foreign firms will participate in privatization, but they are not expected to acquire a controlling interest in Czech energy companies. Economic conditions in the Czech Republic are now improving after the disruptions caused by restructuring since 1989 and separation of the former Czech and Slovak Federal Republics in January 1993. The downturn in the economy after 1989 was concentrated in energy-intensive heavy industry, and recovery is paced by consumer trade, services, light industry and construction. Energy use in relation to gross domestic product (GDP) has declined, but it is still significantly higher than in OECD (Organization for Economic Cooperation and Development) countries. The GDP increased by 2% in 1994 after dropping 22% between 1989 and 1993. A positive balance of payments has been achieved, with foreign investment offsetting a small trade deficit. The government`s external debt is only 4% of GDP. This report studies the application of lignite resources within the newly formulated energy policies of the republic, in light of a move toward privatization and stronger air pollution regulations. Lignite has represented the major energy source for the country.

  18. Gidaspow, D.; Bezburuah, R.; Ding, J. 01 COAL, LIGNITE, AND PEAT...

    Office of Scientific and Technical Information (OSTI)

    fluidized beds: Kinetic theory approach Gidaspow, D.; Bezburuah, R.; Ding, J. 01 COAL, LIGNITE, AND PEAT; 42 ENGINEERING; 99 GENERAL AND MISCELLANEOUSMATHEMATICS,...

  19. JV Task 98 - Controlling Mercury Emissions for Utilities Firing Lignites from North America

    SciTech Connect (OSTI)

    Steven Benson

    2007-06-15

    This project compiled and summarized the findings and conclusions of research, development, and demonstration projects on controlling mercury from lignite coals. A significant amount of work has been conducted since 1994 on mercury in lignite, mercury measurement in flue gases, sorbent, sorbent enhancement additives, oxidation agent development, and full-scale demonstration of mercury control technologies. This report is focused on providing the lignite industry with an understanding of mercury issues associated with the combustion of lignite, as well as providing vital information on the methods to control mercury emissions in coal-fired power plants.

  20. Long term contracts, expansion, innovation and stability: North Dakota's lignite mines thrive

    SciTech Connect (OSTI)

    Buchsbaum, L.

    2009-08-15

    North Dakota's lignite coal industry is mainly located in three countries in the central part of the state. Its large surface lignite mines are tied through long-term (20-40 years) contracts to power plants. The article talks about operations at three of the most productive mines - the Freedom mine, Falkirk mine and Center Mine. 4 figs.

  1. JV Task 90 - Activated Carbon Production from North Dakota Lignite

    SciTech Connect (OSTI)

    Steven Benson; Charlene Crocker; Rokan Zaman; Mark Musich; Edwin Olson

    2008-03-31

    The Energy & Environmental Research Center (EERC) has pursued a research program for producing activated carbon from North Dakota lignite that can be competitive with commercial-grade activated carbon. As part of this effort, small-scale production of activated carbon was produced from Fort Union lignite. A conceptual design of a commercial activated carbon production plant was drawn, and a market assessment was performed to determine likely revenue streams for the produced carbon. Activated carbon was produced from lignite coal in both laboratory-scale fixed-bed reactors and in a small pilot-scale rotary kiln. The EERC was successfully able to upgrade the laboratory-scale activated carbon production system to a pilot-scale rotary kiln system. The activated carbon produced from North Dakota lignite was superior to commercial grade DARCO{reg_sign} FGD and Rheinbraun's HOK activated coke product with respect to iodine number. The iodine number of North Dakota lignite-derived activated carbon was between 600 and 800 mg I{sub 2}/g, whereas the iodine number of DARCO FGD was between 500 and 600 mg I{sub 2}/g, and the iodine number of Rheinbraun's HOK activated coke product was around 275 mg I{sub 2}/g. The EERC performed both bench-scale and pilot-scale mercury capture tests using the activated carbon made under various optimization process conditions. For comparison, the mercury capture capability of commercial DARCO FGD was also tested. The lab-scale apparatus is a thin fixed-bed mercury-screening system, which has been used by the EERC for many mercury capture screen tests. The pilot-scale systems included two combustion units, both equipped with an electrostatic precipitator (ESP). Activated carbons were also tested in a slipstream baghouse at a Texas power plant. The results indicated that the activated carbon produced from North Dakota lignite coal is capable of removing mercury from flue gas. The tests showed that activated carbon with the greatest iodine number was superior to commercial DARCO FGD for mercury capture. The results of the activated carbon market assessment indicate an existing market for water treatment and an emerging application for mercury control. That market will involve both existing and new coal-fired plants. It is expected that 20% of the existing coal-fired plants will implement activated carbon injection by 2015, representing about 200,000 tons of annual demand. The potential annual demand by new plants is even greater. In the mercury control market, two characteristics are going to dominate the customer's buying habit-performance and price. As continued demonstration testing of activated carbon injection at the various coal-fired power plants progresses, the importance of fuel type and plant configuration on the type of activated carbon best suited is being identified.

  2. JV Task - 129 Advanced Conversion Test - Bulgarian Lignite

    SciTech Connect (OSTI)

    Michael Swanson; Everett Sondreal; Daniel Laudal; Douglas Hajicek; Ann Henderson; Brandon Pavlish

    2009-03-27

    The objectives of this Energy & Environmental Research Center (EERC) project were to evaluate Bulgarian lignite performance under both fluid-bed combustion and gasification conditions and provide a recommendation as to which technology would be the most technically feasible for the particular feedstock and also identify any potential operating issues (such as bed agglomeration, etc.) that may limit the applicability of a potential coal conversion technology. Gasification tests were run at the EERC in the 100-400-kg/hr transport reactor development unit (TRDU) on a 50-tonne sample of lignite supplied by the Bulgarian Lignite Power Project. The quality of the test sample was inferior to any coal previously tested in this unit, containing 50% ash at 26.7% moisture and having a higher heating value of 5043 kJ/kg after partial drying in preparation for testing. The tentative conclusion reached on the basis of tests in the TRDU is that oxygen-blown gasification of this high-ash Bulgarian lignite sample using the Kellogg, Brown, and Root (KBR) transport gasifier technology would not provide a syngas suitable for directly firing a gas turbine. After correcting for test conditions specific to the pilot-scale TRDU, including an unavoidably high heat loss and nitrogen dilution by transport air, the best-case heating value for oxygen-blown operation was estimated to be 3316 kJ/m{sup 3} for a commercial KRB transport gasifier. This heating value is about 80% of the minimum required for firing a gas turbine. Removing 50% of the carbon dioxide from the syngas would increase the heating value to 4583 kJ/m{sup 3}, i.e., to about 110% of the minimum requirement, and 95% removal would provide a heating value of 7080 kJ/m{sup 3}. Supplemental firing of natural gas would also allow the integrated gasification combined cycle (IGCC) technology to be utilized without having to remove CO{sub 2}. If removal of all nitrogen from the input gas streams such as the coal transport air were achieved, a heating value very close to that needed to fire a gas turbine would be achieved; however, some operational issues associated with utilizing recycled syngas or carbon dioxide as the transport gas would also have to be resolved. Use of a coal with a quality similar to the core samples provided earlier in the test program would also improve the gasifier performance. Low cold-gas efficiencies on the order of 20% calculated for oxygen-blown tests resulted in part from specific difficulties experienced in trying to operate the pilot-scale TRDU on this very high-ash lignite. These low levels of efficiency are not believed to be representative of what could be achieved in a commercial KRB transport gasifier. Combustion tests were also performed in the EERC's circulating fluidized-bed combustor (CFBC) to evaluate this alternative technology for use of this fuel. It was demonstrated that this fuel does have sufficient heating value to sustain combustion, even without coal drying; however, it will be challenging to economically extract sufficient energy for the generation of steam for electrical generation. The boiler efficiency for the dried coal was 73.5% at 85% sulfur capture (21.4% moisture) compared to 55.3% at 85% sulfur capture (40% moisture). Improved boiler efficiencies for this coal will be possible operating a system more specifically designed to maximize heat extraction from the ash streams for this high-ash fuel. Drying of the coal to approximately 25% moisture probably would be recommended for either power system. Fuel moisture also has a large impact on fuel feedability. Pressurized gasifiers generally like drier fuels than systems operating at ambient pressures. The commercially recommended feedstock moisture for a pressurized transport reactor gasifier is 25% moisture. Maximum moisture content for a CFB system could be approximately 40% moisture as has been demonstrated on the Alstom CFB operating on Mississippi lignite. A preliminary economic evaluation for CO{sub 2} was performed on the alternatives of (1) precombustion separation of CO{sub 2} in an IGCC using the KBR transport gasifier and (2) postcombustion CO{sub 2} capture using a CFBC. It appears that the capture of CO{sub 2} from the high-pressure IGCC precombustion system would be less costly than from the low-pressure postcombustion CFBC system by a factor of 1.5, although the cost difference is not directly comparable because of the model input being limited to a higher coal quality than the Bulgarian lignite. While the decision to pursue precombustion removal of carbon dioxide has been technically proven with the Rectisol{reg_sign} and Selexol{trademark} processes, General Electric and Siemens have not sold any gas turbine systems running on the high-hydrogen syngas. They have successfully demonstrated a gas turbine on syngases containing up to 95% hydrogen. The technological hurdles should not be too difficult given this experience in the gas turbine industry.

  3. Bioprocessing of lignite coals using reductive microorganisms. Final technical report, September 30, 1988--March 29, 1992

    SciTech Connect (OSTI)

    Crawford, D.L.

    1992-03-29

    In order to convert lignite coals into liquid fuels, gases or chemical feedstock, the macromolecular structure of the coal must be broken down into low molecular weight fractions prior to further modification. Our research focused on this aspect of coal bioprocessing. We isolated, characterized and studied the lignite coal-depolymerizing organisms Streptomyces viridosporus T7A, Pseudomonas sp. DLC-62, unidentified bacterial strain DLC-BB2 and Gram-positive Bacillus megaterium strain DLC-21. In this research we showed that these bacteria are able to solubilize and depolymerize lignite coals using a combination of biological mechanisms including the excretion of coal solublizing basic chemical metabolites and extracellular coal depolymerizing enzymes.

  4. Industrial properties of lignitic and lignocellulosic fly ashes from Turkish sources

    SciTech Connect (OSTI)

    Demirbas, A.; Cetin, S.

    2006-01-21

    Fly ash is an inorganic matter from combustion of the carbonaceous solid fuels. More than half the electricity in Turkey is produced from lignite-fired power plants. This energy production has resulted in the formation of more than 13 million tons of fly ash waste annually. The presence of carbon in fly ash inducing common faults include adding unwanted black color and adsorbing process or product materials such as water and chemicals. One of the reasons for not using fly ash directly is its carbon content. For some uses carbon must be lower than 3%. Fly ash has been used for partial replacement of cement, aggregate, or both for nearly 70 years, and it is still used on a very limited scale in Turkey. The heavy metal content of industrial wastewaters is an important source of environmental pollution. Each of the three major oxides (SiO{sub 2} + Al{sub 2}O{sub 3} + Fe{sub 2}O{sub 3}) in fly ash can be ideal as a metal adsorbent.

  5. Consumer Electronics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    & Events Expand News & Events Skip navigation links Residential Residential Lighting Energy Star Appliances Consumer Electronics Heat Pump Water Heaters Electric Storage Water...

  6. Microbial desulphurization of Turkish lignites by White Rot Fungi

    SciTech Connect (OSTI)

    Pinar Aytar; Mesut Sam; Ahmet Cabuk

    2008-03-15

    Biodesulphurization experiments were carried out with Tuncbilek lignite, characterized by high sulfur content (2.59%) by using Trametes versicolor ATCC 200801 and Phanerochaete chrysosporium ME 446. At fungal biomass studies, the effects of various parameters on fungal desulphurization of coals such as pH, temperature, pulp density, incubation time, and sterilization were investigated for both microorganisms. The maximum desulphurization (40%) was observed after 6 days of incubation at 35{sup o}C for T. versicolor. The optimum pH was measured at 6, and the agitation rate was fixed at 125 rpm. The pulp density was found as 5% (w/v) for the high extent of desulphurization. Also, calorific value did not change during this experiment. However, the ash and metal contents of coal were eliminated. 30 refs., 6 figs., 2 tabs.

  7. DOE-Sponsored Field Test Finds Potential for Permanent Storage of CO2 in Lignite Seams

    Broader source: Energy.gov [DOE]

    A field test sponsored by the U.S. Department of Energy has demonstrated that opportunities to permanently store carbon in unmineable seams of lignite may be more widespread than previously documented.

  8. Annual Energy Review 2006 - June 2007

    Gasoline and Diesel Fuel Update (EIA)

    culm, bitumi- nous gob, and lignite waste that are consumed by the electric power industrial sectors. Notes: * Production categories are estimated; other data are...

  9. Annual Energy Review 2007 - June 2008

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    culm, bitumi- nous gob, and lignite waste that are consumed by the electric power industrial sectors. Notes: * Production categories are estimated; other data are...

  10. Bio-liquefaction/solubilization of lignitic humic acids by white-rot fungus (Phanerochaete chrysosporium)

    SciTech Connect (OSTI)

    Elbeyli, I.Y.; Palantoken, A.; Piskin, S.; Peksel, A.; Kuzu, H.

    2006-08-15

    Humic acid samples obtained from lignite were liquefied/solubilized by using white-rot fungus, and chemical characterization of the products was investigated by FTIR and GC-MS techniques. Prior to the microbial treatment, raw lignite was oxidized with hydrogen peroxide and nitric acid separately, and then humic acids were extracted by alkali solution. The prepared humic acid samples were placed on the agar surface of the fungus and liquid products formed by microbial affects were collected. The products were analyzed and the chemical properties were compared. The results show that oxidation agent and oxidation degree affect composition of the liquid products formed by microbial attack.

  11. Advanced power assessment for Czech lignite. Task 3.6, Volume 1

    SciTech Connect (OSTI)

    Sondreal, E.A.; Mann, M.D.; Weber, G.W.; Young, B.C.

    1995-12-01

    The US has invested heavily in research, development, and demonstration of efficient and environmentally acceptable technologies for the use of coal. The US has the opportunity to use its leadership position to market a range of advanced coal-based technologies internationally. For example, coal mining output in the Czech Republic has been decreasing. This decrease in demand can be attributed mainly to the changing structure of the Czech economy and to environmental constraints. The continued production of energy from indigenous brown coals is a major concern for the Czech Republic. The strong desire to continue to use this resource is a challenge. The Energy and Environmental Research Center undertook two major efforts recently. One effort involved an assessment of opportunities for commercialization of US coal technologies in the Czech Republic. This report is the result of that effort. The technology assessment focused on the utilization of Czech brown coals. These coals are high in ash and sulfur, and the information presented in this report focuses on the utilization of these brown coals in an economically and environmentally friendly manner. Sections 3--5 present options for utilizing the as-mined coal, while Sections 6 and 7 present options for upgrading and generating alternative uses for the lignite. Contents include Czech Republic national energy perspectives; powering; emissions control; advanced power generation systems; assessment of lignite-upgrading technologies; and alternative markets for lignite.

  12. Potential use of California lignite and other alternate fuel for enhanced oil recovery. Phase I and II. Final report. [As alternative fuels for steam generation in thermal EOR

    SciTech Connect (OSTI)

    Shelton, R.; Shimizu, A.; Briggs, A.

    1980-02-01

    The Nation's continued reliance on liquid fossil fuels and decreasing reserves of light oils gives increased impetus to improving the recovery of heavy oil. Thermal enhanced oil recovery EOR techniques, such as steam injection, have generally been the most effective for increasing heavy oil production. However, conventional steam generation consumes a large fraction of the produced oil. The substitution of alternate (solid) fuels would release much of this consumed oil to market. This two-part report focuses on two solid fuels available in California, the site of most thermal EOR - petroleum coke and lignite. Phase I, entitled Economic Analysis, shows detailed cost comparisons between the two candidate fuels and also with Western coal. The analysis includes fuels characterizations, process designs for several combustion systems, and a thorough evaluation of the technical and economic uncertainties. In Phase II, many technical parameters of petroleum coke combustion were measured in a pilot-plant fluidized bed. The results of the study showed that petroleum coke combustion for EOR is feasible and cost effective in a fluidized bed combustor.

  13. Enhancing Carbon Reactivity in Mercury Control in Lignite-Fired Systems

    SciTech Connect (OSTI)

    Chad Wocken; Michael Holmes; John Pavlish; Jeffrey Thompson; Katie Brandt; Brandon Pavlish; Dennis Laudal; Kevin Galbreath; Michelle Olderbak

    2008-06-30

    This project was awarded through the U.S. Department of Energy (DOE) National Energy Technology Laboratory Program Solicitation DE-PS26-03NT41718-01. The Energy & Environmental Research Center (EERC) led a consortium-based effort to resolve mercury (Hg) control issues facing the lignite industry. The EERC team-the Electric Power Research Institute (EPRI); the URS Corporation; the Babcock & Wilcox Company; ADA-ES; Apogee; Basin Electric Power Cooperative; Otter Tail Power Company; Great River Energy; Texas Utilities; Montana-Dakota Utilities Co.; Minnkota Power Cooperative, Inc.; BNI Coal Ltd.; Dakota Westmoreland Corporation; the North American Coal Corporation; SaskPower; and the North Dakota Industrial Commission-demonstrated technologies that substantially enhanced the effectiveness of carbon sorbents to remove Hg from western fuel combustion gases and achieve a high level ({ge} 55% Hg removal) of cost-effective control. The results of this effort are applicable to virtually all utilities burning lignite and subbituminous coals in the United States and Canada. The enhancement processes were previously proven in pilot-scale and limited full-scale tests. Additional optimization testing continues on these enhancements. These four units included three lignite-fired units: Leland Olds Station Unit 1 (LOS1) and Stanton Station Unit 10 (SS10) near Stanton and Antelope Valley Station Unit 1 (AVS1) near Beulah and a subbituminous Powder River Basin (PRB)-fired unit: Stanton Station Unit 1 (SS1). This project was one of three conducted by the consortium under the DOE mercury program to systematically test Hg control technologies available for utilities burning lignite. The overall objective of the three projects was to field-test and verify options that may be applied cost-effectively by the lignite industry to reduce Hg emissions. The EERC, URS, and other team members tested sorbent injection technologies for plants equipped with electrostatic precipitators (ESPs) and spray dryer absorbers combined with fabric filters (SDAs-FFs). The work focused on technology commercialization by involving industry and emphasizing the communication of results to vendors and utilities throughout the project.

  14. Consumer Vehicle Technology Data

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    technologies Relevance: An informed understanding of the consumer allows VTO to achieve petroleum-use reduction goals through: * Robust assumptions for consumer modeling,...

  15. Consumer Vehicle Technology Data

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    technologies. Relevance: An informed understanding of the consumer allows VTO to achieve petroleum-use reduction goals through: * Robust assumptions for consumer modeling,...

  16. Chemical and physical characterization of western low-rank-coal waste materials

    SciTech Connect (OSTI)

    Thompson, Carol May

    1981-03-01

    Evaluations of disposal requirements for solid wastes from power stations burning low-rank western coals is the primary objective of this program. Solid wastes to be characterized include: fly ashes, sludges from wet scrubbers, solids from fluidized bed combustion (FBC) processes and solids from dry scrubbing systems. Fly ashes and sludges to be studied will be obtained primarily from systems using alkaline fly ashes as significant sources of alkalinity for sulfur dioxide removal. Fluidized bed combustion wastes will include those produced by burning North Dakota lignite and Texas lignite. Dry scrubbing wastes will include those from spray drying systems and dry injection systems. Spray dryer wastes will be from a system using sodium carbonate as the scrubbing reagent. Dry injection wastes will come from systems using nahcolite and trona as sorbents. Spray dryer wastes, dry injection wastes, and FBC wastes will be supplied by the Grand Forks Energy Technology Center. Sludges and other samples will be collected at power stations using fly ash to supply alkalinity to wet scrubbers for sulfur dioxide removal. Sludges will be subjected to commercial fixation processes. Coal, fly ashes, treated and untreated sludges, scrubber liquor, FBC wastes, and dry scrubbing wastes will be subjected to a variety of chemical and physical tests. Results of these tests will be used to evaluate disposal requirements for wastes frm the systems studied.

  17. JV Task 117 - Impact of Lignite Properties on Powerspan's NOx Oxidation System

    SciTech Connect (OSTI)

    Scott Tolbert; Steven Benson

    2008-02-29

    Powerspan's multipollutant control process called electrocatalytic oxidation (ECO) technology is designed to simultaneously remove SO{sub 2}, NO{sub x}, PM{sub 2.5}, acid gases (such as hydrogen fluoride [HF], hydrochloric acid [HCl], and sulfur trioxide [SO{sub 3}]), Hg, and other metals from the flue gas of coal-fired power plants. The core of this technology is a dielectric barrier discharge reactor composed of cylindrical quartz electrodes residing in metal tubes. Electrical discharge through the flue gas, passing between the electrode and the tube, produces reactive O and OH radicals. The O and OH radicals react with flue gas components to oxidize NO to NO{sub 2} and HNO{sub 3} and a small portion of the SO{sub 2} to SO{sub 3} and H{sub 2}SO{sub 4}. The oxidized compounds are subsequently removed in a downstream scrubber and wet electrostatic precipitator. A challenging characteristic of selected North Dakota lignites is their high sodium content. During high-sodium lignite combustion and gas cooling, the sodium vaporizes and condenses to produce sodium- and sulfur-rich aerosols. Based on past work, it was hypothesized that the sodium aerosols would deposit on and react with the silica electrodes and react with the silica electrodes, resulting in the formation of sodium silicate. The deposit and reacted surface layer would then electrically alter the electrode, thus impacting its dielectric properties and NO{sub x} conversion capability. The purpose of this project was to determine the impact of lignite-derived flue gas containing sodium aerosols on Powerspan's dielectric barrier discharge (DBD) reactor with specific focus on the interaction with the quartz electrodes. Partners in the project were Minnkota Power Cooperative; Basin Electric Power Cooperative; Montana Dakota Utilities Co.; Minnesota Power; the North Dakota Industrial Commission, the Lignite Energy Council, and the Lignite Research Council; the Energy & Environmental Research Center (EERC); and the U.S. Department of Energy. An electrocatalytic oxidation (ECO) reactor slipstream system was designed by Powerspan and the EERC. The slipstream system was installed by the EERC at Minnkota Power Cooperative's Milton R. Young Station Unit 1 downstream of the electrostatic precipitator where the flue gas temperature ranged from 300 to 350 F. The system was commissioned on July 3, 2007, operated for 107 days, and then winterized upon completion of the testing campaign. Operational performance of the system was monitored, and data were archived for postprocessing. A pair of electrodes were extracted and replaced on a biweekly basis. Each pair of electrodes was shipped to Powerspan to determine NO conversion efficiency in Powerspan's laboratory reactor. Tested electrodes were then shipped to the EERC for scanning electron microscopy (SEM) and x-ray microanalysis. Measurement of NO{sub x} conversion online in operating the slipstream system was not possible because the nitric and sulfuric acid production by the DBD reactor results in conditioning corrosion challenges in the sample extraction system and NO measurement technologies. The operational observations, performance results, and lab testing showed that the system was adversely affected by accumulation of the aerosol materials on the electrode. NO{sub x} conversion by ash-covered electrodes was significantly reduced; however, with electrodes that were rinsed with water, the NOx conversion efficiency recovered to nearly that of a new electrode. In addition, the visual appearance of the electrode after washing did not show evidence of a cloudy reacted surface but appeared similar to an unexposed electrode. Examination of the electrodes using SEM x-ray microanalysis showed significant elemental sodium, sulfur, calcium, potassium, and silica in the ash coating the electrodes. There was no evidence of the reaction of the sodium with the silica electrodes to produce sodium silicate layers. All SEM images showed a clearly marked boundary between the ash and the silica. Sodium and sulfur are the main culprits in the

  18. Consumer Guide for Solar

    Broader source: Energy.gov [DOE]

    MARC’s Consumer Guide to Solar provides answers to frequently asked questions, as well as guidance on how to get started with solar energy. The objective in creating this resource was to provide clear information to consumers in the Kansas City region who are interested in installing solar on their home or business.

  19. Mercury Control for Plants Firing Texas Lignite and Equipped with ESP-wet FGD

    SciTech Connect (OSTI)

    Katherine Dombrowski

    2009-12-31

    This report presents the results of a multi-year test program conducted as part of Cooperative Agreement DE-FC26-06NT42779, 'Mercury Control for Plants Firing Texas Lignite and Equipped with ESP-wet FGD.' The objective of this program was to determine the level of mercury removal achievable using sorbent injection for a plant firing Texas lignite fuel and equipped with an ESP and wet FGD. The project was primarily funded by the U.S. DOE National Energy Technology Laboratory. EPRI, NRG Texas, Luminant (formerly TXU), and AEP were project co-funders. URS Group was the prime contractor, and Apogee Scientific and ADA-ES were subcontractors. The host site for this program was NRG Texas Limestone Electric Generating Station (LMS) Units 1 and 2, located in Jewett, Texas. The plant fires a blend of Texas lignite and Powder River Basin (PRB) coal. Full-scale tests were conducted to evaluate the mercury removal performance of powdered sorbents injected into the flue gas upstream of the ESP (traditional configuration), upstream of the air preheater, and/or between electric fields within the ESP (Toxecon{trademark} II configuration). Phases I through III of the test program, conducted on Unit 1 in 2006-2007, consisted of three short-term parametric test phases followed by a 60-day continuous operation test. Selected mercury sorbents were injected to treat one quarter of the flue gas (e.g., approximately 225 MW equivalence) produced by Limestone Unit 1. Six sorbents and three injection configurations were evaluated and results were used to select the best combination of sorbent (Norit Americas DARCO Hg-LH at 2 lb/Macf) and injection location (upstream of the ESP) for a two-month performance evaluation. A mercury removal rate of 50-70% was targeted for the long-term test. During this continuous-injection test, mercury removal performance and variability were evaluated as the plant operated under normal conditions. Additional evaluations were made to determine any balance-of-plant impacts of the mercury control process, including those associated with ESP performance and fly ash reuse properties. Upon analysis of the project results, the project team identified several areas of interest for further study. Follow-on testing was conducted on Unit 2 in 2009 with the entire unit treated with injected sorbent so that mercury removal across the FGD could be measured and so that other low-ash impact technologies could be evaluated. Three approaches to minimizing ash impacts were tested: (1) injection of 'low ash impact' sorbents, (2) alterations to the injection configuration, and (3) injection of calcium bromide in conjunction with sorbent. These conditions were tested with the goal of identifying the conditions that result in the highest mercury removal while maintaining the sorbent injection at a rate that preserves the beneficial use of ash.

  20. PILOT-AND FULL-SCALE DEMONSTRATION OF ADVANCED MERCURY CONTROL TECHNOLOGIES FOR LIGNITE-FIRED POWER PLANTS

    SciTech Connect (OSTI)

    Steven A. Benson; Charlene R. Crocker; Kevin C. Galbreath; Jay R. Gunderson; Mike J. Holmes; Jason D. Laumb; Michelle R. Olderbak; John H. Pavlish; Li Yan; Ye Zhuang; Jill M. Zola

    2004-02-01

    North Dakota lignite-fired power plants have shown a limited ability to control mercury emissions in currently installed electrostatic precipitators (ESPs), dry scrubbers, and wet scrubbers (1). This low level of control can be attributed to the high proportions of Hg{sup 0} present in the flue gas. Speciation of Hg in flue gases analyzed as part of the U.S. Environmental Protection Agency (EPA) information collection request (ICR) for Hg data showed that Hg{sup 0} ranged from 56% to 96% and oxidized mercury ranged from 4% to 44%. The Hg emitted from power plants firing North Dakota lignites ranged from 45% to 91% of the total Hg, with the emitted Hg being greater than 85% elemental. The higher levels of oxidized mercury were only found in a fluidized-bed combustion system. Typically, the form of Hg in the pulverized and cyclone-fired units was dominated by Hg{sup 0} at greater than 85%, and the average amount of Hg{sup 0} emitted from North Dakota power plants was 6.7 lb/TBtu (1, 2). The overall objective of this Energy & Environmental Research Center (EERC) project is to develop and evaluate advanced and innovative concepts for controlling Hg emissions from North Dakota lignite-fired power plants by 50%-90% at costs of one-half to three-fourths of current estimated costs. The specific objectives are focused on determining the feasibility of the following technologies: Hg oxidation for increased Hg capture in wet and dry scrubbers, incorporation of additives and technologies that enhance Hg sorbent effectiveness in ESPs and baghouses, the use of amended silicates in lignite-derived flue gases for Hg capture, and the use of Hg adsorbents within a baghouse. The scientific approach to solving the problems associated with controlling Hg emissions from lignite-fired power plants involves conducting testing of the following processes and technologies that have shown promise on a bench, pilot, or field scale: (1) activated carbon injection (ACI) upstream of an ESP combined with sorbent enhancement, (2) Hg oxidation and control using wet and dry scrubbers, (3) enhanced oxidation at a full-scale power plant using tire-derived fuel (TDF) and oxidizing catalysts, and (4) testing of Hg control technologies in the Advanced Hybrid{trademark} filter insert.

  1. Consumer Energy Atlas

    SciTech Connect (OSTI)

    Not Available

    1980-06-01

    This first edition of the Atlas provides, in reference form, a central source of information to consumers on key contacts concerned with energy in the US. Energy consumers need information appropriate to local climates and characteristics - best provided by state and local governments. The Department of Energy recognizes the authority of state and local governments to manage energy programs on their own. Therefore, emphasis has been given to government organizations on both the national and state level that influence, formulate, or administer policies affecting energy production, distribution, and use, or that provide information of interest to consumers and non-specialists. In addition, hundreds of non-government energy-related membership organizations, industry trade associations, and energy publications are included.

  2. STUDIES OF THE SPONTANEOUS COMBUSTION OF LOW RANK COALS AND LIGNITES

    SciTech Connect (OSTI)

    Joseph M. Okoh; Joseph N.D. Dodoo

    2005-07-26

    Spontaneous combustion has always been a problem in coal utilization especially in the storage and transportation of coal. In the United States, approximately 11% of underground coal mine fires are attributed to spontaneous coal combustion. The incidence of such fires is expected to increase with increased consumption of lower rank coals. The cause is usually suspected to be the reabsorption of moisture and oxidation. To understand the mechanisms of spontaneous combustion this study was conducted to (1) define the initial and final products during the low temperature (10 to 60 C) oxidation of coal at different partial pressures of O{sub 2}, (2) determine the rate of oxidation, and (3) measure the reaction enthalpy. The reaction rate (R) and propensity towards spontaneous combustion were evaluated in terms of the initial rate method for the mass gained due to adsorbed O{sub 2}. Equipment that was used consisted of a FT-IR (Fourier Transform-Infrared Spectrometer, Perkin Elmer), an accelerated surface area porosimeter (ASAP, Micromeritics model 2010), thermogravimetric analyzer (TGA, Cahn Microbalance TG 121) and a differential scanning calorimeter (DSC, Q1000, thermal analysis instruments). Their combination yielded data that established a relation between adsorption of oxygen and reaction enthalpy. The head space/ gas chromatograph/ mass spectrometer system (HS/GC/MS) was used to identify volatiles evolved during oxidation. The coal samples used were Beulah lignite and Wyodak (sub-bituminous). Oxygen (O{sub 2}) absorption rates ranged from 0.202 mg O{sub 2}/mg coal hr for coal sample No.20 (Beulah pyrolyzed at 300 C) to 6.05 mg O{sub 2}/mg coal hr for coal sample No.8 (wyodak aged and pyrolyzed at 300 C). Aging of coal followed by pyrolysis was observed to contribute to higher reaction rates. Reaction enthalpies ranged from 0.42 to 1580 kcal/gm/mol O{sub 2}.

  3. Comments of consumer electronics association | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    consumer electronics association Comments of consumer electronics association The Consumer Electronics Association ("CEA") respectfully submits these comments in response to the ...

  4. Market Assessment and Demonstration of Lignite FBC Ash Flowable Fill Applications

    SciTech Connect (OSTI)

    Alan E. Bland

    2003-09-30

    Montana-Dakota Utilities (MDU) and Western Research Institute (WRI) have been developing flowable fill materials formulated using ash from the Montana-Dakota Utilities R. M. Heskett Station in Mandan, North Dakota. MDU and WRI have partnered with the U.S. Department of Energy (DOE) and the North Dakota Industrial Commission (NDIC) to further the development of these materials for lignite-fired fluidized-bed combustion (FBC) facilities. The MDU controlled density fill (CDF) appears to be a viable engineering material and environmentally safe. WRI is pursuing the commercialization of the technology under the trademark Ready-Fill{trademark}. The project objectives were to: (1) assess the market in the Bismarck-Mandan area; (2) evaluate the geotechnical properties and environmental compatibility; and (3) construct and monitor demonstrations of the various grades of flowable fill products in full-scale demonstrations. The scope of initial phase of work entailed the following: Task I--Assess Market for MDU Flowable Fill Products; Task II--Assess Geotechnical and Environmental Properties of MDU Flowable Fill Products; and Task III--Demonstrate and Monitor MDU Flowable Fill Products in Field-Scale Demonstrations. The results of these testing and demonstration activities proved the following: (1) The market assessment indicated that a market exists in the Bismarck-Mandan area for structural construction applications, such as sub-bases for residential and commercial businesses, and excavatable fill applications, such as gas line and utility trench filling. (2) The cost of the MDU flowable fill product must be lower than the current $35-$45/cubic yard price if it is to become a common construction material. Formulations using MDU ash and lower-cost sand alternatives offer that opportunity. An estimated market of 10,000 cubic yards of MDU flowable fill products could be realized if prices could be made competitive. (3) The geotechnical properties of the MDU ash-based flowable fill can be modified to meet the needs of a range of applications from structural fill applications to excavatable applications, such as utility trench fill. (4) Environmental assessments using standard testing indicate that the environmental properties of the fill materials are compatible with numerous construction applications and do not pose a threat to either adjacent groundwater or soils. (5) WRI developed an Environmental Field Simulator (EFS) method for assessing the impact of flowable fill materials on adjacent soils and found that the zone of impact is less than a couple of inches, thereby posing no threat to adjacent soils. (6) Field-scale demonstrations of the MDU flowable fill were constructed and were successful for structural, as well as excavatable applications. Monitoring has demonstrated the geotechnical performance, environmental performance, and compatibility with common embed materials with the MDU flowable fill products. Technical and economic issues were identified that may hinder the commercial acceptance of MDU flowable fill materials, including: (1) the ability to produce a consistent product; (2) the ability to provide a product year round (cold weather retards strength development); and (3) the ability to evaluate and produce commercial quantities of MDU flowable fill using inexpensive materials.

  5. NREL Hosts Consumer Energy Expo

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hosts Consumer Energy Expo For more information contact: Sarah Holmes Barba, 303-275-3023 email: Sarah Barba Golden, Colo., May. 23, 2001 - Consumers can learn about reducing their home energy consumption and get advice from experts who specialize in energy efficient and renewable energy products and services at the Consumer Energy Expo June 14 - 16 at the U.S. Department of Energy's National Renewable Energy Laboratory (NREL). The Expo includes exhibits and activities for the entire family.

  6. The Need for Essential Consumer Protections

    Energy Savers [EERE]

    Need for Essential Consumer Protections THE NEED FOR ESSENTIAL CONSUMER PROTECTIONS SMART METERING PROPOSALS AND THE MOVE TO TIME-BASED PRICING August 2010 NCLC NATIONAL CONSUMER L AW C E N T E R ® ® The Need for Essential Consumer Protections Copyright © 2010 AARP, National Consumer Law Center, National Association of State Utility Consumer Advocates, Consumers Union, and Public Citizen. Reprinting with permission. ACkNOwLEDGMENTS The consumer organizations acknowledge the assistance of

  7. Consumer Electronics Association Comment | Department of Energy

    Energy Savers [EERE]

    Consumer Electronics Association Comment Consumer Electronics Association Comment The Consumer Electronics Association (CEA) is the preeminent trade association promoting growth in the $285 billion U.S. consumer electronics industry. PDF icon CEA comments re DOE Regulatory Burden RFI_7-17-15 More Documents & Publications Comments of consumer electronics association Re: NBP RFI: Data Access AHAM Comments Regulatory Burden RFI

  8. Environmental assessment of no remedial action at the inactive uraniferous lignite ashing sites at Belfield and Bowman, North Dakota

    SciTech Connect (OSTI)

    1997-06-01

    The Belfield and Bowman sites were not included on the original congressional list of processing sites to be designated by the Secretary of Energy. Instead, the sites were nominated for designation by the Dakota Resource Council in a letter to the DOE (September 7, 1979). In a letter to the DOE (September 12, 1979), the state of North Dakota said that it did not believe the sites would qualify as processing sites under the Uranium Mill Tailings Radiation Control Act (UMTRCA) because the activities at the sites involved only the ashing of uraniferous lignite coal and the ash was shipped out of state for actual processing. Nevertheless, on October 11, 1979, the state of North Dakota agreed to the designation of the sites because they met the spirit of the law (reduce public exposure to radiation resulting from past uranium operations). Therefore, these sites were designated by the Secretary of Energy for remedial action. Because of the relatively low health impacts determined for these sites, they were ranked as low priority and scheduled to be included in the final group of sites to be remediated.

  9. Consumers 2 Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Developer Consumers Energy Energy Purchaser Consumers Energy Location Marshalltown IA Coordinates 42.0518, -92.9079 Show Map Loading map... "minzoom":false,"mappingservi...

  10. Consumer Electronics Show 2013 Highlights Sustainable Energy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Consumer Electronics Show 2013 Highlights Sustainable Energy Technology Consumer Electronics Show 2013 Highlights Sustainable Energy Technology January 18, 2013 - 4:52pm Addthis ...

  11. ORISE Resources: Consumer Health Resource Information Service...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Consumer Health Resource Information Service (CHRIS) guide The Consumer Health Resource Information Service (CHRIS) guide for faith-based organizations and communities was...

  12. Sustainable Energy Resources for Consumers (SERC) -Geothermal...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Sustainable Energy Resources for Consumers (SERC) - Solar Hot Water Sustainable Energy Resources for Consumers Webinar on Residential Geothermal Heat ...

  13. EV Everywhere Consumer/Charging Workshop: Target-Setting Framework...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ConsumerCharging Workshop: Target-Setting Framework and Consumer Behavior EV Everywhere ConsumerCharging Workshop: Target-Setting Framework and Consumer Behavior Presentation ...

  14. Municipal solid waste fueled power generation in China: a case study of waste-to-energy in Changchun city

    SciTech Connect (OSTI)

    Hefa Cheng; Yanguo Zhang; Aihong Meng; Qinghai Li

    2007-11-01

    With rapid economic growth and massive urbanization in China, many cities face the problem of municipal solid waste (MSW) disposal. With the lack of space for new landfills, waste-to-energy incineration is playing an increasingly important role in waste management. Incineration of MSW from Chinese cities presents some unique challenges because of its low calorific value (3000-6700 kJ/kg) and high water content (about 50%). This study reports a novel waste-to-energy incineration technology based on co-firing of MSW with coal in a grate-circulating fluidized bed (CFB) incinerator, which was implemented in the Changchun MSW power plant. In 2006, two 260 ton/day incinerators incinerated 137,325 tons, or approximately one/sixth of the MSW generated in Changchun, saving more than 0.2 million m{sup 3} landfill space. A total of 46.2 million kWh electricity was generated (38,473 tons lignite was also burned as supplementary fuel), with an overall fuel-to-electricity efficiency of 14.6%. Emission of air pollutants including particulate matters, acidic gases, heavy metals, and dioxins was low and met the emission standards for incinerators. As compared to imported incineration systems, this new technology has much lower capital and operating costs and is expected to play a role in meeting China's demands for MSW disposal and alternative energy. 34 refs., 1 fig., 4 tabs.

  15. The Waste Isolation Pilot Plant Hazardous Waste Facility Permit...

    Office of Environmental Management (EM)

    The Waste Isolation Pilot Plant Hazardous Waste Facility Permit, Waste Analysis Plan The Waste Isolation Pilot Plant Hazardous Waste Facility Permit, Waste Analysis Plan This ...

  16. Consumer Prices Reflect Benefits of Restructuring

    Reports and Publications (EIA)

    1996-01-01

    Examines the differences in prices paid by final consumers for natural gas services in 1990 and 1995.

  17. Estimating Waste Inventory and Waste Tank Characterization

    Broader source: Energy.gov [DOE]

    Summary Notes from 28 May 2008 Generic Technical Issue Discussion on Estimating Waste Inventory and Waste Tank Characterization

  18. Consumer Vehicle Choice Model Documentation

    SciTech Connect (OSTI)

    Liu, Changzheng; Greene, David L

    2012-08-01

    In response to the Fuel Economy and Greenhouse Gas (GHG) emissions standards, automobile manufacturers will need to adopt new technologies to improve the fuel economy of their vehicles and to reduce the overall GHG emissions of their fleets. The U.S. Environmental Protection Agency (EPA) has developed the Optimization Model for reducing GHGs from Automobiles (OMEGA) to estimate the costs and benefits of meeting GHG emission standards through different technology packages. However, the model does not simulate the impact that increased technology costs will have on vehicle sales or on consumer surplus. As the model documentation states, While OMEGA incorporates functions which generally minimize the cost of meeting a specified carbon dioxide (CO2) target, it is not an economic simulation model which adjusts vehicle sales in response to the cost of the technology added to each vehicle. Changes in the mix of vehicles sold, caused by the costs and benefits of added fuel economy technologies, could make it easier or more difficult for manufacturers to meet fuel economy and emissions standards, and impacts on consumer surplus could raise the costs or augment the benefits of the standards. Because the OMEGA model does not presently estimate such impacts, the EPA is investigating the feasibility of developing an adjunct to the OMEGA model to make such estimates. This project is an effort to develop and test a candidate model. The project statement of work spells out the key functional requirements for the new model.

  19. Waste Hoist

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Primary Hoist: 45-ton Rope-Guide Friction Hoist Largest friction hoist in the world when it was built in 1985 Completely enclosed (for contamination control), the waste hoist at...

  20. Waste Hoist

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Primary Hoist: 45-ton Rope-Guide Friction Hoist Completely enclosed (for contamination control), the waste hoist at WIPP is a modern friction hoist with rope guides. With a 45-ton...

  1. Consumer Energy Expo - News Releases | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Consumer Energy Expo Consumer Energy Expo offers latest in renewable energy, efficiency products, services May 28, 2003 Attention: City editors, Event & Calendar Listings What: The National Renewable Energy Laboratory's Consumer Energy Expo features exhibits and education sessions highlighting businesses and organizations that specialize in renewable energy and energy efficiency technologies, products and services. Information will be provided on the latest technologies available and how

  2. Sustainable Energy Resources for Consumers (SERC) -

    Energy Savers [EERE]

    Geothermal/Ground-Source Heat Pumps | Department of Energy Transcript of a presentation, aimed at Sustainable Energy Resources for Consumers (SERC) grantees, provides information on Monitoring Checklists for the installation of Geothermal/Ground-Source Heat Pumps. PDF icon serc_ghp_webinar_transcript.pdf More Documents & Publications Sustainable Energy Resources for Consumers (SERC) - Solar Hot Water Sustainable Energy Resources for Consumers Webinar on Residential Geothermal Heat Pump

  3. HLW Glass Waste Loadings

    Office of Environmental Management (EM)

    HLW Glass Waste Loadings Ian L. Pegg Vitreous State Laboratory The Catholic University of ... (JHCM) technology Factors affecting waste loadings Waste loading requirements ...

  4. Hanford Dangerous Waste Permit

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Dangerous Waste Permit Suzanne Dahl and Jeff Lyon Nuclear Waste Program April 17, 2012 Tank-Related Units Why have permits? * To regulate dangerous waste treatment, storage, and...

  5. Consumer Powerline CPLN | Open Energy Information

    Open Energy Info (EERE)

    10004 Sector: Efficiency Product: A US-based energy efficiency company with a focus on demand-response technology. References: Consumer Powerline (CPLN)1 This article is a...

  6. EV Everywhere Consumer Acceptance and Charging Infrastructure...

    Broader source: Energy.gov (indexed) [DOE]

    Backsplash for the EV Everywhere Grand Challenge: Consumer Acceptance and Charging Infrastructure Workshop on July 30, 2012 held at the LAX Marriott, Los Angeles, CA...

  7. EV Everywhere ? Consumer Acceptance and Charging Infrastructure...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    - Consumer Acceptance and Charging Infrastructure Workshop David Sandalow Under Secretary of Energy (Acting) Assistant Secretary for Policy and International Affairs U.S....

  8. EV Everywhere Consumer Acceptance and Charging Infrastructure...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Breakout session presentation for the EV Everywhere Grand Challenge: Consumer Acceptance and Charging Infrastructure Workshop on July 30, 2012 held at the LAX Marriott, Los Angeles...

  9. EV Everywhere Consumer Acceptance and Charging Infrastructure...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Presentation given at the EV Everywhere Grand Challenge: Consumer Acceptance and Charging Infrastructure Workshop on July 30, 2012 held at the LAX Marriott, Los Angeles, CA PDF ...

  10. Consumers Energy- Experimental Advanced Renewable Program

    Broader source: Energy.gov [DOE]

    Note: The Experimental Advanced Renewable Energy Program is closed to new participants. New distributed generation customers of Consumers Energy can refer to Michigan's net metering policy and...

  11. Hawaii Heat Content of Natural Gas Consumed

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    2009 2010 2011 2012 2013 2014 View History Delivered to Consumers 1,040 1,040 1,048 1,046 983 959 2007-2014...

  12. Geographically Based Hydrogen Consumer Demand and Infrastructure...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Geographically Based Hydrogen Consumer Demand and Infrastructure Analysis Final Report M. Melendez and A. Milbrandt Technical Report NRELTP-540-40373 October 2006 NREL is operated...

  13. Hawaii Heat Content of Natural Gas Consumed

    Gasoline and Diesel Fuel Update (EIA)

    Jul-15 Aug-15 Sep-15 Oct-15 Nov-15 Dec-15 View History Delivered to Consumers 1,011 965 989 996 996 997 2013

  14. ,"Nebraska Heat Content of Natural Gas Consumed"

    U.S. Energy Information Administration (EIA) Indexed Site

    Natural Gas Consumed",1,"Monthly","122015","01152013" ,"Release Date:","02292016" ,"Next Release Date:","03312016" ,"Excel File Name:","ngconsheatdcusnem.xls" ...

  15. ,"Oregon Heat Content of Natural Gas Consumed"

    U.S. Energy Information Administration (EIA) Indexed Site

    Natural Gas Consumed",1,"Monthly","122015","01152013" ,"Release Date:","02292016" ,"Next Release Date:","03312016" ,"Excel File Name:","ngconsheatdcusorm.xls" ...

  16. ,"Wisconsin Heat Content of Natural Gas Consumed"

    U.S. Energy Information Administration (EIA) Indexed Site

    Natural Gas Consumed",1,"Monthly","122015","01152013" ,"Release Date:","02292016" ,"Next Release Date:","03312016" ,"Excel File Name:","ngconsheatdcuswim.xls" ...

  17. ,"Virginia Heat Content of Natural Gas Consumed"

    U.S. Energy Information Administration (EIA) Indexed Site

    Natural Gas Consumed",1,"Monthly","122015","01152013" ,"Release Date:","02292016" ,"Next Release Date:","03312016" ,"Excel File Name:","ngconsheatdcusvam.xls" ...

  18. ,"Utah Heat Content of Natural Gas Consumed"

    U.S. Energy Information Administration (EIA) Indexed Site

    Natural Gas Consumed",1,"Monthly","122015","01152013" ,"Release Date:","02292016" ,"Next Release Date:","03312016" ,"Excel File Name:","ngconsheatdcusutm.xls" ...

  19. ,"Ohio Heat Content of Natural Gas Consumed"

    U.S. Energy Information Administration (EIA) Indexed Site

    Natural Gas Consumed",1,"Monthly","122015","01152013" ,"Release Date:","02292016" ,"Next Release Date:","03312016" ,"Excel File Name:","ngconsheatdcusohm.xls" ...

  20. ,"Tennessee Heat Content of Natural Gas Consumed"

    U.S. Energy Information Administration (EIA) Indexed Site

    Natural Gas Consumed",1,"Monthly","122015","01152013" ,"Release Date:","02292016" ,"Next Release Date:","03312016" ,"Excel File Name:","ngconsheatdcustnm.xls" ...

  1. ,"Washington Heat Content of Natural Gas Consumed"

    U.S. Energy Information Administration (EIA) Indexed Site

    Natural Gas Consumed",1,"Monthly","122015","01152013" ,"Release Date:","02292016" ,"Next Release Date:","03312016" ,"Excel File Name:","ngconsheatdcuswam.xls" ...

  2. ,"Nevada Heat Content of Natural Gas Consumed"

    U.S. Energy Information Administration (EIA) Indexed Site

    Natural Gas Consumed",1,"Monthly","122015","01152013" ,"Release Date:","02292016" ,"Next Release Date:","03312016" ,"Excel File Name:","ngconsheatdcusnvm.xls" ...

  3. ,"Oklahoma Heat Content of Natural Gas Consumed"

    U.S. Energy Information Administration (EIA) Indexed Site

    Natural Gas Consumed",1,"Monthly","122015","01152013" ,"Release Date:","02292016" ,"Next Release Date:","03312016" ,"Excel File Name:","ngconsheatdcusokm.xls" ...

  4. ,"Wyoming Heat Content of Natural Gas Consumed"

    U.S. Energy Information Administration (EIA) Indexed Site

    Natural Gas Consumed",1,"Monthly","122015","01152013" ,"Release Date:","02292016" ,"Next Release Date:","03312016" ,"Excel File Name:","ngconsheatdcuswym.xls" ...

  5. ,"Vermont Heat Content of Natural Gas Consumed"

    U.S. Energy Information Administration (EIA) Indexed Site

    Natural Gas Consumed",1,"Monthly","122015","01152013" ,"Release Date:","02292016" ,"Next Release Date:","03312016" ,"Excel File Name:","ngconsheatdcusvtm.xls" ...

  6. ,"Texas Heat Content of Natural Gas Consumed"

    U.S. Energy Information Administration (EIA) Indexed Site

    Natural Gas Consumed",1,"Monthly","122015","01152013" ,"Release Date:","02292016" ,"Next Release Date:","03312016" ,"Excel File Name:","ngconsheatdcustxm.xls" ...

  7. ,"Pennsylvania Heat Content of Natural Gas Consumed"

    U.S. Energy Information Administration (EIA) Indexed Site

    Natural Gas Consumed",1,"Monthly","122015","01152013" ,"Release Date:","02292016" ,"Next Release Date:","03312016" ,"Excel File Name:","ngconsheatdcuspam.xls" ...

  8. Sustainable Energy Resources for Consumers (SERC) -Geothermal...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    DOE Webinar Residential Geothermal Heat Pump Retrofits (Presentation) Sustainable Energy Resources for Consumers (SERC) - Solar Hot Water Sustainable Energy Resources for ...

  9. Polymer solidification of mixed wastes at the Rocky Flats Plant

    SciTech Connect (OSTI)

    Faucette, A.M.; Logsdon, B.W.; Lucerna, J.J.; Yudnich, R.J.

    1994-02-01

    The Rocky Flats Plant is pursuing polymer solidification as a viable treatment option for several mixed waste streams that are subject to land disposal restrictions within the Resource Conservation and Recovery Act provisions. Tests completed to date using both surrogate and actual wastes indicate that polyethylene microencapsulation is a viable treatment option for several mixed wastes at the Rocky Flats Plant, including nitrate salts, sludges, and secondary wastes such as ash. Treatability studies conducted on actual salt waste demonstrated that the process is capable of producing waste forms that comply with all applicable regulatory criteria, including the Toxicity Characteristic Leaching Procedure. Tests have also been conducted to evaluate the feasibility of macroencapsulating certain debris wastes in polymers. Several methods and plastics have been tested for macroencapsulation, including post-consumer recycle and regrind polyethylene.

  10. Waste processing air cleaning

    SciTech Connect (OSTI)

    Kriskovich, J.R.

    1998-07-27

    Waste processing and preparing waste to support waste processing relies heavily on ventilation. Ventilation is used at the Hanford Site on the waste storage tanks to provide confinement, cooling, and removal of flammable gases.

  11. Pennsylvania Number of Natural Gas Consumers

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    1998-2014 Average Consumption per Consumer (Thousand Cubic Ft.) 618 606 604 540 627 666 1967-2014 Industrial Number of Consumers 4,745 4,624 5,007 5,066 5,024 5,084 1987-2014...

  12. Eco-efficient waste glass recycling: Integrated waste management and green product development through LCA

    SciTech Connect (OSTI)

    Blengini, Gian Andrea, E-mail: blengini@polito.it [DISPEA - Department of Production Systems and Business Economics, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Turin (Italy); CNR-IGAG, Institute of Environmental Geology and Geo-Engineering, Corso Duca degli Abruzzi 24, 10129 Turin (Italy); Busto, Mirko, E-mail: mirko.busto@polito.it [DISPEA - Department of Production Systems and Business Economics, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Turin (Italy); Fantoni, Moris, E-mail: moris.fantoni@polito.it [DITAG - Department of Land, Environment and Geo-Engineering, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Turin (Italy); Fino, Debora, E-mail: debora.fino@polito.it [DISMIC - Department of Materials Science and Chemical Engineering, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Turin (Italy)

    2012-05-15

    Highlights: Black-Right-Pointing-Pointer A new eco-efficient recycling route for post-consumer waste glass was implemented. Black-Right-Pointing-Pointer Integrated waste management and industrial production are crucial to green products. Black-Right-Pointing-Pointer Most of the waste glass rejects are sent back to the glass industry. Black-Right-Pointing-Pointer Recovered co-products give more environmental gains than does avoided landfill. Black-Right-Pointing-Pointer Energy intensive recycling must be limited to waste that cannot be closed-loop recycled. - Abstract: As part of the EU Life + NOVEDI project, a new eco-efficient recycling route has been implemented to maximise resources and energy recovery from post-consumer waste glass, through integrated waste management and industrial production. Life cycle assessment (LCA) has been used to identify engineering solutions to sustainability during the development of green building products. The new process and the related LCA are framed within a meaningful case of industrial symbiosis, where multiple waste streams are utilised in a multi-output industrial process. The input is a mix of rejected waste glass from conventional container glass recycling and waste special glass such as monitor glass, bulbs and glass fibres. The green building product is a recycled foam glass (RFG) to be used in high efficiency thermally insulating and lightweight concrete. The environmental gains have been contrasted against induced impacts and improvements have been proposed. Recovered co-products, such as glass fragments/powders, plastics and metals, correspond to environmental gains that are higher than those related to landfill avoidance, whereas the latter is cancelled due to increased transportation distances. In accordance to an eco-efficiency principle, it has been highlighted that recourse to highly energy intensive recycling should be limited to waste that cannot be closed-loop recycled.

  13. Method for forming consumable electrodes from metallic chip scraps

    DOE Patents [OSTI]

    Girshov, Vladimir Leonidovich (St. Petersburg, RU); Podpalkin, Arcady Munjyvich (St. Petersburg, RU); Treschevskiy, Arnold Nikolayevich (St. Petersburg, RU); Abramov, Alexey Alexandrovich (St. Petersburg, RU)

    2005-10-11

    The method relates to metallurgical recycling of waste products, preferably titanium alloys chips scrap. Accordingly after crushing and cleaning, the chip scrap is subjected to vacuum-thermal degassing (VTD); the chip scrap is pressed into briquettes; the briquettes are placed into a mould allowing sufficient remaining space for the addition of molten metal alloy; the mould is pre-heated before filling with the molten metal alloy; the mould remaining space is filled with molten metal alloy. After cooling, the electrode is removed from the mould. The method provides a means for 100% use of chip scrap in producing consumable electrodes having increased mechanical strength and reduced interstitial impurities content leading to improved secondary cast alloys.

  14. Energy implications of the thermal recovery of biodegradable municipal waste materials in the United Kingdom

    SciTech Connect (OSTI)

    Burnley, Stephen; Phillips, Rhiannon; Coleman, Terry; Rampling, Terence

    2011-09-15

    Highlights: > Energy balances were calculated for the thermal treatment of biodegradable wastes. > For wood and RDF, combustion in dedicated facilities was the best option. > For paper, garden and food wastes and mixed waste incineration was the best option. > For low moisture paper, gasification provided the optimum solution. - Abstract: Waste management policies and legislation in many developed countries call for a reduction in the quantity of biodegradable waste landfilled. Anaerobic digestion, combustion and gasification are options for managing biodegradable waste while generating renewable energy. However, very little research has been carried to establish the overall energy balance of the collection, preparation and energy recovery processes for different types of wastes. Without this information, it is impossible to determine the optimum method for managing a particular waste to recover renewable energy. In this study, energy balances were carried out for the thermal processing of food waste, garden waste, wood, waste paper and the non-recyclable fraction of municipal waste. For all of these wastes, combustion in dedicated facilities or incineration with the municipal waste stream was the most energy-advantageous option. However, we identified a lack of reliable information on the energy consumed in collecting individual wastes and preparing the wastes for thermal processing. There was also little reliable information on the performance and efficiency of anaerobic digestion and gasification facilities for waste.

  15. EM's Defense Waste Processing Facility Achieves Waste Cleanup...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Defense Waste Processing Facility Achieves Waste Cleanup Milestone EM's Defense Waste Processing Facility Achieves Waste Cleanup Milestone January 14, 2016 - 12:10pm Addthis The...

  16. Hanford Dangerous Waste Permit

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Integrated Disposal Facility Operating Unit #11 Aerial view of IDF looking south. Note semi-truck trailer for scale. There are risks to groundwater in the future from secondary waste, according to modeling. Secondary waste would have to be significantly mitigated before it could be disposed at IDF. Where did the waste come from? No waste is stored here yet. IDF will receive vitrified waste when the Waste Treatment Plant starts operating. It may also receive secondary waste resulting from

  17. Vermont Number of Natural Gas Consumers

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    37,242 38,047 38,839 39,917 41,152 42,231 1987-2014 Sales 38,047 38,839 39,917 41,152 42,231 1997-2014 Commercial Number of Consumers 5,085 5,137 5,256 5,535 5,441 5,589 1987-2014 Sales 5,137 5,256 5,535 5,441 5,589 1998-2014 Average Consumption per Consumer (Thousand Cubic Ft.) 488 464 472 418 873 864 1967-2014 Industrial Number of Consumers 36 38 36 38 13 13 1987-2014 Sales 37 35 38 13 13 1998-2014 Transported 1 1 0 0 0 1999-2014 Average Consumption per Consumer (Thousand Cubic Ft.) 80,290

  18. Maine Heat Content of Natural Gas Consumed

    Gasoline and Diesel Fuel Update (EIA)

    Feb-15 Mar-15 Apr-15 May-15 Jun-15 Jul-15 View History Delivered to Consumers 1,035 1,030 1,025 1,022 1,020 1,020 2013-2015...

  19. Maine Heat Content of Natural Gas Consumed

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    2009 2010 2011 2012 2013 2014 View History Delivered to Consumers 1,046 1,044 1,047 1,032 1,030 1,029 2007-2014...

  20. Hawaii Heat Content of Natural Gas Consumed

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Feb-15 Mar-15 Apr-15 May-15 Jun-15 Jul-15 View History Delivered to Consumers 954 947 959 990 1,005 1,011 2013-2015...

  1. Washington Heat Content of Natural Gas Consumed

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    2009 2010 2011 2012 2013 2014 View History Delivered to Consumers 1,030 1,032 1,029 1,028 1,030 1,044 2007-2014...

  2. Washington Heat Content of Natural Gas Consumed

    Gasoline and Diesel Fuel Update (EIA)

    Feb-15 Mar-15 Apr-15 May-15 Jun-15 Jul-15 View History Delivered to Consumers 1,054 1,060 1,062 1,065 1,069 1,070 2013-2015...

  3. Colorado Heat Content of Natural Gas Consumed

    Gasoline and Diesel Fuel Update (EIA)

    Jul-15 Aug-15 Sep-15 Oct-15 Nov-15 Dec-15 View History Delivered to Consumers 1,073 1,069 1,076 1,069 1,060 1,051 2013

  4. Delaware Heat Content of Natural Gas Consumed

    Gasoline and Diesel Fuel Update (EIA)

    Jul-15 Aug-15 Sep-15 Oct-15 Nov-15 Dec-15 View History Delivered to Consumers 1,044 1,044 1,043 1,051 1,051 1,049 2013

  5. Florida Heat Content of Natural Gas Consumed

    Gasoline and Diesel Fuel Update (EIA)

    Jul-15 Aug-15 Sep-15 Oct-15 Nov-15 Dec-15 View History Delivered to Consumers 1,026 1,024 1,024 1,023 1,023 1,023 2013

  6. Georgia Heat Content of Natural Gas Consumed

    Gasoline and Diesel Fuel Update (EIA)

    Jul-15 Aug-15 Sep-15 Oct-15 Nov-15 Dec-15 View History Delivered to Consumers 1,030 1,028 1,029 1,028 1,026 1,027 2013

  7. Hawaii Number of Natural Gas Consumers

    Gasoline and Diesel Fuel Update (EIA)

    25,466 25,389 25,305 25,184 26,374 28,919 1987-2014 Sales 25,389 25,305 25,184 26,374 28,919 1998-2014 Commercial Number of Consumers 2,535 2,551 2,560 2,545 2,627 2,789 1987-2014 Sales 2,551 2,560 2,545 2,627 2,789 1998-2014 Average Consumption per Consumer (Thousand Cubic Ft.) 691 697 691 727 713 692 1980-2014 Industrial Number of Consumers 25 24 24 22 22 23 1997-2014 Sales 24 24 22 22 23 1998-2014 Average Consumption per Consumer (Thousand Cubic Ft.) 13,753 14,111 15,087 16,126 17,635 17,

  8. Idaho Heat Content of Natural Gas Consumed

    Gasoline and Diesel Fuel Update (EIA)

    Jul-15 Aug-15 Sep-15 Oct-15 Nov-15 Dec-15 View History Delivered to Consumers 1,034 1,028 1,024 1,033 1,035 1,041 2013

  9. Illinois Heat Content of Natural Gas Consumed

    Gasoline and Diesel Fuel Update (EIA)

    Jul-15 Aug-15 Sep-15 Oct-15 Nov-15 Dec-15 View History Delivered to Consumers 1,027 1,027 1,028 1,028 1,030 1,030 2013

  10. Indiana Heat Content of Natural Gas Consumed

    Gasoline and Diesel Fuel Update (EIA)

    Jul-15 Aug-15 Sep-15 Oct-15 Nov-15 Dec-15 View History Delivered to Consumers 1,043 1,044 1,041 1,039 1,034 1,033 2013

  11. Iowa Heat Content of Natural Gas Consumed

    Gasoline and Diesel Fuel Update (EIA)

    Jul-15 Aug-15 Sep-15 Oct-15 Nov-15 Dec-15 View History Delivered to Consumers 1,059 1,059 1,058 1,058 1,057 1,056 2013

  12. Kansas Heat Content of Natural Gas Consumed

    Gasoline and Diesel Fuel Update (EIA)

    Jul-15 Aug-15 Sep-15 Oct-15 Nov-15 Dec-15 View History Delivered to Consumers 1,040 1,042 1,039 1,037 1,035 1,031 2013

  13. Kentucky Heat Content of Natural Gas Consumed

    Gasoline and Diesel Fuel Update (EIA)

    Jul-15 Aug-15 Sep-15 Oct-15 Nov-15 Dec-15 View History Delivered to Consumers 1,024 1,015 1,020 1,024 1,021 1,024 2013

  14. Alabama Heat Content of Natural Gas Consumed

    Gasoline and Diesel Fuel Update (EIA)

    Jul-15 Aug-15 Sep-15 Oct-15 Nov-15 Dec-15 View History Delivered to Consumers 1,032 1,030 1,030 1,030 1,029 1,029 2013

  15. Alaska Heat Content of Natural Gas Consumed

    Gasoline and Diesel Fuel Update (EIA)

    Jul-15 Aug-15 Sep-15 Oct-15 Nov-15 Dec-15 View History Delivered to Consumers 1,002 1,002 1,001 1,001 1,001 1,000 2013

  16. Arizona Heat Content of Natural Gas Consumed

    Gasoline and Diesel Fuel Update (EIA)

    Jul-15 Aug-15 Sep-15 Oct-15 Nov-15 Dec-15 View History Delivered to Consumers 1,038 1,038 1,040 1,042 1,041 1,044 2013

  17. Arkansas Heat Content of Natural Gas Consumed

    Gasoline and Diesel Fuel Update (EIA)

    Jul-15 Aug-15 Sep-15 Oct-15 Nov-15 Dec-15 View History Delivered to Consumers 1,023 1,022 1,019 1,029 1,014 1,015 2013

  18. California Heat Content of Natural Gas Consumed

    Gasoline and Diesel Fuel Update (EIA)

    Jul-15 Aug-15 Sep-15 Oct-15 Nov-15 Dec-15 View History Delivered to Consumers 1,037 1,037 1,037 1,035 1,037 1,037 2013

  19. Connecticut Heat Content of Natural Gas Consumed

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    2009 2010 2011 2012 2013 2014 View History Delivered to Consumers 1,019 1,022 1,026 1,031 1,030 1,020 2007-2014...

  20. Connecticut Heat Content of Natural Gas Consumed

    Gasoline and Diesel Fuel Update (EIA)

    Mar-15 Apr-15 May-15 Jun-15 Jul-15 Aug-15 View History Delivered to Consumers 1,029 1,026 1,049 1,027 1,027 1,026 2013-2015...

  1. Free Consumer Workshops On Solar & Wind Power

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Golden, Colo., Dec. 9, 1997 -- The U.S. Department of Energy's National Renewable Energy Laboratory (NREL) will host three free consumer workshops on solar and wind power for the ...

  2. Consumers Energy Co | Open Energy Information

    Open Energy Info (EERE)

    0.0833kWh The following table contains monthly sales and revenue data for Consumers Energy Co (Michigan). Scroll leftright to see all of the table values. Month RES REV...

  3. NREL Helps Consumers Tap Into Solar Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Consumers Tap Into Solar Energy For more information contact: e:mail: Public Affairs Golden, Colo., March 26, 1999 — Two new publications by the U.S. Department of Energy's National Renewable Energy Laboratory (NREL) make it easier for people to purchase solar energy systems and tap into energy from the sun. The Colorado Consumer's Guide to Buying a Solar Electric System provides basic information about the who, what and why of financing, purchasing and installing photovoltaic (solar electric)

  4. Sustainable Energy Resources for Consumers (SERC) -

    Energy Savers [EERE]

    Geothermal/Ground-Source Heat Pumps | Department of Energy This presentation, aimed at Sustainable Energy Resources for Consumers (SERC) grantees, provides information on Monitoring Checklists for the installation of Geothermal/Ground-Source Heat Pumps. PDF icon geothermal_groundsource_heatpumps.pdf More Documents & Publications DOE Webinar … Residential Geothermal Heat Pump Retrofits (Presentation) Sustainable Energy Resources for Consumers (SERC) - Solar Hot Water Sustainable Energy

  5. Westinghouse Waste Simulation and Optimization Software Tool - 13493

    SciTech Connect (OSTI)

    Mennicken, Kim [Westinghouse Electric Germany GmbH, Global Waste Management, Dudenstrasse 44, D-68167 Mannheim (Germany)] [Westinghouse Electric Germany GmbH, Global Waste Management, Dudenstrasse 44, D-68167 Mannheim (Germany); Aign, Joerg [Westinghouse Electric Germany GmbH, Global Waste Management, Tarpenring 6, D-22419 Hamburg (Germany)] [Westinghouse Electric Germany GmbH, Global Waste Management, Tarpenring 6, D-22419 Hamburg (Germany)

    2013-07-01

    Radioactive waste is produced during NPP operation and NPP D and D. Different kinds of waste with different volumes and properties have to be treated. Finding a technically and commercially optimized waste treatment concept is a difficult and time consuming process. The Westinghouse waste simulation and optimization software tool is an approach to study the total life cycle cost of any waste management facility. The tool enables the user of the simulation and optimization software to plan processes and storage buildings and to identify bottlenecks in the overall waste management design before starting detailed planning activities. Furthermore, application of the software enables the user to optimize the number of treatment systems, to determine the minimum design capacity for onsite storage facilities, to identify bottlenecks in the overall design and to identify the most cost-effective treatment paths by maintaining optimal waste treatment technologies. In combination with proven waste treatment equipment and integrated waste management solutions, the waste simulation and optimization software provides reliable qualitative results that lead to an effective planning and minimization of the total project planning risk of any waste management activity. (authors)

  6. EV Everywhere Consumer Acceptance and Charging Infrastructure Workshop:

    Office of Environmental Management (EM)

    Consumer Acceptance and Public Policy Group C Breakout Report | Department of Energy Consumer Acceptance and Charging Infrastructure Workshop: Consumer Acceptance and Public Policy Group C Breakout Report EV Everywhere Consumer Acceptance and Charging Infrastructure Workshop: Consumer Acceptance and Public Policy Group C Breakout Report Breakout session presentation for the EV Everywhere Grand Challenge: Consumer Acceptance and Charging Infrastructure Workshop on July 30, 2012 held at the

  7. Waste remediation

    DOE Patents [OSTI]

    Halas, Nancy J.; Nordlander, Peter; Neumann, Oara

    2015-12-29

    A system including a steam generation system and a chamber. The steam generation system includes a complex and the steam generation system is configured to receive water, concentrate electromagnetic (EM) radiation received from an EM radiation source, apply the EM radiation to the complex, where the complex absorbs the EM radiation to generate heat, and transform, using the heat generated by the complex, the water to steam. The chamber is configured to receive the steam and an object, wherein the object is of medical waste, medical equipment, fabric, and fecal matter.

  8. ISSUANCE 2015-04-01: Energy Conservation Program for Consumer...

    Office of Environmental Management (EM)

    4-01: Energy Conservation Program for Consumer Products and Certain Commercial and Industrial Equipment: Test Procedures for Consumer and Commercial Water Heaters, Notice of ...

  9. ISSUANCE 2015-05-12: Energy Conservation Program for Consumer...

    Energy Savers [EERE]

    12: Energy Conservation Program for Consumer Products: Energy Conservation Standards for Residential Furnaces ISSUANCE 2015-05-12: Energy Conservation Program for Consumer ...

  10. ISSUANCE 2015-03-27: Energy Conservation Program for Consumer...

    Office of Environmental Management (EM)

    3-27: Energy Conservation Program for Consumer Products and Certain Commercial and Industrial Equipment: Test Procedures for Consumer and Commercial Water Heaters, Notice of ...

  11. Smart Grid Projects Are Improving Performance and Helping Consumers...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Projects Are Improving Performance and Helping Consumers Better Manage their Energy Use Smart Grid Projects Are Improving Performance and Helping Consumers Better Manage their ...

  12. SGIG Report Now Available: Experiences from the Consumer Behavior...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Report Now Available: Experiences from the Consumer Behavior Studies on Engaging Customers SGIG Report Now Available: Experiences from the Consumer Behavior Studies on Engaging ...

  13. DOE Webinar: Translating Behavior Change Research Into Consumer...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Webinar: Translating Behavior Change Research Into Consumer Action DOE Webinar: Translating Behavior Change Research Into Consumer Action DOE Webinar: Translating Behavior Change ...

  14. Break-out Discussion i: Modeling Consumer Behavior Residential...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Break-out Discussion i: Modeling Consumer Behavior Residential Scale Break-out Discussion i: Modeling Consumer Behavior Residential Scale This presentaion summarizes the ...

  15. Experiences from the Consumer Behavior Studies on Engaging Customers...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Experiences from the Consumer Behavior Studies on Engaging Customers (September 2014) Experiences from the Consumer Behavior Studies on Engaging Customers (September 2014) One of ...

  16. Historic Energy Efficiency Rules Would Save Consumers Money and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Historic Energy Efficiency Rules Would Save Consumers Money and Cut Carbon Emissions Historic Energy Efficiency Rules Would Save Consumers Money and Cut Carbon Emissions August 29, ...

  17. Department of Energy Announces Funding to Help Consumers Better...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    to Help Consumers Better Manage Their Energy Consumption Department of Energy Announces Funding to Help Consumers Better Manage Their Energy Consumption November 8, 2011 - 1:57pm...

  18. Property:DailyOpWaterUseConsumed | Open Energy Information

    Open Energy Info (EERE)

    Property Name DailyOpWaterUseConsumed Property Type Number Description Daily Operation Water Use (afday) Consumed. Retrieved from "http:en.openei.orgwindex.php?titleProper...

  19. AARP, National Consumer Law Center, and Public Citizen Comments...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AARP, National Consumer Law Center, and Public Citizen Comments to:DEPARTMENT OF ENERGY Smart Grid RFI: Addressing Policy and Logistical Challenges AARP, National Consumer Law ...

  20. Texas Price of Natural Gas Delivered to Residential Consumers...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Delivered to Residential Consumers (Dollars per Thousand Cubic Feet) Texas Price of Natural Gas Delivered to Residential Consumers (Dollars per Thousand Cubic Feet) Year Jan Feb...

  1. Texas Natural Gas Delivered to Commercial Consumers for the Account...

    U.S. Energy Information Administration (EIA) Indexed Site

    Delivered to Commercial Consumers for the Account of Others (Million Cubic Feet) Texas Natural Gas Delivered to Commercial Consumers for the Account of Others (Million Cubic Feet)...

  2. West Virginia Natural Gas Deliveries to Electric Power Consumers...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Deliveries to Electric Power Consumers (Million Cubic Feet) West Virginia Natural Gas Deliveries to Electric Power Consumers (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul...

  3. West Virginia Natural Gas Delivered to Commercial Consumers for...

    Gasoline and Diesel Fuel Update (EIA)

    Delivered to Commercial Consumers for the Account of Others (Million Cubic Feet) West Virginia Natural Gas Delivered to Commercial Consumers for the Account of Others (Million...

  4. Connecticut Price of Natural Gas Sold to Commercial Consumers...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sold to Commercial Consumers (Dollars per Thousand Cubic Feet) Connecticut Price of Natural Gas Sold to Commercial Consumers (Dollars per Thousand Cubic Feet) Year Jan Feb Mar Apr...

  5. AGA Eastern Consuming Region Natural Gas Underground Storage...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Eastern Consuming Region Natural Gas Underground Storage Volume (Million Cubic Feet) AGA Eastern Consuming Region Natural Gas Underground Storage Volume (Million Cubic Feet) Year...

  6. Eastern Consuming Regions Natural Gas Underground Storage Net...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Eastern Consuming Regions Natural Gas Underground Storage Net Withdrawals (Million Cubic Feet) Eastern Consuming Regions Natural Gas Underground Storage Net Withdrawals (Million...

  7. Western Consuming Regions Natural Gas Underground Storage Net...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Western Consuming Regions Natural Gas Underground Storage Net Withdrawals (Million Cubic Feet) Western Consuming Regions Natural Gas Underground Storage Net Withdrawals (Million...

  8. AARP, National Consumer Law Center, and Public Citizen Comments...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AARP, National Consumer Law Center, and Public Citizen Comments to:DEPARTMENT OF ENERGY Smart Grid RFI: Addressing Policy and Logistical Challenges AARP, National Consumer Law...

  9. North Carolina Natural Gas Delivered to Commercial Consumers...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Delivered to Commercial Consumers for the Account of Others (Million Cubic Feet) North Carolina Natural Gas Delivered to Commercial Consumers for the Account of Others (Million...

  10. Wisconsin Natural Gas Deliveries to Electric Power Consumers...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Deliveries to Electric Power Consumers (Million Cubic Feet) Wisconsin Natural Gas Deliveries to Electric Power Consumers (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug...

  11. Kentucky Natural Gas Deliveries to Electric Power Consumers ...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Deliveries to Electric Power Consumers (Million Cubic Feet) Kentucky Natural Gas Deliveries to Electric Power Consumers (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug...

  12. Minnesota Natural Gas Deliveries to Electric Power Consumers...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Deliveries to Electric Power Consumers (Million Cubic Feet) Minnesota Natural Gas Deliveries to Electric Power Consumers (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug...

  13. New York Natural Gas Delivered to Commercial Consumers for the...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Delivered to Commercial Consumers for the Account of Others (Million Cubic Feet) New York Natural Gas Delivered to Commercial Consumers for the Account of Others (Million Cubic...

  14. Sustainable Energy Resources for Consumers (SERC) - On-Demand...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Sustainable Energy Resources for Consumers (SERC) - Solar Hot Water Sustainable Energy Resources for Consumers (SERC) Idaho Highlight Sustainable ...

  15. Sustainable Energy Resources for Consumers (SERC) Success Story...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    PDF icon sercmthighlight.pdf More Documents & Publications Sustainable Energy Resources for Consumers (SERC) - Solar Hot Water Sustainable Energy Resources for Consumers (SERC) - ...

  16. Consumer Light Bulb Changes: Briefing and Resources for Media...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Consumer Light Bulb Changes: Briefing and Resources for Media and Retailers Consumer Light Bulb Changes: Briefing and Resources for Media and Retailers This presentation provides...

  17. Ultramizer®: Waste Heat Recovery System for Commercial and Industrial

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Boilers | Department of Energy Ultramizer®: Waste Heat Recovery System for Commercial and Industrial Boilers Ultramizer®: Waste Heat Recovery System for Commercial and Industrial Boilers Heat Recovery System Reduces Steam Production Costs and Energy Consumption The majority of combustible fuels consumed in U.S. industry are for process heating. For natural gas combustion, 18% of the waste stream is water vapor, which contributes to a 10% loss of the energy input. Over 35% of all the energy

  18. Waste Isolation Pilot Plant

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    4-3542 Site Sustainability Plan Waste Isolation Pilot Plant Fiscal Year 2015 Narrative ... Manager, Carlsbad Field Office Site Sustainability Plan Waste Isolation Pilot Plant, ...

  19. Hanford Tank Waste Retrieval,

    Office of Environmental Management (EM)

    Tank Waste Retrieval, Treatment, and Disposition Framework September 24, 2013 U.S. Department of Energy Washington, D.C. 20585 Hanford Tank Waste Retrieval, Treatment, and ...

  20. Salt Waste Processing Initiatives

    Office of Environmental Management (EM)

    Patricia Suggs Salt Processing Team Lead Assistant Manager for Waste Disposition Project Office of Environmental Management Savannah River Site Salt Waste Processing Initiatives 2 ...

  1. Waste Heat Recovery

    Office of Environmental Management (EM)

    DRAFT - PRE-DECISIONAL - DRAFT 1 Waste Heat Recovery 1 Technology Assessment 2 Contents 3 ... 2 4 1.1. Introduction to Waste Heat Recovery ......

  2. Radioactive Waste Management

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1984-02-06

    To establish policies and guidelines by which the Department of Energy (DOE) manages tis radioactive waste, waste byproducts, and radioactively contaminated surplus facilities.

  3. Hanford Dangerous Waste Permit

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    organics from tank waste. * Decreases the volume of water to create room in double-shell tanks, allowing them to accept waste from noncompliant single- shell tanks. * Treats...

  4. Waste-to-Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    into renewable energy, thereby enabling a national network of distributed power and biofuel production sites. Image courtesy of Iona Capital Waste-to-Energy Cycle Waste...

  5. Transuranic Waste Requirements

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1999-07-09

    The guide provides criteria for determining if a waste is to be managed in accordance with DOE M 435.1-1, Chapter III, Transuranic Waste Requirements.

  6. West Virginia Consumers Have Appliance Rebate 'Trifecta'

    Broader source: Energy.gov [DOE]

    West Virginians didn’t waste any time in taking advantage of the Energy Efficient Appliance Rebate Program. Only three months in, and almost half of the available $1.7 million is already spoken for.

  7. Rhode Island Number of Natural Gas Consumers

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    24,846 225,204 225,828 228,487 231,763 233,786 1987-2014 Sales 225,204 225,828 228,487 231,763 233,786 1997-2014 Commercial Number of Consumers 22,988 23,049 23,177 23,359 23,742 23,934 1987-2014 Sales 21,507 21,421 21,442 21,731 21,947 1998-2014 Transported 1,542 1,756 1,917 2,011 1,987 1998-2014 Average Consumption per Consumer (Thousand Cubic Ft.) 467 454 468 432 490 551 1967-2014 Industrial Number of Consumers 260 249 245 248 271 266 1987-2014 Sales 57 53 56 62 62 1998-2014 Transported 192

  8. South Carolina Number of Natural Gas Consumers

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    565,774 570,797 576,594 583,633 593,286 604,743 1987-2014 Sales 570,797 576,594 583,633 593,286 604,743 1997-2014 Commercial Number of Consumers 55,850 55,853 55,846 55,908 55,997 56,172 1987-2014 Sales 55,776 55,760 55,815 55,902 56,074 1998-2014 Transported 77 86 93 95 98 1998-2014 Average Consumption per Consumer (Thousand Cubic Ft.) 393 432 396 383 426 452 1967-2014 Industrial Number of Consumers 1,358 1,325 1,329 1,435 1,452 1,426 1987-2014 Sales 1,139 1,137 1,215 1,223 1,199 1998-2014

  9. Tennessee Number of Natural Gas Consumers

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    ,083,573 1,085,387 1,089,009 1,084,726 1,094,122 1,106,681 1987-2014 Sales 1,085,387 1,089,009 1,084,726 1,094,122 1,106,681 1997-2014 Commercial Number of Consumers 127,704 127,914 128,969 130,139 131,091 131,001 1987-2014 Sales 127,806 128,866 130,035 130,989 130,905 1998-2014 Transported 108 103 104 102 96 1998-2014 Average Consumption per Consumer (Thousand Cubic Ft.) 406 439 404 345 411 438 1967-2014 Industrial Number of Consumers 2,717 2,702 2,729 2,679 2,581 2,595 1987-2014 Sales 2,340

  10. Texas Number of Natural Gas Consumers

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    4,248,613 4,288,495 4,326,156 4,370,057 4,424,103 4,469,282 1987-2014 Sales 4,287,929 4,326,076 4,369,990 4,424,037 4,469,220 1997-2014 Transported 566 80 67 66 62 1997-2014 Commercial Number of Consumers 313,384 312,277 314,041 314,811 314,036 317,217 1987-2014 Sales 310,842 312,164 312,574 311,493 313,971 1998-2014 Transported 1,435 1,877 2,237 2,543 3,246 1998-2014 Average Consumption per Consumer (Thousand Cubic Ft.) 534 605 587 512 553 583 1967-2014 Industrial Number of Consumers 8,581

  11. Kentucky Number of Natural Gas Consumers

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    754,761 758,129 759,584 757,790 761,575 760,131 1987-2014 Sales 728,940 730,602 730,184 736,011 735,486 1997-2014 Transported 29,189 28,982 27,606 25,564 24,645 1997-2014 Commercial Number of Consumers 83,862 84,707 84,977 85,129 85,999 85,318 1987-2014 Sales 80,541 80,392 80,644 81,579 81,026 1998-2014 Transported 4,166 4,585 4,485 4,420 4,292 1998-2014 Average Consumption per Consumer (Thousand Cubic Ft.) 423 435 407 361 435 469 1967-2014 Industrial Number of Consumers 1,715 1,742 1,705 1,720

  12. Louisiana Number of Natural Gas Consumers

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    889,570 893,400 897,513 963,688 901,635 899,378 1987-2014 Sales 893,400 897,513 963,688 901,635 899,378 1997-2014 Transported 0 0 0 0 0 1997-2014 Commercial Number of Consumers 58,396 58,562 58,749 63,381 59,147 58,611 1987-2014 Sales 58,501 58,685 63,256 58,985 58,438 1998-2014 Transported 61 64 125 162 173 1998-2014 Average Consumption per Consumer (Thousand Cubic Ft.) 405 461 441 415 488 532 1967-2014 Industrial Number of Consumers 954 942 920 963 916 883 1987-2014 Sales 586 573 628 570 546

  13. Maryland Number of Natural Gas Consumers

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    067,807 1,071,566 1,077,168 1,078,978 1,099,272 1,101,292 1987-2014 Sales 923,870 892,844 867,627 852,555 858,352 1997-2014 Transported 147,696 184,324 211,351 246,717 242,940 1997-2014 Commercial Number of Consumers 75,771 75,192 75,788 75,799 77,117 77,846 1987-2014 Sales 54,966 53,778 52,383 52,763 53,961 1998-2014 Transported 20,226 22,010 23,416 24,354 23,885 1998-2014 Average Consumption per Consumer (Thousand Cubic Ft.) 912 898 891 846 923 961 1967-2014 Industrial Number of Consumers

  14. Mississippi Number of Natural Gas Consumers

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    437,715 436,840 442,479 442,840 445,589 444,423 1987-2014 Sales 436,840 439,511 440,171 442,974 444,423 1997-2014 Transported 0 2,968 2,669 2,615 0 2010-2014 Commercial Number of Consumers 50,713 50,537 50,636 50,689 50,153 50,238 1987-2014 Sales 50,503 50,273 50,360 49,829 50,197 1998-2014 Transported 34 363 329 324 41 1998-2014 Average Consumption per Consumer (Thousand Cubic Ft.) 377 419 400 352 388 442 1967-2014 Industrial Number of Consumers 1,141 980 982 936 933 943 1987-2014 Sales 860 853

  15. Missouri Number of Natural Gas Consumers

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    348,781 1,348,549 1,342,920 1,389,910 1,357,740 1,363,286 1987-2014 Sales 1,348,549 1,342,920 1,389,910 1,357,740 1,363,286 1997-2014 Transported 0 0 0 0 0 2010-2014 Commercial Number of Consumers 140,633 138,670 138,214 144,906 142,495 143,024 1987-2014 Sales 137,342 136,843 143,487 141,047 141,477 1998-2014 Transported 1,328 1,371 1,419 1,448 1,547 1998-2014 Average Consumption per Consumer (Thousand Cubic Ft.) 437 441 451 378 453 510 1967-2014 Industrial Number of Consumers 3,573 3,541 3,307

  16. Montana Number of Natural Gas Consumers

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    255,472 257,322 259,046 259,957 262,122 265,849 1987-2014 Sales 256,841 258,579 259,484 261,637 265,323 1997-2014 Transported 481 467 473 485 526 2005-2014 Commercial Number of Consumers 33,731 34,002 34,305 34,504 34,909 35,205 1987-2014 Sales 33,652 33,939 33,967 34,305 34,558 1998-2014 Transported 350 366 537 604 647 1998-2014 Average Consumption per Consumer (Thousand Cubic Ft.) 699 602 651 557 601 612 1967-2014 Industrial Number of Consumers 396 384 381 372 372 369 1987-2014 Sales 312 304

  17. Utah Number of Natural Gas Consumers

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    810,442 821,525 830,219 840,687 854,389 869,052 1987-2014 Sales 821,525 830,219 840,687 854,389 869,052 1997-2014 Commercial Number of Consumers 60,781 61,976 62,885 63,383 64,114 65,134 1987-2014 Sales 61,929 62,831 63,298 63,960 64,931 1998-2014 Transported 47 54 85 154 203 1998-2014 Average Consumption per Consumer (Thousand Cubic Ft.) 609 621 643 558 646 586 1967-2014 Industrial Number of Consumers 293 293 286 302 323 328 1987-2014 Sales 205 189 189 187 178 1998-2014 Transported 88 97 113

  18. Washington Number of Natural Gas Consumers

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    059,239 1,067,979 1,079,277 1,088,762 1,102,318 1,118,193 1987-2014 Sales 1,067,979 1,079,277 1,088,762 1,102,318 1,118,193 1997-2014 Commercial Number of Consumers 98,965 99,231 99,674 100,038 100,939 101,730 1987-2014 Sales 99,166 99,584 99,930 100,819 101,606 1998-2014 Transported 65 90 108 120 124 1998-2014 Average Consumption per Consumer (Thousand Cubic Ft.) 563 517 567 534 553 535 1967-2014 Industrial Number of Consumers 3,428 3,372 3,353 3,338 3,320 3,355 1987-2014 Sales 3,056 3,031

  19. Wisconsin Number of Natural Gas Consumers

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    656,614 1,663,583 1,671,834 1,681,001 1,692,891 1,705,907 1987-2014 Sales 1,663,583 1,671,834 1,681,001 1,692,891 1,705,907 1997-2014 Transported 0 0 0 0 0 1997-2014 Commercial Number of Consumers 163,843 164,173 165,002 165,657 166,845 167,901 1987-2014 Sales 163,060 163,905 164,575 165,718 166,750 1998-2014 Transported 1,113 1,097 1,082 1,127 1,151 1998-2014 Average Consumption per Consumer (Thousand Cubic Ft.) 558 501 528 465 596 637 1967-2014 Industrial Number of Consumers 6,396 6,413 6,376

  20. Wyoming Number of Natural Gas Consumers

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    153,062 153,852 155,181 157,226 158,889 160,896 1987-2014 Sales 117,735 118,433 118,691 117,948 118,396 1997-2014 Transported 36,117 36,748 38,535 40,941 42,500 1997-2014 Commercial Number of Consumers 19,843 19,977 20,146 20,387 20,617 20,894 1987-2014 Sales 14,319 14,292 14,187 14,221 14,452 1998-2014 Transported 5,658 5,854 6,200 6,396 6,442 1998-2014 Average Consumption per Consumer (Thousand Cubic Ft.) 523 558 580 514 583 583 1967-2014 Industrial Number of Consumers 130 120 123 127 132 131

  1. Nebraska Number of Natural Gas Consumers

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    512,551 510,776 514,481 515,338 527,397 522,408 1987-2014 Sales 442,413 446,652 447,617 459,712 454,725 1997-2014 Transported 68,363 67,829 67,721 67,685 67,683 1997-2014 Commercial Number of Consumers 56,454 56,246 56,553 56,608 58,005 57,191 1987-2014 Sales 40,348 40,881 41,074 42,400 41,467 1998-2014 Transported 15,898 15,672 15,534 15,605 15,724 1998-2014 Average Consumption per Consumer (Thousand Cubic Ft.) 563 569 568 468 555 567 1967-2014 Industrial Number of Consumers 7,863 7,912 7,955

  2. Nevada Number of Natural Gas Consumers

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    760,391 764,435 772,880 782,759 794,150 808,970 1987-2014 Sales 764,435 772,880 782,759 794,150 808,970 1997-2014 Commercial Number of Consumers 41,303 40,801 40,944 41,192 41,710 42,338 1987-2014 Sales 40,655 40,786 41,023 41,536 42,163 1998-2014 Transported 146 158 169 174 175 1998-2014 Average Consumption per Consumer (Thousand Cubic Ft.) 715 722 751 704 748 687 1967-2014 Industrial Number of Consumers 192 184 177 177 195 218 1987-2014 Sales 152 147 146 162 183 1998-2014 Transported 32 30 31

  3. New Hampshire Number of Natural Gas Consumers

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    96,924 95,361 97,400 99,738 98,715 99,146 1987-2014 Sales 95,360 97,400 99,738 98,715 99,146 1997-2014 Transported 1 0 0 0 0 2010-2014 Commercial Number of Consumers 16,937 16,645 17,186 17,758 17,298 17,421 1987-2014 Sales 15,004 15,198 15,429 14,685 14,527 1998-2014 Transported 1,641 1,988 2,329 2,613 2,894 1998-2014 Average Consumption per Consumer (Thousand Cubic Ft.) 587 505 517 458 532 540 1967-2014 Industrial Number of Consumers 155 306 362 466 403 326 1987-2014 Sales 31 25 30 35 45

  4. New Mexico Number of Natural Gas Consumers

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    560,479 559,852 570,637 561,713 572,224 614,313 1987-2014 Sales 559,825 570,592 561,652 572,146 614,231 1997-2014 Transported 27 45 61 78 82 1997-2014 Commercial Number of Consumers 48,846 48,757 49,406 48,914 50,163 55,689 1987-2014 Sales 45,679 46,104 45,298 46,348 51,772 1998-2014 Transported 3,078 3,302 3,616 3,815 3,917 1998-2014 Average Consumption per Consumer (Thousand Cubic Ft.) 506 516 507 509 534 461 1967-2014 Industrial Number of Consumers 471 438 360 121 123 116 1987-2014 Sales 390

  5. North Dakota Number of Natural Gas Consumers

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    22,065 123,585 125,392 130,044 133,975 137,972 1987-2014 Sales 123,585 125,392 130,044 133,975 137,972 1997-2014 Transported 0 0 0 0 0 2004-2014 Commercial Number of Consumers 17,632 17,823 18,421 19,089 19,855 20,687 1987-2014 Sales 17,745 18,347 19,021 19,788 20,623 1998-2014 Transported 78 74 68 67 64 1998-2014 Average Consumption per Consumer (Thousand Cubic Ft.) 623 578 596 543 667 677 1967-2014 Industrial Number of Consumers 279 307 259 260 266 269 1987-2014 Sales 255 204 206 211 210

  6. Oklahoma Number of Natural Gas Consumers

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    924,745 914,869 922,240 927,346 931,981 937,237 1987-2014 Sales 914,869 922,240 927,346 931,981 937,237 1997-2014 Transported 0 0 0 0 0 1997-2014 Commercial Number of Consumers 94,314 92,430 93,903 94,537 95,385 96,004 1987-2014 Sales 88,217 89,573 90,097 90,861 91,402 1998-2014 Transported 4,213 4,330 4,440 4,524 4,602 1998-2014 Average Consumption per Consumer (Thousand Cubic Ft.) 439 452 430 382 464 489 1967-2014 Industrial Number of Consumers 2,618 2,731 2,733 2,872 2,958 3,063 1987-2014

  7. Oregon Number of Natural Gas Consumers

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    675,582 682,737 688,681 693,507 700,211 707,010 1987-2014 Sales 682,737 688,681 693,507 700,211 707,010 1997-2014 Commercial Number of Consumers 76,893 77,370 77,822 78,237 79,276 80,480 1987-2014 Sales 77,351 77,793 78,197 79,227 80,422 1998-2014 Transported 19 29 40 49 58 1998-2014 Average Consumption per Consumer (Thousand Cubic Ft.) 387 352 390 368 386 353 1967-2014 Industrial Number of Consumers 1,051 1,053 1,066 1,076 1,085 1,099 1987-2014 Sales 821 828 817 821 839 1998-2014 Transported

  8. Colorado Number of Natural Gas Consumers

    Gasoline and Diesel Fuel Update (EIA)

    ,622,434 1,634,587 1,645,716 1,659,808 1,672,312 1,690,581 1986-2014 Sales 1,634,582 1,645,711 1,659,803 1,672,307 1,690,576 1997-2014 Transported 5 5 5 5 5 1997-2014 Commercial Number of Consumers 145,624 145,460 145,837 145,960 150,145 150,235 1986-2014 Sales 145,236 145,557 145,563 149,826 149,921 1998-2014 Transported 224 280 397 319 314 1998-2014 Average Consumption per Consumer (Thousand Cubic Ft.) 429 396 383 355 392 386 1967-2014 Industrial Number of Consumers 5,084 6,232 6,529 6,906

  9. Delaware Number of Natural Gas Consumers

    Gasoline and Diesel Fuel Update (EIA)

    9,006 150,458 152,005 153,307 155,627 158,502 1986-2014 Sales 150,458 152,005 153,307 155,627 158,502 1997-2014 Commercial Number of Consumers 12,839 12,861 12,931 12,997 13,163 13,352 1986-2014 Sales 12,706 12,656 12,644 12,777 12,902 1998-2014 Transported 155 275 353 386 450 1999-2014 Average Consumption per Consumer (Thousand Cubic Ft.) 910 948 810 772 849 890 1967-2014 Industrial Number of Consumers 112 114 129 134 138 141 1987-2014 Sales 40 35 29 28 28 1998-2014 Transported 74 94 105 110

  10. Florida Number of Natural Gas Consumers

    Gasoline and Diesel Fuel Update (EIA)

    674,090 675,551 679,199 686,994 694,210 703,535 1986-2014 Sales 661,768 664,564 672,133 679,191 687,766 1997-2014 Transported 13,783 14,635 14,861 15,019 15,769 1997-2014 Commercial Number of Consumers 59,549 60,854 61,582 63,477 64,772 67,460 1986-2014 Sales 41,750 41,068 41,102 40,434 41,303 1998-2014 Transported 19,104 20,514 22,375 24,338 26,157 1998-2014 Average Consumption per Consumer (Thousand Cubic Ft.) 846 888 869 861 926 929 1967-2014 Industrial Number of Consumers 607 581 630 507 528

  11. Idaho Number of Natural Gas Consumers

    Gasoline and Diesel Fuel Update (EIA)

    42,277 346,602 350,871 353,963 359,889 367,394 1987-2014 Sales 346,602 350,871 353,963 359,889 367,394 1997-2014 Commercial Number of Consumers 38,245 38,506 38,912 39,202 39,722 40,229 1987-2014 Sales 38,468 38,872 39,160 39,681 40,188 1998-2014 Transported 38 40 42 41 41 1998-2014 Average Consumption per Consumer (Thousand Cubic Ft.) 412 390 433 404 465 422 1967-2014 Industrial Number of Consumers 187 184 178 179 183 189 1987-2014 Sales 108 103 105 109 115 1998-2014 Transported 76 75 74 74 74

  12. Iowa Number of Natural Gas Consumers

    Gasoline and Diesel Fuel Update (EIA)

    875,781 879,713 883,733 892,123 895,414 900,420 1987-2014 Sales 879,713 883,733 892,123 895,414 900,420 1997-2014 Commercial Number of Consumers 98,416 98,396 98,541 99,113 99,017 99,182 1987-2014 Sales 96,996 97,075 97,580 97,334 97,409 1998-2014 Transported 1,400 1,466 1,533 1,683 1,773 1998-2014 Average Consumption per Consumer (Thousand Cubic Ft.) 576 525 526 442 572 579 1967-2014 Industrial Number of Consumers 1,626 1,528 1,465 1,469 1,491 1,572 1987-2014 Sales 1,161 1,110 1,042 1,074 1,135

  13. Kansas Number of Natural Gas Consumers

    Gasoline and Diesel Fuel Update (EIA)

    855,454 853,842 854,730 854,800 858,572 861,092 1987-2014 Sales 853,842 854,730 854,779 858,546 861,066 1997-2014 Transported 0 0 21 26 26 2004-2014 Commercial Number of Consumers 84,715 84,446 84,874 84,673 84,969 85,867 1987-2014 Sales 78,310 78,559 78,230 78,441 79,231 1998-2014 Transported 6,136 6,315 6,443 6,528 6,636 1998-2014 Average Consumption per Consumer (Thousand Cubic Ft.) 384 377 378 301 391 425 1967-2014 Industrial Number of Consumers 7,793 7,664 7,954 7,970 7,877 7,429 1987-2014

  14. Alabama Number of Natural Gas Consumers

    Gasoline and Diesel Fuel Update (EIA)

    785,005 778,985 772,892 767,396 765,957 769,418 1986-2014 Sales 778,985 772,892 767,396 765,957 769,418 1997-2014 Transported 0 0 0 0 0 1997-2014 Commercial Number of Consumers 67,674 68,163 67,696 67,252 67,136 67,806 1986-2014 Sales 68,017 67,561 67,117 67,006 67,677 1998-2014 Transported 146 135 135 130 129 1998-2014 Average Consumption per Consumer (Thousand Cubic Ft.) 359 397 371 320 377 406 1967-2014 Industrial Number of Consumers 3,057 3,039 2,988 3,045 3,143 3,244 1986-2014 Sales 2,758

  15. Alaska Number of Natural Gas Consumers

    Gasoline and Diesel Fuel Update (EIA)

    120,124 121,166 121,736 122,983 124,411 126,416 1986-2014 Sales 121,166 121,736 122,983 124,411 126,416 1997-2014 Commercial Number of Consumers 13,215 12,998 13,027 13,133 13,246 13,399 1986-2014 Sales 12,673 12,724 13,072 13,184 13,336 1998-2014 Transported 325 303 61 62 63 1998-2014 Average Consumption per Consumer (Thousand Cubic Ft.) 1,258 1,225 1,489 1,515 1,411 1,338 1967-2014 Industrial Number of Consumers 3 3 5 3 3 1 1987-2014 Sales 2 2 3 2 1 1998-2014 Transported 1 3 0 1 0 1998-2014

  16. Arizona Number of Natural Gas Consumers

    Gasoline and Diesel Fuel Update (EIA)

    ,130,047 1,138,448 1,146,286 1,157,688 1,172,003 1,186,794 1986-2014 Sales 1,138,448 1,146,280 1,157,682 1,171,997 1,186,788 1997-2014 Transported 0 6 6 6 6 1997-2014 Commercial Number of Consumers 57,191 56,676 56,547 56,532 56,585 56,649 1986-2014 Sales 56,510 56,349 56,252 56,270 56,331 1998-2014 Transported 166 198 280 315 318 1998-2014 Average Consumption per Consumer (Thousand Cubic Ft.) 563 564 577 558 581 538 1967-2014 Industrial Number of Consumers 390 368 371 379 383 386 1987-2014

  17. Arkansas Number of Natural Gas Consumers

    Gasoline and Diesel Fuel Update (EIA)

    557,355 549,970 551,795 549,959 549,764 549,034 1986-2014 Sales 549,970 551,795 549,959 549,764 549,034 1997-2014 Commercial Number of Consumers 69,043 67,987 67,815 68,765 68,791 69,011 1986-2014 Sales 67,676 67,454 68,151 68,127 68,291 1998-2014 Transported 311 361 614 664 720 1998-2014 Average Consumption per Consumer (Thousand Cubic Ft.) 527 592 590 603 692 734 1967-2014 Industrial Number of Consumers 1,025 1,079 1,133 990 1,020 1,009 1986-2014 Sales 580 554 523 513 531 1998-2014 Transported

  18. Measurement of gas species, temperatures, coal burnout, and wall heat fluxes in a 200 MWe lignite-fired boiler with different overfire air damper openings

    SciTech Connect (OSTI)

    Jianping Jing; Zhengqi Li; Guangkui Liu; Zhichao Chen; Chunlong Liu

    2009-07-15

    Measurements were performed on a 200 MWe, wall-fired, lignite utility boiler. For different overfire air (OFA) damper openings, the gas temperature, gas species concentration, coal burnout, release rates of components (C, H, and N), furnace temperature, and heat flux and boiler efficiency were measured. Cold air experiments for a single burner were conducted in the laboratory. The double-swirl flow pulverized-coal burner has two ring recirculation zones starting in the secondary air region in the burner. As the secondary air flow increases, the axial velocity of air flow increases, the maxima of radial velocity, tangential velocity and turbulence intensity all increase, and the swirl intensity of air flow and the size of recirculation zones increase slightly. In the central region of the burner, as the OFA damper opening widens, the gas temperature and CO concentration increase, while the O{sub 2} concentration, NOx concentration, coal burnout, and release rates of components (C, H, and N) decrease, and coal particles ignite earlier. In the secondary air region of the burner, the O{sub 2} concentration, NOx concentration, coal burnout, and release rates of components (C, H, and N) decrease, and the gas temperature and CO concentration vary slightly. In the sidewall region, the gas temperature, O{sub 2} concentration, and NOx concentration decrease, while the CO concentration increases and the gas temperature varies slightly. The furnace temperature and heat flux in the main burning region decrease appreciably, but increase slightly in the burnout region. The NOx emission decreases from 1203.6 mg/m{sup 3} (6% O{sub 2}) for a damper opening of 0% to 511.7 mg/m{sup 3} (6% O{sub 2}) for a damper opening of 80% and the boiler efficiency decreases from 92.59 to 91.9%. 15 refs., 17 figs., 3 tabs.

  19. Tank Waste and Waste Processing | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Tank Waste and Waste Processing Tank Waste and Waste Processing Tank Waste and Waste Processing The Defense Waste Processing Facility set a record by producing 267 canisters filled with glassified waste in a year. New bubbler technology and other enhancements will increase canister production in the future. The Defense Waste Processing Facility set a record by producing 267 canisters filled with glassified waste in a year. New bubbler technology and other enhancements will increase canister

  20. Consumer's Guide: Get Your Power from the Sun

    DOE R&D Accomplishments [OSTI]

    Starrs, T.; Wenger, H.

    2003-12-01

    Photovoltaics; PV; Grid-Connected; Net Metering; Solar Electricity; Consumer Guides; Solar Energy - Photovoltaics

  1. Hanford Site annual dangerous waste report: Volume 4, Waste Management Facility report, Radioactive mixed waste

    SciTech Connect (OSTI)

    1994-12-31

    This report contains information on radioactive mixed wastes at the Hanford Site. Information consists of shipment date, physical state, chemical nature, waste description, handling method and containment vessel, waste number, waste designation and amount of waste.

  2. Hanford Site annual dangerous waste report: Volume 2, Generator dangerous waste report, radioactive mixed waste

    SciTech Connect (OSTI)

    1994-12-31

    This report contains information on radioactive mixed wastes at the Hanford Site. Information consists of shipment date, physical state, chemical nature, waste description, waste number, waste designation, weight, and waste designation.

  3. QER- Comment of Process Gas Consumer Group

    Broader source: Energy.gov [DOE]

    Hello, Attached are comments offered by the Process Gas Consumers Group in response to the August 25, 2014 Federal Register Notice soliciting comments on issues related to the Quadrennial Energy Review. Please let us know if you have any questions or would like any additional information.

  4. Washington Number of Natural Gas Consumers

    Gasoline and Diesel Fuel Update (EIA)

    059,239 1,067,979 1,079,277 1,088,762 1,102,318 1,118,193 1987-2014 Sales 1,067,979 1,079,277 1,088,762 1,102,318 1,118,193 1997-2014 Commercial Number of Consumers 98,965 99,231...

  5. Minnesota Number of Natural Gas Consumers

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    1,436,063 1,445,824 1,459,134 1,472,663 1997-2014 Commercial Number of Consumers 131,801 132,163 132,938 134,394 135,557 136,382 1987-2014 Sales 131,986 132,697 134,165 135,235...

  6. West Virginia Number of Natural Gas Consumers

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    343,837 344,131 342,069 340,256 340,102 338,652 1987-2014 Sales 344,125 342,063 340,251 340,098 338,649 1997-2014 Transported 6 6 5 4 3 1997-2014 Commercial Number of Consumers...

  7. Consumer preferences for electric vehicles. Final report

    SciTech Connect (OSTI)

    Garrison, W.L.; Calfee, J.E.; Bruck, H.W.

    1986-06-01

    A small-sample survey of consumer preferences for a second car - featuring both conventional and electric vehicle choices - indicates a proelectric bias. The potential of electric cars in the utility market largely depends on dramatic improvements in battery technology and the right mix of electricity and gasoline prices.

  8. North Carolina Number of Natural Gas Consumers

    Gasoline and Diesel Fuel Update (EIA)

    ,102,001 1,115,532 1,128,963 1,142,947 1,161,398 1,183,152 1987-2014 Sales 1,115,532 1,128,963 1,142,947 1,161,398 1,183,152 1997-2014 Commercial Number of Consumers 113,630...

  9. Maine Number of Natural Gas Consumers

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    20,806 21,142 22,461 23,555 24,765 27,047 1987-2014 Sales 21,141 22,461 23,555 24,765 27,047 1997-2014 Transported 1 0 0 0 0 2010-2014 Commercial Number of Consumers 8,815 9,084...

  10. South Dakota Number of Natural Gas Consumers

    Gasoline and Diesel Fuel Update (EIA)

    173,856 176,204 179,042 1997-2014 Commercial Number of Consumers 22,071 22,267 22,570 22,955 23,214 23,591 1987-2014 Sales 22,028 22,332 22,716 22,947 23,330 1998-2014...

  11. Waste Isolation Pilot Plant

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Waste Isolation Pilot Plant AFFIDAVIT FOR SURVIVING RELATIVE STATE ) ) ss: COUNTY OF ) That I, , am the...

  12. EV Everywhere Consumer Acceptance Workshop: Breakout Group B Report Out |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Workshop: Breakout Group B Report Out EV Everywhere Consumer Acceptance Workshop: Breakout Group B Report Out Group B breakout session presentation for the EV Everywhere Grand Challenge: Consumer Acceptance and Charging Infrastructure Workshop on July 30, 2012 held at the LAX Marriott, Los Angeles, CA PDF icon Group B - Consumer Acceptance Report Out.pdf More Documents & Publications EV Everywhere Consumer Acceptance and Charging Infrastructure Workshop: Consumer

  13. EV Everywhere Consumer Acceptance and Charging Infrastructure Workshop:

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Consumer Acceptance Group A Breakout Report | Department of Energy Consumer Acceptance Group A Breakout Report EV Everywhere Consumer Acceptance and Charging Infrastructure Workshop: Consumer Acceptance Group A Breakout Report Breakout session presentation for the EV Everywhere Grand Challenge: Consumer Acceptance and Charging Infrastructure Workshop on July 30, 2012 held at the LAX Marriott, Los Angeles, CA PDF icon group_a_report_out_caci.pdf More Documents & Publications EV Everywhere

  14. Waste Package Lifting Calculation

    SciTech Connect (OSTI)

    H. Marr

    2000-05-11

    The objective of this calculation is to evaluate the structural response of the waste package during the horizontal and vertical lifting operations in order to support the waste package lifting feature design. The scope of this calculation includes the evaluation of the 21 PWR UCF (pressurized water reactor uncanistered fuel) waste package, naval waste package, 5 DHLW/DOE SNF (defense high-level waste/Department of Energy spent nuclear fuel)--short waste package, and 44 BWR (boiling water reactor) UCF waste package. Procedure AP-3.12Q, Revision 0, ICN 0, calculations, is used to develop and document this calculation.

  15. Infectious waste feed system

    DOE Patents [OSTI]

    Coulthard, E. James

    1994-01-01

    An infectious waste feed system for comminuting infectious waste and feeding the comminuted waste to a combustor automatically without the need for human intervention. The system includes a receptacle for accepting waste materials. Preferably, the receptacle includes a first and second compartment and a means for sealing the first and second compartments from the atmosphere. A shredder is disposed to comminute waste materials accepted in the receptacle to a predetermined size. A trough is disposed to receive the comminuted waste materials from the shredder. A feeding means is disposed within the trough and is movable in a first and second direction for feeding the comminuted waste materials to a combustor.

  16. Understanding radioactive waste

    SciTech Connect (OSTI)

    Murray, R.L.

    1981-12-01

    This document contains information on all aspects of radioactive wastes. Facts are presented about radioactive wastes simply, clearly and in an unbiased manner which makes the information readily accessible to the interested public. The contents are as follows: questions and concerns about wastes; atoms and chemistry; radioactivity; kinds of radiation; biological effects of radiation; radiation standards and protection; fission and fission products; the Manhattan Project; defense and development; uses of isotopes and radiation; classification of wastes; spent fuels from nuclear reactors; storage of spent fuel; reprocessing, recycling, and resources; uranium mill tailings; low-level wastes; transportation; methods of handling high-level nuclear wastes; project salt vault; multiple barrier approach; research on waste isolation; legal requiremnts; the national waste management program; societal aspects of radioactive wastes; perspectives; glossary; appendix A (scientific American articles); appendix B (reference material on wastes). (ATT)

  17. An overview of agriforestry waste production and use in Louisiana

    SciTech Connect (OSTI)

    Kleit, S.; Hoop, C.F. de; Chang, S.J.

    1994-12-31

    Agriculture and forestry are the second largest employers in the state of Louisiana. Natural by-products of these industries are biomass waste in the form of bark, wood chips, sawdust, cotton gin trash, rice hulls and sugar bagasse. Disposing of these wastes poses problems for the air and water. One popular waste management solution is to use them for fuel. To measure the potential for using biomass waste for fuel and other uses, a study was conducted of sugar cane processors, cotton ginners, rice processors and the primary and secondary wood processors in Louisiana. The study revealed that while some firms use waste for their own boilers, or sell it to others for fuel, there is still unused waste. There are many reasons for this including the cost of competing energy sources, lack of marketing innovation and the economies of scale. The study`s mission includes identifying new areas for utilizing waste. To facilitate these innovations, and bridge buyers with sellers of biomass waste, a geographic information system (GIS) was developed to map all sites claiming to produce and/or consume wood waste, as well as processors of cotton gin trash, rice hulls and sugar bagasse. These data are layered with timber supply data from the U.S. Forest Service.

  18. Radioactive Waste Management Manual

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1999-07-09

    This Manual further describes the requirements and establishes specific responsibilities for implementing DOE O 435.1, Radioactive Waste Management, for the management of DOE high-level waste, transuranic waste, low-level waste, and the radioactive component of mixed waste. Change 1 dated 6/19/01 removes the requirement that Headquarters is to be notified and the Office of Environment, Safety and Health consulted for exemptions for use of non-DOE treatment facilities. Certified 1-9-07.

  19. Managing lead-based paint abatement wastes

    SciTech Connect (OSTI)

    Steele, N.L.C.

    1994-12-31

    Renovation, remodeling, demolition, and surface preparation for painting, in addition to specified lead abatement, are all activities that have the potential to produce hazardous wastes if a property was painted with lead-based paint. Lead-based paint was used on residential structures until 1978, when most residential uses were banned by the Consumer Products Safety Council. Prior to the 1950s, paints for residential uses may have contained up to 50% lead by weight. Today, commercial and military paints may still contain lead and can be used on non-residential structures. The lead content of residential paints is limited to 0.06% lead (by weight) in the dried film. This paper provides an overview of some of the information needed to properly manage lead-based paint abatement wastes. The issues covered in this paper include waste classification, generator status, treatment, and land disposal restrictions. The author assumes that the reader is familiar with the provision of the Health and Safety Code and the California Code of Regulations that pertain to generation and management of hazardous wastes. Citations provided herein do not constitute an exhaustive list of all the regulations with which a generator of hazardous waste must comply.

  20. Waste Isolation Pilot Plant Nitrate Salt Bearing Waste Container...

    Office of Environmental Management (EM)

    Nitrate Salt Bearing Waste Container Isolation Plan Waste Isolation Pilot Plant Nitrate Salt Bearing Waste Container Isolation Plan The purpose of this document is to provide the ...

  1. Waste Processing | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Processing Waste Processing Workers process and repackage waste at the Transuranic Waste Processing Center’s Cask Processing Enclosure. Workers process and repackage waste at the Transuranic Waste Processing Center's Cask Processing Enclosure. Transuranic waste, or TRU, is one of several types of waste handled by Oak Ridge's EM program. This waste contains manmade elements heavier than uranium, hence the name "trans" or "beyond" uranium. Transuranic waste material

  2. 2015-12-29 Consumer Furnaces and Boilers Test Procedures Final Rule

    Broader source: Energy.gov [DOE]

    Energy Conservation Program for Consumer Products: Test Procedures for Consumer Furnaces and Boilers

  3. Michigan Number of Natural Gas Consumers

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    3,169,026 3,152,468 3,153,895 3,161,033 3,180,349 3,192,807 1987-2014 Sales 2,952,550 2,946,507 2,939,693 2,950,315 2,985,315 1997-2014 Transported 199,918 207,388 221,340 230,034 207,492 1997-2014 Commercial Number of Consumers 252,017 249,309 249,456 249,994 250,994 253,127 1987-2014 Sales 217,325 213,995 212,411 213,532 219,240 1998-2014 Transported 31,984 35,461 37,583 37,462 33,887 1998-2014 Average Consumption per Consumer (Thousand Cubic Ft.) 649 611 656 578 683 736 1967-2014 Industrial

  4. Virginia Number of Natural Gas Consumers

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    1,124,717 1,133,103 1,145,049 1,155,636 1,170,161 1,183,894 1987-2014 Sales 1,076,080 1,081,581 1,088,340 1,102,646 1,114,224 1997-2014 Transported 57,023 63,468 67,296 67,515 69,670 1997-2014 Commercial Number of Consumers 95,704 95,401 96,086 96,503 97,499 98,741 1987-2014 Sales 85,521 85,522 85,595 86,618 87,470 1998-2014 Transported 9,880 10,564 10,908 10,881 11,271 1998-2014 Average Consumption per Consumer (Thousand Cubic Ft.) 707 722 669 624 699 731 1967-2014 Industrial Number of

  5. New Jersey Number of Natural Gas Consumers

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    2,635,324 2,649,282 2,659,205 2,671,308 2,686,452 2,705,274 1987-2014 Sales 2,556,514 2,514,492 2,467,520 2,428,664 2,482,281 1997-2014 Transported 92,768 144,713 203,788 257,788 222,993 1997-2014 Commercial Number of Consumers 234,125 234,158 234,721 237,602 236,746 240,083 1987-2014 Sales 200,680 196,963 192,913 185,030 186,591 1998-2014 Transported 33,478 37,758 44,689 51,716 53,492 1998-2014 Average Consumption per Consumer (Thousand Cubic Ft.) 771 775 817 735 726 842 1967-2014 Industrial

  6. Ohio Number of Natural Gas Consumers

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    3,253,184 3,240,619 3,236,160 3,244,274 3,271,074 3,283,869 1987-2014 Sales 1,418,217 1,352,292 855,055 636,744 664,015 1997-2014 Transported 1,822,402 1,883,868 2,389,219 2,634,330 2,619,854 1997-2014 Commercial Number of Consumers 270,596 268,346 268,647 267,793 269,081 269,758 1987-2014 Sales 92,621 85,877 51,308 35,966 37,035 1998-2014 Transported 175,725 182,770 216,485 233,115 232,723 1998-2014 Average Consumption per Consumer (Thousand Cubic Ft.) 594 583 601 543 625 679 1967-2014

  7. California Number of Natural Gas Consumers

    Gasoline and Diesel Fuel Update (EIA)

    0,510,950 10,542,584 10,625,190 10,681,916 10,754,908 10,781,720 1986-2014 Sales 10,469,734 10,545,585 10,547,706 10,471,814 10,372,973 1997-2014 Transported 72,850 79,605 134,210 283,094 408,747 1997-2014 Commercial Number of Consumers 441,806 439,572 440,990 442,708 444,342 443,115 1986-2014 Sales 399,290 390,547 387,760 387,806 385,878 1998-2014 Transported 40,282 50,443 54,948 56,536 57,237 1998-2014 Average Consumption per Consumer (Thousand Cubic Ft.) 561 564 558 572 574 536 1967-2014

  8. Georgia Number of Natural Gas Consumers

    Gasoline and Diesel Fuel Update (EIA)

    1,744,934 1,740,587 1,740,006 1,739,543 1,805,425 1,755,847 1986-2014 Sales 321,290 321,515 319,179 377,652 315,562 1997-2014 Transported 1,419,297 1,418,491 1,420,364 1,427,773 1,440,285 1997-2014 Commercial Number of Consumers 127,347 124,759 123,454 121,243 126,060 122,573 1986-2014 Sales 32,318 32,162 31,755 36,556 31,845 1998-2014 Transported 92,441 91,292 89,488 89,504 90,728 1998-2014 Average Consumption per Consumer (Thousand Cubic Ft.) 421 482 458 428 454 482 1967-2014 Industrial Number

  9. Illinois Number of Natural Gas Consumers

    Gasoline and Diesel Fuel Update (EIA)

    ,839,438 3,842,206 3,855,942 3,878,806 3,838,120 3,868,501 1987-2014 Sales 3,568,120 3,594,047 3,605,796 3,550,217 3,570,339 1997-2014 Transported 274,086 261,895 273,010 287,903 298,162 1997-2014 Commercial Number of Consumers 294,226 291,395 293,213 297,523 282,743 294,391 1987-2014 Sales 240,197 241,582 244,480 225,913 235,097 1998-2014 Transported 51,198 51,631 53,043 56,830 59,294 1998-2014 Average Consumption per Consumer (Thousand Cubic Ft.) 757 680 735 632 816 837 1967-2014 Industrial

  10. Streamlined ratemaking: recognizing challenges for consumers

    SciTech Connect (OSTI)

    Pollock, Jeffry

    2010-11-15

    Streamlined ratemaking can be problematic if improper ratemaking practices are employed, consumers are forced to bear risks that have traditionally been born by utilities and their shareholders, and utilities are no longer strongly motivated to provide safe and reliable service at the lowest reasonable cost. Measures can be taken that help preserve the regulator's role as a surrogate for competition, thereby ensuring that rates are both just and reasonable. (author)

  11. Radioactive Waste Management Manual

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1999-07-09

    This Manual further describes the requirements and establishes specific responsibilities for implementing DOE O 435.1, Radioactive Waste Management, for the management of DOE high-level waste, transuranic waste, low-level waste, and the radioactive component of mixed waste. The purpose of the Manual is to catalog those procedural requirements and existing practices that ensure that all DOE elements and contractors continue to manage DOE's radioactive waste in a manner that is protective of worker and public health and safety, and the environment. Does not cancel other directives.

  12. Waste-to-Energy: Waste Management and Energy Production Opportunities...

    Office of Environmental Management (EM)

    Waste-to-Energy: Waste Management and Energy Production Opportunities Waste-to-Energy: Waste Management and Energy Production Opportunities July 24, 2014 9:00AM to 3:30PM EDT U.S. ...

  13. 2014-09-19 Issuance: Energy Conservation Program for Consumer...

    Energy Savers [EERE]

    Program for Consumer Products: Test Procedure for Ceiling Fans;NOPR 2014-09-19 Issuance: Energy Conservation Program for Consumer Products: Test Procedure for Ceiling Fans;NOPR ...

  14. Texas Natural Gas Number of Residential Consumers (Number of...

    Gasoline and Diesel Fuel Update (EIA)

    Residential Consumers (Number of Elements) Texas Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

  15. Texas Natural Gas Number of Commercial Consumers (Number of Elements...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Commercial Consumers (Number of Elements) Texas Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

  16. Texas Price of Natural Gas Sold to Commercial Consumers (Dollars...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sold to Commercial Consumers (Dollars per Thousand Cubic Feet) Texas Price of Natural Gas Sold to Commercial Consumers (Dollars per Thousand Cubic Feet) Year Jan Feb Mar Apr May...

  17. West Virginia Heat Content of Natural Gas Deliveries to Consumers...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot) West Virginia Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot) Year Jan Feb Mar Apr...

  18. Connecticut Natural Gas Number of Commercial Consumers (Number...

    U.S. Energy Information Administration (EIA) Indexed Site

    Commercial Consumers (Number of Elements) Connecticut Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

  19. Connecticut Natural Gas Number of Residential Consumers (Number...

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential Consumers (Number of Elements) Connecticut Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6...

  20. Help Consumers Save Money by Saving Energy | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Help Consumers Save Money by Saving Energy Help Consumers Save Money by Saving Energy July 11, 2011 - 2:21pm Addthis Secretary Chu Secretary Chu Former Secretary of Energy What ...

  1. North Carolina Natural Gas Number of Commercial Consumers (Number...

    Gasoline and Diesel Fuel Update (EIA)

    Commercial Consumers (Number of Elements) North Carolina Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6...

  2. Vermont Natural Gas Deliveries to Electric Power Consumers (Million...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Deliveries to Electric Power Consumers (Million Cubic Feet) Vermont Natural Gas Deliveries to Electric Power Consumers (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep...

  3. Alaska Natural Gas Deliveries to Electric Power Consumers (Million...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Deliveries to Electric Power Consumers (Million Cubic Feet) Alaska Natural Gas Deliveries to Electric Power Consumers (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep...

  4. Maine Natural Gas Deliveries to Electric Power Consumers (Million...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Deliveries to Electric Power Consumers (Million Cubic Feet) Maine Natural Gas Deliveries to Electric Power Consumers (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep...

  5. Iowa Natural Gas Deliveries to Electric Power Consumers (Million...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Deliveries to Electric Power Consumers (Million Cubic Feet) Iowa Natural Gas Deliveries to Electric Power Consumers (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep...

  6. Florida Natural Gas Deliveries to Electric Power Consumers (Million...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Deliveries to Electric Power Consumers (Million Cubic Feet) Florida Natural Gas Deliveries to Electric Power Consumers (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep...

  7. New York Natural Gas Number of Commercial Consumers (Number of...

    U.S. Energy Information Administration (EIA) Indexed Site

    Commercial Consumers (Number of Elements) New York Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

  8. New York Natural Gas Number of Residential Consumers (Number...

    Gasoline and Diesel Fuel Update (EIA)

    Residential Consumers (Number of Elements) New York Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

  9. Indiana Natural Gas Number of Industrial Consumers (Number of...

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Consumers (Number of Elements) Indiana Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

  10. Waste Treatment and Immobilation Plant HLW Waste Vitrification Facility |

    Broader source: Energy.gov (indexed) [DOE]

    Department of Energy HLW Waste Vitrification Facility PDF icon Summary - WTP HLW Waste Vitrification Facility More Documents & Publications Waste Treatment and Immobilization Plant (WTP) Analytical Laboratory (LAB), Balance of Facilities (BOF) and Low-Activity Waste Vitrification Facilities (LAW) Independent Oversight Activity Report, Hanford Waste Treatment and Immobilization Plant - November 2013 Waste Treatment and Immobilation Plant Pretreatment Facility

  11. Hanford Tank Waste Residuals

    Office of Environmental Management (EM)

    Hanford Tank Waste Residuals DOE HLW Corporate Board November 6, 2008 Chris Kemp, DOE ORP Bill Hewitt, YAHSGS LLC Hanford Tanks & Tank Waste * Single-Shell Tanks (SSTs) - 27 million ...

  12. Nuclear Waste Partnership, LLC

    Office of Environmental Management (EM)

    Nuclear Waste Partnership, LLC Waste Isolation Pilot Plant Report from the Department of Energy Voluntary Protection Program Onsite Review March 17-27, 2015 U.S. Department of...

  13. Transuranic (TRU) Waste

    Broader source: Energy.gov [DOE]

    Defined by the WIPP Land Withdrawal Act as "waste containing more than 100 nanocuries of alpha-emitting transuranic isotopes per gram of waste with half-lives greater than 20 years, except for (A)...

  14. Hanford Dangerous Waste Permit

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Waste Treatment and Immobilization Plant (vit plant) Operating Unit 10 Aerial view of construction, July 2011 Where will the waste go? LAW canisters will go to shallow disposal at...

  15. Waste Isolation Pilot Plant

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Contact Us Search About WIPP The nation's only deep geologic repository for nuclear waste The U.S. Department of Energy's (DOE) Waste Isolation Pilot Plant (WIPP) is a deep...

  16. New Efficiency Standards Mean Big Energy Savings for Consumers | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Efficiency Standards Mean Big Energy Savings for Consumers New Efficiency Standards Mean Big Energy Savings for Consumers May 16, 2012 - 4:22pm Addthis New Efficiency Standards Mean Big Energy Savings for Consumers April Saylor April Saylor Former Digital Outreach Strategist, Office of Public Affairs What does this mean for me? By 2030, energy efficiency standards passed since 2009 will save nearly $350 billion total for consumers. Energy efficiency standards for residential

  17. Self-Consuming Downhole Packer | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Consuming Downhole Packer Self-Consuming Downhole Packer Self-Consuming Downhole Packer presentation at the April 2013 peer review meeting held in Denver, Colorado. PDF icon self_consuming_packer_peer2013.pdf More Documents & Publications track 3: enhanced geothermal systems (EGS) | geothermal 2015 peer review track 4: enhanced geothermal systems (EGS) | geothermal 2015 peer review Complete Fiber/Copper Cable Solution for Long-Term Temperature and Pressure Measurement in Supercritical

  18. Vehicle Technologies Office Merit Review 2015: Consumer Vehicle Technology

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Data | Department of Energy Consumer Vehicle Technology Data Vehicle Technologies Office Merit Review 2015: Consumer Vehicle Technology Data Presentation given by National Renewable Energy Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about consumer vehicle technology data. PDF icon van003_singer_2015_o.pdf More Documents & Publications Vehicle Technologies Office Merit Review 2014: Consumer Vehicle

  19. Reply Comments by the National Association of State Utility Consumer

    Energy Savers [EERE]

    Advocates | Department of Energy by the National Association of State Utility Consumer Advocates Reply Comments by the National Association of State Utility Consumer Advocates The National Association of State Utility Consumer Advocates ("NASUCA") submits these reply comments in response to the United States Department of Energy's ("DOE") Request for Information ("RFI") entitled "Implementing the National Broadband Plan by Empowering Consumers and the Smart

  20. Sustainable Energy Resources for Consumers (SERC) - Solar Photovoltaic...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Sustainable Energy Resources for Consumers (SERC) - Solar Hot Water Recording of SERC Monitoring Technologies - Solar Photovoltaics ...

  1. ISSUANCE 2015-05-12: Energy Conservation Program for Consumer Products and Certain Commercial and Industrial Equipment: Test Procedures for Consumer and Commercial Water Heaters

    Broader source: Energy.gov [DOE]

    Energy Conservation Program for Consumer Products and Certain Commercial and Industrial Equipment: Test Procedures for Consumer and Commercial Water Heaters

  2. Waste Specification Records - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Specification Records About Us Hanford Site Solid Waste Acceptance Program What's New Acceptance Criteria Acceptance Process Becoming a new Hanford Customer Annual Waste Forecast and Funding Arrangements Waste Stream Approval Waste Shipment Approval Waste Receipt Quality Assurance Program Waste Specification Records Tools Points of Contact Waste Specification Records Email Email Page | Print Print Page |Text Increase Font Size Decrease Font Size Waste Specification Records (WSRds) are the tool

  3. Tank Waste Strategy Update

    Office of Environmental Management (EM)

    Tank Waste Subcommittee www.em.doe.gov safety performance cleanup closure E M Environmental Management 1 Tank Waste Subcommittee Ken Picha Office of Environmental Management December 5, 2011 Background Tank Waste Subcommittee (TWS)originally chartered, in response to Secretary's request to perform a technical review of Waste Treatment and Immobilization Plant (WTP) in May 2010. Three tasks: o Verification of closure of WTP External Flowsheet Review Team (EFRT) issues. o WTP Technical Design

  4. Waste Confidence Discussion

    Office of Environmental Management (EM)

    Long-Term Waste Confidence Update Christine Pineda Office of Nuclear Material Safety and Safeguards U.S. Nuclear Regulatory Commission National Transportation Stakeholders Forum May 2012 ♦ Knoxville, Tennessee Long-Term Update Draft Report, "Background and Preliminary Assumptions for an Environmental Impact Statement- Long-Term Waste Confidence Update" Elements of the Long-Term Update - Draft environmental impact statement - Draft Waste Confidence Decision - Proposed Waste Confidence

  5. Solid waste handling

    SciTech Connect (OSTI)

    Parazin, R.J.

    1995-05-31

    This study presents estimates of the solid radioactive waste quantities that will be generated in the Separations, Low-Level Waste Vitrification and High-Level Waste Vitrification facilities, collectively called the Tank Waste Remediation System Treatment Complex, over the life of these facilities. This study then considers previous estimates from other 200 Area generators and compares alternative methods of handling (segregation, packaging, assaying, shipping, etc.).

  6. Integrated solid waste management of Sevierville, Tennessee

    SciTech Connect (OSTI)

    1995-11-01

    The subject document reports the results of an in-depth investigation of the fiscal year 1992 cost of the City of Sevierville, Tennessee integrated municipal solid waste management (IMSWM) system, the energy consumed to operate the system, and the environmental performance requirements for each of the system`s waste-processing and disposal facilities. Actual data from records kept by participants is reported in this document. Every effort was made to minimize the use of assumptions, and no attempt is made to interpret the data reported. Analytical approaches are documented so that interested analysts may perform manipulation or further analysis of the data. As such, the report is a reference document for MSW management professionals who are interested in the actual costs and energy consumption for a one-year period, of an operating IMSWM systems.

  7. Waste disposal package

    DOE Patents [OSTI]

    Smith, M.J.

    1985-06-19

    This is a claim for a waste disposal package including an inner or primary canister for containing hazardous and/or radioactive wastes. The primary canister is encapsulated by an outer or secondary barrier formed of a porous ceramic material to control ingress of water to the canister and the release rate of wastes upon breach on the canister. 4 figs.

  8. Hanford Tank Waste Retrieval,

    Office of Environmental Management (EM)

    Tank Waste Retrieval, Treatment, and Disposition Framework September 24, 2013 U.S. Department of Energy Washington, D.C. 20585 Hanford Tank Waste Retrieval, Treatment, and Disposition Framework This page intentionally left blank. ii Hanford Tank Waste Retrieval, Treatment, and Disposition Framework CONTENTS 1. Introduction ............................................................................................................................................. 1 Immobilizing Radioactive Tank

  9. Waste Heat Recovery

    Broader source: Energy.gov (indexed) [DOE]

    DRAFT - PRE-DECISIONAL - DRAFT 1 Waste Heat Recovery 1 Technology Assessment 2 Contents 3 1. Introduction to the Technology/System ............................................................................................... 2 4 1.1. Introduction to Waste Heat Recovery .......................................................................................... 2 5 1.2. Challenges and Barriers for Waste Heat Recovery ..................................................................... 13 6 1.3.

  10. Electric Consumers Protection Act of 1986

    SciTech Connect (OSTI)

    Echeverria, J.D.

    1987-01-01

    An overview of the Electric Consumers Protection Act of 1986 identifies it as the most important federal legislation dealing with hydroelectric development standards since the Federal Water Power Act of 1920. The author summarizes its major components, and identifies some of the existing and potential issues relation to its implementation. The most controversial issue is the selection of a new licensee for a project once the original licensee's term has expired. Other issues concern environmental criteria, comprehensive planning, amendments to the Public Utility Regulatory Policies Act, and enforcement procedures. The article concludes with a summary of miscellaneous provisions, including antitrust, modifications and time calculations of projects, wheeling, and other concerns.

  11. Multiple use of waste catalysts with and without regeneration for waste polymer cracking

    SciTech Connect (OSTI)

    Salmiaton, A.; Garforth, A.A.

    2011-06-15

    Waste plastics contain a substantial number of valuable chemicals. The wastes from post-consumer as well as from industrial production can be recycled to valuable chemical feedstock, which can be used in refineries and/or petrochemical industries. This chemical recycling process is an ideal approach in recycling the waste for a better environment. Polymer cracking using a laboratory fluidised bed reactor concentrated on the used highly contaminated catalyst, E-Cat 2. Even though E-Cat 2 had low activity due to fewer acid sites, the products yielded were similar with amorphous ASA and were far better than thermal cracking. The high levels of heavy metals, namely nickel and vanadium, deposited during their lifetime as an FCC catalyst, did not greatly affect on the catalyst activity. It was also shown that E-Cat 2 could be used with and without regeneration. Although there was more deactivation when there was no regeneration step, the yield of gases (C{sub 2}-C{sub 7}) remained fairly constant. For the first time, these results indicate that 'waste' FCC catalyst (E-Cat) is a good candidate for future feedstock recycling of polymer waste. The major benefits of using E-Cat are a low market price, the ability to tolerate reuse and regeneration capacity.

  12. Municipal waste processing apparatus

    DOE Patents [OSTI]

    Mayberry, J.L.

    1988-04-13

    This invention relates to apparatus for processing municipal waste, and more particularly to vibrating mesh screen conveyor systems for removing grit, glass, and other noncombustible materials from dry municipal waste. Municipal waste must be properly processed and disposed of so that it does not create health risks to the community. Generally, municipal waste, which may be collected in garbage trucks, dumpsters, or the like, is deposited in processing areas such as landfills. Land and environmental controls imposed on landfill operators by governmental bodies have increased in recent years, however, making landfill disposal of solid waste materials more expensive. 6 figs.

  13. RH TRU Waste Program

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Remote-Handled Transuranic Waste Program After seven years and more than 5,000 safe shipments of contact-handled (CH) transuranic (TRU) waste, the Waste Isolation Pilot Plant is now also receiving remote-handled (RH) TRU waste. In October 2006, the New Mexico Environment Department (NMED) approved the U.S. Department of Energy's plans for disposal of RH-TRU waste at WIPP. The Environmental Protection Agency (EPA) gave its approval in 2004. Located in the remote desert of southeastern New Mexico,

  14. Radioactive Waste Management Manual

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1999-07-09

    This Manual further describes the requirements and establishes specific responsibilities for implementing DOE O 435.1, Radioactive Waste Management, for the management of DOE high-level waste, transuranic waste, low-level waste, and the radioactive component of mixed waste. Change 1 dated 6/19/01 removes the requirement that Headquarters is to be notified and the Office of Environment, Safety and Health consulted for exemptions for use of non-DOE treatment facilities. Certified 1-9-07. Admin Chg 2, dated 6-8-11, supersedes DOE M 435.1-1 Chg 1.

  15. Mixed waste: Proceedings

    SciTech Connect (OSTI)

    Moghissi, A.A.; Blauvelt, R.K.; Benda, G.A.; Rothermich, N.E.

    1993-12-31

    This volume contains the peer-reviewed and edited versions of papers submitted for presentation a the Second International Mixed Waste Symposium. Following the tradition of the First International Mixed Waste Symposium, these proceedings were prepared in advance of the meeting for distribution to participants. The symposium was organized by the Mixed Waste Committee of the American Society of Mechanical Engineers. The topics discussed at the symposium include: stabilization technologies, alternative treatment technologies, regulatory issues, vitrification technologies, characterization of wastes, thermal technologies, laboratory and analytical issues, waste storage and disposal, organic treatment technologies, waste minimization, packaging and transportation, treatment of mercury contaminated wastes and bioprocessing, and environmental restoration. Individual abstracts are catalogued separately for the data base.

  16. A comparative assessment of waste incinerators in the UK

    SciTech Connect (OSTI)

    Nixon, J.D.; Wright, D.G.; Dey, P.K.; Ghosh, S.K.; Davies, P.A.

    2013-11-15

    Highlights: We evaluate operational municipal solid waste incinerators in the UK. The supply chain of four case study plants are examined and compared in detail. Technical, financial and operational data has been gathered for the four plants. We suggest the best business practices for waste incinerators. Appropriate strategy choices are the major difficulties for waste to energy plants. - Abstract: The uptake in Europe of Energy from Waste (EfW) incinerator plants has increased rapidly in recent years. In the UK, 25 municipal waste incinerators with energy recovery are now in operation; however, their waste supply chains and business practices vary significantly. With over a hundred more plant developments being considered it is important to establish best business practices for ensuring efficient environmental and operational performance. By reviewing the 25 plants we identify four suitable case study plants to compare technologies (moving grate, fluidised bed and rotary kiln), plant economics and operations. Using data collected from annual reports and through interviews and site visits we provide recommendations for improving the supply chain for waste incinerators and highlight the current issues and challenges faced by the industry. We find that plants using moving grate have a high availability of 8792%. However, compared to the fluidised bed and rotary kiln, quantities of bottom ash and emissions of hydrogen chloride and carbon monoxide are high. The uptake of integrated recycling practices, combined heat and power, and post incineration non-ferrous metal collections needs to be increased among EfW incinerators in the UK. We conclude that one of the major difficulties encountered by waste facilities is the appropriate selection of technology, capacity, site, waste suppliers and heat consumers. This study will be of particular value to EfW plant developers, government authorities and researchers working within the sector of waste management.

  17. Laboratory Waste | Sample Preparation Laboratories

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Laboratory Waste Sharps Broken Glass Containment Hazardous Waste All waste produced in the Sample Prep Labs should be appropriately disposed of at SLAC. You are prohibited to transport waste back to your home institution. Designated areas exist in the labs for sharps, broken glass, and hazardous waste. Sharps, broken glass, and hazardous waste must never be disposed of in the trash cans or sink drains. Containment Bottles, jars, and plastic bags are available for containing chemical waste. Place

  18. Dynamically limiting energy consumed by cooling apparatus

    DOE Patents [OSTI]

    Chainer, Timothy J.; David, Milnes P.; Iyengar, Madhusudan K.; Parida, Pritish R.; Schmidt, Roger R.; Schultz, Mark D.

    2015-05-26

    Cooling apparatuses and methods are provided which include one or more coolant-cooled structures associated with an electronics rack, a coolant loop coupled in fluid communication with one or more passages of the coolant-cooled structure(s), one or more heat exchange units coupled to facilitate heat transfer from coolant within the coolant loop, and N controllable components associated with the coolant loop or the heat exchange unit(s), wherein N.gtoreq.1. The N controllable components facilitate circulation of coolant through the coolant loop or transfer of heat from the coolant via the heat exchange unit(s). A controller is coupled to the N controllable components, and dynamically adjusts operation of the N controllable components, based on Z input parameters and one or more specified constraints, to provide a specified cooling to the coolant-cooled structure(s), while limiting energy consumed by the N controllable components, wherein Z.gtoreq.1.

  19. Dynamically limiting energy consumed by cooling apparatus

    DOE Patents [OSTI]

    Chainer, Timothy J.; David, Milnes P.; Iyengar, Madhusudan K.; Parida, Pritish R.; Schmidt, Roger R.; Schultz, Mark D.

    2015-06-09

    Cooling methods are provided which include providing: one or more coolant-cooled structures associated with an electronics rack, a coolant loop coupled in fluid communication with one or more passages of the coolant-cooled structure(s), one or more heat exchange units coupled to facilitate heat transfer from coolant within the coolant loop, and N controllable components associated with the coolant loop or the heat exchange unit(s), wherein N.gtoreq.1. The N controllable components facilitate circulation of coolant through the coolant loop or transfer of heat from the coolant via the heat exchange unit(s). A controller is also provided to dynamically adjust operation of the N controllable components, based on Z input parameters and one or more specified constraints, and provide a specified cooling to the coolant-cooled structure(s), while limiting energy consumed by the N controllable components, wherein Z.gtoreq.1.

  20. Home Energy Displays. Consumer Adoption and Response

    SciTech Connect (OSTI)

    LaMarche, Janelle; Cheney, K.; Akers, C.; Roth, K.; Sachs, O.

    2012-12-01

    The focus of this project was to investigate the factors influencing consumer adoption of Home Energy Displays (HEDs) and to evaluate electricity consumption in households with basic HEDs versus enhanced feedback methods - web portals or alerts. The team hypothesized that providing flexible and relatable information to users, in addition to a basic HED, would make feedback more effective and achieve persistent energy savings. In Phase I, Fraunhofer conducted three user research studies and found preferences for aesthetically pleasing, easy to understand feedback that is accessible through multiple media and offered free of charge. The deployment of HEDs in 150 households planned for Phase II encountered major recruitment and HED field deployment problems. In light of these challenges, the team is pursuing a modified study investigating the energy savings of a web portal versus alert-based energy feedback instead of a physical HED.

  1. Consumers face $5. 9 million rate increase

    SciTech Connect (OSTI)

    Not Available

    1984-11-01

    Testimony at hearings before the Garrison Diversion Compromise Commission claimed that rural consumers in the Upper Midwest could face $5.9 million in electric rate increases if the commission deauthorizes the project and hydroelectric rates go up to pay the costs of the 1944 Pick-Sloan project originally assigned to irrigation. If there is no irrigation development, the revenue that irrigation must raise to repay the $67 million debt assigned to irrigation must be reassigned to hydroelectric power. The commission represents a compromise between supporters and opponents of the Garrison Diversion project. Spokesmen for regional utilities spoke in support of the project as an investment whose costs have escalated because of delays at the expense of economic development in North Dakota.

  2. Enterprise Assessments Operational Awareness Record, Waste Treatment...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Assessments Operational Awareness Record, Waste Treatment and Immobilization Plant - December 2014 Waste Treatment and Immobilation Plant HLW Waste Vitrification Facility

  3. Unreviewed Safety Question Determination - Processing Waste in the Waste

    Office of Environmental Management (EM)

    Characterization Glovebox | Department of Energy Unreviewed Safety Question Determination - Processing Waste in the Waste Characterization Glovebox Unreviewed Safety Question Determination - Processing Waste in the Waste Characterization Glovebox This document was used to determine facts and conditions during the Department of Energy Accident Investigation Board's investigation into the radiological release event at the Waste Isolation Pilot Plant. Additional documents referenced and listed

  4. Solid Waste Management Plan. Revision 4

    SciTech Connect (OSTI)

    1995-04-26

    The waste types discussed in this Solid Waste Management Plan are Municipal Solid Waste, Hazardous Waste, Low-Level Mixed Waste, Low-Level Radioactive Waste, and Transuranic Waste. The plan describes for each type of solid waste, the existing waste management facilities, the issues, and the assumptions used to develop the current management plan.

  5. Underground waste barrier structure

    DOE Patents [OSTI]

    Saha, Anuj J. (Hamburg, NY); Grant, David C. (Gibsonia, PA)

    1988-01-01

    Disclosed is an underground waste barrier structure that consists of waste material, a first container formed of activated carbonaceous material enclosing the waste material, a second container formed of zeolite enclosing the first container, and clay covering the second container. The underground waste barrier structure is constructed by forming a recessed area within the earth, lining the recessed area with a layer of clay, lining the clay with a layer of zeolite, lining the zeolite with a layer of activated carbonaceous material, placing the waste material within the lined recessed area, forming a ceiling over the waste material of a layer of activated carbonaceous material, a layer of zeolite, and a layer of clay, the layers in the ceiling cojoining with the respective layers forming the walls of the structure, and finally, covering the ceiling with earth.

  6. Waste from grocery stores

    SciTech Connect (OSTI)

    Lieb, K.

    1993-11-01

    The Community Recycling Center, Inc., (CRC, Champaign, Ill.), last year conducted a two-week audit of waste generated at two area grocery stores. The stores surveyed are part of a 10-store chain. For two of the Kirby Foods Stores, old corrugated containers (OCC) accounted for 39-45% of all waste. The summary drew correlations between the amount of OCC and the sum of food and garbage waste. The study suggested that one can reasonably estimate volumes of waste based on the amount of OCC because most things come in a box. Auditors set up a series of containers to make the collection process straightforward. Every day the containers were taken to local recycling centers and weighed. Approximate waste breakdowns for the two stores were as follows: 45% OCC; 35% food waste; 20% nonrecyclable or noncompostable items; and 10% other.

  7. Salt Waste Processing Initiatives

    Office of Environmental Management (EM)

    Patricia Suggs Salt Processing Team Lead Assistant Manager for Waste Disposition Project Office of Environmental Management Savannah River Site Salt Waste Processing Initiatives 2 Overview * Current SRS Liquid Waste System status * Opportunity to accelerate salt processing - transformational technologies - Rotary Microfiltration (RMF) and Small Column Ion Exchange (SCIX) - Actinide Removal Process/Modular Caustic Side Solvent Extraction (ARP/MCU) extension with next generation extractant - Salt

  8. Pioneering Nuclear Waste Disposal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    18 19 T he WIPP's first waste receipt, 11 years later than originally planned, was a monumental step forward in the safe management of nuclear waste. Far from ending, however, the WIPP story has really just begun. For the next 35 years, the DOE will face many challenges as it manages a complex shipment schedule from transuranic waste sites across the United States and continues to ensure that the repository complies with all regulatory requirements. The DOE will work to maintain the highest

  9. Waste to Energy

    Broader source: Energy.gov (indexed) [DOE]

    to Energy BIA Providers Conference Anchorage, Alaska December 1, 2015 What is waste-to-energy (W2E)? * Types of waste ... * Kinds of energy ... * Key attributes ... * Key considerations ... ANC landfill gas-to-energy project * 5.6 MWe * ARL to JBER * Online Aug 2012 * Run by Doyon Utilities Alaska Department of Environmental Conservation Solid Waste Program The Good... The Bad... & The Ugly Rural landfills Small Septage Lagoon Large Lined Lagoon Large Honeybucket Lagoon Honeybuckets at

  10. Norcal Waste Systems, Inc.

    SciTech Connect (OSTI)

    Not Available

    2002-12-01

    Fact sheet describes the LNG long-haul heavy-duty trucks at Norcal Waste Systems Inc.'s Sanitary Fill Company.

  11. Section 24: Waste Characterization

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (g) The Department shall demonstrate in any compliance application that the total inventory of waste emplaced in the disposal system complies with the limitations on...

  12. Vitrification of waste

    DOE Patents [OSTI]

    Wicks, G.G.

    1999-04-06

    A method is described for encapsulating and immobilizing waste for disposal. Waste, preferably, biologically, chemically and radioactively hazardous, and especially electronic wastes, such as circuit boards, are placed in a crucible and heated by microwaves to a temperature in the range of approximately 300 C to 800 C to incinerate organic materials, then heated further to a temperature in the range of approximately 1100 C to 1400 C at which temperature glass formers present in the waste will cause it to vitrify. Glass formers, such as borosilicate glass, quartz or fiberglass can be added at the start of the process to increase the silicate concentration sufficiently for vitrification.

  13. Vitrification of waste

    DOE Patents [OSTI]

    Wicks, George G. (Aiken, SC)

    1999-01-01

    A method for encapsulating and immobilizing waste for disposal. Waste, preferably, biologically, chemically and radioactively hazardous, and especially electronic wastes, such as circuit boards, are placed in a crucible and heated by microwaves to a temperature in the range of approximately 300.degree. C. to 800.degree. C. to incinerate organic materials, then heated further to a temperature in the range of approximately 1100.degree. C. to 1400.degree. C. at which temperature glass formers present in the waste will cause it to vitrify. Glass formers, such as borosilicate glass, quartz or fiberglass can be added at the start of the process to increase the silicate concentration sufficiently for vitrification.

  14. WASTE PACKAGE TRANSPORTER DESIGN

    SciTech Connect (OSTI)

    D.C. Weddle; R. Novotny; J. Cron

    1998-09-23

    The purpose of this Design Analysis is to develop preliminary design of the waste package transporter used for waste package (WP) transport and related functions in the subsurface repository. This analysis refines the conceptual design that was started in Phase I of the Viability Assessment. This analysis supports the development of a reliable emplacement concept and a retrieval concept for license application design. The scope of this analysis includes the following activities: (1) Assess features of the transporter design and evaluate alternative design solutions for mechanical components. (2) Develop mechanical equipment details for the transporter. (3) Prepare a preliminary structural evaluation for the transporter. (4) Identify and recommend the equipment design for waste package transport and related functions. (5) Investigate transport equipment interface tolerances. This analysis supports the development of the waste package transporter for the transport, emplacement, and retrieval of packaged radioactive waste forms in the subsurface repository. Once the waste containers are closed and accepted, the packaged radioactive waste forms are termed waste packages (WP). This terminology was finalized as this analysis neared completion; therefore, the term disposal container is used in several references (i.e., the System Description Document (SDD)) (Ref. 5.6). In this analysis and the applicable reference documents, the term ''disposal container'' is synonymous with ''waste package''.

  15. Waste minimization assessment procedure

    SciTech Connect (OSTI)

    Kellythorne, L.L. )

    1993-01-01

    Perry Nuclear Power Plant began developing a waste minimization plan early in 1991. In March of 1991 the plan was documented following a similar format to that described in the EPA Waste Minimization Opportunity Assessment Manual. Initial implementation involved obtaining management's commitment to support a waste minimization effort. The primary assessment goal was to identify all hazardous waste streams and to evaluate those streams for minimization opportunities. As implementation of the plan proceeded, non-hazardous waste streams routinely generated in large volumes were also evaluated for minimization opportunities. The next step included collection of process and facility data which would be useful in helping the facility accomplish its assessment goals. This paper describes the resources that were used and which were most valuable in identifying both the hazardous and non-hazardous waste streams that existed on site. For each material identified as a waste stream, additional information regarding the materials use, manufacturer, EPA hazardous waste number and DOT hazard class was also gathered. Once waste streams were evaluated for potential source reduction, recycling, re-use, re-sale, or burning for heat recovery, with disposal as the last viable alternative.

  16. Waste Isolation Pilot Plant

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    WIPP Home Page About WIPP Contact Us Search Plans and Reports WIPP Recovery Plan The Waste Isolation Pilot Plant (WIPP) Recovery Plan outlines the necessary steps to resume...

  17. Integrated Waste Treatment Facility Fact Sheet | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Waste Management Tank Waste and Waste Processing Integrated Waste Treatment Facility Fact Sheet Integrated Waste Treatment Facility Fact Sheet The Integrated Waste Treatment...

  18. Small Wind Electric Systems: A New Hampshire Consumer's Guide

    SciTech Connect (OSTI)

    Not Available

    2003-06-01

    The purpose of the Small Wind Electric Systems Consumer's: A New Hampshire Consumer's Guide is to provide consumers with enough information to help them determine if a small wind electric system will work for them based on their wind resource, the type and size of their sites, and their economics. The cover of this guide contains a New Hampshire wind resource map and information about state incentives and contacts for more information.

  19. Small Wind Electric Systems: A Maine Consumer's Guide

    SciTech Connect (OSTI)

    Not Available

    2003-06-01

    The purpose of the Small Wind Electric Systems Consumer's: A Maine Consumer's Guide is to provide consumers with enough information to help them determine if a small wind electric system will work for them based on their wind resource, the type and size of their sites, and their economics. The cover of this guide contains a wind resource map for the state of Maine and information about state incentives and contacts for more information.

  20. Experiences from the Consumer Behavior Studies on Engaging Customers

    Energy Savers [EERE]

    (September 2014) | Department of Energy Experiences from the Consumer Behavior Studies on Engaging Customers (September 2014) Experiences from the Consumer Behavior Studies on Engaging Customers (September 2014) One of the most important aspects for successful implementation of time-based rate programs is better understanding of how to engage and communicate with customers. DOE's consumer behavior studies, carried out under the Smart Grid Investment Grant Program, provide an unprecedented

  1. Sustainable Energy Resources for Consumers (SERC) Success Story: Montana |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Success Story: Montana Sustainable Energy Resources for Consumers (SERC) Success Story: Montana This document contains information on how Montana SERC Program Delivers Strong Changes through Targeted Low-Income Weatherization Efforts. PDF icon serc_mt_highlight.pdf More Documents & Publications Sustainable Energy Resources for Consumers (SERC) - Solar Hot Water Sustainable Energy Resources for Consumers (SERC) - Solar Hot Water

  2. Sustainable Energy Resources for Consumers Fact Sheet July 2011 |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Fact Sheet July 2011 Sustainable Energy Resources for Consumers Fact Sheet July 2011 Provides an overview on the U.S. Department of Energys Sustainable Energy Resources for Consumers (SERC) grants, including information on the programs history, who is eligible, and how to participate. PDF icon serc_factsheet.pdf More Documents & Publications WEATHERIZATION PROGRAM NOTICE 09-1C Sustainable Energy Resources for Consumers (SERC) Vermont Highlight (Fact Sheet),

  3. Improving consumer value through enhanced performance around the world

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Improving consumer value through enhanced performance around the world Improving consumer value through enhanced performance around the world LANL statistical tools have helped create Reliability Technology (RT), which increases the overall fraction of productive manufacturing time, or "uptime," for its internal manufacturing lines. April 3, 2012 Improving consumer value through enhanced performance around the world Reliability Technology (RT) is a comprehensive reliability engineering

  4. Fact #702: November 21, 2011 Consumer Preferences on Electric Vehicle

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Charging | Department of Energy 2: November 21, 2011 Consumer Preferences on Electric Vehicle Charging Fact #702: November 21, 2011 Consumer Preferences on Electric Vehicle Charging Data from a survey conducted between November 2010 and May 2011 show consumer preferences on electric vehicle (EV) charging times. Respondents from 17 different countries were asked for their longest acceptable charge time for an EV. In Taiwan, the country with the greatest number of respondents accepting longer

  5. DOE Webinar: Translating Behavior Change Research Into Consumer Action |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Webinar: Translating Behavior Change Research Into Consumer Action DOE Webinar: Translating Behavior Change Research Into Consumer Action DOE Webinar: Translating Behavior Change Research Into Consumer Action, May 28, 2013. PDF icon Webinar slides More Documents & Publications Incorporating Behavior Change Efforts Into Energy Efficiency Programs Outreach to Faith--Based Organizations SERC Community-Based Social Marketing for Weatherization Programs Webinar

  6. EV Everywhere Consumer Acceptance and Charging Infrastructure Workshop:

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Charging Infrastructure Group D Breakout Report | Department of Energy D Breakout Report EV Everywhere Consumer Acceptance and Charging Infrastructure Workshop: Charging Infrastructure Group D Breakout Report Breakout session presentation for the EV Everywhere Grand Challenge: Consumer Acceptance and Charging Infrastructure Workshop on July 30, 2012 held at the LAX Marriott, Los Angeles, CA PDF icon group_d_report_out_caci.pdf More Documents & Publications EV Everywhere Consumer

  7. EV Everywhere Consumer Acceptance and Charging Infrastructure Workshop:

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Charging Infrastructure Group E Breakout Report | Department of Energy E Breakout Report EV Everywhere Consumer Acceptance and Charging Infrastructure Workshop: Charging Infrastructure Group E Breakout Report Breakout session presentation for the EV Everywhere Grand Challenge: Consumer Acceptance and Charging Infrastructure Workshop on July 30, 2012 held at the LAX Marriott, Los Angeles, CA PDF icon group_e_report_out_caci.pdf More Documents & Publications EV Everywhere Consumer

  8. EV Everywhere Grand Challenge: Consumer Acceptance and Charging

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Infrastructure Workshop Agenda | Department of Energy Agenda EV Everywhere Grand Challenge: Consumer Acceptance and Charging Infrastructure Workshop Agenda Agenda for the EV Everywhere Grand Challenge: Consumer Acceptance and Charging Infrastructure Workshop on July 30, 2012 held at the LAX Marriott, Los Angeles, CA PDF icon agenda_caci.pdf More Documents & Publications EV Everywhere Consumer Acceptance and Charging Infrastructure Workshop - Backsplash EV Everywhere Grand Challenge:

  9. EV Everywhere Grand Challenge: Consumer Acceptance and Charging

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Infrastructure Workshop Attendence List | Department of Energy Attendence List EV Everywhere Grand Challenge: Consumer Acceptance and Charging Infrastructure Workshop Attendence List Attnedance list for the EV Everywhere Grand Challenge: Consumer Acceptance and Charging Infrastructure Workshop on July 30, 2012 held at the LAX Marriott, Los Angeles, CA PDF icon companies_in_attendance_caci.pdf More Documents & Publications EV Everywhere Consumer Acceptance and Charging Infrastructure

  10. Sustainable Energy Resources for Consumers (SERC) - On-Demand Tankless

    Energy Savers [EERE]

    Water Heaters | Department of Energy On-Demand Tankless Water Heaters Sustainable Energy Resources for Consumers (SERC) - On-Demand Tankless Water Heaters This presentation, aimed at Sustainable Energy Resources for Consumers (SERC) grantees, provides information on Monitoring Checklists for the installation of On-Demand Tankless Water Heaters. PDF icon serc_webinar_presentation_20111004.pdf More Documents & Publications Sustainable Energy Resources for Consumers (SERC) - Solar Hot

  11. Sustainable Energy Resources for Consumers (SERC) - Solar Photovoltaics |

    Energy Savers [EERE]

    Department of Energy Solar Photovoltaics Sustainable Energy Resources for Consumers (SERC) - Solar Photovoltaics This presentation, aimed at Sustainable Energy Resources for Consumers (SERC) grantees, provides information on Monitoring Checklists for the installation of Solar Photovoltaics. PDF icon serc_webinar_20111020_solar_pv.pdf More Documents & Publications Sustainable Energy Resources for Consumers (SERC) - Solar Hot Water Recording of SERC Monitoring Technologies - Solar

  12. Sustainable Energy Resources for Consumers Webinar on Solar Water Heating

    Energy Savers [EERE]

    Transcript | Department of Energy Solar Water Heating Transcript Sustainable Energy Resources for Consumers Webinar on Solar Water Heating Transcript Video recording transcript of a Webinar on Nov. 16, 2010 about residential solar water heating applications PDF icon solar_water_heating_webinar.pdf More Documents & Publications Sustainable Energy Resources for Consumers (SERC) - Solar Hot Water Sustainable Energy Resources for Consumers Webinar on Residential Water Heaters Sustainable

  13. Retail Electric Competition: A Blueprint for Consumer Protection |

    Energy Savers [EERE]

    Department of Energy Retail Electric Competition: A Blueprint for Consumer Protection Retail Electric Competition: A Blueprint for Consumer Protection This report was prepared for the U.S. Department of Energy, Chicago Regional Support Office (Purchase Order DE-AP45-97R553188). Funding was provided by the Department of Energy's Office of Power Technologies, Ofiice of Energy Efficiency and Renewable Energy. PDF icon Retail Electric Competition: A Blueprint for Consumer Protection More

  14. Contract Language for Energy-Consuming Product Purchases | Department of

    Office of Environmental Management (EM)

    Energy Contract Language for Energy-Consuming Product Purchases Contract Language for Energy-Consuming Product Purchases Federal agencies are required to use specific contract language when purchasing energy-consuming products that are qualified by ENERGY STAR or designated by the Federal Energy Management Program (FEMP). See energy-efficient product purchasing requirements. Federal Acquisition Regulation Contract Language Federal Acquisition Regulation (FAR) Part 23.206 requires agencies to

  15. AARP, National Consumer Law Center, and Public Citizen Comments

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    to:DEPARTMENT OF ENERGY Smart Grid RFI: Addressing Policy and Logistical Challenges | Department of Energy AARP, National Consumer Law Center, and Public Citizen Comments to:DEPARTMENT OF ENERGY Smart Grid RFI: Addressing Policy and Logistical Challenges AARP, National Consumer Law Center, and Public Citizen Comments to:DEPARTMENT OF ENERGY Smart Grid RFI: Addressing Policy and Logistical Challenges AARP submits the following comments on consumers and smart grid issues in response to the

  16. Section 08: Approval Process for Waste Shipment From Waste Generator...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Approval Process for Waste Shipment From Waste Generator Sites for Disposal at the WIPP (40 CFR 194.8) United States Department of Energy Waste Isolation Pilot Plant Carlsbad...

  17. Department of Energy Announces Funding to Help Consumers Better Manage Their Energy Consumption

    Broader source: Energy.gov [DOE]

    New Funding Opportunity Provides More Knowledge to Consumers about their Energy Use; Could Lead to Lower Energy Bills for Consumers

  18. [Article 1 of 7: Motivates and Includes the Consumer

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    standards that limit the level of harmonics a consumer load is allowed to produce. ... first review the things that disrupt it - harmonics, sags, spikes, and phase imbalances. ...

  19. Energy Conservation Program for Consumer Products and Commercial...

    Office of Environmental Management (EM)

    Program for Consumer Products and Commercial and Industrial Equipment-- AHRI Annual Meeting CCE Overview and Update Presenation, dated April 13, 2011 Energy Conservation Program ...

  20. ISSUANCE 2015-08-21: Energy Conservation Program for Consumer...

    Broader source: Energy.gov (indexed) [DOE]

    a pre-publication Federal Register, Energy Conservation Program for Consumer Products: Energy Conservation Standards for Commercial Prerinse Spray Valves, Extension of Public ...

  1. Consumer Attitudes About Renewable Energy. Trends and Regional Differences

    SciTech Connect (OSTI)

    Bird, Lori; Sumner, Jenny

    2011-04-01

    The data in this report are taken from Natural Marketing Institute's (NMI's) Lifestyles of Health and Sustainability Consumer Trends Database. Created in 2002, the syndicated consumer database contains responses from 2,000 to 4,000 nationally representative U.S. adults (meaning the demographics of the sample are consistent with U.S. Census findings) each year. NMI used the database to analyze consumer attitudes and behavior related to renewable energy and to update previously conducted related research. Specifically, this report will explore consumer awareness, concerns, perceived benefits, knowledge of purchase options, and usage of renewable energy as well as provide regional comparisons and trends over time.

  2. A Consumer's Guide: Heat Your Water with the Sun

    SciTech Connect (OSTI)

    2003-12-01

    This publication introduces consumers to solar heating technologies, and guides them through the basics of the technology and how to purchase it for the home.

  3. DOE Collects Civil Penalties for Failure to Certify Consumer...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Consumer Refrigeration Products DOE Collects Civil Penalties for Failure to Certify ... DOE assessed civil penalties of 8,000 per manufacturer for first-time violators and civil ...

  4. Consumer Attitudes About Renewable Energy: Trends and Regional Differences

    SciTech Connect (OSTI)

    Natural Marketing Institute, Harleysville, Pennsylvania

    2011-04-01

    The data in this report are taken from Natural Marketing Institute's (NMI's) Lifestyles of Health and Sustainability Consumer Trends Database. Created in 2002, the syndicated consumer database contains responses from 2,000 to 4,000 nationally representative U.S. adults (meaning the demographics of the sample are consistent with U.S. Census findings) each year. NMI used the database to analyze consumer attitudes and behavior related to renewable energy and to update previously conducted related research. Specifically, this report will explore consumer awareness, concerns, perceived benefits, knowledge of purchase options, and usage of renewable energy as well as provide regional comparisons and trends over time.

  5. Consumer web (Smart Grid Project) | Open Energy Information

    Open Energy Info (EERE)

    web (Smart Grid Project) Jump to: navigation, search Project Name Consumer web Country Denmark Coordinates 56.26392, 9.501785 Loading map... "minzoom":false,"mappingservice":"...

  6. Energy Efficiency Standards for Microwave Ovens Saves Consumers...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Positive Impact Significant savings to consumer energy bills and reductions in carbon pollution. Locations Nationwide Partners Lawrence Berkeley National Laboratory, Navigant EERE ...

  7. Sustainable Energy Resources for Consumers Webinar on Residential...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Geothermal Heat Pump Retrofit Transcript Sustainable Energy Resources for Consumers Webinar on Residential Geothermal Heat Pump Retrofit Transcript Transcript for a U.S. Department ...

  8. EV Everywhere Grand Challenge: Consumer Acceptance and Charging...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Attnedance list for the EV Everywhere Grand Challenge: Consumer Acceptance and Charging Infrastructure Workshop on July 30, 2012 held at the LAX Marriott, Los Angeles, CA PDF icon ...

  9. EV Everywhere Grand Challenge: Consumer Acceptance and Charging...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Agenda for the EV Everywhere Grand Challenge: Consumer Acceptance and Charging Infrastructure Workshop on July 30, 2012 held at the LAX Marriott, Los Angeles, CA PDF icon ...

  10. EV Everywhere Consumer Acceptance Workshop: Breakout Group B...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Charging Infrastructure Workshop on July 30, 2012 held at the LAX Marriott, Los Angeles, CA PDF icon Group B - Consumer Acceptance Report Out.pdf More Documents & ...

  11. Department of Energy Adopts Rules to Protect Consumer Privacy

    Broader source: Energy.gov [DOE]

    The Weatherization Assistance Program (WAP) enables states to provide financial assistance to qualifying consumers who want to improve the energy-efficiency of their homes. 

  12. Sustainable Energy Resources for Consumers Webinar on Solar Water...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Solar Water Heating Transcript Sustainable Energy Resources for Consumers Webinar on Solar Water Heating Transcript Video recording transcript of a Webinar on Nov. 16, 2010 about ...

  13. Discussion of Consumer Perspectives on Regulation of Energy Efficiency Investments

    SciTech Connect (OSTI)

    none,

    2009-09-01

    Considers consumers' perspectives on policy and regulatory issues associated with the administration of energy efficiency investments funded by ratepayers of electric and natural gas utilities.

  14. Consumers Power, Inc- Residential Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Consumers Power Inc. offers rebates to its residential members for a wide variety of energy efficient products and measures. Rebates are offered for certain Energy Star appliances, weatherization...

  15. Break-out Discussion i: Modeling Consumer Behavior Residential Scale

    Broader source: Energy.gov [DOE]

    This presentaion summarizes the information discussed during the breakout session on modeling consumer behavior during the DOE Ad Lucem Workshop on Feb. 17, 2012.

  16. Sustainable Energy Resources for Consumers (SERC) Success Story...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Maryland Sustainable Energy Resources for Consumers (SERC) Success Story: Maryland This document contains information on how the Maryland SERC program leverages diverse and bold...

  17. Vehicle Technologies Office Merit Review 2014: Consumer Vehicle Technology Data

    Broader source: Energy.gov [DOE]

    Presentation given by National Renewable Energy Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about consumer...

  18. A Consumer's Guide: Get Your Power from the Sun

    SciTech Connect (OSTI)

    2003-12-01

    This publication introduces consumers to photovoltaic technologies and guides them through the basics of the technology and how to purchase PV for their home or business.

  19. Guidance Concerning Applicable Sampling Plan for Certification of Consumer Product

    Broader source: Energy.gov [DOE]

    The Energy Policy and Conservation Act of 1975, as amended, authorizes the Department of Energy to enforce compliance with the energy conservation standards established for certain consumer...

  20. A Consumer's Guide: Heat Your Water with the Sun (Brochure)

    Broader source: Energy.gov [DOE]

    This publication introduces consumers to solar heating technologies, and guides them through the basics of the technology and how to purchase it for the home.

  1. Natural Gas Deliveries to Commercial Consumers (Including Vehicle...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    West Virginia (Million Cubic Feet) Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel through 1996) in West Virginia (Million Cubic Feet) Year Jan Feb Mar Apr...

  2. Sustainable Energy Resources for Consumers Webinar on Building...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Building Design & Passive Solar Transcript Sustainable Energy Resources for Consumers Webinar on Building Design & Passive Solar Transcript Video recording transcript of a Webinar ...

  3. New York Price of Natural Gas Delivered to Residential Consumers...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Pages: Average Residential Price New York Average Price of Natural Gas Delivered to Residential and Commercial Consumers by Local Distribution and Market Average Residential...

  4. ,"New Hampshire Heat Content of Natural Gas Consumed"

    U.S. Energy Information Administration (EIA) Indexed Site

    Natural Gas Consumed",1,"Monthly","122015","01152013" ,"Release Date:","02292016" ,"Next Release Date:","03312016" ,"Excel File Name:","ngconsheatdcusnhm.xls" ...

  5. ,"South Dakota Heat Content of Natural Gas Consumed"

    U.S. Energy Information Administration (EIA) Indexed Site

    Natural Gas Consumed",1,"Monthly","122015","01152013" ,"Release Date:","02292016" ,"Next Release Date:","03312016" ,"Excel File Name:","ngconsheatdcussdm.xls" ...

  6. ,"New Jersey Heat Content of Natural Gas Consumed"

    U.S. Energy Information Administration (EIA) Indexed Site

    Natural Gas Consumed",1,"Monthly","122015","01152013" ,"Release Date:","02292016" ,"Next Release Date:","03312016" ,"Excel File Name:","ngconsheatdcusnjm.xls" ...

  7. ,"Rhode Island Heat Content of Natural Gas Consumed"

    U.S. Energy Information Administration (EIA) Indexed Site

    Natural Gas Consumed",1,"Monthly","122015","01152013" ,"Release Date:","02292016" ,"Next Release Date:","03312016" ,"Excel File Name:","ngconsheatdcusrim.xls" ...

  8. ,"South Carolina Heat Content of Natural Gas Consumed"

    U.S. Energy Information Administration (EIA) Indexed Site

    Natural Gas Consumed",1,"Monthly","122015","01152013" ,"Release Date:","02292016" ,"Next Release Date:","03312016" ,"Excel File Name:","ngconsheatdcusscm.xls" ...

  9. ,"West Virginia Heat Content of Natural Gas Consumed"

    U.S. Energy Information Administration (EIA) Indexed Site

    Natural Gas Consumed",1,"Monthly","122015","01152013" ,"Release Date:","02292016" ,"Next Release Date:","03312016" ,"Excel File Name:","ngconsheatdcuswvm.xls" ...

  10. ,"North Carolina Heat Content of Natural Gas Consumed"

    U.S. Energy Information Administration (EIA) Indexed Site

    Natural Gas Consumed",1,"Monthly","122015","01152013" ,"Release Date:","02292016" ,"Next Release Date:","03312016" ,"Excel File Name:","ngconsheatdcusncm.xls" ...

  11. ,"North Dakota Heat Content of Natural Gas Consumed"

    U.S. Energy Information Administration (EIA) Indexed Site

    Natural Gas Consumed",1,"Monthly","122015","01152013" ,"Release Date:","02292016" ,"Next Release Date:","03312016" ,"Excel File Name:","ngconsheatdcusndm.xls" ...

  12. ,"New York Heat Content of Natural Gas Consumed"

    U.S. Energy Information Administration (EIA) Indexed Site

    Natural Gas Consumed",1,"Monthly","122015","01152013" ,"Release Date:","02292016" ,"Next Release Date:","03312016" ,"Excel File Name:","ngconsheatdcusnym.xls" ...

  13. Lakeland Electric SGIG Consumer Behavior Study Interim (Year...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    PDF icon Lakeland Electric SGIG Consumer Behavior Study Interim (Year 1) Evaluation Report (February 2015) More Documents & Publications Analysis of Customer Enrollment Patterns in ...

  14. EV Everywhere Consumer Acceptance and Charging Infrastructure Workshop- Backsplash

    Broader source: Energy.gov [DOE]

    Backsplash for the EV Everywhere Grand Challenge: Consumer Acceptance and Charging Infrastructure Workshop on July 30, 2012 held at the LAX Marriott, Los Angeles, CA

  15. Smart Meters Helping Oklahoma Consumers Save Hundreds During...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Smart Meters Helping Oklahoma Consumers Save Hundreds During Summer Heat July 26, 2011 - ... on Good Morning America that he's saving over 320 per month compared to last ...

  16. New Energy Efficiency Standards for Microwave Ovens to Save Consumers...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    "Appliance efficiency standards represent a huge opportunity to help families save money by saving energy, while still delivering high quality appliances for consumers," said ...

  17. Now Available: Lakeland Electric SGIG Consumer Behavior Study...

    Broader source: Energy.gov (indexed) [DOE]

    and Response to Time-Based Rates from the Consumer Behavior Studies Honeywell Demonstrates Automated Demand Response Benefits for Utility, Commercial, and Industrial Customers

  18. [Article 1 of 7: Motivates and Includes the Consumer

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Motivating the consumer to participate gives the electric system more options for solutions and resources, from home energy management and demand response to participating in the ...

  19. Natural Gas Delivered to Consumers in North Carolina (Including...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (Including Vehicle Fuel) (Million Cubic Feet) Natural Gas Delivered to Consumers in North Carolina (Including Vehicle Fuel) (Million Cubic Feet) Year Jan Feb Mar Apr May Jun...

  20. ,"Alabama Natural Gas Price Sold to Electric Power Consumers...

    U.S. Energy Information Administration (EIA) Indexed Site

    ame","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Alabama Natural Gas Price Sold to Electric Power Consumers (Dollars per Thousand Cubic...

  1. ,"Hawaii Natural Gas Price Sold to Electric Power Consumers ...

    U.S. Energy Information Administration (EIA) Indexed Site

    Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Hawaii Natural Gas Price Sold to Electric Power Consumers (Dollars per Thousand Cubic...

  2. ,"North Carolina Natural Gas Deliveries to Electric Power Consumers...

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","North Carolina Natural Gas Deliveries to Electric Power Consumers (MMcf)",1,"Monthly","102015" ,"Release...

  3. ,"West Virginia Natural Gas Deliveries to Electric Power Consumers...

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","West Virginia Natural Gas Deliveries to Electric Power Consumers (MMcf)",1,"Monthly","102015" ,"Release...

  4. ,"New Hampshire Natural Gas Price Sold to Electric Power Consumers...

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","New Hampshire Natural Gas Price Sold to Electric Power Consumers (Dollars per Thousand Cubic...

  5. Hawaii Natural Gas Deliveries to Electric Power Consumers (Million...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    312015 Next Release Date: 01292016 Referring Pages: Natural Gas Delivered to Electric Power Consumers Hawaii Natural Gas Consumption by End Use Electric Power Consumption of...

  6. ,"Rhode Island Natural Gas Price Sold to Electric Power Consumers...

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","Rhode Island Natural Gas Price Sold to Electric Power Consumers (Dollars per Thousand Cubic...

  7. ,"New York Natural Gas Price Sold to Electric Power Consumers...

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","New York Natural Gas Price Sold to Electric Power Consumers (Dollars per Thousand Cubic...

  8. ,"South Dakota Natural Gas Deliveries to Electric Power Consumers...

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","South Dakota Natural Gas Deliveries to Electric Power Consumers (MMcf)",1,"Monthly","102015" ,"Release...

  9. ,"New Jersey Natural Gas Deliveries to Electric Power Consumers...

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","New Jersey Natural Gas Deliveries to Electric Power Consumers (MMcf)",1,"Monthly","102015" ,"Release...

  10. ,"New York Natural Gas Deliveries to Electric Power Consumers...

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","New York Natural Gas Deliveries to Electric Power Consumers (MMcf)",1,"Monthly","102015" ,"Release...

  11. ,"Indiana Natural Gas Price Sold to Electric Power Consumers...

    U.S. Energy Information Administration (EIA) Indexed Site

    ame","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Indiana Natural Gas Price Sold to Electric Power Consumers (Dollars per Thousand Cubic...

  12. ,"South Carolina Natural Gas Deliveries to Electric Power Consumers...

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","South Carolina Natural Gas Deliveries to Electric Power Consumers (MMcf)",1,"Monthly","102015" ,"Release...

  13. ,"Connecticut Natural Gas Price Sold to Electric Power Consumers...

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","Connecticut Natural Gas Price Sold to Electric Power Consumers (Dollars per Thousand Cubic...

  14. ,"South Dakota Natural Gas Price Sold to Electric Power Consumers...

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","South Dakota Natural Gas Price Sold to Electric Power Consumers (Dollars per Thousand Cubic...

  15. ,"Idaho Natural Gas Price Sold to Electric Power Consumers (Dollars...

    U.S. Energy Information Administration (EIA) Indexed Site

    Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Idaho Natural Gas Price Sold to Electric Power Consumers (Dollars per Thousand Cubic...

  16. ,"North Dakota Natural Gas Deliveries to Electric Power Consumers...

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","North Dakota Natural Gas Deliveries to Electric Power Consumers (MMcf)",1,"Monthly","102015" ,"Release...

  17. ,"Rhode Island Natural Gas Deliveries to Electric Power Consumers...

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","Rhode Island Natural Gas Deliveries to Electric Power Consumers (MMcf)",1,"Monthly","102015" ,"Release...

  18. ,"Colorado Natural Gas Price Sold to Electric Power Consumers...

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","Colorado Natural Gas Price Sold to Electric Power Consumers (Dollars per Thousand Cubic...

  19. ,"Maryland Natural Gas Price Sold to Electric Power Consumers...

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","Maryland Natural Gas Price Sold to Electric Power Consumers (Dollars per Thousand Cubic...

  20. ,"West Virginia Natural Gas Price Sold to Electric Power Consumers...

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","West Virginia Natural Gas Price Sold to Electric Power Consumers (Dollars per Thousand Cubic...

  1. ,"North Dakota Natural Gas Price Sold to Electric Power Consumers...

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","North Dakota Natural Gas Price Sold to Electric Power Consumers (Dollars per Thousand Cubic...

  2. ,"Alaska Natural Gas Price Sold to Electric Power Consumers ...

    U.S. Energy Information Administration (EIA) Indexed Site

    Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Alaska Natural Gas Price Sold to Electric Power Consumers (Dollars per Thousand Cubic...

  3. ,"New Jersey Natural Gas Price Sold to Electric Power Consumers...

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","New Jersey Natural Gas Price Sold to Electric Power Consumers (Dollars per Thousand Cubic...

  4. ,"South Carolina Natural Gas Price Sold to Electric Power Consumers...

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","South Carolina Natural Gas Price Sold to Electric Power Consumers (Dollars per Thousand Cubic...

  5. ,"New Hampshire Natural Gas Deliveries to Electric Power Consumers...

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","New Hampshire Natural Gas Deliveries to Electric Power Consumers (MMcf)",1,"Monthly","102015" ,"Release...

  6. ,"North Carolina Natural Gas Price Sold to Electric Power Consumers...

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","North Carolina Natural Gas Price Sold to Electric Power Consumers (Dollars per Thousand Cubic...

  7. New Appliance Tax Credits, Rebates, and Incentives for Consumers...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    New Appliance Tax Credits, Rebates, and Incentives for Consumers September 8, 2009 - 11:16am Addthis Chris Stewart Senior Communicator at DOE's National Renewable Energy Laboratory ...

  8. INFOGRAPHIC: How Appliance Standards Help Consumers Save Big | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy How Appliance Standards Help Consumers Save Big INFOGRAPHIC: How Appliance Standards Help Consumers Save Big December 14, 2015 - 3:10pm Addthis FACT: Consumers are saving more than $62 billion a year as a result of the Energy Department's Appliance and Equipment Standards Program. | Infographic by <a href="/node/1332956">Carly Wilkins</a>, Energy Department FACT: Consumers are saving more than $62 billion a year as a result of the Energy Department's Appliance

  9. Sustainable Energy Resources for Consumers (SERC) - Solar Hot...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    This presentation, aimed at Sustainable Energy Resources for Consumers (SERC) grantees, provides information on Monitoring Checklists for the installation of Solar Hot Water. PDF ...

  10. Sustainable Energy Resources for Consumers (SERC) Idaho Highlight...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    This document provides an overview of the successes acheived by Idaho's Sustainable Energy Resources for Consumers (SERC) through Tankless Hot Water Systems, Solar Photovoltaics ...

  11. Environmental and Waste Management (WMO) Legacy TRU Waste Pause |

    Office of Environmental Management (EM)

    Department of Energy Environmental and Waste Management (WMO) Legacy TRU Waste Pause Environmental and Waste Management (WMO) Legacy TRU Waste Pause This document was used to determine facts and conditions during the Department of Energy Accident Investigation Board's investigation into the radiological release event at the Waste Isolation Pilot Plant. Additional documents referenced and listed in the Phase 2 Radiological Release Event at the Waste Isolation Pilot Plant on February 14, 2014,

  12. Secondary Waste Cast Stone Waste Form Qualification Testing Plan

    SciTech Connect (OSTI)

    Westsik, Joseph H.; Serne, R. Jeffrey

    2012-09-26

    The Hanford Tank Waste Treatment and Immobilization Plant (WTP) is being constructed to treat the 56 million gallons of radioactive waste stored in 177 underground tanks at the Hanford Site. The WTP includes a pretreatment facility to separate the wastes into high-level waste (HLW) and low-activity waste (LAW) fractions for vitrification and disposal. The LAW will be converted to glass for final disposal at the Integrated Disposal Facility (IDF). Cast Stone – a cementitious waste form, has been selected for solidification of this secondary waste stream after treatment in the ETF. The secondary-waste Cast Stone waste form must be acceptable for disposal in the IDF. This secondary waste Cast Stone waste form qualification testing plan outlines the testing of the waste form and immobilization process to demonstrate that the Cast Stone waste form can comply with the disposal requirements. Specifications for the secondary-waste Cast Stone waste form have not been established. For this testing plan, Cast Stone specifications are derived from specifications for the immobilized LAW glass in the WTP contract, the waste acceptance criteria for the IDF, and the waste acceptance criteria in the IDF Permit issued by the State of Washington. This testing plan outlines the testing needed to demonstrate that the waste form can comply with these waste form specifications and acceptance criteria. The testing program must also demonstrate that the immobilization process can be controlled to consistently provide an acceptable waste form product. This testing plan also outlines the testing needed to provide the technical basis for understanding the long-term performance of the waste form in the disposal environment. These waste form performance data are needed to support performance assessment analyses of the long-term environmental impact of the secondary-waste Cast Stone waste form in the IDF

  13. Waste Isolation Pilot Plant Nitrate Salt Bearing Waste Container

    Office of Environmental Management (EM)

    Nitrate Salt Bearing Waste Container Isolation Plan Prepared in Response to New Mexico ... (DOE) and Nuclear Waste Partnership LLC (NWP), collectively referred to as the Permittees. ...

  14. Waste Treatment and Immobilation Plant HLW Waste Vitrification...

    Office of Environmental Management (EM)

    6 Technology Readiness Assessment for the Waste Treatment and Immobilization Plant (WTP) HLW Waste Vitrification Facility L. Holton D. Alexander C. Babel H. Sutter J. Young August ...

  15. Home Energy Displays: Consumer Adoption and Response

    SciTech Connect (OSTI)

    LaMarche, J.; Cheney, K.; Akers, C.; Roth, K.; Sachs, O.

    2012-12-01

    The focus of this project was to investigate the factors influencing consumer adoption of Home Energy Displays (HEDs) and to evaluate electricity consumption in households with basic HEDs versus enhanced feedback methods - web portals or alerts. We hypothesized that providing flexible and relatable information to users, in addition to a basic HED, would make feedback more effective and achieve persistent energy savings. In Phase I, we conducted three user research studies and found preferences for aesthetically pleasing, easy to understand feedback that is accessible through multiple media and offered free of charge. The deployment of HEDs in 150 households planned for Phase II encountered major recruitment and HED field deployment problems. First, after extensive outreach campaigns to apartment complexes with 760 units, only 8% of building's tenants elected to receive a free HED in their homes as part of the field study. Second, the HED used, a leading market model, had a spectrum of problems, including gateway miscommunications, failure to post to a data-hosting third party, and display malfunctions. In light of these challenges, we are pursuing a modified study investigating the energy savings of a web portal versus alert-based energy feedback instead of a physical HED.

  16. Nuclear waste solutions

    DOE Patents [OSTI]

    Walker, Darrel D.; Ebra, Martha A.

    1987-01-01

    High efficiency removal of technetium values from a nuclear waste stream is achieved by addition to the waste stream of a precipitant contributing tetraphenylphosphonium cation, such that a substantial portion of the technetium values are precipitated as an insoluble pertechnetate salt.

  17. Heterogeneous waste processing

    DOE Patents [OSTI]

    Vanderberg, Laura A. (Los Alamos, NM); Sauer, Nancy N. (Los Alamos, NM); Brainard, James R. (Los Alamos, NM); Foreman, Trudi M. (Los Alamos, NM); Hanners, John L. (Los Alamos, NM)

    2000-01-01

    A combination of treatment methods are provided for treatment of heterogeneous waste including: (1) treatment for any organic compounds present; (2) removal of metals from the waste; and, (3) bulk volume reduction, with at least two of the three treatment methods employed and all three treatment methods emplyed where suitable.

  18. Radioactive waste disposal package

    DOE Patents [OSTI]

    Lampe, Robert F. (Bethel Park, PA)

    1986-01-01

    A radioactive waste disposal package comprising a canister for containing vitrified radioactive waste material and a sealed outer shell encapsulating the canister. A solid block of filler material is supported in said shell and convertible into a liquid state for flow into the space between the canister and outer shell and subsequently hardened to form a solid, impervious layer occupying such space.

  19. Radioactive waste storage issues

    SciTech Connect (OSTI)

    Kunz, D.E.

    1994-08-15

    In the United States we generate greater than 500 million tons of toxic waste per year which pose a threat to human health and the environment. Some of the most toxic of these wastes are those that are radioactively contaminated. This thesis explores the need for permanent disposal facilities to isolate radioactive waste materials that are being stored temporarily, and therefore potentially unsafely, at generating facilities. Because of current controversies involving the interstate transfer of toxic waste, more states are restricting the flow of wastes into - their borders with the resultant outcome of requiring the management (storage and disposal) of wastes generated solely within a state`s boundary to remain there. The purpose of this project is to study nuclear waste storage issues and public perceptions of this important matter. Temporary storage at generating facilities is a cause for safety concerns and underscores, the need for the opening of permanent disposal sites. Political controversies and public concern are forcing states to look within their own borders to find solutions to this difficult problem. Permanent disposal or retrievable storage for radioactive waste may become a necessity in the near future in Colorado. Suitable areas that could support - a nuclear storage/disposal site need to be explored to make certain the health, safety and environment of our citizens now, and that of future generations, will be protected.

  20. Improving medical waste disposal

    SciTech Connect (OSTI)

    O'Connor, L.

    1994-05-01

    This article describes the use of electron-beam irradiation, steam detoxification, and microwave disinfection systems rather than incineration to rid the waste stream of medical scraps. The topics of the article include biological waste stream sources and amounts, pyrolysis and oxidation, exhaust gas cleanup, superheated steam sterilization and detoxification.

  1. Recovery of solid fuel from municipal solid waste by hydrothermal treatment using subcritical water

    SciTech Connect (OSTI)

    Hwang, In-Hee; Aoyama, Hiroya; Matsuto, Toshihiko; Nakagishi, Tatsuhiro; Matsuo, Takayuki

    2012-03-15

    Highlights: Black-Right-Pointing-Pointer Hydrothermal treatment using subcritical water was studied to recover solid fuel from MSW. Black-Right-Pointing-Pointer More than 75% of carbon in MSW was recovered as char. Black-Right-Pointing-Pointer Heating value of char was comparable to that of brown coal and lignite. Black-Right-Pointing-Pointer Polyvinyl chloride was decomposed at 295 Degree-Sign C and 8 MPa and was removed by washing. - Abstract: Hydrothermal treatments using subcritical water (HTSW) such as that at 234 Degree-Sign C and 3 MPa (LT condition) and 295 Degree-Sign C and 8 MPa (HT condition) were investigated to recover solid fuel from municipal solid waste (MSW). Printing paper, dog food (DF), wooden chopsticks, and mixed plastic film and sheets of polyethylene, polypropylene, and polystyrene were prepared as model MSW components, in which polyvinylchloride (PVC) powder and sodium chloride were used to simulate Cl sources. While more than 75% of carbon in paper, DF, and wood was recovered as char under both LT and HT conditions, plastics did not degrade under either LT or HT conditions. The heating value (HV) of obtained char was 13,886-27,544 kJ/kg and was comparable to that of brown coal and lignite. Higher formation of fixed carbon and greater oxygen dissociation during HTSW were thought to improve the HV of char. Cl atoms added as PVC powder and sodium chloride to raw material remained in char after HTSW. However, most Cl originating from PVC was found to converse into soluble Cl compounds during HTSW under the HT condition and could be removed by washing. From these results, the merit of HTSW as a method of recovering solid fuel from MSW is considered to produce char with minimal carbon loss without a drying process prior to HTSW. In addition, Cl originating from PVC decomposes into soluble Cl compound under the HT condition. The combination of HTSW under the HT condition and char washing might improve the quality of char as alternative fuel.

  2. Waste Determination Equivalency - 12172

    SciTech Connect (OSTI)

    Freeman, Rebecca D.

    2012-07-01

    The Savannah River Site (SRS) is a Department of Energy (DOE) facility encompassing approximately 800 square kilometers near Aiken, South Carolina which began operations in the 1950's with the mission to produce nuclear materials. The SRS contains fifty-one tanks (2 stabilized, 49 yet to be closed) distributed between two liquid radioactive waste storage facilities at SRS containing carbon steel underground tanks with storage capacities ranging from 2,800,000 to 4,900,000 liters. Treatment of the liquid waste from these tanks is essential both to closing older tanks and to maintaining space needed to treat the waste that is eventually vitrified or disposed of onsite. Section 3116 of the Ronald W. Reagan National Defense Authorization Act of Fiscal Year 2005 (NDAA) provides the Secretary of Energy, in consultation with the Nuclear Regulatory Commission (NRC), a methodology to determine that certain waste resulting from prior reprocessing of spent nuclear fuel are not high-level radioactive waste if it can be demonstrated that the waste meets the criteria set forth in Section 3116(a) of the NDAA. The Secretary of Energy, in consultation with the NRC, signed a determination in January 2006, pursuant to Section 3116(a) of the NDAA, for salt waste disposal at the SRS Saltstone Disposal Facility. This determination is based, in part, on the Basis for Section 3116 Determination for Salt Waste Disposal at the Savannah River Site and supporting references, a document that describes the planned methods of liquid waste treatment and the resulting waste streams. The document provides descriptions of the proposed methods for processing salt waste, dividing them into 'Interim Salt Processing' and later processing through the Salt Waste Processing Facility (SWPF). Interim Salt Processing is separated into Deliquification, Dissolution, and Adjustment (DDA) and Actinide Removal Process/Caustic Side Solvent Extraction Unit (ARP/MCU). The Waste Determination was signed by the Secretary of Energy in January of 2006 based on proposed processing techniques with the expectation that it could be revised as new processing capabilities became viable. Once signed, however, it became evident that any changes would require lengthy review and another determination signed by the Secretary of Energy. With the maturation of additional salt removal technologies and the extension of the SWPF start-up date, it becomes necessary to define 'equivalency' to the processes laid out in the original determination. For the purposes of SRS, any waste not processed through Interim Salt Processing must be processed through SWPF or an equivalent process, and therefore a clear statement of the requirements for a process to be equivalent to SWPF becomes necessary. (authors)

  3. Vitrification of NORM wastes

    SciTech Connect (OSTI)

    Chapman, C.

    1994-05-01

    Vitrification of wastes is a relatively new application of none of man`s oldest manufacturing processes. During the past 25 years it has been developed and accepted internationally for immobilizing the most highly radioactive wastes from spent nuclear fuel. By the year 2005, there will be nine operating high-level radioactive vitrification plants. Many of the technical ``lessons learned`` from this international program can be applied to much less hazardous materials such as naturally occurring radioactive material (NORM). With the deployment of low capital and operating cost systems, vitrification should become a broadly applied process for treating a large variety of wastes. In many situations, the wastes can be transformed into marketable products. This paper will present a general description of waste vitrification, summarize some of its key advantages, provide some test data for a small sample of one NORM, and suggest how this process may be applied to NORM.

  4. Enhanced Tank Waste Strategy Update

    Office of Environmental Management (EM)

    in the EM complex Radioactive tank waste stabilization, treatment, and disposal ... Programmatic support activities* 10% Radioactive tank waste stabilization, treatment and ...

  5. Waste Shipment Approval - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    waste customers can enter data directly into the Solid Waste Information Tracking System SWITS database in lieu of completing a Container Data Sheet.) A Contents...

  6. Environmental waste disposal contracts awarded

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Environmental contracts awarded locally Environmental waste disposal contracts awarded locally Three small businesses with offices in Northern New Mexico awarded nuclear waste...

  7. Waste Specification Records - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Specification Records About Us Hanford Site Solid Waste Acceptance Program What's New Acceptance Criteria Acceptance Process Becoming a new Hanford Customer Annual Waste Forecast...

  8. Waste Stream Approval - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Stream Approval About Us Hanford Site Solid Waste Acceptance Program What's New Acceptance Criteria Acceptance Process Becoming a new Hanford Customer Annual Waste Forecast and...

  9. Overview of mixed waste issues

    SciTech Connect (OSTI)

    Piciulo, P.L.; Bowerman, B.S.; Kempf, C.R.; MacKenzie, D.R.; Siskind, B.

    1986-01-01

    Based on BNL's study it was concluded that there are LLWs which contain chemically hazardous components. Scintillation liquids may be considered an EPA listed hazardous waste and are, therefore, potential mixed wastes. Since November, 1985 no operating LLW disposal site will accept these wastes for disposal. Unless such wastes contain de minimis quantities of radionuclides, they cannot be disposed of at an EPA an EPA permitted site. Currently generators of LSC wastes can ship de minimis wastes to be burned at commercial facilities. Oil wastes will also eventually be an EPA listed waste and thus will have to be considered a potential radioactive mixed wasted unless NRC establishes de minimis levels of radionuclides below which oils can be managed as hazardous wastes. Regarding wastes containing lead metal there is some question as to the extent of the hazard posed by lead disposed in a LLW burial trench. Chromium-containing wastes would have to be tested to determine whether they are potential mixed wastes. There may be other wastes that are mixed wastes; the responsibility for determining this rests with the waste generator. It is believed that there are management options for handling potential mixed wastes but there is no regulatory guidance. BNL has identified and evaluated a variety of treatment options for the management of potential radioactive mixed wastes. The findings of that study showed that application of a management option with the purpose of addressing EPA concern can, at the same time, address stabilization and volume reduction concerns of NRC.

  10. Green Energy Options for Consumer-Owned Business

    SciTech Connect (OSTI)

    Co-opPlus of Western Massachusetts

    2006-05-01

    The goal of this project was to define, test, and prototype a replicable business model for consumer-owned cooperatives. The result is a replicable consumer-owned cooperative business model for the generation, interconnection, and distribution of renewable energy that incorporates energy conservation and efficiency improvements.

  11. Modeling and simulation of consumer response to dynamic pricing.

    SciTech Connect (OSTI)

    Valenzuela, J.; Thimmapuram, P.; Kim, J (Decision and Information Sciences); (Auburn Univ.)

    2012-08-01

    Assessing the impacts of dynamic-pricing under the smart grid concept is becoming extremely important for deciding its full deployment. In this paper, we develop a model that represents the response of consumers to dynamic pricing. In the model, consumers use forecasted day-ahead prices to shift daily energy consumption from hours when the price is expected to be high to hours when the price is expected to be low while maintaining the total energy consumption as unchanged. We integrate the consumer response model into the Electricity Market Complex Adaptive System (EMCAS). EMCAS is an agent-based model that simulates restructured electricity markets. We explore the impacts of dynamic-pricing on price spikes, peak demand, consumer energy bills, power supplier profits, and congestion costs. A simulation of an 11-node test network that includes eight generation companies and five aggregated consumers is performed for a period of 1 month. In addition, we simulate the Korean power system.

  12. AVLIS production plant waste management plan

    SciTech Connect (OSTI)

    Not Available

    1984-11-15

    Following the executive summary, this document contains the following: (1) waste management facilities design objectives; (2) AVLIS production plant wastes; (3) waste management design criteria; (4) waste management plan description; and (5) waste management plan implementation. 17 figures, 18 tables.

  13. Application of Raman spectroscopy to identification and sorting of post-consumer plastics for recycling

    DOE Patents [OSTI]

    Sommer, Edward J. (Nashville, TN); Rich, John T. (Lebanon, TN)

    2001-01-01

    A high accuracy rapid system for sorting a plurality of waste products by polymer type. The invention involves the application of Raman spectroscopy and complex identification techniques to identify and sort post-consumer plastics for recycling. The invention reads information unique to the molecular structure of the materials to be sorted to identify their chemical compositions and uses rapid high volume sorting techniques to sort them into product streams at commercially viable throughput rates. The system employs a laser diode (20) for irradiating the material sample (10), a spectrograph (50) is used to determine the Raman spectrum of the material sample (10) and a microprocessor based controller (70) is employed to identify the polymer type of the material sample (10).

  14. Interim Report on Consumer Acceptance, Retention, and response to Time-based rates from the Consumer Behavior Studies

    Office of Environmental Management (EM)

    |June 2015 Interim Report on Impacts from the Consumer Behavior Studies | Page ii Table of Contents Executive Summary .............................................................................................................. iv 1. Introduction ................................................................................................................... 1 1.1 Background about Time-Based Rates and Advanced Metering Infrastructure ............ 1 1.2 Overview of DOE's Consumer Behavior

  15. D11 WASTE DISPOSAL FACILITIES FOR TRANSURANIC WASTE

    Office of Environmental Management (EM)

    2 10 CFR Ch. X (1-1-12 Edition) Pt. 1022 D11 WASTE DISPOSAL FACILITIES FOR TRANSURANIC WASTE Siting, construction or expansion, and op- eration of disposal facilities for transuranic (TRU) waste and TRU mixed waste (TRU waste also containing hazardous waste as designated in 40 CFR part 261). D12 INCINERATORS Siting, construction, and operation of in- cinerators, other than research and develop- ment incinerators or incinerators for non- hazardous solid waste (as designated in 40 CFR 261.4(b)).

  16. Integrated solid waste management of Scottsdale, Arizona

    SciTech Connect (OSTI)

    1995-11-01

    The subject document reports the results of an in-depth investigation of the fiscal year 1992 cost of the city of Scottsdale, Arizona, integrated municipal solid waste management (IMSWM) system, the energy consumed to operate the system, and the environmental performance requirements for each of the system`s waste-processing and disposal facilities. The document reports actual data from records kept by participants. Every effort was made to minimize the use of assumptions, and no attempt is made to interpret the data reported. Analytical approaches are documented so that interested analysts may per-form manipulation or further analysis of the data. As such, the report is a reference document for municipal solid waste (MSW) management professionals who are interested in the actual costs and energy consumption, for a 1-year period, of an operating IMSWM system. The report is organized into two main parts. The first part is the executive summary and case study portion of the report. The executive summary provides a basic description of the study area and selected economic and energy information. Within the case study are detailed descriptions of each component operating during the study period; the quantities of solid waste collected, processed, and marketed within the study boundaries; the cost of MSW in Scottsdale; an energy usage analysis; a review of federal, state, and local environmental requirement compliance; a reference section; and a glossary of terms. The second part of the report focuses on a more detailed discourse on the above topics. In addition, the methodology used to determine the economic costs and energy consumption of the system components is found in the second portion of this report. The methodology created for this project will be helpful for those professionals who wish to break out the costs of their own integrated systems.

  17. Pioneering Nuclear Waste Disposal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    T h e W a s t e I s o l a t i o n P i l o t P l a n t DOE 1980. Final Environmental Impact Statement, Waste Isolation Pilot Plant. DOE/EIS-0026, Washington, DC, Office of Environmental Management, U.S. Department of Energy. DOE 1981. Waste Isolation Pilot Plant (WIPP): Record of Decision. Federal Register, Vol. 46, No. 18, p. 9162, (46 Federal Register 9162), January 28, 1981. U.S. Department of Energy. DOE 1990. Final Supplement Environmental Impact Statement, Waste Isolation Pilot Plant.

  18. Hanford Dangerous Waste Permit

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    We don't expect any risk from this site. The permit ensures operation and closure of this facility do not harm humans or the environment. Liquid Effluent Retention Facility Effluent Treatment Facility Operating Unit #3 What happens to the waste it receives? LERF has three lined basins with a capacity of 88.5 million liters. ETF removes or destroys dangerous waste in liquid waste. It uses treatments such as filters, reverse osmosis, pH adjustment, and ultraviolet light. Water is treated, then

  19. Radioactive waste material disposal

    DOE Patents [OSTI]

    Forsberg, C.W.; Beahm, E.C.; Parker, G.W.

    1995-10-24

    The invention is a process for direct conversion of solid radioactive waste, particularly spent nuclear fuel and its cladding, if any, into a solidified waste glass. A sacrificial metal oxide, dissolved in a glass bath, is used to oxidize elemental metal and any carbon values present in the waste as they are fed to the bath. Two different modes of operation are possible, depending on the sacrificial metal oxide employed. In the first mode, a regenerable sacrificial oxide, e.g., PbO, is employed, while the second mode features use of disposable oxides such as ferric oxide. 3 figs.

  20. Radioactive waste material disposal

    DOE Patents [OSTI]

    Forsberg, Charles W. (155 Newport Dr., Oak Ridge, TN 37830); Beahm, Edward C. (106 Cooper Cir., Oak Ridge, TN 37830); Parker, George W. (321 Dominion Cir., Knoxville, TN 37922)

    1995-01-01

    The invention is a process for direct conversion of solid radioactive waste, particularly spent nuclear fuel and its cladding, if any, into a solidified waste glass. A sacrificial metal oxide, dissolved in a glass bath, is used to oxidize elemental metal and any carbon values present in the waste as they are fed to the bath. Two different modes of operation are possible, depending on the sacrificial metal oxide employed. In the first mode, a regenerable sacrificial oxide, e.g., PbO, is employed, while the second mode features use of disposable oxides such as ferric oxide.

  1. Generating power with waste wood

    SciTech Connect (OSTI)

    Atkins, R.S.

    1995-02-01

    Among the biomass renewables, waste wood has great potential with environmental and economic benefits highlighting its resume. The topics of this article include alternate waste wood fuel streams; combustion benefits; waste wood comparisons; waste wood ash; pilot scale tests; full-scale test data; permitting difficulties; and future needs.

  2. Method for calcining radioactive wastes

    DOE Patents [OSTI]

    Bjorklund, William J.; McElroy, Jack L.; Mendel, John E.

    1979-01-01

    This invention relates to a method for the preparation of radioactive wastes in a low leachability form by calcining the radioactive waste on a fluidized bed of glass frit, removing the calcined waste to melter to form a homogeneous melt of the glass and the calcined waste, and then solidifying the melt to encapsulate the radioactive calcine in a glass matrix.

  3. Methane generation from waste materials

    DOE Patents [OSTI]

    Samani, Zohrab A. (Las Cruces, NM); Hanson, Adrian T. (Las Cruces, NM); Macias-Corral, Maritza (Las Cruces, NM)

    2010-03-23

    An organic solid waste digester for producing methane from solid waste, the digester comprising a reactor vessel for holding solid waste, a sprinkler system for distributing water, bacteria, and nutrients over and through the solid waste, and a drainage system for capturing leachate that is then recirculated through the sprinkler system.

  4. Contained recovery of oily waste

    DOE Patents [OSTI]

    Johnson, Jr., Lyle A. (Laramie, WY); Sudduth, Bruce C. (Laramie, WY)

    1989-01-01

    A method is provided for recovering oily waste from oily waste accumulations underground comprising sweeping the oily waste accumulation with hot water to recover said oily waste, wherein said area treated is isolated from surrounding groundwater hydraulically. The hot water may be reinjected after the hot-water displacement or may be treated to conform to any discharge requirements.

  5. Prosperity without pollution: The prevention strategy for industry and consumers

    SciTech Connect (OSTI)

    Hirschhorn, J.S.; Oldenburg, K.U.

    1991-12-31

    ;Contents: Pollution prevention pays for everyone; What pollution prevention is-What waste recycling and other strategies are not; Achieving succcess by overcoming obstacles; Data tells the story-too much waste; The ozone groan-do we still have time; Harm to the farm and home from chemical pesticides; Changing consumption-reducing garbage; Household toxic products-thinking more and buying less; and No time to waste.

  6. Women of Waste Management

    Broader source: Energy.gov [DOE]

    PHOENIX - For the seventh year at the Waste Management Conference, EM contractor Fluor hosted a discussion on the expanding role of women in environmental management this month in a panel session attended by more than 250 people.

  7. Waste and Recycling

    ScienceCinema (OSTI)

    McCarthy, Kathy

    2013-05-28

    Nuclear engineer Dr. Kathy McCarthy talks about nuclear energy, the challenge of nuclear waste and the research aimed at solutions. For more information about nuclear energy research, visit http://www.facebook.com/idahonationallaboratory.

  8. Waste Isolation Pilot Plant

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    provided by the U.S. Environmental Protection Agency. The Karst and Related Issues at the Waste Isolation Pilot Plant - A paper addressing the issue of karst at WIPP by Dr. Lokesh...

  9. UMC Construction Waste (4493)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    collect all Construction waste identified in 2006 and excess through plant sales, recycle through plant scrap metal recycle program, dispose in Y-12 on-site landfill, or ship to...

  10. Hanford Dangerous Waste Permit

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Double-Shell Tank System 204-AR Waste Unloading Facility Operating Unit 12 241-AP Tank Farm construction. See black pickup trucks for scale. The DSTs have limited capacity and are...

  11. Citrus Waste Biomass Program

    SciTech Connect (OSTI)

    Karel Grohman; Scott Stevenson

    2007-01-30

    Renewable Spirits is developing an innovative pilot plant bio-refinery to establish the commercial viability of ehtanol production utilizing a processing waste from citrus juice production. A novel process based on enzymatic hydrolysis of citrus processing waste and fermentation of resulting sugars to ethanol by yeasts was successfully developed in collaboration with a CRADA partner, USDA/ARS Citrus and Subtropical Products Laboratory. The process was also successfully scaled up from laboratory scale to 10,000 gal fermentor level.

  12. Waste Isolation Pilot Plant

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Protective Actions Actions to Protect Workers, Public and the Environment The February 14 radioactivity release was a watershed event for the Waste Isolation Pilot Plant (WIPP). It was the first accident of its kind in the 15-year operating history of the transuranic nuclear waste repository. No workers were underground when the release occurred. There were 11 workers on the night shift at the time of the release and two additional employees entered the site in response to the accident. These 13

  13. Pioneering Nuclear Waste Disposal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2 3 T he journey to the WIPP began nearly 60 years before the first barrels of transuranic waste arrived at the repository. The United States produced the world's first sig- nificant quantities of transuranic material during the Manhattan Project of World War II in the early 1940s. The government idled its plutonium- producing reactors and warhead manu- facturing plants at the end of the Cold War and scheduled most of them for dismantlement. However, the DOE will generate more transuranic waste

  14. Friendly Skies Waste Management

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Friendly Skies Waste Management AGOS keeps watch above the NNSS. Hyde Park goes undefeated en route to Middle School title. Nevada attends waste management symposium in Arizona. See page 8. See page 4. See page 6. RSL Goes Behind-the- Scenes During the 57th Presidential Inauguration An estimated one million people flooded the nation's capital on Jan. 21, 2013, to witness the 57th Presidential Inauguration and the historic second inauguration of Barack Obama. The event was designated as a

  15. Contents TRU Waste Celebration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    9 September 2005 A publication for all members of the NNSA/NSO family Contents TRU Waste Celebration by Katherine Schwartz On July 28, 2005, Bechtel Nevada hosted a function to commemorate the dedication and hard work of every Joanne Norton of meeting the milestone of completion of characterization of all legacy waste drums stored at the NTS for 30 years." , assistant general manager for Environmental Management at BN, was equally pleased. making direct contact with it. the dedicated

  16. Defense Waste Management Programs

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Waste Management Programs - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs

  17. WIPP WASTE MINIMIZATION PROGRAM DESCRIPTION

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NOV 2 3 2015 New Mexico Environment Department 2905 Rodeo Park Drive East, Building 1 Santa Fe, New Mexico 87505-6303 Subject: Transm ittal of the Waste Isolation Pilot Plant Project 2015 Waste Minimization Report, Permit Number NM4890139088-TSDF Dear Mr. Kieling: The purpose of this letter is to provide you with the Waste Isolation Pilot Plant (WIPP) Project 2015 Waste Minimization Report. This report, required by and prepared in accordance with the WIPP Hazardous Waste Facility Permit Part 2,

  18. WIPP WASTE MINIMIZATION PROGRAM DESCRIPTION

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Carlsbad, New Mexico 8822 1 NOV 2 3 2011 Mr. John Kieling , Acting Bureau Chief Hazardous Waste Bureau New Mexico Environme nt Department 2905 Rodeo Park Drive East, Building 1 Santa Fe, New Mexico 87505-6303 Subject: Transmittal of the Waste Isolation Pilot Plant Annual Waste Minimization Report Dear Mr. Kieling: This letter provides the submittal of the Waste Isolation Pilot Plant Annual Waste Minimization Report. This report is required by and has bee n prepared in accordance with the WIPP

  19. Waste Disposal | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Disposal Waste Disposal Trucks transport debris from Oak Ridge’s cleanup sites to the onsite CERCLA disposal area, the Environmental Management Waste Management Facility. Trucks transport debris from Oak Ridge's cleanup sites to the onsite CERCLA disposal area, the Environmental Management Waste Management Facility. The low-level radiological and hazardous wastes generated from Oak Ridge's cleanup projects are disposed in the Environmental Management Waste Management Facility (EMWMF). The

  20. Waste Management | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Management Waste Management Nuclear Materials Disposition Nuclear Materials Disposition In fulfilling its mission, EM frequently manages and completes disposition of surplus nuclear materials and spent nuclear fuel. These are not waste. They are nuclear materials no longer needed for national security or other purposes, including spent nuclear fuel, special nuclear materials (as defined by the Atomic Energy Act) and other Nuclear Materials. Read more Tank Waste and Waste Processing Tank Waste

  1. Hanford Site annual dangerous waste report. Volume 1, Part 2, Generator dangerous waste report dangerous waste: Calendar Year 1993

    SciTech Connect (OSTI)

    Not Available

    1993-12-31

    This report contains information on hazardous wastes at the Hanford Site. Information consists of shipment date, physical state, chemical nature, weight, waste description, and waste designation.

  2. ISSUANCE 2015-08-14: Energy Conservation Program for Consumer...

    Broader source: Energy.gov (indexed) [DOE]

    Energy Conservation Program for Consumer Products: Definitions and Standards for Grid-Enabled Water Heaters PDF icon Grid Enabled Water Heaters Final Rule Amendment 2015-08-14.pdf ...

  3. Energize Phoenix: Testing Innovative Approaches to Engaging Consumers

    Broader source: Energy.gov [DOE]

    Residential Energy Efficiency Solutions Conference: Testing Innovative Approaches to Engaging Consumers, July 10, 2012. Presents an up-close look at the residential rebate match program by Energize Phoenix, including the process and results.

  4. Rhode Island Heat Content of Natural Gas Consumed

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Feb-15 Mar-15 Apr-15 May-15 Jun-15 Jul-15 View History Delivered to Consumers 1,029 1,029 1,029 1,028 1,028 1,028 2013-2015...

  5. Rhode Island Heat Content of Natural Gas Consumed

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    2009 2010 2011 2012 2013 2014 View History Delivered to Consumers 1,023 1,017 1,020 1,031 1,032 1,028 2007-2014...

  6. Experiences from the Consumer Behavior Studies on Engaging Customers

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... to customers in prepay plans, in light of the risk of loss of consumer protections. ... A related obstacle is the potential lack of "elasticity" in energy demand for many ...

  7. How Much Do You Consume? | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Do You Consume? Want to view this interactive graphic in all its glory? Upgrade to a modern browser How much energy do you use? See how much energy someone like you used in...

  8. Washington State Becomes Largest Public Consumer of Biodiesel

    Broader source: Energy.gov [DOE]

    With a $165,000 Recovery Act loan, the state of Washington is advancing its efforts toward clean energy and is now the largest public consumer of biodiesel in the country.

  9. Consumers Power, Inc.- New Homes Energy Efficiency Program

    Broader source: Energy.gov [DOE]

    Consumer's Power, Inc.(CPI)  offers a $1,500 incentive for homes which attain Northwest Energy Star Certification.  To qualify, homes must use CPI electricity, be new construction (remodels do not...

  10. Implementing the National Broadband Plan by Empowering Consumers...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy: Implementing the National Broadband Plan by Empowering Consumers and the Smart Grid: Data Access, Third Party Use, and Privacy FR Doc. 2010-11127 July 12, 2010

  11. Re: Implementing the National Broadband Plan by Empowering Consumers...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy: Implementing the National Broadband Plan by Empowering Consumers and the Smart Grid: Data Access, Third Party Use, and Privacy FR Doc. 2010-11127 July 12, 2010

  12. Demand response medium sized industry consumers (Smart Grid Project...

    Open Energy Info (EERE)

    demand and regulation power in Danish Industry consumers via a price and control signal from the supplier of electricity. The aim is to develop a valuable solution for the...

  13. Natural Gas Delivered to Consumers in Texas (Including Vehicle...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Texas (Including Vehicle Fuel) (Million Cubic Feet) Natural Gas Delivered to Consumers in Texas (Including Vehicle Fuel) (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug...

  14. ,"Texas Natural Gas Price Sold to Electric Power Consumers (Dollars...

    U.S. Energy Information Administration (EIA) Indexed Site

    ,,"(202) 586-8800",,,"1012015 10:57:50 AM" "Back to Contents","Data 1: Texas Natural Gas Price Sold to Electric Power Consumers (Dollars per Thousand Cubic Feet)"...

  15. Plug-In Electric Vehicle Handbook for Consumers (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2015-02-01

    This handbook is designed to answer a consumer's basic questions, as well as point them to additional information they need, to make the best decision about whether an electric-drive vehicle is right for them.

  16. District of Columbia Heat Content of Natural Gas Consumed

    Gasoline and Diesel Fuel Update (EIA)

    Jul-15 Aug-15 Sep-15 Oct-15 Nov-15 Dec-15 View History Delivered to Consumers 1,037 1,036 1,035 1,045 1,039 1,044 2013

  17. Plug-In Electric Vehicle Handbook for Consumers

    SciTech Connect (OSTI)

    2015-02-09

    This handbook is designed to answer a consumer's basic questions, as well as point them to additional information they need, to make the best decision about whether an electric-drive vehicle is right for them.

  18. Natural Gas Deliveries to Commercial Consumers (Including Vehicle...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Mexico (Million Cubic Feet) Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel through 1996) in New Mexico (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul...

  19. Natural Gas Delivered to Consumers in New Mexico (Including Vehicle...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Mexico (Including Vehicle Fuel) (Million Cubic Feet) Natural Gas Delivered to Consumers in New Mexico (Including Vehicle Fuel) (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul...

  20. North Carolina Heat Content of Natural Gas Consumed

    Gasoline and Diesel Fuel Update (EIA)

    2009 2010 2011 2012 2013 2014 View History Delivered to Consumers 1,023 1,015 1,011 1,011 1,013 1,018 2007-2014...

  1. North Carolina Heat Content of Natural Gas Consumed

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    May-15 Jun-15 Jul-15 Aug-15 Sep-15 Oct-15 View History Delivered to Consumers 1,035 1,033 1,038 1,037 1,038 1,040 2013-2015...

  2. New York Heat Content of Natural Gas Consumed

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Apr-15 May-15 Jun-15 Jul-15 Aug-15 Sep-15 View History Delivered to Consumers 1,034 1,032 1,032 1,031 1,031 1,032 2013-2015...

  3. New York Heat Content of Natural Gas Consumed

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    2009 2010 2011 2012 2013 2014 View History Delivered to Consumers 1,021 1,022 1,025 1,031 1,033 1,031 2007-2014...

  4. Idaho Waste Vitrification Facilities Project Vitrified Waste Interim Storage Facility

    SciTech Connect (OSTI)

    Bonnema, Bruce Edward

    2001-09-01

    This feasibility study report presents a draft design of the Vitrified Waste Interim Storage Facility (VWISF), which is one of three subprojects of the Idaho Waste Vitrification Facilities (IWVF) project. The primary goal of the IWVF project is to design and construct a treatment process system that will vitrify the sodium-bearing waste (SBW) to a final waste form. The project will consist of three subprojects that include the Waste Collection Tanks Facility, the Waste Vitrification Facility (WVF), and the VWISF. The Waste Collection Tanks Facility will provide for waste collection, feed mixing, and surge storage for SBW and newly generated liquid waste from ongoing operations at the Idaho Nuclear Technology and Engineering Center. The WVF will contain the vitrification process that will mix the waste with glass-forming chemicals or frit and turn the waste into glass. The VWISF will provide a shielded storage facility for the glass until the waste can be disposed at either the Waste Isolation Pilot Plant as mixed transuranic waste or at the future national geological repository as high-level waste glass, pending the outcome of a Waste Incidental to Reprocessing determination, which is currently in progress. A secondary goal is to provide a facility that can be easily modified later to accommodate storage of the vitrified high-level waste calcine. The objective of this study was to determine the feasibility of the VWISF, which would be constructed in compliance with applicable federal, state, and local laws. This project supports the Department of Energys Environmental Management missions of safely storing and treating radioactive wastes as well as meeting Federal Facility Compliance commitments made to the State of Idaho.

  5. [Article 1 of 7: Motivates and Includes the Consumer]

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Series on the Seven Principal Characteristics of the Modern Grid [Article 1 of 7: Motivates and Includes the Consumer] In October 2007, Ken Silverstein (Energy Central) wrote an editorial, "Empowering Consumers" that hit a strong, kindred chord with the DOE/National Energy Technology Laboratory (NETL) Modern Grid Strategy team. Through subsequent discussions with Ken and Bill Opalka, Editor- In-Chief, Topics Centers, we decided it would be informative to the industry if the Modern Grid

  6. 2016-03-11 Energy Conservation Program for Consumer Products:

    Office of Environmental Management (EM)

    Representative Average Unit Costs of Energy | Department of Energy -03-11 Energy Conservation Program for Consumer Products: Representative Average Unit Costs of Energy 2016-03-11 Energy Conservation Program for Consumer Products: Representative Average Unit Costs of Energy PDF icon Representative Average Unit Costs of Energy More Documents & Publications EA-0819: Finding of No Significant Impact 2016-03-11 Commercial Packaged Boilers_NOPR Webtrends Archives by Fiscal Year - FEMP

  7. Now Available: Lakeland Electric SGIG Consumer Behavior Study Interim

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Evaluation Report (February 2015) | Department of Energy Lakeland Electric SGIG Consumer Behavior Study Interim Evaluation Report (February 2015) Now Available: Lakeland Electric SGIG Consumer Behavior Study Interim Evaluation Report (February 2015) March 20, 2015 - 2:17pm Addthis An interim evaluation report summarizing results from the first year of Lakeland Electric's two-year 3-Period Time of Use (TOU) program called "Shift-to-Save" (STS) is now available. The study is part of

  8. Smart Grid Projects Are Improving Performance and Helping Consumers Better

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Manage their Energy Use | Department of Energy Projects Are Improving Performance and Helping Consumers Better Manage their Energy Use Smart Grid Projects Are Improving Performance and Helping Consumers Better Manage their Energy Use November 14, 2014 - 5:07pm Addthis Hank Kenchington Hank Kenchington Deputy Assistant Secretary, Advanced Grid Integration After nearly five years, the 131 smart grid projects funded through the 2009 Recovery Act are nearing completion and the results are

  9. Sustainable Energy Resources for Consumers (SERC) Vermont Highlight (Fact

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Sheet), Weatherization And Intergovernmental Programs (WIP) | Department of Energy Vermont Highlight (Fact Sheet), Weatherization And Intergovernmental Programs (WIP) Sustainable Energy Resources for Consumers (SERC) Vermont Highlight (Fact Sheet), Weatherization And Intergovernmental Programs (WIP) Case study on Vermont's innovative strategy for helping low-income families save energy through its Sustainable Energy Resources for Consumers (SERC) program. PDF icon serc_vt_highlight.pdf More

  10. District of Columbia Natural Gas Deliveries to Electric Power Consumers

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (Million Cubic Feet) Deliveries to Electric Power Consumers (Million Cubic Feet) District of Columbia Natural Gas Deliveries to Electric Power Consumers (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 0 0 0 0 0 0 0 0 0 0 0 0 2002 0 0 0 0 0 0 0 0 0 0 0 0 2003 -- -- -- -- -- -- -- -- -- -- -- -- 2004 -- -- -- -- -- -- -- -- -- -- -- -- 2005 -- -- -- -- -- -- -- -- -- -- -- -- 2006 -- -- -- -- -- -- -- -- -- -- -- -- 2007 -- -- -- -- -- -- -- -- -- -- -- -- 2008

  11. Energy Characteristics and Energy Consumed in Large Hospital Buildings in

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the United States in 2007 Energy Characteristics and Energy Consumed in Large Hospital Buildings in the United States in 2007 Main Report | Methodology | FAQ | List of Tables CBECS 2007 - Release date: August 17, 2012 Hospitals consume large amounts of energy because of how they are run and the many people that use them. They are open 24 hours a day; thousands of employees, patients, and visitors occupy the buildings daily; and sophisticated heating, ventilation, and air conditioning (HVAC)

  12. EV Everywhere Consumer Acceptance and Charging Infrastructure Workshop

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Introduction | Department of Energy Workshop Introduction EV Everywhere Consumer Acceptance and Charging Infrastructure Workshop Introduction Presentation given at the EV Everywhere Grand Challenge: Consumer Acceptance and Charging Infrastructure Workshop on July 30, 2012 held at the LAX Marriott, Los Angeles, CA PDF icon 1_sandalow_caci.pdf More Documents & Publications EV Everywhere Framing Workshop Overview EV Everywhere Battery Workshop Introduction EV Everywhere Grand Challenge

  13. Educating Consumers: New Content on Diesel Vehicles, Diesel Exhaust Fluid,

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Selective Catalytic Reduction Technologies on the AFDC | Department of Energy Educating Consumers: New Content on Diesel Vehicles, Diesel Exhaust Fluid, and Selective Catalytic Reduction Technologies on the AFDC Educating Consumers: New Content on Diesel Vehicles, Diesel Exhaust Fluid, and Selective Catalytic Reduction Technologies on the AFDC Showcases new content added to the AFDC including: Diesel Vehicles, Diesel Exhaust Fluid, Selective Catalytic Reduction Technologies, and an

  14. Blueprint for Sustainability - Sustainable Solutions for Every Consumer |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Blueprint for Sustainability - Sustainable Solutions for Every Consumer Blueprint for Sustainability - Sustainable Solutions for Every Consumer Highlights of Ford's near, mid, and long term plans for sustainability with a focus on efficient diesel engines and hybrid vehicles. PDF icon deer08_kapp.pdf More Documents & Publications Thermoelectric Opportunities for Light-Duty Vehicles Advanced Gasoline Turbocharged Direct Injection (GTDI) Engine Development U.S. Based

  15. Break-out Discussion i: Modeling Consumer Behavior Residential Scale

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Break-out Discussion I: Modeling Consumer Behavior Residential Scale  Are we asking the right questions?  What is a question we could ask about modeling consumer behavior that might lead to deeper insights into how to spur innovation? Why Are We Here? 2 Opower: visual comparison 3 opower 4 EERE Home Energy Score 5 * Similar comparison model * Adds climate context * Simple, visual  Data: - How much - What type  Data: - What is actionable today? - What is bodacious, over-the-top

  16. Sustainable Energy Resources for Consumers Webinar on Residential

    Energy Savers [EERE]

    Geothermal Heat Pump Retrofit Transcript | Department of Energy Geothermal Heat Pump Retrofit Transcript Sustainable Energy Resources for Consumers Webinar on Residential Geothermal Heat Pump Retrofit Transcript Transcript for a U.S. Department of Energy Webinar on Dec. 14, 2010, about residential geothermal heat pump retrofits PDF icon 20101214_geothermal_webinar_transcript.pdf More Documents & Publications Sustainable Energy Resources for Consumers (SERC) - Geothermal/Ground-Source

  17. Re: Implementing the National Broadband Plan by Empowering Consumers and

    Energy Savers [EERE]

    the Smart Grid: Data Access, Third Party Use, and Privacy | Department of Energy Empowering Consumers and the Smart Grid: Data Access, Third Party Use, and Privacy Re: Implementing the National Broadband Plan by Empowering Consumers and the Smart Grid: Data Access, Third Party Use, and Privacy Exelon Corporation (Exelon) hereby submits the following comments in response to the request by the Department of Energy ("DOE" or "Department") for information on state efforts to

  18. Refrigerator Standards Save Consumers $ Billions | Department of Energy

    Energy Savers [EERE]

    Refrigerator Standards Save Consumers $ Billions Refrigerator Standards Save Consumers $ Billions March 5, 2013 - 10:35am Addthis Refrigerator Standards Refrigerator Standards Refrigerator technology has come a long way since Dr. John Gorrie (1803 - 1855), a forward-looking inventor, was granted U. S. Patent #8080 for mechanical refrigeration in 1851. In those days, ice was expensive, if it was even available: Blocks of natural ice were carved from frozen lakes and rivers and stored in special

  19. SEP Success Story: Washington State Becomes Largest Public Consumer of

    Energy Savers [EERE]

    Biodiesel | Department of Energy Washington State Becomes Largest Public Consumer of Biodiesel SEP Success Story: Washington State Becomes Largest Public Consumer of Biodiesel December 14, 2011 - 11:34am Addthis Auto and passenger ferries operated by the Washington State Transportation Department shuttle more than 11 million people across the Puget Sound every year. Now, the electric-diesel engines that propel these vessels are powered by a blend of soy-based biodiesel and petroleum diesel.

  20. Energy Conservation Program for Consumer Products and Commercial and

    Office of Environmental Management (EM)

    Industrial Equipment-- AHRI Annual Meeting CCE Overview and Update Presenation, dated April 13, 2011 | Department of Energy Program for Consumer Products and Commercial and Industrial Equipment-- AHRI Annual Meeting CCE Overview and Update Presenation, dated April 13, 2011 Energy Conservation Program for Consumer Products and Commercial and Industrial Equipment-- AHRI Annual Meeting CCE Overview and Update Presenation, dated April 13, 2011 This document is the Energy Conservation Program for

  1. Experiences from the Consumer Behavior Studies on Engaging Customers

    Office of Environmental Management (EM)

    Lessons Learned - CBS Utilities Engagement with Consumers Page i Acknowledgements The United States Department of Energy would like to acknowledge the contributions of several individuals to this report. Rich Scheer of Scheer Ventures LLC and Peter Cappers of Lawrence Berkeley National Laboratory were the primary authors. The following people contributed perspectives, observations, and lessons learned based on their experiences implementing consumer behavior studies under the Smart Grid

  2. Green Button Initiative Makes Headway with Electric Industry and Consumers

    Office of Environmental Management (EM)

    | Department of Energy Button Initiative Makes Headway with Electric Industry and Consumers Green Button Initiative Makes Headway with Electric Industry and Consumers July 22, 2015 - 3:01pm Addthis Photo courtesy of San Diego Gas & Electric Photo courtesy of San Diego Gas & Electric Kristen Honey Science and Technology Policy Fellow, Office of Energy Efficiency and Renewable Energy David Wollman Deputy Director of the Smart Grid and Cyber-Physical Systems Program at the National

  3. Implementing the National Broadband Plan by Empowering Consumers and the

    Office of Environmental Management (EM)

    Smart Grid: Data Access, Third Party Use, and Privacy | Department of Energy Privacy Implementing the National Broadband Plan by Empowering Consumers and the Smart Grid: Data Access, Third Party Use, and Privacy The United States Telecom Association (USTelecom)1 is pleased to comment on the Request for Information (RFI) of the Department of Energy (DOE) in its proceeding requesting input from the public regarding current and potential practices and policies to empower consumers through

  4. Living Comfortably: A Consumer's Guide to Home Energy Upgrades |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Living Comfortably: A Consumer's Guide to Home Energy Upgrades Living Comfortably: A Consumer's Guide to Home Energy Upgrades March 7, 2013 - 3:15pm Addthis A weatherization worker drills holes to blow cellulose insulation in the interior walls of this home. | Photo courtesy of Dennis Schroeder, NREL A weatherization worker drills holes to blow cellulose insulation in the interior walls of this home. | Photo courtesy of Dennis Schroeder, NREL Dr. Richard Knaub Project

  5. Comments by the National Association of State Utility Consumer Advocates |

    Office of Environmental Management (EM)

    Department of Energy The National Association of State Utility Consumer Advocates ("NASUCA") hereby submits the following comments in response to the United States Department of Energy ("DOE") Request for Information ("RFI") entitled "Implementing the National Broadband Plan by Empowering Consumers and the Smart Grid: Data Access, Third Party Use, and Privacy." See 75 Fed. Reg. 26203 (May 11, 2010). The RFI requests comments and information from

  6. Consumer Electronics Show 2013 Highlights Sustainable Energy Technology |

    Office of Environmental Management (EM)

    Department of Energy Consumer Electronics Show 2013 Highlights Sustainable Energy Technology Consumer Electronics Show 2013 Highlights Sustainable Energy Technology January 18, 2013 - 4:52pm Addthis Excited attendees flood into the Central Hall exhibits to see the latest and greatest in technology at the 2013 International CES. | 2013 International CES Excited attendees flood into the Central Hall exhibits to see the latest and greatest in technology at the 2013 International CES. | 2013

  7. 4 Energy Department Inventions Saving Consumers Energy and Money |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy 4 Energy Department Inventions Saving Consumers Energy and Money 4 Energy Department Inventions Saving Consumers Energy and Money Addthis Loose-Fill Fiberglass Insulation 1 of 4 Loose-Fill Fiberglass Insulation In 1992, private insulation manufacturer Energy Savings Solutions, Inc., reached out to Oak Ridge National Laboratory to find ways to improve loose-fill fiberglass insulation. Oak Ridge researchers provided the guidance necessary to substantially improve the

  8. Vehicle Technologies Office: Resources for Consumers | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Consumers Vehicle Technologies Office: Resources for Consumers As technologies supported by the Vehicle Technologies Office (VTO) come on to the market, regular drivers will benefit from lower fuel costs and less time spent at the gas station. Through FuelEconomy.gov and the Alternative Fuels Data Center, VTO provides a variety of resources to help drivers choose the most efficient vehicle that meets their needs and get the most out of the vehicle they have now. Green Racing highlights the

  9. Tank Waste Corporate Board | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Services » Waste Management » Tank Waste and Waste Processing » Tank Waste Corporate Board Tank Waste Corporate Board The Tank Waste Corporate Board is a chartered group of senior DOE, contractor, and laboratory managers and staff that meets approximately semi-annually to formulate and coordinate implementation of an effective and efficient national Tank Waste program. August 1, 2012 Tank Waste Corporate Board Meeting 08/01/12 The following documents are associated with the Tank Waste

  10. Los Alamos exceeds waste shipping goal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Los Alamos exceeds waste shipping goal Los Alamos exceeds waste shipping goal Los Alamos shipped 1,074 cubic meters of transuranic (TRU) and mixed low-level waste to the Waste Isolation Pilot Plant and other approved waste disposal facilities. July 8, 2013 A shipment carrying Los Alamos transuranic waste heads down NM 502, bound for the Waste Isolation Pilot Plant in southeastern New Mexico. A shipment carrying Los Alamos transuranic waste heads down NM 502, bound for the Waste Isolation Pilot

  11. Los Alamos exceeds waste shipping goal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    exceeds waste shipping goal Los Alamos exceeds waste shipping goal Los Alamos shipped more than 3,000 cubic meters of transuranic (TRU) and mixed low-level waste to the Waste Isolation Pilot Plant and other approved waste disposal facilities. July 8, 2013 A shipment carrying Los Alamos transuranic waste headed to the Waste Isolation Pilot Plant in southeastern New Mexico. A shipment carrying Los Alamos transuranic waste headed to the Waste Isolation Pilot Plant in southeastern New Mexico.

  12. Los Alamos exceeds waste shipping goal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Los Alamos exceeds waste shipping goal Los Alamos exceeds waste shipping goal Los Alamos shipped 1,074 cubic meters of transuranic (TRU) and mixed low-level waste to the Waste Isolation Pilot Plant and other approved waste disposal facilities. July 8, 2013 A shipment carrying Los Alamos transuranic waste heads down NM 502, bound for the Waste Isolation Pilot Plant in southeastern New Mexico. A shipment carrying Los Alamos transuranic waste heads down NM 502, bound for the Waste Isolation Pilot

  13. Waste Treatment Plant - 12508

    SciTech Connect (OSTI)

    Harp, Benton; Olds, Erik

    2012-07-01

    The Waste Treatment Plant (WTP) will immobilize millions of gallons of Hanford's tank waste into solid glass using a proven technology called vitrification. The vitrification process will turn the waste into a stable glass form that is safe for long-term storage. Our discussion of the WTP will include a description of the ongoing design and construction of this large, complex, first-of-a-kind project. The concept for the operation of the WTP is to separate high-level and low-activity waste fractions, and immobilize those fractions in glass using vitrification. The WTP includes four major nuclear facilities and various support facilities. Waste from the Tank Farms is first pumped to the Pretreatment Facility at the WTP through an underground pipe-in-pipe system. When construction is complete, the Pretreatment Facility will be 12 stories high, 540 feet long and 215 feet wide, making it the largest of the four major nuclear facilities that compose the WTP. The total size of this facility will be more than 490,000 square feet. More than 8.2 million craft hours are required to construct this facility. Currently, the Pretreatment Facility is 51 percent complete. At the Pretreatment Facility the waste is pumped to the interior waste feed receipt vessels. Each of these four vessels is 55-feet tall and has a 375,000 gallon capacity, which makes them the largest vessels inside the Pretreatment Facility. These vessels contain a series of internal pulse-jet mixers to keep incoming waste properly mixed. The vessels are inside the black-cell areas, completely enclosed behind thick steel-laced, high strength concrete walls. The black cells are designed to be maintenance free with no moving parts. Once hot operations commence the black-cell area will be inaccessible. Surrounded by black cells, is the 'hot cell canyon'. The hot cell contains all the moving and replaceable components to remove solids and extract liquids. In this area, there is ultrafiltration equipment, cesium-ion exchange columns, evaporator boilers and recirculation pumps, and various mechanical process pumps for transferring process fluids. During the first phase of pretreatment, the waste will be concentrated using an evaporation process. Solids will be filtered out, and the remaining soluble, highly radioactive isotopes will be removed using an ion-exchange process. The high-level solids will be sent to the High-Level Waste (HLW) Vitrification Facility, and the low activity liquids will be sent to the Low-Activity Waste (LAW) Vitrification Facility for further processing. The high-level waste will be transferred via underground pipes to the HLW Facility from the Pretreatment Facility. The waste first arrives at the wet cell, which rests inside a black-cell area. The pretreated waste is transferred through shielded pipes into a series of melter preparation and feed vessels before reaching the melters. Liquids from various facility processes also return to the wet cell for interim storage before recycling back to the Pretreatment Facility. (authors)

  14. SECONDARY WASTE MANAGEMENT STRATEGY FOR EARLY LOW ACTIVITY WASTE TREATMENT

    SciTech Connect (OSTI)

    CRAWFORD TW

    2008-07-17

    This study evaluates parameters relevant to River Protection Project secondary waste streams generated during Early Low Activity Waste operations and recommends a strategy for secondary waste management that considers groundwater impact, cost, and programmatic risk. The recommended strategy for managing River Protection Project secondary waste is focused on improvements in the Effiuent Treatment Facility. Baseline plans to build a Solidification Treatment Unit adjacent to Effluent Treatment Facility should be enhanced to improve solid waste performance and mitigate corrosion of tanks and piping supporting the Effiuent Treatment Facility evaporator. This approach provides a life-cycle benefit to solid waste performance and reduction of groundwater contaminants.

  15. Hanford Waste Vitrification Plant Project Waste Form Qualification Program Plan

    SciTech Connect (OSTI)

    Randklev, E.H.

    1993-06-01

    The US Department of Energy has created a waste acceptance process to help guide the overall program for the disposal of high-level nuclear waste in a federal repository. This Waste Form Qualification Program Plan describes the hierarchy of strategies used by the Hanford Waste Vitrification Plant Project to satisfy the waste form qualification obligations of that waste acceptance process. A description of the functional relationship of the participants contributing to completing this objective is provided. The major activities, products, providers, and associated scheduling for implementing the strategies also are presented.

  16. QER- Comment of Industrial Energy Consumer Group

    Broader source: Energy.gov [DOE]

    Thanks Tony. We'll be announcing dates for a number of other meetings in the next few days so hopefully you'll be able to participate in one of those, or have some of your member companies join. Regards, Karen Karen G. Wayland, Ph.D. Deputy Director for State, Local and Tribal Cooperation Energy Policy and Systems Analysis U.S. Department of Energy 1000 Independence Ave. SW Washington, DC 20585 Phone: +1 (202) 586-1347 Cell: +1 (240) 751-8483 From: Buxton, Anthony W. Sent: Thursday, June 12, 2014 11:44 AM To: Wayland, Karen Subject: Re: Save the Date: June 19 QER meeting on Water-Energy Nexus Thank you, Karen. Our participation in the Providence hearing was a very positive and useful experience. IECG will be unable to attend the San Francisco hearing for obvious reasons, though it is always a temptation. IECG appreciates the effort going into and the significance of the Review and will continue to observe and comment as appropriate. We have become increasingly concerned recently about whether the Federal Power Act and related statutes provide adequate authority for the federal government and related energy institutions ( NERC) to take the actions necessary to ensure the supply of energy to America on a reliable and low cost basis. The decision of the D.C. Circuit Court of Appeals invalidating FERC's Order 750 and the consequent challenges to Order 1000 on the same basis exemplify this difficulty. The states are generally without adequate powers and legal authority as well, save for several large states. The RTOs are an ongoing answer from FERC, but they also are limited by the Federal Power Act. We urge attention to this important issue. Thank you again for your New England hearings and for your excellent work. Tony Buxton Counsel to Industrial Energy Consumer Group. From: Wayland, Karen [mailto:Karen.Wayland@Hq.Doe.Gov] Sent: Thursday, June 12, 2014 11:22 AM Eastern Standard Time To: Wayland, Karen Subject: Save the Date: June 19 QER meeting on Water-Energy Nexus Thank you for your interest in the Quadrennial Energy Review (QER), and apologies for any duplicate emails. The next stakeholders meeting for the QER will focus on the Water-Energy Nexus. The meeting will be held at the San Francisco City Hall on June 19 at 9 am. Doors open at 8 am. We will be posting an agenda and background memo on the QER website over the next week at http://www.energy.gov/epsa/events/qer-public-meeting-water-energy-nexus, so check back regularly. We encourage you to attend and participate, and to share the meeting information with your lists. Please note that we are extending the comment period for stakeholders during the open mic session from 3 minutes (as described in the Federal Register notice) to 5 minutes to give stakeholders adequate time to make substantive statements. We look forward to hearing from you! Information on past meetings, including panelists' statements and summaries of discussions, as well the list of upcoming meetings, can be found at www.energy.gov/qer. Regards, Karen Wayland Karen G. Wayland, Ph.D. Deputy Director for State, Local and Tribal Cooperation Energy Policy and Systems Analysis U.S. Department of Energy 1000 Independence Ave. SW Washington, DC 20585 In accordance with Internal Revenue Service Circular 230, we hereby advise you that if this E-mail or any attachment hereto contains any tax advice, such tax advice was not intended or written to be used, and it cannot be used, by any taxpayer for the purpose of avoiding penalties that may be imposed on the taxpayer by the Internal Revenue Service. This E-Mail may contain information that is privileged, confidential and / or exempt from discovery or disclosure under applicable law. Unintended transmission shall not constitute waiver of the attorney-client or any other privilege. If you are not the intended recipient of this communication, and have received it in error, please do not distribute it and notify me immediately by E-mail at abuxton@preti.com or via telephone at 207.791.3000 and delete the original message. Unless expressly stated in this e-mail, nothing in this message or any attachment should be construed as a digital or electronic signature or as a legal opinion.

  17. Densified waste form and method for forming

    DOE Patents [OSTI]

    Garino, Terry J.; Nenoff, Tina M.; Sava Gallis, Dorina Florentina

    2015-08-25

    Materials and methods of making densified waste forms for temperature sensitive waste material, such as nuclear waste, formed with low temperature processing using metallic powder that forms the matrix that encapsulates the temperature sensitive waste material. The densified waste form includes a temperature sensitive waste material in a physically densified matrix, the matrix is a compacted metallic powder. The method for forming the densified waste form includes mixing a metallic powder and a temperature sensitive waste material to form a waste form precursor. The waste form precursor is compacted with sufficient pressure to densify the waste precursor and encapsulate the temperature sensitive waste material in a physically densified matrix.

  18. EIS-0200: Waste Management Programmatic Environmental Impact...

    Office of Environmental Management (EM)

    Waste Management Programmatic Environmental Impact Statement for Managing Treatment, Storage, and Disposal of Radioactive and Hazardous Waste EIS-0200: Waste Management ...

  19. EMAB Tank Waste Subcommittee Report Presentation

    Office of Environmental Management (EM)

    EM Environmental Management Tank Waste Subcommittee (EM- -TWS) TWS) Report to the Report ... Low Assess Candidate Low- -Activity Waste Forms Activity Waste Forms Charge 3: ...

  20. Independent Activity Report, Waste Treatment and Immobilization...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Waste Treatment and Immobilization Plant - March 2013 Independent Activity Report, Waste Treatment and Immobilization Plant - March 2013 March 2013 Follow-up of Waste Treatment and...