National Library of Energy BETA

Sample records for lignite dakota lignite

  1. POWDERED ACTIVATED CARBON FROM NORTH DAKOTA LIGNITE: AN OPTION...

    Office of Scientific and Technical Information (OSTI)

    CARBON FROM NORTH DAKOTA LIGNITE: AN OPTION FOR DISINFECTION BY-PRODUCT CONTROL IN WATER TREATMENT PLANTS Citation Details In-Document Search Title: POWDERED ACTIVATED...

  2. JV Task 90 - Activated Carbon Production from North Dakota Lignite

    SciTech Connect (OSTI)

    Steven Benson; Charlene Crocker; Rokan Zaman; Mark Musich; Edwin Olson

    2008-03-31

    The Energy & Environmental Research Center (EERC) has pursued a research program for producing activated carbon from North Dakota lignite that can be competitive with commercial-grade activated carbon. As part of this effort, small-scale production of activated carbon was produced from Fort Union lignite. A conceptual design of a commercial activated carbon production plant was drawn, and a market assessment was performed to determine likely revenue streams for the produced carbon. Activated carbon was produced from lignite coal in both laboratory-scale fixed-bed reactors and in a small pilot-scale rotary kiln. The EERC was successfully able to upgrade the laboratory-scale activated carbon production system to a pilot-scale rotary kiln system. The activated carbon produced from North Dakota lignite was superior to commercial grade DARCO{reg_sign} FGD and Rheinbraun's HOK activated coke product with respect to iodine number. The iodine number of North Dakota lignite-derived activated carbon was between 600 and 800 mg I{sub 2}/g, whereas the iodine number of DARCO FGD was between 500 and 600 mg I{sub 2}/g, and the iodine number of Rheinbraun's HOK activated coke product was around 275 mg I{sub 2}/g. The EERC performed both bench-scale and pilot-scale mercury capture tests using the activated carbon made under various optimization process conditions. For comparison, the mercury capture capability of commercial DARCO FGD was also tested. The lab-scale apparatus is a thin fixed-bed mercury-screening system, which has been used by the EERC for many mercury capture screen tests. The pilot-scale systems included two combustion units, both equipped with an electrostatic precipitator (ESP). Activated carbons were also tested in a slipstream baghouse at a Texas power plant. The results indicated that the activated carbon produced from North Dakota lignite coal is capable of removing mercury from flue gas. The tests showed that activated carbon with the greatest iodine number

  3. Long term contracts, expansion, innovation and stability: North Dakota's lignite mines thrive

    SciTech Connect (OSTI)

    Buchsbaum, L.

    2009-08-15

    North Dakota's lignite coal industry is mainly located in three countries in the central part of the state. Its large surface lignite mines are tied through long-term (20-40 years) contracts to power plants. The article talks about operations at three of the most productive mines - the Freedom mine, Falkirk mine and Center Mine. 4 figs.

  4. Pelletizing lignite

    DOE Patents [OSTI]

    Goksel, Mehmet A.

    1983-11-01

    Lignite is formed into high strength pellets having a calorific value of at least 9,500 Btu/lb by blending a sufficient amount of an aqueous base bituminous emulsion with finely-divided raw lignite containing its inherent moisture to form a moistened green mixture containing at least 3 weight % of the bituminous material, based on the total dry weight of the solids, pelletizing the green mixture into discrete green pellets of a predetermined average diameter and drying the green pellets to a predetermined moisture content, preferrably no less than about 5 weight %. Lignite char and mixture of raw lignite and lignite char can be formed into high strength pellets in the same general manner.

  5. ccpi-lignite | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lignite Fuel Enhancement - Project Brief [PDF-255KB] Great River Energy, Underwood, North Dakota PROJECT FACT SHEET Increasing Power Plant Efficiency: Lignite Fuel Enhancement [PDF-730KB] (April 2011) PROGRAM PUBLICATIONS Final Report Lignite Fuel Enhancement [PDF-1.4MB] (June 2010) Quarterly Progress Reports April - June 2007 [PDF-65KB] (July 2007) January - March 2007 [PDF-65KB] (Apr 2007) October - December 2006 [PDF-60KB] (Jan 2007) July - September 2006 [PDF-8MB] (Nov 2006) April - June

  6. Environmental assessment of remedial action at the inactive uraniferous lignite processing sites at Belfield and Bowman, North Dakota. [UMTRA Project

    SciTech Connect (OSTI)

    Beranich, S.; Berger, N.; Bierley, D.; Bond, T.M.; Burt, C.; Caldwell, J.A.; Dery, V.A.; Dutcher, A.; Glover, W.A.; Heydenburg, R.J.; Larson, N.B.; Lindsey, G.; Longley, J.M.; Millard, J.B.; Miller, M.; Peel, R.C.; Persson-Reeves, C.H.; Titus, F.B.; Wagner, L.

    1989-09-01

    The Uranium Mill Tailings Radiation Control Act of 1978 (UMTRCA), to clean up the Belfield and Bowman, North Dakota, uraniferous lignite processing sites to reduce the potential health impacts associated with the residual radioactive materials remaining at these sites. Remedial action at these sites must be performed in accordance with the US Environmental Protection Agency's (EPA) standards promulgated for the remedial action and with the concurrence of the US Nuclear Regulatory Commission (NRC) and the state of North Dakota. The inactive Belfield uraniferous lignite processing site is one mile southeast of Belfield, North Dakota. The inactive Bowman uraniferous lignite processing site at the former town of Griffin, is seven miles northwest of Bowman, North Dakota and 65 road miles south of Belfield. Lignite ash from the processing operations has contaminated the soils over the entire 10.7-acre designated Belfield site and the entire 12.1-acre designated Bowman site. Dispersion of the ash has contaminated an additional 20.6 acres surrounding the Belfield processing site and an additional 59.2 acres surrounding the Bowman processing site. The proposed remedial action is to relocate the contaminated materials at the Belfield processing site to the Bowman processing/disposal site for codisposal with the Bowman contaminated soils. The environmental impacts assessed in this EA were evaluated for the proposed remedial action and the no action alternative and demonstrate that the proposed action would not significantly affect the quality of the human environment and would be performed in compliance with applicable environmental laws. The no action alternative would not be consistent with the intent of Public Law 95-604 and would not comply with the EPA standards. 48 refs., 10 figs., 7 tabs.

  7. Multiple-use marketing of lignite

    SciTech Connect (OSTI)

    Knudson, C.L.

    1993-09-01

    Marketing of lignite faces difficulties due to moisture and sulfur contents, as well as the sodium content, of the ash. The purpose of this study is to determine the economic viability of multiple-use marketing of lignite as a method to increase the use of North Dakota lignite by recapturing lost niche markets. Multiple-use marketing means using lignite and sulfur-capturing additives to clean agricultural wastewater followed by either direct steam and power generation or briquetting to produce a higher-Btu compliance fuel. Cooperative ownership of the resulting business by a coal company and an agriculture processing company helps ensure that lignite remains the coal of choice, especially when the ``good`` attributes of lignites are maximized, while the agricultural company obtains cleaner wastewater and a long-term supply of coal at a set price. The economic viabilities of the following scenarios were investigated: (1) Agriprocessing wastewater treatment using lignite and an additive followed by (2) the production of compliance fuel for resale or on-site cogeneration of steam and electricity. Laboratory tests were performed utilizing potato-processing plant wastewater with lignite and lime sludge.

  8. Lignite Fuel Enhancement

    SciTech Connect (OSTI)

    Charles Bullinger; Nenad Sarunac

    2010-03-31

    Pulverized coal power plants which fire lignites and other low-rank high-moisture coals generally operate with reduced efficiencies and increased stack emissions due to the impacts of high fuel moisture on stack heat loss and pulverizer and fan power. A process that uses plant waste heat sources to evaporate a portion of the fuel moisture from the lignite feedstock in a moving bed fluidized bed dryer (FBD) was developed in the U.S. by a team led by Great River Energy (GRE). The demonstration was conducted with Department of Energy (DOE) funding under DOE Award Number DE-FC26-04NT41763. The objectives of GRE's Lignite Fuel Enhancement project were to demonstrate reduction in lignite moisture content by using heat rejected from the power plant, apply technology at full scale at Coal Creek Station (CCS), and commercialize it. The Coal Creek Project has involved several stages, beginning with lignite drying tests in a laboratory-scale FBD at the Energy Research Center (ERC) and development of theoretical models for predicting dryer performance. Using results from these early stage research efforts, GRE built a 2 ton/hour pilot-scale dryer, and a 75 ton/hour prototype drying system at Coal Creek Station. Operated over a range of drying conditions, the results from the pilot-scale and prototype-scale dryers confirmed the performance of the basic dryer design concept and provided the knowledge base needed to scale the process up to commercial size. Phase 2 of the GRE's Lignite Fuel Enhancement project included design, construction and integration of a full-scale commercial coal drying system (four FBDs per unit) with Coal Creek Units 1 and 2 heat sources and coal handling system. Two series of controlled tests were conducted at Coal Creek Unit 1 with wet and dried lignite to determine effect of dried lignite on unit performance and emissions. Wet lignite was fired during the first, wet baseline, test series conducted in September 2009. The second test series was performed

  9. JV Task 106 - Feasibility of CO2 Capture Technologies for Existing North Dakota Lignite-Fired Pulverized Coal Boilers

    SciTech Connect (OSTI)

    Michael L. Jones; Brandon M. Pavlish; Melanie D. Jensen

    2007-05-01

    The goal of this project is to provide a technical review and evaluation of various carbon dioxide (CO{sub 2}) capture technologies, with a focus on the applicability to lignite-fired facilities within North Dakota. The motivation for the project came from the Lignite Energy Council's (LEC's) need to identify the feasibility of CO{sub 2} capture technologies for existing North Dakota lignite-fired, pulverized coal (pc) power plants. A literature review was completed to determine the commercially available technologies as well as to identify emerging CO{sub 2} capture technologies that are currently in the research or demonstration phase. The literature review revealed few commercially available technologies for a coal-fired power plant. CO{sub 2} separation and capture using amine scrubbing have been performed for several years in industry and could be applied to an existing pc-fired power plant. Other promising technologies do exist, but many are still in the research and demonstration phases. Oxyfuel combustion, a technology that has been used in industry for several years to increase boiler efficiency, is in the process of being tailored for CO{sub 2} separation and capture. These two technologies were chosen for evaluation for CO{sub 2} separation and capture from coal-fired power plants. Although oxyfuel combustion is still in the pilot-scale demonstration phase, it was chosen to be evaluated at LEC's request because it is one of the most promising emerging technologies. As part of the evaluation of the two chosen technologies, a conceptual design, a mass and energy balance, and an economic evaluation were completed.

  10. COFIRING BIOMASS WITH LIGNITE COAL

    SciTech Connect (OSTI)

    Darren D. Schmidt

    2002-01-01

    The University of North Dakota Energy & Environmental Research Center, in support of the U.S. Department of Energy's (DOE) biomass cofiring program, completed a Phase 1 feasibility study investigating aspects of cofiring lignite coal with biomass relative to utility-scale systems, specifically focusing on a small stoker system located at the North Dakota State Penitentiary (NDSP) in Bismarck, North Dakota. A complete biomass resource assessment was completed, the stoker was redesigned to accept biomass, fuel characterization and fireside modeling tests were performed, and an engineering economic analysis was completed. In general, municipal wood residue was found to be the most viable fuel choice, and the modeling showed that fireside problems would be minimal. Experimental ash deposits from firing 50% biomass were found to be weaker and more friable compared to baseline lignite coal. Experimental sulfur and NO{sub x} emissions were reduced by up to 46%. The direct costs savings to NDSP, from cogeneration and fuel saving, results in a 15- to 20-year payback on a $1,680,000 investment, while the total benefits to the greater community would include reduced landfill burden, alleviation of fees for disposal by local businesses, and additional jobs created both for the stoker system as well as from the savings spread throughout the community.

  11. Environmental assessment of no remedial action at the inactive uraniferous lignite ashing sites at Belfield and Bowman, North Dakota

    SciTech Connect (OSTI)

    1997-06-01

    The Belfield and Bowman sites were not included on the original congressional list of processing sites to be designated by the Secretary of Energy. Instead, the sites were nominated for designation by the Dakota Resource Council in a letter to the DOE (September 7, 1979). In a letter to the DOE (September 12, 1979), the state of North Dakota said that it did not believe the sites would qualify as processing sites under the Uranium Mill Tailings Radiation Control Act (UMTRCA) because the activities at the sites involved only the ashing of uraniferous lignite coal and the ash was shipped out of state for actual processing. Nevertheless, on October 11, 1979, the state of North Dakota agreed to the designation of the sites because they met the spirit of the law (reduce public exposure to radiation resulting from past uranium operations). Therefore, these sites were designated by the Secretary of Energy for remedial action. Because of the relatively low health impacts determined for these sites, they were ranked as low priority and scheduled to be included in the final group of sites to be remediated.

  12. Lignite Fuel Enhancement

    SciTech Connect (OSTI)

    Charles Bullinger

    2007-03-31

    This 11th quarterly Technical Progress Report for the Lignite Fuel Enhancement Project summarizes activities from January 1st through March 31st of 2007. It summarizes the completion of the Prototype testing activity and initial full-scale dryer design, Budget Period 2 activity during that time period. The Design Team completed process design and layouts of air, water, and coal systems. Heyl-Patterson completed dryer drawings and has sent RFPs to several fabricators for build and assembly. Several meetings were held with Barr engineers to finalize arrangement of the drying, air jig, and coal handling systems. Honeywell held meetings do discuss the control system logic and hardware location. By the end of March we had processed nearly 300,000 tons of lignite through the dryer. Outage preparation maintenance activities on a coal transfer hopper restricted operation of the dryer in February and March. The Outage began March 17th. We will not dry coal again until early May when the Outage on Unit No.2 completes. The Budget Period 1 (Phase 1) final report was submitted this quarter. Comments were received from NETL and are being reviewed. The Phase 2 Project Management Plan was submitted to NETL in January 2007. This deliverable also included the Financing Plan. An application for R&D 100 award was submitted in February. The project received an award from the Minnesota Professional Engineering Society's Seven Wonders of Engineering Award and Minnesota ACEC Grand Award in January. To further summarize, the focus this quarter has been on finalizing commercial design and the layout of four dryers behind each Unit. The modification to the coal handling facilities at Coal Creek and incorporation of air jigs to further beneficiate the segregated material the dryers will reject 20 to 30 % of the mercury and sulfur is segregated however this modification will recover the carbon in that stream.

  13. ACTIVATED CARBON FROM LIGNITE FOR WATER TREATMENT (Technical...

    Office of Scientific and Technical Information (OSTI)

    ACTIVATED CARBON FROM LIGNITE FOR WATER TREATMENT Citation Details In-Document Search Title: ACTIVATED CARBON FROM LIGNITE FOR WATER TREATMENT You are accessing a document from...

  14. Lignite pellets and methods of agglomerating or pelletizing

    DOE Patents [OSTI]

    Baker, Albert F.; Blaustein, Eric W.; Deurbrouck, Albert W.; Garvin, John P.; McKeever, Robert E.

    1981-01-01

    The specification discloses lignite pellets which are relatively hard, dust resistant, of generally uniform size and free from spontaneous ignition and general degradation. Also disclosed are methods for making such pellets which involve crushing as mined lignite, mixing said lignite with a binder such as asphalt, forming the lignite binder mixture into pellets, and drying the pellets.

  15. Bioprocessing of lignite coals using reductive microorganisms

    SciTech Connect (OSTI)

    Crawford, D.L.

    1992-03-29

    In order to convert lignite coals into liquid fuels, gases or chemical feedstock, the macromolecular structure of the coal must be broken down into low molecular weight fractions prior to further modification. Our research focused on this aspect of coal bioprocessing. We isolated, characterized and studied the lignite coal-depolymerizing organisms Streptomyces viridosporus T7A, Pseudomonas sp. DLC-62, unidentified bacterial strain DLC-BB2 and Gram-positive Bacillus megaterium strain DLC-21. In this research we showed that these bacteria are able to solubilize and depolymerize lignite coals using a combination of biological mechanisms including the excretion of coal solublizing basic chemical metabolites and extracellular coal depolymerizing enzymes.

  16. DOE Regional Partnership Initiates CO2 Injection in Lignite Coal Seam |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Initiates CO2 Injection in Lignite Coal Seam DOE Regional Partnership Initiates CO2 Injection in Lignite Coal Seam March 10, 2009 - 1:00pm Addthis Washington, DC -- A U.S. Department of Energy/National Energy Technology Laboratory (NETL) team of regional partners has begun injecting CO2 into a deep lignite coal seam in Burke County, North Dakota, to demonstrate the economic and environmental viability of geologic CO2 storage in the U.S. Great Plains region. Ultimately,

  17. NAFTA opportunities: Bituminous coal and lignite mining

    SciTech Connect (OSTI)

    Not Available

    1993-01-01

    The North American Free Trade Agreement (NAFTA) secures and improves market access in Mexico and Canada for the United States bituminous coal and lignite mining sector. Canada is one of the United States' largest export markets for bituminous coal and lignite, with exports of $486.7 million in 1992. Conversely, the Mexican market is one of the smallest export markets for U.S. producers with exports of $1.8 million in 1992. Together, however, Canada and Mexico represent approximately 15 percent of total U.S. coal exports. The report presents a sectoral analysis.

  18. Survey of synfuel technology for lignite

    SciTech Connect (OSTI)

    Sondreal, E.A.

    1982-01-01

    The most important market for lignite will continue to be the electric utility industry, where it is used to fuel large pc-fired boilers serving major regional power grids. However, the growth of this market and thechnology is being challenged by new and more stringent environmental control requirements, including the international concern over acid rain. Environmental and economic issues could either encourage or limit the development of a synfuels market for lignite depending on the cost effectiveness of the technological solutions that are developed. Clearly the United States needs to develop its coal resources to reduce dependence on imported oil. However, demand for coal derived substitute petroleum will be constrained by cost for the forseeable future. Government policy initiatives and new technology will be the keys to removing these constraints in the decades ahead. A crossover point with respect to petroleum and natural gas will be reached at some point in the future, which will allow synthetic fuels to penetrate the markets now served by oil and gas. Those of us who are today concerned with the development of lignite resources can look forward to participating in the major synfuels market that will emerge when those economic conditions are realized.

  19. ENERGY PLANNING, POLICY AND ECONOMY; 02 PETROLEUM; 01 COAL, LIGNITE...

    Office of Scientific and Technical Information (OSTI)

    Philippines: Asia Pacific energy series: Country report Hoffman, S. 29 ENERGY PLANNING, POLICY AND ECONOMY; 02 PETROLEUM; 01 COAL, LIGNITE, AND PEAT; PHILIPPINES; ECONOMIC...

  20. Drying grain using a hydrothermally treated liquid lignite fuel

    SciTech Connect (OSTI)

    Bukurov, Z.; Cvijanovic, P.; Bukurov, M.; Ljubicic, B.R.

    1995-12-01

    A shortage of domestic oil and natural gas resources in Yugoslavia, particularly for agricultural and industrial purposes, has motivated the authors to explore the possibility of using liquid lignite as an alternate fuel for drying grain. This paper presents a technical and economic assessment of the possibility of retrofitting grain-drying plants currently fueled by oil or natural gas to liquid lignite fuel. All estimates are based on lignite taken from the Kovin deposit. Proposed technology includes underwater mining techniques, aqueous ash removal, hydrothermal processing, solids concentration, pipeline transport up to 120 km, and liquid lignite direct combustion. For the characterization of Kovin lignite, standard ASTM procedures were used: proximate, ultimate, ash, heating value, and Theological analyses were performed. Results from an extensive economic analysis indicate a delivered cost of US$20/ton for the liquid lignite. For the 70 of the grain-drying plants in the province of Vojvodina, this would mean a total yearly saving of about US $2,500,000. The advantages of this concept are obvious: easy to transport and store, nonflammable, nonexplosive, nontoxic, 30%-40% cheaper than imported oil and gas, domestic fuel is at hand. The authors believe that liquid lignite, rather than an alternative, is becoming more and more an imperative.

  1. Kinetics and mechanisms of hydroliquefaction and hydrogasification of lignite. [Cellulose, wood, manure, municipal waste, coal of various ranks, fuel oil and natural gas

    SciTech Connect (OSTI)

    Weiss, A.H.; Kranich, W.L.; Geureuz, K.

    1981-01-01

    A high pressure, continuous, stirred-tank reactor system has been constructed for the study of the catalytic liquefaction of North Dakota lignite slurried in anthracene oil. The conversion of lignite using a cobalt-molybdenum on alumina catalyst and the distribution of products as preasphaltenes, asphaltenes, oils and gases has been studied at the following conditions: temperature, 375 to 440/sup 0/C; pressure, 1000 to 1600 psig; agitator speed, 800 to 1500 rpm; catalyst concentration, 0 to 10% (based on lignite); initial lignite concentration, 5 to 30%; and space time, 16 to 52 minutes. At reactor pressures above 1500 psig and agitator speeds above 1000 rpm, reaction rate was essentially independent of pressure. At catalyst concentrations above 1% (based on lignite), the conversion of lignite was essentially independent of catalyst concentration. Experiments were conducted above these limits to find the effect on lignite conversion rate, of initial lignite concentration, and space time, or degree of conversion. The results at constant temperature were correlated by an equation which is given in the report. The relationship between the rate constant, K, and temperature, and between the maximum conversion and temperature was established. The effect of reaction conditions on the distribution of products was studied. In the presence of catalyst, the oil yield was increased, even under conditions where the catalyst did not affect overall lignite conversion. Under the most favorable conditions the oil yield was a little better than that obtained by Cronauer in the uncatalyzed hydroliquefaction of subbituminous coal at similar temperature and pressure.

  2. The washability of lignites for clay removal

    SciTech Connect (OSTI)

    Oteyaka, B.; Yamik, A.; Ucar, A.; Sahbaz, O.; Demir, U.

    2008-07-01

    In the washability research of the Seyitomer Lignites (Kutahya-Turkey), with lower calorific value (1,863 kcal/kg) and high ash content (51.91%), by heavy medium separation, it was found out that middling clay in the coal had an effect to change the medium density. To prevent this problem, a trommel sieve with 18 and 5 mm aperture diameter was designed, and the clay in the coal was tried to be removed using it before the coal was released to heavy medium. Following that, the obtained coal in -100 + 18 mm and -18 + 5 mm fractions was subjected to sink and float test having 1.4 gcm{sup -3} and 1.7 gcm{sup -3} medium densities (-5 mm fraction will be evaluated in a separate work). Depending on the raw coal, with the floating of -100 + 18 mm and -18 + 5 mm size fraction in 1.4 gcm{sup -3} medium density, clean coal with 60.10% combustible matter recovery, 19.12% ash, and 3,150 kcal/kg was obtained. Also floating of the samples sinking in 1.4 gcm{sup -3} in the medium density (1.7 gcm{sup -3}), middling with 18.70% combustible matter recovery, 41.93% ash, 2,150 kcal/kg, and tailing having 78.31% ash were obtained.

  3. PILOT-AND FULL-SCALE DEMONSTRATION OF ADVANCED MERCURY CONTROL TECHNOLOGIES FOR LIGNITE-FIRED POWER PLANTS

    SciTech Connect (OSTI)

    Steven A. Benson; Charlene R. Crocker; Kevin C. Galbreath; Jay R. Gunderson; Michael J. Holmes; Jason D. Laumb; Jill M. Mackenzie; Michelle R. Olderbak; John H. Pavlish; Li Yan; Ye Zhuang

    2005-02-01

    The overall objective of the project was to develop advanced innovative mercury control technologies to reduce mercury emissions by 50%-90% in flue gases typically found in North Dakota lignite-fired power plants at costs from one-half to three-quarters of current estimated costs. Power plants firing North Dakota lignite produce flue gases that contain >85% elemental mercury, which is difficult to collect. The specific objectives were focused on determining the feasibility of the following technologies: Hg oxidation for increased Hg capture in dry scrubbers, incorporation of additives and technologies that enhance Hg sorbent effectiveness in electrostatic precipitators (ESPs) and baghouses, the use of amended silicates in lignite-derived flue gases for Hg capture, and the use of Hg adsorbents within a baghouse. The approach to developing Hg control technologies for North Dakota lignites involved examining the feasibility of the following technologies: Hg capture upstream of an ESP using sorbent enhancement, Hg oxidation and control using dry scrubbers, enhanced oxidation at a full-scale power plant using tire-derived fuel and oxidizing catalysts, and testing of Hg control technologies in the Advanced Hybrid{trademark} filter.

  4. Enhancing Carbon Reactivity in Mercury Control in Lignite-Fired Systems

    SciTech Connect (OSTI)

    Chad Wocken; Michael Holmes; John Pavlish; Jeffrey Thompson; Katie Brandt; Brandon Pavlish; Dennis Laudal; Kevin Galbreath; Michelle Olderbak

    2008-06-30

    This project was awarded through the U.S. Department of Energy (DOE) National Energy Technology Laboratory Program Solicitation DE-PS26-03NT41718-01. The Energy & Environmental Research Center (EERC) led a consortium-based effort to resolve mercury (Hg) control issues facing the lignite industry. The EERC team-the Electric Power Research Institute (EPRI); the URS Corporation; the Babcock & Wilcox Company; ADA-ES; Apogee; Basin Electric Power Cooperative; Otter Tail Power Company; Great River Energy; Texas Utilities; Montana-Dakota Utilities Co.; Minnkota Power Cooperative, Inc.; BNI Coal Ltd.; Dakota Westmoreland Corporation; the North American Coal Corporation; SaskPower; and the North Dakota Industrial Commission-demonstrated technologies that substantially enhanced the effectiveness of carbon sorbents to remove Hg from western fuel combustion gases and achieve a high level ({ge} 55% Hg removal) of cost-effective control. The results of this effort are applicable to virtually all utilities burning lignite and subbituminous coals in the United States and Canada. The enhancement processes were previously proven in pilot-scale and limited full-scale tests. Additional optimization testing continues on these enhancements. These four units included three lignite-fired units: Leland Olds Station Unit 1 (LOS1) and Stanton Station Unit 10 (SS10) near Stanton and Antelope Valley Station Unit 1 (AVS1) near Beulah and a subbituminous Powder River Basin (PRB)-fired unit: Stanton Station Unit 1 (SS1). This project was one of three conducted by the consortium under the DOE mercury program to systematically test Hg control technologies available for utilities burning lignite. The overall objective of the three projects was to field-test and verify options that may be applied cost-effectively by the lignite industry to reduce Hg emissions. The EERC, URS, and other team members tested sorbent injection technologies for plants equipped with electrostatic precipitators (ESPs) and

  5. Cheap carbon sorbents produced from lignite by catalytic pyrolysis

    SciTech Connect (OSTI)

    Kuznetsov, B.N.; Schchipko, M.L.

    1995-12-01

    Some data are presented describing the new technology of carbon sorbent production from powdered lignite in the installation with fluidized bed of catalyst. It was shown the different types of char products with extended pore structure and high sorption ability can be produced from cheap and accessible lignite of Kansk-Achinsk coal pit in pilot installation with fluidized bed of Al-Cu-Cr oxide catalyst or catalytically active slag materials. In comparison with the conventional technologies of pyrolysis the catalytic pyrolysis allows to increase by 3-5 times the process productivity and to decrease significantly the formation of harmful compounds. The latter is accomplished by complete oxidation of gaseous pyrolysis products in the presence of catalysts and by avoiding the formation of pyrolysis tars - the source of cancerogenic compounds. The technology of cheap powdered sorbent production from lignites makes possible to obtain from lignite during the time of pyrolysis only a few seconds char products with porosity up to 0.6 cm{sup 3} /g, and specific surface area more than 400 m{sup 3} /g. Some methods of powdered chars molding into carbon materials with the different shape were proved for producing of firmness sorbents. Cheap carbon sorbents obtained by thermocatalytic pyrolysis can be successfully used in purification of different industrial pollutants as one-time sorbent or as adsorbents of long-term application with periodic regeneration.

  6. LARGE-SCALE MECURY CONTROL TECHNOLOGY TESTING FOR LIGNITE-FIRED UTILITIES-OXIDATION SYSTEMS FOR WET FGD

    SciTech Connect (OSTI)

    Michael J. Holmes; Steven A. Benson; Jeffrey S. Thompson

    2004-03-01

    The Energy & Environmental Research Center (EERC) is conducting a consortium-based effort directed toward resolving the mercury (Hg) control issues facing the lignite industry. Specifically, the EERC team--the EERC, EPRI, URS, ADA-ES, Babcock & Wilcox, the North Dakota Industrial Commission, SaskPower, and the Mercury Task Force, which includes Basin Electric Power Cooperative, Otter Tail Power Company, Great River Energy, Texas Utilities (TXU), Montana-Dakota Utilities Co., Minnkota Power Cooperative, BNI Coal Ltd., Dakota Westmoreland Corporation, and the North American Coal Company--has undertaken a project to significantly and cost-effectively oxidize elemental mercury in lignite combustion gases, followed by capture in a wet scrubber. This approach will be applicable to virtually every lignite utility in the United States and Canada and potentially impact subbituminous utilities. The oxidation process is proven at the pilot-scale and in short-term full-scale tests. Additional optimization is continuing on oxidation technologies, and this project focuses on longer-term full-scale testing. The lignite industry has been proactive in advancing the understanding of and identifying control options for Hg in lignite combustion flue gases. Approximately 1 year ago, the EERC and EPRI began a series of Hg-related discussions with the Mercury Task Force as well as utilities firing Texas and Saskatchewan lignites. This project is one of three being undertaken by the consortium to perform large-scale Hg control technology testing to address the specific needs and challenges to be met in controlling Hg from lignite-fired power plants. This project involves Hg oxidation upstream of a system equipped with an electrostatic precipitator (ESP) followed by wet flue gas desulfurization (FGD). The team involved in conducting the technical aspects of the project includes the EERC, Babcock & Wilcox, URS, and ADA-ES. The host sites include Minnkota Power Cooperative Milton R. Young

  7. Gidaspow, D.; Bezburuah, R.; Ding, J. 01 COAL, LIGNITE, AND PEAT...

    Office of Scientific and Technical Information (OSTI)

    fluidized beds: Kinetic theory approach Gidaspow, D.; Bezburuah, R.; Ding, J. 01 COAL, LIGNITE, AND PEAT; 42 ENGINEERING; 99 GENERAL AND MISCELLANEOUSMATHEMATICS,...

  8. JV Task 98 - Controlling Mercury Emissions for Utilities Firing Lignites from North America

    SciTech Connect (OSTI)

    Steven Benson

    2007-06-15

    This project compiled and summarized the findings and conclusions of research, development, and demonstration projects on controlling mercury from lignite coals. A significant amount of work has been conducted since 1994 on mercury in lignite, mercury measurement in flue gases, sorbent, sorbent enhancement additives, oxidation agent development, and full-scale demonstration of mercury control technologies. This report is focused on providing the lignite industry with an understanding of mercury issues associated with the combustion of lignite, as well as providing vital information on the methods to control mercury emissions in coal-fired power plants.

  9. PILOT-AND FULL-SCALE DEMONSTRATION OF ADVANCED MERCURY CONTROL TECHNOLOGIES FOR LIGNITE-FIRED POWER PLANTS

    SciTech Connect (OSTI)

    Steven A. Benson; Charlene R. Crocker; Kevin C. Galbreath; Jay R. Gunderson; Mike J. Holmes; Jason D. Laumb; Michelle R. Olderbak; John H. Pavlish; Li Yan; Ye Zhuang; Jill M. Zola

    2004-02-01

    North Dakota lignite-fired power plants have shown a limited ability to control mercury emissions in currently installed electrostatic precipitators (ESPs), dry scrubbers, and wet scrubbers (1). This low level of control can be attributed to the high proportions of Hg{sup 0} present in the flue gas. Speciation of Hg in flue gases analyzed as part of the U.S. Environmental Protection Agency (EPA) information collection request (ICR) for Hg data showed that Hg{sup 0} ranged from 56% to 96% and oxidized mercury ranged from 4% to 44%. The Hg emitted from power plants firing North Dakota lignites ranged from 45% to 91% of the total Hg, with the emitted Hg being greater than 85% elemental. The higher levels of oxidized mercury were only found in a fluidized-bed combustion system. Typically, the form of Hg in the pulverized and cyclone-fired units was dominated by Hg{sup 0} at greater than 85%, and the average amount of Hg{sup 0} emitted from North Dakota power plants was 6.7 lb/TBtu (1, 2). The overall objective of this Energy & Environmental Research Center (EERC) project is to develop and evaluate advanced and innovative concepts for controlling Hg emissions from North Dakota lignite-fired power plants by 50%-90% at costs of one-half to three-fourths of current estimated costs. The specific objectives are focused on determining the feasibility of the following technologies: Hg oxidation for increased Hg capture in wet and dry scrubbers, incorporation of additives and technologies that enhance Hg sorbent effectiveness in ESPs and baghouses, the use of amended silicates in lignite-derived flue gases for Hg capture, and the use of Hg adsorbents within a baghouse. The scientific approach to solving the problems associated with controlling Hg emissions from lignite-fired power plants involves conducting testing of the following processes and technologies that have shown promise on a bench, pilot, or field scale: (1) activated carbon injection (ACI) upstream of an ESP

  10. JV Task 117 - Impact of Lignite Properties on Powerspan's NOx Oxidation System

    SciTech Connect (OSTI)

    Scott Tolbert; Steven Benson

    2008-02-29

    Powerspan's multipollutant control process called electrocatalytic oxidation (ECO) technology is designed to simultaneously remove SO{sub 2}, NO{sub x}, PM{sub 2.5}, acid gases (such as hydrogen fluoride [HF], hydrochloric acid [HCl], and sulfur trioxide [SO{sub 3}]), Hg, and other metals from the flue gas of coal-fired power plants. The core of this technology is a dielectric barrier discharge reactor composed of cylindrical quartz electrodes residing in metal tubes. Electrical discharge through the flue gas, passing between the electrode and the tube, produces reactive O and OH radicals. The O and OH radicals react with flue gas components to oxidize NO to NO{sub 2} and HNO{sub 3} and a small portion of the SO{sub 2} to SO{sub 3} and H{sub 2}SO{sub 4}. The oxidized compounds are subsequently removed in a downstream scrubber and wet electrostatic precipitator. A challenging characteristic of selected North Dakota lignites is their high sodium content. During high-sodium lignite combustion and gas cooling, the sodium vaporizes and condenses to produce sodium- and sulfur-rich aerosols. Based on past work, it was hypothesized that the sodium aerosols would deposit on and react with the silica electrodes and react with the silica electrodes, resulting in the formation of sodium silicate. The deposit and reacted surface layer would then electrically alter the electrode, thus impacting its dielectric properties and NO{sub x} conversion capability. The purpose of this project was to determine the impact of lignite-derived flue gas containing sodium aerosols on Powerspan's dielectric barrier discharge (DBD) reactor with specific focus on the interaction with the quartz electrodes. Partners in the project were Minnkota Power Cooperative; Basin Electric Power Cooperative; Montana Dakota Utilities Co.; Minnesota Power; the North Dakota Industrial Commission, the Lignite Energy Council, and the Lignite Research Council; the Energy & Environmental Research Center (EERC); and

  11. Kinetics of flash hydrogenation of lignite and subbituminous coal

    SciTech Connect (OSTI)

    Bhatt, B; Fallon, P T; Steinberg, M

    1980-01-01

    A reaction model, based on a single coal particle surrounded by H/sub 2/ gas, is developed for the hydrogenation of lignite and subbituminous coal. Conversion data from experiments conducted at various pressures, temperatures, particle residence times and gas residence times are correlated to calculate activation energies and to obtain one set of kinetic parameters. A single object function formulated from the weighted errors for the four dependent process variables, CH/sub 4/, C/sub 2/H/sub 6/, BTX, and oil yields, was minimized using a program containing three independent iterative techniques. The results of the nonlinear regression analysis for lignite show that a first-order chemical reaction model with respect to C conversion, satisfactorily describes the dilute phase hydrogenation. The conversion data obtained from hydrogenation experiments using subbituminous coal are correlated using similar techniques. The results obtained from data analysis of the two types of coals are compared. The mechanism, the rate expressions, and the design curves developed can be used for scale-up and reactor design.

  12. JV Task - 129 Advanced Conversion Test - Bulgarian Lignite

    SciTech Connect (OSTI)

    Michael Swanson; Everett Sondreal; Daniel Laudal; Douglas Hajicek; Ann Henderson; Brandon Pavlish

    2009-03-27

    The objectives of this Energy & Environmental Research Center (EERC) project were to evaluate Bulgarian lignite performance under both fluid-bed combustion and gasification conditions and provide a recommendation as to which technology would be the most technically feasible for the particular feedstock and also identify any potential operating issues (such as bed agglomeration, etc.) that may limit the applicability of a potential coal conversion technology. Gasification tests were run at the EERC in the 100-400-kg/hr transport reactor development unit (TRDU) on a 50-tonne sample of lignite supplied by the Bulgarian Lignite Power Project. The quality of the test sample was inferior to any coal previously tested in this unit, containing 50% ash at 26.7% moisture and having a higher heating value of 5043 kJ/kg after partial drying in preparation for testing. The tentative conclusion reached on the basis of tests in the TRDU is that oxygen-blown gasification of this high-ash Bulgarian lignite sample using the Kellogg, Brown, and Root (KBR) transport gasifier technology would not provide a syngas suitable for directly firing a gas turbine. After correcting for test conditions specific to the pilot-scale TRDU, including an unavoidably high heat loss and nitrogen dilution by transport air, the best-case heating value for oxygen-blown operation was estimated to be 3316 kJ/m{sup 3} for a commercial KRB transport gasifier. This heating value is about 80% of the minimum required for firing a gas turbine. Removing 50% of the carbon dioxide from the syngas would increase the heating value to 4583 kJ/m{sup 3}, i.e., to about 110% of the minimum requirement, and 95% removal would provide a heating value of 7080 kJ/m{sup 3}. Supplemental firing of natural gas would also allow the integrated gasification combined cycle (IGCC) technology to be utilized without having to remove CO{sub 2}. If removal of all nitrogen from the input gas streams such as the coal transport air were

  13. Bioprocessing of lignite coals using reductive microorganisms. Final technical report, September 30, 1988--March 29, 1992

    SciTech Connect (OSTI)

    Crawford, D.L.

    1992-03-29

    In order to convert lignite coals into liquid fuels, gases or chemical feedstock, the macromolecular structure of the coal must be broken down into low molecular weight fractions prior to further modification. Our research focused on this aspect of coal bioprocessing. We isolated, characterized and studied the lignite coal-depolymerizing organisms Streptomyces viridosporus T7A, Pseudomonas sp. DLC-62, unidentified bacterial strain DLC-BB2 and Gram-positive Bacillus megaterium strain DLC-21. In this research we showed that these bacteria are able to solubilize and depolymerize lignite coals using a combination of biological mechanisms including the excretion of coal solublizing basic chemical metabolites and extracellular coal depolymerizing enzymes.

  14. Large-Scale Mercury Control Technology Testing for Lignite-Fired Utilities - Oxidation Systems for Wet FGD

    SciTech Connect (OSTI)

    Steven A. Benson; Michael J. Holmes; Donald P. McCollor; Jill M. Mackenzie; Charlene R. Crocker; Lingbu Kong; Kevin C. Galbreath

    2007-03-31

    Mercury (Hg) control technologies were evaluated at Minnkota Power Cooperative's Milton R. Young (MRY) Station Unit 2, a 450-MW lignite-fired cyclone unit near Center, North Dakota, and TXU Energy's Monticello Steam Electric Station (MoSES) Unit 3, a 793-MW lignite--Powder River Basin (PRB) subbituminous coal-fired unit near Mt. Pleasant, Texas. A cold-side electrostatic precipitator (ESP) and wet flue gas desulfurization (FGD) scrubber are used at MRY and MoSES for controlling particulate and sulfur dioxide (SO{sub 2}) emissions, respectively. Several approaches for significantly and cost-effectively oxidizing elemental mercury (Hg{sup 0}) in lignite combustion flue gases, followed by capture in an ESP and/or FGD scrubber were evaluated. The project team involved in performing the technical aspects of the project included Babcock & Wilcox, the Energy & Environmental Research Center (EERC), the Electric Power Research Institute, and URS Corporation. Calcium bromide (CaBr{sub 2}), calcium chloride (CaCl{sub 2}), magnesium chloride (MgCl{sub 2}), and a proprietary sorbent enhancement additive (SEA), hereafter referred to as SEA2, were added to the lignite feeds to enhance Hg capture in the ESP and/or wet FGD. In addition, powdered activated carbon (PAC) was injected upstream of the ESP at MRY Unit 2. The work involved establishing Hg concentrations and removal rates across existing ESP and FGD units, determining costs associated with a given Hg removal efficiency, quantifying the balance-of-plant impacts of the control technologies, and facilitating technology commercialization. The primary project goal was to achieve ESP-FGD Hg removal efficiencies of {ge}55% at MRY and MoSES for about a month.

  15. Microbial desulphurization of Turkish lignites by White Rot Fungi

    SciTech Connect (OSTI)

    Pinar Aytar; Mesut Sam; Ahmet Cabuk

    2008-03-15

    Biodesulphurization experiments were carried out with Tuncbilek lignite, characterized by high sulfur content (2.59%) by using Trametes versicolor ATCC 200801 and Phanerochaete chrysosporium ME 446. At fungal biomass studies, the effects of various parameters on fungal desulphurization of coals such as pH, temperature, pulp density, incubation time, and sterilization were investigated for both microorganisms. The maximum desulphurization (40%) was observed after 6 days of incubation at 35{sup o}C for T. versicolor. The optimum pH was measured at 6, and the agitation rate was fixed at 125 rpm. The pulp density was found as 5% (w/v) for the high extent of desulphurization. Also, calorific value did not change during this experiment. However, the ash and metal contents of coal were eliminated. 30 refs., 6 figs., 2 tabs.

  16. Co-combustion of pellets from Soma lignite and waste dusts of furniture works

    SciTech Connect (OSTI)

    Deveci, N.D.; Yilgin, M.; Pehlivan, D.

    2008-07-01

    In this work, volatiles and char combustion behaviors of the fuel pellets prepared from a low quality lignite and the dusts of furniture works and their various blends were investigated in an experimental fixed bed combustion system through which air flowed by natural convection. Combustion data obtained for varied bed temperatures, mass of pellets, and blend compositions has showed that ignition times of the pellets decreased and volatiles combustion rates tended to increase with the burning temperature. It was concluded that some synergy had existed between lignite and lower ratios of furniture work dusts, which was indicated by a prompt effect on the volatiles combustion rates. Char combustion rates of blend pellets have depended predominantly on the amount of lignite in the blend. The amounts of combustion residues of the pellets were considerably higher than those calculated from individual ash contents of the raw materials and related to lignite ratio in the blends.

  17. DOE-Sponsored Field Test Finds Potential for Permanent Storage of CO2 in Lignite Seams

    Broader source: Energy.gov [DOE]

    A field test sponsored by the U.S. Department of Energy has demonstrated that opportunities to permanently store carbon in unmineable seams of lignite may be more widespread than previously documented.

  18. Design features of first of its kind AFBC high pressure boiler for Kutch lignite fuel in Gujarat, India

    SciTech Connect (OSTI)

    Mokashi, A.; Diwakar, K.W.

    1998-07-01

    Gujarat Heavy Chemicals Ltd. (GHCL) of Gujarat State in India is one of the largest manufacturers of Soda Ash with modern technology from Akzo of the Netherlands. GHCL with earlier experience in firing lignite on a travagrate boiler and with a converted fluidized bed boiler has very clearly identified the problem area for review, and with that rich experience awarded a contract to Thermax Babcock and Wilcox Ltd. (TBW), Pune, India. Accordingly, a boiler has been designed to suit Kutch Lignite and coal with AFBC technology. This paper discusses the complete design of the boiler, effects of Kutch Lignite, its composition, thermal efficiency on coal as well as lignite, various performance parameters and guarantees, sizing arrangements of pressure parts, feeding arrangement and specially designed fluidizing bed combustor, various instrumentation and control loops. This paper discusses all the above features of this high-pressure boiler which can be an ideal boiler for the Kutch lignite fuel.

  19. JV Task 75 - Lignite Fuel Enhancement via Air-Jigging Technology

    SciTech Connect (OSTI)

    Jason Lamb; Steven Benson; Joshua Stanislowski

    2007-03-01

    Several North Dakota lignite coals from the Falkirk Mine were processed in a 5-ton-per-hour dry coal-cleaning plant. The plant uses air-jigging technology to separate undesirable ash constituents as well as sulfur and mercury. The results of this study indicate average ash, sulfur, and mercury reductions on a weight basis of 15%, 22%, and 28%, respectively. The average heating value was increased by 2% on a Btu/lb basis. Two computer models were used to understand the impact of a cleaned fuel on boiler performance: PCQUEST{reg_sign} and Vista. The PCQUEST model indicated improvements in slagging and fouling potential when cleaned coals are used over feed coals. The Vista model was set up to simulate coal performance and economics at Great River Energy's Coal Creek Station. In all cases, the cleaned fuel performed better than the original feed coal, with economic benefits being realized for all fuels tested. The model also indicated that one fuel considered to be unusable before cleaning was transformed into a potentially salable product. While these data indicate full-scale implementation of air-jigging technology may be beneficial to the mine and the plant, complete economic analysis, including payback period, is needed to make the final decision to implement.

  20. Bio-liquefaction/solubilization of lignitic humic acids by white-rot fungus (Phanerochaete chrysosporium)

    SciTech Connect (OSTI)

    Elbeyli, I.Y.; Palantoken, A.; Piskin, S.; Peksel, A.; Kuzu, H.

    2006-08-15

    Humic acid samples obtained from lignite were liquefied/solubilized by using white-rot fungus, and chemical characterization of the products was investigated by FTIR and GC-MS techniques. Prior to the microbial treatment, raw lignite was oxidized with hydrogen peroxide and nitric acid separately, and then humic acids were extracted by alkali solution. The prepared humic acid samples were placed on the agar surface of the fungus and liquid products formed by microbial affects were collected. The products were analyzed and the chemical properties were compared. The results show that oxidation agent and oxidation degree affect composition of the liquid products formed by microbial attack.

  1. Co-liquefaction of the Elbistan Lignite and Poplar Sawdust. Part I: The Effect of the Liquefaction Parameters

    SciTech Connect (OSTI)

    Karaca, H.; Acar, M.; Yilmaz, M.; Keklik, I.

    2009-07-01

    In this study, the liquefaction of Elbistan lignite and poplar sawdust, and the co-liquefaction of the Elbistan lignite and the poplar sawdust in an inert atmosphere and in non-catalytic conditions have been examined. Also, the effects of solvent/coal ratio and stirring speed on the total conversion derived as the result of the liquefaction process was attempted to be determined. Based on the results, although the effects of the solvent/coal ratio and the stirring speed on total conversion are similar for both the Elbistan lignite and the poplar sawdust, it was also noted that, under similar conditions, the conversion for the poplar sawdust was higher, as compared to the conversion of the Elbistan lignite. As the result of the liquefaction of Elbistan lignite and poplar sawdust under inert atmospheric conditions, the total conversion was increased partially, depending on both solvent/coal ratio and the speed of stirring. However, it was also noted that the total conversion did not change to a significant extent in high solvent/coal ratios and in stirring speed. As the result of the co-liquefaction of the Elbistan lignite and poplar sawdust under inert atmospheric conditions, total conversion was increased, based on the solvent/coal ratio. However, as in the case of the liquefaction of Elbistan lignite and poplar sawdust, it was noted that the high solvent/coal ratios (i.e., solvent/coal ratios of higher than 2/1) did not have a significant effect on the total conversion that was derived as the result of the co-liquefaction of the Elbistan lignite and poplar sawdust.

  2. Advanced power assessment for Czech lignite. Task 3.6, Volume 1

    SciTech Connect (OSTI)

    Sondreal, E.A.; Mann, M.D.; Weber, G.W.; Young, B.C.

    1995-12-01

    The US has invested heavily in research, development, and demonstration of efficient and environmentally acceptable technologies for the use of coal. The US has the opportunity to use its leadership position to market a range of advanced coal-based technologies internationally. For example, coal mining output in the Czech Republic has been decreasing. This decrease in demand can be attributed mainly to the changing structure of the Czech economy and to environmental constraints. The continued production of energy from indigenous brown coals is a major concern for the Czech Republic. The strong desire to continue to use this resource is a challenge. The Energy and Environmental Research Center undertook two major efforts recently. One effort involved an assessment of opportunities for commercialization of US coal technologies in the Czech Republic. This report is the result of that effort. The technology assessment focused on the utilization of Czech brown coals. These coals are high in ash and sulfur, and the information presented in this report focuses on the utilization of these brown coals in an economically and environmentally friendly manner. Sections 3--5 present options for utilizing the as-mined coal, while Sections 6 and 7 present options for upgrading and generating alternative uses for the lignite. Contents include Czech Republic national energy perspectives; powering; emissions control; advanced power generation systems; assessment of lignite-upgrading technologies; and alternative markets for lignite.

  3. Market Assessment and Demonstration of Lignite FBC Ash Flowable Fill Applications

    SciTech Connect (OSTI)

    Alan E. Bland

    2003-09-30

    Montana-Dakota Utilities (MDU) and Western Research Institute (WRI) have been developing flowable fill materials formulated using ash from the Montana-Dakota Utilities R. M. Heskett Station in Mandan, North Dakota. MDU and WRI have partnered with the U.S. Department of Energy (DOE) and the North Dakota Industrial Commission (NDIC) to further the development of these materials for lignite-fired fluidized-bed combustion (FBC) facilities. The MDU controlled density fill (CDF) appears to be a viable engineering material and environmentally safe. WRI is pursuing the commercialization of the technology under the trademark Ready-Fill{trademark}. The project objectives were to: (1) assess the market in the Bismarck-Mandan area; (2) evaluate the geotechnical properties and environmental compatibility; and (3) construct and monitor demonstrations of the various grades of flowable fill products in full-scale demonstrations. The scope of initial phase of work entailed the following: Task I--Assess Market for MDU Flowable Fill Products; Task II--Assess Geotechnical and Environmental Properties of MDU Flowable Fill Products; and Task III--Demonstrate and Monitor MDU Flowable Fill Products in Field-Scale Demonstrations. The results of these testing and demonstration activities proved the following: (1) The market assessment indicated that a market exists in the Bismarck-Mandan area for structural construction applications, such as sub-bases for residential and commercial businesses, and excavatable fill applications, such as gas line and utility trench filling. (2) The cost of the MDU flowable fill product must be lower than the current $35-$45/cubic yard price if it is to become a common construction material. Formulations using MDU ash and lower-cost sand alternatives offer that opportunity. An estimated market of 10,000 cubic yards of MDU flowable fill products could be realized if prices could be made competitive. (3) The geotechnical properties of the MDU ash-based flowable

  4. Subtask 4.4 - North Dakota Lignite Fuel Upgrading

    SciTech Connect (OSTI)

    Michael Swanson

    2009-03-15

    This project will add the capability for the Energy & Environmental Research Center (EERC) to conduct Fischer-Tropsch (FT) catalyst testing at a scale consistent with the benchscale continuous fluid-bed reactor. This capability will enable various vendors to test their FT catalysts on actual coal-derived syngas. The project goals were to also develop some EERC expertise with issues associated with FT liquid production. A study by Dr. Calvin Bartholmew at Brigham Young University (BYU) is further apparent that it is possible to build a single reactor (rather than multiple reactors of different sizes) consisting of three 1-inch-diameter, 10 foot-long tubes to accommodate the anticipated range of catalytic activities and process conditions. However, this single reactor should ideally be designed to operate over a significant range of recycle ratio (e.g., 1-10), temperature (25-400 C), pressure (10-25 bar), flow rate (1-6 scfm), and cooling duty (0.2-1.5 kW). It should have the flexibility of flowing gas to one, two, or three tubes. Based on the recommended design specifications provided by BYU while staying within the approved budget, the EERC decided to build a two fixed-bed reactor system with the capability to add a third reactor at a later time. This system was constructed to be modular and sized such that it can fit into the area around the EERC continuous fluid-bed reactor or also be located in explosion-rated areas such as the gasification tower next to the EERC pilot-scale transport reactor or in the National Center for Hydrogen Technology building high-bay area.

  5. Potential products from North Dakota lignite fly ash. Final report

    SciTech Connect (OSTI)

    Anderson, G R

    1980-06-01

    Four major areas where fly ash can be used are explored. Concrete building blocks with fly ash replacing 50% of the portland cement have proven to be successful using current ASTM standards. Results in the ceramics area show that a ceramic-like product using fly ash and crushed glass with a small amount of clay as a green binder. Some preliminary results using sulfur ash in building materials are reported and with results of making wallboard from ash. (MHR)

  6. Lignite air-steam gasification in the fluidized bed of iron-containing slag catalysts

    SciTech Connect (OSTI)

    Kuznetsov, B.N.; Shchipko, M.L.; Golovin, Yu.

    1995-12-01

    The influence of fluidized bed of iron-containing slag particles on air-steam gasification of powdered Kansk-Achinsk lignite in entrained flow was studied in pilot installation with productivity about 60 kg per hour. Slag of Martin process and boiler slag were used as catalytic active materials until their complete mechanical attrition. Two following methods of catalytic gasification of lignite were compared: the partial gasification in stationary fluidized bed of slag particles with degree of fuel conversion 40-70% and complete gasification in circulating bed of slag particles. In the first case only the most reactive part of fuel is gasified with the simultaneously formation of porous carbon residue with good sorption ability. It was found the catalytic fluidized bed improves heat transfer from combustion to reduction zone of gas-generator and increases the rate of fuel conversion at the temperature range 900-1000{degrees}C. At these temperatures the degree of conversion is depended considerably on the duration time of fuel particles in the catalytic fluidized bed. The influence of catalytic fluidized bed height and velocity of reaction mixture on the temperature profiles in the gas-generator was studied. The optimal relationship was found between the fluidized bed height and velocity of flow which makes possible to produce the gas with higher calorific value at maximum degree of fuel conversion.

  7. Fly ash from Texas lignite and western subbituminous coal: a comparative characterization

    SciTech Connect (OSTI)

    Sears, D. R.; Benson, S. A.; McCollor, D. P.; Miller, S. J.

    1982-01-01

    As examples, we use two Jackson group lignites from Atascosa and Fayette Counties, Texas, and a Green River Region subbituminous coal from Routt County, Colorado. The composition of individual fly ash particles was determined using scanning electron microscopy and electron microprobe, with support from x-ray diffraction of bulk ash. Using particle sample populations large enough to permit statistical treatment, we describe the relationship of composition to particle size and the correlation between elemental concentrations, as well as particle size and composition distributions. Correlations are displayed as data maps which show the complete range of observed variation among these parameters, emphasizing the importance of coal variability. We next use this data to produce a population distribution of ash particle resistivities calculated with Bickelhaupt's model. The relationship between calculated resistivity and particle size is also displayed, and the results are compared with measured values. 7 figures.

  8. Advanced power assessment for Czech lignite task 3.6. Topical report

    SciTech Connect (OSTI)

    Sondreal, E.A.; Mann, M.D.; Weber, G.W.; Young, B.C.

    1995-12-01

    Major reforms in the Czech energy sector have been initiated to reverse 40 years of central planning, subsidized energy pricing, unchecked pollution from coal-fired plants, concerns over nuclear safety and fuel cycle management, and dependence on the former U.S.S.R. for oil, gas, and nuclear fuel processing. Prices for electricity, heat, and natural gas paid by industry are close to western levels, but subsidized prices for households are as much as 40% lower and below economic cost. State control of major energy enterprises is being reduced by moving toward government-regulated, investor-owned companies to raise needed capital, but with a strategic stake retained by the state. Foreign firms will participate in privatization, but they are not expected to acquire a controlling interest in Czech energy companies. Economic conditions in the Czech Republic are now improving after the disruptions caused by restructuring since 1989 and separation of the former Czech and Slovak Federal Republics in January 1993. The downturn in the economy after 1989 was concentrated in energy-intensive heavy industry, and recovery is paced by consumer trade, services, light industry and construction. Energy use in relation to gross domestic product (GDP) has declined, but it is still significantly higher than in OECD (Organization for Economic Cooperation and Development) countries. The GDP increased by 2% in 1994 after dropping 22% between 1989 and 1993. A positive balance of payments has been achieved, with foreign investment offsetting a small trade deficit. The government`s external debt is only 4% of GDP. This report studies the application of lignite resources within the newly formulated energy policies of the republic, in light of a move toward privatization and stronger air pollution regulations. Lignite has represented the major energy source for the country.

  9. Mercury Control for Plants Firing Texas Lignite and Equipped with ESP-wet FGD

    SciTech Connect (OSTI)

    Katherine Dombrowski

    2009-12-31

    This report presents the results of a multi-year test program conducted as part of Cooperative Agreement DE-FC26-06NT42779, 'Mercury Control for Plants Firing Texas Lignite and Equipped with ESP-wet FGD.' The objective of this program was to determine the level of mercury removal achievable using sorbent injection for a plant firing Texas lignite fuel and equipped with an ESP and wet FGD. The project was primarily funded by the U.S. DOE National Energy Technology Laboratory. EPRI, NRG Texas, Luminant (formerly TXU), and AEP were project co-funders. URS Group was the prime contractor, and Apogee Scientific and ADA-ES were subcontractors. The host site for this program was NRG Texas Limestone Electric Generating Station (LMS) Units 1 and 2, located in Jewett, Texas. The plant fires a blend of Texas lignite and Powder River Basin (PRB) coal. Full-scale tests were conducted to evaluate the mercury removal performance of powdered sorbents injected into the flue gas upstream of the ESP (traditional configuration), upstream of the air preheater, and/or between electric fields within the ESP (Toxecon{trademark} II configuration). Phases I through III of the test program, conducted on Unit 1 in 2006-2007, consisted of three short-term parametric test phases followed by a 60-day continuous operation test. Selected mercury sorbents were injected to treat one quarter of the flue gas (e.g., approximately 225 MW equivalence) produced by Limestone Unit 1. Six sorbents and three injection configurations were evaluated and results were used to select the best combination of sorbent (Norit Americas DARCO Hg-LH at 2 lb/Macf) and injection location (upstream of the ESP) for a two-month performance evaluation. A mercury removal rate of 50-70% was targeted for the long-term test. During this continuous-injection test, mercury removal performance and variability were evaluated as the plant operated under normal conditions. Additional evaluations were made to determine any balance

  10. Industrial properties of lignitic and lignocellulosic fly ashes from Turkish sources

    SciTech Connect (OSTI)

    Demirbas, A.; Cetin, S.

    2006-01-21

    Fly ash is an inorganic matter from combustion of the carbonaceous solid fuels. More than half the electricity in Turkey is produced from lignite-fired power plants. This energy production has resulted in the formation of more than 13 million tons of fly ash waste annually. The presence of carbon in fly ash inducing common faults include adding unwanted black color and adsorbing process or product materials such as water and chemicals. One of the reasons for not using fly ash directly is its carbon content. For some uses carbon must be lower than 3%. Fly ash has been used for partial replacement of cement, aggregate, or both for nearly 70 years, and it is still used on a very limited scale in Turkey. The heavy metal content of industrial wastewaters is an important source of environmental pollution. Each of the three major oxides (SiO{sub 2} + Al{sub 2}O{sub 3} + Fe{sub 2}O{sub 3}) in fly ash can be ideal as a metal adsorbent.

  11. Design features of first of its kind AFBC high pressure boiler for Kutch lignite fuel in Gujarat, India

    SciTech Connect (OSTI)

    Diwakar, K.K.; Mokashi, A.H.

    1999-11-01

    Gujarat Heavy Chemicals Limited (GHCL) in Gujarat State in India is one of the largest manufacturers of Soda Ash with modern most technology from Akzo of Neitherland. GHCL with earlier experience of firing of kind of lignite on travagrate boiler and with converted fluidized bed boiler has very clearly identified the problem areas for review and with that rich experience awarded contract to Thermax Babcock and Wilcox Limited (TBW), Pune, India a joint venture company of Thermax Limited, Pune, India and Babcock and Wilcox, USA. Accordingly, boiler has been designed to suit Kutch Lignite and Coal with AFBC Technology, Single Drum Design, top supported with underbed feeding system. Capacity of boiler is 90 Ton/Hr with design pressure of 130 kg/cm{sup 2} with superheated steam temperature of 510 C. This is the first boiler in India with such a high pressure and temperature conditions for this capacity firing lignite. Other first of its kind features include single drum boiler convection bank made with headers and tubes, riffled inbed evaporator tubes, erosion protection by surface coating and not by studs, line bed system for inert material, no soot blowers, specially designed double hinged SS supports for inbed superheater coils etc. This boiler also has a provision of over fire air arrangement for better combustion split. Other unique features include the start-up arrangement by HSD burners which can take the boiler up to 30% load, provision for flue gas recirculation system, specially designed SS air distribution nozzles, separate compartments for under feed, ash drain and air cooled distribution plate with 1:5 turndown. The paper discusses all the above design features.

  12. STUDIES OF THE SPONTANEOUS COMBUSTION OF LOW RANK COALS AND LIGNITES

    SciTech Connect (OSTI)

    Joseph M. Okoh; Joseph N.D. Dodoo

    2005-07-26

    Spontaneous combustion has always been a problem in coal utilization especially in the storage and transportation of coal. In the United States, approximately 11% of underground coal mine fires are attributed to spontaneous coal combustion. The incidence of such fires is expected to increase with increased consumption of lower rank coals. The cause is usually suspected to be the reabsorption of moisture and oxidation. To understand the mechanisms of spontaneous combustion this study was conducted to (1) define the initial and final products during the low temperature (10 to 60 C) oxidation of coal at different partial pressures of O{sub 2}, (2) determine the rate of oxidation, and (3) measure the reaction enthalpy. The reaction rate (R) and propensity towards spontaneous combustion were evaluated in terms of the initial rate method for the mass gained due to adsorbed O{sub 2}. Equipment that was used consisted of a FT-IR (Fourier Transform-Infrared Spectrometer, Perkin Elmer), an accelerated surface area porosimeter (ASAP, Micromeritics model 2010), thermogravimetric analyzer (TGA, Cahn Microbalance TG 121) and a differential scanning calorimeter (DSC, Q1000, thermal analysis instruments). Their combination yielded data that established a relation between adsorption of oxygen and reaction enthalpy. The head space/ gas chromatograph/ mass spectrometer system (HS/GC/MS) was used to identify volatiles evolved during oxidation. The coal samples used were Beulah lignite and Wyodak (sub-bituminous). Oxygen (O{sub 2}) absorption rates ranged from 0.202 mg O{sub 2}/mg coal hr for coal sample No.20 (Beulah pyrolyzed at 300 C) to 6.05 mg O{sub 2}/mg coal hr for coal sample No.8 (wyodak aged and pyrolyzed at 300 C). Aging of coal followed by pyrolysis was observed to contribute to higher reaction rates. Reaction enthalpies ranged from 0.42 to 1580 kcal/gm/mol O{sub 2}.

  13. North Dakota

    U.S. Energy Information Administration (EIA) Indexed Site

    Dakota

  14. JV TASK 45-MERCURY CONTROL TECHNOLOGIES FOR ELECTRIC UTILITIES BURNING LIGNITE COAL, PHASE I BENCH-AND PILOT-SCALE TESTING

    SciTech Connect (OSTI)

    John H. Pavlish; Michael J. Holmes; Steven A. Benson; Charlene R. Crocker; Edwin S. Olson; Kevin C. Galbreath; Ye Zhuang; Brandon M. Pavlish

    2003-10-01

    The Energy & Environmental Research Center has completed the first phase of a 3-year, two-phase consortium project to develop and demonstrate mercury control technologies for utilities that burn lignite coal. The overall project goal is to maintain the viability of lignite-based energy production by providing utilities with low-cost options for meeting future mercury regulations. Phase I objectives are to develop a better understanding of mercury interactions with flue gas constituents, test a range of sorbent-based technologies targeted at removing elemental mercury (Hg{sup o}) from flue gases, and demonstrate the effectiveness of the most promising technologies at the pilot scale. The Phase II objectives are to demonstrate and quantify sorbent technology effectiveness, performance, and cost at a sponsor-owned and operated power plant. Phase I results are presented in this report along with a brief overview of the Phase II plans. Bench-scale testing provided information on mercury interactions with flue gas constituents and relative performances of the various sorbents. Activated carbons were prepared from relatively high-sodium lignites by carbonization at 400 C (752 F), followed by steam activation at 750 C (1382 F) and 800 C (1472 F). Luscar char was also steam-activated at these conditions. These lignite-based activated carbons, along with commercially available DARCO FGD and an oxidized calcium silicate, were tested in a thin-film, fixed-bed, bench-scale reactor using a simulated lignitic flue gas consisting of 10 {micro}g/Nm{sup 3} Hg{sup 0}, 6% O{sub 2}, 12% CO{sub 2}, 15% H{sub 2}O, 580 ppm SO{sub 2}, 120 ppm NO, 6 ppm NO{sub 2}, and 1 ppm HCl in N{sub 2}. All of the lignite-based activated (750 C, 1382 F) carbons required a 30-45-minute conditioning period in the simulated lignite flue gas before they exhibited good mercury sorption capacities. The unactivated Luscar char and oxidized calcium silicate were ineffective in capturing mercury. Lignite

  15. Development of HUMASORB{trademark}, a lignite derived humic acid for removal of metals and organic contaminants from groundwater

    SciTech Connect (OSTI)

    Sanjay, H.G.; Srivastave, K.C.; Walia, D.S.

    1995-10-01

    Heavy metal and organic contamination of surface and groundwater systems is a major environmental concern. The contamination is primarily due to improperly disposed industrial wastes. The presence of toxic heavy metal ions, volatile organic compounds (VOCs) and pesticides in water is of great concern and could affect the safety of drinking water. Decontamination of surface and groundwater can be achieved using a broad spectrum of treatment options such as precipitation, ion-exchange, microbial digestion, membrane separation, activated carbon adsorption, etc. The state of the art technologies for treatment of contaminated water however, can in one pass remediate only one class of contaminants, i.e., either VOCs (activated carbon) or heavy metals (ion exchange). This would require the use of at a minimum, two different stepwise processes to remediate a site. The groundwater contamination at different Department of Energy (DOE) sites (e.g., Hanford) is due to the presence of both VOCs and heavy metals. The two-step approach increases the cost of remediation. To overcome the sequential treatment of contaminated streams to remove both organics and metals, a novel material having properties to remove both classes of contaminants in one step is being developed as part of this project.The objective of this project is to develop a lignite-derived adsorbent, Humasorb{sup TM} to remove heavy metals and organics from ground water and surface water streams.

  16. Potential use of California lignite and other alternate fuel for enhanced oil recovery. Phase I and II. Final report. [As alternative fuels for steam generation in thermal EOR

    SciTech Connect (OSTI)

    Shelton, R.; Shimizu, A.; Briggs, A.

    1980-02-01

    The Nation's continued reliance on liquid fossil fuels and decreasing reserves of light oils gives increased impetus to improving the recovery of heavy oil. Thermal enhanced oil recovery EOR techniques, such as steam injection, have generally been the most effective for increasing heavy oil production. However, conventional steam generation consumes a large fraction of the produced oil. The substitution of alternate (solid) fuels would release much of this consumed oil to market. This two-part report focuses on two solid fuels available in California, the site of most thermal EOR - petroleum coke and lignite. Phase I, entitled Economic Analysis, shows detailed cost comparisons between the two candidate fuels and also with Western coal. The analysis includes fuels characterizations, process designs for several combustion systems, and a thorough evaluation of the technical and economic uncertainties. In Phase II, many technical parameters of petroleum coke combustion were measured in a pilot-plant fluidized bed. The results of the study showed that petroleum coke combustion for EOR is feasible and cost effective in a fluidized bed combustor.

  17. Measurement of gas species, temperatures, coal burnout, and wall heat fluxes in a 200 MWe lignite-fired boiler with different overfire air damper openings

    SciTech Connect (OSTI)

    Jianping Jing; Zhengqi Li; Guangkui Liu; Zhichao Chen; Chunlong Liu

    2009-07-15

    Measurements were performed on a 200 MWe, wall-fired, lignite utility boiler. For different overfire air (OFA) damper openings, the gas temperature, gas species concentration, coal burnout, release rates of components (C, H, and N), furnace temperature, and heat flux and boiler efficiency were measured. Cold air experiments for a single burner were conducted in the laboratory. The double-swirl flow pulverized-coal burner has two ring recirculation zones starting in the secondary air region in the burner. As the secondary air flow increases, the axial velocity of air flow increases, the maxima of radial velocity, tangential velocity and turbulence intensity all increase, and the swirl intensity of air flow and the size of recirculation zones increase slightly. In the central region of the burner, as the OFA damper opening widens, the gas temperature and CO concentration increase, while the O{sub 2} concentration, NOx concentration, coal burnout, and release rates of components (C, H, and N) decrease, and coal particles ignite earlier. In the secondary air region of the burner, the O{sub 2} concentration, NOx concentration, coal burnout, and release rates of components (C, H, and N) decrease, and the gas temperature and CO concentration vary slightly. In the sidewall region, the gas temperature, O{sub 2} concentration, and NOx concentration decrease, while the CO concentration increases and the gas temperature varies slightly. The furnace temperature and heat flux in the main burning region decrease appreciably, but increase slightly in the burnout region. The NOx emission decreases from 1203.6 mg/m{sup 3} (6% O{sub 2}) for a damper opening of 0% to 511.7 mg/m{sup 3} (6% O{sub 2}) for a damper opening of 80% and the boiler efficiency decreases from 92.59 to 91.9%. 15 refs., 17 figs., 3 tabs.

  18. Dakota :

    SciTech Connect (OSTI)

    Adams, Brian M.; Ebeida, Mohamed Salah; Eldred, Michael S; Jakeman, John Davis; Swiler, Laura Painton; Stephens, John Adam; Vigil, Dena M.; Wildey, Timothy Michael; Bohnhoff, William J.; Eddy, John P.; Hu, Kenneth T.; Dalbey, Keith R.; Bauman, Lara E; Hough, Patricia Diane

    2014-05-01

    The Dakota (Design Analysis Kit for Optimization and Terascale Applications) toolkit provides a exible and extensible interface between simulation codes and iterative analysis methods. Dakota contains algorithms for optimization with gradient and nongradient-based methods; uncertainty quanti cation with sampling, reliability, and stochastic expansion methods; parameter estimation with nonlinear least squares methods; and sensitivity/variance analysis with design of experiments and parameter study methods. These capabilities may be used on their own or as components within advanced strategies such as surrogate-based optimization, mixed integer nonlinear programming, or optimization under uncertainty. By employing object-oriented design to implement abstractions of the key components required for iterative systems analyses, the Dakota toolkit provides a exible and extensible problem-solving environment for design and performance analysis of computational models on high performance computers. This report serves as a theoretical manual for selected algorithms implemented within the Dakota software. It is not intended as a comprehensive theoretical treatment, since a number of existing texts cover general optimization theory, statistical analysis, and other introductory topics. Rather, this manual is intended to summarize a set of Dakota-related research publications in the areas of surrogate-based optimization, uncertainty quanti cation, and optimization under uncertainty that provide the foundation for many of Dakota's iterative analysis capabilities.

  19. Observations on test stockpiles of dried lignite and subbituminous coals

    SciTech Connect (OSTI)

    Cooley, S A; Paulson, L E; Ellman, R C

    1980-01-01

    Dried low rank coal stockpiles were monitored from 1974 to 1980. Moisture content, heating value, and pile temperature have shown little change since compaction. All indications are that dried coal can be stockpiled for extended periods.

  20. Annotated bibliography of coal in the Caribbean region. [Lignite

    SciTech Connect (OSTI)

    Orndorff, R.C.

    1985-01-01

    The purpose of preparing this annotated bibliography was to compile information on coal localities for the Caribbean region used for preparation of a coal map of the region. Also, it serves as a brief reference list of publications for future coal studies in the Caribbean region. It is in no way an exhaustive study or complete listing of coal literature for the Caribbean. All the material was gathered from published literature with the exception of information from Cuba which was supplied from a study by Gordon Wood of the US Geological Survey, Branch of Coal Resources. Following the classification system of the US Geological Survey (Wood and others, 1983), the term coal resources has been used in this report for reference to general estimates of coal quantities even though authors of the material being annotated may have used the term coal reserves in a similar denotation. The literature ranges from 1857 to 1981. The countries listed include Colombia, Mexico, Venezuela, Cuba, the Dominican Republic, Haiti, Jamaica, Puerto Rico, and the countries of Central America.

  1. DAKOTA 5.0

    Energy Science and Technology Software Center (OSTI)

    001217MLTPL02 DAKOTA Design Analysis Kit for Optimization and Terascale https://www.cs.sandia.gov/dakota/documentation.html

  2. Barnes County, North Dakota: Energy Resources | Open Energy Informatio...

    Open Energy Info (EERE)

    County, North Dakota Dazey, North Dakota Fingal, North Dakota Kathryn, North Dakota Leal, North Dakota Litchville, North Dakota Nome, North Dakota Oriska, North Dakota...

  3. Turner County, South Dakota: Energy Resources | Open Energy Informatio...

    Open Energy Info (EERE)

    Davis, South Dakota Dolton, South Dakota Hurley, South Dakota Irene, South Dakota Marion, South Dakota Monroe, South Dakota Parker, South Dakota Viborg, South Dakota Retrieved...

  4. Cavalier County, North Dakota: Energy Resources | Open Energy...

    Open Energy Info (EERE)

    Calvin, North Dakota Hannah, North Dakota Langdon, North Dakota Loma, North Dakota Milton, North Dakota Munich, North Dakota Nekoma, North Dakota Osnabrock, North Dakota...

  5. Burleigh County, North Dakota: Energy Resources | Open Energy...

    Open Energy Info (EERE)

    North Dakota Lincoln, North Dakota Lincoln-Fort Rice, North Dakota Lyman, North Dakota Phoenix, North Dakota Regan, North Dakota Wilton, North Dakota Wing, North Dakota Retrieved...

  6. Plains CO2 Reduction Partnership PCOR | Open Energy Information

    Open Energy Info (EERE)

    Grand Forks, North Dakota Zip: 58202-9018 Product: North Dakota-based consortium researching CO2 storage options. PCOR is busy with the ECBM in the Unminable Lignite Research...

  7. Walworth County, South Dakota: Energy Resources | Open Energy...

    Open Energy Info (EERE)

    A. Places in Walworth County, South Dakota Akaska, South Dakota Glenham, South Dakota Java, South Dakota Lowry, South Dakota Mobridge, South Dakota Selby, South Dakota Retrieved...

  8. Bowman County, North Dakota: Energy Resources | Open Energy Informatio...

    Open Energy Info (EERE)

    A. Places in Bowman County, North Dakota Bowman, North Dakota Gascoyne, North Dakota Hart, North Dakota Rhame, North Dakota Scranton, North Dakota West Bowman, North Dakota...

  9. Rolette County, North Dakota: Energy Resources | Open Energy...

    Open Energy Info (EERE)

    North Dakota North Rolette, North Dakota Rolette, North Dakota Rolla, North Dakota Shell Valley, North Dakota South Rolette, North Dakota St. John, North Dakota Turtle...

  10. Day County, South Dakota: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    A. Places in Day County, South Dakota Andover, South Dakota Bristol, South Dakota Butler, South Dakota Grenville, South Dakota Lily, South Dakota Pierpont, South Dakota...

  11. Pembina County, North Dakota: Energy Resources | Open Energy...

    Open Energy Info (EERE)

    in Pembina County, North Dakota Bathgate, North Dakota Canton City, North Dakota Cavalier, North Dakota Crystal, North Dakota Drayton, North Dakota Hamilton, North Dakota...

  12. Cass County, North Dakota: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    North Dakota North River, North Dakota Oxbow, North Dakota Page, North Dakota Prairie Rose, North Dakota Reile's Acres, North Dakota Tower City, North Dakota West Fargo, North...

  13. Beadle County, South Dakota: Energy Resources | Open Energy Informatio...

    Open Energy Info (EERE)

    A. Places in Beadle County, South Dakota Broadland, South Dakota Cavour, South Dakota Hitchcock, South Dakota Huron, South Dakota Iroquois, South Dakota Virgil, South Dakota...

  14. Wells County, North Dakota: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    North Dakota Cathay, North Dakota Fessenden, North Dakota Hamberg, North Dakota Harvey, North Dakota Hurdsfield, North Dakota Sykeston, North Dakota Retrieved from "http:...

  15. Mountrail County, North Dakota: Energy Resources | Open Energy...

    Open Energy Info (EERE)

    North Dakota New Town, North Dakota Palermo, North Dakota Parshall, North Dakota Plaza, North Dakota Ross, North Dakota Southwest Mountrail, North Dakota Stanley, North...

  16. Steele County, North Dakota: Energy Resources | Open Energy Informatio...

    Open Energy Info (EERE)

    North Dakota M Power LLC Places in Steele County, North Dakota Finley, North Dakota Hope, North Dakota Luverne, North Dakota Sharon, North Dakota Retrieved from "http:...

  17. Codington County, South Dakota: Energy Resources | Open Energy...

    Open Energy Info (EERE)

    Glacial Lakes Energy Places in Codington County, South Dakota Florence, South Dakota Henry, South Dakota Kranzburg, South Dakota South Shore, South Dakota Wallace, South Dakota...

  18. Roberts County, South Dakota: Energy Resources | Open Energy...

    Open Energy Info (EERE)

    Country Ethanol LLC Places in Roberts County, South Dakota Claire City, South Dakota Corona, South Dakota New Effington, South Dakota Ortley, South Dakota Peever, South Dakota...

  19. LaMoure County, North Dakota: Energy Resources | Open Energy...

    Open Energy Info (EERE)

    Edgeley, North Dakota Jud, North Dakota Kulm, North Dakota LaMoure, North Dakota Marion, North Dakota Verona, North Dakota Retrieved from "http:en.openei.orgw...

  20. Dickey County, North Dakota: Energy Resources | Open Energy Informatio...

    Open Energy Info (EERE)

    Climate Zone Subtype A. Places in Dickey County, North Dakota Ellendale, North Dakota Forbes, North Dakota Fullerton, North Dakota Ludden, North Dakota Monango, North Dakota...

  1. Bon Homme County, South Dakota: Energy Resources | Open Energy...

    Open Energy Info (EERE)

    Homme County, South Dakota Broin Enterprises Places in Bon Homme County, South Dakota Avon, South Dakota Scotland, South Dakota Springfield, South Dakota Tabor, South Dakota...

  2. Douglas County, South Dakota: Energy Resources | Open Energy...

    Open Energy Info (EERE)

    County, South Dakota Armour, South Dakota Corsica, South Dakota Delmont, South Dakota Harrison, South Dakota New Holland, South Dakota Retrieved from "http:en.openei.orgw...

  3. Faulk County, South Dakota: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Onaka, South Dakota Orient, South Dakota Pulaski, South Dakota Rockham, South Dakota Seneca, South Dakota Southwest Faulk, South Dakota Retrieved from "http:en.openei.orgw...

  4. Lincoln County, South Dakota: Energy Resources | Open Energy...

    Open Energy Info (EERE)

    South Dakota Hudson, South Dakota Lennox, South Dakota Sioux Falls, South Dakota Tea, South Dakota Worthing, South Dakota Retrieved from "http:en.openei.orgw...

  5. Charles Mix County, South Dakota: Energy Resources | Open Energy...

    Open Energy Info (EERE)

    Zone Subtype A. Places in Charles Mix County, South Dakota Castalia, South Dakota Dante, South Dakota Geddes, South Dakota Lake Andes, South Dakota Marty, South Dakota...

  6. DAKOTA 6.0

    Energy Science and Technology Software Center (OSTI)

    001217MLTPL03 Design Analysis Kit for Optimization and Terascale Applications 6.0 http://dakota.sandia.gov

  7. Federal Energy Regulatory Commission Interconnection Queue Practices...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    500 MW installed hydro capacity * Lignite Coal - 4,000 MW installed capacity - Mine-mouth ... in up 2 Billion in reduced costs for consumers Conclusions * Resolving the North Dakota ...

  8. Hanson County, South Dakota: Energy Resources | Open Energy Informatio...

    Open Energy Info (EERE)

    Biodiesel Producers LLC Places in Hanson County, South Dakota Alexandria, South Dakota Emery, South Dakota Farmer, South Dakota Fulton, South Dakota Retrieved from "http:...

  9. Hettinger County, North Dakota: Energy Resources | Open Energy...

    Open Energy Info (EERE)

    in Hettinger County, North Dakota Central Hettinger, North Dakota Mott, North Dakota New England, North Dakota Regent, North Dakota Retrieved from "http:en.openei.orgw...

  10. Moody County, South Dakota: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Colman, South Dakota Egan, South Dakota Flandreau, South Dakota Trent, South Dakota Ward, South Dakota Retrieved from "http:en.openei.orgwindex.php?titleMoodyCounty,Sout...

  11. Davison County, South Dakota: Energy Resources | Open Energy...

    Open Energy Info (EERE)

    LLC Places in Davison County, South Dakota Ethan, South Dakota Loomis, South Dakota Mitchell, South Dakota Mount Vernon, South Dakota Retrieved from "http:en.openei.orgw...

  12. Dunn County, North Dakota: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    A. Places in Dunn County, North Dakota Dodge, North Dakota Dunn Center, North Dakota Halliday, North Dakota Killdeer, North Dakota Retrieved from "http:en.openei.orgw...

  13. Ransom County, North Dakota: Energy Resources | Open Energy Informatio...

    Open Energy Info (EERE)

    North Dakota Enderlin, North Dakota Fort Ransom, North Dakota Lisbon, North Dakota Sheldon, North Dakota Retrieved from "http:en.openei.orgwindex.php?titleRansomCounty,N...

  14. Clark County, South Dakota: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Climate Zone Number 6 Climate Zone Subtype A. Places in Clark County, South Dakota Bradley, South Dakota Clark, South Dakota Garden City, South Dakota Naples, South Dakota...

  15. Kidder County, North Dakota: Energy Resources | Open Energy Informatio...

    Open Energy Info (EERE)

    Climate Zone Number 7 Climate Zone Subtype A. Places in Kidder County, North Dakota Dawson, North Dakota Kickapoo, North Dakota Pettibone, North Dakota Robinson, North Dakota...

  16. Stark County, North Dakota: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Dakota Gladstone, North Dakota Richardton, North Dakota South Heart, North Dakota Taylor, North Dakota Retrieved from "http:en.openei.orgwindex.php?titleStarkCounty,Nor...

  17. Dakota Ethanol | Open Energy Information

    Open Energy Info (EERE)

    Ethanol Jump to: navigation, search Name: Dakota Ethanol Place: Wentworth, South Dakota Zip: 57075 Product: Farmer Coop owner of a 189m litres per year ethanol plant Coordinates:...

  18. ,"North Dakota Natural Gas Prices"

    U.S. Energy Information Administration (EIA) Indexed Site

    Data for" ,"Data 1","North Dakota Natural Gas Prices",8,"Monthly","4... 10:49:14 AM" "Back to Contents","Data 1: North Dakota Natural Gas Prices" ...

  19. EFFECTS OF SODIUM AND CALCIUM IN LIGNITE ON THE PERFORMANCE OF...

    Office of Scientific and Technical Information (OSTI)

    use PAC for controlling DBPs. Activated carbons can be produced from a variety of raw materials, including wood, peat, coconut husks, and numerous types of coal. The Energy &...

  20. EFFECTS OF SODIUM AND CALCIUM IN LIGNITE ON THE PERFORMANCE OF...

    Office of Scientific and Technical Information (OSTI)

    OSTI to utilize additional information resources in energy science and technology. A paper copy of this document is also available for sale to the public from the National...

  1. McPherson County, South Dakota: Energy Resources | Open Energy...

    Open Energy Info (EERE)

    Subtype A. Places in McPherson County, South Dakota Central McPherson, South Dakota Eureka, South Dakota Hillsview, South Dakota Leola, South Dakota Long Lake, South Dakota West...

  2. Buffalo County, South Dakota: Energy Resources | Open Energy...

    Open Energy Info (EERE)

    Zone Number 6 Climate Zone Subtype A. Places in Buffalo County, South Dakota Fort Thompson, South Dakota North Buffalo, South Dakota Southeast Buffalo, South Dakota Retrieved...

  3. Hand County, South Dakota: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Climate Zone Number 6 Climate Zone Subtype A. Places in Hand County, South Dakota Miller, South Dakota Northwest Hand, South Dakota Ree Heights, South Dakota St. Lawrence,...

  4. Sioux County, North Dakota: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Zone Number 6 Climate Zone Subtype A. Places in Sioux County, North Dakota Cannon Ball, North Dakota Fort Yates, North Dakota North Sioux, North Dakota Selfridge, North...

  5. McHenry County, North Dakota: Energy Resources | Open Energy...

    Open Energy Info (EERE)

    McHenry, North Dakota Towner, North Dakota Upham, North Dakota Velva, North Dakota Voltaire, North Dakota Retrieved from "http:en.openei.orgwindex.php?titleMcHenryCounty,...

  6. Lyman County, South Dakota: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Climate Zone Number 6 Climate Zone Subtype A. Places in Lyman County, South Dakota Black Dog, South Dakota East Lyman, South Dakota Kennebec, South Dakota Lower Brule, South Dakota...

  7. McCook County, South Dakota: Energy Resources | Open Energy Informatio...

    Open Energy Info (EERE)

    Climate Zone Number 6 Climate Zone Subtype A. Places in McCook County, South Dakota Bridgewater, South Dakota Canistota, South Dakota Montrose, South Dakota Salem, South Dakota...

  8. Dakota Valley Wind Project | Open Energy Information

    Open Energy Info (EERE)

    Jump to: navigation, search Name Dakota Valley Wind Project Facility Dakota Valley Sector Wind energy Facility Type Community Wind Location SD Coordinates 42.548355, -96.524841...

  9. North Dakota/Incentives | Open Energy Information

    Open Energy Info (EERE)

    Renewable Energy Tax Credit (North Dakota) Corporate Tax Credit Yes Residential Energy Efficiency Rebates (Offered by 5 Utilities) (North Dakota) Utility Rebate Program Yes...

  10. ,"North Dakota Natural Gas Total Consumption (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Data for" ,"Data 1","North Dakota Natural Gas Total Consumption ... 9:10:34 AM" "Back to Contents","Data 1: North Dakota Natural Gas Total Consumption ...

  11. CX-005045: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Subtask 2.14 ? Beneficial Use of Carbon Dioxide for North Dakota Lignite-Fired PlantsCX(s) Applied: A9, B3.6Date: 01/19/2011Location(s): Grand Forks, North DakotaOffice(s): Fossil Energy, National Energy Technology Laboratory

  12. McLean County, North Dakota: Energy Resources | Open Energy Informatio...

    Open Energy Info (EERE)

    Dakota Mercer, North Dakota North Central McLean, North Dakota Riverdale, North Dakota Ruso, North Dakota South McLean, North Dakota Turtle Lake, North Dakota Underwood, North...

  13. South Dakota geothermal handbook

    SciTech Connect (OSTI)

    Not Available

    1980-06-01

    The sources of geothermal fluids in South Dakota are described and some of the problems that exist in utilization and materials selection are described. Methods of heat extraction and the environmental concerns that accompany geothermal fluid development are briefly described. Governmental rules, regulations and legislation are explained. The time and steps necessary to bring about the development of the geothermal resource are explained in detail. Some of the federal incentives that encourage the use of geothermal energy are summarized. (MHR)

  14. Spink County, South Dakota: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    6 Climate Zone Subtype A. Registered Energy Companies in Spink County, South Dakota Redfield Energy LLC Places in Spink County, South Dakota Ashton, South Dakota Brentford, South...

  15. ,"North Dakota Natural Gas Gross Withdrawals (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    ...2016 9:51:58 AM" "Back to Contents","Data 1: North Dakota Natural Gas Gross Withdrawals (MMcf)" "Sourcekey","N9010ND2" "Date","North Dakota Natural Gas Gross Withdrawals (MMcf)" ...

  16. ,"North Dakota Natural Gas Residential Consumption (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    8:54:32 AM" "Back to Contents","Data 1: North Dakota Natural Gas Residential Consumption (MMcf)" "Sourcekey","N3010ND2" "Date","North Dakota Natural Gas Residential Consumption ...

  17. ,"North Dakota Natural Gas Industrial Consumption (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    8:56:47 AM" "Back to Contents","Data 1: North Dakota Natural Gas Industrial Consumption (MMcf)" "Sourcekey","N3035ND2" "Date","North Dakota Natural Gas Industrial Consumption ...

  18. ,"North Dakota Natural Gas Marketed Production (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    9:53:45 AM" "Back to Contents","Data 1: North Dakota Natural Gas Marketed Production (MMcf)" "Sourcekey","N9050ND2" "Date","North Dakota Natural Gas Marketed Production ...

  19. ,"North Dakota Natural Gas Marketed Production (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    9:53:46 AM" "Back to Contents","Data 1: North Dakota Natural Gas Marketed Production (MMcf)" "Sourcekey","N9050ND2" "Date","North Dakota Natural Gas Marketed Production ...

  20. ,"North Dakota Natural Gas Industrial Consumption (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    8:56:46 AM" "Back to Contents","Data 1: North Dakota Natural Gas Industrial Consumption (MMcf)" "Sourcekey","N3035ND2" "Date","North Dakota Natural Gas Industrial Consumption ...

  1. Minn-Dakota Wind Farm I | Open Energy Information

    Open Energy Info (EERE)

    Minn-Dakota Wind Farm I Jump to: navigation, search Name Minn-Dakota Wind Farm I Facility Minn-Dakota Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility...

  2. Haakon County, South Dakota: Energy Resources | Open Energy Informatio...

    Open Energy Info (EERE)

    6 Climate Zone Subtype A. Places in Haakon County, South Dakota Midland, South Dakota Philip, South Dakota Retrieved from "http:en.openei.orgwindex.php?titleHaakonCounty,So...

  3. City of Hillsboro, North Dakota (Utility Company) | Open Energy...

    Open Energy Info (EERE)

    Hillsboro, North Dakota (Utility Company) Jump to: navigation, search Name: City of Hillsboro Place: North Dakota Phone Number: 605-338-4042 Website: acupofcoffeeaway.comcity-info...

  4. City of Groton, South Dakota (Utility Company) | Open Energy...

    Open Energy Info (EERE)

    Groton, South Dakota (Utility Company) Jump to: navigation, search Name: City of Groton Place: South Dakota Phone Number: (605) 397-8422 Website: www.grotonsd.govcityelectric...

  5. City of Howard, South Dakota (Utility Company) | Open Energy...

    Open Energy Info (EERE)

    Howard, South Dakota (Utility Company) Jump to: navigation, search Name: City of Howard Place: South Dakota Phone Number: (605) 772-4391 Website: www.cityofhoward.comindex.asp...

  6. City of Miller, South Dakota (Utility Company) | Open Energy...

    Open Energy Info (EERE)

    Miller, South Dakota (Utility Company) Jump to: navigation, search Name: City of Miller Place: South Dakota Phone Number: (605) 853-2705 Website: millersd.orgmillercity-of-mi...

  7. South Dakota Department of Natural Resources | Open Energy Information

    Open Energy Info (EERE)

    development in South Dakota related to the exploration and development of oil and gas resources. References "South Dakota Department of Natural Resources" Retrieved...

  8. Montana-Dakota Utilities Co (Wyoming) | Open Energy Information

    Open Energy Info (EERE)

    Montana-Dakota Utilities Co (Wyoming) (Redirected from MDU Resources Group Inc (Wyoming)) Jump to: navigation, search Name: Montana-Dakota Utilities Co Place: Wyoming Phone Number:...

  9. Holden, North Dakota: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    ":"","inlineLabel":"","visitedicon":"" Hide Map Holden is a unorganized territory in Adams County, North Dakota. It falls under North Dakota's At-large congressional district....

  10. Rapid City, South Dakota: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    under South Dakota's At-large congressional district.12 Contents 1 US Recovery Act Smart Grid Projects in Rapid City, South Dakota 2 Registered Energy Companies in Rapid...

  11. North Dakota Dry Natural Gas Expected Future Production (Billion...

    U.S. Energy Information Administration (EIA) Indexed Site

    Expected Future Production (Billion Cubic Feet) North Dakota Dry Natural Gas Expected ... Dry Natural Gas Proved Reserves as of Dec. 31 North Dakota Dry Natural Gas Proved Reserves ...

  12. ,"North Dakota Nonassociated Natural Gas, Wet After Lease Separation...

    U.S. Energy Information Administration (EIA) Indexed Site

    Data for" ,"Data 1","North Dakota Nonassociated Natural Gas, Wet ... 9:32:06 AM" "Back to Contents","Data 1: North Dakota Nonassociated Natural Gas, Wet ...

  13. North Dakota Shale Proved Reserves (Billion Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Shale Proved Reserves (Billion Cubic Feet) North Dakota Shale Proved Reserves (Billion ... Shale Natural Gas Proved Reserves as of Dec. 31 North Dakota Shale Gas Proved Reserves, ...

  14. North Dakota Dry Natural Gas Reserves Extensions (Billion Cubic...

    U.S. Energy Information Administration (EIA) Indexed Site

    Extensions (Billion Cubic Feet) North Dakota Dry Natural Gas Reserves Extensions (Billion ... Referring Pages: Dry Natural Gas Reserves Extensions North Dakota Dry Natural Gas Proved ...

  15. North Dakota Natural Gas Pipeline and Distribution Use Price...

    U.S. Energy Information Administration (EIA) Indexed Site

    Price (Dollars per Thousand Cubic Feet) North Dakota Natural Gas Pipeline and Distribution ... Price for Natural Gas Pipeline and Distribution Use North Dakota Natural Gas Prices Price ...

  16. North Dakota Natural Gas Number of Commercial Consumers (Number...

    U.S. Energy Information Administration (EIA) Indexed Site

    Commercial Consumers (Number of Elements) North Dakota Natural Gas Number of Commercial ... Referring Pages: Number of Natural Gas Commercial Consumers North Dakota Number of Natural ...

  17. North Dakota Natural Gas Lease Fuel Consumption (Million Cubic...

    U.S. Energy Information Administration (EIA) Indexed Site

    Fuel Consumption (Million Cubic Feet) North Dakota Natural Gas Lease Fuel Consumption ... Referring Pages: Natural Gas Lease Fuel Consumption North Dakota Natural Gas Consumption ...

  18. North Dakota Natural Gas Vehicle Fuel Consumption (Million Cubic...

    U.S. Energy Information Administration (EIA) Indexed Site

    Vehicle Fuel Consumption (Million Cubic Feet) North Dakota Natural Gas Vehicle Fuel ... Natural Gas Delivered to Vehicle Fuel Consumers North Dakota Natural Gas Consumption by ...

  19. ,"North Dakota Natural Gas Liquids Lease Condensate, Proved Reserves...

    U.S. Energy Information Administration (EIA) Indexed Site

    Data for" ,"Data 1","North Dakota Natural Gas Liquids Lease ... 9:28:11 AM" "Back to Contents","Data 1: North Dakota Natural Gas Liquids Lease ...

  20. North Dakota Dry Natural Gas Reserves Sales (Billion Cubic Feet...

    U.S. Energy Information Administration (EIA) Indexed Site

    Sales (Billion Cubic Feet) North Dakota Dry Natural Gas Reserves Sales (Billion Cubic ... Referring Pages: Dry Natural Gas Reserves Sales North Dakota Dry Natural Gas Proved ...

  1. North Dakota Natural Gas Processed (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Processed (Million Cubic Feet) North Dakota Natural Gas Processed (Million Cubic Feet) ... Referring Pages: Natural Gas Processed North Dakota Natural Gas Plant Processing Natural ...

  2. North Dakota Natural Gas Imports (No intransit Receipts) (Million...

    U.S. Energy Information Administration (EIA) Indexed Site

    Imports (No intransit Receipts) (Million Cubic Feet) North Dakota Natural Gas Imports (No ... Referring Pages: Natural Gas Imports (Summary) North Dakota U.S. Natural Gas Imports & ...

  3. North Dakota Dry Natural Gas Reserves Estimated Production (Billion...

    U.S. Energy Information Administration (EIA) Indexed Site

    Estimated Production (Billion Cubic Feet) North Dakota Dry Natural Gas Reserves Estimated ... Dry Natural Gas Reserves Estimated Production North Dakota Dry Natural Gas Proved Reserves ...

  4. North Dakota Coalbed Methane Proved Reserves (Billion Cubic Feet...

    U.S. Energy Information Administration (EIA) Indexed Site

    North Dakota Coalbed Methane Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 ... Coalbed Methane Proved Reserves as of Dec. 31 North Dakota Coalbed Methane Proved ...

  5. Dr. Brian Kalk - Chairman North Dakota Public Service Commission...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Brian Kalk - Chairman North Dakota Public Service Commission. Responding to Changing Infrastructure Needs. I. Overview of the jurisdiction of the North Dakota Public Service ...

  6. North Dakota Dry Natural Gas Reserves Acquisitions (Billion Cubic...

    U.S. Energy Information Administration (EIA) Indexed Site

    Acquisitions (Billion Cubic Feet) North Dakota Dry Natural Gas Reserves Acquisitions ... Referring Pages: Dry Natural Gas Reserves Acquisitions North Dakota Dry Natural Gas Proved ...

  7. North Dakota Natural Gas Exports (Price) All Countries (Dollars...

    U.S. Energy Information Administration (EIA) Indexed Site

    North Dakota Natural Gas Exports (Price) All Countries (Dollars per Thousand Cubic Feet) ... Referring Pages: Natural Gas Exports Price North Dakota U.S. Natural Gas Imports & Exports ...

  8. North Dakota Natural Gas Exports to All Countries (Million Cubic...

    U.S. Energy Information Administration (EIA) Indexed Site

    Exports to All Countries (Million Cubic Feet) North Dakota Natural Gas Exports to All ... Referring Pages: Natural Gas Exports (Summary) North Dakota U.S. Natural Gas Imports & ...

  9. North Dakota Natural Gas Plant Liquids Production (Million Cubic...

    U.S. Energy Information Administration (EIA) Indexed Site

    Liquids Production (Million Cubic Feet) North Dakota Natural Gas Plant Liquids Production ... Referring Pages: NGPL Production, Gaseous Equivalent North Dakota Natural Gas Plant ...

  10. North Dakota Dry Natural Gas Reserves Revision Increases (Billion...

    U.S. Energy Information Administration (EIA) Indexed Site

    Increases (Billion Cubic Feet) North Dakota Dry Natural Gas Reserves Revision Increases ... Dry Natural Gas Reserves Revision Increases North Dakota Dry Natural Gas Proved Reserves ...

  11. North Dakota Crude Oil Reserves in Nonproducing Reservoirs (Million...

    U.S. Energy Information Administration (EIA) Indexed Site

    Reserves in Nonproducing Reservoirs (Million Barrels) North Dakota Crude Oil Reserves in ... Referring Pages: Proved Nonproducing Reserves of Crude Oil North Dakota Proved ...

  12. ,"North Dakota Coalbed Methane Proved Reserves (Billion Cubic...

    U.S. Energy Information Administration (EIA) Indexed Site

    Data for" ,"Data 1","North Dakota Coalbed Methane Proved Reserves ... 9:22:44 AM" "Back to Contents","Data 1: North Dakota Coalbed Methane Proved Reserves ...

  13. North Dakota Natural Gas Vehicle Fuel Price (Dollars per Thousand...

    U.S. Energy Information Administration (EIA) Indexed Site

    Vehicle Fuel Price (Dollars per Thousand Cubic Feet) North Dakota Natural Gas Vehicle Fuel ... Referring Pages: Natural Gas Vehicle Fuel Price North Dakota Natural Gas Prices Natural ...

  14. North Dakota Dry Natural Gas New Reservoir Discoveries in Old...

    U.S. Energy Information Administration (EIA) Indexed Site

    New Reservoir Discoveries in Old Fields (Billion Cubic Feet) North Dakota Dry Natural Gas ... Dry Natural Gas New Reservoir Discoveries in Old Fields North Dakota Dry Natural Gas ...

  15. North Dakota Natural Gas, Wet After Lease Separation Proved Reserves...

    U.S. Energy Information Administration (EIA) Indexed Site

    Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) North Dakota Natural ... Natural Gas Proved Reserves, Wet After Lease Separation, as of Dec. 31 North Dakota ...

  16. North Dakota Natural Gas Total Consumption (Million Cubic Feet...

    U.S. Energy Information Administration (EIA) Indexed Site

    Total Consumption (Million Cubic Feet) North Dakota Natural Gas Total Consumption (Million ... Referring Pages: Natural Gas Consumption North Dakota Natural Gas Consumption by End Use ...

  17. North Dakota Natural Gas Liquids Lease Condensate, Proved Reserves...

    U.S. Energy Information Administration (EIA) Indexed Site

    Liquids Lease Condensate, Proved Reserves (Million Barrels) North Dakota Natural Gas ... Lease Condensate Proved Reserves as of Dec. 31 North Dakota Lease Condensate Proved ...

  18. ,"North Dakota Shale Proved Reserves (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Data for" ,"Data 1","North Dakota Shale Proved Reserves (Billion ... 9:24:07 AM" "Back to Contents","Data 1: North Dakota Shale Proved Reserves (Billion ...

  19. North Dakota Natural Gas Input Supplemental Fuels (Million Cubic...

    U.S. Energy Information Administration (EIA) Indexed Site

    Input Supplemental Fuels (Million Cubic Feet) North Dakota Natural Gas Input Supplemental ... Referring Pages: Total Supplemental Supply of Natural Gas North Dakota Supplemental ...

  20. ,"North Dakota Natural Gas Vehicle Fuel Consumption (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Data for" ,"Data 1","North Dakota Natural Gas Vehicle Fuel ... 9:14:31 AM" "Back to Contents","Data 1: North Dakota Natural Gas Vehicle Fuel ...

  1. North Dakota Dry Natural Gas Reserves New Field Discoveries ...

    U.S. Energy Information Administration (EIA) Indexed Site

    New Field Discoveries (Billion Cubic Feet) North Dakota Dry Natural Gas Reserves New Field ... New Field Discoveries of Dry Natural Gas Reserves North Dakota Dry Natural Gas Proved ...

  2. North Dakota Natural Gas Pipeline and Distribution Use (Million...

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) North Dakota Natural Gas Pipeline and Distribution Use (Million ... Referring Pages: Natural Gas Pipeline & Distribution Use North Dakota Natural Gas ...

  3. North Dakota Dry Natural Gas Reserves Revision Decreases (Billion...

    U.S. Energy Information Administration (EIA) Indexed Site

    Decreases (Billion Cubic Feet) North Dakota Dry Natural Gas Reserves Revision Decreases ... Dry Natural Gas Reserves Revision Decreases North Dakota Dry Natural Gas Proved Reserves ...

  4. North Dakota Associated-Dissolved Natural Gas, Wet After Lease...

    U.S. Energy Information Administration (EIA) Indexed Site

    North Dakota Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves ... Wet After Lease Separation, as of Dec. 31 North Dakota Associated-Dissolved Natural Gas ...

  5. North Dakota Natural Gas Imports Price (Dollars per Thousand...

    U.S. Energy Information Administration (EIA) Indexed Site

    Price (Dollars per Thousand Cubic Feet) North Dakota Natural Gas Imports Price (Dollars ... Referring Pages: Natural Gas Imports Price North Dakota U.S. Natural Gas Imports & Exports ...

  6. North Dakota Dry Natural Gas Reserves Adjustments (Billion Cubic...

    U.S. Energy Information Administration (EIA) Indexed Site

    Adjustments (Billion Cubic Feet) North Dakota Dry Natural Gas Reserves Adjustments ... Referring Pages: Dry Natural Gas Reserves Adjustments North Dakota Dry Natural Gas Proved ...

  7. North Dakota Natural Gas Wellhead Price (Dollars per Thousand...

    U.S. Energy Information Administration (EIA) Indexed Site

    Wellhead Price (Dollars per Thousand Cubic Feet) North Dakota Natural Gas Wellhead Price ... Referring Pages: Natural Gas Wellhead Price North Dakota Natural Gas Prices Natural Gas ...

  8. ,"South Dakota Natural Gas Industrial Consumption (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","South Dakota Natural Gas Industrial Consumption (MMcf)",1,"Monthly","102015" ,"Release Date:","12312015" ,"Next...

  9. QER- Comment of Dakota Resource Council

    Broader source: Energy.gov [DOE]

    Attached are comments from the Dakota Resource Council, a membership-based organization of North Dakotans. Thank you for the opportunity to comment on the Infrastructure Constraints.

  10. South Dakota/Incentives | Open Energy Information

    Open Energy Info (EERE)

    Type Active Black Hills Power - Commercial Energy Efficiency Programs (South Dakota) Utility Rebate Program Yes Black Hills Power - Residential Customer Rebate Program (South...

  11. EIA - Weekly U.S. Coal Production

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    rounding. Bituminous and Lignite Total includes bituminous coal, subbituminous coal, and lignite, and Anthracite Total includes Pennsylvania anthracite. The States in...

  12. North Dakota Natural Gas Processed in North Dakota (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    North Dakota (Million Cubic Feet) North Dakota Natural Gas Processed in North Dakota (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 111,925 177,995 231,935 301,661 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 08/31/2016 Next Release Date: 09/30/2016 Referring Pages: Natural Gas Processed North Dakota-North Dakota

  13. North Dakota Regions | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    for your school's state, county, city, or district. For more information, please visit the High School Coach page. New Dakota Region High School Regional North Dakota North Dakota...

  14. North Dakota Energy Workforce Development

    SciTech Connect (OSTI)

    Carter, Drake

    2014-12-29

    Bismarck State College, along with its partners (Williston State College, Minot State University and Dickinson State University), received funding to help address the labor and social impacts of rapid oilfield development in the Williston Basin of western North Dakota. Funding was used to develop and support both credit and non-credit workforce training as well as four major symposia designed to inform and educate the public; enhance communication and sense of partnership among citizens, local community leaders and industry; and identify and plan to ameliorate negative impacts of oil field development.

  15. North Dakota Natural Gas Plant Liquids Production Extracted in North Dakota

    Gasoline and Diesel Fuel Update (EIA)

    (Million Cubic Feet) North Dakota (Million Cubic Feet) North Dakota Natural Gas Plant Liquids Production Extracted in North Dakota (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 48,504 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 08/31/2016 Next Release Date: 09/30/2016 Referring Pages: NGPL Production, Gaseous Equivalent North Dakota-North

  16. Categorical Exclusion Determinations: North Dakota | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... June 24, 2013 CX-010514: Categorical Exclusion Determination Center for Nanoscale Energy CX(s) Applied: B3.6 Date: 06242013 Location(s): North Dakota Offices(s): Golden Field ...

  17. North Dakota Shale Production (Billion Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Shale Production (Billion Cubic Feet) North Dakota Shale Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 3 3 25...

  18. North Dakota Refining Capacity Study

    SciTech Connect (OSTI)

    Dennis Hill; Kurt Swenson; Carl Tuura; Jim Simon; Robert Vermette; Gilberto Marcha; Steve Kelly; David Wells; Ed Palmer; Kuo Yu; Tram Nguyen; Juliam Migliavacca

    2011-01-05

    According to a 2008 report issued by the United States Geological Survey, North Dakota and Montana have an estimated 3.0 to 4.3 billion barrels of undiscovered, technically recoverable oil in an area known as the Bakken Formation. With the size and remoteness of the discovery, the question became 'can a business case be made for increasing refining capacity in North Dakota?' And, if so what is the impact to existing players in the region. To answer the question, a study committee comprised of leaders in the region's petroleum industry were brought together to define the scope of the study, hire a consulting firm and oversee the study. The study committee met frequently to provide input on the findings and modify the course of the study, as needed. The study concluded that the Petroleum Area Defense District II (PADD II) has an oversupply of gasoline. With that in mind, a niche market, naphtha, was identified. Naphtha is used as a diluent used for pipelining the bitumen (heavy crude) from Canada to crude markets. The study predicted there will continue to be an increase in the demand for naphtha through 2030. The study estimated the optimal configuration for the refinery at 34,000 barrels per day (BPD) producing 15,000 BPD of naphtha and a 52 percent refinery charge for jet and diesel yield. The financial modeling assumed the sponsor of a refinery would invest its own capital to pay for construction costs. With this assumption, the internal rate of return is 9.2 percent which is not sufficient to attract traditional investment given the risk factor of the project. With that in mind, those interested in pursuing this niche market will need to identify incentives to improve the rate of return.

  19. Alamo, North Dakota: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Map This article is a stub. You can help OpenEI by expanding it. Alamo is a city in Williams County, North Dakota. It falls under North Dakota's At-large congressional...

  20. City of Big Stone City, South Dakota (Utility Company) | Open...

    Open Energy Info (EERE)

    City, South Dakota (Utility Company) Jump to: navigation, search Name: City of Big Stone City Place: South Dakota Phone Number: (605) 862-8121 Website: www.bigstonecitysd.govoffice...

  1. Aberdeen, South Dakota: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Map This article is a stub. You can help OpenEI by expanding it. Aberdeen is a city in Brown County, South Dakota. It falls under South Dakota's At-large congressional...

  2. Minn-Dakota Wind Farm II | Open Energy Information

    Open Energy Info (EERE)

    II Jump to: navigation, search Name Minn-Dakota Wind Farm II Facility Minn-Dakota Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner...

  3. North Dakota Wind II Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    II Wind Farm Jump to: navigation, search Name North Dakota Wind II Wind Farm Facility North Dakota Wind II Sector Wind energy Facility Type Commercial Scale Wind Facility Status In...

  4. City of Hope, North Dakota (Utility Company) | Open Energy Information

    Open Energy Info (EERE)

    Hope, North Dakota (Utility Company) Jump to: navigation, search Name: City of Hope Place: North Dakota Phone Number: 701-945-2772 Website: www.hopend.com Outage Hotline:...

  5. Hope, North Dakota: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Hide Map This article is a stub. You can help OpenEI by expanding it. Hope is a city in Steele County, North Dakota. It falls under North Dakota's At-large...

  6. Dakota Electric Association- Commercial and Industrial Custom Energy Grant Program

    Broader source: Energy.gov [DOE]

    Dakota Electric will conduct an inspection of the project site prior to approval, and grant applications must earn pre-approval from Dakota Electric before any work begins. To qualify for rebates...

  7. North Dakota Industrial Commission, Oil and Gas Divisioin | Open...

    Open Energy Info (EERE)

    in Bismarck, North Dakota. About The Oil and Gas Division regulates the drilling and production of oil and gas in North Dakota. Our mission is to encourage and promote the...

  8. West Central Electric Coop Inc (South Dakota) | Open Energy Informatio...

    Open Energy Info (EERE)

    West Central Electric Coop Inc (South Dakota) Jump to: navigation, search Name: West Central Electric Coop Inc Place: South Dakota Phone Number: 605-669-8100 Website: www.wce.coop...

  9. West Fargo, North Dakota: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Hide Map This article is a stub. You can help OpenEI by expanding it. West Fargo is a city in Cass County, North Dakota. It falls under North Dakota's At-large...

  10. City of White, South Dakota (Utility Company) | Open Energy Informatio...

    Open Energy Info (EERE)

    White, South Dakota (Utility Company) Jump to: navigation, search Name: City of White Place: South Dakota Phone Number: 605-629-2601 Website: www.white.govoffice2.comindex Outage...

  11. Traill County, North Dakota: Energy Resources | Open Energy Informatio...

    Open Energy Info (EERE)

    Dakota. Its FIPS County Code is 097. It is classified as ASHRAE 169-2006 Climate Zone Number 7 Climate Zone Subtype A. Places in Traill County, North Dakota Buxton, North...

  12. Bucyrus, North Dakota: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Map This article is a stub. You can help OpenEI by expanding it. Bucyrus is a city in Adams County, North Dakota. It falls under North Dakota's At-large congressional...

  13. Hettinger, North Dakota: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Map This article is a stub. You can help OpenEI by expanding it. Hettinger is a city in Adams County, North Dakota. It falls under North Dakota's At-large congressional...

  14. Reeder, North Dakota: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Map This article is a stub. You can help OpenEI by expanding it. Reeder is a city in Adams County, North Dakota. It falls under North Dakota's At-large congressional...

  15. Haynes, North Dakota: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Map This article is a stub. You can help OpenEI by expanding it. Haynes is a city in Adams County, North Dakota. It falls under North Dakota's At-large congressional...

  16. Adams, North Dakota: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Hide Map This article is a stub. You can help OpenEI by expanding it. Adams is a city in Walsh County, North Dakota. It falls under North Dakota's At-large...

  17. EA-351 DC Energy Dakota, LLC | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Order authorizing DC Energy Dakota, LLC to export electric energy to Canada EA-351 DC ... EA-351 DC Energy Dakota, LLC EA-344 Twin Cities Power-Canada, LLC EA-354 Endure Energy, ...

  18. ,"North Dakota Natural Gas Gross Withdrawals from Oil Wells ...

    U.S. Energy Information Administration (EIA) Indexed Site

    Data for" ,"Data 1","North Dakota Natural Gas Gross Withdrawals from ... 9:52:34 AM" "Back to Contents","Data 1: North Dakota Natural Gas Gross Withdrawals from ...

  19. ,"North Dakota Dry Natural Gas Production (Million Cubic Feet...

    U.S. Energy Information Administration (EIA) Indexed Site

    Data for" ,"Data 1","North Dakota Dry Natural Gas Production (Million ... 9:54:27 AM" "Back to Contents","Data 1: North Dakota Dry Natural Gas Production (Million ...

  20. ,"North Dakota Crude Oil Reserves in Nonproducing Reservoirs...

    U.S. Energy Information Administration (EIA) Indexed Site

    Data for" ,"Data 1","North Dakota Crude Oil Reserves in Nonproducing ... 9:20:57 AM" "Back to Contents","Data 1: North Dakota Crude Oil Reserves in Nonproducing ...

  1. ,"North Dakota Associated-Dissolved Natural Gas, Wet After Lease...

    U.S. Energy Information Administration (EIA) Indexed Site

    Data for" ,"Data 1","North Dakota Associated-Dissolved Natural Gas, ... 9:33:41 AM" "Back to Contents","Data 1: North Dakota Associated-Dissolved Natural Gas, ...

  2. ,"North Dakota Natural Gas Industrial Price (Dollars per Thousand...

    U.S. Energy Information Administration (EIA) Indexed Site

    AM" "Back to Contents","Data 1: North Dakota Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)" "Sourcekey","N3035ND3" "Date","North Dakota Natural Gas Industrial ...

  3. ,"North Dakota Natural Gas Deliveries to Electric Power Consumers...

    U.S. Energy Information Administration (EIA) Indexed Site

    AM" "Back to Contents","Data 1: North Dakota Natural Gas Deliveries to Electric Power Consumers (MMcf)" "Sourcekey","N3045ND2" "Date","North Dakota Natural Gas Deliveries to ...

  4. ,"North Dakota Natural Gas Consumption by End Use"

    U.S. Energy Information Administration (EIA) Indexed Site

    Data for" ,"Data 1","North Dakota Natural Gas Consumption by End ... 10:31:27 AM" "Back to Contents","Data 1: North Dakota Natural Gas Consumption by End Use" ...

  5. North Dakota Crude Oil + Lease Condensate Proved Reserves (Million...

    U.S. Energy Information Administration (EIA) Indexed Site

    North Dakota Crude Oil + Lease Condensate Proved Reserves (Million Barrels) Decade Year-0 ... Crude Oil plus Lease Condensate Proved Reserves, as of Dec. 31 North Dakota Crude Oil plus ...

  6. ,"North Dakota Natural Gas, Wet After Lease Separation Proved...

    U.S. Energy Information Administration (EIA) Indexed Site

    Data for" ,"Data 1","North Dakota Natural Gas, Wet After Lease ... 9:30:28 AM" "Back to Contents","Data 1: North Dakota Natural Gas, Wet After Lease ...

  7. ,"North Dakota Crude Oil + Lease Condensate Proved Reserves ...

    U.S. Energy Information Administration (EIA) Indexed Site

    Data for" ,"Data 1","North Dakota Crude Oil + Lease Condensate Proved ... 9:21:07 AM" "Back to Contents","Data 1: North Dakota Crude Oil + Lease Condensate Proved ...

  8. ,"North Dakota Natural Gas Gross Withdrawals and Production"

    U.S. Energy Information Administration (EIA) Indexed Site

    Data for" ,"Data 1","North Dakota Natural Gas Gross Withdrawals and ... 10:51:41 AM" "Back to Contents","Data 1: North Dakota Natural Gas Gross Withdrawals and ...

  9. ,"North Dakota Natural Gas Price Sold to Electric Power Consumers...

    U.S. Energy Information Administration (EIA) Indexed Site

    to Contents","Data 1: North Dakota Natural Gas Price Sold to Electric Power Consumers (Dollars per Thousand Cubic Feet)" "Sourcekey","N3045ND3" "Date","North Dakota Natural Gas ...

  10. ,"North Dakota Dry Natural Gas Expected Future Production (Billion...

    U.S. Energy Information Administration (EIA) Indexed Site

    Data for" ,"Data 1","North Dakota Dry Natural Gas Expected Future ... 9:28:52 AM" "Back to Contents","Data 1: North Dakota Dry Natural Gas Expected Future ...

  11. ,"North Dakota Natural Gas Wellhead Price (Dollars per Thousand...

    U.S. Energy Information Administration (EIA) Indexed Site

    Data for" ,"Data 1","North Dakota Natural Gas Wellhead Price (Dollars ... 9:04:04 AM" "Back to Contents","Data 1: North Dakota Natural Gas Wellhead Price (Dollars ...

  12. ,"North Dakota Heat Content of Natural Gas Consumed"

    U.S. Energy Information Administration (EIA) Indexed Site

    Data for" ,"Data 1","North Dakota Heat Content of Natural Gas ... 10:27:03 AM" "Back to Contents","Data 1: North Dakota Heat Content of Natural Gas ...

  13. ,"North Dakota Natural Gas Gross Withdrawals from Gas Wells ...

    U.S. Energy Information Administration (EIA) Indexed Site

    Data for" ,"Data 1","North Dakota Natural Gas Gross Withdrawals from ... 9:52:18 AM" "Back to Contents","Data 1: North Dakota Natural Gas Gross Withdrawals from ...

  14. ,"North Dakota Natural Gas Gross Withdrawals from Shale Gas ...

    U.S. Energy Information Administration (EIA) Indexed Site

    Data for" ,"Data 1","North Dakota Natural Gas Gross Withdrawals from ... 9:55:03 AM" "Back to Contents","Data 1: North Dakota Natural Gas Gross Withdrawals from ...

  15. City of Park River, North Dakota (Utility Company) | Open Energy...

    Open Energy Info (EERE)

    Park River, North Dakota (Utility Company) Jump to: navigation, search Name: City of Park River Place: North Dakota Phone Number: 701.284.6150 Website: www.parkrivernd.govoffice2.c...

  16. Alternative Fuels Data Center: North Dakota Transportation Data for

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Alternative Fuels and Vehicles Dakota Transportation Data for Alternative Fuels and Vehicles to someone by E-mail Share Alternative Fuels Data Center: North Dakota Transportation Data for Alternative Fuels and Vehicles on Facebook Tweet about Alternative Fuels Data Center: North Dakota Transportation Data for Alternative Fuels and Vehicles on Twitter Bookmark Alternative Fuels Data Center: North Dakota Transportation Data for Alternative Fuels and Vehicles on Google Bookmark Alternative

  17. Alternative Fuels Data Center: South Dakota Transportation Data for

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Alternative Fuels and Vehicles Dakota Transportation Data for Alternative Fuels and Vehicles to someone by E-mail Share Alternative Fuels Data Center: South Dakota Transportation Data for Alternative Fuels and Vehicles on Facebook Tweet about Alternative Fuels Data Center: South Dakota Transportation Data for Alternative Fuels and Vehicles on Twitter Bookmark Alternative Fuels Data Center: South Dakota Transportation Data for Alternative Fuels and Vehicles on Google Bookmark Alternative

  18. EIS-0025: Miles City-New Underwood 230-kV Electrical Transmission Line, Montana, North Dakota, and South Dakota

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy’s Western Area Power Administration prepared this statement to assess the environmental and socioeconomic implications of its proposed action to construct a 3.28-mile, 230-kV transmission line between Miles City and Baker, Montana, Hettinger, North Dakota, and New Underwood, South Dakota, in Custer and Fallon Counties in Montana, Adams, Bowman, and Slope Counties in North Dakota and Meade, Pennington, and Perkins Counties in South Dakota.

  19. EA-1920: Border Winds 2, North Dakota

    Broader source: Energy.gov [DOE]

    DOE’s Western Area Power Administration is preparing this EA to evaluate the environmental impacts of a proposed wind turbine generation facility in Rolette and Towner Counties in North Dakota. If the proposal is implemented, power generated by this facility would interconnect at an existing substation and would be distributed via an existing transmission line owned and operated by Western.

  20. DAKOTA JAGUAR 2.1 user's Manual.

    SciTech Connect (OSTI)

    Adams, Brian M.; Lefantzi, Sophia; Chan, Ethan; Ruthruff, Joseph R.

    2011-06-01

    JAGUAR (JAva GUi for Applied Research) is a Java software tool providing an advanced text editor and graphical user interface (GUI) to manipulate DAKOTA (Design Analysis Kit for Optimization and Terascale Applications) input specifications. This document focuses on the features necessary for a user to use JAGUAR.

  1. DAKOTA JAGUAR 3.0 user's manual.

    SciTech Connect (OSTI)

    Adams, Brian M.; Bauman, Lara E; Chan, Ethan; Lefantzi, Sophia; Ruthruff, Joseph R.

    2013-05-01

    JAGUAR (JAva GUi for Applied Research) is a Java software tool providing an advanced text editor and graphical user interface (GUI) to manipulate DAKOTA (Design Analysis Kit for Optimization and Terascale Applications) input specifications. This document focuses on the features necessary to use JAGUAR.

  2. Advanced power assessment for Czech lignite, Task 3.6, Part 2. The 2nd international conference on energy and environment: Transitions in East Central Europe

    SciTech Connect (OSTI)

    Sondreal, E.A.; Mann, M.D.; Weber, G.W.; Young, B.C.

    1995-12-01

    On November 1-5, 1994, the Energy & Environmental Research Center (EERC) and Power Research Institute of Prague cosponsored their second conference since 1991 in the Czech Republic, entitled ``Energy and Environment: Transitions in East Central Europe.`` This conference was a continuation of the EERC`s joint commitment, initiated in 1190, to facilitate solutions to short- and long-term energy and environmental problems in East Central Europe. Production of energy from coal in an environmentally acceptable manner is a critical issue facing East Central Europe, because the region continues to rely on coal as its primary energy source. The goal of the conference was to develop partnerships between industry, government, and the research community in East Central Europe and the United States to solve energy and environmental issues in a manner that fosters economic development. Among the topics addressed at the conference were: conventional and advanced energy generation systems; economic operation of energy systems; air pollution controls; power system retrofitting and repowering, financing options; regulatory issues; energy resource options; waste utilization and disposal; and long-range environmental issues. Selected papers in the proceedings have been processed separately for inclusion in the Energy Science and Technology database.

  3. Recolonization patterns of ants in a rehabilitated lignite mine in central Italy: Potential for the use of Mediterranean ants as indicators of restoration processes

    SciTech Connect (OSTI)

    Ottonetti, L.; Tucci, L.; Santini, G.

    2006-03-15

    Ant (Hymenoptera: Formicidae) assemblages were sampled with pitfall traps in three different habitats associated with a rehabilitated mine district and in undisturbed forests in Tuscany, Italy. The four habitats were (1) open fields (3-4 years old); (2) a middle-age mixed plantation (10 years); (3) an old-age mixed plantation (20 years); and (4) an oak woodland (40 years) not directly affected by mining activities. The aim of the study was to analyze ant recolonization patterns in order to provide insights on the use of Mediterranean ant fauna as indicators of restoration processes. Species richness and diversity were not significantly different among the four habitats. However, multivariate analyses showed that the assemblages in the different habitats were clearly differentiated, with similarity relationships reflecting a successional gradient among rehabilitated sites. The observed patterns of functional group changes along the gradient broadly accord with those of previous studies in other biogeographic regions. These were (1) a decrease of dominant Dolichoderinae and opportunists; (2) an increase in the proportion of cold-climate specialists; and (3) the appearance of the Cryptic species in the oldest plantations, with a maximum of abundance in the woodland. In conclusion, the results of our study supported the use of Mediterranean ants as a suitable tool for biomonitoring of restoration processes, and in particular, the functional group approach proved a valuable framework to better interpret local trends in terms of global ecological patterns. Further research is, however, needed in order to obtain a reliable classification of Mediterranean ant functional groups.

  4. EERE Success Story-North Dakota: EERE-Funded Project Recycles...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    North Dakota: EERE-Funded Project Recycles Energy, Generates Electricity EERE Success Story-North Dakota: EERE-Funded Project Recycles Energy, Generates Electricity June 17, 2014 - ...

  5. City of Brookings, South Dakota (Utility Company) | Open Energy...

    Open Energy Info (EERE)

    to: navigation, search Name: Brookings City of Place: South Dakota Phone Number: (605) 692-6325 Website: www.brookingsutilities.com Outage Hotline: (605) 692-6325 References:...

  6. ,"South Dakota Natural Gas LNG Storage Withdrawals (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","South Dakota Natural Gas LNG Storage Withdrawals (MMcf)",1,"Annual",2014 ,"Release Date:","9302015" ,"Next Release...

  7. ,"South Dakota Natural Gas LNG Storage Additions (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    LNG Storage Additions (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","South Dakota...

  8. South Dakota/Wind Resources | Open Energy Information

    Open Energy Info (EERE)

    >> South Dakota Wind Resources WindTurbine-icon.png Small Wind Guidebook * Introduction * First, How Can I Make My Home More Energy Efficient? * Is Wind Energy Practical...

  9. North Dakota/Wind Resources | Open Energy Information

    Open Energy Info (EERE)

    >> North Dakota Wind Resources WindTurbine-icon.png Small Wind Guidebook * Introduction * First, How Can I Make My Home More Energy Efficient? * Is Wind Energy Practical...

  10. South Dakota's At-large congressional district: Energy Resources...

    Open Energy Info (EERE)

    At-large congressional district Black Hills Corporation Broin Associates Broin Enterprises Capitaline Advisors LLC Dakota Ethanol Deadwood Biofuels LLC Kramer Energy Group...

  11. Ward County, North Dakota: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Ward County, North Dakota: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 48.2147451, -101.5805256 Show Map Loading map......

  12. Montana-Dakota Utilities- Residential Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Montana-Dakota Utilities (MDU) offers several residential rebates on energy efficient equipment for natural gas and electric customers. Natural gas customers are eligible for rebates on furnaces...

  13. Great Bend, North Dakota: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Great Bend, North Dakota: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 46.1538473, -96.8020228 Show Map Loading map... "minzoom":false,"mapp...

  14. ,"North Dakota Natural Gas Industrial Price (Dollars per Thousand...

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","North Dakota Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)",1,"Monthly","102015" ,"Release Date:","12...

  15. ,"South Dakota Natural Gas Industrial Price (Dollars per Thousand...

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","South Dakota Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)",1,"Monthly","102015" ,"Release Date:","12...

  16. Montana-Dakota Utilities- Commercial Energy Efficiency Incentive Program

    Broader source: Energy.gov [DOE]

    Montana-Dakota Utilities (MDU) offers a variety of rebates to commercial customers for the purchase and installation of energy efficient lighting measures, air conditioning equipment, variable...

  17. Dakota County, Nebraska: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Nebraska Dakota City, Nebraska Emerson, Nebraska Homer, Nebraska Hubbard, Nebraska Jackson, Nebraska South Sioux City, Nebraska Retrieved from "http:en.openei.orgw...

  18. Billings County, North Dakota: Energy Resources | Open Energy...

    Open Energy Info (EERE)

    Billings County, North Dakota: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 47.0560305, -103.3906121 Show Map Loading map......

  19. South Dakota Natural Gas Gross Withdrawals and Production

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Arkansas California Colorado Federal Offshore Gulf of Mexico Kansas Louisiana Montana New Mexico North Dakota Ohio Oklahoma Pennsylvania Texas Utah West Virginia Wyoming Other...

  20. Prairie Rose, North Dakota: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Rose, North Dakota: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 46.8174651, -96.8356389 Show Map Loading map... "minzoom":false,"mappingser...

  1. North Dakota's At-large congressional district: Energy Resources...

    Open Energy Info (EERE)

    Electric Motorcars Government of North Dakota M Power LLC Nor-son Construction Plains CO2 Reduction Partnership PCOR Tharaldson Ethanol LLC Wanzek Construction Inc Retrieved...

  2. EA-1955: Campbell County Wind Farm; Campbell County, South Dakota...

    Broader source: Energy.gov (indexed) [DOE]

    an EA that analyzes the potential environmental impacts of a proposal to interconnect, via a proposed new substation, a proposed Dakota Plains Energy, LLC, 99-megawatt wind farm...

  3. Ramsey County, North Dakota: Energy Resources | Open Energy Informatio...

    Open Energy Info (EERE)

    Ramsey County, North Dakota: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 48.3076017, -98.7287191 Show Map Loading map......

  4. South Dakota Wind Application Center | Open Energy Information

    Open Energy Info (EERE)

    Dakota. Its stated mission is to "Promote wind energy through project development and education."2 References "SDWAC's "Contact" Page" "SDWAC Homepage" External links...

  5. Redfield, South Dakota: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Redfield, South Dakota: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 44.8758095, -98.5187062 Show Map Loading map... "minzoom":false,"mappin...

  6. West Morton, North Dakota: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    "alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":"" Hide Map West Morton is a unorganized territory in Morton County, North Dakota. It falls under North...

  7. Dakota County, Minnesota: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Landfill Biomass Facility Pine Bend Biomass Facility Places in Dakota County, Minnesota Apple Valley, Minnesota Burnsville, Minnesota Coates, Minnesota Eagan, Minnesota Farmington,...

  8. EIS-0401: NextGen Project, South Dakota

    Broader source: Energy.gov [DOE]

    This EIS analyzes WAPA's proposed action for the construction and operation of the proposed NextGen Energy Facility (Project) in South Dakota.

  9. Gardner, North Dakota: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Gardner, North Dakota: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 47.1471966, -96.9678613 Show Map Loading map... "minzoom":false,"mapping...

  10. South Dakota Quantity of Production Associated with Reported...

    Gasoline and Diesel Fuel Update (EIA)

    Quantity of Production Associated with Reported Wellhead Value (Million Cubic Feet) South Dakota Quantity of Production Associated with Reported Wellhead Value (Million Cubic Feet)...

  11. Colman, South Dakota: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Inc. Smart Grid Project Utility Companies in Colman, South Dakota Sioux Valley SW Elec Coop References US Census Bureau Incorporated place and minor civil division...

  12. Central Adams, North Dakota: Energy Resources | Open Energy Informatio...

    Open Energy Info (EERE)

    Central Adams, North Dakota: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 46.1382966, -102.6799359 Show Map Loading map......

  13. West Adams, North Dakota: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Adams, North Dakota: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 46.1901728, -102.9074546 Show Map Loading map... "minzoom":false,"mappings...

  14. East Adams, North Dakota: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Adams, North Dakota: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 46.1228923, -102.293303 Show Map Loading map... "minzoom":false,"mappingse...

  15. North Dakota Recovery Act State Memo | Department of Energy

    Office of Environmental Management (EM)

    The American Recovery & Reinvestment Act (ARRA) is making a meaningful down payment on the nation's energy and environmental future. The Recovery Act investments in North Dakota ...

  16. South Dakota Recovery Act State Memo | Department of Energy

    Energy Savers [EERE]

    The American Recovery & Reinvestment Act (ARRA) is making a meaningful down payment on the nation's energy and environmental future. The Recovery Act investments in South Dakota ...

  17. ,"South Dakota Natural Gas Deliveries to Electric Power Consumers...

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","South Dakota Natural Gas Deliveries to Electric Power Consumers (MMcf)",1,"Monthly","102015" ,"Release...

  18. ,"South Dakota Natural Gas Price Sold to Electric Power Consumers...

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","South Dakota Natural Gas Price Sold to Electric Power Consumers (Dollars per Thousand Cubic...

  19. ,"North Dakota Natural Gas Price Sold to Electric Power Consumers...

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","North Dakota Natural Gas Price Sold to Electric Power Consumers (Dollars per Thousand Cubic...

  20. Irene, South Dakota: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Irene, South Dakota: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 43.0830474, -97.1606081 Show Map Loading map... "minzoom":false,"mappingse...

  1. Clay County, South Dakota: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    South Dakota: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 42.8829344, -97.0068393 Show Map Loading map... "minzoom":false,"mappingservice":...

  2. Vermillion, South Dakota: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Vermillion, South Dakota: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 42.7794417, -96.9292104 Show Map Loading map... "minzoom":false,"mapp...

  3. Wakonda, South Dakota: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Wakonda, South Dakota: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 43.0083269, -97.1067167 Show Map Loading map... "minzoom":false,"mapping...

  4. ,"North Dakota Natural Gas Pipeline and Distribution Use Price...

    U.S. Energy Information Administration (EIA) Indexed Site

    ies","Frequency","Latest Data for" ,"Data 1","North Dakota Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet)",1,"Annual",2005 ,"Release Date:","9...

  5. North Dakota Natural Gas Vehicle Fuel Consumption (Million Cubic...

    U.S. Energy Information Administration (EIA) Indexed Site

    Release Date: 06302016 Next Release Date: 07292016 Referring Pages: Natural Gas Delivered to Vehicle Fuel Consumers North Dakota Natural Gas Consumption by End Use Vehicle Fuel ...

  6. North Dakota Nonassociated Natural Gas, Wet After Lease Separation...

    U.S. Energy Information Administration (EIA) Indexed Site

    North Dakota Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves ... Nonassociated Natural Gas Proved Reserves, Wet After Lease Separation, as of Dec. 31 North ...

  7. North Dakota Natural Gas Plant Liquids, Expected Future Production...

    U.S. Energy Information Administration (EIA) Indexed Site

    Liquids, Expected Future Production (Million Barrels) North Dakota Natural Gas Plant Liquids, Expected Future Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 ...

  8. North Dakota Quantity of Production Associated with Reported...

    U.S. Energy Information Administration (EIA) Indexed Site

    Quantity of Production Associated with Reported Wellhead Value (Million Cubic Feet) North ... Quantity of Natural Gas Production Associated with Reported Wellhead Value North Dakota ...

  9. ,"South Dakota Natural Gas LNG Storage Net Withdrawals (MMcf...

    U.S. Energy Information Administration (EIA) Indexed Site

    LNG Storage Net Withdrawals (MMcf)" ,"Click worksheet name or tab at bottom for data" ... for" ,"Data 1","South Dakota Natural Gas LNG Storage Net Withdrawals ...

  10. ,"North Dakota Natural Gas Plant Liquids, Expected Future Production...

    U.S. Energy Information Administration (EIA) Indexed Site

    Plant Liquids, Expected Future Production (Million Barrels)" ,"Click worksheet name or tab ... for" ,"Data 1","North Dakota Natural Gas Plant Liquids, Expected Future Production ...

  11. South Dakota Renewable Electric Power Industry Net Generation...

    U.S. Energy Information Administration (EIA) Indexed Site

    Dakota" "Energy Source",2006,2007,2008,2009,2010 "Geothermal","-","-","-","-","-" "Hydro Conventional",3397,2917,2993,4432,5239 "Solar","-","-","-","-","-" "Wind",149,150,145,421,1...

  12. North Dakota Renewable Electric Power Industry Net Generation...

    U.S. Energy Information Administration (EIA) Indexed Site

    Dakota" "Energy Source",2006,2007,2008,2009,2010 "Geothermal","-","-","-","-","-" "Hydro Conventional",1521,1305,1253,1475,2042 "Solar","-","-","-","-","-" "Wind",369,621,1693,2998...

  13. Recovery Act State Memos North Dakota

    Broader source: Energy.gov (indexed) [DOE]

    Dakota For questions about DOE's Recovery Act activities, please contact the DOE Recovery Act Clearinghouse: 1-888-DOE-RCVY (888-363-7289), Monday through Friday, 9 a.m. to 7 p.m. Eastern Time https://recoveryclearinghouse.energy.gov/contactUs.htm. All numbers and projects listed as of June 1, 2010 TABLE OF CONTENTS RECOVERY ACT SNAPSHOT................................................................................... 1 FUNDING ALLOCATION

  14. Recovery Act State Memos South Dakota

    Broader source: Energy.gov (indexed) [DOE]

    Dakota For questions about DOE's Recovery Act activities, please contact the DOE Recovery Act Clearinghouse: 1-888-DOE-RCVY (888-363-7289), Monday through Friday, 9 a.m. to 7 p.m. Eastern Time https://recoveryclearinghouse.energy.gov/contactUs.htm. All numbers and projects listed as of June 1, 2010 TABLE OF CONTENTS RECOVERY ACT SNAPSHOT................................................................................... 1 FUNDING ALLOCATION

  15. South Dakota Renewable Electric Power Industry Statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    Dakota Primary Renewable Energy Capacity Source Hydro Conventional Primary Renewable Energy Generation Source Hydro Conventional Capacity (megawatts) Value Percent of State Total Total Net Summer Electricity Capacity 3,623 100.0 Total Net Summer Renewable Capacity 2,223 61.3 Geothermal - - Hydro Conventional 1,594 44.0 Solar - - Wind 629 17.3 Wood/Wood Waste - - MSW/Landfill Gas - - Other Biomass - - Generation (thousand megawatthours) Total Electricity Net Generation 10,050 100.0 Total

  16. South Dakota Wind Resource Assessment Network (WRAN)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    WRAN is a network of instrument stations sited throughout South Dakota. As of 2010, there are eleven stations, and some have been collecting data since 2001. The purpose of the WRAN:

    There are several reasons why the WRAN was built. One of the most obvious is that it will allow verification of the existing resource assessments of our state. South Dakota has tremendous potential as an exporter of wind-generated electricity. There has recently been a great deal of publicity over a Pacific Northwest National Laboratories study conducted in the early 1990s that ranked the contiguous 48 states in terms of their potential to produce windpower. (Click here for the results of this study as given by the American Wind Energy Association.) South Dakota ranked fourth in that study. Also, more recently, detailed maps of the wind resource in South Dakota were produced by the National Renewable Energy Laboratory (NREL). Unfortunately, both of these studies had to rely heavily on computer-generated models and very sparse measured data, because very little appropriate measured data exists. The WRAN will provide valuable data that we anticipate will validate the NREL maps, and perhaps suggest minor adjustments.

    There are many other benefits the WRAN will provide. The data it will measure will be at heights above ground that are more appropriate for predicting the performance of large modern wind turbines, as opposed to data collected at National Weather Service stations whose anemometers are usually only about 9 m (30 feet) above ground. Also, we will collect some different types of data than most wind measurement networks, which will allow a series of important studies of the potential impact and value of South Dakota's windpower. In addition, all of the WRAN data will be made available to the public via this WWWeb site. This will hopefully enable extensive informed discussion among all South Dakotans on such important topics as rural economic development and

  17. EA-1955: Campbell County Wind Farm; Campbell County, South Dakota

    Broader source: Energy.gov [DOE]

    DOE’s Western Area Power Administration (Western) prepared an EA that analyzes the potential environmental impacts of a proposal to interconnect, via a proposed new substation, a proposed Dakota Plains Energy, LLC, 99-megawatt wind farm near Pollock, South Dakota, to Western’s existing transmission line at that location.

  18. North Dakota Renewable Electric Power Industry Statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    Dakota Primary Renewable Energy Capacity Source Wind Primary Renewable Energy Generation Source Wind Capacity (megawatts) Value Percent of State Total Total Net Summer Electricity Capacity 6,188 100.0 Total Net Summer Renewable Capacity 1,941 31.4 Geothermal - - Hydro Conventional 508 8.2 Solar - - Wind 1,423 23.0 Wood/Wood Waste - - MSW/Landfill Gas - - Other Biomass 10 0.2 Generation (thousand megawatthours) Total Electricity Net Generation 34,740 100.0 Total Renewable Net Generation 6,150

  19. North Dakota Renewable Electric Power Industry Statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    North Dakota" "Primary Renewable Energy Capacity Source","Wind" "Primary Renewable Energy Generation Source","Wind" "Capacity (megawatts)","Value","Percent of State Total" "Total Net Summer Electricity Capacity",6188,100 "Total Net Summer Renewable Capacity",1941,31.4 " Geothermal","-","-" " Hydro Conventional",508,8.2 "

  20. South Dakota Renewable Electric Power Industry Statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    Dakota" "Primary Renewable Energy Capacity Source","Hydro Conventional" "Primary Renewable Energy Generation Source","Hydro Conventional" "Capacity (megawatts)","Value","Percent of State Total" "Total Net Summer Electricity Capacity",3623,100 "Total Net Summer Renewable Capacity",2223,61.3 " Geothermal","-","-" " Hydro Conventional",1594,44 "

  1. Categorical Exclusion Determinations: South Dakota | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Dakota Categorical Exclusion Determinations: South Dakota Location Categorical Exclusion Determinations issued for actions in South Dakota. DOCUMENTS AVAILABLE FOR DOWNLOAD June 11, 2016 CX-100626 Categorical Exclusion Determination Aluminum epilayers for controlled growth and processing of flexible III-V solar cells on low-cost substrates Award Number: DE-EE0007363 CX(s) Applied: A9, B3.6 Solar Energy Technologies Office Date: 03/31/2016 Location(s): SD Office(s): Golden Field Office May 2,

  2. Montana Natural Gas Processed in North Dakota (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    North Dakota (Million Cubic Feet) Montana Natural Gas Processed in North Dakota (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 176 865 1,460 1,613 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 08/31/2016 Next Release Date: 09/30/2016 Referring Pages: Natural Gas Processed Montana-North Dakota

  3. Montana Natural Gas Plant Liquids Production Extracted in North Dakota

    Gasoline and Diesel Fuel Update (EIA)

    (Million Cubic Feet) North Dakota (Million Cubic Feet) Montana Natural Gas Plant Liquids Production Extracted in North Dakota (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 303 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 08/31/2016 Next Release Date: 09/30/2016 Referring Pages: NGPL Production, Gaseous Equivalent Montana-North Dakota

  4. Catalytic gasification of graphite or carbon. Quarterly report, January 1, 1986-March 31, 1986

    SciTech Connect (OSTI)

    Heinemann, H.

    1986-03-01

    Steam gasification of five chars has been carried out in the presence of a mixture of potassium and nickel oxides as catalyst. The steady state rate of hydrogen production after 60 minutes at 620/sup 0/C is highest for a N. Dakota Husky lignite and is twice as high as the next char, Western Kentucky. The order is N. Dakota > W. Kentucky > Illinois number 6, low temp. > number 6, high temp. > Montana. All chars gasified at a rate at least one order of magnitude greater than graphite.

  5. Williams County, North Dakota: Energy Resources | Open Energy...

    Open Energy Info (EERE)

    Hide Map This article is a stub. You can help OpenEI by expanding it. Williams County is a county in North Dakota. Its FIPS County Code is 105. It is classified as...

  6. Nelson County, North Dakota: Energy Resources | Open Energy Informatio...

    Open Energy Info (EERE)

    Hide Map This article is a stub. You can help OpenEI by expanding it. Nelson County is a county in North Dakota. Its FIPS County Code is 063. It is classified as...

  7. Campbell County, South Dakota: Energy Resources | Open Energy...

    Open Energy Info (EERE)

    Hide Map This article is a stub. You can help OpenEI by expanding it. Campbell County is a county in South Dakota. Its FIPS County Code is 021. It is classified as...

  8. Douglas Electric Coop, Inc (South Dakota) | Open Energy Information

    Open Energy Info (EERE)

    Coop, Inc Place: South Dakota Phone Number: 541.673.6616 Website: douglaselectric.com Outage Hotline: 1.800.233.2733 Outage Map: ebill.douglaselectric.comwoVi References: EIA...

  9. Potter County, South Dakota: Energy Resources | Open Energy Informatio...

    Open Energy Info (EERE)

    Hide Map This article is a stub. You can help OpenEI by expanding it. Potter County is a county in South Dakota. Its FIPS County Code is 107. It is classified as...

  10. Dakota Electric Association- Commercial and Industrial Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Rebates are limited to 50% of the project cost up to a maximum of $100,000. Customers who wish to participate in this rebate program should call Dakota Electric Association before the new equipme...

  11. Brown County, South Dakota: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Hide Map This article is a stub. You can help OpenEI by expanding it. Brown County is a county in South Dakota. Its FIPS County Code is 013. It is classified as...

  12. Jackson County, South Dakota: Energy Resources | Open Energy...

    Open Energy Info (EERE)

    Hide Map This article is a stub. You can help OpenEI by expanding it. Jackson County is a county in South Dakota. Its FIPS County Code is 071. It is classified as...

  13. City of Colman, South Dakota (Utility Company) | Open Energy...

    Open Energy Info (EERE)

    index.asp?SEC Facebook: https:www.facebook.compagesColman-South-Dakota341612992034?refhl Outage Hotline: (605) 534-3611 References: EIA Form EIA-861 Final Data File for 2010...

  14. Dewey County, South Dakota: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Hide Map This article is a stub. You can help OpenEI by expanding it. Dewey County is a county in South Dakota. Its FIPS County Code is 041. It is classified as...

  15. City of Tyndall, South Dakota (Utility Company) | Open Energy...

    Open Energy Info (EERE)

    Place: South Dakota Phone Number: (605)-589-3481 Website: tyndallsd.comgovernment.html Outage Hotline: (605)-589-3481 References: EIA Form EIA-861 Final Data File for 2010 -...

  16. Pierce County, North Dakota: Energy Resources | Open Energy Informatio...

    Open Energy Info (EERE)

    Hide Map This article is a stub. You can help OpenEI by expanding it. Pierce County is a county in North Dakota. Its FIPS County Code is 069. It is classified as...

  17. sorbent-univerisity-north-dakota | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The University of North Dakota (UND) is scaling up and demonstrating a solid sorbent technology for carbon dioxide (CO2) capture and separation from coal combustion-derived flue ...

  18. Grand Forks County, North Dakota: Energy Resources | Open Energy...

    Open Energy Info (EERE)

    Dakota. Its FIPS County Code is 035. It is classified as ASHRAE 169-2006 Climate Zone Number 7 Climate Zone Subtype A. Registered Energy Companies in Grand Forks County, North...

  19. Perkins County, South Dakota: Energy Resources | Open Energy...

    Open Energy Info (EERE)

    Hide Map This article is a stub. You can help OpenEI by expanding it. Perkins County is a county in South Dakota. Its FIPS County Code is 105. It is classified as...

  20. Adams County, North Dakota: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Hide Map This article is a stub. You can help OpenEI by expanding it. Adams County is a county in North Dakota. Its FIPS County Code is 001. It is classified as...

  1. Stanley County, South Dakota: Energy Resources | Open Energy...

    Open Energy Info (EERE)

    Hide Map This article is a stub. You can help OpenEI by expanding it. Stanley County is a county in South Dakota. Its FIPS County Code is 117. It is classified as...

  2. Logan County, North Dakota: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Hide Map This article is a stub. You can help OpenEI by expanding it. Logan County is a county in North Dakota. Its FIPS County Code is 047. It is classified as...

  3. South Dakota Natural Gas Industrial Consumption (Million Cubic...

    U.S. Energy Information Administration (EIA) Indexed Site

    South Dakota Natural Gas Industrial Consumption (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 513 451 449 370 329 253 260 259 287 329 343 367 2002 ...

  4. North Dakota Natural Gas Number of Industrial Consumers (Number...

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Consumers (Number of Elements) North Dakota Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 ...

  5. North Dakota Natural Gas Number of Residential Consumers (Number...

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential Consumers (Number of Elements) North Dakota Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 ...

  6. South Dakota Wind Energy Association | Open Energy Information

    Open Energy Info (EERE)

    South Dakota Wind Energy Association Address: 300 East Capitol Ave. Place: Pierre, SD Zip: 57501 Phone Number: 605.716.2981 Website: www.sdwind.org Coordinates: 44.364176,...

  7. North Dakota Total Electric Power Industry Net Generation, by...

    U.S. Energy Information Administration (EIA) Indexed Site

    Dakota" "Energy Source",2006,2007,2008,2009,2010 "Fossil",28987,29283,29721,29712,28552 " Coal",28879,29164,29672,29607,28462 " Petroleum",42,51,49,45,38 " Natural ...

  8. South Dakota Total Electric Power Industry Net Generation, by...

    U.S. Energy Information Administration (EIA) Indexed Site

    Dakota" "Energy Source",2006,2007,2008,2009,2010 "Fossil",3586,3069,3912,3306,3439 " Coal",3316,2655,3660,3217,3298 " Petroleum",5,63,23,8,6 " Natural Gas",266,351,229,80,135 " ...

  9. Comments of Dakota Electric Association | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Dakota Electric Association Comments of Dakota Electric Association DEA has deployed a fully integrated IP network to 26 substation sites. An IP based network transports data information for Supervisory Control and Data Acquisition (SCADA) and Load Management systems. A private Wide Area Network (WAN) was implemented by DEA in 2001 due to lack of comprehensive coverage by major carriers. In addition to the WAN, DEA relies on commercial services to communicate with load management receivers via

  10. North Dakota - Seds - U.S. Energy Information Administration (EIA)

    U.S. Energy Information Administration (EIA) Indexed Site

    Dakota - Seds - U.S. Energy Information Administration (EIA) The page does not exist for . To view this page, please select a state: United States Alabama Alaska Arizona Arkansas California Colorado Connecticut Delaware District of Columbia Florida Georgia Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New Hampshire New Jersey New Mexico New York North Carolina North Dakota Ohio Oklahoma

  11. South Dakota - Seds - U.S. Energy Information Administration (EIA)

    U.S. Energy Information Administration (EIA) Indexed Site

    South Dakota - Seds - U.S. Energy Information Administration (EIA) The page does not exist for . To view this page, please select a state: United States Alabama Alaska Arizona Arkansas California Colorado Connecticut Delaware District of Columbia Florida Georgia Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New Hampshire New Jersey New Mexico New York North Carolina North Dakota Ohio

  12. South Dakota Natural Gas Processed (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Processed (Million Cubic Feet) South Dakota Natural Gas Processed (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 113 86 71 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/31/2016 Next Release Date: 9/30/2016 Referring Pages: Natural Gas Processed South Dakota Natural Gas Plant Processing Natural Gas Processed

  13. Search for: All records | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    ... (1) cements (1) co2 reservoirs (1) co2 thermodynamic properties (1) coal, lignite, and peat (1) coal, lignite, and peat carbon sequestration (1) cosub 2 flux (1) cosub 2 ...

  14. DAKOTA Design Analysis Kit for Optimization and Terascale

    Energy Science and Technology Software Center (OSTI)

    2010-02-24

    The DAKOTA (Design Analysis Kit for Optimization and Terascale Applications) toolkit provides a flexible and extensible interface between simulation codes (computational models) and iterative analysis methods. By employing object-oriented design to implement abstractions of the key components required for iterative systems analyses, the DAKOTA toolkit provides a flexible and extensible problem-solving environment for design and analysis of computational models on high performance computers.A user provides a set of DAKOTA commands in an input file andmore » launches DAKOTA. DAKOTA invokes instances of the computational models, collects their results, and performs systems analyses. DAKOTA contains algorithms for optimization with gradient and nongradient-based methods; uncertainty quantification with sampling, reliability, polynomial chaos, stochastic collocation, and epistemic methods; parameter estimation with nonlinear least squares methods; and sensitivity/variance analysis with design of experiments and parameter study methods. These capabilities may be used on their own or as components within advanced strategies such as hybrid optimization, surrogate-based optimization, mixed integer nonlinear programming, or optimization under uncertainty. Services for parallel computing, simulation interfacing, approximation modeling, fault tolerance, restart, and graphics are also included.« less

  15. City of McLaughlin, South Dakota (Utility Company) | Open Energy...

    Open Energy Info (EERE)

    McLaughlin, South Dakota (Utility Company) Jump to: navigation, search Name: City of McLaughlin Place: South Dakota Phone Number: (605) 823-4428 Outage Hotline: (605) 823-4428...

  16. Adams County, North Dakota ASHRAE 169-2006 Climate Zone | Open...

    Open Energy Info (EERE)

    Adams County, North Dakota ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Adams County, North Dakota ASHRAE Standard ASHRAE 169-2006 Climate...

  17. Lower Yellowstone R E A, Inc (North Dakota) | Open Energy Information

    Open Energy Info (EERE)

    Inc (North Dakota) Jump to: navigation, search Name: Lower Yellowstone R E A, Inc Place: North Dakota Phone Number: (406) 488-1602 Website: www.lyrec.com Facebook: https:...

  18. North Dakota Natural Gas Number of Gas and Gas Condensate Wells...

    U.S. Energy Information Administration (EIA) Indexed Site

    Gas and Gas Condensate Wells (Number of Elements) North Dakota Natural Gas Number of Gas ... Number of Producing Gas Wells Number of Producing Gas Wells (Summary) North Dakota Natural ...

  19. Progress in two major CCPI projects

    SciTech Connect (OSTI)

    2007-07-01

    Two projects under the US Department of Energy (DOE) sponsored Clean Coal Power initiative have made significant progress in demonstrating new technologies to remove mercury from coal and enhance use of low-Btu lignite coals while increasing energy efficiency. The Wisconsin Electricity Power Company is demonstrating the TOXECON{trademark} mercury control process at its Presque Isle Power Plant near Marquette, Michigan, while Great River Energy (GRE) is showing the viability of lignite fuel enhancement at its Coal Creek Station in Underwood, North Dakota. Both projects were awarded in 2004 under Round I of the Clean Coal Power Initiative. Elsewhere in the program, six projects are in various phases of planning or operation. Plans for a third round under the CCPI were announced on May 23, 2007. 2 figs.

  20. Economic evaluation of losses to electric power utilities caused by ash fouling. Final technical report, November 1, 1979-April 30, 1980

    SciTech Connect (OSTI)

    Burkhardt, F.R.; Persnger, M.M.

    1980-01-01

    Problems with convection ash fouling and wall slagging were considerable during our study. The Dakota lignites posed the greatest problems, particularly with fouling. The subbituminous coals had considerable problems, related mostly with wall slagging. The Texas lignites had few problems, and those were only associated with wall slagging. The generation losses were as follows: The Dakota lignite burning stations averaged an overall availability of 87.13%. Convection fouling outages were responsible for 57.75% of this outage time for a decrease in availability of 7.43%. Fouling was responsible for curtailment losses of 317,649 Mwh or 8.25% of the remaining available generation. Slagging was responsible for losses of 2732 megawatt hours or .07% of the remaining available generation. Total ash related losses amounted to 16.08% of the total available generation. The subbituminous burning stations averaged an overall availability of 78.36%. Total ash related losses amounted to 1.54% of the total available generation. The Texas lignite burning stations averaged an overall availability of 80.63%. No ash related outage losses occurred. Slagging curtailments accounted 0.08% of the total available generation. Costs due to ash fouling and slagging related curtailments are a tremendous sum. Seven power stations were studied for a six month period to assess costs. The total cost directly attributable to ash slagging and fouling condition was $20,638,113. Recommendations for reducing the problems involve soot blowers, control of furnace gas exit temperature, water blowers and more conservative boiler design.

  1. South Dakota Natural Gas Plant Fuel Consumption (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    South Dakota Natural Gas Plant Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/31/2016 Next Release Date: 9/30/2016 Referring Pages: Natural Gas Plant Fuel Consumption South Dakota Natural Gas Consumption by End Use Plant Fuel Consumption of Natural Gas

  2. EIS-0072: Great Plains Gasification Project, Mercer County, North Dakota

    Broader source: Energy.gov [DOE]

    The Office of Fossil Energy prepared this EIS to evaluate the impacts of a project to construct a 125 million cubic feet per day coal gasification facility located in Mercer County, North Dakota. The Office of Fossil Energy adopted three environmental impact evaluation documents prepared by other Federal agencies to develop this EIS.

  3. EA-1902: Northern Wind Project, Roberts County, South Dakota

    Broader source: Energy.gov [DOE]

    DOE’s Western Area Power Administration is preparing an EA that evaluates the potential environmental impacts of the proposed Northern Wind Project in Summit, Roberts County, South Dakota. Additional information is available on the project webpage, http://www.wapa.gov/ugp/Environment/NorthernWindFarm.htm.

  4. North Dakota: EERE-Funded Project Recycles Energy, Generates Electricity

    Broader source: Energy.gov [DOE]

    This SEP-funded project in Williston, North Dakota, places generators at oil production well sites to transform wellhead flare gas into high-quality, three-phase electricity,which is then sold to the local rural electric cooperatives. The modern, natural gas-fueled generators burn cleanly with ultra-low emissions ratings that exceed state and federal emissions standards.

  5. EA-1979: Summit Wind Farm; Summit, South Dakota

    Broader source: Energy.gov [DOE]

    Western Area Power Administration (Western) prepared an EA that analyzes the potential environmental impacts of the proposed Summit Wind Farm, a proposed 99-MW wind farm south of Summit, South Dakota. The proposed wind farm would interconnect to Western’s existing transmission line within the footprint of the wind farm. .

  6. North Dakota Company Wins Praise for Wind Projects | Department of Energy

    Energy Savers [EERE]

    North Dakota Company Wins Praise for Wind Projects North Dakota Company Wins Praise for Wind Projects March 12, 2010 - 4:48pm Addthis Construction teams set up a turbine foundation in Minot, N.D. | Photo courtesy of Basin Electric Power Cooperative Construction teams set up a turbine foundation in Minot, N.D. | Photo courtesy of Basin Electric Power Cooperative Stephen Graff Former Writer & editor for Energy Empowers, EERE Wind energy is taking off in the Dakotas, contributing hundreds of

  7. Microsoft PowerPoint - DAKOTA_Overview_Aug2010.ppt [Compatibility Mode]

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    DAKOTA Capability Overview p y CASL/VRI Workshop, August 26, 2010 Brian Adams, DAKOTA Project Lead Optimization and Uncertainty Quantification Optimization and Uncertainty Quantification * DAKOTA capabilities enabling V&V / UQ * Overview, key capabilities * Four categories of methods: SA, UQ, optimization, calibration Four categories of methods: SA, UQ, optimization, calibration * Advanced capabilities * Usability vision: JAGUAR GUI, library interface Sandia is a multiprogram laboratory

  8. EA-2016: Willow Creek Wind Farm; Butte County, South Dakota | Department of

    Energy Savers [EERE]

    Energy 2016: Willow Creek Wind Farm; Butte County, South Dakota EA-2016: Willow Creek Wind Farm; Butte County, South Dakota SUMMARY DOE's Western Area Power Administration is preparing an EA that analyzes the potential environmental impacts of the proposed Willow Creek Wind Energy Facility in Butte County, South Dakota. The EA reviews the potential environmental impacts of constructing, operating, and maintaining a 103-megawatt (MW) nameplate capacity wind power generating facility

  9. Energy Department and South Dakota Tribal Leaders Explore Ways to Lower Energy Costs

    Broader source: Energy.gov [DOE]

    Learn how the Energy Department is providing South Dakota tribes with resources and technical assistance to help lower their energy costs.

  10. North Dakota`s Dickinson Lodgepole discovery: A Preliminary exploration model

    SciTech Connect (OSTI)

    LeFever, J.A.; Halabura, S.P.; Martiniuk, C.D.; Fischer, D.W.

    1995-08-14

    Interest in the Mississippian Lodgepole formation of North Dakota has intensified since the successful completion of the Duncan Oil Inc. 1-11 Knopik flowing 2,707 b/d of oil and 1.55 MMcfd of gas 430 cu m of oil and 43,891 cu m of gas. The play began when Conoco drilled an in-field wildcat in an attempt to establish deeper production in Dickinson oil field. The discovery well, 74 Dickinson State, was completed in a clean lower Lodgepole limestone section that is thought to represent a Waulsortian mound. The most important questions asked concerning the Lodgepole play are whether or not it will step out of the Dickinson area, what are the factors that control the development of these mounds, what controlled the development of the reservoir and trap, and how it was charged with oil. Other than the reservoir section, the most significant feature observed from wireline logs of the area is the anomalously thick Bakken formation (Mississippian-Devonian). This observation is important to understanding the Lodgepole play and can be used to help explore for similar features elsewhere in the basin. The paper describes the regional setting, the Lodgepole stratigraphy, deposition, regional equivalents, and a salt collapse model that can readily explain the features observed at the Dickinson field.

  11. DAKOTA reliability methods applied to RAVEN/RELAP-7.

    SciTech Connect (OSTI)

    Swiler, Laura Painton; Mandelli, Diego; Rabiti, Cristian; Alfonsi, Andrea

    2013-09-01

    This report summarizes the result of a NEAMS project focused on the use of reliability methods within the RAVEN and RELAP-7 software framework for assessing failure probabilities as part of probabilistic risk assessment for nuclear power plants. RAVEN is a software tool under development at the Idaho National Laboratory that acts as the control logic driver and post-processing tool for the newly developed Thermal-Hydraulic code RELAP-7. Dakota is a software tool developed at Sandia National Laboratories containing optimization, sensitivity analysis, and uncertainty quantification algorithms. Reliability methods are algorithms which transform the uncertainty problem to an optimization problem to solve for the failure probability, given uncertainty on problem inputs and a failure threshold on an output response. The goal of this work is to demonstrate the use of reliability methods in Dakota with RAVEN/RELAP-7. These capabilities are demonstrated on a demonstration of a Station Blackout analysis of a simplified Pressurized Water Reactor (PWR).

  12. Experiences using DAKOTA stochastic expansion methods in computational simulations.

    SciTech Connect (OSTI)

    Templeton, Jeremy Alan; Ruthruff, Joseph R.

    2012-01-01

    Uncertainty quantification (UQ) methods bring rigorous statistical connections to the analysis of computational and experiment data, and provide a basis for probabilistically assessing margins associated with safety and reliability. The DAKOTA toolkit developed at Sandia National Laboratories implements a number of UQ methods, which are being increasingly adopted by modeling and simulation teams to facilitate these analyses. This report disseminates results as to the performance of DAKOTA's stochastic expansion methods for UQ on a representative application. Our results provide a number of insights that may be of interest to future users of these methods, including the behavior of the methods in estimating responses at varying probability levels, and the expansion levels for the methodologies that may be needed to achieve convergence.

  13. Standing Rock Sioux Tribe - Lakota/Dakota Nation

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Lakota/Dakota Nation  BACKGROUND INFORMATION ON STANDING ROCK RESERVATION  SITTING BULL COLLEGE WIND TURBINE  EECBG ENERGY EFFICIENCY & WIND TURBINE INSTALLATION AT SITTING BULL COLLEGE  WIND ASSESSMENT STUDY  ESTABLISHMENT OF RENEWABLE ENERGY & ENERGY DEVELOPMENT OFFICE (REEDO)  WIND FEASIBILITY STUDY  OCETI SAKOWIN POWER PROJECT  DEMD Sand & Gravel Study  OIl & GAS PREPARATION WORK GROUP  COMMUNITY SCALE PV SYSTEM INSTALLATION  ONE OF SEVEN

  14. South Dakota PrairieWinds Project Executive Summary Executive Summary

    Office of Environmental Management (EM)

    PrairieWinds Project Executive Summary Executive Summary This executive summary is included in the beginning of the Draft Environmental Impact Statement (DEIS) for the South Dakota PrairieWinds Project (Proposed Project) and is also intended to serve as a stand-alone document to provide a summary of the information contained within the full text version of the DEIS. For additional information on the topics contained within this summary please see the DEIS. S.1 INTRODUCTION Basin Electric Power

  15. High-pressure gasification of Montana subbituminous coal

    SciTech Connect (OSTI)

    Goyal, A.; Bryan, B.; Rehmat, A.

    1991-01-01

    A data base for the fluidized-bed gasification of different coals at elevated pressures has been developed at the Institute of Gas Technology (IGT) with different ranks of coal at pressures up to 450 psig and at temperatures dictated by the individual coals. Adequate data have been obtained to characterize the effect of pressure on the gasification of Montana Rosebud subbituminous coal and North Dakota lignite. The results obtained with Montana Rosebud subbituminous coal are presented here. This program was funded by the Gas Research Institute. 9 refs., 10 figs., 3 tabs.

  16. EIS-0461: Hyde County Wind Energy Center Project, Hyde and Buffalo Counties, South Dakota

    Broader source: Energy.gov [DOE]

    This EIS will evaluate the environmental impacts of interconnecting the proposed 150 megawatt Hyde County Wind Energy Center Project, in Hyde County, South Dakota, with DOE’s Western Area Power Administration’s existing Fort Thompson Substation in Buffalo County, South Dakota.

  17. User guidelines and best practices for CASL VUQ analysis using Dakota.

    SciTech Connect (OSTI)

    Adams, Brian M.; Swiler, Laura Painton; Hooper, Russell; Lewis, Allison; McMahan, Jerry A.,; Smith, Ralph C.; Williams, Brian J.

    2014-03-01

    Sandia's Dakota software (available at http://dakota.sandia.gov) supports science and engineering transformation through advanced exploration of simulations. Specifically it manages and analyzes ensembles of simulations to provide broader and deeper perspective for analysts and decision makers. This enables them to enhance understanding of risk, improve products, and assess simulation credibility. This manual offers Consortium for Advanced Simulation of Light Water Reactors (LWRs) (CASL) partners a guide to conducting Dakota-based VUQ studies for CASL problems. It motivates various classes of Dakota methods and includes examples of their use on representative application problems. On reading, a CASL analyst should understand why and how to apply Dakota to a simulation problem. This SAND report constitutes the product of CASL milestone L3:VUQ.V&V.P8.01 and is also being released as a CASL unlimited release report with number CASL-U-2014-0038-000.

  18. South Dakota Natural Gas Vented and Flared (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Feet) Vehicle Fuel Price (Dollars per Thousand Cubic Feet) South Dakota Natural Gas Vehicle Fuel Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 4.13 4.08 4.19 3.17 3.89 3.76 3.48 4.95 4.83 2000's 4.48 -- 4.14 -- -- -- -- -- -- -- 2010's -- -- -- - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/31/2016 Next Release Date:

  19. North Dakota Coalbed Methane Production (Billion Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Proved Reserves (Billion Cubic Feet) Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) North Dakota Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 201 1980's 239 253 248 257 267 331 293 276 266 313 1990's 334 243 266 274 275 263 255 257 261 250 2000's 264 270 315 316 320 343 357 417 484 1,070 2010's 1,717

  20. North Dakota Dry Natural Gas Production (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 0 0 0 0 0 2010's 0 0 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Coalbed Methane Proved Reserves as of Dec. 31 North Dakota Coalbed Methane Proved Reserves, Reserves Changes, and Production

    + Lease Condensate Proved

  1. North Dakota Natural Gas Plant Liquids, Reserves Based Production (Million

    Gasoline and Diesel Fuel Update (EIA)

    Barrels) Reserves Based Production (Million Barrels) North Dakota Natural Gas Plant Liquids, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 2 1980's 3 4 4 5 6 6 5 6 5 5 1990's 5 5 5 5 4 4 4 4 4 4 2000's 5 5 5 4 5 5 6 6 6 8 2010's 9 11 19 26 36 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date:

  2. sorbent-univerisity-north-dakota | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Evaluation of CO2 Capture from Existing Coal-Fired Plants by Hybrid Sorption Using Solid Sorbents (CACHYS(tm)) Project No.: DE-FE0007603 The University of North Dakota (UND) is scaling up and demonstrating a solid sorbent technology for carbon dioxide (CO2) capture and separation from coal combustion-derived flue gas. The technology - Capture from Existing Coal-Fired Plants by Hybrid Sorption Using Solid Sorbents Capture (CACHYS(tm)) - is a novel solid sorbent process based on the following

  3. EA-1966: Sunflower Wind Project, Hebron, North Dakota

    Broader source: Energy.gov [DOE]

    Western Area Power Administration (Western) prepared an EA to evaluate potential environmental impacts of interconnecting a proposed 80 MW generating facility south of Hebron in Morton and Stark Counties, North Dakota. The proposed wind generating facility of 30-50 wind turbines encompassed approximately 9,000 acres. Ancillary facilities included an underground collection line system, a project substation, one mile of new transmission line, a new switchyard facility on the existing Dickinson-Mandan 230 kV line owned and operated by Western, one permanent meteorological tower, new access roads, and an operations and maintenance building.

  4. South Dakota Natural Gas Gross Withdrawals from Coalbed Wells (Million

    U.S. Energy Information Administration (EIA) Indexed Site

    Cubic Feet) Coalbed Wells (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 0 0 0 0 2010's 0 0 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/31/2016 Next Release Date: 9/30/2016 Referring Pages: Natural Gas Gross Withdrawals from Coalbed Wells South Dakota Natural Gas Gross Withdrawals and Production Natural Gas Gross Withdrawals from

  5. South Dakota Natural Gas LNG Storage Additions (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Additions (Million Cubic Feet) South Dakota Natural Gas LNG Storage Additions (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 0 0 0 0 0 0 1990's 0 0 24 0 0 0 0 0 44 83 2000's 70 89 0 0 0 0 0 0 0 0 2010's 0 0 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/31/2016 Next Release Date: 9/30/2016 Referring Pages: Additions of Liquefied Natural Gas

  6. South Dakota Natural Gas LNG Storage Withdrawals (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Withdrawals (Million Cubic Feet) South Dakota Natural Gas LNG Storage Withdrawals (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 0 0 0 0 0 0 1990's 0 15 13 0 0 0 143 0 53 74 2000's 66 85 0 0 0 0 0 0 0 0 2010's 0 0 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/31/2016 Next Release Date: 9/30/2016 Referring Pages: Withdrawals of Liquefied

  7. South Dakota Natural Gas Lease Fuel Consumption (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Fuel Consumption (Million Cubic Feet) South Dakota Natural Gas Lease Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 61 76 93 70 125 123 112 1990's 158 393 451 452 437 404 424 911 848 864 2000's 1,003 538 495 553 562 545 508 573 545 568 2010's 562 594 866 916 827 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/31/2016 Next Release

  8. South Dakota Natural Gas Number of Industrial Consumers (Number of

    U.S. Energy Information Administration (EIA) Indexed Site

    Elements) Industrial Consumers (Number of Elements) South Dakota Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 261 267 270 1990's 275 283 319 355 381 396 444 481 464 445 2000's 416 402 533 526 475 542 528 548 598 598 2010's 580 556 574 566 575 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 08/31/2016

  9. South Dakota Natural Gas Plant Liquids Production (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Plant Liquids Production (Million Cubic Feet) South Dakota Natural Gas Plant Liquids Production (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 86 4 0 1980's 0 0 0 0 1990's 0 2000's 0 0 0 0 0 0 0 0 0 0 2010's 0 0 30 25 21 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/31/2016 Next Release Date: 9/30/2016 Referring Pages: NGPL Production, Gaseous

  10. South Dakota Natural Gas Vehicle Fuel Consumption (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Vehicle Fuel Consumption (Million Cubic Feet) South Dakota Natural Gas Vehicle Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 0 0 1990's 0 2 5 7 5 4 4 10 8 10 2000's 10 13 13 16 18 0 W 0 0 0 2010's 0 0 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/31/2016 Next Release Date: 9/30/2016 Referring Pages: Natural Gas Delivered

  11. Dakota uncertainty quantification methods applied to the NEK-5000 SAHEX model.

    SciTech Connect (OSTI)

    Weirs, V. Gregory

    2014-03-01

    This report summarizes the results of a NEAMS project focused on the use of uncertainty and sensitivity analysis methods within the NEK-5000 and Dakota software framework for assessing failure probabilities as part of probabilistic risk assessment. NEK-5000 is a software tool under development at Argonne National Laboratory to perform computational fluid dynamics calculations for applications such as thermohydraulics of nuclear reactor cores. Dakota is a software tool developed at Sandia National Laboratories containing optimization, sensitivity analysis, and uncertainty quantification algorithms. The goal of this work is to demonstrate the use of uncertainty quantification methods in Dakota with NEK-5000.

  12. EIS-0437: Interconnection of the Buffalo Ridge III Wind Project, Brookings and Deuel Counties, South Dakota

    Broader source: Energy.gov [DOE]

    This EIS evaluates the environmental impacts of a proposal to interconnect the Heartland Wind, LLC, proposed Buffalo Ridge III Wind Project in Brookings and Deuel Counties, South Dakota, to DOE’s Western Area Power Administration transmission system.

  13. South Dakota Geothermal Commercialization Project. Final report, July 1979-October 1985

    SciTech Connect (OSTI)

    Wegman, S.

    1985-01-01

    This report describes the activities of the South Dakota Energy Office in providing technical assistance, planning, and commercialization projects for geothermal energy. Projects included geothermal prospect identification, area development plans, and active demonstration/commercialization projects. (ACR)

  14. Energy Department selects Battelle team for a deep borehole field test in North Dakota

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy has selected a Battelle Memorial Institute-led team to drill a test borehole of over 16,000 feet into a crystalline basement rock formation near Rugby, North Dakota.

  15. North Dakota - State Energy Profile Overview - U.S. Energy Information...

    U.S. Energy Information Administration (EIA) Indexed Site

    Dakota - State Energy Profile Overview - U.S. Energy Information Administration (EIA) The page does not exist for . To view this page, please select a state: United States Alabama ...

  16. North Dakota State Briefing Book for low-level radioactive waste management

    SciTech Connect (OSTI)

    1981-10-01

    The North Dakota State Briefing Book is one of a series of state briefing books on low-level radioactive waste management practices. It has been prepared to assist state and federal agency officials in planning for safe low-level radioactive waste disposal. The report contains a profile of low-level radioactive waste generators in North Dakota. The profile is the result of a survey of NRC licensees in North Dakota. The briefing book also contains a comprehensive assessment of low-level radioactive waste management issues and concerns as defined by all major interested parties including industry, government, the media, and interest groups. The assessment was developed through personal communications with representatives of interested parties, and through a review of media sources. Lastly, the briefing book provides demographic and socioeconomic data and a discussion of relevant government agencies and activities, all of which may impact waste management practices in North Dakota.

  17. OSTIblog Articles in the South Dakota Topic | OSTI, US Dept of...

    Office of Scientific and Technical Information (OSTI)

    South Dakota Topic Mining for Gold, Neutrinos and the Neutrinoless Double Beta Decay by ... The site of the former Homestake Mine was once one of the largest and deepest gold mines ...

  18. EA-1896: Williston to Stateline Transmission Line Project, Mountrail Williams Electric Cooperative, Williston, North Dakota

    Broader source: Energy.gov [DOE]

    DOE’s Western Area Power Administration is preparing this EA to evaluate the environmental impacts of interconnecting the proposed Stateline I transmission line, in Williston, North Dakota, to Western’s transmission system.

  19. North Dakota, et al. v. EPA, Memorandum Opinion and Order Granting...

    Open Energy Info (EERE)

    North Dakota, et al. v. EPA, Memorandum Opinion and Order Granting Plaintiffs' Motion for Preliminary Injunction Jump to: navigation, search OpenEI Reference LibraryAdd to library...

  20. Task 4.0 -- Advanced fuel forms and co-products. Semi-Annual report, April 1--June 30, 1993

    SciTech Connect (OSTI)

    Anderson, C.M.; Musich, M.A.; Young, B.C.; Timpe, R.C.; Olson, E.S.; Sharma, R.K.

    1993-07-01

    Summarized below is the work carried out over a six-month period on the subtasks Beneficiation for Advanced Systems, Co-Products, and Low-Rank Coal Liquefaction. Hydrothermal drying (hot-water drying and saturated-steam drying) was determined to be an effective method of causing a permanent reduction in the equilibrium moisture of low-rank coals and removing sodium. The development of improved methods is continuing for assessing the propensity of coals to dust generation. Carbonic acid treatment of lignites and subbituminous coals reduced the sodium contents of these coals by 60 to 70 wt%. Float/sink washability testing of low-sulfur subbituminous coals produced ash reductions of 30 to 40 wt% at +95 wt% moisture and ash-free (maf) coal recovery. Ineffective agglomerants were induced to agglomerate low-rank coals by mixing with a polar oil or polar alcohol. Effective agglomeration promoters were crude phenol, m-cresol, cresylic acid, methanol, ethanol, propanol, and butanol. Three coals, a North Dakota Lignite, a North Dakota Leonardite, and an Alaskan subbituminous coal, were pyrolyzed. Proximate analysis showed that the subbituminous char was typically lower in volatiles than the lignite. Adsorption of sulfur dioxide by the chars were indistinguishable from one another. Coal can be effectively solubilized by treatment with CO reductant in an aqueous solvent (CO steam process). In this report, the catalytic hydrotreatment of the solubilized low-severity products from sodium aluminate-catalyzed and uncatalyzed CO/H{sub 2}O reactions of a Wyodak subbituminous coal are compared. Liquefaction with the Co-Me catalyst gave 68% conversion to heptane solubles for both the sodium aluminate and the uncatalyzed low-severity reaction intermediates.

  1. EERC pilot-scale CFBC evaluation facility Project CFB test results. Topical report, Task 7.30

    SciTech Connect (OSTI)

    Mann, M.D.; Hajicek, D.R.; Henderson, A.K.; Moe, T.A.

    1992-09-01

    Project CFB was initiated at the University of North Dakota Energy and Environmental Research Center (EERC) in May 1988. Specific goals of the project were to (1) construct a circulating fluidized-bed combustor (CFBC) facility representative of the major boiler vendors` designs with the capability of producing scalable data, (2) develop a database for use in making future evaluations of CFBC technology, and (3) provide a facility for evaluating fuels, free of vendor bias for use in the - energy industry. Five coals were test-burned in the 1-MWth unit: North Dakota and Asian lignites, a Wyoming subbituminous, and Colorado and Pennsylvania bituminous coats. A total of 54 steady-state test periods were conducted, with the key test parameters being the average combustor temperature, excess air, superficial gas velocity, calcium-to-sulfur molar ratio, and the primary air-to-secondary air split. The capture for a coal fired in a CFBC is primarily dependent upon the total alkali-to-sulfur ratio. The required alkali-to ratio for 90% sulfur retention ranged from 1.4 to 4.9, depending upon coal type. While an alkali-to-ratio of 4.9 was required to meet 90% sulfur retention for the Salt Creek coal versus 1.4 for the Asian lignite, the total amount of sorbent addition required is much less for the Salt Creek coal, 4.2 pound sorbent per million Btu coal input, versus 62 pound/million Btu for the Asian lignite. The bituminous coals tested show optimal capture at combustor temperatures of approximately 1550{degree}F, with low-rank coals having optimal sulfur capture approximately 100{degree}F lower.

  2. North Dakota Regional High School Science Bowl | U.S. DOE Office of Science

    Office of Science (SC) Website

    (SC) North Dakota Regional High School Science Bowl National Science Bowl® (NSB) NSB Home About Regional Competitions Rules, Forms, and Resources High School Regionals Middle School Regionals National Finals Volunteers Key Dates Frequently Asked Questions News Media Contact Us WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 E: Email Us High School Regionals North Dakota Regional High

  3. South Dakota Regional High School Science Bowl | U.S. DOE Office of Science

    Office of Science (SC) Website

    (SC) South Dakota Regional High School Science Bowl National Science Bowl® (NSB) NSB Home About Regional Competitions Rules, Forms, and Resources High School Regionals Middle School Regionals National Finals Volunteers Key Dates Frequently Asked Questions News Media Contact Us WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 E: Email Us High School Regionals South Dakota Regional High

  4. OSTIblog Articles in the South Dakota Topic | OSTI, US Dept of Energy

    Office of Scientific and Technical Information (OSTI)

    Office of Scientific and Technical Information South Dakota Topic Mining for Gold, Neutrinos and the Neutrinoless Double Beta Decay by Kathy Chambers 23 Sep, 2014 in Deep within the caverns of Lead, South Dakota is one of the nation's preeminent underground laboratories. The site of the former Homestake Mine was once one of the largest and deepest gold mines in North America. This famous mine was discovered during the 1876 Black Hills gold rush and maintained a rich and colorful mining

  5. EERE Success Story-North Dakota: EERE-Funded Project Recycles Energy,

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Generates Electricity | Department of Energy North Dakota: EERE-Funded Project Recycles Energy, Generates Electricity EERE Success Story-North Dakota: EERE-Funded Project Recycles Energy, Generates Electricity June 17, 2014 - 2:58pm Addthis Blaise Energy Inc. is using a Renewable Energy Market Development grant, funded by EERE, to demonstrate the commercial viability of its Flare Gas Micro-turbine. The microturbine pilot project places generators at oil production well sites to transform

  6. Analysis of Potential Benefits and Costs of Updating the Commercial Building Energy Code in North Dakota

    SciTech Connect (OSTI)

    Cort, Katherine A.; Belzer, David B.; Winiarski, David W.; Richman, Eric E.

    2004-04-30

    The state of North Dakota is considering updating its commercial building energy code. This report evaluates the potential costs and benefits to North Dakota residents from updating and requiring compliance with ASHRAE Standard 90.1-2001. Both qualitative and quantitative benefits and costs are assessed in the analysis. Energy and economic impacts are estimated using the Building Loads Analysis and System Thermodynamics (BLAST simulation combined with a Life-cycle Cost (LCC) approach to assess correspodning economic costs and benefits.

  7. Novel Sorbent-Based Process for High Temperature Trace Metal Removal

    SciTech Connect (OSTI)

    Gokhan Alptekin

    2008-09-30

    The objective of this project was to demonstrate the efficacy of a novel sorbent can effectively remove trace metal contaminants (Hg, As, Se and Cd) from actual coal-derived synthesis gas streams at high temperature (above the dew point of the gas). The performance of TDA's sorbent has been evaluated in several field demonstrations using synthesis gas generated by laboratory and pilot-scale coal gasifiers in a state-of-the-art test skid that houses the absorbent and all auxiliary equipment for monitoring and data logging of critical operating parameters. The test skid was originally designed to treat 10,000 SCFH gas at 250 psig and 350 C, however, because of the limited gas handling capabilities of the test sites, the capacity was downsized to 500 SCFH gas flow. As part of the test program, we carried out four demonstrations at two different sites using the synthesis gas generated by the gasification of various lignites and a bituminous coal. Two of these tests were conducted at the Power Systems Demonstration Facility (PSDF) in Wilsonville, Alabama; a Falkirk (North Dakota) lignite and a high sodium lignite (the PSDF operator Southern Company did not disclose the source of this lignite) were used as the feedstock. We also carried out two other demonstrations in collaboration with the University of North Dakota Energy Environmental Research Center (UNDEERC) using synthesis gas slipstreams generated by the gasification of Sufco (Utah) bituminous coal and Oak Hills (Texas) lignite. In the PSDF tests, we showed successful operation of the test system at the conditions of interest and showed the efficacy of sorbent in removing the mercury from synthesis gas. In Test Campaign No.1, TDA sorbent reduced Hg concentration of the synthesis gas to less than 5 {micro}g/m{sup 3} and achieved over 99% Hg removal efficiency for the entire test duration. Unfortunately, due to the relatively low concentration of the trace metals in the lignite feed and as a result of the

  8. North Dakota Natural Gas Plant Fuel Consumption (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Fuel Consumption (Million Cubic Feet) North Dakota Natural Gas Plant Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 2,086 2,165 2,216 1,957 2,737 2,112 2,005 1990's 4,835 4,777 4,753 4,734 5,059 4,542 4,283 4,420 4,471 4,553 2000's 4,738 3,874 5,141 4,548 4,602 4,816 4,364 4,323 4,283 4,521 2010's 4,294 5,473 5,887 6,707 5,736 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure

  9. North Dakota Natural Gas Gross Withdrawals from Coalbed Wells (Million

    Gasoline and Diesel Fuel Update (EIA)

    Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 1 0 0 2000's 0 3 1 0 3 1 2 2 1 1 2010's 2 0 1 337 40 3,671 Thousand Cubic Feet)

    (Price) All Countries (Dollars per Thousand Cubic Feet) North Dakota Natural Gas Exports (Price) All Countries (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's -- 2000's -- -- -- 5.15 -- -- -- -- -- -- 2010's -- -- -- -- 14.71 - = No Data

  10. North Dakota Natural Gas Plant Liquids Production Extracted in Illinois

    Gasoline and Diesel Fuel Update (EIA)

    Elements) Commercial Consumers (Number of Elements) North Dakota Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 11,905 12,104 12,454 1990's 12,742 12,082 12,353 12,650 12,944 13,399 13,789 14,099 14,422 15,050 2000's 15,531 15,740 16,093 16,202 16,443 16,518 16,848 17,013 17,284 17,632 2010's 17,823 18,421 19,089 19,855 20,687 - = No Data Reported; -- = Not Applicable; NA = Not Available; W =

  11. Small Wind Electric Systems: A South Dakota Consumer's Guide

    SciTech Connect (OSTI)

    Not Available

    2007-04-01

    Small Wind Electric Systems: A South Dakota Consumer's Guide provides consumers with information to help them determine whether a small wind electric system can provide all or a portion of the energy they need for their home or business based on their wind resource, energy needs, and economics. Topics include how to make a home more energy efficient, how to choose the correct turbine size, the parts of a wind electric system, how to determine whether enough wind resource exists, how to choose the best site for a turbine, how to connect a system to the utility grid, and whether it's possible to become independent of the utility grid using wind energy. In addition, the cover of the guide contains a list of contacts for more information.

  12. Small Wind Electric Systems: A North Dakota Consumer's Guide

    SciTech Connect (OSTI)

    Not Available

    2007-04-01

    Small Wind Electric Systems: A North Dakota Consumer's Guide provides consumers with information to help them determine whether a small wind electric system can provide all or a portion of the energy they need for their home or business based on their wind resource, energy needs, and economics. Topics include how to make a home more energy efficient, how to choose the correct turbine size, the parts of a wind electric system, how to determine whether enough wind resource exists, how to choose the best site for a turbine, how to connect a system to the utility grid, and whether it's possible to become independent of the utility grid using wind energy. In addition, the cover of the guide contains a list of contacts for more information.

  13. South Dakota Natural Gas Input Supplemental Fuels (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Input Supplemental Fuels (Million Cubic Feet) South Dakota Natural Gas Input Supplemental Fuels (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0 0 0 1970's 0 0 0 0 0 0 0 0 0 0 1980's 9 24 50 1 0 0 0 0 10 16 1990's 10 3 10 9 61 37 87 30 4 5 2000's 13 5 3 57 5 4 0 1 0 0 2010's 0 0 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 08/31/2016 Next

  14. South Dakota Natural Gas Number of Commercial Consumers (Number of

    U.S. Energy Information Administration (EIA) Indexed Site

    Elements) Commercial Consumers (Number of Elements) South Dakota Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 12,480 12,438 12,771 1990's 13,443 13,692 14,133 16,523 15,539 16,285 16,880 17,432 17,972 18,453 2000's 19,100 19,378 19,794 20,070 20,457 20,771 21,149 21,502 21,819 22,071 2010's 22,267 22,570 22,955 23,214 23,591 - = No Data Reported; -- = Not Applicable; NA = Not Available; W =

  15. South Dakota Natural Gas Number of Residential Consumers (Number of

    U.S. Energy Information Administration (EIA) Indexed Site

    Elements) Residential Consumers (Number of Elements) South Dakota Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 101,468 102,084 103,538 1990's 105,436 107,846 110,291 128,029 119,544 124,152 127,269 130,307 133,095 136,789 2000's 142,075 144,310 147,356 150,725 148,105 157,457 160,481 163,458 165,694 168,096 2010's 169,838 170,877 173,856 176,204 179,042 - = No Data Reported; -- = Not

  16. South Dakota Natural Gas Total Consumption (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Total Consumption (Million Cubic Feet) South Dakota Natural Gas Total Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 36,115 33,042 35,794 2000's 37,939 37,077 41,577 43,881 41,679 42,555 40,739 53,938 65,258 66,185 2010's 72,563 73,605 70,238 81,986 79,964 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/31/2016 Next Release Date:

  17. DENSE MEDIA CYCLONE OPTIMIZATION (Technical Report) | SciTech...

    Office of Scientific and Technical Information (OSTI)

    of Energy (US) Country of Publication: United States Language: English Subject: 32 ENERGY CONSERVATION, CONSUMPTION, AND UTILIZATION; 01 COAL, LIGNITE, AND PEAT;...

  18. An improved multiscale model for dilute turbulent gas particle...

    Office of Scientific and Technical Information (OSTI)

    as the scale-up in the design of circulating fluidized combustor and coal gasifications. ... Country of Publication: United States Language: English Subject: 01 COAL, LIGNITE, AND ...

  19. project information | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of Kinetics and Mathematical Models for High Pressure Gasification of Lignite-Switchgrass Blends Georgia Tech Research Corporation Coal & Coal-Biomass to Liquids FE0005476 ...

  20. Ammonia-Free NOx Control System (Technical Report) | SciTech...

    Office of Scientific and Technical Information (OSTI)

    Research Org: Foster Wheeler Dev Corp Sponsoring Org: USDOE Country of Publication: United States Language: English Subject: 01 COAL, LIGNITE, AND PEAT; AMMONIA; BOILERS; COAL; ...

  1. Gasification of chars produced under simulated in situ processing...

    Office of Scientific and Technical Information (OSTI)

    Country of Publication: United States Language: English Subject: 01 COAL, LIGNITE, AND PEAT; CHARS; GASIFICATION; COAL; PYROLYSIS; IN-SITU GASIFICATION; MATHEMATICAL MODELS; ...

  2. Technical and economic assessment on coal-fired power generation...

    Office of Scientific and Technical Information (OSTI)

    ... Subject: 01 COAL, LIGNITE, AND PEAT; 20 FOSSIL-FUELED POWER PLANTS; CHINA; FOSSIL-FUEL POWER PLANTS; SULFUR DIOXIDE; AIR POLLUTION CONTROL; FLUE GAS; DESULFURIZATION; WASTE ...

  3. The energy messiah (Journal Article) | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    Country of Publication: United States Language: English Subject: 01 COAL, LIGNITE, AND PEAT; COMBUSTION; BRIQUETS; COAL; AIR POLLUTION ABATEMENT; CHINA; CARBON DIOXIDE; SOLID ...

  4. Systems and economic analysis of microalgae ponds for conversion...

    Office of Scientific and Technical Information (OSTI)

    ... Subject: 01 COAL, LIGNITE, AND PEAT; 09 BIOMASS FUELS; BIOMASS; PRODUCTION; CARBON DIOXIDE; AIR POLLUTION CONTROL; METABOLISM; WASTE PRODUCT UTILIZATION; ALGAE; CULTIVATION; COAL; ...

  5. Conversion of Low-Rank Wyoming Coals into Gasoline by Direct...

    Office of Scientific and Technical Information (OSTI)

    of Low-Rank Wyoming Coals into Gasoline by Direct Liquefaction Polyakov, Oleg 01 COAL, LIGNITE, AND PEAT Under the cooperative agreement program of DOE and funding from...

  6. TITLE AUTHORS SUBJECT SUBJECT RELATED DESCRIPTION PUBLISHER AVAILABILI...

    Office of Scientific and Technical Information (OSTI)

    Long Term Environment and Economic Impacts of Coal Liquefaction in China Fletcher Jerald COAL LIGNITE AND PEAT The project currently is composed of six specific tasks three...

  7. TITLE AUTHORS SUBJECT SUBJECT RELATED DESCRIPTION PUBLISHER AVAILABILI...

    Office of Scientific and Technical Information (OSTI)

    Conversion of Low Rank Wyoming Coals into Gasoline by Direct Liquefaction Polyakov Oleg COAL LIGNITE AND PEAT Under the cooperative agreement program of DOE and funding from...

  8. "Title","Creator/Author","Publication Date","OSTI Identifier...

    Office of Scientific and Technical Information (OSTI)

    Report",,,,"Alstom Power Inc., Windsor, CT (United States)","USDOE","01 COAL, LIGNITE, AND PEAT; 54 ENVIRONMENTAL SCIENCES Clean Coal Technology; Coal-Fuels;...

  9. Recovery Act: Oxy-Combustion Technology Development for Industrial...

    Office of Scientific and Technical Information (OSTI)

    Testing in Alstom's 15 MWth Boiler Simulation Facility Levasseur, Armand 01 COAL, LIGNITE, AND PEAT; 54 ENVIRONMENTAL SCIENCES Clean Coal Technology; Coal-Fuels;...

  10. TITLE AUTHORS SUBJECT SUBJECT RELATED DESCRIPTION PUBLISHER AVAILABILI...

    Office of Scientific and Technical Information (OSTI)

    Assessment of the petroleum coal and geothermal resources of the economic community of West African states ECOWAS region Mattick R E comp PETROLEUM COAL LIGNITE AND PEAT GEOTHERMAL...

  11. TITLE AUTHORS SUBJECT SUBJECT RELATED DESCRIPTION PUBLISHER AVAILABILI...

    Office of Scientific and Technical Information (OSTI)

    CYCLONE OPTIMIZATON Gerald H Luttrell Chris J Barbee Peter J Bethell Chris J Wood COAL LIGNITE AND PEAT COAL DESIGN DIAMONDS DOLOMITE ECONOMICS EFFICIENCY EVALUATION...

  12. "Title","Creator/Author","Publication Date","OSTI Identifier...

    Office of Scientific and Technical Information (OSTI)

    "NT0000749",,"Technical Report",,,,"Southern Company Services Incorporated","USDOE","01 COAL, LIGNITE, AND PEAT; 20 FOSSIL-FUELED POWER PLANTS; 54 ENVIRONMENTAL SCIENCES",,"The...

  13. "Title","Creator/Author","Publication Date","OSTI Identifier...

    Office of Scientific and Technical Information (OSTI)

    Pittsburgh, PA (United States)","DOE; USDOE, Washington, DC (United States)","01 COAL, LIGNITE, AND PEAT; CHEMICAL REACTORS; COST; COMPARATIVE EVALUATIONS; METHANOL;...

  14. TITLE AUTHORS SUBJECT SUBJECT RELATED DESCRIPTION PUBLISHER AVAILABILI...

    Office of Scientific and Technical Information (OSTI)

    Capture and Storage Development Project at West Virginia University Fletcher Jerald COAL LIGNITE AND PEAT COAL ENVIRONMENTAL PROCESSES COAL ENVIRONMENTAL PROCESSES The original...

  15. Search for: All records | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    (1) carbon dioxide (1) carcinogens (1) chemical properties (1) civil engineering (1) coal, lignite, and peat (1) disinfectants (1) dose-response relationships (1) drinking water...

  16. TITLE AUTHORS SUBJECT SUBJECT RELATED DESCRIPTION PUBLISHER AVAILABILI...

    Office of Scientific and Technical Information (OSTI)

    of circulating fluidized beds Kinetic theory approach Gidaspow D Bezburuah R Ding J COAL LIGNITE AND PEAT ENGINEERING GENERAL AND MISCELLANEOUS MATHEMATICS COMPUTING AND...

  17. DENSE MEDIUM CYCLONE OPTIMIZATON Gerald H. Luttrell; Chris J...

    Office of Scientific and Technical Information (OSTI)

    OPTIMIZATON Gerald H. Luttrell; Chris J. Barbee; Peter J. Bethell; Chris J. Wood 01 COAL, LIGNITE, AND PEAT; COAL; DESIGN; DIAMONDS; DOLOMITE; ECONOMICS; EFFICIENCY;...

  18. Long Term Environment and Economic Impacts of Coal Liquefaction...

    Office of Scientific and Technical Information (OSTI)

    Long Term Environment and Economic Impacts of Coal Liquefaction in China Fletcher, Jerald 01 COAL, LIGNITE, AND PEAT The project currently is composed of six specific tasks - three...

  19. TITLE AUTHORS SUBJECT SUBJECT RELATED DESCRIPTION PUBLISHER AVAILABILI...

    Office of Scientific and Technical Information (OSTI)

    fixed bed reactor costs for indirect liquefaction applications Prakash A Bendale P G COAL LIGNITE AND PEAT CHEMICAL REACTORS COST COMPARATIVE EVALUATIONS METHANOL SYNTHESIS...

  20. "Title","Creator/Author","Publication Date","OSTI Identifier...

    Office of Scientific and Technical Information (OSTI)

    of Energy Efficiency and Renewable Energy Geothermal Tech Pgm)","Not Available","01 COAL, LIGNITE, AND PEAT; 15 GEOTHERMAL ENERGY; BENTONITE; BROWN COAL; DRILLING; DRILLING...

  1. "Title","Creator/Author","Publication Date","OSTI Identifier...

    Office of Scientific and Technical Information (OSTI)

    Report",,,,"Virginia Polytech Institute and State University","USDOE","01 COAL, LIGNITE, AND PEAT; COAL; DESIGN; DIAMONDS; DOLOMITE; ECONOMICS; EFFICIENCY;...

  2. U.S. China Carbon Capture and Storage Development Project at...

    Office of Scientific and Technical Information (OSTI)

    Capture and Storage Development Project at West Virginia University Fletcher, Jerald 01 COAL, LIGNITE, AND PEAT COAL - ENVIRONMENTAL PROCESSES COAL - ENVIRONMENTAL PROCESSES The...

  3. "Title","Creator/Author","Publication Date","OSTI Identifier...

    Office of Scientific and Technical Information (OSTI)

    University Research Corporation","USDOE; USDOE Office of Fossil Energy (FE), Clean Coal (FE-20)","01 COAL, LIGNITE, AND PEAT COAL - ENVIRONMENTAL PROCESSES",,"The original...

  4. TITLE AUTHORS SUBJECT SUBJECT RELATED DESCRIPTION PUBLISHER AVAILABILI...

    Office of Scientific and Technical Information (OSTI)

    Task Testing in Alstom s MW sub th sub Boiler Simulation Facility Levasseur Armand COAL LIGNITE AND PEAT ENVIRONMENTAL SCIENCES Clean Coal Technology Coal Fuels Industrial and...

  5. TITLE AUTHORS SUBJECT SUBJECT RELATED DESCRIPTION PUBLISHER AVAILABILI...

    Office of Scientific and Technical Information (OSTI)

    The National Carbon Capture Center at the Power Systems Development Facility None COAL LIGNITE AND PEAT FOSSIL FUELED POWER PLANTS ENVIRONMENTAL SCIENCES The Power Systems...

  6. liquefaction applications Prakash, A.; Bendale, P.G. 01 COAL...

    Office of Scientific and Technical Information (OSTI)

    reactor costs for indirect liquefaction applications Prakash, A.; Bendale, P.G. 01 COAL, LIGNITE, AND PEAT; CHEMICAL REACTORS; COST; COMPARATIVE EVALUATIONS; METHANOL;...

  7. "Title","Creator/Author","Publication Date","OSTI Identifier...

    Office of Scientific and Technical Information (OSTI)

    (United States); Western Research Institute, Laramie, WY (United States)","USDOE","01 COAL, LIGNITE, AND PEAT",,"Under the cooperative agreement program of DOE and funding from...

  8. Search for: All records | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    ... (2) alaska (1) arctic ocean (1) atmospheric precipitations (1) attenuation (1) climatic change (1) coal, lignite, and peat (1) data analysis (1) detection (1) general and ...

  9. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    1. Average Sales Price of Coal by State and Coal Rank, 2014" "(dollars per short ton)" "Coal-Producing State","Bituminous","Subbituminous","Lignite","Anthracite","Total" ...

  10. Bamboo: An Overlooked Biomass Resource? (Technical Report) |...

    Office of Scientific and Technical Information (OSTI)

    Country of Publication: United States Language: English Subject: 09 BIOMASS FUELS; 01 COAL, LIGNITE, AND PEAT; AGRICULTURAL WASTES; ASH CONTENT; BAMBOO; BIOMASS; ENERGY RECOVERY ...

  11. Rajendran, N. 36 MATERIALS SCIENCE; 20 FOSSIL-FUELED POWER PLANTS...

    Office of Scientific and Technical Information (OSTI)

    ACI Committee 229 Rajendran, N. 36 MATERIALS SCIENCE; 20 FOSSIL-FUELED POWER PLANTS; 01 COAL, LIGNITE, AND PEAT; FLY ASH; WASTE PRODUCT UTILIZATION; BACKFILLING; THERMAL...

  12. TITLE AUTHORS SUBJECT SUBJECT RELATED DESCRIPTION PUBLISHER AVAILABILI...

    Office of Scientific and Technical Information (OSTI)

    CLSM reported by ACI Committee Rajendran N MATERIALS SCIENCE FOSSIL FUELED POWER PLANTS COAL LIGNITE AND PEAT FLY ASH WASTE PRODUCT UTILIZATION BACKFILLING THERMAL INSULATION SHOCK...

  13. TITLE AUTHORS SUBJECT SUBJECT RELATED DESCRIPTION PUBLISHER AVAILABILI...

    Office of Scientific and Technical Information (OSTI)

    Molecular catalytic hydrogenation of aromatic hydrocarbons and hydrotreating of coal liquids Yang Shiyong Stock L M COAL LIGNITE AND PEAT CHEMISTRY COAL LIQUIDS HYDROGENATION...

  14. Molecular catalytic hydrogenation of aromatic hydrocarbons and

    Office of Scientific and Technical Information (OSTI)

    catalytic hydrogenation of aromatic hydrocarbons and hydrotreating of coal liquids. Yang, Shiyong; Stock, L.M. 01 COAL, LIGNITE, AND PEAT; 40 CHEMISTRY; COAL LIQUIDS;...

  15. Search for: All records | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    ... Filter Results Filter by Subject coal, lignite, and peat (2) hydrogen (2) fossil-fueled ... which would reduce the cost of capture. Hydrogen separation membranes from Commonwealth ...

  16. Search for: All records | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    ... Filter Results Filter by Subject coal, lignite, and peat (4) hydrogen (3) synthetic fuels ... - Development of a National Center for Hydrogen Technology Swanson, Michael ...

  17. Annual Energy Review 2006 - June 2007

    Gasoline and Diesel Fuel Update (EIA)

    culm, bitumi- nous gob, and lignite waste that are consumed by the electric power industrial sectors. Notes: * Production categories are estimated; other data are...

  18. Annual Energy Review 2007 - June 2008

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    culm, bitumi- nous gob, and lignite waste that are consumed by the electric power industrial sectors. Notes: * Production categories are estimated; other data are...

  19. DENSE MEDIA CYCLONE OPTIMIZATION (Technical Report) | SciTech...

    Office of Scientific and Technical Information (OSTI)

    United States Language: English Subject: 01 COAL, LIGNITE, AND PEAT; COAL; OPTIMIZATION; PARTICLE SIZE; PERFORMANCE; RESOLUTION; SEGREGATION Word Cloud More Like This Full...

  20. DENSE MEDIA CYCLONE OPTIMIZATION (Technical Report) | SciTech...

    Office of Scientific and Technical Information (OSTI)

    Language: English Subject: 01 COAL, LIGNITE, AND PEAT; COAL PREPARATION PLANTS; OPTIMIZATION; PERSONNEL; PLANNING; PROCUREMENT; VIRGINIA Word Cloud More Like This Full Text...

  1. Second Generation PFBC Systems R&D (Technical Report) | SciTech...

    Office of Scientific and Technical Information (OSTI)

    Subject: 01 COAL, LIGNITE, AND PEAT; FLUIDIZED BED BOILERS; BURNERS; GAS TURBINES; PILOT PLANTS; STEAM GENERATION; SULFUR; AIR POLLUTION CONTROL; DESIGN Word Cloud More Like This ...

  2. Second-Generation PFBC Systems R&D (Technical Report) | SciTech...

    Office of Scientific and Technical Information (OSTI)

    ... Subject: 01 COAL, LIGNITE, AND PEAT; FLUIDIZED BED BOILERS; BURNERS; EFFICIENCY; GAS TURBINES; PILOT PLANTS; STEAM GENERATION; SULFUR; AIR POLLUTION CONTROL; DESIGN Word Cloud More ...

  3. Search for: All records | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    ... (2) mathematical models (2) solubility (2) sorptive properties (2) adsorbents (1) air pollution control (1) coal, lignite, and peat (1) computerized simulation (1) Filter by ...

  4. Characterization of suspended flue gas particle systems with...

    Office of Scientific and Technical Information (OSTI)

    Subject: 01 COAL, LIGNITE, AND PEAT; CASCADE IMPACTORS; PERFORMANCE TESTING; FLUE GAS; PARTICLE SIZE; FLUIDIZED-BED COMBUSTION; AIR FILTERS; DISTRIBUTION; MEASURING INSTRUMENTS; ...

  5. Search for: All records | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    Filter Results Filter by Subject hydrogen (2) coal, lignite, and peat (1) Filter ... Long-Term Demonstration of Hydrogen Production from Coal at Elevated Temperatures Year 6 - ...

  6. Pore size distribution and accessible pore size distribution...

    Office of Scientific and Technical Information (OSTI)

    both rank and type (expressed as either hydrogen or vitrinite content) in the size range ... Subject: 01 COAL, LIGNITE, AND PEAT; 03 NATURAL GAS; 08 HYDROGEN; AMBIENT TEMPERATURE; ...

  7. Light Absorption Properties and Radiative Effects of Primary...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and their uncertainties for the bulk POA emitted from biomassbiofuel, lignite, propane, and oil combustion sources. In particular, we parametrize the kOA of biomass...

  8. Ammonia-Free NOx Control System (Technical Report) | SciTech...

    Office of Scientific and Technical Information (OSTI)

    Subject: 01 COAL, LIGNITE, AND PEAT; AMMONIA; BOILERS; COAL; COMBUSTION; COMBUSTORS; CONTROL SYSTEMS; DESIGN; FLUE GAS; POLLUTION CONTROL; NITROUS OXIDE Word Cloud More Like This ...

  9. Search for: All records | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    lignite, and peat (8) cocombustion (8) biomass fuels (7) classical and quantum ... Biomass-derived ethanol and bio-diesel (biofuels) can be two promising and predominant ...

  10. TITLE AUTHORS SUBJECT SUBJECT RELATED DESCRIPTION PUBLISHER AVAILABILI...

    Office of Scientific and Technical Information (OSTI)

    J R Oswald W J COAL LIGNITE AND PEAT BIOMASS FUELS BIOMASS PRODUCTION CARBON DIOXIDE AIR POLLUTION CONTROL METABOLISM WASTE PRODUCT UTILIZATION ALGAE CULTIVATION COAL ECONOMIC...

  11. Systems and economic analysis of microalgae ponds for conversion...

    Office of Scientific and Technical Information (OSTI)

    W.J. 01 COAL, LIGNITE, AND PEAT; 09 BIOMASS FUELS; BIOMASS; PRODUCTION; CARBON DIOXIDE; AIR POLLUTION CONTROL; METABOLISM; WASTE PRODUCT UTILIZATION; ALGAE; CULTIVATION; COAL;...

  12. "Title","Creator/Author","Publication Date","OSTI Identifier...

    Office of Scientific and Technical Information (OSTI)

    COAL, LIGNITE, AND PEAT; 09 BIOMASS FUELS; BIOMASS; PRODUCTION; CARBON DIOXIDE; AIR POLLUTION CONTROL; METABOLISM; WASTE PRODUCT UTILIZATION; ALGAE; CULTIVATION; COAL;...

  13. Task 6.5 - Gas Separation and Hot-Gas Cleanup (Technical Report...

    Office of Scientific and Technical Information (OSTI)

    ... Country of Publication: United States Language: English Subject: 30 DIRECT ENERGY CONVERSION; 01 COAL, LIGNITE, AND PEAT; 08 HYDROGEN; 36 MATERIALS SCIENCE; CERAMICS; COMBINED ...

  14. Search for: All records | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    Filter Results Filter by Subject coal, lignite, and peat (1) materials science (1) Filter ... Conversion of Low-Rank Wyoming Coals into Gasoline by Direct Liquefaction Polyakov, Oleg ...

  15. TITLE AUTHORS SUBJECT SUBJECT RELATED DESCRIPTION PUBLISHER AVAILABILI...

    Office of Scientific and Technical Information (OSTI)

    Philippines Asia Pacific energy series Country report Hoffman S ENERGY PLANNING POLICY AND ECONOMY PETROLEUM COAL LIGNITE AND PEAT PHILIPPINES ECONOMIC DEVELOPMENT ENERGY POLICY...

  16. "Title","Creator/Author","Publication Date","OSTI Identifier...

    Office of Scientific and Technical Information (OSTI)

    Center, Honolulu, HI (USA). Resource Systems Inst.","Not Available","29 ENERGY PLANNING, POLICY AND ECONOMY; 02 PETROLEUM; 01 COAL, LIGNITE, AND PEAT; PHILIPPINES; ECONOMIC...

  17. Sorbents for mercury removal from flue gas (Technical Report...

    Office of Scientific and Technical Information (OSTI)

    Sponsoring Org: USDOE Office of Fossil Energy Country of Publication: United States Language: English Subject: 01 COAL, LIGNITE, AND PEAT; Flue Gas; Flue Gas; Mercury; Mercury; ...

  18. DENSE MEDIUM CYCLONE OPTIMIZATON (Technical Report) | SciTech...

    Office of Scientific and Technical Information (OSTI)

    separators, can be found in most modern coal plants and in a variety of mineral plants ... Country of Publication: United States Language: English Subject: 01 COAL, LIGNITE, AND ...

  19. Search for: All records | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    ... (2) form factors (2) quantum chromodynamics (2) boson-exchange models (1) coal (1) coal, lignite, and peat (1) deep inelastic scattering (1) deposition (1) Filter by ...

  20. Search for: All records | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    ... (2) adsorption (1) alloys (1) basic biological sciences (1) climate change (1) coal, lignite, and peat (1) coatings (1) corrosion (1) deepwater viscosity standard (1) ...

  1. Ab initio thermodynamic approach to identify mixed solid sorbents...

    Office of Scientific and Technical Information (OSTI)

    Sponsoring Org: USDOE Office of Fossil Energy (FE) Country of Publication: United States Language: English Subject: 01 COAL, LIGNITE, AND PEAT; 03 NATURAL GAS; 37 INORGANIC, ...

  2. Recent Developments in Geothermal Drilling Fluids (Conference...

    Office of Scientific and Technical Information (OSTI)

    A high-temperature mud consisting primarily of sepiolite, bentonite, and brown coal has ... Country of Publication: United States Language: English Subject: 01 COAL, LIGNITE, AND ...

  3. Search for: All records | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    ... biological sciences (1) climate change (1) coal, lignite, and peat (1) coatings (1) ... membranes to H2S, a common contaminant in coal gasification streams, can cause membrane ...

  4. Sample Annual Report for SCC (Technical Report) | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    Language: English Subject: 01 COAL, LIGNITE, AND PEAT; 20 FOSSIL-FUELED POWER PLANTS; 36 MATERIALS SCIENCE transportation fuels, post-syngas production, coal-biomass to liquids, ...

  5. A Novel Theoretical Method to Search Good Candidates of Solid...

    Office of Scientific and Technical Information (OSTI)

    many technologies have been developing to separate and capture CO2 from coal gasifier. ... Country of Publication: United States Language: English Subject: 01 COAL, LIGNITE, AND ...

  6. Search for: All records | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    ... properties (3) absorption (2) alkaline earth metals (2) carbon capture (2) coal, lignite, and peat (2) density functional theory (2) energy accounting (2) engineering ...

  7. A Hybrid Gas Cleaning Process for Production of Ultraclean Syngas...

    Office of Scientific and Technical Information (OSTI)

    a wide variety of carbonaceous feedstocks (coal, petcoke, resids, biomass, etc.) into ... Country of Publication: United States Language: English Subject: 01 COAL, LIGNITE, AND ...

  8. Search for: All records | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    ... Filter Results Filter by Subject materials science (9) environmental sciences (8) inorganic, organic, physical, and analytical chemistry (6) coal, lignite, and peat (5) phonons (5) ...

  9. DOE/EIA-M059(2010)

    Gasoline and Diesel Fuel Update (EIA)

    lignite, and premium), sulfur content (compliancelow, medium, high), and mining type (deep, surface, above ground, underground). U.S. Energy Information Administration NEMS...

  10. APPENDIX B

    Gasoline and Diesel Fuel Update (EIA)

    lignite, and premium), sulfur content (compliancelow, medium, high), and mining type (deep, surface, above ground, underground). These curves are linked to 14 coal demand...

  11. PMMpart1.PDF

    Gasoline and Diesel Fuel Update (EIA)

    lignite, and premium), sulfur content (compliancelow, medium, high), and mining type (deep, surface, above ground, underground). These curves are linked to 14 coal demand...

  12. APPENDIX B

    Gasoline and Diesel Fuel Update (EIA)

    lignite, and premium), sulfur content (compliancelow, medium, high), and mining type (deep, surface, above ground, underground). U.S. Energy Information Administration NEMS...

  13. DOE/EIA-M059(2007)

    Gasoline and Diesel Fuel Update (EIA)

    lignite, and premium), sulfur content (compliancelow, medium, high), and mining type (deep, surface, above ground, underground). These curves are linked to 14 coal demand...

  14. Energy Information Administration NEMS Petroleum Market Model...

    Gasoline and Diesel Fuel Update (EIA)

    lignite, and premium), sulfur content (compliancelow, medium, high), and mining type (deep, surface, above ground, underground). These curves are linked to 14 coal demand...

  15. Potential trace element emissions from the gasification of Illinois...

    Office of Scientific and Technical Information (OSTI)

    Subject: 01 COAL, LIGNITE, AND PEAT; ASHES; CHEMICAL COMPOSITION; COAL; COAL GASIFICATION PLANTS; ENVIRONMENTAL EFFECTS; ABSORPTION SPECTROSCOPY; ACTIVATION ANALYSIS; AIR POLLUTION...

  16. Reducing the environmental impact on solid wastes from a fluidized...

    Office of Scientific and Technical Information (OSTI)

    Subject: 01 COAL, LIGNITE, AND PEAT; COAL; FLUIDIZED-BED COMBUSTION; WASTE MANAGEMENT; AIR POLLUTION ABATEMENT; ALUMINIUM OXIDES; CALCIUM OXIDES; CHEMICAL ACTIVATION; COMPARATIVE ...

  17. Search for: All records | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    ... fuels (4) combustion (3) combustors (3) -- coal, lignite, & peat-- combustion (2) air pollution control (2) chemical reactions (2) combined-cycle power plants (2) control (2) ...

  18. bectno-recyclone | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Final Reports Demonstration of Coal Reburning for Cyclone ... NOx Control from Lignite-Fired Cyclone Boilers Appendix 4: ... Appendix 5: Balance of Plant Details Appendix 6 Test ...

  19. Recovery Act: Oxy-Combustion Technology Development for Industrial...

    Office of Scientific and Technical Information (OSTI)

    15 MWth tangentially fired Boiler Simulation Facility ... are optimized for overall plant performance and cost; and, ... Language: English Subject: 01 COAL, LIGNITE, AND PEAT; 54 ...

  20. Hydrogen separation membranes annual report for FY 2008. (Technical...

    Office of Scientific and Technical Information (OSTI)

    Country of Publication: United States Language: ENGLISH Subject: 01 COAL, LIGNITE, AND PEAT; 02 PETROLEUM; 03 NATURAL GAS; 08 HYDROGEN; ALKENES; AMMONIA; CERAMICS; COAL ...

  1. Hydrogen separation membranes annual report for FY 2010. (Technical...

    Office of Scientific and Technical Information (OSTI)

    Country of Publication: United States Language: ENGLISH Subject: 01 COAL, LIGNITE, AND PEAT; 02 PETROLEUM; 03 NATURAL GAS; 08 HYDROGEN; ALKENES; AMMONIA; CERAMICS; COAL ...

  2. Hydrogen separation membranes annual report for FY 2009. (Technical...

    Office of Scientific and Technical Information (OSTI)

    Country of Publication: United States Language: ENGLISH Subject: 01 COAL, LIGNITE, AND PEAT; 02 PETROLEUM; 03 NATURAL GAS; 08 HYDROGEN; ALKENES; AMMONIA; CERAMICS; COAL ...

  3. COFIRING OF BIOMASS AT THE UNIVERSITY OF NORTH DAKOTA

    SciTech Connect (OSTI)

    Phillip N. Hutton

    2002-01-01

    A project funded by the U.S. Department of Energy's National Energy Technology Laboratory was completed by the Energy & Environmental Research Center to explore the potential for cofiring biomass at the University of North Dakota (UND). The results demonstrate how 25% sunflower hulls can be cofired with subbituminous coal and provide a 20% return on investment or 5-year payback for the modifications required to enable firing biomass. Significant outcomes of the study are as follows. A complete resource assessment presented all biomass options to UND within a 100-mile radius. Among the most promising options in order of preference were sunflower hulls, wood residues, and turkey manure. The firing of up to 28% sunflower hulls by weight was completed at the university's steam plant to identify plant modifications that would be necessary to enable cofiring sunflower hulls. The results indicated investments in a new equipment could be less than $408,711. Data collected from test burns, which were not optimized for biomass firing, resulted in a 15% reduction in sulfur and NO{sub x} emissions, no increase in opacity, and slightly better boiler efficiency. Fouling and clinkering potential were not evaluated; however, no noticeable detrimental effects occurred during testing. As a result of this study, UND has the potential to achieve a cost savings of approximately $100,000 per year from a $1,500,000 annual fossil fuel budget by implementing the cofiring of 25% sunflower hulls.

  4. North Dakota Natural Gas % of Total Residential Deliveries (Percent)

    Gasoline and Diesel Fuel Update (EIA)

    Cubic Foot) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 1,082 1,093 1,096 1,091 1,068 1,131 1,140 1,077 1,013 1,099 1,112 1,089 2014 1,087 1,084 1,074 1,077 1,083 1,079 1,078 1,106 1,123 1,100 1,105 1,096 2015 1,036 1,078 1,072 1,084 1,084 1,089 1,117 1,095 1,078 1,093 1,097 1,112 2016 1,095 1,095 1,099 1,108 1,091 1,070

    % of Total Residential Deliveries (Percent) North Dakota Natural Gas % of Total Residential Deliveries (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4

  5. South Dakota Natural Gas % of Total Residential Deliveries (Percent)

    Gasoline and Diesel Fuel Update (EIA)

    Cubic Foot) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 1,028 1,030 1,029 1,028 1,028 1,029 1,031 1,030 1,029 1,031 1,030 1,034 2014 1,034 1,034 1,035 1,036 1,039 1,041 1,039 1,045 1,045 1,049 1,048 1,048 2015 1,048 1,048 1,047 1,051 1,054 1,059 1,062 1,060 1,056 1,053 1,053 1,058 2016 1,060 1,058 1,053 1,052 1,054 1,058

    % of Total Residential Deliveries (Percent) South Dakota Natural Gas % of Total Residential Deliveries (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4

  6. Fact #933: July 11, 2016 Texas, North Dakota, and the Gulf of Mexico

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Account for Two-Thirds of U.S. Crude Oil Production | Department of Energy 3: July 11, 2016 Texas, North Dakota, and the Gulf of Mexico Account for Two-Thirds of U.S. Crude Oil Production Fact #933: July 11, 2016 Texas, North Dakota, and the Gulf of Mexico Account for Two-Thirds of U.S. Crude Oil Production SUBSCRIBE to the Fact of the Week In 2015, the United States produced a total of 9.4 million barrels of crude oil per day (mmbd) from state and federal offshore operations. Texas produced

  7. South Dakota Natural Gas LNG Storage Net Withdrawals (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Net Withdrawals (Million Cubic Feet) South Dakota Natural Gas LNG Storage Net Withdrawals (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 0 0 0 0 0 0 1990's 0 -15 11 0 0 0 -143 0 -9 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/31/2016 Next Release Date: 9/30/2016 Referring Pages: Net Withdrawals of Liquefied Natural Gas from Storage South Dakota

  8. EIS-0462: Crowned Ridge Wind Energy Center Project, Grant and Codington Counties, South Dakota

    Broader source: Energy.gov [DOE]

    This EIS analyzes DOE's decision to approve a grid interconnection request by NextEra Energy Resources for its proposed 150-megawatt (MW) Crowned Ridge Wind Energy Center Project with the Western Area Power Administration's existing Watertown Substation in Codington County, South Dakota.

  9. EECBG Success Story: Hybrid Solar-Wind Generates Savings for South Dakota City

    Broader source: Energy.gov [DOE]

    The small town of Colton, South Dakota is using an Energy Efficiency and Conservation Block Grant (EECBG) to implement a comprehensive Energy Independence Community (EIC) Initiative that will reduce the town's natural gas and electric bills by an estimated $2,700. Learn more.

  10. EIS-0134: Charlie Creek-Belfield Transmission Line Project, North Dakota

    Broader source: Energy.gov [DOE]

    The Western Area Power Administration developed this EIS to assess the environmental impact of constructing a high voltage transmission line between Charlie Creek and Belfield, North Dakota, and a new substation near Belfield to as a means of adding transmission capacity to the area.

  11. EIS-0435: Modification of the Groton Generation Station Interconnection Agreement, Brown County, South Dakota

    Broader source: Energy.gov [DOE]

    This EIS evaluates the environmental impacts of a proposal for DOE's Western Area Power Administration to modify its Large Generator Connection Agreement for the Groton Generation Station in Brown County, South Dakota. The modification would allow Basin Electric Power Cooperative, which operates the generation station, to produce power above the current operating limit of 50 average megawatts.

  12. Low-rank coal study : national needs for resource development. Volume 2. Resource characterization

    SciTech Connect (OSTI)

    Not Available

    1980-11-01

    Comprehensive data are presented on the quantity, quality, and distribution of low-rank coal (subbituminous and lignite) deposits in the United States. The major lignite-bearing areas are the Fort Union Region and the Gulf Lignite Region, with the predominant strippable reserves being in the states of North Dakota, Montana, and Texas. The largest subbituminous coal deposits are in the Powder River Region of Montana and Wyoming, The San Juan Basin of New Mexico, and in Northern Alaska. For each of the low-rank coal-bearing regions, descriptions are provided of the geology; strippable reserves; active and planned mines; classification of identified resources by depth, seam thickness, sulfur content, and ash content; overburden characteristics; aquifers; and coal properties and characteristics. Low-rank coals are distinguished from bituminous coals by unique chemical and physical properties that affect their behavior in extraction, utilization, or conversion processes. The most characteristic properties of the organic fraction of low-rank coals are the high inherent moisture and oxygen contents, and the correspondingly low heating value. Mineral matter (ash) contents and compositions of all coals are highly variable; however, low-rank coals tend to have a higher proportion of the alkali components CaO, MgO, and Na/sub 2/O. About 90% of the reserve base of US low-rank coal has less than one percent sulfur. Water resources in the major low-rank coal-bearing regions tend to have highly seasonal availabilities. Some areas appear to have ample water resources to support major new coal projects; in other areas such as Texas, water supplies may be constraining factor on development.

  13. Liquefaction/solubilization of low-rank Turkish coals by white-rot fungus (Phanerochaete chrysosporium)

    SciTech Connect (OSTI)

    Elbeyli, I.Y.; Palantoken, A.; Piskin, S.; Kuzu, H.; Peksel, A.

    2006-08-15

    Microbial coal liquefaction/solubilization of three low-rank Turkish coals (Bursa-Kestelek, Kutahya-Seyitomer and Mugla-Yatagan lignite) was attempted by using a white-rot fungus (Phanerochaete chrysosporium DSM No. 6909); chemical compositions of the products were investigated. The lignite samples were oxidized by nitric acid under moderate conditions and then oxidized samples were placed on the agar medium of Phanerochaete chrysosporium. FTIR spectra of raw lignites, oxidized lignites and liquid products were recorded, and the acetone-soluble fractions of these samples were identified by GC-MS technique. Results show that the fungus affects the nitro and carboxyl/carbonyl groups in oxidized lignite sample, the liquid products obtained by microbial effects are the mixture of water-soluble compounds, and show limited organic solubility.

  14. DAKOTA : a multilevel parallel object-oriented framework for design optimization, parameter estimation, uncertainty quantification, and sensitivity analysis.

    SciTech Connect (OSTI)

    Eldred, Michael Scott; Vigil, Dena M.; Dalbey, Keith R.; Bohnhoff, William J.; Adams, Brian M.; Swiler, Laura Painton; Lefantzi, Sophia; Hough, Patricia Diane; Eddy, John P.

    2011-12-01

    The DAKOTA (Design Analysis Kit for Optimization and Terascale Applications) toolkit provides a flexible and extensible interface between simulation codes and iterative analysis methods. DAKOTA contains algorithms for optimization with gradient and nongradient-based methods; uncertainty quantification with sampling, reliability, and stochastic expansion methods; parameter estimation with nonlinear least squares methods; and sensitivity/variance analysis with design of experiments and parameter study methods. These capabilities may be used on their own or as components within advanced strategies such as surrogate-based optimization, mixed integer nonlinear programming, or optimization under uncertainty. By employing object-oriented design to implement abstractions of the key components required for iterative systems analyses, the DAKOTA toolkit provides a flexible and extensible problem-solving environment for design and performance analysis of computational models on high performance computers. This report serves as a theoretical manual for selected algorithms implemented within the DAKOTA software. It is not intended as a comprehensive theoretical treatment, since a number of existing texts cover general optimization theory, statistical analysis, and other introductory topics. Rather, this manual is intended to summarize a set of DAKOTA-related research publications in the areas of surrogate-based optimization, uncertainty quantification, and optimization under uncertainty that provide the foundation for many of DAKOTA's iterative analysis capabilities.

  15. Fact #933: July 11, 2016 Texas, North Dakota, and the Gulf of Mexico Account for Two-Thirds of U.S. Crude Oil Production- Dataset

    Broader source: Energy.gov [DOE]

    Excel file and dataset for Texas, North Dakota, and the Gulf of Mexico Account for Two-Thirds of U.S. Crude Oil Production

  16. Chemical and physical characterization of western low-rank-coal waste materials

    SciTech Connect (OSTI)

    Thompson, Carol May

    1981-03-01

    Evaluations of disposal requirements for solid wastes from power stations burning low-rank western coals is the primary objective of this program. Solid wastes to be characterized include: fly ashes, sludges from wet scrubbers, solids from fluidized bed combustion (FBC) processes and solids from dry scrubbing systems. Fly ashes and sludges to be studied will be obtained primarily from systems using alkaline fly ashes as significant sources of alkalinity for sulfur dioxide removal. Fluidized bed combustion wastes will include those produced by burning North Dakota lignite and Texas lignite. Dry scrubbing wastes will include those from spray drying systems and dry injection systems. Spray dryer wastes will be from a system using sodium carbonate as the scrubbing reagent. Dry injection wastes will come from systems using nahcolite and trona as sorbents. Spray dryer wastes, dry injection wastes, and FBC wastes will be supplied by the Grand Forks Energy Technology Center. Sludges and other samples will be collected at power stations using fly ash to supply alkalinity to wet scrubbers for sulfur dioxide removal. Sludges will be subjected to commercial fixation processes. Coal, fly ashes, treated and untreated sludges, scrubber liquor, FBC wastes, and dry scrubbing wastes will be subjected to a variety of chemical and physical tests. Results of these tests will be used to evaluate disposal requirements for wastes frm the systems studied.

  17. Evaluation of hydrothermal resources of North Dakota. Phase III final technical report

    SciTech Connect (OSTI)

    Harris, K.L.; Howell, F.L.; Wartman, B.L.; Anderson, S.B.

    1982-08-01

    The hydrothermal resources of North Dakota were evaluated. This evaluation was based on existing data on file with the North Dakota Geological Survey (NDGS) and other state and federal agencies, and field and laboratory studies conducted. The principal sources of data used during the study were WELLFILE, the computer library of oil and gas well data developed during the Phase I study, and WATERCAT, a computer library system of water well data assembled during the Phase II study. A field survey of the shallow geothermal gradients present in selected groundwater observation holes was conducted. Laboratory determinations of the thermal conductivity of core samples were done to facilitate heat-flow calculations on those holes-of-convenience cased.

  18. EIS-0469: Wilton IV Wind Energy Center; Burleigh County, North Dakota

    Broader source: Energy.gov [DOE]

    Western Area Power Administration is evaluating the potential environmental impacts of interconnecting NextEra Energy Resources proposed Wilton IV Wind Energy Center Project, near Bismarck, North Dakota, to Western’s existing Wilton/Baldwin substation and allowing NextEra’s existing wind projects in this area to operate above 50 annual MW. Western is preparing a Supplemental Draft EIS to address substantial changes to the proposal, including 30 turbine locations and 5 alternate turbine locations in Crofte Township.

  19. Standing Rock Sioux Tribe - Lakota/Dakota Nation: Establishment of Renewable Energy & Energy Development Office

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    8540 fwasinzi@standingrock.org Establishment of Renewable Energy & Energy Development Office Standing Rock Sioux Tribe - Lakota/Dakota Nation OVERVIEW: BACKGROUND INFORMATION ON STANDING ROCK RESERVATION SITTING BULL COLLEGE WIND TURBINE EECBG ENERGY EFFICIENCY & WIND TURBINE INSTALLATION AT SITTING BULL COLLEGE WIND ASSESSMENT STUDY ESTABLISHMENT OF RENEWABLE ENERGY & ENERGY DEVELOPMENT OFFICE (REEDO) STANDING ROCK ONE OF SEVEN RESERVATIONS OF THE GREAT SIOUX NATION LOCATED IN

  20. CASL-U-2015-0087-000 Dakota, A Multilevel Parallel Object-Oriented Framework

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    87-000 Dakota, A Multilevel Parallel Object-Oriented Framework for Design Optimization, Parameter Estimation, Uncertainty Quantification, and Sensitivity Analysis: Version 6.1 User's Manual Brian M. Adams Mohamed S. Ebeida Michael S. Eldred John D. Jakeman Laura P. Swiler J. Adam Stephens Dena M. Vigil Timothy M. Wildey William J. Bohnhoff Keith R. Dalbey John P. Eddy Kenneth T. Hu Lara E. Bauman Patricia D. Hough Sandia National Laboratory November 7, 2014 SAND2014-4633 Unlimited Release July

  1. TMCC WIND RESOURCE ASSESSMENT

    SciTech Connect (OSTI)

    Turtle Mountain Community College

    2003-12-30

    North Dakota has an outstanding resource--providing more available wind for development than any other state. According to U.S. Department of Energy (DOE) studies, North Dakota alone has enough energy from good wind areas, those of wind power Class 4 and higher, to supply 36% of the 1990 electricity consumption of the entire lower 48 states. At present, no more than a handful of wind turbines in the 60- to 100-kilowatt (kW) range are operating in the state. The first two utility-scale turbines were installed in North Dakota as part of a green pricing program, one in early 2002 and the second in July 2002. Both turbines are 900-kW wind turbines. Two more wind turbines are scheduled for installation by another utility later in 2002. Several reasons are evident for the lack of wind development. One primary reason is that North Dakota has more lignite coal than any other state. A number of relatively new minemouth power plants are operating in the state, resulting in an abundance of low-cost electricity. In 1998, North Dakota generated approximately 8.2 million megawatt-hours (MWh) of electricity, largely from coal-fired plants. Sales to North Dakota consumers totaled only 4.5 million MWh. In addition, the average retail cost of electricity in North Dakota was 5.7 cents per kWh in 1998. As a result of this surplus and the relatively low retail cost of service, North Dakota is a net exporter of electricity, selling approximately 50% to 60% of the electricity produced in North Dakota to markets outside the state. Keeping in mind that new electrical generation will be considered an export commodity to be sold outside the state, the transmission grid that serves to export electricity from North Dakota is at or close to its ability to serve new capacity. The markets for these resources are outside the state, and transmission access to the markets is a necessary condition for any large project. At the present time, technical assessments of the transmission network indicate

  2. Evaluation of sulfur-reducing microorganisms for organic desulfurization. Final technical report, September 1, 1990--August 31, 1991

    SciTech Connect (OSTI)

    Miller, K.W.

    1991-12-31

    Because of substantial portion of the sulfur in Illinois coal is organic, microbial desulfurization of sulfidic and thiophenic functionalities could hold great potential for completing pyritic sulfur removal. We are testing the hypothesis that organic sulfur can be reductively removed as H{sub 2}S through the activities of anaerobic microorganisms. Our objectives for this year include the following: (1) To obtain cultures that will reductively desulfurize thiophenic model compounds. In addition to crude oil enrichments begun last year, we sampled municipal sewage sludge. (2) To continue to work toward optimizing the activity of the DBDS-reducing cultures obtained during the previous year. (3) To expand coal desulfurization work to include other coals including Illinois Basin Coal 101 and a North Dakota lignite, which might be more susceptible to the dibenzyldisulfide reducing cultures due to its lower rank. (4) To address the problem of sulfide sorption, by investigating the sorption capacity of coals in addition to Illinois Basin Coal 108.

  3. Evaluation of sulfur-reducing microorganisms for organic desulfurization. [Pyrococcus furiosus

    SciTech Connect (OSTI)

    Miller, K.W.

    1991-01-01

    Because of substantial portion of the sulfur in Illinois coal is organic, microbial desulfurization of sulfidic and thiophenic functionalities could hold great potential for completing pyritic sulfur removal. We are testing the hypothesis that organic sulfur can be reductively removed as H{sub 2}S through the activities of anaerobic microorganisms. Our objectives for this year include the following: (1) To obtain cultures that will reductively desulfurize thiophenic model compounds. In addition to crude oil enrichments begun last year, we sampled municipal sewage sludge. (2) To continue to work toward optimizing the activity of the DBDS-reducing cultures obtained during the previous year. (3) To expand coal desulfurization work to include other coals including Illinois Basin Coal 101 and a North Dakota lignite, which might be more susceptible to the dibenzyldisulfide reducing cultures due to its lower rank. (4) To address the problem of sulfide sorption, by investigating the sorption capacity of coals in addition to Illinois Basin Coal 108.

  4. Systematic parameter estimation and sensitivity analysis using a multidimensional PEMFC model coupled with DAKOTA.

    SciTech Connect (OSTI)

    Wang, Chao Yang; Luo, Gang; Jiang, Fangming; Carnes, Brian; Chen, Ken Shuang

    2010-05-01

    Current computational models for proton exchange membrane fuel cells (PEMFCs) include a large number of parameters such as boundary conditions, material properties, and numerous parameters used in sub-models for membrane transport, two-phase flow and electrochemistry. In order to successfully use a computational PEMFC model in design and optimization, it is important to identify critical parameters under a wide variety of operating conditions, such as relative humidity, current load, temperature, etc. Moreover, when experimental data is available in the form of polarization curves or local distribution of current and reactant/product species (e.g., O2, H2O concentrations), critical parameters can be estimated in order to enable the model to better fit the data. Sensitivity analysis and parameter estimation are typically performed using manual adjustment of parameters, which is also common in parameter studies. We present work to demonstrate a systematic approach based on using a widely available toolkit developed at Sandia called DAKOTA that supports many kinds of design studies, such as sensitivity analysis as well as optimization and uncertainty quantification. In the present work, we couple a multidimensional PEMFC model (which is being developed, tested and later validated in a joint effort by a team from Penn State Univ. and Sandia National Laboratories) with DAKOTA through the mapping of model parameters to system responses. Using this interface, we demonstrate the efficiency of performing simple parameter studies as well as identifying critical parameters using sensitivity analysis. Finally, we show examples of optimization and parameter estimation using the automated capability in DAKOTA.

  5. Geothermal heating project at St. Mary's Hospital, Pierre, South Dakota. Final report

    SciTech Connect (OSTI)

    Not Available

    1984-12-01

    St. Mary's Hospital, Pierre, South Dakota, with the assistance of the US Department of Energy, drilled a 2176 ft well into the Madison Aquifer ot secure 108/sup 0/F artesian flow water at 385 gpm (475 psig shut-in pressure). The objective was to provide heat for domestic hot water and to space heat 163,768 sq. ft. Cost savings for the first three years were significant and, with the exception of a shutdown to replace some corroded pipe, the system has operated reliably and continuously for the last four years.

  6. ,"North Dakota Natural Gas Gross Withdrawals and Production"

    U.S. Energy Information Administration (EIA) Indexed Site

    and Production" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","North Dakota Natural Gas Gross Withdrawals and Production",10,"Monthly","6/2016","01/15/1989" ,"Release Date:","08/31/2016" ,"Next Release Date:","09/30/2016" ,"Excel File

  7. ,"North Dakota Natural Gas Residential Consumption (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential Consumption (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","North Dakota Natural Gas Residential Consumption (MMcf)",1,"Monthly","6/2016" ,"Release Date:","8/31/2016" ,"Next Release Date:","9/30/2016" ,"Excel File

  8. ,"South Dakota Natural Gas Nonhydrocarbon Gases Removed (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Nonhydrocarbon Gases Removed (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","South Dakota Natural Gas Nonhydrocarbon Gases Removed (MMcf)",1,"Monthly","6/2016" ,"Release Date:","8/31/2016" ,"Next Release Date:","9/30/2016" ,"Excel File

  9. ,"South Dakota Natural Gas Residential Consumption (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential Consumption (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","South Dakota Natural Gas Residential Consumption (MMcf)",1,"Monthly","6/2016" ,"Release Date:","8/31/2016" ,"Next Release Date:","9/30/2016" ,"Excel File

  10. ,"South Dakota Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Wellhead Price (Dollars per Thousand Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","South Dakota Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)",1,"Annual",2010 ,"Release Date:","8/31/2016" ,"Next Release Date:","9/30/2016" ,"Excel File

  11. North Dakota Renewable Electric Power Industry Net Summer Capacity, by Energy Source

    U.S. Energy Information Administration (EIA) Indexed Site

    Dakota" "Energy Source",2006,2007,2008,2009,2010 "Geothermal","-","-","-","-","-" "Hydro Conventional",443,486,486,508,508 "Solar","-","-","-","-","-" "Wind",164,383,776,1202,1423 "Wood/Wood Waste","-","-","-","-","-" "MSW/Landfill

  12. North Dakota Total Electric Power Industry Net Summer Capacity, by Energy Source

    U.S. Energy Information Administration (EIA) Indexed Site

    Dakota" "Energy Source",2006,2007,2008,2009,2010 "Fossil",4222,4212,4212,4243,4247 " Coal",4127,4119,4119,4148,4153 " Petroleum",77,75,75,71,71 " Natural Gas",10,10,10,15,15 " Other Gases",8,8,8,8,8 "Nuclear","-","-","-","-","-" "Renewables",617,879,1272,1720,1941 "Pumped Storage","-","-","-","-","-"

  13. South Dakota Renewable Electric Power Industry Net Summer Capacity, by Energy Source

    U.S. Energy Information Administration (EIA) Indexed Site

    Dakota" "Energy Source",2006,2007,2008,2009,2010 "Geothermal","-","-","-","-","-" "Hydro Conventional",1516,1463,1463,1594,1594 "Solar","-","-","-","-","-" "Wind",43,43,193,320,629 "Wood/Wood Waste","-","-","-","-","-" "MSW/Landfill

  14. South Dakota Total Electric Power Industry Net Summer Capacity, by Energy Source

    U.S. Energy Information Administration (EIA) Indexed Site

    Dakota" "Energy Source",2006,2007,2008,2009,2010 "Fossil",1374,1364,1449,1448,1401 " Coal",492,492,497,497,497 " Petroleum",232,226,230,230,228 " Natural Gas",649,645,722,722,676 " Other Gases","-","-","-","-","-" "Nuclear","-","-","-","-","-" "Renewables",1559,1506,1656,1914,2223 "Pumped

  15. South Dakota Natural Gas Lease and Plant Fuel Consumption (Million Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    Feet) and Plant Fuel Consumption (Million Cubic Feet) South Dakota Natural Gas Lease and Plant Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0 0 0 1970's 0 0 0 0 0 0 0 0 0 0 1980's 0 0 63 61 76 93 70 125 123 112 1990's 158 393 451 452 437 404 424 911 848 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/31/2016 Next Release

  16. South Dakota Natural Gas Number of Gas and Gas Condensate Wells (Number of

    U.S. Energy Information Administration (EIA) Indexed Site

    Elements) Gas and Gas Condensate Wells (Number of Elements) South Dakota Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 53 1990's 54 54 38 47 55 56 61 60 59 60 2000's 71 68 69 61 61 69 69 71 71 89 2010's 102 100 95 65 68 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/31/2016 Next Release Date:

  17. South Dakota Natural Gas Vehicle Fuel Price (Dollars per Thousand Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    Feet) Vehicle Fuel Price (Dollars per Thousand Cubic Feet) South Dakota Natural Gas Vehicle Fuel Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 4.13 4.08 4.19 3.17 3.89 3.76 3.48 4.95 4.83 2000's 4.48 -- 4.14 -- -- -- -- -- -- -- 2010's -- -- -- - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/31/2016 Next Release Date:

  18. Macrofossils of Bakken Formation (Devonian and Mississippian), Williston Basin, North Dakota

    SciTech Connect (OSTI)

    Thrasher, L.; Holland, F.D. Jr.

    1983-08-01

    Results of this study of the macrofossils of the Bakken Formation in North Dakota have reinforced the suggestion, based on previous paleontological work in Saskatchewan, that the Bakken is of both Devonian and Mississippian age, rather than being entirely of Lower Mississippian age as originally considered. Increased drilling and coring activity in the North Dakota part of the Williston Basin has provided the opportunity for acquiring a larger fauna that was previously available. Based on lithologic character, the Bakken has been divided into three informal members. These consist of a calcareous siltstone unit between two lithologically similar units of carbonaceous shale. These black shales contain similar faunas distinct from that of the middle member. The black shales contain inarticulate brachiopods, conchostracans, and rare cephalopods and fish remains as well as more abundant conodonts, ostracods, and palynomorphs. The middle siltstone unit contains a more abundant and diverse fauna consisting of inarticulate and articulate brachiopods together with corals, gastropods, cephalopods, ostracods, echinoderm remains, and trace fossils. This is the first report of cephalopods, conchostracans, ostracods, corals, trace fossils, and some of the brachiopods in the Bakken, although all, except the gastropods, have been reported from stratigraphic equivalents (Exshaw Formation of south-central Montana, the Leatham Formation of northeastern Utah, and the middle member of the Pilot Shale in western Utah and eastern Nevada).

  19. Fracture-enhanced porosity and permeability trends in Bakken Formation, Williston basin, western North Dakota

    SciTech Connect (OSTI)

    Freisatz, W.B.

    1988-07-01

    Fractures play a critical role in oil production from the Bakken Formation (Devonian and Mississippian) in the North Dakota portion of the Williston basin. The Bakken Formation in the study area is known for its low matrix porosity and permeability, high organic content, thermal maturity, and relative lateral homogeneity. Core analysis has shown the effective porosity and permeability development within the Bakken Formation to be related primarily to fracturing. In theory, lineaments mapped on the surface reflect the geometry of basement blocks and the zones of fracturing propagated upward from them. Fracturing in the Williston basin is thought to have occurred along reactivated basement-block boundaries in response to varying tectonic stresses and crustal flexure throughout the Phanerozoic. Landsat-derived lineament maps were examined for the area between 47/degrees/ and 48/degrees/ north lat. and 103/degrees/ and 104/degrees/ west long. (northern Billings and Golden Valley Counties, and western McKenzie County, North Dakota) in an attempt to identify large-scale fracture trends. In the absence of major tectonic deformation in the craton, a subtle pattern of fracturing has propagated upward through the sedimentary cover and emerged as linear topographic features visible on these large-scale, remote-sensed images.

  20. JV 38-APPLICATION OF COFIRING AND COGENERATION FOR SOUTH DAKOTA SOYBEAN PROCESSORS

    SciTech Connect (OSTI)

    Darren D. Schmidt

    2002-11-01

    Cogeneration of heat and electricity is being considered by the South Dakota Soybean Processors for its facility in Volga, South Dakota, and a new facility to be located in Brewster, Minnesota. The Energy & Environmental Research Center has completed a feasibility study, with 40% funding provided from the U.S. Department of Energy's Jointly Sponsored Research Program to determine the potential application of firing biomass fuels combined with coal and comparative economics of natural gas-fired turbines. Various biomass fuels are available at each location. The most promising options based on availability are as follows. The economic impact of firing 25% biomass with coal can increase return on investment by 0.5 to 1.5 years when compared to firing natural gas. The results of the comparative economics suggest that a fluidized-bed cogeneration system will have the best economic performance. Installation for the Brewster site is recommended based on natural gas prices not dropping below a $4.00/MMBtu annual average delivered cost. Installation at the Volga site is only recommended if natural gas prices substantially increase to $5.00/MMBtu on average. A 1- to 2-year time frame will be needed for permitting and equipment procurement.