National Library of Energy BETA

Sample records for lighting technology center

  1. California Lighting Technology Center (University of California...

    Open Energy Info (EERE)

    gTechnologyCenter(UniversityofCalifornia,Davis)&oldid765625" Feedback Contact needs updating Image needs updating Reference needed Missing content Broken link Other...

  2. First National Technology Center

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    National Technology First National Technology Center Center Dennis Hughes FMA, RPA, P.E. Lead Property Manager, First National Buildings, Inc. 2 First National Technology First National Technology Center Center First National of Nebraska, Inc. - $12 Billion Assets - 5,400 employees - 6.6 million customers in 50 states - 60 banking locations Nebraska, Colorado, Kansas, South Dakota,Texas, Illinois - Largest in house merchant processor in United States Top ten VISA® and MasterCard® processor Top

  3. Energy Technology Engineering Center

    Broader source: Energy.gov [DOE]

    The Energy Technology Engineering Center (ETEC) is located within Area IV of the Santa Susana Field Laboratory. The ETEC occupies 90-acres within the 290 acre site. The Santa Susana Field...

  4. Solar Technology Center

    SciTech Connect (OSTI)

    Boehm, Bob

    2011-04-27

    The Department of Energy, Golden Field Office, awarded a grant to the UNLV Research Foundation (UNLVRF) on August 1, 2005 to develop a solar and renewable energy information center. The Solar Technology Center (STC) is to be developed in two phases, with Phase I consisting of all activities necessary to determine feasibility of the project, including design and engineering, identification of land access issues and permitting necessary to determine project viability without permanently disturbing the project site, and completion of a National Environmental Policy Act (NEPA) Environmental Assessment. Phase II is the installation of infrastructure and related structures, which leads to commencement of operations of the STC. The STC is located in the Boulder City designated 3,000-acre Eldorado Valley Energy Zone, approximately 15 miles southwest of downtown Boulder City and fronting on Eldorado Valley Drive. The 33-acre vacant parcel has been leased to the Nevada Test Site Development Corporation (NTSDC) by Boulder City to accommodate a planned facility that will be synergistic with present and planned energy projects in the Zone. The parcel will be developed by the UNLVRF. The NTSDC is the economic development arm of the UNLVRF. UNLVRF will be the entity responsible for overseeing the lease and the development project to assure compliance with the lease stipulations established by Boulder City. The STC will be operated and maintained by University of Nevada, Las Vegas (UNLV) and its Center for Energy Research (UNLV-CER). Land parcels in the Eldorado Valley Energy Zone near the 33-acre lease are committed to the construction and operation of an electrical grid connected solar energy production facility. Other projects supporting renewable and solar technologies have been developed within the energy zone, with several more developments in the horizon.

  5. Natural Gas Technologies Center | Open Energy Information

    Open Energy Info (EERE)

    Technologies Center Jump to: navigation, search Logo: Natural Gas Technologies Center Name: Natural Gas Technologies Center Address: 1350, Nobel, Boucherville, Quebec, Canada...

  6. LED Lighting in a Performing Arts Center

    SciTech Connect (OSTI)

    Wilkerson, A. M.; Abell, T. C.; T., E. Perrin

    2015-07-31

    GATEWAY demonstration report of LED wall washer retrofit lighting at the University of Maryland Clarice Smith Performing Arts Center.

  7. Categorical Exclusion Determinations: Energy Technology Engineering Center

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    | Department of Energy Energy Technology Engineering Center Categorical Exclusion Determinations: Energy Technology Engineering Center Categorical Exclusion Determinations issued by Energy Technology Engineering Center. DOCUMENTS AVAILABLE FOR DOWNLOAD No downloads found for this office.

  8. Universal Lighting Technologies | Open Energy Information

    Open Energy Info (EERE)

    Lighting Technologies Jump to: navigation, search Name: Universal Lighting Technologies Place: Nashville, Tennessee Zip: 37214-3683 Product: Universal Lighting Technologies...

  9. River Valley Technology Center | Open Energy Information

    Open Energy Info (EERE)

    Valley Technology Center Jump to: navigation, search Name: River Valley Technology Center Place: United States Sector: Services Product: General Financial & Legal Services (...

  10. Misgav Technology Center MTC | Open Energy Information

    Open Energy Info (EERE)

    Misgav Technology Center MTC Jump to: navigation, search Name: Misgav Technology Center (MTC) Place: Israel Sector: Services Product: General Financial & Legal Services (...

  11. Boston Technology Venture Center | Open Energy Information

    Open Energy Info (EERE)

    Technology Venture Center Jump to: navigation, search Name: Boston Technology Venture Center Place: United States Sector: Services Product: General Financial & Legal Services (...

  12. Washington Technology Center | Open Energy Information

    Open Energy Info (EERE)

    Logo: Washington Technology Center Name: Washington Technology Center Address: 300 Fluke Hall Place: Seattle, Washington Zip: 98195 Region: Pacific Northwest Area Website:...

  13. Illinois Sustainable Technologies Center | Open Energy Information

    Open Energy Info (EERE)

    to: navigation, search Name Illinois Sustainable Technologies Center Facility Illinois Sustainable Technologies Center Sector Wind energy Facility Type Commercial Scale Wind...

  14. Automation Alley Technology Center | Open Energy Information

    Open Energy Info (EERE)

    Alley Technology Center Jump to: navigation, search Name: Automation Alley Technology Center Place: United States Sector: Services Product: General Financial & Legal Services (...

  15. Common Industrial Lighting Upgrade Technologies | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Common Industrial Lighting Upgrade Technologies Common Industrial Lighting Upgrade Technologies This tip sheet provides information on two lighting types and upgrade options, ...

  16. Renewable Energy Technology Center | Open Energy Information

    Open Energy Info (EERE)

    Center Jump to: navigation, search Name: Renewable Energy Technology Center Place: Hamburg, Hamburg, Germany Zip: D-22335 Sector: Wind energy Product: RETC, a JV formed which will...

  17. Radioluminescent lighting technology

    SciTech Connect (OSTI)

    Not Available

    1990-01-01

    The glow-in-the-dark stereotype that characterizes the popular image of nuclear materials is not accidental. When the French scientist, Henri Becquerel, first discovered radioactivity in 1896, he was interested in luminescence. Radioluminescence, the production of light from a mixture of energetic and passive materials, is probably the oldest practical application of the unstable nucleus. Tritium-based radioluminescent lighting, in spite of the biologically favorable character of the gaseous tritium isotope, was included in the general tightening of environmental and safety regulations. Tritium light manufacturers would have to meet two fundamental conditions: (1) The benefit clearly outweighed the risk, to the extent that even the perceived risk of a skeptical public would be overcome. (2) The need was significant enough that the customer/user would be willing and able to afford the cost of regulation that was imposed both in the manufacture, use and eventual disposal of nuclear materials. In 1981, researchers at Oak Ridge National Laboratory were investigating larger radioluminescent applications using byproduct nuclear material such as krypton-85, as well as tritium. By 1982, it appeared that large source, (100 Curies or more) tritium gas tube, lights might be useful for marking runways and drop zones for military operations and perhaps even special civilian aviation applications. The successful development of this idea depended on making the light bright enough and demonstrating that large gas tube sources could be used and maintained safely in the environment. This successful DOE program is now in the process of being completed and closed-out. Working closely with the tritium light industry, State governments and other Federal agencies, the basic program goals have been achieved. This is a detailed report of what they have learned, proven, and discovered. 91 refs., 29 figs., 5 tabs. (JF)

  18. Greenhouse Gas Technology Center | Open Energy Information

    Open Energy Info (EERE)

    Name: Greenhouse Gas Technology Center Place: North Carolina Zip: 27709 Product: North Carolina-based partnership focused on environmental technology verification. References:...

  19. National Fuel Cell Technology Evaluation Center (NFCTEC)

    Broader source: Energy.gov [DOE]

    Presentation slides from the DOE Fuel Cell Technologies Office webinar "National Fuel Cell Technology Evaluation Center (NFCTEC)" held on March 11, 2014.

  20. Induction Lighting: An Old Lighting Technology Made New Again | Department

    Office of Environmental Management (EM)

    of Energy Induction Lighting: An Old Lighting Technology Made New Again Induction Lighting: An Old Lighting Technology Made New Again July 27, 2009 - 5:00am Addthis John Lippert Induction lighting is one of the best kept secrets in energy-efficient lighting. Simply stated, induction lighting is essentially a fluorescent light without electrodes or filaments, the items that frequently cause other bulbs to burn out quickly. Thus, many induction lighting units have an extremely long life of up

  1. Emerging Lighting Technology | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Emerging Lighting Technology Emerging Lighting Technology Presentation covers emergying light technologies and is given at the Spring 2011 Federal Utility Partnership Working Group (FUPWG) meeting. PDF icon fupwg_spring11_kinzey.pdf More Documents & Publications Solid-State Lighting Federal Technology Deployment Pilot: Exterior Solid State Lighting General Service LED Lamps

  2. Visible Light Solar Technologies | Open Energy Information

    Open Energy Info (EERE)

    Solar Technologies Place: Albuquerque, New York Zip: 87113 Product: New Mexico-based LED lighting fixture maker. References: Visible Light Solar Technologies1 This article is...

  3. Highland Community Technology Center | Department of Energy

    Office of Environmental Management (EM)

    Highland Community Technology Center Highland Community Technology Center Living in the Highland Addition community presents challenges and opportunities. The challenges come from the fact that residents must meet the demands of life without many of the basic needs of life that others take for granted. PDF icon Highland Community Technology Center (July 2000) More Documents & Publications Environmental Justice and Public Participation Through Technology- Building Community Capacity

  4. (Lighting and) Solid-State Lighting: Science, Technology, Economic...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lighting and) Solid-State Lighting: Science, Technology, Economic Perspectives - Sandia ... Energy Storage Components and Systems Batteries Electric Drive Systems Hydrogen Materials ...

  5. International Center for Environmental Technology Transfer |...

    Open Energy Info (EERE)

    Name: International Center for Environmental Technology Transfer Place: Yokkaichi, Japan Year Founded: 1990 Website: www.icett.or.jp Coordinates: 34.9651567, 136.6244847...

  6. Brazil Technology Center | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Biofuels Research at GE's Brazil Technology Center Click to email this to a friend (Opens in new window) Share on Facebook (Opens in new window) Click to share (Opens in new window) Click to share on LinkedIn (Opens in new window) Click to share on Tumblr (Opens in new window) Biofuels Research at GE's Brazil Technology Center Clayton Zabeu, leader of Brazil Technology Center's Biofuels Center of Excellence, talks about the main objectives of the research programs that will drive the development

  7. HEMISPHERIC CENTER FOR ENVIRONMENTAL TECHNOLOGY

    SciTech Connect (OSTI)

    M.A. Ebadian

    1999-04-30

    The final data package has been completed for the Mississippi State University, DIAL FTP Wall Depth Removal Characterization Technology. The package has been sent to DIAL for comments. Work is progressing on completing the transfer of glove boxes and tanks from Rocky Flats to FIU-HCET for the purpose of performing size reduction technology assessments. Vendors are being identified and security measures are being put in place to meet the High Risk Property criteria required by Rocky Flats. The FIU-HCET Technology Assessment Program has been included as one of 11 verification programs across the US and Canada described in the Interstate Technology Regulatory Cooperation (ITRC) document, ''Multi-state Evaluation of Elements Important to the Verification of Remediation Technologies'', dated January 1999. FIU-HCET will also participate in a panel discussion on technology verification programs at the International Environmental Technology Expo '99.

  8. National Fuel Cell Technology Evaluation Center (NFCTEC)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    National Fuel Cell Technology Evaluation Center (NFCTEC) Jim Alkire U.S. Department of Energy Fuel Cell Technologies Office Jennifer Kurtz & Sam Sprik National Renewable Energy Laboratory 2 Outline * About NFCTEC * Benefits to the Hydrogen & Fuel Cell Community * New Fuel Cell Cost/Price Aggregation Project About NFCTEC 4 National Fuel Cell Technology Evaluation Center a national resource for hydrogen and fuel cell stakeholders supported through Energy Efficiency and Renewable Energy's

  9. HEMISPHERIC CENTER FOR ENVIRONMENTAL TECHNOLOGY

    SciTech Connect (OSTI)

    M.A. Ebadian

    1999-01-31

    FIU-HCET participated in an ICT meeting at Mound during the second week of December and presented a brief videotape of the testing of the Robotic Climber technology. During this meeting, FIU-HCET proposed the TechXtract technology for possible testing at Mound and agreed to develop a five-page proposal for review by team members. FIU-HCET provided assistance to Bartlett Inc. and General Lasertronics Corporation in developing a proposal for a Program Opportunity Notice (PON). The proposal was submitted by these companies on January 5, 1999. The search for new equipment dismantlement technologies is continuing. The following vendors have responded to requests for demonstration: LUMONICS, Laser Solutions technology; CRYO-BEAM, Cryogenic cutting technology; Waterjet Technology Association, Waterjet Cutting technology; and DIAJET, Waterjet Cutting technology. Based on the tasks done in FY98, FIU-HCET is working closely with Numatec Hanford Corporation (NHC) and Pacific Northwest National Laboratory (PNNL) to revise the plan and scope of work of the pipeline plugging project in FY99, which involves activities of lab-scale flow loop experiments and a large-scale demonstration test bed.

  10. HEMISPHERIC CENTER FOR ENVIRONMENTAL TECHNOLOGY

    SciTech Connect (OSTI)

    M.A. Ebadian

    1999-07-31

    FIU-HCET personnel visited the Special Technologies Laboratory (STL) for discussions with the Principal Investigator (PI) of Laser Induced Fluorescence Imaging (LIFI) and for training in LIFI. Mr. Peter Gibbons, Tanks Retrieval Technology Integration Manager, visited FIU-HCET on July 20, 1999. Mr. Gibbons inspected the pipeline unplugging experimental facility at the HCET testing field. The detailed test bed construction, testing plan, and plugging material specifications were discussed.

  11. Oil & Gas Technology Center | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Global Research Oil & Gas Technology Center Click to email this to a friend (Opens in new window) Share on Facebook (Opens in new window) Click to share (Opens in new window) Click...

  12. Savannah River Technology Center monthly report

    SciTech Connect (OSTI)

    Not Available

    1992-10-01

    This document contains many small reports from personnel at the technology center under the umbrella topics of reactors, tritium, separations, environment, waste management, and general engineering. Progress and accomplishments are given.

  13. HEMISPHERIC CENTER FOR ENVIRONMENTAL TECHNOLOGY

    SciTech Connect (OSTI)

    M.A. Ebadian

    1999-06-30

    To enhance the measurement capability of EICs to alpha spectrometry, measurements at FIU-HCET were performed on different energy alpha sources, and response factors of ST electrets in 960-mL chamber were determined. Earlier, EIC was considered as only a charge-integrating device without spectrometric capability. This is a potentially significant development accomplished by FIU-HCET. It could appreciably lower the current cost of spectral characterization. FIU-HCET has been invited to participate in the Operating Engineers' National Hazmat program's assessment of the Mini Mitter, commercially known as the VitalSense{trademark} Telemetric Monitoring System. This evaluation is scheduled for early July 1999. Additional health and safety technology evaluations, in which FIU-HCET will also participate, are also scheduled for later in the summer. The Technology Information System (TIS), MISD, and DASD are now complete and accessible through the Internet website http://www.DandD.org/tis.

  14. Advanced Technology Center Overview 2015

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Lockheed Martin Corporation, All Rights Reserved © 2015 Lockheed Martin Corporation, All Rights Reserved DOE Nuclear Energy Enabling Technologies (NEET) AMM Direct Manufacturing of Nuclear Power Components September 29 th , 2015 Acknowledgment : "This mat erial is based upon work support ed by t he Depart ment of Energy , Office of Nuclear Energy, Idaho Operations, under Award Number DE- NE0000542" Disclaimer: "This report was prepared as an account of work sponsored by an

  15. LED Provides Effective and Efficient Parking Area Lighting at the NAVFAC Engineering Service Center

    SciTech Connect (OSTI)

    2010-08-12

    U.S. Department of Energy (DOE) Federal Energy Management Program (FEMP) emerging technology case study showcasing LED lighting to improve energy efficiency in parking areas at the NAVFAC Engineering Services Center.

  16. HEMISPHERIC CENTER FOR ENVIRONMENTAL TECHNOLOGY

    SciTech Connect (OSTI)

    M.A. Ebadian

    2000-01-31

    The Online Measurement of Decontamination project team received a commitment for a demonstration in May from the Sacramento (California) Municipal Utility District (SMUD) Rancho Seco site. Since this site is a member of the DOE Commercial Utilities Consortium, the demonstration will fulfill the DOE and commercial technology demonstration requirements. Discussion on deployment of the Integrated Vertical and Overhead Decontamination (IVOD) System at Rancho Seco was conducted; date for deployment tentatively scheduled for early spring. Based upon fictional requirements from SRS for a shiny monitor in a high-level waste tank, FIU-HCET developed and delivered a draft slurry monitor design and draft test plan. Experiments measuring slurry settling time for SRS slurry simulant at 10 wt% have been completed on FIU-HCET'S flow loop with SRS dip. The completed design package of the test mockup for evaluating Non-Intrusive Location of Buried Items Technologies was sent to Fluor Fernald and the Operating Engineers National Hazmat Program for review. Comments are due at the end of January. Preliminary experiments to determine size distribution of aerosols generated during metal cutting were performed. A 1/4-inch-thick iron plate was cut using a plasma arc torch, and the size distribution of airborne particles was measured using a multistage impactor. Per request of DOE-Ohio, FIU-HCET participated in a weeklong value engineering study for the characterization, decontamination, and dismantlement of their critical path facility.

  17. The Arizona Center for Algae Technology and Innovation | Open...

    Open Energy Info (EERE)

    Arizona Center for Algae Technology and Innovation Jump to: navigation, search Name: The Arizona Center for Algae Technology and Innovation Abbreviation: AzCATI Address: 7418 East...

  18. New Jersey Institute of Technology Center for Building Knowledge...

    Open Energy Info (EERE)

    Institute of Technology Center for Building Knowledge Jump to: navigation, search Name: New Jersey Institute of Technology Center for Building Knowledge Place: University Heights...

  19. Solar Technology Acceleration Center is Powering Up - News Releases...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Solar Technology Acceleration Center is Powering Up October 21, 2009 Members of the Solar Technology Acceleration Center (SolarTAC) and supporters convened in Aurora, Colo., today, ...

  20. Edison Material Technology Center EMTEC | Open Energy Information

    Open Energy Info (EERE)

    Material Technology Center EMTEC Jump to: navigation, search Name: Edison Material Technology Center (EMTEC) Place: Dayton, Ohio Zip: 45420 Product: String representation "A...

  1. EERC National Center for Hydrogen Technology | Open Energy Information

    Open Energy Info (EERE)

    National Center for Hydrogen Technology Jump to: navigation, search Name: EERC National Center for Hydrogen Technology Place: Grand Forks, North Dakota Zip: 58203 Sector: Hydro,...

  2. China Brazil Center on Climate Change and Energy Technology Innovation...

    Open Energy Info (EERE)

    Center on Climate Change and Energy Technology Innovation Jump to: navigation, search Name: China-Brazil Center on Climate Change and Energy Technology Innovation Place: Beijing...

  3. Comments from The Center for Democracy and Technology and the...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    from The Center for Democracy and Technology and the Electric Frontier Foundation: Implementing the Fips in the Smart Grid Comments from The Center for Democracy and Technology and ...

  4. CROSSCUTTING TECHNOLOGY DEVELOPMENT AT THE CENTER FOR ADVANCED SEPARATION TECHNOLOGIES

    SciTech Connect (OSTI)

    Christopher E. Hull

    2006-05-15

    This Technical Progress Report describes progress made on the twenty nine subprojects awarded in the second year of Cooperative Agreement DE-FC26-02NT41607: Crosscutting Technology Development at the Center for Advanced Separation Technologies. This work is summarized in the body of the main report: the individual sub-project Technical Progress Reports are attached as Appendices.

  5. Crosscutting Technology Development at the Center for Advanced Separation Technologies

    SciTech Connect (OSTI)

    Christopher E. Hull

    2006-09-30

    This Technical Progress Report describes progress made on the twenty nine subprojects awarded in the second year of Cooperative Agreement DE-FC26-02NT41607: Crosscutting Technology Development at the Center for Advanced Separation Technologies. This work is summarized in the body of the main report: the individual sub-project Technical Progress Reports are attached as Appendices.

  6. CROSSCUTTING TECHNOLOGY DEVELOPMENT AT THE CENTER FOR ADVANCED SEPARATION TECHNOLOGIES

    SciTech Connect (OSTI)

    Christopher E. Hull

    2005-11-04

    This Technical Progress Report describes progress made on the twenty nine subprojects awarded in the second year of Cooperative Agreement DE-FC26-02NT41607: Crosscutting Technology Development at the Center for Advanced Separation Technologies. This work is summarized in the body of the main report: the individual sub-project Technical Progress Reports are attached as Appendices.

  7. Alternative Fuels Data Center: Technology and Policy Bulletins

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Publications » Technology Bulletins Printable Version Share this resource Send a link to Alternative Fuels Data Center: Technology and Policy Bulletins to someone by E-mail Share Alternative Fuels Data Center: Technology and Policy Bulletins on Facebook Tweet about Alternative Fuels Data Center: Technology and Policy Bulletins on Twitter Bookmark Alternative Fuels Data Center: Technology and Policy Bulletins on Google Bookmark Alternative Fuels Data Center: Technology and Policy Bulletins on

  8. Common Industrial Lighting Upgrade Technologies

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    continued > HOW DOES IT WORK? Providing electricity to a tubular fluorescent lamp creates an electric current between electrodes placed at either end of the lamp. The current causes mercury atoms to ionize generating ultraviolet photons otherwise known as ultraviolet light invisible to the human eye. These photons react with a phosphor coating on the inside of the glass tube to create visible light photons. The phosphor materials can be altered to change the color of the visible light from

  9. Promising Technology: Wireless Lighting Occupancy Sensors

    Broader source: Energy.gov [DOE]

    Occupancy sensors and controls detect human presence, and modulate light settings accordingly. When there is no human presence detected, the system can dim or turn off lights. This technology ensures that lights are not used when there are no occupants present, which can lead to significant energy savings.

  10. Laser-Compton Light Source Technology

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Laser-Compton Light Source Technology Laser-Compton light source technology enables production of mono-energetic gamma rays and x rays. In the gamma-ray regime, these sources enable new, isotope-specific nuclear materials detection systems and photon-based study of nuclear processes (nuclear photonics). Laser-Compton light sources and related nuclear missions concepts were conceived of and realized over the course of the last decade at LLNL. Created by Compton scattering short-duration laser

  11. Grant Lights Up Indiana Tech Athletic Center

    Broader source: Energy.gov [DOE]

    The Indiana Institute of Technology, otherwise known as Indiana Tech, is committed to developing a fully sustainable campus.

  12. Forensic Technology Center of Excellence | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Forensic Technology Center of Excellence FWP/Project Description: This project is a collaborative effort between the National Forensic Science Technology Center; the National Center for Forensic Science; the National Clearinghouse for Science, Technology, and the Law; Marshall University's Forensic Science Center; and the Midwest Forensics Resource Center. The purpose of the project is to facilitate the adoption of new tools and technologies into practice by criminal justice agencies through

  13. National Wind Technology Center (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2011-12-01

    This overview fact sheet is one in a series of information fact sheets for the National Wind Technology Center (NWTC). Wind energy is one of the fastest growing electricity generation sources in the world. NREL's National Wind Technology Center (NWTC), the nation's premier wind energy technology research facility, fosters innovative wind energy technologies in land-based and offshore wind through its research and testing facilities and extends these capabilities to marine hydrokinetic water power. Research and testing conducted at the NWTC offers specialized facilities and personnel and provides technical support critical to the development of advanced wind energy systems. From the base of a system's tower to the tips of its blades, NREL researchers work side-by-side with wind industry partners to increase system reliability and reduce wind energy costs. The NWTC's centrally located research and test facilities at the foot of the Colorado Rockies experience diverse and robust wind patterns ideal for testing. The NWTC tests wind turbine components, complete wind energy systems and prototypes from 400 watts to multiple megawatts in power rating.

  14. CenterPoint Energy Advanced Residential Lighting Program

    Broader source: Energy.gov [DOE]

    CenterPoint Energy’s Advanced Lighting program provides a point-of-sale discount on the purchase of selected Energy Star® rated LED products, such as screw-in LEDs and LED fixtures, which are...

  15. EECBG Success Story: Cape Coral Youth Center Helps Light the...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Cape Coral Youth Center Helps Light the Way to Energy Savings EECBG Success Story: Cape ... of the City of Savannah, GA. EECBG Success Story: In Savannah, Georgia, Even the ...

  16. Advanced Technology Development Center ATDC | Open Energy Information

    Open Energy Info (EERE)

    Development Center ATDC Jump to: navigation, search Name: Advanced Technology Development Center (ATDC) Place: United States Sector: Services Product: General Financial & Legal...

  17. Construction progresses at GE's Oil & Gas Technology Center ...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Home > Impact > Construction progressing at GE's newest research center, the Oil & Gas Technology Center in Oklahoma City Click to email this to a friend (Opens in new window)...

  18. Alternative Fuels Data Center: Utah's Clean Fuels and Vehicle Technology

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Loan Program Utah's Clean Fuels and Vehicle Technology Loan Program to someone by E-mail Share Alternative Fuels Data Center: Utah's Clean Fuels and Vehicle Technology Loan Program on Facebook Tweet about Alternative Fuels Data Center: Utah's Clean Fuels and Vehicle Technology Loan Program on Twitter Bookmark Alternative Fuels Data Center: Utah's Clean Fuels and Vehicle Technology Loan Program on Google Bookmark Alternative Fuels Data Center: Utah's Clean Fuels and Vehicle Technology Loan

  19. (Lighting and) Solid-State Lighting: Science, Technology, Economic

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Perspectives Lighting and) Solid-State Lighting: Science, Technology, Economic Perspectives - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization

  20. National Wind Technology Center to Debut New Dynamometer (Fact...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    facility will be used to accelerate the development and deployment of next-generation wind energy technologies. This fall, the National Wind Technology Center (NWTC) at the...

  1. Georgia Tech Center for Innovative Fuel Cell and Battery Technologies...

    Open Energy Info (EERE)

    Innovative Fuel Cell and Battery Technologies Jump to: navigation, search Name: Georgia Tech Center for Innovative Fuel Cell and Battery Technologies Place: Georgia Product: The...

  2. Center for Study of Science, Technology and Policy of India ...

    Open Energy Info (EERE)

    Science, Technology and Policy of India Jump to: navigation, search Name: Center for Study of Science, Technology and Policy (CSTEP) Address: Raj Bhavan Circle, High Grounds,...

  3. Wind Technology Testing Center Acquires New Blade Fatigue Test...

    Energy Savers [EERE]

    Technology Testing Center Acquires New Blade Fatigue Test System Wind Technology Testing Center Acquires New Blade Fatigue Test System August 1, 2013 - 4:33pm Addthis This is an ...

  4. CENTER FOR ADVANCED SEPARATION TECHNOLOGY (CAST) PROGRAM

    SciTech Connect (OSTI)

    Yoon, Roe-Hoan; Hull, Christopher

    2014-09-30

    The U.S. is the largest producer of mining products in the world. In 2011, U.S. mining operations contributed a total of $232 billion to the nation’s GDP plus $138 billion in labor income. Of this the coal mining industry contributed a total of $97.5 billion to GDP plus $53 billion in labor income. Despite these contributions, the industry has not been well supported with research and development funds as compared to mining industries in other countries. To overcome this problem, the Center for Advanced Separation Technologies (CAST) was established to develop technologies that can be used by the U.S. mining industry to create new products, reduce production costs, and meet environmental regulations.

  5. Sandia Energy - Brief History of Artificial Lighting Technology

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    light. These difference, in turn, have consequences in each technology's fundamental efficiency. Fire: Chemically fueled blackbody emission The first lighting technology is fire....

  6. Advanced Nuclear Technology: Advanced Light Water Reactors Utility...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Nuclear Technology: Advanced Light Water Reactors Utility Requirements Document Small Modular Reactors Inclusion Summary Advanced Nuclear Technology: Advanced Light Water Reactors ...

  7. Progress on DOE Vehicle Technologies Light-Duty Diesel Engine...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    on DOE Vehicle Technologies Light-Duty Diesel Engine Efficiency and Emissions Milestones Progress on DOE Vehicle Technologies Light-Duty Diesel Engine Efficiency and Emissions ...

  8. Ricardo's ACTION Strategy: An Enabling Light Duty Diesel Technology...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Ricardo's ACTION Strategy: An Enabling Light Duty Diesel Technology for the US Market Ricardo's ACTION Strategy: An Enabling Light Duty Diesel Technology for the US Market 2005 ...

  9. Beijing Sanyuan Green Lighting Technology Development Co Ltd...

    Open Energy Info (EERE)

    Sanyuan Green Lighting Technology Development Co Ltd Jump to: navigation, search Name: Beijing Sanyuan Green Lighting Technology Development Co., Ltd Place: Beijing, Beijing...

  10. Federal Technology Deployment Pilot: Exterior Solid State Lighting...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technology Deployment Pilot: Exterior Solid State Lighting Federal Technology Deployment Pilot: Exterior Solid State Lighting Presentation-given at the Fall 2011 Federal Utility...

  11. Blade Testing at NREL's National Wind Technology Center (NWTC) (Presentation)

    SciTech Connect (OSTI)

    Hughes, S.

    2010-07-20

    Presentation of Blade Testing at NREL's National Wind Technology Center for the 2010 Sandia National Laboratories Blade Testing Workshop.

  12. DOE - Office of Legacy Management -- Pittsburgh Energy Technology Center -

    Office of Legacy Management (LM)

    029 Pittsburgh Energy Technology Center - 029 FUSRAP Considered Sites Site: Pittsburgh Energy Technology Center (029 ) Designated Name: Alternate Name: Location: Evaluation Year: Site Operations: Site Disposition: Radioactive Materials Handled: Primary Radioactive Materials Handled: Radiological Survey(s): Site Status: The former Pittsburgh Energy and Technology Center in Bruceton, Pennsylvania has merged with the Morgantown Energy Technology Center, and in December 1999 became the National

  13. Technology Development for Light Duty High Efficient Diesel Engines...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Light Duty High Efficient Diesel Engines Technology Development for Light Duty High Efficient Diesel Engines Improve the efficiency of diesel engines for light duty applications ...

  14. DOE - Office of Legacy Management -- Energy Technology Engineering Center -

    Office of Legacy Management (LM)

    044 Energy Technology Engineering Center - 044 FUSRAP Considered Sites Site: Energy Technology Engineering Center (044) Designated Name: Alternate Name: Location: Evaluation Year: Site Operations: Site Disposition: Radioactive Materials Handled: Primary Radioactive Materials Handled: Radiological Survey(s): Site Status: The Energy Technology Engineering Center (ETEC) is a former Department of Energy research laboratory that tested components and systems for liquid metal cooled nuclear

  15. National Wind Technology Center: A Proven and Valued Wind Industry Partner (Fact Sheet), National Wind Technology Center (NWTC)

    SciTech Connect (OSTI)

    Not Available

    2010-10-01

    The fact sheet gives an overview of the National Wind Technology Center (NWTC) at the National Renewable Energy Laboratory.

  16. Tiger Team Assessment, Energy Technology Engineering Center

    SciTech Connect (OSTI)

    Not Available

    1991-04-01

    The Office Special Projects within the Office of Environment, Safety, and Health (EH) has the responsibility to conduct Tiger Team Assessments for the Secretary of Energy. This report presents the assessment of the buildings, facilities, and activities under the DOE/Rockwell Contract No. DE-AM03-76SF00700 for the Energy Technology Engineering Center (ETEC) and of other DOE-owned buildings and facilities at the Santa Susana Field Laboratory (SSFL) site in southeastern Ventura County, California, not covered under Contract No. DE-AM03-76SF00700, but constructed over the years under various other contracts between DOE and Rockwell International. ETEC is an engineering development complex operated for DOE by the Rocketdyne Division of Rockwell International Corporation. ETEC is located within SSFL on land owned by Rockwell. The balance of the SSFL complex is owned and operated by Rocketdyne, with the exception of a 42-acre parcel owned by the National Aeronautics and Space Administration (NASA). The primary mission of ETEC is to provide engineering, testing, and development of components related to liquid metals technology and to conduct applied engineering development of emerging energy technologies.

  17. Crosscutting Technology Development at the Center for Advanced Separation Technologies

    SciTech Connect (OSTI)

    Christopher Hull

    2009-10-31

    The U.S. is the largest producer of mining products in the world. In 2003, U.S. mining operations produced $57 billion worth of raw materials that contributed a total of $564 billion to the nation's wealth. Despite these contributions, the mining industry has not been well supported with research and development funds as compared to mining industries in other countries. To overcome this problem, the Center for Advanced Separation Technologies (CAST) was established to develop technologies that can be used by the U.S. mining industry to create new products, reduce production costs, and meet environmental regulations. Originally set up by Virginia Tech and West Virginia University, this endeavor has been expanded into a seven-university consortium -- Virginia Tech, West Virginia University, University of Kentucky, University of Utah, Montana Tech, New Mexico Tech and University of Nevada, Reno - that is supported through U.S. DOE Cooperative Agreement No. DE-FC26-02NT41607: Crosscutting Technology Development at the Center for Advanced Separation Technologies. Much of the research to be conducted with Cooperative Agreement funds will be longer-term, high-risk, basic research and will be carried out in five broad areas: (1) Solid-solid separation; (2) Solid-liquid separation; (3) Chemical/biological extraction; (4) Modeling and control; and (5) Environmental control. Distribution of funds is handled via competitive solicitation of research proposals through Site Coordinators at the seven member universities. These were first reviewed and ranked by a group of technical reviewers (selected primarily from industry). Based on these reviews, and an assessment of overall program requirements, the CAST Technical Committee made an initial selection/ranking of proposals and forwarded these to the DOE/NETL Project Officer for final review and approval. The successful projects are listed by category, along with brief abstracts of their aims and objectives.

  18. 2012 Annual Planning Summary for EM Energy Technology Engineering Center |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy EM Energy Technology Engineering Center 2012 Annual Planning Summary for EM Energy Technology Engineering Center The ongoing and projected Environmental Assessments and Environmental Impact Statements for 2012 and 2013 within EM Energy Technology Engineering Center. PDF icon APS-2012-ETEC.pdf More Documents & Publications 2012 Annual Planning Summary for Fossil Energy, National Energy Technology Laboratory, RMOTC, and Strategic Petroleum Reserve Field Office 2012

  19. Great Lakes Bioenergy Research Center Technology Marketing Summaries -

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Innovation Portal Great Lakes Bioenergy Research Center Technology Marketing Summaries Here you'll find marketing summaries for technologies available for licensing from the Great Lakes Bioenergy Research Center (GLBRC). The summaries provide descriptions of the technologies including their benefits, applications and industries, and development stage. Great Lakes Bioenergy Research Center 43 Technology Marketing Summaries Category Title and Abstract Laboratories Date Biomass and

  20. Innovative Hydropower Technology Now Powering an Apple Data Center |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Hydropower Technology Now Powering an Apple Data Center Innovative Hydropower Technology Now Powering an Apple Data Center November 24, 2015 - 9:43am Addthis Innovative Hydropower Technology Now Powering an Apple Data Center Sarah Wagoner Sarah Wagoner Communications Specialist, Wind and Water Power Technologies Office Above: Completed Intake Structure. Water from the irrigation canal is divided in two as it approaches the plant. The existing drop structure (foreground)

  1. Alternative Fuels Data Center: Light-Duty Vehicle Idle Reduction Strategies

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Light-Duty Vehicle Idle Reduction Strategies to someone by E-mail Share Alternative Fuels Data Center: Light-Duty Vehicle Idle Reduction Strategies on Facebook Tweet about Alternative Fuels Data Center: Light-Duty Vehicle Idle Reduction Strategies on Twitter Bookmark Alternative Fuels Data Center: Light-Duty Vehicle Idle Reduction Strategies on Google Bookmark Alternative Fuels Data Center: Light-Duty Vehicle Idle Reduction Strategies on Delicious Rank Alternative Fuels Data Center: Light-Duty

  2. Solid-State Lighting | Center for Energy Efficient Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Solid-State Lighting Our goal is to advance the fundamental science and technology to both understand factors that limit efficiencies for light emitting diode-based lighting and to provide innovative and viable solutions to current roadblocks. We intend to achieve these goals by: (1) control and elucidation of the carrier loss mechanisms on nonpolar/semipolar GaN LEDs; (2) growth of defect-free bulk GaN crystals; and (3) full-spectrum lighting using an all semiconductor-based emission region;

  3. Center for Gas Separations Relevant to Clean Energy Technologies (CGS) |

    Office of Science (SC) Website

    U.S. DOE Office of Science (SC) Gas Separations Relevant to Clean Energy Technologies (CGS) Energy Frontier Research Centers (EFRCs) EFRCs Home Centers EFRC External Websites Research Science Highlights News & Events Publications History Contact BES Home Centers Center for Gas Separations Relevant to Clean Energy Technologies (CGS) Print Text Size: A A A FeedbackShare Page CGS Header Director Jeffrey Long Lead Institution University of California, Berkeley Year Established 2009 Mission

  4. 2013 Annual Planning Summary for the Energy Technology Engineering Center |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Energy Technology Engineering Center 2013 Annual Planning Summary for the Energy Technology Engineering Center The ongoing and projected Environmental Assessments and Environmental Impact Statements for 2013 and 2014 within the Energy Technology Engineering Center. PDF icon EM_ETEC_NEPA-APS-2013.pdf More Documents & Publications 2012 Annual Planning Summary for Bonneville Power Administration 2011 Annual Planning Summary for Environmental Management (EM)

  5. Management Technology for Energy Efficiency in Data Centers and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Telecommunications Facilities | Department of Energy Management Technology for Energy Efficiency in Data Centers and Telecommunications Facilities Management Technology for Energy Efficiency in Data Centers and Telecommunications Facilities Technologies Optimize System Cooling and Power Demand Globally, demand for computing and data interconnectivity continues to rise, which in turn has increased the size of the data center infrastructure and its energy consumption. Between 2005 and 2010,

  6. Final Technical Report - Center for Technology for Advanced Scientific

    Office of Scientific and Technical Information (OSTI)

    Component Software (TASCS) (Technical Report) | SciTech Connect Technical Report: Final Technical Report - Center for Technology for Advanced Scientific Component Software (TASCS) Citation Details In-Document Search Title: Final Technical Report - Center for Technology for Advanced Scientific Component Software (TASCS) This is a final technical report for the University of Maryland work in the SciDAC Center for Technology for Advanced Scientific Component Software (TASCS). The Maryland work

  7. New Wind Technology Resource Center Launched | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Wind Technology Resource Center Launched New Wind Technology Resource Center Launched May 18, 2015 - 2:33pm Addthis The U.S. Department of Energy (DOE) recently announced the launch of its new, user-friendly online information resources portal, the Wind Technology Resource Center (WTRC). The WTRC provides a central repository for research reports, publications, data sets, and online tools developed by DOE's national laboratories and facilities. These information resources detail

  8. Oak Ridge City Center Technology Demonstration Project | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Oak Ridge City Center Technology Demonstration Project Oak Ridge City Center Technology Demonstration Project Project objectives: To broaden market understanding of large-scale GSHP technology, and the design considerations that will impact front-end costs, ongoing maintenance costs, future energy savings, and system breakeven/lifecycle cost. PDF icon gshp_thrash_oak_ridge_city_center.pdf More Documents & Publications Ground Source Heat Pump System Data Analysis Analysis of

  9. NREL: Learning - National Wind Technology Center Video (Text Version)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    National Wind Technology Center Video (Text Version) This is the text version for the National Wind Technology Center video. The video opens with spinning blades of wind turbines and the National Renewable Energy Laboratory logo. It then cuts to images of windmills turning on farms. The video cuts in between shots of wind turbines and face-to-face interviews of scientists from NREL's National Wind Technology Center. (Voiceover) It is a pure, plentiful natural resource. Jim Johnson, Senior

  10. Alternative Fuels Data Center: Alternative Fuel and Advanced Technology

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Vehicles Aid in Emergency Recovery Efforts Alternative Fuel and Advanced Technology Vehicles Aid in Emergency Recovery Efforts to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel and Advanced Technology Vehicles Aid in Emergency Recovery Efforts on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel and Advanced Technology Vehicles Aid in Emergency Recovery Efforts on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel and Advanced

  11. Brief History of Artificial Lighting Technology

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Artificial Lighting Technology - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs

  12. MIT- Deshpande Center for Technological Innovation | Open Energy...

    Open Energy Info (EERE)

    Deshpande Center for Technological Innovation Address: 77 Massachusetts Avenue Place: Cambridge, Massachusetts Zip: 02139 Region: Greater Boston Area Website: web.mit.edu...

  13. Savannah River Technology Center monthly report, January 1994

    SciTech Connect (OSTI)

    Not Available

    1994-01-01

    This is the monthly progress report for the Savannah River Technology Center, which covers the following areas of interest, Tritium, Separation processes, Environmental Issues, and Waste Management.

  14. UC Center for Information Technology Research in the Interest...

    Open Energy Info (EERE)

    Center for Information Technology Research in the Interest of Society (CITRIS) Place: Berkeley, California Zip: 94720 Region: Bay Area Website: www.citris-uc.org Coordinates:...

  15. Am Shav Technological Applied Development Center | Open Energy...

    Open Energy Info (EERE)

    Technological Applied Development Center Place: Israel Sector: Services Product: General Financial & Legal Services ( Private family-controlled ) References: Am-Shav...

  16. Incubator Center of Technology Businesses CIETEC | Open Energy...

    Open Energy Info (EERE)

    Center of Technology Businesses (CIETEC) Place: Brazil Sector: Services Product: General Financial & Legal Services ( Charity Non-profit Association ) References: Incubator...

  17. Center for Advanced Separation Technology (Technical Report)...

    Office of Scientific and Technical Information (OSTI)

    information resources in energy science and technology. ... new products, reduce production costs, and meet ... Advanced Pre-Combustion Clean Coal Technologies and ...

  18. Chapter 4: Advancing Clean Electric Power Technologies | Light...

    Energy Savers [EERE]

    Light Water Reactors Chapter 4: Technology Assessments Past, Present, and Future of the ... peacetime uses came online in 1957. Light water reactors (LWRs) are now a mature ...

  19. Solid State Lighting LED Core Technology R&D Roundtable

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The document should be referenced as: DOE SSL Program, "Solid State Lighting LED Core Technology R&D Roundtable," November 2015. Authors Monica Hansen LED Lighting Advisors Nnamnor ...

  20. Outdoor Solid-State Lighting Technology Deployment | Department of Energy

    Energy Savers [EERE]

    Products & Technologies » Technology Deployment » Outdoor Solid-State Lighting Technology Deployment Outdoor Solid-State Lighting Technology Deployment Solid-state lighting (SSL) technology has the potential to reduce U.S. lighting energy usage by nearly one half and contribute significantly to our nation's climate change solutions. The Federal Energy Management Program (FEMP) Outdoor SSL Initiative offers a unique opportunity for the Federal sector to lead large-scale imple-mentation

  1. Sustainable LED Fluorescent Light Replacement Technology

    SciTech Connect (OSTI)

    2011-06-30

    Ilumisys and the National Center for Manufacturing Sciences (NCMS) partnered on a three-year project awarded by the United States (U.S.) Department of Energy (DOE), to quantify the impacts of LED lamps, incandescent lamps and fluorescent benchmark lamps over a product lifecycle – i.e. to develop a sustainable design and manufacturing strategy that addresses product manufacturing, use, recycling and disposal scenarios for LED-based lighting. Based on the knowledge gained from extensive product tear-down studies of fluorescent and screw-in lighting products, lifecycle assessment tools, and accelerated lifecycle testing protocols, an interactive Sustainable LED Design Guide has been developed to aid architectural and lighting designers and engineers in making design decisions that consider three important environmental impacts (greenhouse gas emissions, energy use and mercury emission) across all phases of the life of an LED lighting product. Critical information developed for the lifecycle analysis and product feature comparisons is the useful life of the lighting product as well as its performance. The Design Guide is available at www.ncms.org, and was developed based on operational and durability testing of a variety of lighting products including power consumption, light output, and useful life of a lamp in order to allow a more realistic comparison of lamp designs. This report describes the main project tasks, results and innovative features of the lifecycle assessment (LCA)-based design tools, and the key considerations driving the sustainable design of LED lighting systems. The Design Guide incorporates the following three novel features for efficiently evaluating LED lighting features in value-chains: • Bill-of-Materials (BOM) Builder – Designers may import process data for each component and supply functional data for the product, including power, consumption, lumen output and expected useful life. • Environmental Impact Review – Designs are comparable across lifecycle phases, subsystems, and environmental impact category, and can be normalized to a userdefined functional unit. • Drill-down Review – These provide an indepth look at individual lamp designs with the ability to review across subsystem or lifecycle phase.

  2. Zhejiang Sunflower Light Energy Science Technology Co Ltd | Open...

    Open Energy Info (EERE)

    Science Technology Co Ltd Jump to: navigation, search Name: Zhejiang Sunflower Light Energy Science & Technology Co Ltd Place: Shaoxing, Zhejiang Province, China Zip: 312071...

  3. THE TENTH ANNUAL SOLID-STATE LIGHTING TECHNOLOGY DEVELOPMENT WORKSHOP |

    Energy Savers [EERE]

    Department of Energy THE TENTH ANNUAL SOLID-STATE LIGHTING TECHNOLOGY DEVELOPMENT WORKSHOP THE TENTH ANNUAL SOLID-STATE LIGHTING TECHNOLOGY DEVELOPMENT WORKSHOP More than 230 lighting leaders from across North America gathered in Portland, OR, November 17-18, 2015, for the tenth annual Solid-State Lighting Technology Development Workshop, hosted by DOE. The diverse audience spanned the spectrum of SSL stakeholders, representing lighting, control, and components companies as well as research

  4. Regional Test Centers for Solar Technologies | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Systems Integration » Regional Test Centers for Solar Technologies Regional Test Centers for Solar Technologies Text Alternative At the Regional Test Centers (RTCs) throughout the United States, DOE provides photovoltaic (PV) and concentrating photovoltaic (CPV) validation testing and systems monitoring for businesses and other industry stakeholders. The primary mission of the RTCs is to develop standards and guidelines for validating the performance and operation of PV modules and systems. The

  5. NREL: Technology Deployment - Alternative Fuels Data Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Alternative Fuels Data Center NREL developed and manages the Alternative Fuels Data Center (AFDC), the U.S. Department of Energy's comprehensive clearinghouse of information and data related to the deployment of alternative fuels, advanced vehicles, and energy efficiency in transportation for fleets, fuel providers, policymakers, and other stakeholders working to reduce petroleum use in transportation. Interactive Transportation Deployment Tools NREL's large suite of free online tools assist

  6. NREL: National Wind Technology Center Home Page

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    working laboratory for interconnection and systems integration testing. This state-of-the-art facility includes generation, storage, and interconnection technologies as well as...

  7. Federal Technology Deployment Pilot: Exterior Solid State Lighting |

    Office of Environmental Management (EM)

    Department of Energy Technology Deployment Pilot: Exterior Solid State Lighting Federal Technology Deployment Pilot: Exterior Solid State Lighting Presentation-given at the Fall 2011 Federal Utility Partnership Working Group (FUPWG) meeting-provides an overview of the U.S. Department of Energy's Solid-State Lighting Program and an exterior solid-state lighting federal technology deployment pilot project. PDF icon fupwg_fall11_mccullough.pdf More Documents & Publications FEMP Exterior

  8. SAVANNAH RIVER TECHNOLOGY CENTER MONTHLY REPORT AUGUST 1992

    SciTech Connect (OSTI)

    Ferrell, J.M.

    1999-06-21

    'This monthly report summarizes Programs and Accomplishments of the Savannah River Technology Center in support of activities at the Savannah River Site. The following categories are addressed: Reactor, Tritium, Separations, Environmental, Waste Management, General, and Items of Interest.'

  9. DOE Selects Contractor for California Energy Technology Engineering Center Cleanup

    Broader source: Energy.gov [DOE]

    Cincinnati - The Department of Energy (DOE) today awarded a competitive $25.7 million task order for cleanup activities at the Energy Technology Engineering Center (ETEC) to North Wind of Idaho Falls, Idaho.

  10. Ars Technica Visits GE's China Technology Center | GE Global...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Technica visits GE's China Technology Center Click to email this to a friend (Opens in new window) Share on Facebook (Opens in new window) Click to share (Opens in new window)...

  11. GE China Technology Center Wins Top 12 Most Innovative Practices...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    China Technology Center Wins Top 12 Most Innovative Practices Award of "Multinational Companies in Shanghai" Click to email this to a friend (Opens in new window) Share on Facebook...

  12. NREL's National Wind Technology Center Director Named ASME Fellow

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    National Wind Technology Center Director Named ASME Fellow For more information contact: Terry Monrad, (303) 275-4096 Golden, Colo., January 25, 1996 -- Dr. Robert W. Thresher, director of the National Wind Technology Center (NWTC), will receive the grade of Fellow from the American Society of Mechanical Engineers (ASME) in ceremonies Jan. 29, 1996, in Houston, Texas. The NWTC, part of the Department of Energy's National Renewable Energy Laboratory (NREL), conducts research on advanced wind

  13. Mailing Addresses for National Laboratories and Technology Centers |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Mailing Addresses for National Laboratories and Technology Centers Mailing Addresses for National Laboratories and Technology Centers Name Telephone Number U.S. Department of Energy Albany Research Center 1450 Queen Ave. SW Albany, OR 97321-2198 541-967-5892 U.S. Department of Energy Ames Laboratory #311 TASF, Iowa State University Ames, Iowa 50011 515-294-2680 U.S. Department of Energy Argonne National Laboratory (East) 9700 S. Cass Avenue Argonne, IL 60439 630-252-2000

  14. Wind Energy at NREL's National Wind Technology Center

    ScienceCinema (OSTI)

    None

    2013-05-29

    It is a pure, plentiful natural resource. Right now wind is in high demand and it holds the potential to transform the way we power our homes and businesses. NREL is at the forefront of wind energy research and development. NREL's National Wind Technology Center (NWTC) is a world-class facility dedicated to accelerating and deploying wind technology.

  15. Technology Development for Light Duty High Efficient Diesel Engines |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Light Duty High Efficient Diesel Engines Technology Development for Light Duty High Efficient Diesel Engines Improve the efficiency of diesel engines for light duty applications through technical advances in system optimization. PDF icon deer09_stanton.pdf More Documents & Publications Light Duty Efficient Clean Combustion Advanced Diesel Engine Technology Development for HECC Effects of Biomass Fuels on Engine & System Out Emissions for Short Term Enduran

  16. SciDAC Visualization and Analytics Center for Enabling Technologies

    SciTech Connect (OSTI)

    Joy, Kenneth I.

    2014-09-14

    This project focuses on leveraging scientific visualization and analytics software technology as an enabling technology for increasing scientific productivity and insight. Advances in computational technology have resulted in an "information big bang," which in turn has created a significant data understanding challenge. This challenge is widely acknowledged to be one of the primary bottlenecks in contemporary science. The vision for our Center is to respond directly to that challenge by adapting, extending, creating when necessary and deploying visualization and data understanding technologies for our science stakeholders. Using an organizational model as a Visualization and Analytics Center for Enabling Technologies (VACET), we are well positioned to be responsive to the needs of a diverse set of scientific stakeholders in a coordinated fashion using a range of visualization, mathematics, statistics, computer and computational science and data management technologies.

  17. China Technology Center Celebrates 15 Years | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    China Technology Center Celebrates 15 Years of Innovation "In China for China" Click to email this to a friend (Opens in new window) Share on Facebook (Opens in new window) Click to share (Opens in new window) Click to share on LinkedIn (Opens in new window) Click to share on Tumblr (Opens in new window) GE's China Technology Center Celebrates 15 Years of Innovation "In China for China" Unveils Visionary Technology Blueprint called "The Next List" Shanghai, China, 5

  18. Recovery Act: Regional Technology Training Centers | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Recovery Act: Regional Technology Training Centers Carbon capture and storage technologies offer great potential for reducing CO2 emissions. However, deploying them will require a significantly expanded workforce trained in various specialties that are currently underrepresented in the United States. NETL understands that successful commercialization of CO2 capture and storage technologies depends on knowledge sharing among various public and private entities. Knowledge sharing will also help

  19. Vision 2020: Lighting Technology Roadmap | Open Energy Information

    Open Energy Info (EERE)

    References: Vision 2020: Lighting Technology Roadmap1 Overview "Continued innovation in lamps and other system components, as well as in design practices, have made...

  20. DOE Announces Selections for Solid-State Lighting Core Technology...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    DOE Announces Selections for Solid-State Lighting Core Technology and Product Development ... to employ this understanding in the design and growth of high-efficiency LEDs ...

  1. Zhejiang Guangyi Light Energy Technologies Co Gytech | Open Energy...

    Open Energy Info (EERE)

    Technologies Co (Gytech) Place: Zhuji, Zhejiang Province, China Sector: Solar Product: Solar products company engaged in PV cell and module as well solar heating and lighting...

  2. FEMP Exterior Solid-State Lighting Technology Pilot | Department...

    Office of Environmental Management (EM)

    & Publications Federal Technology Deployment Pilot: Exterior Solid State Lighting Marine Corps Base Quantico (MCBQ) in Virginia Marine Corps Base Quantico Achieves 85% Savings...

  3. Center for Renewable Energy Science and Technology

    SciTech Connect (OSTI)

    Billo, Richard; Rajeshwar, Krishnan

    2013-01-15

    The CREST research team conducted research that optimized catalysts used for the conversion of southwestern lignite into synthetic crude oil that can be shipped to nearby Texas refineries and power plants for development of transportation fuels and power generation. Research was also undertaken to convert any potential by-products of this process such as CO2 to useful chemicals and gases which could be recycled and used as feedstock to the synthetic fuel process. These CO2 conversion processes used light energy to drive the endogonic reduction reactions involved. The project was divided into two tasks: A CO2 Conversion Task, and a Catalyst Optimization Task. The CO2 Conversion task was aimed at developing molecular and solid state catalysts for the thermal, electro- and photocatalytic reduction of CO2 to reduced products such as simple feedstock compounds (e.g. CO, H2, CHOOH, CH2O, CH3OH and CH4). For example, the research team recycled CO that was developed from this Task and used it as a feedstock for the production of synthetic crude in the Catalyst Optimization Task. In the Catalyst Optimization Task, the research team conducted bench-scale experiments with the goal of reducing overall catalyst cost in support of several synthetic crude processes that had earlier been developed. This was accomplished by increasing the catalyst reactivity thus reducing required concentrations or by using less expensive metals. In this task the team performed parametric experiments in small scale batch reactors in an effort to improve catalyst reactivity and to lower cost. They also investigated catalyst robustness by testing lignite feedstocks that vary in moisture, h, and volatile content.

  4. Jefferson Lab technology, capabilities take center stage in construction of

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    portion of DOE's Spallation Neutron Source accelerator | Jefferson Lab Medium beta cryomodule JLab staff prepare to load the medium β cryomodule onto a flatbed semi for its road test. Jefferson Lab technology, capabilities take center stage in construction of portion of DOE's Spallation Neutron Source accelerator By James Schultz January 27, 2003 Jefferson Lab is once again taking center stage, as Lab scientists, engineers and technicians mobilize to provide 81 niobium cavities for 23

  5. Advanced Lighting Technologies | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Appliances & Lighting We're developing cutting-edge appliances and innovative lighting to make life easier, reduce costs and increase energy efficiency. Home > Innovation > Appliances & Lighting A Quirky Idea: Turning Patents Into Consumer Products In April 2013, GE and Quirky announced a partnership that introduces a whole new way of inventing. We teamed up with Quirky, the... Read More » GE's Dual Piezoelectric Cooling Jets (DCJ) Are Cool and Quiet Ultrathin tablets and laptops

  6. Center for Advanced Separation Technology (Technical Report) | SciTech

    Office of Scientific and Technical Information (OSTI)

    Connect Technical Report: Center for Advanced Separation Technology Citation Details In-Document Search Title: Center for Advanced Separation Technology The U.S. is the largest producer of mining products in the world. In 2011, U.S. mining operations contributed a total of $232 billion to the nation's GDP plus $138 billion in labor income. Of this the coal mining industry contributed a total of $97.5 billion to GDP plus $53 billion in labor income. Despite these contributions, the industry

  7. Center for Advanced Separation Technology (Technical Report) | SciTech

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Connect Center for Advanced Separation Technology Citation Details In-Document Search Title: Center for Advanced Separation Technology The U.S. is the largest producer of mining products in the world. In 2011, U.S. mining operations contributed a total of $232 billion to the nation's GDP plus $138 billion in labor income. Of this the coal mining industry contributed a total of $97.5 billion to GDP plus $53 billion in labor income. Despite these contributions, the industry has not been well

  8. Cape Coral Youth Center Helps Light the Way to Energy Savings | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Cape Coral Youth Center Helps Light the Way to Energy Savings Cape Coral Youth Center Helps Light the Way to Energy Savings May 18, 2011 - 4:32pm Addthis Cape Coral Youth Center Manager Mark Cagel stands in front of a tamper-proof thermostat at the Austen Youth Center in Cape Coral, Florida. | Photo Courtesy of the Cape Coral Youth Center Cape Coral Youth Center Manager Mark Cagel stands in front of a tamper-proof thermostat at the Austen Youth Center in Cape Coral, Florida. |

  9. Applied wind energy research at the National Wind Technology Center

    SciTech Connect (OSTI)

    Robinson, M C; Tu, P

    1996-06-01

    Applied research activities at the National Wind Technology Center are divided into several technical disciplines. Not surprisingly, these engineering and science disciplines highlight the technology similarities between aircraft and wind turbine design requirements. More often than not, wind turbines are assumed to be a subset of the much larger and more comprehensive list of well understood aerospace engineering accomplishments and it is difficult for the general public to understand the poor performance history of wind turbines in sustained operation. Often overlooked are the severe environmental conditions and operational demands placed on turbine designs which define unique requirements beyond typical aerospace applications. It is the role of the National Wind Technology Center to investigate and quantify the underlying physical phenomena which make the wind turbine design problem unique and to provide the technology advancements necessary to overcome current operational limitations. This paper provides a brief overview of research areas involved with the design of wind turbines.

  10. Oak Ridge Centers for Manufacturing Technology, part 1

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1 Much like the Training and Technology program of the 1960's through the early 1980's, the Oak Ridge Centers for Manufacturing Technology (ORMCT) in the 1990's was also a most unique and unusual effort. It was a pioneering approach to solving tough manufacturing problems. The ORCMT was another of the historic initiatives to come from Oak Ridge that had widespread implica- tions for industry, literally nationwide. The innovative approach to addressing difficult problems in companies was a joint

  11. Vehicle Technologies Office AVTA: Light Duty Alternative Fuel and Advanced

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Vehicle Data | Department of Energy Office AVTA: Light Duty Alternative Fuel and Advanced Vehicle Data Vehicle Technologies Office AVTA: Light Duty Alternative Fuel and Advanced Vehicle Data The Vehicle Technologies Office (VTO) supports testing and data collection on a wide range of advanced and alternative fuel vehicles and technologies through the Advanced Vehicle Testing Activity (AVTA) . The following table has downloadable performance, reliability, and driver behavior data for selected

  12. DOE Announces Selections from Solid-State Lighting Core Technologies

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Funding Opportunity Announcement and Laboratory Call | Department of Energy from Solid-State Lighting Core Technologies Funding Opportunity Announcement and Laboratory Call DOE Announces Selections from Solid-State Lighting Core Technologies Funding Opportunity Announcement and Laboratory Call The National Energy Technology Laboratory (NETL), on behalf of the U.S. Department of Energy (DOE) is pleased to announce the selection of sixteen (16) applications in response to the Solid-State

  13. EECBG Success Story: Cape Coral Youth Center Helps Light the Way to Energy

    Office of Environmental Management (EM)

    Savings | Department of Energy Cape Coral Youth Center Helps Light the Way to Energy Savings EECBG Success Story: Cape Coral Youth Center Helps Light the Way to Energy Savings May 18, 2011 - 4:32pm Addthis Cape Coral Youth Center Manager Mark Cagel stands in front of a tamper-proof thermostat at the Austen Youth Center in Cape Coral, Florida. | Photo Courtesy of the Cape Coral Youth Center Cape Coral Youth Center Manager Mark Cagel stands in front of a tamper-proof thermostat at the Austen

  14. Alternative Fuels Data Center: Heavy-Duty Truck Idle Reduction Technologies

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Heavy-Duty Truck Idle Reduction Technologies to someone by E-mail Share Alternative Fuels Data Center: Heavy-Duty Truck Idle Reduction Technologies on Facebook Tweet about Alternative Fuels Data Center: Heavy-Duty Truck Idle Reduction Technologies on Twitter Bookmark Alternative Fuels Data Center: Heavy-Duty Truck Idle Reduction Technologies on Google Bookmark Alternative Fuels Data Center: Heavy-Duty Truck Idle Reduction Technologies on Delicious Rank Alternative Fuels Data Center: Heavy-Duty

  15. Grundy Center Mun Light & Power | Open Energy Information

    Open Energy Info (EERE)

    www.gcmuni.nettextcontactus. Facebook: https:www.facebook.compagesCity-of-Grundy-Center169381736410558 Outage Hotline: (319)-825-5207 References: EIA Form EIA-861 Final...

  16. Yangzhou Zhongke Semiconductor Lighting Center Co Ltd | Open...

    Open Energy Info (EERE)

    Center Co. Ltd. Place: Yangzhou, Jiangsu Province, China Zip: 2250000 Product: LED packaging startup backed by the Institute of Semiconductors at Chinese Academy of Sciences...

  17. Advanced Technology Light Duty Diesel Aftertreatment System | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Light Duty Diesel Aftertreatment System Advanced Technology Light Duty Diesel Aftertreatment System Light duty diesel aftertreatment system consisting of a DOC and selective catalytic reduction catalyst on filter (SCRF), close coupled to the engine with direct gaseous ammonia delivery is designed to reduce cold start NOx and HC emissions PDF icon deer12_henry.pdf More Documents & Publications Passive Catalytic Approach to Low Temperature NOx Emission Abatement Cummins' Next

  18. Next Generation Lighting Technologies (LBNL Summer Lecture Series)

    ScienceCinema (OSTI)

    Siminovittch, Micheal

    2014-05-06

    For the past several years, Michael Siminovittch, a researcher in the Environmental Energy Technologies Division of Lawrence Berkeley National Laboratory, has worked to package efficient lighting in an easy-to-use and good-looking lamp. His immensely popular "Berkeley Lamp" has redefined how America lights its offices.

  19. Savannah River Technology Center. Monthly report, May 1993

    SciTech Connect (OSTI)

    Not Available

    1993-05-01

    This report covers the progress and accomplishments made at the Savannah River Technology Center for the month of May 1993. Progress is reported for projects in the following areas: reactors, tritium, separations, environmental, waste management, and general. General projects are: an eight week tutorial of the Los Alamos National Laboratory developed Monte Carlo Neutron Photon (MCNP) code; development of materials and fabrication technologies for the spallation and tritium targets for the accelerator production of tritium; and a program to develop welding methods to repair stainless steel containing helium.

  20. Oak Ridge Centers for Manufacturing Technology, part 2

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2 In the fall of 1995, the ORNL Review, Vol. 28, No. 1, featured an article titled, "Oak Ridge Solution to Manufacturing Problems," written by Bill Wilburn. Bill"s introductory caption to his lead photograph of Jerry Whitaker of ORCMT"s Testing and Evaluation stated, "The end of the Cold War continues to drive a national effort to use defense technologies to enhance the nation"s industrial competitiveness." The Oak Ridge Centers for Manufacturing Technology was

  1. Center for Renewable Energy and Alternative Transportation Technologies (CREATT)

    SciTech Connect (OSTI)

    Mackin, Thomas

    2012-06-30

    The Center for Renewable Energy and Alternative Transportation Technologies (CREATT) was established to advance the state of the art in knowledge and education on critical technologies that support a renewable energy future. Our research and education efforts have focused on alternative energy systems, energy storage systems, and research on battery and hybrid energy storage systems.This report details the Center's progress in the following specific areas: Development of a battery laboratory; Development of a demonstration system for compressed air energy storage; Development of electric propulsion test systems; Battery storage systems; Thermal management of battery packs; and Construction of a micro-grid to support real-world performance monitoring of a renewable energy system.

  2. Establishment of the Center for Advanced Separation Technologies

    SciTech Connect (OSTI)

    Christopher E. Hull

    2006-09-30

    This Final Technical Report covers the eight sub-projects awarded in the first year and the five projects awarded in the second year of Cooperative Agreement DE-FC26-01NT41091: Establishment of the Center for Advanced Separation Technologies. This work is summarized in the body of the main report: the individual sub-project Technical Progress Reports are attached as Appendices.

  3. Oak Ridge Centers for Manufacturing Technology … testimonials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    testimonials The first testimonial for the successful Oak Ridge Centers for Manufacturing Technology came from Mitchell Burnett. Mitch was among the first hourly paid employees, an electrician, to join the ORCMT staff. His initial involvement was in an office in Oak Ridge at Mitchell Road, where he answered phone calls and helped get the paperwork started on Technical Assistance requests. Mitch recalls to this day the goal of this program: "to save American manufacturing jobs by solving

  4. National Laboratories' Energy Technologies and System Solutions Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Director Laboratories' Energy Technologies and System Solutions Center Director - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing

  5. Great Lakes Bioenergy Research Center Technologies Available for Licensing

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    - Energy Innovation Portal GLBRC Site Map Printable Version Share this resource About Search Categories (15) Advanced Materials Biomass and Biofuels Building Energy Efficiency Electricity Transmission Energy Analysis Energy Storage Geothermal Hydrogen and Fuel Cell Hydropower, Wave and Tidal Industrial Technologies Solar Photovoltaic Solar Thermal Startup America Vehicles and Fuels Wind Energy Partners (27) Visual Patent Search Success Stories Great Lakes Bioenergy Research Center

  6. Wind Technology Testing Center Acquires New Blade Fatigue Test System |

    Broader source: Energy.gov (indexed) [DOE]

    Department of Energy Second Quarter 2013 edition of the Wind Program R&D Newsletter. The Wind Technology Testing Center (WTTC) in Boston, Massachusetts, recently acquired a significant piece of testing equipment needed to offer its industry partners a full state-of-the-art suite of wind turbine blade certification tests. As utility-scale wind turbines have grown in size over the last decade, their blades have become longer, heavier, and more costly to manufacture, install, and repair.

  7. FEMP Exterior Solid-State Lighting Technology Pilot

    Office of Environmental Management (EM)

    FEDERAL ENERGY MANAGEMENT PROGRAM femp.energy.gov FUPWG Fall 2012 FEMP Exterior Solid-State Lighting Technology Pilot Jeff McCullough, LC October 17, 2012 Pacific Northwest National Laboratory Richland, Washington 2 | FEDERAL ENERGY MANAGEMENT PROGRAM femp.energy.gov * State of SSL Technology - Introducing MOBLI * Federal Energy Management Program (FEMP) - Technology Deployment Matrix - Federal Exterior Market Size - FEMP Exterior SSL Initiative - FEMP-designated Efficiency Requirements - Plans

  8. Light-Duty Diesel EngineTechnology to Meet Future Emissions and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Light-Duty Diesel EngineTechnology to Meet Future Emissions and Performance Requirements ... Ricardo's ACTION Strategy: An Enabling Light Duty Diesel Technology for the US Market US ...

  9. CENTER

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Science and people highlights from the Lujan Neutron Scattering Center at LANSCE CENTER SCIENCE & PEOPLE the Lujan April 2014 LA-UR-14-22812 I N S I D E 2 Seeking design rules for efficient lighting sources 3 Rate-dependent deformation mechanisms in beryllium 4 Improved understanding of a semiconductor used in infrared detectors 6 Mike Fitzsimmons elected NNSA Fellow 7 Pressure tuning: a new approach for making zero thermal expansion materials 8 Neutron scattering enables structural

  10. Webinar: National Fuel Cell Technology Evaluation Center | Department of

    Broader source: Energy.gov (indexed) [DOE]

    Energy Fuel Cell Technology Evaluation Center (NFCTEC)," originally presented on March 11, 2014. In addition to this text version of the audio, you can access the presentation slides. Alli Aman: I'm going to go through a few housekeeping items before I turn it over to today's speakers. Today's webinar is being recorded. So a recording along with slides will be posted to our website in about 10 days. I will send out an email once those have posted to our website, so you will know when

  11. Science and Technology of Future Light Sources

    SciTech Connect (OSTI)

    Dierker,S.; Bergmann, U.; Corlett, J.; Dierker, S.; Falcone, R.; Galayda, J.; Gibson, M.; Hastings, J.; Hettel, B.; Hill, J.; Hussain, Z.; Kao, C.-C.; Kirx, J.; Long, G.; McCurdy, B.; Raubenheimer, T.; Sannibale, F.; Seeman, J.; Shen, Z.-X.; Shenoy, g.; Schoenlein, B.; Shen, Q.; Stephenson, B.; Stohr, J.; Zholents, A.

    2008-12-01

    Many of the important challenges facing humanity, including developing alternative sources of energy and improving health, are being addressed by advances that demand the improved understanding and control of matter. While the visualization, exploration, and manipulation of macroscopic matter have long been technological goals, scientific developments in the twentieth century have focused attention on understanding matter on the atomic scale through the underlying framework of quantum mechanics. Of special interest is matter that consists of natural or artificial nanoscale building blocks defined either by atomic structural arrangements or by electron or spin formations created by collective correlation effects. The essence of the challenge to the scientific community has been expressed in five grand challenges for directing matter and energy recently formulated by the Basic Energy Sciences Advisory Committee [1]. These challenges focus on increasing our understanding of, and ultimately control of, matter at the level of atoms, electrons. and spins, as illustrated in Figure 1.1, and serve the entire range of science from advanced materials to life sciences. Meeting these challenges will require new tools that extend our reach into regions of higher spatial, temporal, and energy resolution. X-rays with energies above 10 keV offer capabilities extending beyond the nanoworld shown in Figure 1.1 due to their ability to penetrate into optically opaque or thick objects. This opens the door to combining atomic level information from scattering studies with 3D information on longer length scales from real space imaging with a resolution approaching 1 nm. The investigation of multiple length scales is important in hierarchical structures, providing knowledge about function of living organisms, the atomistic origin of materials failure, the optimization of industrial synthesis, or the working of devices. Since the fundamental interaction that holds matter together is of electromagnetic origin, it is intuitively clear that electromagnetic radiation is the critical tool in the study of material properties. On the level of atoms, electrons, and spins, x-rays have proved especially valuable. Future advanced x-ray sources and instrumentation will extend the power of x-ray methods to reach greater spatial resolution, increased sensitivity, and unexplored temporal domains. The purpose of this document is threefold: (1) summarize scientific opportunities that are beyond the reach of today's x-ray sources and instrumentation; (2) summarize the requirements for advanced x-ray sources and instrumentation needed to realize these scientific opportunities, as well as potential methods of achieving them; and (3) outline the R&D required to establish the technical feasibility of these advanced x-ray sources and instrumentation.

  12. Science and Technology of Future Light Sources

    SciTech Connect (OSTI)

    Bergmann, Uwe; Corlett, John; Dierker, Steve; Falcone, Roger; Galayda, John; Gibson, Murray; Hastings, Jerry; Hettel, Bob; Hill, John; Hussain, Zahid; Kao, Chi-Chang; Kirz, Janos; Long, Danielle; McCurdy, Bill; Raubenheimer, Tor; Sannibale, Fernando; Seeman, John; Shen, Z. -X.; Schenoy, Gopal; Schoenlein, Bob; Shen, Qun; Stephenson, Brian; Sthr, Joachim; Zholents, Alexander

    2009-01-28

    Many of the important challenges facing humanity, including developing alternative sources of energy and improving health, are being addressed by advances that demand the improved understanding and control of matter. While the visualization, exploration, and manipulation of macroscopic matter have long been technological goals, scientific developments in the twentieth century have focused attention on understanding matter on the atomic scale through the underlying framework of quantum mechanics. Of special interest is matter that consists of natural or artificial nanoscale building blocks defined either by atomic structural arrangements or by electron or spin formations created by collective correlation effects The essence of the challenge to the scientific community has been expressed in five grand challenges for directing matter and energy recently formulated by the Basic Energy Sciences Advisory Committee [1]. These challenges focus on increasing our understanding of, and ultimately control of, matter at the level of atoms, electrons. and spins, as illustrated in Figure 1.1, and serve the entire range of science from advanced materials to life sciences. Meeting these challenges will require new tools that extend our reach into regions of higher spatial, temporal, and energy resolution. X-rays with energies above 10 keV offer capabilities extending beyond the nanoworld shown in Figure 1.1 due to their ability to penetrate into optically opaque or thick objects. This opens the door to combining atomic level information from scattering studies with 3D information on longer length scales from real space imaging with a resolution approaching 1 nm. The investigation of multiple length scales is important in hierarchical structures, providing knowledge about function of living organisms, the atomistic origin of materials failure, the optimization of industrial synthesis, or the working of devices. Since the fundamental interaction that holds matter together is of electromagnetic origin, it is intuitively clear that electromagnetic radiation is the critical tool in the study of material properties. On the level of atoms, electrons, and spins, x-rays have proved especially valuable. Future advanced x-ray sources and instrumentation will extend the power of x-ray methods to reach greater spatial resolution, increased sensitivity, and unexplored temporal domains. The purpose of this document is threefold: (1) summarize scientific opportunities that are beyond the reach of today's x-ray sources and instrumentation; (2) summarize the requirements for advanced x-ray sources and instrumentation needed to realize these scientific opportunities, as well as potential methods of achieving them; and (3) outline the R&D required to establish the technical feasibility of these advanced x-ray sources and instrumentation.

  13. National Wind Technology Center sitewide, Golden, CO: Environmental assessment

    SciTech Connect (OSTI)

    1996-11-01

    The National Renewable Energy Laboratory (NREL), the nation`s primary solar and renewable energy research laboratory, proposes to expand its wind technology research and development program activities at its National Wind Technology Center (NWTC) near Golden, Colorado. NWTC is an existing wind energy research facility operated by NREL for the US Department of Energy (DOE). Proposed activities include the construction and reuse of buildings and facilities, installation of up to 20 wind turbine test sites, improvements in infrastructure, and subsequent research activities, technology testing, and site operations. In addition to wind turbine test activities, NWTC may be used to support other NREL program activities and small-scale demonstration projects. This document assesses potential consequences to resources within the physical, biological, and human environment, including potential impacts to: air quality, geology and soils, water resources, biological resources, cultural and historic resources, socioeconomic resources, land use, visual resources, noise environment, hazardous materials and waste management, and health and safety conditions. Comment letters were received from several agencies in response to the scoping and predecisional draft reviews. The comments have been incorporated as appropriate into the document with full text of the letters contained in the Appendices. Additionally, information from the Rocky Flats Environmental Technology Site on going sitewide assessment of potential environmental impacts has been reviewed and discussed by representatives of both parties and incorporated into the document as appropriate.

  14. US/China Energy and Environmental Technology Center (EETC) international business development and technology transfer

    SciTech Connect (OSTI)

    Hsieh, S.T.; Qiu Daxiong; Zhang Guocheng

    1997-12-31

    Since January 1997, the US/China Energy and Environmental Technology Center (EETC) in Beijing has been jointly operated by Tulane University and Tsinghua University. EETC is established to encourage the adoption of technologies for energy production with improved environmental performance which are essential for supporting economic growth and managing the Global Warming and Climate Change issues. International cooperation is critical to insure the environmental and energy security on a global basis. For example, the US has acquired a great deal of useful experience in clean coal technology which has been demonstrated with major utilities in commercial operations. The adaption of, and the installation of, clean coal technology should be given high priority. Worldwide, the continuous exchange of information and technology between developed and developing nations relating to the current and future clean coal technologies is of great importance. Developed nations which possess environmental responsive technologies and financial resources should work closely with developing nations to facilitate technology transfer and trade of technologies. International cooperation will lower the cost of deploying clean coal technologies directed toward the clean production of energy. This paper presents the updated activities of EETC on facilitating technology transfer and promoting the clean use of coal to satisfy growing energy demand in China.

  15. Energy Department Launches National Fuel Cell Technology Evaluation Center to Advance Fuel Cell Technologies

    Office of Energy Efficiency and Renewable Energy (EERE)

    Following Energy Secretary Ernest Moniz's visit to the National Renewable Energy Laboratory (NREL), the Energy Department today announced the unveiling of a one-of-its-kind national secure data center dedicated to the independent analysis of advanced hydrogen and fuel cell technologies at the Energy Department's Energy Systems Integration Facility (ESIF) located at NREL in Golden, Colorado.

  16. LED Provides Effective and Efficient Parking Area Lighting at the NAVFAC Engineering Service Center

    Energy Savers [EERE]

    LED parking area lights at the NAVFAC Engineering Service Center at Port Hueneme provide high quality, evenly distributed light. Photo courtesy of PNNL because of its long rated life and high effciency relative to other options. However, high-pressure sodium technol- ogy is not without drawbacks, such as a low color rendition, a result of its narrow spectral distribution and low color temperature. While metal halide lamps provide whiter light and better color rendition compared to high-pressure

  17. National Wind Technology Center Dynamic 5-Megawatt Dynamometer

    ScienceCinema (OSTI)

    Felker, Fort

    2014-06-10

    The National Wind Technology Center (NWTC) offers wind industry engineers a unique opportunity to conduct a wide range of tests. Its custom-designed dynamometers can test wind turbine systems from 1 kilowatt (kW) to 5 megawatts (MW). The NWTC's new dynamometer facility simulates operating field conditions to assess the reliability and performance of wind turbine prototypes and commercial machines, thereby reducing deployment time, failures, and maintenance or replacement costs. Funded by the U.S. Department of Energy with American Recovery and Reinvestment Act (ARRA) funds, the 5-MW dynamometer will provide the ability to test wind turbine drivetrains and connect those drivetrains directly to the electricity grid or through a controllable grid interface (CGI). The CGI tests the low-voltage ride-through capability of a drivetrain as well as its response to faults and other abnormal grid conditions.

  18. An organizational survey of the Pittsburgh Energy Technology Center

    SciTech Connect (OSTI)

    Stock, D.A.; Shurberg, D.A.; Haber, S.B.

    1991-09-01

    An Organizational Survey (OS) was administrated at the Pittsburgh Energy Technology Center (PETC) that queried employees on the subjects of organizational culture, various aspects of communications, employee commitment, work group cohesion, coordination of work, environmental, safety, and health concerns, hazardous nature of work, safety and overall job satisfaction. The purpose of the OS is to measure in a quantitative and objective way the notion of culture''; that is, the values attitudes, and beliefs of the individuals working within the organization. In addition, through the OS, a broad sample of individuals can be reached that would probably not be interviewed or observed during the course of a typical assessment. The OS also provides a descriptive profile of the organization at one point in time that can then be compared to a profile taken at a different point in time to assess changes in the culture of the organization.

  19. An organizational survey of the Pittsburgh Energy Technology Center

    SciTech Connect (OSTI)

    Stock, D.A.; Shurberg, D.A.; Haber, S.B.

    1991-09-01

    An Organizational Survey (OS) was administrated at the Pittsburgh Energy Technology Center (PETC) that queried employees on the subjects of organizational culture, various aspects of communications, employee commitment, work group cohesion, coordination of work, environmental, safety, and health concerns, hazardous nature of work, safety and overall job satisfaction. The purpose of the OS is to measure in a quantitative and objective way the notion of ``culture``; that is, the values attitudes, and beliefs of the individuals working within the organization. In addition, through the OS, a broad sample of individuals can be reached that would probably not be interviewed or observed during the course of a typical assessment. The OS also provides a descriptive profile of the organization at one point in time that can then be compared to a profile taken at a different point in time to assess changes in the culture of the organization.

  20. National Wind Technology Center Dynamic 5-Megawatt Dynamometer

    SciTech Connect (OSTI)

    Felker, Fort

    2013-11-13

    The National Wind Technology Center (NWTC) offers wind industry engineers a unique opportunity to conduct a wide range of tests. Its custom-designed dynamometers can test wind turbine systems from 1 kilowatt (kW) to 5 megawatts (MW). The NWTC's new dynamometer facility simulates operating field conditions to assess the reliability and performance of wind turbine prototypes and commercial machines, thereby reducing deployment time, failures, and maintenance or replacement costs. Funded by the U.S. Department of Energy with American Recovery and Reinvestment Act (ARRA) funds, the 5-MW dynamometer will provide the ability to test wind turbine drivetrains and connect those drivetrains directly to the electricity grid or through a controllable grid interface (CGI). The CGI tests the low-voltage ride-through capability of a drivetrain as well as its response to faults and other abnormal grid conditions.

  1. Barry DuVal and Virginia's Center for Innovative Technology Announce |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Jefferson Lab Barry DuVal and Virginia's Center for Innovative Technology Announce Selection of the Center for Plasma and Photon Processing August 11, 1998 Secretary of Commerce and Trade, Barry E. DuVal and the Center for Innovative Technology (CIT) today announced the selection of a second new innovation center - The Center for Plasma and Photon Processing to advance the use of intelligent processes to control energy to create materials, structures and devices. As part of the Jefferson

  2. Adapting Wireless Technology to Lighting Control and Environmental Sensing

    SciTech Connect (OSTI)

    Dana Teasdale; Francis Rubinstein; Dave Watson; Steve Purdy

    2005-10-01

    The high cost of retrofitting buildings with advanced lighting control systems is a barrier to adoption of this energy-saving technology. Wireless technology, however, offers a solution to mounting installation costs since it requires no additional wiring to implement. To demonstrate the feasibility of such a system, a prototype wirelessly-controlled advanced lighting system was designed and built. The system includes the following components: a wirelessly-controllable analog circuit module (ACM), a wirelessly-controllable electronic dimmable ballast, a T8 3-lamp fixture, an environmental multi-sensor, a current transducer, and control software. The ACM, dimmable ballast, multi-sensor, and current transducer were all integrated with SmartMesh{trademark} wireless mesh networking nodes, called motes, enabling wireless communication, sensor monitoring, and actuator control. Each mote-enabled device has a reliable communication path to the SmartMesh Manager, a single board computer that controls network functions and connects the wireless network to a PC running lighting control software. The ACM is capable of locally driving one or more standard 0-10 Volt electronic dimmable ballasts through relay control and a 0-10 Volt controllable output. The mote-integrated electronic dimmable ballast is designed to drive a standard 3-lamp T8 light fixture. The environmental multi-sensor measures occupancy, light level and temperature. The current transducer is used to measure the power consumed by the fixture. Control software was developed to implement advanced lighting algorithms, including daylight ramping, occupancy control, and demand response. Engineering prototypes of each component were fabricated and tested in a bench-scale system. Based on standard industry practices, a cost analysis was conducted. It is estimated that the installation cost of a wireless advanced lighting control system for a retrofit application is at least 30% lower than a comparable wired system for a typical 16,000 square-foot office building, with a payback period of less than 3 years.

  3. Demonstration Assessment of Light Emitting Diode (LED) Walkway Lighting at the Federal Aviation Administration William J. Hughes Technical Center, in Atlantic City, New Jersey

    SciTech Connect (OSTI)

    Kinzey, Bruce R.; Myer, Michael

    2008-03-18

    This report documents the results of a collaborative project to demonstrate a solid state lighting (SSL) general illumination product in an outdoor area walkway application. In the project, six light-emitting diode (LED) luminaires were installed to replace six existing high pressure sodium (HPS) luminaires mounted on 14-foot poles on a set of exterior walkways and stairs at the Federal Aviation Administration (FAA) William J. Hughes Technical Center in Atlantic City, New Jersey, during December, 2007. The effort was a U.S. Department of Energy (DOE) SSL Technology Gateway Demonstration that involved a collaborative teaming agreement between DOE, FAA and Ruud Lighting (and their wholly owned division, Beta LED). Pre- and post-installation power and illumination measurements were taken and used in calculations of energy savings and related economic payback, while personnel impacted by the new lights were provided questionnaires to gauge their perceptions and feedback. The SSL product demonstrated energy savings of over 25% while maintaining illuminance levels and improving illuminance uniformity. PNNL's economic analysis yielded a variety of potential payback results depending on the assumptions used. In the best case, replacing HPS with the LED luminaire can yield a payback as low as 3 years. The new lamps were quite popular with the affected personnel, who gave the lighting an average score of 4.46 out of 5 for improvement.

  4. FEMP Exterior Solid-State Lighting Technology Pilot | Department of Energy

    Energy Savers [EERE]

    Exterior Solid-State Lighting Technology Pilot FEMP Exterior Solid-State Lighting Technology Pilot Presentation-given at at the Fall 2012 Federal Utility Partnership Working Group (FUPWG) meeting-covers the Federal Energy Management Program's (FEMP's) exterior solid-state lighting initiative and technology pilot. PDF icon fupwg_fall12_mccullough.pdf More Documents & Publications Federal Technology Deployment Pilot: Exterior Solid State Lighting Leveraging Lighting for Energy Savings: GSA

  5. Brief History of Solid-State Lighting Technology

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Solid-State Lighting Technology - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs

  6. Superconducting RF Linac Technology for ERL Light Sources

    SciTech Connect (OSTI)

    Chris Tennant

    2005-08-01

    Energy Recovering Linacs (ERLs) offer an attractive alternative as drivers for light sources as they combine the desirable characteristics of both storage rings (high efficiency) and linear accelerators (superior beam quality). Using superconducting RF technology allows ERLs to operate more efficiently because of the inherent characteristics of SRF linacs, namely that they are high gradient-low impedance structures and their ability to operate in the long pulse or CW regime. We present an overview of the physics challenges encountered in the design and operation of ERL based light sources with particular emphasis on those issues related to SRF technology. These challenges include maximizing a cavity???????¢????????????????s Qo to increase cryogenic efficiency, maintaining control of the cavity field in the presence of the highest feasible loaded Q and providing adequate damping of the higher-order modes (HOMs). If not sufficiently damped, dipole HOMs can drive the multipass beam breakup (BBU) instability which ERLs are particularly susceptible to. Another challenge involves efficiently extracting the potentially large amounts of HOM power that are generated when a bunch traverses the SRF cavities and which may extend over a high range of frequencies. We present experimental data from the Jefferson Lab FEL Upgrade, a 10 mA ERL light source presently in operation, aimed at addressing some of these issues. We conclude with an outlook towards the future of ERL based light sources.

  7. Establishing a Testing Center for Ocean Energy Technologies in the Pacific

    Office of Environmental Management (EM)

    Northwest | Department of Energy Establishing a Testing Center for Ocean Energy Technologies in the Pacific Northwest Establishing a Testing Center for Ocean Energy Technologies in the Pacific Northwest April 9, 2013 - 12:00am Addthis The University of Washington (UW) and Oregon State University (OSU) have partnered with EERE to develop the Northwest National Marine Renewable Energy Center (NNMREC), as one of three National Marine Renewable Energy Centers. NNMREC offers a full range of

  8. Turbine Inflow Characterization at the National Wind Technology Center: Preprint

    SciTech Connect (OSTI)

    Clifton, A.; Schreck, S.; Scott, G.; Kelley, N.; Lundquist, J.

    2012-01-01

    Utility-scale wind turbines operate in dynamic flows that can vary significantly over timescales from less than a second to several years. To better understand the inflow to utility-scale turbines, two inflow towers were installed and commissioned at the National Renewable Energy Laboratory's (NREL) National Wind Technology Center near Boulder, Colorado, in 2011. These towers are 135 m tall and instrumented with a combination of sonic anemometers, cup anemometers, wind vanes, and temperature measurements to characterize the inflow wind speed and direction, turbulence, stability and thermal stratification to two utility-scale turbines. Herein, we present variations in mean and turbulent wind parameters with height, atmospheric stability, and as a function of wind direction that could be important for turbine operation as well as persistence of turbine wakes. Wind speed, turbulence intensity, and dissipation are all factors that affect turbine performance. Our results shown that these all vary with height across the rotor disk, demonstrating the importance of measuring atmospheric conditions that influence wind turbine performance at multiple heights in the rotor disk, rather than relying on extrapolation from lower levels.

  9. Turbine Inflow Characterization at the National Wind Technology Center

    SciTech Connect (OSTI)

    Clifton, A.; Schreck, S.; Scott, G.; Kelley, N.; Lundquist, J. K.

    2012-01-01

    Utility-scale wind turbines operate in dynamic flows that can vary significantly over timescales from less than a second to several years. To better understand the inflow to utility-scale turbines, two inflow towers were installed and commissioned at the National Renewable Energy Laboratory's (NREL) National Wind Technology Center near Boulder, Colorado, in 2011. These towers are 135 m tall and instrumented with a combination of sonic anemometers, cup anemometers, wind vanes, and temperature measurements to characterize the inflow wind speed and direction, turbulence, stability and thermal stratification to two utility-scale turbines. Herein, we present variations in mean and turbulent wind parameters with height, atmospheric stability, and as a function of wind direction that could be important for turbine operation as well as persistence of turbine wakes. Wind speed, turbulence intensity, and dissipation are all factors that affect turbine performance. Our results show that these all vary with height across the rotor disk, demonstrating the importance of measuring atmospheric conditions that influence wind turbine performance at multiple heights in the rotor disk, rather than relying on extrapolation from lower levels.

  10. Comments from The Center for Democracy and Technology and the Electric

    Energy Savers [EERE]

    Frontier Foundation: Implementing the Fips in the Smart Grid | Department of Energy from The Center for Democracy and Technology and the Electric Frontier Foundation: Implementing the Fips in the Smart Grid Comments from The Center for Democracy and Technology and the Electric Frontier Foundation: Implementing the Fips in the Smart Grid The Center for Democracy & Technology and the Electronic Frontier Foundation are pleased to file these comments in response to the September 17, 2010

  11. 2014 Annual Planning Summary for the Environmental Management Energy Technology Engineering Center

    Broader source: Energy.gov [DOE]

    The ongoing and projected Environmental Assessments and Environmental Impact Statements for 2014 and 2015 within the Environmental Management Energy Technology Engineering Center.

  12. Savannah River Technology Center Quarterly Report - July, Aug., and Sept., 1997

    SciTech Connect (OSTI)

    Ferrell, J.M.

    1998-10-16

    This monthly report summarizes programs and accomplishments of the Savannah River Technology Center in support of activities at the Savannah River Site.

  13. Savannah River Technology Center. Quarterly report, July 1, 1996--September 30, 1996

    SciTech Connect (OSTI)

    Ferrell, J.M.

    1997-07-01

    This report provides information and progress from the Savannah River Technology Center. Topics include tritium activities, separations, environmental, and waste management activities.

  14. NREL: MIDC/National Wind Technology Center M2 Tower (39.91 N, 105.235 W,

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1855 m, GMT-7) National Wind Technology Center M2 Tower

  15. Light-Source Facilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Canada CTST - UCSB Center for Terahertz Science and Technology, USA DFELL - Duke Free Electron Laser Laboratory, USA Jlab - Jefferson Lab, USA LCLS - Linear Coherent Light...

  16. Advanced Nuclear Technology: Advanced Light Water Reactors Utility Requirements Document Small Modular Reactors Inclusion Summary

    Broader source: Energy.gov [DOE]

    Advanced Nuclear Technology: Advanced Light Water Reactors Utility Requirements Document Small Modular Reactors Inclusion Summary November 2014

  17. Management Technology for Energy Efficiency in Data Centers and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    airflow, and other necessary metrics combined with thermal imaging of the ... The software solutions allow all assets across the data center to be managed, visualized, ...

  18. Energy and Environmental Technology Applications Center E2TAC...

    Open Energy Info (EERE)

    Applications Center (E2TAC) Place: United States Sector: Services Product: General Financial & Legal Services ( Government Public sector ) References: Energy and...

  19. Technologies for Upgrading Light Water Reactor Outlet Temperature

    SciTech Connect (OSTI)

    Daniel S. Wendt; Piyush Sabharwall; Vivek Utgikar

    2013-07-01

    Nuclear energy could potentially be utilized in hybrid energy systems to produce synthetic fuels and feedstocks from indigenous carbon sources such as coal and biomass. First generation nuclear hybrid energy system (NHES) technology will most likely be based on conventional light water reactors (LWRs). However, these LWRs provide thermal energy at temperatures of approximately 300°C, while the desired temperatures for many chemical processes are much higher. In order to realize the benefits of nuclear hybrid energy systems with the current LWR reactor fleets, selection and development of a complimentary temperature upgrading technology is necessary. This paper provides an initial assessment of technologies that may be well suited toward LWR outlet temperature upgrading for powering elevated temperature industrial and chemical processes during periods of off-peak power demand. Chemical heat transformers (CHTs) are a technology with the potential to meet LWR temperature upgrading requirements for NHESs. CHTs utilize chemical heat of reaction to change the temperature at which selected heat sources supply or consume thermal energy. CHTs could directly utilize LWR heat output without intermediate mechanical or electrical power conversion operations and the associated thermodynamic losses. CHT thermal characteristics are determined by selection of the chemical working pair and operating conditions. This paper discusses the chemical working pairs applicable to LWR outlet temperature upgrading and the CHT operating conditions required for providing process heat in NHES applications.

  20. Maximizing Energy Savings with New Technologies in Lighting and...

    Office of Environmental Management (EM)

    Personal Light Control: Allow users in the space to select the correct light levels for the desired task. Demand Response: Reducing lighting load at times of peak electricity ...

  1. GATE Center of Excellence in Lightweight Materials and Manufacturing Technologies

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  2. Graduate Automotive Technology Education (GATE) Program: Center of Automotive Technology Excellence in Advanced Hybrid Vehicle Technology at West Virginia University

    SciTech Connect (OSTI)

    Nigle N. Clark

    2006-12-31

    This report summarizes the technical and educational achievements of the Graduate Automotive Technology Education (GATE) Center at West Virginia University (WVU), which was created to emphasize Advanced Hybrid Vehicle Technology. The Center has supported the graduate studies of 17 students in the Department of Mechanical and Aerospace Engineering and the Lane Department of Computer Science and Electrical Engineering. These students have addressed topics such as hybrid modeling, construction of a hybrid sport utility vehicle (in conjunction with the FutureTruck program), a MEMS-based sensor, on-board data acquisition for hybrid design optimization, linear engine design and engine emissions. Courses have been developed in Hybrid Vehicle Design, Mobile Source Powerplants, Advanced Vehicle Propulsion, Power Electronics for Automotive Applications and Sensors for Automotive Applications, and have been responsible for 396 hours of graduate student coursework. The GATE program also enhanced the WVU participation in the U.S. Department of Energy Student Design Competitions, in particular FutureTruck and Challenge X. The GATE support for hybrid vehicle technology enhanced understanding of hybrid vehicle design and testing at WVU and encouraged the development of a research agenda in heavy-duty hybrid vehicles. As a result, WVU has now completed three programs in hybrid transit bus emissions characterization, and WVU faculty are leading the Transportation Research Board effort to define life cycle costs for hybrid transit buses. Research and enrollment records show that approximately 100 graduate students have benefited substantially from the hybrid vehicle GATE program at WVU.

  3. NREL Fills Leadership Role at Wind Technology Center - News Releases | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NREL Fills Leadership Role at Wind Technology Center October 2, 2015 Dr. Daniel Laird will join the Energy Department's National Renewable Energy Laboratory on Oct. 12 as director of the National Wind Technology Center (NWTC), the country's premier wind energy technology research facility. Laird, who earned his Ph.D. in mechanical engineering from the University of Madison-Wisconsin, is relocating from the Energy Department's Sandia National Laboratories in Albuquerque, New Mexico, where he is

  4. EXC-12-0005 - In the Matter of Halco Lighting Technologies | Department of

    Office of Environmental Management (EM)

    Energy 5 - In the Matter of Halco Lighting Technologies EXC-12-0005 - In the Matter of Halco Lighting Technologies On July 10, 2012, OHA issued a decision granting an Application for Exception filed by Halco Lighting Technologies (Halco) for relief from the provisions of 10 C.F.R. Part 430, Energy Conservation Program: Energy Conservation Standards and Test Procedures for General Service Fluorescent Lamps and Incandescent Reflector Lamps (Lighting Efficiency Standards). In its exception

  5. Intertek Center for Evaluation of Clean Energy Technology (CECET...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Operations Manager here at the Phoenix Intertek office under transportation technology. ... We also do homologation testing for smaller niche organizations. Here at the Phoenix site, ...

  6. National Fuel Cell Technology Evaluation Center (NFCTEC) (Revised...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    information. Since 2004 NREL has produced around 200 CDPs for these hydrogen and fuel cell technology validation projects: * Hydrogen Fuel Cell Vehicle and Infrastructure...

  7. National Wind Technology Center to Debut New Dynamometer (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2013-05-01

    New test facility will be used to accelerate the development and deployment of next-generation offshore and land-based wind energy technologies.

  8. Virginia Center for Innovative Technology CIT | Open Energy Informatio...

    Open Energy Info (EERE)

    p?titleVirginiaCenterforInnovativeTechnologyCIT&oldid783249" Feedback Contact needs updating Image needs updating Reference needed Missing content Broken link Other...

  9. The Center for Advanced Ceramics Technology CACT | Open Energy...

    Open Energy Info (EERE)

    itleTheCenterforAdvancedCeramicsTechnologyCACT&oldid780750" Feedback Contact needs updating Image needs updating Reference needed Missing content Broken link Other...

  10. China Technology Center Celebrates 15 Years | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    energy-efficient to reduce the depletion of natural resources and lower environmental pollution. New forms of reliable and efficient energy sources and technologies will be made...

  11. Effective White Light Options for Parking Area Lighting | Department of

    Office of Environmental Management (EM)

    Energy Effective White Light Options for Parking Area Lighting Effective White Light Options for Parking Area Lighting Document details lighting technologies that provide low-maintenance alternatives to high-pressure sodium lighting. PDF icon white_light_parking_area..pdf More Documents & Publications LED Provides Effective and Efficient Parking Area Lighting at the NAVFAC Engineering Service Center Demonstration Assessment of Light Emitting Diode (LED) Street Lighting, Final Report

  12. EA-1939: Reese Technology Center Wind and Battery Integration Project, Lubbock County, TX

    Broader source: Energy.gov [DOE]

    This EA will evaluate the potential environmental impacts of a proposal by the Center for Commercialization of Electric Technologies to demonstrate battery technology integration with wind generated electricity by deploying and evaluating utility-scale lithium battery technology to improve grid performance and thereby aid in the integration of wind generation into the local electricity supply.

  13. Improved Light Utilization in Camelina: Center for Enhanced Camelina Oil (CECO)

    SciTech Connect (OSTI)

    2012-01-01

    PETRO Project: The Danforth Center will optimize light utilization in Camelina, a drought-resistant, cold-tolerant oilseed crop. The team is modifying how Camelina collects sunlight, engineering its topmost leaves to be lighter in color so sunlight can more easily reflect onto lower parts of the plant. A more uniform distribution of light would improve the efficiency of photosynthesis. Combined with other strategies to produce more oil in the seed, Camelina would yield more oil per plant. The team is also working to allow Camelina to absorb carbon dioxide (CO2) more efficiently, providing more carbon input for oil production. The goal is to improve light utilization and oil production to the point where Camelina produces enough fuel precursors per acre to compete with other fuels.

  14. Construction progresses at GE's Oil & Gas Technology Center | GE Global

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research Home > Impact > Construction progressing at GE's newest research center, the Oil & Gas Technology Center in Oklahoma City Click to email this to a friend (Opens in new window) Share on Facebook (Opens in new window) Click to share (Opens in new window) Click to share on LinkedIn (Opens in new window) Click to share on Tumblr (Opens in new window) Construction progressing at GE's newest research center, the Oil & Gas Technology Center in Oklahoma City Construction is

  15. Center for Advanced Separation Technology Honaker, Rick 01 COAL...

    Office of Scientific and Technical Information (OSTI)

    Advanced Separation Technology Honaker, Rick 01 COAL, LIGNITE, AND PEAT; 54 ENVIRONMENTAL SCIENCES The U.S. is the largest producer of mining products in the world. In 2011, U.S....

  16. National Center for Appropriate Technology | Open Energy Information

    Open Energy Info (EERE)

    Appropriate Technology Jump to: navigation, search Name: NCAT Energy Services Address: P.O. BOX 3838 Place: Butte, MT Zip: 59702 Phone Number: 800.ASK.NCAT Website: www.ncat.org...

  17. Jimmy John > Postdoc - California Institute of Technology > Center...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Jimmy John Postdoc - California Institute of Technology jj383@cornell.edu Formerly a member of the Abrua Group, Jimmy received his Ph.D. in 2013. His new role will be as a...

  18. Oak Ridge - A Center of Innovation & Technology

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    logo-blank Home Oak Ridge Advantages Managed Properties News Corporate Residents / Affiliates Contact Events CROET's Award-winning program CROET's Award-winning program Established in 1995, CROET and its subsidiaries own, develop and manage over 300 acres of former Department of Energy property at the East Tennessee Technology Park (ETTP) and the Oak Ridge Science & Technology Park. CROET's award-winning program to revitalize former DOE properties in Oak Ridge has resulted in the creation of

  19. New and Underutilized Technology: High Bay LED Lighting

    Broader source: Energy.gov [DOE]

    The following information outlines key deployment considerations for high bay LED lighting within the Federal sector.

  20. Wind Technology Testing Center Earns A2LA Accreditation for Blade...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Earns A2LA Accreditation for Blade Testing Wind Technology Testing Center Earns A2LA Accreditation for Blade Testing October 1, 2012 - 12:16pm Addthis This is an excerpt from the...

  1. Vehicle Technologies Office Merit Review 2014: DOE GATE Center of Excellence in Sustainable Vehicle Systems

    Broader source: Energy.gov [DOE]

    Presentation given by Clemson University at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about DOE GATE Center of...

  2. Vehicle Technologies Office Merit Review 2014: Hoosier Heavy Hybrid Center of Excellence at Purdue University

    Broader source: Energy.gov [DOE]

    Presentation given by Purdue University at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about Hoosier Heavy Hybrid Center...

  3. Vehicle Technologies Office Merit Review 2015: GATE Center of Excellence in Sustainable Vehicle Systems

    Broader source: Energy.gov [DOE]

    Presentation given by Clemson University at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about GATE center of excellence...

  4. National Fuel Cell Technology Evaluation Center (NFCTEC); (NREL) National Renewable Energy Laboratory

    SciTech Connect (OSTI)

    Kurtz, Jennifer; Sprik, Sam

    2014-03-11

    This presentation gives an overview of the National Fuel Cell Technology Evaluation Center (NFCTEC), describes how NFCTEC benefits the hydrogen and fuel cell community, and introduces a new fuel cell cost/price aggregation project.

  5. Vehicle Technologies Office Merit Review 2015: GATE Center for Electric Drive Transportation

    Broader source: Energy.gov [DOE]

    Presentation given by Regents University of Michigan at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about GATE Center...

  6. EA-1345: Cleanup and Closure of the Energy Technology Engineering Center

    Broader source: Energy.gov [DOE]

    DOE prepared an EA and finding of no significant impact (FONSI) for cleanup and closure of DOE’s Energy Technology Engineering Center at the Santa Susana Field Laboratory in 2003. However, DOE’s...

  7. Demonstration Assessment of Light Emitting Diode (LED) Commercial Garage Lights In the Providence Portland Medical Center, Portland, Oregon

    SciTech Connect (OSTI)

    Ton, My K.; Richman, Eric E.; Gilbride, Theresa L.

    2008-11-11

    This U.S. Department of Energy GATEWAY Demonstration project studied the applicability of light-emitting diode (LED) luminaires for commercial parking garage applications. High-pressure sodium (HPS) area luminaires were replaced with new LED area luminaires. The project was supported under the U.S. Department of Energy (DOE) Solid State Lighting Program. Other participants in the demonstration project included Providence Portland Medical Center in Portland, Oregon, the Energy Trust of Oregon, and Lighting Sciences Group (LSG) Inc. Pacific Northwest National Laboratory (PNNL) conducted the measurements and analysis of the results. PNNL manages GATEWAY demonstrations for DOE and represents their perspective in the conduct of the work. Quantitative and qualitative measurements of light and electrical power were taken at the site for both HPS and LED light sources. Economic costs were estimated and garage users’ responses to the new light sources were gauged with a survey. Six LED luminaires were installed in the below-ground parking level A, replacing six existing 150W HPS lamps spread out over two rows of parking spaces. Illuminance measurements were taken at floor level approximately every 4 ft on a 60-ft x 40-ft grid to measure light output of these LED luminaires which were termed the “Version 1” luminaires. PNNL conducted power measurements of the circuit in the garage to which the 6 luminaires were connected and determined that they drew an average of 82 W per lamp. An improved LED luminaire, Version 2, was installed in Level B of the parking garage. Illuminance measurements were not made of this second luminaire on site due to higher traffic conditions, but photometric measurements of this lamp and Version 1 were made in an independent testing laboratory and power usage for Version 2 was also measured. Version 1 was found to produce 3600 lumens and Version 2 was found to produce 4700 lumens of light and to consume 78 Watts. Maximum and minimum light levels were measured for the HPS and LED Version 1 luminaires and projected for the Version 2 luminaires. Maximum light levels were 23.51 foot candles, 20.54 fc, and 26.7 fc respectively and minimum light levels were 1.49 fc, 1.45 fc, and 1.88 fc. These results indicate very similar or even slightly higher light levels produced by the LED lamps, despite the higher lumen output of the HPS lamp. The LED lamps provide higher luminaire efficacy because all of the light is directed down and out. None of it is “lost” in the fixture. Also the HPS luminaire had poorly designed optics and a plastic covering that tended to get dirty and cracked, further decreasing the realized light output.[is this an accurate way to say this?] Consumer perceptions of the Version 2 LED were collected via a written survey form given to maintenance and security personnel. More than half felt the LED luminaires provided more light than the HPS lamps and a majority expressed a preference for the new lamps when viewing the relamped area through a security camera. Respondents commented that the LED luminaires were less glary, created less shadows, had a positive impact on visibility, and improved the overall appearance of the area. PNNL conducted an economic analysis and found that the Version 1 lamp produced annual energy savings of 955 kWh and energy cost savings of $76.39 per lamp at electricity rates of 6.5 cents per kWh and $105.03 at 11 cents per kWh. PNNL found that the Version 2 lamp produced annual energy savings of 991 kWh and energy cost savings of $79.26 per lamp at electricity rates of 6.5 cents per kWh and $108.98 at 11 cents per kWh. PNNL also calculated simple payback and found that Version 1 showed paybacks of 5.4 yrs at 6.5c/kWh and 4.1 yrs at 11c/kWh while Version 2 showed paybacks of 5.2 yrs at 6.5c/kWh and 3.9 yrs at 11c/kWh.

  8. Apply: Solid-State Lighting Advanced Technology R&D - 2014(DE...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    4 (DE-FOA-0000973) Apply: Solid-State Lighting Advanced Technology R&D - 2014 ... Through research and development of solid-state lighting (SSL),including both ...

  9. Apply: Solid-State Lighting Advanced Technology R&D - 2015 Funding...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    5 Funding Opportunity Apply: Solid-State Lighting Advanced Technology R&D - 2015 Funding ... The U.S. Department of Energy (DOE) announced a solid-state lighting (SSL) R&D funding ...

  10. Funding Opportunity for Solid-State Lighting Advanced Technology R&D – 2014

    Broader source: Energy.gov [DOE]

    On December 6, 2013, DOE announced solid-state lighting funding opportunity DE-FOA-0000973, "Solid-State Lighting Advanced Technology R&D - 2014." A total of up to $10 million in funding is...

  11. OLEDWORKS DEVELOPS INNOVATIVE HIGH-PERFORMANCE DEPOSITION TECHNOLOGY TO REDUCE MANUFACTURING COST OF OLED LIGHTING

    Broader source: Energy.gov [DOE]

    The high manufacturing cost of OLED lighting is a major barrier to the growth of the emerging OLED lighting industry. OLEDWorks is developing high-performance deposition technology that addresses...

  12. Oak Ridge Centers for Manufacturing Technology - Partnership and Impact on the Semiconductor Industry

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Partnership and Impact on the Semiconductor Industry The many testimonials coming in result from Jack Cook making contacts with some of the people who experienced the Oak Ridge Centers for Manufacturing Technology firsthand. Here is his introduction followed by the first of three letters pertaining to one partnership arrangement created by the Oak Ridge Centers for Manufacturing Technology (ORCMT). This first letter is from Dr. Dan Hoffman, a former Oak Ridge National Laboratory (ORNL) employee

  13. DOE SciDAC's Earth System Grid Center for Enabling Technologies Final

    Office of Scientific and Technical Information (OSTI)

    Report for University of Southern California Information Sciences Institute (Technical Report) | SciTech Connect SciTech Connect Search Results Technical Report: DOE SciDAC's Earth System Grid Center for Enabling Technologies Final Report for University of Southern California Information Sciences Institute Citation Details In-Document Search Title: DOE SciDAC's Earth System Grid Center for Enabling Technologies Final Report for University of Southern California Information Sciences Institute

  14. DOE SciDAC's Earth System Grid Center for Enabling Technologies Final

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Report (Technical Report) | SciTech Connect DOE SciDAC's Earth System Grid Center for Enabling Technologies Final Report Citation Details In-Document Search Title: DOE SciDAC's Earth System Grid Center for Enabling Technologies Final Report The mission of the Earth System Grid Federation (ESGF) is to provide the worldwide climate-research community with access to the data, information, model codes, analysis tools, and intercomparison capabilities required to make sense of enormous climate

  15. DOE SciDAC's Earth System Grid Center for Enabling Technologies Final

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Report for University of Southern California Information Sciences Institute (Technical Report) | SciTech Connect DOE SciDAC's Earth System Grid Center for Enabling Technologies Final Report for University of Southern California Information Sciences Institute Citation Details In-Document Search Title: DOE SciDAC's Earth System Grid Center for Enabling Technologies Final Report for University of Southern California Information Sciences Institute The mission of the Earth System Grid Federation

  16. Final Site-Wide Environmental Assessment Department of Energy's National Wind Technology Center at NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Final Site-Wide Environmental Assessment Department of Energy's National Wind Technology Center Golden, Colorado at the National Renewable Energy Laboratory DOE/EA-1914 May 2014 THIS PAGE INTENTIONALLY LEFT BLANK DOE/EA-1914 i May 2014 Department of Energy Golden Field Office 15013 Denver West Parkway Golden, Colorado 80401 FINDING OF NO SIGNIFICANT IMPACT SITE-WIDE ENVIRONMENTAL ASSESSMENT OF THE DEPARTMENT OF ENERGY'S NATIONAL WIND TECHNOLOGY CENTER, GOLDEN, COLORADO AT THE NATIONAL RENEWABLE

  17. Final Site-Wide Environmental Assessment of National Renewable Energy Laboratory's National Wind Technology Center

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    May 31, 2002 DOE/EA 1378 FINDING OF NO SIGNIFICAflJT IMPACT For the NATIONAL WIND TECHNOLOGY CENTER Site Operations and Short-Term and Long-Term Improvement Programs Golden, Colorado AGENCY: Department of Energy, Golden Field Office ACTION: Finding of No Significant Impact SUMMARY: The Department of Energy (DOE) conducted a Site-Wide Environmental Assessment (EA) of the National Wind Technology Center (NWTC) to evaluate potential impacts of site operations and short-term and long-term

  18. Ricardo's ACTION Strategy: An Enabling Light Duty Diesel Technology for the

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    US Market | Department of Energy Ricardo's ACTION Strategy: An Enabling Light Duty Diesel Technology for the US Market Ricardo's ACTION Strategy: An Enabling Light Duty Diesel Technology for the US Market 2005 Diesel Engine Emissions Reduction (DEER) Conference Presentations and Posters PDF icon 2005_deer_greaney.pdf More Documents & Publications Light-Duty Diesel EngineTechnology to Meet Future Emissions and Performance Requirements of the U.S. Market US Tier 2 Bin 2 Diesel Research

  19. Energy Recovered Light Source Technology at TJNAF | U.S. DOE...

    Office of Science (SC) Website

    Energy Recovered Light Source Technology at TJNAF Nuclear Physics (NP) NP Home About Research Facilities Science Highlights Benefits of NP Applications of Nuclear Science ...

  20. Upcoming Webinar March 11: National Fuel Cell Technology Evaluation Center (NFCTEC)

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Energy Department will present a live webinar on the National Fuel Cell Technology Evaluation Center (NFCTEC), which is dedicated to the independent analysis of advanced hydrogen and fuel cell technologies at the Energy Department's Energy Systems Integration Facility located at the National Renewable Energy Laboratory in Golden, Colorado.

  1. Smart Grid Technology Gives Small Business New Light | Department of Energy

    Energy Savers [EERE]

    Technology Gives Small Business New Light Smart Grid Technology Gives Small Business New Light September 21, 2011 - 3:58pm Addthis Smart grid technology installations provided not only new work, but new customers for Narrows Electric owner Gary Miklethun, far l., and his team, from l. to r., Ken Dehart, Rodney Thomas and Dave Brosie. Smart grid technology installations provided not only new work, but new customers for Narrows Electric owner Gary Miklethun, far l., and his team, from l. to r.,

  2. Lighting System Optimization: Leveraging the New Technology Paradigm

    Energy Savers [EERE]

    Commercial Advanced Lighting Controls Project 14 Advanced Control Demonstration Projects Utility EE Program Specs and Qualified Products List Training Programs for Designers and...

  3. EA-1750: Smart Grid, Center for Commercialization of Electric Technology, Technology Solutions for Wind Integration in ERCOT, Houston, Texas

    Broader source: Energy.gov [DOE]

    This EA evaluates the potential environmental impacts of providing a financial assistance grant under the American Recovery and Reinvestment Act of 2009 to the Center for Commercialization of Electric Technology to facilitate the development and demonstration of a multi-faceted, synergistic approach to managing fluctuations in wind power within the Electric Reliability Council of Texas transmission grid.

  4. Vehicle Technologies Office Merit Review 2015: Analyzing Real-World Light

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Duty Vehicle Efficiency Benefits | Department of Energy Analyzing Real-World Light Duty Vehicle Efficiency Benefits Vehicle Technologies Office Merit Review 2015: Analyzing Real-World Light Duty Vehicle Efficiency Benefits Presentation given by National Renewable Energy Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about analyzing real-world light duty vehicle efficiency benefits. PDF icon

  5. SOLID-STATE LIGHTING BUILDING TECHNOLOGIES OFFICE Solid-State Lighting Patents Resulting from DOE-Funded Projects

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    BUILDING TECHNOLOGIES OFFICE Solid-State Lighting Patents Resulting from DOE-Funded Projects As of January 2015, 96 solid-state lighting (SSL) patents have been awarded to research projects fund- ed by the U.S. Department of Energy. Since December 2000, when DOE began funding SSL research projects, a total of 247 patent applications have been submitted, ranging from large businesses (79) and small businesses (90) to universities (66) and national laboratories (12). DOE tracks three types of

  6. Wind Technology Testing Center Earns A2LA Accreditation for Blade Testing |

    Broader source: Energy.gov (indexed) [DOE]

    Department of Energy Third Quarter 2012 edition of the Wind Program R&D Newsletter. The Massachusetts Wind Technology Testing Center (WTTC), a joint effort by the U.S. Department of Energy (DOE), the Massachusetts Clean Energy Center, and the National Renewable Energy Laboratory (NREL), was recently accredited by the American Association for Laboratory Accreditation (A2LA) to test wind turbine blades to International Electrotechnical Commission (IEC) standards. The facility is one of the

  7. DOE Announces Selections for Solid-State Lighting Core Technology and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Product Development Funding Opportunities (Round 3) | Department of Energy 3) DOE Announces Selections for Solid-State Lighting Core Technology and Product Development Funding Opportunities (Round 3) The National Energy Technology Laboratory (NETL), on behalf of the U.S. Department of Energy (DOE), is pleased to announce eight selections in response to the Solid-State Lighting (SSL) Core Technology Research and Product Development Funding Opportunity Announcements (Round 3). These selections

  8. DOE Announces Selections for Solid-State Lighting Core Technology and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Product Development Funding Opportunities (Round 4) | Department of Energy 4) DOE Announces Selections for Solid-State Lighting Core Technology and Product Development Funding Opportunities (Round 4) The National Energy Technology Laboratory (NETL), on behalf of the U.S. Department of Energy (DOE), is pleased to announce 13 selections in response to the Solid-State Lighting (SSL) Core Technology Research and Product Development Funding Opportunity Announcements (Round 4). These selections

  9. Light Matters (A "Life at the Frontiers of Energy Research" contest entry from the 2011 Energy Frontier Research Centers (EFRCs) Summit and Forum)

    ScienceCinema (OSTI)

    Atwater, Harry (Director, Light-Material Interactions in Energy Conversion (LMI), California Institute of Technology); LMI Staff

    2011-11-02

    'Light Matters' was submitted by the Center for Light-Material Interactions in Energy Conversion (LMI) to the 'Life at the Frontiers of Energy Research' video contest at the 2011 Science for Our Nation's Energy Future: Energy Frontier Research Centers (EFRCs) Summit and Forum. Twenty-six EFRCs created short videos to highlight their mission and their work. This video was selected as one of five winners by a distinguished panel of judges for its 'striking photography and visual impact'. LMI, an EFRC directed by Harry Atwater at the California Institute of Technology is a partnership of scientists from three institutions: CalTech (lead), University of California, Berkeley, and the University of Illinois at Urbana-Champaign. The Office of Basic Energy Sciences in the U.S. Department of Energy's Office of Science established the 46 Energy Frontier Research Centers (EFRCs) in 2009. These collaboratively-organized centers conduct fundamental research focused on 'grand challenges' and use-inspired 'basic research needs' recently identified in major strategic planning efforts by the scientific community. The overall purpose is to accelerate scientific progress toward meeting the nation's critical energy challenges. The mission of Light-Material Interactions in Energy Conversion is 'to tailor the morphology, complex dielectric structure, and electronic properties of matter to sculpt the flow of sunlight, enabling light conversion to electrical and chemical energy with unprecedented efficiency.' Research topics are: catalysis (imines hydrocarbons), solar photovoltaic, solar fuels, photonic, solid state lighting, metamaterial, optics, phonons, thermal conductivity, solar electrodes, photsynthesis, CO{sub 2} (convert), greenhouse gas, and matter by design.

  10. Confronting the galactic center gamma-ray excess with a light scalar dark matter

    SciTech Connect (OSTI)

    Ghosh, Dilip Kumar; Mondal, Subhadeep; Saha, Ipsita

    2015-02-24

    The Fermi Large Area Telescope observed an excess in gamma-ray emission spectrum coming from the center of the Milky Way galaxy. This data reveals that a light dark matter (DM) candidate of mass in the range 31–40 GeV, dominantly decaying into bb{sup -bar} final state, can explain the presence of the observed bump in photon energy. We try to interpret this observed phenomena by sneutrino DM annihilation into pair of fermions in the Supersymmetric Inverse Seesaw Model (SISM). This model can also account for tiny non-zero neutrino masses satisfying existing neutrino oscillation data. We show that a Higgs portal DM in this model is in perfect agreement with this new interpretation besides satisfying all other existing collider, cosmological and low energy experimental constraints.

  11. Oak Ridge Centers for Manufacturing Technology „ Insights from Jack Cook

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Insights from Jack Cook The long-term partner with Dave Beck from Y-12, as well as Co-Director of the Oak Ridge Centers for Manufacturing Technology (ORMCT), was Jack Cook of Oak Ridge National Laboratory"s (ORNL"s) Engineering Technology Division. Jack had accepted the position when Dave Bartine, whom Dave Beck had asked at the very beginning to co-direct ORCMT, left to become chief scientist for NASA"s Kennedy Space Flight Center in Florida. Jack recalled that John Jones had

  12. GE China Technology Center Wins Top 12 Most Innovative Practices Award of

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    "Multinational Companies in Shanghai" | GE Global Research China Technology Center Wins Top 12 Most Innovative Practices Award of "Multinational Companies in Shanghai" Click to email this to a friend (Opens in new window) Share on Facebook (Opens in new window) Click to share (Opens in new window) Click to share on LinkedIn (Opens in new window) Click to share on Tumblr (Opens in new window) GE China Technology Center Wins Top 12 Most Innovative Practices Award of

  13. Technology Assessment: NREL Provides Know-How for Highly Energy-Efficient Data Centers (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2012-05-01

    NREL leads the effort to change how energy is used worldwide by helping identify and eliminate barriers to energy efficiency and clean energy technology deployment. The laboratory takes a portfolio approach that explores the full range of technology options for developing and implementing innovative energy performance solutions. The Research Support Facility (RSF) data center is a prime example of NREL's capabilities and expertise in energy efficiency. But, more important, its features can be replicated. NREL provides custom technical assistance and training for improved data center performance to help our customers realize cost savings.

  14. Case Study: Fuel Cells Increase Reliability at First National Bank of Omaha Technology Center

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fuel Cells Increase Reliability at First National Bank of Omaha Technology Center Fuel cells are a viable primary power choice for data centers-they generate highly reliable on-site power and useful thermal energy, and they can reduce greenhouse gas emissions by more than 50% compared to the baseline. 1 First National Bank of Omaha installed a fuel cell system in 1999 to provide primary power to its data center in Omaha, Nebraska. In more than 89,000 hours of operation through October 2009, the

  15. Promising Technology: Parabolic Aluminized Reflector Light-Emitting Diodes

    Broader source: Energy.gov [DOE]

    Parabolic aluminized reflectors, or PARs, are directional lamps typically used in recessed lighting. In contrast to CFLs, LEDs offer additional advantages including no warm up time, improved dimming and control capabilities, and for some products much greater efficacy ratings.

  16. Microsoft Word - Science and Technology of Future Light Sources...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    apparatus, product, or process disclosed, or represents ... Grains of Materials 10 nm Ferromagnetic Vortex 10 nm ... applicability in energy technologies. 5. What Is Needed? ...

  17. Light-Duty Lean GDI Vehicle Technology Benchmark

    Broader source: Energy.gov [DOE]

    2010 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C.

  18. HOTEL-CONNECTED LIGHTING SYSTEMS MEETING AND TECHNOLOGY DEVELOPMENT...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    MEETING AND TECHNOLOGY DEVELOPMENT WORKSHOP Portland Marriott Downtown Waterfront 1401 SW Naito Parkway Portland, OR 97201 1-877-901-6632 The room block reserved at the Portland...

  19. Oak Ridge Centers for Manufacturing Technology - Partnership and Impact on th

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Partnership and Impact on the Semiconductor Industry, part 2 The Oak Ridge Centers for Manufacturing Technology in partnership with SEMATECH (Semiconductor Manufacturing TECHnology) had significant impact on the semiconductor industry and allowed several individuals to chart their career courses to success. There are lessons we can learn from that experience. Following on from Dr. Dan Hoffman's story we now look at a second letter to Jack Cook from Dr. Ken Tobin, a Corporate Fellow and still

  20. Development of a National Center for Hydrogen Technology. A Summary Report of Activities Completed at the National Center for Hydrogen Technology - Year 6

    SciTech Connect (OSTI)

    Holmes, Michael

    2012-08-01

    The Energy & Environmental Research Center (EERC) located in Grand Forks, North Dakota, has operated the National Center for Hydrogen Technology (NCHT) since 2005 under a Cooperative Agreement with the U.S. Department of Energy (DOE) National Energy Technology Laboratory (NETL). The EERC has a long history of hydrogen generation and utilization from fossil fuels, and under the NCHT Program, the EERC has accelerated its research on hydrogen generation and utilization topics. Since the NCHT's inception, the EERC has received more than $65 million in funding for hydrogen-related projects ($24 million for projects in the NCHT, which includes federal and corporate partner development funds) involving more than 85 partners (27 with the NCHT). The NCHT Program's nine activities span a broad range of technologies that align well with the Advanced Fuels Program goals and, specifically, those described in the Hydrogen from Coal Program research, development, and demonstration (RD&D) plan that refers to realistic testing of technologies at adequate scale, process intensification, and contaminant control. A number of projects have been completed that range from technical feasibility of several hydrogen generation and utilization technologies to public and technical education and outreach tools. Projects under the NCHT have produced hydrogen from natural gas, coal, liquid hydrocarbons, and biomass. The hydrogen or syngas generated by these processes has also been purified in many of these instances or burned directly for power generation. Also, several activities are still undergoing research, development, demonstration, and commercialization at the NCHT. This report provides a summary overview of the projects completed in Year 6 of the NCHT. Individual activity reports are referenced as a source of detailed information on each activity.

  1. Apply: Solid-State Lighting Advanced Technology R&D - 2014

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    (DE-FOA-0000973) | Department of Energy 4 (DE-FOA-0000973) Apply: Solid-State Lighting Advanced Technology R&D - 2014 (DE-FOA-0000973) December 6, 2013 - 4:27pm Addthis This funding opportunity is closed. Through research and development of solid-state lighting (SSL),including both light-emitting diode (LED) and organic light emitting diode (OLED) technologies, the objectives of this opportunity are to: Maximize the energy-efficiency of SSL products in the marketplace Remove market

  2. Three SBIR Grants Awarded for Solid-State Lighting Technology | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Three SBIR Grants Awarded for Solid-State Lighting Technology Three SBIR Grants Awarded for Solid-State Lighting Technology June 19, 2015 - 10:49am Addthis The U.S. Department of Energy Office of Science has awarded Three Small Business Innovation Research (SBIR) grants targeting advances in solid-state lighting (SSL) technology: VoltServer, Inc. (Phase II)-Low-Cost, High Efficiency Integration of SSL and Building Controls using a PET Power Distribution System MoJo Labs Inc.(Phase

  3. Four SBIR Grants Awarded for Solid-State Lighting Technology | Department

    Office of Environmental Management (EM)

    of Energy Four SBIR Grants Awarded for Solid-State Lighting Technology Four SBIR Grants Awarded for Solid-State Lighting Technology May 14, 2014 - 11:25am Addthis The U.S. Department of Energy Office of Science has awarded four Small Business Innovation Research (SBIR) grants targeting advances in solid-state lighting (SSL) technology: VoltServer, Inc. - Low-Cost, High Efficiency Integration of SSL and Building Controls using a PET Power Distribution System Innotec, Corp. - Integrating

  4. Four SBIR Grants Awarded for Solid-State Lighting Technology | Department

    Office of Environmental Management (EM)

    of Energy Four SBIR Grants Awarded for Solid-State Lighting Technology Four SBIR Grants Awarded for Solid-State Lighting Technology May 14, 2014 - 4:39pm Addthis The U.S. Department of Energy Office of Science has awarded four Small Business Innovation Research (SBIR) grants targeting advances in solid-state lighting (SSL) technology: VoltServer, Inc.-Low-Cost, High Efficiency Integration of SSL and Building Controls using a PET Power Distribution System Innotec, Corp.-Integrating Energy

  5. Idaho Nuclear Technology and Engineering Center Low-Activity Waste Process Technology Program FY-2000 Status Report

    SciTech Connect (OSTI)

    Herbst, Alan Keith; Mc Cray, John Alan; Kirkham, Robert John; Pao, Jenn Hai; Argyle, Mark Don; Lauerhass, Lance; Bendixsen, Carl Lee; Hinckley, Steve Harold

    2000-11-01

    The Low-Activity Waste Process Technology Program anticipated that grouting will be used for disposal of low-level and transuranic wastes generated at the Idaho Nuclear Technology Engineering Center (INTEC). During fiscal year 2000, grout formulations were studied for transuranic waste derived from INTEC liquid sodium-bearing waste and for projected newly generated low-level liquid waste. Additional studies were completed using silica gel and other absorbents to solidify sodium-bearing wastes. A feasibility study and conceptual design were completed for the construction of a grout pilot plant for simulated wastes and demonstration facility for actual wastes.

  6. Idaho Nuclear Technology and Engineering Center Low-Activity Waste Process Technology Program FY-2000 Status Report

    SciTech Connect (OSTI)

    Herbst, A.K.; McCray, J.A.; Kirkham, R.J.; Pao, J.; Argyle, M.D.; Lauerhass, L.; Bendixsen, C.L.; Hinckley, S.H.

    2000-10-31

    The Low-Activity Waste Process Technology Program anticipated that grouting will be used for disposal of low-level and transuranic wastes generated at the Idaho Nuclear Technology Engineering Center (INTEC). During fiscal year 2000, grout formulations were studied for transuranic waste derived from INTEC liquid sodium-bearing waste and for projected newly generated low-level liquid waste. Additional studies were completed using silica gel and other absorbents to solidify sodium-bearing wastes. A feasibility study and conceptual design were completed for the construction of a grout pilot plant for simulated wastes and demonstration facility for actual wastes.

  7. Calcined Waste Storage at the Idaho Nuclear Technology and Engineering Center

    SciTech Connect (OSTI)

    M. D. Staiger M. C. Swenson

    2007-06-01

    This report provides a quantitative inventory and composition (chemical and radioactivity) of calcined waste stored at the Idaho Nuclear Technology and Engineering Center. From December 1963 through May 2000, liquid radioactive wastes generated by spent nuclear fuel reprocessing were converted into a solid, granular form called calcine. This report also contains a description of the calcine storage bins.

  8. New EM Technology: Spray Lights up Contamination Hot Spots

    Broader source: Energy.gov [DOE]

    OAK RIDGE, Tenn. – Oak Ridge National Laboratory (ORNL) researchers have developed a new technology to determine the extent of contamination in Cold War facilities that could replace costly and time-consuming traditional survey methods used by EM.

  9. DEVELOPMENT OF A NATIONAL CENTER FOR HYDROGEN TECHNOLOGY: A SUMMARY REPORT OF ACTIVITIES COMPLETED AT THE NATIONAL CENTER FOR HYDROGEN TECHNOLOGY FROM 2005 TO 2010

    SciTech Connect (OSTI)

    Michael Holmes

    2011-05-31

    The Energy & Environmental Research Center (EERC) located in Grand Forks, North Dakota, has operated the National Center for Hydrogen Technology® (NCHT®) since 2005 under a Cooperative Agreement with the U.S. Department of Energy??s (DOE) National Energy Technology Laboratory (NETL). The EERC has a long history of hydrogen generation and utilization from fossil fuels, and under the NCHT Program, the EERC has accelerated its research of hydrogen generation and utilization topics. Since the NCHT??s inception, the EERC has received more than $65 million in funding of hydrogen-related projects ($20 million for the NCHT project which includes federal and corporate development partner funds) involving more than 85 partners (27 with the NCHT). The NCHT project??s 19 activities span a broad range of technologies that align well with the Advanced Fuels Program goals and, specifically, those described in the Hydrogen from Coal Program research, development, and demonstration (RD&D) plan. A number of projects have been completed which range from technical feasibility of several hydrogen generation and utilization technologies to public and technical education and outreach tools. Projects under the NCHT have produced hydrogen from natural gas, coal, liquid hydrocarbons, and biomass. The hydrogen or syngas generated by these processes has also been purified to transportation-grade quality in many of these instances or burned directly for power generation. Also, several activities are still undergoing research, development, demonstration, and commercialization at the NCHT. This report provides a summary overview of the projects completed in the first 5 years of the NCHT. Individual activity reports are referenced as a source of detailed information on each activity.

  10. DOE Announces Selections for Solid-State Lighting Core Technology Research

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Call (Round 6) | Department of Energy Research Call (Round 6) DOE Announces Selections for Solid-State Lighting Core Technology Research Call (Round 6) The National Energy Technology Laboratory (NETL), on behalf of the U.S. Department of Energy (DOE), is pleased to announce four selections in response to the Solid-State Lighting (SSL) Core Technology Research Call (Round 6) DE-PS26-09NT013775. These selections are expected to fill key technology gaps, provide enabling knowledge or data, and

  11. Fact #868: April 13, 2015 Automotive Technology Has Improved Performance and Fuel Economy of New Light Vehicles Dataset

    Broader source: Energy.gov [DOE]

    Excel file and dataset for Automotive Technology Has Improved Performance and Fuel Economy of New Light Vehicles

  12. Vehicle Technologies Office Merit Review 2015: Modeling for Light and Heavy Vehicle Market Analysis

    Broader source: Energy.gov [DOE]

    Presentation given by Energetics at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about modeling for light and heavy...

  13. Vehicle Technologies Office Merit Review 2015: Ultra Efficient Light Duty Powertrain with Gasoline Low Temperature Combustion

    Broader source: Energy.gov [DOE]

    Presentation given by Delphi Powertrain at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about ultra efficient light duty...

  14. Vehicle Technologies Office Merit Review 2015: Light-Duty Diesel Combustion

    Broader source: Energy.gov [DOE]

    Presentation given by Sandia National Laboratories at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about light-duty...

  15. BTO Awards Small Business Grants for Lighting, Building-Integrated Heat and Moisture Exchange Technology

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy Office of Science has awarded four Small Business Innovation Research (SBIR) grants targeting advances in solid-state lighting (SSL) and building-integrated heat and moisture exchange technology.

  16. 1366 Technologies Shines a Light on American Innovation

    Broader source: Energy.gov [DOE]

    An inside look at 1366 Technologies' innovative approach to solar manufacturing. Documenting how a $4 million grant from the Advanced Research Projects Agency-Energy (ARPA-E), through the Recovery Act is helping to make their ambitious goal of producing solar at the cost of coal a reality.

  17. Apply: Solid-State Lighting Advanced Technology R&D - 2015 Funding

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Opportunity | Department of Energy 5 Funding Opportunity Apply: Solid-State Lighting Advanced Technology R&D - 2015 Funding Opportunity October 14, 2014 - 3:57pm Addthis This funding opportunity is closed. The U.S. Department of Energy (DOE) announced a solid-state lighting (SSL) R&D funding opportunity on October 14, 2014. Under this funding opportunity (DE-FOA-0001171, "Solid-State Lighting Advanced Technology R&D - 2015"), a total of up to $10 million in funding is

  18. Promising Technology: Retrofit Lights to Light-Emitting Diodes in Refrigerators

    Broader source: Energy.gov [DOE]

    LEDs increase in efficacy at lower temperatures, in contrast with conventional fluorescents. The low temperatures in display cases, therefore, make this an attractive application of LEDs to reduce energy consumption. In addition to saving lighting energy, an LED retrofit can potentially reduce the cooling load in a display case because LEDs emit less heat than do fluorescent bulbs.

  19. Available decontamination and decommissioning capabilities at the Savannah River Technology Center

    SciTech Connect (OSTI)

    Polizzi, L.M.; Norkus, J.K.; Paik, I.K.; Wooten, L.A.

    1992-08-19

    The Safety Analysis and Engineering Services Group has performed a survey of the Savannah River Technology Center (SRTC) technical capabilities, skills, and experience in Decontamination and Decommissioning (D D) activities. The goal of this survey is to enhance the integration of the SRTC capabilities with the technical needs of the Environmental Restoration Department D D program and the DOE Office of Technology Development through the Integrated Demonstration Program. This survey has identified technical capabilities, skills, and experience in the following D D areas: Characterization, Decontamination, Dismantlement, Material Disposal, Remote Systems, and support on Safety Technology for D D. This review demonstrates the depth and wealth of technical capability resident in the SRTC in relation to these activities, and the unique qualifications of the SRTC to supply technical support in the area of DOE facility D D. Additional details on specific technologies and applications to D D will be made available on request.

  20. Available decontamination and decommissioning capabilities at the Savannah River Technology Center

    SciTech Connect (OSTI)

    Polizzi, L.M.; Norkus, J.K.; Paik, I.K.; Wooten, L.A.

    1992-08-19

    The Safety Analysis and Engineering Services Group has performed a survey of the Savannah River Technology Center (SRTC) technical capabilities, skills, and experience in Decontamination and Decommissioning (D&D) activities. The goal of this survey is to enhance the integration of the SRTC capabilities with the technical needs of the Environmental Restoration Department D&D program and the DOE Office of Technology Development through the Integrated Demonstration Program. This survey has identified technical capabilities, skills, and experience in the following D&D areas: Characterization, Decontamination, Dismantlement, Material Disposal, Remote Systems, and support on Safety Technology for D&D. This review demonstrates the depth and wealth of technical capability resident in the SRTC in relation to these activities, and the unique qualifications of the SRTC to supply technical support in the area of DOE facility D&D. Additional details on specific technologies and applications to D&D will be made available on request.

  1. Light-Duty Diesel EngineTechnology to Meet Future Emissions and Performance

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Requirements of the U.S. Market | Department of Energy EngineTechnology to Meet Future Emissions and Performance Requirements of the U.S. Market Light-Duty Diesel EngineTechnology to Meet Future Emissions and Performance Requirements of the U.S. Market 2004 Diesel Engine Emissions Reduction (DEER) Conference Presentation: Ricardo, Inc. PDF icon 2004_deer_greaney.pdf More Documents & Publications Ricardo's ACTION Strategy: An Enabling Light Duty Diesel Technology for the US Market US Tier

  2. Calcine Waste Storage at the Idaho Nuclear Technology and Engineering Center

    SciTech Connect (OSTI)

    Staiger, Merle Daniel; M. C. Swenson

    2005-01-01

    This report documents an inventory of calcined waste produced at the Idaho Nuclear Technology and Engineering Center during the period from December 1963 to May 2000. The report was prepared based on calciner runs, operation of the calcined solids storage facilities, and miscellaneous operational information that establishes the range of chemical compositions of calcined waste stored at Idaho Nuclear Technology and Engineering Center. The report will be used to support obtaining permits for the calcined solids storage facilities, possible treatment of the calcined waste at the Idaho National Engineering and Environmental Laboratory, and to ship the waste to an off-site facility including a geologic repository. The information in this report was compiled from calciner operating data, waste solution analyses and volumes calcined, calciner operating schedules, calcine temperature monitoring records, and facility design of the calcined solids storage facilities. A compact disk copy of this report is provided to facilitate future data manipulations and analysis.

  3. Lighting Retrofit Workbook: A Practical“How To” Guide for the National Park Service Visitor Centers

    Broader source: Energy.gov [DOE]

    Workbook describes ways to maximize lighting energy savings while maintaining, or improving the lighting quality in national parks. It guides people through a lighting audit, assists in determining problem areas, and recommends a course of action. The workbook offers assistance in the development of an overall plan, suggests mechanisms for design and financial assistance, and recommends a routine maintenance program.

  4. Advanced Technologies for Light-Duty Vehicles (released in AEO2006)

    Reports and Publications (EIA)

    2006-01-01

    A fundamental concern in projecting the future attributes of light-duty vehicles-passenger cars, sport utility vehicles, pickup trucks, and minivans-is how to represent technological change and the market forces that drive it. There is always considerable uncertainty about the evolution of existing technologies, what new technologies might emerge, and how consumer preferences might influence the direction of change. Most of the new and emerging technologies expected to affect the performance and fuel use of light-duty vehicles over the next 25 years are represented in the National Energy Modeling System (NEMS); however, the potential emergence of new, unforeseen technologies makes it impossible to address all the technology options that could come into play. The previous section of Issues in Focus discussed several potential technologies that currently are not represented in NEMS. This section discusses some of the key technologies represented in NEMS that are expected to be implemented in light-duty vehicles over the next 25 years.

  5. Update and Expansion of the Center of Automotive Technology Excellence Under the Graduate Automotive Technology Education (GATE) Program at the University of Tennessee, Knoxville

    SciTech Connect (OSTI)

    Irick, David

    2012-08-30

    The Graduate Automotive Technology Education (GATE) Center at the University of Tennessee, Knoxville has completed its seventh year of operation under this agreement, its thirteenth year in total. During this period the Center has involved eleven GATE Fellows and three GATE Research Assistants in preparing them to contribute to advanced automotive technologies in the centers focus area: Advanced Hybrid Propulsion and Control Systems. In addition to the impact that the Center has had on the students and faculty involved, the presence of the center has led to the acquisition of resources that probably would not have been obtained if the GATE Center had not existed. Significant industry interaction such as equipment donations, and support for GATE students has been realized. The value of the total resources brought to the university (including related research contracts) exceeds $2,000,000.

  6. Science and Technology of Future Light Sources: A White Paper

    SciTech Connect (OSTI)

    Bergmann, Uwe; Corlett, John; Dierker, Steve; Falcone, Roger; Galayda, John; Gibson, Murray; Hastings, Jerry; Hettel, Bob; Hill, John; Hussain, Zahid; Kao, Chi-Chang; Kirz, a= Janos; Long, Gabrielle; McCurdy, Bill; Raubenheimer, Tor; Sannibale, Fernando; Seeman, John; Shen, Z.-X.; Shenoy, Gopal; Schoenlein, Bob; Shen, Qun; /Argonne /Brookhaven /LBL, Berkeley /SLAC, SSRL

    2009-02-03

    Many of the important challenges facing humanity, including developing alternative sources of energy and improving health, are being addressed by advances that demand the improved understanding and control of matter. While the visualization, exploration, and manipulation of macroscopic matter have long been technological goals, scientific developments in the twentieth century have focused attention on understanding matter on the atomic scale through the underlying framework of quantum mechanics. Of special interest is matter that consists of natural or artificial nanoscale building blocks defined either by atomic structural arrangements or by electron or spin formations created by collective correlation effects (Figure 1.1). The essence of the challenge to the scientific community has been expressed in five grand challenges for directing matter and energy recently formulated by the Basic Energy Sciences Advisory Committee [1]. These challenges focus on increasing our understanding of, and ultimately control of, matter at the level of atoms, electrons. and spins, as illustrated in Figure 1.1, and serve the entire range of science from advanced materials to life sciences. Meeting these challenges will require new tools that extend our reach into regions of higher spatial, temporal, and energy resolution. X-rays with energies above 10 keV offer capabilities extending beyond the nanoworld shown in Figure 1.1 due to their ability to penetrate into optically opaque or thick objects. This opens the door to combining atomic level information from scattering studies with 3D information on longer length scales from real space imaging with a resolution approaching 1 nm. The investigation of multiple length scales is important in hierarchical structures, providing knowledge about function of living organisms, the atomistic origin of materials failure, the optimization of industrial synthesis, or the working of devices. Since the fundamental interaction that holds matter together is of electromagnetic origin, it is intuitively clear that electromagnetic radiation is the critical tool in the study of material properties. On the level of atoms, electrons, and spins, x-rays have proved especially valuable. Future advanced x-ray sources and instrumentation will extend the power of x-ray methods to reach greater spatial resolution, increased sensitivity, and unexplored temporal domains. The purpose of this document is threefold: (1) summarize scientific opportunities that are beyond the reach of today's x-ray sources and instrumentation; (2) summarize the requirements for advanced x-ray sources and instrumentation needed to realize these scientific opportunities, as well as potential methods of achieving them; and (3) outline the R&D required to establish the technical feasibility of these advanced x-ray sources and instrumentation.

  7. Energy Recovered Light Source Technology at TJNAF | U.S. DOE Office of

    Office of Science (SC) Website

    Science (SC) Energy Recovered Light Source Technology at TJNAF Nuclear Physics (NP) NP Home About Research Facilities Science Highlights Benefits of NP Applications of Nuclear Science Applications of Nuclear Science Archives Small Business Innovation / Technology Transfer Funding Opportunities Nuclear Science Advisory Committee (NSAC) Community Resources Contact Information Nuclear Physics U.S. Department of Energy SC-26/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P:

  8. Idaho Nuclear Technology and Engineering Center Newly Generated Liquid Waste Demonstration Project Feasibility Study

    SciTech Connect (OSTI)

    Herbst, A.K.

    2000-02-01

    A research, development, and demonstration project for the grouting of newly generated liquid waste (NGLW) at the Idaho Nuclear Technology and Engineering Center is considered feasible. NGLW is expected from process equipment waste, decontamination waste, analytical laboratory waste, fuel storage basin waste water, and high-level liquid waste evaporator condensate. The potential grouted waste would be classed as mixed low-level waste, stabilized and immobilized to meet RCRA LDR disposal in a grouting process in the CPP-604 facility, and then transported to the state.

  9. Electric Power Research Institute Environmental Control Technology Center Report to the Steering Committee, July 1996

    SciTech Connect (OSTI)

    1996-11-15

    Operations and maintenance continued this month at the Electric Power Research Institute's Environmental Control Technology Center. Testing for the Hazardous Air Pollutant (HAP) test block was conducted using the Carbon Injection System (the 4.0 MW Spray Dryer Absorber System and the Pulse Jet Fabric Filter). Testing also continued across the B and W/CHX Heat Exchanger project. The 1.0 MW Cold-Side Selective Catalytic Reduction (SCR) unit and the 4.0 MW Pilot Wet Scrubber remained idle this month in a cold-standby mode. Inspections of these idled systems were conducted this month.

  10. Vehicle Technologies Office Merit Review 2015: Hoosier Heavy Hybrid Center of Excellence (H3CoE) at Purdue University

    Broader source: Energy.gov [DOE]

    Presentation given by Purdue University at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about Hoosier Heavy Hybrid Center...

  11. Vehicle Technologies Office Merit Review 2014: GATE Center for Electric Drive Transportation at the University of Michigan- Dearborn

    Broader source: Energy.gov [DOE]

    Presentation given by Regents University of Michigan at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about GATE Center...

  12. Fact #853 December 29, 2014 Stop/Start Technology is in nearly 5% of All New Light Vehicles Produced- Dataset

    Broader source: Energy.gov [DOE]

    Excel file with dataset for Fact #853: December  29, 2014 Stop/Start Technology is in nearly 5% of All New Light Vehicles Produced

  13. NREL National Wind Technology Center (NWTC): M2 Tower; Boulder, Colorado (Data)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Jager, D.; Andreas, A.

    1996-09-24

    The National Wind Technology Center (NWTC), located at the foot of the Rocky Mountains near Boulder, Colorado, is a world-class research facility managed by NREL for the U.S. Department of Energy. NWTC researchers work with members of the wind energy industry to advance wind power technologies that lower the cost of wind energy through research and development of state-of-the-art wind turbine designs. NREL's Measurement and Instrument Data Center provides data from NWTC's M2 tower which are derived from instruments mounted on or near an 82 meter (270 foot) meteorological tower located at the western edge of the NWTC site and about 11 km (7 miles) west of Broomfield, and approximately 8 km (5 miles) south of Boulder, Colorado. The data represent the mean value of readings taken every two seconds and averaged over one minute. The wind speed and direction are measured at six heights on the tower and air temperature is measured at three heights. The dew point temperature, relative humidity, barometric pressure, totalized liquid precipitation, and global solar radiation are also available.

  14. NREL National Wind Technology Center (NWTC): M2 Tower; Boulder, Colorado (Data)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Jager, D.; Andreas, A.

    The National Wind Technology Center (NWTC), located at the foot of the Rocky Mountains near Boulder, Colorado, is a world-class research facility managed by NREL for the U.S. Department of Energy. NWTC researchers work with members of the wind energy industry to advance wind power technologies that lower the cost of wind energy through research and development of state-of-the-art wind turbine designs. NREL's Measurement and Instrument Data Center provides data from NWTC's M2 tower which are derived from instruments mounted on or near an 82 meter (270 foot) meteorological tower located at the western edge of the NWTC site and about 11 km (7 miles) west of Broomfield, and approximately 8 km (5 miles) south of Boulder, Colorado. The data represent the mean value of readings taken every two seconds and averaged over one minute. The wind speed and direction are measured at six heights on the tower and air temperature is measured at three heights. The dew point temperature, relative humidity, barometric pressure, totalized liquid precipitation, and global solar radiation are also available.

  15. DWPF (Defense Waste Processing Facility) canister impact testing and analyses for the Transportation Technology Center

    SciTech Connect (OSTI)

    Farnsworth, R.K.; Mishima, J.

    1988-12-01

    A legal weight truck cask design has been developed for the US Department of Energy by GA Technologies, Inc. The cask will be used to transport defense high-level waste canisters produced by the Defense Waste Processing Facility (DWPF) at the Savannah River Plant. The development of the cask required the collection of impact data for the DWPF canisters. The Materials Characterization Center (MCC) performed this work under the guidance of the Transportation Technology Center (TTC) at Sandia National Laboratories. Two full-scale DWPF canisters filled with nonradioactive borosilicate glass were impacted under ''normal'' and ''hypothetical'' accident conditions. Two canisters, supplied by the DWPF, were tested. Each canister was vertically dropped on the bottom end from a height of either 0.3 m or 9.1 m (for normal or hypothetical accident conditions, respectively). The structural integrity of each canister was then examined using helium leak and dye penetrant testing. The canisters' diameters and heights, which had been previously measured, were then remeasured to determine how the canister dimensions had changed. Following structural integrity testing, the canisters were flaw leak tested. For transportation flaw leak testing, four holes were fabricated into the shell of canister A-27 (0.3 m drop height). The canister was then transported a total distance of 2069 miles. During transport, the waste form material that fell from each flaw was collected to determine the amount of size distribution of each flaw release. 2 refs., 8 figs., 12 tabs.

  16. Application of Developed APCVD Transparent Conducting Oxides and Undercoat Technologies for Economical OLED Lighting

    SciTech Connect (OSTI)

    Martin Bluhm; James Coffey; Roman Korotkov; Craig Polsz; Alexandre Salemi; Robert Smith; Ryan Smith; Jeff Stricker; Chen Xu; Jasmine Shirazi; George Papakonstantopulous; Steve Carson; Claudia Goldman; Soren Hartmann; Frank Jessen; Bianca Krogmann; Christoph Rickers; Manfred Ruske; Holger Schwab; Dietrich Bertram

    2011-01-02

    Economics is a key factor for application of organic light emitting diodes (OLED) in general lighting relative to OLED flat panel displays that can handle high cost materials such as indium tin oxide (ITO) or Indium zinc oxide (IZO) as the transparent conducting oxide (TCO) on display glass. However, for OLED lighting to penetrate into general illumination, economics and sustainable materials are critical. The issues with ITO have been documented at the DOE SSL R&D and Manufacturing workshops for the last 5 years and the issue is being exacerbated by export controls from China (one of the major sources of elemental indium). Therefore, ITO is not sustainable because of the fluctuating costs and the United States (US) dependency on other nations such as China. Numerous alternatives to ITO/IZO are being evaluated such as Ag nanoparticles/nanowires, carbon nanotubes, graphene, and other metal oxides. Of these other metal oxides, doped zinc oxide has attracted a lot of attention over the last 10 years. The volume of zinc mined is a factor of 80,000 greater than indium and the US has significant volumes of zinc mined domestically, resulting in the ability for the US to be self-sufficient for this element that can be used in optoelectronic applications. The costs of elemental zinc is over 2 orders of magnitude less than indium, reflecting the relative abundance and availability of the elements. Arkema Inc. and an international primary glass manufacturing company, which is located in the United States, have developed doped zinc oxide technology for solar control windows. The genesis of this DOE SSL project was to determine if doped zinc oxide technology can be taken from the commodity based window market and translate the technology to OLED lighting. Thus, Arkema Inc. sought out experts, Philips Lighting, Pacific Northwest National Laboratories (PNNL) and National Renewable Research Laboratories (NREL), in OLED devices and brought them into the project. This project had a clear focus on economics and the work plan focused both on doped ZnO process and OLED device structure that would be consistent with the new TCO. The team successfully made 6 inch OLEDs with a serial construction. More process development is required to optimize commercial OLED structures. Feasibility was demonstrated on two different light extraction technologies: 1/4 lambda refractive index matching and high-low-high band pass filter. Process development was also completed on the key precursors for the TCO, which are ready for pilot-plant scale-up. Subsequently, Arkema has developed a cost of ownership model that is consistent with DOE SSL R&D Manufacturing targets as outlined in the DOE SSL R&D Manufacturing 2010 report. The overall outcome of this project was the demonstration that doped zinc oxide can be used for OLED devices without a drop-off in performance while gaining the economic and sustainable benefits of a more readily available TCO. The broad impact of this project, is the facilitation of OLED lighting market penetration into general illumination, resulting in significant energy savings, decreased greenhouse emissions, with no environmental impact issues such as mercury found in Fluorescent technology. The primary objective of this project was to develop a commercially viable process for 'Substrates' (Substrate/ undercoat/ TCO topcoat) to be used in production of OLED devices (lamps/luminaries/modules). This project focused on using Arkema's recently developed doped ZnO technology for the Fenestration industry and applying the technology to the OLED lighting industry. The secondary objective was the use of undercoat technology to improve light extraction from the OLED device. In optical fields and window applications, technology has been developed to mitigate reflection losses by selecting appropriate thicknesses and refractive indices of coatings applied either below or above the functional layer of interest. This technology has been proven and implemented in the fenestration industry for more than 15 years. Successful completion of

  17. A Measurement Management Technology for Improving Energy Efficiency in Data Centers and Telecommunication Facilities

    SciTech Connect (OSTI)

    Hendrik Hamann, Levente Klein

    2012-06-28

    Data center (DC) electricity use is increasing at an annual rate of over 20% and presents a concern for the Information Technology (IT) industry, governments, and the society. A large fraction of the energy use is consumed by the compressor cooling to maintain the recommended operating conditions for IT equipment. The most common way to improve the DC efficiency is achieved by optimally provisioning the cooling power to match the global heat dissipation in the DC. However, at a more granular level, the large range of heat densities of today's IT equipment makes the task of provisioning cooling power optimized to the level of individual computer room air conditioning (CRAC) units much more challenging. Distributed sensing within a DC enables the development of new strategies to improve energy efficiency, such as hot spot elimination through targeted cooling, matching power consumption at rack level with workload schedule, and minimizing power losses. The scope of Measurement and Management Technologies (MMT) is to develop a software tool and the underlying sensing technology to provide critical decision support and control for DC and telecommunication facilities (TF) operations. A key aspect of MMT technology is integration of modeling tools to understand how changes in one operational parameter affect the overall DC response. It is demonstrated that reduced ordered models for DC can generate, in less than 2 seconds computational time, a three dimensional thermal model in a 50 kft{sup 2} DC. This rapid modeling enables real time visualization of the DC conditions and enables 'what if' scenarios simulations to characterize response to 'disturbances'. One such example is thermal zone modeling that matches the cooling power to the heat generated at a local level by identifying DC zones cooled by a specific CRAC. Turning off a CRAC unit can be simulated to understand how the other CRAC utilization changes and how server temperature responds. Several new sensing technologies were added to the existing MMT platform: (1) air contamination (corrosion) sensors, (2) power monitoring, and (3) a wireless environmental sensing network. All three technologies are built on cost effective sensing solutions that increase the density of sensing points and enable high resolution mapping of DCs. The wireless sensing solution enables Air Conditioning Unit (ACU) control while the corrosion sensor enables air side economization and can quantify the risk of IT equipment failure due to air contamination. Validation data for six test sites demonstrate that leveraging MMT energy efficiency solutions combined with industry best practices results in an average of 20% reduction in cooling energy, without major infrastructure upgrades. As an illustration of the unique MMT capabilities, a data center infrastructure efficiency (DCIE) of 87% (industry best operation) was achieved. The technology is commercialized through IBM System and Technology Lab Services that offers MMT as a solution to improve DC energy efficiency. Estimation indicates that deploying MMT in existing DCs can results in an 8 billion kWh savings and projection indicates that constant adoption of MMT can results in obtainable savings of 44 billion kWh in 2035. Negotiations are under way with business partners to commercialize/license the ACU control technology and the new sensor solutions (corrosion and power sensing) to enable third party vendors and developers to leverage the energy efficiency solutions.

  18. Current Development of Nuclear Thermal Propulsion technologies at the Center for Space Nuclear Research

    SciTech Connect (OSTI)

    Robert C. O'Brien; Steven K. Cook; Nathan D. Jerred; Steven D. Howe; Ronald Samborsky; Daniel Brasuell

    2012-09-01

    Nuclear power and propulsion has been considered for space applications since the 1950s. Between 1955 and 1972 the US built and tested over twenty nuclear reactors / rocket engines in the Rover/NERVA programs1. The Aerojet Corporation was the prime contractor for the NERVA program. Modern changes in environmental laws present challenges for the redevelopment of the nuclear rocket. Recent advances in fuel fabrication and testing options indicate that a nuclear rocket with a fuel composition that is significantly different from those of the NERVA project can be engineered; this may be needed to ensure public support and compliance with safety requirements. The Center for Space Nuclear Research (CSNR) is pursuing a number of technologies, modeling and testing processes to further the development of safe, practical and affordable nuclear thermal propulsion systems.

  19. Calcine Waste Storage at the Idaho Nuclear Technology and Engineering Center

    SciTech Connect (OSTI)

    M. D. Staiger

    1999-06-01

    A potential option in the program for long-term management of high-level wastes at the Idaho Nuclear Technology and Engineering Center (INTEC), at the Idaho National Engineering and Environmental Laboratory, calls for retrieving calcine waste and converting it to a more stable and less dispersible form. An inventory of calcine produced during the period December 1963 to May 1999 has been prepared based on calciner run, solids storage facilities operating, and miscellaneous operational information, which gives the range of chemical compositions of calcine waste stored at INTEC. Information researched includes calciner startup data, waste solution analyses and volumes calcined, calciner operating schedules, solids storage bin capacities, calcine storage bin distributor systems, and solids storage bin design and temperature monitoring records. Unique information on calcine solids storage facilities design of potential interest to remote retrieval operators is given.

  20. Innovative High-Performance Deposition Technology for Low-Cost Manufacturing of OLED Lighting

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hamer, Tim Spencer OLEDWorks LLC Innovative High-Performance Deposition Technology for Low-Cost Manufacturing of OLED Lighting 2015 Building Technologies Office Peer Review DOE Agreement Number DE-EE0006263 Images show Sunic G5 VTE deposition tool and nozzle array for deposition of 3 components - OLEDWorks equipment is proprietary and won't be shown. 2 Project Summary Timeline: Start date: 10/1/2013 Planned end date: 03/31/2015 Key Milestones 1. Design, and fabrication of vaporizer system for

  1. Centers | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    Centers Energy Frontier Research Centers (EFRCs) EFRCs Home Centers EFRC External Websites Research Science Highlights News & Events Publications History Contact BES Home Centers Print Text Size: A A A FeedbackShare Page EFRC Map Centers ordered alphabetically by state and then by center name California Light-Material Interactions in Energy Conversion (LMI) Ralph Nuzzo, California Institute of Technology Center for Nanoscale Controls on Geologic CO2 (NCGC) Donald DePaolo, Lawrence Berkeley

  2. Building Technologies Program Multi-Year Program Plan Technology Validation and Market Introduction 2008

    SciTech Connect (OSTI)

    None, None

    2008-01-01

    Building Technologies Program Multi-Year Program Plan 2008 for technology validation and market introduction, including ENERGY STAR, building energy codes, technology transfer application centers, commercial lighting initiative, EnergySmart Schools, EnergySmar

  3. Idaho Nuclear Technology and Engineering Center (INTEC) (formerly ICPP) ash reutilization study

    SciTech Connect (OSTI)

    Langenwalter, T.; Pettet, M.; Ochoa, R.; Jensen, S.

    1998-05-01

    Since 1984, the coal-fired plant at the Idaho Nuclear Technology and Engineering Center (INTEC, formerly Idaho Chemical Processing Plant) has been generating fly ash at a rate of approximately 1,000 tons per year. This ash is hydrated and placed in an ash bury pit near the coal-fired plant. The existing ash bury pit will be full in less than 1 year at its present rate of use. A conceptual design to build a new ash bury pit was completed, and the new pit is estimated to cost $1.7 million. This report evaluates ash reutilization alternatives that propose to eliminate this waste stream and save the $1.7 million required to build a new pit. The alternatives include using ash for landfill day cover, concrete admixture, flowable fill, soil stabilization, waste remediation, and carbon recovery technology. Both physical and chemical testing, under the guidance of the American Society for Testing and Materials, have been performed on ash from the existing pit and from different steps within the facility`s processes. The test results have been evaluated, compared to commercial ash, and are discussed as they relate to reutilization alternatives. This study recommends that the ash be used in flowable fill concrete for Deactivation and Demolition work at the Idaho National Engineering and Environmental Laboratory.

  4. Global Assessment of Hydrogen Technologies - Task 1 Report Technology Evaluation of Hydrogen Light Duty Vehicles

    SciTech Connect (OSTI)

    Fouad, Fouad H.; Peters, Robert W.; Sisiopiku, Virginia P.; Sullivan Andrew J.; Rousseau, Aymeric

    2007-12-01

    This task analyzes the candidate hydrogen-fueled vehicles for near-term use in the Southeastern U.S. The purpose of this work is to assess their potential in terms of efficiency and performance. This report compares conventional, hybrid electric vehicles (HEV) with gasoline and hydrogen-fueled internal combustion engines (ICEs) as well as fuel cell and fuel cell hybrids from a technology as well as fuel economy point of view. All the vehicles have been simulated using the Powertrain System Analysis Toolkit (PSAT). First, some background information is provided on recent American automotive market trends and consequences. Moreover, available options are presented for introducing cleaner and more economical vehicles in the market in the future. In this study, analysis of various candidate hydrogen-fueled vehicles is performed using PSAT and, thus, a brief description of PSAT features and capabilities are provided. Detailed information on the simulation analysis performed is also offered, including methodology assumptions, fuel economic results, and conclusions from the findings.

  5. Electric Power Research Institute Environmental Control Technology Center: Report to the Steering Committee, June 1996

    SciTech Connect (OSTI)

    1996-06-01

    Operations and maintenance continued this month at the Electric Power Research Institute`s (EPRI`s) Environmental Control Technology Center (ECTC). Testing for the Hazardous Air Pollutant (HAP) test block was conducted using the 4.0 MW Spray Dryer Absorber System (SDA) and Pulse Jet Fabric Filter (PJFF) - Carbon Injection System. Investigations also continued across the B&W/CHX Heat Exchanger unit, while the 1.0 MW Selective Catalytic Reduction (SCR) unit remained idle this month in a cold-standby mode as monthly inspections were conducted. Pilot Testing Highlights Testing efforts in June were focused on the HAP test block and the Trace Elements Removal (TER) test block. Both programs were conducted on the 4.0 MW wet FGD pilot unit and PJFF unit. The HAP test block was temporarily concluded in June to further review the test data. This program began in March as part of the DOE Advanced Power Systems Program; the mission of this program is to accelerate the commercialization of affordable, high-efficiency, low-emission, coal-fueled electric generating technologies. The 1996 HAP test block focuses on three research areas, including: Catalytic oxidation of vapor-phase elemental mercury; Enhanced particulate-phase HAPs removal by electrostatic charging of liquid droplets; and Enhanced mercury removal by addition of additives to FGD process liquor. The TER test block is part of EPRI`s overall program to develop control technology options for reduction of trace element emissions. This experimental program investigates mercury removal and mercury speciation under different operating conditions.

  6. National Marine Renewable Energy Center (UH) | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    National Marine Renewable Energy Center (UH) National Marine Renewable Energy Center (UH) National Marine Renewable Energy Center (UH) Office presentation icon 21_hinmrec_university_of_hawaii_rocheleau.ppt More Documents & Publications Vehicle Technologies Office Merit Review 2014: EV Project: Solar-Assisted Charging Demo Ocean Thermal Extractable Energy Visualization: Final Technical Report Emerging Lighting Technology

  7. Report from the Light Water Reactor Sustainability Workshop on On-Line Monitoring Technologies

    SciTech Connect (OSTI)

    Thomas Baldwin; Magdy Tawfik; Leonard Bond

    2010-06-01

    In support of expanding the use of nuclear power, interest is growing in methods of determining the feasibility of longer term operation for the U.S. fleet of nuclear power plants, particularly operation beyond 60 years. To help establish the scientific and technical basis for such longer term operation, the DOE-NE has established a research and development (R&D) objective. This objective seeks to develop technologies and other solutions that can improve the reliability, sustain the safety, and extend the life of current reactors. The Light Water Reactor Sustainability (LWRS) Program, which addresses the needs of this objective, is being developed in collaboration with industry R&D programs to provide the technical foundations for licensing and managing the long-term, safe, and economical operation of nuclear power plants. The LWRS Program focus is on longer-term and higher-risk/reward research that contributes to the national policy objectives of energy and environmental security. In moving to identify priorities and plan activities, the Light Water Reactor Sustainability Workshop on On-Line Monitoring (OLM) Technologies was held June 1012, 2010, in Seattle, Washington. The workshop was run to enable industry stakeholders and researchers to identify the nuclear industry needs in the areas of future OLM technologies and corresponding technology gaps and research capabilities. It also sought to identify approaches for collaboration that would be able to bridge or fill the technology gaps. This report is the meeting proceedings, documenting the presentations and discussions of the workshop and is intended to serve as a basis for a plan which is under development that will enable the I&C research pathway to achieve its goals. Benefits to the nuclear industry accruing from On Line Monitoring Technology cannot be ignored. Information gathered thus far has contributed significantly to the Department of Energys Light Water Reactor Sustainability Program. DOE has shown great interest in supplying necessary support to help this industry to move forward as indicated by the recent workshop conducted in support of this interest. The Light Water Reactor Sustainability Workshop on On-Line Monitoring Technologies provided an opportunity for industry stakeholders and researchers to gather in order to collectively identify the nuclear industrys needs in the areas of OLM technologies including diagnostics, prognostics, and RUL. Additionally, the workshop provided the opportunity for attendees to pinpoint technology gaps and research capabilities along with the fostering of future collaboration in order to bridge the gaps identified. Attendees concluded that a research and development program is critical to future nuclear operations. Program activities would result in enhancing and modernizing the critical capabilities of instrumentation, information, and control technologies for long-term nuclear asset operation and management. Adopting a comprehensive On Line Monitoring research program intends to: Develop national capabilities at the university and laboratory level Create or renew infrastructure needed for long-term research, education, and testing Support development and testing of needed I&C technologies Improve understanding of, confidence in, and decisions to employ these new technologies in the nuclear power sector and achieve successful licensing and deployment.

  8. Adaptive Street Lighting Controls | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Information Resources » Webcasts » Adaptive Street Lighting Controls Adaptive Street Lighting Controls This two-part DOE Municipal Solid-State Street Lighting Consortium webinar focused on LED street lighting equipped with adaptive control components. In Part I, presenters Amy Olay of the City of San Jose, CA, and Kelly Cunningham of the California Lighting Technology Center at UC Davis discussed their experiences as early adopters of these smart street lighting systems. In Part II, presenters

  9. Evaluation of Metal Halide, Plasma, and LED Lighting Technologies for a Hydrogen Fuel Cell Mobile Light (H 2 LT)

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Miller, L. B.; Donohoe, S. P.; Jones, M. H.; White, W. A.; Klebanoff, L. E.; Velinsky, S. A.

    2015-04-22

    This article reports on the testing and comparison of a prototype hydrogen fuel cell light tower (H2LT) and a conventional diesel-powered metal halide light trailer for use in road maintenance and construction activities. The prototype was originally outfitted with plasma lights and then with light-emitting diode (LED) luminaires. Light output and distribution, lighting energy efficiency (i.e., efficacy), power source thermal efficiency, and fuel costs are compared. The metal halide luminaires have 2.2 and 3.1 times more light output than the plasma and LED luminaires, respectively, but they require more power/lumen to provide that output. The LED luminaires have 1.6 timesmore » better light efficacy than either the metal halide or plasma luminaires. The light uniformity ratios produced by the plasma and LED towers are acceptable. The fuel cell thermal efficiency at the power required to operate the plasma lights is 48%, significantly higher than the diesel generator efficiency of 23% when operating the metal halide lights. Due to the increased efficiency of the fuel cell and the LED lighting, the fuel cost per lumen-hour of the H2LT is 62% of the metal halide diesel light tower assuming a kilogram of hydrogen is twice the cost of a gallon of diesel fuel.« less

  10. Application of Developed APCVD Transparent Conducting Oxides and Undercoat Technologies for Economical OLED Lighting

    SciTech Connect (OSTI)

    Gary Silverman; Bluhm, Martin; Coffey, James; Korotkov, Roman; Polsz, Craig; Salemi, Alexandre; Smith, Robert; Smith, Ryan; Stricker, Jeff; Xu,Chen; Shirazi, Jasmine; Papakonstantopulous, George; Carson, Steve Philips Lighting GmbH Goldman, Claudia; Hartmann, Sren; Jessen, Frank; Krogmann, Bianca; Rickers, Christoph; Ruske, Manfred, Schwab, Holger; Bertram, Dietrich

    2011-01-02

    Economics is a key factor for application of organic light emitting diodes (OLED) in general lighting relative to OLED flat panel displays that can handle high cost materials such as indium tin oxide (ITO) or Indium zinc oxide (IZO) as the transparent conducting oxide (TCO) on display glass. However, for OLED lighting to penetrate into general illumination, economics and sustainable materials are critical. The issues with ITO have been documented at the DOE SSL R&D and Manufacturing workshops for the last 5 years and the issue is being exaserbated by export controls from China (one of the major sources of elemental indium). Therefore, ITO is not sustainable because of the fluctuating costs and the United States (US) dependency on other nations such as China. Numerous alternatives to ITO/IZO are being evaluated such as Ag nanoparticles/nanowires, carbon nanotubes, graphene, and other metal oxides. Of these other metal oxides, doped zinc oxide has attracted a lot of attention over the last 10 years. The volume of zinc mined is a factor of 80,000 greater than indium and the US has significant volumes of zinc mined domestically, resulting in the ability for the US to be self-sufficient for this element that can be used in optoelectonic applications. The costs of elemental zinc is over 2 orders of magnitude less than indium, reflecting the relative abundance and availablility of the elements. Arkema Inc. and an international primary glass manufacturing company, which is located in the United States, have developed doped zinc oxide technology for solar control windows. The genesis of this DOE SSL project was to determine if doped zinc oxide technology can be taken from the commodity based window market and translate the technology to OLED lighting. Thus, Arkema Inc. sought out experts, Philips Lighting, Pacific Northwest National Laboratories (PNNL) and National Renewable Research Laboratories (NREL), in OLED devices and brought them into the project. This project had a clear focus on economics and the work plan focused both on doped ZnO process and OLED device structure that would be consistent with the new TCO. The team successfully made 6 inch OLEDs with a serial construction. More process development is required to optimize commercial OLED structures. Feasibility was demonstrated on two different light extraction technologies: 1/4 lambda refractive index matching and high-low-high band pass filter. Process development was also completed on the key precursors for the TCO, which are ready for pilot-plant scale-up. Subsequently, Arkema has developed a cost of ownership model that is consistent with DOE SSL R&D Manufacturing targets as outlined in the DOE SSL R&D Manufacturing 2010 report. The overall outcome of this project was the demonstration that doped zinc oxide can be used for OLED devices without a drop-off in performance while gaining the economic and sustainable benefits of a more readily available TCO. The broad impact of this project, is the facilitation of OLED lighting market penetration into general illumination, resulting in significant energy savings, decreased greenhouse emissions, with no environmental impact issues such as mercury found in Fluorescent technology.

  11. Calcined Waste Storage at the Idaho Nuclear Technology and Engineering Center

    SciTech Connect (OSTI)

    Staiger, M. Daniel, Swenson, Michael C.

    2011-09-01

    This comprehensive report provides definitive volume, mass, and composition (chemical and radioactivity) of calcined waste stored at the Idaho Nuclear Technology and Engineering Center. Calcine composition data are required for regulatory compliance (such as permitting and waste disposal), future treatment of the caline, and shipping the calcine to an off-Site-facility (such as a geologic repository). This report also contains a description of the calcine storage bins. The Calcined Solids Storage Facilities (CSSFs) were designed by different architectural engineering firms and built at different times. Each CSSF has a unique design, reflecting varying design criteria and lessons learned from historical CSSF operation. The varying CSSF design will affect future calcine retrieval processes and equipment. Revision 4 of this report presents refinements and enhancements of calculations concerning the composition, volume, mass, chemical content, and radioactivity of calcined waste produced and stored within the CSSFs. The historical calcine samples are insufficient in number and scope of analysis to fully characterize the entire inventory of calcine in the CSSFs. Sample data exist for all the liquid wastes that were calcined. This report provides calcine composition data based on liquid waste sample analyses, volume of liquid waste calcined, calciner operating data, and CSSF operating data using several large Microsoft Excel (Microsoft 2003) databases and spreadsheets that are collectively called the Historical Processing Model. The calcine composition determined by this method compares favorably with historical calcine sample data.

  12. Electric Power Research Institute, Environmental Control Technology Center report to the steering committee. Final technical report

    SciTech Connect (OSTI)

    NONE

    1995-12-01

    Operations and maintenance continued this month at the Electric Power Research Institute`s Environmental Control Technology Center. Testing on the 4.0 MW Pilot Wet FGD unit continued with the Pilot High Velocity FGD (PHV) and the Trace Element Removal (TER) test blocks. In the High Velocity test block, SO{sub 2} removal and mist eliminator carryover rates were investigated while operating the absorber unit with various spray nozzle types and vertical mist eliminator sections. During the Trace Element Removal test block, the mercury measurements and control studies involving the EPA Method 29 continued with testing of several impinger capture solutions, and the use of activated carbon injection across the Pulse-Jet Fabric Filter (PJFF) unit. The 4.0 MW Spray Dryer Absorber System was utilized this month in the TER test configuration to inject and transfer activated carbon to the PJFF bags for downstream mercury capture. Work also began in December to prepare the 0.4 MW Mini-Pilot Absorber system for receipt of the B and W Condensing Heat Exchanger (CHX) unit to be used in the 1996 DOE/PRDA testing. The 1.0 MW Cold-Side Selective Catalytic Reduction (SCR) unit remained in cold-standby this month.

  13. Electric Power Research Institute Environmental Control Technology Center final monthly technical report, August 1995

    SciTech Connect (OSTI)

    1995-08-01

    Operations and maintenance continued this month at the Electric Power Research Institute`s Environmental Control Technology Center. Testing on the 4.0 MW Pilot Wet FGD unit this month involved the Trace Element Removal (TER) test block, and the simultaneous testing of the Lime Forced Oxidation process with DBA addition (LDG). Additionally, the second phase of the 1995 Carbon Injection test block began this month with the SDA/PJFF test configuration. At the end of the LDG testing this month, a one-week baseline test was conducted to generate approximately 200 lbs. of magnesium-lime FGD solids for analysis. On the 1.0 MW Post-FGD Selective Catalytic Reduction (SCR) unit, performance testing was continued this month as measurements were taken for NO{sub x} removal efficiency, residual ammonia slip, and S0{sub 3} generation across the catalysts installed in the reactor. As a result of new directions received from EPRI, this will be the last scheduled month of testing for the SCR unit in 1995. At the completion of this month, the unit will be isolated from the flue gas path and placed in a cold-standby mode for future test activities. This report describes the status of facilities and test facilities at the pilot and mini-pilot plants.

  14. DC Pro Software Tool Suite, Data Center Fact Sheet, Industrial Technologies Program

    SciTech Connect (OSTI)

    Not Available

    2009-04-01

    This fact sheet describes how DOE's Data Center Energy Profiler (DC Pro) Software Tool Suite and other resources can help U.S. companies identify ways to improve the efficiency of their data centers.

  15. DOE Announces Selection of National Laboratory Center for Solid-State

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Lighting R&D and Seven Projects for Core Technology Research in Nanotechnology | Department of Energy Selection of National Laboratory Center for Solid-State Lighting R&D and Seven Projects for Core Technology Research in Nanotechnology DOE Announces Selection of National Laboratory Center for Solid-State Lighting R&D and Seven Projects for Core Technology Research in Nanotechnology The National Energy Technology Laboratory (NETL), on behalf of the U.S. Department of Energy

  16. Microsoft Word - Science and Technology of Future Light Sources.doc

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    08/39 BNL-81895-2008 LBNL-1090E-2009 SLAC-R-917 Science and Technology of Future Light Sources A White Paper Report prepared by scientists from ANL, BNL, LBNL and SLAC. The coordinating team consisted of Uwe Bergmann, John Corlett, Steve Dierker, Roger Falcone, John Galayda, Murray Gibson, Jerry Hastings, Bob Hettel, John Hill, Zahid Hussain, Chi-Chang Kao, Janos Kirz, Gabrielle Long, Bill McCurdy, Tor Raubenheimer, Fernando Sannibale, John Seeman, Z.-X. Shen, Gopal Shenoy, Bob Schoenlein, Qun

  17. DOE SciDAC's Earth System Grid Center for Enabling Technologies Final Report

    SciTech Connect (OSTI)

    Williams, Dean N.

    2011-09-27

    The mission of the Earth System Grid Federation (ESGF) is to provide the worldwide climate-research community with access to the data, information, model codes, analysis tools, and intercomparison capabilities required to make sense of enormous climate data sets. Its specific goals are to (1) provide an easy-to-use and secure web-based data access environment for data sets; (2) add value to individual data sets by presenting them in the context of other data sets and tools for comparative analysis; (3) address the specific requirements of participating organizations with respect to bandwidth, access restrictions, and replication; (4) ensure that the data are readily accessible through the analysis and visualization tools used by the climate research community; and (5) transfer infrastructure advances to other domain areas. For the ESGF, the U.S. Department of Energy's (DOE's) Earth System Grid Center for Enabling Technologies (ESG-CET) team has led international development and delivered a production environment for managing and accessing ultra-scale climate data. This production environment includes multiple national and international climate projects (such as the Community Earth System Model and the Coupled Model Intercomparison Project), ocean model data (such as the Parallel Ocean Program), observation data (Atmospheric Radiation Measurement Best Estimate, Carbon Dioxide Information and Analysis Center, Atmospheric Infrared Sounder, etc.), and analysis and visualization tools, all serving a diverse user community. These data holdings and services are distributed across multiple ESG-CET sites (such as ANL, LANL, LBNL/NERSC, LLNL/PCMDI, NCAR, and ORNL) and at unfunded partner sites, such as the Australian National University National Computational Infrastructure, the British Atmospheric Data Centre, the National Oceanic and Atmospheric Administration Geophysical Fluid Dynamics Laboratory, the Max Planck Institute for Meteorology, the German Climate Computing Centre, the National Aeronautics and Space Administration Jet Propulsion Laboratory, and the National Oceanic and Atmospheric Administration. The ESGF software is distinguished from other collaborative knowledge systems in the climate community by its widespread adoption, federation capabilities, and broad developer base. It is the leading source for present climate data holdings, including the most important and largest data sets in the global-climate community, and - assuming its development continues - we expect it to be the leading source for future climate data holdings as well. Recently, ESG-CET extended its services beyond data-file access and delivery to include more detailed information products (scientific graphics, animations, etc.), secure binary data-access services (based upon the OPeNDAP protocol), and server-side analysis. The latter capabilities allow users to request data subsets transformed through commonly used analysis and intercomparison procedures. As we transition from development activities to production and operations, the ESG-CET team is tasked with making data available to all users seeking to understand, process, extract value from, visualize, and/or communicate it to others. This ongoing effort, though daunting in scope and complexity, will greatly magnify the value of numerical climate model outputs and climate observations for future national and international climate-assessment reports. The ESG-CET team also faces substantial technical challenges due to the rapidly increasing scale of climate simulation and observational data, which will grow, for example, from less than 50 terabytes for the last Intergovernmental Panel on Climate Change (IPCC) assessment to multiple Petabytes for the next IPCC assessment. In a world of exponential technological change and rapidly growing sophistication in climate data analysis, an infrastructure such as ESGF must constantly evolve if it is to remain relevant and useful. Regretfully, we submit our final report at the end of project funding. To continue to serve the climate-science community, we are

  18. Preoperational Subsurface Conditions at the Idaho Nuclear Technology and Engineering Center Service Wastewater Discharge Facility

    SciTech Connect (OSTI)

    Ansley, Shannon L.

    2002-02-20

    The Idaho Nuclear Technology and Engineering Center (INTEC) Service Wastewater Discharge Facility replaces the existing percolation ponds as a disposal facility for the INTEC Service Waste Stream. A preferred alternative for helping decrease water content in the subsurface near INTEC, closure of the existing ponds is required by the INTEC Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) Record of Decision (ROD) for Waste Area Group 3 Operable Unit 3-13 (DOE-ID 1999a). By August 2002, the replacement facility was constructed approximately 2 miles southwest of INTEC, near the Big Lost River channel. Because groundwater beneath the Idaho National Engineering and Environmental Laboratory (INEEL) is protected under Federal and State of Idaho regulations from degradation due to INEEL activities, preoperational data required by U.S. Department of Energy (DOE) Order 5400.1 were collected. These data include preexisting physical, chemical, and biological conditions that could be affected by the discharge; background levels of radioactive and chemical components; pertinent environmental and ecological parameters; and potential pathways for human exposure or environmental impact. This document presents specific data collected in support of DOE Order 5400.1, including: four quarters of groundwater sampling and analysis of chemical and radiological parameters; general facility description; site specific geology, stratigraphy, soils, and hydrology; perched water discussions; and general regulatory requirements. However, in order to avoid duplication of previous information, the reader is directed to other referenced publications for more detailed information. Documents that are not readily available are compiled in this publication as appendices. These documents include well and borehole completion reports, a perched water evaluation letter report, the draft INEEL Wellhead Protection Program Plan, and the Environmental Checklist.

  19. Low-Cost Light-Emitting Diode Luminaire for General Illumination...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Low-Cost Light-Emitting Diode Luminaire for General Illumination Presenter: Paul Fini, CREE Santa Barbara Technology Center This project is demonstrating an efficient...

  20. 2015 | Center for Gas SeparationsRelevant to Clean Energy Technologies |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Blandine Jerome 2015 Previous Next List Influence of Solvent-Like Sidechains on the Adsorption of Light Hydrocarbons in Metal-Organic Frameworks Influence of Solvent-Like Sidechains on the Adsorption of Light Hydrocarbons in Metal-Organic Frameworks Schneemann, Andreas; Bloch, Eric D.; Henke, Sebastian; Llewellyn, Philip L.; Long, Jeffrey R.; and Fischer, Roland A. Influence of Solvent-Like Sidechains on the Adsorption of Light Hydrocarbons in Metal-Organic Frameworks. ... Continue reading

  1. Light Water Reactor Sustainability Program Advanced Instrumentation, Information, and Control Systems Technologies Technical Program Plan for 2013

    SciTech Connect (OSTI)

    Hallbert, Bruce; Thomas, Ken

    2014-09-01

    Reliable instrumentation, information, and control (II&C) systems technologies are essential to ensuring safe and efficient operation of the U.S. light water reactor (LWR) fleet. These technologies affect every aspect of nuclear power plant (NPP) and balance-of-plant operations. In 1997, the National Research Council conducted a study concerning the challenges involved in modernization of digital instrumentation and control systems in NPPs. Their findings identified the need for new II&C technology integration.

  2. LIGHT WATER REACTOR SUSTAINABILITY PROGRAM ADVANCED INSTRUMENTATION, INFORMATION, AND CONTROL SYSTEMS TECHNOLOGIES TECHNICAL PROGRAM PLAN FOR 2013

    SciTech Connect (OSTI)

    Hallbert, Bruce; Thomas, Ken

    2014-07-01

    Reliable instrumentation, information, and control (II&C) systems technologies are essential to ensuring safe and efficient operation of the U.S. light water reactor (LWR) fleet. These technologies affect every aspect of nuclear power plant (NPP) and balance-of-plant operations. In 1997, the National Research Council conducted a study concerning the challenges involved in modernization of digital instrumentation and control systems in NPPs. Their findings identified the need for new II&C technology integration.

  3. LED Provides Effective and Efficient Parking Area Lighting at the NAVFAC

    Office of Environmental Management (EM)

    Engineering Service Center | Department of Energy LED Provides Effective and Efficient Parking Area Lighting at the NAVFAC Engineering Service Center LED Provides Effective and Efficient Parking Area Lighting at the NAVFAC Engineering Service Center Document details new lighting technology that reduces energy consumption and reduces maintenance, while providing effective illumination. PDF icon led_parking_lights_navfac.pdf More Documents & Publications Effective White Light Options for

  4. National Center of Excellence for Energy Storage Technology 168.10

    SciTech Connect (OSTI)

    Guezennec, Yann

    2011-12-31

    This report documents the performance of the Ohio State University (OSU) and Edison Welding Institute (EWI) in the period from 10/1/2010 to 12/31/2012. The objective of the project is to establish a Center of Excellence that leverages the strengths of the partners to establish a unique capability to develop and transfer energy storage industries to establish a unique capability in the development and transfer of energy storage system technology through a fundamental understanding of battery electrical and thermal performance, damage and aging mechanisms, and through the development of reliable, high-speed processes for joining substrates in battery cell, module and pack assemblies with low manufacturing variability. During this period, the OSU activity focused on procuring the equipment, materials and supplies necessary to conduct the experiments planned in the statement of project objectives. In detail, multiple laboratory setups were developed to enable for characterizing the open-circuit potential of cathode and anode materials for Li-ion batteries, perform experiments on calorimetry, and finally built multiple cell and module battery cyclers to be able to perform aging campaign on a wide variety of automotive grade battery cells and small modules. This suite of equipment feeds directly into the development, calibration of battery models ranging from first principle electrochemical models to electro-thermal equivalent circuit models suitable for use in control and xEV vehicle simulations. In addition, it allows to develop and calibrate aging models for Li-ion batteries that enable the development of diagnostics and prognostics tools to characterize and predict battery degradation from automotive usage under a wide array of environmental and usage scenarios. The objective of the EWI work scope is to develop improved processes for making metal-tometal joints in advanced battery cells and packs. It will focus on developing generic techniques for making functional (electrically conductive and mechanically robust) metal-to-metal joints between thin substrates. Joints with multiple layers and bimetallic constituents will be investigated. During the current period of performance, EWI has defined the test matrix to evaluate the application of different welding technologies (laser welding, ultrasonic welding, resistance welding) to specific components of battery cells and modules, such as foils-to-tabs, tabs-to-tabs, and tabs-to-bus bars. The test matrix also includes a range of substrates (aluminum 1145 and 1100, copper 110 and nickel 200 as substrates). Furthermore, a set of procedures was defined to perform mechanical and electrical testing of the samples, including metallography, and non-destructive evaluations. Both on the OSU and EWI, this project enabled to leverage very significant industrial collaborations with a wide array of companies ranging from battery manufacturers and pack integrator all the ways to Tier 1 automotive suppliers and OEMs during the period of exercise of the project, and in the future for years to come.

  5. DOE SciDAC's Earth System Grid Center for Enabling Technologies...

    Office of Scientific and Technical Information (OSTI)

    For the ESGF, the U.S. Department of Energy's (DOE's) Earth System Grid Center for ... Publication Date: 2013-12-19 OSTI Identifier: 1111156 Report Number(s): DOE-USC-25773 DOE ...

  6. Vehicle Technologies Office Merit Review 2015: Alternative Fuels Data Center and API

    Broader source: Energy.gov [DOE]

    Presentation given by National Renewable Energy Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about...

  7. Technology Assessment: Strategic Energy Analysis Center (SEAC) 2012 Highlights (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2013-02-01

    This fact sheet lists key analysis products produced by NREL in 2012. Like all NREL analysis products, these aim to increase the understanding of the current and future interactions and roles of energy policies, markets, resources, technologies, environmental impacts, and infrastructure. NREL analysis, data, and tools inform decisions as energy-efficient and renewable energy technologies advance from concept to commercial application.

  8. Overview of free-piston Stirling technology at the NASA Lewis Research Center

    SciTech Connect (OSTI)

    Slaby, J.G.

    1985-01-01

    The activities include: (1) a generic free-piston Stirling technology project being conducted to develop technologies synergistic to both space power and terrestrial heat pump applications in a cooperative, cost-shared effort with the Department of Energy (DOE/Oak Ridge National Laboratory (ORNL)), and (2) a free-piston Stirling space power technology demonstration project as part of the SP-100 program being conducted in support of the Department of Defense (DOD), DOE, and NASA/Lewis. The generic technology effort includes extensive parametric testing of a 1 kW free-piston Stirling engine (RE-1000), development and validation of a free-piston Stirling performance computer code, and fabrication and initial testing of an hydraulic output modification for the RE-1000 engine. The space power technology effort, under SP-100, addresses the status of the 25 kWe Space Power Demonstrator Engine (SPDE) including early test results.

  9. Electric Power Research Institute: Environmental Technology Control Center, report to the Steering committee. Final technical report

    SciTech Connect (OSTI)

    1996-04-01

    This report describes test for air pollution control of flue gas and mercury as a result of coal combustion. The NYSEG Kintigh Station provided flue gas to the Center 100% of the time during this performance period. As the Kintigh Station operated with a variety of coals, fluctuations in the Center`s inlet SO{sub 2} concentrations were experienced. Safety training for the month was conducted by the O&M Superintendent, Maintenance Supervisor and Shift Supervisors. {open_quotes}Personal Protective Equipment{close_quotes} was the topic of the month. Inspections of the ECTC Facility and safety equipment (SCR air-packs, fire extinguishers, etc.) were completed and recorded this month. All systems were found to be in good condition. By continuing to emphasize safe work habits at the Center, we have raised the total number of days without a lost time injury to 1426 as of 4/30/96. The monthly safety meeting with the NYSEG Kintigh Station was held on April 30, 1996 with both NYSEG and ECTC representatives. The topics of discussion included an overview of NYSEG`s upcoming alternate fuel burn, an update on plant staffing changes, and a discussion of future safety training activities.

  10. Energy Saving Melting and Revert Reduction Technology (Energy-SMARRT): Light Metals Permanent Mold Casting

    SciTech Connect (OSTI)

    Fasoyinu, Yemi

    2014-03-31

    Current vehicles use mostly ferrous components for structural applications. It is possible to reduce the weight of the vehicle by substituting these parts with those made from light metals such as aluminum and magnesium. Many alloys and manufacturing processes can be used to produce these light metal components and casting is known to be most economical. One of the high integrity casting processes is permanent mold casting which is the focus of this research report. Many aluminum alloy castings used in automotive applications are produced by the sand casting process. Also, aluminum-silicon (Al-Si) alloys are the most widely used alloy systems for automotive applications. It is possible that by using high strength aluminum alloys based on an aluminum-copper (Al-Cu) system and permanent mold casting, the performance of these components can be enhanced significantly. This will also help to further reduce the weight. However, many technological obstacles need to be overcome before using these alloys in automotive applications in an economical way. There is very limited information in the open literature on gravity and low-pressure permanent mold casting of high strength aluminum alloys. This report summarizes the results and issues encountered during the casting trials of high strength aluminum alloy 206.0 (Al-Cu alloy) and moderate strength alloy 535.0 (Al-Mg alloy). Five engineering components were cast by gravity tilt-pour or low pressure permanent mold casting processes at CanmetMATERIALS (CMAT) and two production foundries. The results of the casting trials show that high integrity engineering components can be produced successfully from both alloys if specific processing parameters are used. It was shown that a combination of melt processing and mold temperature is necessary for the elimination of hot tears in both alloys.

  11. Intertek Center for Evaluation of Clean Energy Technology (CECET) Video (Text Version)

    Broader source: Energy.gov [DOE]

    Richard Jacobson, Operations Manager, Intertek: Hello, my name is Richard Jacobson, and I'm the Operations Manager here at the Phoenix Intertek office under transportation technology. Our facility...

  12. Active Power Control Testing at the U.S. National Wind Technology Center (NWTC) (Presentation)

    SciTech Connect (OSTI)

    Ela, E.

    2011-01-01

    In order to keep the electricity grid stable and the lights on, the power system relies on certain responses from its generating fleet. This presentation evaluates the potential for wind turbines and wind power plants to provide these services and assist the grid during critical times.

  13. Testing Active Power Control from Wind Power at the National Wind Technology Center (NWTC) (Presentation)

    SciTech Connect (OSTI)

    Ela, E.

    2011-05-01

    In order to keep the electricity grid stable and the lights on, the power system relies on certain responses from its generating fleet. This presentation evaluates the potential for wind turbines and wind power plants to provide these services and assist the grid during critical times.

  14. Jie Feng | Center for Gas SeparationsRelevant to Clean Energy Technologies

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    | Blandine Jerome Jie Feng Previous Next List Feng ORISE Research Associate National Energy Technology Laboratory, Morgantown, WV Email: jie.feng[@]netl.doe.gov Phone: 716-361-9078 PhD in Chemical and Biological Engineering, State University of New York at Buffalo BS in Chemical Engineering, Nanchang Institute of Aeronautical Technology, China EFRC Research Membrane gas separation has been under development for 30 years and has achieved significant progress. It is extremely important to

  15. Development and Implementation of the Midwest Geological Sequestration Consortium CO2-Technology Transfer Center

    SciTech Connect (OSTI)

    Greenberg, Sallie E.

    2015-06-30

    In 2009, the Illinois State Geological Survey (ISGS), in collaboration with the Midwest Geological Sequestration Consortium (MGSC), created a regional technology training center to disseminate carbon capture and sequestration (CCS) technology gained through leadership and participation in regional carbon sequestration projects. This technology training center was titled and branded as the Sequestration Training and Education Program (STEP). Over the last six years STEP has provided local, regional, national, and international education and training opportunities for engineers, geologists, service providers, regulators, executives, K-12 students, K-12 educators, undergraduate students, graduate students, university and community college faculty members, and participants of community programs and functions, community organizations, and others. The goal for STEP educational programs has been on knowledge sharing and capacity building to stimulate economic recovery and development by training personnel for commercial CCS projects. STEP has worked with local, national and international professional organizations and regional experts to leverage existing training opportunities and provide stand-alone training. This report gives detailed information on STEP activities during the grant period (2009-2015).

  16. Berkeley Lab News Center » Dancing in the Dark: Berkeley Lab Scientists Shed New Light on Protein-Salt Interactions » Print

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    20/10 3:30 PM Berkeley Lab News Center » Dancing in the Dark: Berkeley Lab Scientists Shed New Light on Protein-Salt Interactions » Print Page 1 of 3 http://newscenter.lbl.gov/feature-stories/2010/08/11/protein-salt-interactions/print/ Simulation of the interaction between triglycine and dissolved sodium sulfite in water shows the long chain-like triglycine molecule (center) interacting directly with sulfite anions (tripods of yellow and red atoms) while also interacting via multiple hydrogen

  17. Evaluation of advanced technologies for residential appliances and residential and commercial lighting

    SciTech Connect (OSTI)

    Turiel, I.; Atkinson, B.; Boghosian, S.; Chan, P.; Jennings, J.; Lutz, J.; McMahon, J.; Rosenquist, G.

    1995-01-01

    Section 127 of the Energy Policy Act requires that the Department of Energy (DOE) prepare a report to Congress on the potential for the development and commercialization of appliances that substantially exceed the present federal or state efficiency standards. Candidate high-efficiency appliances must meet several criteria including: the potential exists for substantial improvement (beyond the minimum established in law) of the appliance`s energy efficiency; electric, water, or gas utilities are prepared to support and promote the commercialization of such appliances; manufacturers are unlikely to undertake development and commercialization of such appliances on their own, or development and production would be substantially accelerated by support to manufacturers. This report describes options to improve the efficiency of residential appliances, including water heaters, clothes washers and dryers, refrigerator/freezers, dishwashers, space heating and cooling devices, as well as residential and commercial lighting products. Data from this report (particularly Appendix 1)were used to prepare the report to Congress mentioned previously. For the residential sector, national energy savings are calculated using the LBL Residential Energy Model. This model projects the number of households and appliance saturations over time. First, end-use consumption is calculated for a base case where models that only meet the standard replace existing models as these reach the end of their lifetime. Second, models with efficiencies equal to the technology under consideration replace existing models that reach the end of their lifetime. For the commercial sector, the COMMEND model was utilized to project national energy savings from new technologies. In this report, energy savings are shown for the period 1988 to 2015.

  18. Self-reported Impacts of LED Lighting Technology Compared to Fuel-based Lighting on Night Market Business Prosperity in Kenya

    SciTech Connect (OSTI)

    Johnstone, Peter; Jacobson, Arne; Mills, Evan; Mumbi, Maina

    2009-02-11

    The notion of"productive use" is often invoked in discussions about whether new technologies improve productivity or otherwise enhance commerce in developing-country contexts. It an elusive concept,especially when quantitative measures are sought. Improved and more energy efficient illumination systems for off-gridapplication--the focus of the Lumina Project--provide a case in which a significant productivity benefit can be imagined, given the importance of light to the successful performance of many tasks, and the very low quality of baseline illumination provided by flame-based source. This Research Note summarizes self-reported quantitative and qualitative impacts of switching to LED lighting technology on the prosperity of night-market business owners and operators. The information was gathered in the context of our 2008 market testing field work in Kenya?s Rift Valley Province, which was performed in the towns of Maai Mahiu and Karagita by Arne Jacobson, Kristen Radecsky, Peter Johnstone, Maina Mumbi, and others. Maai Mahiu is a crossroads town; provision of services to travelers and freight carriers is a primary income source for the residents. In contrast, the primary income for Karagita's residents is from work in the large, factory style flower farms on the eastern shores of Lake Naivasha that specialize in producing cut flowers for export to the European market. According to residents, both towns had populations of 6,000 to 8,000 people in June 2008. We focused on quantifying the economics of fuel-based and LED lighting technology in the context of business use by night market vendors and shop keepers. Our research activities with the business owners and operators included baseline measurement of their fuel-based lighting use, an initial survey, offering for sale data logger equipped rechargeable LED lamps, monitoring the adoption of the LED lamps, and a follow-up survey.

  19. Research | Center for Energy Efficient Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research CEEM is one of 46 Energy Frontier Research Centers funded by the Department of Energy to address the energy challenge through technological advancements. The Center was launched in August 2009 and focuses on fundamental research in the three key areas of photovoltaics, thermoelectrics, and solid-state lighting. These technologies are strongly inter-related, not only through the materials they employ and physical principles upon which they operate, but also in the synergies resulting

  20. National Renewable Energy Laboratory's Hydrogen Technologies and Systems Center is Helping to Facilitate the Transition to a New Energy Future

    SciTech Connect (OSTI)

    Not Available

    2011-01-01

    The Hydrogen Technologies and Systems Center (HTSC) at the U.S. Department of Energy's (DOE) National Renewable Energy Laboratory (NREL) uses a systems engineering and integration approach to hydrogen research and development to help the United States make the transition to a new energy future - a future built on diverse and abundant domestic renewable resources and integrated hydrogen systems. Research focuses on renewable hydrogen production, delivery, and storage; fuel cells and fuel cell manufacturing; technology validation; safety, codes, and standards; analysis; education; and market transformation. Hydrogen can be used in fuel cells to power vehicles and to provide electricity and heat for homes and offices. This flexibility, combined with our increasing demand for energy, opens the door for hydrogen power systems. HTSC collaborates with DOE, other government agencies, industry, communities, universities, national laboratories, and other stakeholders to promote a clean and secure energy future.

  1. New Whole-House Solutions Case Study: Lancaster County Career and Technology Center Green Home 3 - Mount Joy, Pennsylvania

    SciTech Connect (OSTI)

    2014-12-01

    This case study describes a unique vocational program at Lancaster County Career Technology Center in Mount Joy, PA, where high school students are gaining hands-on construction experience in building high performance homes with help from Building America team, Home Innovation Research Labs. This collaboration resulted in the Green Home 3, the third in a series of high performance homes for Apprentice Green. As one of LCCTCs key educational strategies for gaining practical experience, students are involved in building real houses that incorporate state-of-the-art energy efficiency and green technologies. With two homes already completed, the Green Home 3 achieved a 44% whole-house energy savings over the Building America New Construction B10 Benchmark, DOE Zero Energy Ready Home (formerly Challenge Home) certification, and National Green Building Standard Gold-level certification.

  2. Vehicle Technologies Office Merit Review 2015: GATE Center of Excellence at UAB for Lightweight Materials and Manufacturing for Automotive, Truck and Mass Transit

    Broader source: Energy.gov [DOE]

    Presentation given by University of Alabama Birmingham at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about GATE Center...

  3. Vehicle Technologies Office Merit Review 2014: GATE Center of Excellence at UAB for Lightweight Materials and Manufacturing for Automotive, Truck and Mass Transit

    Broader source: Energy.gov [DOE]

    Presentation given by University of Alabama at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about GATE Center of...

  4. Research | Center for Gas SeparationsRelevant to Clean Energy Technologies

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    | Blandine Jerome Research Previous Next List The overall aim of the CGS is to develop the science, i.e., novel synthetic routes combined with novel characterization and computational methods, that will enable us to "tailor-make" a material that has the best possible performance for a given gas separation problem. The focus of the first phase of the Center was on carbon dioxide capture from the flue gases of power plants. In the renewal, we propose to continue the portions of that

  5. NREL - Advanced Vehicles and Fuels Basics - Center for Transportation Technologies and Systems 2010

    SciTech Connect (OSTI)

    2010-01-01

    We can improve the fuel economy of our cars, trucks, and buses by designing them to use the energy in fuels more efficiently. Researchers at the National Renewable Energy Laboratory (NREL) are helping the nation achieve these goals by developing transportation technologies like: advanced vehicle systems and components; alternative fuels; as well as fuel cells, hybrid electric, and plug-in hybrid vehicles. For a text version of this video visit http://www.nrel.gov/learning/advanced_vehicles_fuels.html

  6. NREL - Advanced Vehicles and Fuels Basics - Center for Transportation Technologies and Systems 2010

    ScienceCinema (OSTI)

    None

    2013-05-29

    We can improve the fuel economy of our cars, trucks, and buses by designing them to use the energy in fuels more efficiently. Researchers at the National Renewable Energy Laboratory (NREL) are helping the nation achieve these goals by developing transportation technologies like: advanced vehicle systems and components; alternative fuels; as well as fuel cells, hybrid electric, and plug-in hybrid vehicles. For a text version of this video visit http://www.nrel.gov/learning/advanced_vehicles_fuels.html

  7. Jihan Kim | Center for Gas SeparationsRelevant to Clean Energy Technologies

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    | Blandine Jerome Jihan Kim Previous Next List Kim Jihan Kim Formerly: Postdoctoral Researcher, Lawrence Berkeley National Laboratory Presently: Assistant Professor, Korea Advanced Institute of Science and Technology - KAIST Email: jihankim [at] kaist.ac.kr BS in Electrical Engineering, University of California Berkeley MS and PhD in Electrical Engineering, University of Illinois at Urbana-Champaign EFRC research: My research focuses on developing efficient computational methods to

  8. David Zee | Center for Gas SeparationsRelevant to Clean Energy Technologies

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    | Blandine Jerome Zee Previous Next List Zee PhD Student Department of Chemistry University of California, Berkeley Email: david.zee [at] berkeley.edu Phone: 510-643-3832 BA in Chemistry and Economics, Swarthmore College EFRC Research My research involves the preparation of metal-organic frameworks with low valent early first-row transition metals for selective oxygen-nitrogen separation. These materials may afford tremendous energy savings by supplanting current separation technologies such

  9. Technologies and policies for controlling greenhouse gas emissions from the U. S. automobile and light truck fleet.

    SciTech Connect (OSTI)

    Plotkin, S.

    1999-01-01

    The message conveyed by the above discussion is that there are no shortages of technologies available to improve the fuel efficiency of the U.S. fleet of autos and light trucks. It clearly is technically feasible to improve greatly the fuel economy of the average new light-duty vehicle. Many of these technologies require tradeoffs, however, that manufacturers are unwilling or (as yet) unable to make in today's market and regulatory environment. These tradeoffs involve higher costs (that might be reduced substantially over time with learning and economies of scale), technical risk and added complexity, emissions concerns (especially for direct injection engines, and especially with respect to diesel engine technology), and customer acceptance issues. Even with current low U.S. oil prices, however, many of these technologies may find their way into the U.S. market, or increase their market share, as a consequence of their penetration of European and Japanese markets with their high gasoline prices. Automotive technology is ''fungible'' that is, it can be easily transported from one market to another. Nevertheless, it probably is unrealistic to expect substantial increases in the average fuel economy of the U.S. light-duty fleet without significant changes in the market. Without such changes, the technologies that do penetrate the U.S. market are more likely to be used to increase acceleration performance or vehicle structures or enable four wheel drive to be included in vehicles without a net mpg penalty. In other words, technology by itself is not likely to be enough to raise fleet fuel economy levels - this was the conclusion of the 1995 Ailomar Conference on Energy and Sustainable Transportation, organized by the Transportation Research Board's Committees on Energy and Alternative Fuels, and it is one I share.

  10. Building America Case Study: Lancaster County Career and Technology Center Green Home 3, Mt Joy, Pennsylvania

    SciTech Connect (OSTI)

    Not Available

    2014-12-01

    Transitioning from standard light frame to a thermal mass wall system in a high performance home will require a higher level of design integration with the mechanical systems. The much higher mass in the ICF wall influences heat transfer through the wall and affects how the heating and cooling system responds to changing outdoor conditions. This is even more important for efficient, low-load homes with efficient heat pump systems in colder climates where the heating and cooling peak loads are significantly different from standard construction.This report analyzes a range of design features and component performance estimates in an effort to select practical, cost-effective solutions for high performance homes in a cold climate. Of primary interest is the influence of the ICF walls on developing an effective air sealing strategy and selecting an appropriate heating and cooling equipment type and capacity. The domestic water heating system is analyzed for costs and savings to investigate options for higher efficiency electric water heating. A method to ensure mechanical ventilation air flows is examined. The final solution package includes high-R mass walls, very low infiltration rates, multi-stage heat pump heating, solar thermal domestic hot water system, and energy recovery ventilation. This solution package can be used for homes to exceed 2012 International Energy Conservation Code requirements throughout all climate zones and achieves the DOE Challenge Home certification.

  11. Technology Implementation Plan. Fully Ceramic Microencapsulated Fuel for Commercial Light Water Reactor Application

    SciTech Connect (OSTI)

    Snead, Lance Lewis; Terrani, Kurt A.; Powers, Jeffrey J.; Worrall, Andrew; Robb, Kevin R.; Snead, Mary A.

    2015-04-01

    This report is an overview of the implementation plan for ORNL's fully ceramic microencapsulated (FCM) light water reactor fuel. The fully ceramic microencapsulated fuel consists of tristructural isotropic (TRISO) particles embedded inside a fully dense SiC matrix and is intended for utilization in commercial light water reactor application.

  12. Electric Power Research Institute: Environmental Control Technology Center: Report to the Steering Committee, March 1996. Final technical report

    SciTech Connect (OSTI)

    1996-03-01

    Operations and maintenance continued this month at the Electric Power Research Institute`s Environmental Control Technology Center. Testing on the 4.0 MW Pilot Wet FGD unit continued this month with the Carbon Injection System for the Hazardous Air Pollutant (HAP) test block. With this testing, the mercury measurement (Method 29) studies also continued with various impinger capture solutions. Also, the installation of the B&W/CHX Heat Exchanger unit was completed in March. The 4.0 MW Spray Dryer Absorber System (Carbon Injection System) and the 4.0 MW Pilot Wet FGD Unit and were utilized in the HAP test configuration this month. The 1.0 MW Cold-Side Selective Catalytic Reduction (SCR) unit remained idle this month in a cold- standby mode. Monthly inspections were conducted for all equipment in cold-standby, as well as for the fire safety systems, and will continue to be conducted by the ECTC Operations and Maintenance staff.

  13. Electric Power Research Institute: Environmental Control Technology Center. Report to the Steering Committee, February 1996. Final technical report

    SciTech Connect (OSTI)

    1996-02-01

    Operations and maintenance continued this month at the Electric Power Research Institute`s Environmental Control Technology Center. Testing on the 4.0 MW Pilot Wet FGD unit continued this month with the Carbon Injection System and the Trace Element Removal test blocks. With this testing, the mercury measurement (Method 29) studies also continued with impinger capture solutions. The 4.0 MW Spray Dryer Absorber System (Carbon Injection System) was utilized in the TER test configuration this month. The B&W/CHX Heat Exchanger unit is being installed utilizing the Mini Pilot Flue Gas System. The 1.0 MW Cold- Side Selective Catalytic Reduction (SCR) unit remained idle this month in a cold-standby mode. Monthly inspections were conducted for all equipment in cold-standby, as well as for the fire safety systems, and will continue to be conducted by the ECTC Operations and Maintenance staff.

  14. Scientific Data Management (SDM) Center for Enabling Technologies. 2007-2012

    SciTech Connect (OSTI)

    Ludascher, Bertram; Altintas, Ilkay

    2013-09-06

    Over the past five years, our activities have both established Kepler as a viable scientific workflow environment and demonstrated its value across multiple science applications. We have published numerous peer-reviewed papers on the technologies highlighted in this short paper and have given Kepler tutorials at SC06,SC07,SC08,and SciDAC 2007. Our outreach activities have allowed scientists to learn best practices and better utilize Kepler to address their individual workflow problems. Our contributions to advancing the state-of-the-art in scientific workflows have focused on the following areas. Progress in each of these areas is described in subsequent sections. Workflow development. The development of a deeper understanding of scientific workflows "in the wild" and of the requirements for support tools that allow easy construction of complex scientific workflows; Generic workflow components and templates. The development of generic actors (i.e.workflow components and processes) which can be broadly applied to scientific problems; Provenance collection and analysis. The design of a flexible provenance collection and analysis infrastructure within the workflow environment; and, Workflow reliability and fault tolerance. The improvement of the reliability and fault-tolerance of workflow environments.

  15. Solar Technology Acceleration Center (SolarTAC): Solar Resource & Meteorological Assessment Project (SOLRMAP); Aurora, Colorado (Data)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Wilcox, S.; Andreas, A.

    2011-02-11

    Located in Colorado, near Denver International Airport, SolarTAC is a private, member-based, 74-acre outdoor facility where the solar industry tests, validates, and demonstrates advanced solar technologies. SolarTAC was launched in 2008 by a public-private consortium, including Midwest Research Institute (MRI). As a supporting member of SolarTAC, the U.S. Department of Energy's National Renewable Energy Laboratory (NREL) has established a high quality solar and meteorological measurement station at this location. This Solar Resource and Meteorological Assessment Project (SOLRMAP) provides high quality measurements to support deployment of power projects in the United States. The no-funds-exchanged collaboration brings NREL solar resource assessment expertise together with industry needs for measurements. The end result is high quality data sets to support the financing, design, and monitoring of large scale solar power projects for industry in addition to research-quality data for NREL model development. NREL provides consultation for instrumentation and station deployment, along with instrument calibrations, data acquisition, quality assessment, data distribution, and summary reports. Industry participants provide equipment, infrastructure, and station maintenance.

  16. Solar Technology Acceleration Center (SolarTAC): Solar Resource & Meteorological Assessment Project (SOLRMAP); Aurora, Colorado (Data)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Wilcox, S.; Andreas, A.

    Located in Colorado, near Denver International Airport, SolarTAC is a private, member-based, 74-acre outdoor facility where the solar industry tests, validates, and demonstrates advanced solar technologies. SolarTAC was launched in 2008 by a public-private consortium, including Midwest Research Institute (MRI). As a supporting member of SolarTAC, the U.S. Department of Energy's National Renewable Energy Laboratory (NREL) has established a high quality solar and meteorological measurement station at this location. This Solar Resource and Meteorological Assessment Project (SOLRMAP) provides high quality measurements to support deployment of power projects in the United States. The no-funds-exchanged collaboration brings NREL solar resource assessment expertise together with industry needs for measurements. The end result is high quality data sets to support the financing, design, and monitoring of large scale solar power projects for industry in addition to research-quality data for NREL model development. NREL provides consultation for instrumentation and station deployment, along with instrument calibrations, data acquisition, quality assessment, data distribution, and summary reports. Industry participants provide equipment, infrastructure, and station maintenance.

  17. Pittsburgh Energy Technology Center quarterly technical progress report for the period ending September 30, 1985

    SciTech Connect (OSTI)

    Not Available

    1986-06-01

    Encouraging progress was made toward the development of acid rain control technology. PETC competitively selected and awarded contracts totaling over $8 million over the next three years to firms proposing new concepts for reducing the costs of cleaning the flue gas emissions of older, coal-burning power plants. PETC and ANL have undertaken a joint venture in dry flue-gas scrubbing that will ultimately lead to testing of a sorbent for combined SO/sub x/ and NO/sub x/ removal in Argonne's 20-megawatt spray dryer. The overall objective of a high-sulfur coal research program is to conduct a broad spectrum of coal-related research in order to increase and expand the use of coal in an environmentally acceptable manner. In the liquefaction program area, operations with Wyodak subbituminous coal are proceeding smoothly (Run 249) at the Wilsonville Process Development Unit. Understanding the processes involved in catalyst deactivation is important to the development of longer lived catalysts. In the area of process analysis, PETC has acquired a new version of ASPEN (Advanced System for Process Engineeering) software. The new version was recently installed on PETC's VAX/VMS operating system and is the most up-to-date version currently available. Work at PETC has resulted in the development and testing of a highly automated capillary tube viscometer for use with heavy coal-derived liquids. Results of PETC research in Fischer-Tropsch product characterization were also shared with the technical community. A particularly difficult analytical problem in the characterization of Fischer-Tropsch products is quantitative determination of carbon number distributions by compound class. PETC scientists developed a method that uses capillary gas chromatographic techniques to make these determinations. A paper describing the method was the lead article in the July 1985 issue of the Journal of Chromatographic Science and was featured on the cover.

  18. GUIDED TOUR—CONNECTED LIGHTING SYSTEMS MEETING AND TECHNOLOGY DEVELOPMENT WORKSHOP

    Broader source: Energy.gov [DOE]

    The guided bus tour will provide a first-hand look at an LED connected lighting system installed in an office space in the 911 Federal Building. This eight-story building constructed in the 1950s...

  19. Solid-State Lighting Technology: Current State of the Art and...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Technology: Current State of the Art and Grand Challenges ... Energy Conversion Efficiency Solar Energy Wind Energy Water ... Hydrogen Production Market Transformation ...

  20. Non-Cost Barriers to Consumer Adoption of New Light-Duty Vehicle Technologies

    Broader source: Energy.gov [DOE]

    The rate of adoption of new vehicle technologies and related reductions in petroleum use and greenhouse gas emissions rely on how rapidly technology innovations enter the fleet through new vehicle purchases. New technologies often increase vehicle price, which creates a barrier to consumer purchase, but other barriers to adoption are not due to increased purchase prices. For example, plug-in vehicles, dedicated alternative fuel vehicles, and other new technologies face non-cost barriers such as consumer unfamiliarity or requirements for drivers to adjust behavior. This report reviews recent research to help classify these non-cost barriers and determine federal government programs and actions with the greatest potential to overcome them.

  1. Advanced Nuclear Technology: Advanced Light Water Reactors Utility Requirements Document Small Modular Reactors Inclusion Summary

    SciTech Connect (OSTI)

    Loflin, Leonard; McRimmon, Beth

    2014-12-18

    This report summarizes a project by EPRI to include requirements for small modular light water reactors (smLWR) into the EPRI Utility Requirements Document (URD) for Advanced Light Water Reactors. The project was jointly funded by EPRI and the U.S. Department of Energy (DOE). The report covers the scope and content of the URD, the process used to revise the URD to include smLWR requirements, a summary of the major changes to the URD to include smLWR, and how to use the URD as revised to achieve value on new plant projects.

  2. Los Alamos National Laboratory * Est. 1943 The Pulse-Newsletter of the Los Alamos Neutron Science Center and Accelerator Operations and Technology Division

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1 Los Alamos National Laboratory * Est. 1943 The Pulse-Newsletter of the Los Alamos Neutron Science Center and Accelerator Operations and Technology Division I N S I D E 2 From Alex's Desk 3 lujAn Center reseArCh FeAtureD on Cover oF Langmuir 4 FunCtionAl oxiDes unDer extreme ConDi- tions-quest For new mAteriAls 6 heADs uP! By Diana Del Mauro ADEPS Communications Inside the Lujan Neutron Scattering Center, Victor Fanelli is busy preparing a superconducting magnet. In a series of delicate steps,

  3. Vehicle Technologies Office Merit Review 2014: Light-Duty Diesel Combuston

    Broader source: Energy.gov [DOE]

    Presentation given by Sandia Natonal Laboratories and  University of Wisconsin at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation...

  4. Vehicle Technologies Office Merit Review 2014: High Strength, Light-Weight Engines for Heavy Duty Trucks

    Broader source: Energy.gov [DOE]

    Presentation given by Oak Ridge National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about high strength,...

  5. Vehicle Technologies Office Merit Review 2015: Polyalkylene Glycol (PAG) Based Lubricant for Light & Medium Duty Axles

    Broader source: Energy.gov [DOE]

    Presentation given by Ford Motor Company at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about polyalkylene glycol (PAG)...

  6. Vehicle Technologies Office Merit Review 2015: Lean Miller Cycle System Development for Light-Duty Vehicles

    Broader source: Energy.gov [DOE]

    Presentation given by General Motors at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about lean miller cycle system...

  7. Progress on DOE Vehicle Technologies Light-Duty Diesel Engine Efficiency and Emissions Milestones

    Broader source: Energy.gov [DOE]

    The path to 45 percent peak BTE in FY 2010 includes modern base engine plus enabling technologies demonstrated in FY 2008 plus the recovery of thermal energy from the exhaust and EGR systems

  8. Light-Material Interactions in Energy Conversion - Energy Frontier Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Center (LMI-EFRC) Program Hotel & Travel Presentations Event Photos Accelerating the Development of Earth-Abundant Thin-Film Photovoltaics Millikan Board Room [map] California Institute of Technology Pasadena, CA The Light-Material Interactions in Energy Conversion (LMI) Energy Frontier Research Center (EFRC), the Resnick Sustainability Institute, and the Quantum Energy and Sustainable Solar Technologies (QESST) Energy Research Center (ERC) are offering a two-day workshop on Accelerating

  9. First National Technology Center

    Broader source: Energy.gov [DOE]

    Speaker presentation prepared by Dennis Hughes, a lead property manager with First National Buildings Inc.

  10. Department of Energy Office of Energy Efficiency and Renewable Energy Solid Lighting Core Technologies

    SciTech Connect (OSTI)

    Jiangeng Xue; Elliot Douglas

    2011-03-31

    The overall objective of this project is to demonstrate an ultra-effective light extraction mechanism that can be universally applied to all top-emitting white OLEDs (TE-WOLEDs) and can be integrated with thin film encapsulation techniques. The scope of work proposed in this project includes four major areas: (1) optical modeling; (2) microlens and array fabrication; (3) fabrication, encapsulation, and characterization of TE-WOLEDs; and (4) full device integration and characterization. First, the light extraction efficiency in a top-emitting OLED with or without a microlens array are modeled using wave optics. Second, individual microlenses and microlens arrays are fabricated by inkjet printing of microdroplets of a liquid thiol-ene monomer with high refractive index followed by photopolymerization. Third, high efficiency top-emitting white OLEDs are fabricated, and fully characterized. Finally, optimized microlens arrays are fabricated on TE-WOLEDs with dielectric barrier layers. The overall light extraction efficiency of these devices, as well as its wavelength and angular dependencies, are measured by comparing the efficiencies of devices with and without microlens arrays. In conclusion, we have demonstrated the feasibility of applying inkjet printed microlens arrays to enhance the light extraction efficiency of top-emitting white OLEDs. We have shown that the geometry (contact angle) of the printed microlenses can be controlled by controlling the surface chemistry prior to printing the lenses. A 90% enhancement in the light extraction efficiency has been achieved with printed microlens array on a top-emitting white OLED, which can be further improved to 140% using a more close-packed microlens array fabricated from a molding process. Future work will focus on improvement of the microlens fabrication process to improve the array fill factor and the contact angle, as well as use transparent materials with a higher index of refraction. We will also further optimize the procedures for integrating the microlenses on the top-emitting white OLEDs and characterize the overall light extraction enhancement factor when the microlens array is attached.

  11. EA-2000: Proposed Land Transfer to Develop a General Aviation Airport at the East Tennessee Technology Park Heritage Center, Oak Ridge, Tennessee

    Broader source: Energy.gov [DOE]

    DOE is preparing an EA to assess potential environmental impacts of the proposed land transfer to the Metropolitan Knoxville Airport Authority for the development of a general aviation airport at the East Tennessee Technology Park Heritage Center, in Oak Ridge, Tennessee.

  12. Development of Methodologies for Technology Deployment for Advanced Outage Control Centers that Improve Outage Coordination, Problem Resolution and Outage Risk Management

    SciTech Connect (OSTI)

    Shawn St. Germain; Ronald Farris; Heather Medeman

    2013-09-01

    This research effort is a part of the Light-Water Reactor Sustainability (LWRS) Program, which is a research and development (R&D) program sponsored by Department of Energy (DOE) and performed in close collaboration with industry R&D programs that provides the technical foundations for licensing and managing the long-term, safe, and economical operation of current nuclear power plants. The LWRS program serves to help the U.S. nuclear industry adopt new technologies and engineering solutions that facilitate the continued safe operation of the plants and extension of the current operating licenses. The long term viability of existing nuclear power plants in the U.S. will depend upon maintaining high capacity factors, avoiding nuclear safety issues and reducing operating costs. The slow progress in the construction on new nuclear power plants has placed in increased importance on maintaining the output of the current fleet of nuclear power plants. Recently expanded natural gas production has placed increased economic pressure on nuclear power plants due to lower cost competition. Until recently, power uprate projects had steadily increased the total output of the U.S. nuclear fleet. Errors made during power plant upgrade projects have now removed three nuclear power plants from the U.S. fleet and economic considerations have caused the permanent shutdown of a fourth plant. Additionally, several utilities have cancelled power uprate projects citing economic concerns. For the past several years net electrical generation from U.S. nuclear power plants has been declining. One of few remaining areas where significant improvements in plant capacity factors can be made is in minimizing the duration of refueling outages. Managing nuclear power plant outages is a complex and difficult task. Due to the large number of complex tasks and the uncertainty that accompanies them, outage durations routinely exceed the planned duration. The ability to complete an outage on or near schedule depends upon the performance of the outage management organization. During an outage, the outage control center (OCC) is the temporary command center for outage managers and provides several critical functions for the successful execution of the outage schedule. Essentially, the OCC functions to facilitate information inflow, assist outage management in processing information and to facilitate the dissemination of information to stakeholders. Currently, outage management activities primarily rely on telephone communication, face to face reports of status and periodic briefings in the OCC. Much of the information displayed in OCCs is static and out of date requiring an evaluation to determine if it is still valid. Several advanced communication and collaboration technologies have shown promise for facilitating the information flow into, across and out of the OCC. Additionally, advances in the areas of mobile worker technologies, computer based procedures and electronic work packages can be leveraged to improve the availability of real time status to outage managers.

  13. Sandia Energy - Energy Frontier Research Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Frontier Research Center Home Energy Research EFRCs Solid-State Lighting Science EFRC Energy Frontier Research Center Energy Frontier Research CenterTara...

  14. Light Water Reactor Sustainability Program Status of Silicon Carbide Joining Technology Development

    SciTech Connect (OSTI)

    Shannon M. Bragg-Sitton

    2013-09-01

    Advanced, accident tolerant nuclear fuel systems are currently being investigated for potential application in currently operating light water reactors (LWR) or in reactors that have attained design certification. Evaluation of potential options for accident tolerant nuclear fuel systems point to the potential benefits of silicon carbide (SiC) relative to Zr-based alloys, including increased corrosion resistance, reduced oxidation and heat of oxidation, and reduced hydrogen generation under steam attack (off-normal conditions). If demonstrated to be applicable in the intended LWR environment, SiC could be used in nuclear fuel cladding or other in-core structural components. Achieving a SiC-SiC joint that resists corrosion with hot, flowing water, is stable under irradiation and retains hermeticity is a significant challenge. This report summarizes the current status of SiC-SiC joint development work supported by the Department of Energy Light Water Reactor Sustainability Program. Significant progress has been made toward SiC-SiC joint development for nuclear service, but additional development and testing work (including irradiation testing) is still required to present a candidate joint for use in nuclear fuel cladding.

  15. Solid-State Lighting Technology: Current State of the Art and Grand

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Challenges Technology: Current State of the Art and Grand Challenges - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel

  16. Evaluation of Metal Halide, Plasma, and LED Lighting Technologies for a Hydrogen Fuel Cell Mobile Light (H 2 LT)

    SciTech Connect (OSTI)

    Miller, L. B.; Donohoe, S. P.; Jones, M. H.; White, W. A.; Klebanoff, L. E.; Velinsky, S. A.

    2015-04-22

    This article reports on the testing and comparison of a prototype hydrogen fuel cell light tower (H2LT) and a conventional diesel-powered metal halide light trailer for use in road maintenance and construction activities. The prototype was originally outfitted with plasma lights and then with light-emitting diode (LED) luminaires. Light output and distribution, lighting energy efficiency (i.e., efficacy), power source thermal efficiency, and fuel costs are compared. The metal halide luminaires have 2.2 and 3.1 times more light output than the plasma and LED luminaires, respectively, but they require more power/lumen to provide that output. The LED luminaires have 1.6 times better light efficacy than either the metal halide or plasma luminaires. The light uniformity ratios produced by the plasma and LED towers are acceptable. The fuel cell thermal efficiency at the power required to operate the plasma lights is 48%, significantly higher than the diesel generator efficiency of 23% when operating the metal halide lights. Due to the increased efficiency of the fuel cell and the LED lighting, the fuel cost per lumen-hour of the H2LT is 62% of the metal halide diesel light tower assuming a kilogram of hydrogen is twice the cost of a gallon of diesel fuel.

  17. SciDAC's Earth System Grid Center for Enabling Technologies Semiannual Progress Report October 1, 2010 through March 31, 2011

    SciTech Connect (OSTI)

    Williams, Dean N.

    2011-04-02

    This report summarizes work carried out by the Earth System Grid Center for Enabling Technologies (ESG-CET) from October 1, 2010 through March 31, 2011. It discusses ESG-CET highlights for the reporting period, overall progress, period goals, and collaborations, and lists papers and presentations. To learn more about our project and to find previous reports, please visit the ESG-CET Web sites: http://esg-pcmdi.llnl.gov/ and/or https://wiki.ucar.edu/display/esgcet/Home. This report will be forwarded to managers in the Department of Energy (DOE) Scientific Discovery through Advanced Computing (SciDAC) program and the Office of Biological and Environmental Research (OBER), as well as national and international collaborators and stakeholders (e.g., those involved in the Coupled Model Intercomparison Project, phase 5 (CMIP5) for the Intergovernmental Panel on Climate Change (IPCC) 5th Assessment Report (AR5); the Community Earth System Model (CESM); the Climate Science Computational End Station (CCES); SciDAC II: A Scalable and Extensible Earth System Model for Climate Change Science; the North American Regional Climate Change Assessment Program (NARCCAP); the Atmospheric Radiation Measurement (ARM) program; the National Aeronautics and Space Administration (NASA), the National Oceanic and Atmospheric Administration (NOAA)), and also to researchers working on a variety of other climate model and observation evaluation activities. The ESG-CET executive committee consists of Dean N. Williams, Lawrence Livermore National Laboratory (LLNL); Ian Foster, Argonne National Laboratory (ANL); and Don Middleton, National Center for Atmospheric Research (NCAR). The ESG-CET team is a group of researchers and scientists with diverse domain knowledge, whose home institutions include eight laboratories and two universities: ANL, Los Alamos National Laboratory (LANL), Lawrence Berkeley National Laboratory (LBNL), LLNL, NASA/Jet Propulsion Laboratory (JPL), NCAR, Oak Ridge National Laboratory (ORNL), Pacific Marine Environmental Laboratory (PMEL)/NOAA, Rensselaer Polytechnic Institute (RPI), and University of Southern California, Information Sciences Institute (USC/ISI). All ESG-CET work is accomplished under DOE open-source guidelines and in close collaboration with the project's stakeholders, domain researchers, and scientists. Through the ESG project, the ESG-CET team has developed and delivered a production environment for climate data from multiple climate model sources (e.g., CMIP (IPCC), CESM, ocean model data (e.g., Parallel Ocean Program), observation data (e.g., Atmospheric Infrared Sounder, Microwave Limb Sounder), and analysis and visualization tools) that serves a worldwide climate research community. Data holdings are distributed across multiple sites including LANL, LBNL, LLNL, NCAR, and ORNL as well as unfunded partners sites such as the Australian National University (ANU) National Computational Infrastructure (NCI), the British Atmospheric Data Center (BADC), the Geophysical Fluid Dynamics Laboratory/NOAA, the Max Planck Institute for Meteorology (MPI-M), the German Climate Computing Centre (DKRZ), and NASA/JPL. As we transition from development activities to production and operations, the ESG-CET team is tasked with making data available to all users who want to understand it, process it, extract value from it, visualize it, and/or communicate it to others. This ongoing effort is extremely large and complex, but it will be incredibly valuable for building 'science gateways' to critical climate resources (such as CESM, CMIP5, ARM, NARCCAP, Atmospheric Infrared Sounder (AIRS), etc.) for processing the next IPCC assessment report. Continued ESG progress will result in a production-scale system that will empower scientists to attempt new and exciting data exchanges, which could ultimately lead to breakthrough climate science discoveries.

  18. Development of Technologies for a High Efficiency, Very Low Emission, Diesel Engine for Light Trucks and Sport Utility Vehicles

    SciTech Connect (OSTI)

    Stang, John H.

    2005-12-19

    Cummins Inc., in partnership with the Department of Energy, has developed technology for a new highly efficient, very low emission, diesel engine for light trucks and sport utility vehicles. This work began in April 1997, and started with very aggressive goals for vehicles in the 5751 to 8500 pound GCW weight class. The primary program goals were as follows: (1) EMISSIONS -- NOx = 0.50 g/mi; PM = 0.05 g/mi; CO = 2.8 g/mi; and NMHC = 0.07 g/mi. California decided to issue new and even tougher LEV II light truck regulations late in 1999. EPA also issued its lower Tier 2 regulations late in 2000. The net result was that the targets for this diesel engine project were lowered, and these goals were eventually modified by the publication of Federal Tier 2 emission standards early in 2000 to the following: NOx = 0.07 g/mi; and PM = 0.01 g/mi. (2) FUEL ECONOMY -- The fuel economy goal was 50 percent MPG improvement (combined city/highway) over the 1997 gasoline powered light truck or sport utility vehicle in the vehicle class for which this diesel engine is being designed to replace. The goal for fuel economy remained at 50 percent MPG improvement, even with the emissions goal revisions. (3) COOPERATIVE DEVELOPMENT -- Regular design reviews of the engine program will be conducted with a vehicle manufacturer to insure that the concepts and design specifics are commercially feasible. (DaimlerChrysler has provided Cummins with this design review input.) Cummins has essentially completed a demonstration of proof-of-principle for a diesel engine platform using advanced combustion and fuel system technologies. Cummins reported very early progress in this project, evidence that new diesel engine technology had been developed that demonstrated the feasibility of the above emissions goals. Emissions levels of NOx = 0.4 g/mi and PM = 0.06 g/mi were demonstrated for a 5250 lb. test weight vehicle with passive aftertreatment only. These results were achieved using the full chassis dynamometer FTP-75 test procedure that allowed compliance with the Tier 2 Interim Bin 10 Standards and would apply to vehicles in MY2004 through MY2007 timeframe. In further technology development with active aftertreatment management, Cummins has been able to report that the emissions goals for the Tier 2 Bin 5 standards were met on an engine running the full FTP-75 test procedure. The fuel economy on the chassis tests was measured at over 59 percent MPG improvement over the gasoline engines that are offered in typical SUVs and light trucks. The above demonstration used only in-cylinder fueling for management of the aftertreatment system.

  19. Development of Technologies for a High Efficiency, Very Low Emission, Diesel Engine for Light Trucks and Sport Utility Vehicles

    SciTech Connect (OSTI)

    John H. Stang

    2005-12-31

    Cummins Inc., in partnership with the Department of Energy, has developed technology for a new highly efficient, very low emission, diesel engine for light trucks and sport utility vehicles. This work began in April 1997, and started with very aggressive goals for vehicles in the 5751 to 8500 pound GCW weight class. The primary program goals were as follows: (1) EMISSIONS--NO{sub x} = 0.50 g/mi; PM = 0.05 g/mi; CO = 2.8 g/mi; and NMHC = 0.07 g/mi. California decided to issue new and even tougher LEV II light truck regulations late in 1999. EPA also issued its lower Tier 2 regulations late in 2000. The net result was that the targets for this diesel engine project were lowered, and these goals were eventually modified by the publication of Federal Tier 2 emission standards early in 2000 to the following: NO{sub x} = 0.07 g/mi; and PM = 0.01 g/mi. (2) FUEL ECONOMY--The fuel economy goal was 50 percent MPG improvement (combined city/highway) over the 1997 gasoline powered light truck or sport utility vehicle in the vehicle class for which this diesel engine is being designed to replace. The goal for fuel economy remained at 50 percent MPG improvement, even with the emissions goal revisions. (3) COOPERATIVE DEVELOPMENT--Regular design reviews of the engine program will be conducted with a vehicle manufacturer to insure that the concepts and design specifics are commercially feasible. (DaimlerChrysler has provided Cummins with this design review input.) Cummins has essentially completed a demonstration of proof-of-principle for a diesel engine platform using advanced combustion and fuel system technologies. Cummins reported very early progress in this project, evidence that new diesel engine technology had been developed that demonstrated the feasibility of the above emissions goals. Emissions levels of NOx = 0.4 g/mi and PM = 0.06 g/mi were demonstrated for a 5250 lb. test weight vehicle with passive aftertreatment only. These results were achieved using the full chassis dynamometer FTP-75 test procedure that allowed compliance with the Tier 2 Interim Bin 10 Standards and would apply to vehicles in MY2004 through MY2007 timeframe. In further technology development with active aftertreatment management, Cummins has been able to report that the emissions goals for the Tier 2 Bin 5 standards were met on an engine running the full FTP-75 test procedure. The fuel economy on the chassis tests was measured at over 59 percent MPG improvement over the gasoline engines that are offered in typical SUVs and light trucks. The above demonstration used only in-cylinder fueling for management of the aftertreatment system.

  20. Development of Technologies for a High Efficiency, Very Low Emission, Diesel Engine for Light Trucks and Sport Utility Vehicles

    SciTech Connect (OSTI)

    Stang, John H.

    1997-12-01

    Cummins Inc., in partnership with the Department of Energy, has developed technology for a new highly efficient, very low emission, diesel engine for light trucks and sport utility vehicles. This work began in April 1997, and started with very aggressive goals for vehicles in the 5751 to 8500 pound GCW weight class. The primary program goals were as follows: (1) EMISSIONS NOx = 0.50 g/mi PM = 0.05 g/mi CO = 2.8 g/mi NMHC = 0.07 g/mi California decided to issue new and even tougher LEV II light truck regulations late in 1999. EPA also issued its lower Tier 2 regulations late in 2000. The net result was that the targets for this diesel engine project were lowered, and these goals were eventually modified by the publication of Federal Tier 2 emission standards early in 2000 to the following: NOx = 0.07 g/mi PM = 0.01 g/mi (2) FUEL ECONOMY The fuel economy goal was 50 percent MPG improvement (combined city/highway) over the 1997 gasoline powered light truck or sport utility vehicle in the vehicle class for which this diesel engine is being designed to replace. The goal for fuel economy remained at 50 percent MPG improvement, even with the emissions goal revisions. (3) COOPERATIVE DEVELOPMENT Regular design reviews of the engine program will be conducted with a vehicle manufacturer to insure that the concepts and design specifics are commercially feasible. (DaimlerChrysler has provided Cummins with this design review input.) Cummins has essentially completed a demonstration of proof-of-principle for a diesel engine platform using advanced combustion and fuel system technologies. Cummins reported very early progress in this project, evidence that new diesel engine technology had been developed that demonstrated the feasibility of the above emissions goals. Emissions levels of NOx = 0.4 g/mi and PM = 0.06 g/mi were demonstrated for a 5250 lb. test weight vehicle with passive aftertreatment only. These results were achieved using the full chassis dynamometer FTP-75 test procedure that allowed compliance with the Tier 2 Interim Bin 10 Standards and would apply to vehicles in MY2004 through MY2007 timeframe. In further technology development with active aftertreatment management, Cummins has been able to report that the emissions goals for the Tier 2 Bin 5 standards were met on an engine running the full FTP-75 test procedure. The fuel economy on the chassis tests was measured at over 59 percent MPG improvement over the gasoline engines that are offered in typical SUVs and light trucks. The above demonstration used only in-cylinder fueling for management of the aftertreatment system.

  1. EV Community Readiness projects: Center for the Commercialization of Electric Technologies (TX); City of Austin, Austin Energy (TX)

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  2. Data center cooling method

    DOE Patents [OSTI]

    Chainer, Timothy J.; Dang, Hien P.; Parida, Pritish R.; Schultz, Mark D.; Sharma, Arun

    2015-08-11

    A method aspect for removing heat from a data center may use liquid coolant cooled without vapor compression refrigeration on a liquid cooled information technology equipment rack. The method may also include regulating liquid coolant flow to the data center through a range of liquid coolant flow values with a controller-apparatus based upon information technology equipment temperature threshold of the data center.

  3. Secondary Waste Considerations for Vitrification of Sodium-Bearing Waste at the Idaho Nuclear Technology and Engineering Center FY-2001 Status Report

    SciTech Connect (OSTI)

    Herbst, A.K.; Kirkham, R.J.; Losinski, S.J.

    2002-09-26

    The Idaho Nuclear Technology and Engineering Center (INTEC) is considering vitrification to process liquid sodium-bearing waste. Preliminary studies were completed to evaluate the potential secondary wastes from the melter off-gas clean up systems. Projected secondary wastes comprise acidic and caustic scrubber solutions, HEPA filters, activated carbon, and ion exchange media. Possible treatment methods, waste forms, and disposal sites are evaluated from radiological and mercury contamination estimates.

  4. LED Lighting Facts®

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    LED Lighting Facts 2014 Building Technologies Office Peer Review Marc Ledbetter, ... retailers, distributors, lighting designers, specifiers and energy efficiency programs. ...

  5. (Pittsburgh Energy Technology Center): Quarterly technical progress report for the period ending June 30, 1987. [Advanced Coal Research and Technology Development Programs

    SciTech Connect (OSTI)

    1988-02-01

    Research programs on coal and coal liquefaction are presented. Topics discussed are: coal science, combustion, kinetics, surface science; advanced technology projects in liquefaction; two stage liquefaction and direct liquefaction; catalysts of liquefaction; Fischer-Tropsch synthesis and thermodynamics; alternative fuels utilization; coal preparation; biodegradation; advanced combustion technology; flue gas cleanup; environmental coordination, and technology transfer. Individual projects are processed separately for the data base. (CBS)

  6. And the Oscar for Sustainable Mobile Lighting Goes to.... Lighting...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    And the Oscar for Sustainable Mobile Lighting Goes to.... Lighting Up Operations with Hydrogen and Fuel Cell Technology And the Oscar for Sustainable Mobile Lighting Goes to.... ...

  7. Exciting White Lighting

    Broader source: Energy.gov [DOE]

    Windows that emit light and are more energy efficient? Universal Display’s PHOLED technology enables windows that have transparent light-emitting diodes in them.

  8. Solid State Lighting Reliability

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Solid State Lighting Reliability 2015Building Technologies Office Peer Review Lynn Davis, ... life testing methodologies that help lighting manufacturers and key stakeholders and ...

  9. Solid State Lighting Reliability

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Solid State Lighting Reliability 2014 Building Technologies Office Peer Review Lynn Davis, ... DOE : 370 K methodologies to help lighting manufacturers and key stakeholders ...

  10. Light-Material Interactions in Energy Conversion - Energy Frontier Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Center (LMI-EFRC) Program Schedule Abstract Submission Hotel & Travel Register Event Photos Redefining the Limits of Photovoltaic Efficiency Sunday, July 29, 2012 California Institute of Technology Hameetman Auditorium at the Cahill Center [map] 8:30 am - 5:30 pm Co-organized by the Resnick Sustainability Institute and the Light-Material Interactions in Energy Conversion (LMI) Energy Frontier Research Center this one-day workshop brings together leaders from industry, academia and

  11. Data Center Cooling

    SciTech Connect (OSTI)

    Rutberg, Michael; Cooperman, Alissa; Bouza, Antonio

    2013-10-31

    The article discusses available technologies for reducing energy use for cooling data center facilities. This article addresses the energy savings and market potential of these strategies as well.

  12. DOE Announces Webinars on the National Fuel Cell Technology Evaluation Center, Engaging Building Occupants to Reduce Energy Use, and More

    Broader source: Energy.gov [DOE]

    EERE offers webinars to the public on a range of subjects, from adopting the latest energy efficiency and renewable energy technologies to training for the clean energy workforce. View this week's webinars.

  13. Technolog

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research in Science and Technolog y Sandia pushes frontiers of knowledge to meet the nation's needs, today and tomorrow Sandia National Laboratories' fundamental science and technology research leads to greater understanding of how and why things work and is intrinsic to technological advances. Basic research that challenges scientific assumptions enables the nation to push scientific boundaries. Innovations and breakthroughs produced at Sandia allow it to tackle critical issues, from

  14. Cooperative Monitoring Center Occasional Paper/16: The Potential of Technology for the Control of Small Weapons: Applications in Developing Countries

    SciTech Connect (OSTI)

    ALTMANN, JURGEN

    2000-07-01

    For improving the control of small arms, technology provides many possibilities. Present and future technical means are described in several areas. With the help of sensors deployed on the ground or on board aircraft, larger areas can be monitored. Using tags, seals, and locks, important objects and installations can be safeguarded better. With modern data processing and communication systems, more information can be available, and it can be more speedily processed. Together with navigation and transport equipment, action can be taken faster and at greater range. Particular considerations are presented for cargo control at roads, seaports, and airports, for monitoring designated lines, and for the control of legal arms. By starting at a modest level, costs can be kept low, which would aid developing countries. From the menu of technologies available, systems need to be designed for the intended application and with an understanding of the local conditions. It is recommended that states start with short-term steps, such as acquiring more and better radio transceivers, vehicles, small aircraft, and personal computers. For the medium term, states should begin with experiments and field testing of technologies such as tags, sensors, and digital communication equipment.

  15. Overview of NASA Lewis Research Center free-piston Stirling engine technology activities applicable to space power systems

    SciTech Connect (OSTI)

    Slaby, J.G.

    1987-01-01

    An overview is presented of the National Aeronautics and Space Administration (NASA) Lewis Research Center free-piston Stirling engine activities directed toward space-power application. One of the major elements of the program is the development of advanced power conversion concepts of which the Stirling cycle is a viable candidate. Under this program the research findings of the 25 kWe opposed-piston Space Power Demonstrator Engine (SPDE) are presented. Included in the SPDE discussion are initial differences between predicted and experimental power outputs and power output influenced by variations in regenerators. Projections are made for future space-power requirements over the next few decades. A cursory comparison is presented showing the mass benefits that a Stirling system has over a Brayton system for the same peak temperature and output power.

  16. Cooperative Monitoring Center Occasional Paper/4: Missile Control in South Asia and the Role of Cooperative Monitoring Technology

    SciTech Connect (OSTI)

    Kamal, N.; Sawhney, P.

    1998-10-01

    The succession of nuclear tests by India and Pakistan in May 1998 has changed the nature of their missile rivalry, which is only one of numerous manifestations of their relationship as hardened adversaries, deeply sensitive to each other's existing and evolving defense capabilities. The political context surrounding this costly rivalry remains unmediated by arms control measures or by any nascent prospect of detente. As a parallel development, sensible voices in both countries will continue to talk of building mutual confidence through openness to avert accidents, misjudgments, and misinterpretations. To facilitate a future peace process, this paper offers possible suggestions for stabilization that could be applied to India's and Pakistan's missile situation. Appendices include descriptions of existing missile agreements that have contributed to better relations for other countries as well as a list of the cooperative monitoring technologies available to provide information useful in implementing subcontinent missile regimes.

  17. Lighting Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Homes & Buildings » Lighting & Daylighting » Lighting Basics Lighting Basics August 15, 2013 - 5:12pm Addthis Text Version There are many different types of artificial lights (formally called "lamps" in the lighting industry,) which have different applications and uses. Types of lighting include: Fluorescent Lighting High-intensity Discharge Lighting Incandescent Lighting LED Lighting. New lamp designs that use much more energy-efficient technology will start appearing in the

  18. Data center cooling system

    SciTech Connect (OSTI)

    Chainer, Timothy J; Dang, Hien P; Parida, Pritish R; Schultz, Mark D; Sharma, Arun

    2015-03-17

    A data center cooling system may include heat transfer equipment to cool a liquid coolant without vapor compression refrigeration, and the liquid coolant is used on a liquid cooled information technology equipment rack housed in the data center. The system may also include a controller-apparatus to regulate the liquid coolant flow to the liquid cooled information technology equipment rack through a range of liquid coolant flow values based upon information technology equipment temperature thresholds.

  19. Resource Center | Department of Energy

    Energy Savers [EERE]

    Resource Center Resource Center Welcome! The Building Technologies Office (BTO) carries out technology research, development, market stimulation, and regulatory activities through an ongoing process of planning and analysis, implementation, and review. The BTO Resource Center includes links to documents and solution centers that guide the program management process and illustrate associated results and public benefits. Please email btoweb@ee.doe.gov with any questions. Emerging Technologies

  20. Earth System Grid Center for Enabling Technologies (ESG-CET): A Data Infrastructure for Data-Intensive Climate Research

    SciTech Connect (OSTI)

    Williams, Dean N.

    2011-06-03

    For the Earth System Grid Federation (ESGF), the ESG-CET team has led international development and delivered a production environment for managing and accessing ultrascale climate data. This production environment includes multiple national and international climate projects (e.g., Couple Model Intercomparison Project, Community Earth System Model), ocean model data (such as the Parallel Ocean Program), observation data (Carbon Dioxide Information and Analysis Center, Atmospheric Infrared Sounder, and so forth), and analysis and visualization tools, all of which serve a diverse community of users. These data holdings and services are distributed across multiple ESG-CET sites (such as LANL, LBNL, LLNL, NCAR, and ORNL) as well as at unfunded partners sites such as the Australian National University National Computational Infrastructure, the British Atmospheric Data Centre, the National Oceanic and Atmospheric Administration Geophysical Fluid Dynamics Laboratory, the Max Planck Institute for Meteorology, the German Climate Computing Centre, and the National Aeronautics and Space Administration Jet Propulsion Laboratory. More recently, ESG-CET has been extending services beyond data-file access and delivery to develop more detailed information products (scientific graphics, animations, etc.), secure binary data-access services (based upon the OPeNDAP protocol), and server-side analysis capabilities. These will allow users to request data subsets transformed through commonly used analysis and intercomparison procedures. As we transition from development activities to production and operations, the ESG-CET team is tasked with making data available to all users seeking to understand, process, extract value from, visualize, and/or communicate it to others. This ongoing effort, though daunting in scope and complexity, will greatly magnify the value of numerical climate model outputs and climate observations for future national and international climate-assessment reports. Continued ESGF progress will result in a production ultrascale data system for empowering scientists who attempt new and exciting data exchanges that could ultimately lead to breakthrough climate-science discoveries.

  1. SciDAC's Earth System Grid Center for Enabling Technologies Semi-Annual Progress Report for the Period October 1, 2009 through March 31, 2010

    SciTech Connect (OSTI)

    Williams, Dean N.; Foster, I. T.; Middleton, D. E.; Ananthakrishnan, R.; Siebenlist, F.; Shoshani, A.; Sim, A.; Bell, G.; Drach, R.; Ahrens, J.; Jones, P.; Brown, D.; Chastang, J.; Cinquini, L.; Fox, P.; Harper, D.; Hook, N.; Nienhouse, E.; Strand, G.; West, P.; Wilcox, H.; Wilhelmi, N.; Zednik, S.; Hankin, S.; Schweitzer, R.; Bernholdt, D.; Chen, M.; Miller, R.; Shipman, G.; Wang, F.; Bharathi, S.; Chervenak, A.; Schuler, R.; Su, M.

    2010-04-21

    This report summarizes work carried out by the ESG-CET during the period October 1, 2009 through March 31, 2009. It includes discussion of highlights, overall progress, period goals, collaborations, papers, and presentations. To learn more about our project, and to find previous reports, please visit the Earth System Grid Center for Enabling Technologies (ESG-CET) website. This report will be forwarded to the DOE SciDAC program management, the Office of Biological and Environmental Research (OBER) program management, national and international collaborators and stakeholders (e.g., the Community Climate System Model (CCSM), the Intergovernmental Panel on Climate Change (IPCC) 5th Assessment Report (AR5), the Climate Science Computational End Station (CCES), the SciDAC II: A Scalable and Extensible Earth System Model for Climate Change Science, the North American Regional Climate Change Assessment Program (NARCCAP), and other wide-ranging climate model evaluation activities).

  2. Structural Integrity Program for the 300,000-Gallon Radioactive Liquid Waste Storage Tanks at the Idaho Nuclear Technology and Engineering Center

    SciTech Connect (OSTI)

    Bryant, Jeffrey W.

    2010-08-12

    This report provides a record of the Structural Integrity Program for the 300,000-gal liquid waste storage tanks and associated equipment at the Idaho Nuclear Technology and Engineering Center, as required by U.S. Department of Energy M 435.1-1, “Radioactive Waste Management Manual.” This equipment is known collectively as the Tank Farm Facility. This report is an update, and replaces the previous report by the same title issued April 2003. The conclusion of this report is that the Tank Farm Facility tanks, vaults, and transfer systems that remain in service for storage are structurally adequate, and are expected to remain structurally adequate over the remainder of their planned service life through 2012. Recommendations are provided for continued monitoring of the Tank Farm Facility.

  3. EERE Success Story- Chrysler and Partners Achieve 25% Fuel Economy Improvement in Light-Duty Advanced Technology Powertrain

    Broader source: Energy.gov [DOE]

    Internal combustion engines have the potential to become substantially more efficient, with laboratory tests indicating that new technologies could increase passenger vehicle fuel economy by more...

  4. Vehicle Technologies Office Merit Review 2014: Advanced Combustion Concepts- Enabling Systems and Solutions (ACCESS) for High Efficiency Light Duty Vehicles

    Broader source: Energy.gov [DOE]

    Presentation given by Robert Bosch at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about advanced combustion concepts -...

  5. PMEL contributions to the collaboration: SCALING THE EARTH SYSTEM GRID TO PETASCALE DATA for the DOE SciDACs Earth System Grid Center for Enabling Technologies

    SciTech Connect (OSTI)

    Hankin, Steve

    2012-06-01

    Drawing to a close after five years of funding from DOE's ASCR and BER program offices, the SciDAC-2 project called the Earth System Grid (ESG) Center for Enabling Technologies has successfully established a new capability for serving data from distributed centers. The system enables users to access, analyze, and visualize data using a globally federated collection of networks, computers and software. The ESG software??now known as the Earth System Grid Federation (ESGF)??has attracted a broad developer base and has been widely adopted so that it is now being utilized in serving the most comprehensive multi-model climate data sets in the world. The system is used to support international climate model intercomparison activities as well as high profile U.S. DOE, NOAA, NASA, and NSF projects. It currently provides more than 25,000 users access to more than half a petabyte of climate data (from models and from observations) and has enabled over a 1,000 scientific publications.

  6. Center for Advanced Photophysics | About The Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Victor Klimov - Center for Advanced Solar Photophysics Message from Center Director The solution to the global energy challenge requires revolutionary breakthroughs in areas such as the conversion of solar energy into electrical power or chemical fuels. The principles for capturing solar light and converting it into electrical charges have not changed for more than four decades. Previous advances in this area have mostly relied on iterative improvements in material quality and/or device

  7. Enhanced Light Extraction from Organic Light Emitting Diodes - Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Innovation Portal Photovoltaic Solar Photovoltaic Industrial Technologies Industrial Technologies Advanced Materials Advanced Materials Find More Like This Return to Search Enhanced Light Extraction from Organic Light Emitting Diodes Ames Laboratory Contact AMES About This Technology Technology Marketing SummaryAmes Laboratory researchers have developed a soft lithography microlens fabrication and array that enables more efficient organic light emitting diodes (OLEDs), improving their

  8. In situ recovery of oil from Utah tar sand: a summary of tar sand research at the Laramie Energy Technology Center

    SciTech Connect (OSTI)

    Marchant, L.C.; Westhoff, J.D.

    1985-10-01

    This report describes work done by the United States Department of Energy's Laramie Energy Technology Center from 1971 through 1982 to develop technology for future recovery of oil from US tar sands. Work was concentrated on major US tar sand deposits that are found in Utah. Major objectives of the program were as follows: determine the feasibility of in situ recovery methods applied to tar sand deposits; and establish a system for classifying tar sand deposits relative to those characteristics that would affect the design and operation of various in situ recovery processes. Contents of this report include: (1) characterization of Utah tar sand; (2) laboratory extraction studies relative to Utah tar sand in situ methods; (3) geological site evaluation; (4) environmental assessments and water availability; (5) reverse combustion field experiment, TS-1C; (6) a reverse combustion followed by forward combustion field experiment, TS-2C; (7) tar sand permeability enhancement studies; (8) two-well steam injection experiment; (9) in situ steam-flood experiment, TS-1S; (10) design of a tar sand field experiment for air-stream co-injection, TS-4; (11) wastewater treatment and oil analyses; (12) economic evaluation of an in situ tar sand recovery process; and (13) appendix I (extraction studies involving Utah tar sands, surface methods). 70 figs., 68 tabs.

  9. Light-Material Interactions in Energy Conversion - Energy Frontier Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Center (LMI-EFRC) New approaches to full spectrum solar energy conversion California Institute of Technology Hall Auditorium, Gates-Thomas Laboratory [map] LIVE Internet Broadcast [watch recorded event online] [download flyer] watch now The recorded presentations and panel discussion are now available for online viewing. The Light-Material Interactions in Energy Conversion Energy Frontier Research Center (LMI-EFRC) is excited to offer this free public webinar on New Approaches to Full

  10. Light-Material Interactions in Energy Conversion - Energy Frontier Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Center (LMI-EFRC) New approaches to full spectrum solar energy conversion California Institute of Technology Hall Auditorium, Gates-Thomas Laboratory [map] LIVE Internet Broadcast [download flyer] watch now The recorded presentations and panel discussion are now available for online viewing. The Light-Material Interactions in Energy Conversion Energy Frontier Research Center (LMI-EFRC) is excited to offer this free public webinar on New Approaches to Full Spectrum Solar Energy Conversion.

  11. LED Outdoor Area Lighting Fact Sheet

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Outdoor Area Lighting LED technology is rapidly becoming competitive with high-intensity discharge light sources for outdoor area lighting. This document reviews the major design ...

  12. Report from the Light Water Reactor Sustainability Workshop on Advanced Instrumentation, Information, and Control Systems and Human-System Interface Technologies

    SciTech Connect (OSTI)

    Bruce P. Hallbert; J. J. Persensky; Carol Smidts; Tunc Aldemir; Joseph Naser

    2009-08-01

    The Light Water Reactor Sustainability (LWRS) Program is a research and development (R&D) program sponsored by the U.S. Department of Energy (DOE). The program is operated in close collaboration with industry R&D programs to provide the technical foundations for licensing and managing the long-term, safe, and economical operation of Nuclear Power Plants that are currently in operation. The LWRS Program focus is on longer-term and higher-risk/reward research that contributes to the national policy objectives of energy and environmental security. Advanced instruments and control (I&C) technologies are needed to support the safe and reliable production of power from nuclear energy systems during sustained periods of operation up to and beyond their expected licensed lifetime. This requires that new capabilities to achieve process control be developed and eventually implemented in existing nuclear assets. It also requires that approaches be developed and proven to achieve sustainability of I&C systems throughout the period of extended operation. The strategic objective of the LWRS Program Advanced Instrumentation, Information, and Control Systems Technology R&D pathway is to establish a technical basis for new technologies needed to achieve safety and reliability of operating nuclear assets and to implement new technologies in nuclear energy systems. This will be achieved by carrying out a program of R&D to develop scientific knowledge in the areas of: Sensors, diagnostics, and prognostics to support characterization and prediction of the effects of aging and degradation phenomena effects on critical systems, structures, and components (SSCs) Online monitoring of SSCs and active components, generation of information, and methods to analyze and employ online monitoring information New methods for visualization, integration, and information use to enhance state awareness and leverage expertise to achieve safer, more readily available electricity generation. As an initial step in accomplishing this effort, the Light Water Reactor Sustainability Workshop on Advanced Instrumentation, Information, and Control Systems and Human-System Interface Technologies was held March 2021, 2009, in Columbus, Ohio, to enable industry stakeholders and researchers in identification of the nuclear industrys needs in the areas of future I&C technologies and corresponding technology gaps and research capabilities. Approaches for collaboration to bridge or fill the technology gaps were presented and R&D activities and priorities recommended. This report documents the presentations and discussions of the workshop and is intended to serve as a basis for the plan under development to achieve the goals of the I&C research pathway.

  13. NREL: National Center for Photovoltaics Home Page

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    National Center for Photovoltaics The National Center for Photovoltaics (NCPV) at NREL focuses on technology innovations that drive industry growth in U.S. photovoltaic (PV)...

  14. North Carolina Solar Center | Open Energy Information

    Open Energy Info (EERE)

    Solar Center Jump to: navigation, search Name: North Carolina Solar Center Sector: Renewable Energy Product: Promotes the use of renewable energy technologies with funding from the...

  15. Transportation Energy Futures Series. Non-Cost Barriers to Consumer Adoption of New Light-Duty Vehicle Technologies

    SciTech Connect (OSTI)

    Stephens, Thomas

    2013-03-01

    Consumer preferences are key to the adoption of new vehicle technologies. Barriers to consumer adoption include price and other obstacles, such as limited driving range and charging infrastructure; unfamiliarity with the technology and uncertainty about direct benefits; limited makes and models with the technology; reputation or perception of the technology; standardization issues; and regulations. For each of these non-cost barriers, this report estimates an effective cost and summarizes underlying influences on consumer preferences, approximate magnitude and relative severity, and assesses potential actions, based on a comprehensive literature review. While the report concludes that non-cost barriers are significant, effective cost and potential market share are very uncertain. Policies and programs including opportunities for drivers to test drive advanced vehicles, general public outreach and information programs, incentives for providing charging and fueling infrastructure, and development of technology standards were examined for their ability to address barriers, but little quantitative data exists on the effectiveness of these measures. This is one in a series of reports produced as a result of the Transportation Energy Futures project, a Department of Energy-sponsored multi-agency effort to pinpoint underexplored strategies for reducing GHGs and petroleum dependence related to transportation. View all reports on the TEF Web page, http://www.eere.energy.gov/analysis/transportationenergyfutures/index.html.

  16. Transportation Energy Futures Series: Non-Cost Barriers to Consumer Adoption of New Light-Duty Vehicle Technologies

    SciTech Connect (OSTI)

    Stephens, T.

    2013-03-01

    Consumer preferences are key to the adoption of new vehicle technologies. Barriers to consumer adoption include price and other obstacles, such as limited driving range and charging infrastructure; unfamiliarity with the technology and uncertainty about direct benefits; limited makes and models with the technology; reputation or perception of the technology; standardization issues; and regulations. For each of these non-cost barriers, this report estimates an effective cost and summarizes underlying influences on consumer preferences, approximate magnitude and relative severity, and assesses potential actions, based on a comprehensive literature review. While the report concludes that non-cost barriers are significant, effective cost and potential market share are very uncertain. Policies and programs including opportunities for drivers to test drive advanced vehicles, general public outreach and information programs, incentives for providing charging and fueling infrastructure, and development of technology standards were examined for their ability to address barriers, but little quantitative data exists on the effectiveness of these measures. This is one in a series of reports produced as a result of the Transportation Energy Futures project, a Department of Energy-sponsored multi-agency effort to pinpoint underexplored strategies for reducing GHGs and petroleum dependence related to transportation.

  17. Cost of Ownership and Well-to-Wheels Carbon Emissions/Oil Use of Alternative Fuels and Advanced Light-Duty Vehicle Technologies

    SciTech Connect (OSTI)

    Elgowainy, Mr. Amgad; Rousseau, Mr. Aymeric; Wang, Mr. Michael; Ruth, Mr. Mark; Andress, Mr. David; Ward, Jacob; Joseck, Fred; Nguyen, Tien; Das, Sujit

    2013-01-01

    The U.S. Department of Energy (DOE), Argonne National Laboratory (Argonne), and the National Renewable Energy Laboratory (NREL) updated their analysis of the well-to-wheels (WTW) greenhouse gases (GHG) emissions, petroleum use, and the cost of ownership (excluding insurance, maintenance, and miscellaneous fees) of vehicle technologies that have the potential to significantly reduce GHG emissions and petroleum consumption. The analyses focused on advanced light-duty vehicle (LDV) technologies such as plug-in hybrid, battery electric, and fuel cell electric vehicles. Besides gasoline and diesel, alternative fuels considered include natural gas, advanced biofuels, electricity, and hydrogen. The Argonne Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation (GREET) and Autonomie models were used along with the Argonne and NREL H2A models.

  18. SciDAC's Earth System Grid Center for Enabling Technologies Semi-Annual Progress Report for the Period April 1, 2009 through September 30, 2009

    SciTech Connect (OSTI)

    Williams, Dean N.; Foster, I. T.; Middleton, D. E.

    2009-10-15

    This report summarizes work carried out by the ESG-CET during the period April 1, 2009 through September 30, 2009. It includes discussion of highlights, overall progress, period goals, collaborations, papers, and presentations. To learn more about our project, and to find previous reports, please visit the Earth System Grid Center for Enabling Technologies (ESG-CET) website. This report will be forwarded to the DOE SciDAC program management, the Office of Biological and Environmental Research (OBER) program management, national and international collaborators and stakeholders (e.g., the Community Climate System Model (CCSM), the Intergovernmental Panel on Climate Change (IPCC) 5th Assessment Report (AR5), the Climate Science Computational End Station (CCES), the SciDAC II: A Scalable and Extensible Earth System Model for Climate Change Science, the North American Regional Climate Change Assessment Program (NARCCAP), and other wide-ranging climate model evaluation activities). During this semi-annual reporting period, the ESG-CET team continued its efforts to complete software components needed for the ESG Gateway and Data Node. These components include: Data Versioning, Data Replication, DataMover-Lite (DML) and Bulk Data Mover (BDM), Metrics, Product Services, and Security, all joining together to form ESG-CET's first beta release. The launch of the beta release is scheduled for late October with the installation of ESG Gateways at NCAR and LLNL/PCMDI. Using the developed ESG Data Publisher, the ESG II CMIP3 (IPCC AR4) data holdings - approximately 35 TB - will be among the first datasets to be published into the new ESG enterprise system. In addition, the NCAR's ESG II data holdings will also be published into the new system - approximately 200 TB. This period also saw the testing of the ESG Data Node at various collaboration sites, including: the British Atmospheric Data Center (BADC), the Max-Planck-Institute for Meteorology, the University of Tokyo Center for Climate System Research, and the Australian National University. This period, a total of 14 national and international sites installed an ESG Data Node for testing. During this period, we also continued to provide production-level services to the community, providing researchers worldwide with access to CMIP3 (IPCC AR4), CCES, and CCSM, Parallel Climate Model (PCM), Parallel Ocean Program (POP), and Cloud Feedback Model Intercomparison Project (CFMIP), and NARCCAP data.

  19. Center for Advanced Solar Photophysics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Welcome to the Center for Advanced Solar Photophysics (CASP) Solution-processed solar cells The goal of this center is to explore and exploit the unique physics of nanostructured materials to boost the efficiency of solar energy conversion through novel light-matter interactions, controlled excited-state dynamics, and engineered carrier-carrier coupling. Examples of phenomena that are studied in the center include field enhancement in metal nanostructures for improved light-harvesting and

  20. LED Lighting | Department of Energy

    Energy Savers [EERE]

    Electricity & Fuel » Lighting » LED Lighting LED Lighting LED Lighting The light-emitting diode (LED) is one of today's most energy-efficient and rapidly-developing lighting technologies. Quality LED light bulbs last longer, are more durable, and offer comparable or better light quality than other types of lighting. Check out the top 8 things you didn't know about LEDs to learn more. Energy Savings LED is a highly energy efficient lighting technology, and has the potential to fundamentally

  1. LED Lighting | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Electricity & Fuel » Lighting » LED Lighting LED Lighting LED Lighting The light-emitting diode (LED) is one of today's most energy-efficient and rapidly-developing lighting technologies. Quality LED light bulbs last longer, are more durable, and offer comparable or better light quality than other types of lighting. Check out the top 8 things you didn't know about LEDs to learn more. Energy Savings LED is a highly energy efficient lighting technology, and has the potential to fundamentally

  2. The National Wind Technology Center

    SciTech Connect (OSTI)

    Thresher, R.W.; Hock, S.M.; Loose, R.R.; Cadogon, J.B.

    1994-07-01

    Wind energy research began at the Rocky Flats test site in 1976 when Rockwell International subcontracted with the Energy Research and Development Administration (ERDA). The Rocky Flats Plant was competitively selected from a number of ERDA facilities primarily because it experienced high instantaneous winds and provided a large, clear land area. By 1977, several small wind turbines were in place. During the facility`s peak of operation, in 1979-1980, researchers were testing as many as 23 small wind turbines of various configurations, including commercially available machines and prototype turbines developed under subcontract to Rocky Flats. Facilities also included 8-kW, 40-kW, and 225-kW dynamometers; a variable-speed test bed; a wind/hybrid test facility; a controlled velocity test facility (in Pueblo, Colorado); a modal test facility, and a multimegawatt switchgear facility. The main laboratory building was dedicated in July 1981 and was operated by the Rocky Flats Plant until 1984, when the Solar Energy Research Institute (SERI) and Rocky Flats wind energy programs were merged and transferred to SERI. SERI and now the National Renewable Energy Laboratory (NREL) continued to conduct wind turbine system component tests after 1987, when most program personnel were moved to the Denver WEst Office Park in Golden and site ownership was transferred back to Rocky Flats. The Combined Experiment test bed was installed and began operation in 1988, and the NREL structural test facility began operation in 1990. In 1993, the site`s operation was officially transferred to the DOE Golden Field Office that oversees NREL. This move was in anticipation of NREL`s renovation and reoccupation of the facility in 1994.

  3. Advanced Technology Center Overview 2015

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... strength 2015 Lockheed Martin Corporation, All Rights Reserved XRD data on Inconel 600 AM samples * XRD data shows the differences in peak ratios between the horizontally and ...

  4. National Wind Technology Center | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and provide government-issued photo identification (for example driver's license, passport, or military ID) to obtain a security badge before entering the site. Foreign...

  5. Lighting in Commercial Buildings

    U.S. Energy Information Administration (EIA) Indexed Site

    (CEC), March 1990. Advanced Lighting Technologies Application Guidelines (ALTAG), Building and Appliance Efficiency Office. 3. Dubin, F.S., Mindell, H.L., and Bloome, S., 1976....

  6. Lighting Test Facilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lighting-Test-Facilities Sign In About | Careers | Contact | Investors | bpa.gov Search Policy & Reporting Expand Policy & Reporting EE Sectors Expand EE Sectors Technology &...

  7. Computational fluid dynamics assessment: Volume 1, Computer simulations of the METC (Morgantown Energy Technology Center) entrained-flow gasifier: Final report

    SciTech Connect (OSTI)

    Celik, I.; Chattree, M.

    1988-07-01

    An assessment of the theoretical and numerical aspects of the computer code, PCGC-2, is made; and the results of the application of this code to the Morgantown Energy Technology Center (METC) advanced gasification facility entrained-flow reactor, ''the gasifier,'' are presented. PCGC-2 is a code suitable for simulating pulverized coal combustion or gasification under axisymmetric (two-dimensional) flow conditions. The governing equations for the gas and particulate phase have been reviewed. The numerical procedure and the related programming difficulties have been elucidated. A single-particle model similar to the one used in PCGC-2 has been developed, programmed, and applied to some simple situations in order to gain insight to the physics of coal particle heat-up, devolatilization, and char oxidation processes. PCGC-2 was applied to the METC entrained-flow gasifier to study numerically the flash pyrolysis of coal, and gasification of coal with steam or carbon dioxide. The results from the simulations are compared with measurements. The gas and particle residence times, particle temperature, and mass component history were also calculated and the results were analyzed. The results provide useful information for understanding the fundamentals of coal gasification and for assessment of experimental results performed using the reactor considered. 69 refs., 35 figs., 23 tabs.

  8. lighting in the library

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The amount and quality of light around us affects our health, safety, comfort, and productivity. Our country spends more than $37 billion each year on electricity for lighting, but technologies developed during the past 10 years can help us cut lighting costs by 30% to 60% while enhancing lighting quality and reducing environmental impacts. In a typical indoor lighting system, 50 percent or more of the energy supplied to the lamp can be wasted by obsolete equipment, poor maintenance, or

  9. Outdoor Lighting | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Outdoor Lighting Outdoor Lighting Outdoor lighting consumes a significant amount of energy-about 1.3 quadrillion Btu annually-costing about $10 billion per year. In the last five years, a number of municipalities have switched to new LED technologies which can reduce energy costs by approximately 50% over conventional lighting technologies and provide additional savings of 20 to 40% with advance lighting controls. Beyond cost and energy savings, the higher efficacy of LED lights provides other

  10. Center for Lightweighting Automotive Materials and Processing...

    Broader source: Energy.gov (indexed) [DOE]

    GATE Center of Excellence in Lightweight Materials and Manufacturing Technologies Vehicle Technologies Office Merit Review 2014: Improving Fatigue Performance of AHSS Welds

  11. LANSCE | Lujan Center | Highlights

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The Lujan Center: Science & People The Lujan Center, Science & People April 2014 In This Issue: * Olivier Gourdon: A crystallographer keen on showing off the revealing properties of neutrons *Seeking design rules for efficient lighting sources * Rate-dependent deformation mechanisms in beryllium * Improved understanding of a semiconductor used in infrared detectors * Mike Fitzsimmons elected NNSA Fellow * Pressure tuning: a new approach for making zero thermal expansion materials *

  12. New Research Center to Increase Safety and Power Output of U.S. Nuclear

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Reactors | Department of Energy Research Center to Increase Safety and Power Output of U.S. Nuclear Reactors New Research Center to Increase Safety and Power Output of U.S. Nuclear Reactors May 3, 2011 - 3:41pm Addthis Oak Ridge, Tenn. - Today the Department of Energy dedicated the Consortium for Advanced Simulation of Light Water Reactors (CASL), an advanced research facility that will accelerate the advancement of nuclear reactor technology. CASL researchers are using supercomputers to

  13. Center Organization | Center for Energy Efficient Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Center Organization People People Scientific Advisory Board Center Organization

  14. Emery Station Operations Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Emery Station Operations Center

  15. Demand Response and Open Automated Demand Response Opportunities for Data Centers

    SciTech Connect (OSTI)

    Ghatikar, Girish; Piette, Mary Ann; Fujita, Sydny; McKane, Aimee; Dudley, Junqiao Han; Radspieler, Anthony; Mares, K.C.; Shroyer, Dave

    2009-12-30

    This study examines data center characteristics, loads, control systems, and technologies to identify demand response (DR) and automated DR (Open Auto-DR) opportunities and challenges. The study was performed in collaboration with technology experts, industrial partners, and data center facility managers and existing research on commercial and industrial DR was collected and analyzed. The results suggest that data centers, with significant and rapidly growing energy use, have significant DR potential. Because data centers are highly automated, they are excellent candidates for Open Auto-DR. 'Non-mission-critical' data centers are the most likely candidates for early adoption of DR. Data center site infrastructure DR strategies have been well studied for other commercial buildings; however, DR strategies for information technology (IT) infrastructure have not been studied extensively. The largest opportunity for DR or load reduction in data centers is in the use of virtualization to reduce IT equipment energy use, which correspondingly reduces facility cooling loads. DR strategies could also be deployed for data center lighting, and heating, ventilation, and air conditioning. Additional studies and demonstrations are needed to quantify benefits to data centers of participating in DR and to address concerns about DR's possible impact on data center performance or quality of service and equipment life span.

  16. Vehicle Technologies Office: Graduate Automotive Technology Education

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    (GATE) | Department of Energy Education & Workforce Development » Vehicle Technologies Office: Graduate Automotive Technology Education (GATE) Vehicle Technologies Office: Graduate Automotive Technology Education (GATE) DOE established the Graduate Automotive Technology Education (GATE) Centers of Excellence to provide future generations of engineers and scientists with knowledge and skills in advanced automotive technologies. By funding curriculum development and expansion as well as

  17. Topanga Technologies | Open Energy Information

    Open Energy Info (EERE)

    Technologies Place: Canoga Park, California Zip: 91303 Product: Stealth-mode high-intensity discharge (HID) lighting technology developer. References: Topanga Technologies1...

  18. Property:NrelPartnerCenter | Open Energy Information

    Open Energy Info (EERE)

    Photovoltaics;National Wind Technology Center;Renewable Electricity & End Use Systems;Science & Technology;Thermal Systems Group;Transportation Technologies and Systems...

  19. Explosives Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Explosives Center Explosives Center at Los Alamos National Laboratory A world leader in energetic materials research, development and applications, the Explosives Center's unique capabilities enable a dynamic, flexible response to address multiple evolving mission needs. explosives experiment Comprehensive energetic materials development, characterization and testing are key strengths at Los Alamos National Laboratory. An experimental explosive is shown igniting during small-scale impact

  20. Center for Nonlinear Studies

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    About Contact Courses Summer School Engineering Information Science, Technology Geophysics, Planetary Physics, Signatures Applied Geophysical Experiences Materials Design Calendar NSEC » Center for Nonlinear Studies Center for Nonlinear Studies Serving as an interface between mission critical research at LANL and the outside research community. Contact Director Robert Ecke (505) 667-6733 Email Deputy Director Aric Hagberg (505) 665-4958 Email Executive Administrator Elissa (Ellie) Vigil (505)

  1. Scientific Themes | Photosynthetic Antenna Research Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Themes Scientific Themes The Photosynthetic Antenna Research Center (PARC) is focused on a basic science approach to understanding the process of light collection in natural,...

  2. Center for Energy Nanoscience at USC

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research Areas: The Center for Energy Nanoscience performs research to create low cost, high efficiency solar cells and light emitting diodes (LEDs) by using semiconductor...

  3. Licensing Technology

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Licensing Technology Licensing Technology The primary function of Los Alamos Licensing Program is to move Los Alamos technology to the marketplace for the benefit of the U.S. economy. Our intellectual property may be licensed for commercial use, research applications, and U.S. government use. Contact thumbnail of Marcus Lucero Head of Licensing Marcus Lucero Richard P. Feynman Center for Innovation (505) 665-6569 Email Although Los Alamos's primary mission is national security, our technologies

  4. Technology Opportunities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Intellectual Property » Technology Opportunities Technology Opportunities We deliver innovation through an integrated portfolio of R&D work across our key national security sponsoring agencies, enhanced by the ideas developed through our strategic internal investments. Contact Business Development Team Richard P. Feynman Center for Innovation (505) 665-9090 Email Periodically, the Laboratory notifies the public of technologies and capabilities that may be of interest. These technologies may

  5. 2015 DOE SSL Technology Development Workshop Attendee List

    Energy Savers [EERE]

    Light Technologies Kyle Landig Sunset Lighting Mike Landig Sunset Lighting Susan Larson Soraa Ben Latson Ecova Jefferay Lawton Microchip Technology Marc Ledbetter Pacific...

  6. Solid-State Lighting | Department of Energy

    Energy Savers [EERE]

    Lighting Solid-State Lighting 2013 DOE Solid-State Lighting Program Overview PDF icon ssl-overview_brochure_feb2013.pdf More Documents & Publications January 2016 POSTINGS Emerging Lighting Technology INNOVATIVE PHOSPHORESCENT OLED TECHNOLOGY IS HELPING TO MAKE OLED LIGHTING MARKET-READY

  7. Advanced Light Extraction Structure for OLED Lighting | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Light Extraction Structure for OLED Lighting Advanced Light Extraction Structure for OLED Lighting Lead Performer: Pixelligent Technologies, LLC - Baltimore, MD Partners: OLEDWorks, LLC - Rochester, NY DOE Total Funding: $1,000,000 Cost Share: $250,000 Project Term: 9/10/2014 - 8/31/2016 Funding Opportunity: SSL R&D Funding Opportunity Announcement (FOA) (DE-FOA-0000973) Project Objective This project will develop a novel internal light extraction (ILE) design to improve the light

  8. Effective White Light Options for Parking Area Lighting

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    While both providing white light, LED (foreground) provides improved uniformity and energy efficiency compared to induction (background upper right) but at a higher installed cost. Eff ective White Light Options for Parking Area Lighting New lighting technologies provide low maintenance alternatives to high- pressure sodium August 2010 Photo courtesy of PNNL FEDERAL ENERGY MANAGEMENT PROGRAM High-pressure sodium (HPS) lights are common for outdoor lighting because of their 24,000-hour rated life

  9. Manufacturing technologies

    SciTech Connect (OSTI)

    1995-09-01

    The Manufacturing Technologies Center is an integral part of Sandia National Laboratories, a multiprogram engineering and science laboratory, operated for the Department of Energy (DOE) with major facilities at Albuquerque, New Mexico, and Livermore, California. Our Center is at the core of Sandia`s Advanced Manufacturing effort which spans the entire product realization process.

  10. National Carbon Capture Center Launches Post-Combustion Test Center |

    Office of Environmental Management (EM)

    Department of Energy Carbon Capture Center Launches Post-Combustion Test Center National Carbon Capture Center Launches Post-Combustion Test Center June 7, 2011 - 1:00pm Addthis Washington, D.C. - The recent successful commissioning of an Alabama-based test facility is another step forward in research that will speed deployment of innovative post-combustion carbon dioxide (CO2) capture technologies for coal-based power plants, according to the U.S. Department of Energy (DOE). Technologies

  11. Alternative Fuels Data Center: Automakers Innovate With Clean Gas

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Technologies Automakers Innovate With Clean Gas Technologies to someone by E-mail Share Alternative Fuels Data Center: Automakers Innovate With Clean Gas Technologies on Facebook Tweet about Alternative Fuels Data Center: Automakers Innovate With Clean Gas Technologies on Twitter Bookmark Alternative Fuels Data Center: Automakers Innovate With Clean Gas Technologies on Google Bookmark Alternative Fuels Data Center: Automakers Innovate With Clean Gas Technologies on Delicious Rank Alternative

  12. PROCEEDINGS OF THE 2003 NATIONAL OILHEAT RESEARCH ALLIANCE TECHNOLOGY SYMPOSIUM, HELD AT THE 2003 NEW ENGLAND FUEL INSTITUTE CONVENTION AND 30TH NORTH AMERICAN HEATING AND ENERGY EXPOSITION, HYNES CONVENTION CENTER, PRUDENTIAL CENTER, BOSTON, MASSACHUSETTS, JUNE 9 - 10, 2003.

    SciTech Connect (OSTI)

    MCDONALD,R.J.

    2003-06-09

    This meeting is the sixteenth oilheat industry technology meeting held since 1984 and the third since the National Oilheat Research Alliance (NORA) was formed. This year's symposium is a very important part of the effort in technology transfer, which is supported by the Oilheat Research Fuel Flexibility Program under the United States Department of Energy, Distributed Energy and Electricity Reliability Program (DEER). The foremost reason for the conference is to provide a platform for the exchange of information and perspectives among international researchers, engineers, manufacturers, service technicians, and marketers of oil-fired space-conditioning equipment. The conference provides a conduit by which information and ideas can be exchanged to examine present technologies, as well as helping to develop the future course for oil heating advancement. These conferences also serve as a stage for unifying government representatives, researchers, fuel oil marketers, and other members of the oil-heat industry in addressing technology advancements in this important energy use sector. The specific objectives of the conference are to: (1) Identify and evaluate the current state-of-the-art and recommend new initiatives for higher efficiency, a cleaner environment, and to satisfy consumer needs cost effectively, reliably, and safely; (2) Foster cooperative interactions among federal and industrial representatives for the common goal of sustained economic growth and energy security via energy conservation.

  13. Lighting Energy Efficiency in Parking Campaign

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Lighting Energy Efficiency in Parking (LEEP) Campaign Linda Sandahl Pacific Northwest ... Objectives: Problem Statement While new lighting technologies such as LEDs have the ...

  14. Outdoor Lighting Resources | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Research & Development Technology Application R&D Municipal Consortium Outdoor Lighting Resources Outdoor Lighting Resources DOE offers a variety of resources to guide ...

  15. Help Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Los Alamos National Laboratory Advanced Simulation and Computing Menu Events Partnerships Help Center Events Partnerships Help Center Videos Advanced Simulation and Computing Program » Help Center Computing Help Center Help hotlines, hours of operation, training, technical assistance, general information Los Alamos National Laboratory Hours: Monday through Friday, 8:00 a.m. - noon, 1:00-5:00 p.m. Mountain time Telephone: (505) 665-4444 option 3 Fax: (505) 665-6333 E-mail: consult@lanl.gov 24

  16. operations center

    National Nuclear Security Administration (NNSA)

    servers and other critical Operations Center equipment

  17. Independent air supply system filtered to protect against biological and radiological agents (99.7%).
  18. <...

  19. Types of Lighting in Commercial Buildings - Full Report

    U.S. Energy Information Administration (EIA) Indexed Site

    light sources along with other advanced lighting technologies. The Commercial Buildings Energy Consumption Survey (CBECS) collects information on types of lighting equipment, the...

  20. DOE Solid-State Lighting Program: Modest Investments, Extraordinary...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Modest Investments, Extraordinary Impacts DOE Solid-State Lighting Program Shaping the Future of Solid-State Lighting Today, LED (light-emitting diode) technologies illuminate ...

  21. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Advanced Technology Vehicle (ATV) Manufacturing Incentives Through the Advanced Technology Vehicles Manufacturing Loan Program, ATV and ATV components manufacturers may be eligible for direct loans for up to 30% of the cost of re-equipping, expanding, or establishing manufacturing facilities in the United States used to produce qualified ATVs or ATV components. Qualified ATVs are light-duty or ultra-efficient vehicles that meet specified federal emission standards and fuel economy requirements.

  22. Influence of Solvent-Like Sidechains on the Adsorption of Light

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hydrocarbons in Metal-Organic Frameworks | Center for Gas SeparationsRelevant to Clean Energy Technologies | Blandine Jerome Influence of Solvent-Like Sidechains on the Adsorption of Light Hydrocarbons in Metal-Organic Frameworks Previous Next List Schneemann, Andreas; Bloch, Eric D.; Henke, Sebastian; Llewellyn, Philip L.; Long, Jeffrey R.; and Fischer, Roland A. Influence of Solvent-Like Sidechains on the Adsorption of Light Hydrocarbons in Metal-Organic Frameworks. Chem. - Eur. J., 21,

  1. Evident Technologies | Open Energy Information

    Open Energy Info (EERE)

    for Others) for this property. Partnering Center within NREL National Center for Photovoltaics Partnership Year 2008 Evident Technologies is a company located in Troy, NY....

  2. Vehicle Technologies Office Merit Review 2014: GATE Center of Excellence at UAB for Lightweight Materials and Manufacturing for Automotive, Truck and Mass Transit

    Broader source: Energy.gov [DOE]

    Presentation given by University of Alabama at Birmingham at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about GATE...

  3. CONNECTED LIGHTING SYSTEMS RESOURCES | Department of Energy

    Energy Savers [EERE]

    CONNECTED LIGHTING SYSTEMS RESOURCES CONNECTED LIGHTING SYSTEMS RESOURCES The following resources provide information about outdoor lighting control systems. PDF icon 2014 Presentation: What to Look for Today in Control Systems PDF icon 2015 Presentation: Outdoor Lighting Control System Fundamentals PDF icon 2015 Presentation: Lessons Learned from Networked Outdoor Lighting Control System Pilot Projects PDF icon Emerging Technology Primer: Networked Outdoor Lighting Control Systems

  4. 2012 Vehicle Technologies Market Report

    SciTech Connect (OSTI)

    Davis, Stacy Cagle; Diegel, Susan W; Boundy, Robert Gary

    2013-03-01

    The Oak Ridge National Laboratory s Center for Transportation Analysis developed and published the first Vehicle Technologies Market Report in 2008. Three editions of the report have been published since that time. This 2012 report details the major trends in U.S. light vehicle and medium/heavy truck markets as well as the underlying trends that caused them. The opening section on Energy and Economics discusses the role of transportation energy and vehicle markets on a national scale. The following section examines light-duty vehicle use, markets, manufacture, and supply chains. The discussion of medium and heavy trucks offers information on truck sales and fuel use. The technology section offers information on alternative fuel vehicles and infrastructure, and the policy section concludes with information on recent, current, and near-future Federal policies like the Corporate Average Fuel Economy standards.

  5. Advanced Light Extraction Material for OLED Lighting | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Extraction Material for OLED Lighting Lead Performer: Pixelligent Technologies LLC - Baltimore, MD Partners: OLEDWorks LLC DOE Total Funding: 1,000,000 Project Term: April 6,...

  6. The design, construction, and monitoring of photovoltaic power system and solar thermal system on the Georgia Institute of Technology Aquatic Center. Volume 1

    SciTech Connect (OSTI)

    Long, R.C.

    1996-12-31

    This is a report on the feasibility study, design, and construction of a PV and solar thermal system for the Georgia Tech Aquatic Center. The topics of the report include a discussion of site selection and system selection, funding, design alternatives, PV module selection, final design, and project costs. Included are appendices describing the solar thermal system, the SAC entrance canopy PV mockup, and the PV feasibility study.

  7. Sandia National Laboratories: Research: Facilities: Technology Deployment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Centers: Design, Evaluation and Test Technology Facility Technology Deployment Centers Technology Deployment Centers Ion Beam Lab Advanced Power Sources Laboratory Engineering Sciences Experimental Facilities (ESEF) Explosive Components Facility Materials Science and Engineering Center Pulsed Power and Systems Validation Facility Radiation Detection Materials Characterization Laboratory Shock Thermodynamic Applied Research Facility (STAR) Weapon and Force Protection Center Design, Evaluation

  8. Building Technologies Program Planning Summary

    Energy Savers [EERE]

    of commercially available but underutilized technologies, lighting controls, expert lighting design, and integrated systems. * Through the EnergySmart Schools subprogram, BTP...

  9. Energy 101: Energy Efficient Data Centers

    Broader source: Energy.gov [DOE]

    Data centers provide mission-critical computing functions vital to the daily operation of top U.S. economic, scientific, and technological organizations. These data centers consume large amounts of...

  10. LED Provides Effective and Efficient Parking Area Lighting at...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    LED Provides Effective and Efficient Parking Area Lighting at the NAVFAC Engineering Service Center LED Provides Effective and Efficient Parking Area Lighting at the NAVFAC ...

  11. Energy Savings Activities-Lighting

    K-12 Energy Lesson Plans and Activities Web site (EERE)

    Students use the scientific method to examine school lighting technologies and determine if there are opportunities to save energy and money.

  12. Extended Operations of the Pratt & Whitney Rocketdyne Pilot-Scale Compact Reformer Year 6 - Activity 3.2 - Development of a National Center for Hydrogen Technology

    SciTech Connect (OSTI)

    Almlie, Jay

    2011-10-01

    U.S. and global demand for hydrogen is large and growing for use in the production of chemicals, materials, foods, pharmaceuticals, and fuels (including some low-carbon biofuels). Conventional hydrogen production technologies are expensive, have sizeable space requirements, and are large carbon dioxide emitters. A novel sorbent-based hydrogen production technology is being developed and advanced toward field demonstration that promises smaller size, greater efficiency, lower costs, and reduced to no net carbon dioxide emissions compared to conventional hydrogen production technology. Development efforts at the pilot scale have addressed materials compatibility, hot-gas filtration, and high-temperature solids transport and metering, among other issues, and have provided the basis for a preliminary process design with associated economics. The process was able to achieve a 93% hydrogen purity on a purge gasfree basis directly out of the pilot unit prior to downstream purification.

  13. U.S. Lighting Market Characterization Volume II: Energy Efficient Lighting

    Office of Scientific and Technical Information (OSTI)

    Technology Options (Technical Report) | SciTech Connect U.S. Lighting Market Characterization Volume II: Energy Efficient Lighting Technology Options Citation Details In-Document Search Title: U.S. Lighting Market Characterization Volume II: Energy Efficient Lighting Technology Options Multiyear study to evaluate light sources and identify opportunities for saving energy. This report looks broadly at energy-efficient options in lighting and identifies leading opportunities. Authors: Hong,

  14. Demonstration Assessment of Light-Emitting Diode Parking Structure Lighting

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    at U.S. Department of Labor Headquarters (Technical Report) | SciTech Connect Demonstration Assessment of Light-Emitting Diode Parking Structure Lighting at U.S. Department of Labor Headquarters Citation Details In-Document Search Title: Demonstration Assessment of Light-Emitting Diode Parking Structure Lighting at U.S. Department of Labor Headquarters This report documents a solid-state lighting (SSL) technology demonstration at the parking structure of the U.S. Department of Labor (DOL)

  15. Lighting the Way with Compact Fluorescent Lighting | Department of Energy

    Office of Environmental Management (EM)

    Lighting the Way with Compact Fluorescent Lighting Lighting the Way with Compact Fluorescent Lighting April 28, 2009 - 5:00am Addthis John Lippert There is a major push today to get homeowners to adopt compact fluorescent lamp (CFL) light bulbs. They have been on the market for nearly three decades, and many homeowners still do not use them widely. But the tide is definitely turning. Their availability and the percentage of homeowners familiar with the technology and purchasing them for their

  16. Saving Energy at Data Centers

    SciTech Connect (OSTI)

    2007-10-12

    Data centers provide mission-critical computing functions essential to the daily operation of top U.S. economic, scientific, and technological organizations. These data centers consume large amounts of energy to run and maintain their computer systems, servers, and associated high-performance components.

  17. Solid-State Lighting | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of Princeton's approach to solid-state lighting. Read more A Comprehensive Program Solid-state lighting (SSL) technology has the potential to reduce U.S. lighting energy usage by...

  18. Larry Brand - Gas Technology Institute

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    1615 Larry Brand - Gas Technology Institute Dave Bohac - Center for Energy and ... America Webinar 48 Questions? >Larry Brand R&D Director Gas Technology Institute ...

  19. MHK Technologies/OTEC | Open Energy Information

    Open Energy Info (EERE)

    Center Technology Resource Click here Ocean Thermal Energy Conversion (OTEC) Technology Type Click here Closed-cycle Technology Readiness Level Click here TRL 56: System...

  20. Center for Nanophase Materials Sciences - Newsletter January...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Center for Nanophase Materials Sciences and Panos Datskos of ORNL Measurement Science and Systems Engineering Division The technology, based on nonlinear nanomechanical resonators,...

  1. Center for Lightweighting Automotive Materials and Processing...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Automotive Materials and Processing 2008 Annual Merit Review Results Summary - 16. Technology Integration and Education GATE Center of Excellence in Lightweight Materials...

  2. Better Buildings Residential Program Solution Center Demonstration...

    Office of Environmental Management (EM)

    Program Solution Center Vehicle Technologies Office Merit Review 2014: A Combined Experimental and Modeling Approach for the Design of High Coulombic Efficiency Si Electrodes...

  3. NREL SBV Pilot Bioenergy Technologies

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    conversion technologies, biomass process and sustainability analysis, and feedstock logistics. Capabilities The NREL National Bioenergy Center develops, refines, and validates...

  4. GATE Center of Excellence in Lightweight Materials and Manufacturing...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technologies Vehicle Technologies Office Merit Review 2014: GATE Center of Excellence at UAB for Lightweight Materials and Manufacturing for Automotive, Truck and Mass Transit...

  5. LANSCE | Lujan Center | Instruments

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lujan Instruments Lujan Center Flight Paths Instrument Suite by Science Crystallography: NPDF, HIPD, HIPPO,PCS Engineering and Strain: HIPPO, SMARTS, NPDF Disordered Materials: NPDF, HIPD, HIPPO Large Scale Structures: LQD, ASTERIX Magnetism: ASTERIX, HIPD, HIPPO Biology: PCS, LQD Neutron Imaging: HIPPO, SMARTS, NPDF Nuclear Science and Technology: DANCE, FP5, FP12 Instrument Suite by Technique Powder Diffractometers: HIPD, HIPPO, NPDF, SMARTS Engineering Diffraction: SMARTS Reflectometer:

  6. Building America Solution Center

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Solution Center 2014 Building Technologies Office Peer Review Michael Baechler, michael.baechler@pnnl.gov Pacific Northwest National Laboratory Project Summary Timeline: Start date: October 2011 Planned end date: Ongoing Key Milestones 1. Launch supporting Energy Star, January 2013 2. Zero Energy Ready Home launch, June 2014 3. Existing home launch, winter 2015 Budget: Total DOE $ to date: $2,604,000 Total future DOE $: $4,500,000 (2 additional years development - 3 years of app and content

  7. National Fertilizer Development Center

    Office of Legacy Management (LM)

    h-L National Fertilizer Development Center May 15, 1980 nww Hr. William Et Mott, Director Environmental Control Technology Division Office of Environment Dcpartiaent of Energy Washington, DC 20545 Dear Mr. Mott: This is in response to your letter of May 5 requesting ccmments on a report dated Xarct; 1930 which summarizes a preliminary radiological survey of facilities used in the early 1950's for studies of recovery of uranium from leached zone ore. I have made a few suggested changes to the

  8. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Hydrogen Implementation Working Group A hydrogen implementation working group, consisting of federal, state, and county agency representatives and industry stakeholders, facilitates the establishment of infrastructure and policies across all state agencies with the goal of promoting the expansion of hydrogen-based energy in Hawaii. The Director of the Hawaii Center for Advanced Transportation Technologies serves as the state Hydrogen Implementation Coordinator (Coordinator). The Coordinator must

  9. Alternative Energy Technology Inc formerly The Alternative Energy...

    Open Energy Info (EERE)

    Technology Inc formerly The Alternative Energy Technology Center Inc Jump to: navigation, search Name: Alternative Energy Technology Inc (formerly The Alternative Energy Technology...

  10. Carolinas Energy Career Center

    SciTech Connect (OSTI)

    Classens, Anver; Hooper, Dick; Johnson, Bruce

    2013-03-31

    Central Piedmont Community College (CPCC), located in Charlotte, North Carolina, established the Carolinas Energy Career Center (Center) - a comprehensive training entity to meet the dynamic needs of the Charlotte region's energy workforce. The Center provides training for high-demand careers in both conventional energy (fossil) and renewable energy (nuclear and solar technologies/energy efficiency). CPCC completed four tasks that will position the Center as a leading resource for energy career training in the Southeast: Development and Pilot of a New Advanced Welding Curriculum, Program Enhancement of Non-Destructive Examination (NDE) Technology, Student Support through implementation of a model targeted toward Energy and STEM Careers to support student learning, Project Management and Reporting. As a result of DOE funding support, CPCC achieved the following outcomes: Increased capacity to serve and train students in emerging energy industry careers; Developed new courses and curricula to support emerging energy industry careers; Established new training/laboratory resources; Generated a pool of highly qualified, technically skilled workers to support the growing energy industry sector.

  11. Semiconductor Science and Technology

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    world ssls.sandia.gov Initiates decades-long investment into compound semiconductor science and technology, eventually establishing its Center for Compound Semiconductor Science...

  12. ocean energy technologies

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Tribal Energy Program Intellectual Property Current EC Partnerships How to Partner Small ... SunShot Grand Challenge: Regional Test Centers ocean energy technologies HomeTag:ocean ...

  13. Center for Energy Nanoscience at USC

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    LED Nanowire LEDs GaN based light emitting diodes (LEDs) are a key technology for high brightness LEDs. Although already successful commercially, fundamental physical and device...

  14. Distributed H{sub 2} Supply for Fuel Cell Utility Vehicles Year 6 - Activity 3.5 - Development fo a National Center for Hydrogen Technology

    SciTech Connect (OSTI)

    Almlie, Jay

    2012-04-15

    The Energy & Environmental Research Center (EERC) has developed a high-pressure hydrogen production system that reforms a liquid organic feedstock and water at operating pressures up to 800 bar (~12,000 psig). The advantages of this system include the elimination of energy-intensive hydrogen compression, a smaller process footprint, and the elimination of gaseous or liquid hydrogen transport. This system could also potentially enable distributed hydrogen production from centralized coal. Processes have been investigated to gasify coal and then convert the syngas into alcohol or alkanes. These alcohols and alkanes could then be easily transported in bulk to distributed high-pressure water-reforming (HPWR)-based systems to deliver hydrogen economically. The intent of this activity was to utilize the EERC’s existing HPWR hydrogen production process, previously designed and constructed in a prior project phase, as a basis to improve operational and production performance of an existing demonstration unit. Parameters to be pursued included higher hydrogen delivery pressure, higher hydrogen production rates, and the ability to refill within a 5-minute time frame.

  15. Detailed workplan for innovative technology demonstrations to support existing treatment operations at the Installation Logistics Center, DSERTS Site FTLE-33, Fort Lewis, Washington

    SciTech Connect (OSTI)

    Liikala, T.L.

    1998-07-01

    This workplan is an assemblage of documents for use by Pacific Northwest National Laboratory (PNNL) to direct and control project activities at Fort Lewis, Washington. Fort Lewis is a FORSCOM installation, whose Logistics Center (DSERTS Site FTLE-33) was placed on the National priorities List (NPL) in December 1989, as a result of trichloroethene (TCE) contamination in groundwater beneath the site. Site background information and brief descriptions of the Fort Lewis project and the main supporting documents, which will be used to direct and control the project activities, are provided. These are followed by a summary of the Work Breakdown Structure (WBS) elements, a general project schedule, a list of major deliverables, and a budget synopsis. Test plans for specific elements (Bench-Scale Testing) will be developed separately as those elements are initiated. If additional activities not specifically addressed in the Project Management Plan (Attachment 1) are added to the work scope, addendums to this workplan will be prepared to cover those activities.

  16. Commercial Lighting

    Broader source: Energy.gov [DOE]

    Commercial lighting accounts for more than 20 percent of total commercial building energy use. The Energy Department works to reduce lighting energy use through research and deployment.

  17. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Emissions Reductions Grants The Carl Moyer Memorial Air Quality Standards Attainment Program (Program) provides incentives to cover the incremental cost of purchasing engines and equipment that are cleaner than required by law. Eligible projects include heavy-duty fleet modernization, light-duty vehicle replacements and retrofits, idle reduction technology, off-road vehicle and equipment purchases, and alternative fuel and electric vehicle infrastructure projects. The Program provides funds for

  18. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Fleet Vehicle Procurement Requirements When awarding a vehicle procurement contract, every city, county, and special district, including school and community college districts, may require that 75% of the passenger cars and/or light-duty trucks acquired be energy-efficient vehicles. By definition, this includes hybrid electric vehicles and alternative fuel vehicles that meet California's advanced technology partial zero emission vehicle (AT PZEV) standards. Vehicle procurement contract

  19. Vehicle Technologies Office Merit Review 2015: Computational Design and Development of a New, Lightweight Cast Alloy for Advanced Cylinder Heads in High-Efficiency, Light-Duty Engines

    Broader source: Energy.gov [DOE]

    Presentation given by General Motors at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about computational design and...

  20. And the Oscar for Sustainable Mobile Lighting Goes to.... Lighting Up

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Operations with Hydrogen and Fuel Cell Technology | Department of Energy And the Oscar for Sustainable Mobile Lighting Goes to.... Lighting Up Operations with Hydrogen and Fuel Cell Technology And the Oscar for Sustainable Mobile Lighting Goes to.... Lighting Up Operations with Hydrogen and Fuel Cell Technology September 30, 2014 - 1:12pm Addthis Developed by Sandia National Laboratories and several industry partners, the fuel cell mobile light (H2LT) offers a cleaner, quieter alternative to

  1. A Look Inside Argonne's Center for Nanoscale Materials

    ScienceCinema (OSTI)

    Divan, Ralu; Rosenthal, Dan; Rose, Volker; Wai Hla, Saw; Liu, Yuzi

    2014-09-15

    At a very small, or "nano" scale, materials behave differently. The study of nanomaterials is much more than miniaturization - scientists are discovering how changes in size change a material's properties. From sunscreen to computer memory, the applications of nanoscale materials research are all around us. Researchers at Argonne's Center for Nanoscale Materials are creating new materials, methods and technologies to address some of the world's greatest challenges in energy security, lightweight but durable materials, high-efficiency lighting, information storage, environmental stewardship and advanced medical devices.

  2. A Look Inside Argonne's Center for Nanoscale Materials

    SciTech Connect (OSTI)

    Divan, Ralu; Rosenthal, Dan; Rose, Volker; Wai Hla, Saw; Liu, Yuzi

    2014-01-29

    At a very small, or "nano" scale, materials behave differently. The study of nanomaterials is much more than miniaturization - scientists are discovering how changes in size change a material's properties. From sunscreen to computer memory, the applications of nanoscale materials research are all around us. Researchers at Argonne's Center for Nanoscale Materials are creating new materials, methods and technologies to address some of the world's greatest challenges in energy security, lightweight but durable materials, high-efficiency lighting, information storage, environmental stewardship and advanced medical devices.

  3. 2012 Annual Planning Summary for EM Energy Technology Engineering...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    EM Energy Technology Engineering Center 2012 Annual Planning Summary for EM Energy Technology Engineering Center The ongoing and projected Environmental Assessments and...

  4. US India Joint Center for Building Energy Research and Development (CBERD) : Controls and Communications Integration

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    India Joint Center for Building Energy Research and Development (CBERD) : Controls and Communications Integration 2015 Building Technologies Office Peer Review Rich Brown, REBrown@lbl.gov Lawrence Berkeley National Laboratory (LBNL) 2 Project Summary Timeline: Start date: Oct 2012; Planned end date: Sep 2017 Key Milestones 1. Pilot lighting system deployment with open control interface (Fall 2014) 2. Transactional Network Volttron integration (Spring 2016) 3. Demonstrate transaction-based

  5. Demonstration Assessment of Light-Emitting Diode (LED) Parking Lot Lighting, Phase I

    SciTech Connect (OSTI)

    Myer, M. A.; Goettel, R. T.

    2010-06-22

    U.S. DOE Solid-State Lighting Technology Demonstration GATEWAY Program Report on the TJMaxx Demonstration.

  6. California Institute of Technology

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sunday, July 29, 2012 California Institute of Technology Hameetman Auditorium at the Cahill Center 8:30 AM - 5:00 PM Speakers include: o Harry Atwater, Director, LMI-EFRC and Resnick Institute, California Institute of Technology o Ivan Celanovic, Principal Research Scientist, Massachusetts Institute of Technology o Geoffrey Kinsey, Director, Photovoltaic Technologies, Fraunhofer Center for Sustainable Energy o Sarah Kurtz, Principal Scientist, National Renewable Energy Laboratory o Minh Le,

  7. Demonstration Assessment of Light-Emitting Diode Parking Structure Lighting

    Office of Scientific and Technical Information (OSTI)

    at U.S. Department of Labor Headquarters (Technical Report) | SciTech Connect Parking Structure Lighting at U.S. Department of Labor Headquarters Citation Details In-Document Search Title: Demonstration Assessment of Light-Emitting Diode Parking Structure Lighting at U.S. Department of Labor Headquarters This report documents a solid-state lighting (SSL) technology demonstration at the parking structure of the U.S. Department of Labor (DOL) Headquarters in Washington, DC, in which

  8. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Do alternative fuel vehicles (AFVs) improve air quality? How does the use of alternative fuels affect smog formation? You may find answers to these and other questions through the U.S. Department of Energy's (DOE) Alternative Fuels Data Center (AFDC)-the nation's most com- prehensive repository of perfor- mance data and general informa- tion on AFVs. To date, more than 600 vehi- cles-including light-duty cars, trucks, vans, transit buses, and heavy-duty trucks-have been tested on various

  9. Clean Energy Solutions Center Services (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2014-04-01

    The Clean Energy Solutions Center (Solutions Center) helps governments, advisors and analysts create policies and programs that advance the deployment of clean energy technologies. The Solutions Center partners with international organizations to provide online training, expert assistance, and technical resources on clean energy policy.

  10. lighting controls

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Search Policy & Reporting Expand Policy & Reporting EE Sectors Expand EE Sectors Technology & Innovation Expand Technology & Innovation Utility Resources Expand...

  11. Sandia National Laboratories: Research: Facilities: Technology Deployment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Centers: Advanced Power Sources Laboratory Technology Deployment Centers Technology Deployment Centers Ion Beam Lab Advanced Power Sources Laboratory Engineering Sciences Experimental Facilities (ESEF) Explosive Components Facility Materials Science and Engineering Center Pulsed Power and Systems Validation Facility Radiation Detection Materials Characterization Laboratory Shock Thermodynamic Applied Research Facility (STAR) Weapon and Force Protection Center Design, Evaluation and Test

  12. Wind Technologies & Evolving Opportunities (Presentation)

    SciTech Connect (OSTI)

    Robichaud, R.

    2014-07-01

    This presentation covers opportunities for wind technology; wind energy market trends; an overview of the National Wind Technology Center near Boulder, Colorado; wind energy price and cost trends; wind turbine technology improvements; and wind resource characterization improvements.

  13. Hydrogenase mimic produces hydrogen under the light

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Objective The Science Center Publications Graduate Research opportunities Undergraduate research opportunities EFRC-501 graduate class Seminar schedules Center News Research Highlights Center Research News Media about Center Center Video Library Bisfuel Picture Gallery Hydrogenase mimic produces hydrogen under the light 24 Jan 2013 Researchers from the laboratory of Giovanna Ghirlanda working on Subtask 3 (Fuel Production Complex) have achieved the synthesis of a peptide-based hydrogenase mimic

  14. Fuel Summary Report: Shippingport Light Water Breeder Reactor - Rev. 2

    SciTech Connect (OSTI)

    Olson, Gail Lynn; Mc Cardell, Richard Keith; Illum, Douglas Brent

    2002-09-01

    The Shippingport Light Water Breeder Reactor (LWBR) was developed by Bettis Atomic Power Laboratory to demonstrate the potential of a water-cooled, thorium oxide fuel cycle breeder reactor. The LWBR core operated from 1977-82 without major incident. The fuel and fuel components suffered minimal damage during operation, and the reactor testing was deemed successful. Extensive destructive and nondestructive postirradiation examinations confirmed that the fuel was in good condition with minimal amounts of cladding deformities and fuel pellet cracks. Fuel was placed in wet storage upon arrival at the Expended Core Facility, then dried and sent to the Idaho Nuclear Technology and Engineering Center for underground dry storage. It is likely that the fuel remains in good condition at its current underground dry storage location at the Idaho Nuclear Technology and Engineering Center. Reports show no indication of damage to the core associated with shipping, loading, or storage.

  15. Building Technologies Office: Emerging Technologies Windows and Building Envelope

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Bahman Habibzadeh, PhD Technology Development Manger Building Technologies Office Emerging Technologies Windows and Building Envelope 2 Emerging Technologies (ET)  Develop cost-effective, high-impact building technologies: Lighting, HVAC, Windows & Envelope, Sensors & Controls, Appliances & Equipment Commercial Buildings Integration (CBI) Residential Buildings Integration (RBI)  Partner with private sector to demonstrate technologies and solutions  Demonstrate market

  16. CONNECTED LIGHTING SYSTEMS RESOURCES | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    CONNECTED LIGHTING SYSTEMS RESOURCES CONNECTED LIGHTING SYSTEMS RESOURCES The following resources provide information about outdoor lighting control systems. PDF icon 2014 Presentation: What to Look for Today in Control Systems PDF icon 2015 Presentation: Outdoor Lighting Control System Fundamentals PDF icon 2015 Presentation: Lessons Learned from Networked Outdoor Lighting Control System Pilot Projects PDF icon Emerging Technology Primer: Networked Outdoor Lighting Control Systems Solid-State

  17. Lighting and Electrical Team Leadership and Project Delivery

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Lighting and Electrical Team Leadership and Project Delivery 2014 Building Technologies ... million sq ft of high efficiency parking lighting by February 2014 2. LEEP: 300 million sq ...

  18. Demonstration Assessment of Light-Emitting Diode (LED) Parking...

    Office of Scientific and Technical Information (OSTI)

    Diode (LED) Parking Lot Lighting in Leavenworth, KS This report describes the process and results of a demonstration of solid-state lighting (SSL) technology in a ...

  19. Solid-State Lighting Program Strategy Overview - 2014 BTO Peer...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Program Strategy Overview - 2014 BTO Peer Review Solid-State Lighting Program Strategy ... of the Building Technologies Office's Solid-State Lighting Program Strategy activities. ...

  20. Lighting for Health: LEDs in the New Age of Illumination

    SciTech Connect (OSTI)

    2014-05-01

    DOE Solid-State Lighting program technology fact sheet that provides background on current science and considerations related to LED light and health.