Sample records for lighting power densities

  1. Brain Tissue Depth (mm) LightPowerDensity(mW/mm2

    E-Print Network [OSTI]

    Schnitzer, Mark

    Brain Tissue Depth (mm) LightPowerDensity(mW/mm2 ) Power Meter Tissue block Bare Fiber = 12° = 6 with the beveled cannula over CeA. d) Chart indicating estimated light power density seen at various distances from the fiber tip in mouse brain tissue when the light power density seen at the fiber tip was 7 mW (~99 mW/mm2

  2. Minimizing lighting power density in office rooms equipped with Anidolic Daylighting Systems

    SciTech Connect (OSTI)

    Linhart, Friedrich; Scartezzini, Jean-Louis [Solar Energy and Building Physics Laboratory (LESO-PB), Ecole Polytechnique Federale de Lausanne (EPFL), 1015 Lausanne (Switzerland)

    2010-04-15T23:59:59.000Z

    Electric lighting is responsible for up to one third of an office building's electricity needs. Making daylight more available in office buildings can not only contribute to significant energy savings but also enhance the occupants' performance and wellbeing. Anidolic Daylighting Systems (ADS) are one type of very effective facade-integrated daylighting systems. All south-facing office rooms within the LESO solar experimental building in Lausanne (Switzerland) are equipped with a given type of ADS. A recent study has shown that these offices' occupants are highly satisfied with their lighting environment. The most energy-efficient south-facing offices have a lighting power density of less than 5W/m{sup 2}. The lighting situation within these ''best practice''-offices has been assessed using the lighting simulation software RELUX Vision. Because this lighting situation is very much appreciated by the occupants, it was used as a starting point for developing even more energy-efficient office lighting designs. Two new lighting designs, leading to lighting power densities of 3.9W/m{sup 2} and 3W/m{sup 2}, respectively, have been suggested and simulated with RELUX Vision. Simulation results have shown that the expected performances of these new systems are comparable to that of the current lighting installation within the ''best practice''-offices or even better. These simulation results have been confirmed during experiments on 20 human subjects in a test office room recently set up within the LESO building. This article gives engineers, architects and light planers valuable information and ideas on how to design energy-efficient and comfortable electric lighting systems in office rooms with abundant access to daylight. (author)

  3. Gamma-ray burst prompt emission light curves and power density spectra in the ICMART model

    SciTech Connect (OSTI)

    Zhang, Bo [School of Astronomy and Space Science, Nanjing University, Nanjing 210093 (China); Zhang, Bing, E-mail: bozhang@physics.unlv.edu, E-mail: zhang@physics.unlv.edu [Department of Physics and Astronomy, University of Nevada Las Vegas, Las Vegas, NV 89154 (United States)

    2014-02-20T23:59:59.000Z

    In this paper, we simulate the prompt emission light curves of gamma-ray bursts (GRBs) within the framework of the Internal-Collision-induced MAgnetic Reconnection and Turbulence (ICMART) model. This model applies to GRBs with a moderately high magnetization parameter ? in the emission region. We show that this model can produce highly variable light curves with both fast and slow components. The rapid variability is caused by many locally Doppler-boosted mini-emitters due to turbulent magnetic reconnection in a moderately high ? flow. The runaway growth and subsequent depletion of these mini-emitters as a function of time define a broad slow component for each ICMART event. A GRB light curve is usually composed of multiple ICMART events that are fundamentally driven by the erratic GRB central engine activity. Allowing variations of the model parameters, one is able to reproduce a variety of light curves and the power density spectra as observed.

  4. Gamma-Ray Burst Prompt Emission Light Curves and Power Density Spectra in the ICMART Model

    E-Print Network [OSTI]

    Zhang, Bo

    2013-01-01T23:59:59.000Z

    In this paper, we simulate the prompt emission light curves of gamma-ray bursts (GRBs) within the framework of the Internal-Collision-induced MAgnetic Reconnection and Turbulence (ICMART) model. This model applies to GRBs with a moderately-high magnetization parameter $\\sigma$ in the emission region. We show that this model can produce highly variable light curves with both fast and slow components. The rapid variability is caused by many locally Doppler-boosted mini-emitters due to turbulent magnetic reconnection in a moderately-high-$\\sigma$ flow. The run-away growth and subsequent depletion of these mini-emitters as a function time define a broad slow component for each ICMART event. A GRB light curve is usually composed of multiple ICMART events that are fundamentally driven by the erratic GRB central engine activity. Allowing variations of the model parameters, one is able to reproduce a variety of light curves and the power density spectra as observed.

  5. Power Density Spectra of Gamma-Ray Burst Light Curves: Implications on Theory and Observation

    E-Print Network [OSTI]

    Heon-Young Chang; Insu Yi

    2001-01-02T23:59:59.000Z

    We study the power density spectrum (PDS) of artificial light curves of observed gamma-ray bursts (GRBs). We investigate statistical properties of GRB light curves by comparing the reported characteristics in the PDSs of the observed GRBs with those that we model, and discuss implications on interpretations of the PDS analysis results. Results of PDS analysis of observed GRBs suggest that the averaged PDS of GRBs follows a power law over about two decades of frequency with the power law index, -5/3, and the distribution of individual power follows an exponential distribution. Though an attempt to identify the most sensitive physical parameter has been made on the basis of the internal shock model, we demonstrate that conclusions of this kind of approach should be derived with due care. It is indicative that the physical information extracted from the slope can be misleading. We show that the reported slope and the distribution can be reproduced by adjusting the sampling interval in the time domain for a given decaying timescale of individual pulse in a specific form of GRB light curves. In particular, given that the temporal feature is modeled by a two-sided exponential function, the power law behavior with the index of -5/3 and the exponential distribution of the observed PDS is recovered at the 64 ms trigger time scale when the decaying timescale of individual pulse is $\\sim 1$ second, provided that the pulse sharply rises. Another way of using the PDS analysis is an application of the same method to individual long bursts in order to examine a possible evolution of the decaying timescale in a single burst.

  6. Density-potential pairs for spherical stellar systems with Sersic light-profiles and (optional) power-law cores

    E-Print Network [OSTI]

    Balsa Terzic; Alister W. Graham

    2005-06-10T23:59:59.000Z

    Popular models for describing the luminosity-density profiles of dynamically hot stellar systems (e.g., Jaffe, Hernquist, Dehnen) were constructed with the desire to match the deprojected form of an R^{1/4} light-profile. Real galaxies, however, are now known to have a range of different light-profile shapes that scale with mass. Consequently, although highly useful, the above models have implicit limitations, and this is illustrated here through their application to a number of real galaxy density profiles. On the other hand, the analytical density profile given by Prugniel & Simien (1997) closely matches the deprojected form of Sersic R^{1/n} light-profiles - including deprojected exponential light-profiles. It is thus applicable for describing bulges in spiral galaxies, dwarf elliptical galaxies, and both ordinary and giant elliptical galaxies. Here we provide simple equations, in terms of elementary and special functions, for the gravitational potential and force associated with this density profile. Furthermore, to match galaxies with partially depleted cores, and better explore the supermassive black hole / galaxy connection, we have added a power-law core to this density profile and derived similar expressions for the potential and force of this hybrid profile. Expressions for the mass and velocity dispersion, assuming isotropy, are also given. These models may also prove appropriate for describing the dark matter distribution in halos formed from LCDM cosmological simulations.

  7. POWER PURCHASE AGREEMENT DELMARVA POWER & LIGHT COMPANY

    E-Print Network [OSTI]

    Firestone, Jeremy

    POWER PURCHASE AGREEMENT between DELMARVA POWER & LIGHT COMPANY ("Buyer") and BLUEWATER WIND 3.5 Energy Forecasts, Scheduling and Balancing.......................................... 39 3

  8. Minimization of Fractional Power Densities

    E-Print Network [OSTI]

    Minimization of Fractional Power Densities. Robert Hardt, Rice University. Abstract: A k dimensional rectifiable current is given by an oriented k dimensional

  9. The X-ray Power Density Spectrum of the Seyfert 2 Galaxy NGC 4945: Analysis and Application of the Method of Light Curve Simulations

    SciTech Connect (OSTI)

    Mueller, Martin; /SLAC

    2010-12-16T23:59:59.000Z

    The study of the power density spectrum (PDS) of fluctuations in the X-ray flux from active galactic nuclei (AGN) complements spectral studies in giving us a view into the processes operating in accreting compact objects. An important line of investigation is the comparison of the PDS from AGN with those from galactic black hole binaries; a related area of focus is the scaling relation between time scales for the variability and the black hole mass. The PDS of AGN is traditionally modeled using segments of power laws joined together at so-called break frequencies; associations of the break time scales, i.e., the inverses of the break frequencies, with time scales of physical processes thought to operate in these sources are then sought. I analyze the Method of Light Curve Simulations that is commonly used to characterize the PDS in AGN with a view to making the method as sensitive as possible to the shape of the PDS. I identify several weaknesses in the current implementation of the method and propose alternatives that can substitute for some of the key steps in the method. I focus on the complications introduced by uneven sampling in the light curve, the development of a fit statistic that is better matched to the distributions of power in the PDS, and the statistical evaluation of the fit between the observed data and the model for the PDS. Using archival data on one AGN, NGC 3516, I validate my changes against previously reported results. I also report new results on the PDS in NGC 4945, a Seyfert 2 galaxy with a well-determined black hole mass. This source provides an opportunity to investigate whether the PDS of Seyfert 1 and Seyfert 2 galaxies differ. It is also an attractive object for placement on the black hole mass-break time scale relation. Unfortunately, with the available data on NGC 4945, significant uncertainties on the break frequency in its PDS remain.

  10. Lakeview Light and Power- Commercial Lighting Rebate Program

    Broader source: Energy.gov [DOE]

    Lakeview Light and Power offers a commercial lighting rebate program. Rebates apply to the installation of energy efficient lighting retrofits in non-residential buildings. The rebate program is...

  11. Indianapolis Power & Light- Business Energy Incentives Program

    Broader source: Energy.gov [DOE]

    The Indiana Power and Light Business (IPL) Energy Incentives Program assists commercial and industrial customers with reducing energy consumption through three common types of equipment: lighting,...

  12. Kansas City Power & Light- Solar PV Rebates

    Broader source: Energy.gov [DOE]

    Kansas City Power and Light and its affiliate Kansas City Power and Light Greater Missouri Operations (collectively referred to as KCP&L) offer rebates to their customers for the installation...

  13. Considering Air Density in Wind Power Production

    E-Print Network [OSTI]

    Zénó Farkas

    2011-03-11T23:59:59.000Z

    In the wind power production calculations the air density is usually considered as constant in time. Using the CIPM-2007 equation for the density of moist air as a function of air temperature, air pressure and relative humidity, we show that it is worth taking the variation of the air density into account, because higher accuracy can be obtained in the calculation of the power production for little effort.

  14. Considering Air Density in Wind Power Production

    E-Print Network [OSTI]

    Farkas, Zénó

    2011-01-01T23:59:59.000Z

    In the wind power production calculations the air density is usually considered as constant in time. Using the CIPM-2007 equation for the density of moist air as a function of air temperature, air pressure and relative humidity, we show that it is worth taking the variation of the air density into account, because higher accuracy can be obtained in the calculation of the power production for little effort.

  15. Inverse diffusion from knowledge of power densities

    E-Print Network [OSTI]

    Bal, Guillaume; Monard, Francois; Triki, Faouzi

    2011-01-01T23:59:59.000Z

    This paper concerns the reconstruction of a diffusion coefficient in an elliptic equation from knowledge of several power densities. The power density is the product of the diffusion coefficient with the square of the modulus of the gradient of the elliptic solution. The derivation of such internal functionals comes from perturbing the medium of interest by acoustic (plane) waves, which results in small changes in the diffusion coefficient. After appropriate asymptotic expansions and (Fourier) transformation, this allow us to construct the power density of the equation point-wise inside the domain. Such a setting finds applications in ultrasound modulated electrical impedance tomography and ultrasound modulated optical tomography. We show that the diffusion coefficient can be uniquely and stably reconstructed from knowledge of a sufficient large number of power densities. Explicit expressions for the reconstruction of the diffusion coefficient are also provided. Such results hold for a large class of boundary...

  16. Hudson Light & Power- Photovoltaic Incentive Program

    Broader source: Energy.gov [DOE]

    Hudson LightPower Department, the municipal utility for the Town of Hudson, offers a limited number of solar photovoltaic (PV) rebates for residential, commercial, industrial, and municipal...

  17. High power density supercapacitors using locally aligned carbon nanotube electrodes

    E-Print Network [OSTI]

    Du, C S; Yeh, J; Pan, Ning

    2005-01-01T23:59:59.000Z

    4484/16/4/003 High power density supercapacitors usingproduced very high speci?c power density of about 30 kW kg ?manufacturing of high power density supercapacitors and

  18. High-power-density spot cooling using bulk thermoelectrics

    E-Print Network [OSTI]

    Zhang, Y; Shakouri, A; Zeng, G H

    2004-01-01T23:59:59.000Z

    model, the cooling power densities of the devices can alsothe cooling power densities 2–24 times. Experimentally, the14 4 OCTOBER 2004 High-power-density spot cooling using bulk

  19. High power density solid oxide fuel cells

    SciTech Connect (OSTI)

    Pham, Ai Quoc; Glass, Robert S.

    2004-10-12T23:59:59.000Z

    A method for producing ultra-high power density solid oxide fuel cells (SOFCs). The method involves the formation of a multilayer structure cells wherein a buffer layer of doped-ceria is deposited intermediate a zirconia electrolyte and a cobalt iron based electrode using a colloidal spray deposition (CSD) technique. For example, a cobalt iron based cathode composed of (La,Sr)(Co,Fe)O (LSCF) may be deposited on a zirconia electrolyte via a buffer layer of doped-ceria deposited by the CSD technique. The thus formed SOFC have a power density of 1400 mW/cm.sup.2 at 600.degree. C. and 900 mW/cm.sup.2 at 700.degree. C. which constitutes a 2-3 times increased in power density over conventionally produced SOFCs.

  20. High power density supercapacitors using locally aligned carbon nanotube electrodes

    E-Print Network [OSTI]

    Du, C S; Yeh, J; Pan, Ning

    2005-01-01T23:59:59.000Z

    High power density supercapacitors using locally alignedof high power density supercapacitors and other similarcells [6], and for supercapacitors [7–18]. As unique energy

  1. Methods to enhance blanket power density

    SciTech Connect (OSTI)

    Hsu, P.Y.; Miller, L.G.; Bohn, T.S.; Deis, G.A.; Longhurst, G.R.; Masson, L.S.; Wessol, D.E.; Abdou, M.A.

    1982-06-01T23:59:59.000Z

    The overall objective of this task is to investigate the extent to which the power density in the FED/INTOR breeder blanket test modules can be enhanced by artificial means. Assuming a viable approach can be developed, it will allow advanced reactor blanket modules to be tested on FED/INTOR under representative conditions.

  2. High power density thermophotovoltaic energy conversion

    SciTech Connect (OSTI)

    Noreen, D.L. [R& D Technologies, Inc., Hoboken, New Jersey 07030 (United States); Du, H. [Department of Materials Science and Engineering, Stevens Institute of Technology, Hoboken, New Jersey 07030 (United States)

    1995-01-05T23:59:59.000Z

    R&D Technologies is developing thermophotovoltaic (TPV) technology based on the use of porous/fibrous ceramic broadband-type emitter designs that utilize recuperative or regenerative techniques to improve thermal efficiency and power density. This paper describes preliminary estimates of what will be required to accomplish sufficient power density to develop a practical, commercially-viable TPV generator. It addresses the needs for improved, thermal shock-resistant, long-life porous/fibrous ceramic emitters and provides information on the photocell technology required to achieve acceptable power density in broadband-type (with selective filter) TPV systems. TPV combustors/systems operating at a temperature of 1500 {degree}C with a broadband-type emitter is proposed as a viable starting point for cost-effective TPV conversion. Based on current projections for photocell cost, system power densities of 7.5--10 watts per square centimeter of emitter area will be required for TPV to become a commercially viable technology. {copyright} {ital 1995} {ital American} {ital Institute} {ital of} {ital Physics}.

  3. Temperature Power Law of Equilibrium Heavy Particle Density

    E-Print Network [OSTI]

    Sh. Matsumoto; M. Yoshimura

    1999-10-19T23:59:59.000Z

    A standard calculation of the energy density of heavy stable particles that may pair-annihilate into light particles making up thermal medium is performed to second order of coupling, using the technique of thermal field theory. At very low temperatures a power law of temperature is derived for the energy density of the heavy particle. This is in sharp contrast to the exponentially suppressed contribution estimated from the ideal gas distribution function. The result supports a previous dynamical calculation based on the Hartree approximation, and implies that the relic abundance of dark matter particles is enhanced compared to that based on the Boltzmann equation.

  4. Monmouth Power & Light- Residential Energy Efficiency Program

    Broader source: Energy.gov [DOE]

    Monmouth Power & Light offers a wide range of energy efficiency rebates that encourage residential customers to save energy in their homes. To qualify for these incentives electricity must be...

  5. Waverly Light & Power- Residential Energy Efficiency Rebates

    Broader source: Energy.gov [DOE]

    Waverly Light and Power (WL&P) offers rebates for the purchase and installation of energy efficient HVAC systems and appliances to residential customers. Rebates are available for central AC...

  6. Sandia National Laboratories: fuel-cell-powered mobile lighting...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    fuel-cell-powered mobile lighting system ECIS, Boeing, Caltrans, and Others: Fuel-Cell-Powered Mobile Lighting Applications On March 29, 2013, in Capabilities, CRF, Energy, Energy...

  7. Orcas Power & Light- MORE Green Power Program (Washington)

    Broader source: Energy.gov [DOE]

    Orcas Power and Light (OPALCO), an electric cooperative serving Washington’s San Juan Islands, provides a production-based incentive for residential and commercial members who generate energy from...

  8. Assessment of helical-cruciform fuel rods for high power density LWRs

    E-Print Network [OSTI]

    Conboy, Thomas M

    2010-01-01T23:59:59.000Z

    In order to significantly increase the power density of Light Water Reactors (LWRs), the helical-cruciform (HC) fuel rod assembly has been proposed as an alternative to traditional fuel geometry. The HC assembly is a ...

  9. NEUTRONIC AND THERMAL HYDRAULIC DESIGNS OF ANNULAR FUEL FOR HIGH POWER DENSITY BWRS

    E-Print Network [OSTI]

    Morra, P.

    As a promising new fuel for high power density light water reactors, the feasibility of using annular fuel for BWR services is explored from both thermal hydraulic and neutronic points of view. Keeping the bundle size ...

  10. LIGHTING CONTROLS: SURVEY OF MARKET POTENTIAL

    E-Print Network [OSTI]

    Verderber, R.R.

    2010-01-01T23:59:59.000Z

    Floors Floor Area Lighting Power Density Light Output Lampenergy den- sity and power density for lighting to 3.5 kWh/Lighting Level (Lumens/Watt) (Footcandles) Power Density (

  11. Innovative fuel designs for high power density pressurized water reactor

    E-Print Network [OSTI]

    Feng, Dandong, Ph. D. Massachusetts Institute of Technology

    2006-01-01T23:59:59.000Z

    One of the ways to lower the cost of nuclear energy is to increase the power density of the reactor core. Features of fuel design that enhance the potential for high power density are derived based on characteristics of ...

  12. Design of annular fuel for high power density BWRs

    E-Print Network [OSTI]

    Morra, Paolo

    2005-01-01T23:59:59.000Z

    Enabling high power density in the core of Boiling Water Reactors (BWRs) is economically profitable for existing or new reactors. In this work, we examine the potential for increasing the power density in BWR plants by ...

  13. Inverse diffusion from knowledge of power densities Guillaume Bal

    E-Print Network [OSTI]

    Bal, Guillaume

    asymptotic expansions and (Fourier) transformation, this allow us to construct the power density) provides access to the power density H(x) = (x)|u|2 (x) for all x inside the domain of interestInverse diffusion from knowledge of power densities Guillaume Bal , Eric Bonnetier , Fran

  14. A Correlation between Light Concentration and Cluster Local Density for Elliptical Galaxies

    E-Print Network [OSTI]

    I. Trujillo; J. A. L. Aguerri; C. M. Gutierrez; N. Caon; J. Cepa

    2002-05-17T23:59:59.000Z

    Using photometric and redshift data for the Virgo and Coma clusters, we present evidence for a correlation between the light concentration of elliptical galaxies (including dwarf ellipticals) and the local 3-D (i.e. non-projected) density of the clusters: more concentrated ellipticals are located in denser regions. The null hypothesis (i.e. the absence of any relation) is rejected at a significance level better than 99.9%. In order to explain the observed relation, a power law relating the galaxy light concentration and the cluster 3-D density is proposed. We study how the projection effects affect the form and dispersion of the data-points in the light concentration-projected density diagram. The agreement between our model and the observed data suggests that there is a paucity of dwarf elliptical galaxies in the cluster central regions.

  15. Lakeview Light and Power- Energy Smart Grocer Rebate Program

    Broader source: Energy.gov [DOE]

    Lakeview Light and Power, in association with the Bonneville Power Administration, offers the Energy Smart Program through which grocery stores, convenient stores, and similar vendors can save...

  16. Water Cooling of High Power Light Emitting Diode Henrik Srensen

    E-Print Network [OSTI]

    Berning, Torsten

    Water Cooling of High Power Light Emitting Diode Henrik Sørensen Department of Energy Technology and product lifetime. The high power Light Emitting Diodes (LED) belongs to the group of electronics

  17. Kansas City Power and Light- Solar Photovoltaic Rebates

    Broader source: Energy.gov [DOE]

    Kansas City Power and Light and its affiliate Kansas City Power and Light Greater Missouri Operations (collectively referred to as KCP&L) offer rebates to their customers for the installation...

  18. Independence Power and Light- Commercial Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    '''Contact Independence Power and Light regarding incentive availability, as funding may be expired at the time of customer application.'''

  19. Paper area density measurement from forward transmitted scattered light

    DOE Patents [OSTI]

    Koo, Jackson C. (San Ramon, CA)

    2001-01-01T23:59:59.000Z

    A method whereby the average paper fiber area density (weight per unit area) can be directly calculated from the intensity of transmitted, scattered light at two different wavelengths, one being a non-absorpted wavelength. Also, the method makes it possible to derive the water percentage per fiber area density from a two-wavelength measurement. In the optical measuring technique optical transmitted intensity, for example, at 2.1 microns cellulose absorption line is measured and compared with another scattered, optical transmitted intensity reference in the nearby spectrum region, such as 1.68 microns, where there is no absorption. From the ratio of these two intensities, one can calculate the scattering absorption coefficient at 2.1 microns. This absorption coefficient at this wavelength is, then, experimentally correlated to the paper fiber area density. The water percentage per fiber area density can be derived from this two-wavelength measurement approach.

  20. Cornwall Light Power CLP | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof EnergyInnovationinConcentratingEnergyCoosa Valley ElectricCornwall Light Power CLP

  1. SUPERNOVA LIGHT CURVES POWERED BY FALLBACK ACCRETION

    SciTech Connect (OSTI)

    Dexter, Jason; Kasen, Daniel, E-mail: jdexter@berkeley.edu [Departments of Physics and Astronomy, University of California, Berkeley, CA 94720 (United States)

    2013-07-20T23:59:59.000Z

    Some fraction of the material ejected in a core collapse supernova explosion may remain bound to the compact remnant, and eventually turn around and fall back. We show that the late time ({approx}>days) power potentially associated with the accretion of this 'fallback' material could significantly affect the optical light curve, in some cases producing super-luminous or otherwise peculiar supernovae. We use spherically symmetric hydrodynamical models to estimate the accretion rate at late times for a range of progenitor masses and radii and explosion energies. The accretion rate onto the proto-neutron star or black hole decreases as M-dot {proportional_to}t{sup -5/3} at late times, but its normalization can be significantly enhanced at low explosion energies, in very massive stars, or if a strong reverse shock wave forms at the helium/hydrogen interface in the progenitor. If the resulting super-Eddington accretion drives an outflow which thermalizes in the outgoing ejecta, the supernova debris will be re-energized at a time when photons can diffuse out efficiently. The resulting light curves are different and more diverse than previous fallback supernova models which ignored the input of accretion power and produced short-lived, dim transients. The possible outcomes when fallback accretion power is significant include super-luminous ({approx}> 10{sup 44} erg s{sup -1}) Type II events of both short and long durations, as well as luminous Type I events from compact stars that may have experienced significant mass loss. Accretion power may unbind the remaining infalling material, causing a sudden decrease in the brightness of some long duration Type II events. This scenario may be relevant for explaining some of the recently discovered classes of peculiar and rare supernovae.

  2. Independence Power and Light- New Homes Rebate Program

    Broader source: Energy.gov [DOE]

    Independence Power and Light offers rebates to builders for constructing new, energy efficient homes which meet Energy Star standards. Builders who meet Energy Star standards and install specified...

  3. Independence Power and Light- Residential Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Independence Power and Light (IPL) offers rebates to residential customers for purchasing new, energy efficient appliances. Rebates are available on central air conditioning systems, heat pumps,...

  4. Hudson Light and Power- Photovoltaic Incentive Program (Massachusetts)

    Broader source: Energy.gov [DOE]

    Starting in 2011, Hudson Light and Power Department, the municipal utility for the Town of Hudson, started offering a limited number of photovoltaic rebates for residential, commercial, industrial,...

  5. Orcas Power & Light- Residential Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Orcas Power and Light Cooperative offers incentives for residential customers to pursue energy efficiency upgrades in eligible homes. Rebates are offered for Energy Star rated appliances, water...

  6. Forest Grove Light & Power- Energy Efficiency Rebate Programs

    Broader source: Energy.gov [DOE]

    Forest Grove Light & Power offers a variety of rebates through Conservation Services Department. Rebates vary based on technology, and are available to residential, commercial, and/or...

  7. Alliant Energy (Wisconsin Power and Light) - Farm Wiring Financing...

    Broader source: Energy.gov (indexed) [DOE]

    Power and Light) offers a farm wiring financing program to increase farm safety, productivity and efficiency, while decreasing the potential for stray voltage on livestock...

  8. Carbon Power & Light- Residential and Commercial Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Carbon Power and Light, in collaboration with Tri-State Generation and Transmission Association, offers financial incentives for members to increase the energy efficiency of homes and facilities....

  9. City Water Light and Power- Residential Energy Efficiency Rebate Programs

    Broader source: Energy.gov [DOE]

    City Water Light and Power (CWLP) offers rebates to Springfield residential customers for increasing the energy efficiency of participating homes. Rebates are available for geothermal heat pumps,...

  10. Liquid Walls Innovative High Power Density Concepts

    E-Print Network [OSTI]

    California at Los Angeles, University of

    Surface Heat Flux > 2 MW/m2 2. High Power Conversion Efficiency (> 40%) 3. High Availability -Lower rrr ×= V r J r PV r B r 1P 2P g r + - V r #12;V(initial momentum) g rFluidIn FluidOutBackingWall 2Dsurfaceturbulence · Poloidal Pumping + - J r - flowpoloidal direction - Enhancesurfaceheat transferwith2D turbulence

  11. Load Management and Houston Lighting and Power Co.

    E-Print Network [OSTI]

    Drawe, R. G.; Ramsay, I. M.

    1984-01-01T23:59:59.000Z

    Defining Load Management as influencing of customer loads in order to shift the time use of electric power and energy, encompasses a broad spectrum of activities at Houston Lighting & Power Company. This paper describes those activities by directing...

  12. The design of high power density annular fuel for LWRs

    E-Print Network [OSTI]

    Yuan, Yi, 1975-

    2004-01-01T23:59:59.000Z

    Fuel performance models have been developed to assess the performance of internally and externally cooled LWR annular fuel. Such fuel may be operated at 30-50% higher core power density than the current operating LWRs, and ...

  13. An evolutionary fuel assembly design for high power density BWRs

    E-Print Network [OSTI]

    Karahan, Aydin

    2007-01-01T23:59:59.000Z

    An evolutionary BWR fuel assembly design was studied as a means to increase the power density of current and future BWR cores. The new assembly concept is based on replacing four traditional assemblies and large water gap ...

  14. Thin liquid lithium targets for high power density

    E-Print Network [OSTI]

    McDonald, Kirk

    High charge state High velocity flow ~60 m/s High heat capacity of Li Absorbs power depositedThin liquid lithium targets for high power density applications: heavy ion beam strippers and beta Hilton Malmö City #12;Outline Liquid Lithium Stripper idea for FRIB Brief theory of film stability

  15. Density Power Spectrum of Compressible Hydrodynamic Turbulent Flows

    E-Print Network [OSTI]

    Jongsoo Kim; Dongsu Ryu

    2005-07-26T23:59:59.000Z

    Turbulent flows are ubiquitous in astrophysical environments, and understanding density structures and their statistics in turbulent media is of great importance in astrophysics. In this paper, we study the density power spectra, $P_{\\rho}$, of transonic and supersonic turbulent flows through one and three-dimensional simulations of driven, isothermal hydrodynamic turbulence with root-mean-square Mach number in the range of $1 \\la M_{\\rm rms} \\la 10$. From one-dimensional experiments we find that the slope of the density power spectra becomes gradually shallower as the rms Mach number increases. It is because the density distribution transforms from the profile with {\\it discontinuities} having $P_{\\rho} \\propto k^{-2}$ for $M_{\\rm rms} \\sim 1$ to the profile with {\\it peaks} having $P_{\\rho} \\propto k^0$ for $M_{\\rm rms} \\gg 1$. We also find that the same trend is carried to three-dimension; that is, the density power spectrum flattens as the Mach number increases. But the density power spectrum of the flow with $M_{\\rm rms} \\sim 1$ has the Kolmogorov slope. The flattening is the consequence of the dominant density structures of {\\it filaments} and {\\it sheets}. Observations have claimed different slopes of density power spectra for electron density and cold H I gas in the interstellar medium. We argue that while the Kolmogorov spectrum for electron density reflects the {\\it transonic} turbulence of $M_{\\rm rms} \\sim 1$ in the warm ionized medium, the shallower spectrum of cold H I gas reflects the {\\it supersonic} turbulence of $M_{\\rm rms} \\sim$ a few in the cold neutral medium.

  16. On the Power Spectrum Density of Gamma Ray Bursts

    E-Print Network [OSTI]

    Motoko Suzuki; Masahiro Morikawa; Izumi Joichi

    2001-04-13T23:59:59.000Z

    Gamma ray bursts (GRBs) are known to have short-time variability and power-law behavior with the index -1.67 in the power spectrum density. Reanalyzing the expanded data, we have found a) the power-law comes from the global profile of the burst and not from the self-similar shots nor rapid fluctuations in the luminosity profile. b) The power indices vary from burst to burst and the value -1.67 is given simply as the mean value of the distribution; there is no systematic correlation among GRBs to yield the power law.

  17. High Energy Density Science at the Linac Coherent Light Source

    SciTech Connect (OSTI)

    Lee, R W

    2007-10-19T23:59:59.000Z

    High energy density science (HEDS), as a discipline that has developed in the United States from National Nuclear Security Agency (NNSA)-sponsored laboratory research programs, is, and will remain, a major component of the NNSA science and technology strategy. Its scientific borders are not restricted to NNSA. 'Frontiers in High Energy Density Physics: The X-Games of Contemporary Science' identified numerous exciting scientific opportunities in this field, while pointing to the need for a overarching interagency plan for its evolution. Meanwhile, construction of the first x-ray free-electron laser, the Office-of-Science-funded Linear Coherent Light Source-LCLS: the world's first free electron x-ray laser, with 100-fsec time resolution, tunable x-ray energies, a high rep rate, and a 10 order-of-magnitude increase in brightness over any other x-ray source--led to the realization that the scientific needs of NNSA and the broader scientific community could be well served by an LCLS HEDS endstation employing both short-pulse and high-energy optical lasers. Development of this concept has been well received in the community. NNSA requested a workshop on the applicability of LCLS to its needs. 'High Energy Density Science at the LCLS: NNSA Defense Programs Mission Need' was held in December 2006. The workshop provided strong support for the relevance of the endstation to NNSA strategic requirements. The range of science that was addressed covered a wide swath of the vast HEDS phase space. The unique possibilities provided by the LCLS in areas of intense interest to NNSA Defense Programs were discussed. The areas of focus included warm dense matter and equations of state, hot dense matter, and behavior of high-pressure materials under conditions of high strain-rate and extreme dynamic loading. Development of new and advanced diagnostic techniques was also addressed. This report lays out the relevant science, as brief summaries (Ch. II), expanded descriptions (Ch. V), and a more detailed plans for experiments (Ch. VI), highlighting the uniqueness the HEDS endstation will play in providing mission-relevant HED data and in the development of the field. One of the more exciting aspects of NNSA-relevant experiments on LCLS is that, given the extraordinary investment and consequent advances in accurate atomic-scale simulations of matter (to a large extent via the Accelerated Scientific Computing program sponsored by NNSA), the facility will provide a platform that, for the first time, will permit experiments in the regimes of interest at the time and spatial scales of the simulations. In Chapter III, the report places the potential of LCLS with an HED science endstation in the context of science required by NNSA, as well as explicating the relationship of NNSA and HED science in general. Chapter IV discusses 4th-generation light sources, like LCLS, in the context of other laboratory technologies presently utilized by NNSA. The report concludes, noting that an HED endstation on LCLS can provide access to data in regimes that are relevant to NNSA needs but no mechanism exists for providing such data. The endstation will also serve to build a broad-based community in the 'X-Games' of physics. The science generated by the facility will be a collaboration of NNSA-based laboratory scientists and university-based researchers. The LCLS endstation fulfills the need for an intermediate-scale facility capable of delivering fundamental advances and mission-relevant research in high energy density science.

  18. Thermal Properties of Graphene and Applications for Thermal Management of High-Power Density Electronics

    E-Print Network [OSTI]

    Yan, Zhong

    2013-01-01T23:59:59.000Z

    the development of high-power density semiconductor devices.Management of High-Power Density Electronics A DissertationManagement of High-Power Density Electronics by Zhong Yan

  19. Limits to the power density of very large wind farms

    E-Print Network [OSTI]

    Nishino, Takafumi

    2013-01-01T23:59:59.000Z

    A simple analysis is presented concerning an upper limit of the power density (power per unit land area) of a very large wind farm located at the bottom of a fully developed boundary layer. The analysis suggests that the limit of the power density is about 0.38 times $\\tau_{w0}U_{F0}$, where $\\tau_{w0}$ is the natural shear stress on the ground (that is observed before constructing the wind farm) and $U_{F0}$ is the natural or undisturbed wind speed averaged across the height of the farm to be constructed. Importantly, this implies that the maximum extractable power from such a very large wind farm will not be proportional to the cubic of the wind speed at the farm height, or even the farm height itself, but be proportional to $U_{F0}$.

  20. Kansas City Power and Light- Home Performance with ENERGY STAR

    Broader source: Energy.gov [DOE]

    Kansas City Power and Light (KCP&L) offers rebates to residential customers towards the cost of an ENERGY STAR Home Energy Assessment and a portion of the installed efficiency improvements....

  1. Georgia Interfaith Power and Light- Energy Improvement Grants (Georgia)

    Broader source: Energy.gov [DOE]

    Georgia Interfaith Power and Light (GIPL) offers grants of up to $10,000 to congregations or faith-based communities, including faith-based schools. Grant funds may be used for energy conservation...

  2. Florida Power and Light- Residential Energy Efficiency Program

    Broader source: Energy.gov [DOE]

    Florida Power and Light (FPL) offers rebates to residential customers who implement certain energy efficiency improvements in eligible homes. HVAC rebates are available for the replacement of air...

  3. Florida Power and Light- Solar Rebate Program (Florida)

    Broader source: Energy.gov [DOE]

    Note:The Florida Power and Light (FPL) 2013 solar PV rebate program is fully subscribed and the limited "standby list" is full. Customers on the standby list will be contacted in the numerical...

  4. Alliant Energy Interstate Power and Light- New Home Construction Incentives

    Broader source: Energy.gov [DOE]

    Interstate Power and Light's New Home Program gives incentives to builders and contractors who build energy efficient homes. A base rebate is available to those customers that make the minimum...

  5. Kansas City Power & Light- Energy Optimizer Programmable Thermostat Program

    Broader source: Energy.gov [DOE]

    Kansas City Power and Light (KCP&L) offers a free programmable thermostat and free installation to qualifying customers to manage energy usage. Only residential and small commercial customers...

  6. Dayton Power and Light- Residential Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Dayton Power and Light offers rebates for heating and cooling to residential customers who purchase and install energy efficient products for the home. Eligible systems and measures include heat...

  7. Kansas City Power and Light- Cool Homes Residential Rebate Program

    Broader source: Energy.gov [DOE]

    Kansas City Power and Light (KCP&L) offers rebates to residential customers to help offset the cost of replacing inefficient central AC and heat pump systems with newer, more efficient models....

  8. Waverly Light and Power- Residential Solar Thermal Rebates

    Broader source: Energy.gov [DOE]

    Waverly Light and Power (WL&P) offers rebates for solar hot water heating systems to its residential customers. All purchases must be pre-approved through WL&P's solar water heater...

  9. Alliant Energy (Wisconsin Power and Light) - Farm Wiring Grant...

    Broader source: Energy.gov (indexed) [DOE]

    Power and Light) offers a Farm Wiring Grant program to increase farm safety, productivity and efficiency. The first 1,000 of the cost of the project is covered by a grant,...

  10. City Water Light and Power- Commercial Energy Efficiency Rebate Programs

    Broader source: Energy.gov [DOE]

    City Water Light and Power (CWLP) offers rebates to help commercial customers increase the energy efficiency of participating facilities. Energy efficient air-to-air, geothermal and water-loop...

  11. Kansas City Power & Light- Home Performance Rebate with ENERGY STAR

    Broader source: Energy.gov [DOE]

    Kansas City Power and Light (KCP&L) offers rebates to residential customers towards the cost of an ENERGY STAR Home Energy Assessment and a portion of the installed efficiency improvements....

  12. Kansas City Power & Light- Home Performance with ENERGY STAR

    Broader source: Energy.gov [DOE]

    Kansas City Power & Light (KCP&L) offers rebates to residential customers of KCP&L's Greater Missouri Operations towards the cost of an ENERGY STAR Home Energy Assessment and a portion...

  13. Kansas City Power and Light- Energy Optimizer Programmable Thermostat Program

    Broader source: Energy.gov [DOE]

    Kansas City Power and Light (KCP&L) offers a free Honeywell programmable thermostat, worth $300, and free installation to qualifying customers to manage energy usage. Only residential and small...

  14. Garland Power and Light- Energy Efficiency Rebate Programs

    Broader source: Energy.gov [DOE]

    Garland Power and Light (GP&L) offers the incentives to its residential, small commercial and commercial customers to increase the energy efficiency of homes and facilities. Rebates for...

  15. Constraints on power spectrum of density fluctuations from PBH evaporations

    E-Print Network [OSTI]

    Edgar Bugaev; Peter Klimai

    2006-12-21T23:59:59.000Z

    We calculate neutrino and photon energy spectra in extragalactic space from evaporation of primordial black holes, assuming that the power spectrum of primordial density fluctuations has a strong bump in the region of small scales. The constraints on the parameters of this bump based on neutrino and photon cosmic background data are obtained.

  16. Power Density Spectra of Gamma-Ray Bursts

    E-Print Network [OSTI]

    Andrei M. Beloborodov

    1999-11-08T23:59:59.000Z

    Power density spectra (PDSs) of long gamma-ray bursts provide useful information on GRBs, indicating their self-similar temporal structure. The best power-law PDSs are displayed by the longest bursts (T_90 > 100 s) in which the range of self-similar time scales covers more than 2 decades. Shorter bursts have apparent PDS slopes more strongly affected by statistical fluctuations. The underlying power law can then be reproduced with high accuracy by averaging the PDSs for a large sample of bursts. This power-law has a slope alpha\\approx -5/3 and a sharp break at 1 Hz. The power-law PDS provides a new sensitive tool for studies of gamma-ray bursts. In particular, we calculate the PDSs of bright bursts in separate energy channels. The PDS flattens in the hard channel (h\

  17. Achieving Energy Savings with Highly-Controlled Lighting in an Open-Plan Office

    E-Print Network [OSTI]

    Rubinstein, Francis

    2010-01-01T23:59:59.000Z

    continuous rows, a lighting power density (LPD) of 0.83W/ftThis results in a lighting power density (LPD)of 0.83 wattsfixture (ft 2 ) Lighting power density (W/ft 2 ) Hours per

  18. The Advantage of Highly Controlled Lighting for Offices and Commercial Buildings

    E-Print Network [OSTI]

    Rubinstein, Francis

    2010-01-01T23:59:59.000Z

    wall switches. Lighting power density equals 0.88 watts/switching only. Lighting power density is 1.4 watts/squareMaximum Installed Lighting Power Density (w/sf) Total kWh

  19. High power light emitting diode based setup for photobleaching fluorescent impurities

    E-Print Network [OSTI]

    Kaufman, Laura

    High power light emitting diode based setup for photobleaching fluorescent impurities Tobias K be photobleached before final sample preparation. The instrument consists of high power light emitting diodes

  20. Electrodeless lighting RF power source development. Final report

    SciTech Connect (OSTI)

    NONE

    1996-08-30T23:59:59.000Z

    An efficient, solid state RF power source has been developed on this NICE project for exciting low power electrodeless lamp bulbs. This project takes full advantage of concurrent advances in electrodeless lamp technology. Electrodeless lamp lighting systems utilizing the sulfur based bulb type developed by Fusion Lighting, Inc., is an emerging technology which is based on generating light in a confined plasma created and sustained by RF excitation. The bulb for such a lamp is filled with a particular element and inert gas at low pressure when cold. RF power from the RF source creates a plasma within the bulb which reaches temperatures approaching those of high pressure discharge lamp plasmas. At these temperatures the plasma radiates substantial visible light with a spectrum similar to sunlight.

  1. Chip-Scale Power Conversion for LED Lighting: Integrated Power Chip Converter for Solid-State Lighting

    SciTech Connect (OSTI)

    None

    2010-10-01T23:59:59.000Z

    ADEPT Project: Teledyne is developing cost-effective power drivers for energy-efficient LED lights that fit on a compact chip. These power drivers are important because they transmit power throughout the LED device. Traditional LED driver components waste energy and don't last as long as the LED itself. They are also large and bulky, so they must be assembled onto a circuit board separately which increases the overall manufacturing cost of the LED light. Teledyne is shrinking the size and improving the efficiency of its LED driver components by using thin layers of an iron magnetic alloy and new gallium nitride on silicon devices. Smaller, more efficient components will enable the drivers to be integrated on a single chip, reducing costs. The new semiconductors in Teledyne's drivers can also handle higher levels of power and last longer without sacrificing efficiency. Initial applications for Teledyne's LED power drivers include refrigerated grocery display cases and retail lighting.

  2. 1998 Tutorial on Micro Mechatronics and Micro Robotics Powering 3 Dimensional Microrobots: Power Density Limitations \\Lambda

    E-Print Network [OSTI]

    Fearing, Ron

    is the effective power density of the actuator. As inertia and gravitional forces become less significant for small at the micro­scale. One scaling law that is helpful for micro­actuators is the increased break down field

  3. Pacific Light Power | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer PlantMunhall,Missouri:EnergyOssian, New York:Ozark,Pacific Gas & ElectricPacific Light

  4. Renewable Power and Light | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries Pvt Ltd Jump to: navigation, searchRayreviewAl.,RenGenAmes,RenewableRFLAverillLight

  5. Method of measuring reactive acoustic power density in a fluid

    DOE Patents [OSTI]

    Wheatley, J.C.; Swift, G.W.; Migliori, A.

    1985-09-03T23:59:59.000Z

    A method for determining reactive acoustic power density level and its direction in a fluid using a single sensor is disclosed. In the preferred embodiment, an apparatus for conducting the method, which is termed a thermoacoustic couple, consists of a stack of thin, spaced apart polymeric plates, selected ones of which include multiple bimetallic thermocouple junctions positioned along opposite end edges thereof. The thermocouple junctions are connected in series in the nature of a thermopile, and are arranged so as to be responsive to small temperature differences between the opposite edges of the plates. The magnitude of the temperature difference, as represented by the magnitude of the electrical potential difference generated by the thermopile, is found to be directly related to the level of acoustic power density in the gas. 5 figs.

  6. Method of measuring reactive acoustic power density in a fluid

    DOE Patents [OSTI]

    Wheatley, John C. (Los Alamos, NM); Swift, Gregory W. (Los Alamos, NM); Migliori, Albert (Santa Fe, NM)

    1985-01-01T23:59:59.000Z

    A method for determining reactive acoustic power density level and its direction in a fluid using a single sensor is disclosed. In the preferred embodiment, an apparatus for conducting the method, which is termed a thermoacoustic couple, consists of a stack of thin, spaced apart polymeric plates, selected ones of which include multiple bimetallic thermocouple junctions positioned along opposite end edges thereof. The thermocouple junctions are connected in series in the nature of a thermopile, and are arranged so as to be responsive to small temperature differences between the opposite edges of the plates. The magnitude of the temperature difference, as represented by the magnitude of the electrical potential difference generated by the thermopile, is found to be directly related to the level of acoustic power density in the gas.

  7. Metlakatla Power & Light | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroup |JilinLu an GroupInformation Meier(Redirected fromMetlakatla Power

  8. Connecticut Light and Power | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia:PowerCER.png ElColumbia,2005) |UseCondon WindWastewater Facility

  9. Do it yourself lighting power survey: lighting power audit for use with the Massachusetts type watts per square foot method of calculating a building's lighting power budget

    SciTech Connect (OSTI)

    Not Available

    1980-06-01T23:59:59.000Z

    Advantages of the self-audit approach to energy conservation are presented. These are that it is cheaper to do it yourself; the employees become part of the corporate conservation effect; and no one knows the building and its needs better than the occupant. Steps described in the lighting survey procedure are: (1) divide the building into categories; (2) determine the total square footage for each category; (3) assign a power allowance for each category; (4) multiply the total square footage for each category by the respective power allowances; (5) add the budget sub-totals for each category to determine total building budget; and (6) walk through the building room-by-room and calculate the connected lighting load fixture-by-fixture. Some worksheets are provided. (MCW)

  10. Standard practice for evaluation of surveillance capsules from light-water moderated nuclear power reactor vessels

    E-Print Network [OSTI]

    American Society for Testing and Materials. Philadelphia

    2010-01-01T23:59:59.000Z

    Standard practice for evaluation of surveillance capsules from light-water moderated nuclear power reactor vessels

  11. A High Power-Density Mediator-Free Microfluidic Biophotovoltaic Device for Cyanobacterial Cells

    E-Print Network [OSTI]

    Bombelli, Paolo; Herling, Therese W; Howe, Christopher J; Knowles, Tuomas P J

    2014-01-01T23:59:59.000Z

    Biophotovoltaics has emerged as a promising technology for generating renewable energy since it relies on living organisms as inexpensive, self-repairing and readily available catalysts to produce electricity from an abundant resource - sunlight. The efficiency of biophotovoltaic cells, however, has remained significantly lower than that achievable through synthetic materials. Here, we devise a platform to harness the large power densities afforded by miniaturised geometries. To this effect, we have developed a soft-lithography approach for the fabrication of microfluidic biophotovoltaic devices that do not require membranes or mediators. Synechocystis sp. PCC 6803 cells were injected and allowed to settle on the anode, permitting the physical proximity between cells and electrode required for mediator-free operation. We demonstrate power densities of above 100 mW/m2 for a chlorophyll concentration of 100 {\\mu}M under white light, a high value for biophotovoltaic devices without extrinsic supply of additional...

  12. Protostellar fragmentation in a power-law density distribution

    E-Print Network [OSTI]

    A. Burkert; M. Bate; P. Bodenheimer

    1997-06-10T23:59:59.000Z

    Hydrodynamical calculations in three space dimensions of the collapse of an isothermal, rotating 1 M\\sol protostellar cloud are presented. The initial density stratification is a power law with density $\\rho \\propto r^{-p}$, with $p=1$. The case of the singular isothermal sphere ($p=2$) is not considered; however $p=1$ has been shown observationally to be a good representation of the density distribution in molecular cloud cores just before the beginning of collapse. The collapse is studied with two independent numerical methods, an SPH code with 200,000 particles, and a finite-difference code with nested grids which give high spatial resolution in the inner regions. Although previous numerical studies have indicated that such a power-law distribution would not result in fragmentation into a binary system, both codes show, in contrast, that multiple fragmentation does occur in the central regions of the protostar. Thus the process of binary formation by fragmentation is shown to be consistent with the fact that a large fraction of young stars are observed to be in binary or multiple systems.

  13. Irrigation Districts: Establishment of Electric Light and Power Systems: Powers (Nebraska)

    Broader source: Energy.gov [DOE]

    Irrigation districts, created in section 46-1xx, are encouraged to appropriate water in order to generate electric light and power. The Department of Natural Resources has the authority to approve...

  14. Evaluation of Light-Triggered Thyristors for Pulsed Power Applications

    SciTech Connect (OSTI)

    Tully, L K; Fulkerson, E S; Goerz, D A; Speer, R D

    2008-05-20T23:59:59.000Z

    Lawrence Livermore National Laboratory has many needs for high reliability, high peak current, high di/dt switches. Solid-state switch technology offers the demonstrated advantage of reliability under a variety of conditions. Light-triggered switches operate with a reduced susceptibility to electromagnetic interference commonly found within pulsed power environments. Despite the advantages, commercially available solid-state switches are not typically designed for the often extreme pulsed power requirements. Testing was performed to bound the limits of devices for pulsed power applications beyond the manufacturers specified ratings. To test the applicability of recent commercial light-triggered solid-state designs, an adjustable high current switch test stand was assembled. Results from testing and subsequent selected implementations are presented.

  15. Light-front representation of chiral dynamics in peripheral transverse densities

    E-Print Network [OSTI]

    Granados, C

    2015-01-01T23:59:59.000Z

    The nucleon's electromagnetic form factors are expressed in terms of the transverse densities of charge and magnetization at fixed light-front time. At peripheral transverse distances $b = O(M_\\pi^{-1})$ the densities are governed by chiral dynamics and can be calculated model-independently using chiral effective field theory (EFT). We represent the leading-order chiral EFT results for the peripheral transverse densities as overlap integrals of chiral light-front wave functions, describing the transition of the initial nucleon to soft pion-nucleon intermediate states and back. The new representation (a) explains the parametric order of the peripheral transverse densities; (b) establishes an inequality between the spin-independent and -dependent densities; (c) exposes the role of pion orbital angular momentum in chiral dynamics; (d) reveals a large left-right asymmetry of the current in a transversely polarized nucleon and suggests a simple interpretation. The light-front representation enables a first-quantiz...

  16. A Post-Occupancy Monitored Evaluation of the Dimmable Lighting, Automated Shading, and Underfloor Air Distribution System in The New York Times Building

    E-Print Network [OSTI]

    2013-01-01T23:59:59.000Z

    with an installed lighting power density of 1.3 W/ft 2 andmaximum installed lighting power density (LPD) specified byASHRAE 90.1-2001 Lighting power density 1.3 W/ft Work plane

  17. Alliant Energy Interstate Power and Light (Electric)- Business Energy Efficiency Rebate Programs

    Broader source: Energy.gov [DOE]

    Alliant Energy - Interstate Power and Light (IPL) offers rebates for high efficiency equipment for commercial customers. Rebates are available for high efficiency lighting equipment, occupancy...

  18. PSD computations using Welch's method. [Power Spectral Density (PSD)

    SciTech Connect (OSTI)

    Solomon, Jr, O M

    1991-12-01T23:59:59.000Z

    This report describes Welch's method for computing Power Spectral Densities (PSDs). We first describe the bandpass filter method which uses filtering, squaring, and averaging operations to estimate a PSD. Second, we delineate the relationship of Welch's method to the bandpass filter method. Third, the frequency domain signal-to-noise ratio for a sine wave in white noise is derived. This derivation includes the computation of the noise floor due to quantization noise. The signal-to-noise ratio and noise flood depend on the FFT length and window. Fourth, the variance the Welch's PSD is discussed via chi-square random variables and degrees of freedom. This report contains many examples, figures and tables to illustrate the concepts. 26 refs.

  19. Light-Induced Atomic Desorption (LIAD)

    E-Print Network [OSTI]

    Budker, Dmitry

    in density n0=the initial density more intense higher density!! #12;Light Friquency Low light power (0.56m, polysiloxane, etc) #12;Time Dependence exposed to 514-nm desorbing light at room temperature (~20) density increase in density!! coating is replenished #12;Light Intensity 0=relative rate of increase of the vapor

  20. Estes Park Light and Power Department- Commercial and Industrial Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Estes Park Power & Light, in conjunction with the Platte River Power Authority provides businesses incentives for new construction projects and existing building retrofits. The Electric...

  1. High-Powered Dark Energy Camera Can See Billions of Light Years...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    High-Powered Dark Energy Camera Can See Billions of Light Years Away High-Powered Dark Energy Camera Can See Billions of Light Years Away August 21, 2014 - 10:19am Addthis Stars...

  2. Power-law tails in probability density functions of molecular cloud column density

    E-Print Network [OSTI]

    Brunt, Chris

    2015-01-01T23:59:59.000Z

    Power-law tails are often seen in probability density functions (PDFs) of molecular cloud column densities, and have been attributed to the effect of gravity. We show that extinction PDFs of a sample of five molecular clouds obtained at a few tenths of a parsec resolution, probing extinctions up to A$_{{\\mathrm{V}}}$ $\\sim$ 10 magnitudes, are very well described by lognormal functions provided that the field selection is tightly constrained to the cold, molecular zone and that noise and foreground contamination are appropriately accounted for. In general, field selections that incorporate warm, diffuse material in addition to the cold, molecular material will display apparent core+tail PDFs. The apparent tail, however, is best understood as the high extinction part of a lognormal PDF arising from the cold, molecular part of the cloud. We also describe the effects of noise and foreground/background contamination on the PDF structure, and show that these can, if not appropriately accounted for, induce spurious ...

  3. The Column Density Distribution of the Lyman-Alpha Forest: A Measure of Small Scale Power

    E-Print Network [OSTI]

    Lam Hui; Nickolay Y. Gnedin; Yu Zhang

    1997-02-19T23:59:59.000Z

    Absorption lines in the Lyman-alpha forest can be thought of as peaks in neutral hydrogen density along lines of sight. The column density distribution (the number density of absorption lines as a function of column density) is then a statistic of density peaks, which contains information about the underlying power spectrum. In particular, we show that the slope of the distribution provides a measure of power on scales smaller than those probed by studies of present-day large scale structure.

  4. Elmhurst Mutual Power & Light Co | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluating A PotentialJump to: navigation,ElectrosolarElmhurst Mutual Power & Light

  5. Dayton Power & Light Co | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluating A Potential Microhydro SiteDayton Power & Light Co Jump to: navigation,

  6. The inverse conductivity problem with power densities in dimension n2

    E-Print Network [OSTI]

    François Monard, Guillaume Bal

    2012-06-19T23:59:59.000Z

    Jun 19, 2012 ... The inverse conductivity problem with power densities in dimension n ? 2. François Monard Guillaume Bal. Dept. of Applied Physics and ...

  7. Loops and Power Counting in the High Density Effective Field Theory

    E-Print Network [OSTI]

    Thomas Schaefer

    2003-10-15T23:59:59.000Z

    We introduce the high density effective theory of QCD. We discuss, in particular, the problem of developing a consistent power counting scheme.

  8. High-density thermoelectric power generation and nanoscale thermal metrology

    E-Print Network [OSTI]

    Mayer, Peter (Peter Matthew), 1978-

    2007-01-01T23:59:59.000Z

    Thermoelectric power generation has been around for over 50 years but has seen very little large scale implementation due to the inherently low efficiencies and powers available from known materials. Recent material advances ...

  9. A High Power Density DC-DC Converter for Distributed PV Architectures

    SciTech Connect (OSTI)

    Mohammed S. Agamy; Song Chi; Ahmed Elasser; Maja Harfman-Todorovic; Yan Jiang; Frank Mueller; Fengfeng Tao

    2012-06-01T23:59:59.000Z

    In order to maximize solar energy harvesting capabilities, power converters have to be designed for high efficiency and good MPPT and voltage/current performance. When many converters are used in distributed systems, power density also becomes an important factor as it allows for simpler system integration. In this paper a high power density string dc-dc converter suitable for distributed medium to large scale PV installation is presented. A simple partial power processing topology, implemented with all silicon carbide devices provides high efficiency as well as high power density. A 3.5kW, 100kHz converter is designed and tested to verify the proposed methods.

  10. High-density organic light emitting diodes by nanoimprint technology Krutarth Trivedi, Caleb Nelson, Li Tao, Mathew Goeckner, Walter Hua)

    E-Print Network [OSTI]

    Hu, Wenchuang "Walter"

    High-density organic light emitting diodes by nanoimprint technology Krutarth Trivedi, Caleb Nelson sources. Despite the considerable development of inorganic semiconductor based light emitting diodes of miniaturization to nanoscale. Organic light emitting diode (OLED) technology is immune to quantum confinement

  11. Kansas City Power and Light- Commercial/Industrial Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Kansas City Power and Light (KCP&L) provides financial incentives for commercial and industrial customers to increase the energy efficiency of eligible facilities. Rebates are available for...

  12. Alliant Energy Interstate Power and Light (Gas)- Residential Energy Efficiency Program

    Broader source: Energy.gov [DOE]

    Interstate Power and Light (Alliant Energy) offers residential energy efficiency rebates to Iowa customers for a variety of home upgrades. Rebates are available for certain heating, insulation,...

  13. Alliant Energy Interstate Power and Light (Gas and Electric)- Farm Equipment Energy Efficiency Incentives

    Broader source: Energy.gov [DOE]

    Interstate Power and Light (Alliant Energy) offers prescriptive rebates for a variety of energy efficient products for agricultural customers. In addition to these incentives, IPL offers a Farm...

  14. Alliant Energy Interstate Power and Light (Gas)- Residential Energy Efficiency Program

    Broader source: Energy.gov [DOE]

    Interstate Power and Light (Alliant Energy) offers a number of rebates for energy efficiency for Minnesota residential customers a variety of high efficiency heating and cooling measures, including...

  15. Home Energy Score API User: United Illuminating Company and Connecticut Light and Power

    Broader source: Energy.gov [DOE]

    The United Illuminating Company and Connecticut Light and Power, administering conservation, and load management programs funded by the Connecticut Energy Efficiency Fund, are Home Energy Score...

  16. Cheyenne Light, Fuel and Power (Electric)- Commercial and Industrial Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Cheyenne Light, Fuel and Power offers incentives to commercial and industrial electric customers who wish to install energy efficient equipment and measures in eligible facilities. Incentives are...

  17. Alliant Energy Interstate Power and Light (Electric)- Residential Energy Efficiency Rebate Programs

    Broader source: Energy.gov [DOE]

    Interstate Power and Light (Alliant Energy) offers residential energy efficiency rebates for Iowa customers for a variety of technologies. Rebates are available for certain HVAC equipment,...

  18. Alliant Energy Interstate Power and Light (Gas)- Business Energy Efficiency Rebate Programs (Minnesota)

    Broader source: Energy.gov [DOE]

    Alliant Energy - Interstate Power and Light (IPL) offers rebates for high efficiency equipment for commercial customers. Rebates are available for windows/sashes, programmable thermostats, water...

  19. Carbon Power and Light- Residential and Commercial Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Carbon Power and Light, in collaboration with Tri-State Generation and Transmission Association, offers financial incentives for members to increase the energy efficiency of homes and facilities....

  20. Cheyenne Light, Fuel and Power (Electric)- Residential Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Cheyenne Light, Fuel and Power offers incentives to electric customers who wish to install energy efficient equipment in participating homes. Incentives are available for home energy audits, CFL...

  1. Cheyenne Light, Fuel and Power (Gas)- Commercial and Industrial Efficiency Rebate Program (Wyoming)

    Broader source: Energy.gov [DOE]

    Cheyenne Light, Fuel and Power (CLFP) offers incentives to commercial and industrial gas customers who install energy efficient equipment in existing buildings. Incentives are available for boilers...

  2. Enhanced surfaces lead to increased heat transfer and power density.

    E-Print Network [OSTI]

    electric vehicles (HEVs) and electric vehicles (EVs) to con- vert DC battery power into a form that can IHTC-14, Washington, DC, USA. Moreno, G., 2010,"Characterization and Development of Advanced Heat

  3. Development of a high power density motor for aircraft propulsion

    E-Print Network [OSTI]

    Dibua, Imoukhuede Tim Odion

    2007-04-25T23:59:59.000Z

    are currently powered by heavy gas turbine engines that require fueling. The development of electric motors to replace gas turbines would be a big step towards accomplishing more efficient aircraft propulsion. The primary objective of this research extends...

  4. Nano-structure multilayer technology fabrication of high energy density capacitors for the power electronic building book

    SciTech Connect (OSTI)

    Barbee, T.W.; Johnson, G.W.; Wagner, A.V.

    1997-10-21T23:59:59.000Z

    Commercially available capacitors do not meet the specifications of the Power Electronic Building Block (PEBB) concept. We have applied our propriety nanostructure multilayer materials technology to the fabrication of high density capacitors designed to remove this impediment to PEBB progress. Our nanostructure multilayer capacitors will also be enabling technology in many industrial and military applications. Examples include transient suppression (snubber capacitors), resonant circuits, and DC filtering in PEBB modules. Additionally, weapon applications require compact energy storage for detonators and pulsed-power systems. Commercial applications run the gamut from computers to lighting to communications. Steady progress over the last five years has brought us to the threshold of commercial manufacturability. We have demonstrated a working dielectric energy density of > 11 J/cm3 in 20 nF devices designed for 1 kV operation.

  5. A Framework to Determine the Probability Density Function for the Output Power of Wind Farms

    E-Print Network [OSTI]

    Liberzon, Daniel

    A Framework to Determine the Probability Density Function for the Output Power of Wind Farms Sairaj to the power output of a wind farm while factoring in the availability of the wind turbines in the farm availability model for the wind turbines, we propose a method to determine the wind-farm power output pdf

  6. Power density spectrum of NGC 5548 and the nature of its variability

    E-Print Network [OSTI]

    B. Czerny; A. Schwarzenberg-Czerny; Z. Loska

    1998-10-14T23:59:59.000Z

    We derive power density spectra in the optical and X-ray band in the timescale range from several years down to $\\sim $ a day. We suggest that the optical power density spectrum consists of two separate components: long timescale variations and short timescale variations, with the dividing timescale around 100 days. The shape of the short timescale component is similar to X-ray power density spectrum which is consistent with the interpretation of short timescale optical variations being caused by X-ray reprocessing. We show that the observed optical long timescale variability is consistent with thermal pulsations of the accretion disc.

  7. High-Power Density Target Design and Analyses for Accelerator

    E-Print Network [OSTI]

    McDonald, Kirk

    management ­ Lithium · Excellent conductivity, but low heat capacity compared to other coolants ­ Sodium · Better heat capacity than lithium ­ Mercury · Power generation in coolant limits applicability ­ Lithiumcooled Tungsten Plate Liquid Target Concepts ­ Lead Bismuth Eutectic Workshop on Applications of High

  8. Stable formation of ultrahigh power-density 248 nm channels in Xe cluster targets

    SciTech Connect (OSTI)

    Borisov, Alex B.; Racz, Ervin; Khan, Shahab F.; Poopalasingam, Sankar; McCorkindale, John C.; Boguta, John; Longworth, James W.; Rhodes, Charles K. [Laboratory for X-ray Microimaging and Bioinformatics, Department of Physics, University of Illinois at Chicago, Chicago, IL 60607-7059 (United States); KFKI Research Institute for Particle and Nuclear Physics, EURATOM Association, P.O. Box 49, 1525 Budapest (Hungary)

    2012-07-11T23:59:59.000Z

    The optimization of relativistic and ponderomotive self-channeling of ultra-powerful 248 nm laser pulses launched in underdense plasmas with an appropriate longitudinal gradient in the electron density profile located at the initial stage of the self-channeling leads to (1) stable channel formation and (2) highly efficient power compression producing power densities in the 10{sup 19}-10{sup 20} W/cm{sup 3} range. The comparison of theoretical studies with experimental results involving the correlation of (a) Thomson images of the electron density with (b) x-ray images of the channel morphology demonstrates that more than 90% of the incident 248 nm power can be trapped in stable channels and that this stable propagation can be extended to power levels significantly exceeding the critical power of the self-channeling process.

  9. An earth-isolated optically coupled wideband high voltage probe powered by ambient light

    E-Print Network [OSTI]

    Bellan, Paul M.

    An earth-isolated optically coupled wideband high voltage probe powered by ambient light Xiang Zhai) An earth-isolated optically coupled wideband high voltage probe powered by ambient light Xiang Zhaia online 9 October 2012) An earth-isolated optically-coupled wideband high voltage probe has been developed

  10. Simulating calculations and optimization design of a new HVDC supply power for light rail system

    E-Print Network [OSTI]

    Boyer, Edmond

    Simulating calculations and optimization design of a new HVDC supply power for light rail system-In this paper, a new HVDC power supply system for light rail systems is presented and compared to classical such a complex system, taking into account vehicle motion and HVDC electrical distribution. Then, an optimization

  11. Electromagnetic Potentials Basis for Energy Density and Power Flux

    E-Print Network [OSTI]

    H. E. Puthoff

    2010-09-26T23:59:59.000Z

    It is well understood that various alternatives are available within EM theory for the definitions of energy density, momentum transfer, EM stress-energy tensor, and so forth. Although the various options are all compatible with the basic equations of electrodynamics (e.g., Maxwell's equations, Lorentz force law, gauge invariance), nonetheless certain alternative formulations lend themselves to being seen as preferable to others with regard to the transparency of their application to physical problems of interest. Here we argue for the transparency of an option based on use of the EM potentials alone.

  12. Development of High Power Density Driveline for Vehicles | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny:Revised Finding of No53197E T A * S H IMaterials Development of

  13. Development of High Power Density Driveline for Vehicles | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny:Revised Finding of No53197E T A * S H IMaterials Development ofEnergy 1 DOE

  14. High Power Density Integrated Traction Machine Drive | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(Fact Sheet), GeothermalGridHYDROGEN TOTechnologyHighLouisianaDepartment of HIGH1

  15. High Power Density Integrated Traction Machine Drive | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(Fact Sheet), GeothermalGridHYDROGEN TOTechnologyHighLouisianaDepartment of HIGH10

  16. Wind: wind power density GIS data at 50m above ground and 1km...

    Open Energy Info (EERE)

    GIS ... Dataset Activity Stream Wind: wind power density GIS data at 50m above ground and 1km resolution for Ghana from NREL (Abstract):  Raster GIS data, exported as BIL...

  17. Constraining the Power Spectrum Using the Column Density Distribution: a Status Report

    E-Print Network [OSTI]

    Lam Hui

    1997-12-04T23:59:59.000Z

    We review the arguments for how the slope of the column density distribution of the Lyman-alpha forest should depend on the matter power spectrum. The latest progress, presented by various groups in this conference and elsewhere, is summarized.

  18. Development of optimized core design and analysis methods for high power density BWRs

    E-Print Network [OSTI]

    Shirvan, Koroush

    2013-01-01T23:59:59.000Z

    Increasing the economic competitiveness of nuclear energy is vital to its future. Improving the economics of BWRs is the main goal of this work, focusing on designing cores with higher power density, to reduce the BWR ...

  19. Wind: wind power density GIS data at 50m above ground and 1km...

    Open Energy Info (EERE)

    file, 50 m wind power density for eastern China. (Purpose): To provide information on the wind resource potential in eastern China. Values range from 0 to 3079 Wm2. (Supplemental...

  20. Evaluation of high power density annular fuel application in the Korean OPR-1000 reactor

    E-Print Network [OSTI]

    Zhang, Liang, Ph. D.. Massachusetts Institute of Technology

    2009-01-01T23:59:59.000Z

    Compared to the traditional solid fuel geometry for PWRs, the internally and externally cooled annular fuel offers the potential to increase the core power density while maintaining or increasing safety margins. It is ...

  1. A High Power-Density Mediator-Free Microfluidic Biophotovoltaic Device for Cyanobacterial Cells

    E-Print Network [OSTI]

    Bombelli, Paolo; Mueller, Thomas; Herling, Therese W.; Howe, Christopher J.; Knowles, Tuomas P. J.

    2014-09-16T23:59:59.000Z

    A High Power-Density Mediator-Free Microfluidic Biophotovoltaic Device for Cyanobacterial Cells Paolo Bombelli,1, a) Thomas Mu¨ller,2, a) Therese W. Herling,2 Christopher J. Howe,1, b) and Tuomas P. J. Knowles2, c) 1)Department of Biochemistry... that achievable through synthetic materials. Here, we devise a platform to harness the large power densities afforded by miniaturised geometries. To this effect, we have developed a soft-lithography approach for the fabrication of microfluidic biophotovoltaic...

  2. The Influence of Isotopic Mass, Edge Magnetic Shear and Input Power on High Density ELMy H-modes in JET

    E-Print Network [OSTI]

    The Influence of Isotopic Mass, Edge Magnetic Shear and Input Power on High Density ELMy H-modes in JET

  3. ICRF Power-Deposition Profiles, Heating and Confinement of Monster-Sawtooth and Peaked-Density Profile Discharges in JET

    E-Print Network [OSTI]

    ICRF Power-Deposition Profiles, Heating and Confinement of Monster-Sawtooth and Peaked-Density Profile Discharges in JET

  4. Alliant Energy Interstate Power and Light (Electric) - Residential...

    Broader source: Energy.gov (indexed) [DOE]

    Pumps Lighting Program Info State Iowa Program Type Utility Rebate Program Rebate Amount Central Air Conditioners: 100 - 200 Air Source Heat Pumps: 100 - 400 Geothermal Heat...

  5. Alliant Energy Interstate Power and Light (Electric)- Residential...

    Broader source: Energy.gov (indexed) [DOE]

    10 Light Fixtures or Fan: 20unit Water Heaters: 50 Programmable Thermostat: 25 Central Air Conditioners: 100 or 200 depending on SEER Geothermal Heat Pumps: 300ton +...

  6. Alliant Energy Interstate Power and Light (Electric) - Business...

    Broader source: Energy.gov (indexed) [DOE]

    State Government Savings Category Heat Pumps Lighting Maximum Rebate See program web site Program Info State Minnesota Program Type Utility Rebate Program Rebate Amount New...

  7. LOW POWER SCANNER FOR HIGH-DENSITY ELECTRODE ARRAY NEURAL RECORDING

    E-Print Network [OSTI]

    Mahmoodi, Hamid

    of this research is to design a low power integrated system that can be used in vivo for scanning the electrode. A model created in Python provides input vectors and output comparison for the verification processLOW POWER SCANNER FOR HIGH-DENSITY ELECTRODE ARRAY NEURAL RECORDING A Thesis work submitted

  8. The Power Spectrum of Galaxy Density Fluctuations: Current Results and Improved Techniques

    E-Print Network [OSTI]

    Michael S. Vogeley

    1995-08-17T23:59:59.000Z

    The power spectrum of density fluctuations measured from galaxy redshift surveys provides important constraints on models for the formation of large-scale structure. I review current results for the 3-D power spectrum and examine the limitations of current measurements and estimation techniques. To span the decade of wavelength between the scales probed by galaxy surveys and COBE, measure the detailed shape of the power spectrum, and accurately examine the dependence of clustering on galaxy species, we require deeper samples with carefully controlled selection criteria and improved techniques for power spectrum estimation. I describe a new method for estimating the power spectrum that optimally treats survey data with arbitrary geometry and sampling.

  9. Effect of electron density profile on power absorption of high frequency electromagnetic waves in plasma

    SciTech Connect (OSTI)

    Xi Yanbin; Liu Yue [MOE Key Laboratory of Materials Modification by Laser, Electron, and Ion Beams, School of Physics and Optoelectronic Technology, Dalian University of Technology, Dalian 116024 (China)

    2012-07-15T23:59:59.000Z

    Considering different typical electron density profiles, a multi slab approximation model is built up to study the power absorption of broadband (0.75-30 GHz) electromagnetic waves in a partially ionized nonuniform magnetized plasma layer. Based on the model, the power absorption spectra for six cases are numerically calculated and analyzed. It is shown that the absorption strongly depends on the electron density fluctuant profile, the background electron number density, and the collision frequency. A potential optimum profile is also analyzed and studied with some particular parameters.

  10. Power Quality Improvements in Lighting Systems Mr. Ashish Shrivastava

    E-Print Network [OSTI]

    Kumar, M. Jagadesh

    an integral part of indoor and outdoor lighting in domestic, commercial, industrial, institutional and retail applications. Due to reduced size, compact fluorescent lamps (CFL) have been preferred in comparison and vibration. It is also gaining wider acceptance in the automotive industries, decorative lightings, traffic

  11. High energy density capacitors for power electronic applications using nano-structure multilayer technology

    SciTech Connect (OSTI)

    Barbee, T.W. Jr.; Johnson, G.W.

    1995-09-01T23:59:59.000Z

    Power electronics applications are currently limited by capacitor size and performance. Only incremental improvements are anticipated in existing capacitor technologies, while significant performance advances are required in energy density and overall performance to meet the technical needs of the applications which are important for U.S. economic competitiveness. One application, the Power Electronic Building Block (PEBB), promises a second electronics revolution in power electronic design. High energy density capacitors with excellent electrical thermal and mechanical performance represent an enabling technology in the PEBB concept. We propose a continuing program to research and develop LLNL`s nano-structure multilayer technologies for making high voltage, high energy density capacitors. Our controlled deposition techniques are capable of synthesizing extraordinarily smooth sub-micron thick layers of dielectric and conductor materials. We have demonstrated that, with this technology, high voltage capacitors with an order of magnitude improvement in energy density are achievable.

  12. Method and apparatus for measuring the momentum, energy, power, and power density profile of intense particle beams

    DOE Patents [OSTI]

    Gammel, George M. (Merrick, NY); Kugel, Henry W. (Somerset, NJ)

    1992-10-06T23:59:59.000Z

    A method and apparatus for determining the power, momentum, energy, and power density profile of high momentum mass flow. Small probe projectiles of appropriate size, shape and composition are propelled through an intense particle beam at equal intervals along an axis perpendicular to the beam direction. Probe projectiles are deflected by collisions with beam particles. The net beam-induced deflection of each projectile is measured after it passes through the intense particle beam into an array of suitable detectors.

  13. High thermal power density heat transfer apparatus providing electrical isolation at high temperature using heat pipes

    SciTech Connect (OSTI)

    Morris, J. F.

    1985-03-19T23:59:59.000Z

    This invention is directed to transferring heat from an extremely high temperature source to an electrically isolated lower temperature receiver. The invention is particularly concerned with supplying thermal power to a thermionic converter from a nuclear reactor with electric isolation. Heat from a high temperature heat pipe is transferred through a vacuum or a gap filled with electrically nonconducting gas to a cooler heat pipe. The heat pipe is used to cool the nuclear reactor while the heat pipe is connected thermally and electrically to a thermionic converter. If the receiver requires greater thermal power density, geometries are used with larger heat pipe areas for transmitting and receiving energy than the area for conducting the heat to the thermionic converter. In this way the heat pipe capability for increasing thermal power densities compensates for the comparatively low thermal power densities through the electrically nonconducting gap between the two heat pipes.

  14. E?H mode transition density and power in two types of inductively coupled plasma configuration

    SciTech Connect (OSTI)

    Wang, Jian; Du, Yin-chang; Zhang, Xiao; Zheng, Zhe; Liu, Yu; Xu, Liang; Wang, Pi; Cao, Jin-xiang, E-mail: jxcao@ustc.edu.cn [Department of Modern Physics, University of Science and Technology of China, Hefei, Anhui 230026 (China)

    2014-07-15T23:59:59.000Z

    E???H transition power and density were investigated at various argon pressures in inductively coupled plasma (ICP) in a cylindrical interlaid chamber. The transition power versus the pressure shows a minimum transition power at 4?Pa (?/?=1) for argon. Then the transition density hardly changes at low pressures (?/??1), but it increases clearly when argon pressure exceeds an appropriate value. In addition, both the transition power and transition density are lower in the re-entrant configuration of ICP compared with that in the cylindrical configuration of ICP. The result may be caused from the decrease of stochastic heating in the re-entrant configuration of ICP. This work is useful to understand E???H mode transition and control the transition points in real plasma processes.

  15. Phase controlled light switching at low power levels

    E-Print Network [OSTI]

    Hoonsoo Kang; Gessler Hernandez; Jiepeng Zhang; Yifu Zhu

    2005-10-05T23:59:59.000Z

    We report experimental observations of interference between three-photon and one-photon excitations, and phase control of light attenuation/transmission in a four-level system. Either constructive interference or destructive interference can be obtained by varying the phase and/or frequency of a weak control laser. The interference enables absorptive switching of one field by another field at different frequencies and ultra-low light levels.

  16. The Space Density of Galaxy Peaks and the Linear Matter Power Spectrum

    E-Print Network [OSTI]

    Rupert A. C. Croft; Enrique Gaztanaga

    1997-01-22T23:59:59.000Z

    One way of recovering information about the initial conditions of the Universe is by measuring features of the cosmological density field which are preserved during gravitational evolution and galaxy formation. In this paper we study the total number density of peaks in a (galaxy) point distribution smoothed with a filter, evaluating its usefulness as a means of inferring the shape of the initial (matter) power spectrum. We find that in numerical simulations which start from Gaussian initial conditions, the peak density follows well that predicted by the theory of Gaussian density fields, even on scales where the clustering is mildly non-linear. For smaller filter scales, $r \\simlt 4-6 \\hmpc$, we see evidence of merging as the peak density decreases with time. On larger scales, the peak density is independent of time. One might also expect it to be fairly robust with respect to variations in biasing, i.e. the way galaxies trace mass fluctuations. We find that this is the case when we apply various biasing prescriptions to the matter distribution in simulations. If the initial conditions are Gaussian, it is possible to use the peak density measured from the evolved field to reconstruct the shape of the initial power spectrum. We describe a stable method for doing this and apply it to several biased and unbiased non-linear simulations. We are able to recover the slope of the linear matter power spectrum on scales $k \\simlt 0.4 \\hmpc^{-1}$. The reconstruction has the advantage of being independent of the cosmological parameters ($\\Omega$, $\\Lambda$, $H_0$) and of the clustering normalisation ($\\sigma_8$). The peak density and reconstructed power spectrum slope therefore promise to be powerful discriminators between popular cosmological scenarios.

  17. High voltage ignition of high pressure microwave powered UV light sources

    SciTech Connect (OSTI)

    Frank, J.D.; Cekic, M.; Wood, C.H. [Fusion U.V. Curing Systems Corp., Gaithersburg, MD (United States)

    1997-12-31T23:59:59.000Z

    Industrial microwave powered (electrodeless) light sources have been limited to quiescent pressures of {approximately}300 Torr of buffer gas and metal-halide fills. The predominant reason for such restrictions has been the inability to microwave ignite the plasma due to the collisionality of higher pressure fills and/or the electronegativity of halide bulb chemistries. Commercially interesting bulb fills require electric fields for ionization that are often large multiples of the breakdown voltage for air. Many auxiliary ignition methods are evaluated for efficiency and practicality before the choice of a high-voltage system with a retractable external electrode. The scheme utilizes a high voltage pulse power supply and a novel field emission source. Acting together they create localized condition of pressure reduction and high free electron density. This allows the normal microwave fields to drive this small region into avalanche, ignite the bulb, and heat the plasma to its operating point (T{sub e} {approx} 0.5 eV). This process is currently being used in a new generation of lamps, which are using multi-atmospheric excimer laser chemistries and pressure and constituent enhanced metal-halide systems. At the present time, production prototypes produce over 900 W of radiation in a 30 nm band, centered at 308 nm. Similarly, these prototypes when loaded with metal-halide bulb fills produce over 1 kW of radiation in 30 nm wide bands, centered about the wavelength of interest.

  18. Kansas City Power and Light- ENERGY STAR New Homes Rebate Program

    Broader source: Energy.gov [DOE]

    Kansas City Power and Light (KCP&L) offers rebates to residential customers towards the cost of an ENERGY STAR Home Energy Assessment and a portion of the installed efficiency improvements....

  19. FirstEnergy (Mon Power and Potomac Edison)- Business Lighting Incentive Program (West Virginia)

    Broader source: Energy.gov [DOE]

    FirstEnergy's West Virginia’s utilities (Mon Power and Potomac Edison) offer the Business Lighting Incentive Program in accordance with the December 30, 2011, order issued by the Public Service...

  20. The Diesel Engine Powering Light-Duty Vehicles: Today and Tomorrow

    Broader source: Energy.gov (indexed) [DOE]

    diesel-powered light-duty vehicles 1990 1995 2000 2005 2010 2015 2020 2025 Energy Greenhouse effect CO 2 Exhaust gas emissions CO, NO x , HC, PM Importance Environmental driving...

  1. Dayton Power and Light- Business and Government Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Dayton Power and Light's (DP&L) non-residential electricity customers are eligible for energy efficient technology rebates. Rebates are available for energy efficiency measures added to an...

  2. Alliant Energy Interstate Power and Light (Gas and Electric)- Low Interest Energy Efficiency Loan Program

    Broader source: Energy.gov [DOE]

    Alliant Energy (Interstate Power and Light - IP&L) offers low-interest financing program for the installation of energy efficient improvements. Businesses, Residences, farms or ag-related...

  3. Alliant Energy Interstate Power and Light (Gas and Electric)- Low Interest Energy Efficiency Loan Program

    Broader source: Energy.gov [DOE]

    Interstate Power and Light (Alliant Energy), in conjunction with Wells Fargo Bank, offers a low-interest loan for residential, commercial and agricultural customers who purchase and install energy...

  4. Alliant Energy Interstate Power and Light (Gas)- Business Energy Efficiency Rebate Program (Iowa)

    Broader source: Energy.gov [DOE]

    Interstate Power and Light (IPL) offers a wide variety of incentives for commercial customers to save energy in eligible facilities, whether they are upgrading existing facilities or building new...

  5. Method of Fabrication of High Power Density Solid Oxide Fuel Cells

    DOE Patents [OSTI]

    Pham, Ai Quoc (San Jose, CA); Glass, Robert S. (Livermore, CA)

    2008-09-09T23:59:59.000Z

    A method for producing ultra-high power density solid oxide fuel cells (SOFCs). The method involves the formation of a multilayer structure cells wherein a buffer layer of doped-ceria is deposited intermediate a zirconia electrolyte and a cobalt iron based electrode using a colloidal spray deposition (CSD) technique. For example, a cobalt iron based cathode composed of (La,Sr)(Co,Fe)O(LSCF) may be deposited on a zirconia electrolyte via a buffer layer of doped-ceria deposited by the CSD technique. The thus formed SOFC have a power density of 1400 mW/cm.sup.2 at 600.degree. C. and 900 mW/cm.sup.2 at 700.degree. C. which constitutes a 2-3 times increased in power density over conventionally produced SOFCs.

  6. Low Voltage, Low Power Organic Light Emitting Transistors for AMOLED Displays

    SciTech Connect (OSTI)

    McCarthy, M. A. [University of Florida, Gainesville; Liu, B. [University of Florida, Gainesville; Donoghue, E. P. [University of Florida, Gainesville; Kravchenko, Ivan I [ORNL; Kim, D. Y. [University of Florida, Gainesville; Reynolds, J. R. [University of Florida, Gainesville; So, Franky [University of Florida, Gainesville; Rinzler, A. G. [University of Florida, Gainesville

    2011-01-01T23:59:59.000Z

    Low voltage, low power dissipation, high aperture ratio organic light emitting transistors are demonstrated. The high level of performance is enabled by a carbon nanotube source electrode that permits integration of the drive transistor and the organic light emitting diode into an efficient single stacked device. Given the demonstrated performance, this technology could break the technical logjam holding back widespread deployment of active matrix organic light emitting displays at flat panel screen sizes.

  7. 1998 Tutorial on Micro Mechatronics and Micro Robotics Powering 3 Dimensional Microrobots: Power Density Limitations

    E-Print Network [OSTI]

    Fearing, Ron

    density of the actuator. As inertia and gravitional forces become less significant for small robots at the micro-scale. One scaling law that is helpful for micro-actuators is the increased break down field

  8. Microwave power spectral density and its effects on exciting electrodeless high intensity discharge lamps

    SciTech Connect (OSTI)

    Butler, S.J.; Goss, H.H.; Lapatovich, W.P. [Osram Sylvania Inc., Salem, MA (United States)

    1995-12-31T23:59:59.000Z

    The effects of a microwave source generating a spectrally dense power spectrum on the operation of an electrodeless high intensity discharge lamp were measured. Spectrally pure sources operating within ISM bands at 915 MHz and 2.45 GHz produce stable capacitively coupled discharges useful for producing flicker-free light for numerous applications. The internal plasma temperature distribution and lamp geometry define acoustic resonance modes within the lamp which can be excited with power sidebands. The operation of lamps with commercially available power sources and custom built generators are discussed. Estimates of the spectral purity required for stable operation are provided.

  9. Power spectrum of electron number density perturbations at cosmological recombination epoch

    E-Print Network [OSTI]

    B. Venhlovska; B. Novosyadlyj

    2009-02-19T23:59:59.000Z

    The power spectrum of number density perturbations of free electrons is obtained for the epoch of cosmological recombination of hydrogen. It is shown that amplitude of the electron perturbations power spectrum of scales larger than acoustic horizon exceeds by factor of 17 the amplitude of baryon matter density ones (atoms and ions of hydrogen and helium). In the range of the first and second acoustic peaks such relation is 18, in the range of the third one 16. The dependence of such relations on cosmological parameters is analysed too.

  10. Inland Power and Light Company- Agricultural Energy Efficiency Rebate Programs

    Broader source: Energy.gov [DOE]

    Inland Power offers a variety of incentives for agricultural/irrigation customers to save energy on participating farms. Rebates are available for a variety of sprinkler equipment (nozzles, gaskets...

  11. Georgia Interfaith Power and Light- Energy Improvement Grants

    Broader source: Energy.gov [DOE]

    Applications are due by either May 15 or November 15 of each year, and materials are available on the program web site. Applicants must first have an energy audit through GIPL's Power Wise program.

  12. Power Densities Using Different Cathode Catalysts (Pt and CoTMPP)

    E-Print Network [OSTI]

    that the maximum power achieved using ferricyanide ion as oxidant in the cathode chamber was 50-80% greater than and PTFE) in Single Chamber Microbial Fuel Cells S H A O A N C H E N G , H O N G L I U , A N D B R U C E catalysts and binders were examined for their effect on power densities in single chamber, air

  13. 2012 Jonathan G. Lange IMPROVING LITHIUM-ION BATTERY POWER AND ENERGY DENSITIES USING

    E-Print Network [OSTI]

    Braun, Paul

    1 ©2012 Jonathan G. Lange #12;1 IMPROVING LITHIUM-ION BATTERY POWER AND ENERGY DENSITIES USING ABSTRACT Lithium-ion batteries are commonly used as energy storage devices in a variety of applications. The cathode architectures and materials have a large influence on the performance of lithium-ion batteries

  14. Ultralow-power local laser control of the dimer density in alkali-metal vapors

    E-Print Network [OSTI]

    Jha, Pankaj K; Yi, Zhenhuan; Yuan, Luqi; Sautenkov, Vladimir A; Rostovtsev, Yuri V; Welch, George R; Zheltikov, Aleksei M; Scully, Marlan O

    2011-01-01T23:59:59.000Z

    Ultralow-power diode-laser radiation is employed to induce photodesorption of cesium from a partially transparent thin-film cesium adsorbate on a solid surface. Using resonant Raman spectroscopy, we demonstrate that this photodesorption process enables an accurate local optical control of the density of dimer molecules in alkali-metal vapors.

  15. PP-219 Central Power and Light Company | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin of Contamination in ManyDepartmentOutreachDepartment56703

  16. Eastern Iowa Light & Power Coop | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluating A Potential MicrohydroDistrictInformation Ireland)EastEastern Iowa Light

  17. Glencoe Light & Power Comm | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetec AG Contracting Jump to:Echo, Maryland: Energy ResourcesNewGlencoe Light

  18. Lighting

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12electron 9 5Let us countLighting Sign In About | Careers |

  19. Laser Drilling - Drilling with the Power of Light

    SciTech Connect (OSTI)

    Brian C. Gahan; Samih Batarseh

    2004-09-28T23:59:59.000Z

    Gas Technology Institute (GTI) has been the leading investigator in the field of high power laser applications research for well construction and completion applications. Since 1997, GTI (then as Gas Research Institute) has investigated several military and industrial laser systems and their ability to cut and drill into reservoir type rocks. In this report, GTI continues its investigation with a recently acquired 5.34 kW ytterbium-doped multi-clad high power fiber laser (HPFL). The HPFL represents a potentially disruptive technology that, when compared to its competitors, is more cost effective to operate, capable of remote operations, and requires considerably less maintenance and repair. To determine how this promising laser compares with other lasers used in past experimental work, GTI performed a number of experiments with results directly comparable to previous data. Experiments were designed to investigate the effect of laser input parameters on representative reservoir rock types of sandstone and limestone. The focus of the experiments was on completion and perforation applications, although the results and techniques apply to well construction and other rock cutting applications. Variables investigated include laser power, beam intensity, external purging of cut materials, sample orientation, beam duration, beam shape, and beam frequency. The investigation also studied the thermal effects on the two sample rock types and their methods of destruction: spallation for sandstone, and thermal dissociation for limestone. Optimal operating conditions were identified for each rock type and condition. As a result of this experimental work, the HPFL has demonstrated a better capability of cutting and drilling limestone and sandstone when compared with other military and industrial lasers previously tested. Consideration should be given to the HPFL as the leading candidate for near term remote high power laser applications for well construction and completion.

  20. Communications: NREL PowerPoint Presentation Template with Light Background

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power Administration would like submit the followingth Lomonosov Conference, 19

  1. PP-78 Minnesota Power & Light Company | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin of Contamination in235-1 Termoelectrica U.S LLCPP-63-1 Northern75 The Comision

  2. PP-94 Central Power & Light Company | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin of Contamination in235-1 Termoelectrica U.S LLCPP-63-1 Northern75PP-92 El Paso Electric94

  3. Dynamics and afterglow light curves of gamma-ray burst blast waves encountering a density bump or void

    SciTech Connect (OSTI)

    Uhm, Z. Lucas; Zhang, Bing, E-mail: uhm@pku.edu.cn, E-mail: zhang@physics.unlv.edu [Kavli Institute for Astronomy and Astrophysics, Peking University, Beijing 100871 (China)

    2014-07-01T23:59:59.000Z

    We investigate the dynamics and afterglow light curves of gamma-ray burst blast waves that encounter various density structures (such as bumps, voids, or steps) in the surrounding ambient medium. We present and explain the characteristic response features that each type of density structure in the medium leaves on the forward shock (FS) and reverse shock (RS) dynamics for blast waves with either a long-lived or short-lived RS. We show that when the ambient medium density drops, the blast waves exhibit in some cases a period of an actual acceleration (even during their deceleration stage) due to adiabatic cooling of blast waves. Comparing numerical examples that have different shapes of bumps or voids, we propose a number of consistency tests that must be satisfied by correct modeling of blast waves. Our model results successfully pass these tests. Employing a Lagrangian description of blast waves, we perform a sophisticated calculation of afterglow emission. We show that as a response to density structures in the ambient medium, the RS light curves produce more significant variations than the FS light curves. Some observed features (such as rebrightenings, dips, or slow wiggles) can be more easily explained within the RS model. We also discuss the origin of these different features imprinted on the FS and RS light curves.

  4. The number density of quasars as a probe of initial power spectrum on small scale

    E-Print Network [OSTI]

    B. Novosyadlyj; Yu. Chornij

    1998-12-15T23:59:59.000Z

    The dependence of the number density of the bright QSOs at different redshifts ($n_{QSO}(z)$) on initial power spectrum is studied. It is assumed that QSO phenomenon is an early short term stage of evolution of massive galaxies with $M\\geq 2\\times 10^{11}h^{-1}M_{\\odot}$. The duration of such QSO stage which is passed through by fraction $\\alpha$ of galaxies is determined by means of minimization of the divergence of the theoretical number density of QSOs at different redshifts for specified initial spectrum from observable one \\cite{sc91}. It is shown that the nearest number densities of QSOs at $0.7\\le z\\le 3.5$ to observable ones are obtained for the tilted CDM model ($\\Omega_{b}=0.1$, $n=0.7$). The QSO stage lasts $\\sim 7\\times 10^{7}/\\alpha$ years and begins soon after the moment of rise of the first counterflow in collisionless component and shock wave in gas. The possibility of the reconstruction of initial power spectrum on small scale on the base of the observable data on number density of QSOs at different $z$ is considered too. Such reconstructed spectrum in comparison with standard CDM has steep reducing of power at $k\\ge 0.5 h Mpc^{-1}$.

  5. PP-78 Minnesota Power & Light Company | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreaking ofOilNEWResponse(Expired) | Department ofINCREASES1 Citizens0 The Power468

  6. Kirbyville Light & Power Co | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroup |Jilin Zhongdiantou New EnergyKenosistecKilara PowerKioto

  7. McGrath Light & Power Co | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroup |JilinLu an Group JumpNewMassachusettsMayo Power Jump

  8. Cheyenne Light Fuel & Power Co | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia:PowerCER.png El CER es unaChelmsford,VolcanicChevron

  9. Wisconsin Power & Light Co | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit withTianlinPapers Home Kyoung's pictureWindManitoba, Canada)Wisconsin Power &

  10. Wisconsin Power and Light Company Smart Grid Project | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit withTianlinPapers Home Kyoung's pictureWindManitoba, Canada)Wisconsin Power

  11. Havana Power & Light Company | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroup | Open Energy Information HanergyHarney ElectricHaryanaHavana Power

  12. Hughes Power & Light Co | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroup | Open EnergyInformationHorizonEnergyHubei Xinda BioPower I

  13. Two-dimensional AXUV-based radiated power density diagnostics on NSTX-U

    SciTech Connect (OSTI)

    Faust, I.; Parker, R. R. [MIT - Plasma Science and Fusion Center, Cambridge, Massachusetts 02139 (United States); Delgado-Aparicio, L.; Bell, R. E.; Diallo, A.; Gerhardt, S. P.; LeBlanc, B.; Kozub, T. A. [Princeton Plasma Physics Laboratory, Princeton, New Jersey 08540 (United States); Tritz, K. [The Johns Hopkins University, Baltimore, Maryland 21209 (United States); Stratton, B. C. [MIT - Plasma Science and Fusion Center, Cambridge, Massachusetts 02139 (United States); Princeton Plasma Physics Laboratory, Princeton, New Jersey 08540 (United States)

    2014-11-15T23:59:59.000Z

    A new set of radiated-power-density diagnostics for the National Spherical Torus Experiment Upgrade (NSTX-U) tokamak have been designed to measure the two-dimensional poloidal structure of the total photon emissivity profile in order to perform power balance, impurity transport, and magnetohydrodynamic studies. Multiple AXUV-diode based pinhole cameras will be installed in the same toroidal angle at various poloidal locations. The local emissivity will be obtained from several types of tomographic reconstructions. The layout and response expected for the new radially viewing poloidal arrays will be shown for different impurity concentrations to characterize the diagnostic sensitivity. The radiated power profile inverted from the array data will also be used for estimates of power losses during transitions from various divertor configurations in NSTX-U. The effect of in-out and top/bottom asymmetries in the core radiation from high-Z impurities will be addressed.

  14. Photoionization of optically trapped ultracold atoms with a high-power light-emitting diode

    SciTech Connect (OSTI)

    Goetz, Simone; Hoeltkemeier, Bastian; Amthor, Thomas; Weidemueller, Matthias [Physikalisches Institut, Universitaet Heidelberg, Im Neuenheimer Feld 226, 69120 Heidelberg (Germany)

    2013-04-15T23:59:59.000Z

    Photoionization of laser-cooled atoms using short pulses of a high-power light-emitting diode (LED) is demonstrated. Light pulses as short as 30 ns have been realized with the simple LED driver circuit. We measure the ionization cross section of {sup 85}Rb atoms in the first excited state, and show how this technique can be used for calibrating efficiencies of ion detector assemblies.

  15. Journal of Power Sources 153 (2006) 6875 Numerical study of a flat-tube high power density solid oxide fuel cell

    E-Print Network [OSTI]

    2006-01-01T23:59:59.000Z

    power density (HPD) solid oxide fuel cell (SOFC) is a geometry based on a tubular type SOFC: Flat-tube; High power density (HPD); Solid oxide fuel cell (SOFC); Simulation; Performance; Optimization 1. Introduction A solid oxide fuel cell (SOFC), like any other fuel cell, produces electrical

  16. High excitation power photoluminescence studies of ultra-low density GaAs quantum dots

    SciTech Connect (OSTI)

    Sonnenberg, D.; Graf, A.; Paulava, V.; Heyn, Ch.; Hansen, W. [Institut für Angewandte Physik und Zentrum für Mikrostrukturforschung, Universität Hamburg, Jungiusstr. 11, 20355 Hamburg (Germany)

    2013-12-04T23:59:59.000Z

    We fabricate GaAs epitaxial quantum dots (QDs) by filling of self-organized nanoholes in AlGaAs. The QDs are fabricated under optimized process conditions and have ultra-low density in the 10{sup 6} cm{sup ?2} regime. At low excitation power the optical emission of single QDs exhibit sharp excitonic lines, which are attributed to the recombination of excitonic and biexcitonic states. High excitation power measurements reveal surprisingly broad emission lines from at least six QD shell states.

  17. Laser Drilling - Drilling with the Power of Light

    SciTech Connect (OSTI)

    Iraj A. Salehi; Brian C. Gahan; Samih Batarseh

    2007-02-28T23:59:59.000Z

    Gas Technology Institute (GTI) has been the leading investigator in the field of high power laser applications research for well construction and completion applications. Since 1997, GTI (then as Gas Research Institute- GRI) has investigated several military and industrial laser systems and their ability to cut and drill into reservoir type rocks. In this report, GTI continues its investigation with a 5.34 kW ytterbium-doped multi-clad high power fiber laser (HPFL). When compared to its competitors; the HPFL represents a technology that is more cost effective to operate, capable of remote operations, and requires considerably less maintenance and repair. Work performed under this contract included design and implementation of laboratory experiments to investigate the effects of high power laser energy on a variety of rock types. All previous laser/rock interaction tests were performed on samples in the lab at atmospheric pressure. To determine the effect of downhole pressure conditions, a sophisticated tri-axial cell was designed and tested. For the first time, Berea sandstone, limestone and clad core samples were lased under various combinations of confining, axial and pore pressures. Composite core samples consisted of steel cemented to rock in an effort to represent material penetrated in a cased hole. The results of this experiment will assist in the development of a downhole laser perforation or side tracking prototype tool. To determine how this promising laser would perform under high pressure in-situ conditions, GTI performed a number of experiments with results directly comparable to previous data. Experiments were designed to investigate the effect of laser input parameters on representative reservoir rock types of sandstone and limestone. The focus of the experiments was on laser/rock interaction under confining pressure as would be the case for all drilling and completion operations. As such, the results would be applicable to drilling, perforation, and side tracking applications. In the past, several combinations of laser and rock variables were investigated at standard conditions and reported in the literature. More recent experiments determined the technical feasibility of laser perforation on multiple samples of rock, cement and steel. The fiber laser was capable of penetrating these materials under a variety of conditions, to an appropriate depth, and with reasonable energy requirements. It was determined that fiber lasers are capable of cutting rock without causing damage to flow properties. Furthermore, the laser perforation resulted in permeability improvements on the exposed rock surface. This report has been prepared in two parts and each part may be treated as a stand-alone document. Part 1 (High Energy Laser Drilling) includes the general description of the concept and focuses on results from experiments under the ambient lab conditions. Part 2 (High Energy Laser Perforation and Completion Techniques) discusses the design and development of a customized laser pressure cell; experimental design and procedures, and the resulting data on pressure-charged samples exposed to the laser beam. An analysis provides the resulting effect of downhole pressure conditions on the laser/rock interaction process.

  18. Laser Drilling - Drilling with the Power of Light

    SciTech Connect (OSTI)

    Brian C. Gahan; Samih Batarseh

    2005-09-28T23:59:59.000Z

    Gas Technology Institute (GTI) has been the leading investigator in the field of high power laser applications research for well construction and completion applications. Since 1997, GTI (then as Gas Research Institute) has investigated several military and industrial laser systems and their ability to cut and drill into reservoir type rocks. In this report, GTI continues its investigation with a recently acquired 5.34 kW ytterbium-doped multi-clad high power fiber laser (HPFL). The HPFL represents a potentially disruptive technology that, when compared to its competitors, is more cost effective to operate, capable of remote operations, and requires considerably less maintenance and repair. To determine how this promising laser would perform under high pressure in-situ conditions, GTI performed a number of experiments with results directly comparable to previous data. Experiments were designed to investigate the effect of laser input parameters on representative reservoir rock types of sandstone and limestone. The focus of the experiments was on completion and perforation applications, although the results and techniques apply to well construction and other rock cutting applications. All previous laser/rock interaction tests were performed on samples in the lab at atmospheric pressure. To determine the effect of downhole pressure conditions, a sophisticated tri-axial cell was designed and tested. For the first time, Berea sandstone, limestone and clad core samples were lased under various combinations of confining, axial and pore pressures. Composite core samples consisted of steel cemented to rock in an effort to represent material penetrated in a cased hole. The results of this experiment will assist in the development of a downhole laser perforation prototype tool. In the past, several combinations of laser and rock variables were investigated at standard conditions and reported in the literature. More recent experiments determined the technical feasibility of laser perforation on multiple samples of rock, cement and steel. The fiber laser was capable of penetrating these materials under a variety of conditions, to an appropriate depth, and with reasonable energy requirements. It was determined that fiber lasers are capable of cutting rock without causing damage to flow properties. Furthermore, the laser perforation resulted in permeability improvements on the exposed rock surface. This report discusses the design and development of a customized laser pressure cell; experimental design and procedures, and the resulting data on pressure-charged samples exposed to the laser beam. An analysis provides the resulting effect of downhole pressure conditions on the laser/rock interaction process.

  19. Performance Optimization of Battery-Super Capacitor Hybrid System Electrochemical capacitors (ultracapacitors) offer high power density when compared to battery

    E-Print Network [OSTI]

    Popov, Branko N.

    Performance Optimization of Battery-Super Capacitor Hybrid System Electrochemical capacitors a decreased value of power and energy densities for the hybrid system. Figure 1shows the fractional capacity (ultracapacitors) offer high power density when compared to battery systems and also have a relatively large energy

  20. An innovative demonstration of high power density in a compact MHD (magnetohydrodynamic) generator

    SciTech Connect (OSTI)

    Schmidt, H.J.; Lineberry, J.T.; Chapman, J.N.

    1990-06-01T23:59:59.000Z

    The present program was conducted by the University of Tennessee Space Institute (UTSI). It was by its nature a high risk experimental program to demonstrate the feasibility of high power density operation in a laboratory scale combustion driven MHD generator. Maximization of specific energy was not a consideration for the present program, but the results have implications in this regard by virtue of high energy fuel used. The power density is the ratio of the electrical energy output to the internal volume of the generator channel. The MHD process is a volumetric process and the power density is therefore a direct measure of the compactness of the system. Specific energy, is the ratio of the electrical energy output to consumable energy used for its production. The two parameters are conceptually interrelated. To achieve high power density and implied commensurate low system volume and weight, it was necessary to use an energetic fuel. The high energy fuel of choice was a mixture of powdered aluminum and carbon seeded with potassium carbonate and burned with gaseous oxygen. The solid fuel was burned in a hybrid combustion scheme wherein the fuel was cast within a cylindrical combustor in analogy with a solid propellant rocket motor. Experimental data is limited to gross channel output current and voltage, magnetic field strength, fuel and oxidizer flow rates, flow train external temperatures and combustor pressure. Similarly, while instantaneous oxidizer flow rates were measured, only average fuel consumption based on pre and post test component weights and dimensions was possible. 4 refs., 60 figs., 9 tabs.

  1. Particle-Number Restoration within the Energy Density Functional formalism: Nonviability of terms depending on noninteger powers of the density matrices

    E-Print Network [OSTI]

    T. Duguet; M. Bender; K. Bennaceur; D. Lacroix; T. Lesinski

    2009-03-04T23:59:59.000Z

    We discuss the origin of pathological behaviors that have been recently identified in particle-number-restoration calculations performed within the nuclear energy density functional framework. A regularization method that removes the problematic terms from the multi-reference energy density functional and which applies (i) to any symmetry restoration- and/or generator-coordinate-method-based configuration mixing calculation and (ii) to energy density functionals depending only on integer powers of the density matrices, was proposed in [D. Lacroix, T. Duguet, M. Bender, arXiv:0809.2041] and implemented for particle-number restoration calculations in [M. Bender, T. Duguet, D. Lacroix, arXiv:0809.2045]. In the present paper, we address the viability of non-integer powers of the density matrices in the nuclear energy density functional. Our discussion builds upon the analysis already carried out in [J. Dobaczewski \\emph{et al.}, Phys. Rev. C \\textbf{76}, 054315 (2007)]. First, we propose to reduce the pathological nature of terms depending on a non-integer power of the density matrices by regularizing the fraction that relates to the integer part of the exponent using the method proposed in [D. Lacroix, T. Duguet, M. Bender, arXiv:0809.2041]. Then, we discuss the spurious features brought about by the remaining fractional power. Finally, we conclude that non-integer powers of the density matrices are not viable and should be avoided in the first place when constructing nuclear energy density functionals that are eventually meant to be used in multi-reference calculations.

  2. High-resolution Tangential AXUV Arrays for Radiated Power Density Measurements on NSTX-U

    SciTech Connect (OSTI)

    Delgado-Aparicio, L [PPPL; Bell, R E [PPPL; Faust, I [MIT; Tritz, K [The Johns Hopkins University, Baltimore, MD, 21209, USA; Diallo, A [PPPL; Gerhardt, S P [PPPL; Kozub, T A [PPPL; LeBlanc, B P [PPPL; Stratton, B C [PPPL

    2014-07-01T23:59:59.000Z

    Precise measurements of the local radiated power density and total radiated power are a matter of the uttermost importance for understanding the onset of impurity-induced instabilities and the study of particle and heat transport. Accounting of power balance is also needed for the understanding the physics of various divertor con#12;gurations for present and future high-power fusion devices. Poloidal asymmetries in the impurity density can result from high Mach numbers and can impact the assessment of their flux-surface-average and hence vary the estimates of P[sub]rad (r, t) and (Z[sub]eff); the latter is used in the calculation of the neoclassical conductivity and the interpretation of non-inductive and inductive current fractions. To this end, the bolometric diagnostic in NSTX-U will be upgraded, enhancing the midplane coverage and radial resolution with two tangential views, and adding a new set of poloidally-viewing arrays to measure the 2D radiation distribution. These systems are designed to contribute to the near- and long-term highest priority research goals for NSTX-U which will integrate non-inductive operation at reduced collisionality, with high-pressure, long energy-confinement-times and a divertor solution with metal walls.

  3. Off-center HII regions in power-law density distributions

    E-Print Network [OSTI]

    S. J. Arthur

    2007-05-05T23:59:59.000Z

    The expansion of ionization fronts in uniform and spherically symmetric power-law density distributions is a well-studied topic. However, in many situations, such as a star formed at the edge of a molecular cloud core, an offset power-law density distribution would be more appropriate. In this paper a few of the main issues of the formation and expansion of HII regions in such media are outlined and results are presented for the particular cases where the underlying power laws are 1/r^2 and 1/r^3. A simple criterion is developed for determining whether the initial photoionized region will be unbounded, which depends on the power-law exponent and the ratio of the equivalent Stroemgren radius produced by the star in a uniform medium to the stellar offset distance. In the expansion stage, the ionized volumes will eventually become unbounded unless pressure balance with the external medium is reached before the ionization front velocity becomes supersonic with respect to the ionized gas.

  4. Durability of Low Pt Fuel Cells Operating at High Power Density |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny:Revised Finding of No53197E TDrew Bittner About Us DrewDualLight-Duty2

  5. Generation of potential/surface density pairs in flat disks Power law distributions

    E-Print Network [OSTI]

    J. -M. Hure; D. Pelat; A. Pierens

    2007-06-25T23:59:59.000Z

    We report a simple method to generate potential/surface density pairs in flat axially symmetric finite size disks. Potential/surface density pairs consist of a ``homogeneous'' pair (a closed form expression) corresponding to a uniform disk, and a ``residual'' pair. This residual component is converted into an infinite series of integrals over the radial extent of the disk. For a certain class of surface density distributions (like power laws of the radius), this series is fully analytical. The extraction of the homogeneous pair is equivalent to a convergence acceleration technique, in a matematical sense. In the case of power law distributions, the convergence rate of the residual series is shown to be cubic inside the source. As a consequence, very accurate potential values are obtained by low order truncation of the series. At zero order, relative errors on potential values do not exceed a few percent typically, and scale with the order N of truncation as 1/N**3. This method is superior to the classical multipole expansion whose very slow convergence is often critical for most practical applications.

  6. Quantification of evaporative running losses from light-duty gasoline-powered trucks. Final report

    SciTech Connect (OSTI)

    McClement, D.

    1992-11-03T23:59:59.000Z

    The objective of the study was to determine the evaporative running loss characteristics from light-duty gasoline powered trucks. The contract involved testing of 18 randomly selected light-duty trucks by the contractor, Automotive Testing Laboratories in Indiana. Seventy-six running loss tests were performed at ambient temperatures of 40, 95, and 105 degrees Fahrenheit and driven over the LA-4 and the New York City Cycle. Six vehicles underwent Sealed Housing Evaporative Determination tests to determine if there is any relationship between other types of evaporative emissions and running loss emissions.

  7. Mimicking acceleration in the constant-bang-time Lemaître -- Tolman model: Shell crossings, density distributions and light cones

    E-Print Network [OSTI]

    Andrzej Krasi?ski

    2014-09-10T23:59:59.000Z

    The Lema\\^{\\i}tre -- Tolman model with $\\Lambda = 0$ and constant bang time that imitates the luminosity distance -- redshift relation of the $\\Lambda$CDM model using the energy function $E$ alone contains shell crossings. In this paper, the location in spacetime and the consequences of existence of the shell-crossing set (SCS) are investigated. The SCS would come into view of the central observer only at $t \\approx 1064 T$ to the future from now, where $T$ is the present age of the Universe, but would not leave any recognizable trace in her observations. Light rays emitted near to the SCS are blueshifted at the initial points, but the blueshift is finite, and is overcompensated by later-induced redshifts if the observer is sufficiently far. The local blueshifts cause that $z$ along a light ray is not a monotonic function of the comoving radial coordinate $r$. As a consequence, the angular diameter distance $D_A$ and the luminosity distance $D_L$ from the central observer fail to be functions of $z$; the relations $D_A(z)$ and $D_L(z)$ are multiple-valued in a vicinity of the SCS. The following quantities are calculated and displayed: (1) The distribution of mass density on a few characteristic hypersurfaces of constant time; some of them intersect the SCS. (2) The distribution of density along the past light cone of the present central observer. (3) A few light cones intersecting the SCS at characteristic instants. (4) The redshift profiles along several light cones. (5) The extremum-redshift hypersurface. (6) The $D_A(z)$ and $D_L(z)$ relations. (7) The last scattering time and its comparison with the $\\Lambda$CDM last scattering epoch.

  8. Power densities for two-step gamma-ray transitions from isomeric states

    E-Print Network [OSTI]

    Silviu Olariu; Agata Olariu

    1999-08-19T23:59:59.000Z

    We have calculated the incident photon power density P_2 for which the two-step induced emission rate from an isomeric nucleus becomes equal to the natural isomeric decay rate. We have analyzed two-step transitions for isomeric nuclei with a half-life greater than 10 min, for which there is an intermediate state of known energy, spin and half-life, for which the intermediate state is connected by a known gamma-ray transition to the isomeric state and to at least another intermediate state, and for which the relative intensities of the transitions to lower states are known. For the isomeric nucleus 166m-Ho, which has a 1200 y isomeric state at 5.98 keV, we have found a value of P_2=6.3 x 10^7 W cm^{-2}, the intermediate state being the 263.8 keV level. We have found power densities P_2 of the order of 10^{10} W cm^{-2} for several other isomeric nuclei.

  9. Enhancing light-harvesting power with coherent vibrational interactions: a quantum heat engine picture

    E-Print Network [OSTI]

    Nathan Killoran; Susana F. Huelga; Martin B. Plenio

    2014-12-12T23:59:59.000Z

    Recent evidence suggests that quantum effects may have functional importance in biological light-harvesting systems. Along with delocalized electronic excitations, it is now suspected that quantum coherent interactions with certain near-resonant vibrations contribute to light-harvesting performance. However, the actual quantum advantage offered by such coherent vibrational interactions has not yet been established. We investigate a quantum design principle, whereby coherent exchange of single energy quanta between electronic and vibrational degrees of freedom can enhance a light-harvesting system's power above what is possible by thermal mechanisms alone. We present a prototype quantum heat engine which cleanly illustrates this quantum design principle, and quantify its quantum advantage using thermodynamic measures of performance. We also demonstrate the principle's applicability for realistic biological structures.

  10. A thermally self-sustained micro solid-oxide fuel-cell stack with high power density

    E-Print Network [OSTI]

    Haile, Sossina M.

    A thermally self-sustained micro solid-oxide fuel-cell stack with high power density Zongping Shao1 design challenges and cannot operate with hydrocarbon fuels of higher energy density. Solid-oxide fuel cells (SOFCs) enable direct use of higher hydrocarbons4­6 , but have not been seriously con- sidered

  11. Durability of Low Platinum Fuel Cells Operating at High Power Density

    SciTech Connect (OSTI)

    Polevaya, Olga [Nuvera Fuel Cells Inc.] [Nuvera Fuel Cells Inc.; Blanchet, Scott [Nuvera Fuel Cells Inc.] [Nuvera Fuel Cells Inc.; Ahluwalia, Rajesh [Argonne National Lab] [Argonne National Lab; Borup, Rod [Los-Alamos National Lab] [Los-Alamos National Lab; Mukundan, Rangachary [Los-Alamos National Lab] [Los-Alamos National Lab

    2014-03-19T23:59:59.000Z

    Understanding and improving the durability of cost-competitive fuel cell stacks is imperative to successful deployment of the technology. Stacks will need to operate well beyond today’s state-of-the-art rated power density with very low platinum loading in order to achieve the cost targets set forth by DOE ($15/kW) and ultimately be competitive with incumbent technologies. An accelerated cost-reduction path presented by Nuvera focused on substantially increasing power density to address non-PGM material costs as well as platinum. The study developed a practical understanding of the degradation mechanisms impacting durability of fuel cells with low platinum loading (?0.2mg/cm2) operating at high power density (?1.0W/cm2) and worked out approaches for improving the durability of low-loaded, high-power stack designs. Of specific interest is the impact of combining low platinum loading with high power density operation, as this offers the best chance of achieving long-term cost targets. A design-of-experiments approach was utilized to reveal and quantify the sensitivity of durability-critical material properties to high current density at two levels of platinum loading (the more conventional 0.45 mgPt.cm–1 and the much lower 0.2 mgPt.cm–2) across several cell architectures. We studied the relevance of selected component accelerated stress tests (AST) to fuel cell operation in power producing mode. New stress tests (NST) were designed to investigate the sensitivity to the addition of electrical current on the ASTs, along with combined humidity and load cycles and, eventually, relate to the combined city/highway drive cycle. Changes in the cathode electrochemical surface area (ECSA) and average oxygen partial pressure on the catalyst layer with aging under AST and NST protocols were compared based on the number of completed cycles. Studies showed elevated sensitivity of Pt growth to the potential limits and the initial particle size distribution. The ECSA loss was correlated with the upper potential limit in the cycle tests, although the performance degradation was found to be a strong function of initial Pt loading. A large fraction of the voltage degradation was found due to increased mass transfer overpotentials, especially in the lower Pt loading cells. Increased mass transfer overpotentials were responsible for a large fraction of the voltage degradation at high current densities. Analysis of the impedance and polarization data indicated O2 diffusion in the aged electrode ionomer to be the main source of the increased mass transfer overpotentials. Results from the experimental parametric studies were used to inform and calibrate newly developed durability model, simulating lifetime performance of the fuel cell under variety of load-cycle protocols, electrode loadings and throughout wide range of operating conditions, including elevated-to-3.0A/cm2 current densities. Complete durability model included several sub-models: platinum dissolution-and-growth as well as reaction-diffusion model of cathode electrode, applied sequentially to study the lifetime predictions of ECSA and polarization performance in the ASTs and NSTs. These models establish relations between changes in overpotentials, ECSA and oxygen mass transport in fuel cell cathodes. The model was calibrated using single cells with land-channel and open flowfield architectures. The model was validated against Nuvera Orion® (open flowfield) short stack data in the load cycle durability tests. The reaction-diffusion model was used to correlate the effective mass transfer coefficients for O2 diffusion in cathode ionomer and separately in gas pores with the operating conditions (pressure, temperature, gas velocity in flow field and current density), Pt loading, and ageing related growth in Pt particles and thinning of the electrode. Achievements of both modeling and experimental objectives were demonstrated in a full format, subscale stacks operating in a simulated but fully realistic ambient environment, using system-compatible operating protocols.

  12. Bayesian semiparametric power spectral density estimation in gravitational wave data analysis

    E-Print Network [OSTI]

    Edwards, Matthew C; Christensen, Nelson

    2015-01-01T23:59:59.000Z

    The standard noise model in gravitational wave (GW) data analysis assumes detector noise is stationary and Gaussian distributed, with a known power spectral density (PSD) that is usually estimated using clean off-source data. Real GW data often depart from these assumptions, and misspecified parametric models of the PSD could result in misleading inferences. We propose a Bayesian semiparametric approach to improve this. We use a nonparametric Bernstein polynomial prior on the PSD, with weights attained via a Dirichlet process distribution, and update this using the Whittle likelihood. Posterior samples are obtained using a Metropolis-within-Gibbs sampler. We simultaneously estimate the reconstruction parameters of a rotating core collapse supernova GW burst that has been embedded in simulated Advanced LIGO noise. We also discuss an approach to deal with non-stationary data by breaking longer data streams into smaller and locally stationary components.

  13. LOW-TEMPERATURE, ANODE-SUPPORTED HIGH POWER DENSITY SOLID OXIDE FUEL CELLS WITH NANOSTRUCTURED ELECTRODES

    SciTech Connect (OSTI)

    Anil V. Virkar

    2001-06-21T23:59:59.000Z

    A simple, approximate analysis of the effect of differing cathode and anode areas on the measurement of cell performance on anode-supported solid oxide fuel cells, wherein the cathode area is smaller than the anode area, is presented. It is shown that the effect of cathode area on cathode polarization, on electrolyte contribution, and on anode resistance, as normalized on the basis of the cathode area, is negligible. There is a small but measurable effect on anode polarization, which results from concentration polarization. Effectively, it is the result of a greater amount of fuel transported to the anode/electrolyte interface in cases wherein the anode area is larger than the cathode area. Experiments were performed on cells made with differing cathode areas and geometries. Cathodic and anodic overpotentials measured using reference electrodes, and the measured ohmic area specific resistances by current interruption, were in good agreement with expectations based on the analysis presented. At 800 C, the maximum power density measured with a cathode area of {approx}1.1 cm{sup 2} was {approx}1.65 W/cm{sup 2} compared to {approx}1.45 W/cm{sup 2} for cathode area of {approx}2 cm{sup 2}, for anode thickness of {approx}1.3 mm, with hydrogen as the fuel and air as the oxidant. At 750 C, the measured maximum power densities were {approx}1.3 W/cm{sup 2} for the cell with cathode area {approx}1.1 cm{sup 2}, and {approx}1.25 W/cm{sup 2} for the cell with cathode area {approx}2 cm{sup 2}.

  14. APEX and ALPS, high power density technology programs in the U.S.

    SciTech Connect (OSTI)

    Wong, C. [General Atomics, San Diego, CA (United States). Fusion Group; Berk, S. [Dept. of Energy, Washington, DC (United States). Office of Fusion Energy Sciences; Abdou, M. [Univ. of California, Los Angeles, CA (United States). School of Engineering and Applied Science; Mattas, R. [Argonne National Lab., IL (United States). Fusion Power Program

    1999-02-01T23:59:59.000Z

    In fiscal year (FY) 1998 two new fusion technology programs were initiated in the US, with the goal of making marked progress in the scientific understanding of technologies and materials required to withstand high plasma heat flux and neutron wall loads. APEX is exploring new and revolutionary concepts that can provide the capability to extract heat efficiently from a system with high neutron and surface heat loads while satisfying all the fusion power technology requirements and achieving maximum reliability, maintainability, safety, and environmental acceptability. ALPS program is evaluating advanced concepts including liquid surface limiters and divertors on the basis of such factors as their compatibility with fusion plasma, high power density handling capabilities, engineering feasibility, lifetime, safety and R and D requirements. The APEX and ALPS are three-year programs to specify requirements and evaluate criteria for revolutionary approaches in first wall, blanket and high heat flux component applications. Conceptual design and analysis of candidate concepts are being performed with the goal of selecting the most promising first wall, blanket and high heat flux component designs that will provide the technical basis for the initiation of a significant R and D effort beginning in FY2001. These programs are also considering opportunities for international collaborations.

  15. Enhanced modified faraday cup for determination of power density distribution of electron beams

    DOE Patents [OSTI]

    Elmer, John W. (Danville, CA); Teruya, Alan T. (Livermore, CA)

    2001-01-01T23:59:59.000Z

    An improved tomographic technique for determining the power distribution of an electron or ion beam using electron beam profile data acquired by an enhanced modified Faraday cup to create an image of the current density in high and low power ion or electron beams. A refractory metal disk with a number of radially extending slits, one slit being about twice the width of the other slits, is placed above a Faraday cup. The electron or ion beam is swept in a circular pattern so that its path crosses each slit in a perpendicular manner, thus acquiring all the data needed for a reconstruction in one circular sweep. The enlarged slit enables orientation of the beam profile with respect to the coordinates of the welding chamber. A second disk having slits therein is positioned below the first slit disk and inside of the Faraday cup and provides a shield to eliminate the majority of secondary electrons and ions from leaving the Faraday cup. Also, a ring is located below the second slit disk to help minimize the amount of secondary electrons and ions from being produced. In addition, a beam trap is located in the Faraday cup to provide even more containment of the electron or ion beam when full beam current is being examined through the center hole of the modified Faraday cup.

  16. Crosscheck of different techniques for two dimensional power spectral density measurements of x-ray optics

    SciTech Connect (OSTI)

    Yashchuk, Valeriy V.; Irick, Steve C.; Gullikson, Eric M.; Howells, Malcolm R.; MacDowell, Alastair A.; McKinney, Wayne R.; Salmassi, Farhad; Warwick, Tony

    2005-07-12T23:59:59.000Z

    The consistency of different instruments and methods for measuring two-dimensional (2D) power spectral density (PSD) distributions are investigated. The instruments are an interferometric microscope, an atomic force microscope (AFM) and the X-ray Reflectivity and Scattering experimental facility, all available at Lawrence Berkeley National Laboratory. The measurements were performed with a gold-coated mirror with a highly polished stainless steel substrate. It was shown that these three techniques provide essentially consistent results. For the stainless steel mirror, an envelope over all measured PSD distributions can be described with an inverse power-law PSD function. It is also shown that the measurements can be corrected for the specific spatial frequency dependent systematic errors of the instruments. The AFM and the X-ray scattering measurements were used to determine the modulation transfer function of the interferometric microscope. The corresponding correction procedure is discussed in detail. Lower frequency investigation of the 2D PSD distribution was also performed with a long trace profiler and a ZYGO GPI interferometer. These measurements are in some contradiction, suggesting that the reliability of the measurements has to be confirmed with additional investigation. Based on the crosscheck of the performance of all used methods, we discuss the ways for improving the 2D PSD characterization of X-ray optics.

  17. Light curves and polarization of accretion- and nuclear-powered millisecond pulsars

    E-Print Network [OSTI]

    Kerttu Viironen; Juri Poutanen

    2004-08-13T23:59:59.000Z

    We study theoretical X-ray light curves and polarization properties of accretion-powered millisecond pulsars. We assume that the radiation is produced in two antipodal spots at the neutron star surface which are associated with the magnetic poles. We compute the angle-dependent intensity and polarization produced in an electron-scattering dominated plane-parallel accretion shock in the frame of the shock. The observed flux, polarization degree and polarization angle are calculated accounting for special and general relativistic effects. The calculations also extended to the case of nuclear-powered millisecond pulsars -- X-ray bursts. In this case, we consider one spot and the radiation is assumed to be produced in the atmosphere of the infinite Thomson optical depth. The light curves and polarization profiles show a large diversity depending on the model parameters. Presented results can be used as a first step to understand the observed pulse profiles of accretion- and nuclear-powered millisecond pulsars. Future observations of the X-ray polarization will provide a valuable tool to test the geometry of the emission region and its physical characteristics.

  18. Composite Cathode for High-Power Density Solid Oxide Fuel Cells

    SciTech Connect (OSTI)

    Ilwon Kim; Scott Barnett; Yi Jiang; Manoj Pillai; Nikkia McDonald; Dan Gostovic; Zhongryang Zhan; Jiang Liu

    2004-01-31T23:59:59.000Z

    Reduction of solid oxide fuel cell (SOFC) operating temperature will play a key role in reducing the stack cost by allowing the use of low-cost metallic interconnects and new approaches to sealing, while making applications such as transportation more feasible. Reported results for anode-supported SOFCs show that cathode polarization resistance is the primary barrier to achieving high power densities at operating temperatures of 700 C and lower. This project aims to identify and develop composite cathodes that could reduce SOFC operating temperatures below 700 C. This effort focuses on study and use of (La,Sr)(Co,Fe)O{sub 3} (LSCF) based composite cathodes, which have arguably the best potential to substantially improve on the currently-used, (La,Sr)MnO{sub 3}-Yttria-stabilized Zirconia. During this Phase I, it was successfully demonstrated that high performances can be achieved with LSCF/Gadolinium-Doped Ceria composite cathodes on Ni-based anode supported cells operating at 700 C or lower. We studied electrochemical reactions at LSCF/Yttria-stabilized Zirconia (YSZ) interfaces, and observed chemical reactions between LSCF and YSZ. By using ceria electrolytes or YSZ electrolytes with ceria diffusion barrier layers, the chemical reactions between LSCF and electrolytes were prevented under cathode firing conditions necessary for the optimal adhesion of the cathodes. The protection provided by ceria layer is expected to be adequate for stable long-term cathode performances, but more testing is needed to verify this. Using ceria-based barrier layers, high performance Ni-YSZ anode supported cells have been demonstrated with maximum power densities of 0.8W/cm2 at 700 C and 1.6W/cm{sup 2} at 800 C. Ni-SDC anode supported cells with SDC electrolytes yielded >1W/cm{sup 2} at 600 C. We speculate that the power output of Ni-YSZ anode supported cell at 700 C and lower, was limited by the quality of the Ceria and Ceria YSZ interface. Improvements in the low-temperature performances are expected based on further development of barrier layer fabrication processes and optimization of cathode microstructure.

  19. Characterization of spatially resolved high resolution x-ray spectrometers for high energy density physics and light source experiments

    SciTech Connect (OSTI)

    Hill, K. W., E-mail: khill@pppl.gov; Bitter, M.; Delgado-Aparacio, L.; Efthimion, P.; Pablant, N. A. [Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543 (United States); Lu, J. [Key Laboratory of Optoelectronic Technology and System of Ministry of Education, Chongqing University, Chongqing 400030 (China); Beiersdorfer, P.; Chen, H.; Magee, E. [Physics Division, Lawrence Livermore National Laboratory, Livermore, California 94550 (United States)

    2014-11-15T23:59:59.000Z

    A high resolution 1D imaging x-ray spectrometer concept comprising a spherically bent crystal and a 2D pixelated detector is being optimized for diagnostics of small sources such as high energy density physics (HEDP) and synchrotron radiation or x-ray free electron laser experiments. This instrument is used on tokamak experiments for Doppler measurements of ion temperature and plasma flow velocity profiles. Laboratory measurements demonstrate a resolving power, E/?E of order 10?000 and spatial resolution better than 10 ?m. Initial tests of the high resolution instrument on HEDP plasmas are being performed.

  20. WHAT CAN WE LEARN FROM THE RISING LIGHT CURVES OF RADIOACTIVELY POWERED SUPERNOVAE?

    SciTech Connect (OSTI)

    Piro, Anthony L. [Theoretical Astrophysics, California Institute of Technology, 1200 E California Blvd., M/C 350-17, Pasadena, CA 91125 (United States); Nakar, Ehud, E-mail: piro@caltech.edu [Raymond and Beverly Sackler School of Physics and Astronomy, Tel Aviv University, Tel Aviv 69978 (Israel)

    2013-05-20T23:59:59.000Z

    The light curve of the explosion of a star with a radius {approx}< 10-100 R{sub Sun} is powered mostly by radioactive decay. Observationally, such events are dominated by hydrogen-deficient progenitors and classified as Type I supernovae (SNe I), i.e., white dwarf thermonuclear explosions (Type Ia), and core collapses of hydrogen-stripped massive stars (Type Ib/c). Current transient surveys are finding SNe I in increasing numbers and at earlier times, allowing their early emission to be studied in unprecedented detail. Motivated by these developments, we summarize the physics that produces their rising light curves and discuss ways in which observations can be utilized to study these exploding stars. The early radioactive-powered light curves probe the shallowest deposits of {sup 56}Ni. If the amount of {sup 56}Ni mixing in the outermost layers of the star can be deduced, then it places important constraints on the progenitor and properties of the explosive burning. In practice, we find that it is difficult to determine the level of mixing because it is hard to disentangle whether the explosion occurred recently and one is seeing radioactive heating near the surface or whether the explosion began in the past and the radioactive heating is deeper in the ejecta. In the latter case, there is a ''dark phase'' between the moment of explosion and the first observed light emitted once the shallowest layers of {sup 56}Ni are exposed. Because of this, simply extrapolating a light curve from radioactive heating back in time is not a reliable method for estimating the explosion time. The best solution is to directly identify the moment of explosion, either through observing shock breakout (in X-ray/UV) or the cooling of the shock-heated surface (in UV/optical), so that the depth being probed by the rising light curve is known. However, since this is typically not available, we identify and discuss a number of other diagnostics that are helpful for deciphering how recently an explosion occurred. As an example, we apply these arguments to the recent SN Ic PTF 10vgv. We demonstrate that just a single measurement of the photospheric velocity and temperature during the rise places interesting constraints on its explosion time, radius, and level of {sup 56}Ni mixing.

  1. Thermal And Mechanical Analysis of High-power Light-emitting Diodes with Ceramic Packages

    E-Print Network [OSTI]

    J. Hu; L. Yang; M. -W. Shin

    2008-01-07T23:59:59.000Z

    In this paper we present the thermal and mechanical analysis of high-power light-emitting diodes (LEDs) with ceramic packages. Transient thermal measurements and thermo-mechanical simulation were performed to study the thermal and mechanical characteristics of ceramic packages. Thermal resistance from the junction to the ambient was decreased from 76.1 oC/W to 45.3 oC/W by replacing plastic mould to ceramic mould for LED packages. Higher level of thermo-mechanical stresses in the chip were found for LEDs with ceramic packages despite of less mismatching coefficients of thermal expansion comparing with plastic packages. The results suggest that the thermal performance of LEDs can be improved by using ceramic packages, but the mounting process of the high power LEDs with ceramic packages is critically important and should be in charge of delaminating interface layers in the packages.

  2. Standard Practice for Design of Surveillance Programs for Light-Water Moderated Nuclear Power Reactor Vessels

    E-Print Network [OSTI]

    American Society for Testing and Materials. Philadelphia

    2010-01-01T23:59:59.000Z

    1.1 This practice covers procedures for designing a surveillance program for monitoring the radiation-induced changes in the mechanical properties of ferritic materials in light-water moderated nuclear power reactor vessels. This practice includes the minimum requirements for the design of a surveillance program, selection of vessel material to be included, and the initial schedule for evaluation of materials. 1.2 This practice was developed for all light-water moderated nuclear power reactor vessels for which the predicted maximum fast neutron fluence (E > 1 MeV) at the end of license (EOL) exceeds 1 × 1021 neutrons/m2 (1 × 1017 n/cm2) at the inside surface of the reactor vessel. 1.3 This practice applies only to the planning and design of surveillance programs for reactor vessels designed and built after the effective date of this practice. Previous versions of Practice E185 apply to earlier reactor vessels. 1.4 This practice does not provide specific procedures for monitoring the radiation induced cha...

  3. Light-Weight, Low-Cost, Single-Phase, Liquid-Cooled Cold Plate (Presentation)

    SciTech Connect (OSTI)

    Narumanchi, S.

    2013-07-01T23:59:59.000Z

    This presentation, 'Light-Weight, Low-Cost, Single-Phase Liquid-Cooled Cold Plate,' directly addresses program goals of increased power density, specific power, and lower cost of power electronics components through improved thermal management.

  4. Light-Weight, Single-Phase, Liquid-Cooled Cold Plate (Presentation)

    SciTech Connect (OSTI)

    Narumanchi, S.

    2013-07-01T23:59:59.000Z

    This presentation, 'Light-Weight, Low-Cost, Single-Phase Liquid-Cooled Cold Plate,' directly addresses program goals of increased power density, specific power, and lower cost of power electronics components through improved thermal management.

  5. Journal of Power Sources 140 (2005) 331339 Numerical study of a flat-tube high power density solid oxide fuel cell

    E-Print Network [OSTI]

    2005-01-01T23:59:59.000Z

    ) solid oxide fuel cell (SOFC) is a new design developed by Siemens Westinghouse, based on their formerly.V. All rights reserved. Keywords: Flat-tube; High power density; Solid oxide fuel cell; Simulation; Heat oxide fuel cell Part I. Heat/mass transfer and fluid flow Yixin Lu1, Laura Schaefer, Peiwen Li2

  6. The need for high density energy storage for wind turbine and solar power has proven to be a

    E-Print Network [OSTI]

    Botea, Adi

    1 The need for high density energy storage for wind turbine and solar power has proven applications where under-hood temperatures may exceed the 85 °C normal rating, where the Y5V and Y5R capacitors (currently ~0.22 F) is also considerable. The resultant devices are anticipated to be the new generation

  7. Ultralow-power local laser control of the dimer density in alkali-metal vapors through photodesorption

    E-Print Network [OSTI]

    Pankaj K. Jha; Konstantin E. Dorfman; Zhenhuan Yi; Luqi Yuan; Vladimir A. Sautenkov; Yuri V. Rostovtsev; George R. Welch; Aleksei M. Zheltikov; Marlan O. Scully

    2012-10-08T23:59:59.000Z

    Ultralow-power diode-laser radiation is employed to induce photodesorption of cesium from a partially transparent thin-film cesium adsorbate on a solid surface. Using resonant Raman spectroscopy, we demonstrate that this photodesorption process enables an accurate local optical control of the density of dimer molecules in alkali-metal vapors.

  8. Potential order-of-magnitude enhancement of wind farm power density via counter-rotating vertical-axis wind

    E-Print Network [OSTI]

    Dabiri, John O.

    Potential order-of-magnitude enhancement of wind farm power density via counter-rotating vertical an alternative approach to wind farming that has the potential to concurrently reduce the cost, size-axis wind turbine arrays John O. Dabiria) Graduate Aeronautical Laboratories and Bioengineering, California

  9. C. Wetzel et al MRS Internet J. Nitride Semicond. Res. 10, 2 (2005) 1 Development of High Power Green Light Emitting Diode Chips

    E-Print Network [OSTI]

    Wetzel, Christian M.

    2005-01-01T23:59:59.000Z

    Power Green Light Emitting Diode Chips C. Wetzel and T. Detchprohm Future Chips Constellation Abstract The development of high emission power green light emitting diodes chips using GaInN/GaN multi production-scale implementation of this green LED die process. Keywords: nitrides, light emitting diode

  10. Shear-horizontal surface acoustic wave phononic device with high density filling material for ultra-low power sensing applications

    SciTech Connect (OSTI)

    Richardson, M.; Bhethanabotla, V. R., E-mail: bhethana@usf.edu [Department of Chemical and Biomedical Engineering, University of South Florida, Tampa, Florida 33620 (United States); Sankaranarayanan, S. K. R. S. [Center for Nanoscale Materials, Argonne National Laboratory, Argonne, Illinois 60439 (United States)

    2014-06-23T23:59:59.000Z

    Finite element simulations of a phononic shear-horizontal surface acoustic wave (SAW) sensor based on ST 90°-X Quartz reveal a dramatic reduction in power consumption. The phononic sensor is realized by artificially structuring the delay path to form an acoustic meta-material comprised of a periodic microcavity array incorporating high-density materials such as tantalum or tungsten. Constructive interference of the scattered and secondary reflected waves at every microcavity interface leads to acoustic energy confinement in the high-density regions translating into reduced power loss. Tantalum filled cavities show the best performance while tungsten inclusions create a phononic bandgap. Based on our simulation results, SAW devices with tantalum filled microcavities were fabricated and shown to significantly decrease insertion loss. Our findings offer encouraging prospects for designing low power, highly sensitive portable biosensors.

  11. Proof of the the Riemann hypothesis from the strong density hypothesis via a power sum method

    E-Print Network [OSTI]

    Yuanyou Cheng; S. Albeverio

    2014-08-13T23:59:59.000Z

    The Riemann hypothesis is equivalent to the $\\varpi$-form of the prime number theorem as $\\varpi(x) =O(x\\sp{1/2} \\log\\sp{2} x)$, where $\\varpi(x) =\\sum\\sb{n\\le x}\\ \\bigl(\\Lambda(n) -1\\big)$ with the sum running through the set of all natural integers. Let ${\\mathsf Z}(s) = -\\tfrac{\\zeta\\sp{\\prime}(s)}{\\zeta(s)} -\\zeta(s)$. We use the classical integral formula for the Heaviside function in the form of ${\\mathsf H}(x) =\\int\\sb{m -i\\infty} \\sp{m +i\\infty} \\tfrac{x\\sp{s}}{s} \\dd s$ where $m >0$, and ${\\mathsf H}(x)$ is 0 when $\\tfrac{1}{2} 1$. However, we diverge from the literature by applying Cauchy's residue theorem to the function ${\\mathsf Z}(s) \\cdot \\tfrac{x\\sp{s}} {s}$, rather than $-\\tfrac{\\zeta\\sp{\\prime}(s)} {\\zeta(s)} \\cdot \\tfrac{x\\sp{s}}{s}$, so that we may utilize the formula for $\\tfrac{1}{2}1$ of ${\\mathsf Z}(s)$, we use induction to reduce the size of the exponent $\\theta$ in $\\varpi(x) =O(x\\sp{\\theta} \\log\\sp{2} x)$, while we also use induction on $x$ when $\\theta$ is fixed. We prove that the Riemann hypothesis is valid under the assumptions of the explicit strong density hypothesis and the Lindel\\"of hypothesis recently proven, via a result of the implication on the zero free regions from the remainder terms of the prime number theorem by the power sum method of Tur\\'an.

  12. LOW-TEMPERATURE, ANODE-SUPPORTED HIGH POWER DENSITY SOLID OXIDE FUEL CELLS WITH NANOSTRUCTURED ELECTRODES

    SciTech Connect (OSTI)

    Anil V. Virkar

    2002-03-26T23:59:59.000Z

    Anode-supported cells comprising Ni + yttria-stabilized zirconia (YSZ) anode, thin ({approx}10 {micro}m) YSZ electrolyte, and composite cathodes containing a mixture of La{sub 0.8}Sr{sub 0.2}MnO{sub (3-{delta})} (LSM) and La{sub 0.9}Sr{sub 0.1}Ga{sub 0.8}Mg{sub 0.2}O{sub (3-{lambda})} (LSGM) were fabricated. The relative proportions of LSGM and LSM were varied between 30 wt.% LSGM + 70 wt.% LSM and 70 wt.% LSGM + 30 wt.% LSM, while the firing temperature was varied between 1000 and 1200 C. The cathode interlayer composition had a profound effect on cathode performance at 800 C with overpotentials ranging between 60 and 425 mV at 1.0 A/cm{sup 2} and exhibiting a minimum for 50 wt.% LSGM + 50 wt.% LSM. The cathodic overpotential decreased with increasing firing temperature of the composite interlayer in the range 1000 {le} T {le} 1150 C, and then increased dramatically for the interlayer fired at 1200 C. The cell with the optimized cathode interlayer of 50 wt.% LSM + 50 wt.% LSGM fired at 1150 C exhibited an area specific cell resistance of 0.18 {Omega}cm{sup 2} and a maximum power density of 1.4 W/cm{sup 2} at 800 C. Chemical analysis revealed that LSGM reacts with YSZ above 1000 C to form the pyrochlore phase, La{sub 2}Zr{sub 2}O{sub 7}. The formation of the pyrochlore phase at the interface between the LSGM/LSM composite cathode and the YSZ electrolyte limits the firing time and temperature of the cathode interlayer.

  13. Second user workshop on high-power lasers at the Linac Coherent Light Source

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Heimann, Phil; Glenzer, Siegfried

    2015-05-04T23:59:59.000Z

    The second international workshop on the physics enabled by the unique combination of high-power lasers with the world-class Linac Coherent Light Source (LCLS) free-electron X-ray laser beam was held in Stanford, CA, on October 7–8, 2014. The workshop was co-organized by UC Berkeley, Lawrence Berkeley, Lawrence Livermore, and SLAC National Accelerator Laboratories. More than 120 scientists, including 40 students and postdoctoral scientists who are working in high-intensity laser-matter interactions, fusion research, and dynamic high-pressure science came together from North America, Europe, and Asia. The focus of the second workshop was on scientific highlights and the lessons learned from 16 newmore »experiments that were performed on the Matter in Extreme Conditions (MEC) instrument since the first workshop was held one year ago.« less

  14. Conference 5739, SPIE International Symposium Integrated Optoelectronic Devices, 22-27 Jan 2005, San Jose, CA Development of high power green light emitting diode dies in

    E-Print Network [OSTI]

    Wetzel, Christian M.

    , San Jose, CA Development of high power green light emitting diode dies in piezoelectric Ga in green light emitting diodes is one of the big challenges towards all-solid- state lighting. The prime,3], and commercialization [4,5] of high brightness light emitting diodes LEDs has led to a 1.82 Billion-$/year world market

  15. Demonstration Assessment of Light-Emitting Diode (LED) Retrofit Lamps at the Lobby of the Bonneville Power Administration, Portland, OR

    SciTech Connect (OSTI)

    Miller, Naomi

    2011-07-01T23:59:59.000Z

    This report describes the process and results of a demonstration of solid-state lighting (SSL) technology in the lobby of the Bonneville Power Administration (BPA) headquarters building in Portland, Oregon. The project involved a simple retrofit of 32 track lights used to illuminate historical black-and-white photos and printed color posters from the 1930s and 1940s. BPA is a federal power marketing agency in the Northwestern United States, and selected this prominent location to demonstrate energy efficient light-emitting diode (LED) retrofit options that not only can reduce the electric bill for their customers but also provide attractive alternatives to conventional products, in this case accent lighting for BPA's historical artwork.

  16. Wind: wind power density maps at 50m above ground and 1km resolution...

    Open Energy Info (EERE)

    density for Ghana. (Purpose):HTMLREMOVEDHTMLREMOVEDTo provide information on the wind resource potential in Ghana. Data and Resources Download MapsZIP Download Maps More...

  17. Wind: wind power density GIS data at 50m above ground and 400m...

    Open Energy Info (EERE)

    density for Sri Lanka (Purpose):HTMLREMOVEDHTMLREMOVEDTo provide information on the wind resource potential within Sri Lanka and selected offshore areas (Supplemental...

  18. Wind: wind power density maps at 50 m above ground and 1km resolution...

    Open Energy Info (EERE)

    density for Cuba. (Purpose):HTMLREMOVEDHTMLREMOVEDTo provide information on the wind resource potential in Cuba. Data and Resources Download MapsZIP Download Maps More...

  19. NRC review of Electric Power Research Institute's Advanced Light Reactor Utility Requirements Document - Program summary, Project No. 669

    SciTech Connect (OSTI)

    Not Available

    1992-08-01T23:59:59.000Z

    The staff of the US Nuclear Regulatory Commission has prepared Volume 1 of a safety evaluation report (SER), NRC Review of Electric Power Research Institute's Advanced Light Water Reactor Utility Requirements Document -- Program Summary,'' to document the results of its review of the Electric Power Research Institute's Advanced Light Water Reactor Utility Requirements Document.'' This SER provides a discussion of the overall purpose and scope of the Requirements Document, the background of the staff's review, the review approach used by the staff, and a summary of the policy and technical issues raised by the staff during its review.

  20. Low Power, Red, Green and Blue Carbon Nanotube Enabled Vertical Organic Light Emitting Transistors for Active Matrix OLED Displays

    SciTech Connect (OSTI)

    McCarthy, M. A. [University of Florida, Gainesville; Liu, B. [University of Florida, Gainesville; Donoghue, E. P. [University of Florida, Gainesville; Kravchenko, Ivan I [ORNL; Kim, D. Y. [University of Florida, Gainesville; So, Franky [University of Florida, Gainesville; Rinzler, A. G. [University of Florida, Gainesville

    2011-01-01T23:59:59.000Z

    Organic semiconductors are potential alternatives to polycrystalline silicon as the semiconductor used in the backplane of active matrix organic light emitting diode displays. Demonstrated here is a light-emitting transistor with an organic channel, operating with low power dissipation at low voltage, and high aperture ratio, in three colors: red, green and blue. The single-wall carbon nanotube network source electrode is responsible for the high level of performance demonstrated. A major benefit enabled by this architecture is the integration of the drive transistor, storage capacitor and light emitter into a single device. Performance comparable to commercialized polycrystalline-silicon TFT driven OLEDs is demonstrated.

  1. High-resolution tangential absolute extreme ultraviolet arrays for radiated power density measurements on NSTX-U

    SciTech Connect (OSTI)

    Delgado-Aparicio, L.; Bell, R. E.; Diallo, A.; Gerhardt, S. P.; Kozub, T. A.; LeBlanc, B. P.; Stratton, B. C. [Princeton Plasma Physics Laboratory, Princeton, New Jersey 08540 (United States); Faust, I. [MIT Plasma Science and Fusion Center, Cambridge, Massachusetts 02139 (United States); Tritz, K. [The Johns Hopkins University, Baltimore, Maryland 21209 (United States)

    2014-11-15T23:59:59.000Z

    The radiated-power-density diagnostic on the equatorial midplane for the NSTX-U tokamak will be upgraded to measure the radial structure of the photon emissivity profile with an improved radial resolution. This diagnostic will enhance the characterization and studies of power balance, impurity transport, and MHD. The layout and response expected of the new system is shown for different plasma conditions and impurity concentrations. The effect of toroidal rotation driving poloidal asymmetries in the core radiation from high-Z impurities is also addressed.

  2. Feasibility Study Of Advanced Technology Hov Systems: Volume 2b: Emissions Impact Of Roadway-powered Electric Buses, Light-duty Vehicles, And Automobiles

    E-Print Network [OSTI]

    Miller, Mark A.; Dato, Victor; Chira-chavala, Ted

    1992-01-01T23:59:59.000Z

    LIGHT-DUTY VEHICLES, AND AUTOMOBILES Mark A. Miller Victorand The analysis involves automobiles in California arePowered Electric Automobiles -a---- Range of Estimated

  3. Nuclear Instruments and Methods in Physics Research A 547 (2005) 663678 Determining axial fuel-rod power-density profiles from in-core

    E-Print Network [OSTI]

    Shultis, J. Kenneth

    is proposed for determining power-density profiles in nuclear reactor fuel rods from neutron flux measurementsNuclear Instruments and Methods in Physics Research A 547 (2005) 663­678 Determining axial fuel-rod power-density profiles from in-core neutron flux measurements J. Kenneth Shultis� Department

  4. Cooling Power Density of SiGe/Si Superlattice Micro Refrigerators Gehong Zeng, Xiaofeng Fan, Chris LaBounty, Edward Croke2

    E-Print Network [OSTI]

    Bowers, John

    Cooling Power Density of SiGe/Si Superlattice Micro Refrigerators Gehong Zeng, Xiaofeng Fan, Chris Experiments were carried out to determine the cooling power density of SiGe/Si superlattice microcoolers by integrating thin film metal resistor heaters on the cooling surface. By evaluating the maximum cooling

  5. The wind power probability density forecast problem can be formulated as: forecast the wind power pdf at time step t for each look-ahead time step t+k of a given time-horizon

    E-Print Network [OSTI]

    Kemner, Ken

    The wind power probability density forecast problem can be formulated as: forecast the wind power ahead) knowing a set of explanatory variables (e.g. numerical weather predictions (NWPs), wind power measured values). Translating this sentence to an equation, we have: where pt+k is the wind power

  6. The Density Perturbation Power Spectrum to Second-Order Corrections in the Slow-Roll Expansion

    E-Print Network [OSTI]

    Ewan D. Stewart; Jin-Ook Gong

    2001-02-17T23:59:59.000Z

    We set up a formalism that can be used to calculate the power spectrum of the curvature perturbations produced during inflation up to arbitrary order in the slow-roll expansion, and explicitly calculate the power spectrum and spectral index up to second-order corrections.

  7. Fusion energy Fusion powers the Sun, and all stars, in which light nuclei fuse together at high temperatures

    E-Print Network [OSTI]

    Fusion energy · Fusion powers the Sun, and all stars, in which light nuclei fuse together at high temperatures (15 million degrees) releasing a large amount of energy. · The aim of fusion research is to use of hydrogen). In the plasma the deuterium and tritium fuse to produce energy. · Fusion is a very efficient

  8. Biodiesel Drives Florida Power & Light's EPAct Alternative Compliance Strategy; EPAct Alternative Fuel Transportation Program: Success Story (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2010-05-01T23:59:59.000Z

    This success story highlights how Florida Power & Light Company has successfully complied with the Energy Policy Act of 1992 (EPAct) through Alternative Compliance using biodiesel technologies and how it has become a biofuel leader, reducing petroleum use and pollutant emissions throughout Florida.

  9. Assessment of innovative fuel designs for high performance light water reactors

    E-Print Network [OSTI]

    Carpenter, David Michael

    2006-01-01T23:59:59.000Z

    To increase the power density and maximum allowable fuel burnup in light water reactors, new fuel rod designs are investigated. Such fuel is desirable for improving the economic performance light water reactors loaded with ...

  10. LOW-TEMPERATURE, ANODE-SUPPORTED HIGH POWER DENSITY SOLID OXIDE FUEL CELLS WITH NANOSTRUCTURED ELECTRODES

    SciTech Connect (OSTI)

    Professor Anil V. Virkar

    2003-05-23T23:59:59.000Z

    This report summarizes the work done during the entire project period, between October 1, 1999 and March 31, 2003, which includes a six-month no-cost extension. During the project, eight research papers have, either been, published, accepted for publication, or submitted for publication. In addition, several presentations have been made in technical meetings and workshops. The project also has provided support for four graduate students working towards advanced degrees. The principal technical objective of the project was to analyze the role of electrode microstructure on solid oxide fuel cell performance. Prior theoretical work conducted in our laboratory demonstrated that the particle size of composite electrodes has a profound effect on cell performance; the finer the particle size, the lower the activation polarization, the better the performance. The composite cathodes examined consisted of electronically conducting perovskites such as Sr-doped LaMnO{sub 3} (LSM) or Sr-doped LaCoO{sub 3} (LSC), which is also a mixed conductor, as the electrocatalyst, and yttria-stabilized zirconia (YSZ) or rare earth oxide doped CeO{sub 2} as the ionic conductor. The composite anodes examined were mixtures of Ni and YSZ. A procedure was developed for the synthesis of nanosize YSZ by molecular decomposition, in which unwanted species were removed by leaching, leaving behind nanosize YSZ. Anode-supported cells were made using the as-synthesized powders, or using commercially acquired powders. The electrolyte was usually a thin ({approx}10 microns), dense layer of YSZ, supported on a thick ({approx}1 mm), porous Ni + YSZ anode. The cathode was a porous mixture of electrocatalyst and an ionic conductor. Most of the cell testing was done at 800 C with hydrogen as fuel and air as the oxidant. Maximum power densities as high as 1.8 W/cm{sup 2} were demonstrated. Polarization behavior of the cells was theoretically analyzed. A limited amount of cell testing was done using liquid hydrocarbon fuels where reforming was achieved internally. Significant polarization losses also occur at the anode, especially at high fuel utilizations. An analysis of polarization losses requires that various contributions are isolated, and their dependence on pertinent parameters is quantitatively described. An investigation of fuel composition on gas transport through porous anodes was investigated and the role of fuel diluents was explored. This work showed that the molecular weight of the diluent has a significant effect on anode concentration polarization. This further showed that the presence of some molecular hydrogen is necessary to minimize polarization losses. Theoretical analysis has shown that the electrode microstructure has a profound effect on cell performance. In a series of experiments, cathode microstructural parameters were varied, without altering other parameters. Cathode microstructural parameters, especially three phase boundary (TPB) length, were estimated using techniques in quantitative stereology. Cell performance was quantitatively correlated with the relevant microstructural parameters, and charge transfer resistivity was explicitly evaluated. This is the first time that a fundamental parameter, which governs the activation polarization, has been quantitatively determined. An important parameter, which governs the cathodic activation polarization, and thus cell performance, is the ionic conductivity of the composite cathode. The traditional composite cathode is a mixture of LSM and YSZ. It is well known that Sr and Mg-doped LaGaO{sub 3} (LSGM), exhibits higher oxygen ion conductivity compared to YSZ. Cells were fabricated with composite cathodes comprising a mixture of LSM and LSGM. Studies demonstrated that LSGM-based composite cathodes exhibit excellent behavior. Studies have shown that Ni + YSZ is an excellent anode. In fact, in most cells, the principal polarization losses, at least at low fuel utilizations, are associated with the cathode. Theoretical analysis conducted in our group has also shown that anode-supported cells exhibi

  11. Thermal Properties of Graphene and Applications for Thermal Management of High-Power Density Electronics

    E-Print Network [OSTI]

    Yan, Zhong

    2013-01-01T23:59:59.000Z

    Turin and A. A. Balandin, Electronics Letters 40, 81 (2004).REFERENCES G. E. Moore, Electronics 38 (1965). E. Pop, Nanofor High-power Electronics” PCSI-38:38th Conference on the

  12. Assessment of the use of extended burnup fuel in light water power reactors

    SciTech Connect (OSTI)

    Baker, D.A.; Bailey, W.J.; Beyer, C.E.; Bold, F.C.; Tawil, J.J.

    1988-02-01T23:59:59.000Z

    This study has been conducted by Pacific Northwest Laboratory for the US Nuclear Regulatory Commission to review the environmental and economic impacts associated with the use of extended burnup nuclear fuel in light water power reactors. It has been proposed that current batch average burnup levels of 33 GWd/t uranium be increased to above 50 GWd/t. The environmental effects of extending fuel burnup during normal operations and during accident events and the economic effects of cost changes on the fuel cycle are discussed in this report. The physical effects of extended burnup on the fuel and the fuel assembly are also presented as a basis for the environmental and economic assessments. Environmentally, this burnup increase would have no significant impact over that of normal burnup. Economically, the increased burnup would have favorable effects, consisting primarily of a reduction: (1) total fuel requirements; (2) reactor downtime for fuel replacement; (3) the number of fuel shipments to and from reactor sites; and (4) repository storage requirements. 61 refs., 4 figs., 27 tabs.

  13. Accident source terms for Light-Water Nuclear Power Plants. Final report

    SciTech Connect (OSTI)

    Soffer, L.; Burson, S.B.; Ferrell, C.M.; Lee, R.Y.; Ridgely, J.N.

    1995-02-01T23:59:59.000Z

    In 1962 tile US Atomic Energy Commission published TID-14844, ``Calculation of Distance Factors for Power and Test Reactors`` which specified a release of fission products from the core to the reactor containment for a postulated accident involving ``substantial meltdown of the core``. This ``source term``, tile basis for tile NRC`s Regulatory Guides 1.3 and 1.4, has been used to determine compliance with tile NRC`s reactor site criteria, 10 CFR Part 100, and to evaluate other important plant performance requirements. During the past 30 years substantial additional information on fission product releases has been developed based on significant severe accident research. This document utilizes this research by providing more realistic estimates of the ``source term`` release into containment, in terms of timing, nuclide types, quantities and chemical form, given a severe core-melt accident. This revised ``source term`` is to be applied to the design of future light water reactors (LWRs). Current LWR licensees may voluntarily propose applications based upon it.

  14. Peak Power Reduction Strategies for the Lighting Systems in Government Buildings

    E-Print Network [OSTI]

    Al-Nakib, D.; Al-Mulla, A. A.; Maheshwari, G. P.

    2010-01-01T23:59:59.000Z

    fluorescent lamps with ECGs, CFLs, incandescent lamps and light emitting diodes (LEDs). The building has a peak load of around 2900 kW and it is mainly shared by A/C and lighting. Lighting system is controlled by DELMATIC software which controls...

  15. Doped LiFePO? cathodes for high power density lithium ion batteries

    E-Print Network [OSTI]

    Bloking, Jason T. (Jason Thompson), 1979-

    2003-01-01T23:59:59.000Z

    Olivine LiFePO4 has received much attention recently as a promising storage compound for cathodes in lithium ion batteries. It has an energy density similar to that of LiCoO 2, the current industry standard for cathode ...

  16. Copper nanocrystal modified activated carbon for supercapacitors with enhanced volumetric energy and power density

    E-Print Network [OSTI]

    Cao, Guozhong

    capacitors (EDLCs) have evoked wide interest in recent years due to their ability to supply high power of EDLCs is based on the quick formation of a double layer of surface charges and counter materials for EDLCs should have large surface area to accumulate a large amount of charges, and a size

  17. Title: Crack Diagnostics via Fourier Transform: Real and Imaginary Components vs. Power Spectral Density

    E-Print Network [OSTI]

    Giurgiutiu, Victor

    Title: Crack Diagnostics via Fourier Transform: Real and Imaginary Components vs. Power Spectral simultaneously the real and imaginary components of the Fourier transforms as diagnostics features approach consists of using new features based on the real and imaginary parts of the Fourier transform

  18. Pulse-Density Modulation for RF Applications: The Radio-Frequency Power Amplifier (RF PA)

    E-Print Network [OSTI]

    Sanders, Seth

    . This enables complex digital processing and control of RF switching waveforms. Trends in processing speed demonstrates, techniques previously used for audio amplifiers, motor control, and power conversion may now generations of CMOS technology. We implement digital control of the carrier amplitude using pulse

  19. Topographic power spectral density study of the effect of surface treatment processes on niobium for superconducting radio frequency accelerator cavities

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Xu, Chen; Tian, Hui; Reece, Charles E.; Kelley, Michael J.

    2012-04-01T23:59:59.000Z

    Microroughness is viewed as a critical issue for attaining optimum performance of superconducting radio frequency accelerator cavities. The principal surface smoothing methods are buffered chemical polish (BCP) and electropolish (EP). The resulting topography is characterized by atomic force microscopy (AFM). The power spectral density (PSD) of AFM data provides a more thorough description of the topography than a single-value roughness measurement. In this work, one dimensional average PSD functions derived from topography of BCP and EP with different controlled starting conditions and durations have been fitted with a combination of power law, K correlation, and shifted Gaussian models to extract characteristic parameters at different spatial harmonic scales. While the simplest characterizations of these data are not new, the systematic tracking of scale-specific roughness as a function of processing is new and offers feedback for tighter process prescriptions more knowledgably targeted at beneficial niobium topography for superconducting radio frequency applications.

  20. The Diesel Engine Powering Light-Duty Vehicles: Today and Tomorrow...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Engine Emissions Reduction (DEER) Conference Presentation: Volkwagen AG, Wolfsburg, Germany 2004deerschindler.pdf More Documents & Publications Accelerating Light-Duty Diesel...

  1. FirstEnergy (Mon Power & Potomac Edison)- Business Lighting Incentive Program

    Broader source: Energy.gov [DOE]

    FirstEnergy's commercial, industrial, and governmental customers are eligible to participate in the Business Lighting Incentive Program. This program provides a performance-based rebate for energ...

  2. Kansas City Power & Light- Commercial/Industrial Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Standard incentives are available for lighting and controls; air conditioning, heat pumps, and chillers; pumps and variable frequency drives; appliances; business computing; food service and refr...

  3. Feasibility Study of Supercritical Light Water Cooled Fast Reactors for Actinide Burning and Electric Power Production, 3rd Quarterly Report

    SciTech Connect (OSTI)

    Mac Donald, Philip Elsworth

    2002-06-01T23:59:59.000Z

    The use of light water at supercritical pressures as the coolant in a nuclear reactor offers the potential for considerable plant simplification and consequent capital and O&M cost reduction compared with current light water reactor (LWR) designs. Also, given the thermodynamic conditions of the coolant at the core outlet (i.e. temperature and pressure beyond the water critical point), very high thermal efficiencies of the power conversion cycle are possible (i.e. up to about 45%). Because no change of phase occurs in the core, the need for steam separators and dryers as well as for BWR-type re-circulation pumps is eliminated, which, for a given reactor power, results in a substantially shorter reactor vessel and smaller containment building than the current BWRs. Furthermore, in a direct cycle the steam generators are not needed.

  4. Feasibility Study of Supercritical Light Water Cooled Reactors for Electrical Power Production, 5th Quarterly Report, October - December 2002

    SciTech Connect (OSTI)

    Philip MacDonald; Jacopo Buongiorno; Cliff Davis; J. Stephen Herring; Kevan Weaver; Ron Latanision; Bryce Mitton; Gary Was; Luca Oriani; Mario Carelli; Dmitry Paramonov; Lawrence Conway

    2003-01-01T23:59:59.000Z

    The overall objective of this project is to evaluate the feasibility of supercritical light water cooled reactors for electric power production. The use of light water at supercritical pressures as the coolant in a nuclear reactor offers the potential for considerable plant simplification and consequent capital and O&M cost reduction compared with current light water reactor (LWR) designs. Also, given the thermodynamic conditions of the coolant at the core outlet (i.e. temperature and pressure beyond the water critical point), very high thermal efficiencies for the power conversion cycle are possible (i.e. up to about 45%). Because no change of phase occurs in the core, the need for steam separators and dryers as well as for BWR-type re-circulation pumps is eliminated, which, for a given reactor power, results in a substantially shorter reactor vessel and smaller containment building than the current BWRs. Furthermore, in a direct cycle the steam generators are not needed. If no additional moderator is added to the fuel rod lattice, it is possible to attain fast neutron energy spectrum conditions in a supercritical water-cooled reactor (SCWR). This type of core can make use of either fertile or fertile-free fuel and retain a hard spectrum to effectively burn plutonium and minor actinides from LWR spent fuel while efficiently generating electricity. One can also add moderation and design a thermal spectrum SCWR that can also burn actinides. The project is organized into three tasks:

  5. MEMS Fuel Cells--Low Temp--High Power Density - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12electron 9November 6, In this3,Office of Science

  6. LIFAC Demonstration at Richmond Power and Light Whitewater Valley Unit No. 2 Volume II: Project Performance and Economics

    SciTech Connect (OSTI)

    None

    1998-04-01T23:59:59.000Z

    The C1ean Coal Technology (CCT) Program has been recognized in the National Energy Strategy as a major initiative whereby coal will be able to reach its full potential as a source of energy for the nation and the international marketplace. Attainment of this goal depends upon the development of highly efficient, environmentally sound, competitive coal utilization technologies responsive to diverse energy markets and varied consumer needs. The CCT Program is an effort jointly funded by government and industry whereby the most promising of the advanced coal-based technologies are being moved into the marketplace through demonstration. The CCT Program is being implemented through a total of five competitive solicitations. LIFAC North America, a joint venture partnership of ICF Kaiser Engineers, Inc., and Tampella Power Corporation, is currently demonstrating the LIFAC flue gas desulfurization technology developed by Tampella Power. This technology provides sulfur dioxide emission control for power plants, especially existing facilities with tight space limitations. Sulfur dioxide emissions are expected to be reduced by up to 85% by using limestone as a sorbent. The LIFAC technology is being demonstrated at Whitewater Valley Unit No. 2, a 60-MW coal-fired power plant owned and operated by Richmond Power and Light (RP&L) and located in Richmond, Indiana. The Whitewater plant consumes high-sulfur coals, with sulfur contents ranging from 2.0-2.9 $ZO. The project, co-funded by LIFAC North America and DOE, is being conducted with the participation of Richmond Power and Light, the State of Indiana, the Electric Power Research Institute (EPRI), and the Black Beauty Coal Company. The project has a total cost of $21.4 million and a duration of 48 months from the preliminary design phase through the testing program.

  7. Early structure formation from primordial density fluctuations with a blue-tilted power spectrum

    E-Print Network [OSTI]

    Hirano, Shingo; Yoshida, Naoki; Spergel, David; Yorke, Harold W

    2015-01-01T23:59:59.000Z

    While observations of large-scale structure and the cosmic microwave background (CMB) provide strong constraints on the amplitude of the primordial power spectrum (PPS) on scales larger than 10 Mpc, the amplitude of the power spectrum on sub-galactic length scales is much more poorly constrained. We study early structure formation in a cosmological model with a blue-tilted PPS. We assume that the standard scale-invariant PPS is modified at small length scales as $P(k) \\sim k^{m_{\\rm s}}$ with $m_{\\rm s} > 1$. We run a series of cosmological hydrodynamic simulations to examine the dependence of the formation epoch and the characteristic mass of primordial stars on the tilt of the PPS. In models with $m_{\\rm s} > 1$, star-forming gas clouds are formed at $z > 100$, when formation of hydrogen molecules is inefficient because the intense CMB radiation destroys chemical intermediates. Without efficient coolant, the gas clouds gravitationally contract while keeping a high temperature. The protostars formed in such ...

  8. Improving the AGR Fuel Testing Power Density Profile Versus Irradiation-Time in the Advanced Test Reactor

    SciTech Connect (OSTI)

    Gray S. Chang; David A. Petti; John T. Maki; Misti A. Lillo

    2009-05-01T23:59:59.000Z

    The Very High Temperature gas-cooled Reactor (VHTR), which is currently being developed, achieves simplification of safety through reliance on ceramic-coated fuel particles. Each TRISO-coated fuel particle has its own containment which serves as the principal barrier against radionuclide release under normal operating and accident conditions. These fuel particles, in the form of graphite fuel compacts, are currently undergoing a series of irradiation tests in the Advanced Test Reactor (ATR) at the Idaho National Laboratory (INL) to support the Advanced Gas-Cooled Reactor (AGR) fuel qualification program. A representive coated fuel particle with an 235U enrichment of 19.8 wt% was used in this analysis. The fuel burnup analysis tool used to perform the neutronics study reported herein, couples the Monte Carlo transport code MCNP, with the radioactive decay and burnup code ORIGEN2. The fuel burnup methodology known as Monte-Carlo with ORIGEN2 (MCWO) was used to evaluate the AGR experiment assembly and demonstrate compliance with ATR safety requirements. For the AGR graphite fuel compacts, the MCWO-calculated fission power density (FPD) due to neutron fission in 235U is an important design parameter. One of the more important AGR fuel testing requirements is to maintain the peak fuel compact temperature close to 1250°C throughout the proposed irradiation campaign of 550 effective full power days (EFPDs). Based on the MCWO-calculated FPD, a fixed gas gap size was designed to allow regulation of the fuel compact temperatures throughout the entire fuel irradiation campaign by filling the gap with a mixture of helium and neon gases. The chosen fixed gas gap can only regulate the peak fuel compact temperature in the desired range during the irradiation test if the ratio of the peak power density to the time-dependent low power density (P/T) at 550 EFPDs is less than 2.5. However, given the near constant neutron flux within the ATR driver core and the depletion of 235U in the graphite fuel compacts versus EFPD, the P/T ratio was calculated to be 5.3, which is unacceptable given the fuel compact temperature control requirement. To flatten the FPD profile versus EFPDs, two proposed options are – (a) add fertile (232Th) particles to the fuel compact and (b) add burnable absorber (B4C) to the graphite holder. The effectiveness of these two proposed options to flatten the FPD profile versus EFPDs were investigated and the results are compared in this study.

  9. Generation of primordial cosmological density inhomogeneities with scale invariant power spectrum during the standard radiation dominated expansion of the universe

    E-Print Network [OSTI]

    Oaknin, David H

    2007-01-01T23:59:59.000Z

    The expansion/contraction of a bubble of gas of radius $R_0(t)$ immersed in an incompressible fluid that fills the infinite 3D space around it, $r \\ge R_0(t)$, generates a radial flow, ${\\vec v}(r,t) = \\frac{R^2_0(t)}{r^2}\\ \\dot{R}_0(t) {\\hat r}$, which is set by the velocity of the bubble surface, $\\dot{R}_0(t)$. The kinetic energy that the expanding/contracting bubble pumps, at the expense of its own internal energy, into each unit volume of the flowing incompressible fluid is ${\\it e}(r,t) = \\frac{\\rho_0}{2} |{\\vec v}(r,t)|^2 = \\frac{\\rho_0}{2} \\dot{R}^2_0(t) R^4_0(t) r^{-4}$, where $\\rho_0$ is the mass density of the fluid. This incompressible flow generates equal time energy density (anti)correlations over infinitely long distances. They are imposed by global conservation laws and, therefore, do not violate causality. We notice that energy density inhomogeneities that are (anti)correlated as $f(r) \\sim - r^{-4}$ as $r \\to \\infty$ have scale invariant power spectrum in the range of very small wavenumbers,...

  10. Increasing the power density when using inert matrix fuels to reduce production of transuranics

    SciTech Connect (OSTI)

    Recktenwald, G.D.; Deinert, M.R. [University of Texas, 1 University Station C2200, Austin TX 78715-0162 (United States)

    2013-07-01T23:59:59.000Z

    Reducing the production of transuranics is a goal of most advanced nuclear fuel cycles. One way to do this is to recycle the transuranics into the same reactors that are currently producing them using an inert matrix fuel. In previous work we have modeled such a reactor where 72%, of the core is comprised of standard enriched uranium fuel pins, with the remaining 28% fuel made from Yttria stabilized zirconium, in which transuranics are loaded. A key feature of this core is that all of the transuranics produced by the uranium fuel assemblies are later burned in inert matrix fuel assemblies. It has been shown that this system can achieve reductions in transuranic waste of more than 86%. The disadvantage of such a system is that the core power rating must be significantly lower than a standard pressurized water reactor. One reason for the lower power is that high burnup of the uranium fuel precludes a critical level of reactivity at the end of the campaign. Increasing the uranium enrichment and changing the pin pitch are two ways to increase burnup while maintaining criticality. In this paper we use MCNPX and a linear reactivity model to quantify the effect of these two parameters on the end of campaign reactivity. Importantly, we show that in the region of our proposed reactor, enrichment increases core reactivity by 0.02 per percent uranium 235 and pin pitch increases reactivity by 0.02 per mm. Reactivity is lost at a rate of 0.005 per MWd/kgIHM uranium burnup. (authors)

  11. Order-of-magnitude enhancement of wind farm power density via counter-rotating vertical-axis wind turbine arrays

    E-Print Network [OSTI]

    Dabiri, John O

    2010-01-01T23:59:59.000Z

    Modern wind farms require significant land resources to separate each wind turbine from the adjacent turbine wakes. These aerodynamic constraints limit the amount of power that can be extracted from a given wind farm footprint. We conducted full-scale field tests of vertical-axis wind turbines in counter-rotating configurations under natural wind conditions. Whereas wind farms consisting of propeller-style turbines produce 2 to 3 watts of power per square meter of land area, these field tests indicate that power densities approaching 100 W m^-2 can be achieved by arranging vertical-axis wind turbines in layouts that enable them to extract energy from adjacent wakes. In addition, we calculated that the global wind resource available to 10-m tall turbines based on the present approach is approximately 225 trillion watts (TW), which significantly exceeds the global wind resource available to 80-m tall, propeller-style wind turbines, approximately 75 TW. This improvement is due to the closer spacing that can be a...

  12. EARLY AFTERGLOWS OF GAMMA-RAY BURSTS IN A STRATIFIED MEDIUM WITH A POWER-LAW DENSITY DISTRIBUTION

    SciTech Connect (OSTI)

    Yi, Shuang-Xi; Dai, Zi-Gao [School of Astronomy and Space Science, Nanjing University, Nanjing 210093 (China); Wu, Xue-Feng, E-mail: dzg@nju.edu.cn [Purple Mountain Observatory, Chinese Academy of Sciences, Nanjing 210008 (China)

    2013-10-20T23:59:59.000Z

    A long-duration gamma-ray burst (GRB) has been widely thought to arise from the collapse of a massive star, and it has been suggested that its ambient medium is a homogenous interstellar medium (ISM) or a stellar wind. There are two shocks when an ultra-relativistic fireball that has been ejected during the prompt gamma-ray emission phase sweeps up the circumburst medium: a reverse shock that propagates into the fireball, and a forward shock that propagates into the ambient medium. In this paper, we investigate the temporal evolution of the dynamics and emission of these two shocks in an environment with a general density distribution of n?R {sup –k} (where R is the radius) by considering thick-shell and thin-shell cases. A GRB afterglow with one smooth onset peak at early times is understood to result from such external shocks. Thus, we can determine the medium density distribution by fitting the onset peak appearing in the light curve of an early optical afterglow. We apply our model to 19 GRBs and find that their k values are in the range of 0.4-1.4, with a typical value of k ? 1, implying that this environment is neither a homogenous ISM with k = 0 nor a typical stellar wind with k = 2. This shows that the progenitors of these GRBs might have undergone a new mass-loss evolution.

  13. High Current Density, Long Life Cathodes for High Power RF Sources

    SciTech Connect (OSTI)

    Ives, Robert Lawrence [Calabazas Creek Research,, Inc.; Collins, George [Calabazas Creek Research, Inc.; Falce, Lou [Consultant; Schwartzkopf, Steve [Ron Witherspoon, Inc.; Busbaher, Daniel [Semicon Associates

    2014-01-22T23:59:59.000Z

    This program was tasked with improving the quality and expanding applications for Controlled Porosity Reservoir (CPR) cathodes. Calabazas Creek Research, Inc. (CCR) initially developed CPR cathodes on a DOE-funded SBIR program to improve cathodes for magnetron injection guns. Subsequent funding was received from the Defense Advanced Research Projects Agency. The program developed design requirements for implementation of the technology into high current density cathodes for high frequency applications. During Phase I of this program, CCR was awarded the prestigious 2011 R&D100 award for this technology. Subsequently, the technology was presented at numerous technical conferences. A patent was issued for the technology in 2009. These cathodes are now marketed by Semicon Associates, Inc. in Lexington, KY. They are the world’s largest producer of cathodes for vacuum electron devices. During this program, CCR teamed with Semicon Associates, Inc. and Ron Witherspoon, Inc. to improve the fabrication processes and expand applications for the cathodes. Specific fabrications issues included the quality of the wire winding that provides the basic structure and the sintering to bond the wires into a robust, cohesive structure. The program also developed improved techniques for integrating the resulting material into cathodes for electron guns.

  14. System and Battery Charge Control for PV-Powered AC Lighting Systems

    SciTech Connect (OSTI)

    Kern, G.

    1999-04-01T23:59:59.000Z

    This report reviews a number of issues specific to stand-alone AC lighting systems. A review of AC lighting technology is presented, which discusses the advantages and disadvantages of various lamps. The best lamps for small lighting systems are compact fluorescent. The best lamps for intermediate-size systems are high- or low-pressure sodium. Specifications for battery charging and load control are provided with the goal of achieving lamp lifetimes on the order of 16,000 to 24,000 hours and battery lifetimes of 4 to 5 years. A rough estimate of the potential domestic and global markets for stand-alone AC lighting systems is presented. DC current injection tests were performed on high-pressure sodium lamps and the test results are presented. Finally, a prototype system was designed and a prototype system controller (with battery charger and DC/AC inverter) was developed and built.

  15. Assessment of light water reactor power plant cost and ultra-acceleration depreciation financing

    E-Print Network [OSTI]

    El-Magboub, Sadek Abdulhafid.

    Although in many regions of the U.S. the least expensive electricity is generated from light-water reactor (LWR) plants, the fixed (capital plus operation and maintenance) cost has increased to the level where the cost ...

  16. Light Water Reactor Sustainability Program Power Uprate Research and Development Strategy

    SciTech Connect (OSTI)

    Hongbin Zhang

    2011-09-01T23:59:59.000Z

    The economic incentives for low-cost electricity generation will continue to drive more plant owners to identify safe and reliable methods to increase the electrical power output of the current nuclear power plant fleet. A power uprate enables a nuclear power plant to increase its electrical output with low cost. However, power uprates brought new challenges to plant owners and operators. These include equipment damage or degraded performance, and unanticipated responses to plant conditions, etc. These problems have arisen mainly from using dated design and safety analysis tools and insufficient understanding of the full implications of the proposed power uprate or from insufficient attention to detail during the design and implementation phase. It is essential to demonstrate that all required safety margins have been properly retained and the existing safety level has been maintained or even increased, with consideration of all the conditions and parameters that have an influence on plant safety. The impact of the power uprate on plant life management for long term operation is also an important issue. Significant capital investments are required to extend the lifetime of an aging nuclear power plant. Power uprates can help the plant owner to recover the investment costs. However, plant aging issues may be aggravated by the power uprate due to plant conditions. More rigorous analyses, inspections and monitoring systems are required.

  17. The Power of Light: The Epic Story of Man's Quest to Harness the Sun

    E-Print Network [OSTI]

    Miller, Ryder W.

    2004-01-01T23:59:59.000Z

    solar energy falling on 1 square mile of Midwestern farmland at noon on a cloudless day would have enough power to

  18. Low-Density and High Porosity Hydrogen Storage Materials Built from Ultra-Light Elements. Final Scientific/Technical Report

    SciTech Connect (OSTI)

    Feng, Pingyun

    2014-01-10T23:59:59.000Z

    A number of significant advances have been achieved, opening up new opportunities for the synthetic development of novel porous materials and their energy-related applications including gas storage and separation and catalysis. These include lithium-based metal-organic frameworks, magnesium-based metal-organic frameworks, and high gas uptake in porous frameworks with high density of open donor sites.

  19. CONTROL OF POPULATION DENSITIES SURROUNDING NUCLEAR POWER PLANTS. VOLUME 5 OF THE FINAL REPORT ON HEALTH AND SAFETY IMPACTS OF NUCLEAR, GEOTHERMAL, AND FOSSIL-FUEL ELECTRIC GENERATION IN CALIFORNIA

    E-Print Network [OSTI]

    Nero, jA.V.

    2010-01-01T23:59:59.000Z

    Related Standards for Nuclear Power Plants," by A.V. NeroResponse Planning for Nuclear Power Plants in California,"Densities Surrounding Nuclear Power Plants," by A.V. Nero,

  20. Analysis of the causes of the decrease in the electroluminescence efficiency of AlGaInN light-emitting-diode heterostructures at high pumping density

    SciTech Connect (OSTI)

    Rozhansky, I. V., E-mail: igor@quantum.ioffe.ru; Zakheim, D. A. [Russian Academy of Sciences, Ioffe Physicotechnical Institute (Russian Federation)

    2006-07-15T23:59:59.000Z

    The study is devoted to theoretical explanation of a decrease in the electroluminescence efficiency as the pump current increases, which is characteristic of light-emitting-diode (LED) heterostructures based on AlInGaN. Numerical simulation shows that the increase in the external quantum efficiency at low current densities J {approx} 1 A/cm{sup 2} is caused by the competition between radiative and nonradiative recombination. The decrease in the quantum efficiency at current densities J > 1 A/cm{sup 2} is caused by a decrease in the efficiency of hole injection into the active region. It is shown that the depth of the acceptor energy level in the AlGaN emitter, as well as low electron and hole mobilities in the p-type region, plays an important role in this effect. A modified LED heterostructure is suggested in which the efficiency decrease with the pump current should not occur.

  1. BSu3A.82.pdf Biomedical Optics and 3D Imaging OSA 2012 A novel method for measurement of dynamic light scattering

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    light scattering phase function of particles utilizing laser-Doppler power density spectra S Wojtkiewicz (LD) power density spectra. In the clinical practice, the LD technique is used to assess tissues is the frequency shift) is equal to the measured laser Doppler power density spectrum S(f) normalized by its

  2. Simultaneous Retrieval of Effective Refractive Index and Density from Size Distribution and Light Scattering Data: Weakly-Absorbing Aerosol

    SciTech Connect (OSTI)

    Kassianov, Evgueni I.; Barnard, James C.; Pekour, Mikhail S.; Berg, Larry K.; Shilling, John E.; Flynn, Connor J.; Mei, Fan; Jefferson, Anne

    2014-10-01T23:59:59.000Z

    We propose here a novel approach for retrieving in parallel the effective density and real refractive index of weakly absorbing aerosol from optical and size distribution measurements. Here we define “weakly absorbing” as aerosol single-scattering albedos that exceed 0.95 at 0.5 um.The required optical measurements are the scattering coefficient and the hemispheric backscatter fraction, obtained in this work from an integrating nephelometer. The required size spectra come from a Scanning Mobility Particle Sizer and an Aerodynamic Particle Sizer. The performance of this approach is first evaluated using a sensitivity study with synthetically generated but measurement-related inputs. The sensitivity study reveals that the proposed approach is robust to random noise; additionally the uncertainties of the retrieval are almost linearly proportional to the measurement errors, and these uncertainties are smaller for the real refractive index than for the effective density. Next, actual measurements are used to evaluate our approach. These measurements include the optical, microphysical, and chemical properties of weakly absorbing aerosol which are representative of a variety of coastal summertime conditions observed during the Two-Column Aerosol Project (TCAP; http://campaign.arm.gov/tcap/). The evaluation includes calculating the root mean square error (RMSE) between the aerosol characteristics retrieved by our approach, and the same quantities calculated using the conventional volume mixing rule for chemical constituents. For dry conditions (defined in this work as relative humidity less than 55%) and sub-micron particles, a very good (RMSE~3%) and reasonable (RMSE~28%) agreement is obtained for the retrieved real refractive index (1.49±0.02) and effective density (1.68±0.21), respectively. Our approach permits discrimination between the retrieved aerosol characteristics of sub-micron and sub-10micron particles. The evaluation results also reveal that the retrieved density and refractive index tend to decrease with an increase of the relative humidity.

  3. The Photophysics of the Orange Carotenoid Protein, a Light-Powered Molecular Switch

    E-Print Network [OSTI]

    van Stokkum, Ivo

    Commissariat a l'Energie Atomique, Institute de Biologie et Technologie de Saclay, 91191 Gif sur Yvette, France developed photoprotective mechanisms that dissipate the absorbed excess energy as heat from the antenna system. In cyanobacteria, a crucial step in the process is the activation, by blue- green light

  4. Smart Operations of Air-Conditioning and Lighting Systems in Government Buildings for Peak Power Reduction

    E-Print Network [OSTI]

    Al-Hadban, Y.; Maheshwari, G. P.; Al-Nakib, D.; Al-Mulla, A.; Alasseri, R.

    During the summer 2007 smart operation strategies for air-conditioning (A/C) and lighting systems were developed and tested in a number of governmental buildings in Kuwait as one of the solutions to reduce the national peak demand for electrical...

  5. U.S. Coast Guard and Florida Power & Light Successfully Implement...

    Broader source: Energy.gov (indexed) [DOE]

    covers a case study that details a success story of a multi-site utility energy service contract (UESC) project between the United States Coast Guard (USCG) and Florida Power &...

  6. Florida Power and Light Comments on Smart Grid Request For Information...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    it continues to be developed and deployed, can be an enabler for better and more reliable control of the electric power system, enhanced management and monitoring of the grid, and...

  7. IEEE TRANSACTIONS ON ELECTRON DEVICES, VOL. 55, NO. 4, APRIL 2008 1067 Nonuniform RF Overstress in High-Power

    E-Print Network [OSTI]

    Shapira, Yoram

    , IEEE Abstract--Nonuniform light emission from power transistors at 2­3-dB compression levels has been), light emission, parasitic oscillations, power transistor. I. INTRODUCTION THE PERFORMANCE of high-power amplifiers (HPAs) is continually being improved in terms of power density, efficiency, and gain, without any

  8. Mobile lighting apparatus

    DOE Patents [OSTI]

    Roe, George Michael; Klebanoff, Leonard Elliott; Rea, Gerald W; Drake, Robert A; Johnson, Terry A; Wingert, Steven John; Damberger, Thomas A; Skradski, Thomas J; Radley, Christopher James; Oros, James M; Schuttinger, Paul G; Grupp, David J; Prey, Stephen Carl

    2013-05-14T23:59:59.000Z

    A mobile lighting apparatus includes a portable frame such as a moveable trailer or skid having a light tower thereon. The light tower is moveable from a stowed position to a deployed position. A hydrogen-powered fuel cell is located on the portable frame to provide electrical power to an array of the energy efficient lights located on the light tower.

  9. Florida Power and Light Comments on Smart Grid Request For Information

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport inEnergy0.pdf Flash2010-60.pdf2 DOE Hydrogen and Fuel Cellsan

  10. PP-6 Puget Sound Power & Light Company | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin of Contamination in235-1 Termoelectrica U.S LLC PP-235-1PP-32PP-40-151

  11. The Diesel Engine Powering Light-Duty Vehicles: Today and Tomorrow |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOriginEducationVideoStrategic| DepartmentDepartmentThe DoDSmallManagement of theDepartment

  12. High Cooling Power Density of SiGe/Si Superlattice Microcoolers Gehong Zeng, Xiaofeng Fan, Chris LaBounty, John E. Bowers, Edward Croke1

    E-Print Network [OSTI]

    High Cooling Power Density of SiGe/Si Superlattice Microcoolers Gehong Zeng, Xiaofeng Fan, Chris La, University of California, Santa Cruz, CA 95064 ABSTRACT Fabrication and characterization of SiGe for their potential monolithic integration with Si microelectronics. SiGe is a good thermoelectric material especially

  13. Case Study - Florida Power & Light - Smart Grid Solutions Strengthen Reliability and Services - July 2012.pdf

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy China U.S. Department ofJuneWaste To Wisdom:EnergyJoshua DeLung WhatFlorida Power

  14. Light-Powered Microbial Fuel Cell Offering Clean, Renewable Hydrogen-Based

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12electron 9 5Let us count

  15. Power consumption, discharge capacitance and light emission as measures for thrust production of dielectric barrier discharge plasma actuators

    SciTech Connect (OSTI)

    Kriegseis, J. [Institute of Fluid Mechanics and Aerodynamics, Technische Universitaet Darmstadt, Flughafenstr. 19, D-64347 Greisheim (Germany); Grundmann, S. [Center of Smart Interfaces, Technische Universitaet Darmstadt, Flughafenstr. 19, D-64347 Greisheim (Germany); Tropea, C. [Institute of Fluid Mechanics and Aerodynamics, Technische Universitaet Darmstadt, Flughafenstr. 19, D-64347 Greisheim (Germany); Center of Smart Interfaces, Technische Universitaet Darmstadt, Flughafenstr. 19, D-64347 Greisheim (Germany)

    2011-07-01T23:59:59.000Z

    A new procedure of determining the time resolved capacitance of a plasma actuator during operation is introduced, representing a simple diagnostic tool that provides insight into the phenomenological behavior of plasma actuators. The procedure is demonstrated by presenting example correlations between consumed electrical energy, size of the plasma region, and the operating voltage. It is shown that the capacitance of a plasma actuator is considerably increased by the presence of the plasma; hence a system that has previously been impedance matched can be considerably de-tuned when varying the operating voltage of the actuator. Such information is fundamental for any attempts to increase the energy efficiency of plasma-actuator systems. A combined analysis of the capacitance, light emission, size of the plasma region, force production, and power consumption is presented.

  16. Lighthouses with two lights: burst oscillations from the accretion-powered millisecond pulsars

    E-Print Network [OSTI]

    Anna L. Watts

    2008-08-19T23:59:59.000Z

    The key contribution of the discovery of nuclear-powered pulsations from the accretion-powered millisecond pulsars (AMPs) has been the establishment of burst oscillation frequency as a reliable proxy for stellar spin rate. This has doubled the sample of rapidly-rotating accreting neutron stars and revealed the unexpected absence of any stars rotating near the break-up limit. The resulting `braking problem' is now a major concern for theorists, particularly given the possible role of gravitational wave emission in limiting spin. This, however, is not the only area where burst oscillations from the AMPs are having an impact. Burst oscillation timing is developing into a promising technique for verifying the level of spin variability in the AMPs (a topic of considerable debate). These sources also provide unique input to our efforts to understand the still-elusive burst oscillation mechanism. This is because they are the only stars where we can reliably gauge the role of uneven fuel deposition and, of course, the magnetic field.

  17. EFFECT OF A HIGH OPACITY ON THE LIGHT CURVES OF RADIOACTIVELY POWERED TRANSIENTS FROM COMPACT OBJECT MERGERS

    SciTech Connect (OSTI)

    Barnes, Jennifer; Kasen, Daniel [Departments of Physics and Astronomy, 366 LeConte Hall, University of California, Berkeley, CA 94720 (United States)

    2013-09-20T23:59:59.000Z

    The coalescence of compact objects is a promising astrophysical source of detectable gravitational wave signals. The ejection of r-process material from such mergers may lead to a radioactively powered electromagnetic counterpart signal which, if discovered, would enhance the science returns. As very little is known about the optical properties of heavy r-process elements, previous light-curve models have adopted opacities similar to those of iron group elements. Here we consider the effect of heavier elements, particularly the lanthanides, which increase the ejecta opacity by several orders of magnitude. We include these higher opacities in time-dependent, multi-wavelength radiative transport calculations to predict the broadband light curves of one-dimensional models over a range of parameters (ejecta masses {approx}10{sup -3}-10{sup -1} M{sub Sun} and velocities {approx}0.1-0.3 c). We find that the higher opacities lead to much longer duration light curves which can last a week or more. The emission is shifted toward the infrared bands due to strong optical line blanketing, and the colors at later times are representative of a blackbody near the recombination temperature of the lanthanides (T {approx} 2500 K). We further consider the case in which a second mass outflow, composed of {sup 56}Ni, is ejected from a disk wind, and show that the net result is a distinctive two component spectral energy distribution, with a bright optical peak due to {sup 56}Ni and an infrared peak due to r-process ejecta. We briefly consider the prospects for detection and identification of these transients.

  18. Highly-selective wettability on organic light-emitting-diodes patterns by sequential low-power plasmas

    SciTech Connect (OSTI)

    Svarnas, P.; Edwards, A. J.; Bradley, J. W. [Department of Electrical Engineering and Electronics, Technological Plasmas Group, University of Liverpool, Merseyside L69 3GJ (United Kingdom); Yang, L.; Munz, M.; Shard, A. G. [Analytical Science Division, National Physical Laboratory (NPL), Hampton Road, Teddington, Middlesex TW11 0LW (United Kingdom)

    2010-05-15T23:59:59.000Z

    Patterned organic light-emitting-diode substrates were treated by oxygen (O{sub 2}) and tetrafluoromethane (CF{sub 4}) radio-frequency (rf, 13.56 MHz) plasmas of low-power (close to 1 W) that were capacitively-coupled. An unexpected wettability contrast (water contact angle difference up to 90 deg. ) between the indium-tin-oxide anode and the bank resist regions was achieved, providing excellent conditioning prior to the ink-jet printing. This selectivity was found to be adjustable by varying the relative exposure time to the O{sub 2} and CF{sub 4} sequential plasmas. Static contact angle measurements and extensive x-ray photoelectron spectroscopy analyses showed that the wetting properties depend on the carbon and fluorine chemical functional groups formed at the outermost surface layers, whereas atomic force microscopy images did not show a morphological change. Plasma optical emission spectroscopy and ion mass spectroscopy suggested that surface functionalization was initiated by energy transfer from ionic species (O{sup +}, O{sub 2}{sup +}, CF{sup +}, CF{sub 2}{sup +}, and CF{sub 3}{sup +}) and excited neutrals (O{sup *} and F{sup *}). The absolute ion fluxes measured on the substrates were up to 10{sup 14} cm{sup -2} s{sup -1} and the ion energies up to 20 eV, despite the low powers applied during the process.

  19. Fundamental Studies and Development of III-N Visible LEDs for High-Power Solid-State Lighting Applications

    SciTech Connect (OSTI)

    Dupuis, Russell

    2012-02-29T23:59:59.000Z

    The goal of this program is to understand in a fundamental way the impact of strain, defects, polarization, and Stokes loss in relation to unique device structures upon the internal quantum efficiency (IQE) and efficiency droop (ED) of III-nitride (III-N) light-emitting diodes (LEDs) and to employ this understanding in the design and growth of high-efficiency LEDs capable of highly-reliable, high-current, high-power operation. This knowledge will be the basis for our advanced device epitaxial designs that lead to improved device performance. The primary approach we will employ is to exploit new scientific and engineering knowledge generated through the application of a set of unique advanced growth and characterization tools to develop new concepts in strain-, polarization-, and carrier dynamics-engineered and low-defect materials and device designs having reduced dislocations and improved carrier collection followed by efficient photon generation. We studied the effects of crystalline defect, polarizations, hole transport, electron-spillover, electron blocking layer, underlying layer below the multiplequantum- well active region, and developed high-efficiency and efficiency-droop-mitigated blue LEDs with a new LED epitaxial structures. We believe new LEDs developed in this program will make a breakthrough in the development of high-efficiency high-power visible III-N LEDs from violet to green spectral region.

  20. Solid core dipoles and switching power supplies: lower cost light sources?

    E-Print Network [OSTI]

    Benesch, Jay; Facility, Thomas Jefferson National Accelerator

    2015-01-01T23:59:59.000Z

    As a result of improvements in power semiconductors, moderate frequency switching supplies can now provide the hundreds of amps typically required by accelerators with zero-to-peak noise in the kHz region ~0.06% in current or voltage mode. Modeling was undertaken using a finite electromagnetic program to determine if eddy currents induced in the solid steel of CEBAF magnets and small supplemental additions would bring the error fields down to the 5ppm level needed for beam quality. The expected maximum field of the magnet under consideration is 0.85T and the DC current required to produce that field is used in the calculations. An additional 0.1% current ripple is added to the DC current at discrete frequencies 360 Hz, 720 Hz or 7200 Hz. Over the region of the pole within 0.5% of the central integrated BdL the resulting AC field changes can be reduced to less than 1% of the 0.1% input ripple for all frequencies, and a sixth of that at 7200 Hz. Doubling the current, providing 1.5T central field, yielded the sa...

  1. Compact, Low-Profile Power Converters: Highly-Laminated, High-Saturation-Flux-Density, Magnetic Cores for On-Chip Inductors in Power Converter Applications

    SciTech Connect (OSTI)

    None

    2010-09-01T23:59:59.000Z

    ADEPT Project: Georgia Tech is creating compact, low-profile power adapters and power bricks using materials and tools adapted from other industries and from grid-scale power applications. Adapters and bricks convert electrical energy into useable power for many types of electronic devices, including laptop computers and mobile phones. These converters are often called wall warts because they are big, bulky, and sometimes cover up an adjacent wall socket that could be used to power another electronic device. The magnetic components traditionally used to make adapters and bricks have reached their limits; they can't be made any smaller without sacrificing performance. Georgia Tech is taking a cue from grid-scale power converters that use iron alloys as magnetic cores. These low-cost alloys can handle more power than other materials, but the iron must be stacked in insulated plates to maximize energy efficiency. In order to create compact, low-profile power adapters and bricks, these stacked iron plates must be extremely thin-only hundreds of nanometers in thickness, in fact. To make plates this thin, Georgia Tech is using manufacturing tools used in microelectromechanics and other small-scale industries.

  2. IEEE ELECTRON DEVICE LETTERS, VOL. 28, NO. 5, MAY 2007 357 Direct Monitoring of RF Overstress in High-Power

    E-Print Network [OSTI]

    Shapira, Yoram

    Shapira, Senior Member, IEEE Abstract--Light emission from power transistors at a com- pression level Terms--Breakdown, high-power amplifier (HPA), impact ionization, light emission, parasitic oscillations improved in terms of power density, efficiency, and gain without any reduction in reliability re

  3. Lighting the Dark Silicon by Exploiting Heterogeneity on Future Processors

    E-Print Network [OSTI]

    Koppelman, David M.

    ][17], leading to an ever increasing power density on modern processors. On the other hand, the max- imumLighting the Dark Silicon by Exploiting Heterogeneity on Future Processors Ying Zhang Lu Peng Xin processor power consumption should be always enclosed within a reasonable envelope despite the manufacturing

  4. Low power low-density parity-checking (ldpc) codes decoder design using dynamic voltage and frequency scaling

    E-Print Network [OSTI]

    Wang, Weihuang

    2009-05-15T23:59:59.000Z

    This thesis presents a low-power LDPC decoder design based on speculative scheduling of energy necessary to decode dynamically varying data frame in both block-fading channels and general AWGN channels. A model of a memory-efficient low-power high...

  5. Polarity dependence of the electrical characteristics of Ag reflectors for high-power GaN-based light emitting diodes

    SciTech Connect (OSTI)

    Park, Jae-Seong; Seong, Tae-Yeon, E-mail: tyseong@korea.ac.kr [Department of Materials Science and Engineering, Korea University, Seoul 136-713 (Korea, Republic of); Han, Jaecheon [Department of LED Business, Chip Development Group, LG Innotek, Paju 413-901 (Korea, Republic of); Ha, Jun-Seok [School of Applied Chemical Engineering, Chonnam National University, Gwangju 500-757 (Korea, Republic of)

    2014-04-28T23:59:59.000Z

    We report on the polarity dependence of the electrical properties of Ag reflectors for high-power GaN-based light-emitting diodes. The (0001) c-plane samples become ohmic after annealing in air. However, the (11–22) semi-polar samples are non-ohmic after annealing, although the 300?°C-annealed sample shows the lowest contact resistivity. The X-ray photoemission spectroscopy (XPS) results show that the Ga 2p core level for the c-plane samples experiences larger shift toward the valence band than that for the semi-polar samples. The XPS depth profile results show that unlike the c-plane samples, the semi-polar samples contain some amounts of oxygen at the Ag/GaN interface regions. The outdiffusion of Ga atoms is far more significant in the c-plane samples than in the semi-polar samples, whereas the outdiffusion of N atoms is relatively less significant in the c-plane samples. On the basis of the electrical and XPS results, the polarity dependence of the electrical properties is described and discussed.

  6. Journal of Crystal Growth 298 (2007) 272275 Dislocation analysis in homoepitaxial GaInN/GaN light emitting

    E-Print Network [OSTI]

    Wetzel, Christian M.

    2007-01-01T23:59:59.000Z

    of GaInN/GaN-based light emitting diodes (LED) on quasi-bulk GaN with an atomically flat polished were much improved. The optical output power of the light emitting diode increased by more than one. Cathodoluminescence; A1. Threading dislocation density; A2. Homoepitaxial growth; B1. GaInN; B3. Light emitting diode

  7. Designing materials for energy storage with high power and energy density : LiFePO? cathode material

    E-Print Network [OSTI]

    Kang, Byoungwoo

    2010-01-01T23:59:59.000Z

    LiFePO? has drawn a lot of attention as a cathode material in lithium rechargeable batteries because its structural and thermal stability, its inexpensive cost, and environmental friendliness meet the requirements of power ...

  8. Light Water Reactor Sustainability Program: Computer-based procedure for field activities: results from three evaluations at nuclear power plants

    SciTech Connect (OSTI)

    Oxstrand, Johanna [Idaho National Laboratory; Bly, Aaron [Idaho National Laboratory; LeBlanc, Katya [Idaho National Laboratory

    2014-09-01T23:59:59.000Z

    Nearly all activities that involve human interaction with the systems of a nuclear power plant are guided by procedures. The paper-based procedures (PBPs) currently used by industry have a demonstrated history of ensuring safety; however, improving procedure use could yield tremendous savings in increased efficiency and safety. One potential way to improve procedure-based activities is through the use of computer-based procedures (CBPs). Computer-based procedures provide the opportunity to incorporate context driven job aids, such as drawings, photos, just-in-time training, etc into CBP system. One obvious advantage of this capability is reducing the time spent tracking down the applicable documentation. Additionally, human performance tools can be integrated in the CBP system in such way that helps the worker focus on the task rather than the tools. Some tools can be completely incorporated into the CBP system, such as pre-job briefs, placekeeping, correct component verification, and peer checks. Other tools can be partly integrated in a fashion that reduces the time and labor required, such as concurrent and independent verification. Another benefit of CBPs compared to PBPs is dynamic procedure presentation. PBPs are static documents which limits the degree to which the information presented can be tailored to the task and conditions when the procedure is executed. The CBP system could be configured to display only the relevant steps based on operating mode, plant status, and the task at hand. A dynamic presentation of the procedure (also known as context-sensitive procedures) will guide the user down the path of relevant steps based on the current conditions. This feature will reduce the user’s workload and inherently reduce the risk of incorrectly marking a step as not applicable and the risk of incorrectly performing a step that should be marked as not applicable. As part of the Department of Energy’s (DOE) Light Water Reactors Sustainability Program, researchers at Idaho National Laboratory (INL) along with partners from the nuclear industry have been investigating the design requirements for computer-based work instructions (including operations procedures, work orders, maintenance procedures, etc.) to increase efficiency, safety, and cost competitiveness of existing light water reactors.

  9. In-Situ Measurement of Crystalline Silicon Modules Undergoing Potential-Induced Degradation in Damp Heat Stress Testing for Estimation of Low-Light Power Performance

    SciTech Connect (OSTI)

    Hacke, P.; Terwilliger, K.; Kurtz, S.

    2013-08-01T23:59:59.000Z

    The extent of potential-induced degradation of crystalline silicon modules in an environmental chamber is estimated using in-situ dark I-V measurements and applying superposition analysis. The dark I-V curves are shown to correctly give the module power performance at 200, 600 and 1,000 W/m2 irradiance conditions, as verified with a solar simulator. The onset of degradation measured in low light in relation to that under one sun irradiance can be clearly seen in the module design examined; the time to 5% relative degradation measured in low light (200 W/m2) was 28% less than that of full sun (1,000 W/m2 irradiance). The power of modules undergoing potential-induced degradation can therefore be characterized in the chamber, facilitating statistical analyses and lifetime forecasting.

  10. Critical Parameters for Turbulent Transport in the SOL: Mechanism for the L-H Transition and its impact on the H-mode Power Threshold and Density Limit in ITER

    E-Print Network [OSTI]

    Critical Parameters for Turbulent Transport in the SOL: Mechanism for the L-H Transition and its impact on the H-mode Power Threshold and Density Limit in ITER

  11. Continuous detection of physiological pH and PCO? by fiber optic spectroscopy using a low power light source

    E-Print Network [OSTI]

    Costello, David James

    1985-01-01T23:59:59.000Z

    of the light transmitted through the sample, e is an empirical constant, called the transmissivity, determined at the wavelength of interest, 1 is the length of the light path through the sample, and [c] is the molar concentration of the absorbing molecule... changes in ambient lighting conditions. The effect of these factors is to change the output value of the system by some additive constant representing a change in the total transmission ei'ficiency of the transducer. The effects of these factors can...

  12. Electron Beam Welding of a Depleted Uranium Alloy to Niobium Using a Calibrated Electron Beam Power Density Distribution

    SciTech Connect (OSTI)

    Elmer, J.W.; Teruya, A.T.; Terrill, P.E.

    2000-08-21T23:59:59.000Z

    Electron beam test welds were made joining flat plates of commercially pure niobium to a uranium-6wt%Nb (binary) alloy. The welding parameters and joint design were specifically developed to minimize mixing of the niobium with the U-6%Nb alloy. A Modified Faraday Cup (MFC) technique using computer-assisted tomography was employed to determine the precise power distribution of the electron beam so that the welding parameters could be directly transferred to other welding machines and/or to other facilities.

  13. NRC review of Electric Power Research Institute`s advanced light water reactor utility requirements document. Passive plant designs, chapter 1, project number 669

    SciTech Connect (OSTI)

    Not Available

    1994-08-01T23:59:59.000Z

    The Electric Power Research Institute (EPRI) is preparing a compendium of technical requirements, referred to as the {open_quotes}Advanced Light Water Reactor [ALWR] Utility Requirements Document{close_quotes}, that is acceptable to the design of an ALWR power plant. When completed, this document is intended to be a comprehensive statement of utility requirements for the design, construction, and performance of an ALWR power plant for the 1990s and beyond. The Requirements Document consists of three volumes. Volume 1, {open_quotes}ALWR Policy and Summary of Top-Tier Requirements{close_quotes}, is a management-level synopsis of the Requirements Document, including the design objectives and philosophy, the overall physical configuration and features of a future nuclear plant design, and the steps necessary to take the proposed ALWR design criteria beyond the conceptual design state to a completed, functioning power plant. Volume II consists of 13 chapters and contains utility design requirements for an evolutionary nuclear power plant [approximately 1350 megawatts-electric (MWe)]. Volume III contains utility design requirements for nuclear plants for which passive features will be used in their designs (approximately 600 MWe). In April 1992, the staff of the Office of Nuclear Reactor Regulation, U.S. Nuclear Regulatory Commission, issued Volume 1 and Volume 2 (Parts 1 and 2) of its safety evaluation report (SER) to document the results of its review of Volumes 1 and 2 of the Requirements Document. Volume 1, {open_quotes}NRC Review of Electric Power Research Institute`s Advanced Light Water Reactor Utility Requirements Document - Program Summary{close_quotes}, provided a discussion of the overall purpose and scope of the Requirements Document, the background of the staff`s review, the review approach used by the staff, and a summary of the policy and technical issues raised by the staff during its review.

  14. NRC review of Electric Power Research Institute`s advanced light water reactor utility requirements document. Passive plant designs, chapters 2-13, project number 669

    SciTech Connect (OSTI)

    Not Available

    1994-08-01T23:59:59.000Z

    The Electric Power Research Institute (EPRI) is preparing a compendium of technical requirements, referred to as the {open_quotes}Advanced Light Water Reactor [ALWR] Utility Requirements Document{close_quotes}, that is acceptable to the design of an ALWR power plant. When completed, this document is intended to be a comprehensive statement of utility requirements for the design, construction, and performance of an ALWR power plant for the 1990s and beyond. The Requirements Document consists of three volumes. Volume I, {open_quotes}ALWR Policy and Summary of Top-Tier Requirements{close_quotes}, is a management-level synopsis of the Requirements Document, including the design objectives and philosophy, the overall physical configuration and features of a future nuclear plant design, and the steps necessary to take the proposed ALWR design criteria beyond the conceptual design state to a completed, functioning power plant. Volume II consists of 13 chapters and contains utility design requirements for an evolutionary nuclear power plant [approximately 1350 megawatts-electric (MWe)]. Volume III contains utility design requirements for nuclear plants for which passive features will be used in their designs (approximately 600 MWe). In April 1992, the staff of the Office of Nuclear Reactor Regulation, U.S. Nuclear Regulatory Commission, issued Volume 1 and Volume 2 (Parts 1 and 2) of its safety evaluation report (SER) to document the results of its review of Volumes 1 and 2 of the Requirements Document. Volume 1, {open_quotes}NRC Review of Electric Power Research Institute`s Advanced Light Water Reactor Utility Requirements Document - Program Summary{close_quotes}, provided a discussion of the overall purpose and scope of the Requirements Document, the background of the staff`s review, the review approach used by the staff, and a summary of the policy and technical issues raised by the staff during its review.

  15. Smart Operations of Air-Conditioning and Lighting Systems in a Government Buildings for Peak Power Reduction

    E-Print Network [OSTI]

    Al-Hadban, Y.; Maheshwari, G. P.; Al-Nakib, D.; Al-Mulla, A.; Alasseri, R.

    2010-01-01T23:59:59.000Z

    This paper presents the achievements of implementing smart operations strategies for air-conditioning (A/C) and lighting systems in Justice Palace Complex (JPC), Kuwait during the summer 2007. The peak load of this building was 3700 k...

  16. EK101 Engineering Light Smart Lighting

    E-Print Network [OSTI]

    Bifano, Thomas

    EK101 Engineering Light Smart Lighting Homework for 9/10 1. Make an estimate (using if the patent is granted.) 3. What is a lumen? A lux? How are the two related? How would you use a lux meter, (Lux, Lumens/m2) Luminous Flux: Perceivable light power from a source, (Lumens) Use the lux meter

  17. PFP Emergency Lighting Study

    SciTech Connect (OSTI)

    BUSCH, M.S.

    2000-02-02T23:59:59.000Z

    NFPA 101, section 5-9 mandates that, where required by building classification, all designated emergency egress routes be provided with adequate emergency lighting in the event of a normal lighting outage. Emergency lighting is to be arranged so that egress routes are illuminated to an average of 1.0 footcandle with a minimum at any point of 0.1 footcandle, as measured at floor level. These levels are permitted to drop to 60% of their original value over the required 90 minute emergency lighting duration after a power outage. The Plutonium Finishing Plant (PFP) has two designations for battery powered egress lights ''Emergency Lights'' are those battery powered lights required by NFPA 101 to provide lighting along officially designated egress routes in those buildings meeting the correct occupancy requirements. Emergency Lights are maintained on a monthly basis by procedure ZSR-12N-001. ''Backup Lights'' are battery powered lights not required by NFPA, but installed in areas where additional light may be needed. The Backup Light locations were identified by PFP Safety and Engineering based on several factors. (1) General occupancy and type of work in the area. Areas occupied briefly during a shiftly surveillance do not require backup lighting while a room occupied fairly frequently or for significant lengths of time will need one or two Backup lights to provide general illumination of the egress points. (2) Complexity of the egress routes. Office spaces with a standard hallway/room configuration will not require Backup Lights while a large room with several subdivisions or irregularly placed rooms, doors, and equipment will require Backup Lights to make egress safer. (3) Reasonable balance between the safety benefits of additional lighting and the man-hours/exposure required for periodic light maintenance. In some plant areas such as building 236-Z, the additional maintenance time and risk of contamination do not warrant having Backup Lights installed in all rooms. Sufficient light for egress is provided by existing lights located in the hallways.

  18. Forum: Let there be light Jay Apt and Lester Lave say power blackouts are too frequent, dangerous

    E-Print Network [OSTI]

    of the electricity system. Utilities used to transmit power from a nearby generation plant to customers. Now to federal regulators: The complexity of our electricity system puts impossible demands on human operators, industrial customers can buy power from plants hundreds of miles away, putting major burdens

  19. Enhanced optical power of GaN-based light-emitting diode with compound photonic crystals by multiple-exposure nanosphere-lens lithography

    SciTech Connect (OSTI)

    Zhang, Yonghui; Wei, Tongbo, E-mail: tbwei@semi.ac.cn; Xiong, Zhuo; Shang, Liang; Tian, Yingdong; Zhao, Yun; Zhou, Pengyu; Wang, Junxi; Li, Jinmin [Semiconductor Lighting Technology Research and Development Center, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083 (China)

    2014-07-07T23:59:59.000Z

    The light-emitting diodes (LEDs) with single, twin, triple, and quadruple photonic crystals (PCs) on p-GaN are fabricated by multiple-exposure nanosphere-lens lithography (MENLL) process utilizing the focusing behavior of polystyrene spheres. Such a technique is easy and economical for use in fabricating compound nano-patterns. The optimized tilted angle is decided to be 26.6° through mathematic calculation to try to avoid the overlay of patterns. The results of scanning electron microscopy and simulations reveal that the pattern produced by MENLL is a combination of multiple ovals. Compared to planar-LED, the light output power of LEDs with single, twin, triple, and quadruple PCs is increased by 14.78%, 36.03%, 53.68%, and 44.85% under a drive current 350?mA, respectively. Furthermore, all PC-structures result in no degradation of the electrical properties. The stimulated results indicate that the highest light extraction efficiency of LED with the clover-shape triple PC is due to the largest scattering effect on propagation of light from GaN into air.

  20. Purpose. To evaluate the reliability and validity of a portable instrument for measuring macular pigment optical density.

    E-Print Network [OSTI]

    macular pigment optical density. Methods. The instrument is small, uses light emitting diodes as light

  1. Online Strategies for High-Performance Power-Aware Thread Execution on Emerging Multiprocessors

    E-Print Network [OSTI]

    Freeh, Vincent

    and component density of emerging su- percomputers pose a hard requirement for power-aware sys- tem design PowerEdge 6650 with Intel Xeon HT processors. The high- lighted area indicates opportunitiesOnline Strategies for High-Performance Power-Aware Thread Execution on Emerging Multiprocessors

  2. Main Canal, Maverick County Water Control and Improvement District above Central Power and Light hydro-electric plant, at Maverick and Kinney Counties, Texas

    E-Print Network [OSTI]

    Ledbetter, John J

    1952-01-01T23:59:59.000Z

    BAIN CANAL NA~ICK COUNTY WATW CONTROL AND INPROllZXBZ DISTRICT ABOVE C~ POWER AND LION HYDRO ELECTRIC PLANT& AT, SIAVERICK AND KINNEY COUNT'S, T~~S By John J. Ledbetter, Jr. Approved as to style and content by: (Che man Committee Heed of pa... ment or Student Advisor May l952 MAIN CANAL RIA~ICK C01E1TY EATER CONTROL AND INPROVZGiWZ DISTRICT ABOVE G~ F01' AND LIGHT HYDRO-ELECTRIC PLANT, AT MAVERICK AND KINNEY GGKJZIES ~ TEXAS By John J. Ledbetter, Jr, A Thesis Submitted...

  3. Femtosecond x-rays link melting of charge density wave correlations and light-enhanced coherent transport in YBa?Cu?O?.?

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Forst, M. [Max-Planck Inst. for the Structure and Dynamics of Matter, Hamburg (Germany); Hill, J. P. [Brookhaven National Lab. (BNL), Upton, NY (United States); Frano, A. [Max-Planck Inst. for Solid State Research, Stuttgart (Germany); Helmholtz-Zentrum Berlin Fur Materialien und Energie, Berlin (Germany); Kaiser, S. [Max-Planck Inst. for the Structure and Dynamics of Matter, Hamburg (Germany); Mankowsky, R. [Max-Planck Inst. for the Structure and Dynamics of Matter, Hamburg (Germany); Hunt, C. R. [Max-Planck Inst. for the Structure and Dynamics of Matter, Hamburg (Germany); Univ. of Illinois at Urbana-Champaign, Urbana, IL (United States); Turner, J. J. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Dakovski, G. L. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Minitti, M. P. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Robinson, J. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Loew, T. [Max-Planck Inst. for Solid State Research, Stuttgart (Germany); Le Tacon, M. [Max-Planck Inst. for Solid State Research, Stuttgart (Germany); Keimer, B. [Max-Planck Inst. for Solid State Research, Stuttgart (Germany); Cavalleri, A. [Max-Planck Inst. for the Structure and Dynamics of Matter, Hamburg (Germany); Univ. of Oxford (United Kingdom); Dhesi, S. S. [Diamond Light Source, Chilton, Didcot (United Kingdom)

    2014-11-01T23:59:59.000Z

    We use femtosecond resonant soft x-ray diffraction to measure the optically stimulated ultrafast changes of charge density wave correlations in underdoped YBa?Cu?O?.?. We find that when coherent interlayer transport is enhanced by optical excitation of the apical oxygen distortions, at least 50% of the in-plane charge density wave order is melted. These results indicate that charge ordering and superconductivity may be competing up to the charge ordering transition temperature, with the latter becoming a hidden phase that is accessible only by nonlinear phonon excitation.

  4. Power Electronics and Electrical Drives Prof. Dr.-Ing. Joachim Bcker

    E-Print Network [OSTI]

    Hellebrand, Sybille

    High power and torque densities High power and torque densities Research Topics PMSM / IPMSM Modeling

  5. Light and Plants Plants use light to photosynthesize. Name two places that light can come from

    E-Print Network [OSTI]

    Koptur, Suzanne

    Light and Plants Plants use light to photosynthesize. Name two places that light can come from: 1 (CO2, a gas) from the air and turn it into SUGARS (food). This process is powered by energy from light plants) for energy. Photosynthetically Active Radiation (PAR) is a combination of red light and blue

  6. U.S. Coast Guard and Florida Power & Light Successfully Implement a Multi-Site UESC Project

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOriginEducationVideoStrategic|IndustrialCenterMarchC. BERKELEY: NEGAWATTPhotovoltaics1U.S.Coast

  7. IEEE TRANSACTIONS ON POWER ELECTRONICS, VOL. 20, NO. 6, NOVEMBER 2005 1499 Custom Spectral Shaping for EMI Reduction in

    E-Print Network [OSTI]

    by the use of uniquely shaped modulating waveforms, resulting in the elimination of power spec- tral density operation helps to improve lumen maintenance, eliminate flicker, control lamp power and light colorIEEE TRANSACTIONS ON POWER ELECTRONICS, VOL. 20, NO. 6, NOVEMBER 2005 1499 Custom Spectral Shaping

  8. LED Lighting Retrofit

    E-Print Network [OSTI]

    Shaw-Meadow, N.

    2011-01-01T23:59:59.000Z

    ? Municipal Street Lighting Consortium ? American Public Power Association (APPA) ? Demonstration in Energy Efficiency Development (DEED) ? Source of funding and database of completed LED roadway projects 6 Rules of the Road ESL-KT-11-11-57 CATEE 2011..., 2011 ? 9 Solar-Assisted LED Case Study LaQuinta Hotel, Cedar Park, Texas ? Utilizes 18 - ActiveLED Solar-Assisted Parking Lot Lights ? Utilizes ?power management? to extend battery life while handling light output ? Reduces load which reduces PV...

  9. Feasibility Study of Supercritical Light Water Cooled Reactors for Electric Power Production, Progress Report for Work Through September 2003, 2nd Annual/8th Quarterly Report

    SciTech Connect (OSTI)

    Philip E. MacDonald

    2003-09-01T23:59:59.000Z

    The supercritical water-cooled reactor (SCWR) is one of the six reactor technologies selected for research and development under the Generation-IV program. SCWRs are promising advanced nuclear systems because of their high thermal efficiency (i.e., about 45% vs. about 33% efficiency for current Light Water Reactors, LWRs) and considerable plant simplification. SCWRs are basically LWRs operating at higher pressure and temperatures with a direct once-through cycle. Operation above the critical pressure eliminates coolant boiling, so the coolant remains single-phase throughout the system. Thus the need for recirculation and jet pumps, a pressurizer, steam generators, steam separators and dryers is eliminated. The main mission of the SCWR is generation of low-cost electricity. It is built upon two proven technologies, LWRs, which are the most commonly deployed power generating reactors in the world, and supercritical fossil-fired boilers, a large number of which is also in use around the world.

  10. Feasibility Study of Supercritical Light Water Cooled Fast Reactors for Actinide Burning and Electric Power Production, Progress Report for Work Through September 2002, 4th Quarterly Report

    SciTech Connect (OSTI)

    Mac Donald, Philip Elsworth

    2002-09-01T23:59:59.000Z

    The use of light water at supercritical pressures as the coolant in a nuclear reactor offers the potential for considerable plant simplification and consequent capital and O&M cost reduction compared with current light water reactor (LWR) designs. Also, given the thermodynamic conditions of the coolant at the core outlet (i.e. temperature and pressure beyond the water critical point), very high thermal efficiencies of the power conversion cycle are possible (i.e. up to about 45%). Because no change of phase occurs in the core, the need for steam separators and dryers as well as for BWR-type re-circulation pumps is eliminated, which, for a given reactor power, results in a substantially shorter reactor vessel and smaller containment building than the current BWRs. Furthermore, in a direct cycle the steam generators are not needed. If no additional moderator is added to the fuel rod lattice, it is possible to attain fast neutron energy spectrum conditions in a supercritical water-cooled reactor (SCWR). This type of core can make use of either fertile or fertile-free fuel and retain a hard spectrum to effectively burn plutonium and minor actinides from LWR spent fuel while efficiently generating electricity. One can also add moderation and design a thermal spectrum SCWR. The Generation IV Roadmap effort has identified the thermal spectrum SCWR (followed by the fast spectrum SCWR) as one of the advanced concepts that should be developed for future use. Therefore, the work in this NERI project is addressing both types of SCWRs.

  11. Sonolytic destruction of methyl tert-butyl ether by ultrasonic irradiation: The role of O{sub 3}, H{sub 2}O{sub 2}, frequency, and power density

    SciTech Connect (OSTI)

    Kang, J.W.; Hung, H.M.; Lin, A.; Hoffmann, M.R. [California Inst. of Tech., Pasadena, CA (United States). W.M. Keck Labs.] [California Inst. of Tech., Pasadena, CA (United States). W.M. Keck Labs.

    1999-09-15T23:59:59.000Z

    The kinetics of degradation of methyl tert-butyl ether (MTBE) by ultrasonic irradiation in the presence of ozone as functions of applied frequencies and applied power are investigated. Experiments are performed over the frequency range of 205--1,078 kHz. The higher overall reaction rates are observed at 358 and 618 kHz and then at 205 and 1,078 kHz. The observed pseudo-first-order rate constant, k{sub 0}, for MTBE degradation increases with increasing power density up to 250 W L{sup {minus}1}. A linear dependence of the first-order rate constant, k{sub O{sub 3}}, for the simultaneous degradation of O{sub 3} on power density is also observed. Naturally occurring organic matter (NOM) is shown to have a negligible effect on observed reaction rates.

  12. Feasibility Study Of Advanced Technology Hov Systems: Volume 2b: Emissions Impact Of Roadway-powered Electric Buses, Light-duty Vehicles, And Automobiles

    E-Print Network [OSTI]

    Miller, Mark A.; Dato, Victor; Chira-chavala, Ted

    1992-01-01T23:59:59.000Z

    for: Types of power plants in California Uncontrolledboiler power plants in Southern California. The authorsCalifornia Air Resources Board, Uncontrolled and Controlled Power Industrial Plant

  13. Light Source

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12electron 9 5Let us count theLienertLift Forces in a Light

  14. Orcas Power & Light- MORE Green Power Program

    Broader source: Energy.gov [DOE]

    Incentive payments will be paid per kilowatt hour (kWh) of production, with a rate based on the year in which the system is interconnected. In 2014, incentive rates were adjusted to accommodate f...

  15. Photonic crystal light source

    DOE Patents [OSTI]

    Fleming, James G. (Albuquerque, NM); Lin, Shawn-Yu (Albuquerque, NM); Bur, James A. (Corrales, NM)

    2004-07-27T23:59:59.000Z

    A light source is provided by a photonic crystal having an enhanced photonic density-of-states over a band of frequencies and wherein at least one of the dielectric materials of the photonic crystal has a complex dielectric constant, thereby producing enhanced light emission at the band of frequencies when the photonic crystal is heated. The dielectric material can be a metal, such as tungsten. The spectral properties of the light source can be easily tuned by modification of the photonic crystal structure and materials. The photonic crystal light source can be heated electrically or other heating means. The light source can further include additional photonic crystals that exhibit enhanced light emission at a different band of frequencies to provide for color mixing. The photonic crystal light source may have applications in optical telecommunications, information displays, energy conversion, sensors, and other optical applications.

  16. Projection screen having reduced ambient light scattering

    DOE Patents [OSTI]

    Sweatt, William C. (Albuquerque, NM)

    2010-05-11T23:59:59.000Z

    An apparatus and method for improving the contrast between incident projected light and ambient light reflected from a projection screen are described. The efficiency of the projection screen for reflection of the projected light remains high, while permitting the projection screen to be utilized in a brightly lighted room. Light power requirements from the projection system utilized may be reduced.

  17. The Problem Conventional office lighting typically consists of bright fluo-

    E-Print Network [OSTI]

    by delamping--result in lower power consump- tion. The PLS, which features light-emitting diode (LED lighting is reduced and three light-emitting diode (LED) task lights (two desk lamps and one undercabinet

  18. Light extraction enhanced white light-emitting diodes with multi-layered phosphor configuration

    E-Print Network [OSTI]

    You, Jiun Pyng; Tran, Nguyen T.; Shi, Frank G.

    2010-01-01T23:59:59.000Z

    and J. K. Kim, “Solid-state light sources getting smart,”power phosphor-converted light-emitting diodes based on III-for phosphor- based white-light-emitting diodes,” Appl.

  19. MANDATORY MEASURES OUTDOOR LIGHTING CONTROLS

    E-Print Network [OSTI]

    California at Davis, University of

    MANDATORY MEASURES OUTDOOR LIGHTING CONTROLS (Reference: Sub-Chapter 4, Section 130.2) #12;SECTION level of each multi-tier garage. · General lighting must have occupant sensing controls with at least one control step between 20% and 50% of design lighting power · No more than 500 watts of rated

  20. Relating productivity to visibility and lighting

    SciTech Connect (OSTI)

    Clear, R.; Berman, S.

    1982-01-01T23:59:59.000Z

    The problem of determining the appropriate light levels for visual tasks is a cost-benefit problem. Existing light level recommendations seriously underweight the importance of economic factors. Furthermore, the relative importance of the visibility factors in determining the optimal light levels appears inconsistent with the importance of these factors in determining visibility and visual performance. It is shown that calculations based on acuities give a lower limit of 100 to 200 lux for cost-effective light levels for office tasks. Upper limits are calculated from correlations of task performance to visibility levels. Visibility levels become progressively insensitive to luminance as luminance increases. Average power densities above 100 watts/m/sup 2/ are cost-effective only when visibility is very low. However, there is a 3-to-10 times larger increase in benefits from improving contrast or contrast sensitivity than from using more than 10 watts/m/sup 2/. Contrast or contrast sensitivity can be improved by using forms with larger print, using xerographic copy instead of carbon or mimeo, making sure office workers have the right eyeglasses, or even by transferring workers with visual problems to less visually demanding tasks. Once these changes are made it is no longer cost-effective to use more than 10 watts/m/sup 2/. This conclusion raises serious questions about recommendations that lead to greater than about 10 watts/m/sup 2/ of installed lighting for general office work.

  1. Feasibility Study of Supercritical Light Water Cooled Reactors for Electric Power Production, Nuclear Energy Research Initiative Project 2001-001, Westinghouse Electric Co. Grant Number: DE-FG07-02SF22533, Final Report

    SciTech Connect (OSTI)

    Philip E. MacDonald

    2005-01-01T23:59:59.000Z

    The supercritical water-cooled reactor (SCWR) is one of the six reactor technologies selected for research and development under the Generation IV program. SCWRs are promising advanced nuclear systems because of their high thermal efficiency (i.e., about 45% versus about 33% efficiency for current Light Water Reactors [LWRs]) and considerable plant simplification. SCWRs are basically LWRs operating at higher pressure and temperatures with a direct once-through cycle. Operation above the critical pressure eliminates coolant boiling, so the coolant remains single-phase throughout the system. Thus, the need for a pressurizer, steam generators, steam separators, and dryers is eliminated. The main mission of the SCWR is generation of low-cost electricity. It is built upon two proven technologies: LWRs, which are the most commonly deployed power generating reactors in the world, and supercritical fossil-fired boilers, a large number of which are also in use around the world. The reference SCWR design for the U.S. program is a direct cycle system operating at 25.0 MPa, with core inlet and outlet temperatures of 280 and 500 C, respectively. The coolant density decreases from about 760 kg/m3 at the core inlet to about 90 kg/m3 at the core outlet. The inlet flow splits with about 10% of the inlet flow going down the space between the core barrel and the reactor pressure vessel (the downcomer) and about 90% of the inlet flow going to the plenum at the top of the rector pressure vessel, to then flow down through the core in special water rods to the inlet plenum. Here it mixes with the feedwater from the downcomer and flows upward to remove the heat in the fuel channels. This strategy is employed to provide good moderation at the top of the core. The coolant is heated to about 500 C and delivered to the turbine. The purpose of this NERI project was to assess the reference U.S. Generation IV SCWR design and explore alternatives to determine feasibility. The project was organized into three tasks: Task 1. Fuel-cycle Neutronic Analysis and Reactor Core Design Task 2. Fuel Cladding and Structural Material Corrosion and Stress Corrosion Cracking Task 3. Plant Engineering and Reactor Safety Analysis. moderator rods. materials.

  2. Smart lighting: New Roles for Light

    E-Print Network [OSTI]

    Salama, Khaled

    Smart lighting: New Roles for Light in the Solid State Lighting World Robert F. Karlicek, Jr. Director, Smart Lighting Engineering Research Center Professor, Electrical, Systems and Computer Lighting · What is Smart Lighting · Technology Barriers to Smart Lighting · Visible Light Communications

  3. Commercial Lighting

    Broader source: Energy.gov [DOE]

    Commercial lighting accounts for more than 20 percent of total commercial building energy use. The Energy Department works to reduce lighting energy use through research and deployment.

  4. Energy Codes and the Landlord-Tenant Problem

    E-Print Network [OSTI]

    Papineau, Maya

    2013-01-01T23:59:59.000Z

    insulation levels, lighting power densities and HVACinsulation levels, lighting power densities and HVAC

  5. The New York Times headquarters daylighting mockup: Monitored performance of the daylighting control system

    E-Print Network [OSTI]

    Lee, Eleanor S.; Selkowitz, Stephen E.

    2006-01-01T23:59:59.000Z

    W, respectively. Lighting power density at full power levelssavings and average lighting power density savings for astandard deviation Lighting power density at full power:

  6. Pauling bond strength, bond length and electron density distribution...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Pauling bond strength, bond length and electron density distribution. Pauling bond strength, bond length and electron density distribution. Abstract: A power law regression...

  7. Sandia Energy - Consortium for Advanced Simulation of Light Water...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Consortium for Advanced Simulation of Light Water Reactors (CASL) Home Stationary Power Nuclear Fuel Cycle Advanced Nuclear Energy Consortium for Advanced Simulation of Light Water...

  8. Execution Version POWER PURCHASE AGREEMENT

    E-Print Network [OSTI]

    Firestone, Jeremy

    ") and BLUEWATER WIND DELAWARE LLC ("Seller") June 23, 2008 #12;Execution Version POWER PURCHASE AGREEMENT TableExecution Version POWER PURCHASE AGREEMENT between DELMARVA POWER & LIGHT COMPANY ("Buyer 3.5 Energy Forecasts, Scheduling and Balancing.......................................... 40 3

  9. White light velocity interferometer

    DOE Patents [OSTI]

    Erskine, D.J.

    1999-06-08T23:59:59.000Z

    The invention is a technique that allows the use of broadband and incoherent illumination. Although denoted white light velocimetry, this principle can be applied to any wave phenomenon. For the first time, powerful, compact or inexpensive sources can be used for remote target velocimetry. These include flash and arc lamps, light from detonations, pulsed lasers, chirped frequency lasers, and lasers operating simultaneously in several wavelengths. The technique is demonstrated with white light from an incandescent source to measure a target moving at 16 m/s. 41 figs.

  10. PowerPoint Presentation

    Broader source: Energy.gov (indexed) [DOE]

    Research Center Blvd. Fayetteville, AR 72701 Phone: (479)-443-5759 Email: marcelo@apei.net Website: www.apei.net High Temperature and High Power Density SiC Power Electronic...

  11. PowerPoint Presentation

    Broader source: Energy.gov (indexed) [DOE]

    Research Center Blvd. Fayetteville, AR 72701 Phone: (479)-443-5759 Email: mschupb@apei.net Website: www.apei.net High Power Density Silicon Carbide Power Electronic Converters...

  12. Generation of Gaussian Density Fields

    E-Print Network [OSTI]

    Hugo Martel

    2005-07-15T23:59:59.000Z

    This document describes analytical and numerical techniques for the generation of Gaussian density fields, which represent cosmological density perturbations. The mathematical techniques involved in the generation of density harmonics in k-space, the filtering of the density fields, and the normalization of the power spectrum to the measured temperature fluctuations of the Cosmic Microwave Background, are presented in details. These techniques are well-known amongst experts, but the current literature lacks a formal description. I hope that this technical report will prove useful to new researchers moving into this field, sparing them the task of reinventing the wheel.

  13. A Python Code for the Emmanoulopoulos et al. [arXiv:1305.0304] Light Curve Simulation Algorithm

    E-Print Network [OSTI]

    Connolly, S D

    2015-01-01T23:59:59.000Z

    I have created, for public use, a Python code allowing the simulation of light curves with any given power spectral density and any probability density function, following the algorithm described in Emmanoulopoulos et al. 2013. The simulated products have exactly the same variability and statistical properties as the observed light curves. The code and its documentation are available at: https://github.com/samconnolly/DELightcurveSimulation Note that a Mathematica code of the algorithm is given in Emmanoulopoulos et al. [arXiv:1305.0304

  14. Light Properties Light travels at the speed of light `c'

    E-Print Network [OSTI]

    Mojzsis, Stephen J.

    LIGHT!! #12;Light Properties Light travels at the speed of light `c' C = 3 x 108 m/s Or 190,000 miles/second!! Light could travel around the world about 8 times in one second #12;What is light?? Light is a "wave packet" A photon is a "light particle" #12;Electromagnetic Radiation and You Light is sometimes

  15. Light Vector Mesons

    E-Print Network [OSTI]

    Alexander Milov

    2008-12-21T23:59:59.000Z

    This article reviews the current status of experimental results obtained in the measurement of light vector mesons produced in proton-proton and heavy ion collisions at different energies. The review is focused on two phenomena related to the light vector mesons; the modification of the spectral shape in search of Chiral symmetry restoration and suppression of the meson production in heavy ion collisions. The experimental results show that the spectral shape of light vector mesons are modified compared to the parameters measured in vacuum. The nature and the magnitude of the modification depends on the energy density of the media in which they are produced. The suppression patterns of light vector mesons are different from the measurements of other mesons and baryons. The mechanisms responsible for the suppression of the mesons are not yet understood. Systematic comparison of existing experimental results points to the missing data which may help to resolve the problem.

  16. Way Beyond Widgets: Delivering Integrated Lighting Design in Actionable Solutions

    SciTech Connect (OSTI)

    Myer, Michael; Richman, Eric E.; Jones, Carol C.

    2008-08-17T23:59:59.000Z

    Previously, energy-efficiency strategies for commercial spaces have focused on using efficient equipment without providing specific detailed instructions. Designs by experts in their fields are an energy-efficiency product in its own right. A new national program has developed interactive application-specific lighting designs for widespread use in four major commercial sectors. This paper will describe the technical basis for the solutions, energy efficiency and cost-savings methodology, and installations and measurement/verification to-date. Lighting designs have been developed for five types of retail stores (big box, small box, grocery, specialty market, and pharmacy) and are planned for the office, healthcare, and education sectors as well. Nationally known sustainable lighting designers developed the designs using high-performance commercially available products, daylighting, and lighting controls. Input and peer review was received by stakeholders, including manufacturers, architects, utilities, energy-efficiency program sponsors (EEPS), and end-users (i.e., retailers). An interactive web tool delivers the lighting solutions and analyzes anticipated energy savings using project-specific inputs. The lighting solutions were analyzed against a reference building using the space-by-space method as allowed in the Energy Standard for Buildings Except Low-Rise Residential Buildings (ASHRAE 2004) co-sponsored by the American Society of Heating, Refrigeration, and Air Conditioning Engineers (ASHRAE) and the Illuminating Engineering Society of North America (IESNA). The results showed that the design vignettes ranged from a 9% to 28% reduction in the allowed lighting power density. Detailed control strategies are offered to further reduce the actual kilowatt-hour power consumption. When used together, the lighting design vignettes and control strategies show a modeled decrease in energy consumption (kWh) by 33% to 50% below the baseline design.

  17. Sandia National Laboratories: Solid-State Lighting

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nuclear Energy photovoltaic Photovoltaics PV Renewable Energy solar Solar Energy solar power Solar Research Solid-State Lighting SSLS Connect Contact Us RSS Google+ Twitter...

  18. High-power, very low threshold, GaImnP/AIGaInP visble-diode lasers l-l. B. Serreze, v. C. Chen, and R. 6. Waters

    E-Print Network [OSTI]

    lasers,and this cw threshold current density is believedto be, by far, the lowest. Low-power visibleHigh-power, very low threshold, GaImnP/AIGaInP visble-diode lasers l-l. B. Serreze, v. C. Chen light (665 nm) laser diodesemploying a strained-layer,single quantum well, graded index

  19. Smart Lighting Controller!! Smart lighting!

    E-Print Network [OSTI]

    Anderson, Betty Lise

    1! Smart Lighting Controller!! #12;2! Smart lighting! No need to spend energy lighting the room if://blogs.stthomas.edu/realestate/2011/01/24/residential-real-estate-professionals-how-do-you- develop feedback! There is a connection between the output and the input! Therefore forces inputs to same voltage

  20. Metacapacitors for LED Lighting: Metacapacitors

    SciTech Connect (OSTI)

    None

    2010-09-02T23:59:59.000Z

    ADEPT Project: The CUNY Energy Institute is developing less expensive, more efficient, smaller, and longer-lasting power converters for energy-efficient LED lights. LEDs produce light more efficiently than incandescent lights and last significantly longer than compact fluorescent bulbs, but they require more sophisticated power converter technology, which increases their cost. LEDs need more sophisticated converters because they require a different type of power (low voltage direct current, or DC) than what's generally supplied by power outlets. The CUNY Energy Institute is developing sophisticated power converters for LEDs that contain capacitors made from new, nanoscale materials. Capacitors are electrical components that are used to store energy. CUNY's unique capacitors are configured with advanced power circuits to more efficiently control and convert power to the LED lighting source. They also eliminate the need for large magnetic components, instead relying on networks of capacitors that can be easily printed on plastic substrate. CUNY's prototype LED power converter already meets DOE's 2020 projections for the energy efficiency of LED power converters.

  1. Tunable Laser Plasma Accelerator based on Longitudinal Density Tailoring

    SciTech Connect (OSTI)

    Gonsalves, Anthony; Nakamura, Kei; Lin, Chen; Panasenko, Dmitriy; Shiraishi, Satomi; Sokollik, Thomas; Benedetti, Carlo; Schroeder, Carl; Geddes, Cameron; Tilborg, Jeroen van; Osterhoff, Jens; Esarey, Eric; Toth, Csaba; Leemans, Wim

    2011-07-15T23:59:59.000Z

    Laser plasma accelerators have produced high-quality electron beams with GeV energies from cm-scale devices and are being investigated as hyperspectral fs light sources producing THz to {gamma}-ray radiation and as drivers for future high-energy colliders. These applications require a high degree of stability, beam quality and tunability. Here we report on a technique to inject electrons into the accelerating field of a laser-driven plasma wave and coupling of this injector to a lower-density, separately tunable plasma for further acceleration. The technique relies on a single laser pulse powering a plasma structure with a tailored longitudinal density profile, to produce beams that can be tuned in the range of 100-400 MeV with percent-level stability, using laser pulses of less than 40 TW. The resulting device is a simple stand-alone accelerator or the front end for a multistage higher-energy accelerator.

  2. Department of Mechanical Engineering Spring 2013 Lumax Lighting 2: LED Industrial High Bay Light Fixture

    E-Print Network [OSTI]

    Demirel, Melik C.

    PENNSTATE Department of Mechanical Engineering Spring 2013 Lumax Lighting 2: LED Industrial High Bay Light Fixture Overview The problem that our sponsor, Rich Taylor, presented to the team was to design a light fixture for an industrial setting using high power LED lights. The challenge

  3. Active region based on graded-gap InGaN/GaN superlattices for high-power 440- to 470-nm light-emitting diodes

    SciTech Connect (OSTI)

    Tsatsulnikov, A. F., E-mail: Andrew@beam.ioffe.ru; Lundin, W. V.; Sakharov, A. V.; Zavarin, E. E.; Usov, S. O.; Nikolaev, A. E.; Cherkashin, N. A.; Ber, B. Ya.; Kazantsev, D. Yu. [Russian Academy of Sciences, Ioffe Physicotechnical Institute (Russian Federation); Mizerov, M. N. [Russian Academy of Sciences, Center for Microelectronics, Ioffe Physicotechnical Institute (Russian Federation); Park, Hee Seok [Samsung Electro-Mechanics Co. Ltd. (Korea, Republic of); Hytch, M.; Hue, F. [National Center for Scientific Research, Center for Material Elaboration and Structural Studies (France)

    2010-01-15T23:59:59.000Z

    The structural and optical properties of light-emitting diode structures with an active region based on ultrathin InGaN quantum wells limited by short-period InGaN/GaN superlattices from both sides have been investigated. The dependences of the external quantum efficiency on the active region design are analyzed. It is shown that the use of InGaN/GaN structures as limiting graded-gap short-period superlattices may significantly increase the quantum efficiency.

  4. Advanced method for increasing the efficiency of white light quantum dot LEDs

    SciTech Connect (OSTI)

    Duty, Chad E [ORNL; Bennett, Charlee J C [ORNL; Sabau, Adrian S [ORNL; Jellison Jr, Gerald Earle [ORNL; Boudreaux, Philip R [ORNL; Walker, Steven C [ORNL; Ott, Ronald D [ORNL

    2011-01-01T23:59:59.000Z

    Covering a light-emitting diode (LED) with quantum dots (QDs) can produce a broad spectrum of white light. However, current techniques for applying QDs to LEDs suffer from a high density of defects and a non-uniform distribution of QDs, which, respectively, diminish the efficiency and quality of emitted light. Oak Ridge National Laboratory (ORNL) has the unique capability to thermally anneal QD structures at extremely high power densities for very short durations. This process, called pulse thermal processing (PTP), reduces the number of point defects while maintaining the size and shape of the original QD nanostructure. Therefore, the efficiency of the QD wavelength conversion layer is improved without altering the emission spectrum defined by the size distribution of theQD nanoparticles. The current research uses a thermal model to predict annealing temperatures during PTP and demonstrates up to a 300% increase in photoluminescence for QDs on passive substrates.

  5. Light Water Reactor Sustainability (LWRS) Program – Non-Destructive Evaluation (NDE) R&D Roadmap for Determining Remaining Useful Life of Aging Cables in Nuclear Power Plants

    SciTech Connect (OSTI)

    Simmons, Kevin L.; Ramuhalli, Pradeep; Brenchley, David L.; Coble, Jamie B.; Hashemian, Hash; Konnik, Robert; Ray, Sheila

    2012-09-14T23:59:59.000Z

    The purpose of the non-destructive evaluation (NDE) R&D Roadmap for Cables is to support the Materials Aging and Degradation (MAaD) R&D pathway. The focus of the workshop was to identify the technical gaps in detecting aging cables and predicting their remaining life expectancy. The workshop was held in Knoxville, Tennessee, on July 30, 2012, at Analysis and Measurement Services Corporation (AMS) headquarters. The workshop was attended by 30 experts in materials, electrical engineering, U.S. Nuclear Regulatory Commission (NRC), U.S. Department of Energy (DOE) National Laboratories (Oak Ridge National Laboratory, Pacific Northwest National Laboratory, Argonne National Laboratory, and Idaho National Engineering Laboratory), NDE instrumentation development, universities, commercial NDE services and cable manufacturers, and Electric Power Research Institute (EPRI). The motivation for the R&D roadmap comes from the need to address the aging management of in-containment cables at nuclear power plants (NPPs).

  6. Low density metal hydride foams

    DOE Patents [OSTI]

    Maienschein, Jon L. (Oakland, CA); Barry, Patrick E. (Pleasant Hill, CA)

    1991-01-01T23:59:59.000Z

    Disclosed is a low density foam having a porosity of from 0 to 98% and a density less than about 0.67 gm/cc, prepared by heating a mixture of powered lithium hydride and beryllium hydride in an inert atmosphere at a temperature ranging from about 455 to about 490 K for a period of time sufficient to cause foaming of said mixture, and cooling the foam thus produced. Also disclosed is the process of making the foam.

  7. Cerenkov Light

    ScienceCinema (OSTI)

    Slifer, Karl

    2014-05-22T23:59:59.000Z

    The bright blue glow from nuclear reactors is Cerenkov light. Karl Slifer describes how nuclear physicists can use this phenomenon to study the nucleus of the atom.

  8. Cerenkov Light

    SciTech Connect (OSTI)

    Slifer, Karl

    2013-06-13T23:59:59.000Z

    The bright blue glow from nuclear reactors is Cerenkov light. Karl Slifer describes how nuclear physicists can use this phenomenon to study the nucleus of the atom.

  9. Lighting Renovations

    Broader source: Energy.gov [DOE]

    When undertaking a lighting renovation in a Federal building, daylighting is the primary renewable energy opportunity. Photovoltaics (PV) also present an excellent opportunity. While this guide...

  10. High Energy Density Capacitors

    SciTech Connect (OSTI)

    None

    2010-07-01T23:59:59.000Z

    BEEST Project: Recapping is developing a capacitor that could rival the energy storage potential and price of today’s best EV batteries. When power is needed, the capacitor rapidly releases its stored energy, similar to lightning being discharged from a cloud. Capacitors are an ideal substitute for batteries if their energy storage capacity can be improved. Recapping is addressing storage capacity by experimenting with the material that separates the positive and negative electrodes of its capacitors. These separators could significantly improve the energy density of electrochemical devices.

  11. Active Power Control from Wind Power (Presentation)

    SciTech Connect (OSTI)

    Ela, E.; Brooks, D.

    2011-04-01T23:59:59.000Z

    In order to keep the electricity grid stable and the lights on, the power system relies on certain responses from its generating fleet. This presentation evaluates the potential for wind turbines and wind power plants to provide these services and assist the grid during critical times.

  12. CONTROL OF POPULATION DENSITIES SURROUNDING NUCLEAR POWER PLANTS. VOLUME 5 OF THE FINAL REPORT ON HEALTH AND SAFETY IMPACTS OF NUCLEAR, GEOTHERMAL, AND FOSSIL-FUEL ELECTRIC GENERATION IN CALIFORNIA

    E-Print Network [OSTI]

    Nero, jA.V.

    2010-01-01T23:59:59.000Z

    Standards for Nuclear Power Plants," by A.V. Nero and Y.C.Planning for Nuclear Power Plants in California," by W.W.S.Surrounding Nuclear Power Plants," by A.V. Nero, C.H.

  13. Power Factor Reactive Power

    E-Print Network [OSTI]

    motor power: 117.7 V x 5.1 A = 600 W? = 0.6 kW? NOT the power measured by meter #12;Page 9 PSERC: displacement power factor: angle between voltage and current = 0 degrees pf = cos(0 degrees) = 1.0 true powerPage 1 PSERC Power Factor and Reactive Power Ward Jewell Wichita State University Power Systems

  14. Energy-efficient lighting system for television

    DOE Patents [OSTI]

    Cawthorne, Duane C. (Amarillo, TX)

    1987-07-21T23:59:59.000Z

    A light control system for a television camera comprises an artificial light control system which is cooperative with an iris control system. This artificial light control system adjusts the power to lamps illuminating the camera viewing area to provide only sufficient artificial illumination necessary to provide a sufficient video signal when the camera iris is substantially open.

  15. STATE OF CALIFORNIA OUTDOOR LIGHTING WORKSHEET

    E-Print Network [OSTI]

    STATE OF CALIFORNIA OUTDOOR LIGHTING WORKSHEET CEC-OLTG-2C (Revised 03/10) CALIFORNIA ENERGY COMMISSION 2008 Nonresidential Compliance Forms March 2010 OUTDOOR LIGHTING WORKSHEET (Page 1 of 3) OLTG-2C Project Name: Date: A. LIGHTING POWER ALLOWANCE FOR GENERAL HARDSCAPE AREA WATTAGE ALLOWANCE (AWA) LINEAR

  16. Solid State Lighting Semiconductor Spectroscopy & Devices

    E-Print Network [OSTI]

    Strathclyde, University of

    and fluorescent lamps, are very inefficient in transforming energy into light. Due to upcoming problems in energy % of Earth's total power consumption is used for lighting! Figure 3: Earth at night from space. Evolution inside a semiconductor for light emission. Over 150 years ago... How to achieve white LEDs? Figure 5

  17. Energy Conversion: Solid-State Lighting

    E-Print Network [OSTI]

    8 Energy Conversion: Solid-State Lighting E. Kioupakis1,2 , P. Rinke1,3 , A. Janotti1 , Q. Yan1 fraction of the world's energy resources [1]. Lighting has been one of the earliest applications. The inefficiency of existing light sources that waste most of the power they consume is the reason for this large

  18. Intercrystalline density on nanocrystalline nickel

    SciTech Connect (OSTI)

    Haasz, T.R.; Aust, K.T. [Univ. of Toronto, Ontario (Canada). Dept. of Metallurgy and Materials Science] [Univ. of Toronto, Ontario (Canada). Dept. of Metallurgy and Materials Science; Palumbo, G. [Ontario Hydro Research Div., Toronto, Ontario (Canada)] [Ontario Hydro Research Div., Toronto, Ontario (Canada); El-Sherik, A.M.; Erb, U. [Queen`s Univ., Kingston, Ontario (Canada). Dept. of Materials and Metallurgical Engineering] [Queen`s Univ., Kingston, Ontario (Canada). Dept. of Materials and Metallurgical Engineering

    1995-02-01T23:59:59.000Z

    Most methods currently available for the synthesis of nanostructured materials result in considerable residual porosity. Studies concerned with the novel structures and properties of these materials are thus compromised by the intrinsically high levels of porosity. As recently shown by Kristic et al., porosity can have a significant effect on fundamental materials properties such as Young`s modulus. One of the most promising techniques for the production of fully dense nanocrystalline materials is electrodeposition. In the present work, the residual porosity and density of nanostructured nickel produced by the electrodeposition method is assessed and discussed in light of the intrinsic intercrystalline density of nickel.

  19. Light Water Reactor Sustainability (LWRS) Program – Non-Destructive Evaluation (NDE) R&D Roadmap for Determining Remaining Useful Life of Aging Cables in Nuclear Power Plants

    SciTech Connect (OSTI)

    Simmons, K.L.; Ramuhali, P.; Brenchley, D.L.; Coble, J.B.; Hashemian, H.M.; Konnick, R.; Ray, S.

    2012-09-01T23:59:59.000Z

    Executive Summary [partial] The purpose of the non-destructive evaluation (NDE) R&D Roadmap for Cables is to support the Materials Aging and Degradation (MAaD) R&D pathway. A workshop was held to gather subject matter experts to develop the NDE R&D Roadmap for Cables. The focus of the workshop was to identify the technical gaps in detecting aging cables and predicting their remaining life expectancy. The workshop was held in Knoxville, Tennessee, on July 30, 2012, at Analysis and Measurement Services Corporation (AMS) headquarters. The workshop was attended by 30 experts in materials, electrical engineering, and NDE instrumentation development from the U.S. Nuclear Regulatory Commission (NRC), U.S. Department of Energy (DOE) National Laboratories (Oak Ridge National Laboratory, Pacific Northwest National Laboratory, Argonne National Laboratory, and Idaho National Engineering Laboratory), universities, commercial NDE service vendors and cable manufacturers, and the Electric Power Research Institute (EPRI).

  20. Thermo-electrically pumped semiconductor light emitting diodes

    E-Print Network [OSTI]

    Santhanam, Parthiban

    2014-01-01T23:59:59.000Z

    Thermo-electric heat exchange in semiconductor light emitting diodes (LEDs) allows these devices to emit optical power in excess of the electrical power used to drive them, with the remaining power drawn from ambient heat. ...

  1. Automatic Mechetronic Wheel Light Device

    DOE Patents [OSTI]

    Khan, Mohammed John Fitzgerald (Silver Spring, MD)

    2004-09-14T23:59:59.000Z

    A wheel lighting device for illuminating a wheel of a vehicle to increase safety and enhance aesthetics. The device produces the appearance of a "ring of light" on a vehicle's wheels as the vehicle moves. The "ring of light" can automatically change in color and/or brightness according to a vehicle's speed, acceleration, jerk, selection of transmission gears, and/or engine speed. The device provides auxiliary indicator lights by producing light in conjunction with a vehicle's turn signals, hazard lights, alarm systems, and etc. The device comprises a combination of mechanical and electronic components and can be placed on the outer or inner surface of a wheel or made integral to a wheel or wheel cover. The device can be configured for all vehicle types, and is electrically powered by a vehicle's electrical system and/or battery.

  2. Enhancing the use of coals by gas reburning-sorbent injection: Volume 4 -- Gas reburning-sorbent injection at Lakeside Unit 7, City Water, Light and Power, Springfield, Illinois. Final report

    SciTech Connect (OSTI)

    NONE

    1996-03-01T23:59:59.000Z

    A demonstration of Gas Reburning-Sorbent Injection (GR-SI) has been completed at a cyclone-fired utility boiler. The Energy and Environmental Research Corporation (EER) has designed, retrofitted and tested a GR-SI system at City Water Light and Power`s 33 MWe Lakeside Station Unit 7. The program goals of 60% NO{sub x} emissions reduction and 50% SO{sub 2} emissions reduction were exceeded over the long-term testing period; the NO{sub x} reduction averaged 63% and the SO{sub 2} reduction averaged 58%. These were achieved with an average gas heat input of 22% and a calcium (sorbent) to sulfur (coal) molar ratio of 1.8. GR-SI resulted in a reduction in thermal efficiency of approximately 1% at full load due to firing natural gas which forms more moisture in flue gas than coal and also results in a slight increase in air heater exit gas temperature. Minor impacts on other areas of unit performance were measured and are detailed in this report. The project at Lakeside was carried out in three phases, in which EER designed the GR-SI system (Phase 1), completed construction and start-up activities (Phase 2), and evaluated its performance with both short parametric tests and a long-term demonstration (Phase 3). This report contains design and technical performance data; the economics data for all sites are presented in Volume 5.

  3. Environmental Assessment for Central Power and Light Company`s proposed Military Highway-CFE tie 138/69-kV transmission line project Brownsville, Cameron County, Texas

    SciTech Connect (OSTI)

    Not Available

    1992-04-01T23:59:59.000Z

    Central Power and Light Company (CPL) intends to upgrade its existing transmission line ties with the Commision Federal de Electricidad (CFE) system in Mexico. CPL currently has a single 69-kilovolt (kV) transmission line in the Brownsville area which connects CPL`s system with the system of CFE. This existing line runs between the Brownsville Switching Station, located on Laredo Road in Brownsville, Cameron County, Texas, and an existing CFE 69-kV line at the Rusteberg Bend of the Rio Grande in Cameron County. Under current conditions of need, the existing 69-kV line does not possess sufficient capability to engage in appropriate power exchanges. Therefore, CPL is proposing to build a new line to link up with CFE. This proposed line would be a double-circuit line, which would (1) continue (on a slightly relocated route) the existing 69-kV tie from CPL`s Brownsville Switching Station to CFE`s facilities, and (2) add a 138-kV tie from the Military Highway Substation, located on Military Highway (US Highway 281), to CFE`s facilities. The proposed 138/69-kV line, which will be constructed and operated by CPL, will be built primarily on steel single-pole structures within an average 60-foot (ft) wide right-of-way (ROW). It will be approximately 6900--9200 ft (1.3--1.7 miles) in length, depending on the alternative route constructed.

  4. Transportation and Stationary Power

    E-Print Network [OSTI]

    ) is small. Previous feedback from industry has indicated that existing transportation fuel providers (oil for multiple fuel cell applications, including material handling equipment, backup power, and light- or heavy

  5. VOLUME 76, NUMBER 8 P H Y S I C A L R E V I E W L E T T E R S 19 FEBRUARY 1996 Large Local-Field Corrections in Optical Rotatory Power of Quartz and Selenium

    E-Print Network [OSTI]

    Wilkins, John

    local fields are needed despite the vector character of light. A self-energy-corrected local-density for linearly polarized light. This phenomenon is described by the optical rotatory power r v nL 2 nR 2c, where-Field Corrections in Optical Rotatory Power of Quartz and Selenium Lars Jönsson,1 Zachary H. Levine,1,2 and John W

  6. Effective Daylighting: Evaluating Daylighting Performance in the San Francisco Federal Building from the Perspective of Building Occupants

    E-Print Network [OSTI]

    Konis, Kyle Stas

    2012-01-01T23:59:59.000Z

    Whole-floor effective lighting power density (LPD) for oneto an installed lighting power density considered necessarythat has the maximum Lighting Power Density (LPD) allowed by

  7. Effective Daylighting: Evaluating Daylighting Performance in the San Francisco Federal Building from the Perspective of Building Occupants

    E-Print Network [OSTI]

    Konis, Kyle Stas

    2011-01-01T23:59:59.000Z

    Whole-floor effective lighting power density (LPD) for oneto an installed lighting power density considered necessarythat has the maximum Lighting Power Density (LPD) allowed by

  8. Comfort standards and variation in exceedance for mixed-mode buildings.

    E-Print Network [OSTI]

    Brager, Gail; Borgeson, Sam

    2010-01-01T23:59:59.000Z

    comfort exceedance: lighting power density (W/m 2 ): low ¼example, both lighting and equipment power density defaultand low lighting and equipment power density values were

  9. Benchmarking and Equipment and Controls Assessment for a 'Big Box' Retail Chain

    E-Print Network [OSTI]

    Haves, Philip

    2008-01-01T23:59:59.000Z

    +15% and +30% Lighting power density: -10% and - 20% Roofimprovements in lighting power density reflect the relativeSupply Fan Efficiency Lighting Power Density Roof Insulation

  10. Worldwide Status of Energy Standards for Buildings - Appendices

    E-Print Network [OSTI]

    Janda, K.B.

    2008-01-01T23:59:59.000Z

    clocks) o Installed lighting power density requirements (W /P = Installed lighting power density requirements (W /m 2) Ic. Lighting provisions: Other: power density used for

  11. Uninterruptible Power Supply (UPS) Information and Instructions for How to Reset Them

    E-Print Network [OSTI]

    Oliver, Douglas L.

    indicates that there is power available to the UPS unit o The "BATERY" light indicates that power is being

  12. Lighting system with thermal management system

    DOE Patents [OSTI]

    Arik, Mehmet; Weaver, Stanton; Stecher, Thomas; Seeley, Charles; Kuenzler, Glenn; Wolfe, Jr., Charles; Utturkar, Yogen; Sharma, Rajdeep; Prabhakaran, Satish; Icoz, Tunc

    2013-05-07T23:59:59.000Z

    Lighting systems having unique configurations are provided. For instance, the lighting system may include a light source, a thermal management system and driver electronics, each contained within a housing structure. The light source is configured to provide illumination visible through an opening in the housing structure. The thermal management system is configured to provide an air flow, such as a unidirectional air flow, through the housing structure in order to cool the light source. The driver electronics are configured to provide power to each of the light source and the thermal management system.

  13. atr backup power: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Department of Defense for a safe, secure is used to ensure the availability of electric power for comput- ers, lighting, and telecom equipment for computers, lighting, and...

  14. Light Duty Efficient, Clean Combustion

    SciTech Connect (OSTI)

    Donald Stanton

    2010-12-31T23:59:59.000Z

    Cummins has successfully completed the Light Duty Efficient Clean Combustion (LDECC) cooperative program with DoE. This program was established in 2007 in support of the Department of Energy's Vehicles Technologies Advanced Combustion and Emissions Control initiative to remove critical barriers to the commercialization of advanced, high efficiency, emissions compliant internal combustion (IC) engines for light duty vehicles. Work in this area expanded the fundamental knowledge of engine combustion to new regimes and advanced the knowledge of fuel requirements for these diesel engines to realize their full potential. All of the following objectives were met with fuel efficiency improvement targets exceeded: (1) Improve light duty vehicle (5000 lb. test weight) fuel efficiency by 10.5% over today's state-of-the-art diesel engine on the FTP city drive cycle; (2) Develop and design an advanced combustion system plus aftertreatment system that synergistically meets Tier 2 Bin 5 NOx and PM emissions standards while demonstrating the efficiency improvements; (3) Maintain power density comparable to that of current conventional engines for the applicable vehicle class; and (4) Evaluate different fuel components and ensure combustion system compatibility with commercially available biofuels. Key accomplishments include: (1) A 25% improvement in fuel efficiency was achieved with the advanced LDECC engine equipped with a novel SCR aftertreatment system compared to the 10.5% target; (2) An 11% improvement in fuel efficiency was achieved with the advanced LDECC engine and no NOx aftertreamtent system; (3) Tier 2 Bin 5 and SFTP II emissions regulations were met with the advanced LDECC engine equipped with a novel SCR aftertreatment system; (4) Tier 2 Bin 5 emissions regulations were met with the advanced LDECC engine and no NOx aftertreatment, but SFTP II emissions regulations were not met for the US06 test cycle - Additional technical barriers exist for the no NOx aftertreatment engine; (5) Emissions and efficiency targets were reached with the use of biodiesel. A variety of biofuel feedstocks (soy, rapeseed, etc.) was investigated; (6) The advanced LDECC engine with low temperature combustion was compatible with commercially available biofuels as evaluated by engine performance testing and not durability testing; (7) The advanced LDECC engine equipped with a novel SCR aftertreatment system is the engine system architecture that is being further developed by the Cummins product development organization. Cost reduction and system robustness activities have been identified for future deployment; (8) The new engine and aftertreatment component technologies are being developed by the Cummins Component Business units (e.g. fuel system, turbomachinery, aftertreatment, electronics, etc.) to ensure commercial viability and deployment; (9) Cummins has demonstrated that the technologies developed for this program are scalable across the complete light duty engine product offerings (2.8L to 6.7L engines); and (10) Key subsystems developed include - sequential two stage turbo, combustions system for low temperature combustion, novel SCR aftertreatment system with feedback control, and high pressure common rail fuel system. An important element of the success of this project was leveraging Cummins engine component technologies. Innovation in component technology coupled with system integration is enabling Cummins to move forward with the development of high efficiency clean diesel products with a long term goal of reaching a 40% improvement in thermal efficiency for the engine plus aftertreatment system. The 40% improvement is in-line with the current light duty vehicle efficiency targets set by the 2010 DoE Vehicle Technologies MYPP and supported through co-operative projects such as the Cummins Advanced Technology Powertrains for Light-Duty Vehicles (ATP-LD) started in 2010.

  15. Light Duty Efficient, Clean Combustion

    SciTech Connect (OSTI)

    Stanton, Donald W

    2011-06-03T23:59:59.000Z

    Cummins has successfully completed the Light Duty Efficient Clean Combustion (LDECC) cooperative program with DoE. This program was established in 2007 in support of the Department of Energy’s Vehicles Technologies Advanced Combustion and Emissions Control initiative to remove critical barriers to the commercialization of advanced, high efficiency, emissions compliant internal combustion (IC) engines for light duty vehicles. Work in this area expanded the fundamental knowledge of engine combustion to new regimes and advanced the knowledge of fuel requirements for these diesel engines to realize their full potential. All of the following objectives were met with fuel efficiency improvement targets exceeded: 1. Improve light duty vehicle (5000 lb. test weight) fuel efficiency by 10.5% over today’s state-ofthe- art diesel engine on the FTP city drive cycle 2. Develop & design an advanced combustion system plus aftertreatment system that synergistically meets Tier 2 Bin 5 NOx and PM emissions standards while demonstrating the efficiency improvements. 3. Maintain power density comparable to that of current conventional engines for the applicable vehicle class. 4. Evaluate different fuel components and ensure combustion system compatibility with commercially available biofuels. Key accomplishments include: ? A 25% improvement in fuel efficiency was achieved with the advanced LDECC engine equipped with a novel SCR aftertreatment system compared to the 10.5% target ? An 11% improvement in fuel efficiency was achieved with the advanced LDECC engine and no NOx aftertreamtent system ? Tier 2 Bin 5 and SFTP II emissions regulations were met with the advanced LDECC engine equipped with a novel SCR aftertreatment system ? Tier 2 Bin 5 emissions regulations were met with the advanced LDECC engine and no NOx aftertreatment, but SFTP II emissions regulations were not met for the US06 test cycle – Additional technical barriers exist for the no NOx aftertreatment engine ? Emissions and efficiency targets were reached with the use of biodiesel. A variety of biofuel feedstocks (soy, rapeseed, etc.) was investigated. ? The advanced LDECC engine with low temperature combustion was compatible with commercially available biofuels as evaluated by engine performance testing and not durability testing. ? The advanced LDECC engine equipped with a novel SCR aftertreatment system is the engine system architecture that is being further developed by the Cummins product development organization. Cost reduction and system robustness activities have been identified for future deployment. ? The new engine and aftertreatment component technologies are being developed by the Cummins Component Business units (e.g. fuel system, turbomachinery, aftertreatment, electronics, etc.) to ensure commercial viability and deployment ? Cummins has demonstrated that the technologies developed for this program are scalable across the complete light duty engine product offerings (2.8L to 6.7L engines) ? Key subsystems developed include – sequential two stage turbo, combustions system for low temperature combustion, novel SCR aftertreatment system with feedback control, and high pressure common rail fuel system An important element of the success of this project was leveraging Cummins engine component technologies. Innovation in component technology coupled with system integration is enabling Cummins to move forward with the development of high efficiency clean diesel products with a long term goal of reaching a 40% improvement in thermal efficiency for the engine plus aftertreatment system. The 40% improvement is in-line with the current light duty vehicle efficiency targets set by the 2010 DoE Vehicle Technologies MYPP and supported through co-operative projects such as the Cummins Advanced Technology Powertrains for Light- Duty Vehicles (ATP-LD) started in 2010.

  16. Tweedie Family Densities: Methods of Evaluation

    E-Print Network [OSTI]

    Smyth, Gordon K.

    of Queensland, St Lucia, Q 4072, Australia. 2 University of Southern Queensland, Toowoomba, Q 4350, Australia. Tweedie family densities are characterised by power variance functions of the form V[µ] = µp , where p

  17. Traffic Light Mapping and Detection Nathaniel Fairfield Chris Urmson

    E-Print Network [OSTI]

    Tomkins, Andrew

    by lines painted on the road, traffic lights indicate precedence at intersections, brake lights show when, are becoming common- place as part of commercial driver-assistance systems. With power steering, power brakes obstructions or false positives such as those induced by the brake lights of other vehicles. Happily, both

  18. Spatially resolved determination of the short-circuit current density of silicon solar cells via lock-in thermography

    SciTech Connect (OSTI)

    Fertig, Fabian, E-mail: fabian.fertig@ise.fraunhofer.de; Greulich, Johannes; Rein, Stefan [Fraunhofer Institute for Solar Energy Systems ISE, Heidenhofstr. 2, D-79110 Freiburg (Germany)

    2014-05-19T23:59:59.000Z

    We present a spatially resolved method to determine the short-circuit current density of crystalline silicon solar cells by means of lock-in thermography. The method utilizes the property of crystalline silicon solar cells that the short-circuit current does not differ significantly from the illuminated current under moderate reverse bias. Since lock-in thermography images locally dissipated power density, this information is exploited to extract values of spatially resolved current density under short-circuit conditions. In order to obtain an accurate result, one or two illuminated lock-in thermography images and one dark lock-in thermography image need to be recorded. The method can be simplified in a way that only one image is required to generate a meaningful short-circuit current density map. The proposed method is theoretically motivated, and experimentally validated for monochromatic illumination in comparison to the reference method of light-beam induced current.

  19. Light Computing

    E-Print Network [OSTI]

    Gordon Chalmers

    2006-10-13T23:59:59.000Z

    A configuration of light pulses is generated, together with emitters and receptors, that allows computing. The computing is extraordinarily high in number of flops per second, exceeding the capability of a quantum computer for a given size and coherence region. The emitters and receptors are based on the quantum diode, which can emit and detect individual photons with high accuracy.

  20. Room temperature all-silicon photonic crystal nanocavity light emitting diode at sub-bandgap wavelengths

    E-Print Network [OSTI]

    Shakoor, A; Cardile, P; Portalupi, S L; Gerace, D; Welna, K; Boninelli, S; Franzo, G; Priolo, F; Krauss, T F; Galli, M; Faolain, L O

    2013-01-01T23:59:59.000Z

    Silicon is now firmly established as a high performance photonic material. Its only weakness is the lack of a native electrically driven light emitter that operates CW at room temperature, exhibits a narrow linewidth in the technologically important 1300- 1600 nm wavelength window, is small and operates with low power consumption. Here, an electrically pumped all-silicon nano light source around 1300-1600 nm range is demonstrated at room temperature. Using hydrogen plasma treatment, nano-scale optically active defects are introduced into silicon, which then feed the photonic crystal nanocavity to enahnce the electrically driven emission in a device via Purcell effect. A narrow ({\\Delta}{\\lambda} = 0.5 nm) emission line at 1515 nm wavelength with a power density of 0.4 mW/cm2 is observed, which represents the highest spectral power density ever reported from any silicon emitter. A number of possible improvements are also discussed, that make this scheme a very promising light source for optical interconnects a...

  1. E-Print Network 3.0 - alpha-u charge density Sample Search Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    University of Florida Collection: Physics 31 Conducting Polymer Nanotubes toward Supercapacitor Ran Liu and Sang Bok Lee* Summary: density, power density values of the...

  2. Advanced lighting guidelines: 1993. Final report

    SciTech Connect (OSTI)

    Eley, C.; Tolen, T.M. [Eley Associates, San Francisco, CA (United States); Benya, J.R. [Luminae Souter Lighting Design, San Francisco, CA (United States); Rubinstein, F.; Verderber, R. [Lawrence Berkeley Lab., CA (United States)

    1993-12-31T23:59:59.000Z

    The 1993 Advanced Lighting Guidelines document consists of twelve guidelines that provide an overview of specific lighting technologies and design application techniques utilizing energy-efficient lighting practice. Lighting Design Practice assesses energy-efficient lighting strategies, discusses lighting issues, and explains how to obtain quality lighting design and consulting services. Luminaires and Lighting Systems surveys luminaire equipment designed to take advantage of advanced technology lamp products and includes performance tables that allow for accurate estimation of luminaire light output and power input. The additional ten guidelines -- Computer-Aided Lighting Design, Energy-Efficient Fluorescent Ballasts, Full-Size Fluorescent Lamps, Compact Fluorescent Lamps, Tungsten-Halogen Lamps, Metal Halide and HPS Lamps, Daylighting and Lumen Maintenance, Occupant Sensors, Time Scheduling Systems, and Retrofit Control Technologies -- each provide a product technology overview, discuss current products on the lighting equipment market, and provide application techniques. This document is intended for use by electric utility personnel involved in lighting programs, lighting designers, electrical engineers, architects, lighting manufacturers` representatives, and other lighting professionals.

  3. Light scattering apparatus and method for determining radiation exposure to plastic detectors

    DOE Patents [OSTI]

    Hermes, Robert E. (White Rock, NM)

    2002-01-01T23:59:59.000Z

    An improved system and method of analyzing cumulative radiation exposure registered as pits on track etch foils of radiation dosimeters. The light scattering apparatus and method of the present invention increases the speed of analysis while it also provides the ability to analyze exposure levels beyond that which may be properly measured with conventional techniques. Dosimeters often contain small plastic sheets that register accumulated damage when exposed to a radiation source. When the plastic sheet from the dosimeter is chemically etched, a track etch foil is produced wherein pits or holes are created in the plastic. The number of these pits, or holes, per unit of area (pit density) correspond to the amount of cumulative radiation exposure which is being optically measured by the apparatus. To measure the cumulative radiation exposure of a track etch foil a high intensity collimated beam is passed through foil such that the pits and holes within the track etch foil cause a portion of the impinging light beam to become scattered upon exit. The scattered light is focused with a lens, while the primary collimated light beam (unscattered light) is blocked. The scattered light is focused by the lens onto an optical detector capable of registering the optical power of the scattered light which corresponds to the cumulative radiation to which the track etch foil has been exposed.

  4. Engineering Density of States of Earth Abundant Semiconductors...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of States of Earth Abundant Semiconductors for Enhanced Thermoelectric Power Factor Engineering Density of States of Earth Abundant Semiconductors for Enhanced Thermoelectric...

  5. Smart Lighting ERC Industrial Speaker Series

    E-Print Network [OSTI]

    Varela, Carlos

    . About Crystal IS Crystal IS Inc. is the world leading manufacturer of ultraviolet light emitting diodes on native AlN high-quality substrates. These layers are fabricated into mid- ultraviolet light emitting diodes with peak wavelengths in the range of 240-275 nm. The low threading dislocation density

  6. Quasi Light Fields: A Model of Coherent Image Formation

    E-Print Network [OSTI]

    Accardi, Anthony J.

    We develop a model of coherent image formation that strikes a balance between the simplicity of the light field and the comprehensive predictive power of Maxwell's equations, by extending the light field to coherent radiation.

  7. Residential Lighting

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiation Protection Technical squestionnairesquestionnaires AgreementLighting

  8. Q&A: Plugging In with a Power Lineman

    Broader source: Energy.gov [DOE]

    Power lineman are integral in keeping the lights on. Here's a Q&A with a third-generation power lineman.

  9. Power Plant Power Plant

    E-Print Network [OSTI]

    Tingley, Joseph V.

    Basin Center for Geothermal Energy at University of Nevada, Reno (UNR) 2 Nevada Geodetic LaboratoryStillwater Power Plant Wabuska Power Plant Casa Diablo Power Plant Glass Mountain Geothermal Area Lassen Geothermal Area Coso Hot Springs Power Plants Lake City Geothermal Area Thermo Geothermal Area

  10. Lighting Inventory Lighting Theatre and Drama

    E-Print Network [OSTI]

    Indiana University

    Lighting Inventory Lighting Theatre and Drama Description Totals R.Halls Wells- Metz Light ERS ETC SourceFour 25 25 50 degree ERS Strand Lighting 64 14 24 12 14 36 degree ERS ETC Source Four 15 15 36 degree ERS Strand Lighting 124 60 58 2 4 26 degree ERS ETC SourceFour 2 2 26 degree ERS Strand

  11. Lighting Test Facilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12electron 9 5Let us countLighting Sign In About

  12. Florida Power and Light- Solar Rebate Program

    Broader source: Energy.gov [DOE]

    Note: This program will not be offered after 2015. More information is available on FPL's solar rebate web site.

  13. Garland Power & Light- Energy Efficiency Rebate Programs

    Broader source: Energy.gov [DOE]

    Residential customers also qualify for rebates when they install high efficiency window air conditioning units with an Energy Star Rating or make weatherization improvements to already existing...

  14. Powering your car with sun light

    SciTech Connect (OSTI)

    Cosgrove, Daniel; Brown, Nicole; Kiemle, Sarah

    2013-07-18T23:59:59.000Z

    Representing the Center for Lignocellulose Structure and Formation (CLSF), this document is one of the entries in the Ten Hundred and One Word Challenge and was awarded "Overall Winner." As part of the challenge, the 46 Energy Frontier Research Centers were invited to represent their science in images, cartoons, photos, words and original paintings, but any descriptions or words could only use the 1000 most commonly used words in the English language, with the addition of one word important to each of the EFRCs and the mission of DOE: energy. The mission of the CLSF is to dramatically increase our fundamental knowledge of the formation and physical interactions of bio-polymer networks in plant cell walls to provide a basis for improved methods for converting biomass into fuels.

  15. Electric Light and Power Rules (North Carolina)

    Broader source: Energy.gov [DOE]

    These rules shall apply to any person, firm, or corporation (except municipalities, or agents thereof) which is now or may hereafter become engaged as a public utility in the business of furnishing...

  16. Whitefield Power Light | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTown ofNationwideWTEDBird, Idaho: Energy Resources JumpMeadowOpen

  17. Indianapolis Power Light | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof Energy 2,AUDIT REPORTEnergyFarms AHefeiHydroenergy CompanyJump to:JumpIndiana

  18. Waverly Light and Power | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTri GlobalJump to: navigation,Goff, 2002) | OpenEnergy ASWavegen

  19. Hemphill Power Light Company | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetec AG|InformationInformation Station - SouthEntryHemphill

  20. Clyde Light & Power | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof EnergyInnovationin UrbanCity ofCityCleanInformation ClimateClioGateway

  1. Anthracite Power & Light | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia: Energy Resources JumpAnaconda, Montana:Information

  2. Lakeview Light & Power | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroup |Jilin Zhongdiantou NewKorea PartsLLNLLaizhou Luneng WindLakeLakeview

  3. MANDATORY MEASURES OUTDOOR LIGHTING CONTROLS

    E-Print Network [OSTI]

    California at Davis, University of

    EXTERIOR SPACES COMPLY WITH TITLE 24 There are two major steps for exterior spaces to comply with Title 24 for exterior space. A space complies with these requirements if the actual lighting power used in the space. Backlight Backlight includes all illumination that is in the space between the ground and 80 degrees above

  4. LED Lighting Basics

    Broader source: Energy.gov [DOE]

    Light-Emitting diodes (LEDs) efficiently produce light in a fundamentally different way than any legacy or traditional source of light.

  5. Light Water Reactor Sustainability Program - Non-Destructive...

    Energy Savers [EERE]

    for Determining Remaining Useful Life of Aging Cables in Nuclear Power Plants Light Water Reactor Sustainability Program - Non-Destructive Evaluation R&D Roadmap for...

  6. Light-shift modulated photon-echo

    E-Print Network [OSTI]

    Chanelière, Thierry

    2015-01-01T23:59:59.000Z

    We show that the AC-Stark shift (light-shift) is a powerful and versatile tool to control the emission of a photon-echo in the context of optical storage. As a proof-of-principle, we demonstrate that the photon-echo efficiency can be fully modulated by applying light-shift control pulses in an erbium doped solid. The control of the echo emission is attributed to the spatial gradient induced by the light-shift beam.

  7. Light-shift modulated photon-echo

    E-Print Network [OSTI]

    Thierry Chanelière; Gabriel Hétet

    2015-02-24T23:59:59.000Z

    We show that the AC-Stark shift (light-shift) is a powerful and versatile tool to control the emission of a photon-echo in the context of optical storage. As a proof-of-principle, we demonstrate that the photon-echo efficiency can be fully modulated by applying light-shift control pulses in an erbium doped solid. The control of the echo emission is attributed to the spatial gradient induced by the light-shift beam.

  8. Delmarva Power Light Company Delmarva Power | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualPropertyd8c-a9ae-f8521cbb8489 No revision hasda62829c05b NoCounty,Delaware: Energy

  9. Evaluation of Demand Shifting with Thermal Mass in Two Large Commercial Buildings

    E-Print Network [OSTI]

    Xu, Peng

    2010-01-01T23:59:59.000Z

    in AutoCAD. The lighting power density and equipment loadand west. The lighting power density and equipment load were

  10. Cooperatively enhanced light transmission in cold atomic matter

    E-Print Network [OSTI]

    Kasie Kemp; S. J. Roof; M. D. Havey; I. M. Sokolov; D. V. Kupriyanov

    2014-10-09T23:59:59.000Z

    We report enhanced transmission in measurements of the spectral dependence of forward light scattering by a high-density and cold ensemble of 87Rb atoms. This phenomenon, which is a result of dipole-dipole interaction induced cooperative light scattering in the atomic sample, implies a significant departure from the traditional density dependence of the transmitted light as embodied in the Beer-Lambert Law. Absolute values of the density-dependent forward light scattering cross-section are extracted from the measurements.

  11. Damage tolerant light absorbing material

    DOE Patents [OSTI]

    Lauf, Robert J. (Oak Ridge, TN); Hamby, Jr., Clyde (Harriman, TN); Akerman, M. Alfred (Knoxville, TN); Seals, Roland D. (Oak Ridge, TN)

    1993-01-01T23:59:59.000Z

    A light absorbing article comprised of a composite of carbon-bonded carbon fibers, prepared by: blending carbon fibers with a carbonizable organic powder to form a mixture; dispersing the mixture into an aqueous slurry; vacuum molding the aqueous slurry to form a green article; drying and curing the green article to form a cured article; and, carbonizing the cured article at a temperature of at least about 1000.degree. C. to form a carbon-bonded carbon fiber light absorbing composite article having a bulk density less than 1 g/cm.sup.3.

  12. Damage tolerant light absorbing material

    DOE Patents [OSTI]

    Lauf, R.J.; Hamby, C. Jr.; Akerman, M.A.; Seals, R.D.

    1993-09-07T23:59:59.000Z

    A light absorbing article comprised of a composite of carbon-bonded carbon fibers, is prepared by: blending carbon fibers with a carbonizable organic powder to form a mixture; dispersing the mixture into an aqueous slurry; vacuum molding the aqueous slurry to form a green article; drying and curing the green article to form a cured article; and, carbonizing the cured article at a temperature of at least about 1000 C to form a carbon-bonded carbon fiber light absorbing composite article having a bulk density less than 1 g/cm[sup 3]. 9 figures.

  13. LED Lighting Facts®

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(FactDepartment ofLetter Report:40PM toLED Lighting Facts LED Lighting Facts LEDLED

  14. European Space Power Conference

    SciTech Connect (OSTI)

    Bents, D.J.; Kohout, L.L.; Mckissock, B.I.; Rodriguez, C.D.; Withrow, C.A.; Colozza, A.; Hanlon, J.C.; Schmitz, P.C.

    1991-01-01T23:59:59.000Z

    To support the Space Exploration Initiative (SEI), a study was performed to investigate power system alternatives for the rover vehicles and servicers that were subsequently generated for each of these rovers and servicers, candidate power sources incorporating various power generation and energy storage technologies were identified. The technologies were those believed most appropriate to the SEI missions, and included solar, electrochemical, and isotope systems. The candidates were characterized with respect to system mass, deployed area, and volume. For each of the missions a preliminary selection was made. Results of this study depict the available power sources in light of mission requirements as they are currently defined.

  15. Pacific Power- Energy FinAnswer

    Broader source: Energy.gov [DOE]

    Pacific Power's Energy FinAnswer program provides cash incentives to help its commercial and industrial customers improve their heating, cooling, refrigeration, compressed air, lighting, pumping or...

  16. Black Hills Power- Commercial Energy Efficiency Programs

    Broader source: Energy.gov [DOE]

    Black Hills Power provides rebates for its commercial customers who install energy efficient heat pumps, motors, variable frequency drives, lighting, and water heaters. Custom rebates for approved...

  17. Rocky Mountain Power- FinAnswer Express

    Broader source: Energy.gov [DOE]

    Rocky Mountain Power's FinAnswer Express Program provides extensive incentives and for lighting, HVAC, food service, agricultural, and compressed air equipment. Retrofits of facilities and upgrades...

  18. Rocky Mountain Power- FinAnswer Express

    Broader source: Energy.gov [DOE]

    Rocky Mountain Power's FinAnswer Express Program includes incentives and technical assistance for lighting, HVAC and other equipment upgrades that increase energy efficiency and exceed code...

  19. Pair densities in density functional theory

    E-Print Network [OSTI]

    Chen, Huajie

    2015-01-01T23:59:59.000Z

    The exact interaction energy of a many-electron system is determined by the electron pair density, which is not well-approximated in standard Kohn-Sham density functional models. Here we study the (complicated but well-defined) exact universal map from density to pair density. We show that many common functionals, including the most basic version of the LDA (Dirac exchange with no correlation contribution), arise from particular approximations of this map. We develop an algorithm to compute the map numerically, and apply it to one-parameter families {a*rho(a*x)} of one-dimensional homogeneous and inhomogeneous single-particle densities. We observe that the pair density develops remarkable multiscale patterns which strongly depend on both the particle number and the "width" 1/a of the single-particle density. The simulation results are confirmed by rigorous asymptotic results in the limiting regimes a>>1 and a<<1. For one-dimensional homogeneous systems, we show that the whole spectrum of patterns is rep...

  20. Light trapping in photonic crystals Ken Xingze Wang,ab

    E-Print Network [OSTI]

    Cui, Yi

    Light trapping in photonic crystals Ken Xingze Wang,ab Zongfu Yu,bc Victor Liu,bd Aaswath Raman,b Yi Cuief and Shanhui Fan*b We consider light trapping in photonic crystals in the weak material-integrated absorption enhancement by light trapping is proportional to the photonic density of states. The tight bound

  1. Sustainable Office Lighting Options

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    Sustainable Office Lighting Options Task Lighting: Task lighting is a localized method of lighting a workspace so that additional, unnecessary lighting is eliminated, decreasing energy usage and costs. Illumination levels in the targeted work areas are higher with task lighting than with the ambient levels

  2. areal density measurement: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    University of Rochester, Rochester, New York 14623 Received 14 light. The high-energy protons from these implosions were used to infer fuel areal density (6.8 0.5 mg . In...

  3. Light Show

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12electron 9 5Let us count theLienertLift Forces in9 Lightning

  4. Influence of Dark Matter on Light Propagation in Solar System

    E-Print Network [OSTI]

    Hideyoshi Arakida

    2009-11-17T23:59:59.000Z

    We investigated the influence of dark matter on light propagation in the solar system. We assumed the spherical symmetry of spacetime and derived the approximate solution of the Einstein equation, which consists of the gravitational attractions caused by the central celestial body, i.e. the Sun, and the dark matter surrounding it. We expressed the dark matter density in the solar system in the following simple power-law form, $\\varrho(t, r) = \\rho(t)(\\ell/r)^k$, where $t$ is the coordinate time; $r$, the radius from the central body; $\\ell$, the normalizing factor; $k$, the exponent characterizing $r$-dependence of dark matter density; and $\\rho(t)$, the arbitrary function of time $t$. On the basis of the derived approximate solution, we focused on light propagation and obtained the additional corrections of the gravitational time delay and the relative frequency shift caused by the dark matter. As an application of our results, we considered the secular increase in the astronomical unit reported by Krasinsky and Brumberg (2004) and found that it was difficult to provide an explanation for the observed $d{\\rm AU}/dt = 15 \\pm 4 ~[{\\rm m/century}]$.

  5. Guidelines for Power Factor Improvement Projects

    E-Print Network [OSTI]

    Massey, G. W.

    Power factor is an indication of electrical system efficiency. Low power factor, or low system efficiency, may be due to one or more causes, including lightly loaded transformers, oversized electric motors, and harmonic-generating non-linear loads...

  6. NO FLARES FROM GAMMA-RAY BURST AFTERGLOW BLAST WAVES ENCOUNTERING SUDDEN CIRCUMBURST DENSITY CHANGE

    SciTech Connect (OSTI)

    Gat, Ilana; Van Eerten, Hendrik; MacFadyen, Andrew [Center for Cosmology and Particle Physics, Physics Department, New York University, New York, NY 10003 (United States)

    2013-08-10T23:59:59.000Z

    Afterglows of gamma-ray bursts are observed to produce light curves with the flux following power-law evolution in time. However, recent observations reveal bright flares at times on the order of minutes to days. One proposed explanation for these flares is the interaction of a relativistic blast wave with a circumburst density transition. In this paper, we model this type of interaction computationally in one and two dimensions, using a relativistic hydrodynamics code with adaptive mesh refinement called RAM, and analytically in one dimension. We simulate a blast wave traveling in a stellar wind environment that encounters a sudden change in density, followed by a homogeneous medium, and compute the observed radiation using a synchrotron model. We show that flares are not observable for an encounter with a sudden density increase, such as a wind termination shock, nor for an encounter with a sudden density decrease. Furthermore, by extending our analysis to two dimensions, we are able to resolve the spreading, collimation, and edge effects of the blast wave as it encounters the change in circumburst medium. In all cases considered in this paper, we find that a flare will not be observed for any of the density changes studied.

  7. Equation for liquid density

    SciTech Connect (OSTI)

    Yaws, C.L.; Yang, H.C.; Hopper, J.R.; Cawley, W.A. (Lamar Univ., Beaumont, TX (US))

    1991-01-01T23:59:59.000Z

    Saturated liquid densities for organic chemicals are given as functions of temperature using a modified Rackett equation.

  8. Broadband turbulent spectra in gamma-ray burst light curves

    SciTech Connect (OSTI)

    Van Putten, Maurice H. P. M. [Astronomy and Space Science, Sejong University, 98 Gunja-Dong Gwangin-gu, Seoul 143-747 (Korea, Republic of); Guidorzi, Cristiano; Frontera, Filippo, E-mail: mvp@sejong.ac.kr [Department of Physics and Earth Sciences, University of Ferrara, Via Saragat 1, I-44122 Ferrara (Italy)

    2014-05-10T23:59:59.000Z

    Broadband power density spectra offer a window to understanding turbulent behavior in the emission mechanism and, at the highest frequencies, in the putative inner engines powering long gamma-ray bursts (GRBs). We describe a chirp search method alongside Fourier analysis for signal detection in the Poisson noise-dominated, 2 kHz sampled, BeppoSAX light curves. An efficient numerical implementation is described in O(Nnlog n) operations, where N is the number of chirp templates and n is the length of the light-curve time series, suited for embarrassingly parallel processing. For the detection of individual chirps over a 1 s duration, the method is one order of magnitude more sensitive in signal-to-noise ratio than Fourier analysis. The Fourier-chirp spectra of GRB 010408 and GRB 970816 show a continuation of the spectral slope with up to 1 kHz of turbulence identified in low-frequency Fourier analysis. The same continuation is observed in an average spectrum of 42 bright, long GRBs. An outlook on a similar analysis of upcoming gravitational wave data is included.

  9. Sandia National Laboratories: auxiliary power

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    emergency backup systems, and light-duty trucks, to name a few. Providing auxiliary power to ships in berth may be added to that list soon. Joe Pratt (Energy Systems...

  10. Sandia National Laboratories: shore power

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    emergency backup systems, and light-duty trucks, to name a few. Providing auxiliary power to ships in berth may be added to that list soon. Joe Pratt (Energy Systems...

  11. EmPower New York

    Broader source: Energy.gov [DOE]

    The primary focus of EmPower New York is to provide cost-effective electric reduction measures, such as replacement of refrigerators and installation of high efficiency lighting. This program also...

  12. Densities and Compressibilities of Chiral Molecules in the Liquid State

    E-Print Network [OSTI]

    Baltisberger, Jay H.

    polarized light into circularly polarized light. #12;Objective · Measure the speed of sound in Limonene 1360 15 20 25 30 35 40 45 50 55 Speed of Sound (m/s) Temperature ( °C) Speed of Sound in LimoneneDensities and Compressibilities of Chiral Molecules in the Liquid State Imelda Hot and Dr. Amer S

  13. Action-Oriented Benchmarking: Using the CEUS Database to Benchmark Commercial Buildings in California

    E-Print Network [OSTI]

    Mathew, Paul

    2008-01-01T23:59:59.000Z

    and two lighting features: lamp power density and lightingbetween lighting energy intensity and lamp power density forlighting energy intensity is positively correlated with lamp power density.

  14. Error Analysis in Nuclear Density Functional Theory

    E-Print Network [OSTI]

    Nicolas Schunck; Jordan D. McDonnell; Jason Sarich; Stefan M. Wild; Dave Higdon

    2014-07-11T23:59:59.000Z

    Nuclear density functional theory (DFT) is the only microscopic, global approach to the structure of atomic nuclei. It is used in numerous applications, from determining the limits of stability to gaining a deep understanding of the formation of elements in the universe or the mechanisms that power stars and reactors. The predictive power of the theory depends on the amount of physics embedded in the energy density functional as well as on efficient ways to determine a small number of free parameters and solve the DFT equations. In this article, we discuss the various sources of uncertainties and errors encountered in DFT and possible methods to quantify these uncertainties in a rigorous manner.

  15. Dynamic Electric Power Supply Chains and Transportation Networks

    E-Print Network [OSTI]

    Nagurney, Anna

    Dynamic Electric Power Supply Chains and Transportation Networks: an Evolutionary Variational energy Electric power supply chains, provide the foundations for theElectric power supply chains, provide and societies. Communication, transportation, heating, lighting, cooling,Communication, transportation, heating

  16. Quasi Light Fields: A Model of Coherent Image Formation

    E-Print Network [OSTI]

    Wornell, Gregory W.

    Quasi Light Fields: A Model of Coherent Image Formation Anthony Accardi and Gregory Wornell formation that strikes a balance between the simplicity of the light field and the comprehensive predictive power of Maxwell's equations, by extending the light field to coherent radiation. © 2009 Optical Society

  17. Lighting Options for Homes.

    SciTech Connect (OSTI)

    Baker, W.S.

    1991-04-01T23:59:59.000Z

    This report covers many aspects of various lighting options for homes. Types of light sources described include natural light, artificial light, incandescent lamps, fluorescent lamps, and high intensity discharge lamps. A light source selection guide gives the physical characteristics of these, design considerations, and common applications. Color, strategies for efficient lighting, and types of lighting are discussed. There is one section giving tips for various situations in specific rooms. Rooms and types of fixtures are shown on a matrix with watts saved by using the recommended type lighting for that room and room location. A major emphasis of this report is saving energy by utilizing the most suitable, recommended lighting option. (BN)

  18. Light disappears rapidly (exponentially)

    E-Print Network [OSTI]

    Kudela, Raphael M.

    #12;#12;#12;#12;Light disappears rapidly (exponentially) with depth At the same time, the color of the light shifts #12;#12;#12;#12;· Euphotic zone ­ plentiful light ­ 0-100 m (about) · Dysphotic zone ­ very, very little light ­ 100-1000 m (about) · Aphotic zone ­ no light ­ below 1000 m #12;Sunlight in Water

  19. Shock compression of low-density foams

    SciTech Connect (OSTI)

    Holmes, N.C.

    1993-07-01T23:59:59.000Z

    Shock compression of very low density micro-cellular materials allows entirely new regimes of hot fluid states to be investigated experimentally. Using a two-stage light-gas gun to generate strong shocks, temperatures of several eV are readily achieved at densities of roughly 0.5--1 g/cm{sup 3} in large, uniform volumes. The conditions in these hot, expanded fluids are readily found using the Hugoniot jump conditions. We will briefly describe the basic methodology for sample preparation and experimental measurement of shock velocities. We present data for several materials over a range of initial densities. This paper will explore the applications of these methods for investigations of equations of state and phase diagrams, spectroscopy, and plasma physics. Finally, we discus the need for future work on these and related low-density materials.

  20. Neutral depletion and the helicon density limit

    SciTech Connect (OSTI)

    Magee, R. M.; Galante, M. E.; Carr, J. Jr.; Lusk, G.; McCarren, D. W.; Scime, E. E. [West Virginia University, Morgantown, West Virginia 26506 (United States)] [West Virginia University, Morgantown, West Virginia 26506 (United States)

    2013-12-15T23:59:59.000Z

    It is straightforward to create fully ionized plasmas with modest rf power in a helicon. It is difficult, however, to create plasmas with density >10{sup 20} m{sup ?3}, because neutral depletion leads to a lack of fuel. In order to address this density limit, we present fast (1 MHz), time-resolved measurements of the neutral density at and downstream from the rf antenna in krypton helicon plasmas. At the start of the discharge, the neutral density underneath the antenna is reduced to 1% of its initial value in 15 ?s. The ionization rate inferred from these data implies that the electron temperature near the antenna is much higher than the electron temperature measured downstream. Neutral density measurements made downstream from the antenna show much slower depletion, requiring 14 ms to decrease by a factor of 1/e. Furthermore, the downstream depletion appears to be due to neutral pumping rather than ionization.

  1. Photovoltaic module with light reflecting backskin

    DOE Patents [OSTI]

    Gonsiorawski, Ronald C. (Danvers, MA)

    2007-07-03T23:59:59.000Z

    A photovoltaic module comprises electrically interconnected and mutually spaced photovoltaic cells that are encapsulated by a light-transmitting encapsulant between a light-transparent front cover and a back cover, with the back cover sheet being an ionomer/nylon alloy embossed with V-shaped grooves running in at least two directions and coated with a light reflecting medium so as to provide light-reflecting facets that are aligned with the spaces between adjacent cells and oriented so as to reflect light falling in those spaces back toward said transparent front cover for further internal reflection onto the solar cells, whereby substantially all of the reflected light will be internally reflected from said cover sheet back to the photovoltaic cells, thereby increasing the current output of the module. The internal reflector improves power output by as much as 67%.

  2. New Light Sources for Tomorrow's Lighting Designs

    E-Print Network [OSTI]

    Krailo, D. A.

    can ever be saved on that monthly energy bill. During the past several years, many new light sources have been developed and introduced. These product introductions have not been limited to anyone lamp type, but instead may be found in fila ment..., fluorescent and high intensity discharge lamp families. Man , ufacturers of light sources have two basic goals for new product development. These goals are high efficiency lighting and improved colo'r rendering properties. High efficiency lighting may take...

  3. Metastable light induced defects in pentacene

    SciTech Connect (OSTI)

    Liguori, R.; Aprano, S.; Rubino, A. [Department of Industrial Engineering (DIIn), University of Salerno, via Giovanni Paolo II, 132, 84084 Fisciano (Italy)

    2014-02-21T23:59:59.000Z

    In this study we analyzed one of the environmental factors that could affect organic materials. Pentacene thin film samples were fabricated and the degradation of their electrical characteristics was measured when the devices were exposed to ultraviolet light irradiation. The results have been reported in terms of a trap density model, which provides a description of the dynamics of light induced electrically active defects in an organic semiconductor.

  4. Texas State Building Energy Code: Analysis of Potential Benefits and Costs of Commercial Lighting Requirements

    SciTech Connect (OSTI)

    Richman, Eric E.; Belzer, David B.; Winiarski, David W.

    2005-09-15T23:59:59.000Z

    The State Energy Conservation Office of Texas has asked the U.S. Department of Energy to analyze the potential energy effect and cost-effectiveness of the lighting requirements in the 2003 IECC as they consider adoption of this energy code. The new provisions of interest in the lighting section of IECC 2003 include new lighting power densities (LPD) and requirements for automatic lighting shutoff controls. The potential effect of the new LPD values is analyzed as a comparison with previous values in the nationally available IECC codes and ASHRAE/IESNA 90.1. The basis for the analysis is a set of lighting models developed as part of the ASHRAE/IES code process, which is the basis for IECC 2003 LPD values. The use of the models allows for an effective comparison of values for various building types of interest to Texas state. Potential effects from control requirements are discussed, and available case study analysis results are provided but no comprehensive numerical evaluation is provided in this limited analysis effort.

  5. Backscatter absorption gas imaging systems and light sources therefore

    DOE Patents [OSTI]

    Kulp, Thomas Jan (Livermore, CA); Kliner, Dahv A. V. (San Ramon, CA); Sommers, Ricky (Oakley, CA); Goers, Uta-Barbara (Campbell, NY); Armstrong, Karla M. (Livermore, CA)

    2006-12-19T23:59:59.000Z

    The location of gases that are not visible to the unaided human eye can be determined using tuned light sources that spectroscopically probe the gases and cameras that can provide images corresponding to the absorption of the gases. The present invention is a light source for a backscatter absorption gas imaging (BAGI) system, and a light source incorporating the light source, that can be used to remotely detect and produce images of "invisible" gases. The inventive light source has a light producing element, an optical amplifier, and an optical parametric oscillator to generate wavelength tunable light in the IR. By using a multi-mode light source and an amplifier that operates using 915 nm pump sources, the power consumption of the light source is reduced to a level that can be operated by batteries for long periods of time. In addition, the light source is tunable over the absorption bands of many hydrocarbons, making it useful for detecting hazardous gases.

  6. Specific light in sculpture

    E-Print Network [OSTI]

    Powell, John William

    1989-01-01T23:59:59.000Z

    Specific light is defined as light from artificial or altered natural sources. The use and manipulation of light in three dimensional sculptural work is discussed in an historic and contemporary context. The author's work ...

  7. Light Duty Combustion Research: Advanced Light-Duty Combustion...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Light Duty Combustion Research: Advanced Light-Duty Combustion Experiments Light Duty Combustion Research: Advanced Light-Duty Combustion Experiments 2009 DOE Hydrogen Program and...

  8. Absolute x-ray yields from laser-irradiated germanium-doped low-density aerogels

    SciTech Connect (OSTI)

    Fournier, K. B.; Satcher, J. H.; May, M. J.; Poco, J. F.; Sorce, C. M.; Colvin, J. D.; Hansen, S. B.; MacLaren, S. A.; Moon, S. J.; Davis, J. F. [Lawrence Livermore National Laboratory, Livermore, California 94551 (United States); Girard, F.; Villette, B.; Primout, M.; Babonneau, D. [Commissariat a l'Energie Atomique-Direction des Application Militaires (CEA/DAM), Ile-de-France, F91297 Arpajon (France); Coverdale, C. A.; Beutler, D. E. [Sandia National Laboratory, Albuquerque, New Mexico 87185 (United States)

    2009-05-15T23:59:59.000Z

    The x-ray yields from laser-irradiated germanium-doped ultra-low-density aerogel plasmas have been measured in the energy range from sub-keV to {approx_equal}15 keV at the OMEGA laser facility at the Laboratory for Laser Energetics, University of Rochester. The targets' x-ray yields have been studied for variation in target size, aerogel density, laser pulse length, and laser intensity. For targets that result in plasmas with electron densities in the range of {approx_equal}10% of the critical density for 3{omega} light, one can expect 10-11 J/sr of x rays with energies above 9 keV, and 600-800 J/sr for energies below 3.5 keV. In addition to the x-ray spectral yields, the x-ray temporal waveforms have been measured and it is observed that the emitted x rays generally follow the delivered laser power, with late-time enhancements of emitted x-ray power correlated with hydrodynamic compression of the hot plasma. Further, the laser energy reflected from the target by plasma instabilities is found to be 2%-7% of the incident energy for individual beam intensities {approx_equal}10{sup 14}-10{sup 15} W/cm{sup 2}. The propagation of the laser heating in the target volume has been characterized with two-dimensional imaging. Source-region heating is seen to be correlated with the temporal profile of the emitted x-ray power.

  9. Absolute X-Ray Yields From Laser-Irradiated Ge-Doped Low-Density Aerogels

    SciTech Connect (OSTI)

    Fournier, K B; Satcher, J H; May, M J; Poco, J F; Sorce, C M; Colvin, J D; Hansen, S B; MacLaren, S A; Moon, S J; Davis, J F; Girard, F; Villette, B; Primout, M; Babonneau, D; Coverdale, C A; Beutler, D E

    2009-02-10T23:59:59.000Z

    We have used the OMEGA laser (Laboratory for Laser Energetics, University of Rochester) to measure the X-ray yields from laser-irradiated germanium-doped ultra-low-density aerogel plasmas in the energy range from sub-keV to {approx} 15 keV. They have studied the targets X-ray yields with variation in target size, aerogel density, laser pulse length and laser intensity. For targets that result in plasmas with electron densities in the range of {approx} 10% of the critical density for 3{omega} light, one can expect 10-11 J/sr of X-rays with energies above 9 keV, and 600-800 J/sr for energies below 3.5 keV. In addition to the X-ray spectral yields, they have measured the X-ray temporal waveforms and found that the emitted X rays generally follow the delivered laser power, with late-time enhancements of emitted X-ray power correlated with hydrodynamic compression of the hot plasma. Also, they find the laser energy reflected from the target by plasma instabilities to be 2-7% of the incident energy for individual beam intensities {approx} 10{sup 14}-10{sup 15} W/cm{sup 2}. They also have characterized the propagation of the laser heating in the target volume with two-dimensional imaging. They find the source-region heating to be correlated with the temporal profile of the emitted X-ray power.

  10. Exciting White Lighting

    Broader source: Energy.gov [DOE]

    Windows that emit light and are more energy efficient? Universal Display’s PHOLED technology enables windows that have transparent light-emitting diodes in them.

  11. Controls for Solid-State Lighting

    SciTech Connect (OSTI)

    Rubinstein, Francis

    2007-06-22T23:59:59.000Z

    This study predicts new hybrid lighting applications for LEDs. In hybrid lighting, LEDs provide a low-energy 'standby' light level while another, more powerful, efficient light source provides light for occupied periods. Lighting controls will allow the two light sources to work together through an appropriate control strategy, typically motion-sensing. There are no technical barriers preventing the use of low through high CRI LEDs for standby lighting in many interior and exterior applications today. The total luminous efficacy of LED systems could be raised by increasing the electrical efficiency of LED drivers to the maximum practically achievable level (94%). This would increase system luminous efficacy by 20-25%. The expected market volumes for many types of LEDs should justify the evolution of new LED drivers that use highly efficient ICs and reduce parts count by means of ASICs. Reducing their electronics parts count by offloading discrete components onto integrated circuits (IC) will allow manufacturers to reduce the cost of LED driver electronics. LED luminaire manufacturers will increasingly integrate the LED driver and thermal management directly in the LED fixture. LED luminaires of the future will likely have no need for separable lamp and ballast because the equipment life of all the LED luminaire components will all be about the same (50,000 hours). The controls and communications techniques used for communicating with conventional light sources, such as dimmable fluorescent lighting, are appropriate for LED illumination for energy management purposes. DALI has been used to control LED systems in new applications and the emerging ZigBee protocol could be used for LEDs as well. Major lighting companies are already moving in this direction. The most significant finding is that there is a significant opportunity to use LEDs today for standby lighting purposes. Conventional lighting systems can be made more efficient still by using LEDs to provide a low-energy standby state when lower light levels are acceptable.

  12. Density-dependent covariant energy density functionals

    SciTech Connect (OSTI)

    Lalazissis, G. A. [Physics Department, Aristotle University of Thessaloniki, GR-54124 (Greece)

    2012-10-20T23:59:59.000Z

    Relativistic nuclear energy density functionals are applied to the description of a variety of nuclear structure phenomena at and away fromstability line. Isoscalar monopole, isovector dipole and isoscalar quadrupole giant resonances are calculated using fully self-consistent relativistic quasiparticle randomphase approximation, based on the relativistic Hartree-Bogoliubovmodel. The impact of pairing correlations on the fission barriers in heavy and superheavy nuclei is examined. The role of pion in constructing desnity functionals is also investigated.

  13. Metallic halide lights and lighting systems. (Latest citations from the US Patent Bibliographic file with exemplary claims). Published Search

    SciTech Connect (OSTI)

    Not Available

    1994-11-01T23:59:59.000Z

    The bibliography contains citations of selected patents concerning the design and operation of metallic halide lights and lighting systems. High pressure, high intensity, and low wattage discharge lamps are described. Citations discuss power sources, lamp life, lamp control circuits, thermal switches, and heat reflective coatings. Applications in sport stadium lighting, vehicle headlights, and crop-lighting are included. (Contains a minimum of 170 citations and includes a subject term index and title list.)

  14. Structure formation: a spherical model for the evolution of the density distribution

    E-Print Network [OSTI]

    P. Valageas

    1998-07-02T23:59:59.000Z

    Within the framework of hierarchical clustering we show that a simple Press-Schechter-like approximation, based on spherical dynamics, provides a good estimate of the evolution of the density field in the quasi-linear regime up to $\\Sigma \\sim 1$. Moreover, it allows one to recover the exact series of the cumulants of the probability distribution of the density contrast in the limit $\\Sigma \\to 0$ which sheds some light on the rigorous result and on ``filtering''. We also obtain similar results for the divergence of the velocity field. Next, we extend this prescription to the highly non-linear regime, using a stable-clustering approximation. Then we recover a specific scaling of the counts-in-cells which is indeed seen in numerical simulations, over a well-defined range. To this order we also introduce an explicit treatment of the behaviour of underdensities, which takes care of the normalization and is linked to the low-density bubbles and the walls one can see in numerical simulations. We compare this to a 1-dimensional adhesion model, and we present the consequences of our prescription for the power-law tail and the cutoff of the density distribution.

  15. The power distribution and neutron fluence measurements and calculations in the VVER-1000 Mock-Up on the LR-0 research reactor

    SciTech Connect (OSTI)

    Kostal, M.; Juricek, V.; Rypar, V.; Svadlenkova, M. [Research Center Rez Ltd., 250 68 Husinec-Rez 130 (Czech Republic); Cvachovec, F. [Univ. of Defence, Kounicova 65, 662 10 Brno (Czech Republic)

    2011-07-01T23:59:59.000Z

    The power density distribution in a reactor has significant influence on core structures and pressure vessel mechanical resistance, as well as on the physical characteristics of nuclear fuel. This quantity also has an effect on the leakage neutron and photon field. This issue has become of increasing importance, as it touches on actual questions of the VVER nuclear power plant life time extension. This paper shows the comparison of calculated and experimentally determined pin by pin power distributions. The calculation has been performed with deterministic and Monte Carlo approaches. This quantity is accompanied by the neutron and photon flux density calculation and measurements at different points of the light water zero-power (LR-0) research reactor mock-up core, reactor built-in component (core barrel), and reactor pressure vessel and model. The effect of the different data libraries used for calculation is discussed. (authors)

  16. Demand Responsive Lighting: A Scoping Study

    SciTech Connect (OSTI)

    Rubinstein, Francis; Kiliccote, Sila

    2007-01-03T23:59:59.000Z

    The objective of this scoping study is: (1) to identify current market drivers and technology trends that can improve the demand responsiveness of commercial building lighting systems and (2) to quantify the energy, demand and environmental benefits of implementing lighting demand response and energy-saving controls strategies Statewide. Lighting systems in California commercial buildings consume 30 GWh. Lighting systems in commercial buildings often waste energy and unnecessarily stress the electrical grid because lighting controls, especially dimming, are not widely used. But dimmable lighting equipment, especially the dimming ballast, costs more than non-dimming lighting and is expensive to retrofit into existing buildings because of the cost of adding control wiring. Advances in lighting industry capabilities coupled with the pervasiveness of the Internet and wireless technologies have led to new opportunities to realize significant energy saving and reliable demand reduction using intelligent lighting controls. Manufacturers are starting to produce electronic equipment--lighting-application specific controllers (LAS controllers)--that are wirelessly accessible and can control dimmable or multilevel lighting systems obeying different industry-accepted protocols. Some companies make controllers that are inexpensive to install in existing buildings and allow the power consumed by bi-level lighting circuits to be selectively reduced during demand response curtailments. By intelligently limiting the demand from bi-level lighting in California commercial buildings, the utilities would now have an enormous 1 GW demand shed capability at hand. By adding occupancy and light sensors to the remotely controllable lighting circuits, automatic controls could harvest an additional 1 BkWh/yr savings above and beyond the savings that have already been achieved. The lighting industry's adoption of DALI as the principal wired digital control protocol for dimming ballasts and increased awareness of the need to standardize on emerging wireless technologies are evidence of this transformation. In addition to increased standardization of digital control protocols controller capabilities, the lighting industry has improved the performance of dimming lighting systems over the last two years. The system efficacy of today's current dimming ballasts is approaching that of non-dimming program start ballasts. The study finds that the benefits of applying digital controls technologies to California's unique commercial buildings market are enormous. If California were to embark on an concerted 20 year program to improve the demand responsiveness and energy efficiency of commercial building lighting systems, the State could avoid adding generation capacity, improve the elasticity of the grid, save Californians billion of dollars in avoided energy charges and significantly reduce greenhouse gas emissions.

  17. Amending Default Outdoor Lighting Zones by Local Jurisdictions Having Authority (AHJ)

    E-Print Network [OSTI]

    Amending Default Outdoor Lighting Zones by Local Jurisdictions Having Authority (AHJ) An important part of the Standards is to base the outdoor lighting power that is allowed on how bright the surrounding conditions are. The Standards contain lighting power allowances` for newly installed equipment

  18. PowerPoint Presentation

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin of Contamination in235-1Department of60Power Purchase Agreements PowerPowerCentsDC

  19. Power Systems of the Future: A 21st Century Power Partnership Thought Leadership Report (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2015-01-01T23:59:59.000Z

    Powerful trends in technology, policy environments, financing, and business models are driving change in power sectors globally. In light of these trends, the question is no longer whether power systems will be transformed, but rather how these transformations will occur. Power Systems of the Future, a thought leadership report from the 21st Century Power Partnership, explores these pathways explores actions that policymakers and regulators can take to encourage desired power system outcomes.

  20. Spectrally Enhanced Lighting Program Implementation for Energy Savings: Field Evaluation

    SciTech Connect (OSTI)

    Gordon, Kelly L.; Sullivan, Gregory P.; Armstrong, Peter R.; Richman, Eric E.; Matzke, Brett D.

    2006-08-22T23:59:59.000Z

    This report provides results from an evaluation PNNL conducted of a spectrally enhanced lighting demonstration project. PNNL performed field measurements and occupant surveys at three office buildings in California before and after lighting retrofits were made in August and December 2005. PNNL measured the following Overhead lighting electricity demand and consumption, Light levels in the workspace, Task lighting use, and Occupant ratings of satisfaction with the lighting. Existing lighting, which varied in each building, was replaced with lamps with correlated color temperature (CCT) of 5000 Kelvin, color rendering index (CRI) of 85, of varying wattages, and lower ballast factor electronic ballasts. The demonstrations were designed to decrease lighting power loads in the three buildings by 22-50 percent, depending on the existing installed lamps and ballasts. The project designers hypothesized that this reduction in electrical loads could be achieved by the change to higher CCT lamps without decreasing occupant satisfaction with the lighting.

  1. Revolutionary Method for Increasing the Efficiency of White Light Quantum Dot LEDs

    SciTech Connect (OSTI)

    Duty, Chad E [ORNL; Bennett, Charlee J C [ORNL; Sabau, Adrian S [ORNL; Jellison Jr, Gerald Earle [ORNL; Boudreaux, Philip R [ORNL; Walker, Steven C [ORNL; Ott, Ronald D [ORNL

    2011-01-01T23:59:59.000Z

    Covering a light-emitting diode (LED) with quantum dots (QDs) can produce a broad spectrum of white light. However, current techniques for applying QDs to LEDs suffer from a high density of defects and a non-uniform distribution of QDs, which respec-tively diminish the efficiency and quality of emitted light. Oak Ridge National Laboratory (ORNL) has the unique capability to thermally anneal QD structures at extremely high power densities for very short durations. This process, called pulse thermal proc-essing (PTP), reduces the number of point defects while main-taining the size and shape of the original QD nanostructure. Therefore, the efficiency of the QD wavelength conversion layer is improved without altering the emission spectrum defined by the size distribution of the quantum dot nanoparticles. The cur-rent research uses a thermal model to predict annealing tempera-tures during PTP and demonstrates up to a 300% increase in pho-toluminescence for QDs on passive substrates

  2. Lighting and Daylight Harvesting

    E-Print Network [OSTI]

    Bos, J.

    2011-01-01T23:59:59.000Z

    exposing us to the latest products and technologies. Daylight Harvesting A system of controlling the direction and the quantity of light both natural and artificial within a given space. This implies: Control of fenestration in terms of size..., transmission and direction. Control of reflected light within a space. Control of electric light in terms of delivery and amount Daylight harvesting systems are typically designed to maintain a minimum recommended light level. This light level...

  3. EK101 Engineering Light Project: Evaluate Residential Lighting

    E-Print Network [OSTI]

    Bifano, Thomas

    EK101 Engineering Light Project: Evaluate Residential Lighting Compare technical and economic characteristics of three sources of residential light. Two teams of four complete the same project Engineering Light Project: Evaluate Residential Lighting Project Assignment: Evaluate current options

  4. Light pollution in Spain. An european perspective

    E-Print Network [OSTI]

    Alejandro Sanchez de Miguel; Jaime Zamorano

    2008-10-23T23:59:59.000Z

    Spain appears in light pollution maps as a country less polluted than their neighbours in the European Union. This seems to be an illusion due to its low population density. The data indicate that Spain is one of the most contaminated countries. To reach these conclusions we compare the Spanish case to those of other European countries.

  5. Periodic subsystem density-functional theory

    SciTech Connect (OSTI)

    Genova, Alessandro; Pavanello, Michele, E-mail: m.pavanello@rutgers.edu [Department of Chemistry, Rutgers University, Newark, New Jersey 07102 (United States); Ceresoli, Davide [Department of Chemistry, Rutgers University, Newark, New Jersey 07102 (United States); CNR-ISTM, Institute of Molecular Sciences and Technologies, Milano (Italy)

    2014-11-07T23:59:59.000Z

    By partitioning the electron density into subsystem contributions, the Frozen Density Embedding (FDE) formulation of subsystem Density Functional Theory (DFT) has recently emerged as a powerful tool for reducing the computational scaling of Kohn–Sham DFT. To date, however, FDE has been employed to molecular systems only. Periodic systems, such as metals, semiconductors, and other crystalline solids have been outside the applicability of FDE, mostly because of the lack of a periodic FDE implementation. To fill this gap, in this work we aim at extending FDE to treat subsystems of molecular and periodic character. This goal is achieved by a dual approach. On one side, the development of a theoretical framework for periodic subsystem DFT. On the other, the realization of the method into a parallel computer code. We find that periodic FDE is capable of reproducing total electron densities and (to a lesser extent) also interaction energies of molecular systems weakly interacting with metallic surfaces. In the pilot calculations considered, we find that FDE fails in those cases where there is appreciable density overlap between the subsystems. Conversely, we find FDE to be in semiquantitative agreement with Kohn–Sham DFT when the inter-subsystem density overlap is low. We also conclude that to make FDE a suitable method for describing molecular adsorption at surfaces, kinetic energy density functionals that go beyond the GGA level must be employed.

  6. August 4, 2006 Eco-lights shine new hope on `gorillas in the mist'

    E-Print Network [OSTI]

    Calgary, University of

    August 4, 2006 Eco-lights shine new hope on `gorillas in the mist' Gorilla reserve, Amazon basin and Sri Lankan refugee camps among new Light Up The World Foundation projects The cloud forests deep-powered light and electricity to villages surrounding the Virunga/Bwindi Gorilla Reserve, The U of C-based Light

  7. Radiative cooling of bulk silicon by incoherent light pump

    SciTech Connect (OSTI)

    Malyutenko, V. K., E-mail: malyut@isp.kiev.ua; Bogatyrenko, V. V.; Malyutenko, O. Yu. [V. E. Lashkaryov Institute of Semiconductor Physics, 03028 Kiev (Ukraine)] [V. E. Lashkaryov Institute of Semiconductor Physics, 03028 Kiev (Ukraine)

    2013-12-23T23:59:59.000Z

    In contrast to radiative cooling by light up conversion caused exclusively by a low-entropy laser pump and employing thermally assisted fluorescence/luminescence as a power out, we demonstrate light down conversion cooling by incoherent pumps, 0.47–0.94??m light emitting diodes, and employing thermal emission (TE) as a power out. We demonstrate ?3.5?K bulk cooling of Si at 450?K because overall energy of multiple below bandgap TE photons exceeds the energy of a single above bandgap pump photon. We show that using large entropy TE as power out helps avoid careful tuning of an incoherent pump wavelength and cool indirect-bandgap semiconductors.

  8. Oxides having high energy densities

    DOE Patents [OSTI]

    Ceder, Gerbrand; Kang, Kisuk

    2013-09-10T23:59:59.000Z

    Certain disclosed embodiments generally relate to oxide materials having relatively high energy and/or power densities. Various aspects of the embodiments are directed to oxide materials having a structure B.sub.i(M.sub.jY.sub.k)O.sub.2, for example, a structure Li.sub.j(Ni.sub.jY.sub.k)O.sub.2 such as Li(Ni.sub.0.5Mn.sub.0.5)O.sub.2. In this structure, Y represents one or more atoms, each independently selected from the group consisting of alkaline earth metals, transition metals, Group 14 elements, Group 15, or Group 16 elements. In some embodiments, such an oxide material may have an O3 crystal structure, and/or a layered structure such that the oxide comprises a plurality of first, repeating atomic planes comprising Li, and a plurality of second, repeating atomic planes comprising Ni and/or Y.

  9. Light front Casimir effect at finite temperature

    E-Print Network [OSTI]

    P. L. M. Rodrigues; Silvana Perez; Danilo T. Alves; Van Sérgio Alves; Charles R. Silva

    2015-01-06T23:59:59.000Z

    The correct description of the standard Casimir effect for periodic boundary conditions via light front formalism implies in these conditions imposed at fixed Minkowski times [Almeida {\\it et al.} Phys. Rev. {\\bf D 87}, 065028 (2013); Chabysheva and Hiller, Phys. Rev. {\\bf D 88}, 085006 (2013)] instead of fixed light front times. The unphysical nature of this latter condition is manifested in the vacuum part by no regularization yielding a finite Casimir energy density [Lenz and Steinbacher, Phys. Rev. {\\bf D 67}, 045010 (2003)]. In the present paper, we extend this discussion and analyze the problem of the light front quantization with simultaneous presence of a thermal bath and boundary conditions. Considering both the oblique light front as well as Dirac light front coordinates, we show that the imposition of periodic boundary conditions at fixed Minkowski times recovers the expected behaviors for the energy density and Casimir entropy. We also investigate how the unphysical nature of the periodic boundary conditions imposed at fixed light front times manifests in the thermal part of the energy and entropy, showing that in the classical limit the Casimir entropy decreases linearly with the temperature (not becoming independent of the temperature as expected), and also that the Kirchhoff theorem is not respected.

  10. Future Prospects for Nuclear Power after Fukushima

    E-Print Network [OSTI]

    Goldberg, Bennett

    at the FukushimaDaiichi nuclear power plant in Japan has changed the perception of nuclear as a safe energy sourceFuture Prospects for Nuclear Power after Fukushima Nuclear is a highintensity energy source as the next generation of Light Water Reactors. We will also discuss the future prospects of nuclear power

  11. Coded modulation with Low Density Parity Check codes

    E-Print Network [OSTI]

    Narayanaswami, Ravi

    2001-01-01T23:59:59.000Z

    This thesis proposes the design of Low Density Parity Check (LDPC) codes for cases where coded modulation is used. We design these codes by extending the idea of Density Evolution (DE) that has been introduced as a powerful tool to analyze LDPC...

  12. Light limita*on and tree-ring growth in the Schweingruber tree-ring collec*on

    E-Print Network [OSTI]

    Huybers, Peter

    Light limita*on and tree-ring growth in the Schweingruber tree-ring collec;2 · Hypothesis ­ Arc*c tree-ring density is limited by light availability · Test 1-density generally nega*vely correlated with precipita*on üSunlight: ­ Light is energe*c driver

  13. Deficiencies of Lighting Codes and Ordinances in Controlling Light Pollution from Parking Lot Lighting Installations

    E-Print Network [OSTI]

    Royal, Emily

    2012-05-31T23:59:59.000Z

    The purpose of this research was to identify the main causes of light pollution from parking lot electric lighting installations and highlight the deficiencies of lighting ordinances in preventing light pollution. Using an industry-accepted lighting...

  14. High density matter

    E-Print Network [OSTI]

    J. R. Stone

    2013-02-11T23:59:59.000Z

    The microscopic composition and properties of matter at super-saturation densities have been the subject of intense investigation for decades. The scarcity of experimental and observational data has lead to the necessary reliance on theoretical models. However, there remains great uncertainty in these models, which, of necessity, have to go beyond the over-simple assumption that high density matter consists only of nucleons and leptons. Heavy strange baryons, mesons and quark matter in different forms and phases have to be included to fulfil basic requirements of fundamental laws of physics. In this review the latest developments in construction of the Equation of State (EoS) of high-density matter at zero and finite temperature assuming different composition of the matter are surveyed. Critical comparison of model EoS with available observational data on neutron stars, including gravitational masses, radii and cooling patterns is presented. The effect of changing rotational frequency on the composition of neutron stars during their lifetime is demonstrated. Compatibility of EoS of high-density, low temperature compact objects and low density, high temperature matter created in heavy-ion collisions is discussed.

  15. Power Spectra in V-band and Halpha of Nine Irregular Galaxies

    E-Print Network [OSTI]

    Kyle W. Willett; Bruce G. Elmegreen; Deidre A. Hunter

    2005-03-14T23:59:59.000Z

    Fourier transform power spectra of major axis cuts in V and Halpha images were made for a sample of 9 irregular galaxies. These power spectra reveal structure over a wide range of scales. For 6 of the galaxies the power spectrum slopes at intermediate scales (1-400 pc) in the V-band images range from -1.3 to -1.5. The similarity of slopes suggests that the same processes are structuring these systems. These slopes are slightly shallower than what is observed in other galaxies in HI, molecular emission, dust extinction, and optical light. Three of the galaxies have flat power spectra like noise from the sky; these three galaxies are relatively indistinct in the direct images. The power spectrum slope for Halpha steepens with increasing star formation rate, ranging from a shallow value comparable to the noise at low rates to a steep value with a slope of -1.5 at high rates. This change reflects the increasing areal filling factor of Halpha emission with increasing star formation rate, and an apparently universal slope inside the Halpha regions that is comparable to that for Kolmogorov turbulence. The power spectrum of HI in one galaxy has a steeper power law, with a slope of -2.9. The fact that the power laws of star formation are about the same for dwarf galaxies and giant spiral galaxies suggests the microscopic processes are the same, independent of spiral density waves and galaxy size.

  16. OpenGL Lighting 13. OpenGL Lighting

    E-Print Network [OSTI]

    McDowell, Perry

    OpenGL Lighting 13. OpenGL Lighting · Overview of Lighting in OpenGL In order for lighting to have an effect in OpenGL, two things are required: A light An object to be lit Lights can be set to any color determine how they reflect the light which hits them. The color(s) of an object is determined

  17. Adaptive Street Lighting Controls

    Broader source: Energy.gov [DOE]

    This two-part DOE Municipal Solid-State Street Lighting Consortium webinar focused on LED street lighting equipped with adaptive control components. In Part I, presenters Amy Olay of the City of...

  18. Sandia National Laboratories: Lighting

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lighting Solid-State Lighting Science EFRC On November 11, 2010, in Welcome History of Incandescence History of LEDs Grand Challenges Our EFRC SSLS-EFRC Contacts News Publications...

  19. Density Matrix Topological Insulators

    E-Print Network [OSTI]

    A. Rivas; O. Viyuela; M. A. Martin-Delgado

    2013-10-31T23:59:59.000Z

    Thermal noise can destroy topological insulators (TI). However we demonstrate how TIs can be made stable in dissipative systems. To that aim, we introduce the notion of band Liouvillian as the dissipative counterpart of band Hamiltonian, and show a method to evaluate the topological order of its steady state. This is based on a generalization of the Chern number valid for general mixed states (referred to as density matrix Chern value), which witnesses topological order in a system coupled to external noise. Additionally, we study its relation with the electrical conductivity at finite temperature, which is not a topological property. Nonetheless, the density matrix Chern value represents the part of the conductivity which is topological due to the presence of quantum mixed edge states at finite temperature. To make our formalism concrete, we apply these concepts to the two-dimensional Haldane model in the presence of thermal dissipation, but our results hold for arbitrary dimensions and density matrices.

  20. Lighting Basics | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12electron 9 5Let us countLighting Sign In About | Careers