Powered by Deep Web Technologies
Note: This page contains sample records for the topic "lighting phonons thermal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Manipulation of Thermal Phonons  

E-Print Network (OSTI)

Developing materials that can conduct electricity easily, but block the motion of phonons is necessary in the applications of thermoelectric devices, which can generate electricity from temperature differences. In converse, a key requirement as chips get faster is to obtain better ways to dissipate heat. Controlling heat transfer in these crystalline materials devices — such as silicon — is important. The heat is actually the motion or vibration of atoms known as phonons. Finding ways to manipulate the behavior of phonons is crucial for both energy applications and the cooling of integrated circuits. A novel class of artificially periodic structured materials — phononic crystals — might make manipulation of thermal phonons possible. In many fields of physical sciences and engineering, acoustic wave propagation in solids attracts many researchers. Wave propagation phenomena can be analyzed by mathematically solving the acoustic wave equation. However, wave propagation in inhomogeneous media with various geometric structures is too complex to find an exact solution. Hence, the Finite Difference Time Domain method is developed to investigate these complicated problems. In this work, the Finite-Difference Time-Domain formula is derived from acoustic wave equations based on the Taylor’s expansion. The numerical dispersion and stability problems are analyzed. In addition, the convergence conditions of numerical acoustic wave are stated. Based on the periodicity of phononic crystal, the Bloch’s theorem is applied to fulfill the periodic boundary condition of the FDTD method. Then a wide-band input signal is used to excite various acoustic waves with different frequencies. In the beginning of the calculation process, the wave vector is chosen and fixed. By means of recording the displacement field and taking the Fourier transformation, we can obtain the eigenmodes from the resonance peaks of the spectrum and draw the dispersion relation curve of acoustic waves. With the large investment in silicon nanofabrication techniques, this makes tungsten/silicon phononic crystal a particularly attractive platform for manipulating thermal phonons. Phononic crystal makes use of the fundamental properties of waves to create band gap over which there can be no propagation of acoustic waves in the crystal. This crystal can be applied to deterministically manipulate the phonon dispersion curve affected by different crystal structures and to modify the phonon thermal conductivity accordingly. We can expect this unique metamaterial is a promising route to creating unprecedented thermal properties for highly-efficient energy harvesting and thermoelectric cooling.

Hsu, Chung-Hao

2013-05-01T23:59:59.000Z

2

Effective thermal boundary resistance from thermal decoupling of magnons and phonons in SrRuO3 thin films  

E-Print Network (OSTI)

indicates that in SRO thermal energy is stored predominantlybecause the fraction of thermal energy stored in the con?nedC. On this time-scale, thermal energy stored in the phonons

Langner, M.C.

2010-01-01T23:59:59.000Z

3

Determination of phonon dispersion relations by X-ray thermal diffuse scattering  

SciTech Connect

Thermal diffuse scattering (TDS) of X-rays from crystals contains information on phonons. This paper reviews the general theory of TDS and some recent experiments aimed at further developing TDS into a useful and efficient method for studying phonon dispersion relations.

Xu, R.; Chiang, T.-C. (UIUC)

2010-07-20T23:59:59.000Z

4

Thermal Conductivity Spectroscopy Technique to Measure Phonon Mean Free Paths  

E-Print Network (OSTI)

Size effects in heat conduction, which occur when phonon mean free paths (MFPs) are comparable to characteristic lengths, are being extensively explored in many nanoscale systems for energy applications. Knowledge of MFPs ...

Schmidt, A. J.

5

Phononic crystal devices  

DOE Patents (OSTI)

Phononic crystals that have the ability to modify and control the thermal black body phonon distribution and the phonon component of heat transport in a solid. In particular, the thermal conductivity and heat capacity can be modified by altering the phonon density of states in a phononic crystal. The present invention is directed to phononic crystal devices and materials such as radio frequency (RF) tags powered from ambient heat, dielectrics with extremely low thermal conductivity, thermoelectric materials with a higher ratio of electrical-to-thermal conductivity, materials with phononically engineered heat capacity, phononic crystal waveguides that enable accelerated cooling, and a variety of low temperature application devices.

El-Kady, Ihab F. (Albuquerque, NM); Olsson, Roy H. (Albuquerque, NM)

2012-01-10T23:59:59.000Z

6

Research Article Building Thermal, Lighting,  

NLE Websites -- All DOE Office Websites (Extended Search)

Article Building Thermal, Lighting, and Acoustics Modeling E-mail: yanda@tsinghua.edu.cn A detailed loads comparison of three building energy modeling programs: EnergyPlus, DeST...

7

Lighting system with thermal management system  

DOE Patents (OSTI)

Lighting systems having unique configurations are provided. For instance, the lighting system may include a light source, a thermal management system and driver electronics, each contained within a housing structure. The light source is configured to provide illumination visible through an opening in the housing structure. The thermal management system is configured to provide an air flow, such as a unidirectional air flow, through the housing structure in order to cool the light source. The driver electronics are configured to provide power to each of the light source and the thermal management system.

Arik, Mehmet; Weaver, Stanton; Stecher, Thomas; Seeley, Charles; Kuenzler, Glenn; Wolfe, Jr., Charles; Utturkar, Yogen; Sharma, Rajdeep; Prabhakaran, Satish; Icoz, Tunc

2013-05-07T23:59:59.000Z

8

Research Article Building Thermal, Lighting,  

NLE Websites -- All DOE Office Websites (Extended Search)

Article Building Thermal, Lighting, and Acoustics Modeling E-mail: yanda@tsinghua.edu.cn A detailed loads comparison of three building energy modeling programs: EnergyPlus, DeST and DOE-2.1E Dandan Zhu 1 , Tianzhen Hong 2 , Da Yan 1 (), Chuang Wang 1 1. Department of Building Science, School of Architecture, Tsinghua University, Beijing 100084, China 2. Environmental Energy Technologies Division, Lawrence Berkeley National Laboratory, One Cyclotron Road, Berkeley, CA 94720, USA Abstract Building energy simulation is widely used to help design energy efficient building envelopes and HVAC systems, develop and demonstrate compliance of building energy codes, and implement building energy rating programs. However, large discrepancies exist between simulation results

9

Thermal pumping of light-emitting diodes  

E-Print Network (OSTI)

The work presented here is a study of thermally enhanced injection in light-emitting diodes (LEDs). This effect, which we refer to as "thermal pumping", results from Peltier energy exchange from the lattice to charge ...

Gray, Dodd (Dodd J.)

2011-01-01T23:59:59.000Z

10

Energy distribution of nonequilibrium electrons and optical phonons in GaAs under band-to-band pumping by intense short pulses of light  

SciTech Connect

Deviation from the Fermi distribution of nonequilibrium electrons and distribution of 'hot' optical phonons in GaAs under band-to-band pumping by picosecond pulses of light are calculated.

Altybaev, G. S.; Kumekov, S. E., E-mail: skumekov@mail.ru; Mahmudov, A. A. [Satpaev Kazakh National Technical University (Kazakhstan)

2009-03-15T23:59:59.000Z

11

Waverly Light & Power - Residential Solar Thermal Rebates | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Waverly Light & Power - Residential Solar Thermal Rebates Waverly Light & Power - Residential Solar Thermal Rebates Eligibility Residential Savings For Heating & Cooling Solar...

12

Phonon manipulation with phononic crystals.  

Science Conference Proceedings (OSTI)

In this work, we demonstrated engineered modification of propagation of thermal phonons, i.e. at THz frequencies, using phononic crystals. This work combined theoretical work at Sandia National Laboratories, the University of New Mexico, the University of Colorado Boulder, and Carnegie Mellon University; the MESA fabrication facilities at Sandia; and the microfabrication facilities at UNM to produce world-leading control of phonon propagation in silicon at frequencies up to 3 THz. These efforts culminated in a dramatic reduction in the thermal conductivity of silicon using phononic crystals by a factor of almost 30 as compared with the bulk value, and about 6 as compared with an unpatterned slab of the same thickness. This work represents a revolutionary advance in the engineering of thermoelectric materials for optimal, high-ZT performance. We have demonstrated the significant reduction of the thermal conductivity of silicon using phononic crystal structuring using MEMS-compatible fabrication techniques and in a planar platform that is amenable to integration with typical microelectronic systems. The measured reduction in thermal conductivity as compared to bulk silicon was about a factor of 20 in the cross-plane direction [26], and a factor of 6 in the in-plane direction. Since the electrical conductivity was only reduced by a corresponding factor of about 3 due to the removal of conductive material (i.e., porosity), and the Seebeck coefficient should remain constant as an intrinsic material property, this corresponds to an effective enhancement in ZT by a factor of 2. Given the number of papers in literature devoted to only a small, incremental change in ZT, the ability to boost the ZT of a material by a factor of 2 simply by reducing thermal conductivity is groundbreaking. The results in this work were obtained using silicon, a material that has benefitted from enormous interest in the microelectronics industry and that has a fairly large thermoelectric power factor. In addition, the techniques and scientific understanding developed in the research can be applied to a wide range of materials, with the caveat that the thermal conductivity of such a material be dominated by phonon, rather than electron, transport. In particular, this includes several thermoelectric materials with attractive properties at elevated temperatures (i.e., greater than room temperature), such as silicon germanium and silicon carbide. It is reasonable that phononic crystal patterning could be used for high-temperature thermoelectric devices using such materials, with applications in energy scavenging via waste-heat recovery and thermoelectric cooling for high-performance microelectronic circuits. The only part of the ZT picture missing in this work was the experimental measurement of the Seebeck coefficient of our phononic crystal devices. While a first-order approximation indicates that the Seebeck coefficient should not change significantly from that of bulk silicon, we were not able to actually verify this assumption within the timeframe of the project. Additionally, with regards to future high-temperature applications of this technology, we plan to measure the thermal conductivity reduction factor of our phononic crystals as elevated temperatures to confirm that it does not diminish, given that the nominal thermal conductivity of most semiconductors, including silicon, decreases with temperature above room temperature. We hope to have the opportunity to address these concerns and further advance the state-of-the-art of thermoelectric materials in future projects.

Kim Bongsang; Hopkins, Patrick Edward; Leseman, Zayd C.; Goettler, Drew F.; Su, Mehmet F. (University of New Mexico, Albuquerque, NM); El-Kady, Ihab Fathy; Reinke, Charles M.; Olsson, Roy H., III

2012-01-01T23:59:59.000Z

13

Super-Planckian Near-Field Thermal Emission with Phonon-Polaritonic Hyperbolic Metamaterials  

E-Print Network (OSTI)

We study super-Planckian near-field heat exchanges for multilayer hyperbolic metamaterials using exact S-matrix calculations. We investigate heat exchanges between two multilayer hyperbolic metamaterial structures. We show that the super- Planckian emission of such metamaterials can either come from the presence of surface phonon-polaritons modes or from a continuum of hyperbolic modes depending on the choice of composite materials as well as the structural configuration.

Biehs, Svend-Age; Messina, Riccardo; Ben-Abdallah, Philippe

2013-01-01T23:59:59.000Z

14

Effective thermal boundary resistance from thermal decoupling of magnons and phonons in SrRuO3 thin films  

SciTech Connect

We use the time-resolved magneto-optical Kerr effect (TRMOKE) to measure the local temperature and heat flow dynamics in ferromagnetic SrRuO3 thin films. After heating by a pump pulse, the film temperature decays exponentially, indicating that the heat flow out of the film is limited by the film/substrate interface. We show that this behavior is consistent with an effective boundary resistance resulting from disequilibrium between the spin and phonon temperatures in the film.

Langner, M.C.; Kantner, C.L.S.; Chu, Y.H.; Martin, L.M.; Yu, P.; Ramesh, R.; Orenstein, J.

2010-01-20T23:59:59.000Z

15

Two-photon interference with true thermal light  

E-Print Network (OSTI)

Two-photon interference and "ghost" imaging with entangled light have attracted much attention since the last century because of the novel features such as non-locality and sub-wavelength effect. Recently, it has been found that pseudo-thermal light can mimic certain effects of entangled light. We report here the first observation of two-photon interference with true thermal light.

Yan-Hua Zhai; Xi-Hao Chen; Da Zhang; Ling-An Wu

2005-06-07T23:59:59.000Z

16

Storage and retrieval of thermal light in warm atomic vapor  

SciTech Connect

We report slowed propagation and storage and retrieval of thermal light in warm rubidium vapor using the effect of electromagnetically induced transparency (EIT). We first demonstrate slowed propagation of the probe thermal light beam through an EIT medium by measuring the second-order correlation function of the light field using the Hanbury-Brown-Twiss interferometer. We also report an experimental study on the effect of the EIT slow-light medium on the temporal coherence of thermal light. Finally, we demonstrate the storage and retrieval of the thermal light beam in the EIT medium. The direct measurement of the photon number statistics of the retrieved light field shows that the photon number statistics are preserved during the storage and retrieval processes.

Cho, Young-Wook; Kim, Yoon-Ho [Department of Physics, Pohang University of Science and Technology (POSTECH), Pohang 790-784 (Korea, Republic of)

2010-09-15T23:59:59.000Z

17

Effects of composition and phonon scattering mechanisms on thermal transport in MFI zeolite films  

E-Print Network (OSTI)

, and lattice dynamical modeling in the framework of the Boltzmann equation. MFI films with different Si for the MFI crystal structure with different Si/Al ratios and incorporated into a Boltzmann transport model umklapp, defect, and boundary scattering processes. The model predicts the observed thermal conductivity

Nair, Sankar

18

Correlated two-photon imaging with true thermal light  

E-Print Network (OSTI)

We report the first experimental demonstration of two-photon correlated imaging with true thermal light from a hollow cathode lamp. The coherence time of the source is much shorter than that of previous experiments using random scattered light from a laser. A two-pinhole mask was used as object, and the corresponding thin lens equation was well satisfied. Since thermal light sources are easier to obtain and measure than entangled light it is conceivable that they may be used in special imaging applications.

Da Zhang; Xi-Hao Chen; Yan-Hua Zhai; Ling-An Wu

2005-03-14T23:59:59.000Z

19

Two-photon interference with thermal light  

E-Print Network (OSTI)

The study of entangled states has greatly improved the basic understanding about two-photon interferometry. Two-photon interference is not the interference of two photons but the result of superposition among indistinguishable two-photon amplitudes. The concept of two-photon amplitude, however, has generally been restricted to the case of entangled photons. In this letter we report an experimental study that may extend this concept to the general case of independent photons. The experiment also shows interesting practical applications regarding the possibility of obtaining high resolution interference patterns with thermal sources.

Giuliano Scarcelli; Alejandra Valencia; Yanhua Shih

2004-10-27T23:59:59.000Z

20

Waverly Light and Power - Residential Solar Thermal Rebates | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Solar Thermal Rebates Solar Thermal Rebates Waverly Light and Power - Residential Solar Thermal Rebates < Back Eligibility Residential Savings Category Heating & Cooling Solar Water Heating Maximum Rebate $3,500 Program Info Start Date 07/01/2009 State Iowa Program Type Utility Rebate Program Rebate Amount 30/sq. foot of collector area Provider Waverly Light and Power Waverly Light and Power (WL&P) offers rebates for solar hot water heating systems to its residential customers. All purchases must be pre-approved through WL&P's solar water heater application process. In addition, residential customers must obtain a county-issued permit prior to installing a solar water heating system. There is a limit of one rebate per address. Funding is available until the rebate fund is exhausted.

Note: This page contains sample records for the topic "lighting phonons thermal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Optical characterization of complex mechanical and thermal transport properties  

E-Print Network (OSTI)

Time-resolved impulsive stimulated light scattering (ISS), also known as transient grating spectroscopy, was used to investigate phonon mediated thermal transport in semiconductors and mechanical degrees of freedom linked ...

Johnson, Jeremy A. (Jeremy Andrew)

2011-01-01T23:59:59.000Z

22

Wide-Area Thermal Processing of Light-Emitting Materials  

Science Conference Proceedings (OSTI)

Silicon carbide based materials and devices have been successfully exploited for diverse electronic applications. However, they have not achieved the same success as Si technologies due to higher material cost and higher processing temperatures required for device development. Traditionally, SiC is not considered for optoelectronic applications because it has an indirect bandgap. However, AppliCote Associates, LLC has developed a laser-based doping process which enables light emission in SiC through the creation of embedded p-n junctions. AppliCote laser irradiation of silicon carbide allows two different interaction mechanisms: (1) Laser conversion or induced phase transformation which creates carbon rich regions that have conductive properties. These conductive regions are required for interconnection to the light emitting semiconducting region. (2) Laser doping which injects external dopant atoms into the substrate that introduces deep level transition states that emit light when electrically excited. The current collaboration with AppliCote has focused on the evaluation of ORNL's unique Pulse Thermal Processing (PTP) technique as a replacement for laser processing. Compared to laser processing, Pulse Thermal Processing can deliver similar energy intensities (20-50 kW/cm2) over a much larger area (up to 1,000 cm2) at a lower cost and much higher throughput. The main findings of our investigation; which are significant for the realization of SiC based optoelectronic devices, are as follows: (1) The PTP technique is effective in low thermal budget activation of dopants in SiC similar to the laser technique. The surface electrical conductivity of the SiC samples improved by about three orders of magnitude as a result of PTP processing which is significant for charge injection in the devices; (2) The surface composition of the SiC film can be modified by the PTP technique to create a carbon-rich surface (increased local C:Si ratio from 1:1 to 2.9:1). This is significant as higher thermal and electrical conductivities of the surface layer are critical for a successful development of integrated optoelectronic devices; and (3) PTP provides low thermal budget dopant activation with a controlled depth profile, which can be exploited for high performance device development with selective patterning of the substrate. This project has successfully demonstrated that a low thermal budget annealing technique, such as PTP, is critical to defining the path for low cost electronic devices integrated on glass or polymeric substrates. This project is complimentary to the goals of the Solid State Lighting Program within DOE. It involves new manufacturing techniques for light emitting materials that are potentially much lower cost and energy efficient than existing products. Significant opportunity exists for further exploration of AppliCote's material and device technology in combination with ORNL's PTP technique, modeling, and characterization capabilities.

Duty, C.; Quick, N. (AppliCote Associates, LLC)

2011-09-30T23:59:59.000Z

23

J-51: Effect of Phonon Emission and Absorption in Electron ...  

Science Conference Proceedings (OSTI)

We present investigation on effects of phonon emission/absorption in ... Energy Harvesting and Cooling with Flexible and Light-Weight Organic Nanocomposites.

24

Probing phonons in plutonium  

Science Conference Proceedings (OSTI)

Plutonium (Pu) is well known to have complex and unique physico-chemical properties [1]. Notably, the pure metal exhibits six solid-state phase transformations with large volume expansions and contractions along the way to the liquid state: {alpha} {yields} {beta} {yields} {gamma} {yields} {delta} {yields} {delta}' {yields} {var_epsilon} {yields} liquid. Unalloyed Pu melts at a relatively low temperature {approx}640 C to yield a higher density liquid than that of the solid from which it melts. Detailed understanding of the properties of plutonium and plutonium-based alloys is critical for the safe handling, utilization, and long-term storage of these important, but highly toxic materials. However, both technical and safety issues have made experimental observations extremely difficult. Phonon dispersion curves (PDCs) are key experimental data to the understanding of the basic properties of Pu materials such as: force constants, sound velocities, elastic constants, thermodynamics, phase stability, electron-phonon coupling, structural relaxation, etc. However, phonon dispersion curves (PDCs) in plutonium (Pu) and its alloys have defied measurement for the past few decades since the discovery of this element in 1941. This is due to a combination of the high thermal-neutron absorption cross section of plutonium and the inability to grow the large single crystals (with dimensions of a few millimeters) necessary for inelastic neutron scattering. Theoretical simulations of the Pu PDC continue to be hampered by the lack of suitable inter-atomic potentials. Thus, until recently the PDCs for Pu and its alloys have remained unknown experimentally and theoretically. The experimental limitations have recently been overcome by using a tightly focused undulator x-ray micro-beam scattered from single-grain domains in polycrystalline specimens. This experimental approach has been applied successfully to map the complete PDCs of an fcc {delta}-Pu-Ga alloy using the high resolution inelastic x-ray scattering (HRIXS) capability on ID28 [2].

Farber, D; Chiang, T; Krisch, M; Occelli, F; Schwartz, A; Wall, M; Xu, R; Boro, C

2003-12-17T23:59:59.000Z

25

Light beam dynamics in materials with radially-inhomogeneous thermal conductivity  

E-Print Network (OSTI)

We study the properties of bright and vortex solitons in thermal media with nonuniform thermal conductivity and homogeneous refractive index, whereby the local modulation of the thermal conductivity strongly affects the entire refractive index distribution. While regions where the thermal conductivity is increased effectively expel light, self-trapping may occur in the regions with reduced thermal conductivity, even if such regions are located close to the material boundary. As a result, strongly asymmetric self-trapped beams may form inside a ring with reduced thermal conductivity and perform persistent rotary motion. Also, such rings are shown to support stable vortex solitons, which may feature strongly non-canonical shapes.

Kartashov, Yaroslav V; Torner, Lluis

2013-01-01T23:59:59.000Z

26

Thermal Management of Solar Cells  

E-Print Network (OSTI)

phonon transmission and interface thermal conductance acrossF. Miao, et al. , "Superior Thermal Conductivity of Single-Advanced Materials for Thermal Management of Electronic

Saadah, Mohammed Ahmed

2013-01-01T23:59:59.000Z

27

Lighting and thermal operations. Conservation paper number 18. Energy conservation principles applied to office lighting  

SciTech Connect

Research was conducted by reviewing literature and examining past lighting design practices in order to make the design, installation, and operation of future office building lighting systems more responsive to the needs of energy conservation. Information is included on lighting energy use in offices in the recent past, human performance as affected by illumination, visual system design for offices, and guidelines for lighting energy management including potential energy savings in office lighting. (LCL)

1975-01-01T23:59:59.000Z

28

Phonon Heat Conduction In A Semiconductor Nanowire  

E-Print Network (OSTI)

ic phonon dispersion due to spatial confinement, and (ii) change in the nonequilibrium phonon distribution due to partially diffuse boundary scattering. Numerical simulation is performed for a silicon nanowire with boundaries characterized by different interface roughness. Phonon confinement and boundary scattering lead to a significant decrease of the lattice thermal conductivity. The value of this decrease and its interface roughness and temperature dependence are different from the predictions of the early models. The observed change in thermal resistance has to be taken into account in simulation of deepsubmicron and nanometer-scale devices. 2001 American Institute of Physics. PACS: 68.65.La, 66.70.+f, 63.22.+m, 68.35. References

Joe Zou; Alexander Balandin; Jie Zou; Er Bal

2000-01-01T23:59:59.000Z

29

Theory of Light Emission in Sonoluminescence as Thermal Radiation  

E-Print Network (OSTI)

Based on the model proposed by Hilgenfeldt {\\it at al.} [Nature {\\bf 398}, 401 (1999)], we present here a comprehensive theory of thermal radiation in single-bubble sonoluminescence (SBSL). We first invoke the generalized Kirchhoff's law to obtain the thermal emissivity from the absorption cross-section of a multilayered sphere (MLS). A sonoluminescing bubble, whose internal structure is determined from hydrodynamic simulations, is then modelled as a MLS and in turn the thermal radiation is evaluated. Numerical results obtained from simulations for argon bubbles show that our theory successfully captures the major features observed in SBSL experiments.

Wang-Kong Tse; P. T. Leung

2006-06-14T23:59:59.000Z

30

Synthetic thermoelectric materials comprising phononic crystals  

DOE Patents (OSTI)

Synthetic thermoelectric materials comprising phononic crystals can simultaneously have a large Seebeck coefficient, high electrical conductivity, and low thermal conductivity. Such synthetic thermoelectric materials can enable improved thermoelectric devices, such as thermoelectric generators and coolers, with improved performance. Such synthetic thermoelectric materials and devices can be fabricated using techniques that are compatible with standard microelectronics.

El-Kady, Ihab F; Olsson, Roy H; Hopkins, Patrick; Reinke, Charles; Kim, Bongsang

2013-08-13T23:59:59.000Z

31

Probing phonons in plutonium  

Science Conference Proceedings (OSTI)

Plutonium (Pu) is well known to have complex and unique physico-chemical properties. Notably, the pure metal exhibits six solid-state phase transformations with large volume expansions and contractions along the way to the liquid state: {alpha} {yields} {beta} {yields} {gamma} {yields} {delta} {yields} {delta}{prime} {yields} {var_epsilon} {yields} liquid. Unalloyed Pu melts at a relatively low temperature {approx}640 C to yield a higher density liquid than that of the solid from which it melts, (Figure 1). Detailed understanding of the properties of plutonium and plutonium-based alloys is critical for the safe handling, utilization, and long-term storage of these important, but highly toxic materials. However, both technical and and safety issues have made experimental observations extremely difficult. Phonon dispersion curves (PDCs) are key experimenta l data to the understanding of the basic properties of Pu materials such as: force constants, sound velocities, elastic constants, thermodynamics, phase stability, electron-phonon coupling, structural relaxation, etc. However, phonon dispersion curves (PDCs) in plutonium (Pu) and its alloys have defied measurement for the past few decades since the discovery of this element in 1941. This is due to a combination of the high thermal-neutron absorption cross section of plutonium and the inability to grow the large single crystals (with dimensions of a few millimeters) necessary for inelastic neutron scattering. Theoretical simulations of the Pu PDC continue to be hampered by the lack of suitable inter -atomic potentials. Thus, until recently the PDCs for Pu and its alloys have remained unknown experimentally and theoretically. The experimental limitations have recently been overcome by using a tightly focused undulator x-ray micro-beam scattered from single -grain domains in polycrystalline specimens. This experimental approach has been applied successfully to map the complete PDCs of an fcc d-Pu-Ga alloy using the high resolution inelastic x-ray scattering (HRIXS) capability on ID28. The complete PDCs for an fcc Pu-0.6 wt% Ga alloy are plotted in Figure 2, and represent the first full set of phonon dispersions ever determined for any Pu-bearing materials. The solid curves (red) are calculated using a standard Born-von Karman (B-vK) force constant model. An adequate fit to the experimental data is obtained if interactions up to the fourth-nearest neighbours are included. The dashed curves (blue) are recent dynamical mean field theory (DMFT) results by Dai et al. The elastic moduli calculated from the slopes of the experimental phonon dispersion curves near the {Lambda} point are: C{sub 11} = 35.3 {+-} 1.4 GPa, C{sub 12} = 25.5 {+-} 1.5 GPa and C{sub 44} = 30.53 {+-} 1.1 GPa. These values are in excellent agreement with those of the only other measurement on a similar alloy (1 wt % Ga) using ultrasonic techniques as well as with those recently calculated from a combined DMFT and linear response theory for pure {delta}-Pu. Several unusual features, including a large elastic anisotropy, a small shear elastic modulus C{prime}, a Kohn-like anomaly in the T{sub 1}[011] branch, and a pronounced softening of the [111] transverse modes are found. These features can be related to the phase transitions of plutonium and to strong coupling between the lattice structure and the 5f valence instabilities. The HRIXS results also provide a critical test for theoretical treatments of highly correlated 5f electron systems as exemplified by recent dynamical mean field theory (DMFT) calculations for {delta}-plutonium. The experimental-theoretical agreements shown in Figure 2 in terms of a low shear elastic modulus C{prime}, a Kohn-like anomaly in the T{sub 1}[011] branch, and a large softening of the T[111] modes give credence to the DMFT approach for the theoretical treatment of 5f electron systems of which {delta}-Pu is a classic example. However, quantitative differences remain. These are the position of the Kohn anomaly along the T{sub 1}[011] branch, the energy maximum of the T[111] mode s

Wong, Joe; Krisch, M.; Farber, D.; Occelli, F.; Schwartz, A.; Chiang, T.C.; Wall, M.; Boro, C.; Xu, Ruqing (UIUC); (LLNL); (ESRF); (LANL)

2010-11-16T23:59:59.000Z

32

Lattice motions from THz phonon-polaritons measured with femtosecond x-ray diffraction  

E-Print Network (OSTI)

Lattice Motions from THz Phonon-polaritons measured withto measure the coherent lattice displacements associatedstrong coupling between light and lattice is found and where

Cavalleri, A.

2006-01-01T23:59:59.000Z

33

Thermal And Mechanical Analysis of High-power Light-emitting Diodes with Ceramic Packages  

E-Print Network (OSTI)

In this paper we present the thermal and mechanical analysis of high-power light-emitting diodes (LEDs) with ceramic packages. Transient thermal measurements and thermo-mechanical simulation were performed to study the thermal and mechanical characteristics of ceramic packages. Thermal resistance from the junction to the ambient was decreased from 76.1 oC/W to 45.3 oC/W by replacing plastic mould to ceramic mould for LED packages. Higher level of thermo-mechanical stresses in the chip were found for LEDs with ceramic packages despite of less mismatching coefficients of thermal expansion comparing with plastic packages. The results suggest that the thermal performance of LEDs can be improved by using ceramic packages, but the mounting process of the high power LEDs with ceramic packages is critically important and should be in charge of delaminating interface layers in the packages.

J. Hu; L. Yang; M. -W. Shin

2008-01-07T23:59:59.000Z

34

Thermal and lighting performance of toplighting systems in the hot and humid climate of Thailand  

E-Print Network (OSTI)

This study evaluated the potential of toplighting systems in the hot and humid tropics by using Bangkok, Thailand (latitude 13.7�°N) as a test location. The analysis tested both the thermal and lighting performance of three toplighting systems. Toplighting, designed for use in one-story buildings or on the top floor of taller buildings, yields a uniformly distributed light throughout a space. However, in lower latitude locations, where there is no heating period, heat gain is a critical design issue since it significantly affects the annual energy consumption of the building. Accordingly, the decision to use toplighting in these locations needs to be carefully examined before any design considerations occur. In this study, the thermal and lighting performance of three toplighting systems were compared. For the thermal performance, total cooling loads, heat gains and losses, and interior temperature were evaluated. The lighting performance parameters examined were daylight factor, illuminance level, light distribution, and uniformity. EnergyPlus was used as the thermal analysis tool, and RADIANCE, along with a physical scale model, was used as the lighting performance analysis tool. The sky conditions tested were overcast, clear sky, and intermediate sky. Results have shown that, for locations with hot and humid climates with variable sky conditions such as Bangkok, Thailand, the roof monitors perform better than the other two systems in terms of the thermal and lighting performance. With similar cooling loads, the roof monitor provides better illuminance uniformity than the skylights and lightscoops, with adequate illuminance level (at mostly higher than 500 lux).

Harntaweewongsa, Siritip

2005-08-01T23:59:59.000Z

35

Theoretical scheme of thermal-light many-ghost imaging by Nth-order intensity correlation  

Science Conference Proceedings (OSTI)

In this paper, we propose a theoretical scheme of many-ghost imaging in terms of Nth-order correlated thermal light. We obtain the Gaussian thin lens equations in the many-ghost imaging protocol. We show that it is possible to produce N-1 ghost images of an object at different places in a nonlocal fashion by means of a higher order correlated imaging process with an Nth-order correlated thermal source and correlation measurements. We investigate the visibility of the ghost images in the scheme and obtain the upper bounds of the visibility for the Nth-order correlated thermal-light ghost imaging. It is found that the visibility of the ghost images can be dramatically enhanced when the order of correlation becomes larger. It is pointed out that the many-ghost imaging phenomenon is an observable physical effect induced by higher order coherence or higher order correlations of optical fields.

Liu Yingchuan [Key Laboratory of Low-Dimensional Quantum Structures and Quantum Control of Ministry of Education, and Department of Physics, Hunan Normal University, Changsha 410081 (China); College of Mathematics and Physics, University of South China, Hengyang 421001 (China); Kuang Leman [Key Laboratory of Low-Dimensional Quantum Structures and Quantum Control of Ministry of Education, and Department of Physics, Hunan Normal University, Changsha 410081 (China)

2011-05-15T23:59:59.000Z

36

Light-water-reactor coupled neutronic and thermal-hydraulic codes  

Science Conference Proceedings (OSTI)

An overview is presented of computer codes that model light water reactor cores with coupled neutronics and thermal-hydraulics. This includes codes for transient analysis and codes for steady state analysis which include fuel depletion and fission product buildup. Applications in nuclear design, reactor operations and safety analysis are given and the major codes in use in the USA are identified. The neutronic and thermal-hydraulic methodologies and other code features are outlined for three steady state codes (PDQ7, NODE-P/B and SIMULATE) and four dynamic codes (BNL-TWIGL, MEKIN, RAMONA-3B, RETRAN-02). Speculation as to future trends with such codes is also presented.

Diamond, D.J.

1982-01-01T23:59:59.000Z

37

Effects of Phonon Kinematics and Phonon Anharmonicity on the ...  

Science Conference Proceedings (OSTI)

... allowing the cubic and quartic components of the phonon anharmonicity to be identified. ... First Order Structural Transformations in Symmetrical Tilt S5 Grain ...

38

Thermal Transport in Graphene Multilayers and Nanoribbons  

E-Print Network (OSTI)

1 CHAPTER 2 Thermal transport atxix List of Tables Phonon transport regimes – Length scaleRIVERSIDE Thermal Transport in Graphene Multilayers and

Subrina, Samia

2011-01-01T23:59:59.000Z

39

Phonon dispersion in graphene  

E-Print Network (OSTI)

Taking into account the constraints imposed by the lattice symmetry, the phonon dispersion is calculated for graphene with interactions between the first and second nearest neighbors in the framework of the Born-von Karman model. Analytical expressions are obtained for the out-of-plane (bending) modes determined only by two force constants as well as for the in-plane modes with four force constants. Values of the force constants are found in fitting to elastic constants and Raman frequencies observed in graphite.

L. A. Falkovsky

2007-02-17T23:59:59.000Z

40

Effect of light intensity on photosynthesis by thermal algae adapted to natural and reduced  

E-Print Network (OSTI)

Thermal algae in alkaline hot springs of Yellowstone National Park (Wyoming) grow as compact mats in which self-shading is extensive, as shown by measurement by autoradiog-raphy of photosynthetic activity of cells at different levels in the mat. The effect of light intensity on photosynthesis of the algal mats was studied using neutral density filters during incubation with l”CO Despite the intense sunlight at the altitude of Yellowstone, light inhibition by full sur$ght was observed only occasionally; the rate of photosynthesis fell progressively with decreasing light, although the most efficient use was at 7-14s of full sunlight. Later, the light intensity over portions of the algal mats was reduced to 18 % of full sunlight by installing neutral density glass plates, and changes of chlorophyll content, cell number, and response of photosynthesis to light intensity were determined over the next year. Although the chlorophyll content of the algae at the surface of the mat rose quickly, the chlorophyll content of the mat as a whole rose slowly or not at all; the photosynthetic response of the algal mats to full and reduced sunlight also changed slowly or not at all. Although individual algal cells can adapt rapidly to changes in light, the entire population, because of its existence in compact mats, adapts slowly. At the latitude of Yellowstone there is sufficient light throughout the year to enable algal growth to occur even at temperatures near the upper limit at which blue-green algae can grow; in Iceland, hot spring algae cannot grow during several winter months. Natural ultraviolet radiation neither inhibited nor stimulated photosynthesis.

Thomas D. Brock; M. Louise Brock

1969-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "lighting phonons thermal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

The USDOE Forrestal Lighting Retrofit: Analysis of Electricity and Thermal Savings  

E-Print Network (OSTI)

This report provides an overview of the lighting retrofit and the resultant electricity and thermal savings. It presents results from the whole-building monitoring effort that show that the measured gross electricity savings accounted for $324,705 or 76% of the total monetary savings. The measured energy savings performed within 90% of the estimated savings. Quite surprisingly, the thermal savings which were not included in initial estimates by the USDOE accounted for $102,824 or 24% of the overall savings and increased the total cost savings to $427,529 (107% of expected electricity cost savings of $399,058). The measured reductions in monthly peak hourly electric demand performed within 68% to 91% of estimated demand reductions depending upon the month of the year.

Haberl, J. S.; Bou-Saada, T. E.

1995-01-01T23:59:59.000Z

42

METHOD OF AND APPARATUS FOR WITHDRAWING LIGHT ISOTOPIC PRODUCT FROM A LIQUID THERMAL DIFFUSION PLANT  

DOE Patents (OSTI)

An improved process and apparatus are described for removing enriched product from the columns of a thermal diffusion plant for separation of isotopes. In the removal cycle, light product at the top cf the diffusion columns is circulated through the column tops and a shipping cylinder connected thereto unttl the concertation of enriched product in the cylinder reaches the desired point. During the removal, circulation through the bottoms is blocked bv freezing. in the diffusion cycle, the bottom portion is unfrozen, fresh feed is distributed to the bottoms of the columns, ard heavy product is withdrawn from the bottoms, while the tops of the columns are blocked by freezing.

Dole, M.

1959-09-22T23:59:59.000Z

43

Lighting.  

SciTech Connect

Since lighting accounts for about one-third of the energy used in commercial buildings, there is opportunity to conserve. There are two ways to reduce lighting energy use: modify lighting systems so that they used less electricity and/or reduce the number of hours the lights are used. This booklet presents a number of ways to do both. Topics covered include: reassessing lighting levels, reducing lighting levels, increasing bulb & fixture efficiency, using controls to regulate lighting, and taking advantage of daylight.

United States. Bonneville Power Administration.

1992-09-01T23:59:59.000Z

44

Influence of interfacial layers on resonance phonon transport  

Science Conference Proceedings (OSTI)

The resonance transport of phonons considered in the present work is characteristic of heat transport between two media. This effect is essential one, for example, in transmission of heat between solids and liquid helium in the presence of interface ... Keywords: capillary effect, mesoscopic weak link, point contact, thermal transport

E. S. Syrkin; P. A. Minaev; A. G. Shkorbatov; A. Feher

2005-08-01T23:59:59.000Z

45

Demand Shifting with Thermal Mass in Light and Heavy Mass Commercial Buildings  

E-Print Network (OSTI)

effort to understand pre-cooling thermal mass as a Demandof Building Thermal Mass to Offset Cooling Loads. ” ASHRAEKey words: Pre-cooling, demand response, thermal mass

Xu, Peng

2010-01-01T23:59:59.000Z

46

Lighting  

Energy.gov (U.S. Department of Energy (DOE))

There are many different types of artificial lights, all of which have different applications and uses. Types of lighting include:

47

Phonons with orbital angular momentum  

SciTech Connect

Ion accoustic waves or phonon modes are studied with orbital angular momentum (OAM) in an unmagnetized collissionless uniform plasma, whose constituents are the Boltzmann electrons and inertial ions. For this purpose, we have employed the fluid equations to obtain a paraxial equation in terms of ion density perturbations and discussed its Gaussian beam and Laguerre-Gauss (LG) beam solutions. Furthermore, an approximate solution for the electrostatic potential problem is presented, allowing to express the components of the electric field in terms of LG potential perturbations. The energy flux due to phonons is also calculated and the corresponding OAM is derived. Numerically, it is shown that the parameters such as azimuthal angle, radial and angular mode numbers, and beam waist, strongly modify the profiles of the phonon LG potential. The present results should be helpful in understanding the phonon mode excitations produced by Brillouin backscattering of laser beams in a uniform plasma.

Ayub, M. K. [Theoretical Plasma Physics Division, PINSTECH, P. O. Nilore, Islamabad (Pakistan); National Centre for Physics, Shahdra Valley Road, Quaid-i-Azam University Campus, Islamabad 44000 (Pakistan); Ali, S. [National Centre for Physics, Shahdra Valley Road, Quaid-i-Azam University Campus, Islamabad 44000 (Pakistan); Mendonca, J. T. [IPFN, Instituto Superior Tecnico, Av. Rovisco Pais 1, 1049-001 Lisboa (Portugal)

2011-10-15T23:59:59.000Z

48

Reconfigurable long-range phonon dynamics in optomechanical arrays  

E-Print Network (OSTI)

We investigate periodic optomechanical arrays as reconfigurable platforms for engineering the coupling between multiple mechanical and electromagnetic modes and for exploring many-body phonon dynamics. Exploiting structural resonances in the coupling between light fields and collective motional modes of the array, we show that tunable effective long-range interactions between mechanical modes can be achieved. This paves the way towards the implementation of controlled phononic walks and heat transfer on densely-connected graphs as well as the coherent transfer of excitations between distant elements of optomechanical arrays.

André Xuereb; Claudiu Genes; Guido Pupillo; Mauro Paternostro; Aurélien Dantan

2013-12-18T23:59:59.000Z

49

Solution Processing of Polymer Nanotube Thermal Interface Materials  

Science Conference Proceedings (OSTI)

Ideal TIMs should exhibit high thermal conductivity and maintain mechanical ... bulk polymers exhibit phonon scattering and are poor conductors of thermal ...

50

POST-FLARE ULTRAVIOLET LIGHT CURVES EXPLAINED WITH THERMAL INSTABILITY OF LOOP PLASMA  

Science Conference Proceedings (OSTI)

In the present work, we study the C8 flare that occurred on 2000 September 26 at 19:49 UT and observed by the Solar and Heliospheric Observatory/Solar Ultraviolet Measurement of Emitted Radiation spectrometer from the beginning of the impulsive phase to well beyond the disappearance in the X-rays. The emission first decayed progressively through equilibrium states until the plasma reached 2-3 MK. Then, a series of cooler lines, i.e., Ca X, Ca VII, Ne VI, O IV, and Si III (formed in the temperature range log T = 4.3-6.3 under equilibrium conditions), are emitted at the same time and all evolve in a similar way. Here, we show that the simultaneous emission of lines with such a different formation temperature is due to thermal instability occurring in the flaring plasma as soon as it has cooled below {approx}2 MK. We can qualitatively reproduce the relative start time of the light curves of each line in the correct order with a simple (and standard) model of a single flaring loop. The agreement with the observed light curves is greatly improved, and a slower evolution of the line emission is predicted, if we assume that the model loop consists of an ensemble of subloops or strands heated at slightly different times. Our analysis can be useful for flare observations with the Solar Dynamics Observatory/Extreme ultraviolet Variability Experiment.

Reale, F. [Dipartimento di Fisica, Universita degli Studi di Palermo, Piazza del Parlamento 1, 90134 Palermo (Italy); Landi, E. [Department of Atmospheric, Oceanic and Space Sciences, University of Michigan, Ann Arbor, MI 48109 (United States); Orlando, S. [INAF-Osservatorio Astronomico di Palermo, Piazza del Parlamento 1, 90134 Palermo (Italy)

2012-02-10T23:59:59.000Z

51

Glass-like phonon scattering from a spontaneous nanostructure in AgSbTe2  

Science Conference Proceedings (OSTI)

Materials with very low thermal conductivity are of high interest for both thermoelectric and optical phase-change applications. Synthetic nanostructuring is most promising to suppress thermal conductivity by scattering phonons, but challenges remain in producing bulk samples. We show that in crystalline AgSbTe2, a spontaneously-forming nanostructure leads to a suppression of thermal conductivity to a glass-like level. Our mappings of phonon mean-free-paths provide a novel bottom- up microscopic account of thermal conductivity, and also reveal intrinsic anisotropies associated with the nanostructure. Ground-state degeneracy in AgSbTe2 leads to the natural formation of nanoscale domains with different orderings on the cation sublattice, and correlated atomic displacements, which efficiently scatter phonons. This mechanism is general and points to a new avenue in nano- scale engineering of materials, to achieve low thermal conductivities for efficient thermoelectric converters and phase-change memory devices.

Abernathy, Douglas L [ORNL; Ehlers, Georg [ORNL; Huq, Ashfia [ORNL; Ma, Jie [ORNL; May, Andrew F [ORNL; McGuire, Michael A [ORNL; Sales, Brian C [ORNL; Delaire, Olivier A [ORNL; Hong, Tao [ORNL; Tian, Wei [ORNL

2013-01-01T23:59:59.000Z

52

Phonon Knudsen flow in GaAs/AlAs superlattices  

DOE Green Energy (OSTI)

The measured in-plane thermal conductivity, {delta}{sub SL} of GaAs/AlAs superlattices with even moderate layer thicknesses are significantly smaller than the weighted average, {delta}{sub l} = 67 W/Km, of the bulk GaAs and AlAs conductivities. One expects a suppression of the thermal conductivity to that of an actual Al{sub 0.5}Ga{sub 0.5}As alloy when the thickness of the GaAs and AlAs layers approaches that of a single monolayer. However, the observed superlattice thermal conductivity remains suppressed even at layer thickness {approx_gt} 10 nm. The low thermal conductivities, and very high mobilities, make n-doped GaAs/AlAs superlattices attractive possibilities for thermoelectric devices. With Molecular-Beam-Epitaxial grown GaAs/AlAs superlattices one can expect the individual GaAs and AlAs layers to be extremely clean. Defect and/or alloy scattering is limited to be near the heterostructure interfaces. The authors estimate the room-temperature phonon mean-free-path to be 42 (22) nm for the longitudinal (transverse) mode and thus comparable to or smaller than the layer thicknesses. Thus they expect an important phonon scattering at the interfaces. They study this phonon scattering at the superlattice interfaces assuming a Knudsen flow characterized by diffusive scattering. The solid curve in the figure shows the Knudsen-flow theory estimated for the superlattice thermal conductivity which shows a significant reduction when the layer thickness is shorter than the estimated phonon mean free paths.

Hyldgaard, P.; Mahan, G.D. [Oak Ridge National Lab., TN (United States). Solid State Div.]|[Univ. of Tennessee, Knoxville, TN (United States). Dept. of Physics and Astronomy

1995-09-01T23:59:59.000Z

53

Rate of decoherence for an electron weakly coupled to a phonon gas  

E-Print Network (OSTI)

We study the dynamics of an electron weakly coupled to a phonon gas. The initial state of the electron is the superposition of two spatially localized distant bumps moving towards each other, and the phonons are in a thermal state. We investigate the dynamics of the system in the kinetic regime and show that the time evolution makes the non-diagonal terms of the density matrix of the electron decay, destroying the interference between the two bumps. We show that such a damping effect is exponential in time, and the related decay rate is proportional to the total scattering cross section of the electron-phonon interaction.

Riccardo Adami; Laszlo Erdos

2008-02-08T23:59:59.000Z

54

Lighting  

SciTech Connect

The lighting section of ASHRAE standard 90.1 is discussed. It applies to all new buildings except low-rise residential, while excluding specialty lighting applications such as signage, art exhibits, theatrical productions, medical and dental tasks, and others. In addition, lighting for indoor plant growth is excluded if designed to operate only between 10 p.m. and 6 a.m. Lighting allowances for the interior of a building are determined by the use of the system performance path unless the space functions are not fully known, such as during the initial stages of design or for speculative buildings. In such cases, the prescriptive path is available. Lighting allowances for the exterior of all buildings are determined by a table of unit power allowances. A new addition the exterior lighting procedure is the inclusion of facade lighting. However, it is no longer possible to trade-off power allotted for the exterior with the interior of a building or vice versa. A significant change is the new emphasis on lighting controls.

McKay, H.N. (Hayden McKay Lighting Design, New York, NY (US))

1990-02-01T23:59:59.000Z

55

Thermal D-branes States from Superstrings in Light-Cone Gauge  

E-Print Network (OSTI)

In this talk we are going to review a method to construct the thermal boundary states of the thermal string in the TFD approach. The class of thermal boundary states presented here is derived from the BPS D-branes of the type II GS superstrings.

Ion V. Vancea

2006-09-26T23:59:59.000Z

56

Light Water Reactor Materials for Commercial Nuclear Power ...  

Science Conference Proceedings (OSTI)

Presentation Title, Light Water Reactor Materials for Commercial Nuclear ... First- Principles Theory of Magnetism, Crystal Field and Phonon Spectrum of UO2.

57

Imaging carrier and phonon transport in Si using ultrashort optical pulses  

DOE Green Energy (OSTI)

A series of experiments have been conducted that microscopically image thermal diffusion and surface acoustic phonon propagation within a single crystallite of a polycrystalline Si sample. The experimental approach employs ultrashort optical pulses to generate an electron-hole plasma and a second probe pulse is used to image the evolution of the plasma. By decomposing the signal into a component that varies with delay time and a steady state component that varies with pump modulation frequency, the respective influence of carrier recombination and thermal diffusion are identified. Additionally, the coherent surface acoustic phonon component to the signal is imaged using a Sagnac interferometer to monitor optical phase.

David H. Hurley; O. B. Wright; O. Matsuda; B. E. McCandless; S. Shinde

2009-01-01T23:59:59.000Z

58

Light stable isotope study of the Roosevelt Hot Springs thermal area, Southwestern Utah  

DOE Green Energy (OSTI)

The isotopic composition of hydrogen, oxygen, and carbon has been determined for regional cold springs, thermal fluids, and rocks and minerals from the Roosevelt Hot Springs thermal area. The geothermal system has developed within plutonic granitic rocks and amphibolite facies gneiss, relying upon fracture-controlled permeability for the migration of the thermal fluids. Probably originating as meteoric waters in the upper elevations of the Mineral Mountains, the thermal waters sampled in the production wells display an oxygen isotopic shift of at least +1.2. Depletions of delta /sup 18/O in wole rock, K-feldspar, and biotite have a positive correlation with alteration intensity. W/R mass ratios, calculated from the isotopic shifts of rock and water, range up to 3.0 in a producing horizon of one well, although the K-feldspar has experienced only 30% exchange with the thermal waters. While veinlet quartz has equilibrated with the thermal waters, the /sup 18/O values of K-mica clay, an alteration product of plagioclase, mimic the isotopic composition of K-feldspar and whole rock. This suggests that locally small W/R ratios enable plagioclase to influence its alteration products by isotopic exchange.

Rohrs D.T.; Bowman, J.R.

1980-05-01T23:59:59.000Z

59

Review Article: Physics and Monte Carlo Techniques as Relevant to Cryogenic, Phonon and Ionization Readout of CDMS Radiation-Detectors  

E-Print Network (OSTI)

This review discusses detector physics and Monte Carlo techniques for cryogenic, radiation detectors that utilize combined phonon and ionization readout. A general review of cryogenic phonon and charge transport is provided along with specific details of the Cryogenic Dark Matter Search detector instrumentation. In particular this review covers quasidiffusive phonon transport, which includes phonon focusing, anharmonic decay and isotope scattering. The interaction of phonons in the detector surface is discussed along with the downconversion of phonons in superconducting films. The charge transport physics include a mass tensor which results from the crystal band structure and is modeled with a Herring Vogt transformation. Charge scattering processes involve the creation of Neganov-Luke phonons. Transition-edge-sensor (TES) simulations include a full electric circuit description and all thermal processes including Joule heating, cooling to the substrate and thermal diffusion within the TES, the latter of which is necessary to model normal-superconducting phase separation. Relevant numerical constants are provided for these physical processes in germanium, silicon, aluminum and tungsten. Random number sampling methods including inverse cumulative distribution function (CDF) and rejection techniques are reviewed. To improve the efficiency of charge transport modeling, an additional second order inverse CDF method is developed here along with an efficient barycentric coordinate sampling method of electric fields. Results are provided in a manner that is convenient for use in Monte Carlo and references are provided for validation of these models.

S. W. Leman

2011-09-06T23:59:59.000Z

60

Coherent Phonon-Grain Boundary Scattering in Silicon Inverse Opals Bibek R. Parajuli,,  

E-Print Network (OSTI)

transmission coefficient of the grain boundary. Atomistic simulations40 reveal that the transmission dependence of the phonon reflection coefficient calculated from these simulations follows 2 was cleaved into two pieces: one for XRD and one for thermal measurement. (35) Klemens, P. G. Thermochim. Acta

Braun, Paul

Note: This page contains sample records for the topic "lighting phonons thermal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

METHOD FOR REMOVAL OF LIGHT ISOTOPE PRODUCT FROM LIQUID THERMAL DIFFUSION UNITS  

DOE Patents (OSTI)

A method and apparatus are described for removing the lighter isotope of a gaseous-liquid product from a number of diffusion columns of a liquid thermal diffusion system in two stages by the use of freeze valves. The subject liquid flows from the diffusion columns into a heated sloping capsule where the liquid is vaporized by the action of steam in a heated jacket surrounding the capsule. When the capsule is filled the gas flows into a collector. Flow between the various stages is controlled by freeze valves which are opened and closed by the passage of gas and cool water respectively through coils surrounding portions of the pipes through which the process liquid is passed. The use of the dual stage remover-collector and the freeze valves is an improvement on the thermal diffusion separation process whereby the fraction containing the lighter isotope many be removed from the tops of the diffusion columns without intercolumn flow, or prior stage flow while the contents of the capsule is removed to the final receiver.

Hoffman, J.D.; Ballou, J.K.

1957-11-19T23:59:59.000Z

62

Phonon polariton interaction with patterned materials  

E-Print Network (OSTI)

The generation, propagation and detection of THz phonon polaritons are studied through both femtosecond pump-probe techniques, and Finite Difference Time Domain (FDTD) simulations in this thesis. The theory surrounding the ...

Statz, Eric R. (Eric Robert)

2008-01-01T23:59:59.000Z

63

Near net shape processing for solar thermal propulsion hardware using directed light fabrication  

DOE Green Energy (OSTI)

Directed light fabrication (DLF) is a direct metal deposition process that fuses gas delivered powder, in the focal zone of a high powered laser beam to form fully fused near net shaped components. The near net shape processing of rhenium, tungsten, iridium and other high temperature materials may offer significant cost savings compared with conventional processing. This paper describes a 3D parametric solid model, integrated with a manufacturing model, and creating a control field which runs on the DLF machine directly depositing a fully dense, solid metal, near net shaped, nozzle component. Examples of DLF deposited rhenium, iridium and tantalum, from previous work, show a continuously solidified microstructure in rod and tube shapes. Entrapped porosity indicates the required direction for continued process development. These combined results demonstrate the potential for a new method to fabricate complex near net shaped components using materials of interest to the space and aerospace industries.

Milewski, J.O. [Los Alamos National Lab., NM (United States). Materials Science and Technology Div.; Fonseca, J.C.; Lewis, G.K. [SyntheMet Corp., Los Alamos, NM (United States)

1998-12-01T23:59:59.000Z

64

The phonon density of states of {alpha}- {delta}-plutonium by inelastic x-ray scattering.  

Science Conference Proceedings (OSTI)

Inelastic x-ray scattering measurements of the phonon density of states (DOS) were performed on polycrystalline samples of pure {alpha}-Pu and {delta}-Pu{sub 0.98}Ga{sub 0.02} at room temperature. The heat capacity of {alpha}-Pu is well reproduced by contributions calculated from the measured phonon DOS plus conventional thermal-expansion and electronic contributions, showing that {alpha}-Pu is a 'well-behaved' metal in this regard. A comparison of the phonon DOS of the two phases at room temperature showed that the vibrational entropy difference between them is only a quarter of the total entropy difference expected from known thermodynamic measurements. The missing entropy is too large to be accounted for by conventional electronic entropy and evidence from the literature rules out a contribution from spin fluctuations. Possible alternative sources for the missing entropy are discussed.

Manley, M. E.; Said, A.; Fluss, M. J.; Wall, M.; Lashley, J. C.; Alatas, A.; Moore, K. T.; LLNL; LANL

2009-02-01T23:59:59.000Z

65

Experimental and numerical investigation of phonon mean free path distribution  

E-Print Network (OSTI)

Knowledge of phonon mean free path (MFP) distribution is critically important to engineering size effects. Phenomenological models of phonon relaxation times can give us some sense about the mean free path distribution, ...

Zeng, Lingping

2013-01-01T23:59:59.000Z

66

Phonon Dispersion Relations in Chrystals  

E-Print Network (OSTI)

Debye theory did not encourage development of the Born–von Ka´rma´n crystal dynamics. However,page 2 discrepancies were apparent and some more detailed calculations were made (e.g. Kellermann 1940). Since the introduction of nuclear reactors, large... thermalised by the moderator of a nuclear reactor have energies similar to those associated with these thermal motions. It so happens that they also have wavelengths similar to the interatomic spacing in solids and liquids. Quite large and easily measured...

Peckham, Gordon Edward

67

Electron Phonon Superconductivity in LaNiPO  

Science Conference Proceedings (OSTI)

We report first principles calculations of the electronic structure, phonon dispersions and electron phonon coupling of LaNiPO. These calculations show that this material can be explained as a conventional electron phonon superconductor in contrast to theFeAs based high temperature superconductors.

Subedi, Alaska P [ORNL; Singh, David J [ORNL; Du, Mao-Hua [ORNL

2008-01-01T23:59:59.000Z

68

Thermal and Daylighting Performance of an automated venetian blind and lighting system in a full scale private office  

E-Print Network (OSTI)

Dynamic envelope/lighting systems have the potential to optimize the perimeter zone energy balance between daylight admission and solar heat gain rejection on a real-time basis, and to increase occupant comfort. Two side-by-side full-scale offices in Oakland, California were built to further develop and test this concept. An automated venetian blind was operated in synchronization with a dimmable electric lighting system to block direct sun, provide the design workplane illuminance, and maximize view. The research program encompassed system design refinements, energy measurements, and human factors tests. In this study, we present lighting energy and cooling load data that were monitored in this facility over the course of a year. Significant energy savings and peak demand reductions were attained with the automated venetian blind / lighting system compared to a static venetian blind with the same dimmable electric lighting system. Correlations between key weather parameters and

E. S. Lee; D. L. Dibartolomeo; S. E. Selkowitz; E. S. Lee; D. L. Dibartolomeo; S. E. Selkowitz

1998-01-01T23:59:59.000Z

69

Coupling light into graphene plasmons through surface acoustic waves  

E-Print Network (OSTI)

We propose a scheme for coupling laser light into graphene plasmons with the help of electrically generated surface acoustic waves. The surface acoustic wave forms a diffraction grating which allows to excite the long lived phonon-like branch of the hybridized graphene plasmon-phonon dispersion with infrared laser light. Our approach avoids patterning the graphene sheet, does not rely on complicated optical near-field techniques, and allows to electrically switch the coupling between far field radiation and propagating graphene plasmons.

Schiefele, Jürgen; Sols, Fernando; Calle, Fernando; Guinea, Francisco

2013-01-01T23:59:59.000Z

70

Phonon Studies with Inelastic Neutron Scattering and First ...  

Science Conference Proceedings (OSTI)

Presentation Title, Phonon Studies with Inelastic Neutron Scattering and .... by Asynchronous In-Situ Neutron Diffraction at the Spallation Neutron Source.

71

Thermal-Hydraulic Modeling of the Primary Coolant System of Light Water Reactors During Severely Degraded Core Accidents  

Science Conference Proceedings (OSTI)

The transport of fission-product vapors and aerosols that would be released from an LWR primary system in postulated severe accidents depends on the prevalent thermal-hydraulic conditions. The analytic models developed in this study are incorporated in the PSAAC modular computer program, which can help predict more realistic estimates of accident consequences.

1984-07-01T23:59:59.000Z

72

Light-stable-isotope studies of spring and thermal waters from the Roosevelt Hot Springs and Cove Fort/Sulphurdale Thermal areas and of clay minerals from the Roosevelt Hot Springs thermal area  

DOE Green Energy (OSTI)

The isotopic compositions of hydrogen and oxygen have been determined for spring waters and thermal fluids from the Roosevelt Hot Springs and Cove Fort-Sulphurdale thermal areas, for clay mineral separates from shallow alteration of the acid-sulfate type in the Roosevelt Hot Springs area, and for spring and well waters from the Goshen Valley area of central Utah. The water analyses in the Roosevelt Hot Springs thermal area confirm the origin of the thermal fluids from meteoric water in the Mineral Range. The water analyses in the Cove Fort-Sulphurdale thermal area restrict recharge areas for this system to the upper elevations of the Pavant and/or Tushar Ranges. The low /sup 18/O shift observed in these thermal fluids (+0.7 permil) implies either high water/rock ratios or incomplete isotope exchange or both, and further suggests minimal interaction between the thermal fluid and marble country rock in the system. Hydrogen and oxygen-isotope data for clay mineral separates from shallow alteration zones in the Roosevelt Hot Springs thermal system suggest that the fluids responsible for the shallow acid-sulfate alteration were in part derived from condensed steam produced by boiling of the deep reservoir fluid. The isotope evidence supports the chemical model proposed by Parry et al. (1980) for origin of the acid-sulfate alteration at Roosevelt Hot Springs. The isotope analyses of spring and well waters from the Goshen Valley area indicate only a general correlation of isotope composition, salinity and chemical temperatures.

Bowman, J.R.; Rohrs, D.T.

1981-10-01T23:59:59.000Z

73

Generalized phononic networks : of length scales, symmetry breaking and (non) locality : "controlling complexity through simplicity"  

E-Print Network (OSTI)

The manipulation and control of phonons is extremely important from both a fundamental scientific and applied technological standpoint, providing applications ranging from sound insulation to heat management. Phononic ...

Koh, Cheong Yang (Cheong Yang Henry)

2011-01-01T23:59:59.000Z

74

Tracking Phonons in a Nuclear Fuel to 900°C - Research Highlights...  

NLE Websites -- All DOE Office Websites (Extended Search)

Tracking Phonons at ARCS Tracking Phonons in a Nuclear Fuel to 900C Scientific Contact: Judy Pang Technical Contact: Doug Abernathy March 2011, Written by Agatha Bardoel...

75

Twenty Years of Lighting Research  

NLE Websites -- All DOE Office Websites (Extended Search)

our lighting laboratory, including the goniophotometer and luminaire thermal performance instrumentation, support the development of new products, such as efficient...

76

Heart - Shaped Nuclei: Condensation of Rotational Aligned Octupole Phonons  

E-Print Network (OSTI)

The strong octupole correlations in the mass region $A\\approx 226$ are interpreted as rotation-induced condensation of octupole phonons carrying three units of angular momentum aligned with the rotational axis. The condensation represents a quantum phase transition. Discrete phonon energy and parity conservation generate oscillations of the rotational sequences with positive and negative parity. The phonon condensate co-rotates with quadrupole shape forming a rotating heart shape. The coupling between the quadrupole and octupole modes reaches a maximum in the $N\\approx 136$ isotones, approaching the limit of a static heart shape.

Frauendorf, S

2007-01-01T23:59:59.000Z

77

Phonon Quasidiffusion in Cryogenic Dark Matter Search Large Germanium Detectors  

SciTech Connect

We present results on quasidiffusion studies in large, 3 inch diameter, 1 inch thick [100] high purity germanium crystals, cooled to 50 mK in the vacuum of a dilution refrigerator, and exposed with 59.5 keV gamma-rays from an Am-241 calibration source. We compare data obtained in two different detector types, with different phonon sensor area coverage, with results from a Monte Carlo. The Monte Carlo includes phonon quasidiffusion and the generation of phonons created by charge carriers as they are drifted across the detector by ionization readout channels.

Leman, S.W.; /MIT, MKI; Cabrera, B.; /Stanford U., Phys. Dept.; McCarthy, K.A.; /MIT, MKI; Pyle, M.; /Stanford U., Phys. Dept.; Resch, R.; /SLAC; Sadoulet, B.; Sundqvist, K.M.; /LBL, Berkeley; Brink, P.L.; Cherry, M.; /Stanford U., Phys. Dept.; Do Couto E Silva, E.; /SLAC; Figueroa-Feliciano, E.; /MIT, MKI; Mirabolfathi, N.; Serfass, B.; /UC, Berkeley; Tomada, A.; /Stanford U., Phys. Dept.

2012-06-04T23:59:59.000Z

78

Heart - Shaped Nuclei: Condensation of Rotational Aligned Octupole Phonons  

E-Print Network (OSTI)

The strong octupole correlations in the mass region $A\\approx 226$ are interpreted as rotation-induced condensation of octupole phonons having their angular momentum aligned with the rotational axis. Discrete phonon energy and parity conservation generate oscillations of the energy difference between the lowest rotational bands with positive and negative parity. Anharmonicities tend to synchronize the the rotation of the condensate and the quadrupole shape of the nucleus forming a rotating heart shape.

S. Frauendorf

2007-09-03T23:59:59.000Z

79

Glass-like thermal transport in AgSbTe2 | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

Glass-like thermal transport in AgSbTe2: nano-scale insights to improve thermoelectric efficiency May 16, 2013 Inelastic neutron scattering data showing the phonon dispersions...

80

Dynamic Properties of Materials: Phonons from Neutron Scattering  

E-Print Network (OSTI)

calculation of the harmonic atomic temperature factor for use in the phonon structure factor introduced below. The atomic temperature factor can be expressed, for any atom j, as: Tj(Q) = exp(?Wj) = exp ( ? 1 2 ?(Q · uj)2? ) Tj(Q) = exp ( ? 1 2Q TBjQ ) (1.25) 1... calculation of the harmonic atomic temperature factor for use in the phonon structure factor introduced below. The atomic temperature factor can be expressed, for any atom j, as: Tj(Q) = exp(?Wj) = exp ( ? 1 2 ?(Q · uj)2? ) Tj(Q) = exp ( ? 1 2Q TBjQ ) (1.25) 1...

Cope, Elizabeth Ruth

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "lighting phonons thermal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Phonon anomalies induced by polar nano-regions in a relaxor ...  

Science Conference Proceedings (OSTI)

... Phonon anomalies induced by polar nano-regions in a relaxor Ferroelectric. Guangyong Xu (BNL, New York). Inelastic neutron ...

82

Phonon-enhanced crystal growth and lattice healing  

DOE Patents (OSTI)

A system for modifying dislocation distributions in semiconductor materials is provided. The system includes one or more vibrational sources for producing at least one excitation of vibrational mode having phonon frequencies so as to enhance dislocation motion through a crystal lattice.

Buonassisi, Anthony; Bertoni, Mariana; Newman, Bonna

2013-05-28T23:59:59.000Z

83

Phonon drag of electrons in Ag{sub 2}S  

Science Conference Proceedings (OSTI)

The temperature dependences of the heat-conductivity coefficient {chi} and the thermopower 6h of Ag{sub 2}S are investigated in the range of 4.2-300 K. It is found that the value of 6h sharply increases (6h {infinity} T{sup -3}) with decreasing T at T < 100 K and passes through a maximum at 16-18 K. The heat-conductivity coefficient passes through a maximum at {approx}30 K. The sharp increase in 6h is found to be caused by the effect of long-wavelength-phonon drag of electrons. It is shown that the shift of the 6h and {chi} peaks, as well as the temperature dependence of the phonon thermopower 6h{sub ph} {infinity} T{sup -3}, agrees with the Herring theory.

Aliev, S. A.; Aliev, F. F., E-mail: farzali@physics.ab.az; Gasanov, Z. S.; Abdullayev, S. M.; Selim-zade, R. I. [Academy of Sciences of Azerbaijan, Institute of Physics (Azerbaijan)

2010-06-15T23:59:59.000Z

84

Light-Light Scattering  

E-Print Network (OSTI)

For a long time, it is believed that the light by light scattering is described properly by the Lagrangian density obtained by Heisenberg and Euler. Here, we present a new calculation which is based on the modern field theory technique. It is found that the light-light scattering is completely different from the old expression. The reason is basically due to the unphysical condition (gauge condition) which was employed by the QED calcualtion of Karplus and Neumann. The correct cross section of light-light scattering at low energy of $(\\frac{\\omega}{m} \\ll 1)$ can be written as $ \\displaystyle{\\frac{d\\sigma}{d\\Omega}=\\frac{1}{(6\\pi)^2}\\frac{\\alpha^4} {(2\\omega)^2}(3+2\\cos^2\\theta +\\cos^4\\theta)}$.

Kanda, Naohiro

2011-01-01T23:59:59.000Z

85

Light-Light Scattering  

E-Print Network (OSTI)

For a long time, it is believed that the light by light scattering is described properly by the Lagrangian density obtained by Heisenberg and Euler. Here, we present a new calculation which is based on the modern field theory technique. It is found that the light-light scattering is completely different from the old expression. The reason is basically due to the unphysical condition (gauge condition) which was employed by the QED calcualtion of Karplus and Neumann. The correct cross section of light-light scattering at low energy of $(\\frac{\\omega}{m} \\ll 1)$ can be written as $ \\displaystyle{\\frac{d\\sigma}{d\\Omega}=\\frac{1}{(6\\pi)^2}\\frac{\\alpha^4} {(2\\omega)^2}(3+2\\cos^2\\theta +\\cos^4\\theta)}$.

Naohiro Kanda

2011-06-03T23:59:59.000Z

86

Battle against Phonons (A "Life at the Frontiers of Energy Research" contest entry from the 2011 Energy Frontier Research Centers (EFRCs) Summit and Forum  

DOE Green Energy (OSTI)

'Battle against Phonons' was submitted by the Solid-State Solar-Thermal Energy Conversion (S3TEC) EFRC to the 'Life at the Frontiers of Energy Research' video contest at the 2011 Science for Our Nation's Energy Future: Energy Frontier Research Centers (EFRCs) Summit and Forum. Twenty-six EFRCs created short videos to highlight their mission and their work. This video was selected as one of five winners by a distinguished panel of judges for the special award, 'Best with Popcorn'. S3TEC, an EFRC directed by Gang Chen at the Massachusetts Institute of Technology is a partnership of scientists from four research institutions: MIT (lead), Oak Ridge National Laboratory, Boston College, and Rensselaer Polytechnic Institute. The Office of Basic Energy Sciences in the U.S. Department of Energy's Office of Science established the 46 Energy Frontier Research Centers (EFRCs) in 2009. These collaboratively-organized centers conduct fundamental research focused on 'grand challenges' and use-inspired 'basic research needs' recently identified in major strategic planning efforts by the scientific community. The overall purpose is to accelerate scientific progress toward meeting the nation's critical energy challenges. The mission of the Solid-State Solar Thermal Energy Conversion Center is 'to create novel, solid-state materials for the conversion of sunlight into electricity using thermal and photovoltaic processes.' Research topics are: solar photovoltaic, photonic, metamaterial, optics, solar thermal, thermoelectric, phonons, thermal conductivity, defects, ultrafast physics, interfacial characterization, matter by design, novel materials synthesis, charge transport, defect tolerant materials, and scalable processing.

Chen, Gang (Director, Solid-State Solar-Thermal Energy Conversion Center); S3TEC Staff

2011-05-01T23:59:59.000Z

87

ASNOM mapping of SiC epi-layer doping profile and of surface phonon polariton waveguiding  

E-Print Network (OSTI)

The apertureless SNOM mapping of the slightly-doped 4H-SiC epitaxial layer grown on a heavily-doped 4H-SiC substrate was performed with a cleaved edge geometry. ASNOM images taken at the light frequencies of a $C^{13}O_{2}^{16}$ laser show a clear contrast between the substrate and the epitaxial layer. The contrast vanishes at the laser frequency of $884cm^{-1}$, and gets clearer at higher frequencies $(923cm^{-1})$. This can be explained by changes in the local polarizability of SiC caused by the carrier concentration, which are more pronounced at higher frequencies. Since the light frequency is tuned up further ($935cm^{-1}$), a transversal mode structure appears in the ASNOM map, indicating a waveguide-like confinement of a surface phonon polariton wave inside the strip of an epi-layer outcrop.

Kazantsev, Dmitry

2013-01-01T23:59:59.000Z

88

Contact thermal lithography  

E-Print Network (OSTI)

Contact thermal lithography is a method for fabricating microscale patterns using heat transfer. In contrast to photolithography, where the minimum achievable feature size is proportional to the wavelength of light used ...

Schmidt, Aaron Jerome, 1979-

2004-01-01T23:59:59.000Z

89

Study of thermal properties of graphene-based structures using the force constant method  

Science Conference Proceedings (OSTI)

The thermal properties of graphene-based materials are theoretically investigated. The fourth-nearest neighbor force constant method for phonon properties is used in conjunction with both the Landauer ballistic and the non-equilibrium Green's function ... Keywords: Force constant method, Graphene, Graphene antidots, Non-equilibrium Green's function, Thermal properties

Hossein Karamitaheri; Neophytos Neophytou; Mahdi Pourfath; Hans Kosina

2012-03-01T23:59:59.000Z

90

LED Lighting  

Energy.gov (U.S. Department of Energy (DOE))

Light-emitting diodes (LEDs) are light sources that differ from more traditional sources of light in that they are semiconductor devices that produce light when an electrical current is applied....

91

Structure of $^{240}$Pu: Evidence for Octupole Phonon Condensation?  

E-Print Network (OSTI)

The expanded level structure of $^{240}$Pu available from the present study highlights the role of strong octupole correlations in this nucleus. Besides a delayed alignment in the yrast band, the observations include the presence of both $I^{+}{\\to}(I-1)^{-}$ and $I^{-}{\\to}(I-1)^{+}$ E1 transitions linking states of the yrast and negative-parity bands at high spin and the presence of an additional even-spin, positive-parity band deexciting exclusively to the negative parity sequence. The observations appear to be consistent with expectations based on the recently proposed concept of octupole phonon condensation.

X. Wang; R. V. F. Janssens; M. P. Carpenter; S. Zhu; I. Wiedenhöver; U. Garg; S. Frauendorf; T. Nakatsukasa; I. Ahmad; A. Bernstein; E. Diffenderfer; S. J. Freeman; J. P. Greene; T. L. Khoo; F. G. Kondev; A. Larabee; T. Lauritsen; C. J. Lister; B. Meredith; D. Seweryniak; C. Teal; P. Wilson

2009-02-24T23:59:59.000Z

92

Structure of $^{240}$Pu: Evidence for Octupole Phonon Condensation?  

E-Print Network (OSTI)

The expanded level structure of $^{240}$Pu available from the present study highlights the role of strong octupole correlations in this nucleus. Besides a delayed alignment in the yrast band, the observations include the presence of both $I^{+}{\\to}(I-1)^{-}$ and $I^{-}{\\to}(I-1)^{+}$ E1 transitions linking states of the yrast and negative-parity bands at high spin and the presence of an additional even-spin, positive-parity band deexciting exclusively to the negative parity sequence. The observations appear to be consistent with expectations based on the recently proposed concept of octupole phonon condensation.

Wang, X; Carpenter, M P; Zhu, S; Wiedenhöver, I; Garg, U; Frauendorf, S; Nakatsukasa, T; Ahmad, I; Bernstein, A; Diffenderfer, E; Freeman, S J; Greene, J P; Khoo, T L; Kondev, F G; Larabee, A; Lauritsen, T; Lister, C J; Meredith, B; Seweryniak, D; Teal, C; Wilson, P

2009-01-01T23:59:59.000Z

93

Validation of Phonon Physics in the CDMS Detector Monte Carlo  

SciTech Connect

The SuperCDMS collaboration is a dark matter search effort aimed at detecting the scattering of WIMP dark matter from nuclei in cryogenic germanium targets. The CDMS Detector Monte Carlo (CDMS-DMC) is a simulation tool aimed at achieving a deeper understanding of the performance of the SuperCDMS detectors and aiding the dark matter search analysis. We present results from validation of the phonon physics described in the CDMS-DMC and outline work towards utilizing it in future WIMP search analyses.

McCarthy, K.A.; Leman, S.W.; Anderson, A.J.; /MIT; Brandt, D.; /SLAC; Brink, P.L.; Cabrera, B.; Cherry, M.; /Stanford U.; Do Couto E Silva, E.; /SLAC; Cushman, P.; /Minnesota U.; Doughty, T.; /UC, Berkeley; Figueroa-Feliciano, E.; /MIT; Kim, P.; /SLAC; Mirabolfathi, N.; /UC, Berkeley; Novak, L.; /Stanford U.; Partridge, R.; /SLAC; Pyle, M.; /Stanford U.; Reisetter, A.; /Minnesota U. /St. Olaf Coll.; Resch, R.; /SLAC; Sadoulet, B.; Serfass, B.; Sundqvist, K.M.; /UC, Berkeley /Stanford U.

2012-06-06T23:59:59.000Z

94

Phonon contribution to the shear viscosity of a superfluid Fermi gas in the unitarity limit  

E-Print Network (OSTI)

We present a detailed analysis of the contribution of small-angle Nambu-Goldstone boson (phonon) collisions to the shear viscosity, $\\eta$, in a superfluid atomic Fermi gas close to the unitarity limit. We show that the experimental values of the shear viscosity coefficient to entropy ratio, $\\eta/s$, obtained at the lowest reached temperature can be reproduced assuming that phonons give the leading contribution to $\\eta$. The phonon contribution is evaluated considering $1 \\leftrightarrow 2$ processes and taking into account the finite size of the experimental system. In particular, for very low temperatures, $T \\lesssim 0.1 T_F$, we find that phonons are ballistic and the contribution of phonons to the shear viscosity is determined by the processes that take place at the interface between the superfluid and the normal phase. This result is independent of the detailed form of the phonon dispersion law and leads to two testable predictions: the shear viscosity should correlate with the size of the optical trap and it should decrease with decreasing temperature. For higher temperatures the detailed form of the phonon dispersion law becomes relevant and, within our model, we find that the experimental data for $\\eta/s$ can be reproduced assuming that phonons have an anomalous dispersion law.

Massimo Mannarelli; Cristina Manuel; Laura Tolos

2012-12-20T23:59:59.000Z

95

Effect of temperature on phonon contribution to Green function of high-temperature superconducting cuprates  

Science Conference Proceedings (OSTI)

The phonon contribution to the nodal electron Green function in cuprates is considered. It is shown that the temperature dependence of the real part of the self-energy component of the Green function for cuprates with a hole doping level close to optimal is described by the electron-phonon interaction in the framework of the extended Eliashberg model.

Korneeva, L. A., E-mail: korneeva_mila@mail.ru; Mazur, E. A. [National Research Nuclear University MEPhI (Russian Federation)

2012-08-15T23:59:59.000Z

96

Raman spectra of out-of-plane phonons in bilayer graphene  

E-Print Network (OSTI)

The double resonance Raman spectra of the overtone of the out-of-plane tangential optical (oTO) phonon and of combinations of the LO, ZO, and ZA phonons with one another are calculated for bilayer graphene. In the case of ...

Sato, Kentaro

97

Thermal conductance and rectification of asymmetric tilt grain boundary in graphene  

E-Print Network (OSTI)

We have investigated the lattice thermal transport across the asymmetry tilt grain boundary between armchair and zigzag grains by using nonequilibrium molecular dynamics (NEMD). We have observed significant temperature drop and ultralow temperature-dependent thermal boundary resistance. Importantly, we find an unexpected thermal rectification phenomenon, i.e, the thermal conductivity and Kapitza conductance is asymmetric with respect to the thermal transport direction. And the effect of thermal rectification could be amplified by increasing the difference of temperature imposed on two sides. Our results propose a new promising kind of thermal rectifier and phonon diodes from polycrystalline graphene without delicate manupulation of the atomic structures.

Cao, Hai-Yuan; Gong, Xin-Gao

2011-01-01T23:59:59.000Z

98

Lighting system with heat distribution face plate  

DOE Patents (OSTI)

Lighting systems having a light source and a thermal management system are provided. The thermal management system includes synthetic jet devices, a heat sink and a heat distribution face plate. The synthetic jet devices are arranged in parallel to one and other and are configured to actively cool the lighting system. The heat distribution face plate is configured to radially transfer heat from the light source into the ambient air.

Arik, Mehmet; Weaver, Stanton Earl; Stecher, Thomas Elliot; Kuenzler, Glenn Howard; Wolfe, Jr., Charles Franklin; Li, Ri

2013-09-10T23:59:59.000Z

99

Lighting Techniques  

Science Conference Proceedings (OSTI)

...Lighting is very critical in photography. The specimen should be placed on a background which will not detract from the resolution of the fracture surface. For basic lighting, one spotlight is suggested. The light is then raised or lowered, and

100

Phonon densities of states of face-centered-cubic Ni-Fe alloys  

Science Conference Proceedings (OSTI)

Inelastic neutron scattering and nuclear resonant inelastic x-ray scattering were used to determine the phonon densities of states of face-centered-cubic Ni-Fe alloys. Increasing Fe concentration results in an average softening of the phonon modes. Chemical ordering of the Ni0.72Fe0.28 alloy results in a reduction of the partial vibrational entropy of the Fe atoms but does not significantly change the partial vibrational entropy of the Ni atoms. Changes in the phonon densities of states with composition and chemical ordering are discussed and analyzed with a cluster expansion method.

Lucas, Matthew [United States Air Force Research Laboratory, Wright-Patterson Air Force Base] [United States Air Force Research Laboratory, Wright-Patterson Air Force Base; Mauger, L [California Institute of Technology, W. M. Keck Laboratory, Pasadena] [California Institute of Technology, W. M. Keck Laboratory, Pasadena; Munoz, Jorge A. [California Institute of Technology, Pasadena] [California Institute of Technology, Pasadena; Halevy, I [California Institute of Technology, Pasadena] [California Institute of Technology, Pasadena; Horwath, J [United States Air Force Research Laboratory, Wright-Patterson Air Force Base] [United States Air Force Research Laboratory, Wright-Patterson Air Force Base; Semiatin, S L [United States Air Force Research Laboratory, Wright-Patterson Air Force Base] [United States Air Force Research Laboratory, Wright-Patterson Air Force Base; Leontsev, S. O. [University of Kentucky, Lexington] [University of Kentucky, Lexington; Stone, Matthew B [ORNL] [ORNL; Abernathy, Douglas L [ORNL] [ORNL; Xiao, Yuming [Carnegie Institution of Washington] [Carnegie Institution of Washington; Chow, P [HPCAT Geophysical Lab, Argonne, IL] [HPCAT Geophysical Lab, Argonne, IL; Fultz, B. [California Institute of Technology, Pasadena] [California Institute of Technology, Pasadena

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "lighting phonons thermal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Lighting Research Center Lighting Products  

Science Conference Proceedings (OSTI)

... 12) Solid State Lighting Luminaires - Color Characteristic Measurements. [22/S04] IES LM-16:1993 Practical Guide to Colorimetry of Light Sources. ...

2013-07-26T23:59:59.000Z

102

Lighting Group: Light Distribution Systems  

NLE Websites -- All DOE Office Websites (Extended Search)

Retrofit Alternatives to Incandescent Downlights Hotel and Institutional Bathroom Lighting Portable Office Lighting Systems Low Glare Outdoor Retrofit Luminaire LED Luminaires...

103

Outlaw lighting  

SciTech Connect

Demand-side management programs by utilities and the federal government`s Green Lights program have made significant inroads in promoting energy-efficient lighting. But the Energy Policy Act now prohibits certain types of lighting. This article provides analysis to help architects determine new lamp performance compared with older lighting products.

Bryan, H.

1994-12-01T23:59:59.000Z

104

Catalytic thermal barrier coatings  

Science Conference Proceedings (OSTI)

A catalyst element (30) for high temperature applications such as a gas turbine engine. The catalyst element includes a metal substrate such as a tube (32) having a layer of ceramic thermal barrier coating material (34) disposed on the substrate for thermally insulating the metal substrate from a high temperature fuel/air mixture. The ceramic thermal barrier coating material is formed of a crystal structure populated with base elements but with selected sites of the crystal structure being populated by substitute ions selected to allow the ceramic thermal barrier coating material to catalytically react the fuel-air mixture at a higher rate than would the base compound without the ionic substitutions. Precious metal crystallites may be disposed within the crystal structure to allow the ceramic thermal barrier coating material to catalytically react the fuel-air mixture at a lower light-off temperature than would the ceramic thermal barrier coating material without the precious metal crystallites.

Kulkarni, Anand A. (Orlando, FL); Campbell, Christian X. (Orlando, FL); Subramanian, Ramesh (Oviedo, FL)

2009-06-02T23:59:59.000Z

105

Molecular dynamics analysis of spectral characteristics of phonon heat conduction in silicon  

E-Print Network (OSTI)

Due to the technological significance of silicon, its heat conduction mechanisms have been studied extensively. However, there have been some lingering questions surrounding the phonon mean free path and importance of ...

Henry, Asegun Sekou Famake

2006-01-01T23:59:59.000Z

106

Coupling of nitrogen vacancy centers in nanodiamonds by means of phonons  

E-Print Network (OSTI)

Realising controlled quantum dynamics via the magnetic interactions between colour centers in diamond remains a challenge despite recent demonstrations for nanometer separated pairs. Here we propose to use the intrinsic acoustical phonons in diamond as a data bus for accomplishing this task. We show that for nanodiamonds the electron-phonon coupling can take significant values that together with mode frequencies in the THz range, can serve as a resource for conditional gate operations. Based on these results we analyze how to use this phonon-induced interaction for constructing quantum gates among the electron-spin triplet ground states, introducing the phonon dependence via Raman transitions. Combined with decoupling pulses this offers the possibility for creating entangled states within nanodiamonds on the scale of several tens of nanometers, a promising prerequisite for quantum sensing applications.

Andreas Albrecht; Alex Retzker; Fedor Jelezko; Martin B. Plenio

2013-04-08T23:59:59.000Z

107

Phonon laser action in a tunable, two-level photonic molecule  

E-Print Network (OSTI)

The phonon analog of an optical laser has long been a subject of interest. We demonstrate a compound microcavity system, coupled to a radio-frequency mechanical mode, that operates in close analogy to a two-level laser system. An inversion produces gain, causing phonon laser action above a pump power threshold of around 50 $\\mu$W. The device features a continuously tunable, gain spectrum to selectively amplify mechanical modes from radio frequency to microwave rates. Viewed as a Brillouin process, the system accesses a regime in which the phonon plays what has traditionally been the role of the Stokes wave. For this reason, it should also be possible to controllably switch between phonon and photon laser regimes. Cooling of the mechanical mode is also possible.

Ivan S. Grudinin; O. Painter; Kerry J. Vahala

2009-07-29T23:59:59.000Z

108

Lattice motions from THz phonon-polaritons measured with femtosecond x-ray diffraction  

Science Conference Proceedings (OSTI)

We use femtosecond x-ray diffraction to measure the coherent lattice displacements associated with the excitation and propagation of THz phonon polaritons in LiTaO3.

Schoenlein, Robert William; Cavalleri, A.; Wall, S.; Simpson, C.; Statz, E.; Ward, D.W.; Nelson, K.A.; Schoenlein, R.W.; Rini, M.; Dean, N.; Khalil, M.

2006-08-07T23:59:59.000Z

109

Symmetrization of the Coulomb pairing potential by electron-phonon interaction  

Science Conference Proceedings (OSTI)

It is shown that the Coulomb superconducting pairing in systems with the Fermi contour nesting can be described by a quasi-one-dimensional potential oscillating in real space. The supplement of this repulsive potential with an isotropic pairing attraction corresponding to the phonon superconductivity mechanism and including the effect of predominant forward scattering upon electron-phonon interaction leads to symmetrization of this potential and a considerable increase in the superconducting transition temperature.

Belyavsky, V. I., E-mail: vib45@mail.ru; Kapaev, V. V.; Kopaev, Yu. V.; Mikhailyan, D. I. [Russian Academy of Sciences, Lebedev Physics Institute (Russian Federation)

2012-08-15T23:59:59.000Z

110

Lattice effects in the light actinides  

Science Conference Proceedings (OSTI)

The light actinides show a variety of lattice effects that do not normally appear in other regions of the periodic table. The article will cover the crystal structures of the light actinides, their atomic volumes, their thermal expansion behavior, and their elastic behavior as reflected in recent thermal vibration measurements made by neutron diffraction. A discussion of the melting points will be given in terms of the thermal vibration measurements. Pressure effects will be only briefly indicated.

Lawson, A.C.; Cort, B.; Roberts, J.A.; Bennett, B.I.; Brun, T.O.; Dreele, R.B. von [Los Alamos National Lab., NM (United States); Richardson, J.W. Jr. [Argonne National Lab., IL (United States)

1998-12-31T23:59:59.000Z

111

Lighting Controls  

NLE Websites -- All DOE Office Websites (Extended Search)

corridors. The overall range of savings was six to 80 percent. The Advanced Lighting Guidelines On-Line Edition New Buildings Institute 2011 presents a table of lighting energy...

112

Shape the light, light the shape - lighting installation in performance.  

E-Print Network (OSTI)

??This thesis investigates the lighting design theory Light Inside Out, which is the technique of shaping light toward a creation of lighting installation in performance… (more)

Yu, Lih-Hwa, 1972-

2010-01-01T23:59:59.000Z

113

Lighting Systems  

NLE Websites -- All DOE Office Websites (Extended Search)

Purple LED lamp Purple LED lamp Lighting Systems Lighting research is aimed at improving the energy efficiency of lighting systems in buildings and homes across the nation. The goal is to reduce lighting energy consumption by 50% over twenty years by improving the efficiency of light sources, and controlling and delivering illumination so that it is available, where and when needed, and at the required intensity. Research falls into four main areas: Sources and Ballasts, Light Distribution Systems, Controls and Communications, and Human Factors. Contacts Francis Rubinstein FMRubinstein@lbl.gov (510) 486-4096 Links Lighting Research Group Batteries and Fuel Cells Buildings Energy Efficiency Applications Commercial Buildings Cool Roofs and Heat Islands Demand Response Energy Efficiency Program and Market Trends

114

The role of screening of the electron-phonon interaction in relaxation of photoexcited electron-hole plasma in semiconductors  

Science Conference Proceedings (OSTI)

The role of screening of the interaction of the electron-hole plasma with optical phonons is analytically evaluated by the example of gallium arsenide.

Kumekov, S. E. [Kazakh National Technical University (Kazakhstan)], E-mail: skumekov@mail.ru

2008-08-15T23:59:59.000Z

115

2 Technology Description: Solar Thermal Parabolic Trough Solar Thermal  

E-Print Network (OSTI)

– Parabolic troughs track sun, concentrate incident light onto a centralized, tubular receiver that runs length of each trough – Thermal fluid circulates through all receivers in solar field – Thermal fluid brought to one or more centralized power production facilities – Heat transferred to a steam cycle, drives a steam turbine to generate power – Cooled thermal fluid is then recirculated th through h solar fi field ld – Wet cooling is common, dry cooling possible

Timothy J. Skone; Risks Of Implementation

2012-01-01T23:59:59.000Z

116

Commercial Lighting and LED Lighting Incentives  

Energy.gov (U.S. Department of Energy (DOE))

Incentives for energy efficient commercial lighting equipment as well as commercial LED lighting equipment are available to businesses under the Efficiency Vermont Lighting and LED Lighting...

117

Phonon characteristics of high {Tc} superconductors from neutron Doppler broadening measurements  

SciTech Connect

Statistical information on the phonon frequency spectrum of materials can be measured by neutron transmission techniques if they contain nuclei with low energy resonances, narrow enough to be Doppler-broadened, in their neutron cross sections. The authors have carried out some measurements using this technique for materials of the lanthanum barium cuprate class, La{sub 2{minus}x}Ba{sub x}CuO{sub 4}. Two samples with slightly different concentrations of oxygen, one being superconductive, the other not, were examined. Pure lanthanum cuprate was also measured. Lanthanum, barium and copper all have relatively low energy narrow resonances. Thus it should be possible to detect differences in the phonons carried by different kinds of atom in the lattice. Neutron cross section measurements have been made with high energy resolution and statistical precision on the 59m flight path of LANSCE, the pulsed spallation neutron source at Los Alamos National Laboratory. Measurements on all three materials were made over a range of temperatures from 15K to 300K, with small steps through the critical temperature region near 27K. No significant changes in the mean phonon energy of the lanthanum atoms were observed near the critical temperature of the super-conducting material. It appears however that the mean phonon energy of lanthanum in the superconductor is considerably higher than that in the non-superconductors. The samples used in this series of experiments were too thin in barium and copper to determine anything significant about their phonon spectra.

Trela, W.J.; Kwei, G.H.; Lynn, J.E. [Los Alamos National Lab., NM (United States); Meggers, K. [Univ. of Kiel (Germany)

1994-12-01T23:59:59.000Z

118

Proposed Universal Relationships Describing Electron Phonon Mediated Superconductivity and Accommodation of the Cuprates and Pnictides  

E-Print Network (OSTI)

A universal and self-consistent set of equations is developed utilizing the principle empirical parameters of Superconductivity which are the coherent condensation temperature, the Debye temperature, the coherent condensation energy gap at critical temperature equals zero degrees Kelvin and the electron phonon coupling constant. Empirical data from both crystalline elements and amorphous compounds is shown to produce the same self consistent relationships which are critical temperature equals Debye energy/2 exp(-2/electron phonon coupling constant), coherent condensation temperature equals the Debye energy exp (-2/electron phonon coupling constant) and the ratio of coherent condensation temperature/critical temperature equals 2.0 i.e. coherent condensation temperature equals coherent energy gap and is found to be constant for all superconductors. We also find that electron phonon coupling constant is related exponentially related to the zero point energy where the zero point energy equals the Debye energy/2 and is the zero point energy of a quantum mechanical oscillator. These relationships are derived exclusively from electron phonon mediated superconductor data and are also shown to encompass cuprate superconductors with ease. [Abridged

D. A. Nepela

2008-07-10T23:59:59.000Z

119

Interaction of electrons with optical phonons localized in a quantum well  

Science Conference Proceedings (OSTI)

The scattering rate of electrons in a quantum well by localized polar optical and interface phonons is considered. The dependence of the force of the electron-phonon interaction on the frequency of optical phonons in materials of the heterostructure forming the electron and phonon quantum wells is determined. It is shown that, by varying the composition of semiconductors forming the quantum well and its barriers, it is possible to vary the scattering rates of electrons by a factor of several times. The scattering rates of electrons by polar optical phonons are calculated depending on the fractions In{sub x} and In{sub y} in the composition of semiconductors forming the In{sub x}Al{sub 1-x}As/In{sub y}Ga{sub 1-y}As quantum wells. Dependences of the mobility and saturated drift velocity of electrons in high electric fields and quantum wells In{sub y}Ga{sub 1-y}As on the composition of the In{sub x}Al{sub 1-x}As barriers introduced into quantum wells are determined experimentally. The electron mobility increases, while the saturated drift velocity decreases as the fraction of In{sub x} in the composition of barriers is increased.

Pozela, J., E-mail: pozela@pfi.lt; Pozela, K.; Juciene, V.; Suziedelis, A. [Semiconductor Physics Institute (Lithuania); Shkolnik, A. S. [Russian Academy of Sciences, Ioffe Physicotechnical Institute (Russian Federation); Mikhrin, S. S.; Mikhrin, V. S. [Innolume GmbH (Germany)

2009-12-15T23:59:59.000Z

120

THERMAL RECOVERY  

NLE Websites -- All DOE Office Websites (Extended Search)

THERMAL RECOVERY Thermal recovery comprises the techniques of steamflooding, cyclic steam stimulation, and in situ combustion. In steamflooding, high-temperature steam is injected...

Note: This page contains sample records for the topic "lighting phonons thermal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Northern Lights  

NLE Websites -- All DOE Office Websites (Extended Search)

Northern Lights Northern Lights Nature Bulletin No. 178-A February 6, 1965 Forest Preserve District of Cook County Seymour Simon, President Roland F. Eisenbeis, Supt. of Conservation NORTHERN LIGHTS To a person seeing the Aurora Borealis or "northern lights" for the first time, it is an uncanny awe-inspiring spectacle. Sometimes it begins as a glow of red on the northern horizon, ominously suggesting a great fire, gradually changing to a curtain of violet-white, or greenish-yellow light extending from east to west. Some times this may be transformed to appear as fold upon fold of luminous draperies that march majestically across the sky; sometimes as a vast multitude of gigantic flaming swords furiously slashing at the heavens; sometimes as a flowing crown with long undulating colored streamers fanning downward and outward.

122

Appliances, Lighting, Electronics, and Miscellaneous Equipment Electricity Use in New Homes  

E-Print Network (OSTI)

solar-assisted gas-fired boiler heating, a thermal wall assembly, high performance lighting, and high-efficiency

Brown, Richard E.; Rittelman, William; Parker, Danny; Homan, Gregory

2007-01-01T23:59:59.000Z

123

Light Organizing/Organizing Light [Light in Place  

E-Print Network (OSTI)

a street through alter­ nating areas of dark and light, welandscapes, streets and squares. Light summons our spiritfor changing light, both outside rooms (such as streets and

Schwartz, Martin

1992-01-01T23:59:59.000Z

124

Integrated LED-based luminare for general lighting  

DOE Patents (OSTI)

Lighting apparatus and methods employing LED light sources are described. The LED light sources are integrated with other components in the form of a luminaire or other general purpose lighting structure. Some of the lighting structures are formed as Parabolic Aluminum Reflector (PAR) luminaires, allowing them to be inserted into conventional sockets. The lighting structures display beneficial operating characteristics, such as efficient operation, high thermal dissipation, high output, and good color mixing.

Dowling, Kevin J.; Lys, Ihor A.; Roberge, Brian; Williamson, Ryan C.; Roberts, Ron; Datta, Michael; Mollnow, Tomas; Morgan, Frederick M.

2013-03-05T23:59:59.000Z

125

Light Matters (A "Life at the Frontiers of Energy Research" contest entry from the 2011 Energy Frontier Research Centers (EFRCs) Summit and Forum)  

DOE Green Energy (OSTI)

'Light Matters' was submitted by the Center for Light-Material Interactions in Energy Conversion (LMI) to the 'Life at the Frontiers of Energy Research' video contest at the 2011 Science for Our Nation's Energy Future: Energy Frontier Research Centers (EFRCs) Summit and Forum. Twenty-six EFRCs created short videos to highlight their mission and their work. This video was selected as one of five winners by a distinguished panel of judges for its 'striking photography and visual impact'. LMI, an EFRC directed by Harry Atwater at the California Institute of Technology is a partnership of scientists from three institutions: CalTech (lead), University of California, Berkeley, and the University of Illinois at Urbana-Champaign. The Office of Basic Energy Sciences in the U.S. Department of Energy's Office of Science established the 46 Energy Frontier Research Centers (EFRCs) in 2009. These collaboratively-organized centers conduct fundamental research focused on 'grand challenges' and use-inspired 'basic research needs' recently identified in major strategic planning efforts by the scientific community. The overall purpose is to accelerate scientific progress toward meeting the nation's critical energy challenges. The mission of Light-Material Interactions in Energy Conversion is 'to tailor the morphology, complex dielectric structure, and electronic properties of matter to sculpt the flow of sunlight, enabling light conversion to electrical and chemical energy with unprecedented efficiency.' Research topics are: catalysis (imines hydrocarbons), solar photovoltaic, solar fuels, photonic, solid state lighting, metamaterial, optics, phonons, thermal conductivity, solar electrodes, photsynthesis, CO{sub 2} (convert), greenhouse gas, and matter by design.

Atwater, Harry (Director, Light-Material Interactions in Energy Conversion (LMI), California Institute of Technology); LMI Staff

2011-05-01T23:59:59.000Z

126

DownloadedBy:[GeorgiaTechnologyLibrary]At:16:1730January2007 THERMAL PROPERTIES AND LATTICE DYNAMICS OF  

E-Print Network (OSTI)

of the zeolite MFI by a combination of experimental measurements and lattice dynamical modeling is presented is successfully reproduced by a phonon relaxation time­based model. The results indicate the possibility of developing a predictive model of the thermal properties of complex zeolite materials. KEY WORDS: nanoporous

Nair, Sankar

127

Effect of phonon confinement on the thermoelectric figure of merit of quantum wells  

E-Print Network (OSTI)

Effect of phonon confinement on the thermoelectric figure of merit of quantum wells Alexander in quantum wells and superlattices due to two-dimensional carrier confinement. We predict that the figure of merit can increase even further in quantum well structures with free-surface or rigid boundaries

128

Electron-Phonon Interaction in NbB2: A Comparison with MgB2  

E-Print Network (OSTI)

We present a comparison of electron-phonon interaction in NbB2 and MgB2, calculated using full-potential, density-functional-based methods in P6/mmm crystal structure. Our results, described in terms of (i) electronic structure, (ii) phonon density of states F(?), (iii) Eliashberg function ? 2 F(?), and (iv) the solutions of the isotropic Eliashberg gap equation, clearly show significant differences in the electron-phonon interaction in NbB2 and MgB2. We find that the average electronphonon coupling constant ? is equal to 0.59 for MgB2 and 0.43 for NbB2, leading to superconducting transition temperature Tc of around 22K for MgB2 and 3K for NbB2. The lack of success in finding superconductivity in other diborides with superconducting transition temperature, Tc, close to that of MgB2 [1] underscores the complex nature of interaction responsible for superconductivity in MgB2. In MgB2 the complexity is further compounded by the presence of multifaceted Fermi surface [2,3] and a highly anisotropic electron-phonon coupling,

Prabhakar P. Singh

2002-01-01T23:59:59.000Z

129

Development of phonon-polarization THz spectroscopy, and the investigation of relaxor ferroelectrics  

E-Print Network (OSTI)

This thesis develops phonon-polariton based THz spectroscopy and uses this technique to make the first THz frequency dielectric measurements of a relaxor ferroelectric crystal, in particular KTao0.982Nb0.018O3 (KTN 1.8). ...

Paxton, Benjamin John

2006-01-01T23:59:59.000Z

130

Solid-State Lighting: LED Lighting Facts  

NLE Websites -- All DOE Office Websites (Extended Search)

Market-Based Programs Printable Version Share this resource Send a link to Solid-State Lighting: LED Lighting Facts to someone by E-mail Share Solid-State Lighting: LED Lighting Facts on Facebook Tweet about Solid-State Lighting: LED Lighting Facts on Twitter Bookmark Solid-State Lighting: LED Lighting Facts on Google Bookmark Solid-State Lighting: LED Lighting Facts on Delicious Rank Solid-State Lighting: LED Lighting Facts on Digg Find More places to share Solid-State Lighting: LED Lighting Facts on AddThis.com... LED Lighting Facts CALiPER Program Standards Development Technical Information Network Gateway Demonstrations Municipal Consortium Design Competitions LED Lighting Facts LED lighting facts - A Program of the U.S. DOE DOE's LED Lighting Facts® program showcases LED products for general

131

Determining the electron-phonon coupling strength from Resonant Inelastic X-ray Scattering at transition metal L-edges  

SciTech Connect

We show that high-resolution Resonant Inelastic X-ray Scattering (RIXS) provides direct, element-specific and momentum-resolved information on the electron-phonon (e-p) coupling strength. Our theoretical analysis indicates how the e-p coupling can be extracted from RIXS spectra by determining the differential phonon scattering cross-section. An alternative manner to extract the coupling is to use the one- and two-phonon loss ratio, which is governed by the e-p coupling strength and the core-hole lifetime. This allows the determination of the e-p coupling on an absolute energy scale.

Ament, L.J.P.; van Veenendaal, M.; van den Brink, J. (Leiden); (NIU); (IFW Dresden)

2012-04-02T23:59:59.000Z

132

Light Computing  

E-Print Network (OSTI)

A configuration of light pulses is generated, together with emitters and receptors, that allows computing. The computing is extraordinarily high in number of flops per second, exceeding the capability of a quantum computer for a given size and coherence region. The emitters and receptors are based on the quantum diode, which can emit and detect individual photons with high accuracy.

Gordon Chalmers

2006-10-13T23:59:59.000Z

133

EK101 Engineering Light Smart Lighting  

E-Print Network (OSTI)

extensively in concert lighting and are finding increased usage in dance lighting because refers to the upstage back curtain (is white or a light color), which can be us for lighting or special Mixer #12;Monitor House speaker Lighting System Control Board: Similar to the sound board, the light

Bifano, Thomas

134

Web application for thermal comfort visualization and calculation according to ASHRAE Standard 55  

E-Print Network (OSTI)

item/4db4q37h Web app. for thermal comfort visualization andWeb application for thermal comfort visualization andenvironment including thermal, indoor air quality, light and

Schiavon, Stefano; Hoyt, Tyler; Piccioli, Alberto

2013-01-01T23:59:59.000Z

135

Nanotubes as Robust Thermal Conductors - Energy Innovation Portal  

In addition to their use in thermal links, their light weight, stiffness, and tensile strength (50 times greater than steel) ... Applications and Industries.

136

Electric thermal storage demonstration program  

DOE Green Energy (OSTI)

In early 1989, MMWEC, a joint action agency comprised of 30 municipal light departments in Massachusetts and on affiliate in Rhode Island, responded to a DOE request to proposal for the Least Cost Utility Planning program. The MMWEC submission was for the development of a program, focused on small rural electric utilities, to promote the use of electric thermal storage heating systems in residential applications. This report discusses the demonstration of ETS equipment at four member light departments.

Not Available

1992-02-01T23:59:59.000Z

137

Electric thermal storage demonstration program  

DOE Green Energy (OSTI)

In early 1989, MMWEC, a joint action agency comprised of 30 municipal light departments in Massachusetts and on affiliate in Rhode Island, responded to a DOE request to proposal for the Least Cost Utility Planning program. The MMWEC submission was for the development of a program, focused on small rural electric utilities, to promote the use of electric thermal storage heating systems in residential applications. This report discusses the demonstration of ETS equipment at four member light departments.

Not Available

1992-01-01T23:59:59.000Z

138

Electric thermal storage demonstration program  

DOE Green Energy (OSTI)

In early 1989, MMWEC, a joint action agency comprised of 30 municipal light departments in Massachusetts and one affiliate in Rhode Island, responded to a Department of Energy request to proposal for the Least Cost Utility Planning program. The MMWEC submission was for the development of a program, focused on small rural electric utilities, to promote the use of electric thermal storage heating systems in residential applications. In this progress report, cost savings at Bolyston light department is discussed. (JL)

Not Available

1992-02-01T23:59:59.000Z

139

Electric thermal storage demonstration program  

DOE Green Energy (OSTI)

In early 1989, MMWEC, a joint action agency comprised of 30 municipal light departments in Massachusetts and one affiliate in Rhode Island, responded to a Department of Energy request to proposal for the Least Cost Utility Planning program. The MMWEC submission was for the development of a program, focused on small rural electric utilities, to promote the use of electric thermal storage heating systems in residential applications. In this progress report, cost savings at Bolyston light department is discussed. (JL)

Not Available

1992-01-01T23:59:59.000Z

140

Coherent optical phonon spectroscopy studies of femtosecond-laser modified Sb{sub 2}Te{sub 3} films  

Science Conference Proceedings (OSTI)

We performed time-resolved reflectivity measurements to monitor changes in optical phonon modes in Sb{sub 2}Te{sub 3} thin films under femtosecond laser irradiation. We found that a phonon mode at 3.64 THz appears after high-fluence laser irradiation, in addition to the phonon modes of Sb{sub 2}Te{sub 3}. We determined that the additional mode is due to Te segregation as a result of laser-induced decomposition of the Sb{sub 2}Te{sub 3} film. This experiment clearly illustrates the irreversible effects of femtosecond laser irradiation during the measurement of coherent optical phonon dynamics in Sb{sub 2}Te{sub 3}.

Li Yuwei; Wang Guoyu [Department of Physics, University of Michigan, Ann Arbor, Michigan 48109 (United States); Center for Solar and Thermal Energy Conversion, University of Michigan, Michigan 48109 (United States); Stoica, Vladimir A. [Center for Solar and Thermal Energy Conversion, University of Michigan, Michigan 48109 (United States); Applied Physics Program, University of Michigan, Ann Arbor, Michigan 48109 (United States); Endicott, Lynn [Department of Physics, University of Michigan, Ann Arbor, Michigan 48109 (United States); Uher, Ctirad; Clarke, Roy [Department of Physics, University of Michigan, Ann Arbor, Michigan 48109 (United States); Center for Solar and Thermal Energy Conversion, University of Michigan, Michigan 48109 (United States); Applied Physics Program, University of Michigan, Ann Arbor, Michigan 48109 (United States)

2010-10-25T23:59:59.000Z

Note: This page contains sample records for the topic "lighting phonons thermal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Texas Electric Lighting Report  

NLE Websites -- All DOE Office Websites (Extended Search)

electric lighting electric lighting The SNAP House's lighting design aims for elegant simplicity in concept, use, and maintenance. Throughout the house, soft, ambient light is juxtaposed with bright, direct task lighting. All ambient and most task lighting is integrated directly into the architectural design of the house. An accent light wall between the bedroom and bathroom provides a glowing light for nighttime navigation.

142

Two-phonon 1- state in 112Sn observed in resonant photon scattering  

E-Print Network (OSTI)

Results of a photon scattering experiment on 112Sn using bremsstrahlung with an endpoint energy of E_0 = 3.8 MeV are reported. A J = 1 state at E_x = 3434(1) keV has been excited. Its decay width into the ground state amounts to Gamma_0 = 151(17) meV, making it a candidate for a [2+ x 3-]1- two-phonon state. The results for 112Sn are compared with quasiparticle-phonon model calculations as well as the systematics of the lowest-lying 1- states established in other even-mass tin isotopes. Contrary to findings in the heavier stable even-mass Sn isotopes, no 2+ states between 2 and 3.5 MeV excitation energy have been detected in the present experiment.

I. Pysmenetska; S. Walter; J. Enders; H. von Garrel; O. Karg; U. Kneissl; C. Kohstall; P. von Neumann-Cosel; H. H. Pitz; V. Yu. Ponomarev; M. Scheck; F. Stedile; S. Volz

2005-12-08T23:59:59.000Z

143

Goldstone-Mode Phonon Dynamics in the Pyrochlore Cd2Re2O7  

Science Conference Proceedings (OSTI)

We have measured the polarized Raman scattering spectra of Cd{sub 2}Re{sub 2}O{sub 7}, the first superconducting pyrochlore, as a function of temperature. For temperatures below the cubic-to-tetragonal structural phase transition (SPT) at 200 K, a peak with B{sub 1} symmetry develops at zero frequency with divergent intensity. We identify this peak as the first observation of the Goldstone phonon in a crystalline solid. The Goldstone phonon is a collective excitation that exists due to the breaking of the continuous symmetry with the SPT. Its emergence coincides with that of a Raman-active soft mode. The order parameter for both features derives from an unstable doubly degenerate vibration (with E{sub u} symmetry) of the O1 atoms which drives the SPT.

Kendziora, C. A. [Naval Research Laboratory, Washington, D.C.; Sergienko, I. A. [Memorial University of Newfoundland, St. John's Newfoundland, Canada; Jin, Rongying [ORNL; He, Jian [ORNL; Keppens, Veerle [ORNL; Sales, Brian C [ORNL; Mandrus, David [ORNL

2005-01-01T23:59:59.000Z

144

Investigation of phonon excitations in {sup 114}Cd with the (n,n{sup '}{gamma}) reaction  

SciTech Connect

Properties of low-spin states in {sup 114}Cd have been studied with the (n,n{sup '}{gamma}) reaction. Gamma-ray angular distributions and excitation functions have been used to characterize the decays of the excited levels. Level lifetimes have been obtained with the Doppler-shift attenuation method. Sixteen new levels and many new transitions have been suggested below 3.5 MeV in excitation energy. Levels belonging to the phonon multiplets have been proposed based on their decay patterns and collectivity, and the existing intruder structure has been extended. A two-phonon 1{sub ms}{sup +} state has been suggested. Excitation of the hexadecapole moment has been considered. Data have been compared with the theoretical calculations of the interacting boson model.

Bandyopadhyay, D.; Lesher, S. R.; Fransen, C.; Boukharouba, N.; McEllistrem, M. T. [Department of Physics and Astronomy, University of Kentucky, Lexington, Kentucky 40506-0055 (United States); Garrett, P. E.; Green, K. L. [Department of Physics, University of Guelph, Guelph, Ontario N1G2W1 (Canada); Yates, S. W. [Department of Physics and Astronomy, University of Kentucky, Lexington, Kentucky 40506-0055 (United States); Department of Chemistry, University of Kentucky, Lexington, Kentucky 40506-0055 (United States)

2007-11-15T23:59:59.000Z

145

Light Emitting Diode (LED) Lighting and Systems  

Science Conference Proceedings (OSTI)

This EPRI Technical Update addresses the most promising and unique energy efficient light source light emitting diode (LED) lighting. Business and technical market factors (Chapter 2) explain the upcoming growth of the LED and LED lighting market. Future technical improvements to LEDs and systems are also emphasized. Discussion of the importance of utility involvement in helping their customers make the switch from traditional lighting to LED lighting is provided. LED lighting technologies are covered in...

2007-12-21T23:59:59.000Z

146

Magnetism and infrared divergence in a Hubbard-phonon interacting system  

E-Print Network (OSTI)

We show that a finite Hubbard-phonon interacting system has ferromagnetic or unique spin-singlet ground state under the infrared singular condition. The key tool is a unitary transformation introduced by Arai and Hirokawa. We construct a concrete infrared singular representation using the operator algebraic method. The method is essentially same as one for the van Hove model using the Wightman functional method.

Yoshitsugu Sekine

2010-08-12T23:59:59.000Z

147

Energy and lighting design  

SciTech Connect

A detailed examination of the current energy conservation practices for lighting systems is presented. This first part of a two-part presentation covers the following: energy and lighting design; lighting and energy standards; lighting efficiency factors; light control and photometrics; lighting and the architectural interior; luminaire impact on the environment; basic design techniques; the lighting power budget; and conservation through control.

Helms, R.N.

1979-11-01T23:59:59.000Z

148

Thermal transport of the single-crystal rare-earth nickel borocarbides RNi2B2C  

E-Print Network (OSTI)

The quaternary intermetallic rare-earth nickel borocarbides RNi2B2C are a family of compounds that show magnetic behavior, superconducting behavior, and/or both. Thermal transport measurements reveal both electron and phonon scattering mechanisms, and can provide information on the interplay of these two long-range phenomena. In general the thermal conductivity kappa is dominated by electrons, and the high temperature thermal conductivity is approximately linear in temperature and anomalous. For R=Tm, Ho, and Dy the low-temperature thermal conductivity exhibits a marked loss of scattering at the antiferromagnetic ordering temperature T-N. Magnon heat conduction is suggested for R=Tm. The kappa data for R=Ho lends evidence for gapless superconductivity in this material above T-N. Unlike the case for the non-magnetic superconductors in the family, R=Y and Lu, a phonon peak in the thermal conductivity below T-c is not observed down to T=1.4 K for the magnetic superconductors. Single-crystal quality seems to have a strong effect on kappa. The electron-phonon interaction appears to weaken as one progresses from R=Lu to R=Gd. The resistivity data shows the loss of scattering at T-N for R=Dy, Tb, and Gd; and the thermoelectric power for all three of these materials exhibits an enhancement below T-N.

Hennings, BD; Naugle, Donald G.; Canfield, PC.

2002-01-01T23:59:59.000Z

149

Light Emitting Diodes and General Lighting  

NLE Websites -- All DOE Office Websites (Extended Search)

Light Emitting Diodes and General Lighting Speaker(s): Martin Moeck Date: August 6, 2009 - 12:00pm Location: 90-3122 We give a short overview on high-power light emitting diodes,...

150

Evaluation of Lighting and Lighting Control Technologies  

Science Conference Proceedings (OSTI)

Energy efficient lighting and lighting controls have been a means to significant energy savings for many facilities around the world. Advances in lighting sources often allow for the conservation of quality of light while providing more flexibility in the control of light. Additionally, advances in core technologies within the lighting marketplace regularly lead to the introduction of new lamps, fixtures and controls.  With the rapid introduction of new products and designs, it is important to ...

2013-11-15T23:59:59.000Z

151

Lighting Group: Controls: PIER Lighting Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

PIER Lighting Projects CEC Public Interest Energy Research (PIER) Projects Objective Lighting controls are often expensive, complex, hard to commission properly and difficult to...

152

Architectural Lighting Analysis in Virtual Lighting Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

Architectural Lighting Analysis in Virtual Lighting Laboratory NOTICE Due to the current lapse of federal funding, Berkeley Lab websites are accessible, but may not be updated...

153

Resonant Spectroscopy of II-VI Self-Assembled Quantum Dots: Excited States and Exciton-LO Phonon Coupling  

E-Print Network (OSTI)

Using resonantly excited photoluminescence along with photoluminescence excitation spectroscopies, we study the carrier excitation processes in CdTe/ZnTe and CdSe/ZnSe self-assembled quantum dots. Photoluminescence excitation spectra of single CdTe quantum dots reflect two major mechanisms for carrier excitation: The first, associated with the presence of sharp and intense lines in the spectrum, is a direct excited state ? ground state transition. The second, associated with the appearance of up to four much broader excitation lines, is a LO phonon-assisted absorption directly into the quantum dot ground states. LO phonons with energies of both quantum dots and ZnTe barrier material are identified in the photoluminescence excitation spectra. Resonantly excited PL measurements for the dot ensemble as a function of excitation energy makes it possible to separate the contributions of these two mechanisms. We find that for CdTe quantum dots the distribution of excited states coupled to the ground states reflects the energy distribution of the quantum dot emission, but shifted up in energy by 100 meV. This large splitting between excited and ground states in CdTe quantum dots suggests strong spatial confinement. In contrast, the LO phonon-assisted absorption shows significant size selectivity. In the case of CdTe dots the exciton-LO phonon coupling is strongly enhanced for smaller-sized dots which have higher emission energies. In contrast, for CdSe quantum dots the exciton-LO phonon coupling is uniform over the ensemble ? that is, the energy distribution determines the intensities of LO phonon replicas. We show that for CdTe quantum dots after annealing, that is after an increase in the average dot size, the exciton-LO phonon interaction reflects the dot energy distribution, as observed for CdSe quantum dots.

T. A. Nguyen; S. Mackowski; H. E. Jackson; L. M. Smith; J. Wrobel; K. Fronc; G. Karczewski; J. Kossut; M. Dobrowolska J. K. Furdyna; W. Heiss

2003-09-17T23:59:59.000Z

154

Thermal conductivity Measurements of Kaolite  

Science Conference Proceedings (OSTI)

Testing was performed to determine the thermal conductivity of Kaolite 1600, which primarily consists of Portland cement and vermiculite. The material was made by Thermal Ceramics for refractory applications. Its combination of light weight, low density, low cost, and noncombustibility made it an attractive alternative to the materials currently used in ES-2 container for radioactive materials. Mechanical properties and energy absorption tests of the Kaolite have been conducted at the Y-12 complex. Heat transfer is also an important factor for the application of the material. The Kaolite samples are porous and trap moisture after extended storage. Thermal conductivity changes as a function of moisture content below 100 C. Thermal conductivity of the Kaolite at high temperatures (up to 700 C) are not available in the literature. There are no standard thermal conductivity values for Kaolite because each sample is somewhat different. Therefore, it is necessary to measure thermal conductivity of each type of Kaolite. Thermal conductivity measurements will help the modeling and calculation of temperatures of the ES-2 containers. This report focuses on the thermal conductivity testing effort at ORNL.

Wang, H

2003-02-21T23:59:59.000Z

155

Next Generation Light Source  

•Next Generation Light Source – Super Thin Light Bulb, Energy Efficient, Long Life, Dimmable, and Uniform Illumination •High Entry Barrier – 71 ...

156

First Light  

E-Print Network (OSTI)

The first dwarf galaxies, which constitute the building blocks of the collapsed objects we find today in the Universe, had formed hundreds of millions of years after the big bang. This pedagogical review describes the early growth of their small-amplitude seed fluctuations from the epoch of inflation through dark matter decoupling and matter-radiation equality, to the final collapse and fragmentation of the dark matter on all mass scales above \\~10^{-4} solar masses. The condensation of baryons into halos in the mass range of ~10^5-10^{10} solar masses led to the formation of the first stars and the re-ionization of the cold hydrogen gas, left over from the big bang. The production of heavy elements by the first stars started the metal enrichment process that eventually led to the formation of rocky planets and life. A wide variety of instruments currently under design [including large-aperture infrared telescopes on the ground or in space (JWST), and low-frequency arrays for the detection of redshifted 21cm radiation], will establish better understanding of the first sources of light during an epoch in cosmic history that was largely unexplored so far. Numerical simulations of reionization are computationally challenging, as they require radiative transfer across large cosmological volumes as well as sufficently high resolution to identify the sources of the ionizing radiation. The technological challenges for observations and the computational challenges for numerical simulations, will motivate intense work in this field over the coming decade.

Abraham Loeb

2006-03-14T23:59:59.000Z

157

Lighting | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Lighting Lighting Lighting When you're shopping for lightbulbs, compare lumens and use the Lighting Facts label to be sure you're getting the amount of light, or level of brightness, you want. You can save money and energy while lighting your home and still maintaining good light quantity and quality. Consider energy-efficient lighting options to use the same amount of light for less money. Learn strategies for comparing and buying lighting products and using them efficiently. Featured Lighting Choices to Save You Money Light your home for less money while using the same amount of light. How Energy-Efficient Light Bulbs Compare with Traditional Incandescents Energy-efficient light bulbs are available today and could save you about $50 per year in energy costs when you replace 15 traditional incandescent bulbs in your home.

158

Comprehensive phonon "map" offers direction for engineering new  

NLE Websites -- All DOE Office Websites (Extended Search)

4 4 SHARE Comprehensive phonon "map" offers direction for engineering new thermoelectric devices Olivier Delaire, researcher in Oak Ridge National Laboratory's Materials Science and Technology Division, at the Spallation Neutron Source's Wide Angular-Range Chopper Spectrometer. Using neutrons to map heat as it propagates through materials, Delaire and his research group are studying how to design better thermoelectric devices that convert a temperature difference into an electric voltage. Olivier Delaire, researcher in Oak Ridge National Laboratory's Materials Science and Technology Division, at the Spallation Neutron Source's Wide Angular-Range Chopper Spectrometer. Using neutrons to map heat as it propagates through materials, Delaire and his research group are studying

159

Low-Temperature Light Detectors with Neganov-Luke Amplification  

E-Print Network (OSTI)

The simultaneous measurement of phonons and scintillation light induced by incident particles in a scintillating crystal such as CaWO4 is a powerful technique for the active rejection of background induced by gamma's and beta's as well as neutrons in direct Dark Matter searches. However, less than ~1% of the energy deposited in a CaWO4 crystal is detected as light. Thus, very sensitive light detectors are needed for an efficient event-by-event background discrimination. Due to the Neganov-Luke effect, the threshold of low-temperature light detectors based on semiconducting substrates can be improved significantly by drifting the photon-induced electron-hole pairs in an applied electric field. We present measurements with low-temperature light detectors based on this amplification mechanism. The Neganov-Luke effect makes it possible to improve the signal-to-noise ratio of our light detectors by a factor of ~9 corresponding to an energy threshold of ~21 eV. We also describe a method for an absolute energy calib...

Isaila, C; Feilitzsch, F v; Gütlein, A; Kemmer, J; Lachenmaier, T; Lanfranchi, J -C; Pfister, S; Potzel, W; Roth, S; Sivers, M v; Strauss, R; Westphal, W; Wiest, F

2011-01-01T23:59:59.000Z

160

Selective thermal and photooxidation of hydrocarbons in zeolites by oxygen  

DOE Patents (OSTI)

A process for selective thermal oxidation or photooxidation of hydrocarbons adsorbed onto zeolite matrices. A highly selective thermal oxidation and photooxidation of unsubstituted or alkyl substituted alkanes, alkenes, aromatics and cycloalkyls in solvent free zeolites under dark thermal conditions or under irradiation with visible light. The process oxidizes hydrocarbons almost completely selectively without substantial production of byproducts.

Frei, Heinz (Berkeley, CA); Blatter, Fritz (Basel, CH); Sun, Hai (Saint Charles, MO)

1999-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "lighting phonons thermal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Selective thermal and photooxidation of hydrocarbons in zeolites by oxygen  

DOE Patents (OSTI)

A process for a combined selective thermal oxidation and photooxidation of hydrocarbons adsorbed onto zeolite matrices. A highly combined selective thermal oxidation and photooxidation of unsubstituted or alkyl substituted alkanes, alkenes, aromatics and cycloalkyls in solvent free zeolites under dark thermal conditions or under irradiation with visible light. The process oxidizes hydrocarbons almost completely selectively without substantial production of byproducts.

Frei, Heinz (Berkeley, CA); Blatter, Fritz (Basel, CH); Sun, Hai (Saint Charles, MO)

2001-01-01T23:59:59.000Z

162

Selective thermal and photooxidation of hydrocarbons in zeolites by oxygen  

DOE Patents (OSTI)

A process is described for selective thermal oxidation or photooxidation of hydrocarbons adsorbed onto zeolite matrices. A highly selective thermal oxidation and photooxidation of unsubstituted or alkyl substituted alkanes, alkenes, aromatics and cycloalkyls in solvent free zeolites under dark thermal conditions or under irradiation with visible light. The process oxidizes hydrocarbons almost completely selectively without substantial production of byproducts. 19 figs.

Frei, H.; Blatter, F.; Sun, H.

1999-06-22T23:59:59.000Z

163

Architectural Lighting Analysis in Virtual Lighting Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

Architectural Lighting Analysis in Virtual Lighting Laboratory Architectural Lighting Analysis in Virtual Lighting Laboratory Speaker(s): Mehlika Inanici Date: July 7, 2003 - 12:00pm Location: Bldg. 90 Seminar Host/Point of Contact: Satkartar K. Kinney Virtual Lighting Laboratory is a Radiance-based lighting analysis tool and methodology that proposes transformations in the utilization of computer visualization in lighting analysis and design decision-making. It is a computer environment, where the user has been provided with matrices of illuminance and luminance values extracted from high dynamic range images. The principal idea is to provide the laboratory to the designer and researcher to explore various lighting analysis techniques instead of imposing limited number of predetermined metrics. In addition, it introduces an analysis approach for temporal and spatial lighting

164

New Light Sources for Tomorrow's Lighting Designs  

E-Print Network (OSTI)

The lighting industry is driven to provide light sources and lighting systems that, when properly applied, will produce a suitable luminous environment in which to perform a specified task. Tasks may include everything from office work, manufacturing and inspection to viewing priceless art objects, selecting the right chair for your living room, and deciding which produce item to select for tonight's dinner. While energy efficiency is a major consideration in any new lighting system design, the sacrifice of lighting quality may cost more in terms of lost productivity and user dissatisfaction than can ever be saved on that monthly energy bill. During the past several years, many new light sources have been developed and introduced. These product introductions have not been limited to anyone lamp type, but instead may be found in filament, fluorescent and high intensity discharge lamp families. Manufacturers of light sources have two basic goals for new product development. These goals are high efficiency lighting and improved color rendering properties. High efficiency lighting may take the form of either increasing lamp efficiency (lumens of light delivered per watt of power consumed) or decreasing lamp size, thus making a more easily controlled light source that places light where it is needed. The manufacturer's second goal is to produce lamps that render colors accurately while maintaining high efficiency. This paper will discuss new introductions in light sources and lighting systems and how they may impact the design of luminous environments of the future.

Krailo, D. A.

1986-06-01T23:59:59.000Z

165

Thermal manipulator of medical catheters  

DOE Patents (OSTI)

This invention consists of a maneuverable medical catheter comprising a flexible tube having a functional tip. The catheter is connected to a control source. The functional tip of the catheter carries a plurality of temperature activated elements arranged in parallel and disposed about the functional tip and held in spaced relation at each end. These elements expand when they are heated. A plurality of fiber optic bundles, each bundle having a proximal end attached to the control source and a distal end attached to one of the elements carry light into the elements where the light is absorbed as heat. By varying the optic fiber that is carrying the light and the intensity of the light, the bending of the elements can be controlled and thus the catheter steered. In an alternate embodiment, the catheter carries a medical instrument for gathering a sample of tissue. The instrument may also be deployed and operated by thermal expansion and contraction of its moving parts.

Chastagner, P.

1991-03-04T23:59:59.000Z

166

Position and energy-resolved particle detection using phonon-mediated microwave kinetic inductance detectors  

Science Conference Proceedings (OSTI)

We demonstrate position and energy-resolved phonon-mediated detection of particle interactions in a silicon substrate instrumented with an array of microwave kinetic inductance detectors (MKIDs). The relative magnitude and delay of the signal received in each sensor allow the location of the interaction to be determined with < or approx. 1mm resolution at 30 keV. Using this position information, variations in the detector response with position can be removed, and an energy resolution of {sigma}{sub E} = 0.55 keV at 30 keV was measured. Since MKIDs can be fabricated from a single deposited film and are naturally multiplexed in the frequency domain, this technology can be extended to provide highly pixelized athermal phonon sensors for {approx}1 kg scale detector elements. Such high-resolution, massive particle detectors would be applicable to rare-event searches such as the direct detection of dark matter, neutrinoless double-beta decay, or coherent neutrino-nucleus scattering.

Moore, D. C.; Golwala, S. R.; Cornell, B. [Division of Physics, Mathematics and Astronomy, California Institute of Technology, Pasadena, California 91125 (United States); Bumble, B.; Day, P. K.; LeDuc, H. G. [Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California 91109 (United States); Zmuidzinas, J. [Division of Physics, Mathematics and Astronomy, California Institute of Technology, Pasadena, California 91125 (United States); Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California 91109 (United States)

2012-06-04T23:59:59.000Z

167

Table AP1. Total Households Using Home Appliances and Lighting by ...  

U.S. Energy Information Administration (EIA)

Total Consumption for Home Appliances and Lighting by Fuels Used, 2005 Quadrillion British Thermal Units (Btu) U.S. Households (millions) Electricity

168

Creation of Light and/or Surface Plasmons with Heated Metallic ...  

Building Energy Efficiency; Electricity Transmission; Energy Analysis; ... Solar Thermal Creation of Light and/or Surface Plasmons with Heated Metallic Films

169

Thermal Properties  

Science Conference Proceedings (OSTI)

Table 12   Thermal conductivities of polymers and other materials...40,000 2.8 Aluminum 24,000 1.7 Steel 5000 0.35 Granite 350 0.02 Crown glass (75 wt% silica) 90 0.006 Source: Ref 4...

170

Controls for Solid-State Lighting  

SciTech Connect

This study predicts new hybrid lighting applications for LEDs. In hybrid lighting, LEDs provide a low-energy 'standby' light level while another, more powerful, efficient light source provides light for occupied periods. Lighting controls will allow the two light sources to work together through an appropriate control strategy, typically motion-sensing. There are no technical barriers preventing the use of low through high CRI LEDs for standby lighting in many interior and exterior applications today. The total luminous efficacy of LED systems could be raised by increasing the electrical efficiency of LED drivers to the maximum practically achievable level (94%). This would increase system luminous efficacy by 20-25%. The expected market volumes for many types of LEDs should justify the evolution of new LED drivers that use highly efficient ICs and reduce parts count by means of ASICs. Reducing their electronics parts count by offloading discrete components onto integrated circuits (IC) will allow manufacturers to reduce the cost of LED driver electronics. LED luminaire manufacturers will increasingly integrate the LED driver and thermal management directly in the LED fixture. LED luminaires of the future will likely have no need for separable lamp and ballast because the equipment life of all the LED luminaire components will all be about the same (50,000 hours). The controls and communications techniques used for communicating with conventional light sources, such as dimmable fluorescent lighting, are appropriate for LED illumination for energy management purposes. DALI has been used to control LED systems in new applications and the emerging ZigBee protocol could be used for LEDs as well. Major lighting companies are already moving in this direction. The most significant finding is that there is a significant opportunity to use LEDs today for standby lighting purposes. Conventional lighting systems can be made more efficient still by using LEDs to provide a low-energy standby state when lower light levels are acceptable.

Rubinstein, Francis

2007-06-22T23:59:59.000Z

171

Controls for Solid-State Lighting  

SciTech Connect

This study predicts new hybrid lighting applications for LEDs. In hybrid lighting, LEDs provide a low-energy 'standby' light level while another, more powerful, efficient light source provides light for occupied periods. Lighting controls will allow the two light sources to work together through an appropriate control strategy, typically motion-sensing. There are no technical barriers preventing the use of low through high CRI LEDs for standby lighting in many interior and exterior applications today. The total luminous efficacy of LED systems could be raised by increasing the electrical efficiency of LED drivers to the maximum practically achievable level (94%). This would increase system luminous efficacy by 20-25%. The expected market volumes for many types of LEDs should justify the evolution of new LED drivers that use highly efficient ICs and reduce parts count by means of ASICs. Reducing their electronics parts count by offloading discrete components onto integrated circuits (IC) will allow manufacturers to reduce the cost of LED driver electronics. LED luminaire manufacturers will increasingly integrate the LED driver and thermal management directly in the LED fixture. LED luminaires of the future will likely have no need for separable lamp and ballast because the equipment life of all the LED luminaire components will all be about the same (50,000 hours). The controls and communications techniques used for communicating with conventional light sources, such as dimmable fluorescent lighting, are appropriate for LED illumination for energy management purposes. DALI has been used to control LED systems in new applications and the emerging ZigBee protocol could be used for LEDs as well. Major lighting companies are already moving in this direction. The most significant finding is that there is a significant opportunity to use LEDs today for standby lighting purposes. Conventional lighting systems can be made more efficient still by using LEDs to provide a low-energy standby state when lower light levels are acceptable.

Rubinstein, Francis

2007-06-22T23:59:59.000Z

172

Lighting Options for Homes.  

SciTech Connect

This report covers many aspects of various lighting options for homes. Types of light sources described include natural light, artificial light, incandescent lamps, fluorescent lamps, and high intensity discharge lamps. A light source selection guide gives the physical characteristics of these, design considerations, and common applications. Color, strategies for efficient lighting, and types of lighting are discussed. There is one section giving tips for various situations in specific rooms. Rooms and types of fixtures are shown on a matrix with watts saved by using the recommended type lighting for that room and room location. A major emphasis of this report is saving energy by utilizing the most suitable, recommended lighting option. (BN)

Baker, W.S.

1991-04-01T23:59:59.000Z

173

Uv-Light Stabilization Additive Package For Solar Cell Module And Laminated Glass Applications  

SciTech Connect

An ultraviolet light stabilization additive package is used in an encapsulant material that may be used in solar cell modules, laminated glass and a variety of other applications. The ultraviolet light stabilization additive package comprises a first hindered amine light stabilizer and a second hindered amine light stabilizer. The first hindered amine light stabilizer provides thermal oxidative stabilization, and the second hindered amine light stabilizer providing photo-oxidative stabilization.

Hanoka, Jack I. (Brookline, MA); Klemchuk, Peter P. (Watertown, CT)

2002-03-05T23:59:59.000Z

174

Mobile lighting apparatus  

DOE Patents (OSTI)

A mobile lighting apparatus includes a portable frame such as a moveable trailer or skid having a light tower thereon. The light tower is moveable from a stowed position to a deployed position. A hydrogen-powered fuel cell is located on the portable frame to provide electrical power to an array of the energy efficient lights located on the light tower.

Roe, George Michael; Klebanoff, Leonard Elliott; Rea, Gerald W; Drake, Robert A; Johnson, Terry A; Wingert, Steven John; Damberger, Thomas A; Skradski, Thomas J; Radley, Christopher James; Oros, James M; Schuttinger, Paul G; Grupp, David J; Prey, Stephen Carl

2013-05-14T23:59:59.000Z

175

A green-yellow emitting oxyfluoride solid solution phosphor Sr[subscript 2]Ba(AlO[subscript 4]F)[subscript 1;#8722;x](SiO[subscript 5])x:Ce[superscript 3+] for thermally stable, high color rendition solid state white lighting  

Science Conference Proceedings (OSTI)

A near-UV excited, oxyfluoride phosphor solid solution Sr{sub 1.975}Ce{sub 0.025}Ba(AlO{sub 4}F){sub 1-x}(SiO{sub 5}){sub x} has been developed for solid state white lighting applications. An examination of the host lattice, and the local structure around the Ce{sup 3+} activator ions through a combination of density functional theory, synchrotron X-ray and neutron powder diffraction and total scattering, and electron paramagnetic resonance, points to how chemical substitutions play a crucial role in tuning the optical properties of the phosphor. The maximum emission wavelength can be tuned from green ({lambda}{sub em} = 523 nm) to yellow ({lambda}{sub em} = 552 nm) by tuning the composition, x. Photoluminescent quantum yield is determined to be 70 {+-} 5% for some of the examples in the series. Excellent thermal properties were found for the x = 0.5 sample, with the photoluminescence intensity at 160 C only decreased to 82% of its room temperature value. Phosphor-converted LED devices fabricated using an InGaN LED ({lambda}{sub max} = 400 nm) exhibit high color rendering white light with R{sub a} = 70 and a correlated color temperature near 7000 K. The value of R{sub a} could be raised to 90 by the addition of a red component, and the correlated color temperature lowered to near 4000 K.

Denault, Kristin A.; George, Nathan C.; Paden, Sara R.; Brinkley, Stuart; Mikhailovsky, Alexander A.; Neuefeind, Jörg; DenBaars, Steven P.; Seshadri, Ram (UCSB); (ORNL)

2012-10-23T23:59:59.000Z

176

Geometry-dependent lighting  

E-Print Network (OSTI)

Abstract — In this paper we introduce geometrydependent lighting that allows lighting parameters to be defined independently and possibly discrepantly over an object or scene based on the local geometry. We present and discuss Light Collages, a lighting design system with geometry-dependent lights for effective feature-enhanced visualization. Our algorithm segments the objects into local surface patches and places lights that are locally consistent but globally discrepant to enhance the perception of shape. We use spherical harmonics for efficiently storing and computing light placement and assignment. We also outline a method to find the minimal number of light sources sufficient to illuminate an object well with our globally discrepant lighting approach. Index Terms — Lighting design, scientific illustration, discrepant lighting, light placement, silhouette enhancement, proximity shadows, spherical harmonics I.

Chang Ha Lee; Xuejun Hao; Amitabh Varshney

2005-01-01T23:59:59.000Z

177

Lighting Group: What's New  

NLE Websites -- All DOE Office Websites (Extended Search)

What's New What's New in the Lighting Group For more information on what's new in the Lighting Group, please contact: Francis Rubinstein Lighting Group Leader (510) 486-4096...

178

Light in the city  

E-Print Network (OSTI)

This thesis focuses on enhancing the awareness of light for the pedestrian,and using light as a way of revealing the structure of the city and its relation to the cosmos. It proposes that aesthetic qualities of light inform ...

Srinivasan, Kavita, 1976-

2002-01-01T23:59:59.000Z

179

Specific light in sculpture  

E-Print Network (OSTI)

Specific light is defined as light from artificial or altered natural sources. The use and manipulation of light in three dimensional sculptural work is discussed in an historic and contemporary context. The author's work ...

Powell, John William

1989-01-01T23:59:59.000Z

180

Energy_Savings_Light_Emitting_Diodes_Niche_Lighting_Apps.pdf...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

EnergySavingsLightEmittingDiodesNicheLightingApps.pdf EnergySavingsLightEmittingDiodesNicheLightingApps.pdf EnergySavingsLightEmittingDiodesNicheLightingApps.p...

Note: This page contains sample records for the topic "lighting phonons thermal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

AQUIFER THERMAL ENERGY STORAGE  

E-Print Network (OSTI)

aquifers for thermal energy storage. Problems outlined aboveModeling of Thermal Energy Storage in Aquifers," Proceed-ings of Aquifer Thermal Energy Storage Workshop, Lawrence

Tsang, C.-F.

2011-01-01T23:59:59.000Z

182

AQUIFER THERMAL ENERGY STORAGE  

E-Print Network (OSTI)

using aquifers for thermal energy storage. Problems outlinedmatical Modeling of Thermal Energy Storage in Aquifers,"Proceed- ings of Aquifer Thermal Energy Storage Workshop,

Tsang, C.-F.

2011-01-01T23:59:59.000Z

183

Prospects for LED lighting.  

SciTech Connect

Solid-state lighting using light-emitting diodes (LEDs) has the potential to reduce energy consumption for lighting by 50% while revolutionizing the way we illuminate our homes, work places, and public spaces. Nevertheless, substantial technical challenges remain in order for solid-state lighting to significantly displace the well-developed conventional lighting technologies. We review the potential of LED solid-state lighting to meet the long-term cost goals.

Tsao, Jeffrey Yeenien; Gee, James Martin; Simmons, Jerry Alvon

2003-08-01T23:59:59.000Z

184

Lighting Control Systems  

Science Conference Proceedings (OSTI)

The demand for lighting control systems in residential, commercial, and industrial facilities is on the rise with the demand for increased energy savings. With lighting accounting for almost 23% of grid load, there is significant opportunity to reduce lighting load while improving the quality of light for customers. Lighting control systems are becoming more intelligent as the need for them to interface with building control systems and demand response systems also increases. Lighting control systems use...

2009-12-17T23:59:59.000Z

185

Composite Lighting Simulations with Lighting Networks  

E-Print Network (OSTI)

A whole variety of different techniques for simulating global illumination in virtual environments have been developed over recent years. Each technique, including Radiosity, Monte-Carlo ray- or photon tracing, and directional-dependent Radiance computations, is best suited for simulating only some special case environments. None of these techniques is currently able to efficiently simulate all important lighting effects in non-trivial scenes. In this paper, we describe a new approach for efficiently combining different global illumination algorithms to yield a composite lighting simulation: Lighting Networks. Lighting Networks can exploit the advantages of each algorithm and can combine them in such a way as to simulate lighting effects that could only be computed at great costs by any single algorithm. Furthermore, this approach allows a user to configure the Lighting Network to compute only specific lighting effects that are important for a given task, while avoiding a costly simulation of the full global illumination in a scene. We show how the light paths computed by a Lighting Network can be described using regular expressions. This mapping allows us to analyze the composite lighting simulation and ensure completeness and redundant-free computations. Several examples demonstrate the advantages and unique lighting effects that can be obtained using this technique. 1

Philipp Slusallek; Marc Stamminger; Wolfgang Heidrich; Jan-Christian Popp; Hans-peter Seidel

1998-01-01T23:59:59.000Z

186

Lighting Group: Links  

NLE Websites -- All DOE Office Websites (Extended Search)

Links Links Links Organizations Illuminating Engineering Society of North America (IESNA) International Commission on Illumination (CIE) International Association of Lighting Designers (IALD) International Association of Energy-Efficient Lighting Lightfair International Energy Agency - Task 21: Daylight in Buildings: Design Tools and Performance Analysis International Energy Agency - Task 31: Daylighting Buildings in 21st Century National Association on Qualifications for the Lighting Professions (NCQLP) National Association of Independent Lighting Distributors (NAILD) International Association of Lighting Management Companies (NALMCO) Research Centers California Lighting Technology Center Lighting Research Center Lighting Research at Canada Institute for Research in Construction

187

Advanced Demand Responsive Lighting  

NLE Websites -- All DOE Office Websites (Extended Search)

Demand Demand Responsive Lighting Host: Francis Rubinstein Demand Response Research Center Technical Advisory Group Meeting August 31, 2007 10:30 AM - Noon Meeting Agenda * Introductions (10 minutes) * Main Presentation (~ 1 hour) * Questions, comments from panel (15 minutes) Project History * Lighting Scoping Study (completed January 2007) - Identified potential for energy and demand savings using demand responsive lighting systems - Importance of dimming - New wireless controls technologies * Advanced Demand Responsive Lighting (commenced March 2007) Objectives * Provide up-to-date information on the reliability, predictability of dimmable lighting as a demand resource under realistic operating load conditions * Identify potential negative impacts of DR lighting on lighting quality Potential of Demand Responsive Lighting Control

188

Light Laboratory, Inc.  

Science Conference Proceedings (OSTI)

... 12) Solid State Lighting Luminaires - Color Characteristic Measurements. [22/S04] IES LM-16:1993 Practical Guide to Colorimetry of Light Sources. ...

2013-07-26T23:59:59.000Z

189

Hubbell Lighting Photometric Laboratory  

Science Conference Proceedings (OSTI)

... 12) Solid State Lighting Luminaires - Color Characteristic Measurements. [22/S04] IES LM-16:1993 Practical Guide to Colorimetry of Light Sources. ...

2013-07-26T23:59:59.000Z

190

Energy Efficient Lighting Products  

Science Conference Proceedings (OSTI)

... Road Vista, San Diego, CA [200823- 0] Light Laboratory, Inc ... GA. CSA Group, Alpharetta, GA [200732- 0] Cooper Lighting Photometric Laboratory ...

2013-07-26T23:59:59.000Z

191

Light Metals 2010  

Science Conference Proceedings (OSTI)

Feb 1, 2010 ... Softcover book: Light Metals 2008 Volume 2: Aluminum Reduction. Hardcover book and CD-ROM: Light Metals 2009 ...

192

Plant and Lighting  

NLE Websites -- All DOE Office Websites (Extended Search)

publicationshouseplantligh t.html Sincerely, Anthony R. Brach "Artificial" light comes from many kinds of bulbs that emit different wavelengths of light; Many plants...

193

National Synchrotron Light Source  

NLE Websites -- All DOE Office Websites (Extended Search)

Angle Limit," Phys. Rev. Lett., 99: 134801 (2007). 33 Researchers Produce Firsts with Bursts of Light BNL researchers have generated extremely short pulses of light that are the...

194

Lighting and Daylighting Basics  

Energy.gov (U.S. Department of Energy (DOE))

Buildings can be lit in two ways: by using artificial lighting, or by using daylighting, or the process of using natural sunlight, windows, and skylights to provide lighting.

195

Lighting | Open Energy Information  

Open Energy Info (EERE)

Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon Lighting Jump to: navigation, search TODO: Add description List of Lighting Incentives...

196

Lighting Systems Test Facilities  

NLE Websites -- All DOE Office Websites (Extended Search)

Measurement equipment with light beam Lighting Systems Test Facilities NOTICE Due to the current lapse of federal funding, Berkeley Lab websites are accessible, but may not be...

197

Lighting and Daylighting  

Energy.gov (U.S. Department of Energy (DOE))

Buildings can be lit in two ways: by using artificial lighting, or by using daylighting, or the process of using natural sunlight, windows, and skylights to provide lighting.

198

Looking For Light.  

E-Print Network (OSTI)

??In my search for the way light can dictate the overall expression of an image, I have found that light is the means that activates… (more)

Lindholm, Kevin R.

2010-01-01T23:59:59.000Z

199

LBNL Lighting Research Group  

NLE Websites -- All DOE Office Websites (Extended Search)

LED and ballast berkeley lamp workstation light switch Overview | What's New | Publications | Software | Facilities | People | Contact Us | Links Sources and Ballasts | Light...

200

Properties of Light  

Science Conference Proceedings (OSTI)

... Scattering of Light. Exploration: Sunset in a glass. ... How would you design a camera that could see through a sand storm? Invisible Light. ...

2012-03-23T23:59:59.000Z

Note: This page contains sample records for the topic "lighting phonons thermal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Photochemical hole burning and strong electron-phonon coupling: primary donor states of reaction centers of photosynthetic bacteria  

SciTech Connect

A theory for photochemical hole burning valid for arbitrarily strong linear electron-phonon coupling is developed and applied to the P-870 and P-960 states of Rh. sphaeroides and viridis. The mechanism responsible for the unusually large hole widths of these states is established.

Hayes, J.M.; Small, G.J.

1986-10-09T23:59:59.000Z

202

Two-Dimensional Electronic Spectroscopy Reveals the Dynamics of Phonon-Mediated Excitation Pathways in Semiconducting Single-  

E-Print Network (OSTI)

) which we show originates from an impulsive stimulated Raman process that populates a ground-state G of a manifold of dark excitonic substates and bright phonon-assisted transitions. The resulting transition match the ground state Raman modes indicated (white dotted lines) and are consistent with optical

Fleming, Graham R.

203

Cree LED Lighting Solutions Formerly LED Lighting Fixtures LLF...  

Open Energy Info (EERE)

Cree LED Lighting Solutions Formerly LED Lighting Fixtures LLF Jump to: navigation, search Name Cree LED Lighting Solutions (Formerly LED Lighting Fixtures (LLF)) Place...

204

Considering lighting system performance and HVAC interactions in lighting retrofit analyses  

SciTech Connect

The performance of several typical fluorescent lighting retrofits are examined using analysis methods of varying sophistication. Estimates of energy and lighting performance based on the simple non-application specific data generally available tend to overestimate the energy savings obtained with the various retrofits by 10-30%. Adding a simple correction to account for cooling benefits exacerbates the error unless heating penalties are also considered. An analysis method that takes into account the thermal application factor of the lighting system shows that the error is typically due to systematically overestimating the energy usage of the original lighting system. If thermal application factor is considered, then detailed HVAC calculations do not significantly improve the energy-savings estimate.

Franconi, E.; Rubinstein, F.

1991-10-01T23:59:59.000Z

205

Low-phonon-frequency chalcogenide crystalline hosts for rare earth lasers operating beyond three microns  

DOE Patents (OSTI)

The invention comprises a RE-doped MA.sub.2 X.sub.4 crystalline gain medium, where M includes a divalent ion such as Mg, Ca, Sr, Ba, Pb, Eu, or Yb; A is selected from trivalent ions including Al, Ga, and In; X is one of the chalcogenide ions S, Se, and Te; and RE represents the trivalent rare earth ions. The MA.sub.2 X.sub.4 gain medium can be employed in a laser oscillator or a laser amplifier. Possible pump sources include diode lasers, as well as other laser pump sources. The laser wavelengths generated are greater than 3 microns, as becomes possible because of the low phonon frequency of this host medium. The invention may be used to seed optical devices such as optical parametric oscillators and other lasers.

Payne, Stephen A. (Castro Valley, CA); Page, Ralph H. (San Ramon, CA); Schaffers, Kathleen I. (Pleasanton, CA); Nostrand, Michael C. (Livermore, CA); Krupke, William F. (Pleasanton, CA); Schunemann, Peter G. (Malden, MA)

2000-01-01T23:59:59.000Z

206

Including the Effects of Electronic Excitations and Electron-Phonon Coupling in Cascade Simulations  

SciTech Connect

Radiation damage has traditionally been modeled using cascade simulations however such simulations generally neglect the effects of electron-ion interactions, which may be significant in high energy cascades. A model has been developed which includes the effects of electronic stopping and electron-phonon coupling in Molecular Dynamics simulations by means of an inhomogeneous Langevin thermostat. The energy lost by the atoms to electronic excitations is gained by the electronic system and the energy evolution of the electronic system is modeled by the heat diffusion equation. Energy is exchanged between the electronic system and the atoms in the Molecular Dynamics simulation by means of a Langevin thermostat, the temperature of which is the local electronic temperature. The model is applied to a 10 keV cascade simulation for Fe. (authors)

Duffy, Dorothy [Physics and Astronomy, UCL, London (United Kingdom)]|[EURATOM/UKAEA Fusion Association, Culham Science Centre, Oxfordshire (United Kingdom); Rutherford, Alexis [Physics and Astronomy, UCL, London (United Kingdom)

2008-07-01T23:59:59.000Z

207

Incandescent Lighting | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Incandescent Lighting Incandescent Lighting August 16, 2013 - 10:00am Addthis Incandescent lighting is the most common type of lighting used in homes. Incandescent lamps operate...

208

Solid-State Lighting: Registration  

NLE Websites -- All DOE Office Websites (Extended Search)

Lighting: Registration on Twitter Bookmark Solid-State Lighting: Registration on Google Bookmark Solid-State Lighting: Registration on Delicious Rank Solid-State Lighting:...

209

Solid-State Lighting: Postings  

NLE Websites -- All DOE Office Websites (Extended Search)

Solid-State Lighting: Postings on Twitter Bookmark Solid-State Lighting: Postings on Google Bookmark Solid-State Lighting: Postings on Delicious Rank Solid-State Lighting:...

210

Monte Carlo simulations of electron thermalization in alkali iodide and alkaline-earth fluoride scintillators  

Science Conference Proceedings (OSTI)

A Monte Carlo model of electron thermalization in inorganic scintillators, which was developed and applied to CsI in a previous publication [Wang et al., J. Appl. Phys. 110, 064903 (2011)], is extended to another material of the alkali halide class, NaI, and to two materials from the alkaline-earth halide class, CaF2 and BaF2. This model includes electron scattering with both longitudinal optical (LO) and acoustic phonons as well as the effects of internal electric fields. For the four pure materials, a significant fraction of the electrons recombine with self-trapped holes and the thermalization distance distributions of the electrons that do not recombine peak between approximately 25 and 50 {per_thousand}nm and extend up to a few hundreds of nanometers. The thermalization time distributions of CaF2, BaF2, NaI, and CsI extend to approximately 0.5, 1, 2, and 7 ps, respectively. The simulations show that the LO phonon energy is a key factor that affects the electron thermalization process. Indeed, the higher the LO phonon energy is, the shorter the thermalization time and distance are. The thermalization time and distance distributions show no dependence on the incident {gamma}-ray energy. The four materials also show different extents of electron-hole pair recombination due mostly to differences in their electron mean free paths (MFPs), LO phonon energies, initial densities of electron-hole pairs, and static dielectric constants. The effect of thallium doping is also investigated for CsI and NaI as these materials are often doped with activators. Comparison between CsI and NaI shows that both the larger size of Cs+ relative to Na+, i.e., the greater atomic density of NaI, and the longer electron mean free path in NaI compared to CsI contribute to an increased probability for electron trapping at Tl sites in NaI versus CsI.

Wang, Zhiguo; Xie, YuLong; Campbell, Luke W.; Gao, Fei; Kerisit, Sebastien N.

2012-07-01T23:59:59.000Z

211

Monte Carlo simulations of electron thermalization in alkali iodide and alkaline-earth fluoride scintillators  

SciTech Connect

A Monte Carlo model of electron thermalization in inorganic scintillators, which was developed and applied to CsI in a previous publication [Wang et al., J. Appl. Phys. 110, 064903 (2011)], is extended to another material of the alkali halide class, NaI, and to two materials from the alkaline-earth halide class, CaF{sub 2} and BaF{sub 2}. This model includes electron scattering with both longitudinal optical (LO) and acoustic phonons as well as the effects of internal electric fields. For the four pure materials, a significant fraction of the electrons recombine with self-trapped holes and the thermalization distance distributions of the electrons that do not recombine peak between approximately 25 and 50 nm and extend up to a few hundreds of nanometers. The thermalization time distributions of CaF{sub 2}, BaF{sub 2}, NaI, and CsI extend to approximately 0.5, 1, 2, and 7 ps, respectively. The simulations show that the LO phonon energy is a key factor that affects the electron thermalization process. Indeed, the higher the LO phonon energy is, the shorter the thermalization time and distance are. The thermalization time and distance distributions show no dependence on the incident {gamma}-ray energy. The four materials also show different extents of electron-hole pair recombination due mostly to differences in their electron mean free paths (MFPs), LO phonon energies, initial densities of electron-hole pairs, and static dielectric constants. The effect of thallium doping is also investigated for CsI and NaI as these materials are often doped with activators. Comparison between CsI and NaI shows that both the larger size of Cs{sup +} relative to Na{sup +}, i.e., the greater atomic density of NaI, and the longer electron mean free path in NaI compared to CsI contribute to an increased probability for electron trapping at Tl sites in NaI versus CsI.

Wang Zhiguo; Gao Fei; Kerisit, Sebastien [Fundamental and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352 (United States); Xie Yulong [Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352 (United States); Campbell, Luke W. [National Security Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352 (United States)

2012-07-01T23:59:59.000Z

212

Lighting Research Group  

NLE Websites -- All DOE Office Websites (Extended Search)

Lighting Research Group overview what's new publications software facilities people contact us links...

213

Thermal conductivity of self-assembled nano-structured ZnO bulk ceramics  

Science Conference Proceedings (OSTI)

In this study, we describe the changes in thermal conductivity behavior of ZnO-Al micro- and nano-two-phase self-assembled composites with varying grain sizes. The reduction in thermal conductivity values of micro-composites was limited to {approx}15% for ZnO-4% Al. However, nano-composites exhibited large reduction, by a factor of about three, due to uniform distribution of nano-precipitates (ZnAl2O4) and large grain boundary area. Interestingly, the micro-composites revealed continuous decrease in thermal conductivity with increase in Al substitution while the nano-composites exhibited the lowest magnitudes for 2% Al concentration. Raman spectra indicated that phonon confinement in ZnO-Al nano-composites causes drastic decrease in the value of thermal conductivity.

Zhao, Yu [Bio-Inspired Materials and Devices Laboraory (BMDL); Yan, Yongke [Bio-Inspired Materials and Devices Laboraory (BMDL); Kumar, Ashok [Bio-Inspired Materials and Devices Laboraory (BMDL); Wang, Hsin [ORNL; Porter, Wallace D [ORNL

2012-01-01T23:59:59.000Z

214

Major transitions in evolution linked to thermal gradients above hydrothermal vents  

E-Print Network (OSTI)

The emergence of the main divisions of today's life: (1) unicellular prokaryotes, (2) unicellular eukaryotes, (3) multicellular eukaryotes, and (4) metazoans, are examples of the--still unexplained--major transitions in evolution. Regarding the origin of life, I have proposed that primordial life functioned as heat engine (thermosynthesis) while thermally cycled in convecting volcanic hot springs. Here I argue for a role of thermal gradients above submarine hydrothermal vents (SHV) in several major transitions. The last decade has witnessed the emergence of phononics, a novel discipline in physics based on controlled heat transport in thermal gradients. It builds thermal analogs to electronic devices: the thermal diode, the thermal transistor, the thermal switch, the thermal amplifier, the thermal memory--the thermal computer has been proposed. Encouraged by (1) the many similarities between microtubules (MT) and carbon nanotubes, which have a very high thermal conductivity, and (2) the recent discovery of a silk protein which also has a very high thermal conductivity, I combine and extend the mentioned ideas, and propose the general conjecture that several major transitions of evolution were effected by thermal processes, with four additional partial conjectures: (1) The first organisms used heat engines during thermosynthesis in convection cells; (2) The first eukaryotic cells used MT during thermosynthesis in the thermal gradient above SHV; (3) The first metazoans used transport of water or in water during thermosynthesis above SHV under an ice-covered ocean during the Gaskiers Snowball Earth; and (4) The first mammalian brain used a thermal machinery based on thermal gradients in or across the cortex. When experimentally proven these conjectures, which are testable by the methods of synthetic biology, would significantly enhance our understanding of life.

Anthonie W. J. Muller

2012-12-03T23:59:59.000Z

215

Energy and lighting decisions  

SciTech Connect

This report reviews the fundamental principles of lighting and uses them to evaluate energy-conserving lighting equipment and techniques. The selection of the proper lighting components and systems is complex, requiring a knowledge of the characteristics of light sources and their interactions with the auxiliary equipment and the environment. Furthermore, there are subjective aspects of lighting that are difficult to quantify. We address the simplistic way in which lighting is commonly approached, then present an argument as to the critical nature of the lighting decision. In the final sections we discuss and evaluate lighting equipment in terms of its applications and characteristics. Familiarity with the fundamental characteristics of the elements of lighting equipment will also permit more judicious appraisal and use of lighting concepts that may be introduced in the future. 6 figs., 9 tabs.

Verderber, R.R.

1986-06-01T23:59:59.000Z

216

Pulse Thermal Processing of Functional Materials Using a Directed Plasma Arc  

Using pulses of high density infrared light from a directed plasma arc, ORNL researchersinvented a method to thermally process thin films and other ...

217

On-Line Thermal Barrier Coating Monitoring for Real-Time Failure...  

NLE Websites -- All DOE Office Websites (Extended Search)

...32 9.0 List of Figures and Tables Figure 1.3a - Thermal Snapshot of 2' Diameter Flywheel with Target Features "White Light Still Frame" in...

218

Lighting Inventory Lighting Theatre and Drama  

E-Print Network (OSTI)

Strand Basic Palette 400 channel 800 attrib. 1 Strand Lighting 200 Series 24/48 1 1 MicroVision 2 HORIZON

Indiana University

219

Thermal sensor with an improved coating  

DOE Patents (OSTI)

The disclosure is directed to an apparatus for detecting radiation having wavelengths from about 0.4 .mu.m to about 5.6 .mu.m. An optical coating is applied to a thermal sensor that is normally transparent to radiation with such wavelengths. The optical coating is thin and light and includes a modifier and an absorber. The thermal sensor can be a pyroelectric detector such as strontium barium niobate.

LaDelfe, Peter C. (Los Alamos, NM); Stotlar, Suzanne C. (Los Alamos, NM)

1986-01-01T23:59:59.000Z

220

Lighting Retrofit Study  

SciTech Connect

The Lighting Retrofit Study was an effort to determine the most cost-effective methods of retrofitting several configurations of lighting systems at Lawrence Berkeley Laboratory (LBL) and Lawrence Livermore National Laboratory (LLNL). We developed a test protocol to compare a variety of lighting technologies for their applicability in labs and offices and designed and constructed a novel lighting contrast potential meter to allow for comparison of lighting quality as well as quantity.

Kromer, S.; Morse, O.; Siminovitch, M.

1991-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "lighting phonons thermal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

High-frequency Light Reflector via Low-frequency Light Control  

E-Print Network (OSTI)

We show that the momentum of light can be reversed via the atomic coherence created by another light with one or two orders of magnitude lower frequency. Both the backward retrieval of single photons from a time-ordered Dicke state and the reflection of continuous waves by high-order photonic band gaps are analyzed. A proof-of-principle experiment with thermal Rb vapor is proposed based on presently available techniques. This holds promise for X-ray reflectors controlled by low-frequency light.

Wang, Da-Wei; Evers, Joerg; Scully, Marlan O

2013-01-01T23:59:59.000Z

222

EK101 Engineering Light Smart Lighting  

E-Print Network (OSTI)

represents high usage of an engine and the violet end represents low usage. A light blue coloring represents from red to light blue), and slowly increase their usage of engine A. The seventh row show a patternModeling Long-Term Search Engine Usage Ryen W. White, Ashish Kapoor, and Susan T. Dumais Microsoft

Bifano, Thomas

223

Spectrally Enhanced Lighting  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

November 2007 November 2007 AfterImage + s p a c e 1 Spectrally Enhanced Lighting Spectrally Enhanced Lighting Brian Liebel, PE, LC Brian Liebel, PE, LC November 29, 2007 November 29, 2007 Federal Utilities Partnership Working Group Federal Utilities Partnership Working Group November 29, 2007 November 29, 2007 29 November 2007 AfterImage + s p a c e 2 Spectrally Enhanced Lighting Spectrally Enhanced Lighting Spectrally Enhanced Lighting Spectrally Enhanced Lighting This is not a technology; just a This is not a technology; just a different way to quantify light based on different way to quantify light based on well established scientific findings well established scientific findings Can be used in conjunction with ANY Can be used in conjunction with ANY type of lighting design to gain

224

Reduced Thermal Conductivity of Compacted Silicon Nanowires  

E-Print Network (OSTI)

Chen, “Coherent Phonon Heat Conduction in Superlattices,”1 Chapter 1: Heat Conduction in Nanostructured Materialsfindings. Chapter 1: Heat Conduction in Nanostructured

Yuen, Taylor S.

225

LED Lighting | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

LED Lighting LED Lighting August 16, 2013 - 10:07am Addthis Light-emitting diodes (LEDs) are light sources that differ from more traditional sources of light in that they are...

226

Thermal conductivity of thermal-battery insulations  

DOE Green Energy (OSTI)

The thermal conductivities of a variety of insulating materials used in thermal batteries were measured in atmospheres of argon and helium using several techniques. (Helium was used to simulate the hydrogen atmosphere that results when a Li(Si)/FeS{sub 2} thermal battery ages.) The guarded-hot-plate method was used with the Min-K insulation because of its extremely low thermal conductivity. For comparison purposes, the thermal conductivity of the Min-K insulating board was also measured using the hot-probe method. The thermal-comparator method was used for the rigid Fiberfrax board and Fiberfrax paper. The thermal conductivity of the paper was measured under several levels of compression to simulate the conditions of the insulating wrap used on the stack in a thermal battery. The results of preliminary thermal-characterization tests with several silica aerogel materials are also presented.

Guidotti, R.A.; Moss, M.

1995-08-01T23:59:59.000Z

227

Natural lighting and skylights  

E-Print Network (OSTI)

There are many physiological and psychological factors which enter into the proper design of space for human occupancy. One of these elements is light. Both natural light and manufactured light are basic tools with which any designer must work. However, they are only two of the many, many elements which must be considered; and they, therefore, must be considered, always, in relation to the other elements. The achievement of good lighting depends on a reasonable understanding of three primary factors: one, the visual response to lighting; two, the availability and types of lighting; and three, methods for controlling light. This thesis is intended to supply enough information to provide a working knowledge of each of these facets. The human visual response is discussed in "Goals For Good Lighting." The availability and types of lighting are dealt with in the section on available light. The remainder of the thesis concerns methods for controlling light. The use of scale models for studying the natural lighting characteristics of buildings due to the building geometry, the fenestration details and the interior reflectance has been well established as pointed out in the earlier part of this thesis. With the completion of the work outlined herein, the feasibility of using scale models for studying skylights is also an established fact. The method of analysis by models can be a valuable tool to any designer who is concerned about day-lighting.

Evans, Benjamin Hampton

1961-01-01T23:59:59.000Z

228

Evidence for coupling between collective state and phonons in two-dimensional charge-density-wave systems  

SciTech Connect

We report on a Raman scattering investigation of the charge-density-wave (CDW), quasi two-dimensional rare-earth tri-tellurides RTe{sub 3} (R = La, Ce, Pr, Nd, Sm, Gd and Dy) at ambient pressure, and of LaTe{sub 3} and CeTe{sub 3} under externally applied pressure. The observed phonon peaks can be ascribed to the Raman active modes for both the undistorted as well as the distorted lattice in the CDW state by means of a first principles calculation. The latter also predicts the Kohn anomaly in the phonon dispersion, driving the CDW transition. The integrated intensity of the two most prominent modes scales as a characteristic power of the CDW-gap amplitude upon compressing the lattice, which provides clear evidence for the tight coupling between the CDW condensate and the vibrational modes.

Lavagnini, M.; /Zurich, ETH; Baldini, M.; /INFN, Rome; Sacchetti, A.; /Zurich, ETH; Castro, D.Di; /Zurich, ETH; Delley, B.; /PSI, Villigen; Monnier, R.; /Zurich, ETH; Chu, J.-H.; Ru, N.; Fisher, I.R.; /Stanford U., Geballe Lab.; Postorino, P.; /INFN, Rome; Degiorgi, L.; /Zurich, ETH

2010-02-15T23:59:59.000Z

229

Illumination of interior spaces by bended hollow light guides: Application of the theoretical light propagation method  

SciTech Connect

To ensure comfort and healthy conditions in interior spaces the thermal, acoustics and daylight factors of the environment have to be considered in the building design. Due to effective energy performance in buildings the new technology and applications also in daylight engineering are sought such as tubular light guides. These allow the transport of natural light into the building core reducing energy consumption. A lot of installations with various geometrical and optical properties can be applied in real buildings. The simplest set of tubular light guide consists of a transparent cupola, direct tube with high reflected inner surface and a ceiling cover or diffuser redistributing light into the interior. Such vertical tubular guide is often used on flat roofs. When the roof construction is inclined a bend in the light guide system has to be installed. In this case the cupola is set on the sloped roof which collects sunlight and skylight from the seen part of the sky hemisphere as well as that reflected from the ground and opposite facades. In comparison with the vertical tube some additional light losses and distortions of the propagated light have to be expected in bended tubular light guides. Recently the theoretical model of light propagation was already published and its applications are presented in this study solving illuminance distributions on the ceiling cover interface and further illuminance distribution on the working plane in the interior. (author)

Darula, Stanislav; Kocifaj, Miroslav; Kittler, Richard [ICA, Slovak Academy of Sciences, Bratislava (Slovakia); Kundracik, Frantisek [Department of Experimental Physics, FMPI, Comenius University, Bratislava (Slovakia)

2010-12-15T23:59:59.000Z

230

Lighting Group: Overview  

NLE Websites -- All DOE Office Websites (Extended Search)

Overview Overview Overview of the Lighting Research Group The Lighting Research Group at Lawrence Berkeley National Laboratory performs research aimed at improving the energy efficiency of lighting systems in buildings and homes, throughout the State of California and across the Nation. The goal is to reduce lighting energy consumption by 50% over twenty years by improving the efficiency of light sources, and controlling and delivering illumination so that it is available, where and when needed, and at the required intensity. Research in the Lighting Group falls into three main areas: Sources and Ballasts, Light Distribution Systems and Controls and Communications. Click on a link below for more information about each of these research areas. Sources and Ballasts investigates next generation light sources, such as

231

Madrid Electric Lighting Report  

NLE Websites -- All DOE Office Websites (Extended Search)

Electric Lighting Quality Page 1 of 2 ELECTRIC LIGHTING QUALITY MAGIC BOX is a versatile home. Its design allows to change the room size by opening and closing the movable walls...

232

Automatic lighting controls demonstration  

SciTech Connect

The purpose of this work was to demonstrate, in a real building situation, the energy and peak demand reduction capabilities of an electronically ballasted lighting control system that can utilize all types of control strategies to efficiently manage lighting. The project has demonstrated that a state-of-the-art electronically ballasted dimmable lighting system can reduce energy and lighting demand by as least 50% using various combinations of control strategies. By reducing light levels over circulation areas (tuning) and reducing after hours light levels to accommodate the less stringent lighting demands of the cleaning crew (scheduling), lighting energy consumption on weekdays was reduced an average of 54% relative to the initial condition. 10 refs., 14 figs., 3 tabs.

Rubinstein, F.; Verderber, R.

1990-03-01T23:59:59.000Z

233

Lighting energy audit workbook  

SciTech Connect

A simple test to determine the need for a lighting energy audit is followed by how-to information on conducting the audit, identifying savings opportunities, and developing an energy management plan for lighting.

1984-01-01T23:59:59.000Z

234

Inverse Lighting for Photography  

E-Print Network (OSTI)

We introduce a technique for improving photographs using inverse lighting, a new process based on algorithms developed in computer graphics for computing the reflection of light in 3D space. From a photograph and a 3D surface model for the object pictured, inverse lighting estimates the directional distribution of the incident light. We then use this information to process the photograph digitally to alter the lighting on the object. Inverse lighting is a specific example of the general idea of inverse rendering. This refers to the practice of using the methods of computer graphics, which normally are used to render images from scene information, to infer scene information from images. Our system uses physically based rendering technology to construct a linear least squares system that we solve to find the lighting. As an application, the results are then used to simulate a change in the incident light in the photograph. An implementation is described that uses 3D models from a laser...

Stephen R. Marschner; Donald P. Greenberg

1997-01-01T23:59:59.000Z

235

Fast Light, Fast Neutrinos?  

E-Print Network (OSTI)

Light has been observed with group velocities both faster and slower than the speed of light. The recent report from OPERA of superluminal 17 GeV neutrinos may describe a similar phenomenon.

Cahill, Kevin

2011-01-01T23:59:59.000Z

236

Light Wavelength and Plants  

NLE Websites -- All DOE Office Websites (Extended Search)

Light Wavelength and Plants Name: John Location: NA Country: NA Date: NA Question: I just was wandering whether plants grow better in artificial light or in sunlight. I am...

237

Germinating and Light  

NLE Websites -- All DOE Office Websites (Extended Search)

Germinating and Light Name: Chris Location: NA Country: NA Date: NA Question: Can you tell me how plants determine where the light is once they are out of the soil and not a...

238

Interfacial electron and phonon scattering processes in high-powered nanoscale applications.  

SciTech Connect

The overarching goal of this Truman LDRD project was to explore mechanisms of thermal transport at interfaces of nanomaterials, specifically linking the thermal conductivity and thermal boundary conductance to the structures and geometries of interfaces and boundaries. Deposition, fabrication, and post possessing procedures of nanocomposites and devices can give rise to interatomic mixing around interfaces of materials leading to stresses and imperfections that could affect heat transfer. An understanding of the physics of energy carrier scattering processes and their response to interfacial disorder will elucidate the potentials of applying these novel materials to next-generation high powered nanodevices and energy conversion applications. An additional goal of this project was to use the knowledge gained from linking interfacial structure to thermal transport in order to develop avenues to control, or 'tune' the thermal transport in nanosystems.

Hopkins, Patrick E.

2011-10-01T23:59:59.000Z

239

PFP Emergency Lighting Study  

SciTech Connect

NFPA 101, section 5-9 mandates that, where required by building classification, all designated emergency egress routes be provided with adequate emergency lighting in the event of a normal lighting outage. Emergency lighting is to be arranged so that egress routes are illuminated to an average of 1.0 footcandle with a minimum at any point of 0.1 footcandle, as measured at floor level. These levels are permitted to drop to 60% of their original value over the required 90 minute emergency lighting duration after a power outage. The Plutonium Finishing Plant (PFP) has two designations for battery powered egress lights ''Emergency Lights'' are those battery powered lights required by NFPA 101 to provide lighting along officially designated egress routes in those buildings meeting the correct occupancy requirements. Emergency Lights are maintained on a monthly basis by procedure ZSR-12N-001. ''Backup Lights'' are battery powered lights not required by NFPA, but installed in areas where additional light may be needed. The Backup Light locations were identified by PFP Safety and Engineering based on several factors. (1) General occupancy and type of work in the area. Areas occupied briefly during a shiftly surveillance do not require backup lighting while a room occupied fairly frequently or for significant lengths of time will need one or two Backup lights to provide general illumination of the egress points. (2) Complexity of the egress routes. Office spaces with a standard hallway/room configuration will not require Backup Lights while a large room with several subdivisions or irregularly placed rooms, doors, and equipment will require Backup Lights to make egress safer. (3) Reasonable balance between the safety benefits of additional lighting and the man-hours/exposure required for periodic light maintenance. In some plant areas such as building 236-Z, the additional maintenance time and risk of contamination do not warrant having Backup Lights installed in all rooms. Sufficient light for egress is provided by existing lights located in the hallways.

BUSCH, M.S.

2000-02-02T23:59:59.000Z

240

TMS Light Metals Publication  

Science Conference Proceedings (OSTI)

The following instructions should be used when submitting a manuscript for any TMS Light Metals proceedings volume. INTRODUCTION. Orientation to ...

Note: This page contains sample records for the topic "lighting phonons thermal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Temperature and pressure dependence of the Fe-specific phonon density of states in Ba(Fe1-xCox)2As2  

Science Conference Proceedings (OSTI)

The {sup 57}Fe-specific phonon density of states (DOS) of Ba(Fe{sub 1-x}Co{sub x}){sub 2}As{sub 2} single crystals (x=0.0, 0.08) was measured at cryogenic temperatures and at high pressures with nuclear-resonant inelastic x-ray scattering. Measurements were conducted for two different orientations of the single crystals, yielding the orientation projected {sup 57}Fe-phonon density of states for phonon polarizations in-plane and out-of-plane with respect to the basal plane of the crystal structure. In the tetragonal phase at 300 K, a clear stiffening was observed upon doping with Co. Increasing pressure to 4 GPa caused a marked increase of phonon frequencies, with the doped material still stiffer than the parent compound. Upon cooling, both the doped and undoped samples showed a stiffening and the parent compound exhibited a discontinuity across the magnetic and structural phase transitions. These findings are generally compatible with the changes in volume of the system upon doping, increasing pressure, or increasing temperature, but an extra softening of high-energy modes occurs with increasing temperature. First-principles computations of the phonon DOS were performed and showed an overall agreement with the experimental results, but underestimate the Grueneisen parameter. This discrepancy is explained in terms of a magnetic Grueneisen parameter, causing an extra phonon stiffening as magnetism is suppressed under pressure.

Delaire, O [Oak Ridge National Laboratory (ORNL); Lucas, M S [Oak Ridge National Laboratory (ORNL); Dos santos, A M [Oak Ridge National Laboratory (ORNL); Subedi, Alaska P [ORNL; Safa-Sefat, Athena [ORNL; McGuire, Michael A [ORNL; Mauger, L [W. M. Keck Laboratory, Pasadena, CA; Munoz, J A [W. M. Keck Laboratory, Pasadena, CA; Tulk, Christopher A [ORNL; Xiao, Y [HPCAT Geophysical Lab, Argonne, IL; Somayazulu, M [Geophysical Lab, Washington, D. C.; Zhao, J. Y. [Argonne National Laboratory (ANL); Sturhahn, W [Argonne National Laboratory (ANL); Alp, E. E. [Argonne National Laboratory (ANL); Singh, David J [ORNL; Sales, Brian C [ORNL; Mandrus, David [ORNL; Egami, Takeshi [ORNL

2009-01-01T23:59:59.000Z

242

Solid-State Lighting: Solid-State Lighting  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Solid-State Lighting Search Solid-State Lighting Search Search Help Solid-State Lighting HOME ABOUT THE PROGRAM R&D PROJECTS MARKET-BASED PROGRAMS SSL BASICS INFORMATION RESOURCES FINANCIAL OPPORTUNITIES EERE » Building Technologies Office » Solid-State Lighting Printable Version Share this resource Send a link to Solid-State Lighting: Solid-State Lighting to someone by E-mail Share Solid-State Lighting: Solid-State Lighting on Facebook Tweet about Solid-State Lighting: Solid-State Lighting on Twitter Bookmark Solid-State Lighting: Solid-State Lighting on Google Bookmark Solid-State Lighting: Solid-State Lighting on Delicious Rank Solid-State Lighting: Solid-State Lighting on Digg Find More places to share Solid-State Lighting: Solid-State Lighting on AddThis.com... Pause/Resume Photo of a large room with people standing around poster boards.

243

Molecular Level Assessment of Thermal Transport and Thermoelectricity in Materials: From Bulk Alloys to Nanostructures  

E-Print Network (OSTI)

The ability to manipulate material response to dynamical processes depends on the extent of understanding of transport properties and their variation with chemical and structural features in materials. In this perspective, current work focuses on the thermal and electronic transport behavior of technologically important bulk and nanomaterials. Strontium titanate is a potential thermoelectric material due to its large Seebeck coefficient. Here, first principles electronic band structure and Boltzmann transport calculations are employed in studying the thermoelectric properties of this material in doped and deformed states. The calculations verified that excessive carrier concentrations are needed for this material to be used in thermoelectric applications. Carbon- and boron nitride-based nanomaterials also offer new opportunities in many applications from thermoelectrics to fast heat removers. For these materials, molecular dynamics calculations are used to evaluate lattice thermal transport. To do this, first, an energy moment term is reformulated for periodic boundary conditions and tested to calculate thermal conductivity from Einstein relation in various systems. The influences of the structural details (size, dimensionality) and defects (vacancies, Stone-Wales defects, edge roughness, isotopic disorder) on the thermal conductivity of C and BN nanostructures are explored. It is observed that single vacancies scatter phonons stronger than other type of defects due to unsatisfied bonds in their structure. In pristine states, BN nanostructures have 4-6 times lower thermal conductivity compared to C counterparts. The reason of this observation is investigated on the basis of phonon group velocities, life times and heat capacities. The calculations show that both phonon group velocities and life times are smaller in BN systems. Quantum corrections are also discussed for these classical simulations. The chemical and structural diversity that could be attained by mixing hexagonal boron nitride and graphene provide further avenues for tuning thermal and electronic properties. In this work, the thermal conductivity of hybrid graphene/hexagonal-BN structures: stripe superlattices and BN (graphene) dots embedded in graphene (BN) are studied. The largest reduction in thermal conductivity is observed at 50% chemical mixture in dot superlattices. The dot radius appears to have little effect on the magnitude of reduction around large concentrations while smaller dots are more influential at dilute systems.

Kinaci, Alper

2013-05-01T23:59:59.000Z

244

Lighting management casebook  

SciTech Connect

Fifteen examples illustrate how lighting system projects can save energy as well as improve productivity and safety. The case histories include the use of programmable lighting, fiber optics, skylights, voltage reduction, ultrasonic and infrared sensors, and other strategies for improving lighting efficiency. Each case history includes the management approach, site information, and applications. (DCK)

1982-06-01T23:59:59.000Z

245

Advanced Lighting Guidelines  

Science Conference Proceedings (OSTI)

Information about energy-effective lighting technologies is required to be updated as old technologies become obsolete and new technologies begin to make important market impacts. Providing a comprehensive, state-of-the-art update of lighting technology application and information is necessary to ensure that lighting decision-makers have the best possible information available at all times.

2001-10-22T23:59:59.000Z

246

Energy and lighting design  

SciTech Connect

Energy conserving practices in providing lighting for today's buildings are examined in this second of a two-part presentation. Discussion on light source characteristics, ballast characteristics for gaseous discharge lamps, quality and the cost of lighting, and equivalent sphere illumination are included.

Helms, R.N.

1979-12-01T23:59:59.000Z

247

Resonant energy transfer in light harvesting and light emitting applications.  

E-Print Network (OSTI)

??The performance of light emitting and light harvesting devices is improved by utilising resonant energy transfer. In lighting applications, the emission energy of a semiconductor… (more)

Chanyawadee, Soontorn

2009-01-01T23:59:59.000Z

248

LIGHT FORCE: An Exploration of Light through Design.  

E-Print Network (OSTI)

??What falls into the realm of light and what it means to design and the human experience? Can light be material? How does light change… (more)

Chen, Tzu

2007-01-01T23:59:59.000Z

249

Solid-State Lighting: Webcast: Evaluating LED Street Lighting...  

NLE Websites -- All DOE Office Websites (Extended Search)

Webcast: Evaluating LED Street Lighting Solutions to someone by E-mail Share Solid-State Lighting: Webcast: Evaluating LED Street Lighting Solutions on Facebook Tweet about...

250

Lighting Group: Sources and Ballasts: LED Task Light  

NLE Websites -- All DOE Office Websites (Extended Search)

light The goal of this project is to accelerate the use of energy efficient light emitting diode (LED) technology for general lighting applications by developing a task lamp...

251

Pulse thermal processing of functional materials using directed plasma arc  

DOE Patents (OSTI)

A method of thermally processing a material includes exposing the material to at least one pulse of infrared light emitted from a directed plasma arc to thermally process the material, the pulse having a duration of no more than 10 s.

Ott, Ronald D. (Knoxville, TN); Blue, Craig A. (Knoxville, TN); Dudney, Nancy J. (Knoxville, TN); Harper, David C. (Kingston, TN)

2007-05-22T23:59:59.000Z

252

Seasonal thermal energy storage  

DOE Green Energy (OSTI)

This report describes the following: (1) the US Department of Energy Seasonal Thermal Energy Storage Program, (2) aquifer thermal energy storage technology, (3) alternative STES technology, (4) foreign studies in seasonal thermal energy storage, and (5) economic assessment.

Allen, R.D.; Kannberg, L.D.; Raymond, J.R.

1984-05-01T23:59:59.000Z

253

Solid-State Lighting: Solid-State Lighting Videos  

NLE Websites -- All DOE Office Websites (Extended Search)

Solid-State Lighting Videos to Solid-State Lighting Videos to someone by E-mail Share Solid-State Lighting: Solid-State Lighting Videos on Facebook Tweet about Solid-State Lighting: Solid-State Lighting Videos on Twitter Bookmark Solid-State Lighting: Solid-State Lighting Videos on Google Bookmark Solid-State Lighting: Solid-State Lighting Videos on Delicious Rank Solid-State Lighting: Solid-State Lighting Videos on Digg Find More places to share Solid-State Lighting: Solid-State Lighting Videos on AddThis.com... Conferences & Meetings Presentations Publications Webcasts Videos Tools Solid-State Lighting Videos On this page you can access DOE Solid-State Lighting (SSL) Program videos. Photo of a museum art gallery with LED lights in track fixtures overhead. The City of Los Angeles LED Streetlight Program

254

Solid-State Lighting: Solid-State Lighting  

NLE Websites -- All DOE Office Websites (Extended Search)

Lighting Lighting Printable Version Share this resource Send a link to Solid-State Lighting: Solid-State Lighting to someone by E-mail Share Solid-State Lighting: Solid-State Lighting on Facebook Tweet about Solid-State Lighting: Solid-State Lighting on Twitter Bookmark Solid-State Lighting: Solid-State Lighting on Google Bookmark Solid-State Lighting: Solid-State Lighting on Delicious Rank Solid-State Lighting: Solid-State Lighting on Digg Find More places to share Solid-State Lighting: Solid-State Lighting on AddThis.com... Pause/Resume Photo of a large room with people standing around poster boards. Register Now for DOE's 11th Annual SSL R&D Workshop January 28-30, join other SSL R&D professionals from industry, government, and academia to learn, share, and shape the future of lighting.

255

Solid-State Lighting: Solid-State Lighting Contacts  

NLE Websites -- All DOE Office Websites (Extended Search)

About the About the Program Printable Version Share this resource Send a link to Solid-State Lighting: Solid-State Lighting Contacts to someone by E-mail Share Solid-State Lighting: Solid-State Lighting Contacts on Facebook Tweet about Solid-State Lighting: Solid-State Lighting Contacts on Twitter Bookmark Solid-State Lighting: Solid-State Lighting Contacts on Google Bookmark Solid-State Lighting: Solid-State Lighting Contacts on Delicious Rank Solid-State Lighting: Solid-State Lighting Contacts on Digg Find More places to share Solid-State Lighting: Solid-State Lighting Contacts on AddThis.com... Contacts Partnerships Solid-State Lighting Contacts For information about Solid-State Lighting, contact James Brodrick Lighting Program Manager Building Technologies Office U.S. Department of Energy

256

Solid-State Lighting: Adaptive Street Lighting Controls  

NLE Websites -- All DOE Office Websites (Extended Search)

Adaptive Street Lighting Adaptive Street Lighting Controls to someone by E-mail Share Solid-State Lighting: Adaptive Street Lighting Controls on Facebook Tweet about Solid-State Lighting: Adaptive Street Lighting Controls on Twitter Bookmark Solid-State Lighting: Adaptive Street Lighting Controls on Google Bookmark Solid-State Lighting: Adaptive Street Lighting Controls on Delicious Rank Solid-State Lighting: Adaptive Street Lighting Controls on Digg Find More places to share Solid-State Lighting: Adaptive Street Lighting Controls on AddThis.com... Conferences & Meetings Presentations Publications Webcasts Videos Tools Adaptive Street Lighting Controls This two-part DOE Municipal Solid-State Street Lighting Consortium webinar focused on LED street lighting equipped with adaptive control components.

257

Emerging Lighting Technology  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Emerging Lighting Technology Emerging Lighting Technology Bruce Kinzey Pacific Northwest National Laboratory FUPWG - Portland, OR April 20, 2011 www.ssl.energy.gov 2 | Solid-State Lighting Program GATEWAY Demonstration Program * Purpose: demonstrate new SSL products in real-world applications that save energy, match or improve illumination, and are cost- effective * Demos generate critical field experience providing: - Feedback to manufacturers - Data for utility incentives - Market readiness of specific applications to users - Advancement in lighting knowledge Central Park, NY Photo: Ryan Pyle Smithsonian American Art Museum, Washington, D.C. Photo: Scott Rosenfeld www.ssl.energy.gov 3 | Solid-State Lighting Program LED Product Explosion www.ssl.energy.gov 4 | Solid-State Lighting Program LEDs are Not a Universal Lighting

258

Industrial lighting handbook  

SciTech Connect

Technological advances in industrial lighting system components now make it possible to reduce lighting system consumption by up to 50% or more without loss of the benefits inherent in good quality electric illumination. Management involvement in decisions about industrial lighting is essential, however, and this document provides generalized information in lay terms to help decision-makers become familiar with the concerns that affect industrial environment and the financial well-being of their companies. The five sections (1) discuss the benefits of good lighting, (2) review certain major lighting issues and terms, (3) identify procedures for developing a lighting energy management plan, (4) identify lighting energy management options (LEMOs), and (5) discuss sources of assistance. 19 figures, 8 tables.

1985-01-01T23:59:59.000Z

259

Photonic crystal light source  

DOE Patents (OSTI)

A light source is provided by a photonic crystal having an enhanced photonic density-of-states over a band of frequencies and wherein at least one of the dielectric materials of the photonic crystal has a complex dielectric constant, thereby producing enhanced light emission at the band of frequencies when the photonic crystal is heated. The dielectric material can be a metal, such as tungsten. The spectral properties of the light source can be easily tuned by modification of the photonic crystal structure and materials. The photonic crystal light source can be heated electrically or other heating means. The light source can further include additional photonic crystals that exhibit enhanced light emission at a different band of frequencies to provide for color mixing. The photonic crystal light source may have applications in optical telecommunications, information displays, energy conversion, sensors, and other optical applications.

Fleming, James G. (Albuquerque, NM); Lin, Shawn-Yu (Albuquerque, NM); Bur, James A. (Corrales, NM)

2004-07-27T23:59:59.000Z

260

Advances in Lighting  

E-Print Network (OSTI)

Increasing electricity costs have made a significant impact on lighting. The Illuminating Engineering society (I.E.S.) and the lighting industry are producing new standards, procedures and products to make lighting more appropriate and energy efficient. This paper will describe the factors which affect the performance of lighting systems, introduce the new I.E.S. procedures for selecting illuminance values and lighting power limits, and illustrate some of the recent developments in the lighting industry. The importance of efficient lighting may be measured by the potential reduction in the electrical demand, and energy consumed. Since it also represents a visible use (or misuse) of energy, it may also reflect on other aspects of a company's energy management program.

Tumber, A. J.

1981-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "lighting phonons thermal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Evolution in lighting  

SciTech Connect

Lights consume 20-25% of the nation's electricity, establishing strong incentives to develop more efficient lighting strategies. Attention is turning to where, when, and how we light our environment, and the potential savings add up to half the lighting load nationwide. Some types of lamp are more efficient than others, but characteristics other than energy consumption may dictate where they can be used. Current lighting strategies consider task requirements, light quality, and the potential for daylighting. Energy management systems that control the timing and intensity of light and new types of energy-efficient bulbs and fixtures are increasingly attractive to consumers. The effort will require continued research and the awareness of decision makers. 4 references, 8 figures.

Lihach, N.; Pertusiello, S.

1984-06-01T23:59:59.000Z

262

Lighting in Commercial Buildings, 1986  

Gasoline and Diesel Fuel Update (EIA)

6 Lighting in Commercial Buildings Lighting in Commercial Buildings --1986 Overview Full Report and Tables Detailed analysis of energy consumption for lighting for U.S. commercial...

263

Energy Basics: Lighting and Daylighting  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Lighting Daylighting Passive Solar Design Space Heating & Cooling Water Heating Lighting and Daylighting Buildings can be lit in two ways: by using artificial lighting, or by...

264

Lighting Group: Sources and Ballasts  

NLE Websites -- All DOE Office Websites (Extended Search)

incorporating LEDs into tomorrows task lights, to reducing light entrapment within the LED, to fundamental research into how Organic Lighting Emitting Diodes operate. LED and...

265

Energy Basics: Lighting and Daylighting  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

by using artificial lighting, or by using daylighting, or the process of using natural sunlight, windows, and skylights to provide lighting. Learn more about: Lighting Daylighting...

266

Thermal properties of PZT95/5(1.8Nb) and PSZT ceramics.  

SciTech Connect

Thermal properties of niobium-modified PZT95/5(1.8Nb) and PSZT ceramics used for the ferroelectric power supply have been studied from -100 C to 375 C. Within this temperature range, these materials exhibit ferroelectric-ferroelectric and ferroelectric-paraelectric phase transformations. The thermal expansion coefficient, heat capacity, and thermal diffusivity of different phases were measured. Thermal conductivity and Grueneisen constant were calculated at several selected temperatures between -60 C and 100 C. Results show that thermal properties of these two solid solutions are very similar. Phase transformations in these ceramics possess first order transformation characteristics including thermal hysteresis, transformational strain, and enthalpy change. The thermal strain in the high temperature rhombohedral phase region is extremely anisotropic. The heat capacity for both materials approaches to 3R (or 5.938 cal/(g-mole*K)) near room temperature. The thermal diffusivity and the thermal conductivity are quite low in comparison to common oxide ceramics, and are comparable to amorphous silicate glass. Furthermore, the thermal conductivity of these materials between -60 C and 100 C becomes independent of temperature and is sensitive to the structural phase transformation. These phenomena suggest that the phonon mean free path governing the thermal conductivity in this temperature range is limited by the lattice dimensions, which is in good agreement with calculated values. Effects of small compositional changes and density/porosity variations in these ceramics on their thermal properties are also discussed. The implications of these transformation characteristics and unusual thermal properties are important in guiding processing and handling procedures for these materials.

DiAntonio, Christopher Brian; Rae, David F.; Corelis, David J.; Yang, Pin; Burns, George Robert

2006-11-01T23:59:59.000Z

267

Thermal hydraulics development for CASL  

SciTech Connect

This talk will describe the technical direction of the Thermal-Hydraulics (T-H) Project within the Consortium for Advanced Simulation of Light Water Reactors (CASL) Department of Energy Innovation Hub. CASL is focused on developing a 'virtual reactor', that will simulate the physical processes that occur within a light-water reactor. These simulations will address several challenge problems, defined by laboratory, university, and industrial partners that make up CASL. CASL's T-H efforts are encompassed in two sub-projects: (1) Computational Fluid Dynamics (CFD), (2) Interface Treatment Methods (ITM). The CFD subproject will develop non-proprietary, scalable, verified and validated macroscale CFD simulation tools. These tools typically require closures for their turbulence and boiling models, which will be provided by the ITM sub-project, via experiments and microscale (such as DNS) simulation results. The near-term milestones and longer term plans of these two sub-projects will be discussed.

Lowrie, Robert B [Los Alamos National Laboratory

2010-12-07T23:59:59.000Z

268

Solid-State Lighting: Solid-State Lighting Manufacturing Workshop  

NLE Websites -- All DOE Office Websites (Extended Search)

Solid-State Lighting Solid-State Lighting Manufacturing Workshop to someone by E-mail Share Solid-State Lighting: Solid-State Lighting Manufacturing Workshop on Facebook Tweet about Solid-State Lighting: Solid-State Lighting Manufacturing Workshop on Twitter Bookmark Solid-State Lighting: Solid-State Lighting Manufacturing Workshop on Google Bookmark Solid-State Lighting: Solid-State Lighting Manufacturing Workshop on Delicious Rank Solid-State Lighting: Solid-State Lighting Manufacturing Workshop on Digg Find More places to share Solid-State Lighting: Solid-State Lighting Manufacturing Workshop on AddThis.com... Conferences & Meetings Past Conferences Presentations Publications Webcasts Videos Tools Solid-State Lighting Manufacturing Workshop Nearly 200 lighting industry leaders, chip makers, fixture and component

269

Lighting the Way with Compact Fluorescent Lighting | Department...  

NLE Websites -- All DOE Office Websites (Extended Search)

and compact fluorescent lights. And I've already purchased a few of the new light emitting diode (LED) solid-state lighting lights-but that's the topic of a future blog. Stay...

270

LightBox -Exploring Interaction Modalities with Colored Light  

E-Print Network (OSTI)

-bright multi- colored light-emitting diodes (LEDs) of our system can generate any visible lighting color

271

Lighting the Night: Technology, Urban Life and the Evolution of Street Lighting [Light in Place  

E-Print Network (OSTI)

May 1912), 783. 8. "New Street Lights Increase Trade 3 5 Perlight, including street light, became part of America'sBeautiful-inspired street­ lights graced wealthy residen­

Holden, Alfred

1992-01-01T23:59:59.000Z

272

Lighting the Night: Technology, Urban Life and the Evolution of Street Lighting [Light in Place  

E-Print Network (OSTI)

Electrical 16. "Highway Lighting by So­ dium Vapor Lamps,"Possibilities of Street: Lighting Improve­ ments," TheLaunches Broad Street Lighting Promotion Campaign," The

Holden, Alfred

1992-01-01T23:59:59.000Z

273

Method and apparatus for thermal management of vehicle exhaust systems  

DOE Patents (OSTI)

A catalytic converter is surrounded by variable conductance insulation for maintaining the operating temperature of the catalytic converter at an optimum level, for inhibiting heat loss when raising catalytic converter temperature to light-off temperature, for storing excess heat to maintain or accelerate reaching light-off temperature, and for conducting excess heat away from the catalytic converter after reaching light-off temperature. The variable conductance insulation includes vacuum gas control and metal-to-metal thermal shunt mechanisms. Radial and axial shielding inhibits radiation and convection heat loss. Thermal storage media includes phase change material, and heat exchanger chambers and fluids carry heat to and from the catalytic converter.

Benson, David K. (Golden, CO); Potter, Thomas F. (Denver, CO)

1995-01-01T23:59:59.000Z

274

Phonon-roton modes of liquid 4He beyond the roton in MCM-41  

SciTech Connect

We present neutron scattering measurements of the phonon-roton (P-R) mode of superfluid 4He confined in 47 A MCM-41 at T = 0.5 K at wave vectors, Q, beyond the roton wave vector (QR = 1.92 A-1). Measurements beyond the roton require access to high wave vectors (up to Q = 4 A-1) with excellent energy resolution and high statistical precision. The present results show for the first time that at T = 0.5 K the P-R mode in MCM-41 extends out to wave-vector Q 3.6 A-1 with the same energy and zero width (within precision) as observed in bulk superfluid 4He. Layer modes in the roton region are also observed. Specifically, the P-R mode energy, !Q, increases with Q for Q > QR and reaches a plateau at a maximum energy !Q = 2 where is the roton energy, = 0.74 0.01 meV in MCM-41. This upper limit means the P-R mode decays to two rotons when its energy exceeds 2 . It also means that the P-R mode does not decay to two layers modes. If the P-R could decay to two layer modes, !Q would plateau at a lower energy, !Q = 2 L where L = 0.60 meV is the energy of the roton like minimum of the layer mode. The observation of the P-R mode with energy up to 2 shows that the P-R mode and the layer modes are independent modes with apparently little interaction between them.

Azuah, Richard T [NIST Center for Neutron Research (NCRN), Gaithersburg, MD] NIST Center for Neutron Research (NCRN), Gaithersburg, MD; Omar Diallo, Souleymane [ORNL] ORNL; Adams, Mark A. [ISIS Facility, Rutherford Appleton Laboratory (ISIS)] ISIS Facility, Rutherford Appleton Laboratory (ISIS); Kirichek, Oleg [ISIS Facility, Rutherford Appleton Laboratory (ISIS)] ISIS Facility, Rutherford Appleton Laboratory (ISIS); Glyde, Henry R [University of Delaware] University of Delaware

2013-01-01T23:59:59.000Z

275

Lighting Research Group: Facilities  

NLE Websites -- All DOE Office Websites (Extended Search)

Facilities Facilities Lighting Research Facilities at LBNL gonio-photometer Gonio-photometer We use this device to measure the intensity and direction of the light from a lamp or fixture. integrating sphere Integrating sphere This instrument allows us to get a fast and accurate measurement of the total light output of a lamp. We are not able to determine the direction of the light, only the intensity. power analyzer Power analyzer We use our power analyzer with the lamps in the gonio-photometer to measure input power, harmonic distortion, power factor, and many other signals that tell us how well a lamp is performing. spectro-radiometer Spectro-radiometer This device measures not only the intensity of a light source but also the intensity of the light at each wavelength.

276

Lighting Group: Software  

NLE Websites -- All DOE Office Websites (Extended Search)

Software Software Lighting Software The Lighting Group has developed several computer programs in the course of conducting research on energy efficient lighting. Several of these programs have proven useful outside the research environment. One of the most popular programs for advanced lighting applications is Radiance. For more information on this program and its availability, click on the link below. RADIANCE Radiance is a suite of programs for the analysis and visualization of lighting in design. The primary advantage of Radiance over simpler lighting calculation and rendering tools is that there are no limitations on the geometry or the materials that may be simulated. Radiance is used by architects and engineers to predict illumination, visual quality and appearance of innovative design spaces, and by researchers to evaluate new

277

High-Intensity Discharge Lighting  

Energy.gov (U.S. Department of Energy (DOE))

High-intensity discharge (HID) lighting provides the highest efficacy and longest service life of any lighting type. It can save 75%-90% of lighting energy when it replaces incandescent lighting.

278

Arnold Schwarzenegger LIGHTING RESEARCH PROGRAM  

E-Print Network (OSTI)

Project Summaries ELEMENT 2: ADVANCE LIGHTING TECHNOLOGIES PROJECT 2.1 LIGHT EMITTING DIODE (LED light emitting diodes (LED) technology for general lighting applications by developing a task lamp

279

Solid-State Lighting: Tools  

NLE Websites -- All DOE Office Websites (Extended Search)

about Solid-State Lighting: Tools on Twitter Bookmark Solid-State Lighting: Tools on Google Bookmark Solid-State Lighting: Tools on Delicious Rank Solid-State Lighting: Tools on...

280

Solid-State Lighting: News  

NLE Websites -- All DOE Office Websites (Extended Search)

about Solid-State Lighting: News on Twitter Bookmark Solid-State Lighting: News on Google Bookmark Solid-State Lighting: News on Delicious Rank Solid-State Lighting: News on...

Note: This page contains sample records for the topic "lighting phonons thermal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Alliant Energy Interstate Power and Light - Residential Renewable Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Alliant Energy Interstate Power and Light - Residential Renewable Alliant Energy Interstate Power and Light - Residential Renewable Energy Rebates Alliant Energy Interstate Power and Light - Residential Renewable Energy Rebates < Back Eligibility Residential Savings Category Solar Buying & Making Electricity Heating & Cooling Water Heating Wind Maximum Rebate Solar Thermal Water Heater: $750 Program Info State Iowa Program Type Utility Rebate Program Rebate Amount Energy Efficient Solar PV: $1.25/kWh x estimated first year output Standard Solar PV: $0.75/kWh x estimated first year output Energy Efficient Wind: $0.75/kWh x estimated first year output Standard Wind: 0.25/kWh x estimated first year output Solar Thermal Water Heater (electric): $0.35 x annual kWh savings Solar Thermal Water Heater (natural gas): $2.50 x annual therm savings

282

Solid-State Lighting: Pedestrian-Friendly Nighttime Lighting  

NLE Websites -- All DOE Office Websites (Extended Search)

Pedestrian-Friendly Nighttime Pedestrian-Friendly Nighttime Lighting to someone by E-mail Share Solid-State Lighting: Pedestrian-Friendly Nighttime Lighting on Facebook Tweet about Solid-State Lighting: Pedestrian-Friendly Nighttime Lighting on Twitter Bookmark Solid-State Lighting: Pedestrian-Friendly Nighttime Lighting on Google Bookmark Solid-State Lighting: Pedestrian-Friendly Nighttime Lighting on Delicious Rank Solid-State Lighting: Pedestrian-Friendly Nighttime Lighting on Digg Find More places to share Solid-State Lighting: Pedestrian-Friendly Nighttime Lighting on AddThis.com... Conferences & Meetings Presentations Publications Webcasts Videos Tools Pedestrian-Friendly Nighttime Lighting This November 19, 2013 webinar presented issues and considerations related to pedestrian-friendly nighttime lighting, such as color rendering, safety,

283

Advanced Light Sources  

Science Conference Proceedings (OSTI)

In the generation of artificial light using electric lamps, photometric and color performance have been paramount in lamp design, manufacturing, measurement, lighting design, and visual perception. Many designers and researchers have strived to understand how light and color are generated, related, and to improve them. This has stemmed from the development of incandescent lamps, halogen lamps, linear fluorescent lamps, high-intensity discharge (HID) lamps, and compact fluorescent lamps (CFLs) among other...

2008-03-31T23:59:59.000Z

284

Advanced Lighting Technologies  

Science Conference Proceedings (OSTI)

This report continues the technical assessment of advanced lighting technologies in the following product areasdimmable light-emitting diode (LED) screw-in replacement lamp, hybrid compact fluorescent lamp/halogen screw-in replacement lamp, replacement recessed can LED downlight, organic LED (OLED) disc, replacement mini high-intensity discharge (HID) lamp and ballast system, and solid-state plasma lighting (miniature HID technology) high-bay fixture. The research in this project helps to demonstrate how...

2011-12-21T23:59:59.000Z

285

Total Light Management  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Light Management Light Management Why is saving Energy Important World Electricity Consumption (2007) Top 20 Countries 0 500 1000 1500 2000 2500 3000 3500 4000 4500 U n i t e d S t a t e s C h i n a J a p a n R u s s i a I n d i a G e r m a n y C a n a d a A f r i c a F r a n c e B r a z i l K o r e a , S o u t h U n i t e d K i n g d o m I t a l y S p a i n A u s t r a l i a T a i w a n S o u t h A f r i c a M e x i c o S a u d i A r a b i a I r a n Billion kWh Source: US DOE Energy Information Administration Lighting Control Strategies 4 5 6 Occupancy/Vacancy Sensing * The greatest energy savings achieved with any lighting fixture is when the lights are shut off * Minimize wasted light by providing occupancy sensing or vacancy sensing 7 8 Daylight Harvesting * Most commercial space has enough natural light flowing into it, and the amount of artificial light being generated can be unnecessary * Cut back on the production of artificial lighting by

286

Light truck forecasts  

SciTech Connect

The recent dramatic increase in the number of light trucks (109% between 1963 and 1974) has prompted concern about the energy consequences of the growing popularity of the light truck. An estimate of the future number of light trucks is considered to be a reasonable first step in assessing the energy impact of these vehicles. The monograph contains forecasts based on two models and six scenarios. The coefficients for the models have been derived by ordinary least squares regression of national level time series data. The first model is a two stage model. The first stage estimates the number of light trucks and cars (together), and the second stage applies a share's submodel to determine the number of light trucks. The second model is a simultaneous equation model. The two models track one another remarkably well, within about 2%. The scenarios were chosen to be consistent with those used in the Lindsey-Kaufman study Projection of Light Truck Population to Year 2025. Except in the case of the most dismal economic scenario, the number of light trucks is expected to increase from the 1974 level of 0.09 light truck per person to about 0.12 light truck per person in 1995.

Liepins, G.E.

1979-09-01T23:59:59.000Z

287

SITE LIGHTING FOUNDATIONS  

SciTech Connect

The purpose of this analysis is to design structural foundations for the Site Lighting. This analysis is in support of design drawing BABBDF000-01717-2100-23016.

M. Gomez

1995-01-17T23:59:59.000Z

288

Advanced Demand Responsive Lighting  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Efficiency Program and Market Trends High Technology and Industrial Buildings Lighting Systems Residential Buildings Simulation Tools Sustainable Federal Operations Windows...

289

Photovoltaic lighting system performance  

DOE Green Energy (OSTI)

The performance of 21 PV-powered low pressure sodium lighting systems on a multi-use has been documented in this paper. Specific areas for evaluation include the vandal resistant PV modules, constant voltage and on/off PV charge controllers, flooded deep-cycle lead-antimony and valve regulated lead-acid (VLRA) gel batteries, and low pressure sodium ballasts and lights. The PV lighting system maintenance intervals and lessons learned have been documented over the past 2.5 years. The above performance data has shown that with careful hardware selection, installation, and maintenance intervals the PV lighting systems will operate reliably.

Harrington, S.R.; Hund, T.D.

1996-06-01T23:59:59.000Z

290

Faster Than Light?  

E-Print Network (OSTI)

It is argued that special relativity remains a viable physical theory even when there is permitted signals traveling faster than light.

Robert Geroch

2010-05-10T23:59:59.000Z

291

Energy Basics: Fluorescent Lighting  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

& Cooling Water Heating Fluorescent Lighting Fluorescent lamps use 25%-35% of the energy used by incandescent lamps to provide the same amount of illumination (efficacy of...

292

NIST Stray light correction  

Science Conference Proceedings (OSTI)

... A correction, which can be done in real time, can reduce errors due to stray light by more than one order of magnitude. ...

2012-10-02T23:59:59.000Z

293

Solar Thermal Demonstration Project  

SciTech Connect

HVAC Retrofit and Energy Efficiency Upgrades at Clark High School, Las Vegas, Nevada The overall objectives of this project are to increase usage of alternative/renewable fuels, create a better and more reliable learning environment for the students, and reduce energy costs. Utilizing the grant resources and local bond revenues, the District proposes to reduce electricity consumption by installing within the existing limited space, one principal energy efficient 100 ton adsorption chiller working in concert with two 500 ton electric chillers. The main heating source will be primarily from low nitrogen oxide (NOX), high efficiency natural gas fired boilers. With the use of this type of chiller, the electric power and cost requirements will be greatly reduced. To provide cooling to the information technology centers and equipment rooms of the school during off-peak hours, the District will install water source heat pumps. In another measure to reduce the cooling requirements at Clark High School, the District will replace single pane glass and metal panels with â??Kalwallâ?? building panels. An added feature of the â??Kalwallâ?ť system is that it will allow for natural day lighting in the student center. This system will significantly reduce thermal heat/cooling loss and control solar heat gain, thus delivering significant savings in heating ventilation and air conditioning (HVAC) costs.

Biesinger, K.; Cuppett, D.; Dyer, D.

2012-01-30T23:59:59.000Z

294

Thermally activated heat pumps  

SciTech Connect

This article describes research to develop efficient gas-fired heat pumps heat and cool buildings without CFCs. Space heating and cooling use 46% of all energy consumed in US buildings. Air-conditioning is the single leading cause of peak demand for electricity and is a major user of chlorofluorocarbons (CFCs). Advanced energy conversion technology can save 50% of this energy and eliminate CFCs completely. Besides saving energy, advanced systems substantially reduce emissions of carbon dioxide (a greenhouse gas), sulfur dioxide, and nitrogen oxides, which contribute to smog and acid rain. These emissions result from the burning of fossil fuels used to generate electricity. The Office of Building Technologies (OBT) of the US Department of Energy supports private industry`s efforts to improve energy efficiency and increase the use of renewable energy in buildings. To help industry, OBT, through the Oak Ridge National Laboratory, is currently working on thermally activated heat pumps. OBT has selected the following absorption heat pump systems to develop: generator-absorber heat-exchange (GAX) cycle for heating-dominated applications in residential and light commercial buildings; double-condenser-coupled (DCC) cycle for commercial buildings. In addition, OBT is developing computer-aided design software for investigating the absorption cycle.

NONE

1995-05-01T23:59:59.000Z

295

Thermal element for maintaining minimum lamp wall temperature in fluorescent fixtures  

DOE Patents (OSTI)

In a lighting fixture including a lamp and a housing, an improvement is disclosed for maintaining a lamp envelope area at a cooler, reduced temperature relative to the enclosed housing ambient. The improvement comprises a thermal element in thermal communication with the housing extending to and springably urging thermal communication with a predetermined area of the lamp envelope surface.

Siminovitch, Michael J. (Richmond, CA)

1992-01-01T23:59:59.000Z

296

Thermal element for maintaining minimum lamp wall temperature in fluorescent fixtures  

DOE Patents (OSTI)

In a lighting fixture including a lamp and a housing, an improvement is disclosed for maintaining a lamp envelope area at a cooler, reduced temperature relative to the enclosed housing ambient. The improvement comprises a thermal element in thermal communication with the housing extending to and springably urging thermal communication with a predetermined area of the lamp envelope surface. 12 figs.

Siminovitch, M.J.

1992-11-10T23:59:59.000Z

297

Thermal Transport Measurement of Silicon-Germanium Nanowires  

E-Print Network (OSTI)

Thermal properties of one dimensional nanostructures are of interest for thermoelectric energy conversion. Thermoelectric efficiency is related to non dimensional thermoelectric figure of merit, ZT=S^2 o T/k, where S ,o , k and T are Seebeck coefficient, electrical conductivity, thermal conductivity and the absolute temperature respectively. These physical properties are interdependent. Therefore, making materials with high ZT is a very challenging task. However, nanoscale materials can overcome some of these limitations. When the size of nanomaterials is comparable to wavelength and mean free path of energy carriers, especially phonons, size effect contributes to the thermal conductivity reduction without bringing about major changes in the electrical conductivity and the Seebeck coefficient. Therefore, the figure of merit ZT can be manipulated. For example, the thermal conductivities of several silicon nanowires were more than two orders of magnitude lower than that of bulk silicon values due to the enhanced boundary scattering. Among the nanoscale semiconductor materials, Silicon-Germanium(SiGe) alloy nanowire is a promising candidate for thermoelectric materials The thermal conductivities of SiGe core-shell nanowires with core diameters of 96nm, 129nm and 177nm were measured using a batch fabricated micro device in a temperature range of 40K-450K. SiGe nanowires used in the experiment were synthesized via the Vapour-Liquid-Solid (VLS) growth method. The thermal conductivity data was compared with thermal conductivity of Si and Ge nanowires. The data was compared with SiGe alloy thin film, bulk SiGe, Si/SixGe1-x superlattice nanowire, Si/Si0.7Ge0.3 superlattice thin film and also with the thermal conductivity of Si0.5Ge0.5 calculated using the Einstein model. The thermal conductivities of these SiGe alloy nanowires observed in this work are ~20 times lower than Si nanowires, ~10 times lower than Ge nanowires, ~3-4 times lower than Si/SixGe1-x superlattice thin film, Si/SixGe1-x superlattice nanowire and about 3 time lower than bulk SiGe alloy. The low values of thermal conductivity are majorly due to the effect of alloy scattering, due to increased boundary scattering as a result of nanoscale diameters, and the interface diffuse scattering by core-shell effect. The influence of core-shell effect, alloy scattering and boundary scattering effect in reducing the thermal conductivity of these nanowires opens up opportunities for tuning thermoelectric properties which can pave way to thermoelectric materials with high figures of merit in the future.

Gwak, Yunki

2009-08-01T23:59:59.000Z

298

Light Water Reactor Sustainability Technical Documents | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Initiatives » Nuclear Reactor Technologies » Light Water Reactor Initiatives » Nuclear Reactor Technologies » Light Water Reactor Sustainability Program » Light Water Reactor Sustainability Technical Documents Light Water Reactor Sustainability Technical Documents September 30, 2011 Reactor Pressure Vessel Task of Light Water Reactor Sustainability Program: Initial Assessment of Thermal Annealing Needs and Challenges The most life-limiting structural component in light-water reactors (LWR) is the reactor pressure vessel (RPV) because replacement of the RPV is not considered a viable option at this time. LWR licenses are now being extended from 40y to 60y by the U.S. Nuclear Regulatory Commission (NRC) with intentions to extend licenses to 80y and beyond. The RPV materials exhibit varying degrees of sensitivity to irradiation-induced embrittlement

299

Reactor Pressure Vessel Task of Light Water Reactor Sustainability Program:  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Reactor Pressure Vessel Task of Light Water Reactor Sustainability Reactor Pressure Vessel Task of Light Water Reactor Sustainability Program: Initial Assessment of Thermal Annealing Needs and Challenges Reactor Pressure Vessel Task of Light Water Reactor Sustainability Program: Initial Assessment of Thermal Annealing Needs and Challenges The most life-limiting structural component in light-water reactors (LWR) is the reactor pressure vessel (RPV) because replacement of the RPV is not considered a viable option at this time. LWR licenses are now being extended from 40y to 60y by the U.S. Nuclear Regulatory Commission (NRC) with intentions to extend licenses to 80y and beyond. The RPV materials exhibit varying degrees of sensitivity to irradiation-induced embrittlement (decreased toughness) , as shown in Fig. 1.1, and extending operation from

300

Lakeview Light and Power - Commercial Lighting Rebate Program | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Lakeview Light and Power - Commercial Lighting Rebate Program Lakeview Light and Power - Commercial Lighting Rebate Program Lakeview Light and Power - Commercial Lighting Rebate Program < Back Eligibility Commercial Fed. Government Local Government Nonprofit State Government Savings Category Appliances & Electronics Commercial Lighting Lighting Program Info Funding Source Funded by Bonneville Power Administration Expiration Date 9/1/2013 State District of Columbia Program Type Utility Rebate Program Rebate Amount Commercial Lighting Installation: Up to 70% of cost Provider Lakeview Light and Power Lakeview Light and Power offers a commercial lighting rebate program. Rebates apply to the installation of energy efficient lighting retrofits in non-residential buildings. The rebate program is funded by BPA and ends in September of 2010 or earlier if the funding is exhausted. Lakeview Light

Note: This page contains sample records for the topic "lighting phonons thermal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Explosively pumped laser light  

DOE Patents (OSTI)

A single shot laser pumped by detonation of an explosive in a shell casing. The shock wave from detonation of the explosive causes a rare gas to luminesce. The high intensity light from the gas enters a lasing medium, which thereafter outputs a pulse of laser light to disable optical sensors and personnel.

Piltch, Martin S. (Los Alamos, NM); Michelotti, Roy A. (Los Alamos, NM)

1991-01-01T23:59:59.000Z

302

The gravity of light  

E-Print Network (OSTI)

A solution of the old problem raised by Tolman, Ehrenfest, Podolsky and Wheeler, concerning the lack of attraction of two light pencils "moving parallel", is proposed, considering that the light can be source of nonlinear gravitational waves corresponding (in the would be quantum theory of gravity) to spin-1 massless particles.

G. Sparano; G. Vilasi; S. Vilasi

2010-09-12T23:59:59.000Z

303

Developing architectural lighting representations  

Science Conference Proceedings (OSTI)

This paper reports on the development of a visualization system for architectural lighting designers. It starts by motivating the problem as both complex in its physics and social organization. Three iterations of prototypes for displaying time and space ... Keywords: architectural lighting design, energy efficiency, ethnographic fieldwork, information visualization, qualitative analysis

Daniel C. Glaser; Roger Tan; John Canny; Ellen Yi-Luen Do

2003-10-01T23:59:59.000Z

304

Light intensity compressor  

DOE Patents (OSTI)

In a system for recording images having vastly differing light intensities over the face of the image, a light intensity compressor is provided that utilizes the properties of twisted nematic liquid crystals to compress the image intensity. A photoconductor or photodiode material that is responsive to the wavelength of radiation being recorded is placed adjacent a layer of twisted nematic liquid crystal material. An electric potential applied to a pair of electrodes that are disposed outside of the liquid crystal/photoconductor arrangement to provide an electric field in the vicinity of the liquid crystal material. The electrodes are substantially transparent to the form of radiation being recorded. A pair of crossed polarizers are provided on opposite sides of the liquid crystal. The front polarizer linearly polarizes the light, while the back polarizer cooperates with the front polarizer and the liquid crystal material to compress the intensity of a viewed scene. Light incident upon the intensity compressor activates the photoconductor in proportion to the intensity of the light, thereby varying the field applied to the liquid crystal. The increased field causes the liquid crystal to have less of a twisting effect on the incident linearly polarized light, which will cause an increased percentage of the light to be absorbed by the back polarizer. The intensity of an image may be compressed by forming an image on the light intensity compressor.

Rushford, Michael C. (Livermore, CA)

1990-01-01T23:59:59.000Z

305

Influence of Controlled Viscous Dissipation on the Propagation of Strongly Nonlinear Waves in Stainless Steel Based Phononic Crystals  

E-Print Network (OSTI)

Strongly nonlinear phononic crystals were assembled from stainless steel spheres. Single solitary waves and splitting of an initial pulse into a train of solitary waves were investigated in different viscous media using motor oil and non-aqueous glycerol to introduce a controlled viscous dissipation. Experimental results indicate that the presence of a viscous fluid dramatically altered the splitting of the initial pulse into a train of solitary waves. Numerical simulations qualitatively describe the observed phenomena only when a dissipative term based on the relative velocity between particles is introduced.

E. B. Herbold; V. F. Nesterenko; C. Daraio

2005-12-16T23:59:59.000Z

306

Terahertz quantum cascade lasers with thin resonant-phonon depopulation active regions and surface-plasmon waveguides  

E-Print Network (OSTI)

We report three-well, resonant-phonon depopulation terahertz quantum cascade lasers with semi-insulating surface-plasmon waveguides and reduced active region (AR) thicknesses. Devices with thicknesses of 10, 7.5, 6, and 5 {\\mu}m are compared in terms of threshold current density, maximum operating temperature, output power and AR temperature. Thinner ARs are technologically less demanding for epitaxial growth and result in reduced electrical heating of devices. However, it is found that 7.5-{\\mu}m-thick devices give the lowest electrical power densities at threshold, as they represent the optimal trade-off between low electrical resistance and low threshold gain.

Salih, M; Valavanis, A; Khanna, S P; Li, L H; Cunningham, J E; Davies, A G; Linfield, E H

2013-01-01T23:59:59.000Z

307

Terahertz quantum cascade lasers with thin resonant-phonon depopulation active regions and surface-plasmon waveguides  

E-Print Network (OSTI)

We report three-well, resonant-phonon depopulation terahertz quantum cascade lasers with semi-insulating surface-plasmon waveguides and reduced active region (AR) thicknesses. Devices with thicknesses of 10, 7.5, 6, and 5 {\\mu}m are compared in terms of threshold current density, maximum operating temperature, output power and AR temperature. Thinner ARs are technologically less demanding for epitaxial growth and result in reduced electrical heating of devices. However, it is found that 7.5-{\\mu}m-thick devices give the lowest electrical power densities at threshold, as they represent the optimal trade-off between low electrical resistance and low threshold gain.

M. Salih; P. Dean; A. Valavanis; S. P. Khanna; L. H. Li; J. E. Cunningham; A. G. Davies; E. H. Linfield

2013-03-13T23:59:59.000Z

308

Hybrid lighting: Illuminating our future  

SciTech Connect

Hybrid lighting is a combination of natural and artificial illumination to be used indoors for all lighting needs. Ideally, hybrid lighting is effectively indistinguishable from standard artificial lighting except in quality and cost, where it will likely be an improvement. Hybrid lighting systems are produced by a combination of four technologies: collecting natural light, generating artificial light, transporting and distributing light to where it is needed, and controlling the amounts of both natural and artificial light continuously during usage. Lighting demands a large fraction of our energy needs. If we can control or decrease this demand, we are able to accommodate societal growth without energy demand growth.

Cates, M.R.

1996-12-31T23:59:59.000Z

309

Exploring Lighting Spaces  

E-Print Network (OSTI)

We present a simple system for interactively specifying lighting parameters, including position, for high-quality image synthesis. Unlikeinverse approaches to the lighting-design problem, we do not require the user to indicate a priori the desired illuminative characteristics of an image. In our approach the computer proposes, culls, and organizes a set of candidate lights automatically, using an elementary measure of image similarityasthe basis for both culling and organization. The user then browses the set of candidate-light images, selects which lights to include, and combines them as desired. This work is a particular instance of a general strategy --- sampling a design space broadly and intelligently and organizing the results for rapid browsing by the user --- that may be applicable to many other design problems in computer graphics.

T. Kang; J. Seims; J. Marks; S. Shieber

1996-01-01T23:59:59.000Z

310

Light and Bread Mold  

NLE Websites -- All DOE Office Websites (Extended Search)

Light and Bread Mold Light and Bread Mold Name: CHASE Location: N/A Country: N/A Date: N/A Question: HOW CAN I EFICTIVELY TEST THE EFFECTS OF LIGHT ON BREAD MOLD? Replies: Hello Chase, In order to test the effects of light on bread mould you need to set up an experiment. There are two things you need to have in your experiment to make it a good experiment: 1. A 'control'. 2. Replicates 1. The 'control' Obviously in order to test the effects of light on bread mold you will need to actually shine some light on some bread mold and see what happens. This is your 'treatment'. However, it is vitally important that you know what would have happened without the treatment (in this case added light). Let's pretend that you do a test a you find that the bread mold under the light actually dies. How do you know if your bread mold died because light was added or because at that time of year all bread mold would die naturally or because by adding light you caused the temperature to rise and that killed the bread mold? The answer is that you do not know unless you have taken the trouble to find out with anouther test called the 'control'. The 'control' is a piece of bread mold, identical to the 'treatment' bread mold, which is placed in identical conditions to the 'treatment' piece of bread mold except that light is removed. Your 'control' piece of bread mold will need to be (to the best of your abillity) at the same temperature, in the same area, at similar humidity, etc. Part of the skill of designing a scientific experiment is being able think of all the possible things which might be affecting the bread mold and keeping them the same in both the 'treatment' and the 'control' (except, of course, for the presence of light) so that when you find a difference between the 'treatment' and the 'control' you are sure that it is the result of the light rather than something else.

311

Columbia Water and Light - HVAC and Lighting Efficiency Rebates |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Columbia Water and Light - HVAC and Lighting Efficiency Rebates Columbia Water and Light - HVAC and Lighting Efficiency Rebates Columbia Water and Light - HVAC and Lighting Efficiency Rebates < Back Eligibility Commercial Industrial Savings Category Heating & Cooling Commercial Heating & Cooling Cooling Heat Pumps Appliances & Electronics Commercial Lighting Lighting Maximum Rebate Lighting: 50% of invoiced cost up to $22,500 Program Info State Missouri Program Type Utility Rebate Program Rebate Amount HVAC Replacements: $570 - $3,770 Lighting: $300/kW reduction or half of project cost Provider Columbia Water and Light Columbia Water and Light (CWL) offers rebates to its commercial and industrial customers for the purchase of high efficiency HVAC installations and efficient lighting. Incentives for certain measures are based upon the

312

Induction Lighting: An Old Lighting Technology Made New Again | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Induction Lighting: An Old Lighting Technology Made New Again Induction Lighting: An Old Lighting Technology Made New Again Induction Lighting: An Old Lighting Technology Made New Again July 27, 2009 - 5:00am Addthis John Lippert Induction lighting is one of the best kept secrets in energy-efficient lighting. Simply stated, induction lighting is essentially a fluorescent light without electrodes or filaments, the items that frequently cause other bulbs to burn out quickly. Thus, many induction lighting units have an extremely long life of up to 100,000 hours. To put this in perspective, an induction lighting system lasting 100,000 hours will last more than 11 years in continuous 24/7 operation, and 25 years if operated 10 hours a day. The technology, however, is far from new. Nikola Tesla demonstrated induction lighting in the late 1890s around the same time that his rival,

313

Reading Municipal Light Department - Business Lighting Rebate Program |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Reading Municipal Light Department - Business Lighting Rebate Reading Municipal Light Department - Business Lighting Rebate Program Reading Municipal Light Department - Business Lighting Rebate Program < Back Eligibility Agricultural Commercial Fed. Government Industrial Institutional Local Government Nonprofit Schools State Government Savings Category Appliances & Electronics Commercial Lighting Lighting Maximum Rebate Commercial Customers: $10,000 per calendar year Municipal Customers: $15,000 per calendar year Program Info State Massachusetts Program Type Utility Rebate Program Rebate Amount T-8/T-5 Lamp with Electronic Ballasts: $11 - $35/fixture Interior High Output Lamp with Electronic Ballasts: $100/fixture De-lamping: $4 - $9/lamp Lighting Sensors: $20/sensor LED Exit Signs: $20/fixture Provider Incentive Programs

314

HEATS: Thermal Energy Storage  

SciTech Connect

HEATS Project: The 15 projects that make up ARPA-E’s HEATS program, short for “High Energy Advanced Thermal Storage,” seek to develop revolutionary, cost-effective ways to store thermal energy. HEATS focuses on 3 specific areas: 1) developing high-temperature solar thermal energy storage capable of cost-effectively delivering electricity around the clock and thermal energy storage for nuclear power plants capable of cost-effectively meeting peak demand, 2) creating synthetic fuel efficiently from sunlight by converting sunlight into heat, and 3) using thermal energy storage to improve the driving range of electric vehicles (EVs) and also enable thermal management of internal combustion engine vehicles.

None

2012-01-01T23:59:59.000Z

315

Lighting fundamentals handbook: Lighting fundamentals and principles for utility personnel  

SciTech Connect

Lighting accounts for approximately 30% of overall electricity use and demand in commercial buildings. This handbook for utility personnel provides a source of basic information on lighting principles, lighting equipment, and other considerations related to lighting design. The handbook is divided into three parts. Part One, Physics of Light, has chapters on light, vision, optics, and photometry. Part Two, Lighting Equipment and Technology, focuses on lamps, luminaires, and lighting controls. Part Three, Lighting Design Decisions, deals with the manner in which lighting design decisions are made and reviews relevant methods and issues. These include the quantity and quality of light needed for visual tasks, calculation methods for verifying that lighting needs are satisfied, lighting economics and methods for evaluating investments in efficient lighting systems, and miscellaneous design issues including energy codes, power quality, photobiology, and disposal of lighting equipment. The handbook contains a discussion of the role of the utility in promoting the use of energy-efficient lighting. The handbook also includes a lighting glossary and a list of references for additional information. This convenient and comprehensive handbook is designed to enable utility lighting personnel to assist their customers in developing high-quality, energy-efficient lighting systems. The handbook is not intended to be an up-to-date reference on lighting products and equipment.

Eley, C.; Tolen, T. (Eley (Charles) Associates, San Francisco, CA (United States)); Benya, J.R. (Luminae Souter Lighting Design, San Francisco, CA (United States))

1992-12-01T23:59:59.000Z

316

EK101 Engineering Light Project: Evaluate Residential Lighting  

E-Print Network (OSTI)

the same level of performance in the LED Lighting product solution (retrofit light bulb, ceiling lighting minute of networking ­ refreshments will be served) Thinking Differently about LED Lighting Dr. Matthew A, LEDs have emerged as the next "filament" for the lighting industry. While LEDs are not new

Bifano, Thomas

317

Lighting Group: Controls: IBECS  

NLE Websites -- All DOE Office Websites (Extended Search)

IBECS IBECS Integrated Building Environmental Communications System Objective The overall technical goal of the IBECS project is to develop an integrated building equipment communications network that will allow appropriate automation of lighting and envelope systems to increase energy efficiency, improve building performance, and enhance occupant experience in the space. This network will provide a low-cost means for occupants to control local lighting and window systems, thereby improving occupant comfort, satisfaction and performance. A related goal is to improve existing lighting control components and accelerate development of new daylighting technologies that will allow daylighting to be more extensively applied to a larger proportion of building floor space.

318

White light velocity interferometer  

DOE Patents (OSTI)

The invention is a technique that allows the use of broadband and incoherent illumination. Although denoted white light velocimetry, this principle can be applied to any wave phenomenon. For the first time, powerful, compact or inexpensive sources can be used for remote target velocimetry. These include flash and arc lamps, light from detonations, pulsed lasers, chirped frequency lasers, and lasers operating simultaneously in several wavelengths. The technique is demonstrated with white light from an incandescent source to measure a target moving at 16 m/s. 41 figs.

Erskine, D.J.

1997-06-24T23:59:59.000Z

319

White light velocity interferometer  

DOE Patents (OSTI)

The invention is a technique that allows the use of broadband and incoherent illumination. Although denoted white light velocimetry, this principle can be applied to any wave phenomenon. For the first time, powerful, compact or inexpensive sources can be used for remote target velocimetry. These include flash and arc lamps, light from detonations, pulsed lasers, chirped frequency lasers, and lasers operating simultaneously in several wavelengths. The technique is demonstrated with white light from an incandescent source to measure a target moving at 16 m/s.

Erskine, David J. (Oakland, CA)

1997-01-01T23:59:59.000Z

320

White light velocity interferometer  

DOE Patents (OSTI)

The invention is a technique that allows the use of broadband and incoherent illumination. Although denoted white light velocimetry, this principle can be applied to any wave phenomenon. For the first time, powerful, compact or inexpensive sources can be used for remote target velocimetry. These include flash and arc lamps, light from detonations, pulsed lasers, chirped frequency lasers, and lasers operating simultaneously in several wavelengths. The technique is demonstrated with white light from an incandescent source to measure a target moving at 16 m/s.

Erskine, David J. (Oakland, CA)

1999-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "lighting phonons thermal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

AUTOMATIC LIGHT CONTROL  

DOE Patents (OSTI)

A control system for a projection kinescope used in a facsimile scanning system and, in particular, meams for maintaining substantially constant the light emanating from the flying spot on the face of the kinescope are described. In general, the invention provides a feeler member disposed in such a position with respect to a projecting lens as to intercept a portion of the light striking the lens. Suitable circuitry in conjunction with a photomultiplier tube provides a signal proportional to the light intensity of the flying spot. The grid bias on the kinescope is controlled by this signal to maintain the intensity of the spot substantially constant.

Artzt, M.

1957-08-27T23:59:59.000Z

322

Green Light Pulse Oximeter  

DOE Patents (OSTI)

A reflectance pulse oximeter that determines oxygen saturation of hemoglobin using two sources of electromagnetic radiation in the green optical region, which provides the maximum reflectance pulsation spectrum. The use of green light allows placement of an oximetry probe at central body sites (e.g., wrist, thigh, abdomen, forehead, scalp, and back). Preferably, the two green light sources alternately emit light at 560 nm and 577 nm, respectively, which gives the biggest difference in hemoglobin extinction coefficients between deoxyhemoglobin, RHb, and oxyhemoglobin, HbO.sub.2.

Scharf, John Edward (Oldsmar, FL)

1998-11-03T23:59:59.000Z

323

Entangled states of light  

E-Print Network (OSTI)

These notes are more or less a faithful representation of my talk at the Workshop on ``Quantum Coding and Quantum Computing'' held at the University of Virginia. As such it is an introduction for non-physicists to the topics of the quantum theory of light and entangled states of light. In particular, I discuss the photon concept and what is really entangled in an entangled state of light (it is not the photons). Moreover, I discuss an example that highlights the peculiar behavior of entanglement in an infinite-dimensional Hilbert space.

S. J. van Enk

2004-03-16T23:59:59.000Z

324

White light velocity interferometer  

DOE Patents (OSTI)

The invention is a technique that allows the use of broadband and incoherent illumination. Although denoted white light velocimetry, this principle can be applied to any wave phenomenon. For the first time, powerful, compact or inexpensive sources can be used for remote target velocimetry. These include flash and arc lamps, light from detonations, pulsed lasers, chirped frequency lasers, and lasers operating simultaneously in several wavelengths. The technique is demonstrated with white light from an incandescent source to measure a target moving at 16 m/s. 41 figs.

Erskine, D.J.

1999-06-08T23:59:59.000Z

325

Lighting Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Lighting Basics Lighting Basics Lighting Basics August 15, 2013 - 5:12pm Addthis Text Version There are many different types of artificial lights, all of which have different applications and uses. Types of lighting include: Fluorescent Lighting High-intensity Discharge Lighting Incandescent Lighting LED Lighting Low-pressure Sodium Lighting. Which type is best depends on the application. See the chart below for a comparison of lighting types. Lighting Comparison Chart Lighting Type Efficacy (lumens/watt) Lifetime (hours) Color Rendition Index (CRI) Color Temperature (K) Indoors/Outdoors Fluorescent Straight Tube 30-110 7000-24,000 50-90 (fair to good) 2700-6500 (warm to cold) Indoors/outdoors Compact Fluorescent 50-70 10,000 65-88 (good) 2700-6500 (warm to cold) Indoors/outdoors

326

Lighting Renovations | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Lighting Renovations Lighting Renovations Lighting Renovations October 16, 2013 - 4:54pm Addthis When undertaking a lighting renovation in a Federal building, daylighting is the primary renewable energy opportunity. Photovoltaics (PV) also present an excellent opportunity. While this guide focuses on the renewable energy opportunities, energy efficiency may also present amble opportunity for energy and cost savings. Renewable Energy Options for Lighting Renovations Daylighting Photovoltaics Daylighting Daylighting maximizes the use of natural light in a space to reduce the need for artificial lighting. Incorporating daylighting into a lighting strategy should occur during the planning stage of design since it affects all aspects. Ambient light dimming controls are critical in daylighting, since the

327

Thermal contact resistance  

E-Print Network (OSTI)

This work deals with phenomena of thermal resistance for metallic surfaces in contact. The main concern of the work is to develop reliable and practical methods for prediction of the thermal contact resistance for various ...

Mikic, B. B.

1966-01-01T23:59:59.000Z

328

Peninsula Light Company - Commercial Efficient Lighting Rebate Program |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Peninsula Light Company - Commercial Efficient Lighting Rebate Peninsula Light Company - Commercial Efficient Lighting Rebate Program Peninsula Light Company - Commercial Efficient Lighting Rebate Program < Back Eligibility Commercial Savings Category Appliances & Electronics Commercial Lighting Lighting Program Info State District of Columbia Program Type Utility Rebate Program Rebate Amount General: 30% - 70% of cost Provider Peninsula Light Company Peninsula Light Company (PLC) offers a rebate program for commercial customers who wish to upgrade to energy efficient lighting. Participating customers must be served by PLC commercial service. Customers who upgrade to highly efficient fixtures and systems are eligible to receive a rebate generally covering 30% - 70% of the project cost. These retrofits improve light quality and reduce energy costs in participating facilities. PLC

329

Solid-State Lighting: 2013 Solid-State Lighting Manufacturing...  

NLE Websites -- All DOE Office Websites (Extended Search)

2013 Solid-State Lighting Manufacturing R&D Workshop Presentations and Materials to someone by E-mail Share Solid-State Lighting: 2013 Solid-State Lighting Manufacturing R&D...

330

Thermal and Electrical Transport in Oxide Heterostructures  

E-Print Network (OSTI)

of thermal conductivity . . . . . . . . . . . . . . . .4.4 Thermal transport in2.3.2 Thermal transport . . . . . . . . . . . . . . . .

Ravichandran, Jayakanth

2011-01-01T23:59:59.000Z

331

Electronic noise-free measurements of squeezed light  

E-Print Network (OSTI)

We study the implementation of a correlation measurement technique for the characterization of squeezed light. We show that the sign of the covariance coefficient revealed from the time resolved correlation data allow us to distinguish between squeezed, coherent and thermal states. In contrast to the traditional method of characterizing squeezed light, involving measurement of the variation of the difference photocurrent, the correlation measurement method allows to eliminate the contribution of the electronic noise, which becomes a crucial issue in experiments with dim sources of squeezed light.

Leonid A. Krivitsky; Ulrik L. Andersen; Ruifang Dong; Alexander Huck; Christoffer Wittmann; Gerd Leuchs

2008-07-09T23:59:59.000Z

332

Thermal Spray Coatings  

Science Conference Proceedings (OSTI)

Table 35   Thermal spray coatings used for hardfacing applications...piston ring (internal combustion);

333

Plasma-Thermal Synthesis  

INL’s Plasma-Thermal Synthesis process improves the conversion process for natural gas into liquid hydrocarbon fuels.

334

Ocean Thermal Energy Conversion  

Energy.gov (U.S. Department of Energy (DOE))

A process called ocean thermal energy conversion (OTEC) uses the heat energy stored in the Earth's oceans to generate electricity.

335

Nanocomposite Thermal Spray Coatings.  

Science Conference Proceedings (OSTI)

Long-Term Surface Restoration Effect Introduced by Advanced Lubricant Additive · Nanocomposite Thermal Spray Coatings. New Hardfacing Overlay Claddings ...

336

Lots of Light Literature  

NLE Websites -- All DOE Office Websites (Extended Search)

Lots of Light Literature Lots of Light Literature The Teacher Resource Center contains a great variety of resources for all areas of science K-12. For the concepts of light here is a sampling of some of these resources. Science is Elementary - Spring 1995, vol. 6, no. 4. Science is Elementary is produced by the Museum Institute for Teaching Science, 79 Milk Street, Suite 210, Boston, MA 02109-3903. Science is Elementary is a newsletter we have admired for years. The topic of this issue deals with Color and Light. It contains content information to the teacher, trade secrets or teaching tips, "Book Looking" section and the section call "Sciencing" which includes a variety of activities. Science is Elementary is published quarterly. Subscription cost is: $22.00/year.

337

Slow-light solitons  

E-Print Network (OSTI)

A new type of soliton with controllable speed is constructed generalizing the theory of slow-light propagation to an integrable regime of nonlinear dynamics. The scheme would allow the quantum-information transfer between optical solitons and atomic media.

Ulf Leonhardt

2004-08-06T23:59:59.000Z

338

Light Vector Mesons  

E-Print Network (OSTI)

This article reviews the current status of experimental results obtained in the measurement of light vector mesons produced in proton-proton and heavy ion collisions at different energies. The review is focused on two phenomena related to the light vector mesons; the modification of the spectral shape in search of Chiral symmetry restoration and suppression of the meson production in heavy ion collisions. The experimental results show that the spectral shape of light vector mesons are modified compared to the parameters measured in vacuum. The nature and the magnitude of the modification depends on the energy density of the media in which they are produced. The suppression patterns of light vector mesons are different from the measurements of other mesons and baryons. The mechanisms responsible for the suppression of the mesons are not yet understood. Systematic comparison of existing experimental results points to the missing data which may help to resolve the problem.

Alexander Milov

2008-09-23T23:59:59.000Z

339

Energy Basics: Fluorescent Lighting  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Fluorescent Lighting Fluorescent lamps use 25%-35% of the energy used by incandescent lamps to provide the same amount of illumination (efficacy of 30-110 lumens per watt). They...

340

Energy Basics: LED Lighting  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

positivenegative junction of the diode, the electrons slow down to orbit at a lower energy level. The electrons emit the excess energy as photons of light. LEDs are often used...

Note: This page contains sample records for the topic "lighting phonons thermal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Light Duty Vehicle Pathways  

NLE Websites -- All DOE Office Websites (Extended Search)

in 2030 0 5 10 15 20 25 30 Million BarrelsDay IMPORTS DOMESTIC OIL SUPPLY OIL DEMAND ELECTRICITY RES. & COM. INDUSTRY MISC. TRANSPORT AIR TRUCKS LIGHT DUTY VEHICLES ETHANOL...

342

General Light Metals  

Science Conference Proceedings (OSTI)

Mar 3, 2011 ... A detailed literature survey indicates that vacuum sintering is able to produce ... In recent years, there is a high demand for light-weight metals foams. ... Each powder mixture's composition is determined by response surface ...

343

Light-Weight, Single-Phase, Liquid-Cooled Cold Plate (Presentation)  

SciTech Connect

This presentation, 'Light-Weight, Low-Cost, Single-Phase Liquid-Cooled Cold Plate,' directly addresses program goals of increased power density, specific power, and lower cost of power electronics components through improved thermal management.

Narumanchi, S.

2013-07-01T23:59:59.000Z

344

Light-Weight, Low-Cost, Single-Phase, Liquid-Cooled Cold Plate (Presentation)  

SciTech Connect

This presentation, 'Light-Weight, Low-Cost, Single-Phase Liquid-Cooled Cold Plate,' directly addresses program goals of increased power density, specific power, and lower cost of power electronics components through improved thermal management.

Narumanchi, S.

2013-07-01T23:59:59.000Z

345

Thermal neutron detection system  

DOE Patents (OSTI)

According to the present invention, a system for measuring a thermal neutron emission from a neutron source, has a reflector/moderator proximate the neutron source that reflects and moderates neutrons from the neutron source. The reflector/moderator further directs thermal neutrons toward an unmoderated thermal neutron detector.

Peurrung, Anthony J. (Richland, WA); Stromswold, David C. (West Richland, WA)

2000-01-01T23:59:59.000Z

346

Practical image based lighting  

E-Print Network (OSTI)

In this thesis, we present a user-friendly and practical method for seamless integration of computer-generated images (CG) with real photographs and video. In general such seamless integration is extremely hard and requires recovery of real world information to simulate the same environment for both CG and real objects. This real world information includes camera positions and parameters, and shapes, material properties, and motion of real objects. Among these one of the most important real world information is lighting. Image based lighting that is developed to recover illumination information of the real world from photographs has recently been popular in computer graphics. In this thesis we present a practical image based lighting method. Our method is based on a simple and easily constructible device: a square plate with a cylindrical stick. We have developed a user-guided system to approximately recover illumination information (i.e. orientations, colors, and intensities of light sources) from a photograph of this device. Our approach also helps to recover surface colors of real objects based on reconstructed lighting information. In addition, we will address our observation on shadows with multi-color lights in a compositing aspect and will present a solution to handle the addressed issue.

Lee, Jaemin

2003-01-01T23:59:59.000Z

347

Commercial Lighting and LED Lighting Incentives (Vermont) | Open...  

Open Energy Info (EERE)

form History Share this page on Facebook icon Twitter icon Commercial Lighting and LED Lighting Incentives (Vermont) This is the approved revision of this page, as well as...

348

Solid-State Lighting: Residential Lighting End-Use Consumption  

NLE Websites -- All DOE Office Websites (Extended Search)

Lighting End-Use Consumption Study aims to improve the understanding of lighting energy usage in U.S. residential dwellings using a regional estimation framework. The...

349

Columbia Water & Light- HVAC and Lighting Efficiency Rebates  

Energy.gov (U.S. Department of Energy (DOE))

Columbia Water & Light (CWL) offers rebates to its commercial and industrial customers for the purchase of high efficiency HVAC installations and efficient lighting. Incentives for certain...

350

Solid-State Lighting: Solid-State Lighting  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Lighting Search Search Help Solid-State Lighting HOME ABOUT THE PROGRAM R&D PROJECTS MARKET-BASED PROGRAMS SSL BASICS INFORMATION RESOURCES FINANCIAL OPPORTUNITIES EERE...

351

Towards a poetics of light : the conceits of light.  

E-Print Network (OSTI)

??Towards a Poetics of Light; The Conceits of Light is a critical quest to map associations between rhetorical figures, psychological defences and spatial tropes in… (more)

Evans, M

2006-01-01T23:59:59.000Z

352

Types of Lighting in Commercial Buildings - Lighting Characteristics  

U.S. Energy Information Administration (EIA) Indexed Site

U.S. Lighting Market Characterization, Vol. 1: National Lighting Inventory and Energy Consumption Estimate, Office of Energy Efficiency and Renewable Energy,...

353

Light Duty Efficient, Clean Combustion  

SciTech Connect

Cummins has successfully completed the Light Duty Efficient Clean Combustion (LDECC) cooperative program with DoE. This program was established in 2007 in support of the Department of Energy's Vehicles Technologies Advanced Combustion and Emissions Control initiative to remove critical barriers to the commercialization of advanced, high efficiency, emissions compliant internal combustion (IC) engines for light duty vehicles. Work in this area expanded the fundamental knowledge of engine combustion to new regimes and advanced the knowledge of fuel requirements for these diesel engines to realize their full potential. All of the following objectives were met with fuel efficiency improvement targets exceeded: (1) Improve light duty vehicle (5000 lb. test weight) fuel efficiency by 10.5% over today's state-of-the-art diesel engine on the FTP city drive cycle; (2) Develop and design an advanced combustion system plus aftertreatment system that synergistically meets Tier 2 Bin 5 NOx and PM emissions standards while demonstrating the efficiency improvements; (3) Maintain power density comparable to that of current conventional engines for the applicable vehicle class; and (4) Evaluate different fuel components and ensure combustion system compatibility with commercially available biofuels. Key accomplishments include: (1) A 25% improvement in fuel efficiency was achieved with the advanced LDECC engine equipped with a novel SCR aftertreatment system compared to the 10.5% target; (2) An 11% improvement in fuel efficiency was achieved with the advanced LDECC engine and no NOx aftertreamtent system; (3) Tier 2 Bin 5 and SFTP II emissions regulations were met with the advanced LDECC engine equipped with a novel SCR aftertreatment system; (4) Tier 2 Bin 5 emissions regulations were met with the advanced LDECC engine and no NOx aftertreatment, but SFTP II emissions regulations were not met for the US06 test cycle - Additional technical barriers exist for the no NOx aftertreatment engine; (5) Emissions and efficiency targets were reached with the use of biodiesel. A variety of biofuel feedstocks (soy, rapeseed, etc.) was investigated; (6) The advanced LDECC engine with low temperature combustion was compatible with commercially available biofuels as evaluated by engine performance testing and not durability testing; (7) The advanced LDECC engine equipped with a novel SCR aftertreatment system is the engine system architecture that is being further developed by the Cummins product development organization. Cost reduction and system robustness activities have been identified for future deployment; (8) The new engine and aftertreatment component technologies are being developed by the Cummins Component Business units (e.g. fuel system, turbomachinery, aftertreatment, electronics, etc.) to ensure commercial viability and deployment; (9) Cummins has demonstrated that the technologies developed for this program are scalable across the complete light duty engine product offerings (2.8L to 6.7L engines); and (10) Key subsystems developed include - sequential two stage turbo, combustions system for low temperature combustion, novel SCR aftertreatment system with feedback control, and high pressure common rail fuel system. An important element of the success of this project was leveraging Cummins engine component technologies. Innovation in component technology coupled with system integration is enabling Cummins to move forward with the development of high efficiency clean diesel products with a long term goal of reaching a 40% improvement in thermal efficiency for the engine plus aftertreatment system. The 40% improvement is in-line with the current light duty vehicle efficiency targets set by the 2010 DoE Vehicle Technologies MYPP and supported through co-operative projects such as the Cummins Advanced Technology Powertrains for Light-Duty Vehicles (ATP-LD) started in 2010.

Donald Stanton

2010-12-31T23:59:59.000Z

354

Light Duty Efficient, Clean Combustion  

DOE Green Energy (OSTI)

Cummins has successfully completed the Light Duty Efficient Clean Combustion (LDECC) cooperative program with DoE. This program was established in 2007 in support of the Department of Energy's Vehicles Technologies Advanced Combustion and Emissions Control initiative to remove critical barriers to the commercialization of advanced, high efficiency, emissions compliant internal combustion (IC) engines for light duty vehicles. Work in this area expanded the fundamental knowledge of engine combustion to new regimes and advanced the knowledge of fuel requirements for these diesel engines to realize their full potential. All of the following objectives were met with fuel efficiency improvement targets exceeded: (1) Improve light duty vehicle (5000 lb. test weight) fuel efficiency by 10.5% over today's state-of-the-art diesel engine on the FTP city drive cycle; (2) Develop and design an advanced combustion system plus aftertreatment system that synergistically meets Tier 2 Bin 5 NOx and PM emissions standards while demonstrating the efficiency improvements; (3) Maintain power density comparable to that of current conventional engines for the applicable vehicle class; and (4) Evaluate different fuel components and ensure combustion system compatibility with commercially available biofuels. Key accomplishments include: (1) A 25% improvement in fuel efficiency was achieved with the advanced LDECC engine equipped with a novel SCR aftertreatment system compared to the 10.5% target; (2) An 11% improvement in fuel efficiency was achieved with the advanced LDECC engine and no NOx aftertreamtent system; (3) Tier 2 Bin 5 and SFTP II emissions regulations were met with the advanced LDECC engine equipped with a novel SCR aftertreatment system; (4) Tier 2 Bin 5 emissions regulations were met with the advanced LDECC engine and no NOx aftertreatment, but SFTP II emissions regulations were not met for the US06 test cycle - Additional technical barriers exist for the no NOx aftertreatment engine; (5) Emissions and efficiency targets were reached with the use of biodiesel. A variety of biofuel feedstocks (soy, rapeseed, etc.) was investigated; (6) The advanced LDECC engine with low temperature combustion was compatible with commercially available biofuels as evaluated by engine performance testing and not durability testing; (7) The advanced LDECC engine equipped with a novel SCR aftertreatment system is the engine system architecture that is being further developed by the Cummins product development organization. Cost reduction and system robustness activities have been identified for future deployment; (8) The new engine and aftertreatment component technologies are being developed by the Cummins Component Business units (e.g. fuel system, turbomachinery, aftertreatment, electronics, etc.) to ensure commercial viability and deployment; (9) Cummins has demonstrated that the technologies developed for this program are scalable across the complete light duty engine product offerings (2.8L to 6.7L engines); and (10) Key subsystems developed include - sequential two stage turbo, combustions system for low temperature combustion, novel SCR aftertreatment system with feedback control, and high pressure common rail fuel system. An important element of the success of this project was leveraging Cummins engine component technologies. Innovation in component technology coupled with system integration is enabling Cummins to move forward with the development of high efficiency clean diesel products with a long term goal of reaching a 40% improvement in thermal efficiency for the engine plus aftertreatment system. The 40% improvement is in-line with the current light duty vehicle efficiency targets set by the 2010 DoE Vehicle Technologies MYPP and supported through co-operative projects such as the Cummins Advanced Technology Powertrains for Light-Duty Vehicles (ATP-LD) started in 2010.

Donald Stanton

2010-12-31T23:59:59.000Z

355

Light Duty Efficient, Clean Combustion  

SciTech Connect

Cummins has successfully completed the Light Duty Efficient Clean Combustion (LDECC) cooperative program with DoE. This program was established in 2007 in support of the Department of Energy’s Vehicles Technologies Advanced Combustion and Emissions Control initiative to remove critical barriers to the commercialization of advanced, high efficiency, emissions compliant internal combustion (IC) engines for light duty vehicles. Work in this area expanded the fundamental knowledge of engine combustion to new regimes and advanced the knowledge of fuel requirements for these diesel engines to realize their full potential. All of the following objectives were met with fuel efficiency improvement targets exceeded: 1. Improve light duty vehicle (5000 lb. test weight) fuel efficiency by 10.5% over today’s state-ofthe- art diesel engine on the FTP city drive cycle 2. Develop & design an advanced combustion system plus aftertreatment system that synergistically meets Tier 2 Bin 5 NOx and PM emissions standards while demonstrating the efficiency improvements. 3. Maintain power density comparable to that of current conventional engines for the applicable vehicle class. 4. Evaluate different fuel components and ensure combustion system compatibility with commercially available biofuels. Key accomplishments include: ? A 25% improvement in fuel efficiency was achieved with the advanced LDECC engine equipped with a novel SCR aftertreatment system compared to the 10.5% target ? An 11% improvement in fuel efficiency was achieved with the advanced LDECC engine and no NOx aftertreamtent system ? Tier 2 Bin 5 and SFTP II emissions regulations were met with the advanced LDECC engine equipped with a novel SCR aftertreatment system ? Tier 2 Bin 5 emissions regulations were met with the advanced LDECC engine and no NOx aftertreatment, but SFTP II emissions regulations were not met for the US06 test cycle – Additional technical barriers exist for the no NOx aftertreatment engine ? Emissions and efficiency targets were reached with the use of biodiesel. A variety of biofuel feedstocks (soy, rapeseed, etc.) was investigated. ? The advanced LDECC engine with low temperature combustion was compatible with commercially available biofuels as evaluated by engine performance testing and not durability testing. ? The advanced LDECC engine equipped with a novel SCR aftertreatment system is the engine system architecture that is being further developed by the Cummins product development organization. Cost reduction and system robustness activities have been identified for future deployment. ? The new engine and aftertreatment component technologies are being developed by the Cummins Component Business units (e.g. fuel system, turbomachinery, aftertreatment, electronics, etc.) to ensure commercial viability and deployment ? Cummins has demonstrated that the technologies developed for this program are scalable across the complete light duty engine product offerings (2.8L to 6.7L engines) ? Key subsystems developed include – sequential two stage turbo, combustions system for low temperature combustion, novel SCR aftertreatment system with feedback control, and high pressure common rail fuel system An important element of the success of this project was leveraging Cummins engine component technologies. Innovation in component technology coupled with system integration is enabling Cummins to move forward with the development of high efficiency clean diesel products with a long term goal of reaching a 40% improvement in thermal efficiency for the engine plus aftertreatment system. The 40% improvement is in-line with the current light duty vehicle efficiency targets set by the 2010 DoE Vehicle Technologies MYPP and supported through co-operative projects such as the Cummins Advanced Technology Powertrains for Light- Duty Vehicles (ATP-LD) started in 2010.

Stanton, Donald W

2011-06-03T23:59:59.000Z

356

Thermal effects on the characteristic Raman spectrum of molybdenum disulfide (MoS{sub 2}) of varying thicknesses  

SciTech Connect

In this letter, thermal effects on the Raman spectra of molybdenum disulfide with thicknesses ranging from bulk to monolayer were evaluated. We quantitatively determined the laser-induced heating effects on the peak position and the line-width of the Raman spectrum. We found considerable thickness-dependent red-shifts as well as line-width changes for both E{sub 2g}{sup 1} and A{sub 1g} vibrating modes as laser power was increased. Our results enrich the knowledge of phononic behaviors of this material and demonstrate the important effects of the anharmonic terms in the lattice potential energy.

Najmaei, S.; Liu, Z.; Ajayan, P. M.; Lou, J.

2012-01-02T23:59:59.000Z

357

Florida Power and Light - Business Energy Efficiency Rebates | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Florida Power and Light - Business Energy Efficiency Rebates Florida Power and Light - Business Energy Efficiency Rebates Florida Power and Light - Business Energy Efficiency Rebates < Back Eligibility Commercial Industrial Institutional Local Government Nonprofit Schools State Government Savings Category Home Weatherization Commercial Weatherization Heating & Cooling Commercial Heating & Cooling Cooling Manufacturing Other Construction Heat Pumps Heating Appliances & Electronics Commercial Lighting Lighting Insulation Design & Remodeling Water Heating Windows, Doors, & Skylights Maximum Rebate Chillers: $99/kW reduced Thermal Energy Storage: $580/kW shifted DX AC: $165/kW reduced (Unitary); $495/kW reduced (Room Unit) Energy Recovery Ventilators: $415/kW reduced Demand Control Ventilation: $600/kW reduced ECM Motors for DX Systems: $100/kW reduced

358

An Innovative High Thermal Conductivity Fuel Design  

SciTech Connect

Thermal conductivity of the fuel in today's Light Water Reactors, Uranium dioxide, can be improved by incorporating a uniformly distributed heat conducting network of a higher conductivity material, Silicon Carbide. The higher thermal conductivity of SiC along with its other prominent reactor-grade properties makes it a potential material to address some of the related issues when used in UO2 [97% TD]. This ongoing research, in collaboration with the University of Florida, aims to investigate the feasibility and develop a formal methodology of producing the resultant composite oxide fuel. Calculations of effective thermal conductivity of the new fuel as a function of %SiC for certain percentages and as a function of temperature are presented as a preliminary approach. The effective thermal conductivities are obtained at different temperatures from 600K to 1600K. The corresponding polynomial equations for the temperature-dependent thermal conductivities are given based on the simulation results. Heat transfer mechanism in this fuel is explained using a finite volume approach and validated against existing empirical models. FLUENT 6.1.22 was used for thermal conductivity calculations and to estimate reduction in centerline temperatures achievable within such a fuel rod. Later, computer codes COMBINE-PC and VENTURE-PC were deployed to estimate the fuel enrichment required, to maintain the same burnup levels, corresponding to a volume percent addition of SiC.

Jamil A. Khan

2009-11-21T23:59:59.000Z

359

LED Lighting | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

LED Lighting LED Lighting LED Lighting July 29, 2012 - 4:43pm Addthis LED Lighting What are the key facts? Quality LED products can last 25 times longer than an incandescent bulb and use 75% less energy. LEDs are directional, focusing light in ways that are useful in homes and commercial settings. The light-emitting diode (LED) is one of today's most energy-efficient and rapidly-developing lighting technologies. Quality LED light bulbs last longer, are more durable, and offer comparable or better light quality than other types of lighting. Check out the top 8 things about LEDs to learn more. Energy Savings LED is a highly energy efficient lighting technology, and has the potential to fundamentally change the future of lighting in the United States. Residential LEDs -- especially ENERGY STAR rated products -- use at least

360

Lighting Design | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Design Design Lighting Design July 29, 2012 - 6:28pm Addthis Energy-efficient indoor and outdoor lighting design focuses on ways to improve both the quality and efficiency of lighting. | Photo courtesy of ©iStockphoto.com/chandlerphoto. Energy-efficient indoor and outdoor lighting design focuses on ways to improve both the quality and efficiency of lighting. | Photo courtesy of ©iStockphoto.com/chandlerphoto. How does it work? Buy ENERGY STAR-rated lighting for the highest quality, energy-efficient lighting. Use timers and other controls to turn lights on and off. Use outdoor solar lighting. Energy-efficient indoor and outdoor lighting design focuses on ways to improve both the quality and efficiency of lighting. If you're constructing a new house, consider lighting as part of your whole-house design -- an

Note: This page contains sample records for the topic "lighting phonons thermal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Low-Pressure Sodium Lighting  

Energy.gov (U.S. Department of Energy (DOE))

Low-pressure sodium lighting provides more energy-efficient outdoor lighting than high-intensity discharge lighting, but it has very poor color rendition. Typical applications include highway and...

362

Materials for solid state lighting  

E-Print Network (OSTI)

in the Proceedings. Materials for Solid State Lighting S.G.Johnson Lighting Research Group Building TechnologiesMaterials for Solid State Lighting S.G. Johnson 1 and J. A.

Johnson, S.G.; Simmons, J.A.

2002-01-01T23:59:59.000Z

363

Light as a Healing Mechanism  

E-Print Network (OSTI)

S. (1991). Meridians conduct light. Moskow: Raum and Zeit.the bod’ys absorption of light. Explore, 9(2), doi: https://01). The healing use of light and color. Health Care Design

Lingampalli, Nithya

2013-01-01T23:59:59.000Z

364

Light diffusing fiber optic chamber  

DOE Patents (OSTI)

A light diffusion system for transmitting light to a target area. The light is transmitted in a direction from a proximal end to a distal end by an optical fiber. A diffusing chamber is operatively connected to the optical fiber for transmitting the light from the proximal end to the distal end and transmitting said light to said target area. A plug is operatively connected to the diffusing chamber for increasing the light that is transmitted to the target area.

Maitland, Duncan J. (Lafayette, CA)

2002-01-01T23:59:59.000Z

365

Solid-State Lighting: Municipal Consortium LED Street Lighting Workshop  

NLE Websites -- All DOE Office Websites (Extended Search)

Los Angeles, CA to someone Los Angeles, CA to someone by E-mail Share Solid-State Lighting: Municipal Consortium LED Street Lighting Workshop Presentations and Materials-Los Angeles, CA on Facebook Tweet about Solid-State Lighting: Municipal Consortium LED Street Lighting Workshop Presentations and Materials-Los Angeles, CA on Twitter Bookmark Solid-State Lighting: Municipal Consortium LED Street Lighting Workshop Presentations and Materials-Los Angeles, CA on Google Bookmark Solid-State Lighting: Municipal Consortium LED Street Lighting Workshop Presentations and Materials-Los Angeles, CA on Delicious Rank Solid-State Lighting: Municipal Consortium LED Street Lighting Workshop Presentations and Materials-Los Angeles, CA on Digg Find More places to share Solid-State Lighting: Municipal Consortium

366

Virginia Tech Electric Lighting Report  

NLE Websites -- All DOE Office Websites (Extended Search)

LIGHTING Daylight and Electric Careful consideration has been given to the integration of daylight, electric light, and the consequences relative to energy conservation, spatial...

367

Science Afternoon Properties of Light  

Science Conference Proceedings (OSTI)

... Science Afternoon. Properties of Light. ... We discovered that there was a lot to learn about the Properties of Light! Supplemental Materials. ...

2012-04-25T23:59:59.000Z

368

Physics Out Loud - Cerenkov Light  

NLE Websites -- All DOE Office Websites (Extended Search)

Baryon Previous Video (Baryon) Physics Out Loud Main Index Next Video (Cross Section) Cross Section Cerenkov Light The bright blue glow from nuclear reactors is Cerenkov light....

369

Physics Out Loud - Cherenkov Light  

NLE Websites -- All DOE Office Websites (Extended Search)

Baryon Previous Video (Baryon) Physics Out Loud Main Index Next Video (Cross Section) Cross Section Cherenkov Light The bright blue glow from nuclear reactors is Cherenkov light....

370

Flash Lighting with Fluorescent Lamp.  

E-Print Network (OSTI)

??A flash lighting circuit with the fluorescent lamp is designed to produce lighting flicker by means of controlling the operating frequency and the duty-ratio of… (more)

Hsieh, Horng

2005-01-01T23:59:59.000Z

371

Light pipe - design for efficiency  

Science Conference Proceedings (OSTI)

The high cost and availability of materials which are clear enough to transmit light without absorption has limited the idea of piping large-scale quantities of light. The light pipe uses the principle of Total Internal Reflection, with the light guided by very accurate prisms. The transmission of light directed into the end of a Light Pipe at an angle of less than 27.6 degrees is theoretically 100% efficient. The author describes its uses and advantages for lighting offices, cold storage areas, difficult access and hazardous areas, and for solar lighting. Future directions will be to improve the economics and accuracy of the technology. 4 references, 2 figures.

Hockey, S.N.

1985-08-01T23:59:59.000Z

372

Artificial light and plant growth  

NLE Websites -- All DOE Office Websites (Extended Search)

Artificial light and plant growth Name: Lim Age: NA Location: NA Country: NA Date: NA Question: What color of artificial light works the best in plant growth? Replies:...

373

Lighting Controls | Department of Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

fluorescent lighting fixtures rather than replace them. Dimmers and LEDs Some light-emitting diode (LED) lightbulbs can be used with dimmers. LED bulbs and fixtures must be...

374

Building Energy Software Tools Directory: Thermal Comfort  

NLE Websites -- All DOE Office Websites (Extended Search)

Thermal Comfort Thermal Comfort logo. Provides a user-friendly interface for calculating thermal comfort parameters and making thermal comfort predictions using several thermal...

375

1D-to-3D transition of phonon heat conduction in polyethylene using molecular dynamics simulations  

E-Print Network (OSTI)

The thermal conductivity of nanostructures generally decreases with decreasing size because of classical size effects. The axial thermal conductivity of polymer chain lattices, however, can exhibit the opposite trend, ...

Henry, Asegun

376

Effect of wettability on light oil steamflooding  

Science Conference Proceedings (OSTI)

This report summarizes NIPER's research on four interrelated topics for Light Oil Steamflooding. Four interrelated topics are described: The methodology for measuring capillary pressure and wettability at elevated temperature, the use of silylating agents to convert water-wet Berea sandstones or unconsolidated quartz sands to oil-wetted surfaces, the evaluation of the thermal hydrolytic stability of these oil-wet surfaces for possible use in laboratory studies using steam and hot water to recover oil, and the effect of porous media of different wettabilities on oil recovery where the porous media is first waterflooded and then steamflooded.

Olsen, D.K.

1991-12-01T23:59:59.000Z

377

Effect of wettability on light oil steamflooding  

Science Conference Proceedings (OSTI)

This report summarizes NIPER`s research on four interrelated topics for Light Oil Steamflooding. Four interrelated topics are described: The methodology for measuring capillary pressure and wettability at elevated temperature, the use of silylating agents to convert water-wet Berea sandstones or unconsolidated quartz sands to oil-wetted surfaces, the evaluation of the thermal hydrolytic stability of these oil-wet surfaces for possible use in laboratory studies using steam and hot water to recover oil, and the effect of porous media of different wettabilities on oil recovery where the porous media is first waterflooded and then steamflooded.

Olsen, D.K.

1991-12-01T23:59:59.000Z

378

Reactor Pressure Vessel Task of Light Water Reactor Sustainability Program:  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Initial Assessment of Thermal Annealing Needs and Challenges Initial Assessment of Thermal Annealing Needs and Challenges Reactor Pressure Vessel Task of Light Water Reactor Sustainability Program: Initial Assessment of Thermal Annealing Needs and Challenges The most life-limiting structural component in light-water reactors (LWR) is the reactor pressure vessel (RPV) because replacement of the RPV is not considered a viable option at this time. LWR licenses are now being extended from 40y to 60y by the U.S. Nuclear Regulatory Commission (NRC) with intentions to extend licenses to 80y and beyond. The RPV materials exhibit varying degrees of sensitivity to irradiation-induced embrittlement (decreased toughness) , as shown in Fig. 1.1, and extending operation from 40y to 80y implies a doubling of the neutron exposure for the RPV. Thus,

379

Light Field Appearance Manifolds  

E-Print Network (OSTI)

Abstract. Statistical shape and texture appearance models are powerful image representations, but previously had been restricted to 2D or 3D shapes with smooth surfaces and lambertian reflectance. In this paper we present a novel 3D appearance model using image-based rendering techniques, which can represent complex lighting conditions, structures, and surfaces. We construct a light field manifold capturing the multi-view appearance of an object class and extend the direct search algorithm of Cootes and Taylor to match new light fields or 2D images of an object to a point on this manifold. When matching to a 2D image the reconstructed light field can be used to render unseen views of the object. Our technique differs from previous view-based active appearance models in that model coefficients between views are explicitly linked, and that we do not model any pose variation within the shape model at a single view. It overcomes the limitations of polygonal based appearance models and uses light fields that are acquired in real-time. 1

Chris Mario Christoudias; Trevor Darrell

2004-01-01T23:59:59.000Z

380

LightManufacturing | Open Energy Information  

Open Energy Info (EERE)

LightManufacturing LightManufacturing Jump to: navigation, search Logo: LightManufacturing Name LightManufacturing Address 855 4th Street Place California Zip 93449 Sector Solar Product heliostat, helisotats, sun trackers, solar thermal manufacturing systems. Year founded 2009 Number of employees 11-50 Company Type For Profit Phone number 415 796-6475 Website http://www.lightmanufacturings Coordinates 35.135012°, -120.6228° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":35.135012,"lon":-120.6228,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

Note: This page contains sample records for the topic "lighting phonons thermal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Solar lighting | Open Energy Information  

Open Energy Info (EERE)

lighting lighting Jump to: navigation, search Introductory Facts About Solar Lights It is not just a normal light bulb.The solar light consists of a LED or Light Emitting Diode, which draw little power. Coupled with constantly recharging batteries, you will never run out of light! They will save the customer money. By Replacing all outdoor lighting with solar lights there is no need to plug in to the electrical system. The lights will automatically turn on at dusk and will be charged during the day. They help out the environment.Not only does not plugging in to the power system save money but also energy, therefore protecting the Earth. Easy to Install No wires necessary, just pop in the battery. They come in all designs Just because they are solar lights doesn't

382

Lighting and Surfaces 11.1 Introduction to Lighting  

E-Print Network (OSTI)

-object-at-a-time. "Intrinsic" light is the light emitted by the object itself, such as the glow from a TV screen, a light-emitting diode, or a star. "Ambient" light is an illumination that seems to come from all sides. In the real

Boyd, John P.

383

TOPIC Brief BUILDING TECHNOLOGIES PROGRAM Lighting: Residential...  

NLE Websites -- All DOE Office Websites (Extended Search)

Lighting: Residential and Commercial Requirements TOPIC BRIEF 1 Lighting: Residential and Commercial Requirements Residential Lighting Requirements The 2009 International Energy...

384

July 18, 2012 Using QECBs for Street Lighting Upgrades  

E-Print Network (OSTI)

lighting technologies (e.g. light-emitting diodes, induction lighting) can reduce street light energy

385

National Synchrotron Light Source  

NLE Websites -- All DOE Office Websites (Extended Search)

Environmental Assessment Environmental Assessment Proposed Upgrade and Improvement of the National Synchrotron Light Source Complex at Brookhaven National Laboratory, Upton, New York This Environmental Assessment addresses the proposed action by the U.S. Department of Energy to upgrade the facilities of the National Synchrotron Light Source Complex, namely the National Synchrotron Light Source (NSLS), the Accelerator Test Facility and the Source Development Laboratory. The environmental effects of a No-Action Alternative as well as a Proposed Action are evaluated in the Environmental Assessment. The “NSLS Environmental Assessment Fact Sheet” link below leads to a one-page summary of the Environmental Assessment. The “NSLS Environmental Assessment” link below leads to the whole 41-page

386

Lighting Technology Panel  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Technology Panel Technology Panel Federal Utility Partnership Working Group N b 2009 November 1 1 8, 2009 Doug Avery Southern California Edison Southern California Edison National Energy Conservation M d t Mandates * There are Federal and State Mandates to reduce energy consumption - California Investor Owned Electric Utilities are ordered to save around 3 Billion kWh's each y year from 2007-2113 - Federal buildings ordered to reduce electrical Federal buildings ordered to reduce electrical energy consumption 35% by 2012 Energy Consump ption gy Lighting accounts for 42 7% of energy consumption Lighting accounts for 42.7% of energy consumption Data Courtesy of SDG&E Data Courtesy of SDG&E Energy Consump ption gy More than Âľ of the lighting load is non-residential. Data Courtesy of SDG&E

387

Pupillary efficient lighting system  

DOE Patents (OSTI)

A lighting system having at least two independent lighting subsystems each with a different ratio of scotopic illumination to photopic illumination. The radiant energy in the visible region of the spectrum of the lighting subsystems can be adjusted relative to each other so that the total scotopic illumination of the combined system and the total photopic illumination of the combined system can be varied independently. The dilation or contraction of the pupil of an eye is controlled by the level of scotopic illumination and because the scotopic and photopic illumination can be separately controlled, the system allows the pupil size to be varied independently of the level of photopic illumination. Hence, the vision process can be improved for a given level of photopic illumination. 5 figs.

Berman, S.M.; Jewett, D.L.

1989-04-14T23:59:59.000Z

388

Light harvesting arrays  

DOE Patents (OSTI)

A light harvesting array useful for the manufacture of devices such as solar cells comprises: (a) a first substrate comprising a first electrode; and (b) a layer of light harvesting rods electrically coupled to the first electrode, each of the light harvesting rods comprising a polymer of Formula I: X.sup.1.paren open-st.X.sup.m+1).sub.m (I) wherein m is at least 1, and may be from two, three or four to 20 or more; X.sup.1 is a charge separation group (and preferably a porphyrinic macrocycle, which may be one ligand of a double-decker sandwich compound) having an excited-state of energy equal to or lower than that of X.sup.2, and X.sup.2 through X.sup.m+1 are chromophores (and again are preferably porphyrinic macrocycles).

Lindsey, Jonathan S. (Raleigh, NC)

2002-01-01T23:59:59.000Z

389

Pupillary efficient lighting system  

DOE Patents (OSTI)

A lighting system having at least two independent lighting subsystems each with a different ratio of scotopic illumination to photopic illumination. The radiant energy in the visible region of the spectrum of the lighting subsystems can be adjusted relative to each other so that the total scotopic illumination of the combined system and the total photopic illumination of the combined system can be varied independently. The dilation or contraction of the pupil of an eye is controlled by the level of scotopic illumination and because the scotopic and photopic illumination can be separately controlled, the system allows the pupil size to be varied independently of the level of photopic illumination. Hence, the vision process can be improved for a given level of photopic illumination.

Berman, Samuel M. (San Francisco, CA); Jewett, Don L. (Mill Valley, CA)

1991-01-01T23:59:59.000Z

390

Heavy-to-light form factors on the light cone  

E-Print Network (OSTI)

The light cone method provides a convenient non-perturbative tool to study the heavy-to-light form factors. We construct a light cone quark model utilizing the soft collinear effective theory. In the leading order of effective theory, the ten $B$ to light physical form factors are reduced to three universal form factors which can be calculated as overlaps of hadron light front wave functions in the light cone quark model. The numerical results show that the leading contribution is close to the results from other approaches. The $q^2$ dependence of the heavy-to-light form factors are also presented.

Cai-Dian Lu; Wei Wang; Zheng-Tao Wei

2007-01-31T23:59:59.000Z

391

Deficiencies of Lighting Codes and Ordinances in Controlling Light Pollution from Parking Lot Lighting Installations.  

E-Print Network (OSTI)

??The purpose of this research was to identify the main causes of light pollution from parking lot electric lighting installations and highlight the deficiencies of… (more)

Royal, Emily

2012-01-01T23:59:59.000Z

392

Wisconsin Business Sheds Light on Lighting | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Wisconsin Business Sheds Light on Lighting Wisconsin Business Sheds Light on Lighting Wisconsin Business Sheds Light on Lighting April 29, 2010 - 4:59pm Addthis When this photograph was taken, the upper floors of Wisconsin’s Department of Transportation were using a new lighting plan from EPS, while the lower ones were still using the pre-audit lighting scheme. | Photo Courtesy of Energy Performance Specialists, LLC When this photograph was taken, the upper floors of Wisconsin's Department of Transportation were using a new lighting plan from EPS, while the lower ones were still using the pre-audit lighting scheme. | Photo Courtesy of Energy Performance Specialists, LLC Joshua DeLung Wisconsin-based Energy Performance Specialists LLC is helping clients reduce energy consumption in a very simple way-by just using less.

393

Radioluminescent lighting technology  

SciTech Connect

The glow-in-the-dark stereotype that characterizes the popular image of nuclear materials is not accidental. When the French scientist, Henri Becquerel, first discovered radioactivity in 1896, he was interested in luminescence. Radioluminescence, the production of light from a mixture of energetic and passive materials, is probably the oldest practical application of the unstable nucleus. Tritium-based radioluminescent lighting, in spite of the biologically favorable character of the gaseous tritium isotope, was included in the general tightening of environmental and safety regulations. Tritium light manufacturers would have to meet two fundamental conditions: (1) The benefit clearly outweighed the risk, to the extent that even the perceived risk of a skeptical public would be overcome. (2) The need was significant enough that the customer/user would be willing and able to afford the cost of regulation that was imposed both in the manufacture, use and eventual disposal of nuclear materials. In 1981, researchers at Oak Ridge National Laboratory were investigating larger radioluminescent applications using byproduct nuclear material such as krypton-85, as well as tritium. By 1982, it appeared that large source, (100 Curies or more) tritium gas tube, lights might be useful for marking runways and drop zones for military operations and perhaps even special civilian aviation applications. The successful development of this idea depended on making the light bright enough and demonstrating that large gas tube sources could be used and maintained safely in the environment. This successful DOE program is now in the process of being completed and closed-out. Working closely with the tritium light industry, State governments and other Federal agencies, the basic program goals have been achieved. This is a detailed report of what they have learned, proven, and discovered. 91 refs., 29 figs., 5 tabs. (JF)

1990-01-01T23:59:59.000Z

394

EARLY SUPERNOVAE LIGHT CURVES FOLLOWING THE SHOCK BREAKOUT  

Science Conference Proceedings (OSTI)

The first light from a supernova (SN) emerges once the SN shock breaks out of the stellar surface. The first light, typically a UV or X-ray flash, is followed by a broken power-law decay of the luminosity generated by radiation that leaks out of the expanding gas sphere. Motivated by recent detection of emission from very early stages of several SNe, we revisit the theory of shock breakout and the following emission, paying special attention to the photon-gas coupling and deviations from thermal equilibrium. We derive simple analytic light curves of SNe from various progenitors at early times. We find that for more compact progenitors, white dwarfs, Wolf-Rayet stars (WRs), and possibly more energetic blue-supergiant explosions, the observed radiation is out of thermal equilibrium at the breakout, during the planar phase (i.e., before the expanding gas doubles its radius), and during the early spherical phase. Therefore, during these phases we predict significantly higher temperatures than previous analysis that assumed equilibrium. When thermal equilibrium prevails, we find the location of the thermalization depth and its temporal evolution. Our results are useful for interpretation of early SN light curves. Some examples are (1) red supergiant SNe have an early bright peak in optical and UV flux, less than an hour after breakout. It is followed by a minimum at the end of the planar phase (about 10 hr), before it peaks again once the temperature drops to the observed frequency range. In contrast, WRs show only the latter peak in optical and UV. (2) Bright X-ray flares are expected from all core-collapse SNe types. (3) The light curve and spectrum of the initial breakout pulse hold information on the explosion geometry and progenitor wind opacity. Its spectrum in more compact progenitors shows a (nonthermal) power law and its light curve may reveal both the breakout diffusion time and the progenitor radius.

Nakar, Ehud [Raymond and Beverly Sackler School of Physics and Astronomy, Tel Aviv University, Tel Aviv 69978 (Israel); Sari, Re'em [Racah Institute for Physics, Hebrew University, Jerusalem 91904 (Israel)

2010-12-10T23:59:59.000Z

395

Effects of Irradiation and Post-Irradiation Annealing on the Thermal Conductivity/ Diffusivity of Monolithic SIC and SIC/SIC Composites  

Science Conference Proceedings (OSTI)

Laser flash thermal diffusivity measurements were made on high-purity monolithic CVD-SiC (impurity concentration layup made by the isothermal chemical vapor infiltration process and with either a “thick” 1.0 µm or a “thin” 0.11 µm PyC fiber coating) before and after irradiation in the HFIR reactor (250 to 800°C, 4-8 dpa-SiC) and after post-irradiation annealing composite samples to 1200°C. Thermal conductivity in SiC is controlled by phonon transport. Point defects introduced into SiC during neutron irradiation are effective scattering centers for phonons, and as a consequence the thermal conductivity is sharply reduced. For irradiation temperatures below ~800°C, the accumulation of point defects (in SiC mostly single or small clusters of interstitials and isolated vacancies) saturates when the interstitial-vacancy recombination rate equals the defect production rate. For saturation conditions, the relative reduction in the SiC thermal conductivity decreases in a manner similar to its swelling reduction with increasing irradiation temperature. Examination of SiC swelling data at various irradiation temperatures and doses indicates that saturation occurs for ~2 dpa-SiC at 200°C and decreases continuously to ~0.4 dpa-SiC at 800°C. Based on a model that assumes a uniform distribution of the phonon scattering defects, the calculated defect concentration for unirradiated CVD-SiC was less than 1 appm, which is consistent with the manufacturer’s value of <5 wppm impurities. The defect concentrations estimated for the irradiated CVD-SiC samples decreased continuously from ~25,000 to 940 appm as the irradiation temperature increased from 252 to 800°C. The small intrinsic defect concentration in comparison to the rather large extrinsic irradiation-induced defect concentrations illustrates why CVD-SiC makes an ideal irradiation damage monitor.

Youngblood, Gerald E.; Senor, David J.; Jones, Russell H.

2004-08-01T23:59:59.000Z

396

Fiberoptic home lighting  

Science Conference Proceedings (OSTI)

Initial effort on this grant project was to construct a model that would demonstrate the feasibility of various lighting theories. Testing of suitable materials for utilization as fibreoptic components was the second priority. The material chosen for the project was 5/8 inch diameter plexiglas rod. The next step involved determining the limitations and other properties of the plexiglas rod. The final factor in developing a useable system involved testing different types and colors of light and their ability to be transmitted by the optic fibre. The culmination of the research and testing resulted in the demonstration projects.

Keleher, D.

1982-01-01T23:59:59.000Z

397

Phonon Dispersion and Elastic Moduli of Two-Dimensional Disordered Colloidal Packings of Soft-Particles with Frictional Interactions  

E-Print Network (OSTI)

Particle tracking and displacement covariance matrix techniques are employed to investigate the phonon dispersion relations of two-dimensional colloidal glasses composed of soft, thermoresponsive microgel particles whose temperature-sensitive size permits in situ variation of particle packing fraction. Bulk modulus, B, and shear modulus, G, of the colloidal glasses are extracted from the dispersion relations as a function of packing fraction. The ratio G/B is found to agree quantitatively with predictions for jammed packings of frictional soft particles with only one parameter required for the fit - the packing fraction for the onset of jamming in the limit of infinite friction. In addition, G and B individually agree with numerical predictions for frictional particles. This remarkable level of agreement enabled us to extract the inter-particle friction coefficient and an energy scale for the inter-particle interaction from the individual elastic constants.

Tim Still; Carl P. Goodrich; Ke Chen; Peter J. Yunker; Samuel Schoenholz; Andrea J. Liu; A. G. Yodh

2013-06-13T23:59:59.000Z

398

Phonon Dispersion and Elastic Moduli of Two-Dimensional Disordered Colloidal Packings of Soft Particles with Frictional Interactions  

E-Print Network (OSTI)

Particle tracking and displacement covariance matrix techniques are employed to investigate the phonon dispersion relations of two-dimensional colloidal glasses composed of soft, thermoresponsive microgel particles whose temperature-sensitive size permits \\textit{in situ} variation of particle packing fraction. Bulk, $B$, and shear, $G$, moduli of the colloidal glasses are extracted from the dispersion relations as a function of packing fraction, and variation of the ratio $G/B$ with packing fraction is found to agree quantitatively with predictions for jammed packings of frictional soft particles. In addition, $G$ and $B$ individually agree with numerical predictions for frictional particles. This remarkable level of agreement enabled us to extract an energy scale for the inter-particle interaction from the individual elastic constants and to derive an approximate estimate for the inter-particle friction coefficient.

Tim Still; Carl P. Goodrich; Ke Chen; Peter J. Yunker; Samuel Schoenholz; Andrea J. Liu; A. G. Yodh

2013-06-13T23:59:59.000Z

399

Energy 101: Lighting Choices | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Lighting Choices Energy 101: Lighting Choices Addthis Below is the text version for the Energy 101: Lighting Choices video: The video opens with "Energy 101: Lighting Choices."...

400

Lighting Principles and Terms | Department of Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

Principles and Terms Lighting Principles and Terms July 29, 2012 - 5:20pm Addthis Light quantity, energy consumption, and light quality are the basic principles of lighting. |...

Note: This page contains sample records for the topic "lighting phonons thermal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Solid-State Lighting: OLED Basics  

NLE Websites -- All DOE Office Websites (Extended Search)

Lighting: OLED Basics on Twitter Bookmark Solid-State Lighting: OLED Basics on Google Bookmark Solid-State Lighting: OLED Basics on Delicious Rank Solid-State Lighting:...

402

Light Logger Placement Guidelines for Residential Lighting Studies  

Science Conference Proceedings (OSTI)

New technological advancements in lighting have increased the efficiency of residential lighting loads. Light loggers, which use a photocell to sense when lights are on or off, provide valuable metering information for use in measuring technology effectiveness and designing marketing programs. Placement of the loggers is critical to the accuracy and reliability of the measurements. This report provides placement recommendations for various types of lighting, expected accuracy compared to metered energy, ...

1996-03-28T23:59:59.000Z

403

Good lighting with energy conservation  

SciTech Connect

The publicity and economic impact of the oil embargo of 1973-74 has frequently caused over-reactive, indiscriminate reductions in lighting without eliminating many of the truly energy-wasteful aspects of lighting system usage. With current technology and a clear knowledge of the lighting requirements significant contributions to energy conservation can be achieved without unnecessarily sacrificing the benefits of good lighting.

Clark, G.W.

1976-01-01T23:59:59.000Z

404

Another Side of Light - D  

NLE Websites -- All DOE Office Websites (Extended Search)

D. Three quantum phenomena D. Three quantum phenomena In fluorescence, matter absorbs light waves of a high frequency and then emits light of the same or lower frequency. This process was studied and named by George Gabriel Stokes in the mid-19th century. Today, fluorescence is familiar to us from fluorescent light bulbs. A fluorescent bulb's filament produces ultraviolet light, which is absorbed by the bulb's inner coating, which then emits lower-frequency visible light-more visible light than an incandescent bulb produces with the same wattage. According to the hypothesis of light quanta, during fluorescence an atom absorbs a quantum of light whose energy is proportional to the light wave's frequency. If the atom doesn't supply any extra energy of its own, the light quantum emitted should either have the same energy or less energy

405

Tips: Lighting | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Lighting Lighting Tips: Lighting May 4, 2012 - 3:16pm Addthis Lighting Choices Save You Money. Energy-efficient light bulbs are available in a wide variety of sizes and shapes. Lighting Choices Save You Money. Energy-efficient light bulbs are available in a wide variety of sizes and shapes. What does this mean for me? Replacing 15 inefficient incandescent bulbs in your home with energy-saving bulbs could save you about $50 per year. For the greatest savings, replace your old incandescent bulbs with ENERGY STAR-qualified bulbs. An average household dedicates about 10% of its energy budget to lighting. Switching to energy-efficient lighting is one of the fastest ways to cut your energy bills. Timers and motion sensors save you even more money by reducing the amount of time lights are on but not being used.

406

Technology reviews: Lighting systems  

SciTech Connect

We present a representative review of existing, emerging, and future technology options in each of five hardware and systems areas in envelope and lighting technologies: lighting systems, glazing systems, shading systems, daylighting optical systems, and dynamic curtain wall systems. The term technology is used here to describe any design choice for energy efficiency, ranging from individual components to more complex systems to general design strategies. The purpose of this task is to characterize lighting system in the state of the art in envelope and lighting technologies in order to identify those with promise for advanced integrated systems, with an emphasis on California commercial buildings. For each technology category, the following activities have been attempted to the extent possible: Identify key performance characteristics and criteria for each technology. Determine the performance range of available technologies. Identify the most promising technologies and promising trends in technology advances. Examine market forces and market trends. Develop a continuously growing in-house database to be used throughout the project. A variety of information sources have been used in these technology characterizations, including miscellaneous periodicals, manufacturer catalogs and cut sheets, other research documents, and data from previous computer simulations. We include these different sources in order to best show the type and variety of data available, however publication here does not imply our guarantee of these data. Within each category, several broad classes are identified, and within each class we examine the generic individual technologies that fall into that class.

Schuman, J.; Rubinstein, F.; Papamichael, K.; Beltran, L.; Lee, E.S.; Selkowitz, S.

1992-09-01T23:59:59.000Z

407

Windows and lighting program  

SciTech Connect

More than 30% of all energy use in buildings is attributable to two sources: windows and lighting. Together they account for annual consumer energy expenditures of more than $50 billion. Each affects not only energy use by other major building systems, but also comfort and productivity -- factors that influence building economics far more than does direct energy consumption alone. Windows play a unique role in the building envelope, physically separating the conditioned space from the world outside without sacrificing vital visual contact. Throughout the indoor environment, lighting systems facilitate a variety of tasks associated with a wide range of visual requirements while defining the luminous qualities of the indoor environment. Windows and lighting are thus essential components of any comprehensive building science program. Despite important achievements in reducing building energy consumption over the past decade, significant additional savings are still possible. These will come from two complementary strategies: (1) improve building designs so that they effectively apply existing technologies and extend the market penetration of these technologies; and (2) develop advanced technologies that increase the savings potential of each application. Both the Windows and Daylighting Group and the Lighting System Research Group have made substantial contributions in each of these areas, and continue to do so through the ongoing research summarized here. 23 refs., 16 figs.

1990-06-01T23:59:59.000Z

408

Thermal diffusivity and thermal conductivity of sintered UO2 and UO2-Gd2O3. Technical report  

SciTech Connect

The thermal diffusivity was measured using the laser flash method on sintered uranium dioxide (O/U=2.003, density=10.48X10 kg/m, from 300 to 2773 K), and urania and gadolinia mixed fuel (2,4 and 6 Wt% Gd2O3 content, from 600 to 1850 K). An equation was suggested for near-stoichiometric uranium dioxide over the temperature range 500-3100 K: K=(1-aP)(1/(A+BT)+DTxexp(-E/kT)x(1+H(E/kT+2)(sup 2))), where K in W/(m)(K), P is the fraction of porosity, a=2.74-5.8X10(sup 4-)T, A=3.68X10(sup 2-)(m)(K)/W, B=2.25X10(sup 4-)m/W, D=5.31X10(sup 3-)W/mXK2, H=0.264, E=1.15 ev, k is the Boltzmann constant. The thermal conductivity of UO2-Gd2O3 samples as a function of temperature and Gd2O3 content, X, could be expressed by phonon conduction; K=1/(A+BT) in the temperature range from 600 to 1700 K, where A=2.50 X+0.044(m)(K)/W.

Ying, S.; Ji, Z.

1988-01-01T23:59:59.000Z

409

Thermally Conductive Graphite Foam  

oriented graphite planes, similar to high performance carbon fibers, which have been estimated to exhibit a thermal conductivity greater than 1700 ...

410

Thermal Barrier Coatings  

NLE Websites -- All DOE Office Websites (Extended Search)

Thermal Barrier Coatings Opportunity The Department of Energy's National Energy Technology Laboratory (NETL) is seeking licensing partners interested in implementing United States...

411

Variable pressure thermal insulating jacket  

DOE Patents (OSTI)

A device for controlled insulation of a thermal device. The device includes a thermal jacket with a closed volume able to be evacuated to form an insulating jacket around the thermal source. A getter material is in communcation with the closed volume of the thermal jacket. The getter material can absorb and desorb a control gas to control gas pressure in the volume of the thermal jacket to control thermal conductivity in the thermal jacket.

Nelson, Paul A. (Wheaton, IL); Malecha, Richard F. (Naperville, IL); Chilenskas, Albert A. (Chicago, IL)

1994-01-01T23:59:59.000Z

412

Variable pressure thermal insulating jacket  

DOE Patents (OSTI)

A device for controlled insulation of a thermal device is disclosed. The device includes a thermal jacket with a closed volume able to be evacuated to form an insulating jacket around the thermal source. A getter material is in communication with the closed volume of the thermal jacket. The getter material can absorb and desorb a control gas to control gas pressure in the volume of the thermal jacket to control thermal conductivity in the thermal jacket. 10 figs.

Nelson, P.A.; Malecha, R.F.; Chilenskas, A.A.

1994-09-20T23:59:59.000Z

413

Long range excitonic transport in a biomimetic system inspired by the bacterial light-harvesting apparatus  

Science Conference Proceedings (OSTI)

Photosynthesis, the process by which energy from sunlight drives cellular metabolism, relies on a unique organization of light-harvesting and reaction center complexes. Recently, the organization of light-harvesting LH2 complexes and dimeric reaction center-light-harvesting I-PufX core complexes in membranes of purple non-sulfur bacteria was revealed by atomic force microscopy [S. Bahatyrova et al., Nature (London) 430, 1058 (2004)]. Here, we discuss optimal exciton transfer in a biomimetic system closely modeled on the structure of LH2 and its organization within the membrane using a Markovian quantum model with dissipation and trapping added phenomenologically. In a deliberate manner, we neglect the high level detail of the bacterial light-harvesting complex and its interaction with the phonon bath in order to elucidate a set of design principles that may be incorporated in artificial pigment-scaffold constructs in a supramolecular assembly. We show that our scheme reproduces many of the most salient features found in their natural counterpart and may be largely explained by simple electrostatic considerations. Most importantly, we show that quantum effects act primarily to enforce robustness with respect to spatial and spectral disorder between and within complexes. The implications of such an arrangement are discussed in the context of biomimetic photosynthetic analogs capable of transferring energy efficiently across tens to hundreds of nanometers.

Harel, Elad [Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208 (United States)

2012-05-07T23:59:59.000Z

414

NEUTRONIC AND THERMAL HYDRAULIC DESIGNS OF ANNULAR FUEL FOR HIGH POWER DENSITY BWRS  

E-Print Network (OSTI)

As a promising new fuel for high power density light water reactors, the feasibility of using annular fuel for BWR services is explored from both thermal hydraulic and neutronic points of view. Keeping the bundle size ...

Morra, P.

415

The thermal performance of fixed and variable selective transmitters in commercial architecture  

E-Print Network (OSTI)

A parametric model is developed for use in evaluating the relative thermal and lighting performance of a variety of existing and proposed types of commercial glazing materials. The glazing materials considered are divided ...

Bartovics, William A

1984-01-01T23:59:59.000Z

416

Incandescent Lighting | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Incandescent Lighting Incandescent Lighting Incandescent Lighting October 17, 2013 - 6:15pm Addthis Incandescent lighting is the most common, and least energy efficient, type of lighting used in homes. | Photo courtesy of ©iStockphoto/TokenPhoto. Incandescent lighting is the most common, and least energy efficient, type of lighting used in homes. | Photo courtesy of ©iStockphoto/TokenPhoto. Incandescent lamps are often considered the least energy efficient type of electric lighting commonly found in residential buildings. Although inefficient, incandescent lamps possess a number of key advantages--they are inexpensive to buy, turn on instantly, are available in a huge array of sizes and shapes and provide a pleasant, warm light with excellent color rendition. However, because of their relative inefficiency and short life spans, they

417

Incandescent Lighting | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Incandescent Lighting Incandescent Lighting Incandescent Lighting October 17, 2013 - 6:15pm Addthis Incandescent lighting is the most common, and least energy efficient, type of lighting used in homes. | Photo courtesy of ©iStockphoto/TokenPhoto. Incandescent lighting is the most common, and least energy efficient, type of lighting used in homes. | Photo courtesy of ©iStockphoto/TokenPhoto. Incandescent lamps are often considered the least energy efficient type of electric lighting commonly found in residential buildings. Although inefficient, incandescent lamps possess a number of key advantages--they are inexpensive to buy, turn on instantly, are available in a huge array of sizes and shapes and provide a pleasant, warm light with excellent color rendition. However, because of their relative inefficiency and short life spans, they

418

Fluorescent Lighting | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Fluorescent Lighting Fluorescent Lighting Fluorescent Lighting October 17, 2013 - 5:44pm Addthis Fluorescent Lighting Fluorescent Lighting Fluorescent lamps use 25%-35% of the energy used by incandescent products to provide a similar amount of light. They also last about 10 times longer (7,000-24,000 hours). The two general types of fluorescent lamps are: Compact fluorescent lamps (CFLs) -- commonly found with integral ballasts and screw bases, these are popular lamps often used in household fixtures Fluorescent tube and circline lamps -- typically used for task lighting such as garages and under cabinet fixtures, and for lighting large areas in commercial buildings. CFLs CFLs combine the energy efficiency of fluorescent lighting with the convenience and popularity of incandescent fixtures. CFLs fit most fixtures

419

Thermal protection apparatus  

DOE Patents (OSTI)

An apparatus which thermally protects sensitive components in tools used in a geothermal borehole. The apparatus comprises a Dewar within a housing. The Dewar contains heat pipes such as brass heat pipes for thermally conducting heat from heat sensitive components to a heat sink such as ice.

Bennett, Gloria A. (Los Alamos, NM); Elder, Michael G. (Los Alamos, NM); Kemme, Joseph E. (Albuquerque, NM)

1985-01-01T23:59:59.000Z

420

Thermal protection apparatus  

DOE Patents (OSTI)

The disclosure is directed to an apparatus for thermally protecting sensitive components in tools used in a geothermal borehole. The apparatus comprises a Dewar within a housing. The Dewar contains heat pipes such as brass heat pipes for thermally conducting heat from heat sensitive components such as electronics to a heat sink such as ice.

Bennett, G.A.; Elder, M.G.; Kemme, J.E.

1984-03-20T23:59:59.000Z

Note: This page contains sample records for the topic "lighting phonons thermal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Thermal masses in leptogenesis  

E-Print Network (OSTI)

We investigate the validity of using thermal masses in the kinematics of final states in the decay rate of heavy neutrinos in leptogenesis calculations. We find that using thermal masses this way is a reasonable approximation, but corrections arise through quantum statistical distribution functions and leptonic quasiparticles.

Kiessig, Clemens P

2009-01-01T23:59:59.000Z

422

Taunton Municipal Lighting Plant - Residential and Non-Profit  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Taunton Municipal Lighting Plant - Residential and Non-Profit Taunton Municipal Lighting Plant - Residential and Non-Profit Weatherization Program (Massachusetts) Taunton Municipal Lighting Plant - Residential and Non-Profit Weatherization Program (Massachusetts) < Back Eligibility Nonprofit Residential Savings Category Home Weatherization Commercial Weatherization Sealing Your Home Ventilation Manufacturing Maximum Rebate General: $500 Each customer will be eligible for one rebate per the three year project window. Program Info Start Date 1/1/2012 Expiration Date 12/31/2012 State Massachusetts Program Type Utility Rebate Program Rebate Amount Up to 50% of total cost: Attic insulation Wall insulation Rim joist insulation Air-sealing measures Window treatments Pipe/duct insulation Provider Customer Care Taunton Municipal Lighting Plant (TMLP) offers the 'House N Home' Thermal

423

Oxycarbonitride phosphors and light emitting devices using the same  

DOE Patents (OSTI)

Disclosed herein is a novel family of oxycarbidonitride phosphor compositions and light emitting devices incorporating the same. Within the sextant system of M--Al--Si--O--N--C--Ln and quintuplet system of M--Si--O--N--C--Ln (M=alkaline earth element, Ln=rare earth element), the phosphors are composed of either one single crystalline phase or two crystalline phases with high chemical and thermal stability. In certain embodiments, the disclosed phosphor of silicon oxycarbidonitrides emits green light at wavelength between 530-550 nm. In further embodiments, the disclosed phosphor compositions emit blue-green to yellow light in a wavelength range of 450-650 nm under near-UV and blue light excitation.

Li, Yuanqiang; Romanelli, Michael Dennis; Tian, Yongchi

2013-10-08T23:59:59.000Z

424

Carbon Power and Light - Residential and Commercial Energy Efficiency  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Carbon Power and Light - Residential and Commercial Energy Carbon Power and Light - Residential and Commercial Energy Efficiency Rebate Program Carbon Power and Light - Residential and Commercial Energy Efficiency Rebate Program < Back Eligibility Commercial Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heat Pumps Manufacturing Appliances & Electronics Water Heating Maximum Rebate Water Heater: $75 Program Info State Wyoming Program Type Utility Rebate Program Rebate Amount Water Heater: $1.50 - $3 /gallon, plus $50 Tri-State G&T incentive Resistive Heat: $8 /kW Electric Thermal Storage: $50 /unit or $12 /kW Air-Source Heat Pump: $125 - $150 /ton Geothermal Heat Pump: $150 /ton Terminal Unit: $85 Motors: $8 - $13 /hp (CPL and Tri-State Combined Rebate) Provider Carbon Power and Light, Inc.

425

Optical device with low electrical and thermal resistance bragg reflectors  

DOE Patents (OSTI)

A compound-semiconductor optical device and method. The optical device is provided with one or more asymmetrically-graded heterojunctions between compound semiconductor layers for forming a distributed Bragg reflector mirror having an improved electrical and thermal resistance. Efficient light-emitting devices such as light-emitting diodes, resonant-cavity light-emitting diodes, and vertical-cavity surface-emitting lasers may be formed according to the present invention, which may be applied to the formation of resonant-cavity photodetectors.

Lear, Kevin L. (Albuquerque, NM)

1996-01-01T23:59:59.000Z

426

Gradient Combinatorial Libraries via Modulated Light ...  

Science Conference Proceedings (OSTI)

... Libraries via Modulated Light Exposure. Bookmark and Share Gradient Combinatorial Libraries via Modulated Light Exposure. ...

427

Lighting for video February 23, 2012  

E-Print Network (OSTI)

) LED light panel, C) HMI/MH light with diffusion, D) fluorescent ("kino flo") style light fluorescent or LED lights. In the earlier days this was created by bouncing light off reflectors, for example a soft light as a key light (LED or fluorescent) and then use available lights in the back- ground

Porr, Bernd

428

Edmund G. Brown Jr. LIGHTING CALIFORNIA'S FUTURE  

E-Print Network (OSTI)

Edmund G. Brown Jr. Governor LIGHTING CALIFORNIA'S FUTURE: SMART LIGHT-EMITTING DIODE LIGHTING's Future: Smart LightEmitting Diode Lighting in Residential Fans. California Energy Commission, PIER. For the Smart Light emitting Diode Lighting in Residential Fans Project, the California Lighting Technology

429

National Synchrotron Light Source  

NLE Websites -- All DOE Office Websites (Extended Search)

Report 2001 Report 2001 National Synchrotron Light Source For the period October 1, 2000 through September 30, 2001 Introduction Science Highlights Year in Review Operations Publications Abstracts Nancye Wright & Lydia Rogers The National Synchrotron Light Source Department is supported by the Office of Basic Energy Sciences United States Department of Energy Washington, D.C. Brookhaven National Laboratory Brookhaven Science Associates, Inc. Upton, New York 11973 Under Contract No. DE-AC02-98CH10886 Mary Anne Corwin Steven N. Ehrlich & Lisa M. Miller Managing Editor Science Editors Production Assistants Cover images (clockwise from top left) 1. from Science Highlight by K.R. Rajashankar, M.R. Chance, S.K. Burley, J. Jiang, S.C. Almo, A. Bresnick, T. Dodatko, R. Huang, G. He,

430

Light amplification using semiconductors  

Science Conference Proceedings (OSTI)

During the summer of 1953, John von Neumann discussed his ideas concerning light amplification using semiconductors with Edward Teller. In September of that year, von Neumann sent a manuscript containing his ideas and calculations on this subject to Teller for his comments. To the best of our knowledge, von Neumann did not take time to work further on these ideas, and the manuscript remained unpublished. These previously unpublished writings of John von Neumann on the subject of light amplification in semiconductors are printed as a service to the laser community. While von Neumann's original manuscript and his letter to Teller are available to anyone who visits the Library of Congress, it is much more convenient to have this paper appear in an archival journal.

Dupuis, R.D.

1987-06-01T23:59:59.000Z

431

Fusion pumped light source  

DOE Patents (OSTI)

Apparatus is provided for generating energy in the form of light radiation. A fusion reactor is provided for generating a long, or continuous, pulse of high-energy neutrons. The neutron flux is coupled directly with the lasing medium. The lasing medium includes a first component selected from Group O of the periodic table of the elements and having a high inelastic scattering cross section. Gamma radiation from the inelastic scattering reactions interacts with the first component to excite the first component, which decays by photon emission at a first output wavelength. The first output wavelength may be shifted to a second output wavelength using a second liquid component responsive to the first output wavelength. The light outputs may be converted to a coherent laser output by incorporating conventional optics adjacent the lasing medium. 3 figs.

Pappas, D.S.

1988-09-01T23:59:59.000Z

432

Light from cosmic strings  

Science Conference Proceedings (OSTI)

The time-dependent metric of a cosmic string leads to an effective interaction between the string and photons--the ''gravitational Aharonov-Bohm'' effect--and causes cosmic strings to emit light. We evaluate the radiation of pairs of photons from cosmic strings and find that the emission from cusps, kinks and kink-kink collisions occurs with a flat spectrum at all frequencies up to the string scale. Further, cusps emit a beam of photons, kinks emit along a curve, and the emission at a kink-kink collision is in all directions. The emission of light from cosmic strings could provide an important new observational signature of cosmic strings that is within reach of current experiments for a range of string tensions.

Steer, Daniele A.; Vachaspati, Tanmay [APC 10 rue Alice Domon et Leonie Duquet, 75205 Paris Cedex 13 (France); Physics Department, Arizona State University, Tempe, Arizona 85287 (United States)

2011-02-15T23:59:59.000Z

433

Clusters in Light Nuclei  

E-Print Network (OSTI)

A great deal of research work has been undertaken in the alpha-clustering study since the pioneering discovery, half a century ago, of 12C+12C molecular resonances. Our knowledge of the field of the physics of nuclear molecules has increased considerably and nuclear clustering remains one of the most fruitful domains of nuclear physics, facing some of the greatest challenges and opportunities in the years ahead. In this work, the occurence of "exotic" shapes in light N=Z alpha-like nuclei is investigated. Various approaches of superdeformed and hyperdeformed bands associated with quasimolecular resonant structures are presented. Results on clustering aspects are also discussed for light neutron-rich Oxygen isotopes.

C. Beck; P. Papka; A. Sanchez i Zafra; S. Thummerer; F. Azaiez; P. Bednarczyk; S. Courtin; D. Curien; O. Dorvaux; A. Goasduff; D. Lebhertz; A. Nourreddine; M. Rousseau; M. -D. Salsac; W. von Oertzen; B. Gebauer; C. Wheldon; Tz. Kokalova; G. Efimov; V. Zherebchevsky; Ch. Schulz; H. G. Bohlen; D. Kamanin; G. de Angelis; A. Gadea; S. Lenzi; D. R. Napoli; S. Szilner; M. Milin; W. N. Catford; D. G. Jenkins; G. Royer

2010-11-15T23:59:59.000Z

434

Fusion pumped light source  

DOE Patents (OSTI)

Apparatus is provided for generating energy in the form of light radiation. A fusion reactor is provided for generating a long, or continuous, pulse of high-energy neutrons. The neutron flux is coupled directly with the lasing medium. The lasing medium includes a first component selected from Group O of the periodic table of the elements and having a high inelastic scattering cross section. Gamma radiation from the inelastic scattering reactions interacts with the first component to excite the first component, which decays by photon emission at a first output wavelength. The first output wavelength may be shifted to a second output wavelength using a second liquid component responsive to the first output wavelength. The light outputs may be converted to a coherent laser output by incorporating conventional optics adjacent the laser medium.

Pappas, Daniel S. (Los Alamos, NM)

1989-01-01T23:59:59.000Z

435

Developing architectural lighting representations  

E-Print Network (OSTI)

This paper reports on the development of a visualization system for architectural lighting designers. It starts by motivating the problem as both complex in its physics and social organization. Three iterations of prototypes for displaying time and space varying phenomena are discussed. Fieldwork is presented to identify where in practice they will be most effective. A set of user studies, one of which is analyzed in fine-grained detail, show how building designers incorporate visualization on hypothetical design problems. This has positive implications for both energy efficiency and lighting quality in buildings. CR Categories: H.1.2 [Models and Principles]: User/Machine Systems—Human factors; D.2.2 [Software Engineering]: Design

Daniel C. Glaser; Roger Tan

2003-01-01T23:59:59.000Z

436

Thermal treatment wall  

DOE Patents (OSTI)

A thermal treatment wall emplaced to perform in-situ destruction of contaminants in groundwater. Thermal destruction of specific contaminants occurs by hydrous pyrolysis/oxidation at temperatures achievable by existing thermal remediation techniques (electrical heating or steam injection) in the presence of oxygen or soil mineral oxidants, such as MnO.sub.2. The thermal treatment wall can be installed in a variety of configurations depending on the specific objectives, and can be used for groundwater cleanup, wherein in-situ destruction of contaminants is carried out rather than extracting contaminated fluids to the surface, where they are to be cleaned. In addition, the thermal treatment wall can be used for both plume interdiction and near-wellhead in-situ groundwater treatment. Thus, this technique can be utilized for a variety of groundwater contamination problems.

Aines, Roger D. (Livermore, CA); Newmark, Robin L. (Livermore, CA); Knauss, Kevin G. (Livermore, CA)

2000-01-01T23:59:59.000Z

437

Solar thermal aircraft  

DOE Patents (OSTI)

A solar thermal powered aircraft powered by heat energy from the sun. A heat engine, such as a Stirling engine, is carried by the aircraft body for producing power for a propulsion mechanism, such as a propeller. The heat engine has a thermal battery in thermal contact with it so that heat is supplied from the thermal battery. A solar concentrator, such as reflective parabolic trough, is movably connected to an optically transparent section of the aircraft body for receiving and concentrating solar energy from within the aircraft. Concentrated solar energy is collected by a heat collection and transport conduit, and heat transported to the thermal battery. A solar tracker includes a heliostat for determining optimal alignment with the sun, and a drive motor actuating the solar concentrator into optimal alignment with the sun based on a determination by the heliostat.

Bennett, Charles L. (Livermore, CA)

2007-09-18T23:59:59.000Z

438

Efficient Light Sources Today  

E-Print Network (OSTI)

This paper reviews new lamp and lighting technology in terms of application and economic impact. Included are the latest advances in High Intensity Discharge systems, energy saving fluorescent lamps and ballasts, and the new state of the art high performance fluorescent systems. Cost analyses will show that typical owning and operating cost reductions of 15 to 65% can be achieved without sacrificing illumination levels when the right system is chosen and properly applied.

Hart, A. L.

1982-01-01T23:59:59.000Z

439

New Lighting Technologies  

Science Conference Proceedings (OSTI)

This Electric Power Research Institute (EPRI) technical update continues the technical assessment of advanced lighting technologies in the following product areas—linear LED T8 fluorescent replacements, Edison-based dimmable LED lamps, commercial replacement side-lit LED fixtures, Edison-based reduced-consumption halogen lamps designed to replace 100W incandescent lamps, high bay induction LED lamps, and architectural LED lamps. Many of the products in this year’s report are designed as ...

2012-10-08T23:59:59.000Z

440

Light-Matter Quantum Interface  

E-Print Network (OSTI)

We propose a quantum interface which applies multiple passes of a pulse of light through an atomic sample with phase/polarization rotations in between the passes. Our proposal does not require nonclassical light input or measurements on the system, and it predicts rapidly growing unconditional entanglement of light and atoms from just coherent inputs. The proposed interface makes it possible to achieve a number of tasks within quantum information processing including teleportation between light and atoms, quantum memory for light and squeezing of atomic and light variables.

K. Hammerer; K. Molmer; E. S. Polzik; J. I. Cirac

2003-12-18T23:59:59.000Z

Note: This page contains sample records for the topic "lighting phonons thermal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Lighting the Way with Compact Fluorescent Lighting | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Lighting the Way with Compact Fluorescent Lighting Lighting the Way with Compact Fluorescent Lighting Lighting the Way with Compact Fluorescent Lighting April 28, 2009 - 5:00am Addthis John Lippert There is a major push today to get homeowners to adopt compact fluorescent lamp (CFL) light bulbs. They have been on the market for nearly three decades, and many homeowners still do not use them widely. But the tide is definitely turning. Their availability and the percentage of homeowners familiar with the technology and purchasing them for their homes have been steadily rising. The products have improved considerably compared to early products, and their prices have plummeted. The ENERGY STAR® Change a Light, Change the World Campaign has been running now for more than half a dozen years. This campaign is designed to

442

Solid-State Lighting: Municipal Consortium LED Street Lighting...  

NLE Websites -- All DOE Office Websites (Extended Search)

Boston, MA to someone by E-mail Share Solid-State Lighting: Municipal Consortium LED Street Lighting Workshop Presentations and Materials-Boston, MA on Facebook Tweet about...

443

Solid-State Lighting: Municipal Consortium LED Street Lighting...  

NLE Websites -- All DOE Office Websites (Extended Search)

Dallas, TX to someone by E-mail Share Solid-State Lighting: Municipal Consortium LED Street Lighting Workshop Presentations and Materials-Dallas, TX on Facebook Tweet about...

444

Energy Savings Potential of Solid State Lighting in General Lighting...  

NLE Websites -- All DOE Office Websites (Extended Search)

by Arthur D. Little, Inc. for U.S. Department of Energy Energy Savings Potential of Solid State Lighting in General Lighting Applications Final Report April 2001 Energy Savings...

445

Lighting the Way with Compact Fluorescent Lighting | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Lighting the Way with Compact Fluorescent Lighting Lighting the Way with Compact Fluorescent Lighting Lighting the Way with Compact Fluorescent Lighting April 28, 2009 - 5:00am Addthis John Lippert There is a major push today to get homeowners to adopt compact fluorescent lamp (CFL) light bulbs. They have been on the market for nearly three decades, and many homeowners still do not use them widely. But the tide is definitely turning. Their availability and the percentage of homeowners familiar with the technology and purchasing them for their homes have been steadily rising. The products have improved considerably compared to early products, and their prices have plummeted. The ENERGY STAR® Change a Light, Change the World Campaign has been running now for more than half a dozen years. This campaign is designed to

446

Physics of light  

Science Conference Proceedings (OSTI)

A fourth interpretation for the principle of light invariance is proposed. After Maxwell equations, relativity, Lorentz group, another possibility stands into consider the Lorentz group representations as species. By specie one means fields with same nature under light invariance. For instance, given a ((1/2),(1/2)) representation, instead of just one specific field, we should associate to it the potential fields specie. Thus, starting from such fields specie interpretation the features of a certain potential field A{sub {mu}I} will be determined in terms of its associated fields set {l_brace}A{sub {mu}I}{r_brace}, where I means a diversity index. It says that, the original field equation to be searched for a given field description is that one corresponding to the associated group of fields, and not more, for the field being taken isolated. It introduces the meaning of parts enfolded in the whole through whole relativistic equations. There is a more primitive equation to be understood. Instead Maxwell equation this fourth light invariance interpretation is guiding us to a more basic equation describing a fields set {l_brace}A{sub {mu}I}{r_brace}. It will be entitled as Global Maxwell equation. Three steps are necessary for characterizing this Global Maxwell equation. The first one is to derive on abelian terms a generic expression for the fields set {l_brace}A{sub {mu}I}{r_brace}. Further, show the diversity between these associated fields. Prove that every field carries a different quantum number (spin, mass, charges; C, P, T, CPT). The third one is on the photon singularity. Being the light invariance porter, it should be distinguished from others fields. This is done through the group gauge directive symmetry and Noether current. A Global Lorentz force complements the Global Maxwell by introducing three types of force. The first one generalizes the usual Lorentz force while the last two introduce relationships between fields and masses and fields with fields. A Physics of Light is derived. Based on such interpretation relating fields with same Lorentz nature, the electromagnetism is enlarged. The electromagnetic phenomena is not more restricted to Maxwell and electric charge. It englobes Maxwell and produces new types of electromagnetic fields and sectors. It centers the photon at its origin, new aspects as photonic charges and selfinteracting photons are obtained. As a case of this new electromagnetic spectrum one can take the set {l_brace}{gamma}Z{sup 0},W{sup {+-}}{r_brace}. It provides an electromagnetism involving photonic, massive, neutral, electric charged sectors which may antecede the electroweak unification.

Doria, R. [Aprendanet, Petropolis, 25600 (Brazil)

2012-09-24T23:59:59.000Z

447

ESTIMATION OF IN-SITU THERMAL CONDUCTIVITIES FROM TEMPERATURE GRADIENT MEASUREMENTS  

E-Print Network (OSTI)

where: pc v • phonon heat capacity, c• phonon velocity,fluid density, the specific heat capacity of the fluid. Thean l8cm Values of heat capacities diameter casing for three

Hoang, V.T.

2010-01-01T23:59:59.000Z

448

Thermally-related safety issues associated with thermal batteries.  

DOE Green Energy (OSTI)

Thermal batteries can experience thermal runaway under certain usage conditions. This can lead to safety issues for personnel and cause damage to associated test equipment if the battery thermally self destructs. This report discusses a number of thermal and design related issues that can lead to catastrophic destruction of thermal batteries under certain conditions. Contributing factors are identified and mitigating actions are presented to minimize or prevent undesirable thermal runaway.

Guidotti, Ronald Armand

2006-06-01T23:59:59.000Z

449

Damage Evolution in Thermal Barrier Coatings with Thermal Cycling  

Science Conference Proceedings (OSTI)

Abstract Scope, Thermal barrier coatings typically fail on cooling after prolonged thermal cycling by the growth of sub-critical interface separations. Observations ...

450

Efficient thermal management for multiprocessor systems  

E-Print Network (OSTI)

2.2.4 Thermal Modeling . . . . . . . .63 Table 4.3: Thermal Hot Spots . . . . . . . . . . . . . .Performance-Efficient Thermal Management . . . . . . . . . .

Co?kun, Ay?e K?v?lc?m

2009-01-01T23:59:59.000Z

451

Solid-State Lighting: Contacts  

NLE Websites -- All DOE Office Websites (Extended Search)

Contacts Contacts Printable Version Share this resource Send a link to Solid-State Lighting: Contacts to someone by E-mail Share Solid-State Lighting: Contacts on Facebook Tweet about Solid-State Lighting: Contacts on Twitter Bookmark Solid-State Lighting: Contacts on Google Bookmark Solid-State Lighting: Contacts on Delicious Rank Solid-State Lighting: Contacts on Digg Find More places to share Solid-State Lighting: Contacts on AddThis.com... Contacts Web site and program contacts are provided below. Website Contact Send us your comments, report problems, and/or ask questions about information on this site. Program Contacts Contact information for the Solid-State Lighting Program. Contacts | Web Site Policies | U.S. Department of Energy | USA.gov Content Last Updated: 02/14

452

Solid-State Lighting: Publications  

NLE Websites -- All DOE Office Websites (Extended Search)

Publications to someone by Publications to someone by E-mail Share Solid-State Lighting: Publications on Facebook Tweet about Solid-State Lighting: Publications on Twitter Bookmark Solid-State Lighting: Publications on Google Bookmark Solid-State Lighting: Publications on Delicious Rank Solid-State Lighting: Publications on Digg Find More places to share Solid-State Lighting: Publications on AddThis.com... Conferences & Meetings Presentations Publications Postings Articles Program Fact Sheets Technology Fact Sheets CALiPER Reports GATEWAY Reports LED Lighting Facts Reports Project Reports Studies and Reports Technology Roadmaps Product Performance Guides Webcasts Videos Tools Publications The Solid-State Lighting (SSL) program produces a comprehensive portfolio of publications, ranging from overviews of the program's research

453

Solid-State Lighting: Events  

NLE Websites -- All DOE Office Websites (Extended Search)

Events Printable Version Share this resource Send a link to Solid-State Lighting: Events to someone by E-mail Share Solid-State Lighting: Events on Facebook Tweet about Solid-State...

454

Solid-State Lighting: Partnerships  

NLE Websites -- All DOE Office Websites (Extended Search)

About the Program Printable Version Share this resource Send a link to Solid-State Lighting: Partnerships to someone by E-mail Share Solid-State Lighting: Partnerships on Facebook...

455

Another Side of Light - C  

Office of Scientific and Technical Information (OSTI)

light waves in a furnace should act much the same if they behave according to Planck's quantum law. As we noted above, the intensity of the lower-frequency light is described...

456

THERMAL PHASES OF EARTH-LIKE PLANETS: ESTIMATING THERMAL INERTIA FROM ECCENTRICITY, OBLIQUITY, AND DIURNAL FORCING  

SciTech Connect

In order to understand the climate on terrestrial planets orbiting nearby Sun-like stars, one would like to know their thermal inertia. We use a global climate model to simulate the thermal phase variations of Earth analogs and test whether these data could distinguish between planets with different heat storage and heat transport characteristics. In particular, we consider a temperate climate with polar ice caps (like the modern Earth) and a snowball state where the oceans are globally covered in ice. We first quantitatively study the periodic radiative forcing from, and climatic response to, rotation, obliquity, and eccentricity. Orbital eccentricity and seasonal changes in albedo cause variations in the global-mean absorbed flux. The responses of the two climates to these global seasons indicate that the temperate planet has 3 Multiplication-Sign the bulk heat capacity of the snowball planet due to the presence of liquid water oceans. The obliquity seasons in the temperate simulation are weaker than one would expect based on thermal inertia alone; this is due to cross-equatorial oceanic and atmospheric energy transport. Thermal inertia and cross-equatorial heat transport have qualitatively different effects on obliquity seasons, insofar as heat transport tends to reduce seasonal amplitude without inducing a phase lag. For an Earth-like planet, however, this effect is masked by the mixing of signals from low thermal inertia regions (sea ice and land) with that from high thermal inertia regions (oceans), which also produces a damped response with small phase lag. We then simulate thermal light curves as they would appear to a high-contrast imaging mission (TPF-I/Darwin). In order of importance to the present simulations, which use modern-Earth orbital parameters, the three drivers of thermal phase variations are (1) obliquity seasons, (2) diurnal cycle, and (3) global seasons. Obliquity seasons are the dominant source of phase variations for most viewing angles. A pole-on observer would measure peak-to-trough amplitudes of 13% and 47% for the temperate and snowball climates, respectively. Diurnal heating is important for equatorial observers ({approx}5% phase variations), because the obliquity effects cancel to first order from that vantage. Finally, we compare the prospects of optical versus thermal direct imaging missions for constraining the climate on exoplanets and conclude that while zero- and one-dimensional models are best served by thermal measurements, second-order models accounting for seasons and planetary thermal inertia would require both optical and thermal observations.

Cowan, Nicolas B. [Center for Interdisciplinary Exploration and Research in Astrophysics and Department of Physics and Astronomy, Northwestern University, 2131 Tech Drive, Evanston, IL 60208 (United States); Voigt, Aiko [Max Planck Institute for Meteorology, Bundesstr. 53, D-20146 Hamburg (Germany); Abbot, Dorian S., E-mail: n-cowan@nortwestern.edu [Department of Geophysical Sciences, University of Chicago, 5734 South Ellis Avenue, Chicago, IL 60637 (United States)

2012-09-20T23:59:59.000Z

457

Role of Triple Phonon Excitations on Large Angle Quasi-elastic Scattering of {sup 54}Cr+{sup 208}Pb System  

Science Conference Proceedings (OSTI)

We study the large angle quasi-elastic scattering of {sup 54}Cr+{sup 208}Pb system in terms of the full-order coupled-channels formalism. We especially investigate the role of single, double and triple phonon excitations on quasi-elastic scattering cross section as well as quasi-elastic barrier distribution of this system for which the experimental data have been measured. It is shown that the triple phonon excitations both in {sup 54}Cr and {sup 208}Pb nuclei seem to be needed by the present coupled-channels calculations in order to reproduce the experimental data of quasi-elastic cross section and barrier distribution for the {sup 54}Cr+{sup 208}Pb system. We also show that the standard value of the surface diffuseness parameter for the nuclear potential a = 0.63 fm, is preferred by the experimental quasi-elastic scattering data for this system.

Zamrun, Muhammad F. [Department of Physics, University of Malaya, Kuala Lumpur 50603 (Malaysia); Jurusan Fisika FMIPA, Universitas Haluoleo, Kendari, Sulawesi Tenggara 93232 (Indonesia); Kasim, Hasan Abu [Department of Physics, University of Malaya, Kuala Lumpur 50603 (Malaysia)

2011-03-30T23:59:59.000Z

458

Characterization of Thermal Properties of Depleted Uranium Metal Microspheres  

E-Print Network (OSTI)

Nuclear fuel comes in many forms; oxide fuel is the most commonly used in current reactor systems while metal fuel is a promising fuel type for future reactors due to neutronic performance and increased thermal conductivity. As a key heat transfer parameter, thermal conductivity describes the heat transport properties of a material based upon the density, specific heat, and thermal diffusivity. A material’s ability to transport thermal energy through its structure is a measurable property known as thermal diffusivity; the units for thermal diffusivity are given in area per unit time (e.g., m2/s). Current measurement methods for thermal diffusivity include LASER (or light) Flash Analysis and the hot-wire method. This study examines an approach that combines these previous two methods to characterize the diffusivity of a packed bed of microspheres of depleted uranium (DU) metal, which have a nominal diameter of 250 micrometers. The new apparatus is designated as the Crucible Heater Test Assembly (CHTA), and it induces a radial transient across a packed sample of microspheres then monitors the temperature profile using an array of thermocouples located at different distances from the source of the thermal transient. From the thermocouple data and an accurate time log, the thermal diffusivity of the sample may be calculated. Results indicate that DU microspheres have very low thermal conductivity, relative to solid uranium metal, and rapidly form an oxidation layer. At 500°C, the thermal conductivity of the DU microspheres was 0.431 ± 13% W/m-K compared to approximately 32 W/m-K for solid uranium metal. Characterization of the developed apparatus revealed a method that may be useful for measuring the thermal diffusivity of powders and liquids.

Humrickhouse, Carissa Joy

2012-05-01T23:59:59.000Z

459

Cooling thermal storage  

Science Conference Proceedings (OSTI)

This article gives some overall guidelines for successful operation of cooling thermal storage installations. Electric utilities use rates and other incentives to encourage thermal storage, which not only reduces their system peaks but also transfers a portion of their load from expensive daytime inefficient peaking plants to less expensive nighttime base load high efficiency coal and nuclear plants. There are hundreds of thermal storage installations around the country. Some of these are very successful; others have failed to achieve all of their predicted benefits because application considerations were not properly addressed.

Gatley, D.P.

1987-04-01T23:59:59.000Z

460

Solar Thermal Conversion  

DOE Green Energy (OSTI)

The thermal conversion process of solar energy is based on well-known phenomena of heat transfer (Kreith 1976). In all thermal conversion processes, solar radiation is absorbed at the surface of a receiver, which contains or is in contact with flow passages through which a working fluid passes. As the receiver heats up, heat is transferred to the working fluid which may be air, water, oil, or a molten salt. The upper temperature that can be achieved in solar thermal conversion depends on the insolation, the degree to which the sunlight is concentrated, and the measures taken to reduce heat losses from the working fluid.

Kreith, F.; Meyer, R. T.

1982-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "lighting phonons thermal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Success Stories: Post Office Lighting  

... Post Office reduces energy, provides better lighting for multitasks in the home and office, and saves money. The system ...

462

Photodetector with enhanced light absorption  

DOE Patents (OSTI)

A photodetector including a light transmissive electrically conducting layer having a textured surface with a semiconductor body thereon. This layer traps incident light thereby enhancing the absorption of light by the semiconductor body. A photodetector comprising a textured light transmissive electrically conducting layer of SnO.sub.2 and a body of hydrogenated amorphous silicon has a conversion efficiency about fifty percent greater than that of comparative cells. The invention also includes a method of fabricating the photodetector of the invention.

Kane, James (Lawrenceville, NJ)

1985-01-01T23:59:59.000Z

463

Can dendritic cells see light?  

E-Print Network (OSTI)

There are many reports showing that low-level light/laser therapy (LLLT) can enhance wound healing,

Hamblin, Michael R.

464

Multilayer thermal barrier coating systems  

DOE Patents (OSTI)

The present invention generally describes multilayer thermal barrier coating systems and methods of making the multilayer thermal barrier coating systems. The thermal barrier coating systems comprise a first ceramic layer, a second ceramic layer, a thermally grown oxide layer, a metallic bond coating layer and a substrate. The thermal barrier coating systems have improved high temperature thermal and chemical stability for use in gas turbine applications.

Vance, Steven J. (Orlando, FL); Goedjen, John G. (Oviedo, FL); Sabol, Stephen M. (Orlando, FL); Sloan, Kelly M. (Longwood, FL)

2000-01-01T23:59:59.000Z

465

The lighting of underground mines  

SciTech Connect

This book describes mine lighting problems. It is intended as a textbook on mine lighting knowledge, a reference book for people needing information on the subject, and as a design guide for mine personnel who lack specific training in lighting principles.

Trotter, D.A.

1983-01-01T23:59:59.000Z

466

Lighting and the Bottom Line  

E-Print Network (OSTI)

A discussion of the cost of light and how it relates to the cost of people. The new Illuminating Engineering Society recommended method of determining lighting levels will be explained. Also several ways of providing good lighting to increase productivity while saving energy and money will be included in this presentation.

Christensen, M.

1981-01-01T23:59:59.000Z

467

Slow-light solitons revisited  

E-Print Network (OSTI)

We investigate propagation of slow-light solitons in atomic media described by the nonlinear $\\Lambda$-model. Under a physical assumption, appropriate to the slow light propagation, we reduce the $\\Lambda$-scheme to a simplified nonlinear model, which is also relevant to 2D dilatonic gravity. Exact solutions describing various regimes of stopping slow-light solitons can then be readily derived.

A. V. Rybin; I. P. Vadeiko; A. R. Bishop

2006-08-11T23:59:59.000Z

468

Arnold Schwarzenegger LIGHTING RESEARCH PROGRAM  

E-Print Network (OSTI)

fluorescent task lamp. The prototype used commercially available materials: 1watt light emitting diodes to the mounting board. Development of LightEmitting Diode Task Lamp using Advanced Technologies: Prototype 2 lightemitting diode task lamp. The problem of developing an energy efficient light emitting diode task lamp

469

Arnold Schwarzenegger LIGHTING RESEARCH PROGRAM  

E-Print Network (OSTI)

/or daylighting availability. Advanced Lighting Luminaries and Systems consisted of four projects focused· · · · · · Energy-Related Environmental Research Energy Systems Integration Environmentally Preferred Advanced and costs. Demand Responsive Lighting Systems comprised three projects that developed advanced lighting

470

Density functional theory studies on theelectronic, structural, phonon dynamicaland thermo-stability properties of bicarbonates MHCO3, M D Li, Na, K  

Science Conference Proceedings (OSTI)

The structural, electronic, phonon dispersion and thermodynamic properties of MHCO3 (M D Li, Na, K) solids were investigated using density functional theory. The calculated bulk properties for both their ambient and the high-pressure phases are in good agreement with available experimental measurements. Solid phase LiHCO3 has not yet been observed experimentally. We have predicted several possible crystal structures for LiHCO3 using crystallographic database searching and prototype electrostatic ground state modeling. Our total energy and phonon free energy .FPH/ calculations predict that LiHCO3 will be stable under suitable conditions of temperature and partial pressures of CO2 and H2O. Our calculations indicate that the HCO􀀀 3 groups in LiHCO3 and NaHCO3 form an infinite chain structure through O#1; #1; #1;H#1; #1; #1;O hydrogen bonds. In contrast, the HCO􀀀 3 anions form dimers, .HCO􀀀 3 /2, connected through double hydrogen bonds in all phases of KHCO3. Based on density functional perturbation theory, the Born effective charge tensor of each atom type was obtained for all phases of the bicarbonates. Their phonon dispersions with the longitudinal optical–transverse optical splitting were also investigated. Based on lattice phonon dynamics study, the infrared spectra and the thermodynamic properties of these bicarbonates were obtained. Over the temperature range 0–900 K, the FPH and the entropies (S) of MHCO3 (M D Li, Na, K) systems vary as FPH.LiHCO3/ > FPH.NaHCO3/ > FPH.KHCO3/ and S.KHCO3/ > S.NaHCO3/ > S.LiHCO3/, respectively, in agreement with the available experimental data. Analysis of the predicted thermodynamics of the CO2 capture reactions indicates that the carbonate/bicarbonate transition reactions for Na and K could be used for CO2 capture technology, in agreement with experiments.

Duan, Yuhua; Zhang, Bo; Sorescu, Dan C.; Johnson, Karl; Majzoub, Eric H; Luebke, David R.

2012-07-01T23:59:59.000Z

471

Red light, green light | Y-12 National Security Complex  

NLE Websites -- All DOE Office Websites (Extended Search)

Red light, green light Red light, green light Red light, green light Posted: December 4, 2013 - 6:28pm After the National Nuclear Security Administration signaled Y-12 to begin resuming full operations after a potential furlough, Production Vice President Bill Tindal said Production had two objectives: refocus production employees on safety, security and quality, and ensure preparedness for normal operations. "It's tempting to jump right back in when you get the green light," Tindal said. "We were in an abnormal state that really shook people. Focusing on people came first." Production began with return-to-work briefings. "During the briefings, we asked employees what they were concerned about, what was causing them stress," Tindal said. "Another concept from the briefing was the theme

472

Thermal insulations using vacuum panels  

DOE Patents (OSTI)

Thermal insulation vacuum panels are formed of an inner core of compressed low thermal conductivity powders enclosed by a ceramic/glass envelope evaluated to a low pressure.

Glicksman, Leon R. (Lynnfield, MA); Burke, Melissa S. (Pittsburgh, PA)

1991-07-16T23:59:59.000Z

473

Ocean Thermal | Open Energy Information  

Open Energy Info (EERE)

Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon Ocean Thermal Jump to: navigation, search TODO: Add description List of Ocean Thermal Incentives...

474

Comparison of Thermal Insulation Materials.  

E-Print Network (OSTI)

??This thesis is about comparing of different thermal insulation materials of different manufactures. In our days there are a lot of different thermal insulation materials… (more)

Chaykovskiy, German

2010-01-01T23:59:59.000Z

475

Method and apparatus for thermal management of vehicle exhaust systems  

DOE Patents (OSTI)

A catalytic converter is surrounded by variable conductance insulation for maintaining the operating temperature of the catalytic converter at an optimum level, for inhibiting heat loss when raising catalytic converter temperature to light-off temperature, for storing excess heat to maintain or accelerate reaching light-off temperature, and for conducting excess heat away from the catalytic converter after reaching light-off temperature. The variable conductance insulation includes vacuum gas control and metal-to-metal thermal shunt mechanisms. Radial and axial shielding inhibits radiation and convection heat loss. Thermal storage media includes phase change material, and heat exchanger chambers and fluids carry heat to and from the catalytic converter. 7 figs.

Benson, D.K.; Potter, T.F.

1995-12-26T23:59:59.000Z

476

Infrared phonon structure in epitaxial films of Tl sub 2 Ca sub 2 Ba sub 2 Cu sub 3 O sub 10 at low temperatures  

SciTech Connect

We have used both bolometric and cavity techniques to obtain accurate submillimeter and microwave loss data for epitaxial thin films of Tl{sub 2}Ca{sub 2}Ba{sub 2}Cu{sub 3}O{sub 10} at low temperatures. These films have {Tc}=121.5 K, are c-axis oriented, contain some volume fraction of the 2:1:2:2 phase, and are characterized by excellent in-plane epitaxy. The absorptivity of these films at 100 cm{sup {minus}1} is a factor of five lower than that obtained by others from a reflectivity measurement on a ceramic sample. We observe strong phonon structure for frequencies between 70 and 600 cm{sup {minus}1}, which are in agreement with a lattice dynamical calculation. Our results show remarkably similar phonon structure to that observed in the ceramic sample. This is in strong contrast to the case for other high {Tc} superconductors such as YBa{sub 2}Cu{sub 3}O{sub 7}, where phonon structure observed in ceramic samples in absent in epitaxial oriented films and crystals because of the electronic screening due to the high conductivity of the a-b planes. At microwave frequencies the absorptivity follows a frequency squared dependence, and is consistent with the submillimeter results. 6 refs.

Miller, D.; Richards, P.L. (Lawrence Berkeley Lab., CA (United States)); Lee, W.Y. (IBM Research Div., San Jose, CA (United States). Almaden Research Center); Newman, N.; Garrison, S.M. (Conductus, Inc., Sunnyvale, CA (United States)); Martens, J.S. (Sandia National Labs., Albuquerque, NM (United States))

1992-02-01T23:59:59.000Z

477

Integrability vs Quantum Thermalization  

E-Print Network (OSTI)

Non-integrability is often taken as a prerequisite for quantum thermalization. Still, a generally accepted definition of quantum integrability is lacking. With the basis in the driven Rabi model we discuss this careless usage of the term "integrability" in connection to quantum thermalization. The model would be classified as non-integrable according to the most commonly used definitions, for example, the only preserved quantity is the total energy. Despite this fact, a thorough analysis conjectures that the system will not thermalize. Thus, our findings suggest first of all (i) that care should be paid when linking non-integrability with thermalization, and secondly (ii) that the standardly used definitions for quantum integrability are unsatisfactory.

Jonas Larson

2013-04-12T23:59:59.000Z

478

Properties of Thermal Glueballs  

E-Print Network (OSTI)

We study the properties of the 0++ glueball at finite temperature using SU(3) quenched lattice QCD. We find a significant thermal effects near T_c. We perform the \\chi^2 fit analyses adopting two Ansaetze for the spectral function, i.e., the conventional narrow-peak Ansatz and an advanced Breit-Wigner Ansatz. The latter is an extension of the former, taking account of the appearance of the thermal width at T>0. We also perform the MEM analysis. These analyses indicate that the thermal effect on the glueball is a significant thermal-width broadening \\Gamma(T_c) \\sim 300 MeV together with a modest reduction in the peak center \\Delta\\omega_0(T_c) \\sim 100 MeV.

Noriyoshi Ishii; Hideo Suganuma

2003-12-27T23:59:59.000Z

479

Thermal springs of Wyoming  

SciTech Connect

This bulletin attempts, first, to provide a comprehensive inventory of the thermal springs of Wyoming; second, to explore the geologic and hydrologic factors producing these springs; and, third, to analyze the springs collectively as an indicator of the geothermal resources of the state. A general discussion of the state's geology and the mechanisms of thermal spring production, along with a brief comparison of Wyoming's springs with worldwide thermal features are included. A discussion of geothermal energy resources, a guide for visitors, and an analysis of the flora of Wyoming's springs follow the spring inventory. The listing and analysis of Wyoming's thermal springs are arranged alphabetically by county. Tabulated data are given on elevation, ownership, access, water temperature, and flow rate. Each spring system is described and its history, general characteristics and uses, geology, hydrology, and chemistry are discussed. (MHR)

Breckenridge, R.M.; Hinckley, B.S.

1978-01-01T23:59:59.000Z

480

Thermal springs of Wyoming  

DOE Green Energy (OSTI)

This bulletin attempts, first, to provide a comprehensive inventory of the thermal springs of Wyoming; second, to explore the geologic and hydrologic factors producing these springs; and, third, to analyze the springs collectively as an indicator of the geothermal resources of the state. A general discussion of the state's geology and the mechanisms of thermal spring production, along with a brief comparison of Wyoming's springs with worldwide thermal features are included. A discussion of geothermal energy resources, a guide for visitors, and an analysis of the flora of Wyoming's springs follow the spring inventory. The listing and analysis of Wyoming's thermal springs are arranged alphabetically by county. Tabulated data are given on elevation, ownership, access, water temperature, and flow rate. Each spring system is described and its history, general characteristics and uses, geology, hydrology, and chemistry are discussed. (MHR)

Breckenridge, R.M.; Hinckley, B.S.

1978-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "lighting phonons thermal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Solar Thermal Manufacturing Activities  

Reports and Publications (EIA)

This report, Solar Thermal Collector Manufacturing Activities, providesan overview and tables with historical data spanning 2000-2009. These tables willcorrespond to similar tables to be presented in the Renewable Energy Annual 2009 andare numbered accordingly.

Michele Simmons

2010-12-01T23:59:59.000Z

482

Thermal dilepton rates from quenched lattice QCD  

E-Print Network (OSTI)

We present new lattice results on the continuum extrapolation of the vector current correlation function. Lattice calculations have been carried out in the deconfined phase at a temperature of 1.1 Tc, extending our previous results at 1.45 Tc, utilizing quenched non-perturbatively clover-improved Wilson fermions and light quark masses. A systematic analysis on multiple lattice spacings allows to perform the continuum limit of the correlation function and to extract spectral properties in the continuum limit. Our current analysis suggests the results for the electrical conductivity are proportional to the temperature and the thermal dilepton rates in the quark gluon plasma are comparable for both temperatures. Preliminary results of the continuum extrapolated correlation function at finite momenta, which relates to thermal photon rates, are also presented.

H. -T. Ding; A. Francis; O. Kaczmarek; F. Karsch; E. Laermann; S. Mukherjee; M. Müller; W. Soeldner

2013-01-30T23:59:59.000Z

483

Texas Thermal Comfort Report  

NLE Websites -- All DOE Office Websites (Extended Search)

thermal comfort thermal comfort Too often, the systems in our houses are both physically and intellectually inaccessible. In the SNAP House, HVAC components are integrated into the overall structure, and act as an experiential threshold between public and private spaces. They are located in a central, structural chase that supports the clerestory and gives the systems a functional presence within the interior. Each individual component is contained within a single chase

484

Photovoltaic-thermal collectors  

DOE Patents (OSTI)

A photovoltaic-thermal solar cell including a semiconductor body having antireflective top and bottom surfaces and coated on each said surface with a patterned electrode covering less than 10% of the surface area. A thermal-absorbing surface is spaced apart from the bottom surface of the semiconductor and a heat-exchange fluid is passed between the bottom surface and the heat-absorbing surface.

Cox, III, Charles H. (Carlisle, MA)