National Library of Energy BETA

Sample records for lighting heating ventilation

  1. Heating, Ventilation, and Air Conditioning Design

    E-Print Network [OSTI]

    Heating, Ventilation, and Air Conditioning Design Strategy for a Hot-Humid Production Builder P% postconsumer waste #12;iii Heating, Ventilation, and Air Conditioning Design Strategy for a Hot

  2. Maintenance Guide for Greenhouse Ventilation, Evaporative Cooling Heating Systems1

    E-Print Network [OSTI]

    Hill, Jeffrey E.

    AE26 Maintenance Guide for Greenhouse Ventilation, Evaporative Cooling Heating Systems1 D. E and preventive maintenance procedures for ventilation, evaporative cooling and heating systems. Ventilation a ventilation system is not operating properly, the results can be pockets of stagnant air, inadequate cooling

  3. 2014-02-07 Issuance: Certification of Commercial Heating, Ventilation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Certification of Commercial Heating, Ventilation, and Air-conditioning, Water Heating, and Refrigeration Equipment; Notice of Proposed Rulemaking 2014-02-07 Issuance: Certification...

  4. Heating, Ventilation and Air Conditioning Efficiency

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    outside pump circulating heat transfer fluid air make-up inside exhaust 24 Cogged V Belts A major N.C. Manufacturer Tested 2-17 Months (yr 1985) .052KWH (.13 EP) 2700 Hours...

  5. Multifamily Individual Heating and Ventilation Systems, Lawrence, Massachusetts (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2013-11-01

    The conversion of an older Massachusetts building into condominiums illustrates a safe, durable, and cost-effective solution for heating and ventilation systems that can potentially benefit millions of multifamily buildings. Merrimack Valley Habitat for Humanity (MVHfH) partnered with U.S. Department of Energy Building America team Building Science Corporation (BSC) to provide high performance affordable housing for 10 families in the retrofit of an existing mass masonry building (a former convent). The original ventilation design for the project was provided by a local engineer and consisted of a single large heat recovery ventilator (HRV) located in a mechanical room in the basement with a centralized duct system providing supply air to the main living space and exhausting stale air from the single bathroom in each apartment. This design was deemed to be far too costly to install and operate for several reasons: the large central HRV was oversized and the specified flows to each apartment were much higher than the ASHRAE 62.2 rate; an extensive system of ductwork, smoke and fire dampers, and duct chases were specified; ductwork required a significant area of dropped ceilings; and the system lacked individual ventilation control in the apartments

  6. Multi-objective optimization of the HVAC (heating, ventilation, and air conditioning) system performance

    E-Print Network [OSTI]

    Kusiak, Andrew

    Multi-objective optimization of the HVAC (heating, ventilation, and air conditioning) system, ventilation, and air conditioning) system in a typical office facility is presented. A multi-layer perceptron. 1. Introduction HVAC (heating, ventilating and air conditioning) systems are designed to maintain

  7. Heating, Ventilation and Air Conditioning Efficiency

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum12,ExecutiveFinancing ProgramsDepartment of¡ ¢ £Space Heating

  8. Comparison of freezing control strategies for residential air-to-air heat recovery ventilators

    SciTech Connect (OSTI)

    Phillips, E.G.; Bradley, L.C. ); Chant, R.E. ); Fisher, D.R.

    1989-01-01

    A comparison of the energy performance of defrost and frost control strategies for residential air-to-air heat recovery ventilators (HRV) has been carried out by using computer simulations for various climatic conditions. This paper discusses the results and conclusions from the comparisons and their implications for the heat recovery ventilator manufacturers and system designers.

  9. Economic Analysis and Optimization of Exterior Insulation Requirements for Ventilated Buildings at Power Generation Facilities with High Internal Heat Gain

    E-Print Network [OSTI]

    Hughes, Douglas E.

    2010-12-17

    Industrial buildings require a large amount of heating and ventilation equipment to maintain the indoor environment within acceptable levels for personnel protection and equipment protection. The required heating and ventilation equipment...

  10. Proposed Adjudication of the Contract for the Heating, Ventilating and Air Conditioning Installations for the ISR Buildings

    E-Print Network [OSTI]

    1968-01-01

    Proposed Adjudication of the Contract for the Heating, Ventilating and Air Conditioning Installations for the ISR Buildings

  11. Transpired Solar Collector at NREL's Waste Handling Facility Uses Solar Energy to Heat Ventilation Air

    SciTech Connect (OSTI)

    2010-09-08

    The transpired solar collector was installed on NREL's Waste handling Facility (WHF) in 1990 to preheat ventilation air. The electrically heated WHF was an ideal candidate for the this technology - requiring a ventilation rate of 3,000 cubic feet per meter to maintain safe indoor conditions.

  12. Evaluation of Existing Technologies for Meeting Residential Ventilation

    E-Print Network [OSTI]

    ................................................................................................ 8 4. Heat Recovery Ventilator (HRV

  13. HEAT TRANSFERS IN A DOUBLE SKIN ROOF VENTILATED BY NATURAL CONVECTION IN SUMMER TIME

    E-Print Network [OSTI]

    Boyer, Edmond

    1 HEAT TRANSFERS IN A DOUBLE SKIN ROOF VENTILATED BY NATURAL CONVECTION IN SUMMER TIME P. H or in tropical and arid countries. In this work, radiation, convection and conduction heat transfers-dimensional numerical simulation of the heat transfers through the double skin reveals the most important parameters

  14. Project title: Natural ventilation, solar heating and integrated low-energy building design

    E-Print Network [OSTI]

    2009-07-10

    emissions targets. That is why the Cambridge-MIT Institute set up a project to design buildings that consume less energy. The Challenge Their work focuses on the design of energy efficient buildings that use natural ventilation processes, solar... Awards E-stack brings a breath of fresh air to UK schools HOME ABOUT US FUNDING OPPORTUNITIES PROJECTS EDUCATION NEWS EVENTS DOWNLOADS CONTACT US PROJECTS Natural Ventilation Solar Heating and Integrated Low-Energy Building Design SEARCH: Go Page 1...

  15. Lighting system with heat distribution face plate

    DOE Patents [OSTI]

    Arik, Mehmet; Weaver, Stanton Earl; Stecher, Thomas Elliot; Kuenzler, Glenn Howard; Wolfe, Jr., Charles Franklin; Li, Ri

    2013-09-10

    Lighting systems having a light source and a thermal management system are provided. The thermal management system includes synthetic jet devices, a heat sink and a heat distribution face plate. The synthetic jet devices are arranged in parallel to one and other and are configured to actively cool the lighting system. The heat distribution face plate is configured to radially transfer heat from the light source into the ambient air.

  16. Light weight and economical exhaust heat exchanger for waste...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Light weight and economical exhaust heat exchanger for waste heat recovery using mixed radiant and convective heat transfer Light weight and economical exhaust heat exchanger for...

  17. Transpired Solar Collector at NREL's Waste Handling Facility Uses Solar Energy to Heat Ventilation Air (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2010-09-01

    The transpired solar collector was installed on NREL's Waste handling Facility (WHF) in 1990 to preheat ventilation air. The electrically heated WHF was an ideal candidate for the this technology - requiring a ventilation rate of 3,000 cubic feet per meter to maintain safe indoor conditions.

  18. Existing Whole-House Solutions Case Study: Multifamily Individual Heating and Ventilation Systems, Lawrence, Massachusetts

    SciTech Connect (OSTI)

    2013-11-01

    The conversion of an older Massachusetts building into condominiums illustrates a safe, durable, and cost-effective solution for heating and ventilation systems that can potentially benefit millions of multifamily buildings. In this project, Merrimack Valley Habitat for Humanity (MVHfH) partnered with U.S. Department of Energy Building America team Building Science Corporation (BSC) to provide high performance affordable housing for 10 families in the retrofit of an existing mass masonry building (a former convent).

  19. Heating, Ventilation, and Air Conditioning Projects | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum12,ExecutiveFinancing ProgramsDepartment of¡ ¢ £Space HeatingEmerging

  20. Meeting Residential Ventilation Standards Through Dynamic Control of Ventilation Systems

    E-Print Network [OSTI]

    Sherman, Max H.

    2011-01-01

    heat recovery ventilator [HRV], central fan integratedfor a period of time. Heat recovery ventilator (HRV).A residential HRV includes both supply and exhaust airflows

  1. Outdoor Air, Heat Wheels and JCPenney: A New Approach to Retail Ventilation

    E-Print Network [OSTI]

    Smith, C. S.; Bartlett, T. A.

    1998-01-01

    grains/lbat) Winter 70F Dry Bulb Ventilation Rates 0.3 cWSF for the 1" Floor 0.2 cWSF for the 2"* Floor Design Electrical Loading 2.3 W/SF average over the sales area - Ambient Design Conditions Summer 95F Design Dry Bulb 77F Mean... with the heat wheel were significant at approximately $1 1,000, they were limited by the low utility rate of hs location. Neither the energy charge nor the electrical demand charge were significantly high. This lower utility rate lengthened the simple...

  2. Proposal for the award of a contract for dismantling, removal and packaging of the existing Heating, Ventilation and Air-Conditioning (HVAC) systems in the PS tunnel

    E-Print Network [OSTI]

    2012-01-01

    Proposal for the award of a contract for dismantling, removal and packaging of the existing Heating, Ventilation and Air-Conditioning (HVAC) systems in the PS tunnel

  3. Adjudication of a Contract for the Supply of the Heating and Ventilation Installations for the Auxiliary Buildings of the 300 GeV Accelerator

    E-Print Network [OSTI]

    1972-01-01

    Adjudication of a Contract for the Supply of the Heating and Ventilation Installations for the Auxiliary Buildings of the 300 GeV Accelerator

  4. Information Concerning the Contract for the Heating and Ventilation Installations for the Auxiliary Buildings of the 300 GeV Accelerator

    E-Print Network [OSTI]

    1974-01-01

    Information Concerning the Contract for the Heating and Ventilation Installations for the Auxiliary Buildings of the 300 GeV Accelerator

  5. Proposal for the award of a contract for the design, supply, installation and commissioning of an HVAC (Heating, Ventilation and Air Conditioning) system for Building 3862

    E-Print Network [OSTI]

    2014-01-01

    Proposal for the award of a contract for the design, supply, installation and commissioning of an HVAC (Heating, Ventilation and Air Conditioning) system for Building 3862

  6. Proposal for the award of a contract for the supply and installation of heating, ventilation and air conditioning facilities for the new "Polymer Laboratory" (Building 771)

    E-Print Network [OSTI]

    2015-01-01

    Proposal for the award of a contract for the supply and installation of heating, ventilation and air conditioning facilities for the new "Polymer Laboratory" (Building 771)

  7. 2014-02-07 Issuance: Certification of Commercial Heating, Ventilation, and Air-conditioning, Water Heating, and Refrigeration Equipment; Notice of Proposed Rulemaking

    Broader source: Energy.gov [DOE]

    This document is a pre-publication Federal Register notice of proposed rulemaking regarding certification of commercial heating, ventilation, and air-conditioning, water-heating, and refrigeration equipment, as issued by the Deputy Assistant Secretary for Energy Efficiency on February 7, 2014.

  8. Wireless RF Distribution in Buildings using Heating and Ventilation Ducts Christopher P. Diehl, Benjamin E. Henty, Nikhil Kanodia, and Daniel D. Stancil

    E-Print Network [OSTI]

    Stancil, Daniel D.

    Wireless RF Distribution in Buildings using Heating and Ventilation Ducts Christopher P. Diehl in buildings is proposed in which the heating and ventilation ducts are used as waveguides. Because to a lower-cost system. Initial experimental results are presented that demonstrate duct-assisted propagation

  9. Gray-box model for energy-efficient selection of set point hysteresis in heating, ventilation, air conditioning, and refrigeration controllers

    E-Print Network [OSTI]

    Bahrami, Majid

    Energy efficiency Gray-box model a b s t r a c t Many heating, ventilation, air conditioning by Heating, Ventilation, Air Conditioning, and Refrigeration (HVACR) systems [1]. HVACR energy consumption, for instance, may use up to 80% of the total energy consumed in the supermarket [3]. Moreover, Air Conditioning

  10. Development of an Integrated Residential Heating, Ventilation, Cooling, and Dehumidification System for Residences

    SciTech Connect (OSTI)

    Hoeschele, M.A.; D.A. Springer

    2008-06-18

    The Need and the Opportunity Codes such as ASHRAE 90.2 and IECC, and programs such as Energy Star and Builders Challenge, are causing new homes to be built to higher performance standards. As a result sensible cooling loads in new homes are going down, but indoor air quality prerogatives are causing ventilation rates and moisture loads to increase in humid climates. Conventional air conditioners are unable to provide the low sensible heat ratios that are needed to efficiently cool and dehumidify homes since dehumidification potential is strongly correlated with cooling system operating hours. The project team saw an opportunity to develop a system that is at least as effective as a conventional air conditioner plus dehumidifier, removes moisture without increasing the sensible load, reduces equipment cost by integrating components, and simplifies installation. Project Overview Prime contractor Davis Energy Group led a team in developing an Integrated Heating, Ventilation, Cooling, and Dehumidification (I-HVCD) system under the DOE SBIR program. Phase I and II SBIR project activities ran from July 2003 through December 2007. Tasks included: (1) Mechanical Design and Prototyping; (2) Controls Development; (3) Laboratory and Field Testing; and (4) Commercialization Activities Technology Description. Key components of the prototype I-HVCD system include an evaporator coil assembly, return and outdoor air damper, and controls. These are used in conjunction with conventional components that include a variable speed air handler or furnace, and a two-stage condensing unit. I-HVCD controls enable the system to operate in three distinct cooling modes to respond to indoor temperature and relative humidity (RH) levels. When sensible cooling loads are high, the system operates similar to a conventional system but varies supply airflow in response to indoor RH. In the second mode airflow is further reduced, and the reheat coil adds heat to the supply air. In the third mode, the reheat coil adds additional heat to maintain the supply air temperature close to the return air temperature (100% latent cooling). Project Outcomes Key Phase II objectives were to develop a pre-production version of the system and to demonstrate its performance in an actual house. The system was first tested in the laboratory and subsequently underwent field-testing at a new house in Gainesville, Florida. Field testing began in 2006 with monitoring of a 'conventional best practices' system that included a two stage air conditioner and Energy Star dehumidifier. In September 2007, the I-HVCD components were installed for testing. Both systems maintained uniform indoor temperatures, but indoor RH control was considerably better with the I-HVCD system. The daily variation from average indoor humidity conditions was less than 2% for the I-HVCD vs. 5-7% for the base case system. Data showed that the energy use of the two systems was comparable. Preliminary installed cost estimates suggest that production costs for the current I-HVCD integrated design would likely be lower than for competing systems that include a high efficiency air conditioner, dehumidifier, and fresh air ventilation system. Project Benefits This project verified that the I-HVCD refrigeration compacts are compact (for easy installation and retrofit) and can be installed with air conditioning equipment from a variety of manufacturers. Project results confirmed that the system can provide precise indoor temperature and RH control under a variety of climate conditions. The I-HVCD integrated approach offers numerous benefits including integrated control, easier installation, and reduced equipment maintenance needs. Work completed under this project represents a significant step towards product commercialization. Improved indoor RH control and fresh air ventilation are system attributes that will become increasingly important in the years ahead as building envelopes improve and sensible cooling loads continue to fall. Technologies like I-HVCD will be instrumental in meeting goals set by Building America

  11. Expert system for the design of heating, ventilating, and air-conditioning systems. Master's thesis

    SciTech Connect (OSTI)

    Camejo, P.J.

    1989-12-01

    Expert systems are computer programs that seek to mimic human reason. An expert system shelf, a software program commonly used for developing expert systems in a relatively short time, was used to develop a prototypical expert system for the design of heating, ventilating, and air-conditioning (HVAC) systems in buildings. Because HVAC design involves several related knowledge domains, developing an expert system for HVAC design requires the integration of several smaller expert systems known as knowledge bases. A menu program and several auxiliary programs for gathering data, completing calculations, printing project reports, and passing data between the knowledge bases are needed and have been developed to join the separate knowledge bases into one simple-to-use program unit.

  12. Airflow reduction during cold weather operation of residential heat recovery ventilators

    SciTech Connect (OSTI)

    McGugan, C.A.; Edwards, P.F.; Riley, M.A.

    1987-06-01

    Laboratory measurements of the performance of residential heat recovery ventilators have been carried out for the R-2000 Energy Efficient Home Program. This work was based on a preliminary test procedure developed by the Canadian Standards Association, part of which calls for testing the HRV under cold weather conditions. An environmental chamber was used to simulate outdoor conditions. Initial tests were carried out with an outdoor temperature of -20/sup 0/C; subsequent tests were carried out at a temperature of -25/sup 0/C. During the tests, airflows, temperatures, and relative humidities of airstreams entering and leaving the HRV, along with electric power inputs, were monitored. Frost buildup in the heat exchangers and defrost mechanisms, such as fan shutoff or recirculation, led to reductions in airflows. The magnitude of the reductions is dependent on the design of the heat exchanger and the defrost mechanism used. This paper presents the results of tests performed on a number of HRVs commercially available in Canada at the time of the testing. The flow reductions for the various defrost mechanisms are discussed.

  13. Modelica Library for Building Heating, Ventilation and Air-Conditioning Systems

    SciTech Connect (OSTI)

    Wetter, Michael

    2009-06-17

    This paper presents a freely available Modelica library for building heating, ventilation and air conditioning systems. The library is based on the Modelica.Fluid library. It has been developed to support research and development of integrated building energy and control systems. The primary applications are controls design, energy analysis and model-based operation. The library contains dynamic and steady-state component models that are applicable for analyzing fast transients when designing control algorithms and for conducting annual simulations when assessing energy performance. For most models, dimensional analysis is used to compute the performance for operating points that differ from nominal conditions. This allows parameterizing models in the absence of detailed geometrical information which is often impractical to obtain during the conceptual design phase of building systems. In the first part of this paper, the library architecture and the main classes are described. In the second part, an example is presented in which we implemented a model of a hydronic heating system with thermostatic radiator valves and thermal energy storage.

  14. Promising Technology: Demand Control Ventilation

    Broader source: Energy.gov [DOE]

    Demand control ventilation (DCV) measures carbon dioxide concentrations in return air or other strategies to measure occupancy, and accurately matches the ventilation requirement. This system reduces ventilation when spaces are vacant or at lower than peak occupancy. When ventilation is reduced, energy savings are accrued because it is not necessary to heat, cool, or dehumidify as much outside air.

  15. Covered Product Category: Light Commercial Heating and Cooling...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Federal purchases of light commercial heating and cooling equipment and how to maximize energy savings throughout products' useful lives. This acquisition guidance applies to...

  16. Energy Savings Potential and Research, Development, & Demonstration Opportunities for Residential Building Heating, Ventilation, and Air Conditioning Systems

    SciTech Connect (OSTI)

    Goetzler, William; Zogg, Robert; Young, Jim; Schmidt, Justin

    2012-10-01

    This report is an assessment of 135 different heating, ventilation, and air-conditioning (HVAC) technologies for U.S. residential buildings to identify and provide analysis on 19 priority technology options in various stages of development. The analyses include an estimation of technical energy-savings potential, descriptions of technical maturity, descriptions of non-energy benefits, descriptions of current barriers for market adoption, and descriptions of the technology's applicability to different building or HVAC equipment types. From these technology descriptions, are suggestions for potential research, development and demonstration (RD&D) initiatives that would support further development of the priority technology options.

  17. Energy Savings Potential and Research, Development, & Demonstration Opportunities for Commercial Building Heating, Ventilation, and Air Conditioning Systems

    SciTech Connect (OSTI)

    none,

    2011-09-01

    This report covers an assessment of 182 different heating, ventilation, and air-conditioning (HVAC) technologies for U.S. commercial buildings to identify and provide analysis on 17 priority technology options in various stages of development. The analyses include an estimation of technical energy-savings potential, description of technical maturity, description of non-energy benefits, description of current barriers for market adoption, and description of the technologys applicability to different building or HVAC equipment types. From these technology descriptions, are suggestions for potential research, development and demonstration (RD&D) initiatives that would support further development of the priority technology options.

  18. Optimization of the Fin Heat Pipe for Ventilating and Air Conditioning with a Genetic Algorithm

    E-Print Network [OSTI]

    Qian, J.; Sun, D.; Li, G.

    2006-01-01

    This paper illustrates that use of a heat pipe as a heat-reclaiming device can significantly influence the air-conditioning system. It analyzes the heat transfer model of the uniform annular fin heat pipe under the condition of air conditioning...

  19. Covered Product Category: Light Commercial Heating and Cooling

    Broader source: Energy.gov [DOE]

    Federal purchases of light commercial heating and cooling equipment must be ENERGY STARqualified. Federal laws and requirements mandate that agencies meet these efficiency requirements in all procurement and acquisition actions that are not specifically exempted by law. This product overview explains how to meet energy-efficiency requirements for Federal purchases of light commercial heating and cooling equipment and how to maximize energy savings throughout products' useful lives.

  20. Advanced control strategies for heating, ventilation, air-conditioning, and refrigeration systemsAn overview: Part I: Hard control

    SciTech Connect (OSTI)

    D. Subbaram Naidu; Craig G. Rieger

    2011-02-01

    A chronological overview of the advanced control strategies for heating, ventilation, air-conditioning, and refrigeration (HVAC&R) is presented in this article. The overview focuses on hard-computing or control techniques, such as proportional-integral-derivative, optimal, nonlinear, adaptive, and robust; soft-computing or control techniques, such as neural networks, fuzzy logic, genetic algorithms; and on the fusion or hybrid of hard- and soft-control techniques. Thus, it is to be noted that the terminology hard and soft computing/control has nothing to do with the hardware and software that is being generally used. Part I of a two-part series focuses on hard-control strategies, and Part II focuses on softand fusion-control in addition to some future directions in HVAC&R research. This overview is not intended to be an exhaustive survey on this topic, and any omission of other works is purely unintentional.

  1. Investigation of a radiantly heated and cooled office with an integrated desiccant ventilation unit

    E-Print Network [OSTI]

    Gong, Xiangyang

    2009-05-15

    compares the heating load and comfort level as measured by uniformity of operative temperature for two different layouts of radiators in the same geometric space. The air exchange rate has been identified as an important factor which affects energy saving...

  2. Heat transfers in a double-skin roof ventilated by natural convection in summer time

    E-Print Network [OSTI]

    Biwole, Pascal; Pompeo, C

    2013-01-01

    The double-skin roofs investigated in this paper are formed by adding a metallic screen on an existing sheet metal roof. The system enhances passive cooling of dwellings and can help diminishing power costs for air conditioning in summer or in tropical and arid countries. In this work, radiation, convection and conduction heat transfers are investigated. Depending on its surface properties, the screen reflects a large amount of oncoming solar radiation. Natural convection in the channel underneath drives off the residual heat. The bi-dimensional numerical simulation of the heat transfers through the double skin reveals the most important parameters for the system's efficiency. They are, by order of importance, the sheet metal surface emissivity, the screen internal and external surface emissivity, the insulation thickness and the inclination angle for a channel width over 6 cm. The influence of those parameters on Rayleigh and Nusselt numbers is also investigated. Temperature and air velocity profiles on seve...

  3. DEMAND CONTROLLED VENTILATION AND CLASSROOM VENTILATION

    SciTech Connect (OSTI)

    Fisk, William J.; Mendell, Mark J.; Davies, Molly; Eliseeva, Ekaterina; Faulkner, David; Hong, Tienzen; Sullivan, Douglas P.

    2014-01-06

    This document summarizes a research effort on demand controlled ventilation and classroom ventilation. The research on demand controlled ventilation included field studies and building energy modeling. Major findings included: ? The single-location carbon dioxide sensors widely used for demand controlled ventilation frequently have large errors and will fail to effectively control ventilation rates (VRs).? Multi-location carbon dioxide measurement systems with more expensive sensors connected to multi-location sampling systems may measure carbon dioxide more accurately.? Currently-available optical people counting systems work well much of the time but have large counting errors in some situations. ? In meeting rooms, measurements of carbon dioxide at return-air grilles appear to be a better choice than wall-mounted sensors.? In California, demand controlled ventilation in general office spaces is projected to save significant energy and be cost effective only if typical VRs without demand controlled ventilation are very high relative to VRs in codes. Based on the research, several recommendations were developed for demand controlled ventilation specifications in the California Title 24 Building Energy Efficiency Standards.The research on classroom ventilation collected data over two years on California elementary school classrooms to investigate associations between VRs and student illness absence (IA). Major findings included: ? Median classroom VRs in all studied climate zones were below the California guideline, and 40percent lower in portable than permanent buildings.? Overall, one additional L/s per person of VR was associated with 1.6percent less IA. ? Increasing average VRs in California K-12 classrooms from the current average to the required level is estimated to decrease IA by 3.4percent, increasing State attendance-based funding to school districts by $33M, with $6.2 M in increased energy costs. Further VR increases would provide additional benefits.? Confirming these findings in intervention studies is recommended. ? Energy costs of heating/cooling unoccupied classrooms statewide are modest, but a large portion occurs in relatively few classrooms.

  4. Proposal for the award of a contract for the design, supply, installation and commissioning of a Heating Ventilation and Air Conditioning (HVAC) system for the HIE-ISOLDE infrastructure

    E-Print Network [OSTI]

    2012-01-01

    Proposal for the award of a contract for the design, supply, installation and commissioning of a Heating Ventilation and Air Conditioning (HVAC) system for the HIE-ISOLDE infrastructure

  5. Hybrid Solar Lighting Provides Energy Savings and Reduces Waste Heat

    SciTech Connect (OSTI)

    Lapsa, Melissa Voss; Maxey, L Curt; Earl, Dennis Duncan; Beshears, David L; Ward, Christina D; Parks, James Edgar

    2006-01-01

    ABSTRACT Artificial lighting is the largest component of electricity use in commercial U.S. buildings. Hybrid solar lighting (HSL) provides an exciting new means of reducing energy consumption while also delivering significant ancillary benefits associated with natural lighting in buildings. As more than half of all federal facilities are in the Sunbelt region (defined as having an average direct solar radiation of greater than 4 kWh/m2/day) and as more than half of all square footage available in federal buildings is also in the Sunbelt, HSL is an excellent technology fit for federal facilities. The HSL technology uses a rooftop, 4-ft-wide dish and secondary mirror that track the sun throughout the day (Fig. 1). The collector system focuses the sunlight onto 127 optical fibers. The fibers serve as flexible light pipes and are connected to hybrid light fixtures that have special diffusion rods that spread out the light in all directions. One collector powers about eight hybrid light fixtures-which can illuminate about 1,000 square feet. The system tracks at 0.1 accuracy, required by the two-mirror geometry to keep the focused beam on the fiber bundle. When sunlight is plentiful, the optical fibers in the luminaires provide all or most of the light needed in an area. During times of little or no sunlight, a sensor controls the intensity of the artificial lamps to maintain a desired illumination level. Unlike conventional electric lamps, the natural light produces little to no waste heat and is cool to the touch. This is because the system's solar collector removes the infrared light-the part of the spectrum that generates a lot of the heat in conventional bulbs-from the sunlight.

  6. Meeting Residential Ventilation Standards Through Dynamic Control of Ventilation Systems

    SciTech Connect (OSTI)

    Sherman, Max H.; Walker, Iain S.

    2011-04-01

    Existing ventilation standards, including American Society of Heating, Refrigerating, and Air-conditioning Engineers (ASHRAE) Standard 62.2, specify continuous operation of a defined mechanical ventilation system to provide minimum ventilation, with time-based intermittent operation as an option. This requirement ignores several factors and concerns including: other equipment such as household exhaust fans that might incidentally provide ventilation, negative impacts of ventilation when outdoor pollutant levels are high, the importance of minimizing energy use particularly during times of peak electricity demand, and how the energy used to condition air as part of ventilation system operation changes with outdoor conditions. Dynamic control of ventilation systems can provide ventilation equivalent to or better than what is required by standards while minimizing energy costs and can also add value by shifting load during peak times and reducing intake of outdoor air contaminants. This article describes the logic that enables dynamic control of whole-house ventilation systems to meet the intent of ventilation standards and demonstrates the dynamic ventilation system control concept through simulations and field tests of the Residential Integrated Ventilation-Energy Controller (RIVEC).

  7. Energy Recovery Ventilator Membrane Efficiency Testing

    E-Print Network [OSTI]

    Rees, Jennifer Anne

    2013-05-07

    A test setup was designed and built to test energy recovery ventilator membranes. The purpose of this test setup was to measure the heat transfer and water vapor transfer rates through energy recover ventilator membranes and find their effectiveness...

  8. Ventilative cooling

    E-Print Network [OSTI]

    Graa, Guilherme Carrilho da, 1972-

    1999-01-01

    This thesis evaluates the performance of daytime and nighttime passive ventilation cooling strategies for Beijing, Shanghai and Tokyo. A new simulation method for cross-ventilated wind driven airflow is presented . This ...

  9. Development of a Waste Heat Recovery System for Light Duty Diesel...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    a Waste Heat Recovery System for Light Duty Diesel Engines Development of a Waste Heat Recovery System for Light Duty Diesel Engines Substantial increases in engine efficiency of a...

  10. A Waste Heat Recovery System for Light Duty Diesel Engines

    SciTech Connect (OSTI)

    Briggs, Thomas E; Wagner, Robert M; Edwards, Kevin Dean; Curran, Scott; Nafziger, Eric J

    2010-01-01

    In order to achieve proposed fuel economy requirements, engines must make better use of the available fuel energy. Regardless of how efficient the engine is, there will still be a significant fraction of the fuel energy that is rejected in the exhaust and coolant streams. One viable technology for recovering this waste heat is an Organic Rankine Cycle. This cycle heats a working fluid using these heat streams and expands the fluid through a turbine to produce shaft power. The present work was the development of such a system applied to a light duty diesel engine. This lab demonstration was designed to maximize the peak brake thermal efficiency of the engine, and the combined system achieved an efficiency of 44.4%. The design of the system is discussed, as are the experimental performance results. The system potential at typical operating conditions was evaluated to determine the practicality of installing such a system in a vehicle.

  11. Low and high Temperature Dual Thermoelectric Generation Waste Heat Recovery System for Light-Duty Vehicles

    Broader source: Energy.gov [DOE]

    Developing a low and high temperature dual thermoelectric generation waste heat recovery system for light-duty vehicles.

  12. Equivalence in Ventilation and Indoor Air Quality

    SciTech Connect (OSTI)

    Sherman, Max; Walker, Iain; Logue, Jennifer

    2011-08-01

    We ventilate buildings to provide acceptable indoor air quality (IAQ). Ventilation standards (such as American Society of Heating, Refrigerating, and Air-Conditioning Enginners [ASHRAE] Standard 62) specify minimum ventilation rates without taking into account the impact of those rates on IAQ. Innovative ventilation management is often a desirable element of reducing energy consumption or improving IAQ or comfort. Variable ventilation is one innovative strategy. To use variable ventilation in a way that meets standards, it is necessary to have a method for determining equivalence in terms of either ventilation or indoor air quality. This study develops methods to calculate either equivalent ventilation or equivalent IAQ. We demonstrate that equivalent ventilation can be used as the basis for dynamic ventilation control, reducing peak load and infiltration of outdoor contaminants. We also show that equivalent IAQ could allow some contaminants to exceed current standards if other contaminants are more stringently controlled.

  13. Development of a Residential Integrated Ventilation Controller

    E-Print Network [OSTI]

    Walker, Iain

    2013-01-01

    B. , and Gan, G. 1998 Heat Recovery with Low Pressure LossSherman, M.H. 2003. Heat Recovery in Building Envelopes. 1998. Field Survey of Heat Recovery Ventilation Systems.

  14. The Impact of CO2-Based Demand-Controlled Ventilation on Energy Consumptions for Air Source Heat Pumps in Schools

    E-Print Network [OSTI]

    AlRaees, N.; Nassif, N.

    2013-01-01

    There have been increasingly growing concerns for many years over the quality of the air inside buildings and the associated energy use. The CO2-based demand-controlled ventilation DCV offers a great opportunity to reduce energy consumption in HVAC...

  15. Natural Ventilation for Energy Savings in California Commercial Buildings

    E-Print Network [OSTI]

    2014-01-01

    hybrid natural ventilation system was unable to provide ample cooling during the winter months, which caused a heat pump

  16. Development of a Residential Integrated Ventilation Controller

    E-Print Network [OSTI]

    Walker, Iain

    2013-01-01

    HRV) efficient systems (i.e. , ERV or HRV systems) will not workHeat Recovery Ventilator (HRV) In this system, the primary

  17. Building America Case Study: Ventilation System Effectiveness...

    Energy Savers [EERE]

    Location: Tyler, TX Partners: University of Texas, TxAIRE, uttyler.edutxairehouses Building Science Corporation, buildingscience.com Building Component: Heating, ventilating,...

  18. Promising Technology: Energy Recovery Ventilation

    Broader source: Energy.gov [DOE]

    Energy recovery ventilation (ERV) systems exchange heat between outgoing exhaust air and the incoming outdoor air. Using exhaust air to pre-condition supply air can reduce the capacity of the heating and cooling system and save heating and cooling energy consumption.

  19. Calculation of heat capacities of light and heavy water by path-integral molecular dynamics

    E-Print Network [OSTI]

    Nielsen, Steven O.

    Calculation of heat capacities of light and heavy water by path-integral molecular dynamics 30 September 2005 As an application of atomistic simulation methods to heat capacities, path-integral has estimated the heat capacities too high, the quantum simulation based on path-integral molecular

  20. Numerical Simulation of a Displacement Ventilation System with Multi-heat Sources and Analysis of Influential Factors

    E-Print Network [OSTI]

    Wu, X.; Gao, J.; Wu, W.

    2006-01-01

    with double heat sources are numerically simulated. The model is verified by experimental data. The results of the study show that thermal stratification characteristics exist in indoor temperature fields. The paper also analyzes the influence of different...

  1. Energy Department Invests to Save on Heating, Cooling and Lighting...

    Broader source: Energy.gov (indexed) [DOE]

    National Laboratory, commercial building owners could save an average 38 percent on heating and cooling bills by installing energy control systems. Find additional detail on...

  2. Ventilation Systems for Cooling | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ventilation can help keep your home cool during hot days. To avoid heat buildup in your home, plan ahead by landscaping your lot to shade your house. If you replace your roof,...

  3. Floor-supply displacement ventilation system

    E-Print Network [OSTI]

    Kobayashi, Nobukazu, 1967-

    2001-01-01

    Research on indoor environments has received more attention recently because reports of symptoms and other health complaints related to indoor environments have been increasing. Heating, ventilating, and air-conditioning ...

  4. MODELING PARTICLE DEPOSITION ON HVAC HEAT EXCHANGERS

    E-Print Network [OSTI]

    in supplying ventilation and air conditioning. This paper explores mechanisms that cause particle deposition energy and indoor air quality degradation for heating, ventilating, and air conditioning (HVAC) systems

  5. Assessment of Indoor Air Quality Benefits and Energy Costs of Mechanical Ventilation

    E-Print Network [OSTI]

    Logue, J.M.

    2012-01-01

    was assumed that a heat recovery ventilator (HRV) was usedand that the HRV was connected to the homes central heating

  6. Risk Factors in Heating, Ventilating, and Air-Conditioning Systemsfor Occupant Symptoms in U.S. Office Buildings: the EPA BASE Study

    SciTech Connect (OSTI)

    Mendell, M.J.; Lei-Gomez, Q.; Mirer, A.; Seppanen, O.; Brunner, G.

    2006-10-01

    Nonspecific building-related symptoms among occupants of modern office buildings worldwide are common and may be associated with important reductions in work performance, but their etiology remains uncertain. Characteristics of heating, ventilating, and air-conditioning (HVAC) systems in office buildings that increase risk of indoor contaminants or reduce effectiveness of ventilation may cause adverse exposures and subsequent increase in these symptoms among occupants. We analyzed data collected by the U.S. EPA from a representative sample of 100 large U.S. office buildings--the Building Assessment and Survey Evaluation (BASE) study--using multivariate logistic regression models with generalized estimating equations adjusted for potential personal and building confounders. We estimated odds ratios (ORs) and 95% confidence intervals (CIs) for associations between seven building-related symptom outcomes and selected HVAC system characteristics. Among factors of HVAC design or configuration: Outdoor air intakes less than 60 m above the ground were associated with approximately doubled odds of most symptoms assessed. Sealed (non-operable) windows were associated with increases in skin and eye symptoms (ORs= 1.9, 1.3, respectively). Outdoor air intake without an intake fan was associated with an increase in eye symptoms (OR=1.7). Local cooling coils were associated with increased headache (OR=1.5). Among factors of HVAC condition, maintenance, or operation: the presence of humidification systems in good condition was associated with an increase in headache (OR=1.4), whereas the presence of humidification systems in poor condition was associated with increases in fatigue/difficulty concentrating, as well as upper respiratory symptoms (ORs=1.8, 1.5). No regularly scheduled inspections for HVAC components was associated with increased eye symptoms, cough and upper respiratory symptoms (ORs=2.2, 1.6, 1.5). Less frequent cleaning of cooling coils or drip pans was associated with increased headache (OR=1.6). Fair or poor condition of duct liner was associated with increased upper respiratory symptoms (OR=1.4). Most of the many potential risk factors assessed here had not been investigated previously, and associations found with single symptoms may have been by chance, including several associations that were the reverse of expected. Risk factors newly identified in these analyses that deserve attention include outdoor air intakes less than 60 m above the ground, lack of operable windows, poorly maintained humidification systems, and lack of scheduled inspection for HVAC systems. Infrequent cleaning of cooling coils and drain pans were associated with increases in several symptoms in these as well as prior analyses of BASE data. Replication of these findings is needed, using more objective measurements of both exposure and health response. Confirmation of the specific HVAC factors responsible for increased symptoms in buildings, and development of prevention strategies could have major public health and economic benefits worldwide.

  7. Light weight and economical exhaust heat exchanger for waste heat recovery using mixed radiant and convective heat transfer

    Broader source: Energy.gov [DOE]

    A hybrid heat exchanger is designed to keep highly stressed materials around the working fluid at a moderate temperature so that it can operate at higher working fluid pressure.

  8. Key Factors in Displacement Ventilation Systems for Better IAQ

    E-Print Network [OSTI]

    Wang, X.; Chen, J.; Li, Y.; Wang, Z.

    2006-01-01

    This paper sets up a mathematical model of three-dimensional steady turbulence heat transfer in an air-conditioned room of multi-polluting heat sources. Numerical simulation helps identify key factors in displacement ventilation systems that affect...

  9. Development of a Waste Heat Recovery System for Light Duty Diesel Engines

    Broader source: Energy.gov [DOE]

    Substantial increases in engine efficiency of a light-duty diesel engine, which require utilization of the waste energy found in the coolant, EGR, and exhaust streams, may be increased through the development of a Rankine cycle waste heat recovery system

  10. Laser heating of solid matter by light pressure-driven shocks

    SciTech Connect (OSTI)

    Akli, K; Hansen, S B; Kemp, A J; Freeman, R R; Beg, F N; Clark, D; Chen, S; Hey, D; Highbarger, K; Giraldez, E; Green, J; Gregori, G; Lancaster, K; Ma, T; MacKinnon, A J; Norreys, P A; Patel, N; Patel, P; Shearer, C; Stephens, R B; Stoeckl, C; Storm, M; Theobald, W; Van Woerkom, L; Weber, R; Key, M H

    2007-05-04

    Heating by irradiation of a solid surface in vacuum with 5 x 10{sup 20} W cm{sup -2}, 0.8 ps, 1.05 {micro}m wavelength laser light is studied by x-ray spectroscopy of the K-shell emission from thin layers of Ni, Mo and V. A surface layer is heated to {approx} 5 keV with an axial temperature gradient of 0.6 {micro}m scale length. Images of Ni Ly{sub {alpha}} show the hot region has a {approx} 25 {micro}m diameter, much smaller than {approx} 70 {micro}m region of K{sub {alpha}} emission. 2D particle-in-cell (PIC) simulations suggest that the surface heating is due to a light pressure driven shock.

  11. Condensing Heating and Water Heating Equipment Workshop Location: Washington Gas Light Appliance Training Facility

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i n c i p aDepartment ofCommercialEnergyDepartment ofHeating and Water

  12. Performance Assessment of Photovoltaic Attic Ventilator Fans

    E-Print Network [OSTI]

    Parker, D. S.; Sherwin, J. R.

    2000-01-01

    Controlling summer attic heat gain is important to reducing air conditioning energy use in homes in hot-humid climates. Both heat transfer through ceilings and t attic duct systems can make up a large part of peak cooling demand, Attic ventilation...

  13. Airflow Simulation and Energy Analysis in Ventilated Room with a New Type of Air Conditioning

    E-Print Network [OSTI]

    Liu, D.; Tang, G.; Zhao, F.

    2006-01-01

    Airflow simulation in one ventilated room with radiant heating and natural ventilation has been carried out. Three cases are compared: the closed room, the room with full openings, and the room with small openings. The ...

  14. READ THIS: Before You Ventilate

    SciTech Connect (OSTI)

    2006-12-08

    This document reviews ventilation strategies for different climate zones and includes schematic drawings and photographs of various ventilation installations.

  15. Enhancing light-harvesting power with coherent vibrational interactions: a quantum heat engine picture

    E-Print Network [OSTI]

    Nathan Killoran; Susana F. Huelga; Martin B. Plenio

    2015-10-21

    Recent evidence suggests that quantum effects may have functional importance in biological light-harvesting systems. Along with delocalized electronic excitations, it is now suspected that quantum coherent interactions with certain near-resonant vibrations may contribute to light-harvesting performance. However, the actual quantum advantage offered by such coherent vibrational interactions has not yet been established. We investigate a quantum design principle, whereby coherent exchange of single energy quanta between electronic and vibrational degrees of freedom can enhance a light-harvesting system's power above what is possible by thermal mechanisms alone. We present a prototype quantum heat engine which cleanly illustrates this quantum design principle, and quantify its quantum advantage using thermodynamic measures of performance. We also demonstrate the principle's relevance in parameter regimes connected to natural light-harvesting structures.

  16. Reduced heat flow in light water (H2O) due to heavy water (D2O)

    E-Print Network [OSTI]

    William R. Gorman; James D. Brownridge

    2008-09-04

    The flow of heat, from top to bottom, in a column of light water can be decreased by over 1000% with the addition of heavy water. A column of light water cools from 25 C to 0 C in 11 hours, however, with the addition of heavy water it takes more than 100 hours. There is a concentration dependence where the cooling time increases as the concentration of added (D2O) increases, with a near maximum being reached with as little as 2% of (D2O) added. This phenomenon will not occur if the water is mixed after the heavy water is added.

  17. Enhancing light-harvesting power with coherent vibrational interactions: a quantum heat engine picture

    E-Print Network [OSTI]

    Nathan Killoran; Susana F. Huelga; Martin B. Plenio

    2014-12-12

    Recent evidence suggests that quantum effects may have functional importance in biological light-harvesting systems. Along with delocalized electronic excitations, it is now suspected that quantum coherent interactions with certain near-resonant vibrations contribute to light-harvesting performance. However, the actual quantum advantage offered by such coherent vibrational interactions has not yet been established. We investigate a quantum design principle, whereby coherent exchange of single energy quanta between electronic and vibrational degrees of freedom can enhance a light-harvesting system's power above what is possible by thermal mechanisms alone. We present a prototype quantum heat engine which cleanly illustrates this quantum design principle, and quantify its quantum advantage using thermodynamic measures of performance. We also demonstrate the principle's applicability for realistic biological structures.

  18. Demand Controlled Ventilation and Classroom Ventilation

    E-Print Network [OSTI]

    Fisk, William J.

    2014-01-01

    columnsindicatetheenergyandcostsavingsfor demandclasssize. (Theenergycosts ofclassroomventilation$6.2Minincreasedenergycosts. FurtherVR increases

  19. Energy and IAQ Implications of Residential Ventilation Cooling

    SciTech Connect (OSTI)

    Turner, William; Walker, Iain

    2014-08-01

    This study evaluates the energy, humidity and indoor air quality (IAQ) implications of residential ventilation cooling in all U.S. IECC climate zones. A computer modeling approach was adopted, using an advanced residential building simulation tool with airflow, energy and humidity models. An economizer (large supply fan) was simulated to provide ventilation cooling while outdoor air temperatures were lower than indoor air temperatures (typically at night). The simulations were performed for a full year using one-minute time steps to allow for scheduling of ventilation systems and to account for interactions between ventilation and heating/cooling systems.

  20. Recommended Ventilation Strategies for Energy-Efficient Production Homes

    SciTech Connect (OSTI)

    Roberson, J.; Brown, R.; Koomey, J.; Warner, J.; Greenberg, S.

    1998-12-01

    This report evaluates residential ventilation systems for the U.S. Environmental Protection Agency's (EPA's) ENERGY STAR{reg_sign} Homes program and recommends mechanical ventilation strategies for new, low-infiltration, energy-efficient, single-family, ENERGY STAR production (site-built tract) homes in four climates: cold, mixed (cold and hot), hot humid, and hot arid. Our group in the Energy Analysis Department at Lawrence Berkeley National Lab compared residential ventilation strategies in four climates according to three criteria: total annualized costs (the sum of annualized capital cost and annual operating cost), predominant indoor pressure induced by the ventilation system, and distribution of ventilation air within the home. The mechanical ventilation systems modeled deliver 0.35 air changes per hour continuously, regardless of actual infiltration or occupant window-opening behavior. Based on the assumptions and analysis described in this report, we recommend independently ducted multi-port supply ventilation in all climates except cold because this strategy provides the safety and health benefits of positive indoor pressure as well as the ability to dehumidify and filter ventilation air. In cold climates, we recommend that multi-port supply ventilation be balanced by a single-port exhaust ventilation fan, and that builders offer balanced heat-recovery ventilation to buyers as an optional upgrade. For builders who continue to install forced-air integrated supply ventilation, we recommend ensuring ducts are airtight or in conditioned space, installing a control that automatically operates the forced-air fan 15-20 minutes during each hour that the fan does not operate for heating or cooling, and offering ICM forced-air fans to home buyers as an upgrade.

  1. Particle deposition in ventilation ducts

    E-Print Network [OSTI]

    Sippola, Mark R.

    2002-01-01

    M. and Wang, D. (1999) Duct systems in large commercialin ventilation air supply ducts. Proceedings of Indoor Air filtration efficiency of in-duct ventilation air cleaners.

  2. Multifamily Ventilation Retrofit Strategies

    SciTech Connect (OSTI)

    Ueno, K.; Lstiburek, J.; Bergey, D.

    2012-12-01

    In multifamily buildings, central ventilation systems often have poor performance, overventilating some portions of the building (causing excess energy use), while simultaneously underventilating other portions (causing diminished indoor air quality). BSC and Innova Services Corporation performed a series of field tests at a mid-rise test building undergoing a major energy audit and retrofit, which included ventilation system upgrades.

  3. Industrial Heat Pumps- A Reexamination in Light of Current Energy Trends

    E-Print Network [OSTI]

    Lewis, N.; Simon, M.; Terry, S.; Leach, J.

    2009-01-01

    Heat pumps have been used for nearly one hundred years mostly providing heating and cooling for homes and residential settings. However, industrial heat pumps are also used and may be driven by waste heat streams from the manufacturing facility...

  4. Particle deposition in ventilation ducts

    SciTech Connect (OSTI)

    Sippola, Mark R.

    2002-09-01

    Exposure to airborne particles is detrimental to human health and indoor exposures dominate total exposures for most people. The accidental or intentional release of aerosolized chemical and biological agents within or near a building can lead to exposures of building occupants to hazardous agents and costly building remediation. Particle deposition in heating, ventilation and air-conditioning (HVAC) systems may significantly influence exposures to particles indoors, diminish HVAC performance and lead to secondary pollutant release within buildings. This dissertation advances the understanding of particle behavior in HVAC systems and the fates of indoor particles by means of experiments and modeling. Laboratory experiments were conducted to quantify particle deposition rates in horizontal ventilation ducts using real HVAC materials. Particle deposition experiments were conducted in steel and internally insulated ducts at air speeds typically found in ventilation ducts, 2-9 m/s. Behaviors of monodisperse particles with diameters in the size range 1-16 {micro}m were investigated. Deposition rates were measured in straight ducts with a fully developed turbulent flow profile, straight ducts with a developing turbulent flow profile, in duct bends and at S-connector pieces located at duct junctions. In straight ducts with fully developed turbulence, experiments showed deposition rates to be highest at duct floors, intermediate at duct walls, and lowest at duct ceilings. Deposition rates to a given surface increased with an increase in particle size or air speed. Deposition was much higher in internally insulated ducts than in uninsulated steel ducts. In most cases, deposition in straight ducts with developing turbulence, in duct bends and at S-connectors at duct junctions was higher than in straight ducts with fully developed turbulence. Measured deposition rates were generally higher than predicted by published models. A model incorporating empirical equations based on the experimental measurements was applied to evaluate particle losses in supply and return duct runs. Model results suggest that duct losses are negligible for particle sizes less than 1 {micro}m and complete for particle sizes greater than 50 {micro}m. Deposition to insulated ducts, horizontal duct floors and bends are predicted to control losses in duct systems. When combined with models for HVAC filtration and deposition to indoor surfaces to predict the ultimate fates of particles within buildings, these results suggest that ventilation ducts play only a small role in determining indoor particle concentrations, especially when HVAC filtration is present. However, the measured and modeled particle deposition rates are expected to be important for ventilation system contamination.

  5. Ventilation Air Preconditioning Systems

    E-Print Network [OSTI]

    Khattar, M.; Brandemuehl, M. J.

    1996-01-01

    Increased outside ventilation air requirements demand special attention to how that air will be conditioned. In winter, the incoming air may need preheating; in summer. the mixed air may be too humid for effective dehumidification. Part...

  6. Why We Ventilate

    SciTech Connect (OSTI)

    Logue, Jennifer M.; Sherman, Max H.; Price, Phil N.; Singer, Brett C.

    2011-09-01

    It is widely accepted that ventilation is critical for providing good indoor air quality (IAQ) in homes. However, the definition of"good" IAQ, and the most effective, energy efficient methods for delivering it are still matters of research and debate. This paper presents the results of work done at the Lawrence Berkeley National Lab to identify the air pollutants that drive the need for ventilation as part of a larger effort to develop a health-based ventilation standard. First, we present results of a hazard analysis that identified the pollutants that most commonly reach concentrations in homes that exceed health-based standards or guidelines for chronic or acute exposures. Second, we present results of an impact assessment that identified the air pollutants that cause the most harm to the U.S. population from chronic inhalation in residences. Lastly, we describe the implications of our findings for developing effective ventilation standards.

  7. Spatial light modulator array with heat minimization and image enhancement features

    DOE Patents [OSTI]

    Jain, Kanti (Briarcliff Manor, NY); Sweatt, William C. (Albuquerque, NM); Zemel, Marc (New Rochelle, NY)

    2007-01-30

    An enhanced spatial light modulator (ESLM) array, a microelectronics patterning system and a projection display system using such an ESLM for heat-minimization and resolution enhancement during imaging, and the method for fabricating such an ESLM array. The ESLM array includes, in each individual pixel element, a small pixel mirror (reflective region) and a much larger pixel surround. Each pixel surround includes diffraction-grating regions and resolution-enhancement regions. During imaging, a selected pixel mirror reflects a selected-pixel beamlet into the capture angle of a projection lens, while the diffraction grating of the pixel surround redirects heat-producing unused radiation away from the projection lens. The resolution-enhancement regions of selected pixels provide phase shifts that increase effective modulation-transfer function in imaging. All of the non-selected pixel surrounds redirect all radiation energy away from the projection lens. All elements of the ESLM are fabricated by deposition, patterning, etching and other microelectronic process technologies.

  8. A simplified approach to describe complex diffusers in displacement ventilation for CFD simulations

    E-Print Network [OSTI]

    Chen, Qingyan "Yan"

    for displacement ventilation systems include, but not lim ited to, quarter -circular-perforated, grille , floor dif fusers under cooling or heating conditions. The distributio ns of air v elocity, temperature in the 1970s. Due to the wide use of di splacement ventilation, ASHRAE (the Am erican Society of Heating

  9. Lighting a building with a single bulb : toward a system for illumination in the 21st c.; or, A centralized illumination system for the efficient decoupling and recovery of lighting related heat

    E-Print Network [OSTI]

    Levens, Kurt Antony, 1961-

    1997-01-01

    Piping light represents the first tenable method for recovery and reutilization of lighting related heat. It can do this by preserving the energy generated at the lamp as radiative, departing from precedent and avoiding ...

  10. Increased Natural Ventilation Flow Rates through Ventilation Shafts

    E-Print Network [OSTI]

    Ray, Stephen D.

    Buoyancy-driven natural ventilation in ventilation shafts is investigated with a small scale physical experiment within a duct and CFD simulations of an office building. For a fixed exhaust opening, smaller shafts lead to ...

  11. Ventilation technologies scoping study

    SciTech Connect (OSTI)

    Walker, Iain S.; Sherman, Max H.

    2003-09-30

    This document presents the findings of a scoping study commissioned by the Public Interest Energy Research (PIER) program of the California Energy Commission to determine what research is necessary to develop new residential ventilation requirements for California. This study is one of three companion efforts needed to complete the job of determining the needs of California, determining residential ventilation requirements, and determining appropriate ventilation technologies to meet these needs and requirements in an energy efficient manner. Rather than providing research results, this scoping study identifies important research questions along with the level of effort necessary to address these questions and the costs, risks, and benefits of pursuing alternative research questions. In approaching these questions and level of effort, feasibility and timing were important considerations. The Commission has specified Summer 2005 as the latest date for completing this research in time to update the 2008 version of California's Energy Code (Title 24).

  12. Incorporate Minimum Efficiency Requirements for Heating and Cooling...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    about FEMP-designated and ENERGY STAR-qualified heating, ventilating, and air conditioning (HVAC) and water heating products into tables that mirror American Society of...

  13. Natural Refrigerant High-Performance Heat Pump for Commercial...

    Broader source: Energy.gov (indexed) [DOE]

    (DE-FOA-0000823) Project Objective This project aims to develop a regenerative air source heat pump for commercial and industrial heating, ventilation, and air conditioning (HVAC)...

  14. Innovative Energy Efficient Industrial Ventilation

    E-Print Network [OSTI]

    Litomisky, A.

    2005-01-01

    This paper was written to describe an innovative on-demand industrial ventilation system for woodworking, metalworking, food processing, pharmaceutical, chemical, and other industries. Having analyzed existing industrial ventilation in 130...

  15. Natural ventilation generates building form

    E-Print Network [OSTI]

    Chen, Shaw-Bing

    1996-01-01

    Natural ventilation is an efficient design strategy for thermal comfort in hot and humid climates. The building forms can generate different pressures and temperatures to induce natural ventilation. This thesis develops a ...

  16. RESIDENTIAL VENTILATION AND ENERGY CHARACTERISTICS*

    E-Print Network [OSTI]

    best available data, the energy liability as- sociated with providing the current levels of ventilationRESIDENTIAL VENTILATION AND ENERGY CHARACTERISTICS* Max Sherman Nance Matson Energy Performance of Buildings Group Energy and Environment Division Lawrence Berkeley Laboratory University of California

  17. Investigating potential light-duty efficiency improvements through simulation of turbo-compounding and waste-heat recovery systems

    SciTech Connect (OSTI)

    Edwards, Kevin Dean; Wagner, Robert M; Briggs, Thomas E

    2010-01-01

    Modern diesel engines used in light-duty transportation applications have peak brake thermal efficiencies in the range of 40-42% for high-load operation with substantially lower efficiencies at realistic road-load conditions. Thermodynamic energy and exergy analysis reveals that the largest losses from these engines are due to combustion irreversibility and heat loss to the coolant, through the exhaust, and by direct convection and radiation to the environment. Substantial improvement in overall engine efficiency requires reducing or recovering these losses. Unfortunately, much of the heat transfer either occurs at relatively low temperatures resulting in large entropy generation (such as in the air-charge cooler), is transferred to low-exergy flow streams (such as the oil and engine coolant), or is radiated or convected directly to the environment. While there are significant opportunities for recovery from the exhaust and EGR cooler for heavy-duty applications, achieving similar benefits for light-duty applications is complicated by transient, low-load operation at typical driving conditions and competition with the turbocharger and aftertreatment system for the limited thermal resources. We have developed an organic Rankine cycle model using GT-Suite to investigate the potential for efficiency improvement through waste-heat recovery from the exhaust and EGR cooler of a light-duty diesel engine. The model is used to examine the effects of efficiency-improvement strategies such as cylinder deactivation, use of advanced materials and improved insulation to limit ambient heat loss, and turbo-compounding on the steady-state performance of the ORC system and the availability of thermal energy for downstream aftertreatment systems. Results from transient drive-cycle simulations are also presented, and we discuss strategies to address operational difficulties associated with transient drive cycles and balancing the thermal requirements of waste-heat recovery, turbocharging or turbo-compounding, and exhaust aftertreatment.

  18. The impact of demand-controlled and economizer ventilation strategies on energy use in buildings

    SciTech Connect (OSTI)

    Brandemuehl, M.J.; Braun, J.E.

    1999-07-01

    The overall objective of this work was to evaluate typical energy requirements associated with alternative ventilation control strategies for constant-air-volume (CAV) systems in commercial buildings. The strategies included different combinations of economizer and demand-controlled ventilation, and energy analyses were performed for four typical building types, eight alternative ventilation systems, and twenty US climates. Only single-zone buildings were considered so that simultaneous heating and cooling did not exist. The energy savings associated with economizer and demand-controlled ventilation strategies were found to be very significant for both heating and cooling. In general, the greatest savings in electrical usage for cooling with the addition of demand-controlled ventilation occur in situations where the opportunities for economizer cooling are less. This is true for warm and humid climates and for buildings that have relatively low internal gains (i.e., low occupant densities). As much as 20% savings in electrical energy for cooling were possible with demand-controlled ventilation. The savings in heating energy associated with demand-controlled ventilation were generally much larger but were strongly dependent upon the building type and occupancy schedule. Significantly greater savings were found for buildings with highly variable occupancy schedules and large internal gains (i.e., restaurants) as compared with office buildings. In some cases, the primary heating energy was virtually eliminated by demand-controlled ventilation as compared with fixed ventilation rates. For both heating and cooling, the savings associated with demand-controlled ventilation are dependent on the fixed minimum ventilation rate of the base case at design conditions.

  19. Harvesting the Sun's Energy Through Heat as Well as Light | U...

    Office of Science (SC) Website

    new approach to harvesting solar energy, developed by MIT researchers, could improve efficiency by using sunlight to heat a high-temperature material whose infrared radiation would...

  20. The impact of demand-controlled ventilation on energy use in buildings

    SciTech Connect (OSTI)

    Braun, J.E.; Brandemuehl, M.J.

    1999-07-01

    The overall objective of this work was to evaluate typical energy requirements associated with alternative ventilation control strategies. The strategies included different combinations of economizer and demand-controlled ventilation controls and energy analyses were performed for a range of typical buildings, systems, and climates. Only single zone buildings were considered, so that simultaneous heating and cooling did not exist. The energy savings associated with economizer and demand-controlled ventilation strategies were found to be very significant for both heating and cooling. In general, the greatest savings in electrical usage for cooling with the addition of demand-controlled ventilation occur in situations where the opportunities for economizer cooling are less. This is true for warm and humid climates, and for buildings that have low relative internal gains (i.e., low occupant densities). As much as 10% savings in electrical energy for cooling were possible with demand-controlled ventilation. The savings in heating energy associated with demand-controlled ventilation were generally much larger, but were strongly dependent upon the occupancy schedule. Significantly greater savings were found for buildings with highly variable occupancy schedules (e.g., stores and restaurants) as compared with office buildings. In some cases, the primary heating energy was reduced by a factor of 10 with demand-controlled ventilation as compared with fixed ventilation rates.

  1. Smart Ventilation - RIVEC

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCED MANUFACTURINGEnergy BillsNo.Hydrogen4 »DigitalanDepartmentSecondary Ventilation Activity Inputs

  2. Ventilation | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data CenterFinancialInvestingRenewableTeachDevelopment |of EnergyVentilation

  3. Visible light plasmonic heating of Au-ZnO for the catalytic reduction of CO{sub 2}

    SciTech Connect (OSTI)

    Wang, Congjun; Ranasingha, Oshadha; Natesakhawat, Sittichai; Ohodnicki, Paul R.; Ohodnicki, Andio, Mark; Lewis, James; P Matranga, Christopher

    2013-05-01

    Plasmonic excitation of Au nanoparticles attached to the surface of ZnO catalysts using low power 532 nm laser illumination leads to significant heating of the catalyst and the conversion of CO{sub 2} and H{sub 2} reactants to CH{sub 4} and CO products. Temperature-calibrated Raman spectra of ZnO phonons show that intensity-dependent plasmonic excitation can controllably heat AuZnO from 30 to #1;~600 {degrees}#3;C and simultaneously tune the CH{sub 4} : CO product ratio. The laser induced heating and resulting CH{sub 4} : CO product distribution agrees well with predictions from thermodynamic models and temperatureprogrammed reaction experiments indicating that the reaction is a thermally driven process resulting from the plasmonic heating of the AuZnO. The apparent quantum yield for CO{sub 2} conversion under continuous wave (cw) 532 nm laser illumination is 0.030%. The AuZnO catalysts are robust and remain active after repeated laser exposure and cycling. The light intensity required to initiate CO{sub 2} reduction is low (#1;~2.5 x#4; 10{sup 5} W m{sup #5;-2}) and achievable with solar concentrators. Our results illustrate the viability of plasmonic heating approaches for CO{sub 2} utilization and other practical thermal catalytic applications.

  4. Effects of system-bath entanglement on the performance of light-harvesting systems: A quantum heat engine perspective

    E-Print Network [OSTI]

    Dazhi Xu; Chen Wang; Yang Zhao; Jianshu Cao

    2015-08-19

    We explore energy transfer in a generic three-level system, which is coupled to three non-equilibrium baths. Built on the concept of quantum heat engine, our three-level model describes non-equilibrium quantum processes including light-harvesting energy transfer, nano-scale heat transfer, photo-induced isomerization, and photovoltaics in double quantum-dots. In the context of light-harvesting, the excitation energy is first pumped up by sunlight, then is transferred via two excited states which are coupled to a phonon bath, and finally decays to the ground state. The efficiency of this process is evaluated by steady state analysis via a polaron-transformed master equation; thus a wide range of the system-phonon coupling strength can be covered. We show that the coupling with the phonon bath not only modifies the steady state, resulting in population inversion, but also introduces a finite steady state coherence which optimizes the energy transfer flux and efficiency. In the strong coupling limit, the steady state coherence disappears and the efficiency approaches the heat engine limit given by Scovil and Schultz-Dubois in Phys. Rew. Lett. 2, 262 (1959).

  5. Enthalpy Wheels Come of Age: Applying Energy Recovery Ventilation to Hospitality Venues in Hot, Humid Climate

    E-Print Network [OSTI]

    Wellford, B. W.

    2000-01-01

    Energy recovery ventilation systems, including rotary heat exchangers or enthalpy wheels, utilize mature technologies that are routinely applied in commercial buildings. Energy recovery is particularly important in buildings with significant outdoor...

  6. Energy and air quality implications of passive stack ventilation in residential buildings

    E-Print Network [OSTI]

    Mortensen, Dorthe Kragsig

    2011-01-01

    Heat Recovery Ventilation (HRV) systems (that are requireduse about 50 W. Similarly an HRV sized to produce the same50 W on average. A common HRV installation also uses the

  7. Indoor Humidity Analysis of an Integrated Radiant Cooling and Desiccant Ventilation System

    E-Print Network [OSTI]

    Gong, X.; Claridge, D. E.

    2006-01-01

    latent heat, they normally are used in conjunction with an independent ventilation system, which is capable of decoupling the space sensible and latent loads. Condensation concerns limit the application of radiant cooling. This paper studies...

  8. Modeling particle loss in ventilation ducts

    E-Print Network [OSTI]

    Sippola, Mark R.; Nazaroff, William W.

    2003-01-01

    particles in turbulent duct flows. Chemical EngineeringDeposition in Ventilation Ducts. Ph.D. Dissertation,Deposition in Ventilating Duct Systems. Ph.D. Dissertation,

  9. Effects of system-bath entanglement on the performance of light-harvesting systems: A quantum heat engine perspective

    E-Print Network [OSTI]

    Xu, Dazhi; Zhao, Yang; Cao, Jianshu

    2015-01-01

    We explore energy transfer in a generic three-level system, which is coupled to three non-equilibrium baths. Built on the concept of quantum heat engine, our three-level model describes non-equilibrium quantum processes including light-harvesting energy transfer, nano-scale heat transfer, photo-induced isomerization, and photovoltaics in double quantum-dots. In the context of light-harvesting, the excitation energy is first pumped up by sunlight, then is transferred via two excited states which are coupled to a phonon bath, and finally decays to the ground state. The efficiency of this process is evaluated by steady state analysis via a polaron-transformed master equation; thus a wide range of the system-phonon coupling strength can be covered. We show that the coupling with the phonon bath not only modifies the steady state, resulting in population inversion, but also introduces a finite steady state coherence which optimizes the energy transfer flux and efficiency. In the strong coupling limit, the steady s...

  10. Effectiveness of solar heating and lighting in an underground concrete and glass dwelling high in the Rocky Mountains

    SciTech Connect (OSTI)

    Boyer, L.L. (Texas A M Univ., College Station, TX (United States). Div. of Design Technology)

    1993-01-01

    Solar heating and daylighting are two primary design features which can have a major impact on occupant perceptions of an underground living environment. A quantitative design analysis and evaluation of these features has been conducted for an energy conserving earth covered dwelling in a cold climate at high altitude in the Rocky Mountains. For this example, because of the solar contribution, a heating load reduction greater than 45 percent has been calculated and demonstrated on an operational basis, compared to the same earth sheltered construction without solar. The building envelope also has an effective time lag of several months which further increases the annual effectiveness. Also, depending on the sky conditions, the portion of exterior daylight reaching deep into the interior spaces easily exceeds 10 percent in the winter and can reach up to 50 percent or more. Thus, both heating and lighting by natural means are shown to be available in ample quantities in this cave-like structure. Pertinent design features to enhance such performance are highlighted.

  11. Ventilation | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    to mold growth and structural damage. The American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE) has determined that a home's living area should be...

  12. Ventilation | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    moisture, which can lead to mold growth and structural damage. The American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE) has determined that a home's...

  13. Comment on ``Specific Heat and Shape Transitions in Light sd Nuclei''

    E-Print Network [OSTI]

    B. J. Cole; H. G. Miller; R. M. Quick

    1994-09-02

    This comment re-examines the origin of structure seen in the computed specific heat of finite nuclei. In a recent paper, Civitarese and Schvellinger suggest that such structure is due to model-space truncation in the calculations. We reaffirm our conclusion that the structure is caused by a collective-to-non-collective phase transformation at low temperatures, signaled by a change in the nuclear level density below 10 MeV excitation energy.

  14. Collecting Occupant Presence Data for Use in Energy Management of Commercial Buildings

    E-Print Network [OSTI]

    Rosenblum, Benjamin Tarr

    2012-01-01

    entrance, heating in a private office on the 6 th floor canHeating, cooling - personal Ventilation - zone, room, WB Ventilation - personal Lighting - open floorHeating, cooling - personal Ventilation - zone, room, WB Ventilation - personal Lighting - open floor

  15. Proceedings of the Intern. Conference on Passive and Low Energy Architecture (PLEA), Toulouse (2002) 577 Cost efficiency of ventilation systems

    E-Print Network [OSTI]

    Gieseler, Udo D. J.

    2002-01-01

    . Conference topic : design strategies Keywords : cost efficiency, earth heat exchanger, heat recovery of a heat exchanger where the energy of the extract air is directly transferred to the fresh air before its) 577 Cost efficiency of ventilation systems for low-energy buildings with earth-to-air heat exchange

  16. Literature Review of Displacement Ventilation

    E-Print Network [OSTI]

    Cho, S.; Im, P.; Haberl, J. S.

    2005-01-01

    Performance Evaluation and Design Guidelines for Displacement Ventilation by Chen and Clicksman (2003), were used to begin the literature search. Their references include papers, articles, and web sites presenting major contributions to the understanding...

  17. Low-cost light-weight thin material solar heating system

    SciTech Connect (OSTI)

    Wilhelm, W.G.

    1985-03-01

    Presented in this paper are innovative concepts to substantially reduce the cost of residential solar application. They were based on a research and development approach that establishes cost goals which if successfully met can insure high marketability. Included in this cost goal-oriented approach is the additional need to address aesthetics and performance. With such constraints established, designs were initialized, tested, and iterated towards appropriate solutions. These solutions are based on methods for reducing the material intensity of the products, improving the simplicity for ease of production, and reducing the cost of installation. Such a development approach has yielded past proof-of-concept designs in the solar collector and in the other components that constitute a total solar heating system.

  18. Classroom HVAC: Improving ventilation and saving energy -- field study plan

    E-Print Network [OSTI]

    Apte, Michael G.; Faulkner, David; Hodgson, Alfred T.; Sullivan, Douglas P.

    2004-01-01

    Improving Ventilation and Saving Energy (IVSE) Field StudyImproving Ventilation and Saving Energy (IVSE) Field StudyImproving Ventilation and Saving Energy (IVSE) Field Study

  19. Investigation of Heat Transfer at the Mold/Metal Interface in Permanent Mold Casting of Light Alloys

    SciTech Connect (OSTI)

    Robert D. Pehlke; John T. Berry

    2005-12-16

    Accurate modeling of the metal casting process prior to creating a mold design demands reliable knowledge of the interfacial heat transfer coefficient at the mold metal interface as a function of both time and location. The phenomena concerned with the gap forming between the mold and the solidifying metal are complex but need to be understood before any modeling is attempted. The presence of mold coatings further complicates the situation. A commercial casting was chosen and studied in a gravity permanent mold casting process. The metal/mold interfacial heat transfer coefficient (IHTC) was the focus of the research. A simple, direct method has been used to evaluate the IHTC. Both the simulation and experiments have shown that a reasonably good estimate of the heat transfer coefficient could be made in the case studied. It has been found that there is a good agreement between experiments and simulations in the temperature profiles during the solidification process, given that the primary mechanism of heat transfer across the gap in permanent mold casting of light alloys is by conduction across the gap. The procedure utilized to determine the interfacial heat transfer coefficient can be applied to other casting processes. A recently completed project involving The University of Michigan and Mississippi State University, together with several industrial partners, which was supported by the USDOE through the Cast Metals Coalition, examined a number of cases of thermal contact. In an investigation which gave special consideration to the techniques of measurement, several mold coatings were employed and results presented as a function of time. Realistic conditions of coating thickness and type together with an appropriate combination of mold preheat and metal pouring temperature were strictly maintained throughout the investigation. Temperature sensors, in particular thermocouples, play an important part in validating the predictions of solidification models. Cooling curve information, as well as temperature gradient history both in the solidifying metal and within the mold are invariably required to be validated. This validation depends upon the response of the sensor concerned, but also on its own effect upon the thermal environment. A joint university/industry team has completed an investigation of the invasive effects of thermocouples upon temperature history in permanent molds determining the degree of uncertainty associated with placement and indicating how the time-temperature history may be recovered. In addition to its relevance to the all important study of thermal contact of the casting with metallic molds, the observations also impact the determination of heat flux and interfacial heat transfer coefficients. In these respects the study represents the first of its kind that has tackled the problem in depth for permanent mold castings. An important ramification of this investigation has been the errors likely to be encountered in mold temperature measurement with thin section aluminum castings, especially with respect to the plans for thermocouple placement. A comparison between the degree of uncertainty experienced in sand molds compared with that found in permanent molds reveals that the associated problems have a lesser impact. These conclusions and the related recommendations have been disseminated to industry and the technical community through project reports and publications.

  20. Ventilation | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousMathematics And Statistics » USAJobsMotionHeat & Cool » Water Heating » SelectingDesignWeatherize »

  1. TECHNICAL BASIS FOR VENTILATION REQUIREMENTS IN TANK FARMS OPERATING SPECIFICATIONS DOCUMENTS

    SciTech Connect (OSTI)

    BERGLIN, E J

    2003-06-23

    This report provides the technical basis for high efficiency particulate air filter (HEPA) for Hanford tank farm ventilation systems (sometimes known as heating, ventilation and air conditioning [HVAC]) to support limits defined in Process Engineering Operating Specification Documents (OSDs). This technical basis included a review of older technical basis and provides clarifications, as necessary, to technical basis limit revisions or justification. This document provides an updated technical basis for tank farm ventilation systems related to Operation Specification Documents (OSDs) for double-shell tanks (DSTs), single-shell tanks (SSTs), double-contained receiver tanks (DCRTs), catch tanks, and various other miscellaneous facilities.

  2. Lighting

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would likeUniverseIMPACTThousand CubicResourcelogo and-E C H N13,CenterCenterLighting Sign In

  3. Residential ventilation standards scoping study

    SciTech Connect (OSTI)

    McKone, Thomas E.; Sherman, Max H.

    2003-10-01

    The goals of this scoping study are to identify research needed to develop improved ventilation standards for California's Title 24 Building Energy Efficiency Standards. The 2008 Title 24 Standards are the primary target for the outcome of this research, but this scoping study is not limited to that timeframe. We prepared this scoping study to provide the California Energy Commission with broad and flexible options for developing a research plan to advance the standards. This document presents the findings of a scoping study commissioned by the Public Interest Energy Research (PIER) program of the California Energy Commission to determine what research is necessary to develop new residential ventilation requirements for California. This study is one of three companion efforts needed to complete the job of determining the ventilation needs of California residences, determining the bases for setting residential ventilation requirements, and determining appropriate ventilation technologies to meet these needs and requirements in an energy efficient manner. Rather than providing research results, this scoping study identifies important research questions along with the level of effort necessary to address these questions and the costs, risks, and benefits of pursuing alternative research questions. In approaching these questions and corresponding levels of effort, feasibility and timing were important considerations. The Commission has specified Summer 2005 as the latest date for completing this research in time to update the 2008 version of California's Energy Code (Title 24).

  4. Hybrid Ventilation Optimization and Control Research and Development...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hybrid Ventilation Optimization and Control Research and Development Hybrid Ventilation Optimization and Control Research and Development Credit: Massachusetts Institute of...

  5. Whole-House Ventilation | Department of Energy

    Office of Environmental Management (EM)

    - 2:37pm Addthis A whole-house ventilation system with dedicated ducting in a new energy-efficient home. | Photo courtesy of iStockphotobrebca. A whole-house ventilation...

  6. Fire protection countermeasures for containment ventilation systems

    SciTech Connect (OSTI)

    Alvares, N.; Beason, D.; Bergman, V.; Creighton, J.; Ford, H.; Lipska, A.

    1980-08-25

    The goal of this project is to find countermeasures to protect High Efficiency Particulate Air (HEPA) filters, in exit ventilation ducts, from the heat and smoke generated by fire. Initially, methods were developed to cool fire-heated air by fine water spray upstream of the filters. It was recognized that smoke aerosol exposure to HEPA filters could also cause disruption of the containment system. Through testing and analysis, several methods to partially mitigate the smoke exposure to the HEPA filters were identified. A continuous, movable, high-efficiency prefilter using modified commercial equipment was designed. The technique is capable of protecting HEPA filters over the total time duration of the test fires. The reason for success involved the modification of the prefiltration media. Commercially available filter media has particle sorption efficiency that is inversely proportional to media strength. To achieve properties of both efficiency and strength, rolling filter media were laminated with the desired properties. The approach was Edisonian, but truncation in short order to a combination of prefilters was effective. The application of this technique was qualified, since it is of use only to protect HEPA filters from fire-generated smoke aerosols. It is not believed that this technique is cost effective in the total spectrum of containment systems, especially if standard fire protection systems are available in the space. But in areas of high-fire risk, where the potential fuel load is large and ignition sources are plentiful, the complication of a rolling prefilter in exit ventilation ducts to protect HEPA filters from smoke aerosols is definitely justified.

  7. Total Space Heat-

    Gasoline and Diesel Fuel Update (EIA)

    Revised: December, 2008 Total Space Heat- ing Cool- ing Venti- lation Water Heat- ing Light- ing Cook- ing Refrig- eration Office Equip- ment Com- puters Other All Buildings...

  8. Total Space Heat-

    Gasoline and Diesel Fuel Update (EIA)

    Released: September, 2008 Total Space Heat- ing Cool- ing Venti- lation Water Heat- ing Light- ing Cook- ing Refrig- eration Office Equip- ment Com- puters Other All Buildings*...

  9. ASHRAE $1000 Scholarship Application (02/26/2013) The Utah Chapter of the American Society of Heating, Refrigerating and Air Conditioning

    E-Print Network [OSTI]

    van den Berg, Jur

    of Heating, Refrigerating and Air Conditioning Engineers is offering multiple $1,000 scholarships automation or controls, heating, ventilating, refrigeration or air conditioning (HVAC) principles are invited

  10. Numerical study of variable lung ventilation strategies

    E-Print Network [OSTI]

    Yadav, Reena; Hiremath, Kirankumar; Bagler, Ganesh

    2015-01-01

    Mechanical ventilation is used for patients with a variety of lung diseases. Traditionally, ventilators have been designed to monotonously deliver equal sized breaths. While it may seem intuitive that lungs may benefit from unvarying and stable ventilation pressure strategy, recently it has been reported that variable lung ventilation is advantageous. In this study, we analyze the mean tidal volume in response to different `variable ventilation pressure' strategies. We found that uniformly distributed variability in pressure gives the best tidal volume as compared to that of normal, scale- free, log normal and linear distributions.

  11. Energy Impact of Residential Ventilation Norms in the UnitedStates

    SciTech Connect (OSTI)

    Sherman, Max H.; Walker, Iain S.

    2007-02-01

    The first and only national norm for residential ventilation in the United States is Standard 62.2-2004 published by the American Society of Heating, Refrigerating and Air-conditioning Engineers (ASHRAE). This standard does not by itself have the force of regulation, but is being considered for adoption by various jurisdictions within the U.S. as well as by various voluntary programs. The adoption of 62.2 would require mechanical ventilation systems to be installed in virtually all new homes, but allows for a wide variety of design solutions. These solutions, however, may have a different energy costs and non-energy benefits. This report uses a detailed simulation model to evaluate the energy impacts of currently popular and proposed mechanical ventilation approaches that are 62.2 compliant for a variety of climates. These results separate the energy needed to ventilate from the energy needed to condition the ventilation air, from the energy needed to distribute and/or temper the ventilation air. The results show that exhaust systems are generally the most energy efficient method of meeting the proposed requirements. Balanced and supply systems have more ventilation resulting in greater energy and their associated distribution energy use can be significant.

  12. Fire protection countermeasures for containment ventilation systems

    SciTech Connect (OSTI)

    Alvares, N.J.; Beason, D.G.; Bergman, W.; Ford, H.W.; Lipska, A.E.

    1980-01-01

    The goal of this project is to find countermeasures to protect HEPA filters in exit ventilation ducts from the heat and smoke generated by fire. Several methods for partially mitigating the smoke exposure to the HEPA filters were identified through testing and analysis. These independently involve controlling the fuel, controlling the fire, and intercepting the smoke aerosol prior to its sorption on the HEPA filter. Exit duct treatment of aerosols is not unusual in industrial applications and involves the use of scrubbers, prefilters, and inertial impaction, depending on the size, distribution, and concentration of the subject aerosol. However, when these unmodified techniques were applied to smoke aerosols from fires on materials, common to experimental laboratories of LLNL, it was found they offered minimal protection to the HEPA filters. Ultimately, a continuous, movable, high-efficiency prefilter using modified commercial equipment was designed. This technique is capable of protecting HEPA filters over the total duration of the test fires. The reason for success involved the modificaton of the prefiltration media. Commercially available filter media has a particle sorption efficiency that is inversely proportional to media strength. To achieve properties of both efficiency and strength, we laminated rolling filter media with the desired properties. It is not true that the use of rolling prefilters solely to protect HEPA filters from fire-generated smoke aerosols is cost effective in every type of containment system, especially if standard fire-protection systems are available in the space. But in areas of high fire risk, where the potential fuel load is large and ignition sources are plentiful, the complication of a rolling prefilter in exit ventilation ducts to protect HEPA filters from smoke aerosols is definitely justified.

  13. Energy and air quality implications of passive stack ventilation in residential buildings

    E-Print Network [OSTI]

    Mortensen, Dorthe Kragsig

    2011-01-01

    of passive stack ventilation in residential buildings Dortheof passive stack ventilation in residential buildings Dorthepassive stack ventilation systems. They have been used for centuries to ventilate buildings

  14. The Histoty of Ventilation and Air Conditioning is CERN Up to Date with the latest Technological Developments?

    E-Print Network [OSTI]

    Khnl-Kinel, J

    2000-01-01

    The invention of ventilation cannot be ascribed to a certain date. It started with simple aeration when man brought fire into his abode and continued through different stages including air cooling using ice to finally arrive at the time when ventilation and air conditioning has become an essential part of our life and plays an important role in human evolution. This paper presents the history of ventilation and air conditioning, explains the key constraints over the centuries, and shows its influence on everyday life. Some examples of previous air-conditioning plants are described and different approaches to the way of calculation of ventilation systems discussed. It gives an overview of the Heating, Ventilation and Air Conditioning (HVAC) installations at CERN and points out their particularities. It also compares them with the latest technological developments in the field as well as showing the new trends that are being applied at CERN.

  15. Development of a Residential Integrated Ventilation Controller

    SciTech Connect (OSTI)

    Staff Scientist; Walker, Iain; Sherman, Max; Dickerhoff, Darryl

    2011-12-01

    The goal of this study was to develop a Residential Integrated Ventilation Controller (RIVEC) to reduce the energy impact of required mechanical ventilation by 20percent, maintain or improve indoor air quality and provide demand response benefits. This represents potential energy savings of about 140 GWh of electricity and 83 million therms of natural gas as well as proportional peak savings in California. The RIVEC controller is intended to meet the 2008 Title 24 requirements for residential ventilation as well as taking into account the issues of outdoor conditions, other ventilation devices (including economizers), peak demand concerns and occupant preferences. The controller is designed to manage all the residential ventilation systems that are currently available. A key innovation in this controller is the ability to implement the concept of efficacy and intermittent ventilation which allows time shifting of ventilation. Using this approach ventilation can be shifted away from times of high cost or high outdoor pollution towards times when it is cheaper and more effective. Simulations, based on the ones used to develop the new residential ventilation requirements for the California Buildings Energy code, were used to further define the specific criteria and strategies needed for the controller. These simulations provide estimates of the energy, peak power and contaminant improvement possible for different California climates for the various ventilation systems. Results from a field test of the prototype controller corroborate the predicted performance.

  16. New Whole-House Solutions Case Study: Testing Ductless Heat Pumps in High-Performance Affordable Housing, the Woods at Golden Given - Tacoma, Washington

    SciTech Connect (OSTI)

    2015-06-01

    The Woods is a 30-home, high- performance, energy efficient sustainable community built by Habitat for Humanity (HFH). With Support from Tacoma Public Utilities, Washington State University (part of the Building America Partnership for Improved Residential Construction) is researching the energy performance of these homes and the ductless heat pumps (DHP) they employ. This project provides Building America with an opportunity to: field test HVAC equipment, ventilation system air flows, building envelope tightness, lighting, appliance, and other input data that are required for preliminary Building Energy Optimization (BEopt) modeling and ENERGY STAR field verification; analyze cost data from HFH and other sources related to building-efficiency measures that focus on the DHP/hybrid heating system and heat recovery ventilation system; evaluate the thermal performance and cost benefit of DHP/hybrid heating systems in these homes from the perspective of homeowners; compare the space heating energy consumption of a DHP/electric resistance (ER) hybrid heating system to that of a traditional zonal ER heating system; conduct weekly "flip-flop tests" to compare space heating, temperature, and relative humidity in ER zonal heating mode to DHP/ER mode.

  17. Human Health Science Building Geothermal Heat Pumps

    Broader source: Energy.gov [DOE]

    Project objectives: Construct a ground sourced heat pump, heating, ventilation, and air conditioning system for the new Oakland University Human Health Sciences Building utilizing variable refrigerant flow (VRF) heat pumps. A pair of dedicated outdoor air supply units will utilize a thermally regenerated desiccant dehumidification section. A large solar thermal system along with a natural gas backup boiler will provide the thermal regeneration energy.

  18. Infiltration as Ventilation: Weather-Induced Dilution

    E-Print Network [OSTI]

    Sherman, Max H.

    2014-01-01

    LOGICS. 1999. Canadian Weather for Energy Calculations, In:natural ventilation rate with weather conditions, Renewablefor ASHRAE 136 [1/h] WSF Weather and Shielding Factor [1/h

  19. Does Mixing Make Residential Ventilation More Effective?

    E-Print Network [OSTI]

    Sherman, Max

    2011-01-01

    Does Mixing Make Residential Ventilation More Effective? Maxmanufacturer, or otherwise, does not necessarily constitutethe University of California. Does Mixing Make Residential

  20. Building America Technologies Solutions Case Study: Ventilation...

    Broader source: Energy.gov (indexed) [DOE]

    Building America team Building Science Corporation tested the effectiveness of various ventilation systems at two unoccupied, single-family lab homes at the University of Texas at...

  1. Heating Energy Meter Validation for Apartments

    E-Print Network [OSTI]

    Cai, B.; Li, D.; Hao, B.

    2006-01-01

    Bedroom Dining No.1 Toilet room Bedroom Kitchen Dining room No.2 Toilet Kitchen Bedroom Fig 1 Standard cells? illustration 3 RELIABILITY ANALYZING OF HEAT METERS? DATA By the arduous work of workers, project group gain the data of 361 heat meters... and Building Saving Energy [M]. Beijing: Machine Industry Press, 2004.1, 269-414. (In Chinese) [3] Jinglang CAI, Zheng XU, Yingchao LI. Analyzing to Adjacent Rooms? Heat Transfer for Central Heating System [J]. Heating and Ventilating and Air...

  2. The Influence of Proposed Repository Thermal Load on Multiphase Flow and Heat Transfer in the Unsaturated Zone of Yucca Mountain

    E-Print Network [OSTI]

    Wu, Y.-S.; Mukhopadhyay, Sumit; Zhang, Keni; Bodvarsson, G.S.

    2006-01-01

    two-phase zone, is the heat-pipe (i.e. , a zone of constant4a), when there is a heat pipe just above the emplacementduring ventilation, the heat-pipe signature is absent in

  3. Effects of Radiant Barrier Systems on Ventilated Attics in a Hot and Humid Climate

    E-Print Network [OSTI]

    Medina, M. A.; O'Neal, D. L.; Turner, W. D.

    1992-01-01

    was not sensitive to increased airflows. The ceiling heat flux reductions produced by the radiant barrier systems were between 25 and 34 percent, with 28 percent being the reduction observed most often in the presence of attic ventilation. All results presented...

  4. Wireless Ventilation Control for Large-Scale Systems: the Mining Industrial Case

    E-Print Network [OSTI]

    Boyer, Edmond

    minimization thanks to a continuous operation of the fans. The second one, based on a hybrid description strategies for fluid systems (pumps, fans and compressors) represent approximately 20 % of the total % or more of the energy consumed by the mining process may go into the ventilation (including heating

  5. Summer Infiltration/Ventilation Test Results from the FRTF Laboratory...

    Energy Savers [EERE]

    Summer InfiltrationVentilation Test Results from the FRTF Laboratory Summer InfiltrationVentilation Test Results from the FRTF Laboratory This presentation was delivered at the...

  6. Critical Question #2: What are the Best Practices for Ventilation...

    Energy Savers [EERE]

    2: What are the Best Practices for Ventilation Specific to Multifamily Buildings? Critical Question 2: What are the Best Practices for Ventilation Specific to Multifamily...

  7. Energy-saving strategies with personalized ventilation in cold climates

    E-Print Network [OSTI]

    Schiavon, Stefano; Melikov, Arsen

    2009-01-01

    Energy-saving strategies with personalized ventilation inon energy consumption and the energy-saving potentials of amixing ventilation alone if energy-saving strategies are not

  8. Advanced Controls for Residential Whole-House Ventilation Systems...

    Office of Scientific and Technical Information (OSTI)

    AND MISCELLANEOUS Residential ventilation, ventilation controller, ASHRAE Standard 62.2, demand response Word Cloud More Like This Full Text preview image File size NAView Full...

  9. Promising Technology: Variable-Air-Volume Ventilation System

    Broader source: Energy.gov [DOE]

    Variable-air-volume (VAV) ventilation saves energy compared to a constant-air-volume (CAV) ventilation system, mainly by reducing energy consumption associated with fans.

  10. Case Study - The Challenge: Improving Ventilation System Energy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Ventilation System Energy Efficiency in a Textile Plant Case Study - The Challenge: Improving Ventilation System Energy Efficiency in a Textile Plant This case study examines how...

  11. Low-Cost Ventilation in Production Housing - Building America...

    Energy Savers [EERE]

    Low-Cost Ventilation in Production Housing - Building America Top Innovation Low-Cost Ventilation in Production Housing - Building America Top Innovation This drawing shows simple...

  12. Commissioning Ventilated Containment Systems in the Laboratory

    SciTech Connect (OSTI)

    Not Available

    2008-08-01

    This Best Practices Guide focuses on the specialized approaches required for ventilated containment systems, understood to be all components that drive and control ventilated enclosures and local exhaust systems within the laboratory. Geared toward architects, engineers, and facility managers, this guide provides information about technologies and practices to use in designing, constructing, and operating operating safe, sustainable, high-performance laboratories.

  13. Condensing Heating and Water Heating Equipment Workshop Location...

    Energy Savers [EERE]

    Condensing Heating and Water Heating Equipment Workshop Location: Washington Gas Light Appliance Training Facility 6801 Industrial Road Springfield, VA Date: October 9, 2014 Time:...

  14. TRANSPARENT HEAT MIRRORS FOR PASSIVE SOLAR HEATING APPLICATIONS

    E-Print Network [OSTI]

    Selkowitz, S.

    2011-01-01

    advantage of light transmission through heat mirrors may notimportant but heat gain may not be, the transmission windowheat mirror coating alone (without substrate losses) is a solar transmission

  15. Field-Evaluation of Alternative HVAC Strategies to Meet Ventilation, Comfort and Humidity Control Criteria at Three Full-Serve Restaurants

    E-Print Network [OSTI]

    Yborra, S. C.; Spears, J. W.

    2000-01-01

    Lighting and ventilation represent the majority of the air conditioning loads in office buildings in hot humid climates. Use of motion sensors is one way to minimize the energy used for these loads. This paper describes the methods used...

  16. Natural Ventilation | Department of Energy

    Energy Savers [EERE]

    windows located near the top of the house, in clerestories, or in operable skylights. Passive solar homes are often designed to take advantage of convection to distribute heat...

  17. Building America Webinar: Multifamily Ventilation Strategies and Compartmentalization Requirements

    Broader source: Energy.gov [DOE]

    The webinar will focus on key challenges in multifamily ventilation and strategies to address these challenges.

  18. Ventilation Requirements in Hot Humid Climates

    E-Print Network [OSTI]

    Walker, I. S.; Sherman, M. H.

    2006-01-01

    , To be publicshed ASHRAE Trans. Sherman, M.H. and Matson, N.E Residential Ventilation and Energy Characteristics, ASHRAE Trans. 103(1), 1997, [LBNL- 39036]. Sherman M. H., Over-ventilating in Hot, Humid Climates, IAQ Applications, 7(1) pp. 1-4 ASHRAE, 2006...a. Sherman M. H. , House Need to BreatheRight? Fine Homebuilding, April/May 2006; pp. 64-69, LBL Report 54496. Sherman M.H, Matson N.E. , Air Tightness in New U.S. Housing Proc. 22 nd AIVC Conference, Air Infiltration and Ventilation...

  19. Using a Ventilation Controller to Optimize Residential Passive Ventilation For Energy and Indoor Air Quality

    SciTech Connect (OSTI)

    Turner, William; Walker, Iain

    2014-08-01

    One way to reduce the energy impact of providing residential ventilation is to use passive and hybrid systems. However, these passive and hybrid (sometimes called mixed-mode) systems must still meet chronic and acute health standards for ventilation. This study uses a computer simulation approach to examine the energy and indoor air quality (IAQ) implications of passive and hybrid ventilation systems, in 16 California climate zones. Both uncontrolled and flow controlled passive stacks are assessed. A new hybrid ventilation system is outlined that uses an intelligent ventilation controller to minimise energy use, while ensuring chronic and acute IAQ standards are met. ASHRAE Standard 62.2-2010 the United States standard for residential ventilation - is used as the chronic standard, and exposure limits for PM2.5, formaldehyde and NO2 are used as the acute standards.The results show that controlled passive ventilation and hybrid ventilation can be used in homes to provide equivalent IAQ to continuous mechanical ventilation, for less use of energy.

  20. Total Space Heat-

    Gasoline and Diesel Fuel Update (EIA)

    Survey: Energy End-Use Consumption Tables Total Space Heat- ing Cool- ing Venti- lation Water Heat- ing Light- ing Cook- ing Refrig- eration Office Equip- ment Com- puters Other...

  1. Scale model studies of displacement ventilation

    E-Print Network [OSTI]

    Okutan, Galip Mehmet

    1995-01-01

    Displacement ventilation is an air conditioning method that provides conditioned air to indoor environments with the goal to improve air quality while reducing energy consumption. This study investigates the performance ...

  2. Demand Controlled Ventilation for Improved Humidity Control

    E-Print Network [OSTI]

    Rogers, J. K.

    1996-01-01

    , outside air can be minimized without exceeding recommended IAQ guidelines. INTRODUCTION The greatest single contributor to building energy loads in humid climates is the cooling and dehumidifying of outside air which is brought in for ventilation...

  3. A Ventilation Index for Tropical Cyclones

    E-Print Network [OSTI]

    Tang, Brian

    An important environmental control of both tropical cyclone intensity and genesis is vertical wind shear. One hypothesized pathway by which vertical shear affects tropical cyclones is midlevel ventilationor the flux of ...

  4. Building America Technology Solutions Case Study: Ventilation...

    Energy Savers [EERE]

    ventilation systems at two unoccupied, single-family lab homes at the University of Texas at Tyler. The only difference was that House 1 had a vented attic and House 2 had an...

  5. UNDERGRADUATE ADVISING GUIDE

    E-Print Network [OSTI]

    : Building electrical and lighting systems Building heating, ventilating and air conditioning systems

  6. Evaluating Ventilation Systems for Existing Homes

    SciTech Connect (OSTI)

    Aldrich, Robb; Arena, Lois

    2013-02-01

    In an effort to improve housing options near Las Vegas, Nevada, the Clark County Community Resources Division (CCCRD) performs substantial renovations to foreclosed homes. After dramatic energy, aesthetic, and health and safety improvements are made, homes are rented or sold to qualified residents. This report describes the evaluation and selection of ventilation systems for these homes, including key considerations when selecting an ideal system. The report then describes CCCRDs decision process with respect to ventilation.

  7. Industrial Ventilation Statistics Confirm Energy Savings Opportunity

    E-Print Network [OSTI]

    Litomisky, A.

    2006-01-01

    ventilation designers, and factory owners alike. When asked how high the use of machinery is, they usually answer 90% of shift time. Thats far from the facts revealed by our measurements. The data published here is based on installed on... design of ventilation systems, the constantly changing workflow and business demands (production increase, production decrease, new more effective machinery, and new production technology). I would like to prove that the older the duct system...

  8. Influence of Infrared Radiation on Attic Heat Transfer

    E-Print Network [OSTI]

    Katipamula, S.; Turner, W. D.; Murphy, W. E.; O'Neal, D. L.

    1985-01-01

    An experimental study concerned with different modes of heal transfer in fibrous and cellulose insulating material is presented. A series of experiments were conducted using an attic simulator to determine the effects of ventilation on attic heat...

  9. Invasive Mechanical Ventilation in California Over 2000-2009: Implications for Emergency Medicine

    E-Print Network [OSTI]

    2015-01-01

    meta-analysis. BMJ. of mechanical ventilation: a population-NM, Dettmer M, et al. Mechanical ventilation and Westernet al. Invasive Mechanical Ventilation in California from

  10. Energy and Cost Associated with Ventilating Office Buildings in a Tropical Climate

    E-Print Network [OSTI]

    Rim, Donghyun; Schiavon, Stefano; Nazaroff, William W

    2015-01-01

    RESEARCH ARTICLE Energy and Cost Associated with VentilatingS, Nazaroff WW (2015) Energy and Cost Associated withcost on ventilation energy and cost; and 4) limitations and

  11. Assessment of Indoor Air Quality Benefits and Energy Costs of Mechanical Ventilation

    E-Print Network [OSTI]

    Logue, J.M.

    2012-01-01

    Quality Benefits and Energy Costs of Mechanical VentilationQuality Benefits and Energy Costs of Mechanical VentilationQuality Benefits and Energy Costs of Mechanical Ventilation

  12. Improving Ventilation and Saving Energy: Relocatable Classroom Field Study Interim Report

    E-Print Network [OSTI]

    2005-01-01

    Improving Ventilation and Saving Energy Field Study Plan,Improving Ventilation and Saving Energy: Laboratory Study inVentilation and Saving Energy: Relocatable Classroom Field

  13. ENERGY EFFICIENCY TECHNOLOGY ROADMAP VOLUME 5: HEATING, VENTILATION...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and space conditioning systems in a cost effective efficient package Need information on energy performance and optimization Need for cost effective demand response capability...

  14. Heating Ventilation and Air Conditioning Efficiency | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergy A plug-inPPLforLDRD Report11,Security Officer Program |quickHeather

  15. Heating, Ventilation, and Air Conditioning Projects | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergy A plug-inPPLforLDRD Report11,Security Officer Program |quickHeatherThermostats

  16. Software Verification & Validation Report for the 244-AR Vault Interim Stabilization Ventilation System

    SciTech Connect (OSTI)

    YEH, T.

    2002-11-20

    This document reports on the analysis, testing and conclusions of the software verification and validation for the 244-AR Vault Interim Stabilization ventilation system. Automation control system will use the Allen-Bradley software tools for programming and programmable logic controller (PLC) configuration. The 244-AR Interim Stabilization Ventilation System will be used to control the release of radioactive particles to the environment in the containment tent, located inside the canyon of the 244-AR facility, and to assist the waste stabilization efforts. The HVAC equipment, ducts, instruments, PLC hardware, the ladder logic executable software (documented code), and message display terminal are considered part of the temporary ventilation system. The system consists of a supply air skid, temporary ductwork (to distribute airflow), and two skid-mounted, 500-cfm exhausters connected to the east filter building and the vessel vent system. The Interim Stabilization Ventilation System is a temporary, portable ventilation system consisting of supply side and exhaust side. Air is supplied to the containment tent from an air supply skid. This skid contains a constant speed fan, a pre-filter, an electric heating coil, a cooling coil, and a constant flow device (CFD). The CFD uses a passive component that allows a constant flow of air to pass through the device. Air is drawn out of the containment tent, cells, and tanks by two 500-cfm exhauster skids running in parallel. These skids are equipped with fans, filters, stack, stack monitoring instrumentation, and a PLC for control. The 500CFM exhaust skids were fabricated and tested previously for saltwell pumping activities. The objective of the temporary ventilation system is to maintain a higher pressure to the containment tent, relative to the canyon and cell areas, to prevent contaminants from reaching the containment tent.

  17. HOW THE LEED VENTILATION CREDIT IMPACTS ENERGY CONSUMPTION OF GSHP SYSTEMS A CASE STUDY FOR PRIMARY SCHOOLS

    SciTech Connect (OSTI)

    Liu, Xiaobing [ORNL] [ORNL

    2011-01-01

    This paper presents a study on the impacts of increased outdoor air (OA) ventilation on the performance of ground-source heat pump (GSHP) systems that heat and cool typical primary schools. Four locations Phoenix, Miami, Seattle, and Chicago are selected in this study to represent different climate zones in the United States. eQUEST, an integrated building and HVAC system energy analysis program, is used to simulate a typical primary school and the GSHP system at the four locations with minimum and 30% more than minimum OA ventilation. The simulation results show that, without an energy recovery ventilator, the 30% more OA ventilation results in an 8.0 13.3% increase in total GSHP system energy consumption at the four locations. The peak heating and cooling loads increase by 20.2 30% and 14.9 18.4%, respectively, at the four locations. The load imbalance of the ground heat exchanger is increased in hot climates but reduced in mild and cold climates.

  18. Performance of an Organic Rankine Cycle Waste Heat Recovery System...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Performance of an Organic Rankine Cycle Waste Heat Recovery System for Light Duty Diesel Engines Performance of an Organic Rankine Cycle Waste Heat Recovery System for Light Duty...

  19. Definition and means of maintaining the ventilation system confinement portion of the PFP safety envelope

    SciTech Connect (OSTI)

    Dick, J.D.; Grover, G.A.; O`Brien, P.M., Fluor Daniel Hanford

    1997-03-05

    The Plutonium Finishing Plant Heating Ventilation and Cooling system provides for the confinement of radioactive releases to the environment and provides for the confinement of radioactive contamination within designated zones inside the facility. This document identifies the components and procedures necessary to ensure the HVAC system provides these functions. Appendices E through J provide a snapshot of non-safety class HVAC equipment and need not be updated when the remainder of the document and Appendices A through D are updated.

  20. Estimated costs of ventilation systems complying with the HUD ventilation standard for manufactured homes

    SciTech Connect (OSTI)

    Miller, J.D.; Conner, C.C.

    1993-11-01

    At the request of the US Department of Housing and Urban Development (HUD), the Pacific Northwest Laboratory estimated the material, labor, and operating costs for ventilation equipment needed for compliance with HUD`s proposed revision to the ventilation standard for manufactured housing. This was intended to bound the financial impacts of the ventilation standard revision. Researchers evaluated five possible prototype ventilation systems that met the proposed ventilation requirements. Of those five, two systems were determined to be the most likely used by housing manufacturers: System 1 combines a fresh air duct with the existing central forced-air system to supply and circulate fresh air to conditioned spaces. System 2 uses a separate exhaust fan to remove air from the manufactured home. The estimated material and labor costs for these two systems range from $200 to $300 per home. Annual operating costs for the two ventilation systems were estimated for 20 US cities. The estimated operating costs for System 1 ranged from $55/year in Las Vegas, Nevada, to $83/year in Bismarck, North Dakota. Operating costs for System 2 ranged from a low of $35/year in Las Vegas to $63/year in Bismarck. Thus, HUD`s proposed increase in ventilation requirements will add less than $100/year to the energy cost of a manufactured home.

  1. Investigation of room ventilation for improved operation of a downdraft table

    E-Print Network [OSTI]

    Jayaraman, B.; Kristoffersen, A.; Finlayson, E.; Gadgil, A.

    2004-01-01

    Investigation of Room Ventilation for Improved Operation ofInvestigation of Room Ventilation for Improved Operation of

  2. Natural ventilation : design for suburban houses in Thailand

    E-Print Network [OSTI]

    Tantasavasdi, Chalermwat, 1971-

    1998-01-01

    Natural Ventilation is the most effective passive cooling design strategy for architecture in hot and humid climates. In Thailand, natural ventilation has been the most essential element in the vernacular architecture such ...

  3. Study of natural ventilation in buildings with large eddy simulation

    E-Print Network [OSTI]

    Jiang, Yi, 1972-

    2002-01-01

    With the discovery of many economic, environmental, and health problems in sealed and mechanically ventilated buildings, the concept of natural ventilation has been revived. "Buildings that breathe" have become more and ...

  4. A scale model study of displacement ventilation with chilled ceilings

    E-Print Network [OSTI]

    Holden, Katherine J. A. (Katherine Joan Adrienne)

    1995-01-01

    Displacement ventilation is a form of air-conditioning which provides good air quality and some energy savings. The air quality is better than for a conventional mixed ventilation system. The maximum amount of cooling that ...

  5. Modeling buoyancy-driven airflow in ventilation shafts

    E-Print Network [OSTI]

    Ray, Stephen D. (Stephen Douglas)

    2012-01-01

    Naturally ventilated buildings can significantly reduce the required energy for cooling and ventilating buildings by drawing in outdoor air using non-mechanical forces. Buoyancy-driven systems are common in naturally ...

  6. BTO Awards Small Business Grants for Lighting, Building-Integrated...

    Energy Savers [EERE]

    BTO Awards Small Business Grants for Lighting, Building-Integrated Heat and Moisture Exchange Technology BTO Awards Small Business Grants for Lighting, Building-Integrated Heat and...

  7. Liquid heat capacity lasers

    DOE Patents [OSTI]

    Comaskey, Brian J. (Walnut Creek, CA); Scheibner, Karl F. (Tracy, CA); Ault, Earl R. (Livermore, CA)

    2007-05-01

    The heat capacity laser concept is extended to systems in which the heat capacity lasing media is a liquid. The laser active liquid is circulated from a reservoir (where the bulk of the media and hence waste heat resides) through a channel so configured for both optical pumping of the media for gain and for light amplification from the resulting gain.

  8. Building Energy-Efficiency Best Practice Policies and Policy Packages

    E-Print Network [OSTI]

    Levine, Mark

    2014-01-01

    and water heating demand as well as use of natural ventilation and lighting, energy recovery systems, waste heat,

  9. Flexible Residential Test Facility: Impact of Infiltration and Ventilation on Measured Cooling Season Energy and Moisture Levels

    SciTech Connect (OSTI)

    Parker, D.; Kono, J.; Vieira, R.; Fairey, P.; Sherwin, J.; Withers, C.; Hoak, D.; Beal, D.

    2014-05-01

    Air infiltration and ventilation in residential buildings is a very large part of the heating loads, but empirical data regarding the impact on space cooling has been lacking. Moreover, there has been little data on how building tightness might relate to building interior moisture levels in homes in a hot and humid climate. To address this need, BA-PIRC has conducted research to assess the moisture and cooling load impacts of airtightness and mechanical ventilation in two identical laboratory homes in the hot-humid climate over the cooling season.

  10. Building America Webinar: Ventilation Strategies for High Performance Homes, Part I: Application-Specific Ventilation Guidelines

    Broader source: Energy.gov [DOE]

    This webinar, held on Aug. 26, 2015, covered what makes high-performance homes different from a ventilation perspective and how they might need to be treated differently than traditional construction.

  11. Performance Test and Energy Saving Analysis of a Heat Pipe Dehumidifier

    E-Print Network [OSTI]

    Zhao, X.; Li, Q.; Yun, C.

    2006-01-01

    , Dehumidifier Heat Pipes for Rice Drying and Storage, 6th International Heat Pipe Symposium, 2000,Chiang Mai, Thailand [3] Xia Yu, Wen Wang, Ruzhu Wang. Applications of heat pipe in Air conditions)in Chinese). Heating Ventilation and Air Conditions,2004,34(5):26-30 ...

  12. Air Distribution Effectiveness for Different Mechanical Ventilation

    E-Print Network [OSTI]

    LBNL-62700 Air Distribution Effectiveness for Different Mechanical Ventilation Systems Max H Orlando Lawrence Berkeley National Laboratory is an equal opportunity employer. #12;1 Air Distribution depending on the effectiveness of their air distribution systems and the location of sources and occupants

  13. Mixed-Mode Ventilation and Building Retrofits

    E-Print Network [OSTI]

    Brager, Gail; Ackerly, Katie

    2010-01-01

    of low-energy ventilation strategies in four generalized UKUK offices: How adaptive comfort theories might influence future low energy office refurbishment strategies,UK Department of the Environment, Transport and the Regions Energy Efficiency Best Practice Programme Numerous guidelines for developing the most appropriate design strategy

  14. Modeling particle loss in ventilation ducts

    SciTech Connect (OSTI)

    Sippola, Mark R.; Nazaroff, William W.

    2003-04-01

    Empirical equations were developed and applied to predict losses of 0.01-100 {micro}m airborne particles making a single pass through 120 different ventilation duct runs typical of those found in mid-sized office buildings. For all duct runs, losses were negligible for submicron particles and nearly complete for particles larger than 50 {micro}m. The 50th percentile cut-point diameters were 15 {micro}m in supply runs and 25 {micro}m in return runs. Losses in supply duct runs were higher than in return duct runs, mostly because internal insulation was present in portions of supply duct runs, but absent from return duct runs. Single-pass equations for particle loss in duct runs were combined with models for predicting ventilation system filtration efficiency and particle deposition to indoor surfaces to evaluate the fates of particles of indoor and outdoor origin in an archetypal mechanically ventilated building. Results suggest that duct losses are a minor influence for determining indoor concentrations for most particle sizes. Losses in ducts were of a comparable magnitude to indoor surface losses for most particle sizes. For outdoor air drawn into an unfiltered ventilation system, most particles smaller than 1 {micro}m are exhausted from the building. Large particles deposit within the building, mostly in supply ducts or on indoor surfaces. When filters are present, most particles are either filtered or exhausted. The fates of particles generated indoors follow similar trends as outdoor particles drawn into the building.

  15. SY Tank Farm ventilation isolation option risk assessment report

    SciTech Connect (OSTI)

    Powers, T.B.; Morales, S.D.

    1994-03-01

    The safety of the 241-SY Tank Farm ventilation system has been under extensive scrutiny due to safety concerns associated with tank 101-SY. Hydrogen and other gases are generated and trapped in the waste below the liquid surface. Periodically, these gases are released into the dome space and vented through the exhaust system. This attention to the ventilation system has resulted in the development of several alternative ventilation system designs. The ventilation system provides the primary means of mitigation of accidents associated with flammable gases. This report provides an assessment of various alternatives ventilation system designs.

  16. Performance Assessment of Photovoltaic Attic Ventilator Fans

    Broader source: Energy.gov [DOE]

    A case study of photovoltaic attic ventilator fans was conducted on an occupied single family home in Central Florida. Two fans were installed at mid-summer in an instrumented home where attic air temperature, meteorological conditions and space cooling electric power were measured. The home already had an attic radiant barrier, but still experienced attic air temperatures in excess of 130oF.

  17. Passive heating and cooling strategies for single family housing in Fresno, California: a case study

    E-Print Network [OSTI]

    Winchester, Nathan James

    1995-01-01

    This study focuses on the integration of passive heating, cooling, and ventilating techniques for detached single family housing in Fresno, California. The energy use and patterns of energy use were simulated for a typical tract house in Fresno...

  18. Direct Evidence of Molecular Aggregation and Degradation Mechanism of Organic Light-Emitting Diodes under Joule Heating: an STM and Photoluminescence Study

    E-Print Network [OSTI]

    Gong, Jian Ru

    of organic light-emitting diodes (OLED). Scanning tunneling microscopy (STM) and photoluminescence (PL the PL intensity due to temperature. Introduction Organic light-emitting diodes (OLED) have attractedDirect Evidence of Molecular Aggregation and Degradation Mechanism of Organic Light-Emitting Diodes

  19. Heating device for semiconductor wafers

    DOE Patents [OSTI]

    Vosen, Steven R. (Berkeley, CA)

    1999-01-01

    An apparatus for heat treating semiconductor wafers is disclosed. The apparatus includes a heating device which contains an assembly of light energy sources for emitting light energy onto a wafer. In particular, the light energy sources are positioned such that many different radial heating zones are created on a wafer being heated. For instance, in one embodiment, the light energy sources form a spiral configuration. In an alternative embodiment, the light energy sources appear to be randomly dispersed with respect to each other so that no discernable pattern is present. In a third alternative embodiment of the present invention, the light energy sources form concentric rings. Tuning light sources are then placed in between the concentric rings of light.

  20. Heating device for semiconductor wafers

    DOE Patents [OSTI]

    Vosen, S.R.

    1999-07-27

    An apparatus for heat treating semiconductor wafers is disclosed. The apparatus includes a heating device which contains an assembly of light energy sources for emitting light energy onto a wafer. In particular, the light energy sources are positioned such that many different radial heating zones are created on a wafer being heated. For instance, in one embodiment, the light energy sources form a spiral configuration. In an alternative embodiment, the light energy sources appear to be randomly dispersed with respect to each other so that no discernible pattern is present. In a third alternative embodiment of the present invention, the light energy sources form concentric rings. Tuning light sources are then placed in between the concentric rings of light. 4 figs.

  1. Foundation Heat Exchanger Final Report: Demonstration, Measured Performance, and Validated Model and Design Tool

    SciTech Connect (OSTI)

    Hughes, Patrick [ORNL; Im, Piljae [ORNL

    2012-01-01

    Geothermal heat pumps, sometimes called ground-source heat pumps (GSHPs), have been proven capable of significantly reducing energy use and peak demand in buildings. Conventional equipment for controlling the temperature and humidity of a building, or supplying hot water and fresh outdoor air, must exchange energy (or heat) with the building's outdoor environment. Equipment using the ground as a heat source and heat sink consumes less non-renewable energy (electricity and fossil fuels) because the earth is cooler than outdoor air in summer and warmer in winter. The most important barrier to rapid growth of the GSHP industry is high first cost of GSHP systems to consumers. The most common GSHP system utilizes a closed-loop ground heat exchanger. This type of GSHP system can be used almost anywhere. There is reason to believe that reducing the cost of closed-loop systems is the strategy that would achieve the greatest energy savings with GSHP technology. The cost premium of closed-loop GSHP systems over conventional space conditioning and water heating systems is primarily associated with drilling boreholes or excavating trenches, installing vertical or horizontal ground heat exchangers, and backfilling the excavations. This project investigates reducing the cost of horizontal closed-loop ground heat exchangers by installing them in the construction excavations, augmented when necessary with additional trenches. This approach applies only to new construction of residential and light commercial buildings or additions to such buildings. In the business-as-usual scenario, construction excavations are not used for the horizontal ground heat exchanger (HGHX); instead the HGHX is installed entirely in trenches dug specifically for that purpose. The potential cost savings comes from using the construction excavations for the installation of ground heat exchangers, thereby minimizing the need and expense of digging additional trenches. The term foundation heat exchanger (FHX) has been coined to refer exclusively to ground heat exchangers installed in the overcut around the basement walls. The primary technical challenge undertaken by this project was the development and validation of energy performance models and design tools for FHX. In terms of performance modeling and design, ground heat exchangers in other construction excavations (e.g., utility trenches) are no different from conventional HGHX, and models and design tools for HGHX already exist. This project successfully developed and validated energy performance models and design tools so that FHX or hybrid FHX/HGHX systems can be engineered with confidence, enabling this technology to be applied in residential and light commercial buildings. The validated energy performance model also addresses and solves another problem, the longstanding inadequacy in the way ground-building thermal interaction is represented in building energy models, whether or not there is a ground heat exchanger nearby. Two side-by-side, three-level, unoccupied research houses with walkout basements, identical 3,700 ft{sup 2} floor plans, and hybrid FHX/HGHX systems were constructed to provide validation data sets for the energy performance model and design tool. The envelopes of both houses are very energy efficient and airtight, and the HERS ratings of the homes are 44 and 45 respectively. Both houses are mechanically ventilated with energy recovery ventilators, with space conditioning provided by water-to-air heat pumps with 2 ton nominal capacities. Separate water-to-water heat pumps with 1.5 ton nominal capacities were used for water heating. In these unoccupied research houses, human impact on energy use (hot water draw, etc.) is simulated to match the national average. At House 1 the hybrid FHX/HGHX system was installed in 300 linear feet of excavation, and 60% of that was construction excavation (needed to construct the home). At House 2 the hybrid FHX/HGHX system was installed in 360 feet of excavation, 50% of which was construction excavation. There are six pipes in all excavations (three par

  2. Measured Air Distribution Effectiveness for Residential Mechanical Ventilation Systems

    E-Print Network [OSTI]

    Sherman, Max H.

    2008-01-01

    In Review J. Indoor Air) 2007 LBNL-63193 Tarantola, Albert,Gas Measurement to Determine Air Movements in a House,Measurement Techniques, Air Infiltration and Ventilation

  3. LBNL REPORT NUMBER 53776; OCTOBER 2003 ASHRAE &Residential Ventilation

    E-Print Network [OSTI]

    .........................................................10 11. Water Intrusion Control.............................................................10 What control and ventilation are key control means. People spend, on average, nearly 90% of their time indoors

  4. Energy-saving strategies with personalized ventilation in cold climates

    E-Print Network [OSTI]

    Schiavon, Stefano; Melikov, Arsen

    2009-01-01

    Energy-saving strategies with personalized ventilation inalone if energy-saving strategies are not applied. TheHowever, this energy- saving strategy can be recommended

  5. Building America Webinar: Multifamily Ventilation Strategies and Compartmentalization Requirements

    Broader source: Energy.gov [DOE]

    This Building America webinar, held on Sept. 24, 2014, focused on key challenges in multifamily ventilation and strategies to address these challenges.

  6. AUTOMATIC VARIABLE VENTILATION CONTROL SYSTEMS BASED ON AIR QUALITY DETECTION

    E-Print Network [OSTI]

    Turiel, Isaac

    2011-01-01

    U"'"'''"'" - e "'~saon Automatic Variable Ventilation1979) LBL~8893 EEB Vent 79-3 Automatic variable ventilationmeasurement capabilities o Automatic operation o Low

  7. Heat pipe array heat exchanger

    DOE Patents [OSTI]

    Reimann, Robert C. (Lafayette, NY)

    1987-08-25

    A heat pipe arrangement for exchanging heat between two different temperature fluids. The heat pipe arrangement is in a ounterflow relationship to increase the efficiency of the coupling of the heat from a heat source to a heat sink.

  8. Model-based analysis and simulation of regenerative heat wheel Zhuang Wu a

    E-Print Network [OSTI]

    Melnik, Roderick

    , which is used in many heat recovery systems. In this paper, a model-based analysis of a rotary Mechanical ventilation with heat recovery systems plays a vital role in securing optimum air quality, thermal heat recovery systems [3]. Such systems have a significant effect on the energy effectiveness

  9. A Bench Study of Intensive Care Unit Ventilators: New versus Old and Turbine-Based versus Compressed Gas-Based Ventilators

    E-Print Network [OSTI]

    Paris-Sud XI, Universit de

    . Material: Four turbine- based ventilators and nine conventional servo-valve compressed-gas ventilators were1 A Bench Study of Intensive Care Unit Ventilators: New versus Old and Turbine-Based versus Compressed Gas-Based Ventilators Arnaud W. Thille,1 MD; Aissam Lyazidi,1 Biomed Eng MS; Jean-Christophe M

  10. Sensitivity of Tropical Cyclone Intensity to Ventilation in an Axisymmetric Model

    E-Print Network [OSTI]

    Tang, Brian

    The sensitivity of tropical cyclone intensity to ventilation of cooler, drier air into the inner core is examined using an axisymmetric tropical cyclone model with parameterized ventilation. Sufficiently strong ventilation ...

  11. Guide to Closing and Conditioning Ventilated Crawlspaces

    SciTech Connect (OSTI)

    Dickson, B.

    2013-01-01

    This how-to guide explains the issues and concerns with conventional ventilated crawlspaces and provides prescriptive measures for improvements that will create healthier and more durable spaces. The methods described in this guide are not the only acceptable ways to treat a crawlspace but represent a proven strategy that works in many areas of the United States. The designs discussed in this guide may or may not meet the local building codes and as such will need to be researched before beginning the project.

  12. C-106 tank process ventilation test

    SciTech Connect (OSTI)

    Bailey, J.W.

    1998-07-20

    Project W-320 Acceptance Test Report for tank 241-C-106, 296-C-006 Ventilation System Acceptance Test Procedure (ATP) HNF-SD-W320-012, C-106 Tank Process Ventilation Test, was an in depth test of the 296-C-006 ventilation system and ventilation support systems required to perform the sluicing of tank C-106. Systems involved included electrical, instrumentation, chiller and HVAC. Tests began at component level, moved to loop level, up to system level and finally to an integrated systems level test. One criteria was to perform the test with the least amount of risk from a radioactive contamination potential stand point. To accomplish this a temporary configuration was designed that would simulate operation of the systems, without being connected directly to the waste tank air space. This was done by blanking off ducting to the tank and connecting temporary ducting and an inlet air filter and housing to the recirculation system. This configuration would eventually become the possible cause of exceptions. During the performance of the test, there were points where the equipment did not function per the directions listed in the ATP. These events fell into several different categories. The first and easiest problems were field configurations that did not match the design documentation. This was corrected by modifying the field configuration to meet design documentation and reperforming the applicable sections of the ATP. A second type of problem encountered was associated with equipment which did not operate correctly, at which point an exception was written against the ATP, to be resolved later. A third type of problem was with equipment that actually operated correctly but the directions in the ATP were in error. These were corrected by generating an Engineering Change Notice (ECN) against the ATP. The ATP with corrected directions was then re-performed. A fourth type of problem was where the directions in the ATP were as the equipment should operate, but the design of the equipment was not correct for that type of operation. To correct this problem an ECN was generated against the design documents, the equipment modified accordingly, and the ATP re-performed. The last type of problem was where the equipment operated per the direct ions in the ATP, agreed with the design documents, yet violated requirements of the Basis of Interim Operation (BIO). In this instance a Non Conformance Report (NCR) was generated. To correct problems documented on an NCR, an ECN was generated to modify the design and field work performed, followed by retesting to verify modifications corrected noted deficiencies. To expedite the completion of testing and maintain project schedules, testing was performed concurrent with construct on, calibrations and the performance of other ATP`s.

  13. Ventilation in Multifamily Buildings | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LIST OF APPLICABLEStatutoryinEnable LowNews VehicleDepartmentVentilation in

  14. Experiments measuring particle deposition from fully developed turbulent flow in ventilation ducts

    E-Print Network [OSTI]

    Sippola, Mark R.; Nazaroff, William W.

    2003-01-01

    of Particles in Vertical Ducts with Smooth and RoughDeposition in Ventilation Ducts, Ph. D. Dissertation,Applicability to Ventilation Ducts in Commercial Buildings,

  15. Buoyancy-Driven Ventilation of Hydrogen from Buildings: Laboratory Test and Model Validation

    SciTech Connect (OSTI)

    Barley, C. D.; Gawlik, K.

    2009-05-01

    Passive, buoyancy-driven ventilation is one approach to limiting hydrogen concentration. We explored the relationship between leak rate, ventilation design, and hydrogen concentrations.

  16. ASHRAE Standard 62.2. Ventilation and Acceptable Indoor Air Quality...

    Energy Savers [EERE]

    ASHRAE Standard 62.2. Ventilation and Acceptable Indoor Air Quality in Low- Rise Residential Buildings - Building America Top Innovation ASHRAE Standard 62.2. Ventilation and...

  17. Air Distribution Effectiveness for Residential Mechanical Ventilation: Simulation and Comparison of Normalized Exposures

    E-Print Network [OSTI]

    Petithuguenin, T.D.P.

    2009-01-01

    and strength, on occupants behavior, on the ventilationSince the occupants behavior drives ventilation (viaa more realistic approach to occupant behavior and exposure

  18. Improved Wireless Performance from Mode Scattering in Ventilation Ducts

    E-Print Network [OSTI]

    Stancil, Daniel D.

    Improved Wireless Performance from Mode Scattering in Ventilation Ducts Benjamin E. Henty, PA 15230. henty@eirp.org and stancil@cmu.edu Abstract Ventilation ducts are a convenient undesirable in a ven- tilation duct setting. With this in mind we investigate the mode scattering effects

  19. Optimal decision making in ventilation control Andrew Kusiak*, Mingyang Li

    E-Print Network [OSTI]

    Kusiak, Andrew

    . In addition, devices such as air-side economizers are also used in ventilation systems to reduce energy Accepted 24 July 2009 Available online 15 August 2009 Keywords: Ventilation Air quality Multi. Using the CO2 concentration as the major indoor air quality index and expected room occupancy schedule

  20. Measure Guideline: Selecting Ventilation Systems for Existing Homes

    SciTech Connect (OSTI)

    Aldrich, R.

    2014-02-01

    This document addresses adding -or improving - mechanical ventilation systems to existing homes. The purpose of ventilation is to remove contaminants from homes, and this report discusses where, when, and how much ventilation is appropriate in a home, including some discussion of relevant codes and standards. Advantages, disadvantages, and approximate costs of various system types are presented along with general guidelines for implementing the systems in homes. CARB intends for this document to be useful to decision makers and contractors implementing ventilation systems in homes. Choosing the "best" system is not always straightforward; selecting a system involves balancing performance, efficiency, cost, required maintenance, and several other factors. It is the intent of this document to assist contractors in making more informed decisions when selecting systems. Ventilation is an integral part of a high-performance home. With more air-sealed envelopes, a mechanical means of removing contaminants is critical for indoor environmental quality and building durability.

  1. Ventilation System Effectiveness and Tested Indoor Air Quality Impacts

    SciTech Connect (OSTI)

    Rudd, A.; Bergey, D.

    2014-02-01

    Ventilation system effectiveness testing was conducted at two unoccupied, single-family, detached lab homes at the University of Texas - Tyler. Five ventilation system tests were conducted with various whole-building ventilation systems. Multizone fan pressurization testing characterized building and zone enclosure leakage. PFT testing showed multizone air change rates and interzonal airflow. Cumulative particle counts for six particle sizes, and formaldehyde and other Top 20 VOC concentrations were measured in multiple zones. The testing showed that single-point exhaust ventilation was inferior as a whole-house ventilation strategy. It was inferior because the source of outside air was not direct from outside, the ventilation air was not distributed, and no provision existed for air filtration. Indoor air recirculation by a central air distribution system can help improve the exhaust ventilation system by way of air mixing and filtration. In contrast, the supply and balanced ventilation systems showed that there is a significant benefit to drawing outside air from a known outside location, and filtering and distributing that air. Compared to the Exhaust systems, the CFIS and ERV systems showed better ventilation air distribution and lower concentrations of particulates, formaldehyde and other VOCs. System improvement percentages were estimated based on four System Factor Categories: Balance, Distribution, Outside Air Source, and Recirculation Filtration. Recommended System Factors could be applied to reduce ventilation fan airflow rates relative to ASHRAE Standard 62.2 to save energy and reduce moisture control risk in humid climates. HVAC energy savings were predicted to be 8-10%, or $50-$75/year.

  2. Ventilation System Effectiveness and Tested Indoor Air Quality Impacts

    SciTech Connect (OSTI)

    Rudd, Armin; Bergey, Daniel

    2014-02-01

    In this project, Building America research team Building Science Corporation tested the effectiveness of ventilation systems at two unoccupied, single-family, detached lab homes at the University of Texas - Tyler. Five ventilation system tests were conducted with various whole-building ventilation systems. Multizone fan pressurization testing characterized building and zone enclosure leakage. PFT testing showed multizone air change rates and interzonal airflow. Cumulative particle counts for six particle sizes, and formaldehyde and other Top 20 VOC concentrations were measured in multiple zones. The testing showed that single-point exhaust ventilation was inferior as a whole-house ventilation strategy. This was because the source of outside air was not direct from outside, the ventilation air was not distributed, and no provision existed for air filtration. Indoor air recirculation by a central air distribution system can help improve the exhaust ventilation system by way of air mixing and filtration. In contrast, the supply and balanced ventilation systems showed that there is a significant benefit to drawing outside air from a known outside location, and filtering and distributing that air. Compared to the exhaust systems, the CFIS and ERV systems showed better ventilation air distribution and lower concentrations of particulates, formaldehyde and other VOCs. System improvement percentages were estimated based on four system factor categories: balance, distribution, outside air source, and recirculation filtration. Recommended system factors could be applied to reduce ventilation fan airflow rates relative to ASHRAE Standard 62.2 to save energy and reduce moisture control risk in humid climates. HVAC energy savings were predicted to be 8-10%, or $50-$75/year.

  3. Assessment and Prediction of the Thermal Performance of a Centralized Latent Heat Thermal Energy Storage Utilizing Artificial Neural Network

    E-Print Network [OSTI]

    El-Sawi, A.; Haghighat, F.; Akbari, H.

    2013-01-01

    A simulation tool is developed to analyze the thermal performance of a centralized latent heat thermal energy storage system (LHTES) using computational fluid dynamics (CFD). The LHTES system is integrated with a mechanical ventilation system...

  4. Impact of Infiltration and Ventilation on Measured Space Conditioning Energy and Moisture Levels in the Hot-Humid Climate, Cocoa, Florida (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2014-04-01

    Air infiltration and ventilation in residential buildings is a very large part of the heating loads, but empirical data regarding the impact on space cooling has been lacking. Moreover, there has been little data on how building tightness might relate to building interior moisture levels in homes in a hot and humid climate. To address this need, BA-PIRC has conducted research to assess the moisture and cooling load impacts of airtightness and mechanical ventilation in two identical laboratory homes in the hot-humid climate over the cooling season. ?

  5. Technology Solutions Case Study: Impact of Infiltration and Ventilation on Measured Space Conditioning Energy and Moisture Levels in the Hot-Humid Climate

    SciTech Connect (OSTI)

    2014-04-01

    Air infiltration and ventilation in residential buildings is a very large part of the heating loads, but empirical data regarding the impact on space cooling has been lacking. Moreover, there has been little data on how building tightness might relate to building interior moisture levels in homes in a hot and humid climate. To address this need, BA-PIRC conducted research to assess the moisture and cooling load impacts of airtightness and mechanical ventilation in two identical laboratory homes in the hot-humid climate over the cooling season.

  6. Building America Webinar: Retrofit Ventilation Strategies in...

    Energy Savers [EERE]

    as a critical measure for reducing heating load in homes in cold climates. webinarhybridinsulation20111130.wmv More Documents & Publications Building America Webinar:...

  7. Development of a Residential Integrated Ventilation Controller

    E-Print Network [OSTI]

    Walker, Iain

    2013-01-01

    Refrigerating, and Air-Conditioning Engineers, Atlanta, GA.Refrigerating and Air-Conditioning Engineers. November,Control. Heating Air Conditioning and Refrigeration News.

  8. Design methods for displacement ventilation: Critical review.

    E-Print Network [OSTI]

    Schiavon, Stefano

    2006-01-01

    big space or if cooling/heating floor/ceiling systems areheating system (radiant panels, convectors, radiators or fan coil units at floor

  9. Optimization of Occupancy Based Demand Controlled Ventilation in Residences

    SciTech Connect (OSTI)

    Mortensen, Dorthe K.; Walker, Iain S.; Sherman, Max H.

    2011-05-01

    Although it has been used for many years in commercial buildings, the application of demand controlled ventilation in residences is limited. In this study we used occupant exposure to pollutants integrated over time (referred to as 'dose') as the metric to evaluate the effectiveness and air quality implications of demand controlled ventilation in residences. We looked at air quality for two situations. The first is that typically used in ventilation standards: the exposure over a long term. The second is to look at peak exposures that are associated with time variations in ventilation rates and pollutant generation. The pollutant generation had two components: a background rate associated with the building materials and furnishings and a second component related to occupants. The demand controlled ventilation system operated at a low airflow rate when the residence was unoccupied and at a high airflow rate when occupied. We used analytical solutions to the continuity equation to determine the ventilation effectiveness and the long-term chronic dose and peak acute exposure for a representative range of occupancy periods, pollutant generation rates and airflow rates. The results of the study showed that we can optimize the demand controlled airflow rates to reduce the quantity of air used for ventilation without introducing problematic acute conditions.

  10. Text-Alternative Version of Building America Webinar: Multifamily Ventilation Strategies and Compartmentalization Requirements

    Office of Energy Efficiency and Renewable Energy (EERE)

    Transcript of Building America webinar, "Multifamily Ventilation Strategies and Compartmentalization Requirements," held on Sept. 24, 2014.

  11. New generation of software? Modeling of energy demands for residential ventilation with HTML interface

    E-Print Network [OSTI]

    Forowicz, T

    1997-01-01

    New generation of software? Modeling of energy demands for residential ventilation with HTML interface

  12. Training Workers to use Localized Ventilation for Radiological Work

    SciTech Connect (OSTI)

    WAGGONER, L.O.

    2000-09-01

    Work on radiological systems and components needs to be accomplished using techniques that reduce radiation dose to workers, limit contamination spread, and minimize radioactive waste. One of the best methods to control contamination spread is to use localized ventilation to capture radioactive material and keep it from spreading. The Fluor Hanford ALARA Center teaches workers how to use ventilation in partnership with other engineered controls and this has resulted in improved work practices, minimized the impact on adjacent work operations, and decreased the amount of radioactive waste generated. This presentation will emphasize how the workers are trained to use localized ventilation for contamination control.

  13. An inverse method for calculation of thermal inertia and heat gain in air conditioning and refrigeration systems

    E-Print Network [OSTI]

    Bahrami, Majid

    An inverse method for calculation of thermal inertia and heat gain in air conditioning for estimation of thermal inertia and heat gain in air conditioning and refrigeration systems using on Ltd. All rights reserved. 1. Introduction Heating, Ventilation, Air Conditioning, and Refrigeration

  14. Natural ventilation in buildings : modeling, control and optimization

    E-Print Network [OSTI]

    Ip Kiun Chong, Karine

    2014-01-01

    Natural ventilation in buildings has the potential to reduce the energy consumption usually associated with mechanical cooling while maintaining thermal comfort and air quality. It is important to know how building parameters, ...

  15. Outside Air Ventilation Controller - Building America Top Innovation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    peak demand with no compromise in comfort. This automated night-cooling ventilation system can reduce cooling energy costs up to 40% and peak demand up to 50% in California's...

  16. Study of airflow and thermal stratification in naturally ventilated rooms

    E-Print Network [OSTI]

    Menchaca Brandan, Mara Alejandra

    2012-01-01

    Natural ventilation (NV) can considerably contribute to reducing the cooling energy consumption of a building and increase occupant productivity, if correctly implemented. Such energy savings depend on the number of hours ...

  17. Measure Guideline: Selecting Ventilation Systems for Existing Homes

    SciTech Connect (OSTI)

    Aldrich, R.

    2014-02-01

    This report, developed by Building America research team CARB, addresses adding or improving mechanical ventilation systems to existing homes. The goal of this report is to assist decision makers and contractors in making informed decisions when selecting ventilation systems for homes. With more air-sealed envelopes, a mechanical means of removing contaminants is critical for indoor environmental quality and building durability. The purpose of ventilation is to remove contaminants from homes, and this report discusses where, when, and how much ventilation is appropriate in a home, including examination of relevant codes and standards. Choosing the "best" system is not always straightforward; selecting a system involves balancing performance, efficiency, cost, required maintenance, and several other factors.

  18. Natural ventilation possibilities for buildings in the United States

    E-Print Network [OSTI]

    Dean, Brian N. (Brian Nathan), 1974-

    2001-01-01

    In the United States, many of the commercial buildings built in the last few decades are completely mechanically air conditioned, without the capability to use natural ventilation. This habit has occurred in building designs ...

  19. Development of a High Latent Effectiveness Energy Recovery Ventilator with Integration into Rooftop Package Equipment

    SciTech Connect (OSTI)

    Gregory M. Dobbs; Norberto O. Lemcoff; Frederick J. Cogswell; Jeffrey T. Benolt

    2006-03-01

    This Final Report covers the Cooperative Program carried out to design and optimize an enhanced flat-plate energy recovery ventilator and integrate it into a packaged unitary (rooftop) air conditioning unit. The project objective was to optimize the design of a flat plate energy recovery ventilator (ERV) core that compares favorably to flat plate air-to-air heat exchanger cores on the market and to cost wise to small enthalpy wheel devices. The benefits of an integrated unit incorporating an enhanced ERV core and a downsized heating/cooling unit were characterized and the design of an integrated unit considering performance and cost was optimized. Phase I was to develop and optimize the design of a membrane based heat exchanger core. Phase II was the creation and observation of a system integrated demonstrator unit consisting of the Enhanced Energy Recovery Ventilator (EERV) developed in Phase I coupled to a standard Carrier 50HJ rooftop packaged unitary air conditioning unit. Phase III was the optimization of the system prior to commercialization based on the knowledge gained in Phase II. To assure that the designs chosen have the possibility of meeting cost objectives, a preliminary manufacturability and production cost study was performed by the Center for Automation Technologies at RPI. Phase I also included a preliminary design for the integrated unit to be further developed in Phase II. This was to assure that the physical design of the heat exchanger designed in Phase I would be acceptable for use in Phase II. An extensive modeling program was performed by the Center for Building Performance & Diagnostics of CMU. Using EnergyPlus as the software, a typical office building with multiple system configurations in multiple climatic zones in the US was simulated. The performance of energy recovery technologies in packaged rooftop HVAC equipment was evaluated. The experimental program carried out in Phases II and III consisted of fabricating and testing a demonstrator unit using Carrier Comfort Network (CCN) based controls. Augmenting the control signals, CCN was also used to monitor and record additional performance data that supported modeling and conceptual understanding. The result of the testing showed that the EERV core developed in Phase I recovered energy in the demonstrator unit at the expected levels based on projections. In fact, at near-ARI conditions the core recovered about one ton of cooling enthalpy when operating with a three-ton rooftop packaged unit.

  20. Thermal Comfort of Neutral Ventilated Buildings in Different Cities

    E-Print Network [OSTI]

    Ye, X.; Zhou, Z.; Lian, Z.; Wen, Y.; Zhou, Z.; Jiang, C.

    2006-01-01

    .Jiang. Thermal comfort in naturally ventilated houses in Beijing. Journal of HVAC [J], 1999, 29(2):1-5. (In Chinese) [16] N.Zhu. Studies on some key issues of thermal ICEBO2006, Shenzhen, China Maximize Comfort: Temperature..., China Maximize Comfort: Temperature, Humidity, and IAQ Vol. I-1-2 Thermal Comfort of Neutral Ventilated Buildings in Different Cities1 Xiaojiang Ye Zhaoxiao Zhou Zhiwei Lian Yuangao Wen Zhengping Zhou Chunxiao...

  1. Educational placements for children who are ventilator assisted

    E-Print Network [OSTI]

    Jones, David E.; Clatterburk, Chris C.; Marquis, Janet; Turnbull, H. Rutherford; Moberly, Rebecca L.

    1996-01-01

    Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Educational placements for children who are ventilator assisted Jones, David E;Clatterbuck, Chris C;Marquis, Janet;Turnbull, H Rutherford, III...Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Educational placements for children who are ventilator assisted Jones, David E;Clatterbuck, Chris C;Marquis, Janet;Turnbull, H Rutherford, III...

  2. Commissioning Trial for Mechanical Ventilation System Installed in Houses

    E-Print Network [OSTI]

    Ohta, I.; Fukushima, A.

    2004-01-01

    at the bottom of the main unit. Fig. 2 Floor plan and the ventilation system of the model house The ideal air flow pattern of the model house is shown in Figure 3. Each arrow shows the airflow direction...-8588 Summary Airflow rate of a mechanical ventilation system for houses may not exceed the designed or rated airflow rate because of construction problem and lack of maintenance. According to our survey, half of the houses were enjoying less than 50...

  3. Parametric Study to Characterize Low Activity Waste Tank Heat Removal Alternatives for Phase 1 Specification Development

    SciTech Connect (OSTI)

    GRENARD, C.E.

    2000-09-11

    Alternative for removing heat from Phase 1, low-activity waste feed double-shell tanks using the ventilation systems have been analyzed for Phase 1 waste feed delivery. The analysis was a parametric study using a model that predicted the waste temperatures for a range of primary and annulus ventilation system flow rates. The analysis was performed to determine the ventilation flow required to prevent the waste temperature from exceeding the Limiting Conditions for Operation limits during normal operation and the Safety Limits during off-normal events.

  4. In-Situ Measurement of Crystalline Silicon Modules Undergoing Potential-Induced Degradation in Damp Heat Stress Testing for Estimation of Low-Light Power Performance

    SciTech Connect (OSTI)

    Hacke, P.; Terwilliger, K.; Kurtz, S.

    2013-08-01

    The extent of potential-induced degradation of crystalline silicon modules in an environmental chamber is estimated using in-situ dark I-V measurements and applying superposition analysis. The dark I-V curves are shown to correctly give the module power performance at 200, 600 and 1,000 W/m2 irradiance conditions, as verified with a solar simulator. The onset of degradation measured in low light in relation to that under one sun irradiance can be clearly seen in the module design examined; the time to 5% relative degradation measured in low light (200 W/m2) was 28% less than that of full sun (1,000 W/m2 irradiance). The power of modules undergoing potential-induced degradation can therefore be characterized in the chamber, facilitating statistical analyses and lifetime forecasting.

  5. Hysteresis effects in hybrid building ventilation

    E-Print Network [OSTI]

    Flynn, Morris R.

    . Caulfield DAMTP & BP Institute for Multiphase Flow Univ. of Cambridge, UK Univ. of New Hampshire, Dept radiation, external wind forcing and internal heat gains e.g. due to electrical equipment or building

  6. Ventilation Based on ASHRAE 62.2

    E-Print Network [OSTI]

    of ASHRAE 62.2 also apply to additions over 1,000 square feet (sf) of conditioned floor area (CFA of Heating, Refrigerating and Air-Conditioning Engineers, Inc. (ASHRAE) to enable dwellings to achieve

  7. New Air Cleaning Strategies for Reduced Commercial Building Ventilation Energy

    SciTech Connect (OSTI)

    Sidheswaran, Meera; Destaillats, Hugo; Sullivan, Douglas P.; Fisk, William J.

    2010-10-27

    Approximately ten percent of the energy consumed in U.S. commercial buildings is used by HVAC systems to condition outdoor ventilation air. Reducing ventilation rates would be a simple and broadly-applicable energy retrofit option, if practical counter measures were available that maintained acceptable concentrations of indoor-generated air pollutants. The two general categories of countermeasures are: 1) indoor pollutant source control, and 2) air cleaning. Although pollutant source control should be used to the degree possible, source control is complicated by the large number and changing nature of indoor pollutant sources. Particle air cleaning is already routinely applied in commercial buildings. Previous calculations indicate that particle filtration consumes only 10percent to 25percent of the energy that would otherwise be required to achieve an equivalent amount of particle removal with ventilation. If cost-effective air cleaning technologies for volatile organic compounds (VOCs) were also available, outdoor air ventilation rates could be reduced substantially and broadly in the commercial building stock to save energy. The research carried out in this project focuses on developing novel VOC air cleaning technologies needed to enable energy-saving reductions in ventilation rates. The minimum required VOC removal efficiency to counteract a 50percent reduction in ventilation rate for air cleaning systems installed in the HVAC supply airstream is modest (generally 20percent or less).

  8. Trends in Heating and Cooling Degree Days: Implications for Energy Demand Issues (released in AEO2008)

    Reports and Publications (EIA)

    2008-01-01

    Weather-related energy use, in the form of heating, cooling, and ventilation, accounted for more than 40% of all delivered energy use in residential and commercial buildings in 2006. Given the relatively large amount of energy affected by ambient temperature in the buildings sector, the Energy Information Administration has reevaluated what it considers normal weather for purposes of projecting future energy use for heating, cooling, and ventilation. The Annual Energy Outlook 2008, estimates of normal heating and cooling degree-days are based on the population-weighted average for the 10-year period from 1997 through 2006.

  9. The Very Early Light Curve of SN 2015F in NGC 2442: A Possible Detection of Shock-Heated Cooling Emission and Constraints on SN Ia Progenitor System

    E-Print Network [OSTI]

    Im, Myungshin; Yoon, Sung-Chul; Kim, Jae-Woo; Ehgamberdiev, Shuhrat A; Monard, Libert A G; Sung, Hyun-Il

    2015-01-01

    The main progenitor candidate of Type Ia supernovae (SNe Ia) is white dwarfs in binary systems where the companion star is another white dwarf (double degenerate system) or a less evolved non-degenerate star with R* >~ 0.1 Rsun (single degenerate system), but no direct observational evidence exists that tells which progenitor system is more common. Recent studies suggest that the light curve of a supernova shortly after its explosion can be used to set a limit on the progenitor size, R*. Here, we report a high cadence monitoring observation of SN 2015F, a normal SN Ia, in the galaxy NGC 2442 starting about 84 days before the first light time. With our daily cadence data, we catch the emergence of the radioactively powered light curve, but more importantly detect with a > 97.4% confidence a possible dim precursor emission that appears at roughly 1.5 days before the rise of the radioactively powered emission. The signal is consistent with theoretical expectations for a progenitor system involving a companion st...

  10. MR-compatible ventilator for small animals: computer-controlled ventilation for proton and noble gas imaging

    E-Print Network [OSTI]

    of normal breathing gas or experimental test gases. 2. Materials and methods 2.1. Overview of the ventilator/timers control electro-mechanical relays (S2072 relay board, National Instruments Interface Board), which in turn

  11. Improving Ventilation and Saving Energy: Final Report on Indoor Environmental Quality and Energy Monitoring in Sixteen Relocatable Classrooms

    SciTech Connect (OSTI)

    Apte, Michael G.; Norman, Bourassa; Faulkner, David; Hodgson, Alfred T.; Hotchi, Toshfumi; Spears, Michael; Sullivan, Douglas P.; Wang, Duo

    2008-04-04

    An improved HVAC system for portable classrooms was specified to address key problems in existing units. These included low energy efficiency, poor control of and provision for adequate ventilation, and excessive acoustic noise. Working with industry, a prototype improved heat pump air conditioner was developed to meet the specification. A one-year measurement-intensive field-test of ten of these IHPAC systems was conducted in occupied classrooms in two distinct California climates. These measurements are compared to those made in parallel in side by side portable classrooms equipped with standard 10 SEER heat pump air conditioner equipment. The IHPAC units were found to work as designed, providing predicted annual energy efficiency improvements of about 36 percent to 42 percent across California's climate zones, relative to 10 SEER units. Classroom ventilation was vastly improved as evidenced by far lower indoor minus outdoor CO2 concentrations. TheIHPAC units were found to provide ventilation that meets both California State energy and occupational codes and the ASHRAE minimum ventilation requirements; the classrooms equipped with the 10 SEER equipment universally did not meet these targets. The IHPAC system provided a major improvement in indoor acoustic conditions. HVAC system generated background noise was reduced in fan-only and fan and compressor modes, reducing the nose levels to better than the design objective of 45 dB(A), and acceptable for additional design points by the Collaborative on High Performance Schools. The IHPAC provided superior ventilation, with indoor minus outdoor CO2 concentrations that showed that the Title 24 minimum ventilation requirement of 15 CFM per occupant was nearly always being met. The opposite was found in the classrooms utilizing the 10 SEER system, where the indoor minus outdoor CO2 concentrations frequently exceeded levels that reflect inadequate ventilation. Improved ventilation conditions in the IHPAC lead to effective removal of volatile organic compounds and aldehydes, on average lowering the concentrations by 57 percent relative to the levels in the 10 SEER classrooms. The average IHPAC to 10 SEER formaldehyde ratio was about 67 percent, indicating only a 33 percent reduction of this compound in indoor air. The IHPAC thermal control system provided less variability in occupied classroom temperature than the 10 SEER thermostats. The average room temperatures in all seasons tended to be slightly lower in the IHPAC classrooms, often below the lower limit of the ASHRAE 55 thermal comfort band. State-wide and national energy modeling provided conservative estimates of potential energy savings by use of the IHPAC system that would provide payback a the range of time far lower than the lifetime of the equipment. Assuming electricity costs of $0.15/kWh, the perclassroom range of savings is from about $85 to $195 per year in California, and about $89 to $250 per year in the U.S., depending upon the city. These modelsdid not include the non-energy benefits to the classrooms including better air quality and acoustic conditions that could lead to improved health and learning in school. Market connection efforts that were part of the study give all indication that this has been a very successful project. The successes include the specification of the IHPAC equipment in the CHPS portable classroom standards, the release of a commercial product based on the standards that is now being installed in schools around the U.S., and the fact that a public utility company is currently considering the addition of the technology to its customer incentive program. These successes indicate that the IHPAC may reach its potential to improve ventilation and save energy in classrooms.

  12. Results from evaporation tests to support the MWTF heat removal system design

    SciTech Connect (OSTI)

    Crea, B.A.

    1994-12-22

    An experimental tests program was conducted to measure the evaporative heat removal from the surface of a tank of simulated waste. The results contained in this report constitute definition design data for the latest heat removal function of the MWTF primary ventilation system.

  13. Simulating the energy savings potential in domestic heating scenarios in Switzerland

    E-Print Network [OSTI]

    and ventilation, as well as the heat gains due to internal gains, solar gains and the heating system. In Section 5 dependent) is a banana #12;2 cake taken out of the oven and left to cool down in the kitchen. Energy

  14. Light-Light Scattering

    E-Print Network [OSTI]

    Naohiro Kanda

    2011-06-03

    For a long time, it is believed that the light by light scattering is described properly by the Lagrangian density obtained by Heisenberg and Euler. Here, we present a new calculation which is based on the modern field theory technique. It is found that the light-light scattering is completely different from the old expression. The reason is basically due to the unphysical condition (gauge condition) which was employed by the QED calcualtion of Karplus and Neumann. The correct cross section of light-light scattering at low energy of $(\\frac{\\omega}{m} \\ll 1)$ can be written as $ \\displaystyle{\\frac{d\\sigma}{d\\Omega}=\\frac{1}{(6\\pi)^2}\\frac{\\alpha^4} {(2\\omega)^2}(3+2\\cos^2\\theta +\\cos^4\\theta)}$.

  15. Steam turbine: Alternative emergency drive for the secure removal of residual heat from the core of light water reactors in ultimate emergency situation

    SciTech Connect (OSTI)

    Souza Dos Santos, R.

    2012-07-01

    In 2011 the nuclear power generation has suffered an extreme probation. That could be the meaning of what happened in Fukushima Nuclear Power Plants. In those plants, an earthquake of 8.9 on the Richter scale was recorded. The quake intensity was above the trip point of shutting down the plants. Since heat still continued to be generated, the procedure to cooling the reactor was started. One hour after the earthquake, a tsunami rocked the Fukushima shore, degrading all cooling system of plants. Since the earthquake time, the plant had lost external electricity, impacting the pumping working, drive by electric engine. When operable, the BWR plants responded the management of steam. However, the lack of electricity had degraded the plant maneuvers. In this paper we have presented a scheme to use the steam as an alternative drive to maintain operable the cooling system of nuclear power plant. This scheme adds more reliability and robustness to the cooling systems. Additionally, we purposed a solution to the cooling in case of lacking water for the condenser system. In our approach, steam driven turbines substitute electric engines in the ultimate emergency cooling system. (authors)

  16. Passive solar heated energy conserving biosphere home. Final report

    SciTech Connect (OSTI)

    Piekarski, R.

    1985-01-01

    ''Warm Gold'' is an original design of a passive solar heated energy conserving biosphere home. It has been owner-built with financial help from the US Department of Energy through its Appropriate Technology Small Grants Program of 1980. The home incorporates the six major components of passive solar design: appropriate geometry and orientation, glazing, light levels and reflective surfaces, ventilation, thermal storage, and insulation. Warm Gold is an earth-sheltered home with earth cover on the roof as well as on the two opaque north leg walls. It is of durable and efficient masonry construction which included stone masonry with on-site materials and cement block and ready mix concrete. Excavation, backfill, and drainage were necessary aspects of earth sheltered construction together with the all-important Bentonite waterproofing system. Warm Gold is a house which meets all the national building code standards of HUD. The home has two bedrooms, one bathroom, living room, dining room-kitchen, greenhouse, and utility annex, all of which are incorporated with the earth-sheltered, passive solar systems to be a comfortable, energy-efficient living environment.

  17. Solid state lighting component

    DOE Patents [OSTI]

    Yuan, Thomas; Keller, Bernd; Ibbetson, James; Tarsa, Eric; Negley, Gerald

    2010-10-26

    An LED component comprising an array of LED chips mounted on a planar surface of a submount with the LED chips capable of emitting light in response to an electrical signal. The LED chips comprise respective groups emitting at different colors of light, with each of the groups interconnected in a series circuit. A lens is included over the LED chips. Other embodiments can comprise thermal spreading structures included integral to the submount and arranged to dissipate heat from the LED chips.

  18. Solid state lighting component

    DOE Patents [OSTI]

    Keller, Bernd; Ibbetson, James; Tarsa, Eric; Negley, Gerald; Yuan, Thomas

    2012-07-10

    An LED component comprising an array of LED chips mounted on a planar surface of a submount with the LED chips capable of emitting light in response to an electrical signal. The LED chips comprise respective groups emitting at different colors of light, with each of the groups interconnected in a series circuit. A lens is included over the LED chips. Other embodiments can comprise thermal spreading structures included integral to the submount and arranged to dissipate heat from the LED chips.

  19. Design and prototyping of a low-cost portable mechanical ventilator

    E-Print Network [OSTI]

    Powelson, Stephen K. (Stephen Kirby)

    2010-01-01

    This paper describes the design and prototyping of a low-cost portable mechanical ventilator for use in mass casualty cases and resource-poor environments. The ventilator delivers breaths by compressing a conventional ...

  20. Internal Microclimate Resulting From Ventilated Attics in Hot and Humid Regions

    E-Print Network [OSTI]

    Mooney, B. L.; Porter, W. A.

    2010-01-01

    Ventilated spaces in the built environment create unique and beneficial microclimates. While the current trends in building physics suggest sealing attics and crawlspaces, comprehensive research still supports the benefits of the ventilated...

  1. Methodology for the evaluation of natural ventilation in buildings using a reduced-scale air model

    E-Print Network [OSTI]

    Walker, Christine E. (Christine Elaine)

    2006-01-01

    Commercial office buildings predominantly are designed to be ventilated and cooled using mechanical systems. In temperate climates, passive ventilation and cooling techniques can be utilized to reduce energy consumption ...

  2. Commissioning of a Coupled Earth Tube and Natural Ventilation System at the Design Phase

    E-Print Network [OSTI]

    Yoshida, H.; Pan, S.; Zheng, M.

    2007-01-01

    Natural ventilation airflow rate is generally calculated using indoor and outdoor temperature difference without consideration of thermal interaction between the ventilated air and the room in simple analytical method based on pressure balance...

  3. Beyond blue and red arrows : optimizing natural ventilation in large buildings

    E-Print Network [OSTI]

    Meguro, Wendy (Wendy Kei)

    2005-01-01

    Our growing understanding of technology and environment has expanded the complexities of producing large naturally ventilated buildings. While it may be argued that designing for natural ventilation is a straightforward, ...

  4. CO2 - Based Demand-Controlled Ventilation Control Strategies for Multi-Zone HVAC Systems

    E-Print Network [OSTI]

    Nassif, N.

    2011-01-01

    CO2-based demand-controlled ventilation DCV strategy offers a great opportunity to reduce energy consumption in HVAC systems while providing the required ventilation. However, implementing CO2-based DCV under ASHRAE 62.1.2004 through 2010...

  5. Evaluating the performance of natural ventilation in buildings through simulation and on-site monitoring

    E-Print Network [OSTI]

    Cheng, Haofan

    2013-01-01

    Natural ventilation in buildings is capable of reducing energy consumption while maintaining a comfortable indoor at the same time. It is important that natural ventilation is taken into consideration in the early design ...

  6. Analysis of space heating and domestic hot water systems for energy-efficient residential buildings

    SciTech Connect (OSTI)

    Dennehy, G

    1983-04-01

    An analysis of the best ways of meeting the space heating and domestic hot water (DHW) needs of new energy-efficient houses with very low requirements for space heat is provided. The DHW load is about equal to the space heating load in such houses in northern climates. The equipment options which should be considered are discussed, including new equipment recently introduced in the market. It is concluded that the first consideration in selecting systems for energy-efficient houses should be identification of the air moving needs of the house for heat distribution, heat storage, ventilation, and ventilative cooling. This is followed, in order, by selection of the most appropriate distribution system, the heating appliances and controls, and the preferred energy source, gas, oil, or electricity.

  7. ENERGY IMPACTS OF VARIOUS RESIDENTIAL MECHANICAL VENTILATION STRATEGIES

    E-Print Network [OSTI]

    Vieira, R.; Parker, D.; Lixing, G.; Wichers, M.

    2008-01-01

    in Energy Use with Eight Ventilation Strategies Tampa -5.00% 0.00% 5.00% 10.00% 15.00% 20.00% 25.00% 30.00% 35.00% E n e r g y I n cr ea se fr o m N o V en t Supply Exhaust Balanced ERV 60% eff Runtime Vent (R-V) R-V 25% min R-V 25% max R-V 25% min... OF VARIOUS RESIDENTIAL MECHANICAL VENTILATION STRATEGIES Robin K. Vieira, Buildings. Research Division Director Danny S. Parker Principal Research Scientist Lixing Gu Principal Research Engineer Michael Wichers Technical Specialist Florida...

  8. Water spray ventilator system for continuous mining machines

    DOE Patents [OSTI]

    Page, Steven J. (Pittsburgh, PA); Mal, Thomas (Pittsburgh, PA)

    1995-01-01

    The invention relates to a water spray ventilator system mounted on a continuous mining machine to streamline airflow and provide effective face ventilation of both respirable dust and methane in underground coal mines. This system has two side spray nozzles mounted one on each side of the mining machine and six spray nozzles disposed on a manifold mounted to the underside of the machine boom. The six spray nozzles are angularly and laterally oriented on the manifold so as to provide non-overlapping spray patterns along the length of the cutter drum.

  9. Particle Concentration Dynamics in the Ventilation Duct after an Artificial Release: for Countering Potential Bioterriorist Attack

    E-Print Network [OSTI]

    You , Siming; Wan, Man Pun

    2014-01-01

    leads to In this work, the models of particle concentration dynamics in the ventilation duct following a resuspension

  10. Decommissioning of Active Ventilation Systems in a Nuclear R and D Facility to Prepare for Building Demolition (Whiteshell Laboratories Decommissioning Project, Canada) - 13073

    SciTech Connect (OSTI)

    Wilcox, Brian; May, Doug; Howlett, Don; Bilinsky, Dennis [Atomic Energy of Canada Limited, Ara Mooradian Way, Pinawa, Manitoba (Canada)] [Atomic Energy of Canada Limited, Ara Mooradian Way, Pinawa, Manitoba (Canada)

    2013-07-01

    Whiteshell Laboratories (WL) is a nuclear research establishment owned by the Canadian government and operated by Atomic Energy of Canada Limited (AECL) since the early 1960's. WL is currently under a decommissioning license and the mandate is to remediate the nuclear legacy liabilities in a safe and cost effective manner. The WL Project is the first major nuclear decommissioning project in Canada. A major initiative underway is to decommission and demolish the main R and D Laboratory complex. The Building 300 R and D complex was constructed to accommodate laboratories and offices which were mainly used for research and development associated with organic-cooled reactors, nuclear fuel waste management, reactor safety, advanced fuel cycles and other applications of nuclear energy. Building 300 is a three storey structure of approximately 16,000 m{sup 2}. In order to proceed with building demolition, the contaminated systems inside the building have to be characterized, removed, and the waste managed. There is a significant focus on volume reduction of radioactive waste for the WL project. The active ventilation system is one of the significant contaminated systems in Building 300 that requires decommissioning and removal. The active ventilation system was designed to manage hazardous fumes and radioactivity from ventilation devices (e.g., fume hoods, snorkels and glove boxes) and to prevent the escape of airborne hazardous material outside of the laboratory boundary in the event of an upset condition. The system includes over 200 ventilation devices and 32 active exhaust fan units and high efficiency particulate air (HEPA) filters. The strategy to remove the ventilation system was to work from the laboratory end back to the fan/filter system. Each ventilation duct was radiologically characterized. Fogging was used to minimize loose contamination. Sections of the duct were removed by various cutting methods and bagged for temporary storage prior to disposition. Maintenance of building heating, ventilation and air conditioning (HVAC) balancing was critical to ensure proper airflow and worker safety. Approximately 103 m{sup 3} of equipment and materials were recovered or generated by the project. Low level waste accounted for approximately 37.4 m{sup 3}. Where possible, ducting was free released for metal recycling. Contaminated ducts were compacted into B-1000 containers and stored in a Shielded Modular Above-Ground Storage Facility (SMAGS) on the WL site awaiting final disposition. The project is divided into three significant phases, with Phases 1 and 2 completed. Lessons learned during the execution of Phases 1 and 2 have been incorporated into the current ventilation removal. (authors)

  11. On the role of mesoscale eddies in the ventilation of Antarctic intermediate water

    E-Print Network [OSTI]

    Fischlin, Andreas

    On the role of mesoscale eddies in the ventilation of Antarctic intermediate water Zouhair Lachkar Mesoscale eddies CFC-11 Ventilation Southern Ocean a b s t r a c t The spatial distribution of Antarctic and ventilation are substantially affected by mesoscale eddies. To diagnose the role of eddies, we made global CFC

  12. Data-driven classification of ventilated lung tissues using electrical impedance tomography

    E-Print Network [OSTI]

    Adler, Andy

    Data-driven classification of ventilated lung tissues using electrical impedance tomography Camille for identifying ventilated lung regions utilizing electrical impedance tomography (EIT) images rely on dividing of a data-driven classification method to identify ventilated lung ROI based on forming k clusters from

  13. New Light Sources for Tomorrow's Lighting Designs

    E-Print Network [OSTI]

    Krailo, D. A.

    1986-01-01

    and lighting systems. Table 2 shows the development of four-foot energy-saving retrofit lamps. By utilizing new cathode designed and different gas fills, 34-watt energy-saving lamps were developed that operate on existing rapid start ballasts and afford... of fluorescent lamps, two watts of system power are consumed in heating the lamp cath odes. The shedding of cathode heating wattage was the next lamp efficiency improvement to be introduced. One available sy tern dis connects the lamp cathodes from...

  14. Ventilation Systems for Cooling | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative FuelsofProgram: Report1538-1950Department of Energy Past(Advanced81ElectricityHeat

  15. IMPROVING ENERGY EFFICIENCY AND REDUCING COSTS IN THE DRINKING WATER SUPPLY INDUSTRY: An ENERGY STAR Resource Guide for Energy and Plant Managers

    E-Print Network [OSTI]

    Brown, Moya Melody, Camilla Dunham Whitehead, Rich

    2011-01-01

    energy efficiency of heating, ventilating, and air conditioning (and Air Conditioning 64 Primary Resources ..64 Additional Assistance 65 Case Studies 68 Financing Energy Efficiency .energy-efficiency-lighting.htm. (Last accessed September 2, 2010. ) Heating, Ventilating, and Air Conditioning

  16. MINING VENTILATION CONTROL: A NEW INDUSTRIAL CASE FOR WIRELESS AUTOMATION

    E-Print Network [OSTI]

    Paris-Sud XI, Universit de

    MINING VENTILATION CONTROL: A NEW INDUSTRIAL CASE FOR WIRELESS AUTOMATION E. Witrant1, A. D- scribe a new industrial case on wireless automation, for a large scale system with high environmental- provements. Indeed, one of the first objectives of mod- ern mining industry is to fulfill ecological

  17. Mining ventilation control: a new industrial case for wireless automation

    E-Print Network [OSTI]

    Johansson, Karl Henrik

    - lated to motor system energy [2] (p.19). Another inter- esting figure is given in [3] whereMining ventilation control: a new industrial case for wireless automation E. Witrant1, A. D, 2008 Abstract This paper describes a new industrial case on wireless automation, for a large scale

  18. Technology Solutions Case Study: Selecting Ventilation Systems for Existing Homes

    SciTech Connect (OSTI)

    2014-12-01

    In multifamily buildings, particularly in the Northeast, exhaust ventilation strategies are the norm as a means of meeting both local exhaust and whole-unit mechanical ventilation rates. The issue of where the "fresh" air is coming from is gaining significance as air-tightness standards for enclosures become more stringent, and the normal leakage paths through the building envelope disappear. Researchers from the Consortium for Advanced Residential Buildings (CARB) found that the majority of high performance, new construction, multifamily housing in the Northeast use one of four general strategies for ventilation: continuous exhaust only with no designated supply or make-up air source, continuous exhaust with ducted make-up air to apartments, continuous exhaust with supply through a make-up air device integral to the unit HVAC, and continuous exhaust with supply through a passive inlet device, such as a trickle vent. Insufficient information is available to designers on how these various systems are best applied. In this project, the CARB team evaluated the four different strategies for providing make-up air to multifamily residential buildings and developed guidelines to help contractors and building owners choose the best ventilation systems.

  19. Energy Impact of Residential Ventilation Standards in California

    E-Print Network [OSTI]

    by the Assistant Secretary for Energy Efficiency and Renewable Energy, Building Technologies Program, of the U was also supported by the Office of Energy Efficiency and Renewable Energy, U.S. Department of Energy underLBNL 61282 Energy Impact of Residential Ventilation Standards in California Max H. Sherman and Iain

  20. Building America Top Innovations 2012: Outside Air Ventilation Controller

    SciTech Connect (OSTI)

    none,

    2013-01-01

    venThis Building America Top Innovations profile describes Building America research showing how automated night ventilation can reduce cooling energy costs up to 40% and peak demand up to 50% in Californias hot-dry central valley climates and can eliminate the need for air conditioning altogether in the coastal marine climate.

  1. Energy Impact of Residential Ventilation Norms in the United States

    E-Print Network [OSTI]

    by the Assistant Secretary for Energy Efficiency and Renewable Energy, Building Technologies Program, of the U solutions. These solutions, however, may have a different energy costs and non- energy benefits. This reportLBNL 62341 Energy Impact of Residential Ventilation Norms in the United States Max H. Sherman

  2. Evaluation of Ventilation Strategies in New Construction Multifamily Buildings

    SciTech Connect (OSTI)

    Maxwell, S.; Berger, D.; Zuluaga, M.

    2014-07-01

    In multifamily buildings, particularly in the Northeast, exhaust ventilation strategies are the norm as a means of meeting both local exhaust and whole-unit mechanical ventilation rates. The issue of where the "fresh" air is coming from is gaining significance as air-tightness standards for enclosures become more stringent. CARB researchers have found that most new high performance, multifamily housing in the Northeast use one of four strategies for ventilation: continuous exhaust only with no designated supply or make-up air source, continuous exhaust with ducted make-up air to apartments, continuous exhaust with supply through a make-up air device integral to the unit HVAC, and continuous exhaust with supply through a passive inlet device, such as a trickle vent. Insufficient information is available to designers on how these various systems are best applied. Product performance data are based on laboratory tests, but there is no guarantee that those conditions will exist consistently in the finished building. In this research project, CARB evaluated the four ventilation strategies in the field to validate system performance.

  3. TOP DOWN VENTILATION AND COOLING Stephen A. Gage

    E-Print Network [OSTI]

    Linden, Paul F.

    the problems inherent in passively ventilating and cooling low and medium rise urban buildings. We focus are reported which substantiate this concept, and two wind-driven devices which may be used to assist the top.K. The work at Cambridge by Hunt and Linden is part of an ongoing project in which laboratory modeling

  4. Study on Influencing Factors of Night Ventilation in Office Rooms

    E-Print Network [OSTI]

    Wang, Z.; Sun, X.

    2006-01-01

    in Harbin are simulated and analyzed. The results show that the inlet velocity and area can influence the effects of night ventilation. When the inlet velocity is 2.5m/s, both indoor air temperature and air velocity meet ASHRAE standard 55-2004. Indoor...

  5. Microsoft Word - Ventilation System Sampling Results 1

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass map shines light on77 PAGE OFDetection of Hydrates7In389:UFCAugust 4,For4

  6. Infiltration in ASHRAE's Residential Ventilation Standards (Journal

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefield MunicipalTechnical Report:Speeding accessby aLED Street LightingFrom theHighI _ _1motion inArticle) |

  7. Infiltration in ASHRAE's Residential Ventilation Standards (Journal

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefield MunicipalTechnical Report:Speeding accessby aLED Street LightingFrom theHighI _ _1motion inArticle)

  8. 1992 CBECS C & E

    U.S. Energy Information Administration (EIA) Indexed Site

    Consumption of Electricity by End Use, 1989 Electricity Consumption (trillion Btu) Office Space Ventil- Water Refrig- Equip- Total Heating Cooling ation Heating Lighting Cooking...

  9. 1992 CBECS C & E

    U.S. Energy Information Administration (EIA) Indexed Site

    Table B4. Consumption of Electricity by End Use, 1989 Electricity Consumption (trillion Btu) Office Space Ventil- Water Refrig- Equip- Total Heating Cooling ation Heating Lighting...

  10. Heat Management Strategy Trade Study

    SciTech Connect (OSTI)

    Nick Soelberg; Steve Priebe; Dirk Gombert; Ted Bauer

    2009-09-01

    This Heat Management Trade Study was performed in 2008-2009 to expand on prior studies in continued efforts to analyze and evaluate options for cost-effectively managing SNF reprocessing wastes. The primary objective was to develop a simplified cost/benefit evaluation for spent nuclear fuel (SNF) reprocessing that combines the characteristics of the waste generated through reprocessing with the impacts of the waste on heating the repository. Under consideration were age of the SNF prior to reprocessing, plutonium and minor actinide (MA) separation from the spent fuel for recycle, fuel value of the recycled Pu and MA, age of the remaining spent fuel waste prior to emplacement in the repository, length of time that active ventilation is employed in the repository, and elemental concentration and heat limits for acceptable glass waste form durability. A secondary objective was to identify and qualitatively analyze remaining issues such as (a) impacts of aging SNF prior to reprocessing on the fuel value of the recovered fissile materials, and (b) impact of reprocessing on the dose risk as developed in the Yucca Mountain Total System Performance Assessment (TSPA). Results of this study can be used to evaluate different options for managing decay heat in waste streams from spent nuclear fuel.

  11. Optical heat flux gauge

    DOE Patents [OSTI]

    Noel, Bruce W. (Espanola, NM); Borella, Henry M. (Santa Barbara, CA); Cates, Michael R. (Oak Ridge, TN); Turley, W. Dale (Santa Barbara, CA); MacArthur, Charles D. (Clayton, OH); Cala, Gregory C. (Dayton, OH)

    1991-01-01

    A heat flux gauge comprising first and second thermographic phosphor layers separated by a layer of a thermal insulator, wherein each thermographic layer comprises a plurality of respective thermographic sensors in a juxtaposed relationship with respect to each other. The gauge may be mounted on a surface with the first thermographic phosphor in contact with the surface. A light source is directed at the gauge, causing the phosphors to luminesce. The luminescence produced by the phosphors is collected and its spectra analyzed in order to determine the heat flux on the surface. First and second phosphor layers must be different materials to assure that the spectral lines collected will be distinguishable.

  12. Heat transfer assembly for a fluorescent lamp and fixture

    DOE Patents [OSTI]

    Siminovitch, M.J.; Rubenstein, F.M.; Whitman, R.E.

    1992-12-29

    In a lighting fixture including a lamp and a housing, a heat transfer structure is disclosed for reducing the minimum lamp wall temperature of a fluorescent light bulb. The heat transfer structure, constructed of thermally conductive material, extends from inside the housing to outside the housing, transferring heat energy generated from a fluorescent light bulb to outside the housing where the heat energy is dissipated to the ambient air outside the housing. Also disclosed is a method for reducing minimum lamp wall temperatures. Further disclosed is an improved lighting fixture including a lamp, a housing and the aforementioned heat transfer structure. 11 figs.

  13. Heat transfer assembly for a fluorescent lamp and fixture

    DOE Patents [OSTI]

    Siminovitch, Michael J. (Richmond, CA); Rubenstein, Francis M. (Berkeley, CA); Whitman, Richard E. (Richmond, CA)

    1992-01-01

    In a lighting fixture including a lamp and a housing, a heat transfer structure is disclosed for reducing the minimum lamp wall temperature of a fluorescent light bulb. The heat transfer structure, constructed of thermally conductive material, extends from inside the housing to outside the housing, transferring heat energy generated from a fluorescent light bulb to outside the housing where the heat energy is dissipated to the ambient air outside the housing. Also disclosed is a method for reducing minimum lamp wall temperatures. Further disclosed is an improved lighting fixture including a lamp, a housing and the aforementioned heat transfer structure.

  14. Total Space Heating Water Heating Cook-

    Gasoline and Diesel Fuel Update (EIA)

    Released: September, 2008 Total Space Heating Water Heating Cook- ing Other Total Space Heating Water Heating Cook- ing Other All Buildings* ... 1,602 1,397...

  15. Total Space Heating Water Heating Cook-

    Gasoline and Diesel Fuel Update (EIA)

    Energy Consumption Survey: Energy End-Use Consumption Tables Total Space Heating Water Heating Cook- ing Other Total Space Heating Water Heating Cook- ing Other All...

  16. Total Space Heating Water Heating Cook-

    Gasoline and Diesel Fuel Update (EIA)

    Released: September, 2008 Total Space Heating Water Heating Cook- ing Other Total Space Heating Water Heating Cook- ing Other All Buildings ... 2,037...

  17. Total Space Heating Water Heating Cook-

    Gasoline and Diesel Fuel Update (EIA)

    Released: September, 2008 Total Space Heating Water Heating Cook- ing Other Total Space Heating Water Heating Cook- ing Other All Buildings* ... 1,870 1,276...

  18. Total Space Heating Water Heating Cook-

    Gasoline and Diesel Fuel Update (EIA)

    Tables Total Space Heating Water Heating Cook- ing Other Total Space Heating Water Heating Cook- ing Other All Buildings ... 636 580 46 1 Q 114.0...

  19. Susanville District Heating District Heating Low Temperature...

    Open Energy Info (EERE)

    Susanville District Heating District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Susanville District Heating District Heating Low Temperature...

  20. A TWO-PHASE HEAT SPREADER FOR COOLING HIGH HEAT FLUX SOURCES Mitsuo Hashimoto, Hiroto Kasai, Yuichi Ishida, Hiroyuki Ryoson, a

    E-Print Network [OSTI]

    -power lasers, high-intensity light-emitting diodes (LEDs), and semiconductor power devices. The heat spreader

  1. Smart Lighting Controller!! Smart lighting!

    E-Print Network [OSTI]

    Anderson, Betty Lise

    'll build the circuit! We'll use an LED to represent the room lights! #12;4! Block diagram! Battery! Rail! #12;23! LED: light-emitting diode! Diode conducts current in only one direction! When current flows1! Smart Lighting Controller!! #12;2! Smart lighting! No need to spend energy lighting the room if

  2. Experiments measuring particle deposition from fully developed turbulent flow in ventilation ducts

    SciTech Connect (OSTI)

    Sippola, Mark R.; Nazaroff, William W.

    2003-08-01

    Particle deposition in ventilation ducts influences particle exposures of building occupants and may lead to a variety of indoor air quality concerns. Experiments have been performed in a laboratory to study the effects of particle size and air speed on deposition rates of particles from turbulent air flows in galvanized steel and internally insulated ducts with hydraulic diameters of 15.2 cm. The duct systems were constructed of materials typically found in commercial heating, ventilating and air conditioning (HVAC) systems. In the steel duct system, experiments with nominal particle sizes of 1, 3, 5, 9 and 16 {micro}m were conducted at each of three nominal air speeds: 2.2, 5.3 and 9.0 m/s. In the insulated duct system, deposition rates of particles with nominal sizes of 1, 3, 5, 8 and 13 {micro}m were measured at nominal air speeds of 2.2, 5.3 and 8.8 m/s. Fluorescent techniques were used to directly measure the deposition velocities of monodisperse fluorescent particles to duct surfaces (floor, wall and ceiling) at two straight duct sections where the turbulent flow profile was fully developed. In steel ducts, deposition rates were higher to the duct floor than to the wall, which were, in turn, greater than to the ceiling. In insulated ducts, deposition was nearly the same to the duct floor, wall and ceiling for a given particle size and air speed. Deposition to duct walls and ceilings was greatly enhanced in insulated ducts compared to steel ducts. Deposition velocities to each of the three duct surface orientations in both systems were found to increase with increasing particle size or air velocity over the ranges studied. Deposition rates measured in the current experiments were in general agreement with the limited observations of similar systems by previous researchers.

  3. Modeling particle deposition on HVAC heat exchangers

    SciTech Connect (OSTI)

    Siegel, J.A.; Nazaroff, W.W.

    2002-01-01

    Fouling of fin-and-tube heat exchangers by particle deposition leads to diminished effectiveness in supplying ventilation and air conditioning. This paper explores mechanisms that cause particle deposition on heat exchanger surfaces. We present a model that accounts for impaction, diffusion, gravitational settling, and turbulence. Simulation results suggest that some submicron particles deposit in the heat exchanger core, but do not cause significant performance impacts. Particles between 1 and 10 {micro}m deposit with probabilities ranging from 1-20% with fin edge impaction representing the dominant mechanism. Particles larger than 10 {micro}m deposit by impaction on refrigerant tubes, gravitational settling on fin corrugations, and mechanisms associated with turbulent airflow. The model results agree reasonably well with experimental data, but the deposition of larger particles at high velocities is underpredicted. Geometric factors, such as discontinuities in the fins, are hypothesized to be responsible for the discrepancy.

  4. Evaluating Ventilation Systems for Existing Homes

    SciTech Connect (OSTI)

    Aldrich, R.; Arena, L.

    2013-02-01

    During the course of this project, an affordable and high performance ductwork system to directly address the problems of thermal losses, poor efficiency, and air leakage was designed. To save space and enable direct connections between different floors of the building, the ductwork system was designed in such a way that it occupied interior or exterior frame wall cavities. The ductwork system satisfied building regulations for structural support when bridging multiple floors, the spread of fire and smoke, and insulation to reduce the heat flow into or out of the building. Retrofits of urban residential buildings will be the main focus for the application of this ductwork system. Highly reflective foils and insulating materials were used to aid in the increase of the overall R-value of the ductwork itself and the wall assembly. It is expected that the proposed system will increase the efficiency of the HVAC system and the thermal resistance of the building envelope. The performance of the proposed ductwork design was numerically evaluated in a number of different ways. Our results indicate that the duct method is a very cost attractive alternative to the conventional method.

  5. Physical features of small disperse coal dust fraction transportation and structurization processes in iodine air filters of absorption type in ventilation systems at nuclear power plants

    E-Print Network [OSTI]

    Ledenyov, Oleg P; Poltinin, P Ya; Fedorova, L I

    2012-01-01

    The research on the physical features of transportation and structurization processes by the air-dust aerosol in the granular filtering medium with the cylindrical coal adsorbent granules in an air filter of the adsorption type in the heating ventilation and cooling (HVAC) system at the nuclear power plant is completed. The physical origins of the coal dust masses distribution along the absorber with the granular filtering medium with the cylindrical coal granules during the air-dust aerosol intake process in the near the surface layer of absorber are researched. The quantitative technical characteristics of air filtering elements, which have to be considered during the optimization of air filters designs for the application in the ventilation systems at the nuclear power plants, are obtained.

  6. CLASSIFICATION OF THE MGR WASTE TREATMENT BUILDING VENTILATION SYSTEM

    SciTech Connect (OSTI)

    S.E. Salzman

    1999-08-31

    The purpose of this analysis is to document the Quality Assurance (QA) classification of the Monitored Geologic Repository (MGR) waste treatment building ventilation system structures, systems and components (SSCs) performed by the MGR Safety Assurance Department. This analysis also provides the basis for revision of YMP/90-55Q, Q-List (YMP 1998). The Q-List identifies those MGR SSCs subject to the requirements of DOE/RW-0333P, ''Quality Assurance Requirements and Description'' (QARD) (DOE 1998).

  7. Evaluation of Ventilation Strategies in New Construction Multifamily Buildings

    SciTech Connect (OSTI)

    Maxwell, S.; Berger, D.; Zuluaga, M.

    2014-07-01

    In multifamily buildings, particularly in the Northeast, exhaust ventilation strategies are the norm as a means of meeting both local exhaust and whole-unit mechanical ventilation rates. The issue of where the 'fresh' air is coming from is gaining significance as air-tightness standards for enclosures become more stringent, and the 'normal leakage paths through the building envelope' disappear. CARB researchers have found that the majority of high performance, new construction, multifamily housing in the Northeast use one of four general strategies for ventilation: continuous exhaust only with no designated supply or make-up air source, continuous exhaust with ducted make-up air to apartments, continuous exhaust with supply through a make-up air device integral to the unit HVAC, and continuous exhaust with supply through a passive inlet device, such as a trickle vent. Insufficient information is available to designers on how these various systems are best applied. Product performance data are based on laboratory tests, and the assumption is that products will perform similarly in the field. Proper application involves matching expected performance at expected building pressures, but there is no guarantee that those conditions will exist consistently in the finished building. This research effort, which included several weeks of building pressure monitoring, sought to provide field validation of system performance. The performance of four substantially different strategies for providing make-up air to apartments was evaluated.

  8. A Post-Occupancy Monitored Evaluation of the Dimmable Lighting, Automated Shading, and Underfloor Air Distribution System in The New York Times Building

    E-Print Network [OSTI]

    2013-01-01

    15 4.1. LightingEvaluation of the Dimmable Lighting, Automated Shading, andcomparison EUI, kBtu/Gsf Lighting Heating Cooling Pumps/C

  9. Ventilation for an enclosure of a gas turbine and related method

    DOE Patents [OSTI]

    Schroeder, Troy Joseph (Mauldin, SC); Leach, David (Simpsonville, SC); O'Toole, Michael Anthony (Greenfield Center, NY)

    2002-01-01

    A ventilation scheme for a rotary machine supported on pedestals within an enclosure having a roof, end walls and side walls with the machine arranged parallel to the side walls, includes ventilation air inlets located in a first end wall of the enclosure; a barrier wall located within the enclosure, proximate the first end wall to thereby create a plenum chamber. The barrier wall is constructed to provide a substantially annular gap between the barrier wall and a casing of the turbine to thereby direct ventilation air axially along the turbine; one or more ventilation air outlets located proximate a second, opposite end wall on the roof of the enclosure. In addition, one or more fans are provided for pulling ventilating air into said plenum chamber via the ventilation air inlets.

  10. General Motors LLC Final Project Report: Improving Energy Efficiency by Developing Components for Distributed Cooling and Heating Based on Thermal Comfort Modeling

    SciTech Connect (OSTI)

    Bozeman, Jeffrey; Chen, Kuo-Huey

    2014-12-09

    On November 3, 2009, General Motors (GM) accepted U.S. Department of Energy (DOE) Cooperative Agreement award number DE-EE0000014 from the National Energy Technology Laboratory (NETL). GM was selected to execute a three-year cost shared research and development project on Solid State Energy Conversion for Vehicular Heating, Ventilation & Air Conditioning (HVAC) and for Waste Heat Recovery.

  11. Energy and air quality implications of passive stack ventilation in residential buildings

    SciTech Connect (OSTI)

    Mortensen, Dorthe Kragsig; Walker, Iain S.; Sherman, Max

    2011-01-01

    Ventilation requires energy to transport and condition the incoming air. The energy consumption for ventilation in residential buildings depends on the ventilation rate required to maintain an acceptable indoor air quality. Historically, U.S. residential buildings relied on natural infiltration to provide sufficient ventilation, but as homes get tighter, designed ventilation systems are more frequently required particularly for new energy efficient homes and retrofitted homes. ASHRAE Standard 62.2 is used to specify the minimum ventilation rate required in residential buildings and compliance is normally achieved with fully mechanical whole-house systems; however, alternative methods may be used to provide the required ventilation when their air quality equivalency has been proven. One appealing method is the use of passive stack ventilation systems. They have been used for centuries to ventilate buildings and are often used in ventilation regulations in other countries. Passive stacks are appealing because they require no fans or electrical supply (which could lead to lower cost) and do not require maintenance (thus being more robust and reliable). The downside to passive stacks is that there is little control of ventilation air flow rates because they rely on stack and wind effects that depend on local time-varying weather. In this study we looked at how passive stacks might be used in different California climates and investigated control methods that can be used to optimize indoor air quality and energy use. The results showed that passive stacks can be used to provide acceptable indoor air quality per ASHRAE 62.2 with the potential to save energy provided that they are sized appropriately and flow controllers are used to limit over-ventilation.

  12. Energy Impacts of Envelope Tightening and Mechanical Ventilation for the U.S. Residential Sector

    E-Print Network [OSTI]

    Logue, J.M.

    2014-01-01

    Residential Venitlaiton and Energy Characteristics. ASHRAEIncremental Ventilation Energy Model for Estimating ImpactsMethod. 2008, California Energy Commision. Walker, I.S. and

  13. Internal combuston engine having separated cylinder head oil drains and crankcase ventilation passages

    DOE Patents [OSTI]

    Boggs, David Lee (Bloomfield Hills, MI); Baraszu, Daniel James (Plymouth, MI); Foulkes, David Mark (Erfstadt, DE); Gomes, Enio Goyannes (Ann Arbor, MI)

    1998-01-01

    An internal combustion engine includes separated oil drain-back and crankcase ventilation passages. The oil drain-back passages extend from the cylinder head to a position below the top level of oil in the engine's crankcase. The crankcase ventilation passages extend from passages formed in the main bearing bulkheads from positions above the oil level in the crankcase and ultimately through the cylinder head. Oil dams surrounding the uppermost portions of the crankcase ventilation passages prevent oil from running downwardly through the crankcase ventilation passages.

  14. Internal combuston engine having separated cylinder head oil drains and crankcase ventilation passages

    DOE Patents [OSTI]

    Boggs, D.L.; Baraszu, D.J.; Foulkes, D.M.; Gomes, E.G.

    1998-12-29

    An internal combustion engine includes separated oil drain-back and crankcase ventilation passages. The oil drain-back passages extend from the cylinder head to a position below the top level of oil in the engine`s crankcase. The crankcase ventilation passages extend from passages formed in the main bearing bulkheads from positions above the oil level in the crankcase and ultimately through the cylinder head. Oil dams surrounding the uppermost portions of the crankcase ventilation passages prevent oil from running downwardly through the crankcase ventilation passages. 4 figs.

  15. Room air stratification in combined chilled ceiling and displacement ventilation systems.

    E-Print Network [OSTI]

    Schiavon, Stefano; Bauman, Fred; Tully, Brad; Rimmer, Julian

    2012-01-01

    Environments. Proceedings of Indoor Air 2005: 10 thInternational Conference on Indoor Air Quality and Climate,displacement ventilation hybrid air conditioning system-

  16. Energy and Cost Associated with Ventilating Office Buildings in a Tropical Climate

    E-Print Network [OSTI]

    Rim, Donghyun; Schiavon, Stefano; Nazaroff, William W

    2015-01-01

    Code of practice-air conditioning and mechanical ventilation62.1. Refrigerating and Air-Conditioning Engineers. OlesenRefrigerating and Air-Conditioning Engineers. ASHRAE (2013)

  17. Building America Top Innovations 2012: Low-Cost Ventilation in Production Housing

    SciTech Connect (OSTI)

    2013-01-01

    This Building America Top Innovations profile describes Building America research on simple whole-house ventilation systems that cost less than $350 to install and meet code requirements.

  18. Building America Webinar: Multifamily Ventilation Strategies and Compartmentalization Requirements- Joe Lstiburek

    Broader source: Energy.gov [DOE]

    This presentation will be delivered at the U.S. Department of Energy Building America webinar, Multifamily Ventilation Strategies and Compartmentalization Requirements, on September 24, 2014. Joe...

  19. Economizer system cost effectiveness: Accounting for the influence of ventilation rate on sick leave

    E-Print Network [OSTI]

    Fisk, William J.; Seppanen, Olli; Faulkner, David; Huang, Joe

    2003-01-01

    ECONOMIZER SYSTEM COST EFFECTIVENESS: ACCOUNTING FOR THEand economic benefits of an economizer ventilation controlanalyses indicate that the economizer reduces energy costs

  20. Characterization and Development of Advanced Heat Transfer Technologie...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Development of Advanced Heat Transfer Technologies Advanced Power Electronics and Electric Machines Compact, Light-Weight, Single-Phase, Liquid-Cooled Cold Plate...

  1. Energy Code Enforcement Training Manual : Covering the Washington State Energy Code and the Ventilation and Indoor Air Quality Code.

    SciTech Connect (OSTI)

    Washington State Energy Code Program

    1992-05-01

    This manual is designed to provide building department personnel with specific inspection and plan review skills and information on provisions of the 1991 edition of the Washington State Energy Code (WSEC). It also provides information on provisions of the new stand-alone Ventilation and Indoor Air Quality (VIAQ) Code.The intent of the WSEC is to reduce the amount of energy used by requiring energy-efficient construction. Such conservation reduces energy requirements, and, as a result, reduces the use of finite resources, such as gas or oil. Lowering energy demand helps everyone by keeping electricity costs down. (It is less expensive to use existing electrical capacity efficiently than it is to develop new and additional capacity needed to heat or cool inefficient buildings.) The new VIAQ Code (effective July, 1991) is a natural companion to the energy code. Whether energy-efficient or not, an homes have potential indoor air quality problems. Studies have shown that indoor air is often more polluted than outdoor air. The VIAQ Code provides a means of exchanging stale air for fresh, without compromising energy savings, by setting standards for a controlled ventilation system. It also offers requirements meant to prevent indoor air pollution from building products or radon.

  2. Particle deposition from turbulent flow: Review of published research and its applicability to ventilation ducts in commercial buildings

    SciTech Connect (OSTI)

    Sippola, Mark R.; Nazaroff, William W.

    2002-06-01

    This report reviews published experimental and theoretical investigations of particle deposition from turbulent flows and considers the applicability of this body of work to the specific case of particle deposition from flows in the ducts of heating, ventilating and air conditioning (HVAC) systems. Particle deposition can detrimentally affect the performance of HVAC systems and it influences the exposure of building occupants to a variety of air pollutants. The first section of this report describes the types of HVAC systems under consideration and discusses the components, materials and operating parameters commonly found in these systems. The second section reviews published experimental investigations of particle deposition rates from turbulent flows and considers the ramifications of the experimental evidence with respect to HVAC ducts. The third section considers the structure of turbulent airflows in ventilation ducts with a particular emphasis on turbulence investigations that have been used as a basis for particle deposition models. The final section reviews published literature on predicting particle deposition rates from turbulent flows.

  3. Heating, Ventilation, and Air Conditioning Design Strategy for a Hot-Humid Production Builder

    SciTech Connect (OSTI)

    Kerrigan, P.

    2014-03-01

    BSC worked directly with the David Weekley Homes - Houston division to redesign three floor plans in order to locate the HVAC system in conditioned space. The purpose of this project is to develop a cost effective design for moving the HVAC system into conditioned space. In addition, BSC conducted energy analysis to calculate the most economical strategy for increasing the energy performance of future production houses. This is in preparation for the upcoming code changes in 2015. The builder wishes to develop an upgrade package that will allow for a seamless transition to the new code mandate. The following research questions were addressed by this research project: 1. What is the most cost effective, best performing and most easily replicable method of locating ducts inside conditioned space for a hot-humid production home builder that constructs one and two story single family detached residences? 2. What is a cost effective and practical method of achieving 50% source energy savings vs. the 2006 International Energy Conservation Code for a hot-humid production builder? 3. How accurate are the pre-construction whole house cost estimates compared to confirmed post construction actual cost? BSC and the builder developed a duct design strategy that employs a system of dropped ceilings and attic coffers for moving the ductwork from the vented attic to conditioned space. The furnace has been moved to either a mechanical closet in the conditioned living space or a coffered space in the attic.

  4. Heating, Ventilation, and Air Conditioning Design Strategy for a Hot-Humid Production Builder

    SciTech Connect (OSTI)

    Kerrigan, P.

    2014-03-01

    Building Science Corporation (BSC) worked directly with the David Weekley Homes - Houston division to develop a cost-effective design for moving the HVAC system into conditioned space. In addition, BSC conducted energy analysis to calculate the most economical strategy for increasing the energy performance of future production houses in preparation for the upcoming code changes in 2015. This research project addressed the following questions: 1. What is the most cost effective, best performing and most easily replicable method of locating ducts inside conditioned space for a hot-humid production home builder that constructs one and two story single family detached residences? 2. What is a cost effective and practical method of achieving 50% source energy savings vs. the 2006 International Energy Conservation Code for a hot-humid production builder? 3. How accurate are the pre-construction whole house cost estimates compared to confirmed post construction actual cost?

  5. Modelica Library for Building Heating, Ventilation and Air-Conditioning Systems

    E-Print Network [OSTI]

    Wetter, Michael

    2010-01-01

    that are connected to a thermal storage model fractions into discretize the thermal storage tank (black). The roomto a strati?ed thermal energy storage Figure 5: Model of the

  6. Risk Factors in Heating, Ventilating, and Air-Conditioning Systems for Occupant Symptoms in

    E-Print Network [OSTI]

    Mendell, M.J.; Lei-Gomez, Q.; Mirer, A.; Seppanen, O.; Brunner, G.

    2007-01-01

    upper respiratory symptoms, cough, eye symptoms, fatigue orof breath, or chest tightness); cough; upper respiratory (atrespiratory symptoms, cough, and eye symptoms. Calibration

  7. Modelica Library for Building Heating, Ventilation and Air-Conditioning Systems

    E-Print Network [OSTI]

    Wetter, Michael

    2010-01-01

    Austria, September 2006. Modelica As- sociation and Arsenalsystems. The ?exibility of Modelica has been T room in [ C]lss. AirConditioning - a Modelica li- o brary for dynamic

  8. Buildings Energy Data Book: 5.3 Heating, Cooling, and Ventilation Equipment

    Buildings Energy Data Book [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center HomeVehicle Replacement U.S. Residential and6927Water3.3323456 U.S.

  9. Buildings Energy Data Book: 5.3 Heating, Cooling, and Ventilation Equipment

    Buildings Energy Data Book [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center HomeVehicle Replacement U.S. Residential and6927Water3.3323456 U.S.0

  10. Buildings Energy Data Book: 5.3 Heating, Cooling, and Ventilation Equipment

    Buildings Energy Data Book [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center HomeVehicle Replacement U.S. Residential and6927Water3.3323456

  11. Buildings Energy Data Book: 5.3 Heating, Cooling, and Ventilation Equipment

    Buildings Energy Data Book [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center HomeVehicle Replacement U.S. Residential and6927Water3.33234562 Main

  12. Buildings Energy Data Book: 5.3 Heating, Cooling, and Ventilation Equipment

    Buildings Energy Data Book [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center HomeVehicle Replacement U.S. Residential and6927Water3.33234562

  13. Buildings Energy Data Book: 5.3 Heating, Cooling, and Ventilation Equipment

    Buildings Energy Data Book [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center HomeVehicle Replacement U.S. Residential and6927Water3.332345624

  14. Buildings Energy Data Book: 5.3 Heating, Cooling, and Ventilation Equipment

    Buildings Energy Data Book [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center HomeVehicle Replacement U.S. Residential and6927Water3.3323456245

  15. Buildings Energy Data Book: 5.3 Heating, Cooling, and Ventilation Equipment

    Buildings Energy Data Book [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center HomeVehicle Replacement U.S. Residential and6927Water3.33234562456

  16. Buildings Energy Data Book: 5.3 Heating, Cooling, and Ventilation Equipment

    Buildings Energy Data Book [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center HomeVehicle Replacement U.S. Residential and6927Water3.332345624562

  17. Buildings Energy Data Book: 5.3 Heating, Cooling, and Ventilation Equipment

    Buildings Energy Data Book [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center HomeVehicle Replacement U.S. Residential and6927Water3.3323456245623

  18. Buildings Energy Data Book: 5.3 Heating, Cooling, and Ventilation Equipment

    Buildings Energy Data Book [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center HomeVehicle Replacement U.S. Residential

  19. Buildings Energy Data Book: 5.3 Heating, Cooling, and Ventilation Equipment

    Buildings Energy Data Book [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center HomeVehicle Replacement U.S. Residential5 Commercial Equipment

  20. Buildings Energy Data Book: 5.3 Heating, Cooling, and Ventilation Equipment

    Buildings Energy Data Book [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center HomeVehicle Replacement U.S. Residential5 Commercial Equipment6 2008

  1. Buildings Energy Data Book: 5.3 Heating, Cooling, and Ventilation Equipment

    Buildings Energy Data Book [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center HomeVehicle Replacement U.S. Residential5 Commercial Equipment6

  2. Buildings Energy Data Book: 5.3 Heating, Cooling, and Ventilation Equipment

    Buildings Energy Data Book [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center HomeVehicle Replacement U.S. Residential5 Commercial Equipment68

  3. Buildings Energy Data Book: 5.3 Heating, Cooling, and Ventilation Equipment

    Buildings Energy Data Book [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center HomeVehicle Replacement U.S. Residential5 Commercial Equipment689

  4. Heat collector

    DOE Patents [OSTI]

    Merrigan, M.A.

    1981-06-29

    A heat collector and method suitable for efficiently and cheaply collecting solar and other thermal energy are provided. The collector employs a heat pipe in a gravity-assist mode and is not evacuated. The collector has many advantages, some of which include ease of assembly, reduced structural stresses on the heat pipe enclosure, and a low total materials cost requirement. Natural convective forces drive the collector, which after startup operates entirely passively due in part to differences in molecular weights of gaseous components within the collector.

  5. Heat collector

    DOE Patents [OSTI]

    Merrigan, Michael A. (Santa Cruz, NM)

    1984-01-01

    A heat collector and method suitable for efficiently and cheaply collecting solar and other thermal energy are provided. The collector employs a heat pipe in a gravity-assist mode and is not evacuated. The collector has many advantages, some of which include ease of assembly, reduced structural stresses on the heat pipe enclosure, and a low total materials cost requirement. Natural convective forces drive the collector, which after startup operates entirely passively due in part to differences in molecular weights of gaseous components within the collector.

  6. Corrosive resistant heat exchanger

    DOE Patents [OSTI]

    Richlen, Scott L. (Annandale, VA)

    1989-01-01

    A corrosive and errosive resistant heat exchanger which recovers heat from a contaminated heat stream. The heat exchanger utilizes a boundary layer of innocuous gas, which is continuously replenished, to protect the heat exchanger surface from the hot contaminated gas. The innocuous gas is conveyed through ducts or perforations in the heat exchanger wall. Heat from the heat stream is transferred by radiation to the heat exchanger wall. Heat is removed from the outer heat exchanger wall by a heat recovery medium.

  7. Thermoelectrically Pumped Light-Emitting Diodes Operating above Unity Efficiency

    E-Print Network [OSTI]

    Santhanam, Parthiban

    A heated semiconductor light-emitting diode at low forward bias voltage Velectrical work to pump heat from the lattice to the photon field. Here the rates of both radiative and nonradiative recombination ...

  8. Thermo-electrically pumped semiconductor light emitting diodes

    E-Print Network [OSTI]

    Santhanam, Parthiban

    2014-01-01

    Thermo-electric heat exchange in semiconductor light emitting diodes (LEDs) allows these devices to emit optical power in excess of the electrical power used to drive them, with the remaining power drawn from ambient heat. ...

  9. Dayton Power and Light- Residential Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Dayton Power and Light offers rebates for heating and cooling to residential customers who purchase and install energy efficient products for the home. Eligible systems and measures include heat...

  10. Light Properties Light travels at the speed of light `c'

    E-Print Network [OSTI]

    Mojzsis, Stephen J.

    LIGHT!! #12;Light Properties Light travels at the speed of light `c' C = 3 x 108 m/s Or 190,000 miles/second!! Light could travel around the world about 8 times in one second #12;What is light?? Light is a "wave packet" A photon is a "light particle" #12;Electromagnetic Radiation and You Light is sometimes

  11. CO2 MONITORING FOR DEMAND CONTROLLED VENTILATION IN COMMERCIAL BUILDINGS

    SciTech Connect (OSTI)

    Fisk, William J.; Sullivan, Douglas P.; Faulkner, David; Eliseeva, Ekaterina

    2010-03-17

    Carbon dioxide (CO{sub 2}) sensors are often deployed in commercial buildings to obtain CO{sub 2} data that are used, in a process called demand-controlled ventilation, to automatically modulate rates of outdoor air ventilation. The objective is to keep ventilation rates at or above design specifications and code requirements and also to save energy by avoiding excessive ventilation rates. Demand controlled ventilation is most often used in spaces with highly variable and sometime dense occupancy. Reasonably accurate CO{sub 2} measurements are needed for successful demand controlled ventilation; however, prior research has suggested substantial measurement errors. Accordingly, this study evaluated: (a) the accuracy of 208 CO{sub 2} single-location sensors located in 34 commercial buildings, (b) the accuracy of four multi-location CO{sub 2} measurement systems that utilize tubing, valves, and pumps to measure at multiple locations with single CO{sub 2} sensors, and (c) the spatial variability of CO{sub 2} concentrations within meeting rooms. The field studies of the accuracy of single-location CO{sub 2} sensors included multi-concentration calibration checks of 90 sensors in which sensor accuracy was checked at multiple CO{sub 2} concentrations using primary standard calibration gases. From these evaluations, average errors were small, -26 ppm and -9 ppm at 760 and 1010 ppm, respectively; however, the averages of the absolute values of error were 118 ppm (16%) and 138 ppm (14%), at concentrations of 760 and 1010 ppm, respectively. The calibration data are generally well fit by a straight line as indicated by high values of R{sup 2}. The Title 24 standard specifies that sensor error must be certified as no greater than 75 ppm for a period of five years after sensor installation. At 1010 ppm, 40% of sensors had errors greater than {+-}75 ppm and 31% of sensors has errors greater than {+-}100 ppm. At 760 ppm, 47% of sensors had errors greater than {+-}75 ppm and 37% of sensors had errors greater than {+-}100 ppm. A significant fraction of sensors had errors substantially larger than 100 ppm. For example, at 1010 ppm, 19% of sensors had an error greater than 200 ppm and 13% of sensors had errors greater than 300 ppm. The field studies also included single-concentration calibration checks of 118 sensors at the concentrations encountered in the buildings, which were normally less than 500 ppm during the testing. For analyses, these data were combined with data from the calibration challenges at 510 ppm obtained during the multi-concentration calibration checks. For the resulting data set, the average error was 60 ppm and the average of the absolute value of error was 154 ppm. Statistical analyses indicated that there were statistically significant differences between the average accuracies of sensors from different manufacturers. Sensors with a 'single lamp single wavelength' design tended to have a statistically significantly smaller average error than sensors with other designs except for 'single lamp dual wavelength' sensors, which did not have a statistically significantly lower accuracy. Sensor age was not consistently a statistically significant predictor of error.

  12. Electric Adsorption Heat Pump for Electric Vehicles: Electric-Powered Adsorption Heat Pump for Electric Vehicles

    SciTech Connect (OSTI)

    2011-11-21

    HEATS Project: PNNL is developing a new class of advanced nanomaterial called an electrical metal organic framework (EMOF) for EV heating and cooling systems. The EMOF would function similar to a conventional heat pump, which circulates heat or cold to the cabin as needed. However, by directly controlling the EMOF's properties with electricity, the PNNL design is expected to use much less energy than traditional heating and cooling systems. The EMOF-based heat pumps would be light, compact, efficient, and run using virtually no moving parts.

  13. The Benefits of Better Ventilation and Filtration Practices in Schools

    E-Print Network [OSTI]

    Lamping, G.

    2013-01-01

    Ventilation and Filtration Practices in Schools Gerald (Jerry) Lamping ASHRAE Member Director for IAQ (Retired) Green Classroom Professional USGBC December 17, 2013 ESL-KT-13-12-17 CATEE 2013: Clean Air Through Energy Efficiency Conference, San Antonio, Texas... can help children build real-world skill sets, cut school costs and provide healthy learning environments. ESL-KT-13-12-17 CATEE 2013: Clean Air Through Energy Efficiency Conference, San Antonio, Texas Dec. 16-18 Costs for Student Absences 12% of U...

  14. Use of photovoltaics for waste heat recovery

    DOE Patents [OSTI]

    Polcyn, Adam D

    2013-04-16

    A device for recovering waste heat in the form of radiated light, e.g. red visible light and/or infrared light includes a housing having a viewing window, and a photovoltaic cell mounted in the housing in a relationship to the viewing window, wherein rays of radiated light pass through the viewing window and impinge on surface of the photovoltaic cell. The housing and/or the cell are cooled so that the device can be used with a furnace for an industrial process, e.g. mounting the device with a view of the interior of the heating chamber of a glass making furnace. In this manner, the rays of the radiated light generated during the melting of glass batch materials in the heating chamber pass through the viewing window and impinge on the surface of the photovoltaic cells to generate electric current which is passed onto an electric load.

  15. Inland Power & Light Company- Residential Energy Efficiency Rebate Programs

    Broader source: Energy.gov [DOE]

    Inland Power & Light offers a variety of rebates through the Conservation Services program. The Performance Tested Comfort Systems (PTCS) Heating/Cooling & Duct Sealing Rebate program...

  16. Peninsula Light Company- Residential Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Peninsula Light Company offers a rebate program for residential customers who want to install energy efficient products in homes. Rebates are provided for window replacements, water heaters, heat...

  17. Independence Power and Light- Residential Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Independence Power and Light (IPL) offers rebates to residential customers for purchasing new, energy efficient appliances. Rebates are available on central air conditioning systems, heat pumps,...

  18. Text-Alternative Version of Building America Webinar: Ventilation Strategies for High Performance Homes, Part I: Application-Specific Ventilation Guidelines

    Broader source: Energy.gov [DOE]

    This webinar, held on Aug. 26, 2016, covered what makes high-performance homes different from a ventilation perspective and how they might need to be treated differently than traditional construction.

  19. Evaluation of the effects of contaminant injection location and injection method on the determination of overall relative room ventilation efficiency

    E-Print Network [OSTI]

    Pierce, Stephen Dale

    1994-01-01

    The purpose of this research is to evaluate an emerging concept called ventilation effectiveness at several points in a real room. Ventilation effectiveness was calculated using the pulse and step-up injection methods which were performed in four...

  20. Use of Statistical Approach to Design an Optimal Duct System for On-demand Industrial Exhaust Ventilation

    E-Print Network [OSTI]

    Litomisky, A.

    2010-01-01

    This paper elaborates on how to use statistics to calculate optimal parameters (including duct diameters) of energy-efficient industrial ventilation systems. Based on the fan-law, on-demand ventilation can save up to 80% of electricity compared...

  1. Analysis of Solar Passive Techniques and Natural Ventilation Concepts in a Residential Building Including CFD Simulation

    E-Print Network [OSTI]

    Quince, N.; Ordonez, A.; Bruno, J. C.; Coronas, A.

    2010-01-01

    are double glazed (10mm + 8mm air + 10mm), with aluminium frame and cold bridge breaking. All apartments are designed to allow cross ventilation. The project of the building (Pastor and Toral 2006) plans two basic natural ventilation mechanisms: a stack...

  2. Experimental Demonstration of 2x2 MIMO Communications in a Reverberant Ventilation Duct

    E-Print Network [OSTI]

    Stancil, Daniel D.

    Experimental Demonstration of 2x2 MIMO Communications in a Reverberant Ventilation Duct Environment- tilation duct. We further demonstrate that MIMO coefficients applied to transmit and receive antennas can that ventilation ducts are an attractive media for distributing RF communication signals indoors (See for example

  3. Created: July, 2014 Laboratory Safety Design Guide Section 3 Laboratory Ventilation

    E-Print Network [OSTI]

    ...........................................................................3-2 C. Fume Hood Exhaust System Design Criteria (FHES) ........................................3-3 D Criteria (FHES) 1. Design to incorporate user needs, room configuration and general ventilation. 2Created: July, 2014 Laboratory Safety Design Guide Section 3 Laboratory Ventilation 3-1 Section 3

  4. 1 Copyright 1999 by ASME MULTI-PHASE CFD ANALYSIS OF NATURAL AND VENTILATED CAVITATION

    E-Print Network [OSTI]

    Kunz, Robert Francis

    volume fraction transport/generation for liquid, condensable vapor and non-con- densable gas fields reduction can be realized if bodies are partially or fully envel- oped in a large natural or ventilated gas1 Copyright 1999 by ASME MULTI-PHASE CFD ANALYSIS OF NATURAL AND VENTILATED CAVITATION ABOUT

  5. Modeling Alveolar Volume Changes During Periodic Breathing in Heterogeneously Ventilated Lungs

    E-Print Network [OSTI]

    Jeavons, Peter

    Modeling Alveolar Volume Changes During Periodic Breathing in Heterogeneously Ventilated Lungs SARA-uniform breathing pattern for a lung with an inhomogeneous gas distribution, such as that observed in some subjects of irregular breathing caused by small, poorly ventilated regions of the lung. Presented here is an extension

  6. Video Article Characterization of the Isolated, Ventilated, and Instrumented Mouse Lung

    E-Print Network [OSTI]

    Chesler, Naomi C.

    Video Article Characterization of the Isolated, Ventilated, and Instrumented Mouse Lung Perfused://www.jove.com/details.php?id=2690 DOI: 10.3791/2690 Keywords: Medicine, Issue 50, ex-vivo, mouse, lung, pulmonary vascular impedance of the Isolated, Ventilated, and Instrumented Mouse Lung Perfused with Pulsatile Flow. J. Vis. Exp. (50), e2690

  7. Identifying Mathematical Models of the Mechanically Ventilated Lung Using Equation Discovery

    E-Print Network [OSTI]

    Kersting, Kristian

    1 Identifying Mathematical Models of the Mechanically Ventilated Lung Using Equation Discovery in intensive care medicine by all means. Nevertheless, it can induce severe mechanical stress to the lung, which generally impairs the outcome of the therapy. To reduce the risk of a ventilator induced lung

  8. owi'3:%l OORNL/CON-75 Effect of Forced Ventilation on

    E-Print Network [OSTI]

    Oak Ridge National Laboratory

    to determine the effect of a vented dryer on the house infiltration rate. The results of this study may alsoowi'3:%l OORNL/CON-75 Effect of Forced Ventilation on House Infiltration *CARBIDE W. P. Levins #12-eng-26 Energy Division EFFECT OF FORCED VENTILATION ON HOUSE INFILTRATION W. P. Levins DEPARTMENT

  9. Submitted to Building and Environment ON ESTIMATION OF MULTIZONE VENTILATION RATES

    E-Print Network [OSTI]

    LBL-25772 Submitted to Building and Environment ON ESTIMATION OF MULTIZONE VENTILATION RATES FROM techniques are becoming widely used to measure the ventilation rates in buildings. As more detailed imprecise for real buildings. How- ever, exogenous information concerning physical constraints can allow

  10. Optical heat flux gauge

    DOE Patents [OSTI]

    Noel, B.W.; Borella, H.M.; Cates, M.R.; Turley, W.D.; MacArthur, C.D.; Cala, G.C.

    1991-04-09

    A heat flux gauge is disclosed comprising first and second thermographic phosphor layers separated by a layer of a thermal insulator, wherein each thermographic layer comprises a plurality of respective thermographic sensors in a juxtaposed relationship with respect to each other. The gauge may be mounted on a surface with the first thermographic phosphor in contact with the surface. A light source is directed at the gauge, causing the phosphors to luminesce. The luminescence produced by the phosphors is collected and its spectra analyzed in order to determine the heat flux on the surface. First and second phosphor layers must be different materials to assure that the spectral lines collected will be distinguishable. 9 figures.

  11. Isabella Inzoli Coupled transports of heat

    E-Print Network [OSTI]

    Kjelstrup, Signe

    about the transport of gas and heat across a membrane and to shed light on the coupling effects between.g. for catalytic cracking and for separation processes. The dynamic behaviour of the molecules entering a membrane transport of gas and heat into and across a silicalite membrane. These simulations allow to follow the time

  12. Lower-Temperature Subsurface Layout and Ventilation Concepts

    SciTech Connect (OSTI)

    Christine L. Linden; Edward G. Thomas

    2001-06-20

    This analysis combines work scope identified as subsurface facility (SSF) low temperature (LT) Facilities System and SSF LT Ventilation System in the Technical Work Plan for Subsurface Design Section FY 01 Work Activities (CRWMS M&O 2001b, pp. 6 and 7, and pp. 13 and 14). In accordance with this technical work plan (TWP), this analysis is performed using AP-3.10Q, Analyses and Models. It also incorporates the procedure AP-SI.1Q, Software Management. The purpose of this analysis is to develop an overall subsurface layout system and the overall ventilation system concepts that address a lower-temperature operating mode for the Monitored Geologic Repository (MGR). The objective of this analysis is to provide a technical design product that supports the lower-temperature operating mode concept for the revision of the system description documents and to provide a basis for the system description document design descriptions. The overall subsurface layout analysis develops and describes the overall subsurface layout, including performance confirmation facilities (also referred to as Test and Evaluation Facilities) for the Site Recommendation design. This analysis also incorporates current program directives for thermal management.

  13. ABSORPTION HEAT PUMP IN THE DISTRICT HEATING

    E-Print Network [OSTI]

    Oak Ridge National Laboratory

    #12;ABSORPTION HEAT PUMP IN THE DISTRICT HEATING PLANT Dr.sc.ing. Agnese Lickrastina M.Sc. Normunds European Heat Pump Summit 2013, Nuremberg, 15-16.10.2013 Riga District Heating company Operation of the DH plant Imanta Selection of the heat pump/chiller Operation of the heat pump/chiller Summary

  14. Nuclear facilities: criteria for the design and operation of ventilation systems for nuclear installations other than nuclear reactors

    E-Print Network [OSTI]

    International Organization for Standardization. Geneva

    2004-01-01

    Nuclear facilities: criteria for the design and operation of ventilation systems for nuclear installations other than nuclear reactors

  15. Building America Case Study: Selecting Ventilation Systems for Existing Homes (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2014-12-01

    This document addresses adding -or improving - mechanical ventilation systems to existing homes. The purpose of ventilation is to remove contaminants from homes, and this report discusses where, when, and how much ventilation is appropriate in a home, including some discussion of relevant codes and standards. Advantages, disadvantages, and approximate costs of various system types are presented along with general guidelines for implementing the systems in homes. CARB intends for this document to be useful to decision makers and contractors implementing ventilation systems in homes. Choosing the "best" system is not always straightforward; selecting a system involves balancing performance, efficiency, cost, required maintenance, and several other factors. It is the intent of this document to assist contractors in making more informed decisions when selecting systems. Ventilation is an integral part of a high-performance home. With more air-sealed envelopes, a mechanical means of removing contaminants is critical for indoor environmental quality and building durability.

  16. Impact of Residential Mechanical Ventilation on Energy Cost and Humidity Control

    SciTech Connect (OSTI)

    Martin, Eric

    2014-01-01

    Optimizing whole house mechanical ventilation as part of the Building Ameerica program's systems engineered approach to constructing housing has been an important subject of the program's research. Ventilation in residential buildings is one component of an effective, comprehensive strategy for creation and maintenance of a comfortable and healthy indoor air environment. The study described in this report is based on building energy modeling with an important focus on the indoor humidity impacts of ventilation. The modeling tools used were EnergyPlus version 7.1 (E+) and EnergyGauge USA (EGUSA). Twelve U.S. cities and five climate zones were represented. A total of 864 simulations (2*2*3*3*12= 864) were run using two building archetypes, two building leakage rates, two building orientations, three ventilation systems, three ventilation rates, and twelve climates.

  17. Impact of Residential Mechanical Ventilation on Energy Cost and Humidity Control

    SciTech Connect (OSTI)

    Martin, E.

    2014-01-01

    The DOE Building America program has been conducting research leading to cost effective high performance homes since the early 1990's. Optimizing whole house mechanical ventilation as part of the program's systems engineered approach to constructing housing has been an important subject of the program's research. Ventilation in residential buildings is one component of an effective, comprehensive strategy for creation and maintenance of a comfortable and healthy indoor air environment. The study described in this white paper is based on building energy modeling with an important focus on the indoor humidity impacts of ventilation. The modeling tools used were EnergyPlus version 7.1 (E+) and EnergyGauge USA (EGUSA). Twelve U.S. cities and five climate zones were represented. A total of 864 simulations (2*2*3*3*12= 864) were run using two building archetypes, two building leakage rates, two building orientations, three ventilation systems, three ventilation rates, and twelve climates.

  18. The Dual Nature of Light Wave and Particle

    E-Print Network [OSTI]

    Cochran-Stafira, D. Liane

    converted to heat 44% visible light JUST RIGHT! suitable energy for life - photosynthesis absorbed1 The Dual Nature of Light Wave and Particle Light as a particle Particles or packets of light Photon carries fixed amount of energy Determines how fast it vibrates high energy = fast low energy

  19. Coordination of Energy Efficiency and Demand Response

    E-Print Network [OSTI]

    Goldman, Charles

    2010-01-01

    ventilating, and air conditioning. Energy efficiency is alsoenergy efficiency programs (e.g. , lighting, air conditioning)energy efficiency and sell large, capital-intensive technology solutions, such as boiler and heating, ventilating, and air conditioning (

  20. Cerenkov Light

    ScienceCinema (OSTI)

    Slifer, Karl

    2014-05-22

    The bright blue glow from nuclear reactors is Cerenkov light. Karl Slifer describes how nuclear physicists can use this phenomenon to study the nucleus of the atom.

  1. Cerenkov Light

    SciTech Connect (OSTI)

    Slifer, Karl

    2013-06-13

    The bright blue glow from nuclear reactors is Cerenkov light. Karl Slifer describes how nuclear physicists can use this phenomenon to study the nucleus of the atom.

  2. Lighting Renovations

    Broader source: Energy.gov [DOE]

    When undertaking a lighting renovation in a Federal building, daylighting is the primary renewable energy opportunity. Photovoltaics (PV) also present an excellent opportunity. While this guide...

  3. Energy Performance Comparison of Heating and Air Conditioning Systems for Multi-Family Residential Buildings

    SciTech Connect (OSTI)

    Wang, Weimin; Zhang, Jian; Jiang, Wei; Liu, Bing

    2011-07-31

    The type of heating, ventilation and air conditioning (HVAC) system has a large impact on the heating and cooling energy consumption in multifamily residential buildings. This paper compares the energy performance of three HVAC systems: a direct expansion (DX) split system, a split air source heat pump (ASHP) system, and a closed-loop water source heat pump (WSHP) system with a boiler and an evaporative fluid cooler as the central heating and cooling source. All three systems use gas furnace for heating or heating backup. The comparison is made in a number of scenarios including different climate conditions, system operation schemes and applicable building codes. It is found that with the minimum code-compliant equipment efficiency, ASHP performs the best among all scenarios except in extremely code climates. WSHP tends to perform better than the split DX system in cold climates but worse in hot climates.

  4. Bayonet heat exchangers in heat-assisted Stirling heat pump

    SciTech Connect (OSTI)

    Yagyu, S.; Fukuyama, Y.; Morikawa, T.; Isshiki, N.; Satoh, I.; Corey, J.; Fellows, C.

    1998-07-01

    The Multi-Temperature Heat Supply System is a research project creating a city energy system with lower environmental load. This system consists of a gas-fueled internal combustion engine and a heat-assisted Stirling heat pump utilizing shaft power and thermal power in a combination of several cylinders. The heat pump is mainly driven by engine shaft power and is partially assisted by thermal power from engine exhaust heat source. Since this heat pump is operated by proportioning the two energy sources to match the characteristics of the driving engine, the system is expected to produce cooling and heating water at high COP. This paper describes heat exchanger development in the project to develop a heat-assisted Stirling heat pump. The heat pump employs the Bayonet type heat exchangers (BHX Type I) for supplying cold and hot water and (BHX Type II) for absorbing exhaust heat from the driving engine. The heat exchanger design concepts are presented and their heat transfer and flow loss characteristics in oscillating gas flow are investigated. The main concern in the BHX Type I is an improvement of gas side heat transfer and the spirally finned tubes were applied to gas side of the heat exchanger. For the BHX Type II, internal heat transfer characteristics are the main concern. Shell-and-tube type heat exchangers are widely used in Stirling machines. However, since brazing is applied to the many tubes for their manufacturing processes, it is very difficult to change flow passages to optimize heat transfer and loss characteristics once they have been made. The challenge was to enhance heat transfer on the gas side to make a highly efficient heat exchanger with fewer parts. It is shown that the Bayonet type heat exchanger can have good performance comparable to conventional heat exchangers.

  5. Ventilation and air-conditioning concept for CNGS underground areas

    E-Print Network [OSTI]

    Lindroos, J

    2002-01-01

    The aim of the CNGS project is to prove the existence of neutrino oscillation by generating an intense neutrino beam from CERN in the direction of the Gran Sasso laboratory in Italy, where two large neutrino detectors are built to detect the neutrinos. All the components for producing the neutrino beam will be situated in the underground tunnels, service galleries and chambers. The ventilation and air-conditioning systems installed in these underground areas have multiple tasks. Depending on the operating mode and structure to be air-conditioned, the systems are required to provide fresh air, cool the machine, dehumidify areas housing sensible equipment or assure the smoke removal in a case of a fire. This paper presents the technical solutions foreseen to meet these requirements.

  6. Heating System Specification Specification of Heating System

    E-Print Network [OSTI]

    Day, Nancy

    Appendix A Heating System Specification /* Specification of Heating System (loosely based */ requestHeat : Room ­? bool; 306 #12; APPENDIX A. HEATING SYSTEM SPECIFICATION 307 /* user inputs */ living --- HEATER??ACTIVE --- ACTIVATING??HEATER --- HEATER??RUNNING ; #12; APPENDIX A. HEATING SYSTEM SPECIFICATION

  7. Design of a Natural Ventilation System in the Dunhuang Museum

    E-Print Network [OSTI]

    Zhang, Y.; Guan, W.

    2006-01-01

    preservation layer, interior side is clay air brick, heat transfer coefficient is 0.43W/m2. ?. Window: alloy aluminium window interior shading device with low-e properties, heat transfer coefficient is 2.0 W/m2. ?. Roof: 120mm concrete slab, outside...

  8. Effect of residential air-to-air heat and moisture exchangers on indoor humidity

    SciTech Connect (OSTI)

    Barringer, C.G.; McGugan, C.A. )

    1989-01-01

    A project was undertaken to develop guidelines for the selection of residential heat and moisture recovery ventilation systems (HRVs) in order to maintain an acceptable indoor humidity for various climatic conditions. These guidelines were developed from reviews on ventilation requirements, HRV performance specifications, and from computer modeling. Space conditions within three house/occupancy models for several types of HRV were simulated for three climatic conditions (Lake Charles, LA; Seattle, WA; and Winnipeg, MB) in order to determine the impact of the HRVs on indoor relative humidity and space-conditioning loads. Results show that when reduction of cooling cost is the main consideration, exchangers with moisture recovery are preferable to sensible HRVs. For reduction of heating costs, moisture recovery should be done for ventilation rates greater than about 15 L/s and average winter temperatures less than about (minus) 10{degrees}C if internal moisture generation rates are low. For houses with higher ventilation rates and colder average winter temperatures, exchangers with moisture recovery should be used.

  9. SMALL PARTICLE HEAT EXCHANGERS

    E-Print Network [OSTI]

    Hunt, A.J.

    2011-01-01

    The Small Particle Heat Exchange Receiver (SPHER) for Solarof the small particle heat exchange receiver (or SPHER), asabsorption process, the heat exchange to the gas, the choice

  10. Heat pump system

    DOE Patents [OSTI]

    Swenson, Paul F. (Cleveland, OH); Moore, Paul B. (Fedhaurn, FL)

    1982-01-01

    An air heating and cooling system for a building includes an expansion-type refrigeration circuit and a heat engine. The refrigeration circuit includes two heat exchangers, one of which is communicated with a source of indoor air from the building and the other of which is communicated with a source of air from outside the building. The heat engine includes a heat rejection circuit having a source of rejected heat and a primary heat exchanger connected to the source of rejected heat. The heat rejection circuit also includes an evaporator in heat exchange relation with the primary heat exchanger, a heat engine indoor heat exchanger, and a heat engine outdoor heat exchanger. The indoor heat exchangers are disposed in series air flow relationship, with the heat engine indoor heat exchanger being disposed downstream from the refrigeration circuit indoor heat exchanger. The outdoor heat exchangers are also disposed in series air flow relationship, with the heat engine outdoor heat exchanger disposed downstream from the refrigeration circuit outdoor heat exchanger. A common fluid is used in both of the indoor heat exchanges and in both of the outdoor heat exchangers. In a first embodiment, the heat engine is a Rankine cycle engine. In a second embodiment, the heat engine is a non-Rankine cycle engine.

  11. Water and Space Heating Heat Pumps

    E-Print Network [OSTI]

    Kessler, A. F.

    1985-01-01

    This paper discusses the design and operation of the Trane Weathertron III Heat Pump Water Heating System and includes a comparison of features and performance to other domestic water heating systems. Domestic water is generally provided through...

  12. Industrial Waste Heat Recovery Using Heat Pipes

    E-Print Network [OSTI]

    Ruch, M. A.

    1981-01-01

    For almost a decade now, heat pipes with secondary finned surfaces have been utilized in counter flow heat exchangers to recover sensible energy from industrial exhaust gases. Over 3,000 such heat exchangers are now in service, recovering...

  13. Demand Forecast Advisory Committee in Preparation for the Seventh Power Plan

    E-Print Network [OSTI]

    products, electric motors, commercial water heaters, and heating, ventilation, and air conditioning Battery Chargers and External Power Supplies Ceiling Fan Light Kits Residential & Commercial Clothes

  14. Memorandum Tyborowski - March 12, 2012

    Office of Environmental Management (EM)

    investments (including but not limited to areas such as Heating Ventilation and Air Conditioning, process energy consumption, lighting, greenhouse gas reduction, etc)...

  15. 2013 Federal Energy and Water Management Award Winners | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ballasts, advanced lighting controls, and connection to the building management system to control heating, ventilation, and air conditioning (HVAC) demand. The roofing was replaced...

  16. Pre-Packaged Commercial Property-Accessed Clean Energy Financing...

    Broader source: Energy.gov (indexed) [DOE]

    simple, prepackaged technologies-such as lighting and heating, ventilation, and air conditioning (HVAC)-can be accurately estimated without the need for a detailed energy audit....

  17. CX-007372: Categorical Exclusion Determination | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    to commercial buildings, 5) exterior lighting retrofits in city buildings, 6) energy efficient retrofits to city buildings including heating, ventilating, and air conditioning...

  18. Partner with DOE and Emerging Technologies

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy (DOE) seeks partnerships to research and develop energy efficient building technologies, including advanced lighting, heating, ventilating and air conditioning (HVAC),...

  19. Heating systems for heating subsurface formations

    DOE Patents [OSTI]

    Nguyen, Scott Vinh (Houston, TX); Vinegar, Harold J. (Bellaire, TX)

    2011-04-26

    Methods and systems for heating a subsurface formation are described herein. A heating system for a subsurface formation includes a sealed conduit positioned in an opening in the formation and a heat source. The sealed conduit includes a heat transfer fluid. The heat source provides heat to a portion of the sealed conduit to change phase of the heat transfer fluid from a liquid to a vapor. The vapor in the sealed conduit rises in the sealed conduit, condenses to transfer heat to the formation and returns to the conduit portion as a liquid.

  20. Heat transfer and heat exchangers reference handbook

    SciTech Connect (OSTI)

    Not Available

    1991-01-15

    The purpose of this handbook is to provide Rocky Flats personnel with an understanding of the basic concepts of heat transfer and the operation of heat exchangers.

  1. Design and Integrate Improved Systems for Nuclear Facility Ventilation and Exhaust Operations

    SciTech Connect (OSTI)

    Moore, Murray E.

    2014-04-15

    Objective: The objective of this R&D project would complete the development of three new systems and integrate them into a single experimental effort. However, each of the three systems has stand-alone applicability across the DOE complex. At US DOE nuclear facilities, indoor air is filtered and ventilated for human occupancy, and exhaust air to the outdoor environment must be regulated and monitored. At least three technical standards address these functions, and the Los Alamos National Laboratory would complete an experimental facility to answer at least three questions: (1) Can the drag coefficient of a new Los Alamos air mixer be reduced for better operation in nuclear facility exhaust stacks? (2) Is it possible to verify the accuracy of a new dilution method for HEPA filter test facilities? (3) Is there a performance-based air flow metric (volumetric flow or mass flow) for operating HEPA filters? In summary, the three new systems are: a mixer, a diluter and a performance-based metric, respectively. The results of this project would be applicable to at least four technical standards: ANSI N13.1 Sampling and Monitoring Releases of Airborne Radioactive Substances from the Stacks and Ducts of Nuclear Facilities; ASTM F1471 Standard Test Method for Air Cleaning Performance of a High-Efficiency Particulate Air Filter System, ASME N511: In-Service Testing of Nuclear Air Treatment, Heating, Ventilating, and Air-Conditioning Systems, and ASME AG-1: Code On Nuclear Air And Gas Treatment. All of the three proposed new systems must be combined into a single experimental device (i.e. to develop a new function of the Los Alamos aerosol wind tunnel). Technical Approach: The Radiation Protection RP-SVS group at Los Alamos has an aerosol wind tunnel that was originally (2006) designed to evaluate small air samplers (cf. US EPA 40 CFR 53.42). In 2009, the tunnel was modified for exhaust stack verifications per the ANSI N13.1 standard. In 2010, modifications were started on the wind tunnel for testing HEPA filters (cf. ASTM F1471 and ASME N511). This project involves three systems that were developed for testing the 24*24*11 (inch) HEPA filters (i.e. the already mentioned mixer, diluter and metric). Prototypes of the mixer and the diluter have been built and individually tested on a preliminary basis. However, the third system (the HEPA metric method) has not been tested, since that requires complete operability of the aerosol wind tunnel device. (The experimental wind tunnel has test aerosol injection, control and measurement capabilities, and can be heated for temperature dependent measurements.) Benefits: US DOE facilities that use HEPA filters and/or require exhaust stacks from their nuclear facility buildings will benefit from access to the new hardware (mixer and diluter) and performance-based metric (for HEPA filter air flow).

  2. Occupant-generated CO/sub 2/ as an indicator of ventilation rate

    SciTech Connect (OSTI)

    Turiel, I.; Rudy, J.

    1980-04-01

    Ventilation rates in buildings are generally determined by means of tracer-gas techniques that permit calculation of the number of air changes per hour occurring in a given area, or, alternatively, by measuring the actual air flow in the ventilation ducts. There are difficulties associated with both of these methods. In this study in a San Francisco office building, we used occupant-generated CO/sub 2/ as an indicator of the actual ventilation rate. Two techniques were employed, a decay method and an integral method and, in both cases, measurements were conducted simultaneously at several locations. The decay method compared favorably with the conventional measurement methods in both the all-outside-air and recirculation modes, whereas the integral method showed a considerable deviation from the other methods in the recirculation mode. Both techniques show promise of being suitable methods for measuring ventilation rate in commercial or institutional buildings.

  3. Increasing ventilation in commercial cattle trailers to decrease shrink, morbidity, and mortality

    E-Print Network [OSTI]

    Giguere, Nicole Marie

    2009-06-02

    moving livestock trailers, an experimental treatment that increased cross-ventilation within commercial cattle trailers by installing aluminum scoops to punch-hole trailers was evaluated. Environmental factors including temperature, ammonia and carbon...

  4. Numerical Analysis of the Channel Wheel Fresh Air Ventilator Under Frosting Conditions

    E-Print Network [OSTI]

    Gao, B.; Dong, Z.; Cheng, Z.; Luo, E.

    2006-01-01

    As new equipment, the channel wheel fresh air ventilator has become increasingly popular in recent years. However, when such equipment is operated under low ambient temperature in the freezing area in winter, the formation of frost on the outdoor...

  5. Study of natural ventilation design by integrating the multi-zone model with CFD simulation

    E-Print Network [OSTI]

    Tan, Gang, 1974-

    2005-01-01

    Natural ventilation is widely applied in sustainable building design because of its energy saving, indoor air qualify and indoor thermal environment improvement. It is important for architects and engineers to accurately ...

  6. Energy and air quality implications of passive stack ventilation in residential buildings

    E-Print Network [OSTI]

    Mortensen, Dorthe Kragsig

    2011-01-01

    scaling the passive stack diameter with house size (floora single-story house ventilated by a passive stack with andTable 1: Passive stack diameters scaling with house size

  7. Integrated Demand Controlled Ventilation for Single Duct VAV System with Conference Rooms

    E-Print Network [OSTI]

    Yu, Y.; Liu, M.; Cho, Y.; Xu, K.

    2007-01-01

    building model is applied to demonstrate the energy saving and show how the indoor air ventilation be satisfied under different circumstance. THE IDCV VAV methodology can be generalized to other similar buildings where the occupancy of critical zones...

  8. Recommendations for the analysis and design of naturally ventilated buildings in urban areas

    E-Print Network [OSTI]

    Truong, Phan Hue

    2012-01-01

    The motivation behind this work was to obtain a better understanding of how a building's natural ventilation potential is affected by the complexities introduced by the urban environment. To this end, we have derived in ...

  9. The Potential for Wind Induced Ventilation to Meet Occupant Comfort Conditions

    E-Print Network [OSTI]

    Byrne, S. J.; Huang, Y. J.; Ritschard, R. L.; Foley, D. M.

    1985-01-01

    This paper describes a simple graphic tool that enables a building designer to evaluate the potential for wind induced ventilation cooling in several climate zones. Long term weather data were analyzed to determine the conditions for which available...

  10. Mechanical ventilation in HUD-code manufactured housing in the Pacific Northwest

    SciTech Connect (OSTI)

    Lubliner, M.; Stevens, D.T.; Davis, B.

    1997-12-31

    Electric utilities in the Pacific Northwest have spent more than $100 million to support energy-efficiency improvements in the Housing and Urban Development (HUD) code manufactured housing industry in the Pacific Northwest over the past several years. More than 65,000 manufactured housing units have been built since 1991 that exceed the new HUD standards for both thermal performance and mechanical ventilation that became effective in October 1994. All of these units included mechanical ventilation systems that were designed to meet or exceed the requirements of ASHRAE Standard 62-1989. This paper addresses the ventilation solutions that were developed and compares the comfort and energy considerations of the various strategies that have evolved in the Pacific Northwest and nationally. The use and location of a variety of outside air inlets will be addressed, as will the acceptance by the occupants of the ventilation strategy.

  11. INDOOR AIR QUALITY AND ENERGY EFFICIENT VENTILATION RATES AT A NEW YORK CITY ELEMENTARY SCHOOL

    E-Print Network [OSTI]

    Young, Rodger A.

    2013-01-01

    UC-95d INDOOR AIR QUALITY AND ENERGY EFFICIENT VENTILATIONVentilation on Indoor Air Quality and Energy Use in Schoo s,EEB~Vent INDOOR AIR QUALITY AND ENERGY EFFICIENT VENTILATION

  12. Economizer system cost effectiveness: Accounting for the influence of ventilation rate on sick leave

    SciTech Connect (OSTI)

    Fisk, William J.; Seppanen, Olli; Faulkner, David; Huang, Joe

    2003-06-01

    This study estimated the health, energy, and economic benefits of an economizer ventilation control system that increases outside air supply during mild weather to save energy. A model of the influence of ventilation rate on airborne transmission of respiratory illnesses was used to extend the limited data relating ventilation rate with illness and sick leave. An energy simulation model calculated ventilation rates and energy use versus time for an office building in Washington, DC with fixed minimum outdoor air supply rates, with and without an economizer. Sick leave rates were estimated with the disease transmission model. In the modeled 72-person office building, our analyses indicate that the economizer reduces energy costs by approximately $2000 and, in addition, reduces sick leave. The financial benefit of the decrease in sick leave is estimated to be between $6,000 and $16,000. This modelling suggests that economizers are much more cost effective than currently recognized.

  13. The impact of pathological ventilation on aerosol deposition : imaging, insight and intervention

    E-Print Network [OSTI]

    Greenblatt, Elliot (Elliot Eliyahu)

    2015-01-01

    Aerosol therapies are often used to treat lung diseases in which ventilation is distributed heterogeneously throughout the lung. As therapeutic aerosols are transported by the inhaled air, it is likely that deposition is ...

  14. Calculation and design of tunnel ventilation systems using a two-scale modelling approach

    E-Print Network [OSTI]

    Colella, Francesco; Rein, Guillermo; Borchiellini, Romano; Carvel, Ricky O; Torero, Jose L; Verda, Vittorio

    This paper develops a novel modelling approach for ventilation flow in tunnels at ambient conditions (i.e. cold flow). The complexity of full CFD models of low in tunnels or the inaccuracies of simplistic assumptions are ...

  15. Energy and Cost Associated with Ventilating Office Buildings in a Tropical Climate

    E-Print Network [OSTI]

    Rim, Donghyun; Schiavon, Stefano; Nazaroff, William W

    2015-01-01

    Building Ventilation and Energy Use in Tropical Climatesbuildings. Florida Solar Energy Center. USDOE (2011) ReportReview. U.S. Department of Energy. Prez-Lombard L, Ortiz J,

  16. New Whole-House Solutions Case Study: Hydronic Heating Coil Versus Propane Furnace, Rehoboth Beach, Delaware

    SciTech Connect (OSTI)

    2014-01-01

    In this project involving two homes, the IBACOS team evaluated the performance of the two space conditioning systems and the modeled efficiency of the two tankless domestic hot water systems relative to actual occupant use. Each house was built by Insight Homes and is 1,715-ft2 with a single story, three bedrooms, two bathrooms, and the heating, ventilation, and air conditioning systems and ductwork located in conditioned crawlspaces. The standard house, which the builder offers as its standard production house, uses an air source heat pump (ASHP) with supplemental propane furnace heating. The Building America test house uses the same ASHP unit with supplemental heat provided by the DHW heater (a combined DHW and hydronic heating system, where the hydronic heating element is in the air handler).

  17. Climate Change, Energy Efficiency, and IEQ: Challenges and Opportunities for ASHRAE

    E-Print Network [OSTI]

    Fisk, William J.

    2009-01-01

    controlled ventilation, heat recovery, and gas phase airtemporal control Ventilation heat recovery Increased use of

  18. Integrated heat pump and heat storage system

    SciTech Connect (OSTI)

    Katz, A.

    1983-09-13

    An integrated heat pump and heat storage system is disclosed comprising a heat pump, a first conduit for supplying return air from an enclosure to the heat pump, a second conduit for supplying heated air from the heat pump to the enclosure, heat storage apparatus. A first damper is operative in a first orientation to permit return air from the enclosure to enter the first conduit and to prevent return air from passing through the heat storage apparatus and operative in a second orientation to cause return air to pass through the heat storage apparatus for being heated thereby before entering the first conduit. A second damper is operative in a first orientation to cause heated air from the second conduit to pass through the heat storage apparatus for giving up a portion of its heat for storage and operative in a second orientation to prevent heated air from the second conduit from passing through the heat storage apparatus and to permit the heated air from the second conduit to reach the enclosure. The heat storage apparatus may comprise phase change materials.

  19. Energy Conservation Through Improved Industrial Ventilation in Small and Medium-Sized Industrial Plants

    E-Print Network [OSTI]

    Saman, N. F.; Nutter, D. W.

    1994-01-01

    INDUSTRIAL ENERGY TECHNOLOGY CONFERENCE 1994 ESL-PA-94/04-03 REPRINTED WITH PERMISSION ENERGY CONSERVATION THROUGH IMPROVED INDUSTRIAL VENTILATION IN SMALL AND MEDIUM-SIZED INDUSTRIAL PLANTS Namir Saman, Ph.D., P.E. Visiting Assistant Professor Energy System... Laboratory Texas A&M University ABSTRACT This paper discusses energy conservation projects in the area of industrial ventilation that have been recommended by the Texas A&M University Energy Analysis and Diagnostic Center (EADQ to small and medium...

  20. Alternatives generation and analysis for double-shell tank primary ventilation systems emissions control and monitoring

    SciTech Connect (OSTI)

    SEDERBURG, J.P.

    1999-09-30

    This AGA addresses the question: ''What equipment upgrades, operational changes, and/or other actions are required relative to the DST tanks farms' ventilation systems to support retrieval, staging (including feed sampling), and delivery of tank waste to the Phase I private contractor?'' Issues and options for the various components within the ventilation subsystem affect each other. Recommended design requirements are presented and the preferred alternatives are detailed.

  1. Lighting in the Library

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    by your library lights E Kilowatt-hours consumed by your library lights F Annual cost of operating your library lights H Current lighting index for your library ...

  2. Convective heat transfer in buildings: recent research results. Rev

    SciTech Connect (OSTI)

    Bauman, F.; Gadgil, A.; Kammerud, R.; Altmayer, E.; Nansteel, M.W.

    1982-10-01

    Recent experimental and numerical studies of convective heat transfer in buildings are described, and important results are presented. The experimental work has been performed on small-scale, water-filled enclosures; the numerical analysis results have been produced by a computer program based on a finite-difference scheme. The convective processes investigated in this research are: (1) natural convective heat transfer between room surfaces and the adjacent air, (2) natural convective heat transfer between adjacent rooms through a doorway or other openings, and (3) forced convection between the building and its external environment (such as wind-driven ventilation through windows, doors, or other openings). Results obtained at Lawrence Berkeley Laboratory (LBL) for surface convection coefficients are compared with existing ASHRAE correlations, and differences can have a significant impact on the accuracy of building energy analysis computer simulations. Interzone coupling correlations obtained from experimental work are in reasonable agreement with recently published experimental results and with earlier published work. Numerical simulations of wind-driven natural ventilation are presented. They exhibit good qualitative agreement with published wind-tunnel data.

  3. Dual source heat pump

    DOE Patents [OSTI]

    Ecker, Amir L. (Dallas, TX); Pietsch, Joseph A. (Dallas, TX)

    1982-01-01

    What is disclosed is a heat pump apparatus for conditioning a fluid characterized by a fluid handler and path for circulating the fluid in heat exchange relationship with a refrigerant fluid; at least two refrigerant heat exchangers, one for effecting heat exchange with the fluid and a second for effecting heat exchange between refrigerant and a heat exchange fluid and the ambient air; a compressor for efficiently compressing the refrigerant; at least one throttling valve for throttling liquid refrigerant; a refrigerant circuit; refrigerant; a source of heat exchange fluid; heat exchange fluid circulating device and heat exchange fluid circuit for circulating the heat exchange fluid in heat exchange relationship with the refrigerant; and valves or switches for selecting the heat exchangers and direction of flow of the refrigerant therethrough for selecting a particular mode of operation. The heat exchange fluid provides energy for defrosting the second heat exchanger when operating in the air source mode and also provides a alternate source of heat.

  4. Light's Darkness

    ScienceCinema (OSTI)

    Padgett, Miles [University of Glasgow, Glasgow, Scotland

    2010-01-08

    Optical vortices and orbital angular momentum are currently topical subjects in the optics literature. Although seemingly esoteric, they are, in fact, the generic state of light and arise whenever three or more plane waves interfere. To be observed by eye the light must be monochromatic. Laser speckle is one such example, where the optical energy circulates around each black spot, giving a local orbital angular momentum. This talk with report three on-going studies. First, when considering a volume of interfering waves, the laser specs map out threads of complete darkness embedded in the light. Do these threads form loops? Links? Or even knots? Second, when looking through a rapidly spinning window, the image of the world on the other side is rotated: true or false? Finally, the entanglement of orbital angular momentum states means measuring how the angular position of one photons sets the angular momentum of another: is this an angular version of the EPR (Einstein, Podolsky, and Rosen) paradox?

  5. Fourier analysis of conductive heat transfer for glazed roofing materials

    SciTech Connect (OSTI)

    Roslan, Nurhana Lyana; Bahaman, Nurfaradila; Almanan, Raja Noorliyana Raja; Ismail, Razidah [Faculty of Computer and Mathematical Sciences, Universiti Teknologi MARA, 40450 Shah Alam, Selangor (Malaysia); Zakaria, Nor Zaini [Faculty of Applied Sciences, Universiti Teknologi MARA, 40450 Shah Alam, Selangor (Malaysia)

    2014-07-10

    For low-rise buildings, roof is the most exposed surface to solar radiation. The main mode of heat transfer from outdoor via the roof is conduction. The rate of heat transfer and the thermal impact is dependent on the thermophysical properties of roofing materials. Thus, it is important to analyze the heat distribution for the various types of roofing materials. The objectives of this paper are to obtain the Fourier series for the conductive heat transfer for two types of glazed roofing materials, namely polycarbonate and polyfilled, and also to determine the relationship between the ambient temperature and the conductive heat transfer for these materials. Ambient and surface temperature data were collected from an empirical field investigation in the campus of Universiti Teknologi MARA Shah Alam. The roofing materials were installed on free-standing structures in natural ventilation. Since the temperature data are generally periodic, Fourier series and numerical harmonic analysis are applied. Based on the 24-point harmonic analysis, the eleventh order harmonics is found to generate an adequate Fourier series expansion for both glazed roofing materials. In addition, there exists a linear relationship between the ambient temperature and the conductive heat transfer for both glazed roofing materials. Based on the gradient of the graphs, lower heat transfer is indicated through polyfilled. Thus polyfilled would have a lower thermal impact compared to polycarbonate.

  6. Types of Lights Types of Lights

    E-Print Network [OSTI]

    1 Types of Lights Types of Lights q So far we have studied point lights Radiate in all direc7ons q Other lights Direc7onal lights (posi7on-independent) Spotlights #12;2 Direc1onal Lights q Shine in a single, uniform direc7on q All rays

  7. DOE Zero Energy Ready Home: Near Zero Maine Home II, Vassalboro...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    an R-20 insulated slab, R-70 cellulose in the attic, extensive air sealing, a mini-split heat pump, an heat recovery ventilator, solar water heating, LED lighting, 3.9 kWh PV, and...

  8. Light Computing

    E-Print Network [OSTI]

    Gordon Chalmers

    2006-10-13

    A configuration of light pulses is generated, together with emitters and receptors, that allows computing. The computing is extraordinarily high in number of flops per second, exceeding the capability of a quantum computer for a given size and coherence region. The emitters and receptors are based on the quantum diode, which can emit and detect individual photons with high accuracy.

  9. Whole House Mechanical Ventilation: A South Chicago Case Study

    SciTech Connect (OSTI)

    2009-09-03

    This case study describes a neighborhood of efficient, healthy, sustainable, affordable homes in South Chicago, IL, that feature structural insulated panels (SIPs), condensing furnaces, sealed combustion water heaters, and efficient lights and appliances.

  10. Assessment of Feasibility of the Beneficial Use of Waste Heat from the Advanced Test Reactor

    SciTech Connect (OSTI)

    Donna P. Guillen

    2012-07-01

    This report investigates the feasibility of using waste heat from the Advanced Test Reactor (ATR). A proposed glycol waste heat recovery system was assessed for technical and economic feasibility. The system under consideration would use waste heat from the ATR secondary coolant system to preheat air for space heating of TRA-670. A tertiary coolant stream would be extracted from the secondary coolant system loop and pumped to a new plate and frame heat exchanger, where heat would be transferred to a glycol loop for preheating outdoor air in the heating and ventilation system. Historical data from Advanced Test Reactor operations over the past 10 years indicates that heat from the reactor coolant was available (when needed for heating) for 43.5% of the year on average. Potential energy cost savings by using the waste heat to preheat intake air is $242K/yr. Technical, safety, and logistics considerations of the glycol waste heat recovery system are outlined. Other opportunities for using waste heat and reducing water usage at ATR are considered.

  11. Jason Demicoli 16 October 2013 1 EUROPEAN HEAT PUMP SUMMIT 2013

    E-Print Network [OSTI]

    Oak Ridge National Laboratory

    Jason Demicoli 16 October 2013 1 #12;EUROPEAN HEAT PUMP SUMMIT 2013 Improved heat pump control with soft starters in heat pumps Reduction or elimination of light flickering Reduction in system Alarms can be shown on the heat pump display Low installation costs - Serial communication already

  12. Optimization of Ventilation Energy Demands and Indoor Air Quality in High-Performance Homes

    SciTech Connect (OSTI)

    Hun, Diana E; Jackson, Mark C; Shrestha, Som S

    2014-01-01

    High-performance homes require that ventilation energy demands and indoor air quality (IAQ) be simultaneously optimized. We attempted to bridge these two areas by conducting tests in a research house located in Oak Ridge, TN, that was 20 months old, energy-efficient (i.e., expected to consume 50% less energy than a house built per the 2006 IRC), tightly-built (i.e., natural ventilation rate ~0.02 h-1), unoccupied, and unfurnished. We identified air pollutants of concern in the test home that could generally serve as indicators of IAQ, and conduced field experiments and computer simulations to determine the effectiveness and energy required by various techniques that lessened the concentration of these contaminants. Formaldehyde was selected as the main pollutant of concern among the contaminants that were sampled in the initial survey because it was the only compound that showed concentrations that were greater than the recommended exposure levels. Field data indicate that concentrations were higher during the summer primarily because emissions from sources rise with increases in temperature. Furthermore, supply ventilation and gas-phase filtration were effective means to reduce formaldehyde concentrations; however, exhaust ventilation had minimal influence on this pollutant. Results from simulations suggest that formaldehyde concentrations obtained while ventilating per ASHRAE 62.2-2010 could be decreased by about 20% from May through September through three strategies: 1) increasing ASHRAE supply ventilation by a factor of two, 2) reducing the thermostat setpoint from 76 to 74 F, or 3) running a gas-phase filtration system while decreasing supply ventilation per ASHRAE by half. In the mixed-humid climate of Oak Ridge, these strategies caused increases in electricity cost of ~$5 to ~$15/month depending on outdoor conditions.

  13. Multiple source heat pump

    DOE Patents [OSTI]

    Ecker, Amir L. (Duncanville, TX)

    1983-01-01

    A heat pump apparatus for conditioning a fluid characterized by a fluid handler and path for circulating a fluid in heat exchange relationship with a refrigerant fluid, at least three refrigerant heat exchangers, one for effecting heat exchange with the fluid, a second for effecting heat exchange with a heat exchange fluid, and a third for effecting heat exchange with ambient air; a compressor for compressing the refrigerant; at least one throttling valve connected at the inlet side of a heat exchanger in which liquid refrigerant is vaporized; a refrigerant circuit; refrigerant; a source of heat exchange fluid; heat exchange fluid circuit and pump for circulating the heat exchange fluid in heat exchange relationship with the refrigerant; and valves or switches for selecting the heat exchangers and directional flow of refrigerant therethrough for selecting a particular mode of operation. Also disclosed are a variety of embodiments, modes of operation, and schematics therefor.

  14. Heat Plan DenmarkHeat Plan Denmark Anders Dyrelundy

    E-Print Network [OSTI]

    efficient use of renewable energy in district heating individual heat pumps solar heating and wood pellets individual heat pumps, solar heating and wood pellets 6Ris International Energy Conference 2009Heat Plan

  15. Heat Exchangers for Solar Water Heating Systems | Department...

    Energy Savers [EERE]

    Heat Exchangers for Solar Water Heating Systems Heat Exchangers for Solar Water Heating Systems Image of a heat exchanger. | Photo from iStockphoto.com Image of a heat exchanger. |...

  16. Heat-Of-Reaction Chemical Heat Pumps--Possible Configurations

    E-Print Network [OSTI]

    Kirol, L. D.

    1986-01-01

    Chemical heat pumps utilize working fluids which undergo reversible chemical changes. Mechanically driven reactive heat pump cycles or, alternatively, heat driven heat pumps in which either heat engine or heat pump ...

  17. Porous light-emitting compositions

    DOE Patents [OSTI]

    Burrell, Anthony K. (Los Alamos, NM); McCleskey, Thomas Mark (Los Alamos, NM); Jia, Quanxi (Los Alamos, NM); Bauer, Eve (Los Alamos, NM); Mueller, Alexander H. (Los Alamos, NM)

    2012-04-17

    Light-emitting devices are prepared by coating a porous substrate using a polymer-assisted deposition process. Solutions of metal precursor and soluble polymers having binding properties for metal precursor were coated onto porous substrates. The coated substrates were heated at high temperatures under a suitable atmosphere. The result was a substrate with a conformal coating that did not substantially block the pores of the substrate.

  18. Solar heating and cooling of residential buildings: design of systems, 1980 edition

    SciTech Connect (OSTI)

    1980-09-01

    This manual was prepared primarily for use in conducting a practical training course on the design of solar heating and cooling systems for residential and small office buildings, but may also be useful as a general reference text. The content level is appropriate for persons with different and varied backgrounds, although it is assumed that readers possess a basic understanding of heating, ventilating, and air-conditioning systems of conventional (non-solar) types. This edition is a revision of the manual with the same title, first printed and distributed by the US Government Printing Office in October 1977. The manual has been reorganized, new material has been added, and outdated information has been deleted. Only active solar systems are described. Liquid and air-heating solar systems for combined space and service water heating or service water heating are included. Furthermore, only systems with proven experience are discussed to any extent.

  19. Introduction to Heat Exchangers

    E-Print Network [OSTI]

    Heller, Barbara

    . Since, the effectiveness can be written in terms of heat capacitance rate [W/K], C, and change in temperature [K], . The heat capacitance rate is defined in terms of mass flow rate [kg/s], , and specific heat: ! ! ! " # = ! ! "# ! ! ! - ! ! ! ! ! ! = ! !! ! ! ! ! = ! ! ! ! ! - ! ! ! ! ! "# ! ! ! - ! ! ! ! ! ! = ! ! ! ! ! - ! ! ! ! ! "# ! ! ! - ! ! ! ! ! Heat%Capacitance%Rate % ! = ! !! ! ! Heat%Capacitance%Rate%[W % ! = ! ! ! ! ! ! ! = ! ! !! ! ! ! max

  20. Design Approach and Performance Analysis of a Small Integrated Heat Pump (IHP) for Net Zero Energy Homes (ZEH)

    SciTech Connect (OSTI)

    Rice, C Keith [ORNL; Murphy, Richard W [ORNL; Baxter, Van D [ORNL

    2008-01-01

    This paper describes the design and performance analysis of a variable-capacity heat pump system developed for a small [1800ft2 (167 m2)] prototype net ZEH with an average design cooling load of 1.25 tons (4.4 kW) in five selected US climates. The heat pump integrates space heating and cooling, water heating, ventilation, and humidity control (humidification and dehumidification) functions into a single integrated heat pump (IHP) unit. The design approach uses one small variable-capacity compressor to meet all the above functions in an energy efficient manner. Modal performance comparisons to an earlier IHP product are shown relative to the proposed new design for net ZEH application. The annual performance analysis approach using TRNSYS in conjunction with the ORNL Heat Pump Design Model is discussed. Annual performance projections for a range of locations are compared to those of a base system consisting of separate pieces of equipment to perform the same functions. The ZEH IHP is projected to reduce energy use for space heating & cooling, water heating, dehumidification, and ventilation for a net ZEH by about 50% compared to that of the base system.

  1. Should Title 24 Ventilation Requirements Be Amended to include an Indoor Air Quality Procedure?

    SciTech Connect (OSTI)

    Dutton, Spencer M.; Mendell, Mark J.; Chan, Wanyu R.

    2013-05-13

    Minimum outdoor air ventilation rates (VRs) for buildings are specified in standards, including California?s Title 24 standards. The ASHRAE ventilation standard includes two options for mechanically-ventilated buildings ? a prescriptive ventilation rate procedure (VRP) that specifies minimum VRs that vary among occupancy classes, and a performance-based indoor air quality procedure (IAQP) that may result in lower VRs than the VRP, with associated energy savings, if IAQ meeting specified criteria can be demonstrated. The California Energy Commission has been considering the addition of an IAQP to the Title 24 standards. This paper, based on a review of prior data and new analyses of the IAQP, evaluates four future options for Title 24: no IAQP; adding an alternate VRP, adding an equivalent indoor air quality procedure (EIAQP), and adding an improved ASHRAE-like IAQP. Criteria were established for selecting among options, and feedback was obtained in a workshop of stakeholders. Based on this review, the addition of an alternate VRP is recommended. This procedure would allow lower minimum VRs if a specified set of actions were taken to maintain acceptable IAQ. An alternate VRP could also be a valuable supplement to ASHRAE?s ventilation standard.

  2. Assessment of Indoor Air Quality Benefits and Energy Costs of Mechanical Ventilation

    SciTech Connect (OSTI)

    Logue, J.M.; Price, P.N.; Sherman, M.H.; Singer, B.C.

    2011-07-01

    Intake of chemical air pollutants in residences represents an important and substantial health hazard. Sealing homes to reduce air infiltration can save space conditioning energy, but can also increase indoor pollutant concentrations. Mechanical ventilation ensures a minimum amount of outdoor airflow that helps reduce concentrations of indoor emitted pollutants while requiring some energy for fan(s) and thermal conditioning of the added airflow. This work demonstrates a physics based, data driven modeling framework for comparing the costs and benefits of whole-house mechanical ventilation and applied the framework to new California homes. The results indicate that, on a population basis, the health benefits from reduced exposure to indoor pollutants in New California homes are worth the energy costs of adding mechanical ventilation as specified by ASHRAE Standard 62.2.This study determines the health burden for a subset of pollutants in indoor air and the costs and benefits of ASHRAE's mechanical ventilation standard (62.2) for new California homes. Results indicate that, on a population basis, the health benefits of new home mechanical ventilation justify the energy costs.

  3. DRAFT INTERIM REPORT: NATIONAL PROGRAM PLAN FOR PASSIVE AND HYBRID SOLAR HEATING AND COOLING

    E-Print Network [OSTI]

    Authors, Various

    2012-01-01

    and Light Commercial Passive Solar Costs and Energy ImpactsLight Commercial Passive Solar Costs and Energy Impacts l~iledge of performance and costs of passive solar heating and

  4. Heat Pump for High School Heat Recovery

    E-Print Network [OSTI]

    Huang, K.; Wang, H.; Zhou, X.

    2006-01-01

    The heat pump system used for recycling and reusing waste heat in s high school bathroom was minutely analyzed in its coefficient of performance, onetime utilization ratio of energy, economic property and so on. The results showed that this system...

  5. Pagosa Springs District Heating District Heating Low Temperature...

    Open Energy Info (EERE)

    Pagosa Springs District Heating District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Pagosa Springs District Heating District Heating Low...

  6. City of Klamath Falls District Heating District Heating Low Temperatur...

    Open Energy Info (EERE)

    City of Klamath Falls District Heating District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name City of Klamath Falls District Heating District Heating...

  7. San Bernardino District Heating District Heating Low Temperature...

    Open Energy Info (EERE)

    San Bernardino District Heating District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name San Bernardino District Heating District Heating Low...

  8. Philip District Heating District Heating Low Temperature Geothermal...

    Open Energy Info (EERE)

    Philip District Heating District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Philip District Heating District Heating Low Temperature Geothermal...

  9. Kethcum District Heating District Heating Low Temperature Geothermal...

    Open Energy Info (EERE)

    Kethcum District Heating District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Kethcum District Heating District Heating Low Temperature Geothermal...

  10. Boise City Geothermal District Heating District Heating Low Temperatur...

    Open Energy Info (EERE)

    Boise City Geothermal District Heating District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Boise City Geothermal District Heating District Heating...

  11. Midland District Heating District Heating Low Temperature Geothermal...

    Open Energy Info (EERE)

    Midland District Heating District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Midland District Heating District Heating Low Temperature Geothermal...

  12. Northeast Home Heating Oil Reserve System Heating Oil, PIA Office...

    Broader source: Energy.gov (indexed) [DOE]

    Northeast Home Heating Oil Reserve System Heating Oil, PIA Office of Fossil Energy Headquaters Northeast Home Heating Oil Reserve System Heating Oil, PIA Office of Fossil Energy...

  13. An improved method for estimating water-mass ventilation age from radiocarbon data

    E-Print Network [OSTI]

    Primeau, FW; DeVries, T

    2010-01-01

    to geothermal heat flux of Pine Island Glacier, Antarcticato geothermal heat flux of Pine Island Glacier, Antarctica,Pine Island Glacier, West Antarctica: (a) geothermal heat

  14. SMALL PARTICLE HEAT EXCHANGERS

    E-Print Network [OSTI]

    Hunt, A.J.

    2011-01-01

    heat exchangers. These types of heat exchangers have limitedheat exchanger to solar collection systems that utilize linear trough- typenon-solar heat exchangers. These may be of the type used to

  15. Concentrating solar heat collector

    SciTech Connect (OSTI)

    Fattor, A.P.

    1980-09-23

    A heat storage unit is integrated with a collection unit providing a heat supply in off-sun times, and includes movable insulation means arranged to provide insulation during off-sun times for the heat storage unit.

  16. Absorption heat pump system

    DOE Patents [OSTI]

    Grossman, G.

    1982-06-16

    The efficiency of an absorption heat pump system is improved by conducting liquid from a second stage evaporator thereof to an auxiliary heat exchanger positioned downstream of a primary heat exchanger in the desorber of the system.

  17. Absorption heat pump system

    DOE Patents [OSTI]

    Grossman, Gershon (Oak Ridge, TN)

    1984-01-01

    The efficiency of an absorption heat pump system is improved by conducting liquid from a second stage evaporator thereof to an auxiliary heat exchanger positioned downstream of a primary heat exchanger in the desorber of the system.

  18. Locating Heat Recovery Opportunities

    E-Print Network [OSTI]

    Waterland, A. F.

    1981-01-01

    Basic concepts of heat recovery are defined as they apply to the industrial community. Methods for locating, ranking, and developing heat recovery opportunities are presented and explained. The needs for useful heat 'sinks' are emphasized as equal...

  19. Woven heat exchanger

    DOE Patents [OSTI]

    Piscitella, R.R.

    1984-07-16

    This invention relates to a heat exchanger for waste heat recovery from high temperature industrial exhaust streams. In a woven ceramic heat exchanger using the basic tube-in-shell design, each heat exchanger consisting of tube sheets and tube, is woven separately. Individual heat exchangers are assembled in cross-flow configuration. Each heat exchanger is woven from high temperature ceramic fiber, the warp is continuous from tube to tube sheet providing a smooth transition and unitized construction.

  20. Geothermal Heat Pumps

    Broader source: Energy.gov [DOE]

    Geothermal heat pumps are expensive to install but pay for themselves over time in reduced heating and cooling costs. Find out if one is right for your home.

  1. CFD-based design of the ventilation system for the PHENIX detector

    SciTech Connect (OSTI)

    Parietti, L.; Martin, R.A.; Gregory, W.S.

    1996-10-01

    The three-dimensional flow and thermal fields surrounding the large PHENIX sub-atomic particle detector enclosed in the Major Facility Hall are simulated numerically in this study using the CFX finite volume, commercial, computer code. The predicted fields result from the interaction of an imposed downward ventilation system cooling flow and a buoyancy-driven thermal plume rising from the warm detector. An understanding of the thermal irregularities on the surface of the detector and in the flow surrounding is needed to assess the potential for adverse thermal expansion effects in detector subsystems, and to prevent ingestion of electronics cooling air from hot spots. With a computational model of the thermal fields on and surrounding the detector, HVAC engineers can evaluate and improve the ventilation system design prior to the start of construction. This paper summarizes modeling and results obtained for a conceptual MFH ventilation scheme.

  2. Residential Lighting

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMassR&D100Nationalquestionnaires 0 Averagequestionnaires 7tniLighting Sign In

  3. LED Lighting Basics

    Broader source: Energy.gov [DOE]

    Light-Emitting diodes (LEDs) efficiently produce light in a fundamentally different way than any legacy or traditional source of light.

  4. Ventilated Facade Design for Hot and Humid Climates

    E-Print Network [OSTI]

    Haase, M.; Amato, A.

    2006-01-01

    systems. The Hong Kong climate offers short warm winters which together with a high internal heat gain make heating redundant. Figure 7 illustrates the simulation results of cooling energy savings. The results show significant cooling savings of up... the results significantly. 0% 5% 10% 15% 20% 25% 30% b a s e c a s e ( i n t e r n a l s h a d i n g ) b a s e c a s e w i t h r e f l e c t i v e g l a s s b a s e c a s e s o l a r c o n t r o l g l a s s D S F 1 - 1 D S F 1 - 2 D S F 2...

  5. Particle deposition in ventilation ducts: Connectors, bends anddeveloping flow

    SciTech Connect (OSTI)

    Sippola, Mark R.; Nazaroff, William W.

    2004-03-01

    In ventilation duct flow the turbulent flow profile is commonly disturbed or not fully developed and these conditions are likely to influence particle deposition to duct surfaces. Particle deposition rates at eight S-connectors, in two 90{sup o} duct bends and in two ducts where the turbulent flow profile was not fully developed were measured in a laboratory duct system with both galvanized steel and internally insulated ducts with hydraulic diameters of 15.2 cm. In the steel duct system, experiments with nominal particle diameters of 1, 3, 5, 9 and 16 {micro}m were conducted at each of three nominal air speeds: 2.2, 5.3 and 9.0 m/s. In the insulated duct system, deposition of particles with nominal diameters of 1, 3, 5, 8 and 13 {micro}m was measured at nominal air speeds of 2.2, 5.3 and 8.8 m/s. Fluorescent techniques were used to directly measure the deposition velocities of monodisperse fluorescent particles to duct surfaces. Deposition at S-connectors, in bends and in straight ducts with developing turbulence was often greater than deposition in straight ducts with fully developed turbulence for equal particle sizes, air speeds and duct surface orientations. Deposition rates at all locations were found to increase with an increase in particle size or air speed. High deposition rates at S-connectors resulted from impaction and these rates were nearly independent of the orientation of the S-connector. Deposition rates in the two 90{sup o} bends differed by more than an order of magnitude in some cases, probably because of the difference in turbulence conditions at the bend inlets. In straight steel ducts where the turbulent flow profile was developing, the deposition enhancement relative to fully developed turbulence generally increased with air speed and decreased with downstream distance from the duct inlet. This enhancement was greater at the duct ceiling and wall than at the duct floor. In insulated ducts, deposition enhancement was less pronounced overall than in steel ducts. Trends that were observed in steel ducts were present, but weaker, in insulated ducts.

  6. ADMINISTRATIVE AND ENGINEERING CONTROLS FOR THE OPERATION OF VENTILATION SYSTEMS FOR UNDERGROUND RADIOACTIVE WASTE STORAGE TANKS

    SciTech Connect (OSTI)

    Wiersma, B.; Hansen, A.

    2013-11-13

    Liquid radioactive wastes from the Savannah River Site are stored in large underground carbon steel tanks. The majority of the waste is confined in double shell tanks, which have a primary shell, where the waste is stored, and a secondary shell, which creates an annular region between the two shells, that provides secondary containment and leak detection capabilities should leakage from the primary shell occur. Each of the DST is equipped with a purge ventilation system for the interior of the primary shell and annulus ventilation system for the secondary containment. Administrative flammability controls require continuous ventilation to remove hydrogen gas and other vapors from the waste tanks while preventing the release of radionuclides to the atmosphere. Should a leak from the primary to the annulus occur, the annulus ventilation would also serve this purpose. The functionality of the annulus ventilation is necessary to preserve the structural integrity of the primary shell and the secondary. An administrative corrosion control program is in place to ensure integrity of the tank. Given the critical functions of the purge and annulus ventilation systems, engineering controls are also necessary to ensure that the systems remain robust. The system consists of components that are constructed of metal (e.g., steel, stainless steel, aluminum, copper, etc.) and/or polymeric (polypropylene, polyethylene, silicone, polyurethane, etc.) materials. The performance of these materials in anticipated service environments (e.g., normal waste storage, waste removal, etc.) was evaluated. The most aggressive vapor space environment occurs during chemical cleaning of the residual heels by utilizing oxalic acid. The presence of NO{sub x} and mercury in the vapors generated from the process could potentially accelerate the degradation of aluminum, carbon steel, and copper. Once identified, the most susceptible materials were either replaced and/or plans for discontinuing operations are executed.

  7. A multiscale MDCT image-based breathing lung model with time-varying regional ventilation

    SciTech Connect (OSTI)

    Yin, Youbing, E-mail: youbing-yin@uiowa.edu [Department of Mechanical and Industrial Engineering, The University of Iowa, Iowa City, IA 52242 (United States) [Department of Mechanical and Industrial Engineering, The University of Iowa, Iowa City, IA 52242 (United States); IIHR-Hydroscience and Engineering, The University of Iowa, Iowa City, IA 52242 (United States); Department of Radiology, The University of Iowa, Iowa City, IA 52242 (United States); Choi, Jiwoong, E-mail: jiwoong-choi@uiowa.edu [Department of Mechanical and Industrial Engineering, The University of Iowa, Iowa City, IA 52242 (United States) [Department of Mechanical and Industrial Engineering, The University of Iowa, Iowa City, IA 52242 (United States); IIHR-Hydroscience and Engineering, The University of Iowa, Iowa City, IA 52242 (United States); Hoffman, Eric A., E-mail: eric-hoffman@uiowa.edu [Department of Radiology, The University of Iowa, Iowa City, IA 52242 (United States); Department of Biomedical Engineering, The University of Iowa, Iowa City, IA 52242 (United States); Department of Internal Medicine, The University of Iowa, Iowa City, IA 52242 (United States); Tawhai, Merryn H., E-mail: m.tawhai@auckland.ac.nz [Auckland Bioengineering Institute, The University of Auckland, Auckland (New Zealand); Lin, Ching-Long, E-mail: ching-long-lin@uiowa.edu [Department of Mechanical and Industrial Engineering, The University of Iowa, Iowa City, IA 52242 (United States) [Department of Mechanical and Industrial Engineering, The University of Iowa, Iowa City, IA 52242 (United States); IIHR-Hydroscience and Engineering, The University of Iowa, Iowa City, IA 52242 (United States)

    2013-07-01

    A novel algorithm is presented that links local structural variables (regional ventilation and deforming central airways) to global function (total lung volume) in the lung over three imaged lung volumes, to derive a breathing lung model for computational fluid dynamics simulation. The algorithm constitutes the core of an integrative, image-based computational framework for subject-specific simulation of the breathing lung. For the first time, the algorithm is applied to three multi-detector row computed tomography (MDCT) volumetric lung images of the same individual. A key technique in linking global and local variables over multiple images is an in-house mass-preserving image registration method. Throughout breathing cycles, cubic interpolation is employed to ensure C{sub 1} continuity in constructing time-varying regional ventilation at the whole lung level, flow rate fractions exiting the terminal airways, and airway deformation. The imaged exit airway flow rate fractions are derived from regional ventilation with the aid of a three-dimensional (3D) and one-dimensional (1D) coupled airway tree that connects the airways to the alveolar tissue. An in-house parallel large-eddy simulation (LES) technique is adopted to capture turbulent-transitional-laminar flows in both normal and deep breathing conditions. The results obtained by the proposed algorithm when using three lung volume images are compared with those using only one or two volume images. The three-volume-based lung model produces physiologically-consistent time-varying pressure and ventilation distribution. The one-volume-based lung model under-predicts pressure drop and yields un-physiological lobar ventilation. The two-volume-based model can account for airway deformation and non-uniform regional ventilation to some extent, but does not capture the non-linear features of the lung.

  8. Optimization of Ventilation Energy Demands and Indoor Air Quality in the ZEBRAlliance Homes

    SciTech Connect (OSTI)

    Hun, D.; Jackson, M.; Shrestha, S.

    2013-09-01

    High-performance homes require that ventilation energy demands and indoor air quality (IAQ) be simultaneously optimized. In this project, Oak Ridge National Laboratory researchers attempted to bridge these two areas by conducting tests in research houses located in Oak Ridge, TN, that were less than 2 years old, energy-efficient (i.e., expected to consume 50% less energy than a house built per the 2006 IRC), tightly-built, unoccupied, and unfurnished. The team identified air pollutants of concern in the test homes that could generally serve as indicators of IAQ, and conduced field experiments and computer simulations to determine the effectiveness and energy required by various techniques that lessened the concentration of these contaminants. Formaldehyde was selected as the main pollutant of concern from initial air sampling surveys. Field data indicate that concentrations were higher during the summer primarily because emissions from sources rise with increases in temperature. Furthermore, supply ventilation and gas-phase filtration were effective means to reduce formaldehyde concentrations; however, exhaust ventilation had minimal influence on this pollutant. Results from simulations suggest that formaldehyde concentrations obtained while ventilating per ASHRAE 62.2-2010 could be decreased by about 20% from May through September through three strategies: 1) increasing ASHRAE supply ventilation by a factor of two, 2) reducing the thermostat setpoint from 76 to 74F, or 3) running a gas-phase filtration system while decreasing supply ventilation per ASHRAE by half. In the mixed-humid climate of Oak Ridge, these strategies caused minimal to modest increases in electricity cost of ~$5 to ~$15/month depending on outdoor conditions.

  9. Radiological and toxicological analyses of tank 241-AY-102 and tank 241-C-106 ventilation systems

    SciTech Connect (OSTI)

    Himes, D.A.

    1998-08-11

    The high heat content solids contained in Tank 241-C-106 are to be removed and transferred to Tank 241-AY-102 by sluicing operations, to be authorized under project W320. While sluicing operations are underway, the state of these tanks will be transformed from unagitated to agitated. This means that the partition fraction which describes the aerosol content of the head space will increase from IE-10 to IE-8 (see WHC-SD-WM-CN062, Rev. 2 for discussion of partition fractions). The head spare will become much more loaded with suspended material. Furthermore, the nature of this suspended material can change significantly: sluicing could bring up radioactive solids which normally would lay under many meters of liquid supernate. It is assumed that the headspace and filter aerosols in Tank 241-AY-102 are a 90/10 liquid/solid split. It is further assumed that the sluicing line, the headspace in Tank 241-C-106, and the filters on Tank 241-C-106 contain aerosols which are a 67/33 liquid/solid split. The bases of these assumptions are discussed in Section 3.0. These waste compositions (referred to as mitigated compositions) were used in Attachments 1 through 4 to calculate survey meter exposure rates per liter of inventory in the various system components. Three accident scenarios are evaluated: a high temperature event which melts or burns the HEPA filters and causes releases from other system components; an overpressure event which crushes and blows out the HEPA filters and causes releases from other system components; and an unfiltered release of tank headspace air. The initiating event for the high temperature release is a fire caused by a heater malfunction inside the exhaust dust or a fire outside the duct. The initiating event for the overpressure event could be a steam bump which over pressurizes the tank and leads to a blowout of the HEPA filters in the ventilation system. The catastrophic destruction of the HEPA filters would release a fraction of the accumulated filter loadings and would lead to an unfiltered pathway from the radioactively contaminated and toxic aerosols in the head space (vapor space) of the tank into the outside environment. The initiator for the unfiltered (continuous) release scenario is wetting of the HEPA filters with an accompanying filter breach or failure of the seals surrounding the filter in the enclosure. No releases from the filters themselves are assumed in this scenario. In the absence of controls, the exhaust system would continue to expel the contaminated head space air into the outside environment in all three of these scenarios.

  10. Design of an Overmoded-Waveguide Directional Antenna for Use in In-Building Ventilation Duct Wireless Networks

    E-Print Network [OSTI]

    Stancil, Daniel D.

    Design of an Overmoded-Waveguide Directional Antenna for Use in In-Building Ventilation Duct ventilation ducts. We obtain experimentally the element size and spacing of a reflector and driven element that can be used for IEEE 802.11b/g/n signals in a cylindrical duct to provide 3.1 dB of gain and a front

  11. Indoor air quality control for improving passenger health in subway platforms using an outdoor air quality dependent ventilation system

    E-Print Network [OSTI]

    Indoor air quality control for improving passenger health in subway platforms using an outdoor air online 19 May 2015 Keywords: Ventilation control system Indoor air quality Indoor air pollution control Outdoor air quality Passenger health promotion Ventilation energy a b s t r a c t Indoor air quality (IAQ

  12. Policy on Building use during Ventilation Outage: School of Science Roger Bacon Hall and Morrell Science Center

    E-Print Network [OSTI]

    Policy on Building use during Ventilation Outage: School of Science Roger Bacon Hall and Morrell not only laboratories, but also the entire building, including non-laboratory space. When Roger Bacon Hall environment. When a laboratory in Roger Bacon Hall or Morrell Science Center has no ventilation or reduced

  13. Evaluation of energy savings related to building envelope retrofit techniques and ventilation strategies for low energy cooling in

    E-Print Network [OSTI]

    Paris-Sud XI, Universit de

    strategies for low energy cooling in offices and commercial sector Laurent Grignon-Mass, Dominique Marchio and automatic controls and the use of adequate ventilation strategies show great potential in energy savingsEvaluation of energy savings related to building envelope retrofit techniques and ventilation

  14. International Journal of Ventilation Volume 2 No 3 Application of CFD to Predict and Control Chemical and Biological

    E-Print Network [OSTI]

    Zhai, John Z.

    in an office building in order to find the best locations for CBA sensors and to develop effective ventilation are especially hazardous when they are dispersed inside of a building, where traditional ventilation systems may in a building, even if the CBA release location is the same. Therefore, detailed information about the CBA

  15. H.N. Knudsen, P. Wargocki and J. Vondruskova (2006) "Effect of ventilation on perceived quality of air polluted

    E-Print Network [OSTI]

    2006-01-01

    quality of air polluted by building materials a summary of reported data", Proceedings of Healthy Buildings 2006, Vol. 1, 57-62. #12;#12;Effect of ventilation on perceived quality of air polluted existing data on how varying ventilation rates affect the perceived quality of air polluted by building

  16. Development of an Outdoor Temperature Based Control Algorithm for Residential Mechanical Ventilation Control

    SciTech Connect (OSTI)

    Less, Brennan; Walker, Iain; Tang, Yihuan

    2014-08-01

    The Incremental Ventilation Energy (IVE) model developed in this study combines the output of simple air exchange models with a limited set of housing characteristics to estimate the associated change in energy demand of homes. The IVE model was designed specifically to enable modellers to use existing databases of housing characteristics to determine the impact of ventilation policy change on a population scale. The IVE model estimates of energy change when applied to US homes with limited parameterisation are shown to be comparable to the estimates of a well-validated, complex residential energy model.

  17. New Air Cleaning Strategies for Reduced Commercial Building Ventilation Energy ? FY11 Final Report

    SciTech Connect (OSTI)

    Sidheswaran, Meera; Destaillats, Hugo; Cohn, Sebastian; Sullivan, Douglas P.; Fisk, William J.

    2011-10-31

    The research carried out in this project focuses on developing novel volatile organic compounds (VOCs) air cleaning technologies needed to enable energy-saving reductions in ventilation rates. we targeted a VOC air cleaning system that could enable a 50% reduction in ventilation rates. In a typical commercial HVAC system that provides a mixture of recirculated and outdoor air, a VOC air cleaner in the supply airstream must have a 15% to 20% VOC removal efficiency to counteract a 50% reduction in outdoor air supply.

  18. Consideration of air jet angle in open surface tank push-pull ventilation system design

    E-Print Network [OSTI]

    Chan, Wai-Hung David

    1983-01-01

    CONSIDERATION OF AIR JET ANGLE IN OPEN SURFACE TANK PUSH-PULL VENTILATION SYSTEM DESIGN A Thesis by WAI-HUNG DAVID CHAN Submitted to the Graduate College of Texas ASM University in partial fulfillment of the requirement for the degree o... MASTER OF SCIENCE May 1983 Major Subjeot: Industrial Hygiene CONSIDERATION OF AIR JET ANGLE IN OPEN SURFACE TANK PUSH-PULL VENTILATION STSTEM DESIGN A Thesis by WAI-HUNG DAVID CHAN Approved as to style and content by: (C an of mmittee) J. Suggs...

  19. HEATING AND COOLING PROTOSTELLAR DISKS

    SciTech Connect (OSTI)

    Hirose, S. [Institute for Research on Earth Evolution, Japan Agency for Marine-Earth Science and Technology, 3173-25 Showamachi, Kanazawa-ku, Yokohama, Kanagawa 236-0001 (Japan); Turner, N. J., E-mail: shirose@jamstec.go.jp, E-mail: neal.turner@jpl.nasa.gov [Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 (United States)

    2011-05-10

    We examine heating and cooling in protostellar disks using three-dimensional radiation-MHD calculations of a patch of the Solar nebula at 1 AU, employing the shearing-box and flux-limited radiation diffusion approximations. The disk atmosphere is ionized by stellar X-rays, well coupled to magnetic fields, and sustains a turbulent accretion flow driven by magnetorotational instability, while the interior is resistive and magnetically dead. The turbulent layers are heated by absorbing the light from the central star and by dissipating the magnetic fields. They are optically thin to their own radiation and cool inefficiently. The optically thick interior in contrast is heated only weakly, by re-emission from the atmosphere. The interior is colder than a classical viscous model and isothermal. The magnetic fields support an extended atmosphere that absorbs the starlight 1.5 times higher than the hydrostatic viscous model. The disk thickness thus measures not the internal temperature, but the magnetic field strength. Fluctuations in the fields move the starlight-absorbing surface up and down. The height ranges between 13% and 24% of the radius over timescales of several orbits, with implications for infrared variability. The fields are buoyant, so the accretion heating occurs higher in the atmosphere than the stresses. The heating is localized around current sheets, caused by magnetorotational instability at lower elevations and by Parker instability at higher elevations. Gas in the sheets is heated above the stellar irradiation temperature, even though accretion is much less than irradiation power when volume averaged. The hot optically thin current sheets might be detectable through their line emission.

  20. Direct fired heat exchanger

    DOE Patents [OSTI]

    Reimann, Robert C. (Lafayette, NY); Root, Richard A. (Spokane, WA)

    1986-01-01

    A gas-to-liquid heat exchanger system which transfers heat from a gas, generally the combustion gas of a direct-fired generator of an absorption machine, to a liquid, generally an absorbent solution. The heat exchanger system is in a counterflow fluid arrangement which creates a more efficient heat transfer.

  1. Woven heat exchanger

    DOE Patents [OSTI]

    Piscitella, Roger R. (Idaho Falls, ID)

    1987-01-01

    In a woven ceramic heat exchanger using the basic tube-in-shell design, each heat exchanger consisting of tube sheets and tube, is woven separately. Individual heat exchangers are assembled in cross-flow configuration. Each heat exchanger is woven from high temperature ceramic fiber, the warp is continuous from tube to tube sheet providing a smooth transition and unitized construction.

  2. Rotary magnetic heat pump

    DOE Patents [OSTI]

    Kirol, L.D.

    1987-02-11

    A rotary magnetic heat pump constructed without flow seals or segmented rotor accomplishes recuperation and regeneration by using split flow paths. Heat exchange fluid pumped through heat exchangers and returned to the heat pump splits into two flow components: one flowing counter to the rotor rotation and one flowing with the rotation. 5 figs.

  3. Rotary magnetic heat pump

    DOE Patents [OSTI]

    Kirol, Lance D. (Shelly, ID)

    1988-01-01

    A rotary magnetic heat pump constructed without flow seals or segmented rotor accomplishes recuperation and regeneration by using split flow paths. Heat exchange fluid pumped through heat exchangers and returned to the heat pump splits into two flow components: one flowing counter to the rotor rotation and one flowing with the rotation.

  4. Mass and Heat Recovery

    E-Print Network [OSTI]

    Hindawai, S. M.

    2010-01-01

    In the last few years heat recovery was under spot and in air conditioning fields usually we use heat recovery by different types of heat exchangers. The heat exchanging between the exhaust air from the building with the fresh air to the building...

  5. Sandia Energy - (Lighting and) Solid-State Lighting: Science...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (Lighting and) Solid-State Lighting: Science, Technology, Economic Perspectives Home Energy Research EFRCs Solid-State Lighting Science EFRC (Lighting and) Solid-State Lighting:...

  6. Chicopee Electric Light- Residential Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Chicopee Electric Light (CEL) offers a variety of incentives for its residential customers to increase the energy efficiency of participating homes. CEL provides rebates for heat pump water heaters...

  7. Heat Treating Apparatus

    DOE Patents [OSTI]

    De Saro, Robert (Annandale, NJ); Bateman, Willis (Sutton Colfield, GB)

    2002-09-10

    Apparatus for heat treating a heat treatable material including a housing having an upper opening for receiving a heat treatable material at a first temperature, a lower opening, and a chamber therebetween for heating the heat treatable material to a second temperature higher than the first temperature as the heat treatable material moves through the chamber from the upper to the lower opening. A gas supply assembly is operatively engaged to the housing at the lower opening, and includes a source of gas, a gas delivery assembly for delivering the gas through a plurality of pathways into the housing in countercurrent flow to movement of the heat treatable material, whereby the heat treatable material passes through the lower opening at the second temperature, and a control assembly for controlling conditions within the chamber to enable the heat treatable material to reach the second temperature and pass through the lower opening at the second temperature as a heated material.

  8. Integrated heat pump system

    SciTech Connect (OSTI)

    Reedy, W.R.

    1988-03-01

    An integrated heat pump and hot water system is described that includes: a heat pump having an indoor heat exchanger and an outdoor heat exchanger that are selectively connected to the suction line and the discharge line respectively of a compressor by a flow reversing means, and to each other by a liquid line having an expansion device mounted therein, whereby heating and cooling is provided to an indoor comfort zone by cycling the flow reversing means, a refrigerant to water heat exchanger having a hot water flow circuit in heat transfer relation with a first refrigerant condensing circuit and a second refrigerant evaporating circuit, a connection mounted in the liquid between the indoor heat exchanger and the expansion device, control means for regulating the flow of refrigerant through the refrigerant to water heat exchanger to selectively transfer heat into and out of the hot water flow circuit.

  9. Thulium-170 heat source

    DOE Patents [OSTI]

    Walter, Carl E. (Pleasanton, CA); Van Konynenburg, Richard (Livermore, CA); VanSant, James H. (Tracy, CA)

    1992-01-01

    An isotopic heat source is formed using stacks of thin individual layers of a refractory isotopic fuel, preferably thulium oxide, alternating with layers of a low atomic weight diluent, preferably graphite. The graphite serves several functions: to act as a moderator during neutron irradiation, to minimize bremsstrahlung radiation, and to facilitate heat transfer. The fuel stacks are inserted into a heat block, which is encased in a sealed, insulated and shielded structural container. Heat pipes are inserted in the heat block and contain a working fluid. The heat pipe working fluid transfers heat from the heat block to a heat exchanger for power conversion. Single phase gas pressure controls the flow of the working fluid for maximum heat exchange and to provide passive cooling.

  10. Hybrid Heat Pumps Using Selective Water Sorbents (SWS)

    SciTech Connect (OSTI)

    Ally, M. R.

    2006-11-30

    The development of the ground-coupled and air-coupled Heating Ventilation and Air-Conditioning (HVAC) system is essential in meeting the goals of Zero Energy Houses (ZEH), a viable concept vigorously pursued under DOE sponsorship. ORNL has a large Habitat for Humanity complex in Lenoir City where modem buildings technology is incorporated on a continual basis. This house of the future is planned for lower and middle income families in the 21st century. The work undertaken in this CRADA is an integral part of meeting DOE's objectives in the Building America program. SWS technology is a prime candidate for reducing the footprint, cost and improve the performance of ground-coupled heat pumps. The efficacy of this technique to exchange energy with the ground is a topic of immense interest to DOE, builders and HVAC equipment manufacturers. If successful, the SWS concept will become part of a packaged ZEH kit for affordable and high-end houses. Lennox Industries entered into a CRADA with Oak Ridge National Laboratory in November 2004. Lennox, Inc. agreed to explore ways of using Selective Water Sorbent materials to boost the efficiency of air-coupled heat pumps whereas ORNL concentrated on ground-coupled applications. Lennox supplied ORNL with heat exchangers and heat pump equipment for use at ORNL's Habitat for Humanity site in Lenoir City, Tennessee. Lennox is focused upon air-coupled applications of SWS materials at the Product Development and Research Center in Carrollton, TX.

  11. Sustainable Office Lighting Options

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    Sustainable Office Lighting Options Task Lighting: Task lighting is a localized method of lighting a workspace so that additional, unnecessary lighting is eliminated, decreasing energy usage and costs. Illumination levels in the targeted work areas are higher with task lighting than with the ambient levels

  12. Thermoelectric heat exchange element

    DOE Patents [OSTI]

    Callas, James J. (Peoria, IL); Taher, Mahmoud A. (Peoria, IL)

    2007-08-14

    A thermoelectric heat exchange module includes a first substrate including a heat receptive side and a heat donative side and a series of undulatory pleats. The module may also include a thermoelectric material layer having a ZT value of 1.0 or more disposed on at least one of the heat receptive side and the heat donative side, and an electrical contact may be in electrical communication with the thermoelectric material layer.

  13. An improved procedure for developing a calibrated hourly simulation model of an electrically heated and cooled commercial building

    E-Print Network [OSTI]

    Bou-Saada, Tarek Edmond

    1994-01-01

    Sections . . . . 85 4. 7 Daycare Center . . . . . . . 86 4, 8 Sun Angle Calculator and Altitude Measurement Device . . . 4. 9 Photovoltaic and Domestic Hot Water Solar Panels. . . . . . . . . . 92 4. 10 Heating, Ventilating, and Air... and Daily Minutes of Sunshine . . . . . . . I 1 5 4. 18 Sky Clearness and Daily Percent Possible Sunshine . . . . . . . . 116 4. 19 Hourly Photovoltaic Electricity and Hourly Solar Radiation. . . . . . . . . . 1 1 8 4. 20 Solar Data Example . . . . . 121...

  14. Indoor airborne bacterial communities are influenced by ventilation, occupancy, and outdoor air source

    E-Print Network [OSTI]

    Bohannan, Brendan

    , is an energy-efficient way to simultaneously cool building mass and avoid overnight and weekend microbial an intensive temporal study of indoor airborne bacterial communities in a high-traffic university building associated with differing ventilation strategies relevant to modern building design. Our results indicate

  15. NUMERICAL ANALYSIS OF VENTILATION TEMPERATURES REGULATION BY ENERGY STORAGE IN PHASE CHANGE

    E-Print Network [OSTI]

    Paris-Sud XI, Universit de

    NUMERICAL ANALYSIS OF VENTILATION TEMPERATURES REGULATION BY ENERGY STORAGE IN PHASE CHANGE, the use of thermal energy storage (TES) systems receives increasing interest. To allow high or low system using thermal energy storage with granules containing phase change material which leads to cooling

  16. PIERS ONLINE, VOL. 5, NO. 7, 2009 637 Ventilation Efficiency and Carbon Dioxide (CO2) Concentration

    E-Print Network [OSTI]

    Halgamuge, Malka N.

    PIERS ONLINE, VOL. 5, NO. 7, 2009 637 Ventilation Efficiency and Carbon Dioxide (CO2) Concentration complex organic molecules being broken down to simpler molecules, such as carbon dioxide and water. Carbon dioxide waste is removed from the body through respiration. Carbon dioxide content in fresh air

  17. Cost effective combined axial fan and throttling valve control of ventilation rate

    E-Print Network [OSTI]

    Sengun, Mehmet Haluk

    Cost effective combined axial fan and throttling valve control of ventilation rate C.J. Taylor 1 P. In partic- ular, it develops a unique fan and throttling valve control system for a 22m3 test chamber, the throttling valve is employed to restrict airflow at the outlet, so generating a higher static pressure differ

  18. Experimental evaluation of a naturally ventilated PV double-skin building envelope in real operating conditions

    E-Print Network [OSTI]

    Paris-Sud XI, Universit de

    . Introduction France is undergoing an energy transition towards technologies with a lower environmental impact Fax. +33472438811 Abstract Building integrated photovoltaic systems are fast becoming a feature of a prototype naturally-ventilated photovoltaic double-skin facade, designed to maintain favourable operating

  19. ASHRAE's Residential Ventilation Standard: Exegesis of Proposed Standard 62.2

    E-Print Network [OSTI]

    Sherman, M.

    2000-01-01

    . The standard is an attempt by the Society to address concerns over indoor air quality in dwellings and to set minimum standards that would allow for energy efficiency measures to be evaluated. The standard has requirements for whole-house ventilation, local...

  20. Circulation during intermittent lung ventilation in the ~artel" snake Thamnophis WARREN B URG(;RFS

    E-Print Network [OSTI]

    Burggren, Warren

    I .'11 Circulation during intermittent lung ventilation in the ~artel" snake Thamnophis WARREN B" Vi'lllW5 Received April 26, 1'177 RU\\lung "/-'r1t relationship, within the central arterial circulation ",'ere observed during intermittent. voluntary lung