Sample records for lighting furnace fans

  1. DOE Publishes Final Rule for Residential Furnace Fan Test Procedure...

    Broader source: Energy.gov (indexed) [DOE]

    (DOE) has published a final rule regarding test procedures for residential furnace fans. 79 FR 500 (January 3, 2014). Find more information on the rulemaking, including milestones,...

  2. Evaluation of Retrofit Variable-Speed Furnace Fan Motors

    SciTech Connect (OSTI)

    Aldrich, R.; Williamson, J.

    2014-01-01T23:59:59.000Z

    In conjunction with the New York State Energy Research and Development Authority (NYSERDA) and Proctor Engineering Group, Ltd. (PEG), the Consortium for Advanced Residential Buildings (CARB) has evaluated the Concept 3 (tm) replacement motors for residential furnaces. These brushless, permanent magnet (BPM) motors can use much less electricity than their PSC (permanent split capacitor) predecessors. This evaluation focuses on existing homes in the heating-dominated climate of upstate New York with the goals of characterizing field performance and cost-effectiveness. The results of this study are intended to be useful to home performance contractors, HVAC contractors, and home efficiency program stakeholders. The project includes eight homes in and near Syracuse, NY. Tests and monitoring was performed both before and after fan motors were replaced. Average fan power reductions were approximately 126 Watts during heating and 220 Watts during cooling operation. Over the course of entire heating and cooling seasons, these translated into average electric energy savings of 163 kWh. Average cost savings were $20 per year. Homes where the fan was used outside of heating and cooling mode saved an additional $42 per year on average. Results indicate that BPM replacement motors will be most cost-effective in HVAC systems with longer run times and relatively low duct static pressures. More dramatic savings are possible if occupants use the fan-only setting when there is no thermal load. There are millions of cold-climate, U.S. homes that meet these criteria, but the savings in most homes tested in this study were modest.

  3. Energy Conservation Program for Consumer Products: Test Procedures for Residential Furnaces Fans; Correction

    Broader source: Energy.gov [DOE]

    On January 3, 2014 the U.S. Department of Energy (DOE) published a final rule in the Federal Register that established the test procedure for residential furnace fans. Due to drafting errors, that document inadvertently removed necessary incorporation by reference material in the Code of Federal Regulations (CFR). This final rule rectifies this error by once again adding the removed material.

  4. ISSUANCE 2015-06-25: Energy Conservation Program: Energy Conservation Standards for Ceiling Fan Light Kits, Notice of Proposed Rulemaking

    Broader source: Energy.gov [DOE]

    Energy Conservation Program: Energy Conservation Standards for Ceiling Fan Light Kits, Notice of Proposed Rulemaking

  5. 2014-10-27 Issuance: Test Procedure for Ceiling Fan Light Kits...

    Broader source: Energy.gov (indexed) [DOE]

    as a means to facilitate the public's access to this document. 2014-10-27 Issuance Test Procedure Ceiling Fan Light Kits NOPR.pdf More Documents & Publications 2014-10-27...

  6. An optical fan for light beams for high-precision optical measurements and optical switching

    E-Print Network [OSTI]

    Zhi-Yuan Zhou; Yan Li; Dong-Sheng Ding; Yun-Kun Jiang; Wei Zhang; Shuai Shi; Bao-Sen Shi; Guang-Can Guo

    2014-05-08T23:59:59.000Z

    The polarization and orbital angular momentum properties of light are of great importance in optical science and technology in the fields of high precision optical measurements and high capacity and high speed optical communications. Here we show, a totally new method, based on a combination of these two properties and using the thermal dispersion and electro-optical effect of birefringent crystals, the construction of a simple and robust scheme to rotate a light beam like a fan. Using a computer-based digital image processing technique, we determine the temperature and the thermal dispersion difference of the crystal with high resolution. We also use the rotation phenomenon to realize thermo-optic and electro-optic switches. The basic operating principles for measurement and switching processes are presented in detail. The methods developed here will have wide practical applicability in various fields, including remote sensing, materials science and optical communication networks.

  7. Energy Conservation Standards for Ceiling Fan Light Kits Notice of Proposed Rulemaking

    Broader source: Energy.gov [DOE]

    Energy Conservation Program: Energy Conservation Standards for Ceiling Fan Notice of proposed rulemaking (NOPR) and announcement of public meeting.

  8. Record of Communication Concerning Ceiling Fan and Ceiling Fan...

    Broader source: Energy.gov (indexed) [DOE]

    This memo provides an overview of communications made to DOE staff on the subject of possible changes to standards and test procedures for ceiling fans and ceiling fan light kits....

  9. Angular constraint on light-trapping absorption enhancement in solar cells and Shanhui Fan

    E-Print Network [OSTI]

    Fan, Shanhui

    trapping results in a thinner active region in a solar cell, which lowers the pro- duction cost by reducingAngular constraint on light-trapping absorption enhancement in solar cells Zongfu Yua and Shanhui 2010; accepted 5 December 2010; published online 4 January 2011 Light trapping for solar cells can

  10. Museum Fan Downloads

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Museum Fan Downloads Participate with us Participate Become a Volunteer Share Your Stories Museum Fan Downloads Q&A Blog Contact us invisible utility element Museum Fan Downloads...

  11. 2014-10-27 Issuance: Energy Conservation Standards for Ceiling Fan Light Kits; Notice of Public Meeting and Availability of the Preliminary Technical Support Document

    Broader source: Energy.gov [DOE]

    This document is a pre-publication Federal Register notice of public meeting and availability of the preliminary technical support document regarding energy conservation standards for ceiling fan light kits, as issued by the Deputy Assistant Secretary for Energy Efficiency on October 27, 2014. Though it is not intended or expected, should any discrepancy occur between the document posted here and the document published in the Federal Register, the Federal Register publication controls. This document is being made available through the Internet solely as a means to facilitate the public's access to this document.

  12. Tube furnace

    DOE Patents [OSTI]

    Foster, Kenneth G. (Livermore, CA); Frohwein, Eugene J. (San Ramon, CA); Taylor, Robert W. (Livermore, CA); Bowen, David W. (Livermore, CA)

    1991-01-01T23:59:59.000Z

    A vermiculite insulated tube furnace is heated by a helically-wound resistance wire positioned within a helical groove on the surface of a ceramic cylinder, that in turn is surroundingly disposed about a doubly slotted stainless steel cylindrical liner. For uniform heating, the pitch of the helix is of shorter length over the two end portions of the ceramic cylinder. The furnace is of large volume, provides uniform temperature, offers an extremely precise programmed heating capability, features very rapid cool-down, and has a modest electrical power requirement.

  13. Furnace assembly

    DOE Patents [OSTI]

    Panayotou, Nicholas F. (Kennewick, WA); Green, Donald R. (Richland, WA); Price, Larry S. (Pittsburg, CA)

    1985-01-01T23:59:59.000Z

    A method of and apparatus for heating test specimens to desired elevated temperatures for irradiation by a high energy neutron source. A furnace assembly is provided for heating two separate groups of specimens to substantially different, elevated, isothermal temperatures in a high vacuum environment while positioning the two specimen groups symmetrically at equivalent neutron irradiating positions.

  14. Reduce Air Infiltration in Furnaces (English/Chinese) (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2011-10-01T23:59:59.000Z

    Chinese translation of the Reduce Air Infiltration in Furnaces fact sheet. Provides suggestions on how to improve furnace energy efficiency. Fuel-fired furnaces discharge combustion products through a stack or a chimney. Hot furnace gases are less dense and more buoyant than ambient air, so they rise, creating a differential pressure between the top and the bottom of the furnace. This differential, known as thermal head, is the source of a natural draft or negative pressure in furnaces and boilers. A well-designed furnace (or boiler) is built to avoid air leakage into the furnace or leakage of flue gases from the furnace to the ambient. However, with time, most furnaces develop cracks or openings around doors, joints, and hearth seals. These openings (leaks) usually appear small compared with the overall dimensions of the furnace, so they are often ignored. The negative pressure created by the natural draft (or use of an induced-draft fan) in a furnace draws cold air through the openings (leaks) and into the furnace. The cold air becomes heated to the furnace exhaust gas temperature and then exits through the flue system, wasting valuable fuel. It might also cause excessive oxidation of metals or other materials in the furnaces. The heat loss due to cold air leakage resulting from the natural draft can be estimated if you know four major parameters: (1) The furnace or flue gas temperature; (2) The vertical distance H between the opening (leak) and the point where the exhaust gases leave the furnace and its flue system (if the leak is along a vertical surface, H will be an average value); (3) The area of the leak, in square inches; and (4) The amount of operating time the furnace spends at negative pressure. Secondary parameters that affect the amount of air leakage include these: (1) The furnace firing rate; (2) The flue gas velocity through the stack or the stack cross-section area; (3) The burner operating conditions (e.g., excess air, combustion air temperature, and so on). For furnaces or boilers using an induced-draft (ID) fan, the furnace negative pressure depends on the fan performance and frictional losses between the fan inlet and the point of air leakage. In most cases, it would be necessary to measure or estimate negative pressure at the opening. The amount of air leakage, the heat lost in flue gases, and their effects on increased furnace or boiler fuel consumption can be calculated by using the equations and graphs given in Industrial Furnaces (see W. Trinks et al., below). Note that the actual heat input required to compensate for the heat loss in flue gases due to air leakage would be greater than the heat contained in the air leakage because of the effect of available heat in the furnace. For a high-temperature furnace that is not maintained properly, the fuel consumption increase due to air leakage can be as high as 10% of the fuel input.

  15. NREL's Optical Cavity Furnace Brings Together a Myriad of Advances for Processing Solar Cells (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2011-08-01T23:59:59.000Z

    Fact sheet on 2011 R&D 100 Award winner, the Optical Cavity Furnace. The innovative furnace uses light and unique light-induced effects to make higher-efficiency solar cells at lower cost.

  16. Heat treatment furnace

    DOE Patents [OSTI]

    Seals, Roland D; Parrott, Jeffrey G; DeMint, Paul D; Finney, Kevin R; Blue, Charles T

    2014-10-21T23:59:59.000Z

    A furnace heats through both infrared radiation and convective air utilizing an infrared/purge gas design that enables improved temperature control to enable more uniform treatment of workpieces. The furnace utilizes lamps, the electrical end connections of which are located in an enclosure outside the furnace chamber, with the lamps extending into the furnace chamber through openings in the wall of the chamber. The enclosure is purged with gas, which gas flows from the enclosure into the furnace chamber via the openings in the wall of the chamber so that the gas flows above and around the lamps and is heated to form a convective mechanism in heating parts.

  17. Edmund G. Brown Jr. LIGHTING CALIFORNIA'S FUTURE

    E-Print Network [OSTI]

    Edmund G. Brown Jr. Governor LIGHTING CALIFORNIA'S FUTURE: SMART LIGHT-EMITTING DIODE LIGHTING's Future: Smart LightEmitting Diode Lighting in Residential Fans. California Energy Commission, PIER

  18. New Energy Efficiency Standards for Furnace Fans to Reduce Carbon...

    Broader source: Energy.gov (indexed) [DOE]

    Climate Action Plan was announced last year. These efficiency standards cut carbon pollution and save American families and businesses money by saving energy. The new standard...

  19. DOE Publishes Final Rule for Residential Furnace Fan Test Procedure |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: Theof"WaveInteractions and Policy (2009)| Department ofof Energy

  20. DOE Publishes Notice of Proposed Rulemaking for Residential Furnace Fans

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: Theof"WaveInteractions and Policy (2009)| Departmentof

  1. New Energy Efficiency Standards for Furnace Fans to Reduce Carbon

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy China 2015of 2005 attheMohammed Khan -DepartmentDepartment of EnergyFY 2014Pollution,

  2. Segmented ceramic liner for induction furnaces

    DOE Patents [OSTI]

    Gorin, A.H.; Holcombe, C.E.

    1994-07-26T23:59:59.000Z

    A non-fibrous ceramic liner for induction furnaces is provided by vertically stackable ring-shaped liner segments made of ceramic material in a light-weight cellular form. The liner segments can each be fabricated as a single unit or from a plurality of arcuate segments joined together by an interlocking mechanism. Also, the liner segments can be formed of a single ceramic material or can be constructed of multiple concentric layers with the layers being of different ceramic materials and/or cellular forms. Thermomechanically damaged liner segments are selectively replaceable in the furnace. 5 figs.

  3. Improved graphite furnace atomizer

    DOE Patents [OSTI]

    Siemer, D.D.

    1983-05-18T23:59:59.000Z

    A graphite furnace atomizer for use in graphite furnace atomic absorption spectroscopy is described wherein the heating elements are affixed near the optical path and away from the point of sample deposition, so that when the sample is volatilized the spectroscopic temperature at the optical path is at least that of the volatilization temperature, whereby analyteconcomitant complex formation is advantageously reduced. The atomizer may be elongated along its axis to increase the distance between the optical path and the sample deposition point. Also, the atomizer may be elongated along the axis of the optical path, whereby its analytical sensitivity is greatly increased.

  4. Residential Furnace Blower Performance

    E-Print Network [OSTI]

    conditioner performance1 , standby power, as well as igniter and combustion air blower power. Energy savings for a typical three-and-a-half ton air conditioner with typical California ducts are 45 kWh. Peak demand combinations of blowers and residential furnaces were tested for air moving performance. The laboratory test

  5. Alexandria Light and Power - Residential Energy Efficiency Rebate...

    Broader source: Energy.gov (indexed) [DOE]

    -Dehumidifiers -Room Air Conditioners -ECM in New FurnaceAir HandlerFan Coil -Water Heaters -Central AC -Geothermal and Air-Source Heat Pumps ALP also offers a rebates...

  6. Furnace Blower Electricity: National and Regional Savings Potential

    SciTech Connect (OSTI)

    Florida Solar Energy Center; Franco, Victor; Franco, Victor; Lutz, Jim; Lekov, Alex; Gu, Lixing

    2008-05-16T23:59:59.000Z

    Currently, total electricity consumption of furnaces is unregulated, tested at laboratory conditions using the DOE test procedure, and is reported in the GAMA directory as varying from 76 kWh/year to 1,953 kWh/year. Furnace blowers account for about 80percent of the total furnace electricity consumption and are primarily used to distribute warm air throughout the home during furnace operation as well as distribute cold air during air conditioning operation. Yet the furnace test procedure does not provide a means to calculate the electricity consumption during cooling operation or standby, which account for a large fraction of the total electricity consumption. Furthermore, blower electricity consumption is strongly affected by static pressure. Field data shows that static pressure in the house distribution ducts varies widely and that the static pressure used in the test procedure as well as the calculated fan power is not representative of actual field installations. Therefore, accurate determination of the blower electricity consumption is important to address electricity consumption of furnaces and air conditioners. This paper compares the potential regional and national energy savings of two-stage brushless permanent magnet (BPM) blower motors (the blower design option with the most potential savings that is currently available in the market) to single-stage permanent split capacitor (PSC) blower motors (the most common blower design option). Computer models were used to generate the heating and cooling loads for typical homes in 16 different climates which represent houses throughout the United States. The results show that the potential savings of using BPM motors vary by region and house characteristics, and are very strongly tied to improving house distribution ducts. Savings decrease dramatically with increased duct pressure. Cold climate locations will see savings even in the high static pressure duct situations, while warm climate locations will see less savings overall and negative savings in the high static pressure duct situations. Moderate climate locations will see little or no savings.

  7. Blast furnace stove control

    SciTech Connect (OSTI)

    Muske, K.R. [Villanova Univ., PA (United States). Dept. of Chemical Engineering; Hansen, G.A.; Howse, J.W.; Cagliostro, D.J. [Los Alamos National Lab., NM (United States); Chaubal, P.C. [Inland Steel Industries Inc., East Chicago, IN (United States). Research Labs.

    1998-12-31T23:59:59.000Z

    This paper outlines the process model and model-based control techniques implemented on the hot blast stoves for the No. 7 Blast Furnace at the Inland Steel facility in East Chicago, Indiana. A detailed heat transfer model of the stoves is developed. It is then used as part of a predictive control scheme to determine the minimum amount of fuel necessary to achieve the blast air requirements. The controller also considers maximum and minimum temperature constraints within the stove.

  8. Optical processing furnace with quartz muffle and diffuser plate

    DOE Patents [OSTI]

    Sopori, Bhushan L. (Denver, CO)

    1996-01-01T23:59:59.000Z

    An optical furnace for annealing a process wafer comprising a source of optical energy, a quartz muffle having a door to hold the wafer for processing, and a quartz diffuser plate to diffuse the light impinging on the quartz muffle; a feedback system with a light sensor located in the wall of the muffle is also provided for controlling the source of optical energy.

  9. Furnaces | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluating A PotentialJumpGermanFife EnergyFreightFulong Wind TechnologyFuningFurnaces

  10. Cupola Furnace Computer Process Model

    SciTech Connect (OSTI)

    Seymour Katz

    2004-12-31T23:59:59.000Z

    The cupola furnace generates more than 50% of the liquid iron used to produce the 9+ million tons of castings annually. The cupola converts iron and steel into cast iron. The main advantages of the cupola furnace are lower energy costs than those of competing furnaces (electric) and the ability to melt less expensive metallic scrap than the competing furnaces. However the chemical and physical processes that take place in the cupola furnace are highly complex making it difficult to operate the furnace in optimal fashion. The results are low energy efficiency and poor recovery of important and expensive alloy elements due to oxidation. Between 1990 and 2004 under the auspices of the Department of Energy, the American Foundry Society and General Motors Corp. a computer simulation of the cupola furnace was developed that accurately describes the complex behavior of the furnace. When provided with the furnace input conditions the model provides accurate values of the output conditions in a matter of seconds. It also provides key diagnostics. Using clues from the diagnostics a trained specialist can infer changes in the operation that will move the system toward higher efficiency. Repeating the process in an iterative fashion leads to near optimum operating conditions with just a few iterations. More advanced uses of the program have been examined. The program is currently being combined with an ''Expert System'' to permit optimization in real time. The program has been combined with ''neural network'' programs to affect very easy scanning of a wide range of furnace operation. Rudimentary efforts were successfully made to operate the furnace using a computer. References to these more advanced systems will be found in the ''Cupola Handbook''. Chapter 27, American Foundry Society, Des Plaines, IL (1999).

  11. Waste Heat Recovery – Submerged Arc Furnaces (SAF)

    E-Print Network [OSTI]

    O'Brien, T.

    2008-01-01T23:59:59.000Z

    Waste Heat Recovery- Submerged Arc Furnaces (SAF) Thomas O?Brien Recycled Energy Development, LLC tobrien@recycled-energy.com Submerged Arc Furnaces are used to produce high temperature alloys. These furnaces typically run at 3000oF using...

  12. Fan System Assessment- End User Training

    Office of Energy Efficiency and Renewable Energy (EERE)

    Optimizing industrial fan systems can take on many forms, but any fan optimization project must meet the needs of the process. This self-paced workshop highlights the benefits of fan system...

  13. High pressure furnace

    DOE Patents [OSTI]

    Morris, D.E.

    1993-09-14T23:59:59.000Z

    A high temperature high pressure furnace has a hybrid partially externally heated construction. A metallic vessel fabricated from an alloy having a composition of at least 45% nickel, 15% chrome, and 10% tungsten is utilized (the preferred alloy including 55% nickel, 22% chrome, 14% tungsten, 2% molybdenum, 3% iron (maximum) and 5% cobalt (maximum)). The disclosed alloy is fabricated into 11/4 or 2 inch, 32 mm or 50 mm bar stock and has a length of about 22 inches, 56 cm. This bar stock has an aperture formed therein to define a closed high temperature, high pressure oxygen chamber. The opposite and closed end of the vessel is provided with a small blind aperture into which a thermocouple can be inserted. The closed end of the vessel is inserted into an oven, preferably heated by standard nickel chrome electrical elements and having a heavily insulated exterior. 19 figures.

  14. High pressure oxygen furnace

    DOE Patents [OSTI]

    Morris, Donald E. (Kensington, CA)

    1992-01-01T23:59:59.000Z

    A high temperature high pressure oxygen furnace having a hybrid partially externally heated construction is disclosed. A metallic bar fabricated from an alloy having a composition of at least 45% nickel, 15% chrome, and 10% tungsten is utilized (the preferred alloy including 55% nickel, 22% chrome, 14% tungsten, 2% molybdenum, 3% iron (maximum) and 5% cobalt (maximum). The disclosed alloy is fabricated into 11/4 inch bar stock and has a length of about 17 inches. This bar stock is gun drilled for over 16 inches of its length with 0.400 inch aperture to define a closed high temperature, high pressure oxygen chamber. The opposite and closed end of the bar is provided with a small support aperture into which both a support and a thermocouple can be inserted. The closed end of the gun drilled bar is inserted into an oven, preferably heated by standard nickel chrome electrical elements and having a heavily insulated exterior.

  15. High pressure oxygen furnace

    DOE Patents [OSTI]

    Morris, D.E.

    1992-07-14T23:59:59.000Z

    A high temperature high pressure oxygen furnace having a hybrid partially externally heated construction is disclosed. A metallic bar fabricated from an alloy having a composition of at least 45% nickel, 15% chrome, and 10% tungsten is utilized, the preferred alloy including 55% nickel, 22% chrome, 14% tungsten, 2% molybdenum, 3% iron (maximum) and 5% cobalt (maximum). The disclosed alloy is fabricated into 11/4 inch bar stock and has a length of about 17 inches. This bar stock is gun drilled for over 16 inches of its length with 0.400 inch aperture to define a closed high temperature, high pressure oxygen chamber. The opposite and closed end of the bar is provided with a small support aperture into which both a support and a thermocouple can be inserted. The closed end of the gun drilled bar is inserted into an oven, preferably heated by standard nickel chrome electrical elements and having a heavily insulated exterior. 5 figs.

  16. High pressure furnace

    DOE Patents [OSTI]

    Morris, Donald E. (Kensington, CA)

    1993-01-01T23:59:59.000Z

    A high temperature high pressure furnace has a hybrid partially externally heated construction. A metallic vessel fabricated from an alloy having a composition of at least 45% nickel, 15% chrome, and 10% tungsten is utilized (the preferred alloy including 55% nickel, 22% chrome, 14% tungsten, 2% molybdenum, 3% iron (maximum) and 5% cobalt (maximum). The disclosed alloy is fabricated into 11/4 or 2 inch, 32 mm or 50 mm bar stock and has a length of about 22 inches, 56 cm. This bar stock has an aperture formed therein to define a closed high temperature, high pressure oxygen chamber. The opposite and closed end of the vessel is provided with a small blind aperture into which a thermocouple can be inserted. The closed end of the vessel is inserted into an oven, preferably heated by standard nickel chrome electrical elements and having a heavily insulated exterior.

  17. Steam Cracker Furnace Energy Improvements

    E-Print Network [OSTI]

    Gandler, T.

    & challenges in steam cracking ? Energy efficiency improvements Overview Baytown Olefins Plant Page 3 Baytown Complex ?One of world?s largest integrated, most technologically advanced petroleum/petrochemical complexes ?~3,400 acres along Houston Ship... wall temperatures Furnace tube hydrocarbon + steam 0 0.2 0.4 0.6 0.8 1 1.2 1 2 time C o k e l a y e r Page 8 Steam Cracker Furnace Energy Efficiency ? Overall energy efficiency of furnace depends on ? Run length or % of time...

  18. Rebuilding of Rautaruukki blast furnaces

    SciTech Connect (OSTI)

    Kallo, S.; Pisilae, E.; Ojala, K. [Rautaruukki Oy Raahe Steel (Finland)

    1997-12-31T23:59:59.000Z

    Rautaruukki Oy Raahe Steel rebuilt its blast furnaces in 1995 (BF1) and 1996 (BF2) after 10 year campaigns and production of 9,747 THM/m{sup 3} (303 NTHM/ft{sup 3}) and 9,535 THM/m{sup 3} (297 NTHM/ft{sup 3}), respectively. At the end of the campaigns, damaged cooling system and shell cracks were increasingly disturbing the availability of furnaces. The goal for rebuilding was to improve the cooling systems and refractory quality in order to attain a 15 year campaign. The furnaces were slightly enlarged to meet the future production demand. The blast furnace control rooms and operations were centralized and the automation and instrumentation level was considerably improved in order to improve the operation efficiency and to reduce manpower requirements. Investments in direct slag granulation and improved casthouse dedusting improved environmental protection. The paper describes the rebuilding.

  19. Variable frequency microwave furnace system

    DOE Patents [OSTI]

    Bible, Don W. (Clinton, TN); Lauf, Robert J. (Oak Ridge, TN)

    1994-01-01T23:59:59.000Z

    A variable frequency microwave furnace system (10) designed to allow modulation of the frequency of the microwaves introduced into a furnace cavity (34) for testing or other selected applications. The variable frequency microwave furnace system (10) includes a microwave signal generator (12) or microwave voltage-controlled oscillator (14) for generating a low-power microwave signal for input to the microwave furnace. A first amplifier (18) may be provided to amplify the magnitude of the signal output from the microwave signal generator (12) or the microwave voltage-controlled oscillator (14). A second amplifier (20) is provided for processing the signal output by the first amplifier (18). The second amplifier (20) outputs the microwave signal input to the furnace cavity (34). In the preferred embodiment, the second amplifier (20) is a traveling-wave tube (TWT). A power supply (22) is provided for operation of the second amplifier (20). A directional coupler (24) is provided for detecting the direction of a signal and further directing the signal depending on the detected direction. A first power meter (30) is provided for measuring the power delivered to the microwave furnace (32). A second power meter (26) detects the magnitude of reflected power. Reflected power is dissipated in the reflected power load (28).

  20. Variable frequency microwave furnace system

    DOE Patents [OSTI]

    Bible, D.W.; Lauf, R.J.

    1994-06-14T23:59:59.000Z

    A variable frequency microwave furnace system designed to allow modulation of the frequency of the microwaves introduced into a furnace cavity for testing or other selected applications. The variable frequency microwave furnace system includes a microwave signal generator or microwave voltage-controlled oscillator for generating a low-power microwave signal for input to the microwave furnace. A first amplifier may be provided to amplify the magnitude of the signal output from the microwave signal generator or the microwave voltage-controlled oscillator. A second amplifier is provided for processing the signal output by the first amplifier. The second amplifier outputs the microwave signal input to the furnace cavity. In the preferred embodiment, the second amplifier is a traveling-wave tube (TWT). A power supply is provided for operation of the second amplifier. A directional coupler is provided for detecting the direction of a signal and further directing the signal depending on the detected direction. A first power meter is provided for measuring the power delivered to the microwave furnace. A second power meter detects the magnitude of reflected power. Reflected power is dissipated in the reflected power load. 5 figs.

  1. Fossil fuel furnace reactor

    DOE Patents [OSTI]

    Parkinson, William J. (Los Alamos, NM)

    1987-01-01T23:59:59.000Z

    A fossil fuel furnace reactor is provided for simulating a continuous processing plant with a batch reactor. An internal reaction vessel contains a batch of shale oil, with the vessel having a relatively thin wall thickness for a heat transfer rate effective to simulate a process temperature history in the selected continuous processing plant. A heater jacket is disposed about the reactor vessel and defines a number of independent controllable temperature zones axially spaced along the reaction vessel. Each temperature zone can be energized to simulate a time-temperature history of process material through the continuous plant. A pressure vessel contains both the heater jacket and the reaction vessel at an operating pressure functionally selected to simulate the continuous processing plant. The process yield from the oil shale may be used as feedback information to software simulating operation of the continuous plant to provide operating parameters, i.e., temperature profiles, ambient atmosphere, operating pressure, material feed rates, etc., for simulation in the batch reactor.

  2. Optical processing furnace with quartz muffle and diffuser plate

    DOE Patents [OSTI]

    Sopori, B.L.

    1996-11-19T23:59:59.000Z

    An optical furnace for annealing a process wafer is disclosed comprising a source of optical energy, a quartz muffle having a door to hold the wafer for processing, and a quartz diffuser plate to diffuse the light impinging on the quartz muffle; a feedback system with a light sensor located in the wall of the muffle is also provided for controlling the source of optical energy. 5 figs.

  3. BPM Motors in Residential Gas Furnaces: What are the Savings?

    E-Print Network [OSTI]

    Lutz, James; Franco, Victor; Lekov, Alex; Wong-Parodi, Gabrielle

    2006-01-01T23:59:59.000Z

    of the total electricity consumption by BPM furnaces. Thisbecause furnace electricity consumption is significant.of furnace electricity consumption. Therefore, accurate

  4. Furnace Blower Electricity: National and Regional Savings Potential

    E-Print Network [OSTI]

    Franco, Victor; Florida Solar Energy Center

    2008-01-01T23:59:59.000Z

    Inc. Pigg, Scott. 2003. Electricity Use by New Furnaces: Astage furnaces offer national electricity savings, but withABORATORY Furnace Blower Electricity: National and Regional

  5. BPM Motors in Residential Gas Furnaces: What are the Savings?

    E-Print Network [OSTI]

    Lutz, James; Franco, Victor; Lekov, Alex; Wong-Parodi, Gabrielle

    2006-01-01T23:59:59.000Z

    standby power consumption in BPM furnaces is significantlytotal electricity consumption by BPM furnaces. This is notOverall, it appears the BPM motors used in furnaces offer

  6. Effect of Combustion Air Preheat on a Forged Furnace Productivity

    E-Print Network [OSTI]

    Ward, M. E.; Bohn, J.; Davis, S. R.; Knowles, D.

    1984-01-01T23:59:59.000Z

    to determine are the effects of combustion air preheat on four additional furnace operating characteristics. These characteristics are: (1) fuel utilization of a furnace operating cycle; (2) time to heat the furnace load; (3) scale production; and (4) furnace...

  7. Furnace Blower Electricity: National and Regional Savings Potential

    E-Print Network [OSTI]

    Franco, Victor; Florida Solar Energy Center

    2008-01-01T23:59:59.000Z

    Currently, total electricity consumption of furnaces isthe total furnace electricity consumption and are primarilyto calculate the electricity consumption during cooling

  8. Comparing Residential Furnace Blowers for

    E-Print Network [OSTI]

    of air conditioner performance, standby power, as well as igniter and combustion air blower power results in 10% lower air conditioner efficiency. For heating, the advantage of the BPM blower was to assess the performance of residential furnace blowers for both heating, cooling and air distribution

  9. Experimental Evaluation of Installed Cooking Exhaust Fan Performance

    E-Print Network [OSTI]

    Singer, Brett C.

    2011-01-01T23:59:59.000Z

    High High Fan (cfm) Burner Fire Btu/hr A- 50 Fan/Plume EffLow Fan (cfm) Burner Fire Btu/hr Fan/Plume Eff Figure  3.  Med Fan (cfm) Burner Fire Btu/hr Fan/Plume Eff Figure  7.  

  10. Direct current, closed furnace silicon technology

    SciTech Connect (OSTI)

    Dosaj, V.D. [Dow Corning Corp., Midland, MI (United States); May, J.B. [Dow Corning Corp., Freeland, MI (United States); Arvidson, A.N. [Meadow Materials, Manitoba (Canada)

    1994-05-01T23:59:59.000Z

    The dc closed furnace technology for smelting silicon offers technical operating challenges, as well as, economic opportunities for off-gas recovery, reduced electrode consumption, reduced reductant oxidation losses, reduced energy consumption, and improved silicon recovery. The 10 mva dc closed furnace is located in East Selkirk, Manitoba. Construction of this pilot plant was started in September 1990. Following successful commissioning of the furnace in 1992, a number of smelting tests have been conducted aimed at optimization of the furnace operation and the raw material mix. The operation of a closed furnace is significantly different from an open furnace operation. The major difference being in the mechanical movement of the mix, off-gas recovery, and inability to observe the process. These differences made data collection and analysis critical in making operating decisions. This closed furnace was operated by computer control (state of the art in the smelling industry).

  11. Ferrosilicon smelting in a direct current furnace

    DOE Patents [OSTI]

    Dosaj, Vishu D. (Midland, MI); May, James B. (Midland, MI)

    1992-12-29T23:59:59.000Z

    The present invention is a process for smelting ferrosilicon alloy. The process comprises adding a carbon source and tailings comprising oxides of silicon and iron to a substantially closed furnace. Heat is supplied to the furnace by striking a direct current arc between a cathode electrode and an anode functional hearth. In a preferred embodiment of the present invention, the cathode electrode is hollow and feed to the substantially closed furnace is through the hollow electrode.

  12. Ferrosilicon smelting in a direct current furnace

    DOE Patents [OSTI]

    Dosaj, V.D.; May, J.B.

    1992-12-29T23:59:59.000Z

    The present invention is a process for smelting ferrosilicon alloy. The process comprises adding a carbon source and tailings comprising oxides of silicon and iron to a substantially closed furnace. Heat is supplied to the furnace by striking a direct current arc between a cathode electrode and an anode functional hearth. In a preferred embodiment of the present invention, the cathode electrode is hollow and feed to the substantially closed furnace is through the hollow electrode. 1 figure.

  13. Building Pressure Control in VAV System with Relief Air Fan

    E-Print Network [OSTI]

    Pang, X.; Liu, M.; Zheng, B.

    2005-01-01T23:59:59.000Z

    , recently, Wang and Liu developed a motor power based fan airflow station., which determines the fan airflow using the measured fan motor power, the fan speed or control system command to VFD, and the in-situ fan motor power curve. Since the fan power... power can be obtained directly from VFD [5]. The motor power based fan airflow station method can be applied to the fan-tracking to perform a better building pressurization. The theory of the motor power based fan airflow station can be referred...

  14. Improving the efficiency of centrifugal fans

    E-Print Network [OSTI]

    Wolfe, Clifford Kent

    1976-01-01T23:59:59.000Z

    P s static pressure corrected to fan outlet H2O Nomenclature (cont. ) Symbol Description Units p ~ N? N et e s S hp pressure corrected to specified speed and standard air density specified speed test fan speed total (mechanical...) efficiency static efficiency specific horsepower in. H 0 RPN RPN hp CHAPTER I INTRODUCTION The uses of centrifugal (squirrel cage) fans in our nation range from air conditioning in our homes to exhausting fumes from industrial plants. Because...

  15. Furnaces Data | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011 Strategic2 OPAM Flash2011-12 OPAM RevisedFunding Opportunities FundingFurnaces Data

  16. Alliant Energy Interstate Power and Light (Electric)- Residential...

    Broader source: Energy.gov (indexed) [DOE]

    10 Light Fixtures or Fan: 20unit Water Heaters: 50 Programmable Thermostat: 25 Central Air Conditioners: 100 or 200 depending on SEER Geothermal Heat Pumps: 300ton +...

  17. Nitrogen Control in Electric Arc Furnace Steelmaking by Direct...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Nitrogen Control in Electric Arc Furnace Steelmaking by Direct Reduced Iron Fines Injection Nitrogen Control in Electric Arc Furnace Steelmaking by Direct Reduced Iron Fines...

  18. Optimizing Blast Furnace Operation to Increase Efficiency and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Optimizing Blast Furnace Operation to Increase Efficiency and Lower Costs Optimizing Blast Furnace Operation to Increase Efficiency and Lower Costs cfdblastfurnace.pdf More...

  19. Optical cavity furnace for semiconductor wafer processing

    DOE Patents [OSTI]

    Sopori, Bhushan L.

    2014-08-05T23:59:59.000Z

    An optical cavity furnace 10 having multiple optical energy sources 12 associated with an optical cavity 18 of the furnace. The multiple optical energy sources 12 may be lamps or other devices suitable for producing an appropriate level of optical energy. The optical cavity furnace 10 may also include one or more reflectors 14 and one or more walls 16 associated with the optical energy sources 12 such that the reflectors 14 and walls 16 define the optical cavity 18. The walls 16 may have any desired configuration or shape to enhance operation of the furnace as an optical cavity 18. The optical energy sources 12 may be positioned at any location with respect to the reflectors 14 and walls defining the optical cavity. The optical cavity furnace 10 may further include a semiconductor wafer transport system 22 for transporting one or more semiconductor wafers 20 through the optical cavity.

  20. Emission of Visible Light by Hot Dense Metals

    E-Print Network [OSTI]

    More, R.M.

    2010-01-01T23:59:59.000Z

    HIFAN 1761 EMISSION OF VISIBLE LIGHT BY HOT DENSE METALS ByDE-AC52-07NA27344. HI FAN Emission of Visible Light by HotABSTRACT We consider the emission of visible light by hot

  1. Fan-fold shielded electrical leads

    DOE Patents [OSTI]

    Rohatgi, R.R.; Cowan, T.E.

    1996-06-11T23:59:59.000Z

    Disclosed are fan-folded electrical leads made from copper cladded Kapton, for example, with the copper cladding on one side serving as a ground plane and the copper cladding on the other side being etched to form the leads. The Kapton is fan folded with the leads located at the bottom of the fan-folds. Electrical connections are made by partially opening the folds of the fan and soldering, for example, the connections directly to the ground plane and/or the lead. The fan folded arrangement produces a number of advantages, such as electrically shielding the leads from the environment, is totally non-magnetic, and has a very low thermal conductivity, while being easy to fabricate. 3 figs.

  2. High productivity in Australian blast furnaces

    SciTech Connect (OSTI)

    Nightingale, R.J.; Mellor, D.G. [BHP Slab and Plate Products Div., Port Kembla, New South Wales (Australia); Jelenich, L. [BHP Rod and Bar Products Div., Newcastle, New South Wales (Australia); Ward, R.F. [BHP Long Products Div., Whyalla, South Australia (Australia)

    1995-12-01T23:59:59.000Z

    Since the emergence of the Australian domestic economy from recession in 1992, the productivity of BHP`s blast furnace has increased significantly to meet the demands of both domestic and export markets. BHP Steel operates six blast furnaces at its three Australian integrated plants. These furnaces vary widely in their size, feed, technology and current campaign status. This paper reviews the principal issues associated with productivity improvements over recent years. These gains have been achieved through activities associated with a wide range of process, equipment and human resource based issues.

  3. Morphology and seismic stratigraphy of the Toyama deep sea fan

    E-Print Network [OSTI]

    Shepherd, David Barton

    1990-01-01T23:59:59.000Z

    are found in all fan regions, although facies F is more plentiful in slope regions. Since facies C, D, and G are found in both non-fan and lower fan turbi- dite sequences, fan deposits must be distinguished by their thickening and coarsening...

  4. A consortium approach to glass furnace modeling.

    SciTech Connect (OSTI)

    Chang, S.-L.; Golchert, B.; Petrick, M.

    1999-04-20T23:59:59.000Z

    Using computational fluid dynamics to model a glass furnace is a difficult task for any one glass company, laboratory, or university to accomplish. The task of building a computational model of the furnace requires knowledge and experience in modeling two dissimilar regimes (the combustion space and the liquid glass bath), along with the skill necessary to couple these two regimes. Also, a detailed set of experimental data is needed in order to evaluate the output of the code to ensure that the code is providing proper results. Since all these diverse skills are not present in any one research institution, a consortium was formed between Argonne National Laboratory, Purdue University, Mississippi State University, and five glass companies in order to marshal these skills into one three-year program. The objective of this program is to develop a fully coupled, validated simulation of a glass melting furnace that may be used by industry to optimize the performance of existing furnaces.

  5. Multiple hearth furnace for reducing iron oxide

    DOE Patents [OSTI]

    Brandon, Mark M. (Charlotte, NC); True, Bradford G. (Charlotte, NC)

    2012-03-13T23:59:59.000Z

    A multiple moving hearth furnace (10) having a furnace housing (11) with at least two moving hearths (20) positioned laterally within the furnace housing, the hearths moving in opposite directions and each moving hearth (20) capable of being charged with at least one layer of iron oxide and carbon bearing material at one end, and being capable of discharging reduced material at the other end. A heat insulating partition (92) is positioned between adjacent moving hearths of at least portions of the conversion zones (13), and is capable of communicating gases between the atmospheres of the conversion zones of adjacent moving hearths. A drying/preheat zone (12), a conversion zone (13), and optionally a cooling zone (15) are sequentially positioned along each moving hearth (30) in the furnace housing (11).

  6. Optimized Design of a Furnace Cooling System

    E-Print Network [OSTI]

    Morelli, F.; Bretschneider, R.; Dauzat, J.; Guymon, M.; Studebaker, J.; Rasmussen, B. P.

    2013-01-01T23:59:59.000Z

    at higher temperatures. The second mechanism considers the introduction of forced argon convection. Argon is used in the process to mitigate part oxidation. Cycling argon through the furnace during cooling increases convection over the parts and removes heat...

  7. Energy Assessment Protocol for Glass Furnaces

    E-Print Network [OSTI]

    Plodinec, M. J.; Kauffman, B. M.; Norton, O. P.; Richards, C.; Connors, J.; Wishnick, D.

    2005-01-01T23:59:59.000Z

    The Department of Energy funded development of a methodology that could be used by glass producers to increase furnace efficiency, and that could serve as a model for other energy-intensive industries. Accordingly, a team comprising PPG Industries...

  8. Combustion Air Preheat on Steam Cracker Furnaces

    E-Print Network [OSTI]

    Kenney, W. F.

    1983-01-01T23:59:59.000Z

    Beginning in 1978, Exxon has started up nine large new steam cracking furnaces with various levels of air preheat, and has seven more under construction. Sources of heat have included process streams, flue gas and gas turbine exhaust. Several...

  9. Blast furnace supervision and control system

    SciTech Connect (OSTI)

    Remorino, M.; Lingiardi, O.; Zecchi, M. [Siderar S.A.I.C./Ingdesi, San Nicolas (Argentina)

    1997-12-31T23:59:59.000Z

    On December 1992, a group of companies headed by Techint, took over Somisa, the state-owned integrated steel plant located at San Nicolas, Province of Buenos Aires, Argentina, culminating an ambitious government privatization scheme. The blast furnace 2 went into a full reconstruction and relining in January 1995. After a 140 MU$ investment the new blast furnace 2 was started in September 1995. After more than one year of operation of the blast furnace the system has proven itself useful and reliable. The main reasons for the success of the system are: same use interface for all blast furnace areas -- operation, process, maintenance and management, (full horizontal and vertical integration); and full accessibility to all information and process tools though some restrictions apply to field commands (people empowerment). The paper describes the central system.

  10. Optimized Design of a Furnace Cooling System 

    E-Print Network [OSTI]

    Morelli, F.; Bretschneider, R.; Dauzat, J.; Guymon, M.; Studebaker, J.; Rasmussen, B. P.

    2013-01-01T23:59:59.000Z

    at higher temperatures. The second mechanism considers the introduction of forced argon convection. Argon is used in the process to mitigate part oxidation. Cycling argon through the furnace during cooling increases convection over the parts and removes heat...

  11. Performance Assessment of Photovoltaic Attic Ventilator Fans 

    E-Print Network [OSTI]

    Parker, D. S.; Sherwin, J. R.

    2000-01-01T23:59:59.000Z

    has long been identified as a method to abate such heat gains. We present test results from using the photovoltaic (PV) attic ventilator fans in a test home to assess impact on attic and cooling energy performance....

  12. Synchronous and Cogged Fan Belt Performance Assessment

    SciTech Connect (OSTI)

    Cutler, D.; Dean, J.; Acosta, J.

    2014-02-01T23:59:59.000Z

    The GSA Regional GPG Team commissioned the National Renewable Energy Laboratory (NREL) to perform monitoring of cogged V-belts and synchronous belts on both a constant volume and a variable air volume fan at the Byron G. Rodgers Federal Building and U.S. Courthouse in Denver, Colorado. These motor/fan combinations were tested with their original, standard V-belts (appropriately tensioned by an operation and maintenance professional) to obtain a baseline for standard operation. They were then switched to the cogged V-belts, and finally to synchronous belts. The power consumption by the motor was normalized for both fan speed and air density changes. This was necessary to ensure that the power readings were not influenced by a change in rotational fan speed or by the power required to push denser air. Finally, energy savings and operation and maintenance savings were compiled into an economic life-cycle cost analysis of the different belt options.

  13. Performance Assessment of Photovoltaic Attic Ventilator Fans

    E-Print Network [OSTI]

    Parker, D. S.; Sherwin, J. R.

    2000-01-01T23:59:59.000Z

    has long been identified as a method to abate such heat gains. We present test results from using the photovoltaic (PV) attic ventilator fans in a test home to assess impact on attic and cooling energy performance....

  14. Performance Assessment of Photovoltaic Attic Ventilator Fans

    Broader source: Energy.gov [DOE]

    A case study of photovoltaic attic ventilator fans was conducted on an occupied single family home in Central Florida. Two fans were installed at mid-summer in an instrumented home where attic air temperature, meteorological conditions and space cooling electric power were measured. The home already had an attic radiant barrier, but still experienced attic air temperatures in excess of 130oF.

  15. Economics of residential gas furnaces and water heaters in United States new construction market

    E-Print Network [OSTI]

    Lekov, Alex B.

    2010-01-01T23:59:59.000Z

    condensing furnaces and water heaters and power vent waterheater, electric water heaters and furnaces, which includeResidential Gas Furnaces and Water Heaters in United States

  16. Lighting

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12electron 9 5Let us countLighting Sign In About | Careers |

  17. Coke oven gas injection to blast furnaces

    SciTech Connect (OSTI)

    Maddalena, F.L.; Terza, R.R.; Sobek, T.F.; Myklebust, K.L. [U.S. Steel, Clairton, PA (United States)

    1995-12-01T23:59:59.000Z

    U.S. Steel has three major facilities remaining in Pennsylvania`s Mon Valley near Pittsburgh. The Clairton Coke Works operates 12 batteries which produce 4.7 million tons of coke annually. The Edgar Thomson Works in Braddock is a 2.7 million ton per year steel plant. Irvin Works in Dravosburg has a hot strip mill and a range of finishing facilities. The coke works produces 120 mmscfd of coke oven gas in excess of the battery heating requirements. This surplus gas is used primarily in steel re-heating furnaces and for boiler fuel to produce steam for plant use. In conjunction with blast furnace gas, it is also used for power generation of up to 90 MW. However, matching the consumption with the production of gas has proved to be difficult. Consequently, surplus gas has been flared at rates of up to 50 mmscfd, totaling 400 mmscf in several months. By 1993, several changes in key conditions provided the impetus to install equipment to inject coke oven gas into the blast furnaces. This paper describes the planning and implementation of a project to replace natural gas in the furnaces with coke oven gas. It involved replacement of 7 miles of pipeline between the coking plants and the blast furnaces, equipment capable of compressing coke oven gas from 10 to 50 psig, and installation of electrical and control systems to deliver gas as demanded.

  18. Continuous austempering fluidized bed furnace. Final report

    SciTech Connect (OSTI)

    Srinivasan, M.N. [Lamar Univ., Beaumont, TX (United States). Dept. of Mechanical Engineering] [Lamar Univ., Beaumont, TX (United States). Dept. of Mechanical Engineering

    1997-09-23T23:59:59.000Z

    The intended objective of this project was to show the benefits of using a fluidized bed furnace for austenitizing and austempering of steel castings in a continuous manner. The division of responsibilities was as follows: (1) design of the fluidized bed furnace--Kemp Development Corporation; (2) fabrication of the fluidized bed furnace--Quality Electric Steel, Inc.; (3) procedure for austempering of steel castings, analysis of the results after austempering--Texas A and M University (Texas Engineering Experiment Station). The Department of Energy provided funding to Texas A and M University and Kemp Development Corporation. The responsibility of Quality Electric Steel was to fabricate the fluidized bed, make test castings and perform austempering of the steel castings in the fluidized bed, at their own expense. The project goals had to be reviewed several times due to financial constraints and technical difficulties encountered during the course of the project. The modifications made and the associated events are listed in chronological order.

  19. Measure Guideline: High Efficiency Natural Gas Furnaces

    SciTech Connect (OSTI)

    Brand, L.; Rose, W.

    2012-10-01T23:59:59.000Z

    This Measure Guideline covers installation of high-efficiency gas furnaces. Topics covered include when to install a high-efficiency gas furnace as a retrofit measure, how to identify and address risks, and the steps to be used in the selection and installation process. The guideline is written for Building America practitioners and HVAC contractors and installers. It includes a compilation of information provided by manufacturers, researchers, and the Department of Energy as well as recent research results from the Partnership for Advanced Residential Retrofit (PARR) Building America team.

  20. Blast furnace control after the year 2000

    SciTech Connect (OSTI)

    Gyllenram, R.; Wikstroem, J.O. [MEFOS, Luleaa (Sweden); Hallin, M. [SSAB Tunnplaat AB, Luleaa (Sweden)

    1996-12-31T23:59:59.000Z

    Rapid technical development together with developments in work organization makes it important to investigate possible ways to achieve a cost efficient process control of different metallurgical processes. This paper describes a research project, and proposes a human oriented Information Technology Strategy, ITS, for control of the Blast Furnace process. The method used is that of deductive reasoning from a description of the prevailing technological level and experiences from various development activities. The paper is based on experiences from the No. 2 Blast Furnace at Luleaa Works but the conclusions do not at this stage necessarily reflect the opinion of the management and personnel or reflect their intentions for system development at SSAB.

  1. The effect of fan and heat sink design on heat removal from microprocessor chips

    E-Print Network [OSTI]

    Baltrip, Kedra G

    1997-01-01T23:59:59.000Z

    Air flow and heat removal characteristics for fan/heat sink designs used to cool Pentium class processors were analyzed. Five designs were tested for fan speed, differential and static nozzle pressure, static fan pressure, fan input current...

  2. Numerical investigation of the heating process inside an industrial furnace

    E-Print Network [OSTI]

    Wolper, Pierre

    Numerical investigation of the heating process inside an industrial furnace Proposition: Combined furnace taking into account convective, conductive and radiative heat transfer. The model: Catalysis, Energy Materials, Performance Materials and Recycling. Each business area is divided into market

  3. Oil-Fired Boilers and Furnaces | Department of Energy

    Energy Savers [EERE]

    Oil-Fired Boilers and Furnaces Oil-Fired Boilers and Furnaces May 16, 2013 - 3:15pm Addthis Diagram of an oil boiler. New tanks are generally double-wall or have a spill container...

  4. Residential Two-Stage Gas Furnaces - Do They Save Energy?

    E-Print Network [OSTI]

    Lekov, Alex; Franco, Victor; Lutz, James

    2006-01-01T23:59:59.000Z

    of two-stage furnaces with BPM motors provides electricityof two-stage furnaces with BPM motors provides electricityPSC) and brushless permanent magnet (BPM) 1 . PSC motors are

  5. Design and fabrication of a tin-sulfide annealing furnace

    E-Print Network [OSTI]

    Lewis, Raymond (Raymond A.)

    2011-01-01T23:59:59.000Z

    A furnace was designed and its heat transfer properties were analyzed for use in annealing thin-film tins-ulfide solar cells. Tin sulfide has been explored as an earth abundant solar cell material, and the furnace was ...

  6. THE FURNACE COMBUSTION AND RADIATION CHARACTERISTICS OF METHANOL AND A METHANOL/COAL SLURRY

    E-Print Network [OSTI]

    Grosshandler, W.L.

    2010-01-01T23:59:59.000Z

    vol. ) in Methanol Furnace , 2 , . . . . . . . . , . , .Velocity Profiles in Methanol Furnace Temperature Profiles:to Pure Methanol . . . . . . . . . . . . , . . . . C02

  7. Residential Two-Stage Gas Furnaces - Do They Save Energy?

    E-Print Network [OSTI]

    Lekov, Alex; Franco, Victor; Lutz, James

    2006-01-01T23:59:59.000Z

    total fuel and electricity consumption under laboratoryto decrease the electricity consumption of furnaces, mainlytotal fuel and electricity consumption under laboratory

  8. assess fluvial fan: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    mounting setup was such that fan with uniform blades can be tested. Generally, fans have cut blades on the vehicle due to mounting accessories. We describe a patented design of...

  9. alluvial fan surfaces: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    mounting setup was such that fan with uniform blades can be tested. Generally, fans have cut blades on the vehicle due to mounting accessories. We describe a patented design of...

  10. alluvial fan nye: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    mounting setup was such that fan with uniform blades can be tested. Generally, fans have cut blades on the vehicle due to mounting accessories. We describe a patented design of...

  11. Cooling efficiency of a brushless direct current stand fan

    E-Print Network [OSTI]

    Yang, Bin; Schiavon, Stefano; Sekhar, Chandra; Cheong, David; Tham, Kwok Wai; Nazaroff, William W

    2015-01-01T23:59:59.000Z

    eq (°C) Front Side Fig. 4. Cooling effect comparison betweenmanikin distance. 3.1.2. Cooling Fan Efficiency (CFE) indexdevices [41-42]. Local cooling for front and side fan-

  12. Performance of ECM controlled VAV fan powered terminal units

    E-Print Network [OSTI]

    Cramlet, Andrew Charles

    2009-05-15T23:59:59.000Z

    Empirical performance models of fan airflow, primary airflow and power consumption were developed for series and parallel variable air volume fan powered terminal units. An experimental setup and test procedure were created to test the terminal...

  13. Cooling efficiency of a brushless direct current stand fan

    E-Print Network [OSTI]

    Yang, Bin; Schiavon, Stefano; Sekhar, Chandra; Cheong, David; Tham, Kwok Wai; Nazaroff, William W

    2015-01-01T23:59:59.000Z

    orientations for 24 °C dry-bulb temperature, fan speedchamber under four dry-bulb temperatures (24, 26, 28, and 30CFE index is influenced by dry-bulb temperature, fan speed

  14. Use of VFDs on Asphalt Plant Induced Draft Fans

    E-Print Network [OSTI]

    Anderson, G. R.; Case, P. L.; Lowery, J.

    2005-01-01T23:59:59.000Z

    Studies of 10 asphalt plants in the Intermountain Region have identified average ID fan energy savings of 68% by controlling airflow using Variable Frequency Drives (VFDs) on the fan motors in place of damper control (inlet or outlet). Average...

  15. Ultra-short nacelles for low fan pressure ratio propulsors

    E-Print Network [OSTI]

    Peters, Andreas, Ph. D. Massachusetts Institute of Technology

    2014-01-01T23:59:59.000Z

    This thesis addresses the uncharted inlet and nacelle design space for low pressure ratio fans for advanced aeroengines. A key feature in low fan pressure ratio (FPR) propulsors with short inlets and nacelles is the increased ...

  16. Fan-less long range alpha detector

    DOE Patents [OSTI]

    MacArthur, D.W.; Bounds, J.A.

    1994-05-10T23:59:59.000Z

    A fan-less long range alpha detector is disclosed which operates by using an electrical field between a signal plane and the surface or substance to be monitored for air ions created by collisions with alpha radiation. Without a fan, the detector can operate without the possibility of spreading dust and potential contamination into the atmosphere. A guard plane between the signal plane and the electrically conductive enclosure and maintained at the same voltage as the signal plane, reduces leakage currents. The detector can easily monitor soil, or other solid or liquid surfaces. 2 figures.

  17. Fan System Assessment Tool | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the YouTube|6721Energy 3_adv_battery.pdf More Fact Sheet:BetaFederalFall: EnergyFanFan

  18. A high temperature furnace The Sample Environment Group

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    ). It is designed to accommodate large samples, and use low quality cooling water. The furnace uses a tantalum heat also minimizing mass at the furnace centre. Tantalum and alumina were specified for these items723 A high temperature furnace The Sample Environment Group Neutron Division, Rutherford Appleton

  19. Insulation of Pipe Bends Improves Efficiency of Hot Oil Furnaces

    E-Print Network [OSTI]

    Haseltine, D. M.; Laffitte, R. D.

    of the convective sections. Consultation with the furnace manufacturer then revealed that furnaces made in the 1960's tended to not insulate the pipe bends in the convective section. When insulation was added within the covers of the pipe bends on one furnace...

  20. Proceedings of the 45th electric furnace conference

    SciTech Connect (OSTI)

    Not Available

    1988-01-01T23:59:59.000Z

    This book contains the proceedings of the 46th Electric Furnace Conference. Topics included are: EAF Dust Decomposition and Metals Recovery at ScanDust, Optimization of Electric Arc Furnace Process by Pneumatic Stirring, and Melt Down Control for Electric Arc Furnaces.

  1. Partial SOP for Tube Anneal Furnace, EML: 9/04 Instructions for temp controller for Anneal furnace

    E-Print Network [OSTI]

    Reif, Rafael

    Partial SOP for Tube Anneal Furnace, EML: 9/04 Instructions for temp controller for Anneal furnace the "C" clamp. Take the ceramic and quartz end caps off. 2. Load your samples into a quartz boat. Load

  2. APPLIANCE STANDARDS

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fan Light Kits External Power Supplies Walk-in Coolers & Freezers Commercial Refrigeration Equipment Refrigerators & Freezers Water Heaters CAC HP CAC HP Furnaces &...

  3. Record of Communication Concerning Ceiling Fan and Ceiling Fan Light Kit

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011 Strategic2 OPAM615_CostNSAR - TProcuringDepartmentDepartment

  4. Energy Savings in Electric Arc Furnace Melting

    E-Print Network [OSTI]

    Lubbeck, W.

    1982-01-01T23:59:59.000Z

    Arc furnace melting which at one time was almost exclusively used to produce alloy steel and steel castings is now widely accepted in the industry as an efficient process to produce all types of steel and iron. Presently, about 28% of steel...

  5. Covered Product Category: Residential Gas Furnaces

    Broader source: Energy.gov [DOE]

    FEMP provides acquisition guidance across a variety of product categories, including residential gas furnaces, which are an ENERGY STAR®-qualified product category. Federal laws and requirements mandate that agencies meet these efficiency requirements in all procurement and acquisition actions that are not specifically exempted by law.

  6. Waste Heat Recovery – Submerged Arc Furnaces (SAF) 

    E-Print Network [OSTI]

    O'Brien, T.

    2008-01-01T23:59:59.000Z

    designed consumes power and fuel that yields an energy efficiency of approximately 40% (Total Btu’s required to reduce to elemental form/ Btu Input). The vast majority of heat is lost to the atmosphere or cooling water system. The furnaces can be modified...

  7. Adjustable Speed- A Tool for Saving Energy Losses in Pumps, Fans, Fans, Blowers and Compressors

    E-Print Network [OSTI]

    Hickok, H. N.

    Petroleum and chemical plants of today are effectively cutting energy losses in their plants thermally, electrically, and mechanically in their process equipment. In rotating process equipment such as pumps, fans, compressors, and blowers, much...

  8. Knowing fans, knowing music : an exploration of fan interaction on Twitter

    E-Print Network [OSTI]

    McCollum, Nick

    2011-01-01T23:59:59.000Z

    and the Origins of Music Fandom in Nineteenth-CenturyAmerica. ” In Fandom: Identities and Communities in aWhy Study Fans? ” In Fandom: Identities and Communities in a

  9. Material challenges in ethylene pyrolysis furnace heater service

    SciTech Connect (OSTI)

    Ibarra, S.

    1980-02-01T23:59:59.000Z

    Operating temperatures of pyrolysis furnaces are sometimes in excess of 2000/sup 0/F (1100/sup 0/C). These temperatures are very detrimental to the life of the typical HK-40 furnace tubes which normally have a three to five year life in the hot section of these furnaces. Short life is attributed to rapid carburization of ID surfaces which subjects tubes to higher than normal stresses and results in creep cracking of furnace tubes. As an aid to understanding the materials problems the ethylene process will be presented, along with data on the carburization of furnace tubes.

  10. An introduction to financial econometrics Jianqing Fan

    E-Print Network [OSTI]

    Wang, Lily

    An introduction to financial econometrics Jianqing Fan Department of Operation Research econometrics? This simple question does not have a simple answer. The boundary of such an interdisciplinary speaking, financial econometrics is to study quantitative problems arising from finance. It uses sta

  11. Process control techniques for the Sidmar blast furnaces

    SciTech Connect (OSTI)

    Vandenberghe, D.; Bonte, L.; Nieuwerburgh, H. van [Sidmar N.V., Ghent (Belgium)

    1995-12-01T23:59:59.000Z

    The major challenge for modern blast furnace operation is the achievement of a very high productivity, excellent hot metal quality, low fuel consumption and longer blast furnace campaigns. The introduction of predictive models, decision supporting software and expert systems has reduced the standard deviation of the hot metal silicon content. The production loss due to the thermal state of the blast furnace has decreased three times since 1990. An appropriate control of the heat losses with high pulverized coal injection rates, is of the utmost importance for the life of the blast furnace. Different rules for the burden distribution of both blast furnaces are given. At blast furnace A, a peripheral gas flow is promoted, while at blast furnace B a more central gas flow is promoted.

  12. Speciation of Zn in Blast Furnace Sludge from Former Sedimentation Ponds Using Synchrotron Xray Diffraction, Fluorescence, and

    E-Print Network [OSTI]

    , University of Cologne, Albertus-Magnus-Platz, D-50923 Koln, Germany § Advanced Light Source, Lawrence *S Supporting Information ABSTRACT: Blast furnace sludge (BFS), an industrial waste generated in pig on a former BFS sedimentation pond site. Additionally, one fresh BFS was analyzed for comparison. We

  13. Fan-beam intensity modulated proton therapy

    SciTech Connect (OSTI)

    Hill, Patrick [Department of Radiation Oncology, University of Iowa Hospitals and Clinics, Iowa City, Iowa 52242 (United States)] [Department of Radiation Oncology, University of Iowa Hospitals and Clinics, Iowa City, Iowa 52242 (United States); Westerly, David [Department of Radiation Oncology, University of Colorado School of Medicine, Aurora, Colorado 80045 (United States)] [Department of Radiation Oncology, University of Colorado School of Medicine, Aurora, Colorado 80045 (United States); Mackie, Thomas [Medical Devices, Morgridge Institute for Research, University of Wisconsin, Madison, Wisconsin 53715 (United States)] [Medical Devices, Morgridge Institute for Research, University of Wisconsin, Madison, Wisconsin 53715 (United States)

    2013-11-15T23:59:59.000Z

    Purpose: This paper presents a concept for a proton therapy system capable of delivering intensity modulated proton therapy using a fan beam of protons. This system would allow present and future gantry-based facilities to deliver state-of-the-art proton therapy with the greater normal tissue sparing made possible by intensity modulation techniques.Methods: A method for producing a divergent fan beam of protons using a pair of electromagnetic quadrupoles is described and particle transport through the quadrupole doublet is simulated using a commercially available software package. To manipulate the fan beam of protons, a modulation device is developed. This modulator inserts or retracts acrylic leaves of varying thickness from subsections of the fan beam. Each subsection, or beam channel, creates what effectively becomes a beam spot within the fan area. Each channel is able to provide 0–255 mm of range shift for its associated beam spot, or stop the beam and act as an intensity modulator. Results of particle transport simulations through the quadrupole system are incorporated into the MCNPX Monte Carlo transport code along with a model of the range and intensity modulation device. Several design parameters were investigated and optimized, culminating in the ability to create topotherapy treatment plans using distal-edge tracking on both phantom and patient datasets.Results: Beam transport calculations show that a pair of electromagnetic quadrupoles can be used to create a divergent fan beam of 200 MeV protons over a distance of 2.1 m. The quadrupole lengths were 30 and 48 cm, respectively, with transverse field gradients less than 20 T/m, which is within the range of water-cooled magnets for the quadrupole radii used. MCNPX simulations of topotherapy treatment plans suggest that, when using the distal edge tracking delivery method, many delivery angles are more important than insisting on narrow beam channel widths in order to obtain conformal target coverage. Overall, the sharp distal falloff of a proton depth-dose distribution was found to provide sufficient control over the dose distribution to meet objectives, even with coarse lateral resolution and channel widths as large as 2 cm. Treatment plans on both phantom and patient data show that dose conformity suffers when treatments are delivered from less than approximately ten angles. Treatment time for a sample prostate delivery is estimated to be on the order of 10 min, and neutron production is estimated to be comparable to that found for existing collimated systems.Conclusions: Fan beam proton therapy is a method of delivering intensity modulated proton therapy which may be employed as an alternative to magnetic scanning systems. A fan beam of protons can be created by a set of quadrupole magnets and modified by a dual-purpose range and intensity modulator. This can be used to deliver inversely planned treatments, with spot intensities optimized to meet user defined dose objectives. Additionally, the ability of a fan beam delivery system to effectively treat multiple beam spots simultaneously may provide advantages as compared to spot scanning deliveries.

  14. Temperatures in the blast furnace refractory lining

    SciTech Connect (OSTI)

    Hebel, R.; Streuber, C. [Didier-M and P Energietechnik GmbH, Wiesbaden (Germany); Steiger, R. [Didier-M and P Engineering Services, Highland, IN (United States); Jeschar, R. [TU Clausthal (Germany). Inst. fuer Energieverfahrenstechnik und Brennstofftechnik

    1995-12-01T23:59:59.000Z

    The campaign life duration of a blast furnace is mainly determined by the condition of the refractory lining in heavy-duty zones such as the hearth, bosh, belly and lower stack. To achieve a desired lifetime, the temperature of the lining in these areas thereby proved to be the decisive controllable parameter. Low operating temperatures result in prolonged service life and are attained through high cooling efficiency. Besides the refractory grade chosen, the wear profile is mainly determined by the type of cooling system applied and the cooling intensity. Therefore, an appropriate compromise between long service life and energy losses has to be found in each case. In order to predict the service life of a lining it is important to know the wear condition at all times during the campaign. The paper describes the approaches the authors have made so far on European blast furnaces, on a theoretical and practical basis, on how to analyze the lining wear.

  15. CNEEC - Nanophotonic Light Trapping Tutorial by Shanhui Fan

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem NotEnergy,ARMForms About Batteries BatteriesCAESMission Welcome to the Center

  16. Reducing auxiliary power consumption with F. D. fans

    SciTech Connect (OSTI)

    Henson, G.E. (PSI Energy, Cayuga Generating Station, Cayuga, IN (US))

    1990-01-01T23:59:59.000Z

    On June 6, 1988, the Unit No. 1-A forced draft fan at Cayuga station failed in service. This failure and the subsequent replacement of the 1-A F.D. fan and 1.-B F.D. fan with a more energy efficient design, resulted in a reduction in auxiliary power consumption by 2,000 Kilo watts/hr. Annual savings are projected to be $129,000.00 for 1989. Cayuga station was designed and constructed with pressurized boilers. The forced draft fans supplied combustion air, and also were designed to force this air through the entire boiler. In 1975, induced draft (I.D.) fans were installed. This design change modified the boiler to a balanced draft system, which reduced the force or pressure of the air that the F.D. fans were required to supply. Operating as a balance draft unit, the station had considerably more F.D. fan capacity than was necessary. After the failure, a system and economic evaluation warranted a change in design specifications for the F.D. fans, with the quantity of air remaining unchanged, but supplied at a lower pressure. This paper deals with the cause of failure, economic details and justification of the new design fans, as well as the final testing of the fans after being placed in service.

  17. Mass and fans in attached sunspaces

    SciTech Connect (OSTI)

    Jones, R.W.; McFarland, R.D.; Lazarus, G.S.

    1982-01-01T23:59:59.000Z

    The effect of thermal storage mass on the performance of an attached sunspace is investigated for a particular design in Boston. Mass in the sunspace and in the adjoining building are compared. Performance is evaluated in terms of temperature conditions in the sunspace and delivery of useful solar heat to the adjoining building. The dependence of the results on the manner of heat delivery is studied. Both natural convection and fan-forced air flow are included.

  18. Sealed rotary hearth furnace with central bearing support

    DOE Patents [OSTI]

    Docherty, James P. (Carnegie, PA); Johnson, Beverly E. (Pittsburgh, PA); Beri, Joseph (Morgan, PA)

    1989-01-01T23:59:59.000Z

    The furnace has a hearth which rotates inside a stationary closed chamber and is supported therein on vertical cylindrical conduit which extends through the furnace floor and is supported by a single center bearing. The charge is deposited through the furnace roof on the rim of the hearth as it rotates and is moved toward the center of the hearth by rabbles. Externally generated hot gases are introduced into the furnace chamber below the hearth and rise through perforations in the hearth and up through the charge. Exhaust gases are withdrawn through the furnace roof. Treated charge drops from a center outlet on the hearth into the vertical cylindrical conduit which extends downwardly through the furnace floor to which it is also sealed.

  19. Benefits of ceramic fiber for saving energy in reheat furnaces

    SciTech Connect (OSTI)

    Norris, A. (Carborundum Co., Niagara Falls, NY (United States))

    1993-07-01T23:59:59.000Z

    Refractory ceramic fiber products offer thermal insulation investment in reheat furnaces by helping to keep operating cost low and product quality high. These products are used in a range of applications that include: furnace linings; charge and discharge door insulation; skidpipe insulation; and furnace repair and maintenance. The many product forms (blankets, modules, boards, textiles, and coatings) provide several key benefits: faster cycling, energy savings and personnel protection.

  20. Assessment of selected furnace technologies for RWMC waste

    SciTech Connect (OSTI)

    Batdorf, J.; Gillins, R. (Science Applications International Corp., Idaho Falls, ID (United States)); Anderson, G.L. (EG and G Idaho, Inc., Idaho Falls, ID (United States))

    1992-03-01T23:59:59.000Z

    This report provides a description and initial evaluation of five selected thermal treatment (furnace) technologies, in support of earlier thermal technologies scoping work for application to the Idaho National Engineering Laboratory Radioactive Waste Management Complex (RWMC) buried wastes. The cyclone furnace, molten salt processor, microwave melter, ausmelt (fuel fired lance) furnace, and molten metal processor technologies are evaluated. A system description and brief development history are provided. The state of development of each technology is assessed, relative to treatment of RWMC buried waste.

  1. Biological Kraft Chemical Recycle for Augmentation of Recovery Furnace Capacity

    SciTech Connect (OSTI)

    Stuart E. Strand

    2001-12-06T23:59:59.000Z

    The chemicals used in pulping of wood by the kraft process are recycled in the mill in the recovery furnace, which oxidizes organics while simultaneously reducing sulfate to sulfide. The recovery furnace is central to the economical operation of kraft pulp mills, but it also causes problems. The total pulp production of many mills is limited by the recovery furnace capacity, which cannot easily be increased. The furnace is one of the largest sources of air pollution (as reduced sulfur compounds) in the kraft pulp mill.

  2. Breakthrough Furnace Can Cut Solar Industry Costs (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2013-08-01T23:59:59.000Z

    A game-changing Optical Cavity Furnace (OCF), developed by NREL, uses optics to heat and purify solar cells at unmatched precision, while also boosting the cells' efficiency.

  3. Waste Heat Reduction and Recovery for Improving Furnace Efficiency...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Productivity and Emissions Performance: A BestPractices Process Heating Technical Brief Waste Heat Reduction and Recovery for Improving Furnace Efficiency, Productivity and...

  4. Control of carbon balance in a silicon smelting furnace

    DOE Patents [OSTI]

    Dosaj, V.D.; Haines, C.M.; May, J.B.; Oleson, J.D.

    1992-12-29T23:59:59.000Z

    The present invention is a process for the carbothermic reduction of silicon dioxide to form elemental silicon. Carbon balance of the process is assessed by measuring the amount of carbon monoxide evolved in offgas exiting the furnace. A ratio of the amount of carbon monoxide evolved and the amount of silicon dioxide added to the furnace is determined. Based on this ratio, the carbon balance of the furnace can be determined and carbon feed can be adjusted to maintain the furnace in carbon balance.

  5. Combustion in a multiburner furnace with selective flow of oxygen...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    in a multiburner furnace with selective flow of oxygen Re-direct Destination: Improved operational characteristics such as improved fuel efficiency, reduction of NOx formation,...

  6. Development of Power-head based Fan Airflow Station

    E-Print Network [OSTI]

    Wang, G.; Liu, M.

    2005-01-01T23:59:59.000Z

    related to the measured fan speed. Actually the measured fan speed is assumed to equal the motor synchronous speed, which is proportional to the VFD frequency. Theoretically it is not true. The difference between the synchronous speed and motor speed... the basic theory, experiment and results of the power-head based airflow station. Theory Figure 1 shows variable speed fan connection schematic. VFD is normally installed on the motor to adjust the motor speed by modulating frequency. Typically...

  7. Morphology and seismic stratigraphy of the Toyama deep sea fan 

    E-Print Network [OSTI]

    Shepherd, David Barton

    1990-01-01T23:59:59.000Z

    of the National Geophysical Data Center (NGDC) was obtained from the Geodynamics Research Institute at Texas A&M University, and along with additional data obtained from NAVOCEANO, provided significant control for mapping in the study area (Figure 9). The GSJ.... C. Hilde The Toyama Deep Sea Fan, a contemporary depositional feature located in the Japan Sea, is a canyon-fed elongate fan system with pronounced lobes in both the Yamato and Japan Basins. The Toyama Fan is the eighth largest modern fan system...

  8. Molten metal holder furnace and casting system incorporating the molten metal holder furnace

    DOE Patents [OSTI]

    Kinosz, Michael J. (Apollo, PA); Meyer, Thomas N. (Murrysville, PA)

    2003-02-11T23:59:59.000Z

    A bottom heated holder furnace (12) for containing a supply of molten metal includes a storage vessel (30) having sidewalls (32) and a bottom wall (34) defining a molten metal receiving chamber (36). A furnace insulating layer (42) lines the molten metal receiving chamber (36). A thermally conductive heat exchanger block (54) is located at the bottom of the molten metal receiving chamber (36) for heating the supply of molten metal. The heat exchanger block (54) includes a bottom face (65), side faces (66), and a top face (67). The heat exchanger block (54) includes a plurality of electrical heaters (70) extending therein and projecting outward from at least one of the faces of the heat exchanger block (54), and further extending through the furnace insulating layer (42) and one of the sidewalls (32) of the storage vessel (30) for connection to a source of electrical power. A sealing layer (50) covers the bottom face (65) and side faces (66) of the heat exchanger block (54) such that the heat exchanger block (54) is substantially separated from contact with the furnace insulating layer (42).

  9. Furnaces and Boilers | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed off Energy.gov. Are you sure you want toworldPowerHome| Department ofForms FormsProjectsFurnaces and

  10. List of Furnaces Incentives | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOf Kilauea Volcano,LakefrontLighthouseEvaporative CoolersFurnaces

  11. Furnace Pressure Controllers | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdf Flash2006-52.pdf0.pdfDepartment ofEnergy 3Fungible and CompatibleFurnace

  12. Furnaces and Boilers | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdf Flash2006-52.pdf0.pdfDepartment ofEnergy 3Fungible andFurnaces and Boilers

  13. Breakthrough Furnace Can Cut Solar Industry Costs

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced Materials FindAdvanced Materials AdvancedFurnace can Cut Solar

  14. Depositional processes and facies of Trail Fan sandflat: Death Valley, California

    SciTech Connect (OSTI)

    Malicse, A.E.; Mazzullo, J.M.; Eide, M.G. (Texas A and M Univ., College Station, TX (United States))

    1992-01-01T23:59:59.000Z

    A study was conducted of the alluvial fan to playa transition along Trail fan in Death Valley, California with the primary objectives of documenting sedimentary facies and textural features of so-called arid region sandflat. The study involved description of sedimentary structures along trenches and meter-deep cores, description of surficial bedforms, and collection of samples for lithological analyses. Surficial features of Trail Fan sandflat gradually change downdip as a function of texture, ground water depth, and runoff. They include: (1) tongues of mudflows; (2) shallow braided channels that taper out into mudflat or coalesced into single channels; (3) puffy grounds; and (4) flat-smooth surface of the mudflat. The sediment's texture shows a fining downdip trend except when the surface are draped by mudflows. Four facies are distinguished downdip from the alluvial fan to playa mudflat. Facies 1 consists of massive, light gray, matrix to grain supported gravel, and is interpreted as debris flow or streamflow deposit. Facies 2 consists of thin-bedded (0.6--0.06 m), tan, massive, gravelly mud and is interpreted as mudflow deposit. Facies 2 consists of repeated sequences of thick-bedded (0.15 to 0.3 m), massive to planar stratified, graveliferous sand with mud drape and is interpreted as poorly sorted sheetflood or streamflow deposit. Facies 4 consist of light gray, planar laminated, coarsening upward mud to muddy sand, and is interpreted as mudflat facies. This study shows that arid region sandflat facies is a mosaic of mudflow, debris flow, sheetflood and streamflow deposits and is more complex than previous sandflat models described.

  15. Modeling of ECM Controlled Series Fan-powered VAV Terminal Units

    E-Print Network [OSTI]

    Yin, Peng

    2011-10-21T23:59:59.000Z

    Semi-empirical models for series fan-powered variable air volume terminal units (FPTUs) were developed based on models of the primary, plenum, fan airflow and the fan power consumption. The experimental setups and test procedures were developed...

  16. Training: Fan Systems | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreakingMayDepartmentTest for PumpingThe|of Energy TopCharterCompressed AirFan

  17. Columbia Water and Light- Commercial Super Saver Loans

    Broader source: Energy.gov [DOE]

    Columbia Water and Light (CWL) provides Commercial Super Saver Loans, which allow C&I rate customers to replace a furnace along with a new central air conditioner or heat pump with an...

  18. Automatic Control System of Car-Bottom Reheating Furnace

    E-Print Network [OSTI]

    Xueqiao, M.; Weilian, X.; Hongchen, Z.

    that the furnaces are not modified in their construction. This paper, however, will give you a definite answer to this question. One of the most effective methods for increasing the calorific efficiency is to improve thermal control systems of reheating furnaces...

  19. STRIP TEMPERATURE IN A METAL COATING LINE ANNEALING FURNACE

    E-Print Network [OSTI]

    McGuinness, Mark

    continuously through the furnace, to certain temperatures and then cooling it, resulting in a change, and subsequent coating. The temperature along the furnace is controlled by varying the power supplied to the heating elements and by use of cooling tubes. The cooling tubes are located in the last half

  20. Advanced steel reheat furnaces: Research and development. Final report

    SciTech Connect (OSTI)

    Nguyen, Q.; Koppang, R.; Maly, P.; Moyeda, D. [Energy and Environmental Research Corp., Irvine, CA (United States); Li, X. [Air Products and Chemicals, Inc., Allentown, PA (United States)

    1999-01-14T23:59:59.000Z

    The purpose of this report is to present the results of two phases of a three-phase project to develop and evaluate an Advanced Steel Reheat Furnace (SSRF) concept which incorporates two proven and commercialized technologies, oxy-fuel enriched air (OEA) combustion and gas reburning (GR). The combined technologies aim to improve furnace productivity with higher flame radiant heat transfer in the heating zones of a steel reheat furnace while controlling potentially higher NOx emissions from these zones. The project was conducted under a contract sponsored by the Department of Energy (DOE). Specifically, this report summarizes the results of a modeling study and an experimental study to define and evaluate the issues which affect the integration and performance of the combined technologies. Section 2.0 of the report describes the technical approach uses in the development and evaluation of the advanced steel reheat furnace. Section 3.0 presents results of the modeling study applied to a model steel furnace. Experimental validation of the modeling results obtained from EER`s Fuel Evaluation Facility (FEF) pilot-scale furnace discussed in Section 4.0. Section 5.0 provides an economic evaluation on the cost effectiveness of the advanced reheat furnace concept. Section 6.0 concludes the report with recommendations on the applicability of the combined technologies of steel reheat furnaces.

  1. C AND M BOTTOM LOADING FURNACE TEST DATA

    SciTech Connect (OSTI)

    Lemonds, D

    2005-08-01T23:59:59.000Z

    The test was performed to determine the response of the HBL Phase III Glovebox during C&M Bottom Loading Furnace operations. In addition the data maybe used to benchmark a heat transfer model of the HBL Phase III Glovebox and Furnace.

  2. Heat pipes and use of heat pipes in furnace exhaust

    DOE Patents [OSTI]

    Polcyn, Adam D. (Pittsburgh, PA)

    2010-12-28T23:59:59.000Z

    An array of a plurality of heat pipe are mounted in spaced relationship to one another with the hot end of the heat pipes in a heated environment, e.g. the exhaust flue of a furnace, and the cold end outside the furnace. Heat conversion equipment is connected to the cold end of the heat pipes.

  3. A study of the design procedure and the performance characteristics of axial exhaust fans

    E-Print Network [OSTI]

    Barker, Gilbert Hamilton

    1949-01-01T23:59:59.000Z

    , unnecessary to balance any set of blades used~ because no fan vibration occurred during testing, Ths motor f or the fan vas a one third horsepower motor The original research plan called for construction of onjy one set of blades vitA an aspect, ratio... . . . . . . . . . . . ~ . ~ . 51 7, Fan Efficiency of L8-inch Fans . . . . . . . . . . . . . . , . 52 8 Variation of Fan Eff'iciency sith Pitch 53 Variation of Fau Efficiency with Pitch . . . . . . . . . . . 54 10. Fan Capacity for Blade with Aspect' Ratio ~ Ons...

  4. Economics of Condensing Gas Furnaces and Water Heaters Potential in Residential Single Family Homes

    E-Print Network [OSTI]

    Lekov, Alex

    2011-01-01T23:59:59.000Z

    Star Residential Water Heaters: Final criteria analysis.gas furnaces and water heaters in US new constructioncondensing furnace and water heater and the pay-back period

  5. 2015-02-13 Issuance: Test Procedure for Furnaces and Boilers...

    Office of Environmental Management (EM)

    3 Issuance: Test Procedure for Furnaces and Boilers; Notice of Proposed Rulemaking 2015-02-13 Issuance: Test Procedure for Furnaces and Boilers; Notice of Proposed Rulemaking This...

  6. Method of operating a centrifugal plasma arc furnace

    DOE Patents [OSTI]

    Kujawa, S.T.; Battleson, D.M.; Rademacher, E.L. Jr.; Cashell, P.V.; Filius, K.D.; Flannery, P.A.; Whitworth, C.G.

    1998-03-24T23:59:59.000Z

    A centrifugal plasma arc furnace is used to vitrify contaminated soils and other waste materials. An assessment of the characteristics of the waste is performed prior to introducing the waste into the furnace. Based on the assessment, a predetermined amount of iron is added to each batch of waste. The waste is melted in an oxidizing atmosphere into a slag. The added iron is oxidized into Fe{sub 3}O{sub 4}. Time of exposure to oxygen is controlled so that the iron does not oxidize into Fe{sub 2}O{sub 3}. Slag in the furnace remains relatively non-viscous and consequently it pours out of the furnace readily. Cooled and solidified slag produced by the furnace is very resistant to groundwater leaching. The slag can be safely buried in the earth without fear of contaminating groundwater. 3 figs.

  7. Recent improvements in casthouse practices at the Kwangyang blast furnaces

    SciTech Connect (OSTI)

    Jang, Y.S.; Han, K.W.; Kim, K.Y.; Cho, B.R.; Hur, N.S.

    1997-12-31T23:59:59.000Z

    POSCO`s Kwangyang blast furnaces have continuously carried out high production and low fuel operation under a high pulverized coal injection rate without complications since the Kwangyang No. 1 blast furnace was blown-in in 1987. The Kwangyang blast furnaces have focused on improving the work environment for the increase of competitive power in terms of increased production, cost savings, and management of optimum manpower through use of low cost fuel and raw material. At this time, the casthouse work lags behind most work in the blast furnace. Therefore, the Kwangyang blast furnaces have adopted a remote control system for the casthouse equipment to solve complications in the casthouse work due to high temperature and fumes. As the result, the casthouse workers can work in clean air and the number of workers has been reduced to 9.5 personnel per shift by reduction of the workload.

  8. Effect of furnace atmosphere on E-glass foaming

    SciTech Connect (OSTI)

    Kim, Dong-Sang; Dutton, Bryan C.; Hrma, Pavel R.; Pilon, Laurent

    2006-12-01T23:59:59.000Z

    The effect of furnace atmosphere on E-glass foaming generated in crucible has been studied with a specific goal to understand the impact of increased water content on foaming in oxy-fired furnaces. E-glass foams were generated in a fused-quartz crucible located in a quartz window furnace equipped with video recording. The present study showed that humidity in the furnace atmosphere destabilizes foam, while other gases have little effect on foam stability. This study suggests that the higher foaming in oxy-fired furnace compared to air-fired is caused by the effect of water on early sulfate decomposition, promoting more efficient refining gas generation from sulfate (known as “dilution effect”).

  9. Method of operating a centrifugal plasma arc furnace

    DOE Patents [OSTI]

    Kujawa, Stephan T. (Butte, MT); Battleson, Daniel M. (Butte, MT); Rademacher, Jr., Edward L. (Butte, MT); Cashell, Patrick V. (Butte, MT); Filius, Krag D. (Butte, MT); Flannery, Philip A. (Ramsey, MT); Whitworth, Clarence G. (Butte, MT)

    1998-01-01T23:59:59.000Z

    A centrifugal plasma arc furnace is used to vitrify contaminated soils and other waste materials. An assessment of the characteristics of the waste is performed prior to introducing the waste into the furnace. Based on the assessment, a predetermined amount of iron is added to each batch of waste. The waste is melted in an oxidizing atmosphere into a slag. The added iron is oxidized into Fe.sub.3 O.sub.4. Time of exposure to oxygen is controlled so that the iron does not oxidize into Fe.sub.2 O.sub.3. Slag in the furnace remains relatively non-viscous and consequently it pours out of the furnace readily. Cooled and solidified slag produced by the furnace is very resistant to groundwater leaching. The slag can be safely buried in the earth without fear of contaminating groundwater.

  10. Choosing the right boiler air fans at Weston 4

    SciTech Connect (OSTI)

    Spring, N.

    2009-04-15T23:59:59.000Z

    When it came to choosing the three 'big' boiler air fans - forced draft, induced draft and primary air, the decision revolved around efficiency. The decision making process for fan selection for the Western 4 supercritical coal-fired plant is described in this article. 3 photos.

  11. Heuristics for Balancing Turbine Fans Samir V. Amiouny

    E-Print Network [OSTI]

    Bartholdi III, John J.

    Reiger, 1986. In some cases, such as in the constructionof hydraulic, steam or gas turbines, fan bladesHeuristics for Balancing Turbine Fans Samir V. Amiouny John J. Bartholdi, III John H. Vande Vate April 20, 1997 Abstract We develop heuristics for a problem that models the static balancing of turbine

  12. Method for fabricating fan-fold shielded electrical leads

    DOE Patents [OSTI]

    Rohatgi, R.R.; Cowan, T.E.

    1994-12-27T23:59:59.000Z

    Fan-folded electrical leads made from copper cladded Kapton, for example, with the copper cladding on one side serving as a ground plane and the copper cladding on the other side being etched to form the leads. The Kapton is fan folded with the leads located at the bottom of the fan-folds. Electrical connections are made by partially opening the folds of the fan and soldering, for example, the connections directly to the ground plane and/or the lead. The fan folded arrangement produces a number of advantages, such as electrically shielding the leads from the environment, is totally non-magnetic, and has a very low thermal conductivity, while being easy to fabricate. 3 figures.

  13. Fan-In Communications On A Cray Gemini Interconnect

    SciTech Connect (OSTI)

    Jones, Terry R [ORNL] [ORNL; Settlemyer, Bradley W [ORNL] [ORNL

    2014-01-01T23:59:59.000Z

    Using the Cray Gemini interconnect as our platform, we present a study of an important class of communication operations the fan-in communication pattern. By its nature, fan-in communications form hot spots that present significant challenges for any interconnect fabric and communication software stack. Yet despite the inherent challenges, these communication patterns are common in both applications (which often perform reductions and other collective operations that include fan-in communication such as barriers) and system software (where they assume an important role within parallel file systems and other components requiring high-bandwidth or low-latency I/O). Our study determines the effectiveness of differing clientserver fan-in strategies. We describe fan-in performance in terms of aggregate bandwidth in the presence of varying degrees of congestion, as well as several other key attributes. Comparison numbers are presented for the Cray Aries interconnect. Finally, we provide recommended communication strategies based on our findings.

  14. Costs and benefits of energy efficiency improvements in ceiling fans

    SciTech Connect (OSTI)

    Shah, Nihar; Sathaye, Nakul; Phadke, Amol; Letschert, Virginie [Lawrence Berkeley National Lab., CA (United States). Environmental Energy Technology Division] [Lawrence Berkeley National Lab., CA (United States). Environmental Energy Technology Division

    2013-10-15T23:59:59.000Z

    Ceiling fans contribute significantly to residential electricity consumption, especially in developing countries with warm climates. The paper provides analysis of costs and benefits of several options to improve the efficiency of ceiling fans to assess the global potential for electricity savings and green house gas (GHG) emission reductions. Ceiling fan efficiency can be cost-effectively improved by at least 50% using commercially available technology. If these efficiency improvements are implemented in all ceiling fans sold by 2020, 70 terawatt hours per year could be saved and 25 million metric tons of carbon dioxide equivalent (CO2-e) emissions per year could be avoided, globally. We assess how policies and programs such as standards, labels, and financial incentives can be used to accelerate the adoption of efficient ceiling fans in order to realize potential savings.

  15. Laurentian fan: morphology, sediments, processes, and growth pattern

    SciTech Connect (OSTI)

    Stow, D.A.V.

    1981-03-01T23:59:59.000Z

    Thick sediment accumulations in deep water provide a new target in the search for oil, and require an innovative approach to hydrocarbon exploration. The Laurentian fan is a large, deep-sea (2000 to 5000 m) fan in the western North Atlantic, and has been the major depocenter off Nova Scotia since at least the early Tertiary. The main development of the present depositional and erosional fan morphology in the past 2 to 3 m.y. was closely related to onshore glacial history. The slope above the fan has been the site of rapid sedimentation and consequent slumping. A network of tributaries on the upper fan appears to feed three main channel systens incised up to 800 m between broad asymmetric levees. These channels meander widely across the lower fan, then die out abruptly and pass into a lobate suprafan. Differences between the Laurentian fan and typical fan models result, in part, from the muddy nature of the sediment and the supply system. The channels contain thick, coarse gravels which probably grade distally into sandy lobes. Both should produce good reservoir bodies with suitable source and trapping mechanisms. Fine-grained sediments were more important in fan construction. Interbedded turbidites, contourites, and hemipelagites are present in the late Quaternary-Holocene sequence. The distribution of these sediments and, in particular, the recognition of structural sequences, textural trends, and fabric types in the fine-grained turbidites can be used to characterize particular parts of the fan environment. The development of this approach should prove useful in future hydrocarbon exploration.

  16. Use of sinter in Taranto blast furnaces

    SciTech Connect (OSTI)

    Palchetti, M.; Palomba, R.; Tolino, E. [CSM Taranto (Italy); Salvatore, E.; Calcagni, M. [ILP Taranto Works (Italy)

    1995-12-01T23:59:59.000Z

    Lowering the production cost of the crude steel is the ultimate aim when planning operations in an integrated steelworks. Designing the Blast Furnace burden is a crucial point in this context, for which account must be taken not only of the raw materials cost but also of other important aims such as maximum plants productivity, minimum possible energy consumption, a proper product quality at the various production stages. This paper describes the criteria used in Ilva Laminati Piani (ILP) Taranto Works to design the BF burden, based on sinter, using the results of extensive research activity carried out by Centro Sviluppo Materiali (CSM), the Research Center with major involvement with the R and D of the Italian Steel Industry. Great attention is paid at ILP to the sinter quality in order to obtain the optimum performance of the BFs, which are operating at high productivity, high pulverized coal rate and low fuel consumption.

  17. No. 5 blast furnace 1995 reline and upgrade

    SciTech Connect (OSTI)

    Kakascik, T.F. Jr.

    1996-12-31T23:59:59.000Z

    The 1995 reline of No. 5 Blast Furnace is an undertaking which has never been approached in previous relines of any blast furnace in the history of Wheeling Pittsburgh Steel Corporation. The scope of the project is such that it represents a radical departure from W.P.S.C.`s traditional methods of ironmaking. The reline of No. 5 Blast Furnace is one of the largest capital improvements performed at W.P.S.C. Blast Furnaces. The improvements made at one single time are taking a furnace from 1960`s technology into the 21st century. With this in mind, employee training was one of the largest parts of the project. Training for the automated stockhouse, castfloor, new skip drive, new instrumentation, new castfloor equipment, hydraulics and overall furnace operation were an absolute necessity. The reline has laid the ground work to give the Corporation an efficient, higher productive, modern Blast Furnace which will place W.P.S.C. in the world class category in ironmaking well into the 21st century.

  18. Application of AI techniques to blast furnace operations

    SciTech Connect (OSTI)

    Iida, Osamu; Ushijima, Yuichi; Sawada, Toshiro [Kawasaki Steel Corp., Kurashiki (Japan)

    1995-10-01T23:59:59.000Z

    It was during the first stages of application of artificial intelligence (AI) to industrial fields, that the ironmaking division of Mizushima works at Kawasaki Steel recognized its potential. Since that time, the division has sought applications for these techniques to solve various problems. AI techniques applied to control the No. 3 blast furnace operations at the Mizushima works include: Blast furnace control by a diagnostic type of expert system that gives guidance to the actions required for blast furnace operation as well as control of furnace heat by automatically setting blast temperature; Hot stove combustion control by a combination of fuzzy inference and a physical model to insure good thermal efficiency of the stove; and blast furnace burden control using neural networks makes it possible to connect the pattern of gas flow distribution with the condition of the furnace. Experience of AI to control the blast furnace and other ironmaking operations has proved its capability for achieving automation and increased operating efficiency. The benefits are very high. For these reasons, the applications of AI techniques will be extended in the future and new techniques studied to further improve the power of AI.

  19. Particle trajectories and acceleration during 3D fan reconnection

    E-Print Network [OSTI]

    S. Dalla; P. K. Browning

    2008-11-07T23:59:59.000Z

    Context. The primary energy release in solar flares is almost certainly due to magnetic reconnection, making this a strong candidate as a mechanism for particle acceleration. While particle acceleration in 2D geometries has been widely studied, investigations in 3D are a recent development. Two main classes of reconnection regimes at a 3D magnetic null point have been identified: fan and spine reconnection Aims. Here we investigate particle trajectories and acceleration during reconnection at a 3D null point, using a test particle numerical code, and compare the efficiency of the fan and spine regimes in generating an energetic particle population. Methods. We calculated the time evolution of the energy spectra. We discuss the geometry of particle escape from the two configurations and characterise the trapped and escaped populations. Results. We find that fan reconnection is less efficent than spine reconnection in providing seed particles to the region of strong electric field where acceleration is possible. The establishment of a steady-state spectrum requires approximately double the time in fan reconnection. The steady-state energy spectrum at intermediate energies (protons 1 keV to 0.1 MeV) is comparable in the fan and spine regimes. While in spine reconnection particle escape takes place in two symmetric jets along the spine, in fan reconnection no jets are produced and particles escape in the fan plane, in a ribbon-like structure.

  20. Energy Conservation Program for Consumer Products: Test Procedures for Furnaces and Boilers, Comment Period Extension

    Broader source: Energy.gov [DOE]

    Energy Conservation Program for Consumer Products: Test Procedures for Furnaces and Boilers, Comment Period Extension

  1. Light trapping in photonic crystals Ken Xingze Wang,ab

    E-Print Network [OSTI]

    Cui, Yi

    Light trapping in photonic crystals Ken Xingze Wang,ab Zongfu Yu,bc Victor Liu,bd Aaswath Raman,b Yi Cuief and Shanhui Fan*b We consider light trapping in photonic crystals in the weak material-integrated absorption enhancement by light trapping is proportional to the photonic density of states. The tight bound

  2. Fallout fans: Negotiations over text integrity in the age of the active audience

    E-Print Network [OSTI]

    Milner, Ryan M.

    2008-07-31T23:59:59.000Z

    of these commentaries on the new economy are using the terms, ?fan,? ?fandom,? or ?fan culture,? yet their models rest on the same social behaviors and emotional commitments that fan scholars have been researching over the past several decades? (Jenkins, 2007, p. 359...), three preeminent fan scholars, declared that we have reached the ?fandom is beautiful? phase of fan studies (p. 3). Such claims about fan influence have also been made by influential fan scholar Henry Jenkins (2006a, 2006b, 2007), indicating a shift...

  3. TRACES Centre Thermo GFS35 Graphite Furnace Spectrometer

    E-Print Network [OSTI]

    Wells, Mathew G. - Department of Physical and Environmental Sciences, University of Toronto

    TRACES Centre Thermo GFS35 Graphite Furnace Spectrometer Standard Operating Procedure 1. Turn. Click on the lamp icon a. ID the lamp of choice and click the `Off' button to `On' b. Non-Thermo lamps

  4. Valorization of Automotive Shredder Residues in metallurgical furnaces Project REFORBA

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    ) and the electric arc furnace (EAF) routes, P1 could be used as substitute for coal or coke, and P2 could replace with raw materials cheaper than coke. As additional potential benefits the amount of CO2 generated

  5. Operating experience with 100% pellet burden on Amanda blast furnace

    SciTech Connect (OSTI)

    Keaton, D.E.; Minakawa, T. (Armco Steel Co., Middletown, OH (United States). Ironmaking Dept.)

    1993-01-01T23:59:59.000Z

    A number of significant changes in operations at the Ashland Works of the Armco Steel Company occurred in 1992 which directly impacted the Amanda Blast Furnace operation. These changes included the shutdown of the hot strip mill which resulted in coke oven gas enrichment of the Amanda stoves and an increase of 75 C in hot blast temperature, transition to 100% continuous cast operation which resulted in increased variation of the hot metal demand, and the July idling of the sinter plant. Historically, the Amanda Blast Furnace burden was 30% fluxed sinter and 70% acid pellet. It was anticipated that the change to 100% pellet burden would require changes in charging practice and alter furnace performance. The paper gives a general furnace description and then describes the burden characteristics, operating practice with 30% sinter/70% acid pellet burden, preparations for the 100% acid pellet burden operation, the 100% acid pellet operation, and the 100% fluxed pellet burden operation.

  6. Effect of furnace atmosphere on E-glass foaming

    E-Print Network [OSTI]

    Kim, D. S.; Dutton, Bryan C.; Hrma, Pavel R.; Pilon, Laurent

    2006-01-01T23:59:59.000Z

    oxy-fired furnaces. E-glass foams were generated in a fused-81.05.K 1. Introduction Glass foams generated in glass-that the stability of E-glass foam decreased with increasing

  7. Furnace Controls Using High Temperature Preheated Combustion Air

    E-Print Network [OSTI]

    Gonzales, J. M.; Rebello, W. J.

    1981-01-01T23:59:59.000Z

    FURNACE CONTROLS USING HIGH TEMPERATURE PREHEATED COMBUSTION AIR Jeffrey M. Gonzalez Wilfred J. Rebello GTE Products Corporation PAR Enterprises, Inc. Towanda, Pennsylvania Fairfax, Virginia ABSTRACT GTE Products Corporation (Towanda... available ratio control apparatus. Various control sys (I) was the development of a different way of looking at combustion. As preheated combustion air temperatures increase, excess air Industrial furnaces generally utilize air as the basic source...

  8. Automatic thermocouple positioner for use in vacuum furnaces

    DOE Patents [OSTI]

    Mee, David K. (Knoxville, TN); Stephens, Albert E. (Knoxville, TN)

    1981-01-01T23:59:59.000Z

    The invention is a simple and reliable mechanical arrangement for automatically positioning a thermocouple-carrying rod in a vacuum-furnace assembly of the kind including a casing, a furnace mounted in the casing, and a charge-containing crucible mounted in the furnace for vertical movement between a lower (loading) position and a raised (charge-melting) position. In a preferred embodiment, a welded-diaphragm metal bellows is mounted above the furnace, the upper end of the bellows being fixed against movement and the lower end of the bellows being affixed to support means for a thermocouple-carrying rod which is vertically oriented and extends freely through the furnace lid toward the mouth of the crucible. The support means and rod are mounted for relative vertical movement. Before pumpdown of the furnace, the differential pressure acting on the bellows causes it to contract and lift the thermocouple rod to a position where it will not be contacted by the crucible charge when the crucible is elevated to its raised position. During pumpdown, the bellows expands downward, lowering the thermocouple rod and its support. The bellows expands downward beyond a point where downward movement of the thermocouple rod is arrested by contact with the crucible charge and to a point where the upper end of the thermocouple extends well above the thermocouple support. During subsequent melting of the charge, the thermocouple sinks into the melt to provide an accurate measurement of melt temperatures.

  9. Modelling of multiphase flow in ironmaking blast furnace

    SciTech Connect (OSTI)

    Dong, X.F.; Yu, A.B.; Burgess, J.M.; Pinson, D.; Chew, S.; Zulli, P. [University of New South Wales, Sydney, NSW (Australia). School for Material Science and Engineering

    2009-01-15T23:59:59.000Z

    A mathematical model for the four-phase (gas, powder, liquid, and solids) flow in a two-dimensional ironmaking blast furnace is presented by extending the existing two-fluid flow models. The model describes the motion of gas, solid, and powder phases, based on the continuum approach, and implements the so-called force balance model for the flow of liquids, such as metal and slag in a blast furnace. The model results demonstrate a solid stagnant zone and dense powder hold-up region, as well as a dense liquid flow region that exists in the lower part of a blast furnace, which are consistent with the experimental observations reported in the literature. The simulation is extended to investigate the effects of packing properties and operational conditions on the flow and the volume fraction distribution of each phase in a blast furnace. It is found that solid movement has a significant effect on powder holdup distribution. Small solid particles and low porosity distribution are predicted to affect the fluid flow considerably, and this can cause deterioration in bed permeability. The dynamic powder holdup in a furnace increases significantly with the increase of powder diameter. The findings should be useful to better understand and control blast furnace operations.

  10. Automatic thermocouple positioner for use in vacuum furnaces

    DOE Patents [OSTI]

    Mee, D.K.; Stephens, A.E.

    1980-06-06T23:59:59.000Z

    The invention is a simple and reliable mechanical arrangement for automatically positioning a thermocouple-carrying rod in a vacuum-furnace assembly of the kind including a casing, a furnace mounted in the casing, and a charge-containing crucible mounted in the furnace for vertical movement between a lower (loading) position and a raised (charge-melting) position. In a preferred embodiment, a welded-diaphragm metal bellows is mounted above the furnace, the upper end of the bellows being fixed against movement and the lower end of the bellows being affixed to support means for a thermocouple-carrying rod which is vertically oriented and extends freely through the furnace lid toward the mouth of the crucible. The support means and rod are mounted for relative vertical movement. Before pumpdown of the furnace, the differential pressure acting on the bellows causes it to contract and lift the thermocouple rod to a position where it will not be contacted by the crucible charge when the crucible is elevated to its raised position. During pumpdown, the bellows expands downward, lowering the thermocouple rod and its support. The bellows expands downward beyond a point where downward movement of the thermocouple rod is arrested by contact with the crucible charge and to a point where the upper end of the thermocouple extends well above the thermocouple support. During subsequent melting of the charge, the thermocouple sinks into the melt to provide an accurate measurement of melt temperatures.

  11. High Efficiency Fans and High Efficiency Electrical Motors

    E-Print Network [OSTI]

    Breedlove, C. W.

    Replacing nominal efficient electrical motors with premium efficiency can save on electrical power costs in cotton gins. Connected horsepower load on industrial air fans is approximately 60% of the total horsepower in a typical cotton gin...

  12. alluvial fan sedimentation: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    alluvial fan of the Murray-Darling Basin in (more) Timms, Wendy Amanda 2001-01-01 22 Kinematic wave model of bed profiles in alluvial channels Texas A&M University - TxSpace...

  13. Modeling and ecodesigning crossflow ventilation fans with Mathematica

    E-Print Network [OSTI]

    Argentini, Gianluca

    2010-01-01T23:59:59.000Z

    The efficiency of a simple model of crossflow fan is maximized when the geometry depends on a design parameter. The flow field is numerically computed using a Galerkin method for solving a Poisson partial differential equation.

  14. Minor League Fan Satisfaction with the Season Ticket Selling Process

    E-Print Network [OSTI]

    Reese, Jason D.

    2011-08-08T23:59:59.000Z

    the knowledge of sport marketing. Without their assistance and confidence in me, this study would not have existed. vi TABLE OF CONTENTS Page ABSTRACT... ................................................................................ 1 II REVIEW OF LITERATURE ............................................................... 6 Fan Satisfaction .............................................................................. 6 Marketing Activities...

  15. Recycling of electric-arc-furnace dust

    SciTech Connect (OSTI)

    Sresty, G.C.

    1990-05-01T23:59:59.000Z

    Electric arc furnace (EAF) dust is one of the largest solid waste streams produced by steel mills, and is classified as a waste under the Resource Conservation and Recovery Act (RCRA) by the U.S. Environmental Protection Agency (EPA). Successful recycle of the valuable metals (iron, zinc, and lead) present in the dust will result in resource conservation while simultaneously reducing the disposal problems. Technical feasibility of a novel recycling method based on using hydrogen as the reductant was established under this project through laboratory experiments. Sponge iron produced was low in zinc, cadmium, and lead to permit its recycle, and nontoxic to permit its safe disposal as an alternative to recycling. Zinc oxide was analyzed to contain 50% to 58% zinc by weight, and can be marketed for recovering zinc and lead. A prototype system was designed to process 2.5 tons per day (600 tons/year) of EAF dust, and a preliminary economic analysis was conducted. The cost of processing dust by this recycling method was estimated to be comparable to or lower than existing methods, even at such low capacities.

  16. Polycyclic aromatic hydrocarbon distributions in Mississippi Fan sediments

    E-Print Network [OSTI]

    Sandberg, William Allan

    1986-01-01T23:59:59.000Z

    POLYCYCLIC AROMATIC HYDROCARBON DISTRIBUTIONS IN MISSISSIPPI FAN SEDIMENTS A Thesis by WILLIAM ALLAN SANDBERG Submitted to the Graduate College of Texas A&M University in partial fulfillment of the requirements for the degree of MASTER... OF SCIENCE December 1986 Major Subject: Oceanography POLYCYCLIC AROMATIC HYDROCARBON DISTRIBUTIONS IN MISSISSIPPI FAN SEDIMENTS A Thesis by WILLIAM ALLAN SANDBERG Approved as to style and content by: James M. Brooks (Chairman of Committee) Leis M...

  17. Dynamic Bowtie for Fan-beam CT

    E-Print Network [OSTI]

    Liu, Fenglin; Cong, Wenxiang; Hsieh, Scott; Pelc, Norbert

    2013-01-01T23:59:59.000Z

    A bowtie is a filter used to shape an x-ray beam and equalize its flux reaching different detector channels. For development of spectral CT with energy-discriminative photon-counting (EDPC) detectors, here we propose and evaluate a dynamic bowtie for performance optimization based on a patient model or a scout scan. Our dynamic bowtie modifies an x-ray beam intensity profile by mechanical rotation and adaptive adjustment of the x-ray source flux. First, a mathematical model for dynamic bowtie filtering is established for an elliptical section in fan-beam geometry, and the contour of the optimal bowtie is derived. Then, numerical simulation is performed to compare the performance of the dynamic bowtie in the cases of an ideal phantom and a realistic cross-section relative to the counterparts without any bowtie and with a fixed bowtie respectively. Our dynamic bowtie can equalize the expected numbers of photons in the case of an ideal phantom. In practical cases, our dynamic bowtie can effectively reduce the dy...

  18. Recent developments in blast furnace process control within British Steel

    SciTech Connect (OSTI)

    Warren, P.W. [British Steel Technical, Middlesbrough (United Kingdom). Teesside Labs.

    1995-12-01T23:59:59.000Z

    British Steel generally operates seven blast furnaces on four integrated works. All furnaces have been equipped with comprehensive instrumentation and data logging computers over the past eight years. The four Scunthorpe furnaces practice coal injection up to 170 kg/tHM (340 lb/THM), the remainder injecting oil at up to 100 kg/tHM (200 lb/THM). Distribution control is effected by Paul Wurth Bell-Less Tops on six of the seven furnaces, and Movable Throat Armour with bells on the remaining one. All have at least one sub burden probe. The blast furnace operator has a vast quantity of data and signals to consider and evaluate when attempting to achieve the objective of providing a consistent supply of hot metal. Techniques have been, and are being, developed to assist the operator to interpret large numbers of signals. A simple operator guidance system has been developed to provide advice, based on current operating procedures and interpreted data. Further development will involve the use of a sophisticated Expert System software shell.

  19. The 1994 intermediate reline of H-3 furnace

    SciTech Connect (OSTI)

    James, J.D.; Nanavati, K.S.; Spirko, E.J.; Wakelin, D.H.

    1995-12-01T23:59:59.000Z

    LTV Steel`s Indiana Harbor Works H-3 Blast Furnace was rebuilt in 1988 to provide reliable operations at high production rates without damage to the shell for an overall campaign. This Rebuild included: (1) complete bosh and partial stack shell replacement; (2) a spray cooled carbon bosh; (3) a row of staves at the mantle and six rows of stack staves, all stack staves had noses (ledges at the top of the stave) with the exception of row 5; (4) silicon carbide filled semi graphite brick for the bosh, silicon carbide brick from the mantle area and to the top of stave row No. 1, super duty brick in front of the remaining staves and phosphate bonded high alumina brick in the upper stack; (5) movable throat armor; (6) upgraded instrumentation to follow furnace operation and lining wear occurring in the furnace. No work was done to the hearth walls and bottom, since these had been replaced in 1982 with a first generation graphite cooled design and has experienced 7.7 million NTHM. The furnace was blown in November 18, 1988 and operated through September 3, 1994, at which time it was blown down for its first intermediate repair after 7.85 million NTHM. This paper summarizes the operation of the furnace and then discusses the major aspects of the 1994 intermediate repair.

  20. Semicoke production and quality at Chinese vertical SJ furnaces

    SciTech Connect (OSTI)

    V.M. Strakhov; I.V. Surovtseva; A.V. D'yachenko; V.M. Men'shenin [Kuznetsk Center, Eastern Coal-Chemistry Institute (Russian Federation)

    2007-05-15T23:59:59.000Z

    In Russia there has been little interest on the thermal processing of non-sintering coal. However it may be used to obtain many special types of coke and semicoke that are necessary for processes other than blast furnace smelting and employing small metallurgical coke fractions that do not meet the relevant quality requirements. China has recently made great progress in developing the thermal processing of coal (mainly energy coal) to obtain a highly effective product, semicoke, primarily used in metallurgy and adsorption process. The article considers the operation of a Chinese semicoking plant equipped with vertical SJ furnaces. The plant is in the Shenmu district of Shanxi province (Inner Mongolia). The enterprise includes two furnaces of total output of about 100,000 t/yr of semicoke.

  1. IMPROVED FURNACE EFFICIENCY THROUGH THE USE OF REFRACTORY MATERIALS

    SciTech Connect (OSTI)

    Hemrick, James Gordon [ORNL; Rodrigues-Schroer, Angela [Minteq International, Inc.; Colavito, [Minteq International, Inc.; Smith, Jeffrey D [ORNL

    2011-01-01T23:59:59.000Z

    This paper describes efforts performed at Oak Ridge National Laboratory (ORNL), in collaboration with industrial refractory manufacturers, refractory users, and academic institutions, to improve energy efficiency of U.S. industry through increased furnace efficiency brought about by the employment of novel refractory systems and techniques. Work in furnace applications related to aluminum, gasification, and lime are discussed. The energy savings strategies discussed are achieved through reduction of chemical reactions, elimination of mechanical degradation caused by the service environment, reduction of temperature limitations of materials, and elimination of costly installation and repair needs. Key results of several case studies resulting from a US Department of Energy (DOE) funded research program are discussed with emphasis on applicability of these results to high temperature furnace applications.

  2. Hot metal Si control at Kwangyang blast furnaces

    SciTech Connect (OSTI)

    Hur, N.S.; Cho, B.R.; Kim, G.Y.; Choi, J.S.; Kim, B.H. [POSCO, Cheollanamdo (Korea, Republic of). Kwangyang Works

    1995-12-01T23:59:59.000Z

    Studies of Si transfer in blast furnaces have shown that the Si level in pig iron is influenced more by the reaction of silicon oxide gas generation in the raceway than the chemical reaction between hot metal and slag at the drop zone. Specifications require a Si content of pig iron below 0.15% at the Kwangyang Works, but the use of soft coking coal in the blend for coke ovens, high pulverized coal injection rate into the blast furnace, and the application of lower grade iron ore has resulted in the need to develop methods to control Si in hot metal. In this paper, the results of in furnace Si control and the desiliconization skills at the casthouse floor are described.

  3. Blue fan palm distribution and seed removal patterns in three desert oases of northern Baja California, Mexico

    E-Print Network [OSTI]

    Wehncke, Elisabet V.; López-Medellín, Xavier; Ezcurra, Exequiel

    2010-01-01T23:59:59.000Z

    DOI 10.1007/s11258-009-9682-4 Blue fan palm distribution anddistribution patterns of the blue fan palm, Brahea armata,evaluating (i) the levels of blue fan palm seed removal by

  4. Furnace atmosphere effects on casting of eutectic superalloys

    SciTech Connect (OSTI)

    Gigliotti, M.F.X.; Greskovich, C.

    1980-02-01T23:59:59.000Z

    Control of furnace atmosphere is a key factor in the use of silica-bonded alumina shell molds for the directional solidification of eutectic superalloys reinforced with tantalum monocarbide whiskers. The use of a furnace atmosphere which is simultaneously oxidizing to aluminum in the eutectic alloy and reducing to silica phases in the mold results in the formation of an alumina barrier layer in situ at the metal/mold interface and an absence of silica phases in the mold region adjacent to this barrier layer. The presence of this microstructure permits castings of eutectics at metal temperatures up to 1750/sup 0/C.

  5. Improvement of tap holes at Wakayama No. 5 blast furnace

    SciTech Connect (OSTI)

    Yamashita, M.; Kashiwada, M.; Shibuta, H. [Sumitomo Metal Industries, Ltd., Wakayama (Japan). Wakayama Steel Works

    1995-12-01T23:59:59.000Z

    The service life of blast furnaces, as the result of various improvement measures, has been extended from the conventional 5 to 7 years to 15 to 20 years. Wakayama No. 5 blast furnace adopted SiC bricks. Though SiC brick excelled in strength and durability, it has raised problems such as tap hole inside temperature lowering attributable to its high thermal conductivity, insufficient mud burning and gas blow-out. Nevertheless, various countermeasures described within have been taken against such problems, and as the result it has now become possible to maintain tap holes in stable conditions.

  6. Improving the System Life of Basic Oxygen and Electric Arc Furnace Hoods, Roofs, and Side Vents

    Broader source: Energy.gov [DOE]

    This factsheet describes the benefits of a high-performance aluminum bronze alloy to basic oxygen furnace and electric arc furnace components such as hoods, roofs, and side vents.

  7. Estimation of Fuel Savings by Recuperation of Furnace Exhausts to Preheat Combustion Air

    E-Print Network [OSTI]

    Rebello, W. J.; Kohnken, K. H.; Phipps, H. R., Jr.

    1980-01-01T23:59:59.000Z

    The recovery of waste energy in furnace exhaust gases is gaining in importance as fuel costs continue to escalate. Installation of a recuperator in the furnace exhaust stream to preheat the combustion air can result in considerable savings in fuel...

  8. Estimation of Fuel Savings by Recuperation of Furnace Exhausts to Preheat Combustion Air 

    E-Print Network [OSTI]

    Rebello, W. J.; Kohnken, K. H.; Phipps, H. R., Jr.

    1980-01-01T23:59:59.000Z

    The recovery of waste energy in furnace exhaust gases is gaining in importance as fuel costs continue to escalate. Installation of a recuperator in the furnace exhaust stream to preheat the combustion air can result in considerable savings in fuel...

  9. Blue fan palm distribution and seed removal patterns in three desert oases of northern Baja California, Mexico

    E-Print Network [OSTI]

    Wehncke, Elisabet V.; López-Medellín, Xavier; Ezcurra, Exequiel

    2010-01-01T23:59:59.000Z

    9682-4 Blue fan palm distribution and seed removal patternsprocesses controlling the distribution patterns of relictrecruitment, and distribution patterns of the blue fan palm,

  10. Power Aware Page Allocation Alvin R. Lebeck Xiaobo Fan Heng Zeng

    E-Print Network [OSTI]

    Ellis, Carla

    CS 2000 08 Power Aware Page Allocation Alvin R. Lebeck Xiaobo Fan Heng Zeng Carla Ellis Department@cs.duke.edu Xiaobo Fan Dept. of Computer Science Duke University Durham, NC 27708 USA xiaobo@cs.duke.edu Heng Zeng

  11. Income Tax Deduction for Solar-Powered Roof Vents or Fans

    Broader source: Energy.gov [DOE]

    Indiana allows taxpayers to take a deduction on solar-powered roof fans (or vent, also sometimes called an attic fan) installed in a home that the taxpayer owns or leases. The deduction is for 50%...

  12. Laugh out loud in real life : women's humor and fan identity

    E-Print Network [OSTI]

    Klink, Madeline LeNore

    2010-01-01T23:59:59.000Z

    The emerging field of fan studies has, until recently, been defined only by the research that has taken place within it. Almost universally, this research focuses on self-identified fans. However, scholars are beginning ...

  13. Evaluation of heat flux through blast furnace shell with attached sensors

    SciTech Connect (OSTI)

    Han, J.W. [Kyonggi Univ., Suwon, Kyonggi (Korea, Republic of). Dept. of Materials Engineering; Lee, J.H.; Suh, Y.K. [POSCO, Kwangyang, Cheonnam (Korea, Republic of). Technical Research Labs.

    1996-12-31T23:59:59.000Z

    Plant trials to evaluate heat fluxes through a lining/cooling system of a blast furnace were conducted in order to realize the cooling efficiency of the blast furnace under operation. For this purpose, several experiments to measure the in-furnace gas temperatures were cautiously made, and numerical simulations for the temperature distributions over the blast furnace shell and cooling/lining systems were also carried out.

  14. Flexibility of Commercial Building HVAC Fan as Ancillary Service for Smart Grid

    E-Print Network [OSTI]

    Maasoumy, Mehdi

    2013-01-01T23:59:59.000Z

    Efficient Building Control Systems, Smart Grid and AircraftCommercial Building HVAC Fan as Ancillary Service for Smart

  15. High temperature furnaces for small and large angle neutron scattering of disordered materials

    E-Print Network [OSTI]

    Boyer, Edmond

    725 High temperature furnaces for small and large angle neutron scattering of disordered materials and small angle neutron scattering (SANS) experiments respectively. They are vacuum furnaces with a thin maintained in a tantalum box. In a neutron beam, the furnaces produce a very low scattering level (without

  16. Field measurements of interactions between furnaces and forced air distribution systems

    E-Print Network [OSTI]

    of equipment that provides the heating energy (the furnace, boiler or heat pump) and the method usedLBNL 40587 Field measurements of interactions between furnaces and forced air distribution systems Vol. 104 Part 1 Field measurements of interactions between furnaces and forced air distribution

  17. Electrode Arrangement As Substitute Bottom For An Electrothermic Slag Smelting Furnace.

    DOE Patents [OSTI]

    Aune, Jan Arthur (Enebakk, NO); Brinch, Jon Christian (Oslo, NO); Johansen, Kai (Kristiansand, NO)

    2005-12-27T23:59:59.000Z

    The electrode arrangement uses vertically oriented electrodes with side wall contacts for an electrothermic smelting furnace for aluminum production. The side wall contacts are radially moveable into the furnace to compensate for wear on the contacts. The side wall contacts can be hollow to allow a slag forming charge to be fed to the furnace.

  18. Electrode immersion depth determination and control in electroslag remelting furnace

    DOE Patents [OSTI]

    Melgaard, David K. (Albuquerque, NM); Beaman, Joseph J. (Austin, TX); Shelmidine, Gregory J. (Tijeras, NM)

    2007-02-20T23:59:59.000Z

    An apparatus and method for controlling an electroslag remelting furnace comprising adjusting electrode drive speed by an amount proportional to a difference between a metric of electrode immersion and a set point, monitoring impedance or voltage, and calculating the metric of electrode immersion depth based upon a predetermined characterization of electrode immersion depth as a function of impedance or voltage.

  19. Single taphole blast furnace casthouse performance optimizing cost and availability

    SciTech Connect (OSTI)

    Fowles, R.D.; Searls, J.B.; Peay, W.R. [Geneva Steel, Provo, UT (United States); Brenneman, R.G.

    1995-12-01T23:59:59.000Z

    The No. 2 blast furnace is a single taphole furnace with a convection air-cooled iron trough. The iron runner system is designed to fill four 90 ton open-top ladles per cast, which are transported by locomotive to the steel shop. The slag runner system is capable of filling three 800 ft{sup 3} slag pots per cast. The No. 2 blast furnace was blown in from mini-reline with this new casthouse configuration in early December 1991. It was operated for nearly three years until it was banked for planned stove repairs and a trough rebuild in late September 1994. During this period, the furnace produced just over 2.5 million tons of hot metal across the original trough refractory lining system, with 13 intermediate hot patch castable repairs. The entire casthouse refractory usage (main trough, runner systems, and covers) during this campaign was 1.06 pounds per net ton of hot metal. Investigation of the lining during demolition indicated that the trough lining campaign could have been extended to at least 3.0 million tons. This paper will discuss how operating practices, mechanical design, refractory design, maintenance philosophy, and attention to detail synergistically contributed to the long campaign life and low refractory consumption rate.

  20. Processing automotive shredder fluff for a blast furnace injection

    E-Print Network [OSTI]

    Boyer, Edmond

    led to an optimized iron recovery of 78.5 % corresponding to an elemental iron content of 51 %, close to the ore grade required in a blast furnace. At the global scale of ELV recycling, these results entail an increase by 4 % of the fluff recycling rate, thus helping to meet the European requirements for 2015

  1. PhD position: Numerical study on ice accretion on fan blades and compressor stages

    E-Print Network [OSTI]

    Twente, Universiteit

    PhD position: Numerical study on ice accretion on fan blades and compressor stages Within on fan blades and compressor stages. This research is carried out in the framework of the HAIC (High a computational tool to predict the ice accretion on fan blades and the first compressor stages of commercial jet

  2. Fan Aerodynamic Performance Guarantees: Do Your Policies, Procedures and Penalties Provide Adequate Certainty?

    E-Print Network [OSTI]

    Kaufman, S. G.; Martin, V.; Falk, M. A.

    2004-01-01T23:59:59.000Z

    With few exceptions, fan vendors do not provide a written guarantee regarding aerodynamic performance. Some fan vendors even go so far as to state in their terms and conditions of sale that fan performance is not guaranteed unless it is specifically...

  3. Boost Converter Provides Temperature-Controlled Operation of 12V Fan from +5V Supply

    E-Print Network [OSTI]

    McNeill, John A.

    enclosure, and reducing the fan supply voltage when maximum cooling is not necessary. Reducing the operatingBoost Converter Provides Temperature-Controlled Operation of 12V Fan from +5V Supply John Mc converter shown in Fig. 1 allows operation of a 12V brushless DC fan from a +5V supply. The circuit is based

  4. Coal combustion under conditions of blast furnace injection

    SciTech Connect (OSTI)

    Crelling, J.C. [Southern Illinois Univ., Carbondale, IL (United States). Dept. of Geology

    1995-12-01T23:59:59.000Z

    Because of its increasing cost and decreasing availability, metallurgical coke is now being replaced by coal injected at the tuyere area of the furnace where the blast air enters. The purpose of this study is to evaluate the combustion of coal during the blast furnace injection process and to delineate the optimum properties of the feed coal with particular reference to the coals from the Illinois Basin. Although this research is not yet completed the results to date support the following conclusions: (1) based on the results of computer modeling, lower rank bituminous coals, including coal from the Illinois Basin, compare well in their injection properties with a variety of other bituminous coals, although the replacement ratio improves with increasing rank; (2) based on the results of petrographic analysis of material collected from an active blast furnace, it is clear the coal derived char is entering into the raceway of the blast furnace; (3) the results of reactivity experiments on a variety of coal chars at a variety of reaction temperatures show that lower rank bituminous coals, including coal from the Illinois basin, yield chars with significantly higher reactivities in both air and CO{sub 2} than chars from higher rank Appalachian coals and blast furnace coke. These results indicate that the chars from the lower rank coals should have a superior burnout rate in the tuyere and should survive in the raceway environment for a shorter time. These coals, therefore, will have important advantages at high rates of injection that may overcome their slightly lower replacement rates.

  5. Air-cooled CWS warm air furnace. Final report

    SciTech Connect (OSTI)

    Litka, A.F.; Becker, F.E.

    1995-08-01T23:59:59.000Z

    Thermo Power Corporation, Tecogen Division, has developed coal water slurry (CWS) combustion technologies specifically tailored to meet the space heating needs of the residential, commercial, and industrial market sectors. This furnace was extensively tested and met all the design and operating criteria of the development program, which included combustion efficiencies in excess of 99%, response to full load from a cold start in less than 5 minutes, and steady-state thermal efficiencies as high as 85%. While this furnace design is extremely versatile, versatility came at the expense of system complexity and cost. To provide a more cost effective CWS-based option for the residential market sector, Tecogen, developed a totally air-cooled CWS-fired residential warm air heating system. To minimize system cost and to take advantage of industry manufacturing practices and experience, a commercially available oil/gas solid fuel-fired central furnace, manufactured by Yukon Energy Corporation, was used as the platform for the CWS combustor and related equipment. A prototype furnace was designed, built, and tested in the laboratory to verify system integrity and operation. This unit was then shipped to the PETC to undergo demonstration operation and serve as a showcase of the CWS technology. An in-depth Owners Manual was prepared and delivered with the furnace. This Owners Manual, which is included as Appendix A of this report, includes installation instructions, operating procedures, wiring diagrams, and equipment bulletins on the major components. It also contains coal water slurry fuel specifications and typical system operating variables, including key temperatures, pressures, and flowrates.

  6. Design of CCD camera system for use inside electron beam furnace

    SciTech Connect (OSTI)

    Sze, J.S.

    1992-10-01T23:59:59.000Z

    The design of a wide dynamic range camera system for use inside Electron Beam furnaces is presented. The camera system is designed for used in high vacuum and in a high radiant heat flux environment looking directly into a high metallic vapor flux. In addition, the camera is designed to have a dynamic range that can provide a good image in both low light level conditions as well as in high brightness situations as when the electron beam impinging on the melt surface. An analysis is given for estimating the dynamic range of the camera imaging system and the camera cooling requirements. Techniques for capturing and recording video images are also presented. The application of various optical filters and liquid crystal variable attenuators for the camera imaging system is discussed.

  7. The Forming of AISI 409 sheets for fan blade manufacturing

    SciTech Connect (OSTI)

    Foroni, F. D.; Menezes, M. A.; Moreira Filho, L. A. [ITA - Aeronautic Technological Institute, IEM, Praca Mal. Eduardo Gomes, 50 - Vila das Acacias - S. J. Campos, Brasil - CEP 1228-900 (Brazil)

    2007-04-07T23:59:59.000Z

    The necessity of adapting the standardized fan models to conditions of higher temperature has emerged due to the growth of concern referring to the consequences of the gas expelling after the Mont Blanc tunnel accident in Italy and France, where even though, with 100 fans in operation, 41 people died. The objective of this work is to present an alternative to the market standard fans considering a new technology in constructing blades. This new technology introduces the use of the stainless steel AISI 409 due to its good to temperatures of gas exhaust from tunnels in fire situation. The innovation is centered in the process of a deep drawing of metallic sheets in order to keep the ideal aerodynamic superficies for the fan ideal performance. Through the impression of circles on the sheet plane it is shown, experimentally, that, during the pressing process, the more deformed regions on the sheet plane of the blade can not reach the deformation limits of the utilized sheet material.

  8. Experimental Evaluation of Installed Cooking Exhaust Fan Performance

    SciTech Connect (OSTI)

    Singer, Brett C.; Delp, William W.; Apte, Michael G.

    2010-11-01T23:59:59.000Z

    The installed performance of cooking exhaust fans was evaluated through residential field experiments conducted on a sample of 15 devices varying in design and other characteristics. The sample included two rear downdraft systems, two under-cabinet microwave over range (MOR) units, three different installations of an under-cabinet model with grease screens across the bottom and no capture hood, two devices with grease screens covering the bottom of a large capture hood (one under-cabinet, one wall-mount chimney), four under-cabinet open hoods, and two open hoods with chimney mounts over islands. Performance assessment included measurement of airflow and sound levels across fan settings and experiments to quantify the contemporaneous capture efficiency for the exhaust generated by natural gas cooking burners.Capture efficiency is defined as the fraction of generated pollutants that are removed through the exhaust and thus not available for inhalation of household occupants. Capture efficiency (CE) was assessed for various configurations of burner use (e.g., single front, single back, combination of one front and one back, oven) and fan speed setting. Measured airflow rates were substantially lower than the levels noted in product literature for many of the units. This shortfall was observed for several units costing in excess of $1000. Capture efficiency varied widely (from<5percent to roughly 100percent) across devices and across conditions for some devices. As expected, higher capture efficiencies were achieved with higher fan settings and the associated higher air flow rates. In most cases, capture efficiencies were substantially higher for rear burners than for front burners. The best and most consistent performance was observed for open hoods that covered all cooktop burners and operated at higher airflow rates. The lowest capture efficiencies were measured when a front burner was used with a rear backdraft system or with lowest fan setting for above the range systems that do not cover the front burners.

  9. Furnace control apparatus using polarizing interferometer

    DOE Patents [OSTI]

    Schultz, T.J.; Kotidis, P.A.; Woodroffe, J.A.; Rostler, P.S.

    1995-03-28T23:59:59.000Z

    A system for nondestructively measuring an object and controlling industrial processes in response to the measurement is disclosed in which an impulse laser generates a plurality of sound waves over timed increments in an object. A polarizing interferometer is used to measure surface movement of the object caused by the sound waves and sensed by phase shifts in the signal beam. A photon multiplier senses the phase shift and develops an electrical signal. A signal conditioning arrangement modifies the electrical signals to generate an average signal correlated to the sound waves which in turn is correlated to a physical or metallurgical property of the object, such as temperature, which property may then be used to control the process. External, random vibrations of the workpiece are utilized to develop discernible signals which can be sensed in the interferometer by only one photon multiplier. In addition the interferometer includes an arrangement for optimizing its sensitivity so that movement attributed to various waves can be detected in opaque objects. The interferometer also includes a mechanism for sensing objects with rough surfaces which produce speckle light patterns. Finally the interferometer per se, with the addition of a second photon multiplier is capable of accurately recording beam length distance differences with only one reading. 38 figures.

  10. Furnace control apparatus using polarizing interferometer

    DOE Patents [OSTI]

    Schultz, Thomas J. (Maumee, OH); Kotidis, Petros A. (Waban, MA); Woodroffe, Jaime A. (North Reading, MA); Rostler, Peter S. (Newton, MA)

    1995-01-01T23:59:59.000Z

    A system for non-destructively measuring an object and controlling industrial processes in response to the measurement is disclosed in which an impulse laser generates a plurality of sound waves over timed increments in an object. A polarizing interferometer is used to measure surface movement of the object caused by the sound waves and sensed by phase shifts in the signal beam. A photon multiplier senses the phase shift and develops an electrical signal. A signal conditioning arrangement modifies the electrical signals to generate an average signal correlated to the sound waves which in turn is correlated to a physical or metallurgical property of the object, such as temperature, which property may then be used to control the process. External, random vibrations of the workpiece are utilized to develop discernible signals which can be sensed in the interferometer by only one photon multiplier. In addition the interferometer includes an arrangement for optimizing its sensitivity so that movement attributed to various waves can be detected in opaque objects. The interferometer also includes a mechanism for sensing objects with rough surfaces which produce speckle light patterns. Finally the interferometer per se, with the addition of a second photon multiplier is capable of accurately recording beam length distance differences with only one reading.

  11. Low NOx nozzle tip for a pulverized solid fuel furnace

    DOE Patents [OSTI]

    Donais, Richard E; Hellewell, Todd D; Lewis, Robert D; Richards, Galen H; Towle, David P

    2014-04-22T23:59:59.000Z

    A nozzle tip [100] for a pulverized solid fuel pipe nozzle [200] of a pulverized solid fuel-fired furnace includes: a primary air shroud [120] having an inlet [102] and an outlet [104], wherein the inlet [102] receives a fuel flow [230]; and a flow splitter [180] disposed within the primary air shroud [120], wherein the flow splitter disperses particles in the fuel flow [230] to the outlet [104] to provide a fuel flow jet which reduces NOx in the pulverized solid fuel-fired furnace. In alternative embodiments, the flow splitter [180] may be wedge shaped and extend partially or entirely across the outlet [104]. In another alternative embodiment, flow splitter [180] may be moved forward toward the inlet [102] to create a recessed design.

  12. Plasma-supported coal combustion in boiler furnace

    SciTech Connect (OSTI)

    Askarova, A.S.; Karpenko, E.I.; Lavrishcheva, Y.I.; Messerle, V.E.; Ustimenko, A.B. [Kazakh National University, Alma Ata (Kazakhstan). Dept. of Physics

    2007-12-15T23:59:59.000Z

    Plasma activation promotes more effective and environmentally friendly low-rank coal combustion. This paper presents Plasma Fuel Systems that increase the burning efficiency of coal. The systems were tested for fuel oil-free start-up of coal-fired boilers and stabilization of a pulverized-coal flame in power-generating boilers equipped with different types of burners, and burning all types of power-generating coal. Also, numerical modeling results of a plasma thermochemical preparation of pulverized coal for ignition and combustion in the furnace of a utility boiler are discussed in this paper. Two kinetic mathematical models were used in the investigation of the processes of air/fuel mixture plasma activation: ignition and combustion. A I-D kinetic code PLASMA-COAL calculates the concentrations of species, temperatures, and velocities of the treated coal/air mixture in a burner incorporating a plasma source. The I-D simulation results are initial data for the 3-D-modeling of power boiler furnaces by the code FLOREAN. A comprehensive image of plasma-activated coal combustion processes in a furnace of a pulverized-coal-fired boiler was obtained. The advantages of the plasma technology are clearly demonstrated.

  13. Raceway behaviors in blast furnace with pulverized coal injection

    SciTech Connect (OSTI)

    Chung, J.K.; Han, J.W.; Cho, B.R. [POSCO, Cheollanamdo (Korea, Republic of)

    1995-12-01T23:59:59.000Z

    The blast furnace raceway shows different characteristics with PCR (pulverized coal injection rate). It was found in this study that with the increase of PCR the raceway depth decreases, and the size of birds nest and sometimes with liquid holdup, increases. Oxygen enrichment with co-axial lances was known to be very effective on the extension of raceway depth and size reduction of birds nest. It was also found that there are various factors which affect the coke properties at tuyere level of the blast furnace. Coke traveling time was calculated to be extended with PCR and it had a close relationship with the coke size in bosh. Coke mean size decreased with the increase of coke traveling time, that is, with the increase of PCR. Both DI (the strength of coke in cold) and CSR (the strength of coke after reaction) were also decreased with PCR. RAFT (Raceway Adiabatic Flame Temperature) had a tendency to be decreased with the increase of PCR, which is obtained by the estimation of coke temperature via XRD analysis. From the analysis of alkali contents in coke sampled along the radius of the blast furnace, it was understood that no difference in alkali contents between fine and lump coke represents that coke fines generated from upper burden might appear at tuyere level.

  14. FURNACE INJECTION OF ALKALINE SORBENTS FOR SULFURIC ACID CONTROL

    SciTech Connect (OSTI)

    Gary M. Blythe

    2000-12-01T23:59:59.000Z

    This document summarizes progress on the Cooperative Agreement DE-FC26-99FT40718, Furnace Injection of Alkaline Sorbents for Sulfuric Acid Control, during the time period April 1, 2000 through September 30, 2000. The objective of this project is to demonstrate the use of alkaline reagents injected into the furnace of coal-fired boilers as a means of controlling sulfuric acid emissions. The coincident removal of hydrochloric acid and hydrofluoric acid will also be determined, as will the removal of arsenic, a known poison for NOX selective catalytic reduction (SCR) catalysts. EPRI, the Tennessee Valley Authority (TVA), First Energy Corporation, and the Dravo Lime Company are project co-funders. URS Corporation is the prime contractor. This is the second reporting period for the subject Cooperative Agreement. During this period, the first of four short-term sorbent injection tests were conducted at the First Energy Bruce Mansfield Plant. This test determined the effectiveness of dolomite injection through out-of-service burners as a means of controlling sulfuric acid emissions from this unit. The tests showed that dolomite injection could achieve up to 95% sulfuric acid removal. Balance of plant impacts on furnace slagging and fouling, air heater fouling, ash loss-on-ignition, and the flue gas desulfurization system were also determined. These results are presented and discussed in this report.

  15. FURNACE INJECTION OF ALKALINE SORBENTS FOR SULFURIC ACID CONTROL

    SciTech Connect (OSTI)

    Gary M. Blythe

    2002-04-29T23:59:59.000Z

    This document summarizes progress on Cooperative Agreement DE-FC26-99FT40718, Furnace Injection of Alkaline Sorbents for Sulfuric Acid Control, during the time period October 1, 2001 through March 31, 2002. The objective of this project is to demonstrate the use of alkaline reagents injected into the furnace of coal-fired boilers as a means of controlling sulfuric acid emissions. The coincident removal of hydrochloric acid and hydrofluoric acid is also being determined, as is the removal of arsenic, a known poison for NO{sub X} selective catalytic reduction (SCR) catalysts. EPRI, the Tennessee Valley Authority (TVA), FirstEnergy Corporation, American Electric Power (AEP) and the Dravo Lime Company are project co-funders. URS Corporation is the prime contractor. This is the fifth reporting period for the subject Cooperative Agreement. During the previous (fourth) period, two long-term sorbent injection tests were conducted, one on Unit 3 at FirstEnergy's Bruce Mansfield Plant (BMP) and one on Unit 1 at AEP's Gavin Plant. Those tests determined the effectiveness of injecting alkaline slurries into the upper furnace of the boiler as a means of controlling sulfuric acid emissions from these units. The alkaline slurries tested included commercially available magnesium hydroxide slurry (Gavin Plant) and a byproduct magnesium hydroxide slurry (at both Gavin and BMP). The tests showed that injecting either the commercial or the byproduct magnesium hydroxide slurry could achieve up to 70-75% overall sulfuric acid removal. At BMP, the overall removal was limited by the need to maintain acceptable electrostatic precipitator (ESP) particulate control performance. At Gavin Plant, the overall sulfuric acid removal was limited because the furnace injected sorbent was less effective at removing SO{sub 3} formed across the SCR system installed on the unit for NO{sub X} control than at removing SO{sub 3} formed in the furnace. The SO{sub 3} removal results were presented in the previous semi-annual technical progress report (April 1, 2001 through September 30, 2001). During the current reporting period, additional balance of plant impact information was determined for one of the two tests. These additional balance-of-plant results are presented and discussed in this report. There was no other technical progress to report, because all planned testing as part of this project has been completed.

  16. FURNACE INJECTION OF ALKALINE SORBENTS FOR SULFURIC ACID CONTROL

    SciTech Connect (OSTI)

    Gary M. Blythe

    2001-11-06T23:59:59.000Z

    This document summarizes progress on Cooperative Agreement DE-FC26-99FT40718, Furnace Injection of Alkaline Sorbents for Sulfuric Acid Control, during the time period April 1, 2001 through September 30, 2001. The objective of this project is to demonstrate the use of alkaline reagents injected into the furnace of coal-fired boilers as a means of controlling sulfuric acid emissions. The coincident removal of hydrochloric acid and hydrofluoric acid is also being determined, as is the removal of arsenic, a known poison for NO{sub x} selective catalytic reduction (SCR) catalysts. EPRI, the Tennessee Valley Authority (TVA), FirstEnergy Corporation, and the Dravo Lime Company are project co-funders. URS Corporation is the prime contractor. During the current period, American Electric Power (AEP) joined the project as an additional co-funder and as a provider of a host site for testing. This is the fourth reporting period for the subject Cooperative Agreement. During this period, two long-term sorbent injection tests were conducted, one on Unit 3 at FirstEnergy's Bruce Mansfield Plant (BMP) and one on Unit 1 at AEP's Gavin Station. These tests determined the effectiveness of injecting alkaline slurries into the upper furnace of the boiler as a means of controlling sulfuric acid emissions from these units. The alkaline slurries tested included commercially available magnesium hydroxide slurry (Gavin Station), and a byproduct magnesium hydroxide slurry (both Gavin Station and BMP). The tests showed that injecting either the commercial or the byproduct magnesium hydroxide slurry could achieve up to 70 to 75% sulfuric acid removal. At BMP, the overall removal was limited by the need to maintain acceptable electrostatic precipitator (ESP) particulate control performance. At Gavin Station, the overall sulfuric acid removal was limited because the furnace injected sorbent was less effective at removing SO{sub 3} formed across the SCR system installed on the unit for NO{sub x} control than at removing SO{sub 3} formed in the furnace. Balance of plant impacts, primarily on the ESP particulate control device, were also determined during both tests. These results are presented and discussed in this report.

  17. Precision control of high temperature furnaces using an auxiliary power supply and charged practice current flow

    DOE Patents [OSTI]

    Pollock, George G. (San Ramon, CA)

    1997-01-01T23:59:59.000Z

    Two power supplies are combined to control a furnace. A main power supply heats the furnace in the traditional manner, while the power from the auxiliary supply is introduced as a current flow through charged particles existing due to ionized gas or thermionic emission. The main power supply provides the bulk heating power and the auxiliary supply provides a precise and fast power source such that the precision of the total power delivered to the furnace is improved.

  18. Precision control of high temperature furnaces using an auxiliary power supply and charged particle current flow

    DOE Patents [OSTI]

    Pollock, G.G.

    1997-01-28T23:59:59.000Z

    Two power supplies are combined to control a furnace. A main power supply heats the furnace in the traditional manner, while the power from the auxiliary supply is introduced as a current flow through charged particles existing due to ionized gas or thermionic emission. The main power supply provides the bulk heating power and the auxiliary supply provides a precise and fast power source such that the precision of the total power delivered to the furnace is improved. 5 figs.

  19. Electricity and Natural Gas Efficiency Improvements for Residential Gas Furnaces in the U.S.

    E-Print Network [OSTI]

    Lekov, Alex; Franco, Victor; Meyers, Steve; McMahon, James E.; McNeil, Michael; Lutz, Jim

    2006-01-01T23:59:59.000Z

    by natural gas. Electricity consumption by a furnace blowerto the annual electricity consumption of a major appliance.not account for the electricity consumption of the appliance

  20. Rohm and Haas: Furnace Replacement Project Saves Energy and Improves Production at a Chemical Plant

    SciTech Connect (OSTI)

    Not Available

    2006-02-01T23:59:59.000Z

    This DOE Industrial Technologies Program spotlight describes how Rohm and Haas's Deer Park, Texas, chemical plant reduced natural gas usage and energy costs by replacing inefficient furnace equipment.

  1. Economics of residential gas furnaces and water heaters in US new construction market

    E-Print Network [OSTI]

    Lekov, Alex B.; Franco, Victor H.; Wong-Parodi, Gabrielle; McMahon, James E.; Chan, Peter

    2010-01-01T23:59:59.000Z

    condensing furnaces and water heaters and power-vent waterstar residential water heaters: Final criteria analysis.market research on solar water heaters. National Renew- able

  2. Electricity and Natural Gas Efficiency Improvements for Residential Gas Furnaces in the U.S.

    E-Print Network [OSTI]

    Lekov, Alex; Franco, Victor; Meyers, Steve; McMahon, James E.; McNeil, Michael; Lutz, Jim

    2006-01-01T23:59:59.000Z

    offsets the sizable electricity savings. References TitleElectricity and Natural Gas Efficiency Improvements forfueled by natural gas. Electricity consumption by a furnace

  3. Economics of residential gas furnaces and water heaters in United States new construction market

    E-Print Network [OSTI]

    Lekov, Alex B.

    2010-01-01T23:59:59.000Z

    Experiences of residential consumers and utilities. OakStar (2008). Energy Star Residential Water Heaters: Finalefficiency improvements for residential gas furnaces in the

  4. Economics of residential gas furnaces and water heaters in US new construction market

    E-Print Network [OSTI]

    Lekov, Alex B.; Franco, Victor H.; Wong-Parodi, Gabrielle; McMahon, James E.; Chan, Peter

    2010-01-01T23:59:59.000Z

    appliance_standards/residential/water_ pool_heaters_prelim_Star (2008). Energy star residential water heaters: Finalefficiency improvements for residential gas furnaces in the

  5. FURNACE INJECTION OF ALKALINE SORBENTS FOR SULFURIC ACID CONTROL

    SciTech Connect (OSTI)

    Gary M. Blythe

    2003-10-01T23:59:59.000Z

    This document summarizes progress on Cooperative Agreement DE-FC26-99FT40718, Furnace Injection of Alkaline Sorbents for Sulfuric Acid Control, during the time period April 1, 2003 through September, 2003. The objective of this project is to demonstrate the use of alkaline reagents injected into the furnace of coal-fired boilers as a means of controlling sulfuric acid emissions. The coincident removal of hydrochloric acid and hydrofluoric acid is also being determined, as is the removal of arsenic, a known poison for NO{sub x} selective catalytic reduction (SCR) catalysts. EPRI, the Tennessee Valley Authority (TVA), FirstEnergy Corporation, American Electric Power (AEP) and the Dravo Lime Company are project co-funders. URS Group is the prime contractor. This is the eighth reporting period for the subject Cooperative Agreement. During previous reporting periods, two long-term sorbent injection tests were conducted, one on Unit 3 at FirstEnergy's Bruce Mansfield Plant (BMP) and one on Unit 1 at AEP's Gavin Plant. Those tests determined the effectiveness of injecting alkaline slurries into the upper furnace of the boiler as a means of controlling sulfuric acid emissions from these units. The alkaline slurries tested included commercially available magnesium hydroxide slurry (Gavin Plant), and a byproduct magnesium hydroxide slurry (both Gavin Plant and BMP). The tests showed that injecting either the commercial or the byproduct magnesium hydroxide slurry could achieve up to 70-75% overall sulfuric acid removal. At BMP, the overall removal was limited by the need to maintain acceptable electrostatic precipitator (ESP) particulate control performance. At Gavin Plant, the overall sulfuric acid removal was limited because the furnace injected sorbent was less effective at removing SO{sub 3} formed across the SCR system installed on the unit for NO{sub x} control than at removing SO{sub 3} formed in the furnace. The SO{sub 3} removal results were presented in the semi-annual Technical Progress Report for the time period April 1, 2001 through September 30, 2001. Additional balance of plant impact information for the two tests was reported in the Technical Progress Report for the time period October 1, 2001 through March 30, 2002. Additional information became available about the effects of byproduct magnesium hydroxide injection on SCR catalyst coupons during the long-term test at BMP, and those results were reported in the report for the time period April 1, 2002 through September 30, 2002. During the current period, process economic estimates were developed, comparing the costs of the furnace magnesium hydroxide slurry injection process tested as part of this project to a number of other candidate SO{sub 3}/sulfuric acid control technologies for coal-fired power plants. The results of this economic evaluation are included in this progress report.

  6. FURNACE INJECTION OF ALKALINE SORBENTS FOR SULFURIC ACID REMOVAL

    SciTech Connect (OSTI)

    Gary M. Blythe

    2004-01-01T23:59:59.000Z

    The objective of this project has been to demonstrate the use of alkaline reagents injected into the furnace of coal-fired boilers as a means of controlling sulfuric acid emissions. The project was co-funded by the U.S. DOE National Energy Technology Laboratory under Cooperative Agreement DE-FC26-99FT40718, along with EPRI, the American Electric Power Company (AEP), FirstEnergy Corporation, the Tennessee Valley Authority, and Carmeuse North America. Sulfuric acid controls are becoming of increased interest for coal-fired power generating units for a number of reasons. In particular, sulfuric acid can cause plant operation problems such as air heater plugging and fouling, back-end corrosion, and plume opacity. These issues will likely be exacerbated with the retrofit of selective catalytic reduction (SCR) for NOX control, as SCR catalysts are known to further oxidize a portion of the flue gas SO{sub 2} to SO{sub 3}. The project tested the effectiveness of furnace injection of four different magnesium-based or dolomitic alkaline sorbents on full-scale utility boilers. These reagents were tested during one- to two-week tests conducted on two FirstEnergy Bruce Mansfield Plant (BMP) units. One of the sorbents tested was a magnesium hydroxide slurry byproduct from a modified Thiosorbic{reg_sign} Lime wet flue gas desulfurization process. The other three sorbents are available commercially and include dolomite, pressure-hydrated dolomitic lime, and commercially available magnesium hydroxide. The dolomite reagent was injected as a dry powder through out-of-service burners. The other three reagents were injected as slurries through air-atomizing nozzles inserted through the front wall of the upper furnace. After completing the four one- to two-week tests, the most promising sorbents were selected for longer-term (approximately 25-day) full-scale tests on two different units. The longer-term tests were conducted to confirm sorbent effectiveness over extended operation on two different boilers, and to determine balance-of-plant impacts. The first long-term test was conducted on FirstEnergy's BMP Unit 3, and the second was conducted on AEP's Gavin Plant, Unit 1. The Gavin Plant test provided an opportunity to evaluate the effects of sorbent injected into the furnace on SO{sub 3} formed across an operating SCR reactor. A final task in the project was to compare projected costs for furnace injection of magnesium hydroxide slurries to estimated costs for other potential sulfuric acid control technologies. Estimates were developed for reagent and utility costs, and capital costs, for furnace injection of magnesium hydroxide slurries and seven other sulfuric acid control technologies. The estimates were based on retrofit application to a model coal-fired plant.

  7. Air-bridge microcavities Pierre R. Villeneuve, Shanhui Fan, and J. D. Joannopoulos

    E-Print Network [OSTI]

    Fan, Shanhui

    Air-bridge microcavities Pierre R. Villeneuve, Shanhui Fan, and J. D. Joannopoulos Department structures with micron-sized features using semiconductor materials. © 1995 American Institute of Physics

  8. Qualification of Fan Generated Duct Rumble Noise: Part 2: Results (RP 1219)

    E-Print Network [OSTI]

    Kading, J.; Mann, A.; Pate, M.B.

    represented the closest to the ideal configuration. REMOVING TONES In the cases where the sound levels were low, tones enter- ing the sound measurements from the fan and motor vibration were a concern. This issue was remedied by removing the tones from... is not permitted without ASHRAE’s prior written permission. ESL-PA-08-06-09 Published in ASHRAE Transactions Vol. 114, Part 2 36 ASHRAE Transactions 3. Redesign the fan and motor support structure to reduce vibration. 4. Study additional fans and select fans...

  9. Performance of VAV Parallel Fan Powered Terminal Units: Experimental Results and Models

    E-Print Network [OSTI]

    Furr, J.; O'Neal, D.; Davis, M.; Bryant, J.; Cramlet, A.

    savings because the static pressure of the supply fan can be set lower than with parallel terminal unit systems. Elleson (1993) conducted a field study of cold air distri- bution systems with series and parallel fan powered terminal units in two separate... consumption, combin- ing the power of the supply fan and terminal units’ fans, was greater for series terminal unit systems. The simulations included a reduced supply static pressure for series units of 0.25 in. w.g. (62 Pa) less than the parallel units...

  10. Operational results of shaft repair by installing stave type cooler at Kimitsu Nos. 3 and 4 blast furnaces

    SciTech Connect (OSTI)

    Oda, Hiroshi; Amano, Shigeru; Sakamoto, Aiichiro; Anzai, Osamu [Nippon Steel Corp., Kimitsu, Chiba (Japan). Kimitsu Works; Nakagome, Michiru; Kuze, Toshisuke [Nippon Steel Corp., Futtsu, Chiba (Japan); Imuta, Akira [Nippon Steel Corp., Tokyo (Japan). Plant and Machinery Div.

    1997-12-31T23:59:59.000Z

    Nos. 3 and 4 blast furnaces in Nippon Steel Corporation Kimitsu Works were both initially fitted with cooling plate systems. With the aging of each furnace, the damage to their respective inner-shaft profiles had become serious. Thus, in order to prevent operational change and prolong the furnace life, the inner-shaft profile of each furnace was repaired by replacing the former cooling plate system with the stave type cooler during the two-week-shutdowns. With this repair, stability of burden descent and gas flow near the wall part of the furnace have been achieved. Thus the prolongation of the furnace life is naturally expected.

  11. FURNACE INJECTION OF ALKALINE SORBENTS FOR SULFURIC ACID CONTROL

    SciTech Connect (OSTI)

    Gary M. Blythe

    2000-12-01T23:59:59.000Z

    A test program is being sponsored by the US Department of Energy (DOE), EPRI, FirstEnergy, and TVA to investigate furnace injection of alkaline sorbents as a means of reducing sulfuric acid concentrations in the flue gas from coal-fired boilers. This test program is being conducted at the FirstEnergy Bruce Mansfield Plant (BMP), although later testing will be conducted at a TVA plant. A sorbent injection test was conducted the week of April 18, 2000. The test was the first of several short-term (one- to two-week duration) tests to investigate the effectiveness of various alkaline sorbents for sulfuric acid control and the effects of these sorbents on boiler equipment performance. This first short-term test investigated the effect of injecting dry dolomite powder (CaCO{sub 3} {center_dot} MgCO{sub 3}), a mineral similar to limestone, into the furnace of Unit 2. During the test program, various analytical techniques were used to assess the effects of sorbent injection. These primarily included sampling with the controlled condensation system (CCS) for determining flue gas SO{sub 3} content and an acid dew-point (ADP) meter for determining the sulfuric acid dew point (and, indirectly, the concentration of sulfuric acid) of the flue gas. EPA Reference Method 26a was used for determining hydrochloric acid (HCl) and hydrofluoric acid (HF), as well and chlorine (Cl{sub 2}) and fluorine (F{sub 2}) concentrations in the flue gas. Fly ash resistivity was measured using a Southern Research Institute (SRI) point-to-plane resistivity probe, and unburned carbon in fly ash was determined by loss on ignition (LOI). Coal samples were also collected and analyzed for a variety of parameters. Finally, visual observations were made of boiler furnace and convective pass surfaces prior to and during sorbent injection.

  12. Graphite electrode DC arc furnace. Innovative technology summary report

    SciTech Connect (OSTI)

    NONE

    1999-05-01T23:59:59.000Z

    The Graphite Electrode DC Arc Furnace (DC Arc) is a high-temperature thermal process, which has been adapted from a commercial technology, for the treatment of mixed waste. A DC Arc Furnace heats waste to a temperature such that the waste is converted into a molten form that cools into a stable glassy and/or crystalline waste form. Hazardous organics are destroyed through combustion or pyrolysis during the process and the majority of the hazardous metals and radioactive components are incorporated in the molten phase. The DC Arc Furnace chamber temperature is approximately 593--704 C and melt temperatures are as high as 1,500 C. The DC Arc system has an air pollution control system (APCS) to remove particulate and volatiles from the offgas. The advantage of the DC Arc is that it is a single, high-temperature thermal process that minimizes the need for multiple treatment systems and for extensive sorting/segregating of large volumes of waste. The DC Arc has the potential to treat a wide range of wastes, minimize the need for sorting, reduce the final waste volumes, produce a leach resistant waste form, and destroy organic contaminants. Although the DC arc plasma furnace exhibits great promise for treating the types of mixed waste that are commonly present at many DOE sites, several data and technology deficiencies were identified by the Mixed Waste Focus Area (MWFA) regarding this thermal waste processing technique. The technology deficiencies that have been addressed by the current studies include: establishing the partitioning behavior of radionuclides, surrogates, and hazardous metals among the product streams (metal, slag, and offgas) as a function of operating parameters, including melt temperature, plenum atmosphere, organic loading, chloride concentration, and particle size; demonstrating the efficacy of waste product removal systems for slag and metal phases; determining component durability through test runs of extended duration, evaluating the effect of feed composition variations on process operating conditions and slag product performance; and collecting mass balance and operating data to support equipment and instrument design.

  13. Heat Recovery From Arc Furnaces Using Water Cooled Panels

    E-Print Network [OSTI]

    Darby, D. F.

    for three 7-ton rod holding furnaces, and a 3500 ACFM air compressor. 104 1--~---------+--;I:---1'--.TOROD 'URNACES AND AIR L:......:~--f-----T"--'1'4'---I--COMPRISSOR flGURI NO ? The cold well pump P2 is started and stopped manually. The hot well... or rust inhibitors were to be added. There were several instances of foaming until anti-foaming agents were introduced to the system. Glycol should be purchased with anti-foaming agents and rust inhibitors already mixed in. 3. The system strainers...

  14. Active radiometer for self-calibrated furnace temperature measurements

    DOE Patents [OSTI]

    Woskov, Paul P. (Bedford, MA); Cohn, Daniel R. (Chestnut Hill, MA); Titus, Charles H. (Newtown Square, PA); Wittle, J. Kenneth (Chester Springs, PA); Surma, Jeffrey E. (Kennewick, WA)

    1996-01-01T23:59:59.000Z

    Radiometer with a probe beam superimposed on its field-of-view for furnace temperature measurements. The radiometer includes a heterodyne millimeter/submillimeter-wave receiver including a millimeter/submillimeter-wave source for probing. The receiver is adapted to receive radiation from a surface whose temperature is to be measured. The radiation includes a surface emission portion and a surface reflection portion which includes the probe beam energy reflected from the surface. The surface emission portion is related to the surface temperature and the surface reflection portion is related to the emissivity of the surface. The simultaneous measurement of surface emissivity serves as a real time calibration of the temperature measurement.

  15. The limitation of hearth sidewall wear at Redcar blast furnace

    SciTech Connect (OSTI)

    Parratt, J.E.

    1996-12-31T23:59:59.000Z

    The Redcar blast furnace with 14m hearth diameter was blown-in for its second campaign in August 1996. It is currently in its 10th year of operation and to date has produced just over 30 million tonnes. Current plans are to continue the second campaign to the year 2000 and beyond, producing over 40 million tonnes. In order to achieve this objective, any further wear on the lining, and in particular the hearth sidewall, needs to be minimized. This paper describes the present hearth design, the monitoring of hearth wear, the predicted wear profile, and the protection measures that have been taken or are being considered.

  16. A system for interpretation of blast furnace stockrod measurements

    SciTech Connect (OSTI)

    Hinnelae, J.; Saxen, H. [Aabo Akademi Univ. (Finland). Dept. of Chemical Engineering

    1997-12-31T23:59:59.000Z

    A system for intelligent monitoring and interpretation of signals from blast furnace stockrods is presented. The system visualizes the measurements and estimates the local burden layer thickness (under the rods) after every dump. Furthermore, it analyzes the burden descent rate to distinguish between slips, hangings, normal descent and peaks, etc., and also combines the stockrod information with findings of temperature measurements from an above-burden probe. The preprocessing of the signals and some features of the system, which is under development, are treated in this paper.

  17. Covered Product Category: Residential Gas Furnaces | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: Theof"Wave theJuly 30, 2013DepartmentEnterpriseDepartment ofFurnaces Covered

  18. DOE Furnace Rule Ex Parte Communication | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: Theof"Wave theJulyD&D Project|StatementDOE Fuel CellMillion toDOE Furnace

  19. Supply Fan Control for Constant Air Volume Air Handling Units

    E-Print Network [OSTI]

    Cho, Y.; Wang, G.; Liu, M.

    2007-01-01T23:59:59.000Z

    there is fixed VFD speed, as shown in Table 1 and Figure 11. On the other hand, the energy consumption is 3,896,493 Btu/hr when there is dynamic VFD speed. The thermal energy consumption of dynamic VFD speed is less than that of the fixed VFD speed by 44... %. Therefore, when the supply fan speed control is optimized, thermal energy can be reduced. Table 1. Comparison data of thermal energy consumption Floor Fixed VFD speed (Btu/hr) Dynamic VFD speed (Btu/hr) Energy saving (%) PLF 784,891 502,611 36...

  20. Shanghai Fan Qie Trading Ltd | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries Pvt Ltd JumpInformationScottsOklahoma:SevinShamil AyntraziLTD JumpFan Qie

  1. Photo of the Week: Fan-tastic | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed offOCHCO Overview OCHCO Overview OCHCO OCHCOControlGuide to a BalancedPersonnelFan-tastic Photo of

  2. Fan System Assessment Tool Introduction | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the YouTube|6721Energy 3_adv_battery.pdf More Fact Sheet:BetaFederalFall: EnergyFan

  3. Property:Building/SPElectrtyUsePercCirculationFans | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation,Pillar Group BV JumpInformation SPElectrtyUsePercCirculationFans Jump to:

  4. Property:Building/SPElectrtyUsePercFans | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation,Pillar Group BV JumpInformationSPElectrtyUsePercFans Jump to: navigation,

  5. Improving Fan System Performance - A Sourcebook for Industry

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(Fact Sheet),EnergyImprovement of the Lost FoamCooling and Improving Fan System

  6. Self-calibrated active pyrometer for furnace temperature measurements

    DOE Patents [OSTI]

    Woskov, Paul P. (Bedford, MA); Cohn, Daniel R. (Chestnuthill, MA); Titus, Charles H. (Newtown Square, PA); Surma, Jeffrey E. (Kennewick, WA)

    1998-01-01T23:59:59.000Z

    Pyrometer with a probe beam superimposed on its field-of-view for furnace temperature measurements. The pyrometer includes a heterodyne millimeter/sub-millimeter-wave or microwave receiver including a millimeter/sub-millimeter-wave or microwave source for probing. The receiver is adapted to receive radiation from a surface whose temperature is to be measured. The radiation includes a surface emission portion and a surface reflection portion which includes the probe beam energy reflected from the surface. The surface emission portion is related to the surface temperature and the surface reflection portion is related to the emissivity of the surface. The simultaneous measurement of surface emissivity serves as a real time calibration of the temperature measurement. In an alternative embodiment, a translatable base plate and a visible laser beam allow slow mapping out of interference patterns and obtaining peak values therefor. The invention also includes a waveguide having a replaceable end portion, an insulating refractory sleeve and/or a source of inert gas flow. The pyrometer may be used in conjunction with a waveguide to form a system for temperature measurements in a furnace. The system may employ a chopper or alternatively, be constructed without a chopper. The system may also include an auxiliary reflector for surface emissivity measurements.

  7. Blast furnace coke quality in relation to petroleum coke addition

    SciTech Connect (OSTI)

    Alvarez, R.; Diez, M.A.; Menendez, J.A.; Barriocanal, C.; Pis, J.J. [CSIC, Oviedo (Spain). Inst. Nacional del Carbon; Sirgado, M. [ENSIDESA, Aviles (Spain)

    1995-12-01T23:59:59.000Z

    The incorporation of petroleum coke as an additive in industrial coking coal blends is a practice often used by steel companies. A suitable blast furnace coke produced by replacing part of the coking coal blend with a suitable petroleum coke (addition of 5 to 15%), was made by Great Lakes Carbon Corporation and successfully tested at several blast furnaces. This coke had lower reactivity, less ash and slightly higher sulfur content than coke made without the addition of petroleum coke. In contrast with these results, it has been reported in a BCRA study that additions of petroleum coke to a strong coking coal, above 5 wt%, increased coke reactivity. These differences may be explained on the basis of the coal or blend characteristics to which petroleum coke is added. Petroleum coke addition seems to give better results if the coal/blend has high fluidity. The present situation in Spain is favorable for the use of petroleum coke. So, a study of laboratory and semi-industrial scale was made to assess the possibility of using petroleum coke as an additive to the typical industrial coal blend coked by the Spanish Steel Company, ENSIDESA. The influence of the petroleum coke particle size was also studied to semi-industrial scale.

  8. FURNACE INJECTION OF ALKALINE SORBENTS FOR SULFURIC ACID CONTROL

    SciTech Connect (OSTI)

    Gary M. Blythe

    2003-06-01T23:59:59.000Z

    This document summarizes progress on Cooperative Agreement DE-FC26-99FT40718, Furnace Injection of Alkaline Sorbents for Sulfuric Acid Control, during the time period October 1, 2002 through March 31, 2003. The objective of this project is to demonstrate the use of alkaline reagents injected into the furnace of coal-fired boilers as a means of controlling sulfuric acid emissions. The coincident removal of hydrochloric acid and hydrofluoric acid is also being determined, as is the removal of arsenic, a known poison for NO{sub x} selective catalytic reduction (SCR) catalysts. EPRI, the Tennessee Valley Authority (TVA), FirstEnergy Corporation, American Electric Power (AEP) and the Dravo Lime Company are project co-funders. URS Group is the prime contractor. This is the seventh reporting period for the subject Cooperative Agreement. During previous reporting periods, two long-term sorbent injection tests were conducted, one on Unit 3 at FirstEnergy's Bruce Mansfield Plant (BMP) and one on Unit 1 at AEP's Gavin Plant. Those tests determined the effectiveness of injecting alkaline slurries into the upper furnace of the boiler as a means of controlling sulfuric acid emissions from these units. The alkaline slurries tested included commercially available magnesium hydroxide slurry (Gavin Plant), and a byproduct magnesium hydroxide slurry (both Gavin Plant and BMP). The tests showed that injecting either the commercial or the byproduct magnesium hydroxide slurry could achieve up to 70-75% overall sulfuric acid removal. At BMP, the overall removal was limited by the need to maintain acceptable electrostatic precipitator (ESP) particulate control performance. At Gavin Plant, the overall sulfuric acid removal was limited because the furnace injected sorbent was less effective at removing SO{sub 3} formed across the SCR system installed on the unit for NO{sub x} control than at removing SO{sub 3} formed in the furnace. The SO3 removal results were presented in the semi-annual Technical Progress Report for the time period April 1, 2001 through September 30, 2001. Additional balance of plant impact information for the two tests was reported in the Technical Progress Report for the time period October 1, 2001 through March 30, 2002. Additional information became available about the effects of byproduct magnesium hydroxide injection on SCR catalyst coupons during the long-term test at BMP, and those results were reported in the previous report (April 1, 2002 through September 30, 2002). During the current period, there was no technical progress to report, because all planned testing as part of this project has been completed. The project period of performance was extended to allow the conduct of testing of another SO{sub 3} control technology, the sodium bisulfite injection process. However, these additional tests have not yet been conducted.

  9. Improving the Field Performance of Natural Gas Furnaces, Chicago, Illinois (Fact Sheet)

    SciTech Connect (OSTI)

    Rothgeb, S.; Brand, L.

    2013-11-01T23:59:59.000Z

    The objective of this project is to examine the impact that common installation practices and age-induced equipment degradation may have on the installed performance of natural gas furnaces, as measured by steady-state efficiency and AFUE. PARR identified twelve furnaces of various ages and efficiencies that were operating in residential homes in the Des Moines Iowa metropolitan area and worked with a local HVAC contractor to retrieve them and test them for steady-state efficiency and AFUE in the lab. Prior to removal, system airflow, static pressure, equipment temperature rise, and flue loss measurements were recorded for each furnace. After removal from the field the furnaces were transported to the Gas Technology Institute (GTI) laboratory, where PARR conducted steady-state efficiency and AFUE testing. The test results show that steady-state efficiency in the field was 6.4% lower than that measured for the same furnaces under standard conditions in the lab, which included tuning the furnace input and air flow rate. Comparing AFUE measured under ASHRAE standard conditions with the label value shows no reduction in efficiency for the furnaces in this study over their 15 to 24 years of operation when tuned to standard conditions. Further analysis of the data showed no significant correlation between efficiency change and the age or the rated efficiency of the furnace.

  10. Process control techniques at the blast furnaces of Thyssen Stahl AG

    SciTech Connect (OSTI)

    Kowalski, W.; Bachhofen, H.J.; Beppler, E.; Kreibich, K.; Muelheims, K.; Peters, M.; Wieters, C.U. [Thyssen Stahl AG, Duisburg (Germany)

    1995-12-01T23:59:59.000Z

    Process improvements, capacity increases and the use of modern measuring and process control techniques have helped to ensure that the blast furnace will remain an indispensable means of supplying steelworks with hot metal until well into the next century. The survival of a future-oriented company such as Thyssen Stahl AG depends on long-term improvements in economic viability. Today, Thyssen Stahl AG operates two blast furnace plants comprising a total of five blast furnaces with hearth diameters ranging from 9.3 to 14.9m. This choice of furnaces permits flexible adjustment to changing workload situations and enables about ten million tons of hot metal to be produced each year. The wide range of measuring devices specially fitted on Schwelgern blast furnace No. 1 made a vital contribution to the development of blast furnace models. The purpose of these models was to make a general assessment of the state of the furnace and so create an objective basis for furnace operation. The paper describes the development of these measuring techniques and process model and the application of the model.

  11. Long life hearth in blast furnace -- Kokura No. 2 B.F. of Sumitomo Metals

    SciTech Connect (OSTI)

    Yamamoto, Takaiku; Sunahara, Kouhei; Inada, Takanobu; Takatani, Kouji; Miyahara, Mitsuo; Sato, Yasusi; Hatano, Yasuhiko; Takata, Kouzo

    1997-12-31T23:59:59.000Z

    The factors elongating hearth life of Sumitomo Kokura No. 2 B.F. were investigated by use of an estimation system of the furnace hearth condition, which consisted of four mathematical simulation models. Lowered heat load operation together with integrated design of both refractories and cooling enabled the furnace life to be extended for over 16 years without severe damage in the hearth.

  12. Evaluation of PFP Furnace Systems for Thermal Stabilization of Washed High Chloride Plutonium Oxide Items

    SciTech Connect (OSTI)

    Fischer, Christopher M.; Elmore, Monte R.; Schmidt, Andrew J.; Gerber, Mark A.; Muzatko, Danielle S.; Gano, Susan R.; Thornton, Brenda M.

    2002-12-17T23:59:59.000Z

    High chloride content plutonium (HCP) oxides are impure plutonium oxide scrap which contains NaCl, KCl, MgCl2 and/or CaCl2 salts at potentially high concentrations and must be stabilized at 950 C per the DOE Standard, DOE-STD-3013-2000. The chlorides pose challenges to stabilization because volatile chloride salts and decomposition products can corrode furnace heating elements and downstream ventilation components. A high-temperature furnace (same make and model as used at the RMC at Plutonium Finishing Plant) and the associated offgas system were set up at PNNL to identify system vulnerabilities and to investigate alternative materials and operating conditions that would mitigate any corrosion and plugging of furnace and offgas components. The key areas of interest for this testing were the furnace heating elements, the offgas line located inside the furnace, the offgas line between the furnace and the filter/knockout pot, the filter/knockout pot, the sample boat, and corrosion coupons to evaluate alternative materials of construction. The evaluation was conducted by charging the furnace with CeO2 that had been impregnated with a mixture of chloride salts (selected to represent the expected residual chloride salt level in washed high chloride items) and heated in the furnace in accordance with the temperature ramp rates and hold times used at PFP.

  13. Air Leakage of Furnaces and Air Handlers Iain S. Walker, Mike Lubliner, Darryl Dickerhoff,

    E-Print Network [OSTI]

    Air Leakage of Furnaces and Air Handlers of California. #12;1 Air Leakage of Furnaces and Air Handlers Iain S. Walker, LBNL Mike Lubliner, Washington been made in reducing air leakage in residential and to a lesser extent small commercial forced air

  14. Minimization of Blast furnace Fuel Rate by Optimizing Burden and Gas Distribution

    SciTech Connect (OSTI)

    Dr. Chenn Zhou

    2012-08-15T23:59:59.000Z

    The goal of the research is to improve the competitive edge of steel mills by using the advanced CFD technology to optimize the gas and burden distributions inside a blast furnace for achieving the best gas utilization. A state-of-the-art 3-D CFD model has been developed for simulating the gas distribution inside a blast furnace at given burden conditions, burden distribution and blast parameters. The comprehensive 3-D CFD model has been validated by plant measurement data from an actual blast furnace. Validation of the sub-models is also achieved. The user friendly software package named Blast Furnace Shaft Simulator (BFSS) has been developed to simulate the blast furnace shaft process. The research has significant benefits to the steel industry with high productivity, low energy consumption, and improved environment.

  15. Optimization of ferrous burden high temperature properties to meet blast furnace requirements in British Steel

    SciTech Connect (OSTI)

    Bergstrand, R.

    1996-12-31T23:59:59.000Z

    The high temperature properties of ferrous burden materials have long been an important consideration in the operation of British Steel blast furnaces. Previous research presented at this conference has shown that the behavior of materials in the lower stack and bosh can have a significant effect on furnace permeability and stability of operation. However, with increasing levels of hydrocarbon injection via the tuyeres, the reduction conditions inside British Steel blast furnaces have significantly altered over recent years. This paper focuses on the further work that has been undertaken to study the effect on ferrous burden high temperatures properties of the widely differing reduction regimes which can be experienced in today`s blast furnaces. The implications of the findings, and how they have been used in optimizing blast furnace operation and burden quality, are discussed.

  16. Cost effective combined axial fan and throttling valve control of ventilation rate

    E-Print Network [OSTI]

    Sengun, Mehmet Haluk

    Cost effective combined axial fan and throttling valve control of ventilation rate C.J. Taylor 1 P with Proportional-Integral-Plus (PIP) control of ventilation rate in mechanically ventilated agricultural buildings ventilation. The new combined fan/valve configuration is compared with a commercially available PID

  17. Effect of Nozzle Geometry on Jet Noise Reduction Using Fan Flow Deflectors

    E-Print Network [OSTI]

    Papamoschou, Dimitri

    or sideforce p = pressure q = dynamic pressure S = wedge wetted area u = mean velocity in jet plume U = nozzleEffect of Nozzle Geometry on Jet Noise Reduction Using Fan Flow Deflectors Dimitri Papamoschou of baseline nozzle shape on the ability of fan flow deflectors to reduce downward-emitted turbulent mixing

  18. STATE OF CALIFORNIA HSPP/PSPP INSTALLATION; COOLING COIL AIRFLOW & FAN WATT DRAW TEST

    E-Print Network [OSTI]

    STATE OF CALIFORNIA HSPP/PSPP INSTALLATION; COOLING COIL AIRFLOW & FAN WATT DRAW TEST CEC- CF-4R TESTING CF-4R-MECH-22 HSPP/PSPP Installation; Cooling Coil Airflow & Fan Watt Draw Test (Page 1 of 3) Site of a Static Pressure Probe (HSPP), and Permanently installed Static Pressure Probe (PSPP) in the supply plenum

  19. STATE OF CALIFORNIA HSPP/PSPP INSTALLATION; COOLING COIL AIRFLOW & FAN WATT DRAW TEST

    E-Print Network [OSTI]

    STATE OF CALIFORNIA HSPP/PSPP INSTALLATION; COOLING COIL AIRFLOW & FAN WATT DRAW TEST CEC-CF-6R/PSPP Installation; Cooling Coil Airflow & Fan Watt Draw Test (Page 1 of 3) Site Address: Enforcement Agency: Permit), and Permanently installed Static Pressure Probe (PSPP) in the supply plenum When the Certificate of Compliance (CF

  20. The Spacing of Ceiling Fans for Human Comfort in Warm Temperature Conditions

    E-Print Network [OSTI]

    Spain, S.

    1987-01-01T23:59:59.000Z

    THE SPACING OF CEILING FANS FOR HUMAN COMFORT IN WARM TEMPERATURE CONDITIONS Syd Spain, Ph.D. Research Specialist CRS Sirrine, Inc. Houston, Tx ABSTRACT Airspeed tests of a commerci a1 1 y popular 52 in. ceiling fan operating at a low speed...

  1. Inlet swirl distortion effects on the generation and propagation of fan rotor shock noise

    E-Print Network [OSTI]

    Defoe, Jeff (Jeffrey James)

    2011-01-01T23:59:59.000Z

    A body-force-based fan model for the prediction of multiple-pure-tone noise generation is developed in this thesis. The model eliminates the need for a full-wheel, three-dimensional unsteady RANS simulation of the fan blade ...

  2. Quantification of Liquid Holdup in the Dropping Zone of a Blast Furnace--A Cold Model Study

    E-Print Network [OSTI]

    .S. GUPTA and K. NAVEEN A two-dimensional cold model study, replicating an ironmaking blast furnace dropping

  3. Field Study of Exhaust Fans for Mitigating Indoor Air Quality Problems: Final Report to Bonneville Power Administration

    E-Print Network [OSTI]

    Grimsrud, David T.

    2009-01-01T23:59:59.000Z

    Measurement Protocol Ventilation System Operation. . . . .Balanced mechanical ventilation systems, employing heatcompared to balanced ventilation systems. (a) exhaust fan

  4. Statistic inversion of multi-zone transition probability models for aquifer characterization in alluvial fans

    E-Print Network [OSTI]

    Zhu, Lin; Gong, Huili; Gable, Carl; Teatini, Pietro

    2015-01-01T23:59:59.000Z

    Understanding the heterogeneity arising from the complex architecture of sedimentary sequences in alluvial fans is challenging. This paper develops a statistical inverse framework in a multi-zone transition probability approach for characterizing the heterogeneity in alluvial fans. An analytical solution of the transition probability matrix is used to define the statistical relationships among different hydrofacies and their mean lengths, integral scales, and volumetric proportions. A statistical inversion is conducted to identify the multi-zone transition probability models and estimate the optimal statistical parameters using the modified Gauss-Newton-Levenberg-Marquardt method. The Jacobian matrix is computed by the sensitivity equation method, which results in an accurate inverse solution with quantification of parameter uncertainty. We use the Chaobai River alluvial fan in the Beijing Plain, China, as an example for elucidating the methodology of alluvial fan characterization. The alluvial fan is divided...

  5. A new development in microcomputer software for mine ventilation planning involving the installation of fans

    SciTech Connect (OSTI)

    O'Leary, M.S.J.; McPherson, M.J.

    1989-01-01T23:59:59.000Z

    This paper introduces a computer simulation that extends the use of microcomputer systems for mine ventilation planning. The program was developed as part of an ongoing study to produce a simulation model that would determine the optimum duties of a main fan and a booster fan without requiring the trial-and-error runs that are necessary with currently available programs. To use the new program, the user specifies the location of one main fan and one booster fan, and the minimum required airflows in any number of working places. The computer determines the fan duties that maintains the required airflows at the lowest operating costs without causing undesired recirculation. The methodology of the program and an example showing how it can be applied are presented.

  6. Video imaging system and thermal mapping of the molten hearth in an electron beam melting furnace

    SciTech Connect (OSTI)

    Miszkiel, M.E.; Davis, R.A.; Van Den Avyle, J.A. [Sandia National Laboratories, Albuquerque, NM (United States)] [and others

    1995-12-31T23:59:59.000Z

    This project was initiated to develop an enhanced video imaging system for the Liquid Metal Processing Laboratory Electron Beam Melting (EB) Furnace at Sandia and to use color video images to map the temperature distribution of the surface of the molten hearth. In a series of test melts, the color output of the video image was calibrated against temperatures measured by an optical pyrometer and CCD camera viewing port above the molten pool. To prevent potential metal vapor deposition onto line-of-sight optical surfaces above the pool, argon backfill was used along with a pinhole aperture to obtain the vide image. The geometry of the optical port to the hearth set the limits for the focus lens and CCD camera`s field of view. Initial melts were completed with the pyrometer and pinhole aperture port in a fixed position. Using commercially available vacuum components, a second flange assembly was constructed to provide flexibility in choosing pyrometer target sights on the hearth and to adjust the field of view for the focus lens/CCD combination. RGB video images processed from the melts verified that red wavelength light captured with the video camera could be calibrated with the optical pyrometer target temperatures and used to generate temperature maps of the hearth surface. Two color ratio thermal mapping using red and green video images, which has theoretical advantages, was less successful due to probable camera non-linearities in the red and green image intensities.

  7. High-bandwidth continuous-flow arc furnace

    DOE Patents [OSTI]

    Hardt, D.E.; Lee, S.G.

    1996-08-06T23:59:59.000Z

    A high-bandwidth continuous-flow arc furnace for stream welding applications includes a metal mass contained in a crucible having an orifice. A power source charges an electrode for generating an arc between the electrode and the mass. The arc heats the metal mass to a molten state. A pressurized gas source propels the molten metal mass through the crucible orifice in a continuous stream. As the metal is ejected, a metal feeder replenishes the molten metal bath. A control system regulates the electrode current, shielding gas pressure, and metal source to provide a continuous flow of molten metal at the crucible orifice. Independent control over the electrode current and shield gas pressure decouples the metal flow temperature and the molten metal flow rate, improving control over resultant weld characteristics. 4 figs.

  8. High-bandwidth continuous-flow arc furnace

    DOE Patents [OSTI]

    Hardt, David E. (Concord, MA); Lee, Steven G. (Ann Arbor, MI)

    1996-01-01T23:59:59.000Z

    A high-bandwidth continuous-flow arc furnace for stream welding applications includes a metal mass contained in a crucible having an orifice. A power source charges an electrode for generating an arc between the electrode and the mass. The arc heats the metal mass to a molten state. A pressurized gas source propels the molten metal mass through the crucible orifice in a continuous stream. As the metal is ejected, a metal feeder replenishes the molten metal bath. A control system regulates the electrode current, shielding gas pressure, and metal source to provide a continuous flow of molten metal at the crucible orifice. Independent control over the electrode current and shield gas pressure decouples the metal flow temperature and the molten metal flow rate, improving control over resultant weld characteristics.

  9. Processing electric arc furnace dust into saleable chemical products

    SciTech Connect (OSTI)

    NONE

    1998-04-01T23:59:59.000Z

    The modern steel industry uses electric arc furnace (EAF) technology to manufacture steel. A major drawback of this technology is the production of EAF dust, which is listed by the U.S. Environmental Protection Agency as a hazardous waste under the Resource Conservation and Recovery Act. The annual disposal of approximately 0.65 million tons of EAF dust in the United States and Canada is an expensive, unresolved problem for the steel industry. EAF dust byproducts are generated during the manufacturing process by a variety of mechanisms. The dust consists of various metals (e.g., zinc, lead, cadmium) that occur as vapors at 1,600{degrees}C (EAF hearth temperature); these vapors are condensed and collected in a baghouse. The production of one ton of steel will generate approximately 25 pounds of EAF dust as a byproduct, which is currently disposed of in landfills.

  10. Operational considerations for high level blast furnace fuel injection

    SciTech Connect (OSTI)

    Poveromo, J.J. [Quebec Cartier Mining Co., Bethlehem, PA (United States)

    1996-12-31T23:59:59.000Z

    Injection levels of over 400 lbs/NTHM for coal, over 250 lbs/NTHM for natural gas and over 200 lbs/NTHM for oil have been achieved. Such high levels of fuel injection has a major impact on many aspects of blast furnace operation. In this paper the author begins by reviewing the fundamentals of fuel injection with emphasis on raceway thermochemical phenomena. The operational impacts which are generic to high level injection of any injectant are then outlined. The author will then focus on the particular characteristics of each injectant, with major emphasis on coal and natural gas. Operational considerations for coping with these changes and methods of maximizing the benefits of fuel injection will be reviewed.

  11. Role of hydrogen in blast furnaces to improve productivity and decrease coke consumption

    SciTech Connect (OSTI)

    Agarwal, J.C.; Brown, F.C.; Chin, D.L.; Stevens, G.; Clark, R.; Smith, D.

    1995-12-01T23:59:59.000Z

    The hydrogen contained in blast furnace gases exerts a variety of physical, thermochemical, and kinetic effects as the gases pass through the various zones. The hydrogen is derived from two sources: (1) the dissociation of moisture in the blast air (ambient and injected with hot blast), and (2) the release from partial combustion of supplemental fuels (including moisture in atomizing water, steam, or transport air, if any). With each atom of oxygen (or carbon), the molar amounts of hydrogen released are more than six times higher for natural gas than for coal, and two times higher for natural gas than for oil. Injection of natural gas in a blast furnace is not a new process. Small amounts of natural gas--about 50--80 lb or 1,100--1,700 SCF/ton of hot metal--have been injected in many of the North American blast furnaces since the early 1960s, with excellent operating results. What is new, however, is a batter understanding of how natural gas reacts in the blast furnace and how natural gas and appropriate quantities of oxygen can be used to increase the driving rate or combustion rate of carbon (coke) in the blast furnace without causing hanging furnace and operating problems. The paper discusses the factors limiting blast furnace productivity and how H{sub 2} and O{sub 2} can increase productivity.

  12. Coke battery with 51-m{sup 3} furnace chambers and lateral supply of mixed gas

    SciTech Connect (OSTI)

    V.I. Rudyka; N.Y. Chebotarev; O.N. Surenskii; V.V. Derevich [Giprokoks, the State Institute for the Design of Coke-Industry Enterprises, Kharkov (Ukraine)

    2009-07-15T23:59:59.000Z

    The basic approaches employed in the construction of coke battery 11A at OAO Magnitogorskii Metallurgicheskii Kombinat are outlined. This battery includes 51.0-m{sup 3} furnaces and a dust-free coke-supply system designed by Giprokoks with lateral gas supply; it is heated exclusively by low-calorific mixed gas consisting of blast-furnace gas with added coke-oven gas. The 82 furnaces in the coke battery are divided into two blocks of 41. The gross coke output of the battery (6% moisture content) is 1140000 t/yr.

  13. Monitoring lining and hearth conditions at Inland`s No. 7 blast furnace

    SciTech Connect (OSTI)

    Quisenberry, P.; Grant, M.; Carter, W.

    1997-12-31T23:59:59.000Z

    The paper describes: furnace statistics; mini-reline undertaken in November, 1993; the stack condition; throat gunning; stabilizing the graphite bricks; the hearth condition; reactions to temperature excursions; future instrumentation; and hot blast system areas of concern. The present data from monitoring systems and inspections indicate that the furnace should be able to operate well beyond the expectation for the 1993 mini-reline (3--5 years) with: (1) consistent, high quality raw materials; (2) instrumentation, diagnostic, remedial, and preventative techniques developed; and (3) stopping quickly any water leaks into the furnace. The longevity of this campaign has undoubtedly been a result of this monitoring program.

  14. Model of the radial distribution of gas in the blast furnace

    SciTech Connect (OSTI)

    Nikus, M.; Saxen, H. [Aabo Akademi Univ. (Finland). Dept. of Chemical Engineering

    1996-12-31T23:59:59.000Z

    This paper describes an on-line model for estimating the radial gas distribution in blast furnaces. The model is based on molar and energy flow balances for the blast furnace throat region, and utilizes the top gas temperature and gas temperature measurements from a fixed above-burden probe. The distribution of the gas flux is estimated by a Kalman filter. The method is illustrated to capture short-term dynamics and to detect sudden major changes in the gas distribution in Finnish blast furnace.

  15. 2014-10-27 Issuance: Test Procedure for Ceiling Fan Light Kits; Notice of

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy China 2015ofDepartment ofCBFO-13-3322(EE)DepartmentVery Large

  16. Improved Heat Transfer and Performance of High Intensity Combustion Systems for Reformer Furnace Applications

    E-Print Network [OSTI]

    Williams, F. D. M.; Kondratas, H. M.

    1983-01-01T23:59:59.000Z

    and should enable substantial capital cost savings in new furnace applications. Recent performance improvements established from tests of high intensity combustion systems are described along with advances made in the analytical prediction of design...

  17. (Acceptance testing of the 150-kW electron-beam furnace)

    SciTech Connect (OSTI)

    Ohriner, E.K.; Howell, C.R.

    1990-09-18T23:59:59.000Z

    The travelers observed the acceptance testing of the 150-kW electron-beam (EB) furnace constructed by Leybold (Hanau) Technologies prior to disassembly and shipping. The testing included: (1) operation of the mold withdrawal system (2) vacuum pumping and vacuum chamber leak-up rates, (3) power stability at full power, (4) x-radiation monitoring at full power, and (5) demonstration of system interlocks for loss of water cooling, loss of vacuum, loss of power, and emergency shutdown. Preliminary training was obtained in furnace operation, EB gun maintenance, and use of the programmable logic controller for beam manipulation. Additional information was obtained on water-cooling requirements and furnace platform construction necessary for the installation. The information gained and training received will greatly assist in minimizing the installation and startup operation costs of the furnace.

  18. Refinery Furnaces Retrofit with Gas Turbines Achieve Both Energy Savings and Emission Reductions 

    E-Print Network [OSTI]

    Giacobbe, F.; Iaquaniello, G.; Minet, R. G.; Pietrogrande, P.

    1985-01-01T23:59:59.000Z

    Integrating gas turbines with refinery furnaces can be a cost effective means of reducing NOx emissions while also generating electricity at an attractive heat rate. Design considerations and system costs are presented....

  19. Innovative Energy Conservation Through Scrao Pre-heating in an Electric Arc Furnace

    E-Print Network [OSTI]

    Dicion, A.

    2013-01-01T23:59:59.000Z

    This paper will present an innovative energy conservation technology for scrap pre-heating in an Electric Arc Furnace that is being implemented in an industrial facility in Ontario. The objective of the paper is to examine the electrical...

  20. Residential Bulk-Fed Wood-Pellet Central Boilers and Furnace Rebate Program

    Broader source: Energy.gov [DOE]

    The New Hampshire Public Utilities Commission (PUC) is offering rebates of 30% of the installed cost of qualifying new residential bulk-fed, wood-pellet central heating boilers or furnaces. The...

  1. THE FURNACE COMBUSTION AND RADIATION CHARACTERISTICS OF METHANOL AND A METHANOL/COAL SLURRY

    E-Print Network [OSTI]

    Grosshandler, W.L.

    2010-01-01T23:59:59.000Z

    a Furnace Burning City of Heavy Fuel Oil (from Sato, et . ~"a copper catalyst. heavy fuel oil, naptha, or natural gas,from city gas and heavy fuel oil burning in the Kyoto

  2. Some features of the melting of borosilicate glasses in continuous furnaces

    SciTech Connect (OSTI)

    Sivko, A.P.

    1988-07-01T23:59:59.000Z

    The quality of G40-1 glass obtained in continuous gas furnaces was studied. The solubility of the gases in the G40-1 glass was determined for acceptable articles obtained in the two furnaces. The effect of repeat heating of the G40-1 glass in the forming zone was studied to find reasons for the formation of seeds and bubbles. It was shown that they form when scale from hot angle-bar supporting the plate-blocks of the crown fell into the glass of the working end of the furnace if the lining of the curtain wall has not been adequately sealed. When borosilicate glass with a large concentration of the boron oxide phase was melted in continuous furnaces it was not permissible to have a positive pressure of the gas medium in the sub-crown space.

  3. Titanium addition practice, and maintenance for the hearths in AHMSA`s blast furnaces

    SciTech Connect (OSTI)

    Boone, A.G.; Jimenez, G.; Castillo, J. [Altos Hornos de Mexico, Monclova (Mexico)

    1997-12-31T23:59:59.000Z

    Altos Hornos de Mexico (AHMSA) is a steel company located in Northern Mexico, in the state of Coahuila. Currently there are three blast furnaces in operation and one more about to finish its general repair. This last one is to remain as a back-up unit. Because of blast furnace hearth wear outs AHMSA has developed some maintenance procedures. These procedures are based on titanium ore additions and hearth thermic control monitoring. There are also some other maintenance practices adopted to the working operations to assure that such operations detect and avoid in time hearth wear outs that place personnel and/or the unit in danger (due to hearth leaks). This paper describes titanium ore addition to No. 2 blast furnace during the final campaign and it also illustrates maintenance practices and continuous monitoring of temperature trends both of which were implemented at AHMSA`s No. 5 blast furnace.

  4. Operational results for high pulverized coal injection rate at Kimitsu No. 3 blast furnace

    SciTech Connect (OSTI)

    Ueno, Hiromitsu; Matsunaga, Shin`ichi; Kakuichi, Kazumoto; Amano, Shigeru; Yamaguchi, Kazuyoshi

    1995-12-01T23:59:59.000Z

    In order to further develop the technology for high-rate pulverized coal injection (PCI), namely over 200 kg/t-pig, Nippon Steel performed a high injection rate test at the Kimitsu No. 3 blast furnace in November, 1993. The paper describes PCI equipment; the operational design of the test, including blast conditions, reducibility of sinter, coke strength and burden distribution; and test results. These results include a discussion of the transition of operation, burden distribution control, replacement ratio of coke, permeability at upper and lower parts of the furnace, reducibility at lower part of the furnace, accumulation of fines in the deadman, and generation and accumulation of unburnt char. Stable operation was achieved at a PCI rate of 190 kg/t-pig. With injection rates between 200--300 kg/t-pig, the problem becomes how to improve the reduction-meltdown behavior in the lower part of the furnace.

  5. BLAST FURNACE GRANULAR COAL INJECTION SYSTEM. Final Report Volume 2: Project Performance and Economics

    SciTech Connect (OSTI)

    Unknown

    1999-10-01T23:59:59.000Z

    Bethlehem Steel Corporation (BSC) requested financial assistance from the Department of Energy (DOE), for the design, construction and operation of a 2,800-ton-per-day blast furnace granulated coal injection (BFGCI) system for two existing iron-making blast furnaces. The blast furnaces are located at BSC's facilities in Burns Harbor, Indiana. The demonstration project proposal was selected by the DOE and awarded to Bethlehem in November 1990. The design of the project was completed in December 1993 and construction was completed in January 1995. The equipment startup period continued to November 1995 at which time the operating and testing program began. The blast furnace test program with different injected coals was completed in December 1998.

  6. Electricity and Natural Gas Efficiency Improvements for Residential Gas Furnaces in the U.S.

    E-Print Network [OSTI]

    Lekov, Alex; Franco, Victor; Meyers, Steve; McMahon, James E.; McNeil, Michael; Lutz, Jim

    2006-01-01T23:59:59.000Z

    as furnaces having a heat input rate of less than 225,000that cycles a burner between reduced heat input rate and offor between the maximum heat input rate and off. Two-stage

  7. Evaluation of Advanced PSA and Oxygen Combustion System for Industrial Furnace Applications

    E-Print Network [OSTI]

    Delano, M. A.; Lagree, D.; Kwan, Y.

    M. A. Delano Union Carbide Corp. Tarrytown, NY ABSTRACT EVALUATION OF ADVANCED PSA AND OXYGEN COMBUSTION SYSTEM FOR INDUSTRIAL FURNACE APPLICATIONS D. Lagree Union Carbide Corp. Tonawanda, NY The performance of a pilot scale advanced PSA... oxygen generation system and a low NO x oxygen burner was evaluated for industrial furnace applications. The PSA system employs a two-bed vacuum cycle design with a capacity of 1.3 TPD at 90% O 2 purity. The oxygen generated from the PSA system...

  8. Expert Meeting Report: Achieving the Best Installed Performance from High-Efficiency Residential Gas Furnaces

    SciTech Connect (OSTI)

    Brand, L.

    2012-03-01T23:59:59.000Z

    This report describes a Building America expert meeting hosted on July 28, 2011, by the Partnership for Advanced Residential Retrofit team. The purpose of this meeting was to identify installation practices that provide the best installed efficiency for residential gas furnaces, explain how AFUE and field efficiency can differ, and investigate the impact of installation practices on the efficiency and long-term durability of the furnace.

  9. Hearth monitoring experiences at Dofasco`s No. 4 blast furnace

    SciTech Connect (OSTI)

    Stothart, D.W.; Chaykowski, R.D.; Donaldson, R.J.; Pomeroy, D.H.

    1997-12-31T23:59:59.000Z

    As a result of a 1994 taphole breakout at Dofasco`s No. 4 Blast Furnace, extensive effort has gone into monitoring, understanding and controlling hearth wear. This paper reviews the hearth monitoring system developed and the various hearth operating and maintenance techniques used to ensure No. 4 Blast Furnace safely reaches its 1998 reline date. The impact of changes in coke quality, productivity, casting practice and leaking cooling members on hearth refractory temperature fluctuations will also be examined.

  10. Blast furnace injection of massive quantities of coal with enriched air or pure oxygen

    SciTech Connect (OSTI)

    Ponghis, N.; Dufresne, P.; Vidal, R.; Poos, A. (Center de Recherches Metallurgiques, Liege (Belgium))

    1993-01-01T23:59:59.000Z

    An extensive study of the phenomena associated with the blast furnace injection of massive quantities of coal is described. Trials with conventional lances or oxy-coal injectors and hot blast at different oxygen contents - up to 40% - or with cold pure oxygen were realized at coal to oxygen ratios corresponding to a range of 150 to 440 kg. Pilot scale rigs, empty or filled with coke, as well as industrial blast furnaces were utilized.

  11. SPEECH NOISE ESTIMATION USING ENHANCED MINIMA CONTROLLED RECURSIVE Ningping Fan, Justinian Rosca, Radu Balan

    E-Print Network [OSTI]

    Balan, Radu V.

    , Justinian Rosca, Radu Balan Siemens Corporate Research Inc. {Ning.Fan, Justinian.Rosca, Radu.Balan}@siemens speech samples are organized as overlapped frames and each frame is transformed into spectral domain

  12. High-amplitude reflection packets (HARPs) of the Mississippi Fan, Gulf of Mexico

    E-Print Network [OSTI]

    Francis, Jason Michael

    2000-01-01T23:59:59.000Z

    sediment volumes. Mississippi Fan HARP deposition can be described by three depositional models: the "avulsion" model, the "fill and spill" model, and the "transition" model. The "avulsion" depositional model, developed by Flood et al. (1991), describes...

  13. Shut Down Fans, Save $1/4 Million/Yr and Increase Airflow?

    E-Print Network [OSTI]

    Martin, V.; Ohrt, H.

    In 1994, the fume collection system for the Desulphurization Station at Dofasco Inc., Hamilton, Ontario was studied for energy and maintenance optimization. The existing system consisted of two 600 hp fans on a wet scrubber system for two collection...

  14. Performance characteristics of a low pressure cyclone for axial-flow fan exhausts

    E-Print Network [OSTI]

    Simpson, Shay Lynn

    1996-01-01T23:59:59.000Z

    on axial-flow fan exhausts to significantly reduce particulate emissions. Average emission concentrations, cut-point diameters, PMIO emission concentrations, and fractional efficiencies from this cyclone operating at different cyclone inlet velocities...

  15. Fan-Speed-Aware Scheduling of Data Intensive Jobs Christine S. Chan

    E-Print Network [OSTI]

    Simunic, Tajana

    of service level agreement (SLA). At the facility level, heating, ventilating and air conditioning (HVAC market servers) additionally over-provision fan subsystems to maintain a low set point. As recently

  16. Development of models for series and parallel fan variable air volume terminal units

    E-Print Network [OSTI]

    Furr, James C., Jr

    2007-09-17T23:59:59.000Z

    Empirical models of airflow output and power consumption were developed for series and parallel fan powered variable air volume terminal units at typical design pressure conditions. A testing procedure and experimental setup were developed to test...

  17. Processes and Forms of Alluvial Fans Terence C. Blair and John G. McPherson

    E-Print Network [OSTI]

    -central Africa, the Middle East, Iran, Pakistan, India, China, and Mon- golia. The growth of fan research has increased in other arid and semi-arid regions, including in Peru, Argentina, Chile, southern Europe, east

  18. Pulverized coal injection (PCI) at Inland`s No. 7 blast furnace

    SciTech Connect (OSTI)

    Carter, W.L.; Greenawald, P.B.; Ranade, M.G.; Ricketts, J.A.; Zuke, D.A. [Inland Steel Co., East Chicago, IN (United States)

    1995-12-01T23:59:59.000Z

    Fuel injection at the tuyeres has always been part of normal operating practice on this blast furnace. It has been used as much because of the beneficial effects on furnace operation as for the replacement of some of the coke that would otherwise be consumed. Fuel oil was used at first, but since the early 1980s it was more economical to inject natural gas. Studies in 1990 indicated that natural gas could be increased to 75 kg/tHM on No. 7 Furnace, and this would result in a coke rate of approximately 360 kg/tHM. It was apparent that coal injection offered significantly more opportunity for coke savings. Coke rate could be lowered to 300 kg/tHM with coal injected at 175 kg/tHM. Some combustion limitations were expected at that level. A coke rate of 270 kg/tHM with coal at 200 kg/tHM may be possible once these limitations are overcome. Furnace permeability was expected to limit the ability to reduce coke rate any further. In addition, the relative cost of coal would be significantly lower than the cost of coke it replaced. This lead to the decision late in 1991 to install pulverized coal injection (PCI) equipment for all of Inland`s blast furnaces. This paper will deal with PCI experience at No. 7 Blast Furnace.

  19. Gas-powder flow in blast furnace with different shapes of cohesive zone

    SciTech Connect (OSTI)

    Dong, X.F.; Pinson, D.; Zhang, S.J.; Yu, A.B.; Zulli, P. [University of New South Wales, Sydney, NSW (Australia)

    2006-11-15T23:59:59.000Z

    With high PCI rate operations, a large quantity of unburned coal/char fines will flow together with the gas into the blast furnace. Under some operating conditions, the holdup of fines results in deterioration of furnace permeability and lower production efficiency. Therefore, it is important to understand the behaviour of powder (unburnt coal/char) inside the blast furnace when operating with different cohesive zone (CZ) shapes. This work is mainly concerned with the effect of cohesive zone shape on the powder flow and accumulation in a blast furnace. A model is presented which is capable of simulating a clear and stable accumulation region in the lower central region of the furnace. The results indicate that powder is likely to accumulate at the lower part of W-shaped CZs and the upper part of V- and inverse V-shaped CZs. For the same CZ shape, a thick cohesive layer can result in a large pressure drop while the resistance of narrow cohesive layers to gas-powder flow is found to be relatively small. Implications of the findings to blast furnace operation are also discussed.

  20. Thermal Treatment of Solid Wastes Using the Electric Arc Furnace

    SciTech Connect (OSTI)

    O'Connor, W.K.; Turner, P.C.

    1999-09-01T23:59:59.000Z

    A thermal waste treatment facility has been developed at the Albany Research Center (ARC) over the past seven years to process a wide range of heterogeneous mixed wastes, on a scale of 227 to 907 kg/h (500 to 2,000 lb/h). The current system includes a continuous feed system, a 3-phase AC, 0.8 MW graphite electrode arc furnace, and a dedicated air pollution control system (APCS) which includes a close-coupled thermal oxidizer, spray cooler, baghouse, and wet scrubber. The versatility of the complete system has been demonstrated during 5 continuous melting campaigns, ranging from 11 to 25 mt (12 to 28 st) of treated wastes per campaign, which were conducted on waste materials such as (a) municipal incinerator ash, (b) simulated low-level radioactive, high combustible-bearing mixed wastes, (c) simulated low-level radioactive liquid tank wastes, (d) heavy metal contaminated soils, and (e) organic-contaminated dredging spoils. In all cases, the glass or slag products readily passed the U.S. Environmental Protection Agency (EPA) Toxicity Characteristic Leachability Program (TCLP) test. Additional studies are currently under way on electric utility wastes, steel and aluminum industry wastes, as well as zinc smelter residues. Thermal treatment of these solid waste streams is intended to produce a metallic product along with nonhazardous glass or slag products.

  1. Vertical feed stick wood fuel burning furnace system

    DOE Patents [OSTI]

    Hill, Richard C. (Orono, ME)

    1982-01-01T23:59:59.000Z

    A stove or furnace for efficient combustion of wood fuel includes a vertical feed combustion chamber (15) for receiving and supporting wood fuel in a vertical attitude or stack. A major upper portion of the combustion chamber column comprises a water jacket (14) for coupling to a source of water or heat transfer fluid for convection circulation of the fluid. The locus (31) of wood fuel combustion is thereby confined to the refractory base of the combustion chamber. A flue gas propagation delay channel (34) extending laterally from the base of the chamber affords delayed travel time in a high temperature refractory environment sufficient to assure substantially complete combustion of the gaseous products of wood burning with forced air prior to extraction of heat in heat exchanger (16). Induced draft draws the fuel gas and air mixture laterally through the combustion chamber and refractory high temperature zone to the heat exchanger and flue. Also included are active sources of forced air and induced draft, multiple circuit couplings for the recovered heat, and construction features in the refractory material substructure and metal component superstructure.

  2. Understanding environmental leachability of electric arc furnace dust

    SciTech Connect (OSTI)

    Stegemann, J.A.; Roy, A.; Caldwell, R.J.; Schilling, P.J.; Tittsworth, R.

    2000-02-01T23:59:59.000Z

    Dust from production of steel in an electric arc furnace (EAF) contains a mixture of elements that pose a challenge for both recovery and disposal. This paper relates the leachability of six Canadian EAF dusts in four leaching tests [distilled water, Ontario Regulation 347 Leachate Extraction Procedure, Amount Available for Leaching (AALT), and pH 5 Stat] to their mineralogy. Chromium and nickel contaminants in EAF dust are largely unleachable (<5% available in AALT and pH 5 Stat), as they are found with the predominant spinel ferrite phase in EAF dust. However, even a small proportion of oxidized chromium can result in significant leachate concentrations of highly toxic chromate. The leachability of zinc (7--50% available), lead (2--17% available), and cadmium (9--55% available) can be significant, as large fractions of these contaminants are found as chlorides and oxides. The leaching of these metals is largely controlled by pH. The acid neutralization capacity of the EAF dusts appeared to be controlled by dissolution of lime and zincite, and results from regulatory leaching tests can be misleading because the variable acid neutralization capacity of EAF dusts can lead to very different final leachate pHs (5--12.4). A more informative approach would be to evaluate the total amounts of contaminants available in the long term, and the acid neutralization capacity.

  3. Recycling of electric arc furnace dust: Jorgensen steel facility

    SciTech Connect (OSTI)

    Jackson, T.W.; Chapman, J.S.

    1995-01-01T23:59:59.000Z

    This document is an evaluation of the Ek Glassification(TM) Process to recycle and convert K061-listed waste (Electric Arc Furnace or EAF dust) and other byproducts of the steel-making industry into usable products. The Process holds potential for replacing the need for expensive disposal costs associated with the listed waste with the generation of marketable products. The products include colored glass and glass-ceramics; ceramic glazes, colorants, and fillers; roofing granules and sandblasting grit; and materials for Portland cement production. Field testing of the technology was conducted by the U.S. Environmental Protection Agency (U.S. EPA) in early July of 1991 at the Earle M. Jorgensen Steel Co. (EMJ) plant in Seattle, Washington, and both technical and economic aspects of the technology were examined. TCLP testing of the product determined that leachability characteristics of metals in the product meet treatment standards for K061-listed waste. The Process was also shown to be economically viable, based on capital and operating cost estimates, and profit and revenue forecasts for a 21,000 ton-per-year operation. Although this effort showed that the technology holds promise, regulatory compliance should be evaluated on the basis of the actual hardware configuration and operating procedures along with the leachability of the specific product formulations to be used.

  4. Detailed model for practical pulverized coal furnaces and gasifiers

    SciTech Connect (OSTI)

    Philips, S.D.; Smoot, L.D.

    1989-08-01T23:59:59.000Z

    The need to improve efficiency and reduce pollutant emissions commercial furnaces has prompted energy companies to search for optimized operating conditions and improved designs in their fossil-fuel burning facilities. Historically, companies have relied on the use of empirical correlations and pilot-plant data to make decisions about operating conditions and design changes. The high cost of collecting data makes obtaining large amounts of data infeasible. The main objective of the data book is to provide a single source of detailed three-dimensional combustion and combustion-related data suitable for comprehensive combustion model evaluation. Five tasks were identified as requirements to achieve the main objective. First, identify the types of data needed to evaluate comprehensive combustion models, and establish criteria for selecting the data. Second, identify and document available three-dimensional combustion data related to pulverized coal combustion. Third, collect and evaluate three-dimensional data cases, and select suitable cases based on selection criteria. Fourth, organize the data sets into an easy-to-use format. Fifth, evaluate and interpret the nature and quality of the data base. 39 refs., 15 figs., 14 tabs.

  5. The distribution and composition of organic matter in recent deltaic and submarine fan sediments

    E-Print Network [OSTI]

    DeFreitas, Debra Ann

    1988-01-01T23:59:59.000Z

    THE DISTRIBUTION AND COMPOSITION OF ORGANIC MATTER IN RECFNT DELTAIC AND SUBMARINE FAN SEDIMENTS A Thesis by DEBRA ANN DEFREITAS Submitted to the Graduate College of Texas A&N University in partial fulfillment of the requirement... for the degree of MASTER OF SCIENCE May 1988 Major Subject: Oceanography THE DISTRIBUTION AND COMPOSITION OF ORGANIC MATTER IN RECENT DELTAIC AND SUBMARINE FAN SEDIMENTS A Thesis by DEBRA ANN DEFREITAS Approved as to style and content by: James M. Bro...

  6. Performance of VAV Fan Powered Terminal Units: Experimental Results and Models for Parallel Units

    E-Print Network [OSTI]

    Furr, J.; O'Neal, D.; Davis, M.; Bryant, J.; Cramlet, A.

    ©2008 ASHRAE 83 ABSTRACT Empirical models of airflow output, power consumption, and primary airflow were developed for parallel fan powered variable air volume terminal units at typical operating pres- sures. Both 8 in. (203 mm) and 12 in. (304 mm...) primary air inlet terminal units from three manufacturers were evaluated. Generalized models were developed from the experimental data with coefficients varying by size and manufacturer. Fan power and airflow data were collected at down- stream static...

  7. Modeling of Electronically Commutated Motor Controlled Fan-powered Terminal Units

    E-Print Network [OSTI]

    Edmondson, Jacob Lee

    2011-02-22T23:59:59.000Z

    MODELING OF ELECTRONICALLY COMMUTATED MOTOR CONTROLLED FAN-POWERED TERMINAL UNITS A Thesis by JACOB LEE EDMONDSON Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements... for the degree of MASTER OF SCIENCE December 2009 Major Subject: Mechanical Engineering MODELING OF ELECTRONICALLY COMMUTATED MOTOR CONTROLLED FAN-POWERED TERMINAL UNITS A Thesis by JACOB LEE EDMONDSON Submitted to the Office...

  8. Engine having hydraulic and fan drive systems using a single high pressure pump

    DOE Patents [OSTI]

    Bartley, Bradley E. (Manito, IL); Blass, James R. (Bloomington, IL); Gibson, Dennis H. (Chillicothe, IL)

    2000-01-01T23:59:59.000Z

    An engine comprises a hydraulic system attached to an engine housing that includes a high pressure pump and a hydraulic fluid flowing through at least one passageway. A fan drive system is also attached to the engine housing and includes a hydraulic motor and a fan which can move air over the engine. The hydraulic motor includes an inlet fluidly connected to the at least one passageway.

  9. Continuous Commissioning® of a Single Fan Dual Duct System in an Office Building

    E-Print Network [OSTI]

    Dong, D.; Liu, M.

    2005-01-01T23:59:59.000Z

    in this case include installing VFD on the supply fan and return fan, updating all terminal boxes from CAV modes into VAV modes, resetting duct static pressure and supply air temperature, optimizing outside air intake and installing VFDs on chiller... are introduced in this paper. The technologies involve dual duct static pressure reset control, outside air intake in the morning, variable chilled water system control, and variable hot water system control. ESL-IC-10/05-15 1 CC ® has been achieving...

  10. THE SOURCE OF 3 MINUTE MAGNETOACOUSTIC OSCILLATIONS IN CORONAL FANS

    SciTech Connect (OSTI)

    Jess, D. B.; Mathioudakis, M.; Reardon, K. P.; Keys, P. H.; Keenan, F. P. [Astrophysics Research Centre, School of Mathematics and Physics, Queen's University Belfast, Belfast BT7 1NN (United Kingdom); De Moortel, I. [School of Mathematics and Statistics, University of St Andrews, St Andrews KY16 9SS (United Kingdom); Christian, D. J., E-mail: d.jess@qub.ac.uk [Department of Physics and Astronomy, California State University Northridge, Northridge, CA 91330 (United States)

    2012-10-01T23:59:59.000Z

    We use images of high spatial, spectral, and temporal resolution, obtained using both ground- and space-based instrumentation, to investigate the coupling between wave phenomena observed at numerous heights in the solar atmosphere. Analysis of 4170 A continuum images reveals small-scale umbral intensity enhancements, with diameters {approx}0.''6, lasting in excess of 30 minutes. Intensity oscillations of Almost-Equal-To 3 minutes are observed to encompass these photospheric structures, with power at least three orders of magnitude higher than the surrounding umbra. Simultaneous chromospheric velocity and intensity time series reveal an 87 Degree-Sign {+-} 8 Degree-Sign out-of-phase behavior, implying the presence of standing modes created as a result of partial wave reflection at the transition region boundary. We find a maximum waveguide inclination angle of Almost-Equal-To 40 Degree-Sign between photospheric and chromospheric heights, combined with a radial expansion factor of <76%. An average blueshifted Doppler velocity of Almost-Equal-To 1.5 km s{sup -1}, in addition to a time lag between photospheric and chromospheric oscillatory phenomena, confirms the presence of upwardly propagating slow-mode waves in the lower solar atmosphere. Propagating oscillations in EUV intensity are detected in simultaneous coronal fan structures, with a periodicity of 172 {+-} 17 s and a propagation velocity of 45 {+-} 7 km s{sup -1}. Numerical simulations reveal that the damping of the magnetoacoustic wave trains is dominated by thermal conduction. The coronal fans are seen to anchor into the photosphere in locations where large-amplitude umbral dot (UD) oscillations manifest. Derived kinetic temperature and emission measure time series display prominent out-of-phase characteristics, and when combined with the previously established sub-sonic wave speeds, we conclude that the observed EUV waves are the coronal counterparts of the upwardly propagating magnetoacoustic slow modes detected in the lower solar atmosphere. Thus, for the first time, we reveal how the propagation of 3 minute magnetoacoustic waves in solar coronal structures is a direct result of amplitude enhancements occurring in photospheric UDs.

  11. Quantum Addition Circuits and Unbounded Fan-Out

    E-Print Network [OSTI]

    Yasuhiro Takahashi; Seiichiro Tani; Noboru Kunihiro

    2009-10-14T23:59:59.000Z

    We first show how to construct an O(n)-depth O(n)-size quantum circuit for addition of two n-bit binary numbers with no ancillary qubits. The exact size is 7n-6, which is smaller than that of any other quantum circuit ever constructed for addition with no ancillary qubits. Using the circuit, we then propose a method for constructing an O(d(n))-depth O(n)-size quantum circuit for addition with O(n/d(n)) ancillary qubits for any d(n)=\\Omega(log n). If we are allowed to use unbounded fan-out gates with length O(n^c) for an arbitrary small positive constant c, we can modify the method and construct an O(e(n))-depth O(n)-size circuit with o(n) ancillary qubits for any e(n)=\\Omega(log* n). In particular, these methods yield efficient circuits with depth O(log n) and with depth O(log* n), respectively. We apply our circuits to constructing efficient quantum circuits for Shor's discrete logarithm algorithm.

  12. ALTERNATE REDUCTANT COLD CAP EVALUATION FURNACE PHASE I TESTING

    SciTech Connect (OSTI)

    Johnson, F.; Miller, D.; Zamecnik, J.; Lambert, D.

    2014-04-22T23:59:59.000Z

    Savannah River Remediation (SRR) conducted a Systems Engineering Evaluation (SEE) to determine the optimum alternate reductant flowsheet for the Defense Waste Processing Facility (DWPF). Specifically, two proposed flowsheets (nitric–formic–glycolic and nitric–formic–sugar) were evaluated based upon results from preliminary testing. Comparison of the two flowsheets among evaluation criteria indicated a preference towards the nitric–formic–glycolic flowsheet. Further evaluation of this flowsheet eliminated the formic acid1, and as a result, the nitric–glycolic flowsheet was recommended for further testing. Based on the development of a roadmap for the nitric–glycolic acid flowsheet, Waste Solidification Engineering (WS-E) issued a Technical Task Request (TTR) to address flammability issues that may impact the implementation of this flowsheet. Melter testing was requested in order to define the DWPF flammability envelope for the nitric glycolic acid flowsheet. The Savannah River National Laboratory (SRNL) Cold Cap Evaluation Furnace (CEF), a 1/12th scale DWPF melter, was selected by the SRR Alternate Reductant project team as the melter platform for this testing. The overall scope was divided into the following sub-tasks as discussed in the Task Technical and Quality Assurance Plan (TTQAP): ? Phase I - A nitric–formic acid flowsheet melter test (unbubbled) to baseline the Cold Cap Evaluation Furnace (CEF) cold cap and vapor space data to the benchmark melter flammability models ? Phase II - A nitric–glycolic acid flowsheet melter test (unbubbled and bubbled) to: o Define new cold cap reactions and global kinetic parameters for the melter flammability models o Quantify off-gas surging potential of the feed o Characterize off-gas condensate for complete organic and inorganic carbon species Prior to startup, a number of improvements and modifications were made to the CEF, including addition of cameras, vessel support temperature measurement, and a heating element near the pour tube. After charging the CEF with cullet from a previous Sludge Batch 6 (SB6) run, the melter was slurry-fed with SB6-Frit 418 melter feed at 36% waste loading and was operated continuously for 6 days. Process data was collected throughout testing and included melter operation variables and off-gas chemistry. In order to satisfy the objective of Phase I testing, vapor space steady testing in the range of ~300°C-700°C was conducted without argon bubbling to baseline the melter data to the existing DWPF melter flammability model. Adjustments to heater outputs, air flows and feed rate were necessary in order to achieve the vapor space temperatures in this range. The results of the Phase I testing demonstrated that the CEF is capable of operating under the low vapor space temperatures A melter pressure of -5 inches of water was not sustained throughout the run, but the melter did remain slightly negative even with the maximum air flows required for the lowest temperature conditions were used. The auxiliary pour tube heater improved the pouring behavior at all test conditions, including reduced feed rates required for the low vapor space testing. Argon bubbling can be used to promote mixing and increase feed rate at multiple conditions. Improvements due to bubbling have been determined previously; however, the addition of the cameras to the CEF allows for visual observation during a range of bubbling configurations. The off-gas analysis system proved to be robust and capable of operating for long durations. The total operational hours on the melter vessel are approximately 385 hours. Dimensional measurements taken prior to Phase I testing and support block temperatures recorded during Phase I testing are available if an extension of service life beyond 1250 hours is desired in the future.

  13. Volatilisation and oxidation of aluminium scraps fed into incineration furnaces

    SciTech Connect (OSTI)

    Biganzoli, Laura, E-mail: laura.biganzoli@mail.polimi.it [Politecnico di Milano, Piazza L. Da Vinci 32, 20133 Milano (Italy); Gorla, Leopoldo; Nessi, Simone; Grosso, Mario [Politecnico di Milano, Piazza L. Da Vinci 32, 20133 Milano (Italy)

    2012-12-15T23:59:59.000Z

    Highlights: Black-Right-Pointing-Pointer Aluminium packaging partitioning in MSW incineration residues is evaluated. Black-Right-Pointing-Pointer The amount of aluminium packaging recoverable from the bottom ashes is evaluated. Black-Right-Pointing-Pointer Aluminium packaging oxidation rate in the residues of MSW incineration is evaluated. Black-Right-Pointing-Pointer 80% of aluminium cans, 51% of trays and 27% of foils can be recovered from bottom ashes. - Abstract: Ferrous and non-ferrous metal scraps are increasingly recovered from municipal solid waste incineration bottom ash and used in the production of secondary steel and aluminium. However, during the incineration process, metal scraps contained in the waste undergo volatilisation and oxidation processes, which determine a loss of their recoverable mass. The present paper evaluates the behaviour of different types of aluminium packaging materials in a full-scale waste to energy plant during standard operation. Their partitioning and oxidation level in the residues of the incineration process are evaluated, together with the amount of potentially recoverable aluminium. About 80% of post-consumer cans, 51% of trays and 27% of foils can be recovered through an advanced treatment of bottom ash combined with a melting process in the saline furnace for the production of secondary aluminium. The residual amount of aluminium concentrates in the fly ash or in the fine fraction of the bottom ash and its recovery is virtually impossible using the current eddy current separation technology. The average oxidation levels of the aluminium in the residues of the incineration process is equal to 9.2% for cans, 17.4% for trays and 58.8% for foils. The differences between the tested packaging materials are related to their thickness, mechanical strength and to the alloy.

  14. Uncertainty of calorimeter measurements at NREL's high flux solar furnace

    SciTech Connect (OSTI)

    Bingham, C.E.

    1991-12-01T23:59:59.000Z

    The uncertainties of the calorimeter and concentration measurements at the High Flux Solar Furnace (HFSF) at the National Renewable Energy Laboratory (NREL) are discussed. Two calorimeter types have been used to date. One is an array of seven commercially available circular foil calorimeters (gardon or heat flux gages) for primary concentrator peak flux (up to 250 W/cm{sup 2}). The second is a cold-water calorimeter designed and built by the University of Chicago to measure the average exit power of the reflective compound parabolic secondary concentrator used at the HFSF (over 3.3 kW across a 1.6cm{sup {minus}2} exit aperture, corresponding to a flux of about 2 kW/cm{sup 2}). This paper discussed the uncertainties of the calorimeter and pyrheliometer measurements and resulting concentration calculations. The measurement uncertainty analysis is performed according to the ASME/ANSI standard PTC 19.1 (1985). Random and bias errors for each portion of the measurement are analyzed. The results show that as either the power or the flux is reduced, the uncertainties increase. Another calorimeter is being designed for a new, refractive secondary which will use a refractive material to produce a higher average flux (5 kW/cm{sup 2}) than the reflective secondary. The new calorimeter will use a time derivative of the fluid temperature as a key measurement of the average power out of the secondary. A description of this calorimeter and test procedure is also presented, along with a pre-test estimate of major sources of uncertainty. 8 refs., 4 figs., 3 tabs.

  15. Smart lighting: New Roles for Light

    E-Print Network [OSTI]

    Salama, Khaled

    Smart lighting: New Roles for Light in the Solid State Lighting World Robert F. Karlicek, Jr. Director, Smart Lighting Engineering Research Center Professor, Electrical, Systems and Computer Lighting · What is Smart Lighting · Technology Barriers to Smart Lighting · Visible Light Communications

  16. Commercial Lighting

    Broader source: Energy.gov [DOE]

    Commercial lighting accounts for more than 20 percent of total commercial building energy use. The Energy Department works to reduce lighting energy use through research and deployment.

  17. LETTER REPORT INDEPENDENT VERIFICATION OF THE HIGH FLUX BEAM REACTOR DECOMMISSIONING PROJECT FAN HOUSE, BUILDING 704 BNL

    SciTech Connect (OSTI)

    P.C. Weaver

    2010-10-22T23:59:59.000Z

    5098-LR-01-0 -LETTER REPORT INDEPENDENT VERIFICATION OF THE HIGH FLUX BEAM REACTOR DECOMMISSIONING PROJECT FAN HOUSE, BUILDING 704 BROOKHAVEN NATIONAL LABORATORY

  18. Recovery Act: ArcelorMittal USA Blast Furnace Gas Flare Capture

    SciTech Connect (OSTI)

    Seaman, John

    2013-01-14T23:59:59.000Z

    The U.S. Department of Energy (DOE) awarded a financial assistance grant under the American Recovery and Reinvestment Act of 2009 (Recovery Act) to ArcelorMittal USA, Inc. (ArcelorMittal) for a project to construct and operate a blast furnace gas recovery boiler and supporting infrastructure at ArcelorMittal’s Indiana Harbor Steel Mill in East Chicago, Indiana. Blast furnace gas (BFG) is a by-product of blast furnaces that is generated when iron ore is reduced with coke to create metallic iron. BFG has a very low heating value, about 1/10th the heating value of natural gas. BFG is commonly used as a boiler fuel; however, before installation of the gas recovery boiler, ArcelorMittal flared 22 percent of the blast furnace gas produced at the No. 7 Blast Furnace at Indiana Harbor. The project uses the previously flared BFG to power a new high efficiency boiler which produces 350,000 pounds of steam per hour. The steam produced is used to drive existing turbines to generate electricity and for other requirements at the facility. The goals of the project included job creation and preservation, reduced energy consumption, reduced energy costs, environmental improvement, and sustainability.

  19. Effect of coal and coke qualities on blast furnace injection and productivity at Taranto

    SciTech Connect (OSTI)

    Salvatore, E.; Calcagni, M. [ILVA, Taranto (Italy); Eichinger, F.; Rafi, M.

    1995-12-01T23:59:59.000Z

    Injection rates at Taranto blast furnaces Nos. 2 and 4, for more than 16 months, was maintained above 175 kg/thm. Monthly average injection rate for two months stabilized above 190 kg/thm. This performance was possible due to the very high combined availabilities of Taranto blast furnaces and the KST injection system. Based upon this experience the quantitative relationships between coke/coal and blast furnace operational parameters were studied and are shown graphically. During this period due to coke quality changes, injection rate had to be reduced. The effect of using coke breeze in coke/ferrous charge as well as coal blend was also evaluated. Permeability of the furnace was found to be directly affected by O{sub 2} enrichment level, while at a high PCI rate no correlation between actual change in coke quality and permeability could be established. The future of PCI technology lies in better understanding of relationships between material specifications and blast furnace parameters of which permeability is of prime importance.

  20. Development and application of new techniques for blast furnace process control at SSAB Tunnplaat, Luleaa Works

    SciTech Connect (OSTI)

    Braemming, M.; Hallin, M. [SSAB Tunnplaat AB, Luleaa (Sweden); Zuo, G. [Luleaa Univ. (Sweden). Dept. of Process Metallurgy

    1995-12-01T23:59:59.000Z

    SSAB Tunnplaat AB operates two blast furnaces (M1 and M2) in Luleaa. In recent years research efforts have to a great extent been aimed at the development of new techniques for blast furnace process control. An example is the installation of a burden profile measurement system, which was useful in the development of a new burden distribution praxis on the big furnace (M2), equipped with a bell-less-top. Hearth level detection and continuous measurement of the hot metal temperature in the runner are under evaluation. The purpose of these techniques is to give earlier information concerning the state of the blast furnace process. Parallel to this work, models for prediction of silicon in hot metal, the position and shape of the cohesive zone and slip-warning are being developed and tested off-line. These new models and information from new measuring techniques will be integrated into a new Operating Guidance System, hopefully resulting in a powerful tool in the efforts to stabilize blast furnace operations.

  1. A Feasibility Study for Recycling Used Automotive Oil Filters In A Blast Furnace

    SciTech Connect (OSTI)

    Ralph M. Smailer; Gregory L. Dressel; Jennifer Hsu Hill

    2002-01-21T23:59:59.000Z

    This feasibility study has indicated that of the approximately 120,000 tons of steel available to be recycled from used oil filters (UOF's), a maximum blast furnace charge of 2% of the burden may be anticipated for short term use of a few months. The oil contained in the most readily processed UOF's being properly hot drained and crushed is approximately 12% to 14% by weight. This oil will be pyrolized at a rate of 98% resulting in additional fuel gas of 68% and a condensable hydrocarbon fraction of 30%, with the remaining 2% resulting as carbon being added into the burden. Based upon the writer's collected information and assessment, there appears to be no operational problems relating to the recycling of UOF's to the blast furnace. One steel plant in the US has been routinely charging UOF's at about 100 tons to 200 tons per month for many years. Extensive analysis and calculations appear to indicate no toxic consideration as a result of the pyrolysis of the small contained oil ( in the 'prepared' UOFs) within the blast furnace. However, a hydrocarbon condensate in the ''gasoline'' fraction will condense in the blast furnace scrubber water and may require additional processing the water treatment system to remove benzene and toluene from the condensate. Used oil filters represent an additional source of high quality iron units that may be effectively added to the charge of a blast furnace for beneficial value to the operator and to the removal of this resource from landfills.

  2. Economics of residential gas furnaces and water heaters in United States new construction market

    SciTech Connect (OSTI)

    Lekov, Alex B.; Franco, Victor H.; Wong-Parodi, Gabrielle; McMahon, James E.; Chan, Peter

    2009-05-06T23:59:59.000Z

    New single-family home construction represents a significant and important market for the introduction of energy-efficient gas-fired space heating and water-heating equipment. In the new construction market, the choice of furnace and water-heater type is primarily driven by first cost considerations and the availability of power vent and condensing water heaters. Few analysis have been performed to assess the economic impacts of the different combinations of space and water-heating equipment. Thus, equipment is often installed without taking into consideration the potential economic and energy savings of installing space and water-heating equipment combinations. In this study, we use a life-cycle cost analysis that accounts for uncertainty and variability of the analysis inputs to assess the economic benefits of gas furnace and water-heater design combinations. This study accounts not only for the equipment cost but also for the cost of installing, maintaining, repairing, and operating the equipment over its lifetime. Overall, this study, which is focused on US single-family new construction households that install gas furnaces and storage water heaters, finds that installing a condensing or power-vent water heater together with condensing furnace is the most cost-effective option for the majority of these houses. Furthermore, the findings suggest that the new construction residential market could be a target market for the large-scale introduction of a combination of condensing or power-vent water heaters with condensing furnaces.

  3. ALTERNATE REDUCTANT COLD CAP EVALUATION FURNACE PHASE II TESTING

    SciTech Connect (OSTI)

    Johnson, F.; Stone, M.; Miller, D.

    2014-09-03T23:59:59.000Z

    Savannah River Remediation (SRR) conducted a Systems Engineering Evaluation (SEE) to determine the optimum alternate reductant flowsheet for the Defense Waste Processing Facility (DWPF). Specifically, two proposed flowsheets (nitric–formic–glycolic and nitric–formic–sugar) were evaluated based upon results from preliminary testing. Comparison of the two flowsheets among evaluation criteria indicated a preference towards the nitric–formic–glycolic flowsheet. Further research and development of this flowsheet eliminated the formic acid, and as a result, the nitric–glycolic flowsheet was recommended for further testing. Based on the development of a roadmap for the nitric–glycolic acid flowsheet, Waste Solidification Engineering (WS-E) issued a Technical Task Request (TTR) to address flammability issues that may impact the implementation of this flowsheet. Melter testing was requested in order to define the DWPF flammability envelope for the nitric-glycolic acid flowsheet. The Savannah River National Laboratory (SRNL) Cold Cap Evaluation Furnace (CEF), a 1/12th scale DWPF melter, was selected by the SRR Alternate Reductant project team as the melter platform for this testing. The overall scope was divided into the following sub-tasks as discussed in the Task Technical and Quality Assurance Plan (TTQAP): ? Phase I - A nitric–formic acid flowsheet melter test (unbubbled) to baseline the CEF cold cap and vapor space data to the benchmark melter flammability models; ? Phase II - A nitric–glycolic acid flowsheet melter test (unbubbled and bubbled) to: o Define new cold cap reactions and global kinetic parameters in support of the melter flammability model development; o Quantify off-gas surging potential of the feed; o Characterize off-gas condensate for complete organic and inorganic carbon species. After charging the CEF with cullet from Phase I CEF testing, the melter was slurry-fed with glycolic flowsheet based SB6-Frit 418 melter feed at 36% waste loading and was operated continuously for 25 days. Process data was collected throughout testing and included melter operation parameters and off-gas chemistry. In order to generate off-gas data in support of the flammability model development for the nitric-glycolic flowsheet, vapor space steady state testing in the range of ~300-750°C was conducted under the following conditions, (i) 100% (nominal and excess antifoam levels) and 125% stoichiometry feed and (ii) with and without argon bubbling. Adjustments to feed rate, heater outputs and purge air flow were necessary in order to achieve vapor space temperatures in this range. Surge testing was also completed under nominal conditions for four days with argon bubbling and one day without argon bubbling.

  4. Apparatus having inductively coupled coaxial coils for measuring buildup of slay or ash in a furnace

    DOE Patents [OSTI]

    Mathur, Mahendra P. (Pittsburgh, PA); Ekmann, James M. (Bethel Park, PA)

    1989-01-01T23:59:59.000Z

    The buildup of slag or ash on the interior surface of a furnace wall is monitored by disposing two coils to form a transformer which is secured adjacent to the inside surface of the furnace wall. The inductive coupling between the two coils of the transformer is affected by the presence of oxides of iron in the slag or ash which is adjacent to the transformer, and the application of a voltage to one winding produces a voltage at the other winding that is related to the thickness of the slag or ash buildup on the inside surface of the furnace wall. The output of the other winding is an electrical signal which can be used to control an alarm or the like or provide an indication of the thickness of the slag or ash buildup at a remote location.

  5. The formation of an ore free blast furnace center by bell charging

    SciTech Connect (OSTI)

    Exter, P. den; Steeghs, A.G.S.; Godijn, R.; Chaigneau, R.; Timmer, R.M.C. [Hoogovens Research and Development, IJmuiden (Netherlands); Toxopeus, H.L.; Vliet, C. van der [Hoogovens Staal Primary Products, IJmuiden (Netherlands)

    1997-12-31T23:59:59.000Z

    A research program has been started to clarify and support the central gas flow control philosophy of Hoogovens` bell-charged No. 7 blast furnace. Small scale burdening experiments and sampling of the stock surface during shut-downs suggest that a sufficiently high central gas flow is an important condition for maintenance of an ore free, highly permeable furnace center and that fluidization of coke plays a part in its formation. On the basis of these experiments a hypothesis was formulated regarding the formation of an ore free blast furnace center, but could not be confirmed satisfactorily. Forthcoming full-scale burdening experiments will provide a better insight in the burden distribution and its control.

  6. Hoogovens blast furnace No. 6 -- The first eleven years of a continuing campaign

    SciTech Connect (OSTI)

    Tijhuis, G.; Toxopeus, H.; Berg, H. van den; Vliet, C. van der [Hoogovens Steel, IJmuiden (Netherlands)

    1997-12-31T23:59:59.000Z

    Blast furnace No. 6 of Hoogovens Steel has just completed its eleventh year of the fourth (running) campaign, with a total production of approx. 23 million metric tonnes of hot metal. During the last reline in 1985 the furnace was equipped with a third taphole and a bell-less top. The lining consists of graphite and semi-graphite and the cooling consists of a dense pattern of copper plate coolers. The current campaign is marked by several important operational events, in particular the high productivity and PCI rates, but also by the remarkable performance of the lining which has shown limited wear in the first four years of the campaign, and hardly any reduction of the lining thickness in the last seven years. This paper discusses the design of the furnace, and the history of the current campaign with respect to its productivity, PCI rates and lining wear.

  7. Investigation of spectral radiation heat transfer and NO{sub x} emission in a glass furnace

    SciTech Connect (OSTI)

    Golchert, B.; Zhou, C. Q.; Chang, S. L.; Petrick, M.

    2000-08-02T23:59:59.000Z

    A comprehensive radiation heat transfer model and a reduced NOx kinetics model were coupled with a computational fluid dynamics (CFD) code and then used to investigate the radiation heat transfer, pollutant formation and flow characteristics in a glass furnace. The radiation model solves the spectral radiative transport equation in the combustion space of emitting and absorbing media, i.e., CO{sub 2}, H{sub 2}O, and soot and emission/reflection from the furnace crown. The advanced numerical scheme for calculating the radiation heat transfer is extremely effective in conserving energy between radiation emission and absorption. A parametric study was conducted to investigate the impact of operating conditions on the furnace performance with emphasis on the investigation into the formation of NOx.

  8. Coal-fired furnace for testing of thermionic converters. Topical report

    SciTech Connect (OSTI)

    Not Available

    1980-10-01T23:59:59.000Z

    The development of thermionic converter technology has progressed to make near-term applications interesting. One of these applications is the thermionic topping of a pulverized coal-fired central station powerplant. Up to now, thermionic converters have been flame tested using natural gas as fuel. A new test furnace is required for evaluation of thermionic converters in a coal-fired environment. The design and costs of a facility which adapts a coal-fired furnace built by Foster Wheeler Development Corporation (FWDC) for thermionic converter testing are discussed. Such a facility would be exempt from air pollution regulations because of its low firing rate.

  9. Altos Hornos de Mexico blast furnace No. 5 certification in ISO-9002 standard

    SciTech Connect (OSTI)

    Gamez, O.; Liceaga, F.; Arredondo, J. [Altos Hornos de Mexico, Monclova (Mexico)

    1997-12-31T23:59:59.000Z

    Altos Hornos de Mexico`s Blast Furnace No. 5, as a means to improve its product quality, sought and obtained the certification of its quality system based on the international standard ISO-9002. The certification was obtained under this quality standard in Dec. 1995 and has successfully been maintained after two continuance audits. For blast furnace No. 5 (BF5) the benefits are reflected by a reduction in the hot metal silicon content variability, a decrease in fuel consumption and a higher productivity. Benefits were also obtained in the working environment where the personnel became more highly motivated, procedures were carried out to completion and the quality records were filled correctly.

  10. Continuous measurement of blast furnace burden profile at SSAB Tunnplat AB

    SciTech Connect (OSTI)

    Virtala, J.; Edberg, N.; Hallin, M. (SSAB Tunnplat AB, Lulea (Sweden). Ironmaking Division)

    1993-01-01T23:59:59.000Z

    A unique profile meter system is installed on Blast Furnace No. 2 in SSAB - Swedish Steel AB, Lulea, Sweden. This system measures the charge material burden profile across the furnace top diameter before and after each charge. The system generates real-time data, which is graphically presented by the system on a monitor and includes burden descent speed, layer thickness of the coke and ore (corrected for descent), ore to coke ratio, and burden skewing. The system is described along with operational results.

  11. Bosh repairs No. 3 blast furnace, Edgar Thomson Plant Mon Valley Works

    SciTech Connect (OSTI)

    Stoupis, M.G.

    1993-01-01T23:59:59.000Z

    The paper describes in detail the steps taken from quenching to dry out of the furnace to repair the bosh area of the No.3 blast furnace. Inspection of the area revealed that there was no brick anywhere in the bosh. Brick in the tuyere breast area had been peeled back to reveal the steel plate, and descaling revealed 14 pipes fully exposed. None were leaking, but one seemed badly deteriorated. Conventional repairs could not take place before the scheduled blow-in. Installation of coolers were instead tried.

  12. Blast-furnace ironmaking -- Existing capital and continued improvements are a winning formula for a bright future

    SciTech Connect (OSTI)

    Oshnock, T.W.; Colinear, J.A. [U.S. Steel, Monroeville, PA (United States)

    1995-12-01T23:59:59.000Z

    Throughout the years the blast-furnace process has been improved upon significantly. Increases to the hot-blast temperature, improvements to the physical, chemical, and metallurgical properties of coke and burden materials, the use of more fuel injectants, and improvements to the design of the furnace facilities have led to significant decreases in furnace coke rate, increases in productivity, and increases in furnace campaign life. As a result, many of the alternative cokeless reduction processes have not replaced blast-furnace hot-metal production in North America. In the future, these continued blast-furnace improvements will potentially result in coke rates decreasing to 400 pounds per net ton of hot metal (lb/NTHM) as more pulverized coal is injected. These improvements, coupled with the fact that existing blast furnaces and coke plants can be refurbished for approximately $110 per annual ton of hot metal [$100 per annual net ton of hot metal (NTHM)], will result in extending the life of the North American blast furnaces well into the twenty-first century.

  13. Qualification of Fan Generated Duct Rumble Noise: Part 1: Test Facility(RP 1219)

    E-Print Network [OSTI]

    Kading, J.; Mann, A.; Pate, M.B.

    the transition duct from break in noise from the fan room. The fiberglass insulation on the inside of the box was suspended against the MDF in order to limit any vibration damping that might occur if the insula- tion touched the duct. The duct work continued... mounted to a base. The mounting base was a double steel strut that held the fan and motor assemble together. The mounting base had six vibration isolation springs that it supported by. The four corner springs were 800 lb, 1” isolation springs, the middle...

  14. Performance of VAV Fan Powered Terminal Units: Experimental Results and Models for Series Units

    E-Print Network [OSTI]

    Furr, J.; O'Neal, D.; Davis, M.; Bryant, J.; Cramlet, A.

    ©2008 ASHRAE 91 ABSTRACT Empirical models of airflow output and power consump- tion were developed for series fan powered variable air volume terminal units at typical operating pressures. Terminal units with 8 in. (203 mm) and 12 in. (304 mm... pressures of 0.25 w.g. (63 Pa). Upstream static pressures ranged from 0.1 to 2.0 in w.g. (25 to 498 Pa). Data were collected at four different primary air damper positions and at four terminal unit fan speeds. Model variables included the RMS voltage...

  15. A study of the effect of tip clearance on propeller fan performance

    E-Print Network [OSTI]

    Alam, Md. Shamsul

    1959-01-01T23:59:59.000Z

    Coefficient VI, Xf feet of Tip Clearance on Static Pressure for Given Capacity Coefficients 61 FIGURES Figure Title 1. Two Dimensional Flow through Airfoil Blade Grid 2. Velocity Diagram for an Axial Flow Fan 3. Single Stage Axial Flow Won... RIIOCR~CZi~ I OOB0 1. 0oOO I 57 possible clearance depending upon the flow conditions. Recently, Spencer hss investigated the effect of tip clearance on the performance of an axial flow pump. The findings of this thesis for axial fan confirm his...

  16. A combined mode fatigue model for glass reinforced nylon as applied to molded engine cooling fans

    SciTech Connect (OSTI)

    Smith, J.D.; Bennet, M.L.

    1985-01-01T23:59:59.000Z

    The use of glass reinforced nylon in fatigue inducing environments calls for a new method of stress analysis. With an engine cooling fan, both mean and vibratory stresses need to be examined. Speed cycling can cause tensile fatigue, while vibration can cause flexural fatigue. Since tensile and flexural stresses exist in the fan simultaneously, a combined mode fatigue model is needed. The proposed model is based on high cycle flexural and tensile fatigue strengths, and tensile strength. It relates measurable strain to stress using temperature dependent flexural and tensile moduli, and treats underhood temperature and desired product life as variables.

  17. Development of In-Situ Fan Curve Measurement with One Airflow Measurement

    E-Print Network [OSTI]

    Liu, G.; Joo, I. S.; Song, L.; Liu, M.

    2003-01-01T23:59:59.000Z

    air duct. Theoretically this is an excellent solution. But it is very difficult to accurately measure such small static pressure differences as those required for building pressurization (typically 0 Pa (0.00 in. w.g.) to 25 Pa (0.10 in. w... method. The unit serves most of a 247,000 square feet office building in Omaha. The building has two main single duct variable air volume AHUs. Variable frequency drives are installed for each main AHU supply fan (2X125hp) and return air fan (3X40...

  18. Pyrometric temperature measurement method and apparatus for measuring particle temperatures in hot furnaces: Application to reacting black liquor

    SciTech Connect (OSTI)

    Stenberg, J. [Tampere University of Technology, P.O. Box 692, Tampere SF-33101 (Finland)] [Tampere University of Technology, P.O. Box 692, Tampere SF-33101 (Finland); Frederick, W.J. [Oregon State University, Gleeson 103, Corvallis, Oregon 97331 (United States)] [Oregon State University, Gleeson 103, Corvallis, Oregon 97331 (United States); Bostroem, S. [Abo Akademi University, Lemminkaeisenkatu 14-18 B, Turku SF-20520 (Finland)] [Abo Akademi University, Lemminkaeisenkatu 14-18 B, Turku SF-20520 (Finland); Hernberg, R. [Tampere University of Technology, P.O. Box 692, Tampere SF-33101 (Finland)] [Tampere University of Technology, P.O. Box 692, Tampere SF-33101 (Finland); Hupa, M. [Abo Akademi University, Lemminkaeisenkatu 14-18 B, Turku SF-20520 (Finland)] [Abo Akademi University, Lemminkaeisenkatu 14-18 B, Turku SF-20520 (Finland)

    1996-05-01T23:59:59.000Z

    A specialized two-color pyrometric method has been developed for the measurement of particle surface temperatures in hot, radiating environments. In this work, the method has been applied to the measurement of surface temperatures of single reacting black liquor char particles in an electrically heated muffle furnace. Black liquor was introduced into the hot furnace as wet droplets. After drying, the resulted particles were processed in different atmospheres corresponding to combustion, pyrolysis, and gasification at furnace temperatures of 700{endash}900{degree}C. The pyrometric measurement is performed using two silicon photodiode detectors and 10 nm bandpass filters centered at 650 and 1050 nm. Thermal radiation is transferred using an uncooled fiberoptic probe brought into the vicinity of the char particle. The key features of the pyrometric apparatus and analysis method are: (1) Single particle temperature is resolved temporally at high speed. (2) The thermal radiation originating from the furnace and reflected by the particle is accounted for in the measurement of the surface temperature. (3) Particle temperatures above or below the furnace temperature can be measured without the need of a cooled background assisting the measurement in the hot furnace. To accomplish this, a minimum particle size is needed that is a function of the temperature difference between the particle and furnace. Particles cooler than the furnace can be measured if their diameter is more than 0.7 mm. Surface temperatures of 300{endash}400{degree}C above the furnace temperature were measured during combustion of black liquor char particles in air. In atmospheres corresponding to gasification, endothermic reactions occurred, and char temperature remained typically 40{degree} below the furnace temperature. {copyright} {ital 1996 American Institute of Physics.}

  19. Lighting system combining daylight concentrators and an artificial source

    DOE Patents [OSTI]

    Bornstein, Jonathan G. (Miami, FL); Friedman, Peter S. (Toledo, OH)

    1985-01-01T23:59:59.000Z

    A combined lighting system for a building interior includes a stack of luminescent solar concentrators (LSC), an optical conduit made of preferably optical fibers for transmitting daylight from the LSC stack, a collimating lens set at an angle, a fixture for receiving the daylight at one end and for distributing the daylight as illumination inside the building, an artificial light source at the other end of the fixture for directing artifical light into the fixture for distribution as illumination inside the building, an automatic dimmer/brightener for the artificial light source, and a daylight sensor positioned near to the LSC stack for controlling the automatic dimmer/brightener in response to the daylight sensed. The system also has a reflector positioned behind the artificial light source and a fan for exhausting heated air out of the fixture during summer and for forcing heated air into the fixture for passage into the building interior during winter.

  20. Light Properties Light travels at the speed of light `c'

    E-Print Network [OSTI]

    Mojzsis, Stephen J.

    LIGHT!! #12;Light Properties Light travels at the speed of light `c' C = 3 x 108 m/s Or 190,000 miles/second!! Light could travel around the world about 8 times in one second #12;What is light?? Light is a "wave packet" A photon is a "light particle" #12;Electromagnetic Radiation and You Light is sometimes

  1. Directly induced swing for closed loop control of electroslag remelting furnace

    DOE Patents [OSTI]

    Damkroger, B.

    1998-04-07T23:59:59.000Z

    An apparatus and method are disclosed for controlling an electroslag remelting furnace, imposing a periodic fluctuation on electrode drive speed and thereby generating a predictable voltage swing signal. The fluctuation is preferably done by imposition of a sine, square, or sawtooth wave on the drive dc offset signal. 8 figs.

  2. Temperature Compensated Air/Fuel Ratio Control on a Recuperated Furnace

    E-Print Network [OSTI]

    Ferri, J. L.

    1983-01-01T23:59:59.000Z

    When recuperation is added to a furnace, air/ fuel ratio control seemingly becomes more complicated. Two methods normally used are mass flow control where the fuel pressure or flow is proportional to the mass flow of air or cross-connected control...

  3. Laser-excited atomic fluorescence spectrometry in a graphite furnace with an

    E-Print Network [OSTI]

    Michel, Robert G.

    must provide high peak energy above sequentially with the analysis time determined primarilyLaser-excited atomic fluorescence spectrometry in a graphite furnace with an optical parametric for electrothermal atomic excited atomic ¯ uorescence spectrometry (LEAFS ) in a absorption spectrometry (ETAAS

  4. Install Waste Heat Recovery Systems for Fuel-Fired Furnaces (English/Chinese) (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2011-10-01T23:59:59.000Z

    Chinese translation of ITP fact sheet about installing Waste Heat Recovery Systems for Fuel-Fired Furnaces. For most fuel-fired heating equipment, a large amount of the heat supplied is wasted as exhaust or flue gases. In furnaces, air and fuel are mixed and burned to generate heat, some of which is transferred to the heating device and its load. When the heat transfer reaches its practical limit, the spent combustion gases are removed from the furnace via a flue or stack. At this point, these gases still hold considerable thermal energy. In many systems, this is the greatest single heat loss. The energy efficiency can often be increased by using waste heat gas recovery systems to capture and use some of the energy in the flue gas. For natural gas-based systems, the amount of heat contained in the flue gases as a percentage of the heat input in a heating system can be estimated by using Figure 1. Exhaust gas loss or waste heat depends on flue gas temperature and its mass flow, or in practical terms, excess air resulting from combustion air supply and air leakage into the furnace. The excess air can be estimated by measuring oxygen percentage in the flue gases.

  5. Temperature Compensated Air/Fuel Ratio Control on a Recuperated Furnace 

    E-Print Network [OSTI]

    Ferri, J. L.

    1983-01-01T23:59:59.000Z

    When recuperation is added to a furnace, air/ fuel ratio control seemingly becomes more complicated. Two methods normally used are mass flow control where the fuel pressure or flow is proportional to the mass flow of air or cross-connected control...

  6. Pellet property requirements for future blast-furnace operations and other new ironmaking processes

    SciTech Connect (OSTI)

    Agrawal, A.K.; Oshnock, T.W. [U.S. Steel, Monroeville, PA (United States)

    1995-12-01T23:59:59.000Z

    The requirements for the physical, chemical and metallurgical properties of pellets have continued to become more stringent as blast-furnace productivity and coke rate have been rapidly improved during the last decade. In addition, the age and deterioration of the North American coke batteries, the lack of capital to sufficiently rebuild them, and the threat of increasingly more stringent environmental controls for the coke batteries has forced North American ironmakers to begin implementing pulverized coal injection to minimize the coke requirements for the blast furnace and to seriously investigate developing other ironmaking processes that use coal instead of coke. Therefore, the next major step in North American ironmaking has included injecting pulverized coal (PC) at 200 kilograms per ton of hot metal (kg/ton) [400 pounds per net ton of hot metal (lb/NTHM)] or greater which will result in the coke rate decreasing to less than 300 kg/ton (600 lb/NTHM) or less. As a result, the pellets will spend more time in the furnace and will be required to support more total weight. Pellets can also be a major iron unit source for other cokeless ironmaking processes such as the COREX process or the AISI direct ironmaking process. This paper will explore the pellet property requirements for future blast-furnace operations and cokeless ironmaking processes.

  7. Studies of charging stream trajectories and burden distribution in the blast furnace

    SciTech Connect (OSTI)

    McCarthy, M.J.; Mayfield, P.L.; Zulli, P.; Rex, A.J.; Tanzil, W.B.U.

    1993-01-01T23:59:59.000Z

    This work discusses the sensitivity of key blast furnace performance parameters to different gas flow distributions achieved by altering the burden distribution. The changes in burden distribution are brought about by different charging stream trajectories, and methods developed and evaluated for measuring the trajectories both on and off line are described.

  8. Dofasco`s No. 4 blast furnace hearth breakout, repair and rescue

    SciTech Connect (OSTI)

    Donaldson, R.J.; Fischer, A.J.; Sharp, R.M.; Stothart, D.W. [Dofasco Inc., Hamilton, Ontario (Canada)

    1995-12-01T23:59:59.000Z

    On May 5, 1994, after producing 9.5 million metric tons of iron, Dofasco`s No. 4 Blast Furnace experienced a hearth breakout 250 millimeters below the west taphole. The hot metal spill caused a fire resulting in severe damage and 33 days of lost production. During a 26-day period, electrical wiring, water drainage systems and both tapholes were repaired. Recovery from an unprepared furnace stop of this length, with the deadman depleted is difficult. To aid with the rescue Hoogovens-designed oxygen/fuel lances were commissioned. The furnace recovery began with a lance in each taphole and all tuyeres plugged. Six days after startup the furnace was casting into torpedo cars, and after nine days operation had returned to normal. This incident prompted Dofasco to expand the hearth monitoring system to detect and prevent similar occurrences. During the repair, 203 new thermocouples were installed in the hearth, concentrating on the tapholes and elephant foot areas. These thermocouples were installed at various depths and locations to allow heat flux calculations. This hearth monitoring system has already identified other problem areas and provided valuable information about hearth drainage patterns. This information has allowed them to develop control strategies to manage localized problem areas.

  9. Development of quick repairing technique for ceramic burner in hot stove of blast furnace

    SciTech Connect (OSTI)

    Kondo, Atsushi; Doura, Kouji; Nakamura, Hirofumi [Sumitomo Metal Industries, Ltd., Wakayama (Japan). Wakayama Steel Works

    1997-12-31T23:59:59.000Z

    Refractories of ceramic burner in hot stoves at Wakayama No. 4 blast furnace were damaged. There are only three hot stoves, so repairing must be done in a short. Therefore, a quick repairing technique for ceramic burners has been developed, and two ceramic burners were repaired in just 48 hours.

  10. Blast Furnace Granulated Coal Injection System Demonstration Project public design report. Topical report

    SciTech Connect (OSTI)

    NONE

    1995-03-01T23:59:59.000Z

    The public design report describes the Blast Furnace Granulated Coal Injection (BFGCI) project under construction at Bethlehem Steel Corporation`s (BSC) Burns Harbor, Indiana, plant. The project is receiving cost-sharing from the U.S. Department of Energy (DOE), and is being administrated by the Morgantown Energy Technology Center in accordance with the DOE Cooperative Agreement No. DE-FC21-91MC27362. The project is the first installation in the United States for the British Steel technology using granular coal in blast furnaces. The objective is to demonstrate that granular coal is an economic and reliable fuel which can successfully be applied to large North American blast furnaces. These include: coal grind size, coal injection rate, coal source (type) and blast furnace conversion method. To achieve the program objectives, the demonstration project is divided into the following three Phases: Phase I-Design; Phase II-Procurement & Construction; and Phase III-Operation. Preliminary design (Phase I) began in 1991 with detailed design commencing in April 1993. Construction at Burns Harbor (Phase II) began August 1993. Construction is expected to be complete in the first quarter of 1995 which will be followed by a demonstration test program (Phase III).

  11. Recovery of titanium values from titanium grinding swarf by electric furnace smelting

    DOE Patents [OSTI]

    Gerdemann, Stephen J. (Albany, OR); White, Jack C. (Albany, OR)

    1999-01-01T23:59:59.000Z

    A method for the recovery of valuable materials from titanium grinding swarf is provided comprising the steps of sieving the accumulated titanium grinding swarf to remove unwanted coarse trash and grinding wheel fragments, pelletizing, and smelting in an electric arc furnace to produce ferrotitanium and/or high titanium slag.

  12. Recovery of titanium values from titanium grinding swarf by electric furnace smelting

    DOE Patents [OSTI]

    Gerdemann, Stephen J. (Albany, OR); White, Jack C. (Albany, OR)

    1998-01-01T23:59:59.000Z

    A method for the recovery of valuable materials from titanium grinding swarf is provided comprising the steps of sieving the accumulated titanium grinding swarf to remove unwanted coarse trash and grinding wheel fragments, pelletizing, and smelting in an electric arc furnace to produce ferrotitanium and/or high titanium slag.

  13. Using coal-dust fuel in Ukrainian and Russian blast furnaces

    SciTech Connect (OSTI)

    A.A. Minaev; A.N. Ryzhenkov; Y.G. Banninkov; S.L. Yaroshevskii; Y.V. Konovalov; A.V. Kuzin [Donetsk National Technical University, Donetsk (Russian Federation)

    2008-02-15T23:59:59.000Z

    Ukrainian and Russian blast-furnace production falls short of the best global practices. It is no secret that, having switched to oxygen and natural gas in the 1960s, the blast-furnace industries have improved the batch and technological conditions and have attained a productivity of 2.5 and even 3 t/(m{sup 3} day), but have not been able to reduce coke consumption below 400 kg/t, which was the industry standard 40 years ago. The situation is particularly bad in Ukraine: in 2007, furnace productivity was 1.5-2 t/m{sup 3}, with a coke consumption of 432-530 kg/t. Theoretical considerations and industrial experience over the last 20 years show that the large-scale introduction of pulverized fuel, with simultaneous improvement in coke quality and in batch and technological conditions, is the only immediately available means of reducing coke consumption considerably (by 20-40%). By this means, natural-gas consumption is reduced or eliminated, and the efficiency of blast-furnace production and ferrous metallurgy as a whole is increased.

  14. Effect of Electric Arc Furnace Bag House Dust on Concrete Durability Researcher: Fahad Al-Mutlaq

    E-Print Network [OSTI]

    Birmingham, University of

    Effect of Electric Arc Furnace Bag House Dust on Concrete Durability Researcher: Fahad Al billions of dollars annually. While steel is normally protected from corrosion in concrete by a passive of the effects of addition of Bag House Dust (BHD) on aspects of concrete durability. BHD is a fine powder

  15. Recovery of titanium values from titanium grinding swarf by electric furnace smelting

    DOE Patents [OSTI]

    Gerdemann, S.J.; White, J.C.

    1998-08-04T23:59:59.000Z

    A method for the recovery of valuable materials from titanium grinding swarf is provided comprising the steps of sieving the accumulated titanium grinding swarf to remove unwanted coarse trash and grinding wheel fragments, pelletizing, and smelting in an electric arc furnace to produce ferrotitanium and/or high titanium slag. 1 fig.

  16. Best Practices for Energy Efficient Cleanrooms: Fan-Filter Tengfang Xu

    E-Print Network [OSTI]

    LBNL-58639 Best Practices for Energy Efficient Cleanrooms: Fan-Filter Units Tengfang Xu June 15 by the Assistant Secretary for Energy Efficiency and Renewable Energy, Office of Building Technology, U.S. Department of Energy under Contract No. DE-AC02-05CH11231. #12;Best Practice for Energy Efficient Cleanrooms

  17. Sequence stratigraphy, facies architecture and reservoir distribution, Cretaceous lowstand fan reservoirs, Southern Basin, onshore Trinidad

    SciTech Connect (OSTI)

    Sprague, A.R.; Larue, D.K.; Faulkner, B.L. [Exxon Production Research Company, Houston, TX (United States)] [and others

    1996-08-01T23:59:59.000Z

    Thick Albian-Campanian mass-flow sandstones in the Southern Basin Trinidad were deposited within submarine canyons incised into the northern continental slope of South America and as associated down-dip basin-floor lowstand fans. The contemporaneous slope to basin-floor break lay across the Southern Basin area with turbidity current paleoflow being to the northwest. North of this paleo-slope break graded to massive, channelized, high-density turbidite sandstones occur interstratified with shaly overbank and channel abandonment deposits. A progression of depositional sub-environments from proximal through distal lowstand fan can be recognized. All fine and thin upward but can be discriminated by the occurrence of slumps, debris flows and conglomerates, the grain-size and bedding scale of sandstones and the characteristics of low-density turbidites and mudrocks. South of the paleo-slope break mass-flow deposits comprise muddy slumps and debris flows rich in granules and pebbles deposited in slope canyons. During periods of turbidity current by-pass or fan abandonment hemipelagic settling processes predominated. Reservoir distribution maps of these lowstand fans have been constructed utilizing geometric constraints, analogs and paleoslope determinations from oriented core. The interpreted canyon locations and orientations are key to the understanding of reservoir distribution on the basin-floor tract to the north: a vital component in the exploration of the basin.

  18. Carbon Contamination Topography Analysis of EUV Masks Yu-Jen Fan1

    E-Print Network [OSTI]

    Carbon Contamination Topography Analysis of EUV Masks Yu-Jen Fan1 , Leonid Yankulin1 , Petros ABSTRACT The impact of carbon contamination on extreme ultraviolet (EUV) masks is significant due to throughput loss and potential effects on imaging performance. Current carbon contamination research primarily

  19. Seconder's discussion of "Large covariance estimation by thresholding principal orthogonal complements" by Fan, Liao

    E-Print Network [OSTI]

    Fryzlewicz, Piotr

    Professors Fan, Liao and Mincheva for the stimu- lating and thought-provoking article. The POET estimator verify this model assumption, and secondly, whether POET offers acceptable performance if the assumption from the point of view of the usability of POET: the authors warn us that POET may perform poorly if K

  20. CHANGES IN SANDSTONE DISTRIBUTIONS BETWEEN THE UPPER, MIDDLE, AND LOWER FAN IN THE ARKANSAS JACKFORK GROUP 

    E-Print Network [OSTI]

    Mack, Clayton P.

    2010-07-14T23:59:59.000Z

    is deposited moderately even and is quite concentrated throughout the exposure. The middle fan outcrops contain approximately 72.6% sandstone and show similar patterns, except that the amalgamated sandstone beds are not as thick, 5-15m and contain more shale...

  1. Performance Analysis of Dual-Fan, Dual-Duct Constant Volume Air-Handling Units

    E-Print Network [OSTI]

    Joo, I. S.; Liu, M.

    2001-01-01T23:59:59.000Z

    Dual-fan, dual-duct air-handling units introduce outside air directly into the cooling duct and use two variable speed devices to independently maintain the static pressure of the hot and the cold air ducts. Analytical models have been developed...

  2. Infrared Imaging Solar Spectrograph at Purple Mountain Observatory Hui Li , Zhongyu Fan and Jianqi You

    E-Print Network [OSTI]

    Li, Hui

    Infrared Imaging Solar Spectrograph at Purple Mountain Observatory Hui Li , Zhongyu Fan and Jianqi, Chinese Academy of Sciences Abstract. Since 1986, we have made some improvements to the multichannel solar to it a multichannel infrared imaging solar spectrograph. The original spectrograph can be used to observe

  3. P-type SiGe/Si Superlattice Cooler Xiaofeng Fan, Gehong Zeng, Edward Croke1

    E-Print Network [OSTI]

    P-type SiGe/Si Superlattice Cooler Xiaofeng Fan, Gehong Zeng, Edward Croke1 , Gerry Robinson, Chris and characterization of single element p-type SiGe/Si superlattice coolers are described. Superlattice structures were]. SiGe is a good thermoelectric material especially for high temperature applications [11

  4. Integrated use of burden profile probe and in-burden probe for gas flow control in the blast furnace

    SciTech Connect (OSTI)

    Bordemann, F.; Hartig, W.H. [AG der Dillinger Huettenweke, Dillingen (Germany); Grisse, H.J. [Dango and Dienenthal Siegen (Germany); Speranza, B.E. [Dango and Dienenthal, Inc., Highland, IN (United States)

    1995-12-01T23:59:59.000Z

    Gas flow in the blast furnace is one of the most important factors in controlling a furnace. It not only determines the production but also the fuel consumption and the campaign life. At Nos. 4 and 5 blast furnaces of ROGESA, probes are installed for detection of the burden profiles and of the gas flow distribution. For an optimum use of these probes a program system has been developed by ROGESA and Dango and Dienenthal. With this program system it is possible to analyze the operating condition of a blast furnace by means of a fuzzy logic analysis. In case of deviations from the defined desired condition, recommendations for corrective measures for the material distribution are made. Both furnaces are equipped with a bell-less top, a coal injection system, high-temperature hot blast stoves with heat recovery and a top gas pressure recovery turbine. Most of the time it is impossible to control all the required parameters. For this reason it is meaningful to measure the actual material distribution at the furnace top by means of a burden profile probe which permits quick and repeated measurements without any retroactive effects. The paper describes the instrumentation of the furnace, correlation of measuring methods, and a program system for analysis of measuring data.

  5. Smart Lighting Controller!! Smart lighting!

    E-Print Network [OSTI]

    Anderson, Betty Lise

    1! Smart Lighting Controller!! #12;2! Smart lighting! No need to spend energy lighting the room if://blogs.stthomas.edu/realestate/2011/01/24/residential-real-estate-professionals-how-do-you- develop feedback! There is a connection between the output and the input! Therefore forces inputs to same voltage

  6. Oxidation/corrosion of metallic and ceramic materials in an aluminum remelt furnace. [For fluidized bed waste heat recovery systems

    SciTech Connect (OSTI)

    Federer, J.I.; Jones, P.J.

    1985-12-01T23:59:59.000Z

    Both metallic alloys and ceramic materials are candidates for the distributor plate and other components of fluidized bed waste heat recovery (FBWHR) systems. Eleven Fe-, Ni-, and Co-base alloys were exposed to air at elevated temperatures in laboratory furnaces and to flue gases in an aluminum remelt furnace to assess their resistance to oxidation and corrosion. Four SiC ceramics and two oxide ceramics were also tested in the aluminum remelt furnace. Some alloys were coated with aluminum or SiO2 by commercial processes in an effort to enhance their oxidation and corrosion resistance.

  7. Record production on Gary No. 13 blast furnace with 450 lb./THM co-injection rates

    SciTech Connect (OSTI)

    Schuett, K.J.; White, D.G. [US Steel Group, Gary, IN (United States). Gary Works

    1996-12-31T23:59:59.000Z

    Coal injection was initiated on No. 13 Blast Furnace in 1993 with 400 lb/THM achieved in 9 months. In early 1994, cold weather and coal preparation upsets led to the use of a second injectant, oil atomized by natural gas, to supplement the coal. Various combinations of coal and oil were investigated as total injection was increased to 450 lb/THM. Beginning in the last half of 1994, a continuing effort has been made to increase furnace production while maintaining this high co-injection level. Typical furnace production is now in excess of 10,000 THM/day compared with about 8500 THM/day in late 1993.

  8. AISI/DOE Technology Roadmap Program Hot Oxygen Injection Into The Blast Furnace

    SciTech Connect (OSTI)

    Michael F. Riley

    2002-10-21T23:59:59.000Z

    Increased levels of blast furnace coal injection are needed to further lower coke requirements and provide more flexibility in furnace productivity. The direct injection of high temperature oxygen with coal in the blast furnace blowpipe and tuyere offers better coal dispersion at high local oxygen concentrations, optimizing the use of oxygen in the blast furnace. Based on pilot scale tests, coal injection can be increased by 75 pounds per ton of hot metal (lb/thm), yielding net savings of $0.84/tm. Potential productivity increases of 15 percent would yield another $1.95/thm. In this project, commercial-scale hot oxygen injection from a ''thermal nozzle'' system, patented by Praxair, Inc., has been developed, integrated into, and demonstrated on two tuyeres of the U.S. Steel Gary Works no. 6 blast furnace. The goals were to evaluate heat load on furnace components from hot oxygen injection, demonstrate a safe and reliable lance and flow control design, and qualitatively observe hot oxygen-coal interaction. All three goals have been successfully met. Heat load on the blowpipe is essentially unchanged with hot oxygen. Total heat load on the tuyere increases about 10% and heat load on the tuyere tip increases about 50%. Bosh temperatures remained within the usual operating range. Performance in all these areas is acceptable. Lance performance was improved during testing by changes to lance materials and operating practices. The lance fuel tip was changed from copper to a nickel alloy to eliminate oxidation problems that severely limited tip life. Ignition flow rates and oxygen-fuel ratios were changed to counter the effects of blowpipe pressure fluctuations caused by natural resonance and by coal/coke combustion in the tuyere and raceway. Lances can now be reliably ignited using the hot blast as the ignition source. Blowpipe pressures were analyzed to evaluate ht oxygen-coal interactions. The data suggest that hot oxygen increases coal combustion in the blow pipe and tuyere by 30, in line with pilot scale tests conducted previously.

  9. Cerenkov Light

    ScienceCinema (OSTI)

    Slifer, Karl

    2014-05-22T23:59:59.000Z

    The bright blue glow from nuclear reactors is Cerenkov light. Karl Slifer describes how nuclear physicists can use this phenomenon to study the nucleus of the atom.

  10. Cerenkov Light

    SciTech Connect (OSTI)

    Slifer, Karl

    2013-06-13T23:59:59.000Z

    The bright blue glow from nuclear reactors is Cerenkov light. Karl Slifer describes how nuclear physicists can use this phenomenon to study the nucleus of the atom.

  11. Lighting Renovations

    Broader source: Energy.gov [DOE]

    When undertaking a lighting renovation in a Federal building, daylighting is the primary renewable energy opportunity. Photovoltaics (PV) also present an excellent opportunity. While this guide...

  12. An Embedded Boundary Method for the Modeling of Unsteady Combustion in an Industrial GasFired Furnace \\Lambda

    E-Print Network [OSTI]

    An Embedded Boundary Method for the Modeling of Unsteady Combustion in an Industrial Gas the simulation of an experimental natural gas­fired furnace are shown. \\Lambda This work was performed under

  13. Experimental and numerical analysis of isothermal turbulent flows in interacting low NOx burners in coal-fired furnaces 

    E-Print Network [OSTI]

    Cvoro, Valentina

    Coal firing power stations represent the second largest source of global NOx emissions. The current practice of predicting likely exit NOx levels from multi-burner furnaces on the basis of single burner test rig data has been proven inadequate...

  14. The operation results with the modified charging equipment and ignition furnace at Kwangyang No. 2 sinter plant

    SciTech Connect (OSTI)

    Lee, K.J.; Pi, Y.J.; Kim, J.R.; Lee, J.N. [POSCO, Kwangyang, Cheonnam (Korea, Republic of)

    1996-12-31T23:59:59.000Z

    There will be another blast furnace, the production capacity of which is 3.0 million tonnes per year in 1999 and mini mill plant, the production capacity of which is 1.8 million tonnes per year in 1996 at Kwangyang Works. Therefore, the coke oven gas and burnt lime will be deficient and more sinter will be needed. To meet with these situations, the authors modified the charging equipment and ignition furnace at Kwangyang No. 2 sinter plant in April 1995. After the modification of the charging equipment and ignition furnace, the consumption of burnt lime and coke oven gas could be decreased and the sinter productivity increased in spite of the reduction of burnt lime consumption. This report describes the operation results with the modification of the charging equipment and ignition furnace in No. 2 sinter plant Kwangyang works.

  15. Induction furnace testing of the durability of prototype crucibles in a molten metal environment

    SciTech Connect (OSTI)

    Jablonski, Paul D.

    2005-09-01T23:59:59.000Z

    Engineered ceramic crucibles are commonly used to contain molten metal. Besides high temperature stability, other desired crucible characteristics include thermal shock resistance, minimal reaction with the molten metal and resistance to attack from the base metal oxide formed during melting. When used in an induction furnace, they can be employed as a “semi-permanent” crucible incorporating a dry ram backup and a ceramic cap. This report covers several 250-lb single melt crucible tests in an air melt induction furnace. These tests consisted of melting a charge of 17-4PH stainless steel, holding the charge molten for two hours before pouring off the heat and then subsequently sectioning the crucible to review the extent of erosion, penetration and other physical characteristics. Selected temperature readings were made throughout each melt. Chemistry samples were also taken from each heat periodically throughout the hold. The manganese level was observed to affect the rate of chromium loss in a non-linear fashion.

  16. Computational Fluid Dynamics (CFD) Modeling for High Rate Pulverized Coal Injection (PCI) into the Blast Furnace

    SciTech Connect (OSTI)

    Dr. Chenn Zhou

    2008-10-15T23:59:59.000Z

    Pulverized coal injection (PCI) into the blast furnace (BF) has been recognized as an effective way to decrease the coke and total energy consumption along with minimization of environmental impacts. However, increasing the amount of coal injected into the BF is currently limited by the lack of knowledge of some issues related to the process. It is therefore important to understand the complex physical and chemical phenomena in the PCI process. Due to the difficulty in attaining trus BF measurements, Computational fluid dynamics (CFD) modeling has been identified as a useful technology to provide such knowledge. CFD simulation is powerful for providing detailed information on flow properties and performing parametric studies for process design and optimization. In this project, comprehensive 3-D CFD models have been developed to simulate the PCI process under actual furnace conditions. These models provide raceway size and flow property distributions. The results have provided guidance for optimizing the PCI process.

  17. Method for processing aluminum spent potliner in a graphite electrode arc furnace

    DOE Patents [OSTI]

    O'Connor, William K.; Turner, Paul C.; Addison, G.W. (AJT Enterprises, Inc.)

    2002-12-24T23:59:59.000Z

    A method of processing spent aluminum pot liner containing carbon, cyanide compositions, fluorides and inorganic oxides. The spend aluminum pot liner is crushed, iron oxide is added to form an agglomerated material. The agglomerated material is melted in an electric arc furnace having the electrodes submerged in the molten material to provide a reducing environment during the furnace operation. In the reducing environment, pot liner is oxidized while the iron oxides are reduced to produce iron and a slag substantially free of cyanide compositions and fluorides. An off-gas including carbon oxides and fluorine is treated in an air pollution control system with an afterburner and a scrubber to produce NaF, water and a gas vented to the atmosphere free of cyanide compositions, fluorine, and CO.

  18. Method for processing aluminum spent potliner in a graphite electrode ARC furnace

    DOE Patents [OSTI]

    O'Connor, William K. (Lebanon, OR); Turner, Paul C. (Independence, OR); Addison, Gerald W. (St. Stephen, SC)

    2002-12-24T23:59:59.000Z

    A method of processing spent aluminum pot liner containing carbon, cyanide compositions, fluorides and inorganic oxides. The spent aluminum pot liner is crushed iron oxide is added to form an agglomerated material. The agglomerated material is melted in an electric arc furnace having the electrodes submerged in the molten material to provide a reducing environment during the furnace operation. In the reducing environment, pot liner is oxidized while the iron oxides are reduced to produce iron and a slag substantially free of cyanide compositions and fluorides. An off-gas including carbon oxides and fluorine is treated in an air pollution control system with an afterburner and a scrubber to produce NaF, water and a gas vented to the atmosphere free of cyanide compositions, fluorine and CO.

  19. The push for increased coal injection rates -- Blast furnace experience at AK Steel Corporation

    SciTech Connect (OSTI)

    Dibert, W.A.; Duncan, J.H.; Keaton, D.E.; Smith, M.D. [AK Steel Corp., Middletown, OH (United States)

    1994-12-31T23:59:59.000Z

    An effort has been undertaken to increase the coal injection rate on Amanda blast furnace at AK Steel Corporation`s Ashland Works in Ashland, Kentucky to decrease fuel costs and reduce coke demand. Operating practices have been implemented to achieve a sustained coal injection rate of 140 kg/MT, increased from 100--110 kg/MT. In order to operate successfully at the 140 kg/MT injection rate; changes were implemented to the furnace charging practice, coal rate control methodology, orientation of the injection point, and the manner of distribution of coal to the multiple injection points. Additionally, changes were implemented in the coal processing facility to accommodate the higher demand of pulverized coal; grinding 29 tonnes per hour, increased from 25 tonnes per hour. Further increases in injection rate will require a supplemental supply of fuel.

  20. Gary No. 13 blast furnace achieves 400 lbs/THM coal injection in 9 months

    SciTech Connect (OSTI)

    Sherman, G.J.; Schuett, K.J.; White, D.G.; O`Donnell, E.M. [U.S. Steel Group, Gary, IN (United States)

    1995-12-01T23:59:59.000Z

    Number 13 Blast Furnace at Gary began injecting Pulverized Coal in March 1993. The injection level was increased over the next nine months until a level off 409 lbs/THM was achieved for the month of December 1993. Several major areas were critical in achieving this high level of Pulverized coal injection (PCI) including furnace conditions, lance position, tuyere blockage, operating philosophy, and outages. The paper discusses the modifications made to achieve this level of injection. This injection level decreased charged dry coke rate from 750 lbs/THM to about 625 lbs/THM, while eliminating 150 lbs/THM of oil and 20 lbs/THM of natural gas. Assuming a 1.3 replacement ratio for an oil/natural gas mixture, overall coke replacement for the coal is about 0.87 lbs coke/lbs coal. Gary Works anticipates levels of 500 lbs/THM are conceivable.

  1. Determination of the fundamental softening and melting characteristics of blast furnace burden materials

    SciTech Connect (OSTI)

    Bakker, T.; Heerema, R.H. [Delft Univ. of Technology (Netherlands). Faculty of Mining and Petroleum Engineering

    1996-12-31T23:59:59.000Z

    An experimental technique to investigate the fundamental mechanisms taking place on a microscale in the softening and melting zone in the blast furnace, is presented. In the present paper, attention is focused on determination of the softening viscosity of porous wustite. The technique may be potentially useful to investigate more complex samples of ironbearing material, as occurring in the blast furnace. In comparison with the results obtained by other researchers the viscosity of porous wustite found in the present work is substantially higher than reported elsewhere for sinter and pellets. This may be an indication that softening is not merely a reflection of the solid state deformation under load of wustite. An important factor may be local melting of some of the phases present within the sinter and pellet structures.

  2. Lance for fuel and oxygen injection into smelting or refining furnace

    DOE Patents [OSTI]

    Schlichting, M.R.

    1994-12-20T23:59:59.000Z

    A furnace for smelting iron ore and/or refining molten iron is equipped with an overhead pneumatic lance, through which a center stream of particulate coal is ejected at high velocity into a slag layer. An annular stream of nitrogen or argon enshrouds the coal stream. Oxygen is simultaneously ejected in an annular stream encircling the inert gas stream. The interposition of the inert gas stream between the coal and oxygen streams prevents the volatile matter in the coal from combusting before it reaches the slag layer. Heat of combustion is thus more efficiently delivered to the slag, where it is needed to sustain the desired reactions occurring there. A second stream of lower velocity oxygen can be delivered through an outermost annulus to react with carbon monoxide gas rising from slag layer, thereby adding still more heat to the furnace. 7 figures.

  3. The determination of some anions using ion chromatography and ion chromatography-graphite furnace atomic absorption spectrometry 

    E-Print Network [OSTI]

    Hillman, Daniel C

    1981-01-01T23:59:59.000Z

    THE DETERMINATION OF SOME ANIONS USING ION CHROMATOGRAPHY AND ION CHROMATOGRAPHY-GRAPHITE FURNACE ATOMIC ABSORPTION SPECTROMETRY A Thesis by DANIEL C. J. HILLMAN Submitted to the Graduate College of Texas A&M University in partial fulfillment... of the requirement for the degree of MASTER OF SCIENCE August 1981 Major Subject: Chemistry THE DETERMINATION OF SOME ANIONS USING ION CHROMATOGRAPHY AND ION CHROMATOGRAPHY-GRAPHITE FURNACE ATOMIC ABSORPTION SPECTROMETRY A Thesis by DANIEL C. J. HILLMAN...

  4. Energy Efficiency Improvement by Measurement and Control: A Case Study of Reheating Furnaces in the Steel Industry

    E-Print Network [OSTI]

    Martensson, A.

    , April 22-23, 1992 Table I. Furnace energy use in Sweden, 1989. Source: Jemkontoret, Stockholm, Sweden. Fuel Energy use a [GWh) ([10 9 Btu)) aI 1680 (5732) Propane 1272 (4340) Natural gas 48 (164) Coke oven gas 400 (1365) Electricity (induction...ENERGY EFFICIENCY IMPROVEMENT BY MEASUREMENT AND CONTROL A case study of reheating furnaces in the steel industry Anders Mlirtensson Department of Environmental and Energy Systems Studies Lund University S-22362 Lund Sweden ABSTRACT...

  5. Desulphurization and simultaneous treatment of wastewater from blast furnace by pulsed corona discharge

    SciTech Connect (OSTI)

    Li, S.L.; Feng, Q.B.; Li, L.; Xie, C.L.; Zhen, L.P. [Huazhong University of Science and Technology, Wuhan (China)

    2009-03-15T23:59:59.000Z

    Laboratory tests were conducted for removal of SO{sub 2} from simulated flue gas and simultaneous treatment of wastewater from blast furnace by pulsed corona discharge. Tests were conducted for the flue gas flow from 12 to 18 Nm{sup 3}/h, the simulated gas temperature from 80 to 120 {sup o}C, the inlet flux of wastewater from 33 to 57 L/h, applied voltage from 0 to 27 kV, and SO{sub 2} initial concentration was about 1,430 mg/m{sup 3}. Results showed that wastewater from blast furnace has an excellent ability of desulphurization (about 90%) and pulsed corona discharge can enhance the desulphurization efficiency. Meanwhile, it was observed that the SO{sub 2} removal ratio decreased along with increased cycle index, while it increased as the flux of flue gas was reduced, and increased when the flux of wastewater from blast furnace was increased. In addition, results demonstrated that the content of sulfate radical produced in wastewater increase with an increment of applied pulsed voltage, cycle index, or the flux of flue gas. Furthermore, the results indicated that the higher the inlet content of cyanide the better removal effect of it, and the removal rate can reach 99.9% with a residence time of 2.1 s in the pulsed corona zone during the desulphurization process when the inlet content was higher, whereas there was almost no removal effect when the inlet content was lower. This research may attain the objective of waste control, and can provide a new way to remove SO{sub 2} from flue gas and simultaneously degrade wastewater from blast furnace for integrated steel plants.

  6. Finding the largest low-rank clusters with Ky Fan 2-k-norm and l1-norm

    E-Print Network [OSTI]

    Xuan Vinh Doan

    2014-03-24T23:59:59.000Z

    Mar 24, 2014 ... Abstract: We propose a convex optimization formulation with the Ky Fan 2-k-norm and l1-norm to fi nd k largest approximately rank-one ...

  7. Optimized Fan Control In Variable Air Volume HVAC Systems Using Static Pressure Resets: Strategy Selection and Savings Analysis

    E-Print Network [OSTI]

    Kimla, John

    2010-07-14T23:59:59.000Z

    The potential of static pressure reset (SPR) control to save fan energy in variable air volume HVAC systems has been well documented. Current research has focused on the creation of reset strategies depending on specific system features...

  8. The Fuel Accident Condition Simulator (FACS) furnace system for high temperature performance testing of VHTR fuel

    SciTech Connect (OSTI)

    Paul A. Demkowicz; David V. Laug; Dawn M. Scates; Edward L. Reber; Lyle G. Roybal; John B. Walter; Jason M. Harp; Robert N. Morris

    2012-10-01T23:59:59.000Z

    The AGR-1 irradiation of TRISO-coated particle fuel specimens was recently completed and represents the most successful such irradiation in US history, reaching peak burnups of greater than 19% FIMA with zero failures out of 300,000 particles. An extensive post-irradiation examination (PIE) campaign will be conducted on the AGR-1 fuel in order to characterize the irradiated fuel properties, assess the in-pile fuel performance in terms of coating integrity and fission metals release, and determine the fission product retention behavior during high temperature safety testing. A new furnace system has been designed, built, and tested to perform high temperature accident tests. The Fuel Accident Condition Simulator furnace system is designed to heat fuel specimens at temperatures up to 2000 degrees C in helium while monitoring the release of volatile fission metals (e.g. Cs, Ag, Sr, and Eu), iodine, and fission gases (Kr, Xe). Fission gases released from the fuel to the sweep gas are monitored in real time using dual cryogenic traps fitted with high purity germanium detectors. Condensable fission products are collected on a plate attached to a water-cooled cold finger that can be exchanged periodically without interrupting the test. Analysis of fission products on the condensation plates involves dry gamma counting followed by chemical analysis of selected isotopes. This paper will describe design and operational details of the Fuel Accident Condition Simulator furnace system and the associated fission gas monitoring system, as well as preliminary system calibration results.

  9. Fuel Accident Condition Simulator (FACS) Furnace for Post-Irradiation Heating Tests of VHTR Fuel Compacts

    SciTech Connect (OSTI)

    Paul A Demkowicz; Paul Demkowicz; David V Laug

    2010-10-01T23:59:59.000Z

    Abstract –Fuel irradiation testing and post-irradiation examination are currently in progress as part of the Next Generation Nuclear Plant Fuels Development and Qualification Program. The PIE campaign will include extensive accident testing of irradiated very high temperature reactor fuel compacts to verify fission product retention characteristics at high temperatures. This work will be carried out at both the Idaho National Laboratory (INL) and the Oak Ridge National Laboratory, beginning with accident tests on irradiated fuel from the AGR-1 experiment in 2010. A new furnace system has been designed, built, and tested at INL to perform high temperature accident tests. The Fuel Accident Condition Simulator furnace system is designed to heat fuel specimens at temperatures up to 2000°C in helium while monitoring the release of volatile fission metals (e.g. Cs, Ag, Sr, Eu, and I) and fission gases (Kr, Xe). Fission gases released from the fuel to the sweep gas are monitored in real time using dual cryogenic traps fitted with high purity germanium detectors. Condensable fission products are collected on a plate attached to a water-cooled cold finger that can be exchanged periodically without interrupting the test. Analysis of fission products on the condensation plates involves dry gamma counting followed by chemical analysis of selected isotopes. This paper will describe design and operational details of the Fuel Accident Condition Simulator (FACS) furnace system, as well as preliminary system calibration results.

  10. Production and blast-furnace smelting of boron-alloyed iron-ore pellets

    SciTech Connect (OSTI)

    A.A. Akberdin; A.S. Kim [Abishev Chemicometallurgical Institute, Abishev (Kazakhstan)

    2008-08-15T23:59:59.000Z

    Industrial test data are presented regarding the production (at Sokolovsk-Sarbaisk mining and enrichment enterprise) and blast-furnace smelting (at Magnitogorsk metallurgical works) of boron-alloyed iron-ore pellets (500000 t). It is shown that, thanks to the presence of boron, the compressive strength of the roasted pellets is increased by 18.5%, while the strength in reduction is doubled; the limestone consumption is reduced by 11%, the bentonite consumption is halved, and the dust content of the gases in the last section of the roasting machines is reduced by 20%. In blast-furnace smelting, the yield of low-sulfur (<0.02%) hot metal is increased from 65-70 to 85.1% and the furnace productivity from 2.17-2.20 to 2.27 t/(m{sup 3} day); coke consumption is reduced by 3-8 kg/t of hot metal. The plasticity and stamping properties of 08IO auto-industry steel are improved by microadditions of boron.

  11. Design and performance of a new induction furnace for heat treatment of superconducting radiofrequency niobium cavities

    SciTech Connect (OSTI)

    Pashupati Dhakal, Gianluigi Ciovati, Wayne Rigby, John Wallace, Ganapati Rao Myneni

    2012-06-01T23:59:59.000Z

    Superconducting radio frequency (SRF) cavities made of high purity niobium (Nb) are the building blocks of many modern particle accelerators. The fabrication process includes several cycles of chemical and heat treatment at low ({approx}120 deg C) and high ({approx}800 deg C) temperatures. In this contribution, we describe the design and performance of an ultra-high-vacuum furnace which uses an induction heating system to heat treat SRF cavities. Cavities are heated by radiation from the Nb susceptor. By using an all-niobium hot zone, contamination of the Nb cavity by foreign elements during heat treatment is minimized and allows avoiding subsequent chemical etching. The furnace was operated up to 1400 deg C with a maximum pressure of {approx}1 x 10{sup -5} Torr and the maximum achievable temperature is estimated to be higher than 2000 deg C. Initial results on the performance of a single cell 1.5 GHz cavity made of ingot Nb heat treated at 1200 deg C using this new induction furnace and without subsequent chemical etching showed a reduction of the RF losses by a factor of {approx}2 compared to cavities made of fine-grain Nb which underwent standard chemical and heat treatments.

  12. Design and performance of a new induction furnace for heat treatment of superconducting radiofrequency niobium cavities

    SciTech Connect (OSTI)

    Dhakal, Pashupati; Ciovati, Gianluigi; Myneni, Ganapati Rao [Jefferson Lab, Newport News, Virginia 23606 (United States); Rigby, Wayne [Specialty Vacuum, Placitas, New Mexico 87043 (United States); Wallace, John [Casting Analysis Corporation, Weyers Cave, Virginia 24468 (United States)

    2012-06-15T23:59:59.000Z

    Superconducting radio frequency (SRF) cavities made of high purity niobium (Nb) are the building blocks of many modern particle accelerators. The fabrication process includes several cycles of chemical and heat treatment at low ({approx}120 Degree-Sign C) and high ({approx}800 Degree-Sign C) temperatures. In this contribution, we describe the design and performance of an ultra-high-vacuum furnace which uses an induction heating system to heat treat SRF cavities. Cavities are heated by radiation from the Nb susceptor. By using an all-niobium hot zone, contamination of the Nb cavity by foreign elements during heat treatment is minimized and allows avoiding subsequent chemical etching. The furnace was operated up to 1400 Degree-Sign C with a maximum pressure of {approx}1 Multiplication-Sign 10{sup -5} Torr and the maximum achievable temperature is estimated to be higher than 2000 Degree-Sign C. Initial results on the performance of a single cell 1.5 GHz cavity made of ingot Nb heat treated at 1200 Degree-Sign C using this new induction furnace and without subsequent chemical etching showed a reduction of the RF losses by a factor of {approx}2 compared to cavities made of fine-grain Nb which underwent standard chemical and heat treatments.

  13. Development of the household sample for furnace and boilerlife-cycle cost analysis

    SciTech Connect (OSTI)

    Whitehead, Camilla Dunham; Franco, Victor; Lekov, Alex; Lutz, Jim

    2005-05-31T23:59:59.000Z

    Residential household space heating energy use comprises close to half of all residential energy consumption. Currently, average space heating use by household is 43.9 Mbtu for a year. An average, however, does not reflect regional variation in heating practices, energy costs, or fuel type. Indeed, a national average does not capture regional or consumer group cost impacts from changing efficiency levels of heating equipment. The US Department of Energy sets energy standards for residential appliances in, what is called, a rulemaking process. The residential furnace and boiler efficiency rulemaking process investigates the costs and benefits of possible updates to the current minimum efficiency regulations. Lawrence Berkeley National Laboratory (LBNL) selected the sample used in the residential furnace and boiler efficiency rulemaking from publically available data representing United States residences. The sample represents 107 million households in the country. The data sample provides the household energy consumption and energy price inputs to the life-cycle cost analysis segment of the furnace and boiler rulemaking. This paper describes the choice of criteria to select the sample of houses used in the rulemaking process. The process of data extraction is detailed in the appendices and is easily duplicated. The life-cycle cost is calculated in two ways with a household marginal energy price and a national average energy price. The LCC results show that using an national average energy price produces higher LCC savings but does not reflect regional differences in energy price.

  14. RADIATION HEAT TRANSFER ENVIRONMENT IN FIRE AND FURNACE TESTS OF RADIOACTIVE MATERIALS PAKCAGES

    SciTech Connect (OSTI)

    Smith, A

    2008-12-31T23:59:59.000Z

    The Hypothetical Accident Conditions (HAC) sequential test of radioactive materials packages includes a thermal test to confirm the ability of the package to withstand a transportation fire event. The test specified by the regulations (10 CFR 71) consists of a 30 minute, all engulfing, hydrocarbon fuel fire, with an average flame temperature of at least 800 C. The requirements specify an average emissivity for the fire of at least 0.9, which implies an essentially black radiation environment. Alternate test which provide equivalent total heat input at the 800 C time averaged environmental temperature may also be employed. When alternate tests methods are employed, such as furnace or gaseous fuel fires, the equivalence of the radiation environment may require justification. The effects of furnace and open confinement fire environments are compared with the regulatory fire environment, including the effects of gases resulting from decomposition of package overpack materials. The results indicate that furnace tests can produce the required radiation heat transfer environment, i.e., equivalent to the postulated pool fire. An open enclosure, with transparent (low emissivity) fire does not produce an equivalent radiation environment.

  15. A phase-field model coupled with lattice kinetics solver for modeling crystal growth in furnaces

    SciTech Connect (OSTI)

    Lin, Guang; Bao, Jie; Xu, Zhijie; Tartakovsky, Alexandre M.; Henager, Charles H.

    2014-02-02T23:59:59.000Z

    In this study, we present a new numerical model for crystal growth in a vertical solidification system. This model takes into account the buoyancy induced convective flow and its effect on the crystal growth process. The evolution of the crystal growth interface is simulated using the phase-field method. Two novel phase-field models are developed to model the crystal growth interface in vertical gradient furnaces with two temperature profile setups: 1) fixed wall temperature profile setup and 2) time-dependent temperature profile setup. A semi-implicit lattice kinetics solver based on the Boltzmann equation is employed to model the unsteady incompressible flow. This model is used to investigate the effect of furnace operational conditions on crystal growth interface profiles and growth velocities. For a simple case of macroscopic radial growth, the phase-field model is validated against an analytical solution. Crystal growth in vertical gradient furnaces with two temperature profile setups have been also investigated using the developed model. The numerical simulations reveal that for a certain set of temperature boundary conditions, the heat transport in the melt near the phase interface is diffusion dominant and advection is suppressed.

  16. Gary Works No. 13 blast furnace: A new removable trough design

    SciTech Connect (OSTI)

    Schuett, K.J.; Pawlak, J.P. [U.S. Steel Group, Gary, IN (United States). Gary Works; Traina, L.; Brenneman, R.G.

    1995-12-01T23:59:59.000Z

    No. 13 Blast Furnace at US Steel`s Gary Works is a 35 tuyere furnace with a 36.5 ft. hearth capable of producing over 9,000 tons of hot metal per day. The current casthouse design was placed in service following the second reline in the fall of 1979. This design anticipated daily production rates averaging 7,500 tons of hot metal per day and provided for removable troughs at two of the three tapholes. At the time, the troughs were rammed with a high alumina/silicon carbide granular ramming material that provided the operators with trough campaign lives between 60,000--70,000 tons of hot metal produced. As refractory technology progressed, low cement/low moisture castables were introduced to the trough systems on No. 13 Blast Furnace. The immediate success of the castables was tempered by emergence of a new unexpected problem. That problem was the thermal expansion of the castable. The paper describes the problems that resulted in the need to modify the trough design, the new design of the trough, and its improvement in iron trough campaign life and reliability.

  17. Economics of Condensing Gas Furnaces and Water Heaters Potential in Residential Single Family Homes

    SciTech Connect (OSTI)

    Lekov, Alex; Franco, Victor; Meyers, Steve

    2010-05-14T23:59:59.000Z

    Residential space and water heating accounts for over 90percent of total residential primary gas consumption in the United States. Condensing space and water heating equipment are 10-30percent more energy-efficient than conventional space and water heating. Currently, condensing gas furnaces represent 40 percent of shipments and are common in the Northern U.S. market. Meanwhile, manufacturers are planning to develop condensing gas storage water heaters to qualify for Energy Star? certification. Consumers, installers, and builders who make decisions about installing space and water heating equipment generally do not perform an analysis to assess the economic impacts of different combinations and efficiencies of space and water heating equipment. Thus, equipment is often installed without taking into consideration the potential life-cycle economic and energy savings of installing space and water heating equipment combinations. Drawing on previous and current analysis conducted for the United States Department of Energy rulemaking on amended standards for furnaces and water heaters, this paper evaluates the extent to which condensing equipment can provide life-cycle cost-effectiveness in a representative sample of single family American homes. The economic analyses indicate that significant energy savings and consumer benefits may result from large-scale introduction of condensing water heaters combined with condensing furnaces in U.S. residential single-family housing, particularly in the Northern region. The analyses also shows that important benefits may be overlooked when policy analysts evaluate the impact of space and water heating equipment separately.

  18. N-AND P-TYPE SiGe/Si SUPERLATTICE COOLERS Xiaofeng Fan, Gehong Zeng, Edward Croke

    E-Print Network [OSTI]

    N- AND P-TYPE SiGe/Si SUPERLATTICE COOLERS Xiaofeng Fan, Gehong Zeng, Edward Croke a) , Gerry, 95064 Phone: (805) 893-4235 Fax: (805) 893-7990 Email: fan@opto.ece.ucsb.edu ABSTRACT SiGe is a good of single-element SiGe/Si superlattice coolers of both n- and p-type devices are described for room

  19. Temperature and humidity control during cooling and dehumidifying by compressor and evaporator fan speed variation

    SciTech Connect (OSTI)

    Krakow, K.I.; Lin, S.; Zeng, Z.S. [Concordia Univ., Montreal, Quebec (Canada). Dept. of Mechanical Engineering

    1995-08-01T23:59:59.000Z

    The accurate control of temperature and relative humidity during cooling and dehumidifying air-conditioning processes may be achieved by compressor and evaporator fan speed variation. Proportional-integral-differential (PID) control methods are shown to be suitable for attaining compressor and evaporator fan speeds such that the sensible and latent components of the refrigeration system capacity equal the sensible and latent components of the system load. The feasibility of the control method has been verified experimentally. A numerical model of an environmental control system, including refrigeration, space, and PID control subsystems, has been developed. The model is suitable for determining system response to variations of PID coefficient values and to variations of system loads.

  20. Continuous Commissioning® of a Single Fan Dual Duct System in an Office Building 

    E-Print Network [OSTI]

    Dong, D.; Liu, M.

    2005-01-01T23:59:59.000Z

    The building has a total of 216 dual duct independent terminal boxes with air flow stations. The boxes are used for both interior and exterior zones. Pneumatic controllers and actuators are installed. A dual-duct single fan AHU serves the building... the setting. OPTIMAL CONTROL SCHEDULES The control schedule optimization includes terminal boxes, AHU, chillers, and boilers. All the pneumatic controls for the AHU system, except box controllers, are updated to DDC controls before the optimal...

  1. Design, testing and two-dimensional flow modeling of a multiple-disk fan

    SciTech Connect (OSTI)

    Engin, Tahsin; Oezdemir, Mustafa; Cesmeci, Sevki [Department of Mechanical Engineering, The University of Sakarya, Esentepe Campus, 54187 Sakarya (Turkey)

    2009-11-15T23:59:59.000Z

    A multiple-disk Tesla type fan has been designed, tested and analyzed two-dimensionally using the conservation of angular momentum principle. Experimental results showed that such multiple-disk fans exhibited exceptionally low performance characteristics, which could be attributed to the low viscosity, tangential nature of the flow, and large mechanical energy losses at both suction and discharge sections that are comparable to the total input power. By means of theoretical analysis, local and overall shearing stresses on the disk surfaces have been determined based on tangential and radial velocity distributions of the air flow of different volume flow rates at prescribed disk spaces and rotational speeds. Then the total power transmitted by rotating disks to air flow, and the power acquired by the air flow in the gap due to transfer of angular momentum have been obtained by numerically integrating shearing stresses over the disk surfaces. Using the measured shaft and hydraulic powers, these quantities were utilized to evaluate mechanical energy losses associated with the suction and discharge sections of the fan. (author)

  2. On fan-shaped cold MHD winds from Keplerian accretion discs

    E-Print Network [OSTI]

    Ferreira, Jonathan

    2012-01-01T23:59:59.000Z

    We investigate under which conditions cold, fan-shaped winds can be steadily launched from thin (Keplerian) accretion discs. Such winds are magneto-centrifugal winds launched from a thin annulus in the disc, along open magnetic field lines that fan out above the disc. In principle, such winds could be found in two situations: (1) at the interface between an inner Jet Emitting Disc, which is itself powering magneto-centrifugally driven winds, and an outer standard accretion disc; (2) at the interface between an inner closed stellar magnetosphere and the outer standard accretion disc. We refer to Terminal or T-winds to the former kind and to Magnetospheric or M-winds to the latter. The full set of resistive and viscous steady state MHD equations are analyzed for the disc (the annulus), which allow us to derive general expressions valid for both configurations. We find that, under the framework of our analysis, the only source of energy able to power any kind of fan-shaped winds is the viscous transport of rotat...

  3. OPTIMIZED FUEL INJECTOR DESIGN FOR MAXIMUM IN-FURNACE NOx REDUCTION AND MINIMUM UNBURNED CARBON

    SciTech Connect (OSTI)

    A.F. SAROFIM; BROWN UNIVERSITY. R.A. LISAUSKAS; D.B. RILEY, INC.; E.G. EDDINGS; J. BROUWER; J.P. KLEWICKI; K.A. DAVIS; M.J. BOCKELIE; M.P. HEAP; REACTION ENGINEERING INTERNATIONAL. D.W. PERSHING; UNIVERSITY OF UTAH. R.H. HURT

    1998-01-01T23:59:59.000Z

    Reaction Engineering International (REI) has established a project team of experts to develop a technology for combustion systems which will minimize NO x emissions and minimize carbon in the fly ash. This much need technology will allow users to meet environmental compliance and produce a saleable by-product. This study is concerned with the NO x control technology of choice for pulverized coal fired boilers, ?in-furnace NO x control,? which includes: staged low-NO x burners, reburning, selective non-catalytic reduction (SNCR) and hybrid approaches (e.g., reburning with SNCR). The program has two primary objectives: 1) To improve the performance of ?in-furnace? NO x control processes. 2) To devise new, or improve existing, approaches for maximum ?in-furnace? NO x control and minimum unburned carbon. The program involves: 1) fundamental studies at laboratory- and bench-scale to define NO reduction mechanisms in flames and reburning jets; 2) laboratory experiments and computer modeling to improve our two-phase mixing predictive capability; 3) evaluation of commercial low-NO x burner fuel injectors to develop improved designs, and 4) demonstration of coal injectors for reburning and low-NO x burners at commercial scale. The specific objectives of the two-phase program are to: 1 Conduct research to better understand the interaction of heterogeneous chemistry and two phase mixing on NO reduction processes in pulverized coal combustion. 2 Improve our ability to predict combusting coal jets by verifying two phase mixing models under conditions that simulate the near field of low-NO x burners. 3 Determine the limits on NO control by in-furnace NO x control technologies as a function of furnace design and coal type. 5 Develop and demonstrate improved coal injector designs for commercial low-NO x burners and coal reburning systems. 6 Modify the char burnout model in REI?s coal combustion code to take account of recently obtained fundamental data on char reactivity during the late stages of burnout. This will improve our ability to predict carbon burnout with low-NO x firing systems.

  4. DENSE PHASE REBURN COMBUSTION SYSTEM (DPRCS) DEMONSTRATION ON A 154 MWE TANGENTIAL FURNACE: ADDITIONAL AREA OF INTEREST-TO DEVELOP AND DEMONSTRATE AN IN-FURNACE MULTI-POLLUTANT REDUCTION TECHNOLOGY TO REDUCE NOx, SO2 & Hg

    SciTech Connect (OSTI)

    Allen C. Wiley; Steven Castagnero; Geoff Green; Kevin Davis; David White

    2004-03-01T23:59:59.000Z

    Semi-dense phase pneumatic delivery and injection of calcium and sodium sorbents, and microfine powdered coal, at various sidewall elevations of an online operating coal-fired power plant, was investigated for the express purpose of developing an in-furnace, economic multi-pollutant reduction methodology for NO{sub x}, SO{sub 2} & Hg. The 154 MWe tangentially-fired furnace that was selected for a full-scale demonstration, was recently retrofitted for NO{sub x} reduction with a high velocity rotating-opposed over-fire air system. The ROFA system, a Mobotec USA technology, has a proven track record of breaking up laminar flow along furnace walls, thereby enhancing the mix of all constituents of combustion. The knowledge gained from injecting sorbents and micronized coal into well mixed combustion gases with significant improvement in particulate retention time, should serve well the goals of an in-furnace multi-pollutant reduction technology; that of reducing back-end cleanup costs on a wide variety of pollutants, on a cost per ton basis, by first accomplishing significant in-furnace reductions of all pollutants.

  5. Usiing NovoCOS cleaning equipment in repairing the furnace-chamber lining in coke batteries 4 & 5 at OAO Koks

    SciTech Connect (OSTI)

    S.G. Protasov; R. Linden; A. Gross [OAO Koks, Kemerovo (Russian Federation)

    2009-05-15T23:59:59.000Z

    Experience with a new surface-preparation technology for the ceramic resurfacing of the refractory furnace-chamber lining in coke batteries is described.

  6. Waste Heat Recovery from High Temperature Off-Gases from Electric Arc Furnace

    SciTech Connect (OSTI)

    Nimbalkar, Sachin U [ORNL; Thekdi, Arvind [E3M Inc; Keiser, James R [ORNL; Storey, John Morse [ORNL

    2014-01-01T23:59:59.000Z

    This article presents a study and review of available waste heat in high temperature Electric Arc Furnace (EAF) off gases and heat recovery techniques/methods from these gases. It gives details of the quality and quantity of the sensible and chemical waste heat in typical EAF off gases, energy savings potential by recovering part of this heat, a comprehensive review of currently used waste heat recovery methods and potential for use of advanced designs to achieve a much higher level of heat recovery including scrap preheating, steam production and electric power generation. Based on our preliminary analysis, currently, for all electric arc furnaces used in the US steel industry, the energy savings potential is equivalent to approximately 31 trillion Btu per year or 32.7 peta Joules per year (approximately $182 million US dollars/year). This article describes the EAF off-gas enthalpy model developed at Oak Ridge National Laboratory (ORNL) to calculate available and recoverable heat energy for a given stream of exhaust gases coming out of one or multiple EAF furnaces. This Excel based model calculates sensible and chemical enthalpy of the EAF off-gases during tap to tap time accounting for variation in quantity and quality of off gases. The model can be used to estimate energy saved through scrap preheating and other possible uses such as steam generation and electric power generation using off gas waste heat. This article includes a review of the historical development of existing waste heat recovery methods, their operations, and advantages/limitations of these methods. This paper also describes a program to develop and test advanced concepts for scrap preheating, steam production and electricity generation through use of waste heat recovery from the chemical and sensible heat contained in the EAF off gases with addition of minimum amount of dilution or cooling air upstream of pollution control equipment such as bag houses.

  7. Advanced Combustion Diagnostics and Control for Furnaces, Fired Heaters and Boilers

    SciTech Connect (OSTI)

    Tate, J. D.; Le, Linh D.; Knittel,Trevor; Cowie, Alan

    2010-03-20T23:59:59.000Z

    The objective of this project was to develop and apply enabling tools and methods towards advanced combustion diagnostics and control of fired-equipment in large-scale petrochemical manufacturing. There are a number of technology gaps and opportunities for combustion optimization, including technologies involving advanced in-situ measurements, modeling, and thermal imaging. These technologies intersect most of manufacturing and energy systems within the chemical industry. This project leveraged the success of a previous DOE funded project led by Dow, where we co-developed an in-situ tunable diode laser (TDL) analyzer platform (with Analytical Specialties Inc, now owned by Yokogawa Electric Corp.). The TDL platform has been tested and proven in a number of combustion processes within Dow and outside of Dow. The primary focus of this project was on combustion diagnostics and control applied towards furnaces, fired heaters and boilers. Special emphasis was placed on the development and application of in-situ measurements for O2, CO and methane since these combustion gases are key variables in optimizing and controlling combustion processes safely. Current best practice in the industry relies on measurements that suffer from serious performance gaps such as limited sampling volume (point measurements), poor precision and accuracy, and poor reliability. Phase I of the project addressed these gaps by adding improved measurement capabilities such as CO and methane (ppm analysis at combustion zone temperatures) as well as improved optics to maintain alignment over path lengths up to 30 meters. Proof-of-concept was demonstrated on a modern olefins furnace located at Dow Chemical's facility in Freeport TX where the improved measurements were compared side-by-side to accepted best practice techniques (zirconium oxide and catalytic bead or thick film sensors). After developing and installing the improved combustion measurements (O2, CO, and methane), we also demonstrated the ability to improve control of an olefins furnace (via CO-trim) that resulted in significant energy savings and lower emissions such as NOx and other greenhouse gases. The cost to retrofit measurements on an existing olefins furnace was found to be very attractive, with an estimated payback achieved in 4 months or less.

  8. A method for burden distribution estimation from probe data in the blast furnace

    SciTech Connect (OSTI)

    Nikus, M.; Saxen, H.; Bulsari, A. [Aabo Akademi Univ. (Finland). Dept. of Chemical Engineering

    1996-12-31T23:59:59.000Z

    A novel approach for estimation of burden distribution in the blast furnace is presented. The proposed model makes use of only temperature measurements from an above-burden probe, and interprets the changes in temperature at charging in terms of burden distribution. In this study it is demonstrated that the temperature changes can be predicted quite accurately for all dumps in a charging sequence using neural networks., The basic structures of both an on-line and an off-line model are presented.

  9. The rule of the stock distribution with large bell in blast furnace

    SciTech Connect (OSTI)

    Liu Yuncai [Shoudu Iron and Steel Co., Beijing (China)

    1996-12-31T23:59:59.000Z

    This paper describes in detail, starting from the basic equation of materials falling from a two bell furnace top system, how a number of mathematical expressions which govern the stock distribution of the throat were derived. An analysis was then made by applying these equations on topics, such as stockline levels, charging sequences, stock grain size, large bell angle and batch weight. This demonstrates that a reasonable two bells top charging system and practice could be established theoretically. Furthermore, character numbers for stock distribution, such as E{sub B} and D{sub K}, were developed for a possible computer application.

  10. General information for operation of the high-temperature electromagnetic containerless vacuum induction furnace

    SciTech Connect (OSTI)

    Hahs, C.A.; Fox, R.J.

    1994-06-01T23:59:59.000Z

    The High-Temperature Electromagnetic Containerless Vacuum Induction Furnace was developed at Oak Ridge National Laboratory for the National Aeronautics and Space Administration (NASA), Marshall Space Flight Center, Alabama. The high-efficiency radio-frequency system developed for the conceptual design of the Modular Electromagnetic Levitator was created to evaluate this hardware on the KC135 microgravity airplane operated by NASA. Near-future KC135 flights are being planned to levitate, melt, and undercool 5-mm samples of niobium. General information on the operation of this hardware is included.

  11. Laser-induced breakdown spectroscopy at high temperatures in industrial boilers and furnaces.

    SciTech Connect (OSTI)

    Walsh, Peter M. (University of Alabama at Birmingham and Southern Research Institute, Birmingham, AL); Shaddix, Christopher R.; Sickafoose, Shane M.; Blevins, Linda Gail

    2003-02-01T23:59:59.000Z

    Laser-induced breakdown spectroscopy (LIBS) was applied (1) near the superheater of an electric power generation boiler burning biomass, coat, or both, (2) at the exit of a glass-melting furnace burning natural gas and oxygen, and (3) near the nose arches of two paper mill recovery boilers burning black liquor. Difficulties associated with the high temperatures and high particle loadings in these environments were surmounted by use of novel LIBS probes. Echelle and linear spectrometers coupled to intensified CCD cameras were used individually and sometimes simultaneously. Elements detected include Na, K, Ca, Mg, C, B, Si, Mn, Al, Fe, Rb, Cl, and Ti.

  12. Light Computing

    E-Print Network [OSTI]

    Gordon Chalmers

    2006-10-13T23:59:59.000Z

    A configuration of light pulses is generated, together with emitters and receptors, that allows computing. The computing is extraordinarily high in number of flops per second, exceeding the capability of a quantum computer for a given size and coherence region. The emitters and receptors are based on the quantum diode, which can emit and detect individual photons with high accuracy.

  13. Burden distribution control for maintaining the central gas flow at No. 1 blast furnace in Pohang Works

    SciTech Connect (OSTI)

    Jung, S.K.; Lee, Y.J.; Suh, Y.K.; Ahn, T.J.; Kim, S.M. [Pohang Iron and Steel Co. Ltd. (Korea, Republic of). Technical Research Labs.

    1995-12-01T23:59:59.000Z

    The causes for temperature lowering at the upper shaft center in Pohang No. 1 blast furnace were investigated. The test operation with charging notch change in the actual blast furnace and with a 1/12 scale model to Pohang No. 1 blast furnace were carried out in order to improve central gas flow in the shaft. Finally, rebuilding of the lower bunker interior was performed using the results of model experiments. It was confirmed that the main reason for the gas temperature lowering at the upper shaft center was the smaller particle size at center than the wall according to the discharging characteristics of center feed bunker with stone box. The central gas flow could be secured through modifying the stone box in the bunker.

  14. Concentrating Electric and Thermal Fields Simultaneously Using Fan-shaped Structure

    E-Print Network [OSTI]

    Lan, Chuwen; Zhou, Ji

    2015-01-01T23:59:59.000Z

    Recently, considerable attention has been focused on the transformation optics and metamaterial due to their fascinating phenomena and potential applications. Concentrator is one of the most representative ones, which however is limited in single physical domain. Here we propose and give the experimental demonstration of bifunctional concentrator that can concentrate electric and thermal fields into a given region simultaneously while keeping the external fields undistorted. Fan-shaped structure composed of alternating wedges made of two kinds of natural materials is proposed to achieve this goal. The simulation and experimental results show good agreement, thereby confirming the feasibility of our scheme.

  15. Building America Case Study: Evaluating Through-Wall Air Transfer Fans, Pittsburgh, Pennsylvania (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2014-10-01T23:59:59.000Z

    In this project, Building America team IBACOS performed field testing in a new construction unoccupied test house in Pittsburgh, Pennsylvania to evaluate heating, ventilating, and air conditioning (HVAC) distribution systems during heating, cooling, and midseason conditions. Four air-based HVAC distribution systems were assessed:-a typical airflow ducted system to the bedrooms, a low airflow ducted system to the bedrooms, a system with transfer fans to the bedrooms, and a system with no ductwork to the bedrooms. The relative ability of each system was considered with respect to relevant Air Conditioning Contractors of America and ASHRAE standards for house temperature uniformity and stability, respectively.

  16. Interpreting Soap Operas and Creating Community: Inside a Computer-Mediated Fan Culture

    E-Print Network [OSTI]

    Baym, Nancy K.

    1993-11-01T23:59:59.000Z

    Research, Vol. 30(2/3), 143-176. Publisher’s official version: Open Access version: Computer-Mediated Fans -- 22 Performance If genre is the "what" of recurrent forms of speech, performance is the "how" (Hymes, 1975, pg. 351). In this section I turn... such community. Rec.arts.tv.soaps ("r.a.t.s.") is a highly successful computer-mediated discussion group ("newsgroup") which discusses American daytime television soap operas. R.a.t.s. is distributed in the form of electronic messages through the Usenet...

  17. A study in animation and visualization: consolidation of the Mississippi Fan

    E-Print Network [OSTI]

    Parmley, Kelly Lynn

    1992-01-01T23:59:59.000Z

    of MASTER OF SCIENCE December 1992 Major Subject: Computer Science A STUDY IN ANIMATION AND VISUALIZATION: CONSOLIDATION OF THE MISSISSIPPI FAN A Thesis by KELLY LYNN PARMLEY Approved as to style and content by: Glen N. Williams (Chair of Committee... and effort expended, Malia Martin, Derek Spears, Debbie Carlson and Neal McDonald for help with portions of the research, and Dr. Childs, Susan Mengel, and Clay Williams for help in generating the LaTEX document. Thanks also go to Willis Marti, Donna...

  18. Field study of exhaust fans for mitigating indoor air quality problems: Final report

    SciTech Connect (OSTI)

    Grimsrud, D.T.; Szydlowski, R.F.; Turk, B.H.

    1986-09-01T23:59:59.000Z

    Residential ventilation in the United States housing stock is provided primarily by infiltration, the natural leakage of outdoor air into a building through cracks and holes in the building shell. Since ventilation is the dominant mechanism for control of indoor pollutant concentrations, low infiltration rates caused fluctuation in weather conditions may lead to high indoor pollutant concentrations. Supplemental mechanical ventilation can be used to eliminate these periods of low infiltration. This study examined effects of small continuously-operating exhaust fan on pollutant concentrations and energy use in residences.

  19. Sniffing by a silkworm moth: Wing fanning enhances air penetration through and pheromone interception by antennae

    E-Print Network [OSTI]

    Loudon, Catherine; Koehl, M. A. R.

    2000-10-01T23:59:59.000Z

    was measured on video recordings (described below); the mean distance between the wire and the antennal bases was 4.7 mm (range 2.8–6.1 mm, N=15), and the mean distance from the wire to the closest antennal tip was 3.1 mm (range 0.8–5.1 mm, N=15) during... motion a A Wing length B Stroke angle C Angle of attack 1 cm 2980 Video recordings of wing fanning A Panasonic Palmcorder (model PV-562) was used to make video recordings (SVHS) of the wing motions of the 15 male moths described above under...

  20. Turning on the Fan and Turning off the A/C | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33Frequently AskedEnergyIssuesEnergyTransportation WorkDecember 28, 2004 PartTurning on the Fan

  1. Pilot plant testing of Illinois coal for blast furnace injection. Technical report, September 1--November 30, 1994

    SciTech Connect (OSTI)

    Crelling, J.C. [Southern Illinois Univ., Carbondale, IL (United States). Dept. of Geology

    1994-12-31T23:59:59.000Z

    The purpose of this study is to evaluate the combustion of Illinois coal in the blast furnace injection process in a new and unique pilot plant test facility. This investigation is significant to the use of Illinois coal in that the limited research to date suggests that coals of low fluidity and moderate to high sulfur and chlorine contents are suitable feedstocks for blast furnace injection. This study is unique in that it is the first North American effort to directly determine the nature of the combustion of coal injected into a blast furnace. It is intended to complete the study already underway with the Armco and Inland steel companies and to demonstrate quantitatively the suitability of both the Herrin No. 6 and Springfield No. 5 coals for blast furnace injection. The main feature of the current work is the testing of Illinois coals at CANMET`s (Canadian Centre for Mineral and Energy Technology) pilot plant coal combustion facility. This facility simulates blowpipe-tuyere conditions in an operating blast furnace, including blast temperature (900 C), flow pattern (hot velocity 200 m/s), geometry, gas composition, coal injection velocity (34 m/s) and residence time (20 ms). The facility is fully instrumented to measure air flow rate, air temperature, temperature in the reactor, wall temperature, preheater coil temperature and flue gas analysis. During this quarter a sample of the Herrin No. 6 coal (IBCSP 112) was delivered to the CANMET facility and testing is scheduled for the week of 11 December 1994. Also at this time, all of the IBCSP samples are being evaluated for blast furnace injection using the CANMET computer model.

  2. Manufacturing capabilities of high power electron beam furnaces for melting ignots to 40 tons in weight

    SciTech Connect (OSTI)

    Boiko, Ju.P.; Braim, V.P.; Kormitch, A.T.; Zorin, G.V.; Kostenuk, Ju.V.; Nikitin, V.S.; Pokrovsky, S.V.

    1994-12-31T23:59:59.000Z

    A tendency to using special technologies of melting steels and alloys to get large ingots free of macrodefects and shrinking shells used to provide defectless products, ensuring an increase of ingot-to-product yield is well known. The electron beam furnace process improves the economical efficiency of production of large ingots, slabs for rolling mills, where high quality of special purpose steels and alloys is required. Metals, made by means of electron beam melting can be used for power, nuclear and chemical machine-buildings, aircraft and automotive, instrument and bearing productions, injection moulds and moulds for cold rollings, magnetic and titanium alloys, ship shafts, propellers and high speed power turbine parts. Melting technologies, which is one of the most important stages in production of steels and alloys, predetermines a required quality of metals and alloys to get the following characteristics of remelted metals: impact strength; isotropy of properties in central and surface zones of ingots; fatigue strength and resistance under mechanical and heat loads; corrosion resistance to attack by aggressive media; and polishing properties. The furnace is equipped with five electron beam guns, type EH-1200/50 and pumps for pumping out cavities of technological equipments: melting and ingot chambers, charging devices.

  3. Zinc recovery by ultrasound acid leaching of double kiln treated electric arc furnace dust

    SciTech Connect (OSTI)

    Barrera Godinez, J.A.

    1989-01-01T23:59:59.000Z

    The need to convert 70,000 tons a year of electric arc furnace (EAF) dust into an environmentally safe or recyclable product has encouraged studies to reclaim zinc from this waste material. Successful characterization of a double-kiln calcine, produced from EAF dust, has shown that the calcine pellets consisted mainly of zinc oxide plates with some iron oxide particles. Preliminary leaching tests using hydrochloric and sulfuric acids indicated that this calcine is suitable for selective ultrasound leaching of zinc. A factorially designed screening test using hydrochloric acid showed that ultrasound significantly lowered iron dissolution and increased zinc dissolution, thus enhancing the selective leaching of zinc. Ultrasound, temperature, air bubbling rate and acidity increased the sulfuric acid selectivity, while fluorosilicic acid was not selective. Reactor characterization through ultrasonic field measurements led to the selection of reactor and ultrasound bath, which were utilized to enhance the selectivity of a laboratory scale sulfuric acid leaching of a double-kiln treated electric arc furnace dust. Results indicated that ultrasonic leaching of this calcine is a satisfactory technique to selectively separate zinc from iron. After further iron removal by precipitation and cementation of nickel, it was possible to electrowin zinc from the leach liquor under common industrial conditions, with current efficiencies from 86% through 92% being observed. Calcine washing showed that a substantial chloride removal is possible, but fluoride ion in the electrolyte caused deposit sticking during electrowinning.

  4. Integrated municipal solid waste treatment using a grate furnace incinerator: The Indaver case

    SciTech Connect (OSTI)

    Vandecasteele, C. [Department of Chemical Engineering, Katholieke Universiteit Leuven, De Croylaan 46, 3001 Leuven (Belgium)], E-mail: carlo.vandecasteele@cit.kuleuven.be; Wauters, G. [Indaver, Dijle 17a, 2800 Mechelen (Belgium); Arickx, S. [Department of Chemical Engineering, Katholieke Universiteit Leuven, De Croylaan 46, 3001 Leuven (Belgium); Jaspers, M. [Indaver, Dijle 17a, 2800 Mechelen (Belgium); Van Gerven, T. [Department of Chemical Engineering, Katholieke Universiteit Leuven, De Croylaan 46, 3001 Leuven (Belgium)

    2007-07-01T23:59:59.000Z

    An integrated installation for treatment of municipal solid waste and comparable waste from industrial origin is described. It consists of three grate furnace lines with flue gas treatment by half-wet scrubbing followed by wet scrubbing, and an installation for wet treatment of bottom ash. It is demonstrated that this integrated installation combines high recovery of energy (40.8% net) with high materials recovery. The following fractions were obtained after wet treatment of the bottom ash: ferrous metals, non-ferrous metals, three granulate fractions with different particle sizes, and sludge. The ferrous and non-ferrous metal fractions can both be recycled as high quality raw materials; the two larger particle size particle fractions can be applied as secondary raw materials in building applications; the sand fraction can be used for applications on a landfill; and the sludge is landfilled. For all components of interest, emissions to air are below the limit values. The integrated grate furnace installation is characterised by zero wastewater discharge and high occupational safety. Moreover, with the considered installation, major pollutants, such as PCDD/PCDF, Hg and iodine-136 are to a large extent removed from the environment and concentrated in a small residual waste stream (flue gas cleaning residue), which can be landfilled after stabilisation.

  5. Burden distribution tests of Siderar`s No. 2 blast furnace

    SciTech Connect (OSTI)

    Lingiardi, O.; Partemio, C.; Burrai, O.; Etchevarne, P.

    1997-12-31T23:59:59.000Z

    Siderar is a company which was created through the merger of Propulsora Siderurgica and the privatized Aceros Parana (the former Somisa, a state-owned steel company). This plant manufacturers flat steel products: hot and cold rolled coils, as well as tin plate coils. After the privatization of the former Somisa in 1992, the new owners decided to modernize the Blast Furnace 2. The relining involved the following: complete furnace with bell less top; cast house with dust collection; INBA granulation system; gas cleaning system; cooling system; modern control system; and revamping of the stock house and the stoves. Burden distribution tests allowed the staff to familiarize themselves with the operation of the top under the three operation modes (manual, semiautomatic and automatic), and also to make adjustments to the top control system. In addition, the tests allowed them to see how materials behave during discharge and building up of ore and coke layers. All this information, together with the available instrumentation, such as fixed probes and heat flux monitoring system, proved to be of use for the gas flow control.

  6. A new direct steel making process based upon the blast furnace (Including scrap processing with recovery of tramp elements)

    SciTech Connect (OSTI)

    Nabi, G.

    1996-12-31T23:59:59.000Z

    Steel is produced from raw materials containing iron and alloying elements with direct elimination of oxygen and impurities in the blast furnace process. The blast furnace shaft is modified to take off load from the liquid bath and carbon is prevented from going into the liquid steel. In the gas purification system sulphur and CO{sub 2} removal facilities are included and purified reducing gases so obtained are combusted in the hearth with oxygen to produce heat for smelting. Scrap can be charged as raw material with the recovery of tramp elements with continuous production of liquid steel.

  7. RCRA, superfund and EPCRA hotline training module. Introduction to: Boilers and industrial furnaces (40 cfr part 266, subpart h) updated July 1996

    SciTech Connect (OSTI)

    NONE

    1996-07-01T23:59:59.000Z

    The module summarizes the regulations affecting hazardous waste processes in boilers and industrial furnaces (BIFs). If defines boilers and industrial furnaces and describes the criteria associated with the definitions. It describes the requirements for processing hazardous waste in BIFs, including the distinctions between permitted and interim status units. It explains the requirements for the specially regulated BIFs and gives examples of each.

  8. Residential Lighting

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiation Protection Technical squestionnairesquestionnaires AgreementLighting

  9. Web-based Support Systems for Sustainable Communities W.N. Liu J.T. Yao L. Fan Y.Y. Yao X.D. Yang

    E-Print Network [OSTI]

    Yao, JingTao

    present an architecture of Web-based support systems for sustainable communities. The architectureWeb-based Support Systems for Sustainable Communities W.N. Liu J.T. Yao L. Fan Y.Y. Yao X.D. Yang,fan,yyao,yang}@cs.uregina.ca ABSTRACT This paper studies Web-based support systems for sustain- able communities. A sustainable

  10. Experimental study of blade thickness effects on the overall and local performances of a Controlled Vortex Designed axial-flow fan

    E-Print Network [OSTI]

    Boyer, Edmond

    the dissipation of energy in the von K´arm´an street behind the blades so that the per- formances of the fan Vortex Designed axial-flow fan C. Sarrafa , H. Nouria , F. Raveleta, , F. Bakira aArts et Metiers Paris

  11. Lighting Inventory Lighting Theatre and Drama

    E-Print Network [OSTI]

    Indiana University

    Lighting Inventory Lighting Theatre and Drama Description Totals R.Halls Wells- Metz Light ERS ETC SourceFour 25 25 50 degree ERS Strand Lighting 64 14 24 12 14 36 degree ERS ETC Source Four 15 15 36 degree ERS Strand Lighting 124 60 58 2 4 26 degree ERS ETC SourceFour 2 2 26 degree ERS Strand

  12. J.\\.rticl It California Administrative Code

    E-Print Network [OSTI]

    "luously burning rilot lights. (4) AI gas-fired swimming pool heaters. (5) All gas-fired low-pressure steam and hot water heating boilers designed for use on swimming pools and outdoor installation. For purposes heaters. (6) All gas-fired fan type direct vent and vented wall furnace!. except those designed to burn

  13. Evaluation of Possible Surrogates for Validation of the Oxidation Furnace for the Plutonium Disposition Project

    SciTech Connect (OSTI)

    Duncan, A.

    2007-12-31T23:59:59.000Z

    The Plutonium Disposition project (PuD) is considering an alternative furnace design for direct metal oxidation (DMO) of plutonium metal to use as a feed for potential disposition routes. The proposed design will use a retort to oxidize the feed at temperatures up to 500 C. The atmosphere will be controlled using a metered mixture of oxygen, helium and argon to control the oxidation at approximately 400 torr. Since plutonium melts at 664 C, and may potentially react with retort material to form a lower melting point eutectic, the oxidation process will be controlled by metering the flow of oxygen to ensure that the bulk temperature of the material does not exceed this temperature. A batch processing time of <24 hours is desirable to meet anticipated furnace throughput requirements. The design project includes demonstration of concept in a small-scale demonstration test (i.e., small scale) and validation of design in a full-scale test. These tests are recommended to be performed using Pu surrogates due to challenges in consideration of the nature of plutonium and operational constraints required when handling large quantities of accountable material. The potential for spreading contamination and exposing workers to harmful levels of cumulative radioactive dose are motivation to utilize non-radioactive surrogates. Once the design is demonstrated and optimized, implementation would take place in a facility designed to accommodate these constraints. Until then, the use of surrogates would be a safer, less expensive option for the validation phase of the project. This report examines the potential for use of surrogates in the demonstration and validation of the DMO furnace for PuD. This report provides a compilation of the technical information and process requirements for the conversion of plutonium metal to oxide by burning in dry environments. Several potential surrogates were evaluated by various criteria in order to select a suitable candidate for large scale demonstration. First, the structure of the plutonium metal/oxide interface was compared to potential surrogates. Second the data for plutonium oxidation kinetics were reviewed and rates for oxidation were compared with surrogates. The criteria used as a basis for recommendation was selected in order to provide a reasonable oxidation rate during the validation phase. Several reference documents were reviewed and used to compile the information in this report. Since oxidation of large monolithic pieces of plutonium in 75% oxygen is the preferable oxidizing atmosphere for the intended process, this report does not focus on the oxidation of powders, but focuses instead on larger samples in flowing gas.

  14. LED Lighting Basics

    Broader source: Energy.gov [DOE]

    Light-Emitting diodes (LEDs) efficiently produce light in a fundamentally different way than any legacy or traditional source of light.

  15. Light Source

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12electron 9 5Let us count theLienertLift Forces in a Light

  16. EA-1892: Direct Final Rule Energy Conservation Standards for Residential Furnaces and Residential Central Air Conditioners & Heat Pumps

    Broader source: Energy.gov [DOE]

    This EA evaluates the environmental impacts of a proposal to adopt energy conservation standards for various consumer products and certain commercial and industrial equipment, including residential furnaces and residential air conditioners and heat pumps, as required by the Energy Policy and Conservation Act, as amended (42 U.S.C. 6291 et seq.)

  17. Published in Powder Technology, 2005, 157, 1-3, 2-11. DUST FORMATION IN ELECTRIC ARC FURNACE

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    reaction with dissolved carbon and bubbles of carbon monoxide (CO) are formed, which helps to remove other of electric arc furnace (EAF) dust shows that bubble burst at the liquid steel surface is the principal source. As in the case of the air-water system, the bubble-burst gives birth to two types of droplets: film drops and jet

  18. Process Simulation and Control Optimization of a Blast Furnace Using Classical Thermodynamics Combined to a Direct Search

    E-Print Network [OSTI]

    Martin, Alain

    consisting mainly of N2, CO, CO2, H2, and H2O. This is a consequence of the reduction of the iron ore volume methods, data-mining models, heat and mass balance models, and classical thermodynamic simulations-tune the simulation of the blast furnace. Optimal operating conditions and predicted output stream properties

  19. Laser-excited atomic fluorescence of atoms produced in a graphite furnace

    SciTech Connect (OSTI)

    Goforth, D.; Winefordner, J.D.

    1986-11-01T23:59:59.000Z

    Laser-excited atomic fluorescence in a graphite furnace gives detection limits for Pb, Cu, Mn, Sn, Al, In, Li, and Pt, in the picogram to sub-picogram range. The linear dynamic range for these elements varies from 3 to 7 orders of magnitude. A graphite rod, a plain graphite cup, and a slotted graphite cup are compared as the cuvette in the fluorescence system. Detection limits for a pyrolytic coating, a tantalum foil liner, and a tantalum carbide coating of the graphite cuvette are compared. A hydrogen-argon atmosphere, a low-pressure atmosphere, and an argon atmosphere are compared as the atmosphere surrounding the graphite cuvette. Lastly, Cu and Mn are determined in several standard reference materials.

  20. Development of mixed-waste analysis capability for graphite furnace atomic absorption spectrophotometry

    SciTech Connect (OSTI)

    Bass, D.A.; TenKate, L.B.; Wroblewski, A.

    1995-03-01T23:59:59.000Z

    Graphite furnace atomic absorption spectrophotometer (GFAAS) are typically configured with ventilation to capture potentially toxic and corrosive gases emitted from the vaporization of sample aliquots. When radioactive elements are present, additional concerns (such as meeting safety guidelines and ALARA principles) must be addressed. This report describes a modification to a GFAAS that provides additional containment of vaporized sample aliquots. The modification was found to increase containment by a factor of 80, given expected operating conditions. The use of the modification allows more mixed-waste samples to be analyzed, permits higher levels of radioactive samples to be analyzed, or exposes the analyst to less airborne radioactivity. The containment apparatus was attached to a Perkin-Elmer Zeeman 5000 spectrophotometer for analysis of mixed-waste samples; however, it could also be used on other systems and in other applications where greater containment of vaporized material is desired.

  1. Numerical simulation of material and energy flow in an e-beam melt furnace

    SciTech Connect (OSTI)

    Westerberg, K.W.; McClelland, M.A. [Lawrence Livermore National Lab., CA (United States); Finlayson, B.A. [Washington Univ., Seattle, WA (United States). Dept. of Chemical Engineering

    1993-12-01T23:59:59.000Z

    A numerical analysis is made of the material and energy flow in an electron-beam furnace. Energy from an electron beam vaporizes metal confined in a water-cooled crucible. At the beam impact site a. recirculating liquid metal pool is surrounded by a shell of its own solid. A Galerkin finite element method is modified to solve for the flow and temperature fields along with interface locations. The deforming mesh is parameterized using spines that pivot and stretch as the interfaces move. Results are given for an aluminum vaporizer in which parametric variations are made in the e-beam power and liquid viscosity. The calculations reveal the importance of the coupling between the free boundaries and the flow and energy fields.

  2. THERMAL TESTING OF PROTOTYPE GENERAL PURPOSE FISSILE PACKAGES USING A FURNACE

    SciTech Connect (OSTI)

    Smith, A; Lawrence Gelder, L; Paul Blanton, P

    2007-02-16T23:59:59.000Z

    The 9977/9978 General Purpose Fissile Package (GPFP) was designed by SRNL to replace the DOT 6M Specification Package and ship Plutonium and Uranium metals and oxides. Urethane foam was used for the overpack to ensure the package would withstand the 10CFR71.73(c)(2) crush test, which is a severe test for drum-type packages. In addition, it was necessary to confirm that the urethane foam configuration provided adequate thermal protection for the containment vessel during the subsequent 10CFR71.73(c)(4) thermal test. Development tests were performed on early prototype test specimens of different diameter overpacks and a range of urethane foam densities. The thermal test was performed using an industrial furnace. Test results were used to optimize the selection of package diameter and foam density, and provided the basis for design enhancements incorporated into the final package design.

  3. Device for use in a furnace exhaust stream for thermoelectric generation

    DOE Patents [OSTI]

    Polcyn, Adam D.

    2013-06-11T23:59:59.000Z

    A device for generating voltage or electrical current includes an inner elongated member mounted in an outer elongated member, and a plurality of thermoelectric modules mounted in the space between the inner and the outer members. The outer and/or inner elongated members each include a plurality of passages to move a temperature altering medium through the members so that the device can be used in high temperature environments, e.g. the exhaust system of an oxygen fired glass melting furnace. The modules are designed to include a biasing member and/or other arrangements to compensate for differences in thermal expansion between the first and the second members. In this manner, the modules remain in contact with the first and second members. The voltage generated by the modules can be used to power electrical loads.

  4. A study on the flow of molten iron in the hearth of blast furnace

    SciTech Connect (OSTI)

    Suh, Y.K.; Lee, Y.J.; Baik, C.Y. [Pohang Iron and Steel Co., Ltd. (Korea, Republic of). Technical Research Labs.

    1996-12-31T23:59:59.000Z

    The flow of molten iron in the hearth of blast furnace was investigated by using a water model test and a numerical simulation. The water model apparatus was set up in order to evaluate the effects of coke size, coke bed structure, drain rate, and coke free space on the fluidity of molten iron through measurement of residence time and visualization of flow pattern. In addition, the flow was calculated by solving momentum equation in porous media using finite element method. The residence time increased with the coke size decrease, but decreased with the drain rate increase. If small coke was placed in the center of deadman, peripheral flow was enhanced. The flow path was changed due to the coke free space.

  5. DEVELOPMENT AND DEPLOYMENT OF SHOTCRETE REFRACTORIES FOR ALUMINUM ROTARY FURNACE APPLICATION

    SciTech Connect (OSTI)

    Hemrick, James Gordon [ORNL; Rodrigues-Schroer, Angela [Minteq International, Inc.; Colavito, [Minteq International, Inc.; Smith, Jeffrey D [ORNL; O'Hara, Kelley [University of Missouri, Rolla

    2013-01-01T23:59:59.000Z

    Work was performed by Oak Ridge National Laboratory (ORNL) in the United States, in collaboration with the industrial refractory manufacturer Minteq International, Inc. (MINTEQ), academic research partner Missouri University of Science and Technology (MS&T) and end users to employ novel refractory systems and techniques to reduce energy consumption of refractory lined vessels found in the aluminum industry. The project aim was to address factors that limit the applicability of currently available refractory materials such as chemical attack, mechanical degradation, use temperature, and installation or repair issues. To this end, as part of the overall project, shotcretable refractory compositions were developed based on alumino-silicate based structures utilizing new aggregate materials, bond systems, protective coatings, and phase formation techniques for use in rotary dross furnaces. Additionally a shotcretable high strength insulating back-up lining material was also developed for use in this and other applications. Development efforts, materials validation, and results from industrial validation trials are discussed.

  6. Interated Intelligent Industrial Process Sensing and Control: Applied to and Demonstrated on Cupola Furnaces

    SciTech Connect (OSTI)

    Mohamed Abdelrahman; roger Haggard; Wagdy Mahmoud; Kevin Moore; Denis Clark; Eric Larsen; Paul King

    2003-02-12T23:59:59.000Z

    The final goal of this project was the development of a system that is capable of controlling an industrial process effectively through the integration of information obtained through intelligent sensor fusion and intelligent control technologies. The industry of interest in this project was the metal casting industry as represented by cupola iron-melting furnaces. However, the developed technology is of generic type and hence applicable to several other industries. The system was divided into the following four major interacting components: 1. An object oriented generic architecture to integrate the developed software and hardware components @. Generic algorithms for intelligent signal analysis and sensor and model fusion 3. Development of supervisory structure for integration of intelligent sensor fusion data into the controller 4. Hardware implementation of intelligent signal analysis and fusion algorithms

  7. On Flame-Wall Thermal-Coupling in Micro Combustors Yong Fan, Yuji Suzuki, and Nobuhide Kasagi

    E-Print Network [OSTI]

    Kasagi, Nobuhide

    On Flame-Wall Thermal-Coupling in Micro Combustors Yong Fan, Yuji Suzuki, and Nobuhide Kasagi Department of Mechanical Engineering, The University of Tokyo, Japan Keywords: Micro combustor, Premixed of premixed CH4/Air flame propagation and quenching in three quartz combustors with chamber depth of 0.7 mm, 1

  8. Study of the Effects of Ambient Conditions Upon the Performance of Fan Powered, Infrared Natural Gas Burners

    SciTech Connect (OSTI)

    Clark Atlanta University

    2002-12-02T23:59:59.000Z

    The objective of this investigation was to characterize the operation of a fan-powered, infrared burner (IR burner) at various gas compositions and ambient conditions, develop numerical model to simulate the burner performances, and provide design guidelines for appliances containing PIR burners for satisfactory performance.

  9. Gas-surface scattering with multiple collisions in the physisorption potential well Guoqing Fan and J. R. Manson

    E-Print Network [OSTI]

    Manson, Joseph R.

    Gas-surface scattering with multiple collisions in the physisorption potential well Guoqing Fan The problem of gas-surface collisions is developed in terms of a theoretical formalism that allows calcula gas distributions are considered, a monoenergetic incident beam and an equilibrium gas appropriate

  10. Inferring Air Pollution by Sniffing Social Media Shike Mei, Han Li, Jing Fan, Xiaojin Zhu and Charles R. Dyer

    E-Print Network [OSTI]

    Zhu, Xiaojin "Jerry"

    Inferring Air Pollution by Sniffing Social Media Shike Mei, Han Li, Jing Fan, Xiaojin Zhu issue of air pollution in China and elsewhere in the world is to monitor it. While more physical prediction performance of our approach. I. INTRODUCTION Air pollution is a significant issue in China

  11. Performance Optimization of a Fan System- Overcoming Impacts of Modified Design Criteria Due to Regulatory Requirements and Changed Operating Conditions

    E-Print Network [OSTI]

    Wroblewski, R. G.; Preis, F.; Smith, R.

    that was applied to address fan inefficiency. Energy savings from optimizing the system are estimated to be 338 kW, nearly half of the original measured input power of 678 kW. The project is currently being implemented and will have a payback period of less than 8...

  12. ECOSystem: Managing Energy as a First Class Operating System Heng Zeng, Xiaobo Fan, Carla Ellis, Alvin Lebeck, and Amin Vahdat

    E-Print Network [OSTI]

    Lebeck, Alvin R.

    ECOSystem: Managing Energy as a First Class Operating System Resource Heng Zeng, Xiaobo Fan focus in this paper is to investigate what role the oper- ating system can play in improving energy as a significant layer in the design of energy efficient computing systems [8]. It is now a widely held view

  13. Stimulated Emission from a Single Excited Atom in a Waveguide Eden Rephaeli1,* and Shanhui Fan2,

    E-Print Network [OSTI]

    Fan, Shanhui

    Stimulated Emission from a Single Excited Atom in a Waveguide Eden Rephaeli1,* and Shanhui Fan2, 1; published 3 April 2012) We study stimulated emission from an excited two-level atom coupled to a waveguide by the atom, plays a very important role in stimulated emission. Additionally, the temporal duration

  14. Theory of Second-Harmonic Generation in Colloidal Crystals J. P. Huang,* Y. C. Jian, and C. Z. Fan

    E-Print Network [OSTI]

    Huang, Ji-Ping

    Theory of Second-Harmonic Generation in Colloidal Crystals J. P. Huang,* Y. C. Jian, and C. Z. Fan-Kornfeld formulation, we study the effective susceptibility of second-harmonic generation (SHG) in colloidal crystals of second-harmonic generation (SHG); that is, an input (pump) wave can generate another wave with twice

  15. Toward Resilient Security in Wireless Sensor Networks # Hao Yang # , Fan Ye + , Yuan Yuan # , Songwu Lu # , William Arbaugh #

    E-Print Network [OSTI]

    Lu, Songwu

    networks, location­based security, resiliency, node compromise, en­route filtering, key distributionToward Resilient Security in Wireless Sensor Networks # Hao Yang # , Fan Ye + , Yuan Yuan@us.ibm.com {yuanyuan,waa}@cs.umd.edu ABSTRACT Node compromise poses severe security threats in wireless sensor networks

  16. VELOCITY MEASUREMENTS FOR A SOLAR ACTIVE REGION FAN LOOP FROM HINODE/EIS OBSERVATIONS

    SciTech Connect (OSTI)

    Young, P. R. [College of Science, George Mason University, 4400 University Drive, Fairfax, VA 22030 (United States); O'Dwyer, B.; Mason, H. E. [Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Wilberforce Road, Cambridge, CB3 0WA (United Kingdom)

    2012-01-01T23:59:59.000Z

    The velocity pattern of a fan loop structure within a solar active region over the temperature range 0.15-1.5 MK is derived using data from the EUV Imaging Spectrometer (EIS) on board the Hinode satellite. The loop is aligned toward the observer's line of sight and shows downflows (redshifts) of around 15 km s{sup -1} up to a temperature of 0.8 MK, but for temperatures of 1.0 MK and above the measured velocity shifts are consistent with no net flow. This velocity result applies over a projected spatial distance of 9 Mm and demonstrates that the cooler, redshifted plasma is physically disconnected from the hotter, stationary plasma. A scenario in which the fan loops consist of at least two groups of 'strands'-one cooler and downflowing, the other hotter and stationary-is suggested. The cooler strands may represent a later evolutionary stage of the hotter strands. A density diagnostic of Mg VII was used to show that the electron density at around 0.8 MK falls from 3.2 Multiplication-Sign 10{sup 9} cm{sup -3} at the loop base, to 5.0 Multiplication-Sign 10{sup 8} cm{sup -3} at a projected height of 15 Mm. A filling factor of 0.2 is found at temperatures close to the formation temperature of Mg VII (0.8 MK), confirming that the cooler, downflowing plasma occupies only a fraction of the apparent loop volume. The fan loop is rooted within a so-called outflow region that displays low intensity and blueshifts of up to 25 km s{sup -1} in Fe XII {lambda}195.12 (formed at 1.5 MK), in contrast to the loop's redshifts of 15 km s{sup -1} at 0.8 MK. A new technique for obtaining an absolute wavelength calibration for the EIS instrument is presented and an instrumental effect, possibly related to a distorted point-spread function, that affects velocity measurements is identified.

  17. Onsite recycling of electric arc furnace dust: The Jorgensen Steel Facility

    SciTech Connect (OSTI)

    Licis, I.J. [Environmental Protection Agency, Cincinnati, OH (United States); Bermark, R.C. [Washington State Dept. of Ecology, Olympia, WA (United States)

    1995-10-01T23:59:59.000Z

    The steel-making industry produces a large amount of Electric Arc Furnace (EAF) dust as part of normal production. This waste is listed as KO61, defined as {open_quotes}emission control dust/sludge from the primary production of steel in electric arc furnaces{close_quotes} under 40 CFR 261.32. A glass making technology called Ek Glassification{trademark} (hereafter called {open_quotes}the Process{close_quotes}) has been developed by Roger B. Ek and Associates, Inc. (hereafter called {open_quotes}the Developer{close_quotes}) to recycle EAF dust and convert it, along with other byproducts of the steel-making industry, into marketable commodities. This Process was evaluated under the Waste Reduction Innovative Technology Evaluation (WRITE) Program. The project was designed and conducted in cooperation with the Washington State Department of Environmental Quality, the Process Developer and the host test site, the Earle M. Jorgensen (EMJ) Steel Company of Seattle, Washington. Test personnel for EPA were supplied by SAIC Inc., on contract to EPA. The overall objectives of the project were to conduct a pilot scale evaluation of the Process, investigate if toxic metals are leached from the products (such as colored glass and glass-ceramics; ceramic glazes, colorants, and fillers; roofing granules and sand-blasting grit; and materials for Portland cement production). Three glass recipes (Glass I, II, and III) were designed by the developer for potential use at EMJ. The EPA portion was focused on determining the toxic metals concentrations of the Glass II recipe, evaluating the P2 impact of using this Process in comparison to traditional methods of waste treatment and disposal, and assessing the economics of both.

  18. Technical support document: Energy efficiency standards for consumer products: Room air conditioners, water heaters, direct heating equipment, mobile home furnaces, kitchen ranges and ovens, pool heaters, fluorescent lamp ballasts and television sets. Volume 1, Methodology

    SciTech Connect (OSTI)

    Not Available

    1993-11-01T23:59:59.000Z

    The Energy Policy and Conservation Act (P.L. 94-163), as amended, establishes energy conservation standards for 12 of the 13 types of consumer products specifically covered by the Act. The legislation requires the Department of Energy (DOE) to consider new or amended standards for these and other types of products at specified times. DOE is currently considering amending standards for seven types of products: water heaters, direct heating equipment, mobile home furnaces, pool heaters, room air conditioners, kitchen ranges and ovens (including microwave ovens), and fluorescent light ballasts and is considering establishing standards for television sets. This Technical Support Document presents the methodology, data, and results from the analysis of the energy and economic impacts of the proposed standards. This volume presents a general description of the analytic approach, including the structure of the major models.

  19. National Dioxin Study Tier 4 - combustion sources: final test report - Site 10, secondary-copper-recovery cupola furnace MET-A

    SciTech Connect (OSTI)

    Keller, L.E.; McReynolds, J.R.; Benson, D.J.

    1987-04-01T23:59:59.000Z

    This report summarizes the results of a dioxin/furan emissions test of a secondary-copper-recovery cupola furnace equipped with an afterburner for hydrocarbon emissions control and two baghouses for particulate-emissions control. The cupola furnace is used for recovery of copper from telephone scrap and other copper-bearing materials. The test was No. 10 in a series of dioxin/furan emissions tests conducted under Tier 4 of the National Dioxin Study. The primary objective of Tier 4 is to determine if various combustion sources are sources of dioxin/or furan emissions. If any of the combustion sources are found to emit dioxin or furan, the secondary objective of Tier 4 is to quantify these emissions. Secondary-copper-recovery cupola furnaces are one of 8 combustion-source categories that have been tested in the Tier 4 program. The tested cupola furnace, MET-A, was selected for the test after an initial information screening and a one-day pretest survey visit. Cupola furnace MET-A is a large secondary-copper-recovery cupola furnace relative to others in the United States. The furnace feed includes plastic-bearing materials of various types, some of which may contain chlorinated organic compounds. Data presented in the report include dioxin (tera through octa homologue +2378 TCDD) and furan (tetra through octa homologue +2378 TCDF) results for both stack samples and ash samples. In addition, process data collected during sampling are also presented.

  20. Sustainable Office Lighting Options

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    Sustainable Office Lighting Options Task Lighting: Task lighting is a localized method of lighting a workspace so that additional, unnecessary lighting is eliminated, decreasing energy usage and costs. Illumination levels in the targeted work areas are higher with task lighting than with the ambient levels

  1. An example of alkalization of SiO{sub 2} in a blast furnace coke

    SciTech Connect (OSTI)

    S.S. Gornostayev; P.A. Tanskanen; E.-P. Heikkinen; O. Kerkkonen; J.J. Haerkki [University of Oulu, Oulu (Finland). Laboratory of Process Metallurgy

    2007-09-15T23:59:59.000Z

    Scanning electron microscopy and an electron-microprobe analysis of a sample of blast furnace (BF) coke have revealed alkalization (5.64 wt % Na{sub 2}O + K{sub 2}O) and Al saturation (17.28 wt % Al{sub 2}O{sub 3}) of SiO{sub 2} by BF gases. The K/Na{sub at} value of 1.15 in the new phase (alteration zone) reflects close atomic proportions of the elements and suggests that the abilities to incorporate K and Na during the process are almost equal. This Al saturation and alkalization of SiO{sub 2} indicates an active role for Al along with alkali metals in BF gases. The average width of the altered area in the SiO{sub 2} grain is about 10 m, which suggests that SiO{sub 2} particles of that size can be transformed fully to the new phase, provided that at least one of their faces is open to an external pore (surface of the coke) or internal pore with circulating BF gases. The grains that exceed 10 {mu}m can only be partly altered, which means that smaller SiO{sub 2} grains can incorporate more alkali metals and Al (during their transformation to the Al and alkali-bearing phase) than a similar volume of SiO{sub 2} concentrated in larger grains. Thermodynamic calculations for 100 g{sub solid}/100 g{sub gas} and temperatures 800-1800{sup o}C have shown that the BF gases have very little or no effect on the alkalization of SiO{sub 2}. If the alteration process described in this paper proves to be a generalized phenomenon in blast furnace cokes, then the addition of fine-grained quartz to the surface of the coke before charging a BF can be useful for removing of some of the Al and alkali from the BF gases and reduce coke degradation by alkalis, or at least improve its properties until the temperature reaches approximately 2000{sup o}C. 22 refs., 5 figs., 1 tab.

  2. Hot repair of ceramic burner on hot blast stoves at USS/Kobe`s {number_sign}3 blast furnace

    SciTech Connect (OSTI)

    Bernarding, T.F.; Chemorov, M.; Shimono, S.; Phillips, G.R.

    1997-12-31T23:59:59.000Z

    During the 1992 reline of the No. 3 blast furnace, three new stoves were constructed. The design of the stoves, equipped with internal ceramic burners, was for providing a hot blast temperature of 2,000 F at a wind rate of 140,000 SCFM. After 3 years the performance had deteriorated so the burners were cleaned. When a second cleaning did not improve the performance of No. 3 blast furnace, it was decided to repair the refractory while still hot. The paper describes the hot repair procedures, taking a stove off for repairs, maintenance heat up during repairs, two stove operation, stove commissioning, repair of a ceramic burner, and wet gas prevention.

  3. Lighting Options for Homes.

    SciTech Connect (OSTI)

    Baker, W.S.

    1991-04-01T23:59:59.000Z

    This report covers many aspects of various lighting options for homes. Types of light sources described include natural light, artificial light, incandescent lamps, fluorescent lamps, and high intensity discharge lamps. A light source selection guide gives the physical characteristics of these, design considerations, and common applications. Color, strategies for efficient lighting, and types of lighting are discussed. There is one section giving tips for various situations in specific rooms. Rooms and types of fixtures are shown on a matrix with watts saved by using the recommended type lighting for that room and room location. A major emphasis of this report is saving energy by utilizing the most suitable, recommended lighting option. (BN)

  4. Gravid Mosquito Trap P462 -Trap The ChemTica GMT operates on 4 size D cell batteries. A photo-activated switch turns on the fan

    E-Print Network [OSTI]

    Ishida, Yuko

    batteries. A photo-activated switch turns on the fan at dusk. Manual shutoff is required at dawn to prevent at dawn to prevent loss of trapped mosquitoes. Power is supplied by four D cell batteries. The upper case

  5. Impacts of Static Pressure Reset on VAV System Air Leakage, Fan Power and Thermal Energy - Part I: Theoretical Model and Simulation

    E-Print Network [OSTI]

    Liu, M.; Feng, J.; Wang, Z.; Wu, L.; Zheng, K.; Pang, W.

    2007-01-01T23:59:59.000Z

    As for a variable air volume (VAV) system, the air duct static pressure is a typical control variable maintained by modulating supply fan speed. The static pressure equals to the summation of the duct pressure loss downstream of the sensor...

  6. Mobile lighting apparatus

    DOE Patents [OSTI]

    Roe, George Michael; Klebanoff, Leonard Elliott; Rea, Gerald W; Drake, Robert A; Johnson, Terry A; Wingert, Steven John; Damberger, Thomas A; Skradski, Thomas J; Radley, Christopher James; Oros, James M; Schuttinger, Paul G; Grupp, David J; Prey, Stephen Carl

    2013-05-14T23:59:59.000Z

    A mobile lighting apparatus includes a portable frame such as a moveable trailer or skid having a light tower thereon. The light tower is moveable from a stowed position to a deployed position. A hydrogen-powered fuel cell is located on the portable frame to provide electrical power to an array of the energy efficient lights located on the light tower.

  7. Light disappears rapidly (exponentially)

    E-Print Network [OSTI]

    Kudela, Raphael M.

    #12;#12;#12;#12;Light disappears rapidly (exponentially) with depth At the same time, the color of the light shifts #12;#12;#12;#12;· Euphotic zone ­ plentiful light ­ 0-100 m (about) · Dysphotic zone ­ very, very little light ­ 100-1000 m (about) · Aphotic zone ­ no light ­ below 1000 m #12;Sunlight in Water

  8. Simulation of blast-furnace tuyere and raceway conditions in a wire mesh reactor: extents of combustion and gasification

    SciTech Connect (OSTI)

    Long Wu; N. Paterson; D.R. Dugwell; R. Kandiyoti [Imperial College London, London (United Kingdom). Department of Chemical Engineering

    2007-08-15T23:59:59.000Z

    A wire mesh reactor has been modified to investigate reactions of coal particles in the tuyeres and raceways of blast furnaces. At temperatures above 1000{sup o}C, pyrolysis reactions are completed within 1 s. The release of organic volatiles is probably completed by 1500{sup o}C, but the volatile yield shows a small increase up to 2000{sup o}C. The additional weight loss at the higher temperature may be due to weight loss from inorganic material. The residence time in the raceway is typically 20 ms, so it is likely that pyrolysis of the coal will continue throughout the passage along the raceway and into the base of the furnace shaft. Combustion reactions were investigated using a trapped air injection system, which admitted a short pulse of air into the wire mesh reactor sweep gas stream. In these experiments, the temperature and partial pressure of O{sub 2} were limited by the oxidation of the molybdenum mesh. However, the tests have provided valid insight into the extent of this reaction at conditions close to those experienced in the raceway. Extents of combustion of the char were low (mostly, less than 5%, daf basis). The work indicates that the extent of this reaction is limited in the raceway by the low residence time and by the effect of released volatiles, which scavenge the O{sub 2} and prevent access to the char. CO{sub 2} gasification has also been studied and high conversions achieved within a residence time of 5-10 s. The latter residence time is far longer than that in the raceway and more typical of small particles travelling upward in the furnace shaft. The results indicate that this reaction is capable of destroying most of the char. However, the extent of the gasification reaction appears limited by the decrease in temperature as the material moves up through the furnace. 44 refs., 12 figs., 6 tabs.

  9. AISI/DOE Technology Roadmap Program: Behavior of Phosphorus in DRI/HBI During Electric Furnace Steelmaking

    SciTech Connect (OSTI)

    Richard J. Frueham; Christopher P. Manning cmanning@bu.edu

    2001-10-05T23:59:59.000Z

    Many common scrap substitutes such as direct reduced iron pellets (DRI), hot briquetted iron (HBI), iron carbide, etc., contain significantly higher levels of phosphorus steelmaking for the production of higher quality steels, control of phosphorus levels in the metal will become a concern. This study has developed a more complete understanding of the behavior of phosphorus in DRI during EAF steelmaking, through a thorough investigation of the kinetics and thermodynamics of phosphorus transfer in the EAF based upon laboratory and plant experiments and trials. Laboratory experiments have shown that phosphorus mass transfer between oxide and metallic phases within commercial direct reduced iron pellets occurs rapidly upon melting according to the local equilibrium for these phases. Laboratory kinetic experiments indicate that under certain conditions, phosphorus mass transfer between slag and metal is influenced by dynamic phenomena, which affect the mass transfer coefficient for the reaction and/or the slag metal interfacial area. Plant trials were conducted to directly evaluate the conditions of mass transfer in the electric furnace and to determine the effects of different scrap substitute materials upon the slag chemistry, the behavior of phosphorus in the steel, and upon furnace yield. The data from these trials were also used to develop empirical models for the slag chemistry and furnace temperature as functions of time during a single heat. The laboratory and plant data were used to develop a numerical process model to describe phosphorus transfer in the EAF

  10. Recycling of rubber tires in electric arc furnace steelmaking: simultaneous combustion of metallurgical coke and rubber tyres blends

    SciTech Connect (OSTI)

    Magdalena Zaharia; Veena Sahajwalla; Byong-Chul Kim; Rita Khanna; N. Saha-Chaudhury; Paul O'Kane; Jonathan Dicker; Catherine Skidmore; David Knights [University of New South Wales, Sydney, NSW (Australia). School of Materials Science and Engineering

    2009-05-15T23:59:59.000Z

    The present study investigates the effect of addition of waste rubber tires on the combustion behavior of its blends with coke for carbon injection in electric arc furnace steelmaking. Waste rubber tires were mixed in different proportions with metallurgical coke (MC) (10:90, 20:80, 30:70) for combustion and pyrolysis at 1473 K in a drop tube furnace (DTF) and thermogravimetric analyzer (TGA), respectively. Under experimental conditions most of the rubber blends indicated higher combustion efficiencies compared to those of the constituent coke. In the early stage of combustion the weight loss rate of the blends is much faster compared to that of the raw coke due to the higher volatile yield of rubber. The presence of rubber in the blends may have had an impact upon the structure during the release and combustion of their high volatile matter (VM) and hence increased char burnout. Measurements of micropore surface area and bulk density of the chars collected after combustion support the higher combustion efficiency of the blends in comparison to coke alone. The surface morphology of the 30% rubber blend revealed pores in the residual char that might be attributed to volatile evolution during high temperature reaction in oxygen atmosphere. Physical properties and VM appear to have a major effect upon the measured combustion efficiency of rubber blends. The study demonstrates that waste rubber tires can be successfully co-injected with metallurgical coke in electric arc furnace steelmaking process to provide additional energy from combustion. 44 refs., 11 figs., 2 tabs.

  11. Final Report Independent Verification Survey of the High Flux Beam Reactor, Building 802 Fan House Brookhaven National Laboratory Upton, New York

    SciTech Connect (OSTI)

    Harpeneau, Evan M. [Oak Ridge Institute for Science and Education, Oak Ridge, TN (United States). Independent Environmental Assessment and Verification Program

    2011-06-24T23:59:59.000Z

    On May 9, 2011, ORISE conducted verification survey activities including scans, sampling, and the collection of smears of the remaining soils and off-gas pipe associated with the 802 Fan House within the HFBR (High Flux Beam Reactor) Complex at BNL. ORISE is of the opinion, based on independent scan and sample results obtained during verification activities at the HFBR 802 Fan House, that the FSS (final status survey) unit meets the applicable site cleanup objectives established for as left radiological conditions.

  12. New Light Sources for Tomorrow's Lighting Designs

    E-Print Network [OSTI]

    Krailo, D. A.

    can ever be saved on that monthly energy bill. During the past several years, many new light sources have been developed and introduced. These product introductions have not been limited to anyone lamp type, but instead may be found in fila ment..., fluorescent and high intensity discharge lamp families. Man , ufacturers of light sources have two basic goals for new product development. These goals are high efficiency lighting and improved colo'r rendering properties. High efficiency lighting may take...

  13. Materials support for the development of a high temperature advanced furnace

    SciTech Connect (OSTI)

    Breder, K.; Lin, H.T.

    1995-12-01T23:59:59.000Z

    The purpose of this project is to compare a limited number of candidate ceramics proposed for use in the air heater of a coal fired high temperature advanced furnace (HITAF) for power generation. This work will provide necessary initial structural ceramic parameters for design of a prototype system. Phase 1 of the work consisted of evaluation of the mechanical properties of three structural ceramics at high temperatures in air and a preliminary evaluation of mechanical properties of these structural ceramics after exposure to coal ash. This work was described in a final report, and the results will serve as baseline data for further work. An initial screening of candidate structural ceramics with respect to their creep properties in air at selected temperatures will be performed as Phase 2, and temperatures above which creep may become a design problem will be identified. Tubes and tube sections of the candidate ceramics will then be exposed to a combination of mechanical loads, coal ash exposure and high temperature, and corrosion behavior, mechanisms and post exposure mechanical properties will be evaluated.

  14. Detection of carbon monoxide (CO) as a furnace byproduct using a rotating mask spectrometer.

    SciTech Connect (OSTI)

    Sinclair, Michael B.; Flemming, Jeb Hunter; Blair, Raymond (Honeywell Federal Manufacturing & Technologies, Albuqueruque, NM); Pfeifer, Kent Bryant

    2006-02-01T23:59:59.000Z

    Sandia National Laboratories, in partnership with the Consumer Product Safety Commission (CPSC), has developed an optical-based sensor for the detection of CO in appliances such as residential furnaces. The device is correlation radiometer based on detection of the difference signal between the transmission spectrum of the sample multiplied by two alternating synthetic spectra (called Eigen spectra). These Eigen spectra are derived from a priori knowledge of the interferents present in the exhaust stream. They may be determined empirically for simple spectra, or using a singular value decomposition algorithm for more complex spectra. Data is presented on the details of the design of the instrument and Eigen spectra along with results from detection of CO in background N{sub 2}, and CO in N{sub 2} with large quantities of interferent CO{sub 2}. Results indicate that using the Eigen spectra technique, CO can be measured at levels well below acceptable limits in the presence of strongly interfering species. In addition, a conceptual design is presented for reducing the complexity and cost of the instrument to a level compatible with consumer products.

  15. Optical Sensors for Post Combustion Control in Electric Arc Furnace Steelmaking (TRP 9851)

    SciTech Connect (OSTI)

    Sarah W. Allendorf; David K. Ottesen; Robert W. Green; Donald R. Hardesty; Robert Kolarik; Howard Goodfellow; Euan Evenson; Marshall Khan; Ovidiu Negru; Michel Bonin; Soren Jensen

    2003-12-31T23:59:59.000Z

    Working in collaboration with Stantec Global Technologies, Process Metrix Corporation, and The Timken Company, Sandia National Laboratories constructed and evaluated a novel, laser-based off-gas sensor at the electric arc furnace facility of Timken's Faircrest Steel Plant (Canton, Ohio). The sensor is based on a mid-infrared tunable diode laser (TDL), and measures the concentration and temperature of specific gas species present in the off-gas emanating from the EAF. The laser beam is transmitted through the gas stream at the fourth hole of the EAF, and provides a real-time, in situ measurement that can be used for process optimization. Two sets of field tests were performed in parallel with Stantec's extractive probe off-gas system, and the tests confirm the TDL sensor's operation and applicability for electric steel making. The sensor measures real-time, in situ line-of-sight carbon monoxide (CO) concentrations between 5% and 35% CO, and measures off-gas temperature in the range of 1400 to 1900 K. In order to achieve commercial-ready status, future work is required to extend the sensor for simultaneous CO and CO{sub 2} concentration measurements. In addition, long-term endurance tests including process optimization must be completed.

  16. Nitrogen Control in Electric Arc Furnace Steelmaking by DRI (TRP 0009)

    SciTech Connect (OSTI)

    Dr. Gordon A. Irons

    2004-03-31T23:59:59.000Z

    Nitrogen is difficult to remove in electric arc furnace (EAF) steelmaking, requiring the use of more energy in the oxygen steelmaking route to produce low-nitrogen steel. The objective of this work was to determine if the injection of directly reduced iron (DRI) fines into EAFs could reduce the nitrogen content by creating fine carbon monoxide bubbles that rinse nitrogen from the steel. The proposed work included physical and chemical characterization of DRI fines, pilot-scale injection into steel, and mathematical modeling to aid in scale-up of the process. Unfortunately, the pilot-scale injections were unsuccessful, but some full-scale data was obtained. Therefore, the original objectives were met, and presented in the form of recommendations to EAF steelmakers regarding: (1) The best composition and size of DRI fines to use; (2) The amount of DRI fines required to achieve a specific reduction in nitrogen content in the steel; and (3) The injection conditions. This information may be used by steelmakers in techno-economic assessments of the cost of reducing nitrogen with this technology.

  17. Trials with a 100% pellet burden in blast furnace No. 6 at Hoogovens IJmuiden

    SciTech Connect (OSTI)

    Schoone, E.; Toxopeus, H.; Vos, D. [Hoogovens IJmuiden (Netherlands). Ironmaking and Raw Materials Div.

    1995-12-01T23:59:59.000Z

    The burden consists of 50% high basicity sinter and 50% home made olivine pellets. Two coke oven plants produce the required coke, about 340 kg/t (680 lb/NT). The average pulverized coal injection rate is 150 kg/t (300 lb/NT). To anticipate the aging coke oven plant No. 2 the coal injection capacity will e increased by 50% in 1996, by the installation of a third coal grinding line. In the Netherlands environmental issues have a high impact on further developments. In particular the environmental regulations require a significant decrease of dust, SO{sub 2} and dioxins emitted by the sinter plant. The appropriate measures must be concluded in the second part of this decade. To avoid costly conventional solutions Hoogovens has been testing since April, 1994 the Emission Optimized Sintering (EOS). In case of failure of EOS, the situation of a (partially) closed sinter plant was tested. Purchased pellets replaced sinter, leading to a 100% pellet and an 80% pellet/20% sinter trial. The trials were executed in the first half of 1994 at blast furnace No. 6, equipped with a PW-bell less top. Results are described.

  18. Studies of NO-char reaction kinetics obtained from drop-tube furnace and thermogravimetric experiments

    SciTech Connect (OSTI)

    Shaozeng Sun; Juwei Zhang; Xidong Hu; Shaohua Wu; Jiancheng Yang; Yang Wang; Yukun Qin [Harbin Institute of Technology, Harbin (China). Combustion Engineering Research Institute

    2009-01-15T23:59:59.000Z

    Four coal chars were prepared in a flat flame flow reactor (FFR), which can simulate the temperature and gas composition of a real pulverized coal combustion environment. The pore structure of chars was measured by mercury porosimetry and nitrogen adsorption, and the Hg and Brunauer-Emmett-Teller (BET) surface areas were obtained. The kinetics of NO-char was studied in a drop-tube furnace (DTF) and thermogravimetric analyzer (TGA). In the TGA experiments, the random pore model (RPM) was applied to describe the NO-char reactions and obtain the intrinsic kinetics. By presenting the data of DTF and TGA experiments on the same Arrhenius plot, it can be concluded that TGA is an available tool to study the kinetics of a high-temperature NO-char reaction. With respect to the DTF experiments, in comparison to the BET surface area, the Hg surface area is a better basis for normalizing the reactivity of different coal chars because of less scatter in the measured values, better agreement with TGA experimental data, and more stable values during the process of reaction. Moreover, by comparing the Hg surface area of chars before and after reactions, it is believed that the Hg surface area basis is more appropriate for high-rank coal chars. The determined kinetic rate constants are in good agreement with other data in the literature, and a new rate constant expression is proposed. 30 refs., 8 figs., 7 tabs.

  19. Modeling coal combustion behavior in an ironmaking blast furnace raceway: model development and applications

    SciTech Connect (OSTI)

    Maldonado, D.; Austin, P.R.; Zulli, P.; Guo B. [BlueScope Steel Research Laboratories, Port Kembla, NSW (Australia)

    2009-03-15T23:59:59.000Z

    A numerical model has been developed and validated for the investigation of coal combustion phenomena under blast furnace operating conditions. The model is fully three-dimensional, with a broad capacity to analyze significant operational and equipment design changes. The model was used in a number of studies, including: Effect of cooling gas type in coaxial lance arrangements. It was found that oxygen cooling improves coal burnout by 7% compared with natural gas cooling under conditions that have the same amount of oxygen enrichment in the hot blast. Effect of coal particle size distribution. It was found that during two similar periods of operation at Port Kembla's BF6, a difference in PCI capability could be attributed to the difference in coal size distribution. Effect of longer tuyeres. Longer tuyeres were installed at Port Kembla's BF5, leading to its reline scheduled for March 2009. The model predicted an increase in blast velocity at the tuyere nose due to the combustion of volatiles within the tuyere, with implications for tuyere pressure drop and PCI capability. Effect of lance tip geometry. A number of alternate designs were studied, with the best-performing designs promoting the dispersion of the coal particles. It was also found that the base case design promoted size segregation of the coal particles, forcing smaller coal particles to one side of the plume, leaving larger coal particles on the other side. 11 refs., 15 figs., 4 tabs.

  20. Effect of blast furnace slag on self-healing of microcracks in cementitious materials

    SciTech Connect (OSTI)

    Huang, Haoliang, E-mail: haoliang.huang@tudelft.nl [Microlab, Faculty of Civil Engineering and Geosciences, Delft University of Technology (Netherlands); Ye, Guang [Microlab, Faculty of Civil Engineering and Geosciences, Delft University of Technology (Netherlands); Magnel Laboratory for Concrete Research, Department of Structural Engineering, Ghent University (Belgium); Damidot, Denis [Université Lille Nord de France (France); EM Douai, LGCgE-MPE-GCE, Douai (France)

    2014-06-01T23:59:59.000Z

    The physico-chemical process of self-healing in blast furnace slag cement paste was investigated in this paper. With a high slag content i.e., 66% in cement paste and saturated Ca(OH){sub 2} solution as activator, it was found that the reaction products formed in cracks are composed of C-S-H, ettringite, hydrogarnet and OH–hydrotalcite. The fraction of C-S-H in the reaction products is much larger than the other minerals. Large amount of ettringite formed in cracks indicates the leaching of SO{sub 4}{sup 2?} ions from the bulk paste and consequently the recrystallization. Self-healing proceeds fast within 50 h and then slows down. According to thermodynamic modeling, when the newly formed reaction products are carbonated, the filling fraction of crack increases first and then decreases. Low soluble minerals such as silica gel, gibbsite and calcite are formed. Compared to Portland cement paste, the potential of self-healing in slag cement paste is higher when the percentage of slag is high. - Highlights: • Self-healing reaction products in slag cement paste were characterized. • Self-healing reaction products formed in time were quantified with image analysis. • Self-healing in slag cement paste was simulated with a reactive transport model. • Effect of carbonation on self-healing was investigated by thermodynamic modeling. • Effect of slag on self-healing was discussed based on experiments and simulation.

  1. EK101 Engineering Light Smart Lighting

    E-Print Network [OSTI]

    Bifano, Thomas

    EK101 Engineering Light Smart Lighting Homework for 9/10 1. Make an estimate (using if the patent is granted.) 3. What is a lumen? A lux? How are the two related? How would you use a lux meter, (Lux, Lumens/m2) Luminous Flux: Perceivable light power from a source, (Lumens) Use the lux meter

  2. Specific light in sculpture

    E-Print Network [OSTI]

    Powell, John William

    1989-01-01T23:59:59.000Z

    Specific light is defined as light from artificial or altered natural sources. The use and manipulation of light in three dimensional sculptural work is discussed in an historic and contemporary context. The author's work ...

  3. Light Duty Combustion Research: Advanced Light-Duty Combustion...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Light Duty Combustion Research: Advanced Light-Duty Combustion Experiments Light Duty Combustion Research: Advanced Light-Duty Combustion Experiments 2009 DOE Hydrogen Program and...

  4. Exciting White Lighting

    Broader source: Energy.gov [DOE]

    Windows that emit light and are more energy efficient? Universal Display’s PHOLED technology enables windows that have transparent light-emitting diodes in them.

  5. Characterization of dynamic change of Fan-delta reservoir properties in water-drive development

    SciTech Connect (OSTI)

    Wu Shenghe; Xiong Qihua; Liu Yuhong [Univ. of Petroleum Changping, Beijing (China)

    1997-08-01T23:59:59.000Z

    Fan-delta reservoir in Huzhuangji oil field of east China, is a typical highly heterogeneous reservoir. The oil field has been developed by water-drive for 10 years, but the oil recovery is less than 12%, and water cut is over 90%, resulting from high heterogeneity and serious dynamic change of reservoir properties. This paper aims at the study of dynamic change of reservoir properties in water-drive development. Through quantitative imaging analysis and mercury injection analysis of cores from inspection wells, the dynamic change of reservoir pore structure in water-drive development was studied. The results show that the {open_quotes}large pore channels{close_quotes} develop in distributary channel sandstone and become larger in water-drive development, resulting in more serious pore heterogeneity. Through reservoir sensitivity experiments, the rock-fluid reaction in water-drive development is studied. The results show the permeability of some distal bar sandstone and deserted channel sandstone becomes lower due to swelling of I/S clay minerals in pore throats. OD the other hand, the permeability of distributary channel and mouth bar sandstone become larger because the authigenic Koalinites in pore throats are flushed away with the increase of flow rate of injection water. Well-logging analysis of flooded reservoirs are used to study the dynamic change of reservoir properties in various flow units. The distribution of remaining oil is closely related to the types and distribution of flow units.

  6. PFP Emergency Lighting Study

    SciTech Connect (OSTI)

    BUSCH, M.S.

    2000-02-02T23:59:59.000Z

    NFPA 101, section 5-9 mandates that, where required by building classification, all designated emergency egress routes be provided with adequate emergency lighting in the event of a normal lighting outage. Emergency lighting is to be arranged so that egress routes are illuminated to an average of 1.0 footcandle with a minimum at any point of 0.1 footcandle, as measured at floor level. These levels are permitted to drop to 60% of their original value over the required 90 minute emergency lighting duration after a power outage. The Plutonium Finishing Plant (PFP) has two designations for battery powered egress lights ''Emergency Lights'' are those battery powered lights required by NFPA 101 to provide lighting along officially designated egress routes in those buildings meeting the correct occupancy requirements. Emergency Lights are maintained on a monthly basis by procedure ZSR-12N-001. ''Backup Lights'' are battery powered lights not required by NFPA, but installed in areas where additional light may be needed. The Backup Light locations were identified by PFP Safety and Engineering based on several factors. (1) General occupancy and type of work in the area. Areas occupied briefly during a shiftly surveillance do not require backup lighting while a room occupied fairly frequently or for significant lengths of time will need one or two Backup lights to provide general illumination of the egress points. (2) Complexity of the egress routes. Office spaces with a standard hallway/room configuration will not require Backup Lights while a large room with several subdivisions or irregularly placed rooms, doors, and equipment will require Backup Lights to make egress safer. (3) Reasonable balance between the safety benefits of additional lighting and the man-hours/exposure required for periodic light maintenance. In some plant areas such as building 236-Z, the additional maintenance time and risk of contamination do not warrant having Backup Lights installed in all rooms. Sufficient light for egress is provided by existing lights located in the hallways.

  7. Hydronic Heating Coil Versus Propane Furnace, Rehoboth Beach, Delaware (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2014-01-01T23:59:59.000Z

    Insight Homes constructed two houses in Rehoboth Beach, Delaware, with identical floor plans and thermal envelopes but different heating and domestic hot water (DHW) systems. Each house is 1,715-ft2 with a single story, three bedrooms, two bathrooms, and the heating, ventilation, and air conditioning (HVAC) systems and ductwork located in conditioned crawlspaces. The standard house, which the builder offers as its standard production house, uses an air source heat pump (ASHP) with supplemental propane furnace heating. The Building America test house uses the same ASHP unit with supplemental heat provided by the DHW heater (a combined DHW and hydronic heating system, where the hydronic heating element is in the air handler). Both houses were occupied during the test period. Results indicate that efficiency of the two heating systems was not significantly different. Three issues dominate these results; lower system design performance resulting from the indoor refrigerant coil selected for the standard house, an incorrectly functioning defrost cycle in the standard house, and the low resolution of the natural gas monitoring equipment. The thermal comfort of both houses fell outside the ASHRAE Standard 55 heating range but was within the ACCA room-to-room temperature range when compared to the thermostat temperature. The monitored DHW draw schedules were input into EnergyPlus to evaluate the efficiency of the tankless hot water heater model using the two monitored profiles and the Building America House Simulation Protocols. The results indicate that the simulation is not significantly impacted by the draw profiles.

  8. Lighting and Daylight Harvesting

    E-Print Network [OSTI]

    Bos, J.

    2011-01-01T23:59:59.000Z

    exposing us to the latest products and technologies. Daylight Harvesting A system of controlling the direction and the quantity of light both natural and artificial within a given space. This implies: Control of fenestration in terms of size..., transmission and direction. Control of reflected light within a space. Control of electric light in terms of delivery and amount Daylight harvesting systems are typically designed to maintain a minimum recommended light level. This light level...

  9. Issuance 2014-11-21:Energy Efficiency Program for Consumer Products: Energy Conservation Standards for Ceiling Fans: Availability of the Preliminary Technical Support Document, Notice of Comment Period Extension

    Broader source: Energy.gov [DOE]

    Energy Efficiency Program for Consumer Products: Energy Conservation Standards for Ceiling Fans: Availability of the Preliminary Technical Support Document, Notice of Comment Period Extension

  10. EK101 Engineering Light Project: Evaluate Residential Lighting

    E-Print Network [OSTI]

    Bifano, Thomas

    EK101 Engineering Light Project: Evaluate Residential Lighting Compare technical and economic characteristics of three sources of residential light. Two teams of four complete the same project Engineering Light Project: Evaluate Residential Lighting Project Assignment: Evaluate current options

  11. Independent Validation and Verification of Process Design and Optimization Technology Diagnostic and Control of Natural Gas Fired Furnaces via Flame Image Analysis Technology

    SciTech Connect (OSTI)

    Cox, Daryl [ORNL

    2009-05-01T23:59:59.000Z

    The United States Department of Energy, Industrial Technologies Program has invested in emerging Process Design and Optimizations Technologies (PDOT) to encourage the development of new initiatives that might result in energy savings in industrial processes. Gas fired furnaces present a harsh environment, often making accurate determination of correct air/fuel ratios a challenge. Operation with the correct air/fuel ratio and especially with balanced burners in multi-burner combustion equipment can result in improved system efficiency, yielding lower operating costs and reduced emissions. Flame Image Analysis offers a way to improve individual burner performance by identifying and correcting fuel-rich burners. The anticipated benefit of this technology is improved furnace thermal efficiency, and lower NOx emissions. Independent validation and verification (V&V) testing of the FIA technology was performed at Missouri Forge, Inc., in Doniphan, Missouri by Environ International Corporation (V&V contractor) and Enterprise Energy and Research (EE&R), the developer of the technology. The test site was selected by the technology developer and accepted by Environ after a meeting held at Missouri Forge. As stated in the solicitation for the V&V contractor, 'The objective of this activity is to provide independent verification and validation of the performance of this new technology when demonstrated in industrial applications. A primary goal for the V&V process will be to independently evaluate if this technology, when demonstrated in an industrial application, can be utilized to save a significant amount of the operating energy cost. The Seller will also independently evaluate the other benefits of the demonstrated technology that were previously identified by the developer, including those related to product quality, productivity, environmental impact, etc'. A test plan was provided by the technology developer and is included as an appendix to the summary report submitted by Environ (Appendix A). That plan required the V&V contractor to: (1) Establish the as-found furnace operating conditions; (2) Tune the furnace using currently available technology to establish baseline conditions; (3) Tune the furnace using the FIA technology; and (4) Document the improved performance that resulted from application of the FIA technology. It is important to note that the testing was not designed to be a competition or comparison between two different methodologies that could be used for furnace tuning. Rather, the intent was to quantify improvements in furnace performance that could not be achieved with existing technology. Therefore, the measure of success is improvement beyond the furnace efficiency obtainable using existing furnace optimization methods rather than improvement from the as found condition.

  12. Uranium-series comminution ages of continental sediments: Case study of a Pleistocene alluvial fan

    SciTech Connect (OSTI)

    Lee, Victoria E.; DePaolo, Donald J.; Christensen, John N.

    2010-04-30T23:59:59.000Z

    Obtaining quantitative information about the timescales associated with sediment transport, storage, and deposition in continental settings is important but challenging. The uranium-series comminution age method potentially provides a universal approach for direct dating of Quaternary detrital sediments, and can also provide estimates of the sediment transport and storage timescales. (The word"comminution" means"to reduce to powder," reflecting the start of the comminution age clock as reduction of lithic parent material below a critical grain size threshold of ~;;50 mu m.) To test the comminution age method as a means to date continental sediments, we applied the method to drill-core samples of the glacially-derived Kings River Fan alluvial deposits in central California. Sediments from the 45 m core have independently-estimated depositional ages of up to ~;;800 ka, based on paleomagnetism and correlations to nearby dated sediments. We characterized sequentially-leached core samples (both bulk sediment and grain size separates) for U, Nd, and Sr isotopes, grain size, surface texture, and mineralogy. In accordance with the comminution age model, where 234U is partially lost from small sediment grains due to alpha recoil, we found that (234U/238U) activity ratios generally decrease with age, depth, and specific surface area, with depletions of up to 9percent relative to radioactive equilibrium. The resulting calculated comminution ages are reasonable, although they do not exactly match age estimates from previous studies and also depend on assumptions about 234U loss rates. The results indicate that the method may be a significant addition to the sparse set of available tools for dating detrital continental sediments, following further refinement. Improving the accuracy of the method requires more advanced models or measurements for both the recoil loss factor fa and weathering effects. We discuss several independent methods for obtaining fa on individual samples that may be useful for future studies.

  13. High-Efficiency Low-Dross Combustion System for Aluminum Remelting Reverberatory Furnaces, Project Final Report, July 2005

    SciTech Connect (OSTI)

    Soupos, V.; Zelepouga, S.; Rue, D.

    2005-06-30T23:59:59.000Z

    GTI, and its commercial partners, have developed a high-efficiency low-dross combustion system that offers environmental and energy efficiency benefits at lower capital costs for the secondary aluminum industry users of reverberatory furnaces. The high-efficiency low-dross combustion system, also called Self-Optimizing Combustion System (SOCS), includes the flex-flame burner firing an air or oxygen-enriched natural gas flame, a non-contact optical flame sensor, and a combustion control system. The flex-flame burner, developed and tested by GTI, provides an innovative firing process in which the flame shape and velocity can be controlled. The burner produces a flame that keeps oxygen away from the bath surface by including an O2-enriched fuel-rich zone on the bottom and an air-fired fuel-lean zone on the top. Flame shape and velocity can be changed at constant firing rate or held constant over a range of firing conditions. A non-intrusive optical sensor is used to monitor the flame at all times. Information from the optical sensor(s) and thermocouples can be used to control the flow of natural gas, air, and oxygen to the burner as needed to maintain desired flame characteristics. This type of control is particularly important to keep oxygen away from the melt surface and thus reduce dross formation. This retrofit technology decreases fuel usage, increases furnace production rate, lowers gaseous emissions, and reduces dross formation. The highest priority research need listed under Recycled Materials is to turn aluminum process waste into usable materials which this technology accomplishes directly by decreasing dross formation and therefore increasing aluminum yield from a gas-fired reverberatory furnace. Emissions of NOx will be reduced to approximately 0.3 lb/ton of aluminum, in compliance with air emission regulations.

  14. Development and installation of an advanced beam guidance system on Viking`s 2.4 megawatt EB furnace

    SciTech Connect (OSTI)

    Motchenbacher, C.A.; Grosse, I.A. [Viking Metallurgical, Verdi, NV (United States)

    1994-12-31T23:59:59.000Z

    Viking Metallurgical is a manufacturer of titanium alloy and superalloy seamless ring forgings for the aerospace industry. For more than 20 years Viking has used electron beam cold hearth melting to recover titanium alloy scrap and to produce commercially pure titanium ingot for direct forging. In the 1970`s Viking pioneered electron beam cold hearth melting and in 1983 added a two-gun, 2.4 MW furnace. As part of Vikings efforts to improve process control we have commissioned and installed a new electron beam guidance system. The system is capable of generating virtually unlimited EB patterns resulting in improved melt control.

  15. Advanced In-Furnace NOx Control for Wall and Cyclone-Fired Boilers

    SciTech Connect (OSTI)

    Hamid Sarv

    2009-02-28T23:59:59.000Z

    A NO{sub x} minimization strategy for coal-burning wall-fired and cyclone boilers was developed that included deep air staging, innovative oxygen use, reburning, and advanced combustion control enhancements. Computational fluid dynamics modeling was applied to refine and select the best arrangements. Pilot-scale tests were conducted by firing an eastern high-volatile bituminous Pittsburgh No.8 coal at 5 million Btu/hr in a facility that was set up with two-level overfire air (OFA) ports. In the wall-fired mode, pulverized coal was burned in a geometrically scaled down version of the B and W DRB-4Z{reg_sign} low-NO{sub x} burner. At a fixed overall excess air level of 17%, NO{sub x} emissions with single-level OFA ports were around 0.32 lb/million Btu at 0.80 burner stoichiometry. Two-level OFA operation lowered the NO{sub x} levels to 0.25 lb/million Btu. Oxygen enrichment in the staged burner reduced the NO{sub x} values to 0.21 lb/million Btu. Oxygen enrichment plus reburning and 2-level OFA operation further curbed the NO{sub x} emissions to 0.19 lb/million Btu or by 41% from conventional air-staged operation with single-level OFA ports. In the cyclone firing arrangement, oxygen enrichment of the cyclone combustor enabled high-temperature and deeply staged operation while maintaining good slag tapping. Firing the Pittsburgh No.8 coal in the optimum arrangement generated 112 ppmv NO{sub x} (0.15 lb/million Btu) and 59 ppmv CO. The optimum emissions results represent 88% NO{sub x} reduction from the uncontrolled operation. Levelized costs for additional NO{sub x} removal by various in-furnace control methods in reference wall-fired or cyclone-fired units already equipped with single-level OFA ports were estimated and compared with figures for SCR systems achieving 0.1 lb NO{sub x}/10{sup 6} Btu. Two-level OFA ports could offer the most economical approach for moderate NO{sub x} control, especially for smaller units. O{sub 2} enrichment in combination with 2-level OFA was not cost effective for wall-firing. For cyclone units, NO{sub x} removal by two-level OFA plus O{sub 2} enrichment but without coal reburning was economically attractive.

  16. Deficiencies of Lighting Codes and Ordinances in Controlling Light Pollution from Parking Lot Lighting Installations

    E-Print Network [OSTI]

    Royal, Emily

    2012-05-31T23:59:59.000Z

    The purpose of this research was to identify the main causes of light pollution from parking lot electric lighting installations and highlight the deficiencies of lighting ordinances in preventing light pollution. Using an industry-accepted lighting...

  17. OpenGL Lighting 13. OpenGL Lighting

    E-Print Network [OSTI]

    McDowell, Perry

    OpenGL Lighting 13. OpenGL Lighting · Overview of Lighting in OpenGL In order for lighting to have an effect in OpenGL, two things are required: A light An object to be lit Lights can be set to any color determine how they reflect the light which hits them. The color(s) of an object is determined

  18. HIGH-TEMPERATURE HEAT EXCHANGER TESTING IN A PILOT-SCALE SLAGGING FURNACE SYSTEM

    SciTech Connect (OSTI)

    Michael E. Collings; Bruce A. Dockter; Douglas R. Hajicek; Ann K. Henderson; John P. Hurley; Patty L. Kleven; Greg F. Weber

    1999-12-01T23:59:59.000Z

    The University of North Dakota Energy & Environmental Research Center (EERC), in partnership with United Technologies Research Center (UTRC) under a U.S. Department of Energy (DOE) contract, has designed, constructed, and operated a 3.0-million Btu/hr (3.2 x 10{sup 6} kJ/hr) slagging furnace system (SFS). Successful operation has demonstrated that the SFS meets design objectives and is well suited for testing very high-temperature heat exchanger concepts. Test results have shown that a high-temperature radiant air heater (RAH) panel designed and constructed by UTRC and used in the SFS can produce a 2000 F (1094 C) process air stream. To support the pilot-scale work, the EERC has also constructed laboratory- and bench-scale equipment which was used to determine the corrosion resistance of refractory and structural materials and develop methods to improve corrosion resistance. DOE projects that from 1995 to 2015, worldwide use of electricity will double to approach 20 trillion kilowatt hours. This growth comes during a time of concern over global warming, thought by many policy makers to be caused primarily by increases from coal-fired boilers in carbon dioxide (CO{sub 2}) emissions through the use of fossil fuels. Assuming limits on CO{sub 2} emissions from coal-fired boilers are imposed in the future, the most economical CO{sub 2} mitigation option may be efficiency improvements. Unless efficiency improvements are made in coal-fired power plants, utilities may be forced to turn to more expensive fuels or buy CO{sub 2} credits. One way to improve the efficiency of a coal-fired power plant is to use a combined cycle involving a typical steam cycle along with an indirectly fired turbine cycle using very high-temperature but low-pressure air as the working fluid. At the heart of an indirectly fired turbine combined-cycle power system are very high-temperature heat exchangers that can produce clean air at up to 2600 F (1427 C) and 250 psi (17 bar) to turn an aeroderivative turbine. The overall system design can be very similar to that of a typical pulverized coal-fired boiler system, except that ceramics and alloys are used to carry the very high-temperature air rather than steam. This design makes the combined-cycle system especially suitable as a boiler-repowering technology. With the use of a gas-fired duct heater, efficiencies of 55% can be achieved, leading to reductions in CO{sub 2} emissions of 40% as compared to today's coal-fired systems. On the basis of work completed to date, the high-temperature advanced furnace (HITAF) concept appears to offer a higher-efficiency technology option for coal-fired power generation systems than conventional pulverized coal firing. Concept analyses have demonstrated the ability to achieve program objectives for emissions (10% of New Source Performance Standards, i.e., 0.003 lb/MMBtu of particulate), efficiency (47%-55%), and cost of electricity (10%-25% below today's cost). Higher-efficiency technology options for new plants as well as repowering are important to the power generation industry in order to conserve valuable fossil fuel resources, reduce the quantity of pollutants (air and water) and solid wastes generated per MW, and reduce the cost of power production in a deregulated industry. Possibly more important than their potential application in a new high-temperature power system, the RAH panel and convective air heater tube bank are potential retrofit technology options for existing coal-fired boilers to improve plant efficiencies. Therefore, further development of these process air-based high-temperature heat exchangers and their potential for commercial application is directly applicable to the development of enabling technologies in support of the Vision 21 program objectives. The objective of the work documented in this report was to improve the performance of the UTRC high-temperature heat exchanger, demonstrate the fuel flexibility of the slagging combustor, and test methods for reducing corrosion of brick and castable refractory in such combustion environments. Specif

  19. Adaptive Street Lighting Controls

    Broader source: Energy.gov [DOE]

    This two-part DOE Municipal Solid-State Street Lighting Consortium webinar focused on LED street lighting equipped with adaptive control components. In Part I, presenters Amy Olay of the City of...

  20. Sandia National Laboratories: Lighting

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lighting Solid-State Lighting Science EFRC On November 11, 2010, in Welcome History of Incandescence History of LEDs Grand Challenges Our EFRC SSLS-EFRC Contacts News Publications...