Powered by Deep Web Technologies
Note: This page contains sample records for the topic "lighting fossil fuels" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Fossil fuels -- future fuels  

Science Conference Proceedings (OSTI)

Fossil fuels -- coal, oil, and natural gas -- built America`s historic economic strength. Today, coal supplies more than 55% of the electricity, oil more than 97% of the transportation needs, and natural gas 24% of the primary energy used in the US. Even taking into account increased use of renewable fuels and vastly improved powerplant efficiencies, 90% of national energy needs will still be met by fossil fuels in 2020. If advanced technologies that boost efficiency and environmental performance can be successfully developed and deployed, the US can continue to depend upon its rich resources of fossil fuels.

NONE

1998-03-01T23:59:59.000Z

2

Fossil Fuels News  

Science Conference Proceedings (OSTI)

NIST Home > Fossil Fuels News. Fossil Fuels News. (showing 1 - 5 of 5). In Natural Gas Pipelines, NIST Goes with the Flow ...

2010-10-26T23:59:59.000Z

3

Crop production without fossil fuel.  

E-Print Network (OSTI)

??With diminishing fossil fuel reserves and concerns about global warming, the agricultural sector needs to reduce its use of fossil fuels. The objective of this… (more)

Ahlgren, Serina

2009-01-01T23:59:59.000Z

4

World Fossil Fuel Economics - TMS  

Science Conference Proceedings (OSTI)

Jan 1, 1971 ... World Fossil Fuel Economics ... in world energy demand, particularly in the U. S. and Europe; the consumption patterns and cost patterns of oil, ...

5

Fossil-Fuel CO2 Emissions - Niue  

NLE Websites -- All DOE Office Websites (Extended Search)

Fossil-Fuel CO2 Emissions Regional Oceania Niue Graphics Fossil-Fuel CO2 Emissions from Niue Data graphic Data Total Fossil-Fuel CO2 Emissions from Niue image Per Capita...

6

Global Fossil Fuel Carbon Emissions - Graphics  

NLE Websites -- All DOE Office Websites (Extended Search)

Fossil-Fuel CO2 Emissions Global Graphics Global Fossil-Fuel Carbon Emissions - Graphics Carbon Emission Estimates image image Global Per Capita Carbon Emission Estimates...

7

Global Fossil Fuel Carbon Emissions - Graphics  

NLE Websites -- All DOE Office Websites (Extended Search)

Fossil-Fuel CO2 Emissions Global Graphics Global Fossil-Fuel Carbon Emissions - Graphics Data graphic Data (ASCII, Fixed Format) Data graphic Data (ASCII, Comma-delimited)...

8

Fossil fuel furnace reactor  

DOE Patents (OSTI)

A fossil fuel furnace reactor is provided for simulating a continuous processing plant with a batch reactor. An internal reaction vessel contains a batch of shale oil, with the vessel having a relatively thin wall thickness for a heat transfer rate effective to simulate a process temperature history in the selected continuous processing plant. A heater jacket is disposed about the reactor vessel and defines a number of independent controllable temperature zones axially spaced along the reaction vessel. Each temperature zone can be energized to simulate a time-temperature history of process material through the continuous plant. A pressure vessel contains both the heater jacket and the reaction vessel at an operating pressure functionally selected to simulate the continuous processing plant. The process yield from the oil shale may be used as feedback information to software simulating operation of the continuous plant to provide operating parameters, i.e., temperature profiles, ambient atmosphere, operating pressure, material feed rates, etc., for simulation in the batch reactor.

Parkinson, William J. (Los Alamos, NM)

1987-01-01T23:59:59.000Z

9

fossil fuels | OpenEI  

Open Energy Info (EERE)

fossil fuels fossil fuels Dataset Summary Description Energy intensity data and documentation published by the U.S. DOE's office of Energy Efficiency and Renewable Energy (EERE). Energy intensity is defined as: amount of energy used in producing a given level of output or activity; expressed as energy per unit of output. This is the energy intensity of the the electricity sector, which is an energy consuming sector that generates electricity. Data are organized to separate electricity-only generators from combined heat and power (CHP) generators. Data is available for the period 1949 - 2004. Source EERE Date Released May 31st, 2006 (8 years ago) Date Updated Unknown Keywords Electricity Energy Consumption energy intensity fossil fuels renewable energy Data application/vnd.ms-excel icon electricity_indicators.xls (xls, 2.1 MiB)

10

Global Fossil-Fuel CO2 Emissions  

NLE Websites -- All DOE Office Websites (Extended Search)

metric tonnes of carbon have been released to the atmosphere from the consumption of fossil fuels and cement production. Half of these fossil-fuel CO2 emissions have occurred...

11

Liquid fossil fuel technology  

Science Conference Proceedings (OSTI)

Progress reports are presented under the following headings: (1) extraction (technology assessment, oil research, gas research); (2) liquid processing (characterization, thermodynamics, processing technology); (3) utilization (energy conservation); and (4) project integration and technology transfer. BETC publications are also listed. Some of the highlights for this period are: the Bartlesville Energy Technology Center was converted into NIPER, the National Institute for Petroleum and Energy Research on October 1, 1983; modelling of enthalpies, heat capacities and volumes of aqueous surfactant solutions began using a mass action model; a series of experiments were run on upgrading by hydrogenation SRC-II coal liquid at different degrees of severity and the products have been analyzed; heavy crude oil extracts were separated into fraction with high performance liquid chromatography by Lawrence Berkeley Laboratory and the mass spectra and electron spin resonance were determin ed; and particulates from exhaust gases of diesel engines using fire fuel types are being collected and will be analyzed by chemical methods and results will be compared with those obtained by biological assay. (ATT)

Not Available

1983-01-01T23:59:59.000Z

12

Definition: Fossil fuels | Open Energy Information  

Open Energy Info (EERE)

Definition Definition Edit with form History Facebook icon Twitter icon Ā» Definition: Fossil fuels Jump to: navigation, search Dictionary.png Fossil fuels Fuels formed in the Earth's crust over millions of years from decomposed organic matter. Common fossil fuels include petroleum, coal, and natural gas.[1][2] View on Wikipedia Wikipedia Definition Fossil fuels are fuels formed by natural processes such as anaerobic decomposition of buried dead organisms. The age of the organisms and their resulting fossil fuels is typically millions of years, and sometimes exceeds 650 million years. Fossil fuels contain high percentages of carbon and include coal, petroleum, and natural gas. They range from volatile materials with low carbon:hydrogen ratios like methane, to liquid petroleum

13

HS_FossilFuels_Studyguide.indd  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Fossil Fuels Fossil Fuels Fossil Energy Study Guide: Fossil Fuels C ontrary to what many people believe, fossil fuels are not the remains of dead dinosaurs. In fact, most of the fossil fuels found today were formed millions of years before the fi rst dinosaurs. Fossil fuels, however, were once alive. Th ey were formed from prehistoric plants and animals that lived hundreds of millions of years ago. Th ink about what the Earth must have looked like 300 million years or so ago. Th e land masses we live on today were just forming. Th ere were swamps and bogs everywhere. Th e climate was warmer. Trees and plants grew everywhere. Strange looking animals walked on the land, and just as weird looking fi sh swam in the rivers and seas. Tiny one-celled organisms called protoplankton fl

14

No Fossils in This Fuel  

NLE Websites -- All DOE Office Websites (Extended Search)

Plan for Environmental Teaching Plan for Environmental Teaching GM Environmental Science Club No Fossils in This Fuel Your PlanET Sixth through Eighth Grades (Can be easily adapted to any elementary/middle school level) Ingredients: Yeast, sugar ... what are you making? Sweet rolls? Not in Science Class! You're blending these ingredients to make an innovative form of fuel! That's right ... when these two simple ingredients are mixed, the yeast ļ£§ a simple, living organism ļ£§ breaks the sugar down into ethyl alcohol, or ethanol, and carbon dioxide. While you won't be burning the fuel to prove its usefulness, you can share with your students how ethanol is being used right now to power some of today's vehicles! Students will be able to experiment with the activity, and they will see how the fermentation that occurs can blow up a

15

No Fossil Fuel - Kingston | Open Energy Information  

Open Energy Info (EERE)

No Fossil Fuel - Kingston No Fossil Fuel - Kingston Jump to: navigation, search Name No Fossil Fuel - Kingston Facility No Fossil Fuel - Kingston Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner No Fossil Fuel LLC Developer No Fossil Fuel LLC Energy Purchaser Net-metered Location Kingston MA Coordinates 41.97388106Ā°, -70.72577477Ā° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.97388106,"lon":-70.72577477,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

16

India Fossil-Fuel CO2 Emissions  

NLE Websites -- All DOE Office Websites (Extended Search)

India India India Fossil-Fuel CO2 Emissions Graph graphic Graphics Data graphic Data Trends India's 2008 total fossil-fuel CO2 emissions rose 8.1% over the 2007 level to 475 million metric tons of carbon. From 1950 to 2008, India experienced dramatic growth in fossil-fuel CO2 emissions averaging 5.7% per year and becoming the world's third largest fossil-fuel CO2-emitting country. Indian total emissions from fossil-fuel consumption and cement production have more than doubled since 1994. Fossil-fuel emissions in India continue to result largely from coal burning with India being the world's third largest producer of coal. Coal contributed 87% of the emissions in 1950 and 71% in 2008; at the same time, the oil fraction increased from 11% to 20%. Indian emissions data reveal little impact from the oil price increases that

17

Disclosure of Permitted Communication Concerning Fossil Fuel...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Disclosure of Permitted Communication Concerning Fossil Fuel Energy Consumption Reduction for New Construction and Major Renovations of Federal Buildings -- Docket No....

18

Fossil-Fuel CO2 Emissions  

NLE Websites -- All DOE Office Websites (Extended Search)

Fossil-Fuel CO2 Emissions Global, Regional, and National Annual Time Series (1751-2010) Latest Published Global Estimates (1751-2010) Preliminary 2011 Global & National Estimates...

19

OpenEI Community - fossil fuels  

Open Energy Info (EERE)

communityblogfour-new-publications-help-advance-renewable-energy-developmentcomments energy scenarios fossil fuels OECD OpenEI policy Renewable Energy Tue, 16 Jul 2013...

20

Fossil Fuels Study Guide - High School | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Fuels Study Guide - High School Fossil Fuels Study Guide - High School Fossil Fuels Study Guide - High School More Documents & Publications Coal Study Guide for Elementary School...

Note: This page contains sample records for the topic "lighting fossil fuels" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Hybrid solar-fossil fuel power generation  

E-Print Network (OSTI)

In this thesis, a literature review of hybrid solar-fossil fuel power generation is first given with an emphasis on system integration and evaluation. Hybrid systems are defined as those which use solar energy and fuel ...

Sheu, Elysia J. (Elysia Ja-Zeng)

2012-01-01T23:59:59.000Z

22

FE annual Report Bioprocessing of Fossil Fuels  

E-Print Network (OSTI)

FE annual Report July 2004 Bioprocessing of Fossil Fuels Abhijeet Borole, Life Sciences Division The overall objective of this research program is to develop novel technologies for processing fossil fuels energy-efficient. Processes based on oxidative as well as reductive reactions are being investigated

23

Fossil-Fuel CO2 Emissions - American Samoa  

NLE Websites -- All DOE Office Websites (Extended Search)

Fossil-Fuel CO2 Emissions Regional Oceania American Samoa Graphics Fossil-Fuel CO2 Emissions from American Samoa Data graphic Data Total Fossil-Fuel CO2 Emissions from...

24

Fossil-Fuel CO2 Emissions - Marshall Islands  

NLE Websites -- All DOE Office Websites (Extended Search)

Fossil-Fuel CO2 Emissions Regional Oceania Marshall Islands Graphics Fossil-Fuel CO2 Emissions from the Marshall Islands Data graphic Data Fossil-Fuel CO2 Emissions from...

25

Global Fossil-Fuel CO2 Emissions  

NLE Websites -- All DOE Office Websites (Extended Search)

Data (ASCII, Fixed Format) Data graphic Data (ASCII, Fixed Format) Data graphic Data (ASCII, Comma-delimited) Trends Since 1751 approximately 337 billion metric tonnes of carbon have been released to the atmosphere from the consumption of fossil fuels and cement production. Half of these emissions have occurred since the mid 1970s. The 2007 global fossil-fuel carbon emission estimate, 8365 million metric tons of carbon, represents an all-time high and a 1.7% increase from 2006. Globally, liquid and solid fuels accounted for 76.3% of the emissions from fossil-fuel burning and cement production in 2007. Combustion of gas fuels (e.g., natural gas) accounted for 18.5% (1551 million metric tons of carbon) of the total emissions from fossil fuels in 2007 and reflects a gradually increasing global utilization of natural gas. Emissions from

26

High resolution fossil fuel combustion CO2 emission fluxes for...  

NLE Websites -- All DOE Office Websites (Extended Search)

High resolution fossil fuel combustion CO2 emission fluxes for the United States Title High resolution fossil fuel combustion CO2 emission fluxes for the United States Publication...

27

Office of Fossil Energy Fuel Cell Program 2012 Portfolio  

NLE Websites -- All DOE Office Websites (Extended Search)

O ce of Fossil Energy Fuel Cell Program Portfolio 2012 Solid State Energy Conversion Alliance Office of Fossil Energy Fuel Cell Program 2012 Portfolio October 2012 DOE...

28

fossil fuels | OpenEI Community  

Open Energy Info (EERE)

fossil fuels Home Graham7781's picture Submitted by Graham7781(1992) Super contributor 16 July, 2013 - 14:37 Four new publications help advance renewable energy development energy...

29

Chemical Characterization of Fossil Fuel Combustion Wastes  

Science Conference Proceedings (OSTI)

Fossil fuel combustion wastes differ considerably in total composition and in the key chemical characteristics of their extracts, making leachate composition difficult to predict. A new mechanistic approach, however, shows promise for more-accurate prediction.

1987-08-26T23:59:59.000Z

30

MSN YYYYMM Value Column Order Description Unit FFPRBUS Total Fossil Fuels Production Quadrillion Btu  

Gasoline and Diesel Fuel Update (EIA)

MSN YYYYMM Value Column Order Description Unit MSN YYYYMM Value Column Order Description Unit FFPRBUS Total Fossil Fuels Production Quadrillion Btu FFPRBUS Total Fossil Fuels Production Quadrillion Btu FFPRBUS Total Fossil Fuels Production Quadrillion Btu FFPRBUS Total Fossil Fuels Production Quadrillion Btu FFPRBUS Total Fossil Fuels Production Quadrillion Btu FFPRBUS Total Fossil Fuels Production Quadrillion Btu FFPRBUS Total Fossil Fuels Production Quadrillion Btu FFPRBUS Total Fossil Fuels Production Quadrillion Btu FFPRBUS Total Fossil Fuels Production Quadrillion Btu FFPRBUS Total Fossil Fuels Production Quadrillion Btu FFPRBUS Total Fossil Fuels Production Quadrillion Btu FFPRBUS Total Fossil Fuels Production Quadrillion Btu FFPRBUS Total Fossil Fuels Production Quadrillion Btu FFPRBUS Total Fossil Fuels Production Quadrillion Btu

31

Poland Fossil-Fuel CO2 Emissions  

NLE Websites -- All DOE Office Websites (Extended Search)

Europe Europe Ā» Poland Poland Fossil-Fuel CO2 Emissions Graph graphic Graphics Data graphic Data Trends Carbon dioxide emissions from Poland's use of fossil-fuels and cement production climbed at a remarkably steady rate of 3.9% per year from 1800 until 1980, when they dropped abruptly (11.7%). Fossil-fuel CO2 emissions crept back up throughout the 1980s peaking in 1987 at 127 million metric tons of carbon. Since the 1987 high, CO2 emissions have plummeted 32% to early 1970s levels while per capita emissions have dropped to late 1960s levels. Poland is the world's ninth largest producer of coal and emissions are predominantly from coal burning: 97% in 1950 and 68% in 2008. The drop following 1980 is apparent in rates of liquid fuel burning but releases from consumption of petroleum products have returned and surpassed 1980s

32

Japan Fossil-Fuel CO2 Emissions  

NLE Websites -- All DOE Office Websites (Extended Search)

Oceania Ā» Japan Oceania Ā» Japan Japan Fossil-Fuel CO2 Emissions Graph graphic Graphics Data graphic Data Trends The history of fossil-fuel CO2 emissions from Japan is remarkable for the abrupt change that occurred in 1973. With postwar growth at 9.8% per year from 1950 to 1973, total emissions were virtually constant from 1974-1987. From 1987-96, emissions grew 25.3% reaching 329 million metric tons of carbon. Growth during this period was characterized by a return to mid-1970s consumption levels for liquid petroleum products and increased contributions from coal and natural gas use. Since 1996, Japan's fossil-fuel CO2 emissions have vacilated and now total 329 million metric tons of carbon in 2008. Based on United Nations energy trade data for 2008, Japan is the world's largest importer of coal (184 million metric tons) and

33

Renewable hydrogen production for fossil fuel processing  

DOE Green Energy (OSTI)

The objective of this mission-oriented research program is the production of renewable hydrogen for fossil fuel processing. This program will build upon promising results that have been obtained in the Chemical Technology Division of Oak Ridge National Laboratory on the utilization of intact microalgae for photosynthetic water splitting. In this process, specially adapted algae are used to perform the light-activated cleavage of water into its elemental constituents, molecular hydrogen and oxygen. The great potential of hydrogen production by microalgal water splitting is predicated on quantitative measurement of their hydrogen-producing capability. These are: (1) the photosynthetic unit size of hydrogen production; (2) the turnover time of photosynthetic hydrogen production; (3) thermodynamic efficiencies of conversion of light energy into the Gibbs free energy of molecular hydrogen; (4) photosynthetic hydrogen production from sea water using marine algae; (5) the original development of an evacuated photobiological reactor for real-world engineering applications; (6) the potential for using modern methods of molecular biology and genetic engineering to maximize hydrogen production. The significance of each of these points in the context of a practical system for hydrogen production is discussed. This program will be enhanced by collaborative research between Oak Ridge National Laboratory and senior faculty members at Duke University, the University of Chicago, and Iowa State University. The special contribution that these organizations and faculty members will make is access to strains and mutants of unicellular algae that will potentially have useful properties for hydrogen production by microalgal water splitting.

Greenbaum, E.

1994-09-01T23:59:59.000Z

34

Simulation Analyses in Support of DOE’s Fossil Fuel Rule for Single Component Equipment and Lighting Replacements  

SciTech Connect

At the request of DOE’s Federal Energy Management Program (FEMP), Pacific Northwest National Laboratory (PNNL) conducted a series of building energy simulations using a large office model to investigate the potential savings that could be accrued from a typical chiller, boiler, or lighting replacement in a Federal office building.

Halverson, Mark A.; Wang, Weimin

2013-10-16T23:59:59.000Z

35

Thermal dissolution of solid fossil fuels  

Science Conference Proceedings (OSTI)

The use of oil shales and coals in the processes of thermal dissolution is considered. It is shown that thermal dissolution is a mode of liquefaction of solid fossil fuels and can be used both independently and in combination with liquefaction of coals and processing of heavy petroleum residues.

E.G. Gorlov [Institute for Fossil Fuels, Moscow (Russian Federation)

2007-10-15T23:59:59.000Z

36

High resolution fossil fuel combustion CO2 emission fluxes for the United States  

E-Print Network (OSTI)

interannual variations in fossil fuel emissions. J. Geophys.Treat CO 2 from fossil fuel burning: global distribution ofdioxide emissions from fossil fuel consumption and cement

Gurney, Kevin R.

2010-01-01T23:59:59.000Z

37

Fossil-Fuel CO2 Emissions from Africa  

NLE Websites -- All DOE Office Websites (Extended Search)

Africa Fossil-Fuel CO2 Emissions from Africa Graph graphic Graphics Data graphic Data What countries constitute Africa? Map of Africa Trends Africa's fossil-fuel CO2 emissions are...

38

Sales of Fossil Fuels Produced from Federal and Indian Lands...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Sales of Fossil Fuels Produced from Federal and Indian Lands, FY 2003 through FY 2011 Sales of Fossil Fuels Produced from Federal and Indian Lands, FY 2003 through FY 2011 This...

39

Chapter 2. Consumption of Fossil Fuels - U.S. Energy ...  

U.S. Energy Information Administration (EIA)

48 U.S. Energy Information Administration/Electric Power Monthly June 2012 Chapter 2. Consumption of Fossil Fuels

40

Fossil Fuel Prices to Electric Utilities - U.S. Energy ...  

U.S. Energy Information Administration (EIA)

Fossil Fuel Prices to Electric Utilities. Sources: History: EIA; Projections: Short-Term Energy Outlook, July 2000.

Note: This page contains sample records for the topic "lighting fossil fuels" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Fossil Energy-Developed Fuel Cell Technology Being Adapted by...  

NLE Websites -- All DOE Office Websites (Extended Search)

31, 2013 Fossil Energy-Developed Fuel Cell Technology Being Adapted by Navy for Advanced Unmanned Undersea Vehicles Solid Oxide Fuel Cell Technology Supported by Research Funding...

42

Production of CO2 from Fossil Fuel Burning by Fuel Type, 1860...  

NLE Websites -- All DOE Office Websites (Extended Search)

Fossil Fuel CO2 Emissions Historical Global Estimates Production of CO2 from Fossil Fuel Burning by Fuel Type, 1860-1982 (NDP-006) DOI: 10.3334CDIACffe.ndp006 image Data image...

43

Fossil-Fuel CO2 Emissions from Oceania  

NLE Websites -- All DOE Office Websites (Extended Search)

Oceania Fossil-Fuel CO2 Emissions from Oceania Graph graphic Graphics Data graphic Data What countries constitute Oceania? Oceania map Trends Oceania consists of approximately...

44

Fossil-Fuel CO2 Emissions from North America  

NLE Websites -- All DOE Office Websites (Extended Search)

North America Fossil-Fuel CO2 Emissions from North America Graph graphic Graphics Data graphic Data What countries constitute North America? North America map Trends North America,...

45

Chapter 4. Receipts and Cost of Fossil Fuels  

U.S. Energy Information Administration (EIA)

74 U.S. Energy Information Administration/Electric Power Monthly June 2012 Chapter 4. Receipts and Cost of Fossil Fuels

46

Chapter 3. Fossil-Fuel Stocks for Electricity Generation  

U.S. Energy Information Administration (EIA)

U.S. Energy Information Administration/Electric Power Monthly June 2012 69 Chapter 3. Fossil-Fuel Stocks for Electricity Generation

47

April 2013 Most Viewed Documents for Fossil Fuels | OSTI, US...  

Office of Scientific and Technical Information (OSTI)

Viewed Documents for Fossil Fuels EXPERIMENTAL AND THEORETICAL DETERMINATION OF HEAVY OIL VISCOSITY UNDER RESERVOIR CONDITIONS Dr. Jorge Gabitto; Maria Barrufet (2003) 208 Fluid...

48

Brazil-NETL Advanced Fossil Fuels Partnerships | Open Energy...  

Open Energy Info (EERE)

Login | Sign Up Search Page Edit with form History Facebook icon Twitter icon Brazil-NETL Advanced Fossil Fuels Partnerships Jump to: navigation, search Logo: Brazil-NETL...

49

Reference Materials and Standards for Fossil Fuels, Electric ...  

Science Conference Proceedings (OSTI)

... of the energy consumed by the US Along with ... from the specification of fossil fuel raw materials ... relevant reference materials to support the emerging ...

2012-10-01T23:59:59.000Z

50

SECA Core Technology Fossil Energy Fuel Cell Program  

NLE Websites -- All DOE Office Websites (Extended Search)

June 3, 2003 June 3, 2003 National Energy Technology Laboratory Office of Fossil Energy SECA Core Technology IAPG, GPPD-DWC 4/30/03 SECA CORE TECHNOLOGY PROGRAM W. Nernst "Electrical Glow-Light" U.S. Patent 623,811 April 25, 1899 C C IAPG, GPPD-DWC 4/30/03 SECA SECA Program Structure Program Management Research Topics Needs Industry Integration Teams Technology Transfer Small Business University National Lab Industry Power Electronics Modeling & Simulation Materials Controls & Diagnostics Fuel Processing Fuel Processing Manufacturing Modeling & Simulation Power Electronics Controls & Diagnostics Manufacturing Materials Core Technology Program Fuel Cell Core Technology Project Management Industry Input IAPG, GPPD-DWC 4/30/03 Core Technology Program Powering All Ships Siemens Westinghouse

51

Three essays on biofuel's and fossil fuel's stochastic prices.  

E-Print Network (OSTI)

??The dissertation consists of three essays on biofuel's and fossil fuel's stochastic prices focusing on the U.S. corn-based fuel-ethanol market. The research objectives include investigating… (more)

Zhang, Zibin

2009-01-01T23:59:59.000Z

52

Boiler Water Deposition Model for Fossil-Fueled Power Plants  

Science Conference Proceedings (OSTI)

The feasibility and initial development of an integrated, deterministic model of the various processes governing deposition in fossil boilers was assessed in the Electric Power Research Institute (EPRI) reports Boiler Water Deposition Model for Fossil Fuel Plants, Part 1: Feasibility Study (1004931), published in 2004; Boiler Water Deposition Model for Fossil Fuel Plants, Part 2: Initial Deterministic Model Development and Deposit Characterization (1012207) published in 2007; and Boiler Water Deposition ...

2009-03-12T23:59:59.000Z

53

SECA Fuel Processing Fossil Energy Fuel Cell Program  

NLE Websites -- All DOE Office Websites (Extended Search)

June 3, 2003 SECA Fuel Processing National Energy Technology Laboratory Office of Fossil Energy Strategic Center for Natural Gas REFORMING * Focus - Heavy hydrocarbons - Minimal use of water - Simplified system - Reduced cost - Sulfur tolerance with conversion to hydrogen sulfide * Challenges - Carbon deposition - Sulfur poisoning - Thermal gradients - Vaporization * Approaches - Metal oxide catalysts - Nobal metal cPox or ATR - Decorated nickel surface - Complete system interactions Tubular cPox Reformer Strategic Center for Natural Gas NETL Fuel Processing Budget Summary Proj. # PROJECT PERSONNEL KEY TASKS COST EST. 1 Diesel Reforming Kinetic Fundamentals *Shekhawat Gardner Berry 1.) Bring Reforming Lab Online 2.) Conduct Diesel Compound Interaction Study 3.) Level 1

54

People's Republic of China Fossil-Fuel CO2 Emissions  

NLE Websites -- All DOE Office Websites (Extended Search)

Asia Asia Ā» People's Republic of China People's Republic of China Fossil-Fuel CO2 Emissions Graph graphic Graphics Data graphic Data Trends According to reported energy statistics, coal production and use in China has increased ten-fold since the 1960s. As a result, Chinese fossil-fuel CO2 emissions have more than doubled 2000 alone. At 1.92 billion metric tons of carbon in 2008, the People's Republic of China is the world's largest emitter of CO2 due to fossil-fuel use and cement production. Even with the reported decline in Chinese emissions from 1997 to 1999, China's industrial emissions of CO2 have grown phenomenally since 1950, when China stood tenth among nations based on annual fossil-fuel CO2 emissions. From 1970 to 1997, China's fossil-fuel CO2 emissions grew at an annual rate of

55

Production of CO{sub 2} from fossil fuel burning by fuel type, 1860-1982  

SciTech Connect

Carbon dioxide emission calculations resulting from fossil fuel useage for the years 1860-1982 are presented.

Rotty, R.M.; Marland, G. [Oak Ridge Associated Universities, TN (United States). Institute for Energy Analysis

1984-09-01T23:59:59.000Z

56

Improving the Carbon Dioxide Emission Estimates from the Combustion of Fossil Fuels in California  

E-Print Network (OSTI)

Can the envisaged reductions of fossil fuel CO2 emissions beGoulden. 2008. Where do Fossil Fuel Carbon Dioxide Emissionsof season-averaged fossil fuel CO 2 emissions (Riley et

de la Rue du Can, Stephane

2010-01-01T23:59:59.000Z

57

Large historical changes of fossil-fuel black carbon aerosols  

SciTech Connect

Anthropogenic emissions of fine black carbon (BC) particles, the principal light-absorbing atmospheric aerosol, have varied during the past century in response to changes of fossil-fuel utilization, technology developments, and emission controls. We estimate historical trends of fossil-fuel BC emissions in six regions that represent about two-thirds of present day emissions and extrapolate these to global emissions from 1875 onward. Qualitative features in these trends show rapid increase in the latter part of the 1800s, the leveling off in the first half of the 1900s, and the re-acceleration in the past 50 years as China and India developed. We find that historical changes of fuel utilization have caused large temporal change in aerosol absorption, and thus substantial change of aerosol single scatter albedo in some regions, which suggests that BC may have contributed to global temperature changes in the past century. This implies that the BC history needs to be represented realistically in climate change assessments.

Novakov, T.; Ramanathan, V.; Hansen, J.E.; Kirchstetter, T.W.; Sato, M.; Sinton, J.E.; Sathaye, J.A.

2002-09-26T23:59:59.000Z

58

Sensors and Controls Research Combustion of fossil fuels currently  

E-Print Network (OSTI)

, aggressive environments and high temperatures. Sponsor: Department of Energy Fossil Energy Program. FeaturesSensors and Controls Research Combustion of fossil fuels currently generates most of the nation's energy, and 2008 forecasts by the Energy Information Agency predict this will continue to be the case

59

Kyoto-Related Fossil-Fuel CO2 Emission Totals  

NLE Websites -- All DOE Office Websites (Extended Search)

Kyoto-Related Emissions Kyoto-Related Emissions Kyoto-Related Fossil-Fuel CO2 Emission Totals DOI: 10.3334/CDIAC/ffe.007_V2012 world map Kyoto-Related Fossil-Fuel CO2 Emission Totals Year Annex B Countries Non Annex B Countries Fossil-Fuel CO2 Emissions (million metric tonnes C) Bunkers (million metric tonnes C) Fossil-Fuel CO2 Emissions (million metric tonnes C) Bunkers (million metric tonnes C) 1990 3894 90 2111 46 1991 3801 94 2299 38 1992 3750 109 2263 44 1993 3685 107 2339 48 1994 3656 107 2469 54 1995 3681 110 2570 59 1996 3704 111 2657 72 1997 3727 114 2737 74 1998 3746 118 2698 82 1999 3678 124 2718 90 2000 3725 130 2821 90 2001 3781 120 2936 92 2002 3764 128 3013 94 2003 3853 123 3347 98 2004 3888 135 3683 107 2005 3933 142 3926 106

60

North Korea Fossil-Fuel CO2 Emissions  

NLE Websites -- All DOE Office Websites (Extended Search)

Far East Ā» North Korea Far East Ā» North Korea North Korea Fossil-Fuel CO2 Emissions Graph graphic Graphics Data graphic Data Trends The total fossil-fuel CO2 emissions for North Korea, or the Democratic People's Republic of Korea, averaged 11.2% growth from 1950-93, reaching 71 million metric tons of carbon. Since 1993 according to published UN energy statistics, fossil-fuel CO2 emissions have declined 70% to 21.4 million metric tons of carbon. As the world's 14th largest producer of coal, it is no surprise North Korea's fossil-fuel CO2 emissions record is dominated by emissions from coal burning. Coal consumption accounted for 93% of the 2008 CO2 emission total. With no natural gas usage, another 3.4% currently comes from liquid petroleum consumption, and the remainder is from cement

Note: This page contains sample records for the topic "lighting fossil fuels" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

South Korea Fossil-Fuel CO2 Emissions  

NLE Websites -- All DOE Office Websites (Extended Search)

Far East Ā» South Korea Far East Ā» South Korea South Korea Fossil-Fuel CO2 Emissions Graph graphic Graphics Data graphic Data Trends South Korea, or the Republic of Korea, is the world's tenth largest emitter of CO2 based on 2008 fossil-fuel consumption and cement production with 139 million metric tons of carbon. From 1946-1997 South Korea experienced phenomenal growth in fossil-fuel CO2 emissions with a growth rate that averaged 11.5%. Initial growth in emissions was due to coal consumption, which still accounts for 46.9% of South Korea's fossil-fuel CO2 emissions. Since the late 1960s oil consumption has been a major source of emissions. South Korea is the world's fifth largest importer of crude oil. Natural gas became a significant source of CO2 for the first time in 1987, as South

62

Fossil-Fuel CO2 Emissions by Region  

NLE Websites -- All DOE Office Websites (Extended Search)

Regional Fossil-Fuel CO2 Emissions by Region Map of the World Africa (1884-2008) Developing America (Central America, South America, and the Caribbean) (1884-2008) Centrally...

63

Production of fossil fuel from federal and Indian lands fell ...  

U.S. Energy Information Administration (EIA)

Sales of fossil fuels from production on federal and Indian lands in fiscal year (FY) 2012 dropped 4% from FY 2011, according to data from the Department of the ...

64

Optimization of fossil fuel sources: An exergy approach  

SciTech Connect

We performed linear programming for optimization of fossil fuel supply in 2000 in Turkey. For this, an exergy analysis is made because the second law of thermodynamics takes into account the quality of energy as well as quantity of energy. Our analyses showed that the interfuel substitution between different fossil fuels will lead to a best energy mix of the country. The total retail price of fossil fuels can be lowered to 11.349 billion US$ from 13.012 billion US$ by increasing the domestic production of oil, lignite, and hard coal and by decreasing imports. The remaining demand can be met by natural gas imports. In conclusion, our analysis showed that a reduction of 1.663 billion US$ in fossil fuel cost can be made possible by giving more emphasis on domestic production, particularly of oil, lignite and hard coal.

Camdali, U. [Development Bank of Turkey, Ankara (Turkey)

2007-02-15T23:59:59.000Z

65

Brazil-NETL Advanced Fossil Fuels Partnerships | Open Energy Information  

Open Energy Info (EERE)

Advanced Fossil Fuels Partnerships Advanced Fossil Fuels Partnerships (Redirected from Brazil-NETL Cooperation) Jump to: navigation, search Logo: Brazil-NETL Cooperation Name Brazil-NETL Cooperation Agency/Company /Organization National Energy Technology Laboratory Partner Brazil Sector Energy Topics Background analysis Website http://www.netl.doe.gov/techno Program Start 2007 Program End 2012 Country Brazil South America References NETL Technologies Programs[1] This article is a stub. You can help OpenEI by expanding it. Advanced Fossil Fuels Partnerships with Brazil ORD International Research Agreements Brazilian Coal Gasification and CCS MOUs References ā†‘ NETL Technologies Programs Retrieved from "http://en.openei.org/w/index.php?title=Brazil-NETL_Advanced_Fossil_Fuels_Partnerships&oldid=375248"

66

Fossil Fuel Emission Verification Modeling at LLNL  

SciTech Connect

We have an established project at LLNL to develop the tools needed to constrain fossil fuel carbon dioxide emissions using measurements of the carbon-14 isotope in atmospheric samples. In Figure 1 we show the fossil fuel plumes from Los Angeles and San Francisco for two different weather patterns. Obviously, a measurement made at any given location is going to depend on the weather leading up to the measurement. Thus, in order to determine the GHG emissions from some region using in situ measurements of those GHGs, we use state-of-the-art global and regional atmospheric chemistry-transport codes to simulate the plumes: the LLNL-IMPACT model (Rotman et al., 2004) and the WRFCHEM community code (http://www.wrf-model.org/index.php). Both codes can use observed (aka assimilated) meteorology in order to recreate the actual transport that occurred. The measured concentration of each tracer at a particular spatio-temporal location is a linear combination of the plumes from each region at that location (for non-reactive species). The challenge is to calculate the emission strengths for each region that fit the observed concentrations. In general this is difficult because there are errors in the measurements and modeling of the plumes. We solve this inversion problem using the strategy illustrated in Figure 2. The Bayesian Inference step combines the a priori estimates of the emissions, and their uncertainty, for each region with the results of the observations, and their uncertainty, and an ensemble of model predicted plumes for each region, and their uncertainty. The result is the mathematical best estimate of the emissions and their errors. In the case of non-linearities, or if we are using a statistical sampling technique such as a Markov Chain Monte Carlo technique, then the process is iterated until it converges (ie reaches stationarity). For the Bayesian inference we can use both a direct inversion capability, which is fast but requires assumptions of linearity and Gaussianity of errors, or one of several statistical sampling techniques, which are computationally slower but do not require either linearity or Gaussianity (Chow, et al., 2008; Delle Monache, et al., 2008). The emission regions we are using are based on the air-basins defined by the California Air Resources Board (CARB), see Figure 3. The only difference is that we have joined some of the smaller air basins together. The results of a test using 4 days of simulated observations using our ensemble retrieval system are shown in Figure 3 (right). The main source of the variation between the different model configurations arises from the uncertainty in the atmospheric boundary layer parameterization in the WRF model. We are currently developing a capability to constrain the boundary layer height in our carbon-14 work either by weighting the ensemble member results by the accuracy of their boundary layer height (using commercial aircraft observations), or as part of the retrieval process using an ensemble Kalman filter (EnKF) capability.

Cameron-Smith, P; Kosovic, B; Guilderson, T; Monache, L D; Bergmann, D

2009-08-06T23:59:59.000Z

67

US fossil fuel technologies for Thailand  

SciTech Connect

The US Department of Energy has been encouraging other countries to consider US coal and coal technologies in meeting their future energy needs. Thailand is one of three developing countries determined to be a potentially favorable market for such exports. This report briefly profiles Thailand with respect to population, employment, energy infrastructure and policies, as well as financial, economic, and trade issues. Thailand is shifting from a traditionally agrarian economy to one based more strongly on light manufacturing and will therefore require increased energy resources that are reliable and flexible in responding to anticipated growth. Thailand has extensive lignite deposits that could fuel a variety of coal-based technologies. Atmospheric fluidized-bed combustors could utilize this resource and still permit Thailand to meet emission standards for sulfur dioxide. This option also lends itself to small-scale applications suitable for private-sector power generation. Slagging combustors and coal-water mixtures also appear to have potential. Both new construction and refurbishment of existing plants are planned. 18 refs., 3 figs., 7 tabs.

Buehring, W.A.; Dials, G.E.; Gillette, J.L.; Szpunar, C.B.; Traczyk, P.A.

1990-10-01T23:59:59.000Z

68

Adaptable Sensor Packaging for High Temperature Fossil Fuel Energy System  

NLE Websites -- All DOE Office Websites (Extended Search)

Adaptable Sensor Packaging for High Adaptable Sensor Packaging for High Temperature Fossil Fuel Energy Systems Background The Advanced Research Sensors and Controls Program is leading the effort to develop sensing and control technologies and methods to achieve automated and optimized intelligent power systems. The program is led by the U.S. Department of Energy (DOE) Office of Fossil Energy National Energy Technology Laboratory (NETL) and is implemented through research and development agreements with other

69

Boiler Water Deposition Model for Fossil-Fueled Power Plants  

Science Conference Proceedings (OSTI)

The feasibility and initial development of an integrated, deterministic model of the various processes governing deposition in fossil boilers was assessed in the following Electric Power Research Institute (EPRI) reports: 1004931, Boiler Water Deposition Model: Part 1: Feasibility Study, published in 2004; 1012207, Boiler Water Deposition Model for Fossil Fuel Plants, Part 2: Initial Deterministic Model Development and Deposit Characterization, published in 2007; 1014128, Boiler Water Deposition Model fo...

2010-01-27T23:59:59.000Z

70

Table 3.7 Value of Fossil Fuel Imports, 1949-2011 (Billion Dollars)  

U.S. Energy Information Administration (EIA)

Table 3.7 Value of Fossil Fuel Imports, 1949-2011 (Billion Dollars) Year: Coal: Coal Coke: Natural Gas: Crude Oil 1: Petroleum ... Office of Fossil Energy.

71

Disclosure of Permitted Communication Concerning Fossil Fuel Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

Disclosure of Permitted Communication Concerning Fossil Fuel Energy Disclosure of Permitted Communication Concerning Fossil Fuel Energy Consumption Reduction for New Construction and Major Renovations of Federal Buildings -- Docket No. EERE-2010-BT-STD-0031; RIN 1904-AB96 Disclosure of Permitted Communication Concerning Fossil Fuel Energy Consumption Reduction for New Construction and Major Renovations of Federal Buildings -- Docket No. EERE-2010-BT-STD-0031; RIN 1904-AB96 This memo provides an overview of communications made to DOE staff on the subject of the rulemaking referenced above. The communications occurred at a meeting held on February 13, 2013. DOE 433 ex parte memo.pdf More Documents & Publications Disclosure of Permitted Communication Concerning Regional Standards Enforcement Framework Document -- Docket No. EERE-2011-BT-CE-0077

72

The dilemma of fossil fuel use and global climate change  

SciTech Connect

The use of fossil fuels and relationship to climate change is discussed. As the use of fossil fuels has grown, the problems of protecting the environment and human health and safety have also grown, providing a continuing challenge to technological and managerial innovation. Today that challenge is to control atmospheric emissions from combustion, particularly those emissions that cause acidic deposition, urban pollution, and increasing concentrations of greenhouse gases. Technology for reducing acidic deposition is available and needs only to be adopted, and the remedies for urban pollution are being developed and tested. How effective or expensive these will be remains to be determined. The control of emissions of the greenhouse gas, CO{sub 2}, seems possible only be reducing the total amounts of fossil fuels used worldwide, and by substituting efficient natural gas technologies for coal. Long before physical depletion forces the transition away from fossil fuels, it is at least plausible and even likely that the greenhouse effect will impose a show-stopping constraint. If such a transition were soon to be necessary, the costs would be very high because substitute energy sources are either limited or expensive or undesirable for other reasons. Furthermore, the costs would be unevenly felt and would be more oppressive for developing nations because they would be least able to pay and, on average, their use rates of fossil fuels are growing much faster than those of many industrialized countries. It is prudent, therefore, to try to manage the use of fossil fuels as if a greenhouse constraint is an important possibility.

Judkins, R.R.; Fulkerson, W. (Oak Ridge National Lab., TN (USA)); Sanghvi, M.K. (Amoco Corp., Chicago, IL (USA))

1991-01-01T23:59:59.000Z

73

Fossil Fuel Prices to Electric Utilities  

U.S. Energy Information Administration (EIA)

Natural gas for power generation is projected to yield its apparent average price advantage over residual fuel oil by the fourth quarter of this year.

74

New Optical Sensor Suite for Ultrahigh Temperature Fossil Fuel Application  

DOE Green Energy (OSTI)

Accomplishments of a program to develop and demonstrate photonic sensor technology for the instrumentation of advanced powerplants and solid oxide fuel cells are described. The goal of this project is the research and development of advanced, robust photonic sensors based on improved sapphire optical waveguides, and the identification and demonstration of applications of the new sensors in advanced fossil fuel power plants, where the new technology will contribute to improvements in process control and monitoring.

John Coggin; Tom Flynn; Jonas Ivasauskas; Daniel Kominsky; Carrie Kozikowski; Russell May; Michael Miller; Tony Peng; Gary Pickrell; Raymond Rumpf; Kelly Stinson-Bagby; Dan Thorsen; Rena Wilson

2007-12-31T23:59:59.000Z

75

Carbon Capture by Fossil Fuel Power Plants: An Economic Analysis  

Science Conference Proceedings (OSTI)

For fossil fuel power plants to be built in the future, carbon capture and storage (CCS) technologies offer the potential for significant reductions in carbon dioxide (CO2) emissions. We examine the break-even value for CCS adoptions, that ... Keywords: accounting, cost--benefit analysis, energy, energy policies, environment, government, natural resources, pollution

Özge ??legen; Stefan Reichelstein

2011-01-01T23:59:59.000Z

76

Changing Biomass, Fossil, and Nuclear Fuel Cycles for Sustainability  

SciTech Connect

The energy and chemical industries face two great sustainability challenges: the need to avoid climate change and the need to replace crude oil as the basis of our transport and chemical industries. These challenges can be met by changing and synergistically combining the fossil, biomass, and nuclear fuel cycles.

Forsberg, Charles W [ORNL

2007-01-01T23:59:59.000Z

77

Beef production options and requirements for fossil fuel  

SciTech Connect

A large percentage of the feed resources used in beef production cannot be used by man or most other animals. These noncompetitive feeds could be used in different ways to increase beef production, but fossil fuel consumption by the beef industry would not be greatly reduced.

Ward, G.M.; Knox, P.L.; Hobson, B.W.

1977-10-21T23:59:59.000Z

78

Disclosure of Permitted Communication Concerning Fossil Fuel...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Document -- Docket No. EERE-2011-BT-CE-0077 Record of Communication Concerning Ceiling Fan and Ceiling Fan Light Kit Framework Document-Docket No. EERE-2012-BT-STD-0045 Docket...

79

FY 2010 Annual Report Office of Fossil Energy Fuel Cell Program  

NLE Websites -- All DOE Office Websites (Extended Search)

FY 2010 Annual Report Office of Fossil Energy Fuel Cell Program I. IntroductIon 2 Office of Fossil Energy Fuel Cell Program FY 2010 Annual Report 3 FY 2010 Annual Report Office of...

80

Figure 3.1 Fossil Fuel Production Prices - U.S. Energy ...  

U.S. Energy Information Administration (EIA)

Figure 3.1 Fossil Fuel Production Prices Prices, 1949-2011 Fossil Fuel Composite Price,² Change From Previous Year, 1950-2011 68 U.S. Energy Information ...

Note: This page contains sample records for the topic "lighting fossil fuels" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Fossil fuel combined cycle power generation method  

SciTech Connect

A method for converting fuel energy to electricity includes the steps of converting a higher molecular weight gas into at least one mixed gas stream of lower average molecular weight including at least a first lower molecular weight gas and a second gas, the first and second gases being different gases, wherein the first lower molecular weight gas comprises H.sub.2 and the second gas comprises CO. The mixed gas is supplied to at least one turbine to produce electricity. The mixed gas stream is divided after the turbine into a first gas stream mainly comprising H.sub.2 and a second gas stream mainly comprising CO. The first and second gas streams are then electrochemically oxidized in separate fuel cells to produce electricity. A nuclear reactor can be used to supply at least a portion of the heat the required for the chemical conversion process.

Labinov, Solomon D. (Knoxville, TN); Armstrong, Timothy R. (Clinton, TN); Judkins, Roddie R. (Knoxville, TN)

2008-10-21T23:59:59.000Z

82

Italy (including San Marino) Fossil-Fuel CO2 Emissions  

NLE Websites -- All DOE Office Websites (Extended Search)

Western Europe Ā» Italy Western Europe Ā» Italy (including San Marino) Italy (including San Marino) Fossil-Fuel CO2 Emissions Graph graphic Graphics Data graphic Data Trends As occurred in many industrialized nations, CO2 emissions from Italy rose steeply since the late 1940's until the growth was abruptly terminated in 1974. Since 1974, emissions from liquid fuels have vacillated, dropping from 76% to 46% of a static but varying total. Significant increases in natural gas consumption have compensated for the drop in oil consumption. In 2008, 35.8% of Italy's fossil-fuel CO2 emissions were due to natural gas consumption. Coal usage grew steadily until 1985 when CO2 emissions from coal consumption reached 16 million metric tons of carbon. Not until 2004 did coal usage exceed 1985 levels and now accounts for 13.9% of Italy's

83

Fossil fuel decarbonization technology for mitigating global warming  

SciTech Connect

It has been understood that production of hydrogen from fossil and carbonaceous fuels with reduced CO{sub 2} emission to the atmosphere is key to the production of hydrogen-rich fuels for mitigating the CO{sub 2} greenhouse gas climate change problem. The conventional methods of hydrogen production from fossil fuels (coal, oil, gas and biomass) include steam reforming and water gas shift mainly of natural gas (SRM). In order to suppress CO{sub 2} emission from the steam reforming process, CO{sub 2} must be concentrated and sequestered either in or under the ocean or underground (in aquifers, or depleted oil or gas wells). Up to about 40% of the energy is lost in this process. An alternative process is the pyrolysis or the thermal decomposition of methane, natural gas (TDM) to hydrogen and carbon. The carbon can either be sequestered or sold on the market as a materials commodity or used as a fuel at a later date under less severe CO{sub 2} restraints. The energy sequestered in the carbon amounts to about 42% of the energy in the natural gas resource which is stored and not destroyed. A comparison is made between the well developed conventional SRM and the less developed TDM process including technological status, efficiency, carbon management and cost. The TDM process appears to have advantages over the well developed SRM process. It is much easier to sequester carbon as a stable solid than CO{sub 2} as a reactive gas or low temperature liquid. It is also possible to reduce cost by marketing the carbon as a filler or construction material. The potential benefits of the TDM process justifies its further efficient development. The hydrogen can be used as a transportation fuel or converted to methanol by reaction with CO{sub 2} from fossil fuel fired power plant stack gases, thus allowing reuse of the carbon in conventional IC automobile engines or in advanced fuel cell vehicles.

Steinberg, M.

1998-09-01T23:59:59.000Z

84

Russia Federation Fossil-Fuel CO2 Emissions  

NLE Websites -- All DOE Office Websites (Extended Search)

Centrally Planned Europe Centrally Planned Europe Ā» Russian Federation Russia Federation Fossil-Fuel CO2 Emissions Graph graphic Graphics Data graphic Data Trends Since 1992 total fossil-fuel CO2 emissions from the Russian Federation have dropped 23% to 466 million metric tons of carbon, still the fourth largest emitting country in the world and the largest emitter of the republics comprising the former USSR. Emissions from gas consumption still represent the largest fraction (49.1%) of Russia's emissions and only recently have returned to the 1992 level. Emissions from coal consumption have dropped 25.5% since 1992 and presently account for 26.6% of Russia's emissions. Russia has the largest population of any Eastern European country with a population of 141 million people. From a per capita standpoint, Russia's

85

Justification of Simulators for Fossil Fuel Power Plants  

Science Conference Proceedings (OSTI)

A cost benefit analysis of simulator use at fossil fuel power plants identifies benefits in four categories: availability savings, thermal performance savings, component life savings, and environmental compliance savings. The study shows that a 500 MW plant, over 15 years, can realize a total present value saving of over $24 million, easily justifying the purchase of a simulator that typically costs about $600,000.

1993-11-05T23:59:59.000Z

86

Decommissioning Process for Fossil-Fueled Power Plants  

Science Conference Proceedings (OSTI)

This report describes a staged process for the decommissioning and possible demolition of fossil-fueled power generating facilities. Drawn from experience with power and major industrial facilities, the report provides the owner/operator of a plant that is approaching the end of its useful life with an overview of the key elements necessary to successfully implement decommissioning. The process is applicable to full decommissioning, demolition, and closure; to partial scenarios (that is, partial dismantl...

2010-01-22T23:59:59.000Z

87

DOE Hydrogen and Fuel Cells Program: Fossil Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Efficiency and Renewable Energy Fossil Energy Nuclear Energy Science U.S. Department of Energy Search help Home > DOE Participants > Fossil Energy Printable Version Fossil...

88

Figure 3.8 Value of Fossil Fuel Exports - U.S. Energy ...  

U.S. Energy Information Administration (EIA)

Figure 3.8 Value of Fossil Fuel Exports Total, 1949-2011 By Fuel, 1949-2011 By Fuel, 2011 82 U.S. Energy Information Administration / Annual Energy Review 2011

89

Synthetic fossil fuel technologies: health problems and intersociety cooperation  

DOE Green Energy (OSTI)

The potential health impacts of synthetic fossil fuel products are considered mainly in terms of complex and potentially carcinogenic mixtures of polynuclear aromatic (PNA) compounds. These components of oils and tars present an especially perplexing range of problems to those concerned with health protection. The nature of these problems, such as multifactorial exposure, are discussed within a framework of current and future standards to regulate human exposure. Some activities of government agencies, national laboratories, and professional societies are described. A case can be made for pooling the resources of these groups to achieve better solutions for assessing the acceptability of the various technologies and safeguarding human health.

Gammage, R B; Turner, J E

1979-01-01T23:59:59.000Z

90

Fossil fuel-fired peak heating for geothermal greenhouses  

SciTech Connect

This report examines the capital and operating costs for fossil fuel-fired peak heating systems in geothermally (direct use) heated greenhouses. Issues covered include equipment capital costs, fuel requirements, maintenance and operating costs, system control and integration into conventional hot water greenhouse heating systems. Annual costs per square foot of greenhouse floor area are developed for three climates: Helena, MT; Klamath Falls, OR and San Bernardino, CA, for both boiler and individual unit heater peaking systems. In most applications, peaking systems sized for 60% of the peak load are able to satisfy over 95% of the annual heating requirements and cost less than $0.15 per square foot per year to operate. The propane-fired boiler system has the least cost of operation in all but Helena, MT climate.

Rafferty, K.

1996-12-01T23:59:59.000Z

91

Table 3.1 Fossil Fuel Production Prices, 1949-2011 (Dollars per ...  

U.S. Energy Information Administration (EIA)

Short-Term Energy Outlook › Annual ... excluding freight or shipping and insurance costs. ... 4 Derived by multiplying the price per Btu of each fossil fuel by the ...

92

June 2013 Most Viewed Documents for Fossil Fuels | OSTI, US Dept...  

Office of Scientific and Technical Information (OSTI)

Fossil Fuels Controlled low strength materials (CLSM), reported by ACI Committee 229 Rajendran, N. (1997) 78 EXPERIMENTAL AND THEORETICAL DETERMINATION OF HEAVY OIL VISCOSITY UNDER...

93

Japan is the second largest net importer of fossil fuels in ...  

U.S. Energy Information Administration (EIA)

Japan ranked as the second largest net importer of fossil fuels in the world in 2012, trailing only China. This follows the Fukushima nuclear disaster in 2011, after ...

94

Table 1.14 Sales of Fossil Fuels Produced on Federal and ...  

U.S. Energy Information Administration (EIA)

Table 1.14 Sales of Fossil Fuels Produced on Federal and American Indian Lands, Fiscal Years 2003-2011: Fiscal Year 7: Crude Oil and Lease Condensate

95

Table 11.6 Installed Nameplate Capacity of Fossil-Fuel Steam ...  

U.S. Energy Information Administration (EIA)

Table 11.6 Installed Nameplate Capacity of Fossil-Fuel Steam-Electric Generators With Environmental Equipment, 1985-2010 (Megawatts)

96

Projection of world fossil fuel production with supply and demand interactions.  

E-Print Network (OSTI)

??Research Doctorate - Doctor of Philosophy (PhD) Historically, fossil fuels have been vital for our global energy needs. However climate change is prompting renewed interest… (more)

Mohr, Steve

2010-01-01T23:59:59.000Z

97

ENHANCING CARBON SEQUESTRATION AND RECLAMATION OF DEGRADED LANDS WITH FOSSIL-FUEL COMBUSTION BYPRODUCTS  

E-Print Network (OSTI)

represents an opportunity to couple carbon sequestration with the utilization of fossil fuel #12;and energy of fossil energy byproducts to stimulate carbon sequestration in those terrestrial ecosystems. GOALS C sequestration through optimal utilization of fossil energy byproducts and management of degraded

98

Hydrogen Separation Membranes for Vision 21 Fossil Fuel Plants  

DOE Green Energy (OSTI)

Eltron Research and team members CoorsTek, McDermott Technology, Sued Chemie, Argonne National Laboratory, and Oak Ridge National Laboratory are developing an environmentally benign, inexpensive, and efficient method for separating hydrogen from gas mixtures produced during industrial processes, such as coal gasification. This objective is being pursued using dense membranes based in part on Eltron-patented ceramic materials with a demonstrated ability for proton and electron conduction. The technical goals are being addressed by modifying single-phase and composite membrane composition and microstructure to maximize proton and electron conductivity without loss of material stability. Ultimately, these materials must enable hydrogen separation at practical rates under ambient and high-pressure conditions, without deactivation in the presence of feedstream components such as carbon dioxide, water, and sulfur. This project was motivated by the Department of Energy (DOE) National Energy Technology Laboratory (NETL) Vision 21 initiative which seeks to economically eliminate environmental concerns associated with the use of fossil fuels. The proposed technology addresses the DOE Vision 21 initiative in two ways. First, this process offers a relatively inexpensive solution for pure hydrogen separation that can be easily incorporated into Vision 21 fossil fuel plants. Second, this process could reduce the cost of hydrogen, which is a clean burning fuel under increasing demand as supporting technologies are developed for hydrogen utilization and storage. Additional motivation for this project arises from the potential of this technology for other applications. By appropriately changing the catalysts coupled with the membrane, essentially the same system can be used to facilitate alkane dehydrogenation and coupling, aromatics processing, and hydrogen sulfide decomposition.

Roark, Shane E.; Mackay, Richard; Sammells, Anthony F.

2001-11-06T23:59:59.000Z

99

Fossil fuel derivatives with reduced carbon. Phase I final report  

Science Conference Proceedings (OSTI)

This project involves the simultaneous production of clean fossil fuel derivatives with reduced carbon and sulfur, along with value-added carbon nanofibers. This can be accomplished because the nanofiber production process removes carbon via a catalyzed pyrolysis reaction, which also has the effect of removing 99.9% of the sulfur, which is trapped in the nanofibers. The reaction is mildly endothermic, meaning that net energy production with real reductions in greenhouse emissions are possible. In Phase I research, the feasibility of generating clean fossil fuel derivatives with reduced carbon was demonstrated by the successful design, construction and operation of a facility capable of utilizing coal as well as natural gas as an inlet feedstock. In the case of coal, for example, reductions in CO{sub 2} emissions can be as much as 70% (normalized according to kilowatts produced), with the majority of carbon safely sequestered in the form of carbon nanofibers or coke. Both of these products are value-added commodities, indicating that low-emission coal fuel can be done at a profit rather than a loss as is the case with most clean-up schemes. The main results of this project were as follows: (1) It was shown that the nanofiber production process produces hydrogen as a byproduct. (2) The hydrogen, or hydrogen-rich hydrocarbon mixture can be consumed with net release of enthalpy. (3) The greenhouse gas emissions from both coal and natural gas are significantly reduced. Because coal consumption also creates coke, the carbon emission can be reduced by 75% per kilowatt-hour of power produced.

Kennel, E.B.; Zondlo, J.W.; Cessna, T.J.

1999-06-30T23:59:59.000Z

100

Possible future environmental issues for fossil fuel technologies. Final report  

SciTech Connect

The work reported here was carried out for the Department of Energy's Office of Fossil Energy to identify and assess 15 to 20 major environmental issues likely to affect the implementation of fossil energy technologies between 1985 and 2000. The energy technologies specifically addressed are: oil recovery and processing; gas recovery and processing; coal liquefaction; coal gasification (surface); in situ coal gasification; direct coal combustion; advanced power systems; magnetohydrodynamics; surface oil shale retorting; and true and modified in situ oil shale retorting. Environmental analysis of these technologies included, in addition to the main processing steps, the complete fuel cycle from resource extraction to end use. The 16 environmental issues identified as those most likely for future regulatory actions and the main features of, and the possible regulatory actions associated with, each are as follows: disposal of solid waste from coal conversion and combustion technologies; water consumption by coal and oil shale conversion technologies; siting of coal conversion facilities; the carbon dioxide greenhouse effect; emission of polycyclic organic matter (POM); impacts of outer continental shelf (OCS) oil development; emission of trace elements; groundwater contamination; liquefied natural gas (LNG), safety and environmental factors; underground coal mining - health and safety; fugitive emissions from coal gasification and liquefaction - health and safety; boomtown effects; emission of fine particulates from coal, oil and oil shale technologies; emission of radioactivity from the mining and conversion of coal; emission of nitrogn oxides; and land disturbance from surface mining. (LTN)

Attaway, L.D.

1979-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "lighting fossil fuels" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Viscosity virtual sensor to control combustion in fossil fuel power plants  

Science Conference Proceedings (OSTI)

Thermo-electrical power plants utilize fossil fuel oil to transform the calorific power of fuel into electric power. An optimal combustion in the boiler requires the fuel oil to be in its best conditions. One of fuel's most important properties to consider ... Keywords: Automatic learning, Bayesian networks, Fuel oil, Power plants, Virtual sensors

Pablo H. Ibargüengoytia, Miguel Angel Delgadillo, Uriel A. Garcķa, Alberto Reyes

2013-10-01T23:59:59.000Z

102

Annual Fossil-Fuel CO2 Emissions: Mass of Emissions Gridded by...  

NLE Websites -- All DOE Office Websites (Extended Search)

is that the spatial changes observed over time are solely due to changes in national energy consumption and nation-based fuel mix. Increases in fossil-fuel CO2 emissions over...

103

Liquid fossil fuel technology. Quarterly technical progress report, October-December 1979  

Science Conference Proceedings (OSTI)

Activities and progress are reported in: liquid fossil fuel cycle, extraction (enhanced recovery of oil and gas), processing (of petroleum and alternate fuels), utilization (transportation and energy conversion), and systems integration. BETC publications and finances are listed in appendices. (DLC)

Not Available

1980-04-01T23:59:59.000Z

104

Monthly, global emissions of carbon dioxide from fossil fuel consumption  

Science Conference Proceedings (OSTI)

This paper examines available data, develops a strategy and presents a monthly, global time series of fossil-fuel carbon dioxide emissions for the years 1950 2006. This monthly time series was constructed from detailed study of monthly data from the 21 countries that account for approximately 80% of global total emissions. These data were then used in a Monte Carlo approach to proxy for all remaining countries. The proportional-proxy methodology estimates by fuel group the fraction of annual emissions emitted in each country and month. Emissions from solid, liquid and gas fuels are explicitly modelled by the proportional-proxy method. The primary conclusion from this study is the global monthly time series is statistically significantly different from a uniform distribution throughout the year. Uncertainty analysis of the data presented show that the proportional-proxy method used faithfully reproduces monthly patterns in the data and the global monthly pattern of emissions is relatively insensitive to the exact proxy assignments used. The data and results presented here should lead to a better understanding of global and regional carbon cycles, especially when the mass data are combined with the stable carbon isotope data in atmospheric transport models.

Andres, Robert Joseph [ORNL; Gregg, JS [Riso National Laboratory, Roskilde, Denmark; Losey, London M [ORNL; Marland, Gregg [ORNL; Boden, Thomas A [ORNL

2011-01-01T23:59:59.000Z

105

Tracking the Origins of Fossil Fuels | Advanced Photon Source  

NLE Websites -- All DOE Office Websites (Extended Search)

Tailoring the Properties of Magnetic Nanostructures Tailoring the Properties of Magnetic Nanostructures X-ray Holograms Expose Secret Magnetism How Dissolved Metal Ions Interact in Solution One Giant Leap for Radiation Biology? What's in the Cage Matters in Iron Antimonide Thermoelectric Materials Science Highlights Archives: 2013 | 2012 | 2011 | 2010 2009 | 2008 | 2007 | 2006 2005 | 2004 | 2003 | 2002 2001 | 2000 | 1998 | Subscribe to APS Science Highlights rss feed Tracking the Origins of Fossil Fuels MAY 29, 2007 Bookmark and Share S-XANES absorbance and third derivative absorbance edge spectra of Duvernay (A) Type II kerogen and the results of curve fits using spectra from model compounds. Notice that sharp features appear in the thrid derivative spectrum that are easily associated with FeS2, aliphatic sulfur and

106

Reducing CO2 Emissions from Fossil Fuel Power Plants  

NLE Websites -- All DOE Office Websites (Extended Search)

CO CO 2 Emissions From Fossil Fuel Power Plants Scott M. Klara - National Energy Technology Laboratory EPGA's 3 rd Annual Power Generation Conference October 16-17, 2002 Hershey, Pennsylvania EPGA - SMK - 10/17/02 * One of DOE's 17 national labs * Government owned/operated * Sites in Pennsylvania, West Virginia, Oklahoma, Alaska * More than 1,100 federal and support contractor employees * FY 02 budget of $750 million National Energy Technology Laboratory EPGA - SMK - 10/17/02 * Diverse research portfolio - 60 external projects - Onsite focus area * Strong industry support - 40% cost share * Portfolio funding $100M 0 10 20 30 40 50 60 1997 1998 1999 2000 2001 2002 2003 2003 2003 Budget (Million $) Fiscal Year Senate House Administration Request Carbon Sequestration: A Dynamic Program Separation & Capture From Power Plants Plays Key Role

107

Formulating Energy Policies Related to Fossil Fuel Use:  

NLE Websites -- All DOE Office Websites (Extended Search)

CONF-9 O O 255 --I CONF-9 O O 255 --I DE90 008741 Formulating Energy Policies Related to Fossil Fuel Use: i Critical Uncertainties in the Global Carbon Cycle. W. M. Post, V. H. Dale, D. L. DeAngelis, L. K. Mann, P. J. Mulholland, R. V. O'Neill, T. -H. Peng, M. P. Farrell Environmental Sciences Division Oak Ridge National Laboratory Post Office Box 2008 Oak Ridge, Tennessee 37831 The global carbon cycle is the dynamic interaction among the earth's carbon sources and sinks. Understanding the global carbon cycle requires knowledge of the carbon exchanges between major carbon reservoirs by various chemical, physical, geological, and biological processes (Bolin et al., 1979; Rosenberg, 1981; and Solomon et al., 1985). Four reservoirs can be identified, including the atmosphere, terrestrial biosphere (usually

108

ADVANCED HYDROGEN TRANSPORT MEMBRANES FOR VISION 21 FOSSIL FUEL PLANTS  

DOE Green Energy (OSTI)

Eltron Research Inc., and team members CoorsTek, McDermott Technology, inc., Sued Chemie, Argonne National Laboratory, and Oak Ridge National Laboratory are developing an environmentally benign, inexpensive, and efficient method for separating hydrogen from gas mixtures produced during industrial processes, such as coal gasification. This project was motivated by the National Energy Technology Laboratory (NETL) Vision 21 initiative which seeks to economically eliminate environmental concerns associated with the use of fossil fuels. This objective is being pursued using dense membranes based in part on Eltron-patented ceramic materials with a demonstrated ability for proton and electron conduction. The technical goals are being addressed by modifying single-phase and composite membrane composition and microstructure to maximize proton and electron conductivity without loss of material stability. Ultimately, these materials must enable hydrogen separation at practical rates under ambient and high-pressure conditions, without deactivation in the presence of feedstream components such as carbon dioxide, water, and sulfur.

Shane E. Roark; Anthony F. Sammells; Richard A. Mackay; Lyrik Y. Pitzman; Thomas A. Zirbel; Thomas F. Barton; Sara L. Rolfe; U. (Balu) Balachandran; Richard N. Kleiner; James E. Stephan; Frank E. Anderson; George Farthing; Dan Rowley; Tim R. Armstrong; R.D. Carneim; P.F. Becher; C-H. Hsueh; Aaron L. Wagner; Jon P. Wagner

2002-04-30T23:59:59.000Z

109

Aromatic nitrogen compounds in fossil fuels: a potential hazard  

DOE Green Energy (OSTI)

To achieve energy independence in the United States, converting coal to oil or extracting oil from shale will be required. Before commercial scale fossil fuel conversion facilities become a reality, chemical and biological studies of currently available synfuel samples derived from coal or shale are urgently needed in order to determine what the potential health problems, such as from occupational exposure, might be. Aromatic nitrogen compounds such as basic aza-arenes, neutral aza-arenes, and aromatic amines are considered environmentally important and several members of these classes of compounds possess biological activity. For example, dibenz(a,h)acridine, 7 H-dibenzo(c,g)carbazole, and 2-naphthylamine, are well known as carcinogens. The methods used to isolate the basic aromatic nitrogen compounds and neutral aza-arenes from one shale oil and one coal-derived oil are discussed. The mutagenic activities of these fractions, based on the Ames Salmonella typhimurium test, are compared.

Ho, C H; Clark, B R; Guerin, M R; Ma, C Y; Rao, T K

1979-01-01T23:59:59.000Z

110

New Optimal Sensor Suite for Ultrahigh Temperature Fossil Fuel Applications  

DOE Green Energy (OSTI)

Accomplishments during Phase II of a program to develop and demonstrate photonic sensor technology for the instrumentation of advanced powerplants are described. The goal of this project is the research and development of advanced, robust photonic sensors based on improved sapphire optical waveguides, and the identification and demonstration of applications of the new sensors in advanced fossil fuel power plants, where the new technology will contribute to improvements in process control and monitoring. During this program work period, major progress has been experienced in the development of the sensor hardware, and the planning of the system installation and operation. The major focus of the next work period will be the installation of sensors in the Hamilton, Ohio power plant, and demonstration of high-temperature strain gages during mechanical testing of SOFC components.

John Coggin; Jonas Ivasauskas; Russell G. May; Michael B. Miller; Rena Wilson

2006-09-30T23:59:59.000Z

111

Soot from the burning of fossil fuels and solid biofuels contributes far more to global  

E-Print Network (OSTI)

Soot from the burning of fossil fuels and solid biofuels contributes far more to global warming Researchers ScienceDaily (July 30, 2010) -- Soot from the burning of fossil fuels and solid biofuels biofuels, such as wood, manure, dung, and other solid biomass used for home heating and cooking in many

112

Sales of Fossil Fuels Produced from Federal and Indian Lands, FY 2003  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Sales of Fossil Fuels Produced from Federal and Indian Lands, FY Sales of Fossil Fuels Produced from Federal and Indian Lands, FY 2003 through FY 2011 Sales of Fossil Fuels Produced from Federal and Indian Lands, FY 2003 through FY 2011 This paper was prepared in response to recent requests that the U.S. Energy Information Administration (EIA) provide updated summary information regarding fossil fuel production on federal and Indian lands in the United States. It provides EIA's current best estimates of fossil fuels sales from production on federal and Indian lands for fiscal year 2003 through 2011. eia-federallandsales.pdf More Documents & Publications Testimony Before the House Natural Resources Subcommittee on Energy and Mineral Resources Before the House Natural Resources Committee Before the Energy and Power Subcommittee - House Energy and Commerce

113

Refractory failure in IGCC fossil fuel power systems  

DOE Green Energy (OSTI)

Current generation refractory materials used in slagging gasifiers employed in Integrated Gasification Combined Cycle (IGCC) fossil fuel power systems have unacceptably short service lives, limiting the reliability and cost effectiveness of gasification as a means to generate power. The short service life of the refractory lining results from exposure to the extreme environment inside the operating gasifier, where the materials challenges include temperatures to 1650 C, thermal cycling, alternating reducing and oxidizing conditions, and the presence of corrosive slags and gases. Compounding these challenges is the current push within the industry for fuel flexibility, which results in slag chemistries and operating conditions that can vary widely as the feedstock for the gasifier is supplemented with alternative sources of carbon, such as petroleum coke and biomass. As a step toward our goal of developing improved refractory materials for this application, we have characterized refractory-slag interactions, under a variety of simulated gasifier conditions, utilizing laboratory exposure tests such as the static cup test and a gravimetric test. Combining this information with that gained from the post-mortem analyses of spent refractories removed from working gasifiers, we have developed a better understanding of refractory failure in gasifier environments. In this paper, we discuss refractory failures in slagging gasifiers and possible strategies to reduce them. Emphasis focuses on the refractories employed in gasifier systems which utilize coal as the primary feedstock.

Dogan, Cynthia P.; Kwong, Kyei-Sing; Bennett, James P.; Chinn, Richard E.

2001-01-01T23:59:59.000Z

114

ADVANCED HYDROGEN TRANSPORT MEMBRANES FOR VISION 21 FOSSIL FUEL PLANTS  

DOE Green Energy (OSTI)

Eltron Research Inc., and team members CoorsTek, McDermott Technology, Inc., Sued Chemie, Argonne National Laboratory, and Oak Ridge National Laboratory are developing an environmentally benign, inexpensive, and efficient method for separating hydrogen from gas mixtures produced during industrial processes, such as coal gasification. This objective is being pursued using dense membranes based in part on Eltron-patented ceramic materials with a demonstrated ability for proton and electron conduction. The technical goals are being addressed by modifying single-phase and composite membrane composition and microstructure to maximize proton and electron conductivity without loss of material stability. Ultimately, these materials must enable hydrogen separation at practical rates under ambient and high-pressure conditions, without deactivation in the presence of feedstream components such as carbon dioxide, water, and sulfur. This project was motivated by the National Energy Technology Laboratory (NETL) Vision 21 initiative which seeks to economically eliminate environmental concerns associated with the use of fossil fuels. The proposed technology addresses the DOE Vision 21 initiative in two ways. First, this process offers a relatively inexpensive solution for pure hydrogen separation that can be easily incorporated into Vision 21 fossil fuel plants. Second, this process could reduce the cost of hydrogen, which is a clean burning fuel under increasing demand as supporting technologies are developed for hydrogen utilization and storage. Additional motivation for this project arises from the potential of this technology for other applications. Membranes testing during this reporting period were greater than 1 mm thick and had the general perovskite composition AB{sub 1-x}B'{sub x}O{sub 3-{delta}}, where 0.05 {<=} x {<=} 0.3. These materials demonstrated hydrogen separation rates between 1 and 2 mL/min/cm{sup 2}, which represents roughly 20% of the target goal for membranes of this thickness. The sintered membranes were greater than 95% dense, but the phase purity decreased with increasing dopant concentration. The quantity of dopant incorporated into the perovskite phase was roughly constant, with excess dopant forming an additional phase. Composite materials with distinct ceramic and metallic phases, and thin film perovskites (100 {micro}m) also were successfully prepared, but have not yet been tested for hydrogen transport. Finally, porous platinum was identified as a excellent catalyst for evaluation of membrane materials, however, lower cost nickel catalyst systems are being developed.

Shane E. Roark; Tony F. Sammells; Adam Calihman; Andy Girard; Pamela M. Van Calcar; Richard Mackay; Tom Barton; Sara Rolfe

2001-01-30T23:59:59.000Z

115

Where do fossil fuel carbon dioxide emissions from California go? An analysis based on radiocarbon observations and an atmospheric transport model  

E-Print Network (OSTI)

of radiocarbon and fossil fuel-derived CO2 in surface air2004), Estimates of annual fossil-fuel CO 2 emitted for eachindependent budgeting of fossil fuel CO2 over Europe by (

Riley, W.J.

2008-01-01T23:59:59.000Z

116

Where do fossil fuel carbon dioxide emissions from California go? An analysis based on radiocarbon observations and an atmospheric transport model  

E-Print Network (OSTI)

independent budgeting of fossil fuel CO 2 over Europe by (COcontributions from fossil fuels, oceans, the stratosphere,15 of 16 G04002 RILEY ET AL. : FOSSIL FUEL CO 2 TRANSPORT IN

2008-01-01T23:59:59.000Z

117

FY 2010 Annual Report Office of Fossil Energy Fuel Cell Program  

NLE Websites -- All DOE Office Websites (Extended Search)

FY 2010 Annual Report FY 2010 Annual Report Office of Fossil Energy Fuel Cell Program I. IntroductIon 2 Office of Fossil Energy Fuel Cell Program FY 2010 Annual Report 3 FY 2010 Annual Report Office of Fossil Energy Fuel Cell Program Competitive Innovation: Accelerating Technology Development The U.S. Department of Energy (DOE) Office of Fossil Energy, through the National Energy Technology Laboratory (NETL) and in collaboration with private industry, universities and national laboratories, has forged Government-industry partnerships under the Solid State Energy Conversion Alliance (SECA) to reduce the cost of solid oxide fuel cells (SOFCs). This fuel cell technology shall form the basis for integrated gasification fuel cell (IGFC) systems utilizing coal for clean and efficient

118

Structural changes between models of fossil-fuel demand by steam-electric power plants  

SciTech Connect

A consumption function for multi-fuel steam-electric power plants is used to investigate fossil-fuel demand behavior. The input consumption equations for a plant's primary and alternate fossil fuels are derived by Shepard's lemma from a generalized Cobb-Douglas cost function reflecting average variable cost minimization constrained by technology and the demand for electricity. These equations are estimated by primary and alternate fuel subsets with ordinary least squares and seemingly unrelated regression techniques for 1974, 1977, and 1980. The results of the regression analysis show the importance of consumer demand in the fossil fuel consumption decision; it has the only significant parameter in all of the estimated equations. The estimated own- and cross-price elasticities are small, when they are statistically significant. The results for the primary fuel equations are better than those for the alternate fuel equations in all of the fuel pair subsets.

Gerring, L.F.

1984-01-01T23:59:59.000Z

119

Key Technologies for the Development of Fossil Fuels in the 21st Century  

SciTech Connect

As the world faces growing economic and environmental challenges, the energy mix that fuels the global economy is undergoing rapid change. Yet how this change will evolve in the future is uncertain. What will be the sources of primary energy in twenty years? In fifty years? In different regions of the globe? How will this energy be utilized? Fossil energy currently supplies about ninety percent of the world's primary energy. In Japan this number is closer to eighty percent. It is clear that fossil energy will be a major supplier of global energy for some time to come, but what is not clear is the types of fossil energy and how it will be utilized. The degree to which the abundant supplies of fossil energy, especially coal, will continue to play a major role will depend on whether technology will provide safe, clean and affordable fuel for electricity and transportation. Technology will not only assist in finding more fossil energy in varying regions of the globe but, most importantly, will play a strong role in efficient utilization and in determining the cost of delivering that energy. Several important questions will have to be answered: (1) Will cost effective technologies be found to burn coal more cleanly? Can this be done with drastically reduced or no emitted carbon? (2) Can enough oil be found outside the Middle East to ensure more adequate and secure supplies to fuel the transportation and industrial needs? (3) Will the transportation sector, so heavily dependent on oil, be fueled on another source? (4) Can enough natural gas be assured from enough secure places to ensure investment in the utilization of this lowest-carbon fossil fuel? (5) What will these options cost in research and in the price of energy? The answers to these and other questions challenge leaders and researchers in the fossil energy industry. A World Energy Council (WEC) study of those technologies that might be key sheds some light on what might happen in terms of a wide range of possible scenarios. Also on what might be necessary in expenditure, time, and policies to help bring these technologies to market. This study should be helpful to energy executives in planning for future technologies, either as new ventures or as competition for existing technologies. The emphasis in this ongoing study is on what is possible from today's vantage, not what will happen--actual developments are unpredictable and it is, of course, impossible to foresee the course of actual technology development or economic growth. Nevertheless, it is possible to look at what could happen in a number of scenarios using (1) knowledge about current technologies and (2) their projected development, investment costs, and likely time to commercialization based on historical energy technology development. A comprehensive set of possible technologies was available from the WEC in conjunction with the International Institute for Applied Systems Analysis (IIASA) and studies as part of the Intergovernmental Panel on Climate Change (IPCC).

Schock, R

2002-11-22T23:59:59.000Z

120

ADVANCED HYDROGEN TRANSPORT MEMBRANES FOR VISION 21 FOSSIL FUELS PLANTS  

DOE Green Energy (OSTI)

Eltron Research Inc. and team members CoorsTek, Sued Chemie, and Argonne National Laboratory are developing an environmentally benign, inexpensive, and efficient method for separating hydrogen from gas mixtures produced during industrial processes, such as coal gasification. This project was motivated by the National Energy Technology Laboratory (NETL) Vision 21 initiative, which seeks to economically eliminate environmental concerns associated with the use of fossil fuels. Currently, this project is focusing on four basic categories of dense membranes: (1) mixed conducting ceramic/ceramic composites, (2) mixed conducting ceramic/metal (cermet) composites, (3) cermets with hydrogen permeable metals, and (4) layered composites containing hydrogen permeable alloys. Ultimately, these materials must enable hydrogen separation at practical rates under ambient and high-pressure conditions, without deactivation in the presence of feedstream components such as carbon dioxide, water, and sulfur. This report presents hydrogen permeation data during long term tests and tests at high pressure in addition to progress with cermet, ceramic/ceramic, and thin film membranes.

Shane E. Roark; Anthony F. Sammells; Richard Mackay; Stewart Schesnack; Scott Morrison; Thomas A. Zirbel; Thomas F. Barton; Sara L. Rolfe; U. Balachandran; Richard N. Kleiner; James E. Stephan; Frank E. Anderson; Aaron L. Wagner; Jon P. Wagner

2003-07-31T23:59:59.000Z

Note: This page contains sample records for the topic "lighting fossil fuels" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Modules for estimating solid waste from fossil-fuel technologies  

SciTech Connect

Solid waste has become a subject of increasing concern to energy industries for several reasons. Increasingly stringent air and water pollution regulations result in a larger fraction of residuals in the form of solid wastes. Control technologies, particularly flue gas desulfurization, can multiply the amount of waste. With the renewed emphasis on coal utilization and the likelihood of oil shale development, increased amounts of solid waste will be produced. In the past, solid waste residuals used for environmental assessment have tended only to include total quantities generated. To look at environmental impacts, however, data on the composition of the solid wastes are required. Computer modules for calculating the quantities and composition of solid waste from major fossil fuel technologies were therefore developed and are described in this report. Six modules have been produced covering physical coal cleaning, conventional coal combustion with flue gas desulfurization, atmospheric fluidized-bed combustion, coal gasification using the Lurgi process, coal liquefaction using the SRC-II process, and oil shale retorting. Total quantities of each solid waste stream are computed together with the major components and a number of trace elements and radionuclides.

Crowther, M.A.; Thode, H.C. Jr.; Morris, S.C.

1980-10-01T23:59:59.000Z

122

INNOVATIVE FOSSIL FUEL FIRED VITRIFICATION TECHNOLOGY FOR SOIL REMEDIATION  

SciTech Connect

This Summary Report summarizes the progress of Phases 3, 3A and 4 of a waste technology Demonstration Project sponsored under a DOE Environmental Management Research and Development Program and administered by the U.S. Department of Energy National Energy Technology Laboratory-Morgantown (DOE-NETL) for an ''Innovative Fossil Fuel Fired Vitrification Technology for Soil Remediation''. The Summary Reports for Phases 1 and 2 of the Program were previously submitted to DOE. The total scope of Phase 3 was to have included the design, construction and demonstration of Vortec's integrated waste pretreatment and vitrification process for the treatment of low level waste (LLW), TSCA/LLW and mixed low-level waste (MLLW). Due to funding limitations and delays in the project resulting from a law suit filed by an environmental activist and the extended time for DOE to complete an Environmental Assessment for the project, the scope of the project was reduced to completing the design, construction and testing of the front end of the process which consists of the Material Handling and Waste Conditioning (MH/C) Subsystem of the vitrification plant. Activities completed under Phases 3A and 4 addressed completion of the engineering, design and documentation of the Material Handling and Conditioning System such that final procurement of the remaining process assemblies can be completed and construction of a Limited Demonstration Project be initiated in the event DOE elects to proceed with the construction and demonstration testing of the MH/C Subsystem.

J. Hnat; L.M. Bartone; M. Pineda

2001-07-13T23:59:59.000Z

123

Advanced Hydrogen Transport Membranes for Vision 21 Fossil Fuel Plants  

DOE Green Energy (OSTI)

Eltron Research Inc. and team members CoorsTek, Sued Chemie, Argonne National Laboratory, and NORAM are developing an environmentally benign, inexpensive, and efficient method for separating hydrogen from gas mixtures produced during industrial processes, such as coal gasification. This project was motivated by the National Energy Technology Laboratory (NETL) Vision 21 initiative, which seeks to economically eliminate environmental concerns associated with the use of fossil fuels. Currently, this project is focusing on four basic categories of dense membranes: (1) mixed conducting ceramic/ceramic composites, (2) mixed conducting ceramic/metal (cermet) composites, (3) cermets with hydrogen permeable metals, and (4) layered composites containing hydrogen permeable alloys. Ultimately, these materials must enable hydrogen separation at practical rates under ambient and high-pressure conditions, without deactivation in the presence of feedstream components such as carbon dioxide, water, and sulfur. During this final quarter of the no cost extension several planar membranes of a cermet composition referred to as EC101 containing a high permeability metal and a ceramic phase were prepared and permeability testing was performed.

Carl R. Evenson; Richard N. Kleiner; James E. Stephan; Frank E. Anderson

2006-04-30T23:59:59.000Z

124

ADVANCED HYDROGEN TRANSPORT MEMBRANES FOR VISION 21 FOSSIL FUEL PLANTS  

DOE Green Energy (OSTI)

Eltron Research Inc. and team members CoorsTek, Sued Chemie, and Argonne National Laboratory are developing an environmentally benign, inexpensive, and efficient method for separating hydrogen from gas mixtures produced during industrial processes, such as coal gasification. This project was motivated by the National Energy Technology Laboratory (NETL) Vision 21 initiative, which seeks to economically eliminate environmental concerns associated with the use of fossil fuels. Currently, this project is focusing on four basic categories of dense membranes: (i) mixed conducting ceramic/ceramic composites, (ii) mixed conducting ceramic/metal (cermet) composites, (iii) cermets with hydrogen permeable metals, and (iv) hydrogen permeable alloys. Ultimately, these materials must enable hydrogen separation at practical rates under ambient and high-pressure conditions, without deactivation in the presence of feedstream components such as carbon dioxide, water, and sulfur. This report describes resent results for long-term hydrogen permeation and chemical stability measurements, new mixed conducting cermets, progress in cermet, thin film, and thin-walled tube fabrication, hydrogen absorption measurements for selected compositions, and membrane facilitated alkane to olefin conversion.

Shane E. Roark; Anthony F. Sammells; Richard A. Mackay; Lyrik Y. Pitzman; Thomas A. Zirbel; Stewart Schesnack; Thomas F. Barton; Sara L. Rolfe; U. (Balu) Balachandran; Richard N. Kleiner; James E. Stephan; Frank E. Anderson; Aaron L. Wagner; Jon P. Wagner

2003-04-30T23:59:59.000Z

125

High Efficiency Direct Carbon and Hydrogen Fuel Cells for Fossil Fuel Power Generation  

SciTech Connect

Hydrogen he1 cells have been under development for a number of years and are now nearing commercial applications. Direct carbon fuel cells, heretofore, have not reached practical stages of development because of problems in fuel reactivity and cell configuration. The carbon/air fuel cell reaction (C + O{sub 2} = CO{sub 2}) has the advantage of having a nearly zero entropy change. This allows a theoretical efficiency of 100 % at 700-800 C. The activities of the C fuel and CO{sub 2} product do not change during consumption of the fuel. Consequently, the EMF is invariant; this raises the possibility of 100% fuel utilization in a single pass. (In contrast, the high-temperature hydrogen fuel cell has a theoretical efficiency of and changes in fuel activity limit practical utilizations to 75-85%.) A direct carbon fuel cell is currently being developed that utilizes reactive carbon particulates wetted by a molten carbonate electrolyte. Pure COZ is evolved at the anode and oxygen from air is consumed at the cathode. Electrochemical data is reported here for the carbon/air cell utilizing carbons derived from he1 oil pyrolysis, purified coal, purified bio-char and petroleum coke. At 800 O C, a voltage efficiency of 80% was measured at power densities of 0.5-1 kW/m2. Carbon and hydrogen fuels may be produced simultaneously at lugh efficiency from: (1) natural gas, by thermal decomposition, (2) petroleum, by coking or pyrolysis of distillates, (3) coal, by sequential hydrogasification to methane and thermal pyrolysis of the methane, with recycle of the hydrogen, and (4) biomass, similarly by sequential hydrogenation and thermal pyrolysis. Fuel production data may be combined with direct C and H2 fuel cell operating data for power cycle estimates. Thermal to electric efficiencies indicate 80% HHV [85% LHV] for petroleum, 75.5% HHV [83.4% LHV] for natural gas and 68.3% HHV [70.8% LHV] for lignite coal. Possible benefits of integrated carbon and hydrogen fuel cell power generation cycles are: (1) increased efficiency by a factor of up to 2 over many conventional fossil fuel steam plants, (2) reduced power generation cost, especially for increasing fossil fuel cost, (3) reduced CO2 emission per kWh, and (4) direct sequestration or reuse (e.g., in enhanced oil or NG recovery) of the CO{sub 2} product.

Steinberg, M; Cooper, J F; Cherepy, N

2002-01-02T23:59:59.000Z

126

Fossil Energy-Developed Fuel Cell Technology Being Adapted by Navy for  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy-Developed Fuel Cell Technology Being Adapted by Navy Energy-Developed Fuel Cell Technology Being Adapted by Navy for Advanced Unmanned Undersea Vehicles Fossil Energy-Developed Fuel Cell Technology Being Adapted by Navy for Advanced Unmanned Undersea Vehicles January 31, 2013 - 12:00pm Addthis An unmanned undersea vehicle (UUV) being deployed during a U.S. Office of Naval Research demonstration near Panama City. Solid oxide fuel cell technology being developed by the Office of Fossil Energy for coal-fueled central power generation is being adapted to power UUVs. U.S. Navy photo by Mr. John F. Williams/Released. An unmanned undersea vehicle (UUV) being deployed during a U.S. Office of Naval Research demonstration near Panama City. Solid oxide fuel cell technology being developed by the Office of Fossil Energy for coal-fueled

127

Boiler Water Deposition Model for Fossil-Fueled Power Plants  

Science Conference Proceedings (OSTI)

The feasibility of modeling the various processes governing deposition in fossil boilers was assessed in EPRI report 1004931, Boiler Water Deposition Model: Part 1: Feasibility Study, published in 2004. This report presents findings of follow-up activities directed toward the ultimate goal of developing an aggregate model that is applicable to the important deposition phenomena in fossil drum-type boilers.

2007-03-26T23:59:59.000Z

128

Instructions for CEC-1250E-4 Biomass and Fossil Fuel Usage Report for Biomass Facilities  

E-Print Network (OSTI)

Instructions for CEC-1250E-4 Biomass and Fossil Fuel Usage Report for Biomass Facilities Biomass energy input basis in the upcoming calendar year? - Please check "yes" or "no." 12. Types of Biomass Fuel Used - Please report the quantity and supplier of the following types of biomass fuel used

129

>Carbon Dioxide Emission Estimates from Fossil-Fuel Burning, Hydraulic  

NLE Websites -- All DOE Office Websites (Extended Search)

Carbon Dioxide Emission Estimates from Fossil-Fuel Burning, Hydraulic Carbon Dioxide Emission Estimates from Fossil-Fuel Burning, Hydraulic Cement Production, and Gas Flaring for 1995 on a One Degree Grid Cell Basis (NDP-058a) Prepared by Antoinette L. Brenkert Carbon Dioxide Information Analysis Center Oak Ridge National Laboratory Oak Ridge, Tennessee 37831-6290 Date Published: February 1998 (Revised for the Web: 2003) CONTENTS Abstract Documentation file for Data Base NDP-058a (2-1998) Data Base NDP-058a (2-1998) Abstract Carbon Dioxide Emission Estimates from Fossil-Fuel Burning, Hydraulic Cement Production, and Gas Flaring for 1995 on a One Degree Grid Cell Basis. (March 1998) Antoinette L. Brenkert DOI: 10.3334/CDIAC/ffe.ndp058.2003 This data package presents the gridded (one degree latitude by one degree longitude) summed emissions from fossil-fuel burning, hydraulic cement

130

Impacts of Wind and Solar on Fossil-Fueled Generators: Preprint  

NLE Websites -- All DOE Office Websites (Extended Search)

Impacts of Wind and Solar on Fossil-Fueled Generators Preprint D. Lew and G. Brinkman National Renewable Energy Laboratory N. Kumar, P. Besuner, D. Agan, and S. Lefton Intertek...

131

Japan’s fossil-fueled generation remains high because of ...  

U.S. Energy Information Administration (EIA)

Japan's use of fossil-fueled generation—the combined amount of electricity generated from natural gas, oil, and coal—was up 21% in 2012, compared to the level in ...

132

Impacts of Renewable Generation on Fossil Fuel Unit Cycling: Costs and Emissions (Presentation)  

Science Conference Proceedings (OSTI)

Prepared for the Clean Energy Regulatory Forum III, this presentation looks at the Western Wind and Solar Integration Study and reexamines the cost and emissions impacts of fossil fuel unit cycling.

Brinkman, G.; Lew, D.; Denholm, P.

2012-09-01T23:59:59.000Z

133

Generic Guidelines for the Life Extension of Fossil Fuel Power Plants  

Science Conference Proceedings (OSTI)

An increasing number of utilities are deciding to keep aging fossil fuel plants operating beyond their original economic lives. These guidelines provide a systematic approach to planning and implementing a life-extension program for such plants.

1986-12-04T23:59:59.000Z

134

Fossil Fuel and Biomass Burning Effect on Climate—Heating or Cooling?  

Science Conference Proceedings (OSTI)

Emission from burning of fossil fuels and biomass (associated with deforestation) generates a radiative forcing on the atmosphere and a possible climate chaw. Emitted trace gases heat the atmosphere through their greenhouse effect, while ...

Yoram J. Kaufman; Robert S. Fraser; Robert L. Mahoney

1991-06-01T23:59:59.000Z

135

Liquid fossil-fuel technology. Quarterly technical progress report, October-December 1982  

Science Conference Proceedings (OSTI)

Progress accomplished for the quarter ending December 1982 is reported for the following research areas: liquid fossil fuel cycle; extraction (technology assessment, gas research, oil research); liquid processing (characterization, thermodynamics, processing technology); utilization; and project integration and technology transfer. (ATT)

Linville, B. (ed.)

1982-01-01T23:59:59.000Z

136

Fossil fuel potential of Turkey: A statistical evaluation of reserves, production, and consumption  

Science Conference Proceedings (OSTI)

Since Turkey is a developing country with tremendous economic growth, its energy demand is also getting increased. Of this energy, about 70% is supplied from fossil fuels and the remaining 30% is from renewable sources. Among the fossil fuels, 90% of oil, natural gas, and coal are imported, and only 10% is from domestic sources. All the lignite is supplied from domestic sources. The total share of renewable sources and lignite in the total energy production is 45%. In order for Turkey to have sufficient and reliable energy sources, first the renewable energy sources must be developed, and energy production from fossil fuels, except for lignite, must be minimized. Particularly, scarcity of fossil fuels and increasing oil prices have a strong effect on economic growth of the country.

Korkmaz, S.; Kara-Gulbay, R.; Turan, M. [Karadeniz Technical University, Trabzon (Turkey)

2008-07-01T23:59:59.000Z

137

Fuel-Cycle Fossil Energy Use and Greenhouse Gas Emissions of Fuel Ethanol Produced from U.S. Midwest Corn  

E-Print Network (OSTI)

#12;Fuel-Cycle Fossil Energy Use and Greenhouse Gas Emissions of Fuel Ethanol Produced from U national estimates of energy intensities and greenhouse gas (GHG) production are of less relevance than the ANL Greenhouse gas, Regulated Emissions and Energy in Transportation (GREET) full-fuel-cycle analysis

Patzek, Tadeusz W.

138

Operator Certification Standards for Fossil Fuel Fired Plants: Survey of State and Regional Requirements  

Science Conference Proceedings (OSTI)

The Environmental Protection Agency has only started addressing the issue of certification for fossil fuel power plant operators within the last two years. This report, which includes data collected from research of state and local authorities that currently require power plant operators to be certified or licensed, is the first phase of a certification program for Fossil Fuel Fired Power Plants. The report also addresses the possible future shortage of skilled workers needed by the power plants and the ...

1999-12-16T23:59:59.000Z

139

METHODOLOGIES FOR REVIEW OF THE HEALTH AND SAFETY ASPECTS OF PROPOSED NUCLEAR, GEOTHERMAL, AND FOSSIL-FUEL SITES AND FACILITIES. VOLUME 9 OF THE FINAL REPORT ON HEALTH AND SAFETY IMPACTS OF NUCLEAR, GEOTHERMAL, AND FOSSIL-FUEL ELECTRIC GENERATION IN CALIFORNIA  

E-Print Network (OSTI)

Specific Considerations Fossil Fuel Coal r. a. b. Normalliquid dominated) and fossil-fuel fired (either coal, oil,Specific Cons iderations Fossil Fuel Coal Oil 1. 1. 3. L 1

Nero, A.V.

2010-01-01T23:59:59.000Z

140

A synthesis of carbon dioxide emissions from fossil-fuel combustion  

SciTech Connect

This synthesis discusses the emissions of carbon dioxide from fossil-fuel combustion and cement production. While much is known about these emissions, there is still much that is unknown about the details surrounding these emissions. This synthesis explores 5 our knowledge of these emissions in terms of why there is concern about them; how they are calculated; the major global efforts on inventorying them; their global, regional, and national totals at different spatial and temporal scales; how they are distributed on global grids (i.e. maps); how they are transported in models; and the uncertainties associated with these different aspects of the emissions. The magnitude of emissions 10 from the combustion of fossil fuels has been almost continuously increasing with time since fossil fuels were first used by humans. Despite events in some nations specifically designed to reduce emissions, or which have had emissions reduction as a byproduct of other events, global total emissions continue their general increase with time. Global total fossil-fuel carbon dioxide emissions are known to within 10% uncertainty (95% 15 confidence interval). Uncertainty on individual national total fossil-fuel carbon dioxide emissions range from a few percent to more than 50 %. The information discussed in this manuscript synthesizes global, regional and national fossil-fuel carbon dioxide emissions, their distributions, their transport, and the associated uncertainties.

Andres, Robert Joseph [ORNL; Boden, Thomas A [ORNL; Breon, F.-M. [CEA/DSM/LSCE, Gif sur Yvette, France; Ciais, P. [LSCE/CEA, Gif-sur-Yvette, France; Davis, S. [Carnegie Institution of Washington; Erickson, D [Oak Ridge National Laboratory (ORNL); Gregg, J. S. [Riso National Laboratory, Roskilde, Denmark; Jacobson, Andrew [NOAA ESRL and CIRES; Marland, Gregg [Appalachian State University; Miller, J. [NOAA ESRL and CIRES; Oda, T [NOAA ESRL/Boulder, CO/Cooperative Institute for Research in the Atmosphere, Colorado State Univ.; Oliver, J. G. J. [PBL Netherlands Environmental Assessment Agency, Bilthoven, The Netherlands; Raupach, Michael [CSIRO Marine and Atmospheric Research; Rayner, P [University of Melbourne, Australia; Treanton, K. [Energy Statistics Division, International Energy Agency, Paris, France

2012-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "lighting fossil fuels" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Light Duty Fuel Cell Electric Vehicle Hydrogen Fueling Protocol  

NLE Websites -- All DOE Office Websites (Extended Search)

DOE Webinar Light Duty Fuel Cell Electric Vehicle Hydrogen Fueling Protocol U.S. DOE WEBINAR ON H2 FUELING PROTOCOLS: PARTICIPANTS Rob Burgess Moderator Jesse Schneider TIR J2601,...

142

Boiler Water Deposition Model for Fossil-Fueled Power Plants  

Science Conference Proceedings (OSTI)

Since the beginning of the commercial steam and power generation industry, deposits on heat transfer surfaces of the steam-water cycle equipment in fossil plant units have been a challenge. Deposits form at nearly all locations within the steam-water cycle, particularly in boiler tubes where failures can have substantial negative impacts on unit availability and reliability. Accumulation of internal deposits can adversely affect the performance and availability of boilers and turbines in fossil steam-wat...

2012-01-23T23:59:59.000Z

143

Evaluation of Innovative Fossil Fuel Power Plants with CO2 Removal  

NLE Websites -- All DOE Office Websites (Extended Search)

Innovative Fossil Fuel Power Innovative Fossil Fuel Power Plants with CO 2 Removal Technical Report EPRI Project Manager N. A. H. Holt EPRI * 3412 Hillview Avenue, Palo Alto, California 94304 * PO Box 10412, Palo Alto, California 94303 * USA 800.313.3774 * 650.855.2121 * askepri@epri.com * www.epri.com Evaluation of Innovative Fossil Fuel Power Plants with CO 2 Removal 1000316 Interim Report, December 2000 Cosponsors U. S. Department of Energy - Office of Fossil Energy 19901 Germantown Road Germantown, Maryland 20874 U.S. Department of Energy/NETL 626 Cochrans Mill Road PO Box 10940 Pittsburgh, Pennsylvania 15236-0940 DISCLAIMER OF WARRANTIES AND LIMITATION OF LIABILITIES THIS DOCUMENT WAS PREPARED BY THE ORGANIZATION(S) NAMED BELOW AS AN ACCOUNT OF WORK SPONSORED OR COSPONSORED BY THE ELECTRIC POWER RESEARCH

144

ADVANCED HYDROGEN TRANSPORT MEMBRANES FOR VISION 21 FOSSIL FUEL PLANTS  

DOE Green Energy (OSTI)

Eltron Research Inc., and team members CoorsTek, McDermott Technology, Inc., Sued Chemie, Argonne National Laboratory and Oak Ridge National Laboratory are developing an environmentally benign, inexpensive, and efficient method for separating hydrogen from gas mixtures produced during industrial processes, such as coal gasification. This project was motivated by the National Energy Technology Laboratory (NETL) Vision 21 initiative which seeks to economically eliminate environmental concerns associated with the use of fossil fuels. This objective is being pursued using dense membranes based in part on Eltron-patented ceramic materials with a demonstrated ability for proton and electron conduction. The technical goals are being addressed by modifying single-phase and composite membrane composition and microstructure to maximize proton and electron conductivity without loss of material stability. Ultimately, these materials must enable hydrogen separation at practical rates under ambient and high-pressure conditions, without deactivation in the presence of feedstream components such as carbon dioxide, water, and sulfur. During this quarter, mixed proton/electron conductivity and hydrogen transport was measured as a function of metal phase content for a range of ceramic/metal (cermet) compositions. It was found that optimum performance occurred at 44 wt.% metal content for all compositions tested. Although each cermet appeared to have a continuous metal phase, it is believed that hydrogen transport increased with increasing metal content partially due to beneficial surface catalyst characteristics resulting from the metal phase. Beyond 44 wt.% there was a reduction in hydrogen transport most likely due to dilution of the proton conducting ceramic phase. Hydrogen separation rates for 1-mm thick cermet membranes were in excess of 0.1 mL/min/cm{sup 2}, which corresponded to ambipolar conductivities between 1 x 10{sup -3} and 8 x 10{sup -3} S/cm. Similar results were obtained for multiphase ceramic membranes comprised of a proton-conducting perovskite and electron conducting metal oxide. These multi-phase ceramic membranes showed only a slight improvement in hydrogen transport upon addition of a metal phase. The highest hydrogen separation rates observed this quarter were for a cermet membrane containing a hydrogen transport metal. A 1-mm thick membrane of this material achieved a hydrogen separation rate of 0.3 mL/min/cm{sup 2} at only 700 C, which increased to 0.6 mL/min/cm{sup 2} at 950 C.

Shane E. Roark; Tony F. Sammells; Richard A. Mackay; Lyrik Y. Pitzman; Alexandra Z. LaGuardia; Tom F. Barton; Sara L. Rolfe; Richard N. Kleiner; James E. Stephan; Mike J. Holmes; Aaron L. Wagner

2001-10-30T23:59:59.000Z

145

ADVANCED HYDROGEN TRANSPORT MEMBRANES FOR VISION 21 FOSSIL FUEL PLANTS  

DOE Green Energy (OSTI)

Eltron Research Inc. and team members CoorsTek, Sued Chemie, Argonne National Laboratory, and NORAM are developing an environmentally benign, inexpensive, and efficient method for separating hydrogen from gas mixtures produced during industrial processes, such as coal gasification. This project was motivated by the National Energy Technology Laboratory (NETL) Vision 21 initiative, which seeks to economically eliminate environmental concerns associated with the use of fossil fuels. Over the past 12 months, this project has focused on four basic categories of dense membranes: (1) mixed conducting ceramic/ceramic composites, (2) mixed conducting ceramic/metal (cermet) composites, (3) cermets with hydrogen permeable metals, and (4) layered composites containing hydrogen permeable alloys. Ultimately, these materials must enable hydrogen separation at practical rates under ambient and high-pressure conditions, without deactivation in the presence of feedstream components such as carbon dioxide, water, and sulfur. The ceramic/ceramic composites demonstrate the lowest hydrogen permeation rates, with a maximum of approximately 0.1 mL/min/cm{sup 2} for 0.5-mm thick membranes at 800 to 950 C. Under equivalent conditions, cermets achieve a hydrogen permeation rate near 1 mL/min/cm{sup 2}, and the metal phase also improves structural stability and surface catalysis for hydrogen dissociation. Furthermore, if metals with high hydrogen permeability are used in cermets, permeation rates near 4 mL/min/cm{sup 2} are achievable with relatively thick membranes. Layered composite membranes have by far the highest permeation rates with a maximum flux in excess of 200 mL {center_dot} min{sup -1} {center_dot} cm{sup -2}. Moreover, these permeation rates were achieved at a total pressure differential across the membrane of 450 psi. Based on these results, effort during the next year will focus on this category of membranes. This report contains long-term hydrogen permeation data over eight-months of continuous operation, and permeation results as a function of operating conditions at high pressure for layered composite membranes. Additional progress with cermet and thin film membranes also is presented.

Shane E. Roark; Anthony F. Sammells; Richard Mackay; Stewart R. Schesnack; Scott R. Morrison; Thomas F. Barton; Sara L. Rolfe; U. Balachandran; Richard N. Kleiner; James E. Stephan; Frank E. Anderson; Aaron L. Wagner; Jon P. Wagner

2003-10-30T23:59:59.000Z

146

ADVANCED HYDROGEN TRANSPORT MEMBRANES FOR VISION 21 FOSSIL FUEL PLANTS  

DOE Green Energy (OSTI)

Eltron Research Inc., and team members CoorsTek, Sued Chemie, and Argonne National Laboratory are developing an environmentally benign, inexpensive, and efficient method for separating hydrogen from gas mixtures produced during industrial processes, such as coal gasification. This project was motivated by the National Energy Technology Laboratory (NETL) Vision 21 initiative which seeks to economically eliminate environmental concerns associated with the use of fossil fuels. This objective is being pursued using dense membranes based in part on Eltron-patented ceramic materials with a demonstrated ability for proton and electron conduction. The technical goals are being addressed by modifying composite membrane composition and microstructure to maximize hydrogen permeation without loss of material stability. Ultimately, these materials must enable hydrogen separation at practical rates under ambient and high-pressure conditions, without deactivation in the presence of feedstream components such as carbon dioxide, water, and sulfur. During this quarter, a composite metal membrane based on an inexpensive hydrogen permeable metal achieved permeation rates in excess of 25 mL/min/cm{sup 2}. Preliminary attempts to incorporate this metal into a cermet were successful, and a thick cermet membrane (0.83 mm) with 40 vol.% metal phase achieved a permeation rate of nearly 0.4 mL/min/cm{sup 2}. Increasing the metal phase content and decreasing membrane thickness should significantly increase permeation, while maintaining the benefits derived from cermets. Two-phase ceramic/ceramic composite membranes had low hydrogen permeability, likely due to interdiffusion of constituents between the phases. However, these materials did demonstrate high resistance to corrosion, and might be good candidates for other composite membranes. Temperature-programmed reduction measurements indicated that model cermet materials absorbed 2.5 times as much hydrogen than the pure ceramic analogs. This characteristic, in addition to higher electron conductivity, likely explains the relatively high permeation for these cermets. Incorporation of catalysts with ceramics and cermets increased hydrogen uptake by 800 to more than 900%. Finally, new high-pressure seals were developed for cermet membranes that maintained a pressure differential of 250 psi. This result indicated that the approach for high-pressure seal development could be adapted for a range of compositions. Other items discussed in this report include mechanical testing, new proton conducting ceramics, supported thin films, and alkane to olefin conversion.

Shane E. Roark; Anthony F. Sammells; Richard A. Mackay; Lyrik Y. Pitzman; Thomas A. Zirbel; Stewart R. Schesnack; Thomas F. Barton; Sara L. Rolfe; U. (Balu) Balachandran; Richard N. Kleiner; James E. Stephan; Frank E. Anderson; Aaron L. Wagner; Jon P. Wagner

2003-01-30T23:59:59.000Z

147

2004 Office of Fossil Energy Fuel Cell Program Annual Report  

DOE Green Energy (OSTI)

Annual report of fuel cell projects sponsored by Department of Energy, National Energy Technology Laboratory.

NETL

2004-11-01T23:59:59.000Z

148

55Home Power #21 February / March 1991 ALTERNATIVES TO FOSSIL FUELED  

E-Print Network (OSTI)

be handled by the same devices that regulate natural gas and it will work in burners or as a fuel is a simple hydrocarbon gas which occurs in natural gas and can also be obtained from anaerobic bacterial replacement for fossil fuel gases (natural gas or liquified petroleum gases such as propane or butane). It can

149

Liquid fossil fuel technology. Quarterly technical progress report, July-September 1979  

Science Conference Proceedings (OSTI)

The in-house results at Bartlesville Energy Technology Center on the liquid fossil fuel cycle are presented. The cycle covers extraction, processing, utilization, and environmental technology of the liquid fuels derived from petroleum, heavy oils, tar sands, oil shale, and coal.

Linville, B. (ed.)

1980-02-01T23:59:59.000Z

150

Fossil fuel gasification technical evaluation services. Topical report 1978-80  

SciTech Connect

The Exxon, Mountain Fuel, Cities Service/Rockwell, Westinghouse, BGC slagging Lurgi and Peatgas processes for fossil fuel gasification were evaluated. The Lurgi and HYGAS processes had been evaluated in earlier studies. For producing SNG from coal, only the Westinghouse conceptual design appeared competitive with HYGAS on eastern coal. All coal gasification processes were competitive with or better than Lurgi on eastern coal. The Mountain Fuel process was more costly than Lurgi or HYGAS on a western coal.

Detman, R.F.

1982-12-30T23:59:59.000Z

151

Air Pollution Control Regulations: No. 13- Particulate Emissions from Fossil Fuel Fired Steam or Hot Water Generating Units (Rhode Island)  

Energy.gov (U.S. Department of Energy (DOE))

The purpose of this regulation is to limit emissions of particulate matter from fossil fuel fired and wood-fired steam or hot water generating units.

152

Boiler Water Deposition Model for Fossil-Fueled Power Plants  

Science Conference Proceedings (OSTI)

Accumulation of internal deposits can adversely affect the performance and availability of boilers and turbines in fossil steam-water cycles. Deposition in drum boilers has been identified as the area of broadest concern to the industry; therefore, an improved understanding of deposition in drum boilers is expected to represent the greatest source of benefits and value to end users. The overall objective of the modeling described here is to develop a comprehensive, integrated model for deposition process...

2011-12-16T23:59:59.000Z

153

Sales of Fossil Fuels Produced from Federal and Indian Lands, FY 2003 through FY 2011  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Sales of Fossil Fuels Produced Sales of Fossil Fuels Produced from Federal and Indian Lands, FY 2003 through FY 2011 March 2012 Independent Statistics & Analysis www.eia.gov U.S. Department of Energy Washington, DC 20585 U.S. Energy Information Administration | Sales of Fossil Fuels Produced on Federal and Indian Lands, FY 2003 through FY 2011 i This report was prepared by the U.S. Energy Information Administration (EIA), the statistical and analytical agency within the U.S. Department of Energy. By law, EIA's data, analyses, and forecasts are independent of approval by any other officer or employee of the United States Government. The views in this report therefore should not be construed as representing those of the Department of Energy or

154

Geographic Patterns of Carbon Dioxide Emissions from Fossil-Fuel Burning,  

NLE Websites -- All DOE Office Websites (Extended Search)

Fossil Fuel CO2 Emissions Ā» Gridded Estimates for Benchmark Years Fossil Fuel CO2 Emissions Ā» Gridded Estimates for Benchmark Years Geographic Patterns of Carbon Dioxide Emissions from Fossil-Fuel Burning, Hydraulic Cement Production, and Gas Flaring on a One Degree by One Degree Grid Cell Basis: 1950 to 1990 (NDP-058) data Data image ASCII Text Documentation PDF file PDF file Contributors R. J. Andres, G. Marland, I. Fung, and E. Matthews (contributors) DOI DOI: 10.3334/CDIAC/ffe.ndp058 This data package presents data sets recording 1Ā° latitude by 1Ā° longitude CO2 emissions in units of thousand metric tons of carbon per year from anthropogenic sources for 1950, 1960, 1970, 1980, and 1990. Detailed geographic information on CO2 emissions can be critical in understanding the pattern of the atmospheric and biospheric response to these emissions.

155

Carbon Dioxide Information Analysis Center (CDIAC)-Fossil Fuel CO2  

Open Energy Info (EERE)

Dioxide Information Analysis Center (CDIAC)-Fossil Fuel CO2 Dioxide Information Analysis Center (CDIAC)-Fossil Fuel CO2 Emissions Jump to: navigation, search Tool Summary Name: Carbon Dioxide Information Analysis Center (CDIAC)-Fossil Fuel CO2 Emissions Agency/Company /Organization: Oak Ridge National Laboratory Sector: Energy, Climate Topics: GHG inventory, Background analysis Resource Type: Dataset Website: cdiac.ornl.gov/trends/emis/meth_reg.html Country: United States, Canada, Mexico, Argentina, Brazil, Chile, Colombia, Ecuador, Peru, Venezuela, Austria, Azerbaijan, Belarus, Belgium, Luxembourg, Bulgaria, Czech Republic, Denmark, Finland, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Kazakhstan, Lithuania, Netherlands, Norway, Poland, Portugal, Romania, Russia, Slovakia, Spain, Sweden, Switzerland, Turkey, Turkmenistan, Ukraine, United Kingdom, Uzbekistan, Iran, Kuwait, Qatar, Saudi Arabia, United Arab Emirates, Algeria, Egypt, South Africa, Australia, Bangladesh, China, India, Indonesia, Japan, Malaysia, New Zealand, Pakistan, Philippines, Singapore, South Korea, Taiwan, Thailand

156

renewable sources of power. Demand for fossil fuels surely will overrun supply s  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

renewable sources of power. Demand for fossil fuels surely will overrun supply sooner or later, renewable sources of power. Demand for fossil fuels surely will overrun supply sooner or later, as indeed it already has in the casc of United States domestic oil drilling. Recognition also is growing that our air and land can no longer absorb unlimited quantities of waste from fossil fuel extraction and combustion. As that day draws nearer, policymakers will have no realistic alternative but to turn to sources of power that today make up a viable but small part of America's energy picture. And they will be forced to embrace energy efficiencies - those that are within our reach today, and those that will be developed tomorrow. Precisely when they come lo grips with that reality - this year, 10 years from now, or 20 years from now - will determine bow smooth the transition will be for consumers and industry alike.

157

Commerce study looks at cost of pollution control for fossil-fuel power industry  

SciTech Connect

Environmental controls for fossil-fuel power plants consumed 1.3 percent of the national fuel used in 1974, with the largest demand going for sulfur dioxide emission control. Projections for power plant consumption to meet environmental standards range as high as eight percent in the 1980s. Less-energy-consuming systems include coal blending, tall stacks, and supplementary control systems; while high consumers are using coal washing operations in place of scrubbers, fuel transportation, conversion to acceptable fuels, waste heat disposal, and particulate controls. A summary table presents sulfur dioxide regulations in terms of their goals and their anticipated minimum and maximum fuel consumption. (DCK)

1977-06-01T23:59:59.000Z

158

Accident Tolerant Fuels for Light Water Reactors  

Science Conference Proceedings (OSTI)

Presentation Title, Accident Tolerant Fuels for Light Water Reactors. Author(s), Steven J. Zinkle, Kurt A. Terrani, Lance L. Snead. On-Site Speaker (Planned) ...

159

A REVIEW OF LIGHT-WATER REACTOR SAFETY STUDIES. VOLUME 3 OF THE FINAL REPORT ON HEALTH AND SAFETY IMPACTS OF NUCLEAR, GEOTHERMAL, AND FOSSIL-FUEL ELECTRIC GENERATION IN CALIFORNIA  

E-Print Network (OSTI)

A Review of Light-Water Reactor Safety Studies," by A.V.due to a break in the reactor cooling cooling water the therecirculation - Failure of the reactor protection system.

Nero, A.V.

2010-01-01T23:59:59.000Z

160

Production of high density fuel through low temperature devolatilization of fossil fuels with hydrogen and iron oxides  

DOE Patents (OSTI)

A method is provided for producing high-energy high-density fuels and valuable co-products from fossil fuel sources which comprises the low temperature devolatilization of a fossil fuel such as coal in a moving fluid-bed reactor at a temperature of about 450-650C in the presence of hydrogen and iron oxides. The method is advantageous in that high quality liquid fuels are obtained in addition to valuable co-products such as elemental iron, elemental sulfur and carbon black, and the process is carried out efficiently with a large number of recyclable steps. In addition, the hydropyrolysis of the present invention can produce a highly reactive low-sulfur char which is convertible into a slurry fuel. 1 fig.

Khan, M.R.

1990-01-29T23:59:59.000Z

Note: This page contains sample records for the topic "lighting fossil fuels" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

A REVIEW OF LIGHT-WATER REACTOR SAFETY STUDIES. VOLUME 3 OF THE FINAL REPORT ON HEALTH AND SAFETY IMPACTS OF NUCLEAR, GEOTHERMAL, AND FOSSIL-FUEL ELECTRIC GENERATION IN CALIFORNIA  

E-Print Network (OSTI)

Fuel and Geo­ thermal Power Plants," by G.D. Case, T.A.produces thermal energy, from the nuclear power plant, whichthermal, or the study "large" plants about one about 1000 sixth MW size of current The large nuclear power plants (

Nero, A.V.

2010-01-01T23:59:59.000Z

162

Direct Carbon Conversion: Application to the Efficient Conversion of Fossil Fuels to Electricity  

DOE Green Energy (OSTI)

We introduce a concept for efficient conversion of fossil fuels to electricity that entails the decomposition of fossil-derived hydrocarbons into carbon and hydrogen, and electrochemical conversion of these fuels in separate fuel cells. Carbon/air fuel cells have the advantages of near zero entropy change and associated heat production (allowing 100% theoretical conversion efficiency). The activities of the C fuel and CO{sub 2} product are invariant, allowing constant EMF and full utilization of fuel in single pass mode of operation. System efficiency estimates were conducted for several routes involving sequential extraction of a hydrocarbon from the fossil resource by (hydro) pyrolysis followed by thermal decomposition. The total energy conversion efficiencies of the processes were estimated to be (1) 80% for direct conversion of petroleum coke; (2) 67% HHV for CH{sub 4}; (3) 72% HHV for heavy oil (modeled using properties of decane); (4) 75.5% HHV (83% LHV) for natural gas conversion with a Rankine bottoming cycle for the H{sub 2} portion; and (5) 69% HHV for conversion of low rank coals and lignite through hydrogenation and pyrolysis of the CH{sub 4} intermediate. The cost of carbon fuel is roughly $7/GJ, based on the cost of the pyrolysis step in the industrial furnace black process. Cell hardware costs are estimated to be less than $500/kW.

Cooper, J F; Cherepy, N; Berry, G; Pasternak, A; Surles, T; Steinberg, M

2001-03-07T23:59:59.000Z

163

Annual Fossil-Fuel CO2 Emissions: Global Stable Carbon Isotopic Signature  

NLE Websites -- All DOE Office Websites (Extended Search)

2 2 data Data image Documentation Contributors R.J. Andres, T.A. Boden, and G. Marland The 2012 revision of this database contains estimates of the annual, global mean value of Ī´ 13C of CO2 emissions from fossil-fuel consumption and cement manufacture for 1751-2009. These estimates of the carbon isotopic signature account for the changing mix of coal, petroleum, and natural gas being consumed and for the changing mix of petroleum from various producing areas with characteristic isotopic signatures. This time series of global fossil-fuel del 13C signature provides an additional constraint for balancing the sources and sinks of the global carbon cycle and complements the atmospheric Ī´ 13C measurements that are used to partition the uptake of fossil carbon emissions among the ocean, atmosphere, and terrestrial

164

Annual Fossil-Fuel CO2 Emissions: Global Stable Carbon Isotopic Signature  

NLE Websites -- All DOE Office Websites (Extended Search)

3 3 data Data image Documentation Contributors R.J. Andres, T.A. Boden, and G. Marland The 2013 revision of this database contains estimates of the annual, global mean value of Ī´ 13C of CO2 emissions from fossil-fuel consumption and cement manufacture for 1751-2010. These estimates of the carbon isotopic signature account for the changing mix of coal, petroleum, and natural gas being consumed and for the changing mix of petroleum from various producing areas with characteristic isotopic signatures. This time series of global fossil-fuel del 13C signature provides an additional constraint for balancing the sources and sinks of the global carbon cycle and complements the atmospheric Ī´ 13C measurements that are used to partition the uptake of fossil carbon emissions among the ocean, atmosphere, and terrestrial

165

Annual Fossil-Fuel CO2 Emissions: Global Stable Carbon Isotopic Signature  

NLE Websites -- All DOE Office Websites (Extended Search)

1 1 data Data image Documentation Contributors R.J. Andres, T.A. Boden, and G. Marland The 2011 revision of this database contains estimates of the annual, global mean value of del 13C of CO2 emissions from fossil-fuel consumption and cement manufacture for 1751-2008. These estimates of the carbon isotopic signature account for the changing mix of coal, petroleum, and natural gas being consumed and for the changing mix of petroleum from various producing areas with characteristic isotopic signatures. This time series of global fossil-fuel del 13C signature provides an additional constraint for balancing the sources and sinks of the global carbon cycle and complements the atmospheric del 13C measurements that are used to partition the uptake of fossil carbon emissions among the ocean, atmosphere, and terrestrial

166

High resolution fossil fuel combustion CO2 emission fluxes for the United States  

SciTech Connect

Quantification of fossil fuel CO{sub 2} emissions at fine space and time resolution is emerging as a critical need in carbon cycle and climate change research. As atmospheric CO{sub 2} measurements expand with the advent of a dedicated remote sensing platform and denser in situ measurements, the ability to close the carbon budget at spatial scales of {approx}100 km{sup 2} and daily time scales requires fossil fuel CO{sub 2} inventories at commensurate resolution. Additionally, the growing interest in U.S. climate change policy measures are best served by emissions that are tied to the driving processes in space and time. Here we introduce a high resolution data product (the 'Vulcan' inventory: www.purdue.edu/eas/carbon/vulcan/) that has quantified fossil fuel CO{sub 2} emissions for the contiguous U.S. at spatial scales less than 100 km{sup 2} and temporal scales as small as hours. This data product, completed for the year 2002, includes detail on combustion technology and 48 fuel types through all sectors of the U.S. economy. The Vulcan inventory is built from the decades of local/regional air pollution monitoring and complements these data with census, traffic, and digital road data sets. The Vulcan inventory shows excellent agreement with national-level Department of Energy inventories, despite the different approach taken by the DOE to quantify U.S. fossil fuel CO{sub 2} emissions. Comparison to the global 1{sup o} x 1{sup o} fossil fuel CO{sub 2} inventory, used widely by the carbon cycle and climate change community prior to the construction of the Vulcan inventory, highlights the space/time biases inherent in the population-based approach.

Gurney, Kevin R.; Mendoza, Daniel L.; Zhou, Yuyu; Fischer, Marc L.; Miller, Chris C.; Geethakumar, Sarath; de la Rue du Can, Stephane

2009-03-19T23:59:59.000Z

167

High resolution fossil fuel combustion CO{sub 2} emission fluxes for the United States  

SciTech Connect

Quantification of fossil fuel CO{sub 2} emissions at fine space and time resolution is emerging as a critical need in carbon cycle and climate change research. As atmospheric CO{sub 2} measurements expand with the advent of a dedicated remote sensing platform and denser in situ measurements, the ability to close the carbon budget at spatial scales of about 100 km{sup 2} and daily time scales requires fossil fuel CO{sub 2} inventories at commensurate resolution. Additionally, the growing interest in U.S. climate change policy measures are best served by emissions that are tied to the driving processes in space and time. Here we introduce a high resolution data product (the 'Vulcan' inventory: www.purdue.edu/eas/carbon/vulcan/) that has quantified fossil fuel CO{sub 2} emissions for the contiguous U.S. at spatial scales less than 100 km{sup 2} and temporal scales as small as hours. This data product, completed for the year 2002, includes detail on combustion technology and 48 fuel types through all sectors of the U.S. economy. The Vulcan inventory is built from the decades of local/regional air pollution monitoring and complements these data with census, traffic, and digital road data sets. The Vulcan inventory shows excellent agreement with national-level Department of Energy inventories, despite the different approach taken by the DOE to quantify U.S. fossil fuel CO{sub 2} emissions. Comparison to the global 1{sup o} x 1{sup o} fossil fuel CO{sub 2} inventory, used widely by the carbon cycle and climate change community prior to the construction of the Vulcan inventory, highlights the space/time biases inherent in the population-based approach. 39 refs., 5 figs., 1 tab.

Kevin R. Gurney; Daniel L. Mendoza; Yuyu Zhou; Marc L. Fischer; Chris C. Miller; Sarath Geethakumar; Stephane de la Rue du Can [Purdue University, West Lafayette, IN (United States). Department of Earth and Atmospheric Sciences/Department of Agronomy

2009-07-15T23:59:59.000Z

168

High resolution fossil fuel combustion CO2 emission fluxes for the United States  

SciTech Connect

Quantification of fossil fuel CO{sub 2} emissions at fine space and time resolution is emerging as a critical need in carbon cycle and climate change research. As atmospheric CO{sub 2} measurements expand with the advent of a dedicated remote sensing platform and denser in situ measurements, the ability to close the carbon budget at spatial scales of {approx}100 km{sup 2} and daily time scales requires fossil fuel CO{sub 2} inventories at commensurate resolution. Additionally, the growing interest in U.S. climate change policy measures are best served by emissions that are tied to the driving processes in space and time. Here we introduce a high resolution data product (the 'Vulcan' inventory: www.purdue.edu/eas/carbon/vulcan/) that has quantified fossil fuel CO{sub 2} emissions for the contiguous U.S. at spatial scales less than 100 km{sup 2} and temporal scales as small as hours. This data product, completed for the year 2002, includes detail on combustion technology and 48 fuel types through all sectors of the U.S. economy. The Vulcan inventory is built from the decades of local/regional air pollution monitoring and complements these data with census, traffic, and digital road data sets. The Vulcan inventory shows excellent agreement with national-level Department of Energy inventories, despite the different approach taken by the DOE to quantify U.S. fossil fuel CO{sub 2} emissions. Comparison to the global 1{sup o} x 1{sup o} fossil fuel CO{sub 2} inventory, used widely by the carbon cycle and climate change community prior to the construction of the Vulcan inventory, highlights the space/time biases inherent in the population-based approach.

Gurney, Kevin R.; Mendoza, Daniel L.; Zhou, Yuyu; Fischer, Marc L.; Miller, Chris C.; Geethakumar, Sarath; de la Rue du Can, Stephane

2009-03-19T23:59:59.000Z

169

Western fossil fuels R and D public meeting: Summary proceedings  

SciTech Connect

A public meeting was convened by the Department of Energy (DOE) in Denver, Colorado, on Wednesday, July 26, 1989, at The Registry Hotel, in order to obtain public views and comments on the development of techniques which could offer the potential to improve the economic competitiveness and increased utilization of Western Fossil Energy Resources. In the sections that follow, brief descriptions are provided of background issues and how the meeting was conducted. Subsequent chapters of this report present the discussions that ensued at the meeting, and the views, recommendations, and concerns that were expressed by attendees. Finally, the report includes a summary of the written comments that were received, and an appendix which contains a list of the organizations that were represented at the public meeting.

1989-10-01T23:59:59.000Z

170

Small Scale SOFC Demonstration Using Bio-Based and Fossil Fuels - Technology Management, Inc.  

NLE Websites -- All DOE Office Websites (Extended Search)

Small Scale SOFC Demonstration Using Small Scale SOFC Demonstration Using Bio-based and Fossil Fuels-Technology Management, Inc. Background In this congressionally directed project, Technology Management, Inc. (TMI) will develop and demonstrate a residential scale prototype solid oxide fuel cell (SOFC) system at end-user sites. These small-scale systems would operate continuously on either conventional or renewable biofuels, producing cost effective, uninterruptible

171

Liquid fossil-fuel technology. Quarterly technical progress report, January-March 1982  

Science Conference Proceedings (OSTI)

Highlights of research activities at Bartlesville Energy Technology Center for the quarter ending March 1982 are summarized. Major research areas are: liquid fossil fuel cycle; extraction (resource assessment and enhanced production); processing (characterization, thermodynamics, processing technology); utilization; and product integration and technology transfer. Special reports include: EOR data base - major new industry tool; properties of crude oils available via telephone hookup; alternative fuels data bank stresses transportation. (ATT)

Linville, B. (ed.)

1982-07-01T23:59:59.000Z

172

Drum type fossil fueled power plant control based on fuzzy inverse MIMO model  

Science Conference Proceedings (OSTI)

In this paper, a new fuzzy controller is proposed based on inverse model of boiler-turbine system. Gain scheduling scheme is used to keep feedback rule as close as possible to optimal condition while generating plant Input/Output data. Interaction between ... Keywords: ANFIS, drum type fossil fueled power plant (FFPP), interaction, inverse model control, nonlinear model, robustness

Ali Ghaffari; Mansour Nikkhah Bahrami; Hesam Parsa

2006-06-01T23:59:59.000Z

173

The Iron Age & Coal-based Coke: A Neglected Case of Fossil-fuel Dependence  

E-Print Network (OSTI)

The Iron Age & Coal-based Coke: A Neglected Case of Fossil-fuel Dependence by Vaclav Smil September share of their primary energies from renewable sources. Steel & Coal-Derived Coke Here is another important: steel's fundamental dependence on coal-derived coke with no practical substitutes on any rational

Smil, Vaclav

174

Carbon capture technology: future fossil fuel use and mitigating climate change  

E-Print Network (OSTI)

Carbon capture technology: future fossil fuel use and mitigating climate change DR N FloRiN aND DR P FeNNell executive summary What is carbon capture and storage? Carbon Capture and Storage (CCS) refers to the set of technologies devel- oped to capture carbon dioxide (CO2) gas from the exhausts

175

New improved standard for electron probe determination of organic sulfur in fossil fuels  

Science Conference Proceedings (OSTI)

This paper reports on petroleum coke that is stable under an electron beam and contains a uniform sulfur content. Hence, it is a suitable standard for analysis of organic sulfur content of coal. It should be as applicable for analysis of organic sulfur in other fossil fuels. This standard is available for distribution.

Harris, L.A.; Raymond, R. Jr.; Gooley, R.

1980-01-01T23:59:59.000Z

176

2007-No54-BoilingPoint Health and Greenhouse Gas Impacts of Biomass and Fossil Fuel  

E-Print Network (OSTI)

2007-No54-BoilingPoint Theme Health and Greenhouse Gas Impacts of Biomass and Fossil Fuel Energy nations. In sub-Saharan Africa (SSA), biomass provides more than 90% of household energy needs in many nations. The combustion of biomass emits pollutants that currently cause over 1.6 million annual deaths

Kammen, Daniel M.

177

Impacts of Wind and Solar on Fossil-Fueled Generators: Preprint  

DOE Green Energy (OSTI)

High penetrations of wind and solar power will impact the operations of the remaining generators on the power system. Regional integration studies have shown that wind and solar may cause fossil-fueled generators to cycle on and off and ramp down to part load more frequently and potentially more rapidly. Increased cycling, deeper load following, and rapid ramping may result in wear-and-tear impacts on fossil-fueled generators that lead to increased capital and maintenance costs, increased equivalent forced outage rates, and degraded performance over time. Heat rates and emissions from fossil-fueled generators may be higher during cycling and ramping than during steady-state operation. Many wind and solar integration studies have not taken these increased cost and emissions impacts into account because data have not been available. This analysis considers the cost and emissions impacts of cycling and ramping of fossil-fueled generation to refine assessments of wind and solar impacts on the power system.

Lew, D.; Brinkman, G.; Kumar, N.; Besuner, P.; Agan, D.; Lefton, S.

2012-08-01T23:59:59.000Z

178

Inorganic and Organic Constituents in Fossil Fuel Combustion Residues, Volumes 1 and 2  

Science Conference Proceedings (OSTI)

Accurate prediction of groundwater contamination from solid-waste disposal sites requires leaching rates for fossil fuel combustion waste chemicals. In a wide-ranging literature review, this study obtained data on 28 inorganic constituents and identified the need for new data to improve leachate composition prediction models.

1987-08-01T23:59:59.000Z

179

Emission Factors Handbook: Guidelines for Estimating Trace Substance Emissions from Fossil Fuel Steam Electric Plants  

Science Conference Proceedings (OSTI)

The "Emission Factors Handbook" provides a tool for estimating trace substances emissions from fossil-fuel-fired power plants. The suggested emission factors are based on EPRI and Department of Energy (DOE) field measurements conducted at over 50 power plants using generally consistent sampling and analytical protocols. This information will help utility personnel estimate air toxic emissions for permitting purposes.

2002-04-10T23:59:59.000Z

180

Liquid fossil-fuel technology. Quarterly technical progress report, April-June 1982  

SciTech Connect

This report primarily covers in-house oil, gas, and synfuel research and lists the contracted research. The report is broken into the following areas: liquid fossil fuel cycle, extraction, processing, utilization, and project integration and technology transfer. BETC publications are listed. (DLC)

Linville, B. (ed.)

1982-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "lighting fossil fuels" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Liquid fossil fuel technology. Quarterly technical progress report, January-March 1981  

SciTech Connect

The Bartlesville Energy Technology Center's research activities are summarized under the following headings: liquid fossil fuel cycle; extraction which is subdivided into resource assessment and production; liquid processing which includes characterization of liquids from petroleum, coal, shale and other alternate sources, thermodynamics and process technology; utilization; and project integration and technology transfer. (ATT)

Not Available

1981-08-01T23:59:59.000Z

182

Liquid fossil fuel technology. Quarterly technical progress report, October-December 1980  

Science Conference Proceedings (OSTI)

Highlights of research activities at BETC during the past quarter are summarized in this document. Major research areas include: liquid fossil fuel cycle, extraction (resource assessment and enhanced production); processing (characterization, thermodynamics, and process technology); utilization; and product integration and technology transfer.

Not Available

1981-05-01T23:59:59.000Z

183

Spatial Relationships of Sector-Specific Fossil-fuel CO2 Emissions in the United States  

Science Conference Proceedings (OSTI)

Quantification of the spatial distribution of sector-specific fossil fuel CO2 emissions provides strategic information to public and private decision-makers on climate change mitigation options and can provide critical constraints to carbon budget studies being performed at the national to urban scales. This study analyzes the spatial distribution and spatial drivers of total and sectoral fossil fuel CO2 emissions at the state and county levels in the United States. The spatial patterns of absolute versus per capita fossil fuel CO2 emissions differ substantially and these differences are sector-specific. Area-based sources such as those in the residential and commercial sectors are driven by a combination of population and surface temperature with per capita emissions largest in the northern latitudes and continental interior. Emission sources associated with large individual manufacturing or electricity producing facilities are heterogeneously distributed in both absolute and per capita metrics. The relationship between surface temperature and sectoral emissions suggests that the increased electricity consumption due to space cooling requirements under a warmer climate may outweigh the savings generated by lessened space heating. Spatial cluster analysis of fossil fuel CO2 emissions confirms that counties with high (low) CO2 emissions tend to be clustered close to other counties with high (low) CO2 emissions and some of the spatial clustering extends to multi-state spatial domains. This is particularly true for the residential and transportation sectors, suggesting that emissions mitigation policy might best be approached from the regional or multi-state perspective. Our findings underscore the potential for geographically focused, sector-specific emissions mitigation strategies and the importance of accurate spatial distribution of emitting sources when combined with atmospheric monitoring via aircraft, satellite and in situ measurements. Keywords: Fossil-fuel; Carbon dioxide emissions; Sectoral; Spatial cluster; Emissions mitigation policy

Zhou, Yuyu; Gurney, Kevin R.

2011-07-01T23:59:59.000Z

184

POWER PLANT RELIABILITY-AVAILABILITY AND STATE REGULATION. VOLUME 7 OF THE FINAL REPORT ON HEALTH AND SAFETY IMPACTS OF NUCLEAR, GEOTHERMAL, AND FOSSIL-FUEL ELECTRIC GENERATION IN CALIFORNIA  

E-Print Network (OSTI)

and Related Standards for Fossil-Fuel and Geo- thermal Powerposed Nuclear, Geothermal, and Fossil-Fuel Sites and Facili-NUCLEAR, GEOTHERMAL, AND FOSSIL-FUEL ELECTRIC GENERATION IN

Nero, A.V.

2010-01-01T23:59:59.000Z

185

CONTROL OF POPULATION DENSITIES SURROUNDING NUCLEAR POWER PLANTS. VOLUME 5 OF THE FINAL REPORT ON HEALTH AND SAFETY IMPACTS OF NUCLEAR, GEOTHERMAL, AND FOSSIL-FUEL ELECTRIC GENERATION IN CALIFORNIA  

E-Print Network (OSTI)

and Related Standards for Fossil-Fuel and Geo- thermal Powerposed Nuclear, Geothermal, and Fossil-Fuel Sites and Facili-and RelatedStandards for Fossil-Fuel and Geothermal Power

Nero, jA.V.

2010-01-01T23:59:59.000Z

186

Technical considerations in repowering a nuclear plant for fossil fueled operation  

SciTech Connect

Repowering involves replacement of the reactor by a fossil fuel source of steam. This source can be a conventional fossil fueled boiler or the heat recovery steam generator (HRSG) on a gas turbine exhaust. The existing steam turbine plant is used to the extent possible. Alternative fuels for repowering a nuclear plant are coal, natural gas and oil. In today`s world oil is not usually an alternative. Selection of coal or natural gas is largely a matter of availability of the fuel near the location of the plant. Both the fossil boiler and the HRSG produce steam at higher pressures and temperatures than the throttle conditions for a saturated steam nuclear turbine. It is necessary to match the steam conditions from the new source to the existing turbine as closely as possible. Technical approaches to achieve a match range from using a topping turbine at the front end of the cycle to attemperation of the throttle steam with feedwater. The electrical output from the repowered plant is usually greater than that of the original nuclear fueled design. This requires consideration of the ability to use the excess electricity. Interfacing of the new facility with the existing turbine plant requires consideration of facility layout and design. Site factors must also be considered, especially for a coal fired boiler, since rail and coal handling facilities must be added to a site for which these were not considered. Additional site factors that require consideration are ash handling and disposal.

Patti, F.J.

1996-03-01T23:59:59.000Z

187

METHODOLOGIES FOR REVIEW OF THE HEALTH AND SAFETY ASPECTS OF PROPOSED NUCLEAR, GEOTHERMAL, AND FOSSIL-FUEL SITES AND FACILITIES. VOLUME 9 OF THE FINAL REPORT ON HEALTH AND SAFETY IMPACTS OF NUCLEAR, GEOTHERMAL, AND FOSSIL-FUEL ELECTRIC GENERATION IN CALIFORNIA  

E-Print Network (OSTI)

prevent serious damage to the nuclear fuel, since it is thetransportation: for nuclear plants, fuel handling is carriedSpecific Fossil Fuel Geothermal Nuclear Solid Waste Disposal

Nero, A.V.

2010-01-01T23:59:59.000Z

188

Timing is everything : along the fossil fuel transition pathway.  

Science Conference Proceedings (OSTI)

People save for retirement throughout their career because it is virtually impossible to save all you'll need in retirement the year before you retire. Similarly, without installing incremental amounts of clean fossil, renewable or transformative energy technologies throughout the coming decades, a radical and immediate change will be near impossible the year before a policy goal is set to be in place. Therefore, our research question is,To meet our desired technical and policy goals, what are the factors that affect the rate we must install technology to achieve these goals in the coming decades?' Existing models do not include full regulatory constraints due to their often complex, and inflexible approaches to solve foroptimal' engineering instead ofrobust' and multidisciplinary solutions. This project outlines the theory and then develops an applied software tool to model the laboratory-to-market transition using the traditional technology readiness level (TRL) framework, but develops subsequent and a novel regulatory readiness level (RRL) and market readiness level (MRL). This tool uses the ideally-suited system dynamics framework to incorporate feedbacks and time delays. Future energy-economic-environment models, regardless of their programming platform, may adapt this software model component framework ormodule' to further vet the likelihood of new or innovative technology moving through the laboratory, regulatory and market space. The prototype analytical framework and tool, called the Technology, Regulatory and Market Readiness Level simulation model (TRMsim) illustrates the interaction between technology research, application, policy and market dynamics as they relate to a new or innovative technology moving from the theoretical stage to full market deployment. The initial results that illustrate the model's capabilities indicate for a hypothetical technology, that increasing the key driver behind each of the TRL, RRL and MRL components individually decreases the time required for the technology to progress through each component by 63, 68 and 64%, respectively. Therefore, under the current working assumptions, to decrease the time it may take for a technology to move from the conceptual stage to full scale market adoption one might consider expending additional effort to secure regulatory approval and reducing the uncertainty of the technology's demand in the marketplace.

Kobos, Peter Holmes; Walker, La Tonya Nicole; Malczynski, Leonard A.

2013-10-01T23:59:59.000Z

189

Timing is everything : along the fossil fuel transition pathway.  

SciTech Connect

People save for retirement throughout their career because it is virtually impossible to save all you'll need in retirement the year before you retire. Similarly, without installing incremental amounts of clean fossil, renewable or transformative energy technologies throughout the coming decades, a radical and immediate change will be near impossible the year before a policy goal is set to be in place. Therefore, our research question is,To meet our desired technical and policy goals, what are the factors that affect the rate we must install technology to achieve these goals in the coming decades?' Existing models do not include full regulatory constraints due to their often complex, and inflexible approaches to solve foroptimal' engineering instead ofrobust' and multidisciplinary solutions. This project outlines the theory and then develops an applied software tool to model the laboratory-to-market transition using the traditional technology readiness level (TRL) framework, but develops subsequent and a novel regulatory readiness level (RRL) and market readiness level (MRL). This tool uses the ideally-suited system dynamics framework to incorporate feedbacks and time delays. Future energy-economic-environment models, regardless of their programming platform, may adapt this software model component framework ormodule' to further vet the likelihood of new or innovative technology moving through the laboratory, regulatory and market space. The prototype analytical framework and tool, called the Technology, Regulatory and Market Readiness Level simulation model (TRMsim) illustrates the interaction between technology research, application, policy and market dynamics as they relate to a new or innovative technology moving from the theoretical stage to full market deployment. The initial results that illustrate the model's capabilities indicate for a hypothetical technology, that increasing the key driver behind each of the TRL, RRL and MRL components individually decreases the time required for the technology to progress through each component by 63, 68 and 64%, respectively. Therefore, under the current working assumptions, to decrease the time it may take for a technology to move from the conceptual stage to full scale market adoption one might consider expending additional effort to secure regulatory approval and reducing the uncertainty of the technology's demand in the marketplace.

Kobos, Peter Holmes; Walker, La Tonya Nicole; Malczynski, Leonard A.

2013-10-01T23:59:59.000Z

190

Cheyenne Light, Fuel and Power (Electric) - Residential Energy...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Cheyenne Light, Fuel and Power (Electric) - Residential Energy Efficiency Rebate Program Cheyenne Light, Fuel and Power (Electric) - Residential Energy Efficiency Rebate Program <...

191

A Multi-Pollutant Framework for Evaluating CO2 Control Options for Fossil Fuel Power Plants  

NLE Websites -- All DOE Office Websites (Extended Search)

Multi-Pollutant Framework for Evaluating CO Multi-Pollutant Framework for Evaluating CO 2 Control Options for Fossil Fuel Power Plants Edward S. Rubin (rubin@cmu.edu; 412-268-5897) Anand B. Rao (abr@andrew.cmu.edu; 412-268-5605) Michael B. Berkenpas (mikeb@cmu.edu; 412-268-1088) Carnegie Mellon University EPP Department, Baker Hall 128A Pittsburgh, PA 15213 Abstract As part of DOE/NETL's Carbon Sequestration Program, we are developing an integrated, multi-pollutant modeling framework to evaluate the costs and performance of alternative carbon capture and sequestration technologies for fossil-fueled power plants. The model calculates emissions, costs, and efficiency on a systematic basis at the level of an individual plant or facility. Both new and existing facilities can be modeled, including coal-based or natural gas-based combustion or gasification systems using air or oxygen.

192

Sales of Fossil Fuels Produced from Federal and Indian Lands, FY 2003 through FY 2012  

U.S. Energy Information Administration (EIA) Indexed Site

2 2 May 2013 Independent Statistics & Analysis www.eia.gov U.S. Department of Energy Washington, DC 20585 U.S. Energy Information Administration | Sales of Fossil Fuels Produced on Federal and Indian Lands, FY 2003 through FY 2012 ii This report was prepared by the U.S. Energy Information Administration (EIA), the statistical and analytical agency within the U.S. Department of Energy. By law, EIA's data, analyses, and forecasts are independent of approval by any other officer or employee of the United States Government. The views in this report therefore should not be construed as representing those of the Department of Energy or other federal agencies. May 2013 U.S. Energy Information Administration | Sales of Fossil Fuels Produced on Federal and Indian Lands, FY 2003 through FY 2012 1

193

Sales of Fossil Fuels Produced from Federal and Indian Lands, FY 2003 through FY 2011  

U.S. Energy Information Administration (EIA) Indexed Site

1 1 March 2012 Independent Statistics & Analysis www.eia.gov U.S. Department of Energy Washington, DC 20585 U.S. Energy Information Administration | Sales of Fossil Fuels Produced on Federal and Indian Lands, FY 2003 through FY 2011 i This report was prepared by the U.S. Energy Information Administration (EIA), the statistical and analytical agency within the U.S. Department of Energy. By law, EIA's data, analyses, and forecasts are independent of approval by any other officer or employee of the United States Government. The views in this report therefore should not be construed as representing those of the Department of Energy or other Federal agencies. March 2012 U.S. Energy Information Administration | Sales of Fossil Fuels Produced on Federal and Indian Lands, FY 2003 through FY 2011 1

194

Progress in Direct Experiments on the Ocean Disposal of Fossil Fuel CO2  

NLE Websites -- All DOE Office Websites (Extended Search)

for the First National Conference on Carbon Sequestration, Washington D.C. May 14-17, 2001 for the First National Conference on Carbon Sequestration, Washington D.C. May 14-17, 2001 US DoE-NETL Progress in Direct Experiments on the Ocean Disposal of Fossil Fuel CO 2 Peter G. Brewer (brpe@mbari.org; 831-626-6618) Monterey Bay Aquarium Research Institute 7700 Sandholdt Road Moss Landing CA 95039 Introduction. My laboratory has now been engaged in carrying out small scale controlled field experiments on the ocean sequestration of fossil fuel CO 2 for about five years, and the field has changed enormously in that time. We have gone from theoretical assessments to experimental results, and from cartoon sketches of imagined outcomes to high-resolution video images of experiments on the ocean floor shared around the world. It seems appropriate therefore to give a brief review, albeit one very much from a

195

Browse by Discipline -- E-print Network Subject Pathways: Fossil Fuels --  

Office of Scientific and Technical Information (OSTI)

Fossil Fuels Fossil Fuels Go to Research Groups Preprints Provided by Individual Scientists: A B C D E F G H I J K L M N O P Q R S T U V W X Y Z Abu-Khamsin, Sidqi (Sidqi Abu-Khamsin) - Department of Petroleum Engineering, King Fahd University of Petroleum and Minerals Al-Khattaf, Sulaiman (Sulaiman Al-Khattaf) - Department of Chemical Engineering, King Fahd University of Petroleum and Minerals Al-Majed, Abdulaziz Abdullah (Abdulaziz Abdullah Al-Majed) - Center for Petroleum and Minerals at the Research Institute & Department of Petroleum Engineering, King Fahd University of Petroleum and Minerals Ali, Mohammed (Mohammed Ali) - Petroleum Institute (Abu Dhabi) Go back to Individual Researchers Collections: A B C D E F G H I J K L M N O P Q R S

196

September 2013 Most Viewed Documents for Fossil Fuels | OSTI, US Dept of  

Office of Scientific and Technical Information (OSTI)

Fossil Fuels Fossil Fuels EXPERIMENTAL AND THEORETICAL DETERMINATION OF HEAVY OIL VISCOSITY UNDER RESERVOIR CONDITIONS Dr. Jorge Gabitto; Maria Barrufet (2003) 42 Molecular catalytic hydrogenation of aromatic hydrocarbons and hydrotreating of coal liquids. Yang, Shiyong; Stock, L.M. (1996) 36 Fluid Dynamics in Sucker Rod Pumps Cutler, R.P.; Mansure, A.J. (1999) 35 Controlled low strength materials (CLSM), reported by ACI Committee 229 Rajendran, N. (1997) 35 Fundamental Research on Percussion Drilling: Improved rock mechanics analysis, advanced simulation technology, and full-scale laboratory investigations Michael S. Bruno (2005) 35 Autothermal Reforming of Natural Gas to Synthesis Gas Steven F. Rice; David P. Mann (2007) 34 Evaluation of Wax Deposition and Its Control During Production of

197

Cycling Operation of Fossil-Fueled Plants: Volume 6: Evaluation and Strategy  

Science Conference Proceedings (OSTI)

This report, the sixth volume in a series (GS-7219), describes tools to help utilities define and evaluate strategies for cycling fossil-fueled power plants. To assist companies in their cycling decisions, the report describes far-reaching guidelines on cycling units, including economics, the effects on equipment life, and operations and maintenance. In developing a stepwise plant to cycling operation, EPRI investigators reviewed an extensive database of worldwide and U.S. experience with cycling. The re...

1993-10-01T23:59:59.000Z

198

Reduction of nitrogen oxide emissions from fossil fuels. (Latest citations from Pollution abstracts). Published Search  

Science Conference Proceedings (OSTI)

The bibliography contains citations concerning the removal of nitrogen compounds from fossil fuels and their post-combustion emissions. Removal methods include biological denitrification, fluidized bed combustion, and flue gas denitrification. Applications to utilities, petroleum refineries, and other industries are presented. The design of nitrogen control systems and process optimization are described. (Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

NONE

1996-01-01T23:59:59.000Z

199

Reduction of nitrogen oxide emissions from fossil fuels. (Latest citations from Pollution abstracts). Published Search  

SciTech Connect

The bibliography contains citations concerning the removal of nitrogen compounds from fossil fuels and their post-combustion emissions. Removal methods include biological denitrification, fluidized bed combustion, and flue gas denitrification. Applications to utilities, petroleum refineries, and other industries are presented. The design of nitrogen control systems and process optimization are described. (Contains a minimum of 92 citations and includes a subject term index and title list.)

NONE

1995-01-01T23:59:59.000Z

200

Reduction of nitrogen oxide emissions from fossil fuels. (Latest citations from Pollution abstracts). Published Search  

SciTech Connect

The bibliography contains citations concerning the removal of nitrogen compounds from fossil fuels and their post-combustion emissions. Removal methods include biological denitrification, fluidized bed combustion, and flue gas denitrification. Applications to utilities, petroleum refineries, and other industries are presented. The design of nitrogen control systems and process optimization are described. (Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

NONE

1997-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "lighting fossil fuels" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

3. Fossil-Fuel Subsidy Data from Other Sources Often Conflicts  

E-Print Network (OSTI)

A review of current gaps and needed changes to achieve success By Doug Koplow with contributions from Steve KretzmannAcknowledgments Thanks to Ronald Steenblik (Organisation for Economic Cooperation and Development) and Patricia Lerner (Greenpeace International) for their valuable suggestions and input on earlier drafts of this document. All remaining errors and omissions are the responsibility of the authors. © 2010, Earth Track, Inc., and Oil Change International For more information on fossil fuel subsidies please visit:

G Fossil-fuel

2010-01-01T23:59:59.000Z

202

Preliminary Guidelines for Integrated Controls and Monitoring for Fossil Fuel Plants  

Science Conference Proceedings (OSTI)

Modern digital distributed control systems offer a large number of advantages to operators of fossil fuel plants, and many utilities will be replacing their existing control systems with them. This report, consisting of the preliminary guidelines developed by the Southern California Edison Company during the first phase of its El Segundo power plant, units 3 and 4, retrofit project, offers advice applicable to other phased upgrades, complete changeouts, or new installations.

1990-07-09T23:59:59.000Z

203

Evaluation of Innovative Fossil Fuel Power Plants with CO2 Removal  

Science Conference Proceedings (OSTI)

This interim report presents initial results of an ongoing study of the potential cost of electricity (COE) produced in both conventional and innovative fossil fueled power plants that incorporate carbon dioxide (CO2) removal for subsequent sequestration or use. The baseline cases are natural gas combined cycle (NGCC) and ultra-supercritical pulverized coal (PC) plants, with and without post combustion CO2 removal, and integrated gasification combined cycle (IGCC) plants, with and without pre-combustion ...

2000-12-07T23:59:59.000Z

204

Liquid fossil fuel technology. Quarterly technical progress rport, April-June 1983  

Science Conference Proceedings (OSTI)

Highlights of research activities for the quarter ending June 1983 are summarized under the following headings: liquid fossil fuel; extraction; processing; utilization; and project integration and technology transfer. BETC publications are listed. Titles of featured articles are: (1) chemical flooding field test produces 975,000 barrels of oil; (2) chemicals boost recovery in steam-drive tests; (3) North Dakota carbon dioxide minitest successful; (4) carbon dioxide EOR reports issued; and (5) BETC slated for new management and new name. (ATT)

Linville, B. (ed.)

1983-10-01T23:59:59.000Z

205

Liquid-fossil-fuel technology. Quarterly technical progress report, July-September 1982  

SciTech Connect

Progress reports for the quarter ending September 1982 are presented for the following major tasks: liquid fossil fuel cycle; extraction (resource assessment, enhanced recovery); liquid processing (characterization of petroleum, coal liquids, thermodynamics, process technology); utilization; project integration and technology transfer. Feature articles for this quarter are: new laboratory enhances BETC capability in mass spectrometry; and BETC tests on diesel particulate extracts indicate potential health risks. (ATT)

Linville, B. (ed.)

1983-01-01T23:59:59.000Z

206

Recent world fossil-fuel and primary energy production and consumption trends  

SciTech Connect

Worldwide fossil fuel and primary electric power production figures since 1973 show a recent drop in oil production similar to the 1975 decline after recession. Crude oil consumption has declined since 1978, while production has increased. Natural gas production and consumption continue to increase as does power generation from all energy sources. Differences are noted between data sources and comparisons made of the validity of the data. 13 references, 7 figures, 12 tables. (DCK)

Parent, J.D.

1982-08-02T23:59:59.000Z

207

Integration and Optimization of Trigeneration Systems with Solar Energy, Biofuels, Process Heat and Fossil Fuels  

E-Print Network (OSTI)

The escalating energy prices and the increasing environmental impact posed by the industrial usage of energy have spurred industry to adopt various approaches to conserving energy and mitigating negative environmental impact. This work aims at developing a systematic approach to integrate solar energy into industrial processes to drive thermal energy transfer systems producing power, cool, and heat. Solar energy is needed to be integrated with other different energy sources (biofuels, fossil fuels, process waste heat) to guarantee providing a stable energy supply, as industrial process energy sources must be a stable and reliable system. The thermal energy transform systems (turbines, refrigerators, heat exchangers) must be selected and designed carefully to provide the energy demand at the different forms (heat, cool, power). This dissertation introduces optimization-based approaches to address the following problems: • Design of cogeneration systems with solar and fossil systems • Design and integration of solar-biofuel-fossil cogeneration systems • Design of solar-assisted absorption refrigeration systems and integration with the processing facility • Development of thermally-coupled dual absorption refrigeration systems, and • Design of solar-assisted trigeneration systems Several optimization formulations are introduced to provide methodical and systematic techniques to solve the aforementioned problems. The approach is also sequenced into interacting steps. First, heat integration is carried out to minimize industrial heating and cooling utilities. Different forms of external-energy sources (e.g., solar, biofuel, fossil fuel) are screened and selected. To optimize the cost and to overcome the dynamic fluctuation of the solar energy and biofuel production systems, fossil fuel is used to supplement the renewable forms of energy. An optimization approach is adopted to determine the optimal mix of energy forms (fossil, bio fuels, and solar) to be supplied to the process, the system specifications, and the scheduling of the system operation. Several case studies are solved to demonstrate the effectiveness and applicability of the devised procedure. The results show that solar trigeneration systems have higher overall performance than the solar thermal power plants. Integrating the absorption refrigerators improves the energy usage and it provides the process by its cooling demand. Thermal coupling of the dual absorption refrigerators increases the coefficient of performance up to 33 percent. Moreover, the process is provided by two cooling levels.

Tora, Eman

2010-12-01T23:59:59.000Z

208

The Temporal and Spatial Distribution of Carbon Dioxide Emissions from Fossil-Fuel Use in North America  

Science Conference Proceedings (OSTI)

Refinements in the spatial and temporal resolution of North American fossil-fuel carbon dioxide (CO2) emissions provide additional information about anthropogenic aspects of the carbon cycle. In North America, the seasonal and spatial patterns ...

J. S. Gregg; L. M. Losey; R. J. Andres; T. J. Blasing; G. Marland

2009-12-01T23:59:59.000Z

209

General Circulation Model Calculations of the Direct Radiative Forcing by Anthropogenic Sulfate and Fossil-Fuel Soot Aerosol  

Science Conference Proceedings (OSTI)

A new radiation code within a general circulation model is used to assess the direct solar and thermal radiative forcing by sulfate aerosol of anthropogenic origin and soot aerosol from fossil-fuel burning. The radiative effects of different ...

J. M. Haywood; D. L. Roberts; A. Slingo; J. M. Edwards; K. P. Shine

1997-07-01T23:59:59.000Z

210

alternative fuel light-duty vehicles  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fuel Light-Duty Vehicles Fuel Light-Duty Vehicles T O F E N E R G Y D E P A R T M E N U E N I T E D S T A T S O F A E R I C A M SUMMARY OF RESULTS FROM THE NATIONAL RENEWABLE ENERGY LABORATORY'S VEHICLE EVALUATION DATA COLLECTION EFFORTS Alternative Fuel Light-Duty Vehicles SUMMARY OF RESULTS FROM THE NATIONAL RENEWABLE ENERGY LABORATORY'S VEHICLE EVALUATION DATA COLLECTION EFFORTS PEG WHALEN KENNETH KELLY ROB MOTTA JOHN BRODERICK MAY 1996 N T Y A U E O F E N E R G D E P A R T M E N I T E D S T A T S O F A E R I C M Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2 Light-Duty Vehicles in the Program . . . . . . . . . . . . . . . . . . . . . . . . . . . .2

211

EA-1778: Proposed Rule, 10 CFR 433 and 435, Energy Conservation and Fossil Fuel-Generated Energy  

Energy.gov (U.S. Department of Energy (DOE))

This EA evaluates the environmental impacts of DOE's Proposed Rule, 10 CFR Part 433, “Energy Conservation and Fossil Fuel-Generated Energy Consumption Reduction Standards for the Design and Construction of New Federal Commercial and Multi-Family High-Rise Residential Buildings” and 10 CFR Part 435, “Energy Conservation and Fossil Fuel-Generated Energy Consumption Reduction Standards for the Design and Construction of New Federal Low-Rise Residential Buildings”.

212

EPRI Ergonomics Handbook for the Electric Power Industry: Ergonomic Interventions for Electrical Workers in Fossil-Fueled Power Plan ts  

Science Conference Proceedings (OSTI)

The EPRI Occupational Health and Safety (OHS) Research Program has provided ergonomic information to the electric energy industry workforce since 1999. This is the fourth EPRI ergonomics handbook; it specifically focuses on tasks performed by electricians who work in fossil-fueled electric power plants. Fossil-fueled power plant electrical work is physically strenuous and can expose workers to musculoskeletal disorders (MSDs), such as carpal tunnel syndrome, low-back pain, or shoulder tendonitis. In an e...

2008-01-11T23:59:59.000Z

213

Long-term tradeoffs between nuclear- and fossil-fuel burning  

SciTech Connect

A global energy/economics/environmental (E{sup 3}) model has been adapted with a nuclear energy/materials model to understand better {open_quotes}top-level{close_quotes}, long-term trade offs between civilian nuclear power, nuclear-weapons proliferation, fossil-fuel burning, and global economic welfare. Using a {open_quotes}business-as-usual{close_quotes} (BAU) point-of-departure case, economic, resource, proliferation-risk implications of plutonium recycle in LAIRs, greenhouse-gas-mitigating carbon taxes, and a range of nuclear energy costs (capital and fuel) considerations have been examined. After describing the essential elements of the analysis approach being developed to support the Los Alamos Nuclear Vision Project, preliminary examples of parametric variations about the BAU base-case scenario are presented. The results described herein represent a sampling from more extensive results collected in a separate report. The primary motivation here is: (a) to compare the BAU basecase with results from other studies; (b) to model on a regionally resolved global basis long-term (to year {approximately}2100) evolution of plutonium accumulation in a variety of forms under a limited range of fuel-cycle scenarios; and (c) to illustrate a preliminary connectivity between risks associated with nuclear proliferation and fossil-fuel burning (e.g., greenhouse-gas accumulations).

Krakowski, R.A.

1996-12-31T23:59:59.000Z

214

Fuel Cell Technologies Office: DOE Light Duty Vehicle Workshop  

NLE Websites -- All DOE Office Websites (Extended Search)

Light Duty Vehicle Light Duty Vehicle Workshop to someone by E-mail Share Fuel Cell Technologies Office: DOE Light Duty Vehicle Workshop on Facebook Tweet about Fuel Cell Technologies Office: DOE Light Duty Vehicle Workshop on Twitter Bookmark Fuel Cell Technologies Office: DOE Light Duty Vehicle Workshop on Google Bookmark Fuel Cell Technologies Office: DOE Light Duty Vehicle Workshop on Delicious Rank Fuel Cell Technologies Office: DOE Light Duty Vehicle Workshop on Digg Find More places to share Fuel Cell Technologies Office: DOE Light Duty Vehicle Workshop on AddThis.com... Publications Program Publications Technical Publications Educational Publications Newsletter Program Presentations Multimedia Conferences & Meetings Annual Merit Review Proceedings Workshop & Meeting Proceedings

215

Energy-efficient air pollution controls for fossil-fueled plants: Technology assessment  

SciTech Connect

The 1990 Clean Air Act Amendments require most fossil-fuel fired power plants to reduce sulfur dioxide, nitrogen oxides, and particulate emissions. While emission-control equipment is available to help most of New York State`s 91 utility units in 31 power plants comply with the new regulations, technologies currently available consume energy, increase carbon dioxide emissions, reduce operating efficiency, and may produce large amounts of solid and/or semisolid byproducts that use additional energy for processing and disposal. This report discribes several pollution-control technologies that are more energy efficient compared to traditional technologies for controlling sulfur dioxide, nitrogen oxide, and particulates, that may have application in New York State. These technologies are either in commercial use, under development, or in the demonstration phase; This report also presents operating characteristics for these technologies and discusses solutions to dispose of pollution-control system byproducts. Estimated energy consumption for emission-control systems relative to a plant`s gross generating capacity is 3 to 5 for reducing up to 90% sulfur dioxide emissions from coal-fired plants. 0.5 to 2.5% for reducing nitrogen oxide emissions by up to 80% from all fossil-fuel fired plants; and 0.5 to 1.5 % for controlling particulate emissions from oil- and coal-fired plants. While fuel switching and/or cofiring with natural gas are options to reduce emissions, these techniques are not considered in this report; the discussion is limited to fossil-fueled steam-generating plants.

Sayer, J.H.

1995-06-01T23:59:59.000Z

216

Historic Patterns of CO{sub 2} Emissions from Fossil Fuels: Implications for Stabilization of Emissions  

DOE R&D Accomplishments (OSTI)

This paper examines the historical record of greenhouse gas emissions since 1950, reviews the prospects for emissions into the future, and projects what would be the short-term outcome if the stated targets of the FCCC were in fact achieved. The examination focuses on the most important of the greenhouse gases, CO{sub 2}. The extensive record of historic CO{sub 2} emissions is explored to ascertain if it is an adequate basis for useful extrapolation into the near future. Global carbon dioxide emissions from fossil fuel consumption have been documented. Emissions grew at 4.3% per year from 1950 until the time of the 1973 oil crisis. Another disruption in growth followed the oil price increases of 1979. Global total emissions have been increasing steadily since the 1982-1983 minimum and have grown by more than 20% since then. At present, emission Of CO{sub 2} from fossil fuel burning is dominated by a few countries: the U.S., the former Soviet Union, China, the developed countries of Europe and Japan. Only 20 countries emit 84% of emissions from all countries. However, rates of growth in many of the developed countries are now very low. In contrast, energy use has grown rapidly over the last 20 years in some of the large, developing economies. Emissions from fossil fuel consumption are now nearly 4 times those from land use change and are the primary cause of measured increases in the atmospheric concentration of CO{sub 2}. The increasing concentration of atmospheric CO{sub 2} has led to rising concern about the possibility of impending changes in the global climate system. In an effort to limit or mitigate potential negative effects of global climate change, 154 countries signed the United Nations Framework Convention on Climate Change (FCCC) in Rio de Janeiro in June, 1992. The FCCC asks all countries to conduct an inventory of their current greenhouse gas emissions setting non-binding targets.

Andres, R. J.; Marland, G.

1994-06-00T23:59:59.000Z

217

Historic patterns of CO{sub 2} emissions from fossil fuels: Implications for stabilization of emissions  

SciTech Connect

This paper examines the historical record of greenhouse gas emissions since 1950, reviews the prospects for emissions into the future, and projects what would be the short-term outcome if the stated targets of the FCCC were in fact achieved. The examination focuses on the most important of the greenhouse gases, CO{sub 2}. The extensive record of historic CO{sub 2} emissions is explored to ascertain if it is an adequate basis for useful extrapolation into the near future. Global carbon dioxide emissions from fossil fuel consumption have been documented. Emissions grew at 4.3% per year from 1950 until the time of the 1973 oil crisis. Another disruption in growth followed the oil price increases of 1979. Global total emissions have been increasing steadily since the 1982-1983 minimum and have grown by more than 20% since then. At present, emission Of CO{sub 2} from fossil fuel burning is dominated by a few countries: the U.S., the former Soviet Union, China, the developed countries of Europe and Japan. Only 20 countries emit 84% of emissions from all countries. However, rates of growth in many of the developed countries are now very low. In contrast, energy use has grown rapidly over the last 20 years in some of the large, developing economies. Emissions from fossil fuel consumption are now nearly 4 times those from land use change and are the primary cause of measured increases in the atmospheric concentration of CO{sub 2}. The increasing concentration of atmospheric CO{sub 2} has led to rising concern about the possibility of impending changes in the global climate system. In an effort to limit or mitigate potential negative effects of global climate change, 154 countries signed the United Nations Framework Convention on Climate Change (FCCC) in Rio de Janeiro in June, 1992. The FCCC asks all countries to conduct an inventory of their current greenhouse gas emissions setting non-binding targets.

Andres, R.J.; Marland, G.

1994-10-01T23:59:59.000Z

218

Geophysical consequences of carbon dioxide generation by fossil fuels. [Melting of polar icecaps  

SciTech Connect

The recent National Academy of Sciences Report ''Energy and Climate'' asserts that the greenhouse effect of CO/sub 2/ generated by the burning of fossil fuels would increase the temperature of the earth by 11/sup 0/F. It is argued and calculations have been carried out to show that the principal effect is the complete melting of the polar icecaps in a few centuries; the resulting inundation of the populated land areas and the coastal cities of the world is even more disastrous. The calculated increase of temperature is only 1.4/sup 0/C.

Fong, P.

1978-01-01T23:59:59.000Z

219

Liquid fossil-fuel technology. Quarterly technical progress report, January-March 1983  

DOE Green Energy (OSTI)

Accomplishments for the quarter ending March 1983 are presented under the following headings: liquid fossil fuel cycle, processing, utilization, and project integration and technology transfer. Feature articles for this quarter are: (1) abandoned oil field reports issued; (2) oilfield water data bank report published; (3) microbial enhanced recovery report issued; (4) polymer-augmented project could be economic today; (5) carbon dioxide EOR estimates given; (6) BETC passes 65th milestone; and (7) fifty achievements for fifty years (1918-1968). BETC publications are also listed. (ATT)

Linville, B. (ed.)

1983-07-01T23:59:59.000Z

220

Fossil Fuel Carbon Dioxide Emissions Data and Data Plots from Project Vulcan  

DOE Data Explorer (OSTI)

Explore the Vulcan website for the Vulcan gridded data, methodological details, publications, plots and analysis.[Taken from "About Project Vulcan" at http://www.purdue.edu/eas/carbon/vulcan/index.php]Also, see the peer-reviewed paper that provides a "core" description for this project: Gurney, K.R., D. Mendoza, Y. Zhou, M Fischer, S. de la Rue du Can, S. Geethakumar, C. Miller (2009) The Vulcan Project: High resolution fossil fuel combustion CO2 emissions fluxes for the United States, Environ. Sci. Technol., 43, doi:10.1021/es900,806c.

Gurney, Kevin [PI and spokesperson for the Vulcan Collaboration

Note: This page contains sample records for the topic "lighting fossil fuels" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Comparative analysis of monetary estimates of external environmental costs associated with combustion of fossil fuels  

SciTech Connect

Public utility commissions in a number of states have begun to explicitly treat costs of environmental externalities in the resource planning and acquisition process (Cohen et al. 1990). This paper compares ten different estimates and regulatory determinations of external environmental costs associated with fossil fuel combustion, using consistent assumptions about combustion efficiency, emissions factors, and resource costs. This consistent comparison is useful because it makes explicit the effects of various assumptions. This paper uses the results of the comparison to illustrate pitfalls in calculation of external environmental costs, and to derive lessons for design of policies to incorporate these externalities into resource planning. 38 refs., 2 figs., 10 tabs.

Koomey, J.

1990-07-01T23:59:59.000Z

222

Liquid fossil fuel technology. Quarterly technical progress report, July-September 1981  

Science Conference Proceedings (OSTI)

Progress accomplished during the quarter ending September 1981 is reported under the following headings: liquid fossil fuel cycle; extraction (reservoir characterization and evaluation, recovery projects, reservoir access, extraction technology, recovery processes and process implementation); liquid processing (characterization, thermodynamics, and process technology); utilization (energy conversion - adaptive engineering, combustion systems assessment, and heat engines/heat recovery); and project integration and technology transfer. Special reports include: air drilling research; fluid injection in reservoirs; target reservoirs in Permian Basin suitable for CO/sub 2/ flooding; heavy oil technology; and the fate of used motor oil/results of a survey.

Linville, B. (ed.)

1982-01-01T23:59:59.000Z

223

Alternative Fuels Data Center: Light-Duty Vehicle Search  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Light-Duty Vehicle Light-Duty Vehicle Search to someone by E-mail Share Alternative Fuels Data Center: Light-Duty Vehicle Search on Facebook Tweet about Alternative Fuels Data Center: Light-Duty Vehicle Search on Twitter Bookmark Alternative Fuels Data Center: Light-Duty Vehicle Search on Google Bookmark Alternative Fuels Data Center: Light-Duty Vehicle Search on Delicious Rank Alternative Fuels Data Center: Light-Duty Vehicle Search on Digg Find More places to share Alternative Fuels Data Center: Light-Duty Vehicle Search on AddThis.com... Light-Duty Vehicle Search Search our light-duty alternative fuel vehicle database to find and compare alternative fuel vehicles and generate printable reports to aid in decision-making. These vehicles might not qualify for vehicle-acquisition

224

A plot study of the potential for Navy utilization of solid waste derived fuels to offset fossil fuels consumption. Final report  

SciTech Connect

A brief study was made to define problems that would be encountered in estimating potential Navy markets for various forms of waste derived fuels. Fossil fuel consumption estimates for boiler plants at several Navy activities were converted to waste derived fuel (WDF) estimates using a set of assumed rules judged technically feasible regarding boiler conversions and confirming fossil fuels and WDF. The results of this first study are presented indicating Navy boilers might represent a significant market for all the WDF a region could produce if the WDF were available in liquid as well as solid forms. The economic feasibility of conversions and WDF production are not addressed in this brief paper.

Capps, A.G.; Duffey-Armstrong, M.; Freeman, R.E.

1978-06-01T23:59:59.000Z

225

Fossil Energy | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Fossil Energy Fossil Energy Below are resources for Tribes on fossil energy. Sales of Fossil Fuels Produced from Federal and Indian Lands, FY 2003 through FY 2011 This paper...

226

Ways Electricity Can Be Used To Replace Fossil Fuels in The French Chemical Industry  

E-Print Network (OSTI)

France energy policy for the year 1990 foresees the following breakdown between various energy sources : renewable sources (including hydraulic) : 11%, coal + natural gas : 30.5%, nuclear : 26.5%, oil : 32%. The electricity will be produced mainly by nuclear: 66 % and by hydraulic : 14%, coal : 15%, fuel oil : 5%. Electricity and coal will then be the two major energy sources at the disposal of the French Industry. The new tariff structure of electricity proposed by Electricite de France will be given briefly explaining why and how electricity used to replace fossil fuels are seriously considered by the French Chemical Industry and by Rhone-Poulenc. Examples of various new utilisations of electrical equipment in chemical processes (thermal, heat pumps, filtration, electrolysis . . .) will be given. Emphasis will be put on research and development for new equipment and on the importance of good information and relationship between utilities suppliers, manufacturers and industrial consumers.

Mongon, A.

1982-01-01T23:59:59.000Z

227

Optimal design and integration of solar systems and fossil fuels for process cogeneration  

E-Print Network (OSTI)

Because of the fluctuations in incident solar power, outlet power also changes over time (e.g., on an hourly basis or seasonally). If there is a need for a stable power outlet, there are options towards a steady state output of the system. This work is aimed at the development of systematic design procedures for two solar-based power generation strategies. The first is integration of fossil-fuel with the solar system to provide a compensation effect (power backup to supplement the power main source from solar energy). The second is the use of thermal energy storage (TES) systems to save solar energy in a thermal form and use it when solar input decreases. A common TES configuration is the two-tank system which allows the use of the collector heat transfer fluid (HTF) as a storing medium. For the two tanks, one tank has the hot medium (e.g., a molten salt) and the second has the cold storage media. Specifically, the following design challenges are addressed: 1. What is the optimal mix of energy forms to be supplied to the process? 2. What are the optimal scenario and integration mode to deliver the selected energy forms? How should they be integrated among themselves and with the process? 3. What is the optimal design of the energy systems? 4. What is the optimal dynamic strategy for operating the various energy systems? 5. What is the feasibility of using thermal energy storage to this optimum fossil fuel system? The developed procedure includes gathering and generation of relevant solar and climatic data, modeling of the various components of the solar, fossil, and power generation systems, and optimization of several aspects of the hybrid system. A case study is solved to demonstrate the effectiveness and applicability of the devised procedure.

Tora, Eman Abdel-Hakim Aly Mohamed

2008-08-01T23:59:59.000Z

228

POWER PLANT RELIABILITY-AVAILABILITY AND STATE REGULATION. VOLUME 7 OF THE FINAL REPORT ON HEALTH AND SAFETY IMPACTS OF NUCLEAR, GEOTHERMAL, AND FOSSIL-FUEL ELECTRIC GENERATION IN CALIFORNIA  

E-Print Network (OSTI)

which steam is raised. nuclear fuel generates heat that isattention to nuclear and fossil-fuel plants, and these areFor all the fossil-fuel and nuclear (However, categories,

Nero, A.V.

2010-01-01T23:59:59.000Z

229

Health effects and related standards for fossil-fuel and geothermal power plants. Volume 6 of health and safety impacts of nuclear, geothermal, and fossil-fuel electric generation in California. [In California  

DOE Green Energy (OSTI)

This report reviews health effects and related standards for fossil-fuel and geothermal power plants, emphasizing impacts which may occur through emissions into the atmosphere, and treating other impacts briefly. Federal regulations as well as California state and local regulations are reviewed. Emissions are characterized by power plant type, including: coal-fired, oil-fired, gas-fired, combined cycle and advanced fossil-fuel plants; and liquid and vapor geothermal systems. Dispersion and transformation of emissions are treated. The state of knowledge of health effects, based on epidemiological, physiological, and biomedical studies, is reviewed.

Case, G.D.; Bertolli, T.A.; Bodington, J.C.; Choy, T.A.; Nero, A.V.

1977-01-01T23:59:59.000Z

230

An overview of alternative fossil fuel price and carbon regulation scenarios  

E-Print Network (OSTI)

Energy (EERE) and the Office of Fossil Energy (FE) have beenEERE) and the Office of Fossil Energy (FE) have been jointly

Wiser, Ryan; Bolinger, Mark

2004-01-01T23:59:59.000Z

231

Policy Choice:Forest or Fuel? The demand for biofuels, driven by the desire to reduce fossil fuel use and CO2 emissions, has resulted in  

E-Print Network (OSTI)

Policy Choice:Forest or Fuel? The demand for biofuels, driven by the desire to reduce fossil fuel, combined with the expanded demand for biofuels, will result in higher food prices, since less land by using biofuels (vegetable oils). But the use of biofuels may not reduce CO2 emissions, even when

232

Cheyenne Light, Fuel and Power (Electric) - Commercial Energy...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

- Commercial Energy Efficiency Rebate Program (Wyoming) Cheyenne Light, Fuel and Power (Electric) - Commercial Energy Efficiency Rebate Program (Wyoming) < Back...

233

Linear regression analysis of emissions factors when firing fossil fuels and biofuels in a commercial water-tube boiler  

Science Conference Proceedings (OSTI)

This paper compares the emissions factors for a suite of liquid biofuels (three animal fats, waste restaurant grease, pressed soybean oil, and a biodiesel produced from soybean oil) and four fossil fuels (i.e., natural gas, No. 2 fuel oil, No. 6 fuel oil, and pulverized coal) in Penn State's commercial water-tube boiler to assess their viability as fuels for green heat applications. The data were broken into two subsets, i.e., fossil fuels and biofuels. The regression model for the liquid biofuels (as a subset) did not perform well for all of the gases. In addition, the coefficient in the models showed the EPA method underestimating CO and NOx emissions. No relation could be studied for SO{sub 2} for the liquid biofuels as they contain no sulfur; however, the model showed a good relationship between the two methods for SO{sub 2} in the fossil fuels. AP-42 emissions factors for the fossil fuels were also compared to the mass balance emissions factors and EPA CFR Title 40 emissions factors. Overall, the AP-42 emissions factors for the fossil fuels did not compare well with the mass balance emissions factors or the EPA CFR Title 40 emissions factors. Regression analysis of the AP-42, EPA, and mass balance emissions factors for the fossil fuels showed a significant relationship only for CO{sub 2} and SO{sub 2}. However, the regression models underestimate the SO{sub 2} emissions by 33%. These tests illustrate the importance in performing material balances around boilers to obtain the most accurate emissions levels, especially when dealing with biofuels. The EPA emissions factors were very good at predicting the mass balance emissions factors for the fossil fuels and to a lesser degree the biofuels. While the AP-42 emissions factors and EPA CFR Title 40 emissions factors are easier to perform, especially in large, full-scale systems, this study illustrated the shortcomings of estimation techniques. 23 refs., 3 figs., 8 tabs.

Sharon Falcone Miller; Bruce G. Miller [Pennsylvania State University, University Park, PA (United States). Energy Institute

2007-12-15T23:59:59.000Z

234

Small Scale SOFC Demonstration Using Bio-Based and Fossil Fuels  

SciTech Connect

Technology Management, Inc. (TMI) of Cleveland, Ohio, has completed the project entitled ā??Small Scale SOFC Demonstration using Bio-based and Fossil Fuels.ā?¯ Under this program, two 1-kW systems were engineered as technology demonstrators of an advanced technology that can operate on either traditional hydrocarbon fuels or renewable biofuels. The systems were demonstrated at Patterson's Fruit Farm of Chesterland, OH and were open to the public during the first quarter of 2012. As a result of the demonstration, TMI received quantitative feedback on operation of the systems as well as qualitative assessments from customers. Based on the test results, TMI believes that > 30% net electrical efficiency at 1 kW on both traditional and renewable fuels with a reasonable entry price is obtainable. The demonstration and analysis provide the confidence that a 1 kW entry-level system offers a viable value proposition, but additional modifications are warranted to reduce sound and increase reliability before full commercial acceptance.

Michael Petrik; Robert Ruhl

2012-03-31T23:59:59.000Z

235

Effects of aqueous effluents from in situ fossil-fuel processing technologies on aquatic systems  

SciTech Connect

Progress is reported for the second year of this project to evaluate the effects of aqueous effluents from in-situ fossil fuel processing technologies on aquatic biota. The project objectives for Year 2 were pursued through five tasks: literature reviews on process water constituents, possible environmental impacts and potential control technologies; toxicity bioassays on the effects of coal gasification and oil shale retorting process waters and six process water constituents on aquatic biota; biodegradation studies on process water constituents; bioaccumulation factor estimation for the compounds tested in the toxicity bioassays; and recommendations on maximum exposure concentrations for process water constituents based on data from the project and from the literature. Results in each of the five areas of research are reported.

Bergman, H.L.

1978-12-01T23:59:59.000Z

236

Device for separating CO2 from fossil-fueled power plant emissions  

DOE Patents (OSTI)

A gas separation device includes an inner conduit, and a concentric outer conduit. An electrically conductive filter media, preferably a carbon fiber composite molecular sieve, is provided in the annular space between the inner conduit and the outer conduit. Gas flows through the inner conduit and the annular space between the inner conduit and the outer conduit, so as to contact the filter media. The filter media preferentially adsorbs at least one constituent of the gas stream. The filter media is regenerated by causing an electric current to flow through the filter media. The inner conduit and outer conduit are preferably electrically conductive whereby the regeneration of the filter media can be electrically stimulated. The invention is particularly useful for the removal of CO.sub.2 from the exhaust gases of fossil-fueled power plants.

Burchell, Timothy D [Oak Ridge, TN; Judkins, Roddie R [Knoxville, TN; Wilson, Kirk A [Knoxville, TN

2002-04-23T23:59:59.000Z

237

Integrated capture of fossil fuel gas pollutants including CO.sub.2 with energy recovery  

DOE Patents (OSTI)

A method of reducing pollutants exhausted into the atmosphere from the combustion of fossil fuels. The disclosed process removes nitrogen from air for combustion, separates the solid combustion products from the gases and vapors and can capture the entire vapor/gas stream for sequestration leaving near-zero emissions. The invention produces up to three captured material streams. The first stream is contaminant-laden water containing SO.sub.x, residual NO.sub.x particulates and particulate-bound Hg and other trace contaminants. The second stream can be a low-volume flue gas stream containing N.sub.2 and O.sub.2 if CO2 purification is needed. The final product stream is a mixture comprising predominantly CO.sub.2 with smaller amounts of H.sub.2O, Ar, N.sub.2, O.sub.2, SO.sub.X, NO.sub.X, Hg, and other trace gases.

Ochs, Thomas L. (Albany, OR); Summers, Cathy A. (Albany, OR); Gerdemann, Steve (Albany, OR); Oryshchyn, Danylo B. (Philomath, OR); Turner, Paul (Independence, OR); Patrick, Brian R. (Chicago, IL)

2011-10-18T23:59:59.000Z

238

Strategic backdrop analysis for fossil fuel planning. Task 1. Default Case. Report 468-117-07/03  

Science Conference Proceedings (OSTI)

This report presents data describing a default case analysis performed using the strategic backdrop analytical framework developed to facilitate fossil fuel planning within the DOE. Target years are 1985, 2000, and 2025. Residential, commercial, and industrial energy demands and impacts of energy technology implementation and market penetration are forecast using a set of energy technology assumptions.

Not Available

1980-06-01T23:59:59.000Z

239

Emission Factors Handbook Addendum 2: Guidelines for Estimating Trace Substance Emissions from Fossil Fuel Steam Electric Power Plan ts  

Science Conference Proceedings (OSTI)

This handbook provides a tool for estimating trace substances emissions from fossil-fuel-fired power plants. The suggested emission factors are based on EPRI and U.S. Department of Energy (DOE) field measurements conducted at 51 power plants using generally consistent sampling and analytical protocols. This information will help utility personnel estimate air toxic emissions for permitting purposes.

2000-12-22T23:59:59.000Z

240

Quantification of fossil fuel CO2 emissions at the building/street scale for a large US city  

SciTech Connect

In order to advance the scientific understanding of carbon exchange with the land surface, build an effective carbon monitoring system and contribute to quantitatively-based U.S. climate change policy interests, fine spatial and temporal quantification of fossil fuel CO2 emissions, the primary greenhouse gas, is essential. Called the ‘Hestia Project’, this research effort is the first to use bottom-up methods to quantify all fossil fuel CO2 emissions down to the scale of individual buildings, road segments, and industrial/electricity production facilities on an hourly basis for an entire urban landscape. a large city (Indianapolis, Indiana USA). Here, we describe the methods used to quantify the on-site fossil fuel CO2 emissions across the city of Indianapolis, Indiana. This effort combines a series of datasets and simulation tools such as a building energy simulation model, traffic data, power production reporting and local air pollution reporting. The system is general enough to be applied to any large U.S. city and holds tremendous potential as a key component of a carbon monitoring system in addition to enabling efficient greenhouse gas mitigation and planning. We compare our estimate of fossil fuel emissions from natural gas to consumption data provided by the local gas utility. At the zip code level, we achieve a bias adjusted pearson r correlation value of 0.92 (p<0.001).

Gurney, Kevin R.; Razlivanov, I.; Song, Yang; Zhou, Yuyu; Benes, Bedrich; Abdul- Massih, Michel

2012-08-15T23:59:59.000Z

Note: This page contains sample records for the topic "lighting fossil fuels" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

An overview of alternative fossil fuel price and carbon regulation scenarios  

SciTech Connect

The benefits of the Department of Energy's research and development (R&D) efforts have historically been estimated under business-as-usual market and policy conditions. In recognition of the insurance value of R&D, however, the Office of Energy Efficiency and Renewable Energy (EERE) and the Office of Fossil Energy (FE) have been exploring options for evaluating the benefits of their R&D programs under an array of alternative futures. More specifically, an FE-EERE Scenarios Working Group (the Working Group) has proposed to EERE and FE staff the application of an initial set of three scenarios for use in the Working Group's upcoming analyses: (1) a Reference Case Scenario, (2) a High Fuel Price Scenario, which includes heightened natural gas and oil prices, and (3) a Carbon Cap-and-Trade Scenario. The immediate goal is to use these scenarios to conduct a pilot analysis of the benefits of EERE and FE R&D efforts. In this report, the two alternative scenarios being considered by EERE and FE staff--carbon cap-and-trade and high fuel prices--are compared to other scenarios used by energy analysts and utility planners. The report also briefly evaluates the past accuracy of fossil fuel price forecasts. We find that the natural gas prices through 2025 proposed in the FE-EERE Scenarios Working Group's High Fuel Price Scenario appear to be reasonable based on current natural gas prices and other externally generated gas price forecasts and scenarios. If anything, an even more extreme gas price scenario might be considered. The price escalation from 2025 to 2050 within the proposed High Fuel Price Scenario is harder to evaluate, primarily because few existing forecasts or scenarios extend beyond 2025, but, at first blush, it also appears reasonable. Similarly, we find that the oil prices originally proposed by the Working Group in the High Fuel Price Scenario appear to be reasonable, if not conservative, based on: (1) the current forward market for oil, (2) current oil prices, (3) externally generated oil price forecasts, and (4) the historical difficulty in accurately forecasting oil prices. Overall, a spread between the FE-EERE High Oil Price and Reference scenarios of well over $8/bbl is supported by the literature. We conclude that a wide range of carbon regulation scenarios are possible, especially within the time frame considered by EERE and FE (through 2050). The Working Group's Carbon Cap-and-Trade Scenario is found to be less aggressive than many Kyoto-style targets that have been analyzed, and similar in magnitude to the proposed Climate Stewardship Act. The proposed scenario is more aggressive than some other scenarios found in the literature, however, and ignores carbon banking and offsets and does not allow nuclear power to expand. We are therefore somewhat concerned that the stringency of the proposed carbon regulation scenario in the 2010 to 2025 period will lead to a particularly high estimated cost of carbon reduction. As described in more detail later, we encourage some flexibility in the Working Group's ultimate implementation of the Carbon Cap-and-Trade Scenario. We conclude by identifying additional scenarios that might be considered in future analyses, describing a concern with the proposed specification of the High Fuel Price Scenario, and highlighting the possible difficulty of implementing extreme scenarios with current energy modeling tools.

Wiser, Ryan; Bolinger, Mark

2004-10-01T23:59:59.000Z

242

METHODOLOGIES FOR REVIEW OF THE HEALTH AND SAFETY ASPECTS OF PROPOSED NUCLEAR, GEOTHERMAL, AND FOSSIL-FUEL SITES AND FACILITIES. VOLUME 9 OF THE FINAL REPORT ON HEALTH AND SAFETY IMPACTS OF NUCLEAR, GEOTHERMAL, AND FOSSIL-FUEL ELECTRIC GENERATION IN CALIFORNIA  

E-Print Network (OSTI)

Fossil-Fuel-Fired Steam Generators," U.S. Environmentalbasin Boiler or PWR Steam Generator Blowdown Transmissionreactor coolant pumps, steam generators, piping, main stream

Nero, A.V.

2010-01-01T23:59:59.000Z

243

Cheyenne Light, Fuel and Power (Electric) - Residential Energy Efficiency  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Cheyenne Light, Fuel and Power (Electric) - Residential Energy Cheyenne Light, Fuel and Power (Electric) - Residential Energy Efficiency Rebate Program Cheyenne Light, Fuel and Power (Electric) - Residential Energy Efficiency Rebate Program < Back Eligibility Multi-Family Residential Residential Savings Category Appliances & Electronics Commercial Lighting Lighting Water Heating Program Info State Wyoming Program Type Utility Rebate Program Rebate Amount Home Energy Audit: Contact Cheyenne Light, Fuel and Power CFL Bulbs: Up to 10 CFL bulbs at reduced cost Water Heater: $75 Refrigerator Recycling: $30 Cheyenne Light, Fuel and Power offers incentives to electric customers who wish to install energy efficient equipment in participating homes. Incentives are available for home energy audits, CFL light bulbs, tank water heaters and refrigerator recycling. Water heater purchases and

244

Essays on Efficiency of the Farm Credit System and Dynamic Correlations in Fossil Fuel Markets  

E-Print Network (OSTI)

Markets have always changed in response to either exogenous or endogenous shocks. Many large events have occurred in financial and energy markets the last ten years. This dissertation examines market behavior and volatility in agricultural credit and fossil fuel markets under exogenous and endogenous changes in the last ten years. The efficiency of elements within the United States Farm Credit System, a major agricultural lender in the United States, and the dynamic correlation between coal, oil and natural gas prices, the three major fossil fuels, are examined. The Farm Credit system is a key lender in the U.S. agricultural sector, and its performance can influence the performance of the agricultural sector. However, its efficiency in providing credit to the agricultural sector has not been recently examined. The first essay of the dissertation provides assessments on the performance of elements within the Farm Credit System by measuring their relative efficiency using a stochastic frontier model. The second essay addresses the changes in relationship in coal, oil, and natural gas markets with respect to changes and turbulence in the last decade, which has also not been fully addressed in literature. The updated assessment on the relative performance of entities within the Farm Credit System provides information that the Farm Credit Administration and U.S. policy makers can use in their management of and policy toward the Farm Credit System. The measurement of the changes in fossil fuel markets’ relationships provides implications for energy investment, energy portfolio anagement, energy risk management, and energy security. It can also be used as a foundation for structuring forecasting models and other models related to energy markets. The dynamic correlations between coal, oil, and natural gas prices are examined using a dynamic conditional correlation multivariate autoregressive conditional heteroskedasticity (MGARCH DCC) model. The estimated results show that the FCS’s five banks and associations with large assets have more efficiently produced credit to the U.S. agricultural sector than smaller sized associations. Management compensation is found to be positively associated with the system’s efficiency. More capital investment and monitoring along with possible consolidation are implied for smaller sized associations to enhance efficiency. On average, the results show that the efficiency of the associations is increasing over time while the average efficiency of the five large banks is more stable. Overall, the associations exhibit a higher variation of efficiency than the five banks. In terms of energy markets the estimates from the MGARCH DCC model indicate significant and changing dynamic correlations and related volatility between the coal, oil, and natural gas prices. The coal price was found to experience more volatility and become more closely related to oil and natural gas prices in recent periods. The natural gas price was found to become more stable and drift away from its historical relationship with oil.

Dang, Trang Phuong Th 1977-

2012-12-01T23:59:59.000Z

245

The coprocessing of fossil fuels and biomass for CO{sub 2} emission reduction in the transportation sector  

DOE Green Energy (OSTI)

Research is underway to evaluate the Hydrocarb process for conversion of carbonaceous raw material to clean carbon and methanol products. These products are valuable in the market either as fuel or as chemical commodities. As fuel, methanol and carbon can be used economically, either independently or in slurry form, in efficient heat energies (turbines and internal combustion engines) for both mobile and stationary single and combined cycle power plants. When considering CO{sub 2} emission control in the utilization of fossil fuels, the copressing of those fossil fuels with biomass (which may include, wood, municipal solid waste and sewage sludge) is a viable mitigation approach. By coprocessing both types of feedstock to produce methanol and carbon while sequestering all or part of the carbon, a significant net CO{sub 2} reduction is achieved if the methanol is substituted for petroleum fuels in the transportation sector. The Hydrocarb process has the potential, if the R&D objectives are achieved, to produce alternative transportation fuel from indigenous resources at lower cost than any other biomass conversion process. These comparisons suggest the resulting fuel can significantly displace gasoline at a competitive price while mitigating CO{sub 2} emissions and reducing ozone and other toxics in urban atmospheres.

Steinberg, M. [Brookhaven National Lab., Upton, NY (United States); Dong, Yuanji [Hydrocarb Corp., New York, NY (United States); Borgwardt, R.H. [Environmental Protection Agency, Research Triangle Park, NC (United States)

1993-10-01T23:59:59.000Z

246

Nuclear Energy R&D Imperative 3: Enable a Transition Away from Fossil Fuel in the Transportation and Industrial Sectors  

DOE Green Energy (OSTI)

As described in the Department of Energy Office of Nuclear Energy’s Nuclear Energy R&D Roadmap, nuclear energy can play a significant role in supplying energy for a growing economy while reducing both our dependence on foreign energy supplies and emissions from the burning of fossil fuels. The industrial and transportation sectors are responsible for more than half of the greenhouse gas emissions in the U.S., and imported oil supplies 70% of the energy used in the transportation sector. It is therefore important to examine the various ways nuclear energy can facilitate a transition away from fossil fuels to secure environmentally sustainable production and use of energy in the transportation and manufacturing industry sectors. Imperative 3 of the Nuclear Energy R&D Roadmap, entitled “Enable a Transition Away from Fossil Fuels by Producing Process Heat for use in the Transportation and Industrial Sectors”, addresses this need. This document presents an Implementation Plan for R&D efforts related to this imperative. The expanded use of nuclear energy beyond the electrical grid will contribute significantly to overcoming the three inter-linked energy challenges facing U.S. industry: the rising and volatile prices for premium fossil fuels such as oil and natural gas, dependence on foreign sources for these fuels, and the risks of climate change resulting from carbon emissions. Nuclear energy could be used in the industrial and transportation sectors to: • Generate high temperature process heat and electricity to serve industrial needs including the production of chemical feedstocks for use in manufacturing premium fuels and fertilizer products, • Produce hydrogen for industrial processes and transportation fuels, and • Provide clean water for human consumption by desalination and promote wastewater treatment using low-grade nuclear heat as a useful additional benefit. Opening new avenues for nuclear energy will significantly enhance our nation’s energy security through more effective utilization of our country’s resources while simultaneously providing economic stability and growth (through predictable energy prices and high value jobs), in an environmentally sustainable and secure manner (through lower land and water use, and decreased byproduct emissions). The reduction in imported oil will also increase the retention of wealth within the U.S. economy while still supporting economic growth. Nuclear energy is the only non-fossil fuel that has been demonstrated to reliably supply energy for a growing industrial economy.

David Petti; J. Stephen Herring

2010-03-01T23:59:59.000Z

247

The Road Ahead for Light Duty Vehicle Fuel Demand  

U.S. Energy Information Administration (EIA)

The Road Ahead for Light Duty Vehicle Fuel Demand Joanne Shore Energy Information Administration July 7, 2005 Refining Capacity Surplus Shrank As Demand Grew ...

248

Light-Powered Microbial Fuel Cell Offering Clean, Renewable ...  

Light-Powered Microbial Fuel Cell Offering Clean, Renewable Hydrogen-Based Alternative Energy Source Inventors: Daniel Noguera, Timothy Donohue, Marc Anderson ...

249

Separation of particulate from flue gas of fossil fuel combustion and gasification  

DOE Patents (OSTI)

The gas from combustion or gasification of fossil fuel contains fly ash and other particulates. The fly ash is separated from the gas in a plurality of standleg moving granular-bed filter modules. Each module includes a dipleg through which the bed media flows into the standleg. The bed media forms a first filter bed having an upper mass having a first frusto-conical surface in a frusto-conical member at the entrance to the standleg and a lower mass having a second frusto-conical surface of substantially greater area than the first surface after it passes through the standleg. A second filter media bed may be formed above the first filter media bed. The gas is fed tangentially into the module above the first surface. The fly ash is captured on the first frusto-conical surface and within the bed mass. The processed gas flows out through the second frusto-conical surface and then through the second filter bed, if present. The bed media is cleaned of the captured fly ash and recirculated to the moving granular bed filter. Alternatively, the bed media may be composed of the ash from the combustion which is pelletized to form agglomerates. The ash flows through the bed only once; it is not recycled. 11 figs.

Yang, W.C.; Newby, R.A.; Lippert, T.E.

1997-08-05T23:59:59.000Z

250

Separation of particulate from flue gas of fossil fuel combustion and gasification  

DOE Patents (OSTI)

The gas from combustion or gasification of fossil fuel contains flyash and other particulate. The flyash is separated from the gas in a plurality of standleg moving granular-bed filter modules. Each module includes a dipleg through which the bed media flows into the standleg. The bed media forms a first filter bed having an upper mass having a first frusto-conical surface in a frusto-conical member at the entrance to the standleg and a lower mass having a second frusto-conical surface of substantially greater area than the first surface after it passes through the standleg. A second filter media bed may be formed above the first filter media bed. The gas is fed tangentially into the module above the first surface. The flyash is captured on the first frusto-conical surface and within the bed mass. The processed gas flows out through the second frusto-conical surface and then through the second filter bed, if present. The bed media is cleaned of the captured flyash and recirculated to the moving granular bed filter. Alternatively, the bed media may be composed of the ash from the combustion which is pelletized to form agglomerates. The ash flows through the bed only once; it is not recycled.

Yang, Wen-Ching (Murrysville, PA); Newby, Richard A. (Pittsburgh, PA); Lippert, Thomas E. (Murrysville, PA)

1997-01-01T23:59:59.000Z

251

Improving the Carbon Dioxide Emission Estimates from the Combustion of Fossil Fuels in California  

Science Conference Proceedings (OSTI)

Central to any study of climate change is the development of an emission inventory that identifies and quantifies the State's primary anthropogenic sources and sinks of greenhouse gas (GHG) emissions. CO2 emissions from fossil fuel combustion accounted for 80 percent of California GHG emissions (CARB, 2007a). Even though these CO2 emissions are well characterized in the existing state inventory, there still exist significant sources of uncertainties regarding their accuracy. This report evaluates the CO2 emissions accounting based on the California Energy Balance database (CALEB) developed by Lawrence Berkeley National Laboratory (LBNL), in terms of what improvements are needed and where uncertainties lie. The estimated uncertainty for total CO2 emissions ranges between -21 and +37 million metric tons (Mt), or -6percent and +11percent of total CO2 emissions. The report also identifies where improvements are needed for the upcoming updates of CALEB. However, it is worth noting that the California Air Resources Board (CARB) GHG inventory did not use CALEB data for all combustion estimates. Therefore the range in uncertainty estimated in this report does not apply to the CARB's GHG inventory. As much as possible, additional data sources used by CARB in the development of its GHG inventory are summarized in this report for consideration in future updates to CALEB.

de la Rue du Can, Stephane; Wenzel, Tom; Price, Lynn

2008-08-13T23:59:59.000Z

252

Liquid fossil fuel technology. Quarterly technical progress report, October-December 1981  

Science Conference Proceedings (OSTI)

Progress reports are presented for the following major areas of investigation: liquid fossil fuel cycle; extraction (resource assessment, enhanced recovery); liquid processing (characterization of petroleum and synthetic crude, thermodynamics; process technology); utilization; project integration and technology transfer. Highlights for this period in research studies are listed as those in extraction research and processing and thermodynamics research. Searches for microorganisms that will be useful in enhanced oil recovery have produced two promising leads. At Oklahoma State University, bacteria of the genus Clostridia have been found which can live in a brine solution as found in most petroleum reservoirs. These bacteria produce carbon dioxide, acetic acid, alcohols, and ketones as metabolic products. At the University of Georgia, a culture of bacteria has been found which will reduce the viscosity of a 10/sup 0/ API gravity oil by 95 percent. The analysis of heavy oils requires differentiation of sulfur, nitrogen, and oxygen-containing compounds from hydrocarbons. The most effective way to do this is with a high-resolution mass spectrometer that can distinguish between compounds having molecular weights only a fractional unit apart. These molecular weights are calculated from the computer acquired time-moments of the various ions in a mass spectrum. Thus, the accuracy of results reflects, in part, the numerical methods used in data processing. Consequently, the effect of the mathematical functions on the accuracy of mass measurement is being determined.

Not Available

1981-01-01T23:59:59.000Z

253

EPRI Ergonomics Handbook for the Electric Power Industry: Ergonomic Design Handbook for Fossil-Fueled Electric Generating Stations  

Science Conference Proceedings (OSTI)

The EPRI Occupational Health and Safety (OHS) Research Program has provided ergonomic information to the electric energy industry workforce since 1999. This is the fifth EPRI ergonomics handbook; it provides a framework and specific guidelines for decisionmaking that will apply ergonomic principles to the design of electric generating stations. Fossil-fueled power plant operation and maintenance is physically strenuous, and it may contribute to development of musculoskeletal disorders (MSDs) such as carp...

2008-03-11T23:59:59.000Z

254

Toward a Common Method of Cost Estimation for CO2 Capture and Storage at Fossil Fuel Power Plants  

Science Conference Proceedings (OSTI)

There are significant differences in the methods employed by various organizations to estimate the cost of carbon capture and storage (CCS) systems for fossil fuel power plants. Such differences often are not readily apparent in publicly reported CCS cost estimates. As a consequence, there is a significant degree of misunderstanding, confusion, and mis-representation of CCS cost information, especially among audiences not familiar with the details of CCS costing. Given the international importance ...

2013-03-18T23:59:59.000Z

255

Emissions of CO/sub 2/ to the atmosphere due to U. S. A. fossil fuel consumption  

SciTech Connect

Analysis and projection of carbon dioxide emitted to the atmosphere are estimated based on the Brookhaven reference energy system. Some new results are given on carbon dioxide contribution to the atmosphere from US fossil fuel consumption by different sectors including residential, commercial, industrial and transportation. The total weight of carbon as carbon dioxide emitted to the atmosphere and the additional CO/sub 2/ concentration over background by different subsectors in the years 1977, 1980, 1985, 1990, 2000 and 2020 are presented.

Dang, V.D.; Steinberg, M.

1980-06-01T23:59:59.000Z

256

Carbon dioxide emissions from fossil fuels: A procedure for estimation and results for 1950-1982. Tellus 36B  

E-Print Network (OSTI)

This work briefly discusses four of the current research emphases at Oak Ridge National Laboratory regarding the emission of carbon dioxide (C02) from fossil fuel consumption, natural gas flaring and cement manufacture. These emphases include: 1) updating the 1950 to present time series of C02 emissions from fossil fuel consumption and cement manufacture, 2) extending this time series back to 1751, 3) gridding the data at 1 ' by 1 ' resolution, and 4) estimating the isotopic signature of these emissions. In 1991, global emissions of C02 from fossil fuel and cement increased 1.5 % over 1990 levels to 6188 x lo6 metric tonnes C. The Kuwaiti oil fires can account for all of the increase. Recently published energy data (Etemad et al., 1991) allow extension of the CO emissions time series back to 1751. Preliminary examination shows good agreement wit % two other, but shorter, energy time series. A latitudinal distriiution of carbon emissions is being completed. A southward shift in the major mass of C02 emissions is occurring from European-North American latitudes towards central-southeast Asian latitudes, reflecting the growth of population

Robert J. Andres; Gregg Marl; Tom Boden; Steve Bischof

1984-01-01T23:59:59.000Z

257

Multi-objective fuel policies: Renewable fuel standards versus Fuel greenhouse gas intensity standards  

E-Print Network (OSTI)

with the more-polluting fossil fuels being consumed abroaddomestic fuel consumers and fossil fuel suppliers. Numericalequivalent quantity of fossil fuel but may replace more or

Rajagopal, Deepak

2010-01-01T23:59:59.000Z

258

SPATIAL AND SEASONAL DISTRIBUTION OF CARBON DIOXIDE EMISSIONS FROM FOSSIL-FUEL COMBUSTION; GLOBAL, REGIONAL, AND NATIONAL POTENTIAL FOR SUSTAINABLE BIOENERGY FROM RESIDUE BIOMASS AND MUNICIPAL SOLID WASTE.  

E-Print Network (OSTI)

??Combustion of fossil fuels releases carbon dioxide (CO2) into the atmosphere, and has led to an increase in the atmospheric concentration of CO2. CO2 is… (more)

Gregg, Jay Sterling

2009-01-01T23:59:59.000Z

259

EPRI Ergonomics Handbook for the Electric Power Industry: Ergonomic Interventions for Plant Operators and Mechanics in Fossil-Fueled Generating Stations  

Science Conference Proceedings (OSTI)

The EPRI Occupational Health and Safety (OHS) Committee Research Program has provided ergonomic information to the electric energy industry workforce since 1999. This is the sixth EPRI ergonomics handbook; it specifically focuses on tasks performed by plant operators and mechanics working in fossil-fueled generating stations and also addresses some tasks performed by steam services technicians. Fossil-fueled generating station operational and mechanical work is physically strenuous and can expose workers...

2008-12-15T23:59:59.000Z

260

Table 11.6 Installed Nameplate Capacity of Fossil-Fuel Steam-Electric Generators With Environmental Equipment, 1985-2010 (Megawatts)  

U.S. Energy Information Administration (EIA) Indexed Site

Installed Nameplate Capacity of Fossil-Fuel Steam-Electric Generators With Environmental Equipment," Installed Nameplate Capacity of Fossil-Fuel Steam-Electric Generators With Environmental Equipment," " 1985-2010 (Megawatts)" "Year","Coal",,,,"Petroleum and Natural Gas",,,,"Total 1" ,,,"Flue Gas","Total 2",,,"Flue Gas","Total 2",,,"Flue Gas","Total 2" ,"Particulate","Cooling","Desulfurization",,"Particulate","Cooling","Desulfurization",,"Particulate","Cooling","Desulfurization" ,"Collectors","Towers","(Scrubbers)",,"Collectors","Towers","(Scrubbers)",,"Collectors","Towers","(Scrubbers)"

Note: This page contains sample records for the topic "lighting fossil fuels" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

FutureGen: Stepping-Stone to Sustainable Fossil-Fuel Power Generation  

SciTech Connect

This presentation will highlight the U.S. Department of Energy's FutureGen Initiative. The nearly $1 billion government-industry project is a stepping-stone toward future coal-fired power plants that will produce hydrogen and electricity with zero-emissions, including carbon dioxide. The 275-megawatt FutureGen plant will initiate operations around 2012 and employ advanced coal gasification technology integrated with combined cycle electricity generation, hydrogen production, and carbon capture and sequestration. The initiative is a response to a presidential directive to develop a hydrogen economy by drawing upon the best scientific research to address the issue of global climate change. The FutureGen plant will be based on cutting-edge power generation technology as well as advanced carbon capture and sequestration systems. The centerpiece of the project will be coal gasification technology that can eliminate common air pollutants such as sulfur dioxide and nitrogen oxides and convert them to useable by-products. Gasification will convert coal into a highly enriched hydrogen gas, which can be burned much more cleanly than directly burning the coal itself. Alternatively, the hydrogen can be used in a fuel cell to produce ultra-clean electricity, or fed to a refinery to help upgrade petroleum products. Carbon sequestration will also be a key feature that will set the Futuregen plant apart from other electric power plant projects. The initial goal will be to capture 90 percent of the plant's carbon dioxide, but capture of nearly 100 percent may be possible with advanced technologies. Once captured, the carbon dioxide will be injected as a compressed fluid deep underground, perhaps into saline reservoirs. It could even be injected into oil or gas reservoirs, or into unmineable coal seams, to enhance petroleum or coalbed methane recovery. The ultimate goal for the FutureGen plant is to show how new technology can eliminate environmental concerns over the future use of coal--the most abundant fossil fuel in the United States with supplies projected to last 250 years. FutureGen's co-production of power and hydrogen will also serve as a stepping-stone to an environmentally sustainable energy future.

Zitney, S.E.

2006-11-01T23:59:59.000Z

262

Table 3.8 Value of Fossil Fuel Exports, 1949-2011 (Billion Dollars)  

U.S. Energy Information Administration (EIA)

Energy, Office of Fossil Energy. Crude Oil and Petroleum Products: - 1949-1988-Bureau of the Census, U.S. Exports, FT410. - 1989 forward-Bureau of the Census, Foreign ...

263

Rethinking the light water reactor fuel cycle  

E-Print Network (OSTI)

The once through nuclear fuel cycle adopted by the majority of countries with operating commercial power reactors imposes a number of concerns. The radioactive waste created in the once through nuclear fuel cycle has to ...

Shwageraus, Evgeni, 1973-

2004-01-01T23:59:59.000Z

264

RADIOLOGICAL HEALTH AND RELATED STANDARDS FOR NUCLEAR POWER PLANTS. VOLUME 2 OF HEALTH AND SAFETY IMPACTS OF NUCLEAR, GEOTHERMAL, AND FOSSIL-FUEL ELECTRIC GENERATION IN CALIFORNIA  

E-Print Network (OSTI)

Interim Standard for Plutonium in Soils", Los Alamoson the Use of Recycle Plutonium in Mixed Oxide Fuel in LightCharacterization of Particulate Plutonium Released in Fuel

Nero, A.V.

2010-01-01T23:59:59.000Z

265

Cheyenne Light, Fuel and Power (Gas) - Residential Energy Efficiency Rebate  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Cheyenne Light, Fuel and Power (Gas) - Residential Energy Cheyenne Light, Fuel and Power (Gas) - Residential Energy Efficiency Rebate Program (Wyoming) Cheyenne Light, Fuel and Power (Gas) - Residential Energy Efficiency Rebate Program (Wyoming) < Back Eligibility Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heating Home Weatherization Commercial Weatherization Construction Design & Remodeling Sealing Your Home Ventilation Appliances & Electronics Water Heating Windows, Doors, & Skylights Maximum Rebate Insulation (Wall/Ceiling/Floor): $750 Insulation (Duct): $170 Infiltration Control: $200 Duct Sealing: $285 Program Info State Wyoming Program Type Utility Rebate Program Rebate Amount Home Energy Audit: Required for Infiltration Control, Insulation, Duct Sealing, and Window Rebates

266

Summary of research on hydrogen production from fossil fuels conducted at NETL  

DOE Green Energy (OSTI)

In this presentation we will summarize the work performed at NETL on the production of hydrogen via partial oxidation/dry reforming of methane and catalytic decomposition of hydrogen sulfide. We have determined that high pressure resulted in greater carbon formation on the reforming catalysts, lower methane and CO2 conversions, as well as a H2/CO ratio. The results also showed that Rh/alumina catalyst is the most resistant toward carbon deposition both at lower and at higher pressures. We studied the catalytic partial oxidation of methane over Ni-MgO solid solutions supported on metal foams and the results showed that the foam-supported catalysts reach near-equilibrium conversions of methane and H2/CO selectivities. The rates of carbon deposition differ greatly among the catalysts, varying from 0.24 mg C/g cat h for the dipped foams to 7.0 mg C/g cat h for the powder-coated foams, suggesting that the exposed Cr on all of the foam samples may interact with the Ni-MgO catalyst to kinetically limit carbon formation. Effects of sulfur poisoning on reforming catalysts were studies and pulse sulfidation of catalyst appeared to be reversible for some of the catalysts but not for all. Under pulse sulfidation conditions, the 0.5%Rh/alumina and NiMg2Ox-1100ŗC (solid solution) catalysts were fully regenerated after reduction with hydrogen. Rh catalyst showed the best overall activity, less carbon deposition, both fresh and when it was exposed to pulses of H2S. Sulfidation under steady state conditions significantly reduced catalyst activity. Decomposition of hydrogen sulfide into hydrogen and sulfur was studied over several supported metal oxides and metal oxide catalysts at a temperature range of 650-850°C. H2S conversions and effective activation energies were estimated using Arrhenius plots. The results of these studies will further our understanding of catalytic reactions and may help in developing better and robust catalysts for the production of hydrogen from fossil fuels

Shamsi, Abolghasem

2008-03-30T23:59:59.000Z

267

An overview of alternative fossil fuel price and carbon regulation scenarios  

E-Print Network (OSTI)

reaction of energy markets to higher fuel prices. Combinedreaction of energy markets to higher fuel prices. Other Highin spot market prices (note California Energy Commission.

Wiser, Ryan; Bolinger, Mark

2004-01-01T23:59:59.000Z

268

Hydrogen Storage and Supply for Vehicular Fuel Systems  

alternative-fuel systems have been proposed for passenger vehicles and light-duty trucks to reduce the worldwide reliance on fossils fuels and thus mitigate their polluting effects.  Replacing gasoline and other refined hydrocarbon fuels ...

269

Cheyenne Light Fuel & Power Co | Open Energy Information  

Open Energy Info (EERE)

Fuel & Power Co Fuel & Power Co (Redirected from Cheyenne Light, Fuel and Power Company) Jump to: navigation, search Name Cheyenne Light Fuel & Power Co Place Cheyenne, Wyoming Utility Id 3461 Utility Location Yes Ownership I NERC Location WECC NERC WECC Yes Operates Generating Plant Yes Activity Generation Yes Activity Transmission Yes Activity Buying Transmission Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] Energy Information Administration Form 826[2] SGIC[3] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Cheyenne Light, Fuel and Power Company Smart Grid Project was awarded $5,033,441 Recovery Act Funding with a total project value of $10,066,882.

270

The Road Ahead for Light Duty Vehicle Fuel Demand  

Gasoline and Diesel Fuel Update (EIA)

Energy Information Administration Logo. If you need assistance viewing this page, please call (202) 586-8800 The Road Ahead for Light Duty Vehicle Fuel Demand Click here to start...

271

Cheyenne Light Fuel & Power Co | Open Energy Information  

Open Energy Info (EERE)

Cheyenne Light Fuel & Power Co Cheyenne Light Fuel & Power Co Jump to: navigation, search Name Cheyenne Light Fuel & Power Co Place Cheyenne, Wyoming Utility Id 3461 Utility Location Yes Ownership I NERC Location WECC NERC WECC Yes Operates Generating Plant Yes Activity Generation Yes Activity Transmission Yes Activity Buying Transmission Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] Energy Information Administration Form 826[2] SGIC[3] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Cheyenne Light, Fuel and Power Company Smart Grid Project was awarded $5,033,441 Recovery Act Funding with a total project value of $10,066,882. Utility Rate Schedules

272

What are the likely roles of fossil fuels in the next 15, 50, and 100 years, with or without active controls on greenhouse gas emissions  

SciTech Connect

Since the industrial revolution, the production and utilization of fossil fuels have been an engine driving economic and industrial development in many countries worldwide. However, future reliance on fossil fuels has been questioned due to emerging concerns about greenhouse gas (GHG) emissions, particularly carbon dioxide (CO{sub 2}), and its potential contribution to global climate change (GCC). While substantial uncertainties exist regarding the ability to accurately predict climate change and the role of various greenhouse gases, some scientists and policymakers have called for immediate action. As a result, there have been many proposals and worldwide initiatives to address the perceived problem. In many of these proposals, the premise is that CO{sub 2} emissions constitute the principal problem, and, correspondingly, that fossil-fuel combustion must be curtailed to resolve this problem. This paper demonstrates that the worldwide fossil fuel resource base and infrastructure are extensive and thus, will continue to be relied on in developed and developing countries. Furthermore, in the electric generating sector (the focus of this paper), numerous clean coal technologies (CCTs) are currently being demonstrated (or are under development) that have higher conversion efficiencies, and thus lower CO{sub 2} emission rates than conventional coal-based technologies. As these technologies are deployed in new power plant or repowering applications to meet electrical load growth, CO{sub 2} (and other GHG) emission levels per unit of electricity generated will be lower than that produced by conventional fossil-fuel technologies. 37 refs., 14 figs., 11 tabs.

Kane, R.L. (USDOE Assistant Secretary for Fossil Energy, Washington, DC (USA)); South, D.W. (Argonne National Lab., IL (USA))

1990-01-01T23:59:59.000Z

273

Estimates of Annual Fossil-Fuel CO2 Emitted for Each State in the U.S.A.  

NLE Websites -- All DOE Office Websites (Extended Search)

State-Level Emission Estimates State-Level Emission Estimates Estimates of Annual Fossil-Fuel CO2 Emitted for Each State in the U.S.A. and the District of Columbia for Each Year from 1960 through 2001 graphics Graphics data Data (ASCII comma-delimited) Investigators T.J. Blasing and Gregg Marland Carbon Dioxide Information Analysis Center, Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831-6335, U.S.A. Christine Broniak Department of Agricultural & Resource Economics, Oregon State University, Corvallis, Oregon 97331-3601 DOI 10.3334/CDIAC/00003 Period of Record 1960-2001 Methods Consumption data for coal, petroleum, and natural gas are multiplied by their respective thermal conversion factors, which are in units of heat energy per unit of fuel consumed (i.e., per cubic foot, barrel, or ton), to

274

Improving the Carbon Dioxide Emission Estimates from the Combustion of Fossil Fuels in California  

E-Print Network (OSTI)

Fuel use, CO 2 emissions, and CO 2 emission factors of ten largest California electricity generatingFuel use, CO 2 emissions, and CO 2 emission factors of ten largest California electricity generating

de la Rue du Can, Stephane

2010-01-01T23:59:59.000Z

275

Improving the Carbon Dioxide Emission Estimates from the Combustion of Fossil Fuels in California  

E-Print Network (OSTI)

residual fuel oil, petroleum coke, and waste and other oil)residual fuel oil, petroleum coke, and waste and other oil22 CHP plants. For petroleum coke, CALEB only reports final

de la Rue du Can, Stephane

2010-01-01T23:59:59.000Z

276

Fuel Summary Report: Shippingport Light Water Breeder Reactor - Rev. 2  

Science Conference Proceedings (OSTI)

The Shippingport Light Water Breeder Reactor (LWBR) was developed by Bettis Atomic Power Laboratory to demonstrate the potential of a water-cooled, thorium oxide fuel cycle breeder reactor. The LWBR core operated from 1977-82 without major incident. The fuel and fuel components suffered minimal damage during operation, and the reactor testing was deemed successful. Extensive destructive and nondestructive postirradiation examinations confirmed that the fuel was in good condition with minimal amounts of cladding deformities and fuel pellet cracks. Fuel was placed in wet storage upon arrival at the Expended Core Facility, then dried and sent to the Idaho Nuclear Technology and Engineering Center for underground dry storage. It is likely that the fuel remains in good condition at its current underground dry storage location at the Idaho Nuclear Technology and Engineering Center. Reports show no indication of damage to the core associated with shipping, loading, or storage.

Olson, Gail Lynn; Mc Cardell, Richard Keith; Illum, Douglas Brent

2002-09-01T23:59:59.000Z

277

Experience with non-fuel-bearing components in LWR (light-water reactor) fuel systems  

SciTech Connect

Many non-fuel-bearing components are so closely associated with the spent fuel assemblies that their integrity and behavior must be taken into consideration with the fuel assemblies, when handling spent fuel of planning waste management activities. Presented herein is some of the experience that has been gained over the past two decades from non-fuel-bearing components in light-water reactors (LWRs), both pressurized-water reactors (PWRs) and boiling-water reactors (BWRs). Among the most important of these components are the control rod systems, the absorber and burnable poison rods, and the fuel assembly channels. 15 refs., 5 figs., 2 tabs.

Bailey, W.J.; Berting, F.M.

1990-12-01T23:59:59.000Z

278

Assessment of innovative fuel designs for high performance light water reactors  

E-Print Network (OSTI)

To increase the power density and maximum allowable fuel burnup in light water reactors, new fuel rod designs are investigated. Such fuel is desirable for improving the economic performance light water reactors loaded with ...

Carpenter, David Michael

2006-01-01T23:59:59.000Z

279

Table 3.9 Value of Fossil Fuel Net Imports, 1949-2011 (Billion ...  

U.S. Energy Information Administration (EIA)

1 Includes petroleum preparations, liquefied propane and butane, and, beginning in 1997, other mineral fuels. R=Revised. P=Preliminary. E=Estimate.

280

An overview of alternative fossil fuel price and carbon regulation scenarios  

E-Print Network (OSTI)

3) inclusion of high coal prices within the High Fuel Pricegas prices (as well as coal prices, as substitutes for both

Wiser, Ryan; Bolinger, Mark

2004-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "lighting fossil fuels" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Development of Nano-crystalline Doped-Ceramic Enabled Fiber Sensors for High Temperature In-Situ Monitoring of Fossil Fuel Gases  

SciTech Connect

This is a final technical report for the first project year from July 1, 2005 to Jan 31, 2012 for DoE/NETL funded project ā??DE-FC26-05NT42439: Development of Nanocrystalline Doped-Ceramic Enabled Fiber Sensors for High Temperature In-Situ Monitoring of Fossil Fuel Gases.ā?¯ This report summarizes the technical progresses and achievements towards the development of novel nanocrystalline doped ceramic material-enabled optical fiber sensors for in situ and real time monitoring the gas composition of flue or hot gas streams involved in fossil-fuel based power generation and hydrogen production.

Hai Xiao; Junhang Dong; Jerry Lin; Van Romero

2011-12-31T23:59:59.000Z

282

Health and safety impacts of nuclear, geothermal, and fossil-fuel electric generation in California. Volume 1. Health and safety impacts of nuclear, geothermal, and fossil-fuel electric generation in California  

DOE Green Energy (OSTI)

This report presents an overview of a project on the health and safety impacts of nuclear, geothermal, and fossil-fuel electric generation in California. In addition to presenting an executive summary of the project, it sets forth the main results of the four tasks of the project: to review the health impacts (and related standards) of these forms of power generation, to review the status of standards related to plant safety (with an emphasis on nuclear power), to consider the role of the California Energy Resources Conservation and Development Commission in selection of standards, and to set forth methodologies whereby that Commission may review the health and safety aspects of proposed sites and facilities.

Nero, A.V. Jr.

1977-01-01T23:59:59.000Z

283

On the Evolutionary History of Stars and their Fossil Mass and Light  

E-Print Network (OSTI)

The total extragalactic background radiation can be an important test of the global star formation history (SFH). Using direct observational estimates of the SFH, along with standard assumptions about the initial mass function (IMF), we calculate the total extragalactic background radiation and the observed stellar density today. We show that plausible SFHs allow a significant range in each quantity, but that their ratio is very tightly constrained. Current estimates of the stellar mass and extragalactic background are difficult to reconcile, as long as the IMF is fixed to the Salpeter slope above 1 Msun. The joint confidence interval of these two quantities only agrees with that determined from the allowed range of SFH fits at the 3-sigma level, and for our best-fit values the discrepancy is about a factor of two. Alternative energy sources that contribute to the background, such as active galactic nuclei (AGN), Population III stars, or decaying particles, appear unlikely to resolve the discrepancy. However, changes to the IMF allow plausible solutions to the background problem. The simplest is an average IMF with an increased contribution from stars around 1.5--4 Msun. A ``paunchy'' IMF of this sort could emerge as a global average if low mass star formation is suppressed in galaxies experiencing rapid starbursts. Such an IMF is consistent with observations of star-forming regions, and would help to reconcile the fossil record of star formation with the directly observed SFH.

Mark A. Fardal; Neal Katz; David H. Weinberg; Romeel Dav'e

2006-04-26T23:59:59.000Z

284

Cheyenne Light, Fuel and Power (Gas) - Commercial and Industrial Efficiency  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Cheyenne Light, Fuel and Power (Gas) - Commercial and Industrial Cheyenne Light, Fuel and Power (Gas) - Commercial and Industrial Efficiency Rebate Program (Wyoming) Cheyenne Light, Fuel and Power (Gas) - Commercial and Industrial Efficiency Rebate Program (Wyoming) < Back Eligibility Commercial Industrial Savings Category Heating & Cooling Commercial Heating & Cooling Heating Other Appliances & Electronics Water Heating Maximum Rebate Custom: 50% of project cost Program Info Start Date 06/09/2011 State Wyoming Program Type Utility Rebate Program Rebate Amount Water Heater: $75 - $300 Furnaces: $250 - $400 Boilers: $150 - $400 Setback Thermostat: $25 - $50 Convection Oven: $100 High Efficiency Range/Oven: $500 Conveyor Oven: $500 Fryer: $500 Broiler: $100 Steam Cooker: $500 Vent Dampers for Boilers: $125 Custom: Two year buy down or 50% of project cost, whichever is less

285

Plasma Nanocrystalline Doped Ceramic Enabled Fiber Sensors for High Temperature In-Situ Monitoring of Fossil Fuel Gases  

NLE Websites -- All DOE Office Websites (Extended Search)

7 7 Advanced Research contacts Robert R. Romanosky Technology Manager Advanced Research National Energy Technology Laboratory 3610 Collins Ferry Road P.O. Box 880 Morgantown, WV 26507 304-285-4721 robert.romanosky@netl.doe.gov susan M. Maley Project Manager National Energy Technology Laboratory 3610 Collins Ferry Road P.O. Box 880 Morgantown, WV 26507 304-285-1321 susan.maley@netl.doe.gov Hai Xiao University of Missouri-Rolla Electrical and Computer Engineering Department Rolla, MO 65409 573-341-6887 xiaoha@umr.edu Novel seNsors for high temperature iN-situ moNitoriNg of fossil fuel gases Description Novel types of sensors are needed to withstand the harsh environments characteristic of advanced power generation systems, particularly gasification-based systems.

286

Improving the Carbon Dioxide Emission Estimates from the Combustion of Fossil Fuels in California  

E-Print Network (OSTI)

1A5) Nat Gas Petroleum Coal Source: CARB, 2007a Note: CodePetroleum and Coal Products Manufac. Refinery Fuel Sourceand total petroleum products. Data Sources In the CALEB

de la Rue du Can, Stephane

2010-01-01T23:59:59.000Z

287

Fossil-Fuel CO2 Emissions from Central America, South America...  

NLE Websites -- All DOE Office Websites (Extended Search)

Venezuela (46.2), Chile (19.9), Columbia (18.5), Trinidad and Tobago (13.6), and Peru (11.1). This is a region of great diversity. Liquid fuels account for 60.8% of the 2008...

288

Cofiring: technological option in Romania for promoting cleaner fossil fuels usage.  

E-Print Network (OSTI)

??Co-firing refers to the simultaneous or alternative utilisation of two or more fuels in a combustion unit for the purpose of heat/power generation and it… (more)

Marin, Bogdan

2008-01-01T23:59:59.000Z

289

Fuel Cell Technologies Office: DOE Light Duty Vehicle Workshop  

NLE Websites -- All DOE Office Websites (Extended Search)

Light Duty Vehicle Workshop Light Duty Vehicle Workshop On July 26, 2010, the U.S. Department of Energy (DOE) sponsored a Light Duty Vehicle Workshop in Washington, D.C. Presentations from this workshop appear below as Adobe Acrobat PDFs. Download Adobe Reader. Presentations Overview of Light-Duty Vehicle Studies (PDF 562 KB), Sam Baldwin, Chief Technology Officer, Office of Energy Efficiency and Renewable Energy (EERE), DOE Light Duty Vehicle Pathways (PDF 404 KB), Tien Nguyen, Fuel Cell Technologies Office, EERE, DOE Hydrogen Transition Study (PDF 2.6 MB), Paul N. Leiby, David Greene, Zhenhong Lin, David Bowman, and Sujit Das, Oak Ridge National Laboratory Alternative Transportation Technologies: Hydrogen, Biofuels, Advanced Efficiency, and Plug-in Hybrid Electric Vehicles (PDF 123 KB), Joan Ogden and Mike Ramage, National Research Council

290

Cheyenne Light, Fuel and Power (Electric) - Commercial Energy Efficiency  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Electric) - Commercial Energy Electric) - Commercial Energy Efficiency Rebate Program (Wyoming) Cheyenne Light, Fuel and Power (Electric) - Commercial Energy Efficiency Rebate Program (Wyoming) < Back Eligibility Commercial Industrial Savings Category Other Appliances & Electronics Commercial Lighting Lighting Manufacturing Maximum Rebate Custom: 50% of project cost Program Info Start Date 06/09/2011 State Wyoming Program Type Utility Rebate Program Rebate Amount T8 Fixtures: $5 - $18 /system or $0.50 /lamp Fluorescents: $4 - $125 CFLs: $8 - $25 Indirect Lighting: $16 - $24 Pulse Start Metal Halide Fixtures: $25 - $65 Lighting Controls: $12 - $35 Variable Frequency Drive: $30 /hp Totally Enclosed Fan-Cooled: $10 - $600 Open Drip-Proof: $10 - $600 Custom: Buy down to 2 year pay back or 50% of cost, whichever is less

291

Crude Glycerol as Cost-Effective Fuel for Combined Heat and Power to Replace Fossil Fuels, Final Technical Report  

SciTech Connect

The primary objectives of this work can be summed into two major categories. Firstly, the fundamentals of the combustion of glycerol (in both a refined and unrefined form) were to be investigated, with emphasis of the development of a system capable of reliably and repeatedly combusting glycerol as well as an analysis of the emissions produced during glycerol combustion. Focus was placed on quantifying common emissions in comparison to more traditional fuels and this work showed that the burner developed was able to completely combust glycerol within a relatively wide range of operating conditions. Additionally, focus was placed on examining specific emissions in more detail, namely interesting NOx emissions observed in initial trials, acrolein and other volatile organic emissions, and particulate and ash emissions. This work showed that the combustion of crude glycerol could result in significantly reduced NOx emissions as a function of the high fuel bound oxygen content within the glycerol fuel. It also showed that when burned properly, the combustion of crude glycerol did not result in excessive emissions of acrolein or any other VOC compared to the combustion from more traditional fuels. Lastly however, this work has shown that in any practical application in which glycerol is being burned, it will be necessary to explore ash mitigation techniques due to the very high particulate matter concentrations produced during glycerol combustion. These emissions are comparable to unfiltered coal combustion and are directly tied to the biodiesel production method. The second focus of this work was directed to developing a commercialization strategy for the use of glycerol as a fuel replacement. This strategy has identified a 30 month plan for the scaling up of the laboratory scale burner into a pre-pilot scale system. Additionally, financing options were explored and an assessment was made of the economics of replacing a traditional fuel (namely natural gas) with crude glycerol from biodiesel production. This analysis showed that the cost of replacing natural gas with crude glycerol requires a strong function of the market price per unit of energy for the traditional fuel. However, the economics can be improved through the inclusion of a federal tax credit for the use of a renewable fuel. The conclusion of this analysis also shows that the ideal customer for energy replacement via crude glycerol is biodiesel producers who are located in remote regions, where the cost of energy is higher and the cost of crude glycerol is lowest. Lastly, the commercialization strategy analyzed competing technologies, namely traditional natural gas and electric heaters, as well as competing glycerol burners, and concludes with a discussion of the requirements for a pilot demonstration.

William L. ROberts

2012-10-31T23:59:59.000Z

292

Alternative Fuels Data Center: Light-Duty Vehicle Search  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

GTC (2014) Fuel: Flex Fuel (E85) (Flexible Fuel) Class: SedanWagon Fuel Economy (Gasoline): 12 mpg city, 20...

293

Fuel Cells Shine a Light on the Last Endeavour Space Shuttle Launch |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Fuel Cells Shine a Light on the Last Endeavour Space Shuttle Launch Fuel Cells Shine a Light on the Last Endeavour Space Shuttle Launch Fuel Cells Shine a Light on the Last Endeavour Space Shuttle Launch May 16, 2011 - 9:35am Addthis Sunita Satyapal Program Manager, Hydrogen & Fuel Cell Technology Program What does this mean for me? A new hydrogen fuel cell-powered mobile light tower that has the potential to drastically reduce dependence on diesel-fueled mobile lighting across the United States. They are cleaner and quieter than diesel mobile light towers used today. Energy Department-funded research has helped to reduce the cost of fuel cells by 30% since 2008 and 80% since 2002. This has enabled increased widespread adoption and enabled commercial developments for fuel cell applications. Fuel cell technology will help light the way as the Space Shuttle

294

Direct electrochemical conversion of carbon: systems for efficient conversion of fossil fuels to electricity  

DOE Green Energy (OSTI)

The direct electrochemical conversion of carbon involves discharge of suspensions of reactive carbon particles in a molten salt electrolyte against an oxygen (air) cathode. (Figure 1). The free energy and the enthalpy of the oxidation reaction are nearly identical. This allows theoretical efficiencies ({Delta}G(T)/{Delta}H) to approach 100% at temperatures from 500 to 800 C. Entropy heat losses are therefore negligible. The activities of the elemental carbon and of the carbon dioxide product are uniform throughout the fuel cell and constant over discharge time. This stabilizes cell EMF and allows full utilization of the carbon fuel in a single pass. Finally, the energy cost for pyrolysis of hydrocarbons is generally very low compared with that of steam reforming or water gas reactions. Direct electrochemical conversion of carbon might be compared with molten carbonate fuel cell using carbon rather than hydrogen. However, there are important differences. There is no hydrogen involved (except from trace water contamination). The mixture of molten carbonate and carbon is not highly flammable. The carbon is introduced in as a particulate, rather than as a high volume flow of hydrogen. At the relatively low rates of discharge (about 1 kA/m{sup 2}), the stoichiometric requirements for carbon dioxide by the cathodic reaction may be met by diffusion across the thin electrolyte gap. We report recent experimental work at LLNL using melt slurries of reactive carbons produced by the thermal decomposition of hydrocarbons. We have found that anodic reactivity of carbon in mixed carbonate melts depends strongly on form, structure and nano-scale disorder of the materials, which are fixed by the hydrocarbon starting material and the conditions of pyrolysis. Thus otherwise chemically pure carbons made by hydrocarbon pyrolysis show rates at fixed potentials that span an order of magnitude, while this range lies 1-2 orders of magnitude higher than the current density of graphite plate electrodes. One carbon materials was identified which delivered anode current densities of 1 kA/m{sup 2} at 0.8 V (i.e., 80% efficiency, based on the standard enthalpy of carbon/oxygen reaction, and assuming full conversion), which we believe to be sufficiently great to allow practical application in fuel cell arrays. Since the hydrocarbon starting materials are ''ash free,'' entrainment of ash into the melt is not limiting. Finally, the use of fine carbon particulates in slurries avoids cost and logistics of carbon electrode manufacture and distribution.

Cooper, J F; Cherepy, N; Krueger, R

2000-08-10T23:59:59.000Z

295

Distribution of characteristics of LWR [light water reactor] spent fuel  

SciTech Connect

The purpose of this report is to develop a collective description of the entire spent fuel inventory in terms of various fuel properties relevant to Approved Testing Materials (ATMs) using information available from the Characteristics Data Base (CBD), which is sponsored by the US Department of Energy`s (DOE`s) Office of Civilian Radioactive Waste Management. A number of light-water reactor (LWR) characteristics were analyzed including assembly class representation, fuel burnup, enrichment, fuel fabrication data, defective fuel quantities, and, at PNL`s specific request, linear heat generation rate (LHGR) and the utilization of burnable poisons. A quantitative relationships was developed between burnup and enrichment for BWRs and PWRs. The relationship shows that the existing BWR ATM is near the center of the burnup-enrichment distribution, while the four PWR ATMs bracket the center of the burnup range but are on the low side of the enrichment range. Fuel fabrication data are based on vendor specifications for new fuel. Defective fuel distributions were analyzed in terms of assembly class and vendor design. LHGR values were calculated from utility data on burnup and effective full-power days; these calculations incorporate some unavoidable assumptions which may compromise the value of the results. Only a limited amount of data are available on burnable poisons at this time. Based on this distribution study, suggestions for additional ATMs are made. These are based on the class and design concepts and include BWR/2,3 barrier fuel, and the WE 17 {times} 17 class with integral burnable poison. Both should be at relatively high burnups. 16 refs., 5 figs., 15 tabs.

Reich, W.J.; Notz, K.J. [Oak Ridge National Lab., TN (USA); Moore, R.S. [Automated Sciences Group, Inc., Oak Ridge, TN (USA)

1991-01-01T23:59:59.000Z

296

Fuel savings and emissions reductions from light duty fuel cell vehicles  

DOE Green Energy (OSTI)

Fuel cell vehicles (FCVs) operate efficiently, emit few pollutants, and run on nonpetroleum fuels. Because of these characteristics, the large-scale deployment of FCVs has the potential to lessen US dependence on foreign oil and improve air quality. This study characterizes the benefits of large-scale FCV deployment in the light duty vehicle market. Specifically, the study assesses the potential fuel savings and emissions reductions resulting from large-scale use of these FCVs and identifies the key parameters that affect the scope of the benefits from FCV use. The analysis scenario assumes that FCVs will compete with gasoline-powered light trucks and cars in the new vehicle market for replacement of retired vehicles and will compete for growth in the total market. Analysts concluded that the potential benefits from FCVs, measured in terms of consumer outlays for motor fuel and the value of reduced air emissions, are substantial.

Mark, J.; Ohi, J.M.; Hudson, D.V. Jr.

1994-04-01T23:59:59.000Z

297

Increasing the Fuel Economy and Safety of New Light-Duty Vehicles  

E-Print Network (OSTI)

Automotive Technology and Fuel Economy Trends: 1975 Through2004. “The effect of fuel economy on automobile safety: aM. , 2002. “Near-term fuel economy potential for light-duty

Wenzel, Tom; Ross, Marc

2006-01-01T23:59:59.000Z

298

CHEMICAL ASPECTS OF PELLET-CLADDING INTERACTION IN LIGHT WATER REACTOR FUEL ELEMENTS  

E-Print Network (OSTI)

ANS/ENS Topical Meeting on Reactor Safety Aspects of FuelINTERACTION IN LiaiT-WATER-REACTOR FUEL ELEMENTS by D. R.PCI) in light water reactor fuel elements, the chemical

Olander, D.R.

2010-01-01T23:59:59.000Z

299

www.fossil.energy.gov  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

The Office of Fossil Energy (FE) programs are focused on The Office of Fossil Energy (FE) programs are focused on activities related to the reliable, efficient, affordable and en- vironmentally sound use of fossil fuels which are essential to our Nation's security and economic prosperity. FE manages DOE's Fossil Energy Research and Development Program, which includes the CCS Dem- onstration Programs; Carbon Capture and Storage and Power Systems Program; and

300

Fuel-Cycle Fossil Energy Use and Greenhouse Gas Emissions of Fuel Ethanol Produced from U.S. Midwest Corn  

E-Print Network (OSTI)

this report was peer reviewed by these contributors and their comments have been incorporated. Among key findings is that, for all cases examined on a mass emission per travel mile basis, the corn-to-ethanol fuel cycle for Midwest-produced ethanol utilized as both E85 and E10 outperforms that of conventional (current) and of reformulated (future) gasoline with respect to energy use and greenhouse gas production. In many cases, the superiority of the energy and GHG result is quite pronounced (i.e., well outside the range of model "noise")

Michael Wang Christopher; Michael Wang; Christopher Saricks

1997-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "lighting fossil fuels" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Carbon Capture and Water Emissions Treatment System (CCWESTRS) at Fossil-Fueled Electric Generating Plants  

Science Conference Proceedings (OSTI)

The Tennessee Valley Authority (TVA), the Electric Power Research Institute (EPRI), and the Department of Energy-National Energy Technologies Laboratory (DOE-NETL) are evaluating and demonstrating integration of terrestrial carbon sequestration techniques at a coal-fired electric power plant through the use of Flue Gas Desulfurization (FGD) system gypsum as a soil amendment and mulch, and coal fly ash pond process water for periodic irrigation. From January to March 2002, the Project Team initiated the construction of a 40 ha Carbon Capture and Water Emissions Treatment System (CCWESTRS) near TVA's Paradise Fossil Plant on marginally reclaimed surface coal mine lands in Kentucky. The CCWESTRS is growing commercial grade trees and cover crops and is expected to sequester 1.5-2.0 MT/ha carbon per year over a 20-year period. The concept could be used to meet a portion of the timber industry's needs while simultaneously sequestering carbon in lands which would otherwise remain non-productive. The CCWESTRS includes a constructed wetland to enhance the ability to sequester carbon and to remove any nutrients and metals present in the coal fly ash process water runoff. The CCWESTRS project is a cooperative effort between TVA, EPRI, and DOE-NETL, with a total budget of $1,574,000. The proposed demonstration project began in October 2000 and has continued through December 2005. Additional funding is being sought in order to extend the project. The primary goal of the project is to determine if integrating power plant processes with carbon sequestration techniques will enhance carbon sequestration cost-effectively. This goal is consistent with DOE objectives to provide economically competitive and environmentally safe options to offset projected growth in U.S. baseline emissions of greenhouse gases after 2010, achieve the long-term goal of $10/ton of avoided net costs for carbon sequestration, and provide half of the required reductions in global greenhouse gases by 2025. Other potential benefits of the demonstration include developing a passive technology for water treatment for trace metal and nutrient release reductions, using power plant by-products to improve coal mine land reclamation and carbon sequestration, developing wildlife habitat and green-space around production facilities, generating Total Maximum Daily Load (TMDL) credits for the use of process water, and producing wood products for use by the lumber and pulp and paper industry. Project activities conducted during the five year project period include: Assessing tree cultivation and other techniques used to sequester carbon; Project site assessment; Greenhouse studies to determine optimum plant species and by-product application; Designing, constructing, operating, monitoring, and evaluating the CCWESTRS system; and Reporting (ongoing). The ability of the system to sequester carbon will be the primary measure of effectiveness, measured by accessing survival and growth response of plants within the CCWESTRS. In addition, costs associated with design, construction, and monitoring will be evaluated and compared to projected benefits of other carbon sequestration technologies. The test plan involves the application of three levels each of two types of power plant by-products--three levels of FGD gypsum mulch, and three levels of ash pond irrigation water. This design produces nine treatment levels which are being tested with two species of hardwood trees (sweet gum and sycamore). The project is examining the effectiveness of applications of 0, 8-cm, and 15-cm thick gypsum mulch layers and 0, 13 cm, and 25 cm of coal fly ash water for irrigation. Each treatment combination is being replicated three times, resulting in a total of 54 treatment plots (3 FGD gypsum levels X 3 irrigation water levels x 2 tree species x 3 replicates). Survival and growth response of plant species in terms of sequestering carbon in plant material and soil will be the primary measure of effectiveness of each treatment. Additionally, the ability of the site soils and unsaturated zone subsurface m

P. Alan Mays; Bert R. Bock; Gregory A. Brodie; L. Suzanne Fisher; J. Devereux Joslin; Donald L. Kachelman; Jimmy J. Maddox; N. S. Nicholas; Larry E. Shelton; Nick Taylor; Mark H. Wolfe; Dennis H. Yankee; John Goodrich-Mahoney

2005-08-30T23:59:59.000Z

302

Technical Potential of Solar Water Heating to Reduce Fossil Fuel Use and Greenhouse Gas Emissions in the United States  

DOE Green Energy (OSTI)

Use of solar water heating (SWH) in the United States grew significantly in the late 1970s and early 1980s, as a result of increasing energy prices and generous tax credits. Since 1985, however, expiration of federal tax credits and decreased energy prices have virtually eliminated the U.S. market for SWH. More recently, increases in energy prices, concerns regarding emissions of greenhouse gases, and improvements in SWH systems have created new interest in the potential of this technology. SWH, which uses the sun to heat water directly or via a heat-transfer fluid in a collector, may be particularly important in its ability to reduce natural gas use. Dependence on natural gas as an energy resource in the United States has significantly increased in the past decade, along with increased prices, price volatility, and concerns about sustainability and security of supply. One of the readily deployable technologies available to decrease use of natural gas is solar water heating. This report provides an overview of the technical potential of solar water heating to reduce fossil fuel consumption and associated greenhouse gas emissions in U.S. residential and commercial buildings.

Denholm, P.

2007-03-01T23:59:59.000Z

303

Comparative analysis of structural concrete quality assurance practices on three fossil fuel power plant construction projects. Final report  

SciTech Connect

The basic objective of this research effort was to perform a comparative analysis of the Quality Assurance practices related to the structural concrete phase on three fossil fuel power plant projects which are (or have been) under construction in the United States in the past ten years. This analysis identified the response of each Quality Assurance program to criteria similar to those which apply on nuclear power plant projects. The major emphasis was placed on the construction aspects of the structural concrete phase of each project. The engineering and design aspects were examined whenever they interfaced with the construction aspects. For those aspects of the Quality Assurance system which can be considered managerial in nature (i.e., organizational relationships, types of Quality Assurance programs, corrective action procedures, etc.) an attempt has been made to present the alternative approaches that were identified. For those aspects of the Quality Assurance system which are technical in nature (i.e., the frequency of testing for slump, compressive strength, etc.) an attempt has been made to present a comparative analysis between projects and in relation to the recommended or mandated practices presented in the appropriate industry codes and standards.

Willenbrock, J.H.; Thomas, H.R. Jr.; Burati, J.L. Jr.

1978-06-01T23:59:59.000Z

304

Prospects for and problems of using light-water supercritical-pressure coolant in nuclear reactors in order to increase the efficiency of the nuclear fuel cycle  

Science Conference Proceedings (OSTI)

Trends in the development of the power sector of the Russian and world power industries both at present time and in the near future are analyzed. Trends in the rise of prices for reserves of fossil and nuclear fuels used for electricity production are compared. An analysis of the competitiveness of electricity production at nuclear power plants as compared to the competitiveness of electricity produced at coal-fired and natural-gas-fired thermal power plants is performed. The efficiency of the open nuclear fuel cycle and various versions of the closed nuclear fuel cycle is discussed. The requirements on light-water reactors under the scenario of dynamic development of the nuclear power industry in Russia are determined. Results of analyzing the efficiency of fuel utilization for various versions of vessel-type light-water reactors with supercritical coolant are given. Advantages and problems of reactors with supercritical-pressure water are listed.

Alekseev, P. N.; Semchenkov, Yu. M.; Sedov, A. A., E-mail: sedov@dhtp.kial.ru; Subbotin, S. A.; Chibinyaev, A. V. [Russian Research Centre Kurchatov Institute (Russian Federation)

2011-12-15T23:59:59.000Z

305

TASK 3.4--IMPACTS OF COFIRING BIOMASS WITH FOSSIL FUELS  

DOE Green Energy (OSTI)

With a major worldwide effort now ongoing to reduce greenhouse gas emissions, cofiring of renewable biomass fuels at conventional coal-fired utilities is seen as one of the lower-cost options to achieve such reductions. The Energy & Environmental Research Center has undertaken a fundamental study to address the viability of cofiring biomass with coal in a pulverized coal (pc)-fired boiler for power production. Wheat straw, alfalfa stems, and hybrid poplar were selected as candidate biomass materials for blending at a 20 wt% level with an Illinois bituminous coal and an Absaloka subbituminous coal. The biomass materials were found to be easily processed by shredding and pulverizing to a size suitable for cofiring with pc in a bench-scale downfired furnace. A literature investigation was undertaken on mineral uptake and storage by plants considered for biomass cofiring in order to understand the modes of occurrence of inorganic elements in plant matter. Sixteen essential elements, C, H, O, N, P, K, Ca, Mg, S, Zn, Cu, Fe, Mn, B, Mo, and Cl, are found throughout plants. The predominant inorganic elements are K and Ca, which are essential to the function of all plant cells and will, therefore, be evenly distributed throughout the nonreproductive, aerial portions of herbaceous biomass. Some inorganic constituents, e.g., N, P, Ca, and Cl, are organically associated and incorporated into the structure of the plant. Cell vacuoles are the repository for excess ions in the plant. Minerals deposited in these ubiquitous organelles are expected to be most easily leached from dry material. Other elements may not have specific functions within the plant, but are nevertheless absorbed and fill a need, such as silica. Other elements, such as Na, are nonessential, but are deposited throughout the plant. Their concentration will depend entirely on extrinsic factors regulating their availability in the soil solution, i.e., moisture and soil content. Similarly, Cl content is determined less by the needs of the plant than by the availability in the soil solution; in addition to occurring naturally, Cl is present in excess as the anion complement in K fertilizer applications. An analysis was performed on existing data for switchgrass samples from ten different farms in the south-central portion of Iowa, with the goal of determining correlations between switchgrass elemental composition and geographical and seasonal changes so as to identify factors that influence the elemental composition of biomass. The most important factors in determining levels of various chemical compounds were found to be seasonal and geographical differences related to soil conditions. Combustion testing was performed to obtain deposits typical of boiler fouling and slagging conditions as well as fly ash. Analysis methods using computer-controlled scanning electron microscopy and chemical fractionation were applied to determine the composition and association of inorganic materials in the biomass samples. Modified sample preparation techniques and mineral quantification procedures using cluster analysis were developed to characterize the inorganic material in these samples. Each of the biomass types exhibited different inorganic associations in the fuel as well as in the deposits and fly ash. Morphological analyses of the wheat straw show elongated 10-30-{micro}m amorphous silica particles or phytoliths in the wheat straw structure. Alkali such as potassium, calcium, and sodium is organically bound and dispersed in the organic structure of the biomass materials. Combustion test results showed that the blends fed quite evenly, with good burnout. Significant slag deposit formation was observed for the 100% wheat straw, compared to bituminous and subbituminous coals burned under similar conditions. Although growing rapidly, the fouling deposits of the biomass and coal-biomass blends were significantly weaker than those of the coals. Fouling was only slightly worse for the 100% wheat straw fuel compared to the coals. The wheat straw ash was found to show the greatest similar

Christopher J. Zygarlicke; Donald P. McCollor; Kurt E. Eylands; Melanie D. Hetland; Mark A. Musich; Charlene R. Crocker; Jonas Dahl; Stacie Laducer

2001-08-01T23:59:59.000Z

306

Advanced fossil energy utilization  

Science Conference Proceedings (OSTI)

This special issue of Fuel is a selection of papers presented at the symposium ‘Advanced Fossil Energy Utilization’ co-sponsored by the Fuels and Petrochemicals Division and Research and New Technology Committee in the 2009 American Institute of Chemical Engineers (AIChE) Spring National Meeting Tampa, FL, on April 26–30, 2009.

Shekhawat, D.; Berry, D.; Spivey, J.; Pennline, H.; Granite, E.

2010-01-01T23:59:59.000Z

307

Fossil fuel and hydrocarbon conversion using hydrogen-rich plasmas. Topical report February 1994--February 1995  

DOE Green Energy (OSTI)

Experiments were made on use of H and CH plasmas for converting waste materials and heavy oils to H-rich transportation fuels. Batch and continuous experiments were conducted with an industrial microwave generator and a commercial microwave oven. A continuously circulating reactor was constructed for conducting experiments on flowing oils. Experiments on decomposition of scrap tires showed that microwave plasmas can be used to decompose scrap tires into potentially useful liquid products. In a batch experiment using a commercial microwave oven, about 20% of the tire was converted to liquid products in about 9 minutes. Methane was decomposed in a microwave plasma to yield a liquid products composed of various compound types; GC/MS analyses identified unsaturated compounds including benzene, toluene, ethyl benzene, methyl and ethyl naphthalene, small amounts of larger aromatic rings, and olefinic compounds. Experiments on a crude oil in a continuously flowing reactor showed that distillate materials are produced using H and CH plasmas. Also, the recycle oils had an overall carbon aromaticity lower than that of starting feed material, indicating that some hydrogenation and methanation had taken place in the recycle oils.

NONE

1995-02-01T23:59:59.000Z

308

Estimates of global, regional, and national annual CO{sub 2} emissions from fossil-fuel burning, hydraulic cement production, and gas flaring: 1950--1992  

SciTech Connect

This document describes the compilation, content, and format of the most comprehensive C0{sub 2}-emissions database currently available. The database includes global, regional, and national annual estimates of C0{sub 2} emissions resulting from fossil-fuel burning, cement manufacturing, and gas flaring in oil fields for 1950--92 as well as the energy production, consumption, and trade data used for these estimates. The methods of Marland and Rotty (1983) are used to calculate these emission estimates. For the first time, the methods and data used to calculate CO, emissions from gas flaring are presented. This C0{sub 2}-emissions database is useful for carbon-cycle research, provides estimates of the rate at which fossil-fuel combustion has released C0{sub 2} to the atmosphere, and offers baseline estimates for those countries compiling 1990 C0{sub 2}-emissions inventories.

Boden, T.A.; Marland, G. [Oak Ridge National Lab., TN (United States); Andres, R.J. [University of Alaska, Fairbanks, AK (United States). Inst. of Northern Engineering

1995-12-01T23:59:59.000Z

309

Alternative Fuels Data Center: Light-Duty Vehicle Search  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Flying Spur (2014) Fuel: Flex Fuel (E85) (Flexible Fuel) Class: SedanWagon Fuel Economy (Gasoline): 12 mpg city, 21 mpg highway Fuel Economy (Flex Fuel (E85)): 9 mpg city, 15 mpg...

310

Alternative Fuels Data Center: Light-Duty Vehicle Search  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Mercedes-Benz - E350 (2014) Fuel: Flex Fuel (E85) (Flexible Fuel) Class: SedanWagon Fuel Economy (Gasoline): 21 mpg city, 31 mpg highway Fuel Economy (Flex Fuel (E85)): 16 mpg...

311

Alternative Fuels Data Center: Light-Duty Vehicle Search  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Flying Spur (2013) Fuel: Flex Fuel (E85) (Flexible Fuel) Class: SedanWagon Fuel Economy (Gasoline): 12 mpg city, 21 mpg highway Fuel Economy (Flex Fuel (E85)): 9 mpg city, 15 mpg...

312

Alternative Fuels Data Center: Light-Duty Vehicle Search  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Regal (2013) Fuel: Flex Fuel (E85) (Flexible Fuel) Class: SedanWagon Fuel Economy (Gasoline): 19 mpg city, 31 mpg highway Fuel Economy (Flex Fuel (E85)): 15 mpg city, 22...

313

Alternative Fuels Data Center: Light-Duty Vehicle Search  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

GT (2013) Fuel: Flex Fuel (E85) (Flexible Fuel) Class: SedanWagon Fuel Economy (Gasoline): 12 mpg city, 19 mpg highway Fuel Economy (Flex Fuel (E85)): 8 mpg city, 14 mpg highway...

314

Alternative Fuels Data Center: Light-Duty Vehicle Search  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Verano (2013) Fuel: Flex Fuel (E85) (Flexible Fuel) Class: SedanWagon Fuel Economy (Gasoline): 21 mpg city, 32 mpg highway Fuel Economy (Flex Fuel (E85)): 15 mpg city, 23...

315

Alternative Fuels Data Center: Light-Duty Vehicle Search  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Allroad Quatro (2013) Fuel: Flex Fuel (E85) (Flexible Fuel) Class: SedanWagon Fuel Economy (Gasoline): 20 mpg city, 27 mpg highway Fuel Economy (Flex Fuel (E85)): 14 mpg city, 18...

316

Alternative Fuels Data Center: Light-Duty Vehicle Search  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Q5 (2013) Fuel: Flex Fuel (E85) (Flexible Fuel) Class: Sport Utility Vehicle Fuel Economy (Gasoline): 20 mpg city, 28 mpg highway Fuel Economy (Flex Fuel (E85)): 14 mpg city, 19...

317

Alternative Fuels Data Center: Light-Duty Vehicle Search  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Super Sport (2013) Fuel: Flex Fuel (E85) (Flexible Fuel) Class: SedanWagon Fuel Economy (Gasoline): 12 mpg city, 19 mpg highway Fuel Economy (Flex Fuel (E85)): 8 mpg city, 14...

318

Alternative Fuels Data Center: Light-Duty Vehicle Search  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

GTC (2013) Fuel: Flex Fuel (E85) (Flexible Fuel) Class: SedanWagon Fuel Economy (Gasoline): 11 mpg city, 19 mpg highway Fuel Economy (Flex Fuel (E85)): 8 mpg city, 13...

319

Alternative Fuels Data Center: Light-Duty Vehicle Search  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Regal (2013) Fuel: Flex Fuel (E85) (Flexible Fuel) Class: SedanWagon Fuel Economy (Gasoline): 18 mpg city, 29 mpg highway Fuel Economy (Flex Fuel (E85)): 13 mpg city, 20 mpg...

320

Alternative Fuels Data Center: Light-Duty Vehicle Search  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Cadillac - ATS RWD AWD (2013) Fuel: Flex Fuel (E85) (Flexible Fuel) Class: SedanWagon Fuel Economy (Gasoline): 19 mpg city, 28 mpg highway Fuel Economy (Flex Fuel (E85)): 14 mpg...

Note: This page contains sample records for the topic "lighting fossil fuels" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Review of air quality modeling techniques. Volume 8. [Assessment of environmental effects of nuclear, geothermal, and fossil-fuel power plants  

DOE Green Energy (OSTI)

Air transport and diffusion models which are applicable to the assessment of the environmental effects of nuclear, geothermal, and fossil-fuel electric generation are reviewed. The general classification of models and model inputs are discussed. A detailed examination of the statistical, Gaussian plume, Gaussian puff, one-box and species-conservation-of-mass models is given. Representative models are discussed with attention given to the assumptions, input data requirement, advantages, disadvantages and applicability of each.

Rosen, L.C.

1977-01-01T23:59:59.000Z

322

Comparison of Control System Performance for Fossil-Fuel Fired Power Plants Using Emission Measurement Data from the Utility Industr y Information Collection Request for Hazardous Air Pollutants  

Science Conference Proceedings (OSTI)

On On May 3, 2011, the U.S. Environmental Protection Agency (EPA) published a notice of proposed rulemaking (40 Code of Federal Regulations Parts 60 and 63: National Emission Standards for Hazardous Air Pollutants from Coal- and Oil-Fired Electric Utility Steam Generating Units and Standards of Performance for Fossil-FuelFired Electric Utility, Industrial-Commercial-Institutional, and Small Industrial-Commercial-Institutional Steam-Generating Units). The intent of this rulemaking is to set Maximum Achiev...

2011-12-23T23:59:59.000Z

323

Carbon dioxide emissions from fossil fuel consumption and cement manufacture, 1751-1991; and an estimate of their isotopic composition and latitudinal distribution  

SciTech Connect

This work briefly discusses four of the current research emphases at Oak Ridge National Laboratory regarding the emission of carbon dioxide (CO{sub 2}) from fossil fuel consumption, natural gas flaring and cement manufacture. These emphases include: (1) updating the 1950 to present time series of CO{sub 2} emissions from fossil fuel consumption and cement manufacture, (2) extending this time series back to 1751, (3) gridding the data at 1{sup 0} by 1{sup 0} resolution, and (4) estimating the isotopic signature of these emissions. In 1991, global emissions of CO{sub 2} from fossil fuel and cement increased 1.5% over 1990 levels to 6188 {times} 10{sup 6} metric tonnes C. The Kuwaiti oil fires can account for all of the increase. Recently published energy data (Etemad et al., 1991) allow extension of the CO emissions time series back to 1751. Preliminary examination shows good agreement with two other, but shorter, energy time series. A latitudinal distribution of carbon emissions is being completed. A southward shift in the major mass of CO{sub 2} emissions is occurring from European-North American latitudes towards central-southeast Asian latitudes, reflecting the growth of population and industrialization at these lower latitudes. The carbon isotopic signature of these emissions has been re-examined. The emissions of the last two decades are approximately 1{per_thousand} lighter than previously reported (Tans, 1981). This lightening of the emissions signature is due to fossil fuel gases and liquids, including a revision of their {delta}{sup 13}C isotopic signature and an increased production rate.

Andres, R.J.; Marland, G.; Boden, T.; Bischof, S.

1994-10-01T23:59:59.000Z

324

Alternative Fuels Data Center: Light-Duty Vehicle Search  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Supersports (2014) Fuel: Flex Fuel (E85) Class: SedanWagon Fuel Economy (gasoline): 12 mpg city, 20...

325

Fossil | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Fossil Fossil Fossil For the first time since 1995, U.S. oil production has surpassed imports. Explore the trend with our interactive chart. | Graphic by Daniel Wood, Energy Department. For the first time since 1995, U.S. oil production has surpassed imports. Explore the trend with our interactive chart. | Graphic by Daniel Wood, Energy Department. Fossil energy sources, including oil, coal and natural gas, are non-renewable resources that formed when prehistoric plants and animals died and were gradually buried by layers of rock. Over millions of years, different types of fossil fuels formed -- depending on what combination of organic matter was present, how long it was buried and what temperature and pressure conditions existed as time passed.

326

Fuel Cells Shine a Light on the Last Endeavour Space Shuttle Launch |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Cells Shine a Light on the Last Endeavour Space Shuttle Launch Cells Shine a Light on the Last Endeavour Space Shuttle Launch Fuel Cells Shine a Light on the Last Endeavour Space Shuttle Launch May 16, 2011 - 9:35am Addthis Sunita Satyapal Program Manager, Hydrogen & Fuel Cell Technology Program What does this mean for me? A new hydrogen fuel cell-powered mobile light tower that has the potential to drastically reduce dependence on diesel-fueled mobile lighting across the United States. They are cleaner and quieter than diesel mobile light towers used today. Energy Department-funded research has helped to reduce the cost of fuel cells by 30% since 2008 and 80% since 2002. This has enabled increased widespread adoption and enabled commercial developments for fuel cell applications. Fuel cell technology will help light the way as the Space Shuttle

327

Alternative Fuels Data Center: Light-Duty Vehicle Data Collection Methods  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Data Collection Methods to someone by E-mail Data Collection Methods to someone by E-mail Share Alternative Fuels Data Center: Light-Duty Vehicle Data Collection Methods on Facebook Tweet about Alternative Fuels Data Center: Light-Duty Vehicle Data Collection Methods on Twitter Bookmark Alternative Fuels Data Center: Light-Duty Vehicle Data Collection Methods on Google Bookmark Alternative Fuels Data Center: Light-Duty Vehicle Data Collection Methods on Delicious Rank Alternative Fuels Data Center: Light-Duty Vehicle Data Collection Methods on Digg Find More places to share Alternative Fuels Data Center: Light-Duty Vehicle Data Collection Methods on AddThis.com... Light-Duty Vehicle Data Collection Methods To maintain the Light-Duty Vehicle Search tool, the National Renewable Energy Laboratory (NREL) gathers vehicle specifications, photos, and

328

Alternative Fuels Data Center: Light-Duty Vehicle Idle Reduction Strategies  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Light-Duty Vehicle Light-Duty Vehicle Idle Reduction Strategies to someone by E-mail Share Alternative Fuels Data Center: Light-Duty Vehicle Idle Reduction Strategies on Facebook Tweet about Alternative Fuels Data Center: Light-Duty Vehicle Idle Reduction Strategies on Twitter Bookmark Alternative Fuels Data Center: Light-Duty Vehicle Idle Reduction Strategies on Google Bookmark Alternative Fuels Data Center: Light-Duty Vehicle Idle Reduction Strategies on Delicious Rank Alternative Fuels Data Center: Light-Duty Vehicle Idle Reduction Strategies on Digg Find More places to share Alternative Fuels Data Center: Light-Duty Vehicle Idle Reduction Strategies on AddThis.com... More in this section... Idle Reduction Benefits & Considerations Heavy-Duty Vehicles Medium-Duty Vehicles

329

MIXED-OXIDE FUEL USE IN COMMERCIAL LIGHT WATER REACTORS  

E-Print Network (OSTI)

In a Commission briefing on high-bumup fuel on March 25, 1997, the staff said that they would prepare a white paper on mixed-oxide (MOX) fuel in anticipation of a DOE program to bum excess weapons plutonium in commercial reactors. This memorandum and its attachment comprise that paper and are provided to inform the Commissioners of technical issues associated with such a program. More recently, on February 5, 1999, I was contacted by the Nuclear Control Institute regarding a paper they have written on this subject. They presented that paper to the staff in a public meeting on April 7, 1999. The Nuclear Control Institute's written paper had been provided to the staff earlier, and we have taken the paper into consideration in preparing this memorandum. Back-ground In January 1997, the U.S. Department of Energy released a record of decision for the storage and disposition of weapons-usable fissile materials. In this record, DOE recommended that excess weapons-grade plutonium be disposed of by two methods: (1) reconstituting the plutonium into mixed-oxide (MOX) fuel rods and burning it in current light water reactors, and (2) immobilizing the plutonium in glass logs with appropriate radioactive isotopes to deter theft prior to geologic disposal. Based on current information, it now appears that, if the MOX fuel method is utilized, fuel fabrication will take place at the Savannah River site in South Carolina with burning in nearby Westinghouse-type PWRs. Although DOE will probably not receive funding in FY 2000 for developing a license application, Congress has already given its approval for NRC licensing authority over a MOX fuel fabrication facility operated under

United States; William D. Travers

1999-01-01T23:59:59.000Z

330

Methods of economic analysis applied to fusion research: discount rate determination and the fossil fuel price effect  

SciTech Connect

In current and previous efforts, ECON has provided a preliminary economic assessment of a fusion research program. Part of this effort was the demonstration of a methodology for the estimation of reactor system costs and risk and for the treatment of program alternatives as a series of steps (tests) to buy information, thereby controlling program risk and providing a sound economic rationale for properly constructed research programs. The first phase of work also identified two areas which greatly affect the overall economic evaluation of fusion research and which warranted further study in the second phase. This led to the two tasks of the second phase reported herein: (1) discount rate determination and (2) evaluation of the effect of the expectation of the introduction of fusion power on current fossil fuel prices. In the first task, various conceptual measures of the social rate of discount were reviewed and critiqued. In the second task, a benefit area that had been called out by ECON was further examined. Long-range R and D yields short-term benefits in the form of lower nonrenewable energy resource prices because the R and D provides an expectation of future competition for the remaining reserves at the time of technology availability. ECON developed a model of optimal OPEC petroleum pricing as a function of the expectation of future competing technologies. It was shown that the existence of this expectation lowers the optimal OPEC export price and that accelerated technology R and D programs should provide further price decreases. These price reductions translate into benefits to the U.S. of at least a billion dollars.

1978-09-25T23:59:59.000Z

331

Alternative Fuels Data Center: Light-Duty Vehicle Search  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Jeep - Grand Cherokee 2WD AWD (2014) Fuel: Flex Fuel (E85) (Flexible Fuel) Class: Sport Utility Vehicle Fuel Economy (Gasoline): 17 mpg city, 24 mpg highway Fuel Economy (Flex...

332

Where do fossil fuel carbon dioxide emissions from California go? An analysis based on radiocarbon observations and an atmospheric transport model  

SciTech Connect

Characterizing flow patterns and mixing of fossil fuel-derived CO{sub 2} is important for effectively using atmospheric measurements to constrain emissions inventories. Here we used measurements and a model of atmospheric radiocarbon ({sup 14}C) to investigate the distribution and fluxes of atmospheric fossil fuel CO{sub 2} across the state of California. We sampled {sup 14}C in annual C{sub 3} grasses at 128 sites and used these measurements to test a regional model that simulated anthropogenic and ecosystem CO{sub 2} fluxes, transport in the atmosphere, and the resulting {sup 14}C of annual grasses ({Delta}{sub g}). Average measured {Delta}{sub g} in Los Angeles, San Francisco, the Central Valley, and the North Coast were 27.7 {+-} 20.0, 44.0 {+-} 10.9, 48.7 {+-} 1.9, and 59.9 {+-} 2.5{per_thousand}, respectively, during the 2004-2005 growing season. Model predictions reproduced regional patterns reasonably well, with estimates of 27.6 {+-} 2.4, 39.4 {+-} 3.9, 46.8 {+-} 3.0, and 59.3 {+-} 0.2{per_thousand} for these same regions and corresponding to fossil fuel CO{sub 2} mixing ratios (Cf) of 13.7, 6.1, 4.8, and 0.3 ppm. {Delta}{sub g} spatial heterogeneity in Los Angeles and San Francisco was higher in the measurements than in the predictions, probably from insufficient spatial resolution in the fossil fuel inventories (e.g., freeways are not explicitly included) and transport (e.g., within valleys). We used the model to predict monthly and annual transport patterns of fossil fuel-derived CO{sub 2} within and out of California. Fossil fuel CO{sub 2} emitted in Los Angeles and San Francisco was predicted to move into the Central Valley, raising Cf above that expected from local emissions alone. Annually, about 21, 39, 35, and 5% of fossil fuel emissions leave the California airspace to the north, east, south, and west, respectively, with large seasonal variations in the proportions. Positive correlations between westward fluxes and Santa Ana wind conditions were observed. The southward fluxes over the Pacific Ocean were maintained in a relatively coherent flow within the marine boundary layer, while the eastward fluxes were more vertically dispersed. Our results indicate that state and continental scale atmospheric inversions need to consider areas where concentration measurements are sparse (e.g., over the ocean to the south and west of California), transport within and across the marine boundary layer, and terrestrial boundary layer dynamics. Measurements of {Delta}{sub g} can be very useful in constraining these estimates.

Riley, W.J.; Hsueh, D.Y.; Randerson, J.T.; Fischer, M.L.; Hatch, J.G.; Pataki, D.E.; Wang, W.; Goulden, M.L.

2008-05-01T23:59:59.000Z

333

Direct conversion of light hydrocarbon gases to liquid fuel  

DOE Green Energy (OSTI)

The objective of this program is to investigate the direct conversion of light gaseous hydrocarbons, such as those produced during Fischer-Tropsch synthesis or as a product of gasification, to liquid transportation fuels via a partial oxidation process. The process will be tested in an existing pilot plant to obtain credible mass balances. Specific objectives to be met include determination of optimal process conditions, investigation of various processing options (e.g. feed injection, product quench, and recycle systems), and evaluation of an enhanced yield thermal/catalytic system. Economic evaluation of the various options will be performed as experimental data become available.

Foral, M.J.

1991-01-01T23:59:59.000Z

334

Direct conversion of light hydrocarbon gases to liquid fuel  

DOE Green Energy (OSTI)

The objective of this program is to investigate the direct conversion of light gaseous hydrocarbons, such as those produced during Fischer-Tropsch synthesis or as a product of gasification, to liquid transportation fuels via a partial oxidation process. The process will be tested in an existing pilot plant to obtain credible mass balances. Specific objectives to be met include determination of optimal process conditions, investigation of various processing options (e.g. feed injection, product quench, and recycle systems), and evaluation of an enhanced yield thermal/catalytic system. Economic evaluation of the various options will be performed as experimental data become available.

Foral, M.J.

1990-01-01T23:59:59.000Z

335

Monthly 2008 Utility and Nonutility Fuel Receipts and Fuel Quality...  

NLE Websites -- All DOE Office Websites (Extended Search)

Tags fossil fuel receipts, coal receipts, oil receipts, gas receipts, fossil fuel consumption, electricity generating fuel Dataset Ratings Overall 0 No votes yet Data...

336

Alternative Fuels Data Center: Plug-In Hybrid and Zero Emission Light-Duty  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Plug-In Hybrid and Plug-In Hybrid and Zero Emission Light-Duty Vehicle Rebates to someone by E-mail Share Alternative Fuels Data Center: Plug-In Hybrid and Zero Emission Light-Duty Vehicle Rebates on Facebook Tweet about Alternative Fuels Data Center: Plug-In Hybrid and Zero Emission Light-Duty Vehicle Rebates on Twitter Bookmark Alternative Fuels Data Center: Plug-In Hybrid and Zero Emission Light-Duty Vehicle Rebates on Google Bookmark Alternative Fuels Data Center: Plug-In Hybrid and Zero Emission Light-Duty Vehicle Rebates on Delicious Rank Alternative Fuels Data Center: Plug-In Hybrid and Zero Emission Light-Duty Vehicle Rebates on Digg Find More places to share Alternative Fuels Data Center: Plug-In Hybrid and Zero Emission Light-Duty Vehicle Rebates on AddThis.com...

337

Fossil Fuels Portal  

Science Conference Proceedings (OSTI)

... Latest Publications. NIST Standard Reference Database 23: Reference Fluid Thermodynamic and Transport Properties-REFPROP, Version 9.1. ...

2012-12-26T23:59:59.000Z

338

Taxes on fossil fuels.  

E-Print Network (OSTI)

?? Efterfrågan på biobränslen har ökat de 30 senaste åren och under samma tidsperiod har oljepriset stigit. I den här uppsatsen har vi undersökt i… (more)

Östman, Beata

2006-01-01T23:59:59.000Z

339

Incorporation of Hydride Nuclear Fuels in Commercial Light Water Reactors  

E-Print Network (OSTI)

experience in the nuclear fuels field. I am also extremelyreactor core components, nuclear fuel-element design hasreactors, commercial nuclear fuel still consists of uranium

Terrani, Kurt Amir

2010-01-01T23:59:59.000Z

340

Los Alamos Lab: Fossil Energy & Environment, Home  

NLE Websites -- All DOE Office Websites (Extended Search)

Jutta Kayser 505-663-5649 Program Manager Melissa Fox 505-663-5538 A New Era for Fossil Fuels The Office of Fossil Energy and Environment (FE) is the focal point for Los...

Note: This page contains sample records for the topic "lighting fossil fuels" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Comparative analysis of structural concrete Quality Assurance practices on nine nuclear and three fossil fuel power plant construction projects. Final summary report  

SciTech Connect

A summary of two reports, COO/4120-1 and COO/4120-2, is given. A comparative analysis was made of the Quality Assurance practices related to the structural concrete phase on nine nuclear and three fossil fuel power plant projects which are (or have been) under construction in the United States in the past ten years. For the nuclear projects the analysis identified the response of each Quality Assurance program to the applicable criteria of 10 CFR Part 50, Appendix B as well as to the pertinent regulatory requirements and industry standards. For the fossil projects the analysis identified the response of each Quality Assurance program to criteria similar to those which were applicable in the nuclear situation. The major emphasis was placed on the construction aspects of the structural concrete phase of each project. The engineering and design aspects were examined whenever they interfaced with the construction aspects.

Willenbrock, J.H.; Thomas, H.R. Jr.; Burati, J.J. Jr.

1978-12-01T23:59:59.000Z

342

Fossil energy use in conventional and low-external-input cropping systems.  

E-Print Network (OSTI)

??The production of fossil fuels will crest within the next decade and with reliance of modern conventional agriculture on fossil fuel energy inputs, food production… (more)

Cruse, Michael James

2009-01-01T23:59:59.000Z

343

Alternative Fuels Data Center: Light-Duty Vehicle Search  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

LaCrosse, FWDAWD (2014) Fuel: Flex Fuel (E85) Class: SedanWagon Fuel Economy (gasoline): 18 mpg city, 28 mpg highway Fuel Economy (E85): 14 mpg city, 20 mpg highway Emission...

344

Alternative Fuels Data Center: Light-Duty Vehicle Search  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Q5 AWD (2014) Fuel: Flex Fuel (E85) Class: Sport Utility Vehicle Fuel Economy (gasoline): 20 mpg city, 28 mpg highway Fuel Economy (E85): 14 mpg city, 19...

345

Alternative Fuels Data Center: Light-Duty Vehicle Search  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Allroad quattro (2014) Fuel: Flex Fuel (E85) Class: SedanWagon Fuel Economy (gasoline): 20 mpg city, 27 mpg highway Fuel Economy (E85): 14 mpg city, 18...

346

Alternative Fuels Data Center: Light-Duty Vehicle Search  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Q5 Hybrid (2013) Fuel: Hybrid Electric (Hybrid Electric) Class: Sport Utility Vehicle Fuel Economy (Gasoline): 24 mpg city, 30...

347

Alternative Fuels Data Center: Light-Duty Vehicle Search  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

3 (2013) Fuel: Hybrid Electric (Hybrid Electric) Class: SedanWagon Fuel Economy (Gasoline): 25 mpg city, 33...

348

Incorporation of Hydride Nuclear Fuels in Commercial Light Water Reactors  

E-Print Network (OSTI)

of plutonium attainable with MOX fuel [24, 23]. In theof recycles feasible with MOX fuel is limited because the

Terrani, Kurt Amir

2010-01-01T23:59:59.000Z

349

Alternative Fuel Vehicles  

NLE Websites -- All DOE Office Websites (Extended Search)

gas is a fossil fuel that generates less air pollutants and greenhouse gases. CNG Logo Propane, also called liquefied petroleum gas (LPG), is a domestically abundant fossil fuel...

350

Light Water Reactor Fuel Cladding Research and Testing | ornl.gov  

NLE Websites -- All DOE Office Websites (Extended Search)

Light Water Reactor Fuel Cladding Research Light Water Reactor Fuel Cladding Research June 01, 2013 Severe Accident Test Station ORNL is the focus point for Light Water Reactor (LWR) fuel cladding research and testing. The purpose of this research is to furnish U.S. industry (EPRI, Areva, Westinghouse), and regulators (NRC) with much-needed data supporting safe and economical nuclear power generation and used fuel management. LWR fuel cladding work is tightly integrated with ORNL accident tolerant fuel development and used fuel disposition programs thereby providing a powerful capability that couples basic materials science research with the nuclear applications research and development. The ORNL LWR fuel cladding program consists of five complementary areas of research: Accident tolerant fuel and cladding material testing under design

351

Fossil Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Research and Development Fossil Energy Research and Development Table of Contents Page Appropriation Language .................................................................................................................... FE-3 Overview ............................................................................................................................................ FE-4 Coal .................................................................................................................................................. FE-13

352

Can U.S. Supply Accommodate Shifts to Diesel-Fueled Light-Duty ...  

U.S. Energy Information Administration (EIA)

Can U.S. Supply Accommodate Shifts to Diesel-Fueled Light-Duty Vehicles? ... the automobile manufacturers probably face the largest diesel-vehicle challenges in the ...

353

Light-Duty Vehicle Energy Consumption by Fuel Type from EIA AEO...  

Open Energy Info (EERE)

Linked Data Search Share this page on Facebook icon Twitter icon Light-Duty Vehicle Energy Consumption by Fuel Type from EIA AEO 2011 Early Release Dataset Summary...

354

Effects of aqueous effluents from in situ fossil fuel processing technologies on aquatic systems. Annual progress report, January 1-December 31, 1979  

SciTech Connect

This is the third annual progress report for a continuing EPA-DOE jointly funded project to evaluate the effects of aqueous effluents from in situ fossil-fuel processing technologies on aquatic biota. The project is organized into four project tasks: (1) literature review; (2) process water screening; (3) methods development; and (4) recommendations. Our Bibliography of aquatic ecosystem effects, analytical methods and treatment technologies for organic compounds in advanced fossil-fuel processing effluents was submitted to the EPA for publication. The bibliography contains 1314 citations indexed by chemicals, keywords, taxa and authors. We estimate that the second bibliography volume will contain approximately 1500 citations and be completed in February. We compiled results from several laboratories of inorganic characterizations of 19 process waters: 55 simulated in situ oil-shale retort waters; and Hanna-3, Hanna-4B 01W and Lawrence Livermore Hoe Creek underground coal gasification condenser waters. These process waters were then compared to a published summary of the analyses from 18 simulated in situ oil-shale retort waters. We completed this year 96-h flow-through toxicity bioassays with fathead minnows and rainbow trout and 48-h flow-through bioassays with Daphnia pulicaria exposed to 5 oil-shale process waters, 1 tar-sand process water, 2 underground coal gasification condenser waters, 1 post-gasification backflood condenser water, as well as 2 bioassays with fossil-fuel process water constituents. The LC/sub 50/ toxicity values for these respective species when exposed to these waters are given in detail. (LTN)

Bergman, H.L.

1980-01-04T23:59:59.000Z

355

Direct conversion of light hydrocarbon gases to liquid fuel  

DOE Green Energy (OSTI)

Amoco Oil Company is investigating the direct conversion of light hydrocarbon gases to liquid fuels via partial oxidation. This report describes work completed in the first quarter of the two-year project (first quarter FY 1990). Task 1 of the work, preparation of the Project Management Plan, has been completed. Work was started and progress made on three other tasks during this quarter: Task 2. Modification of an existing Amoco pilot plant to handle the conditions of this project. Minor modifications were made to increase the maximum operating pressure to 1500 psig. Other more extensive modifications are being designed, including addition of an oxygen compressor and recycle system. Task 3.1. Evaluation of a Los Alamos National Laboratory methane oxidation kinetic model for suitability in guiding the experimental portions of this project. Task 3.2. Process variable (e.g. temperature, pressure, residence time) studies to determine optimal partial oxidation conditions. 1 fig.

Foral, M.J.

1990-01-01T23:59:59.000Z

356

Fuel Summary Report: Shippingport Light Water Breeder Reactor  

SciTech Connect

The Shippingport Light Water Breeder Reactor (LWBR) was a small water cooled, U-233/Th-232 cycle breeder reactor developed by the Pittsburgh Naval Reactors to improve utilization of the nation's nuclear fuel resources in light water reactors. The LWBR was operated at Shippingport Atomic Power Station (APS), which was a Department of Energy (DOE) (formerly Atomic Energy Commission)-owned reactor plant. Shippingport APS was the first large-scale, central-station nuclear power plant in the United States and the first plant of such size in the world operated solely to produce electric power. The Shippingport LWBR was operated successfully from 1977 to 1982 at the APS. During the five years of operation, the LWBR generated more than 29,000 effective full power hours (EFPH) of energy. After final shutdown, the 39 core modules of the LWBR were shipped to the Expended Core Facility (ECF) at Naval Reactors Facility at the Idaho National Engineering and Environmental Laboratory (INEEL). At ECF, 12 of the 39 modules were dismantled and about 1000 of more than 17,000 rods were removed from the modules of proof-of-breeding and fuel performance testing. Some of the removed rods were kept at ECF, some were sent to Argonne National Laboratory-West (ANL-W) in Idaho and some to ANL-East in Chicago for a variety of physical, chemical and radiological examinations. All rods and rod sections remaining after the experiments were shipped back to ECF, where modules and loose rods were repackaged in liners for dry storage. In a series of shipments, the liners were transported from ECF to Idaho Nuclear Technology Engineering Center (INTEC), formerly the Idaho Chemical Processing Plant (ICPP). The 47 liners containing the fully-rodded and partially-derodded core modules, the loose rods, and the rod scraps, are now stored in underground dry wells at CPP-749.

Illum, D.B.; Olson, G.L.; McCardell, R.K.

1999-01-01T23:59:59.000Z

357

The Energy Return on Energy Investment (EROI) of Photovoltaics: Methodology and Comparisons with Fossil Fuel Life Cycles  

E-Print Network (OSTI)

may be rapidly approaching what is often referred to as peak oil , i.e. the absolute peak in global of fossil carbon, such as petroleum oil, natural gas and various grades of coal (Cleveland et al., 1984; Hall et al., 2008; Murphy and Hall, 2011). Conventional oil and gas reserves are being depleted

358

Alternative Fuels Data Center: Light-Duty Vehicle Search  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Acura - ILX (2014) Fuel: Hybrid Electric (Hybrid Electric) Class: SedanWagon Fuel Economy (Gasoline): 39 mpg city, 38 mpg highway Emission Certification: California PZEV, Tier 2...

359

Incorporation of Hydride Nuclear Fuels in Commercial Light Water Reactors  

E-Print Network (OSTI)

Fundamental aspects of nuclear reactor fuel elements.Unlike permanent nuclear reactor core components, nuclearof the first nuclear reactors, commercial nuclear fuel still

Terrani, Kurt Amir

2010-01-01T23:59:59.000Z

360

EMGeo: Risk Minimizing Software for Finding Offshore Fossil ...  

EMGeo: Risk Minimizing Software for Finding Offshore Fossil Fuels by Fluid Identification. CR-2418, CR-2688,CR-2981

Note: This page contains sample records for the topic "lighting fossil fuels" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Light alkane conversion processes - Suprabiotic catalyst systems for selective oxidation of light alkane gases to fuel oxygenates  

DOE Green Energy (OSTI)

The objective of the work presented in this paper is to develop new, efficient catalysts for the selective transformation of the light alkanes in natural gas to alcohols for use as liquid transportation fuels, fuel precursors and chemical products. There currently exists no DIRECT one-step catalytic air-oxidation process to convert these substrates to alcohols. Such a one-step route would represent superior useful technology for the utilization of natural gas and similar refinery-derived light hydrocarbon streams. Processes for converting natural gas or its components (methane, ethane, propane, and the butanes) to alcohols for use as motor fuels, fuel additives or fuel precursors will not only add a valuable alternative to crude oil but will produce a clean-burning, high octane alternative to conventional gasoline.

Lyons, J.E.

1992-01-01T23:59:59.000Z

362

Light alkane conversion processes - Suprabiotic catalyst systems for selective oxidation of light alkane gases to fuel oxygenates.  

DOE Green Energy (OSTI)

The objective of the work presented in this paper is to develop new, efficient catalysts for the selective transformation of the light alkanes in natural gas to alcohols for use as liquid transportation fuels, fuel precursors and chemical products. There currently exists no DIRECT one-step catalytic air-oxidation process to convert these substrates to alcohols. Such a one-step route would represent superior useful technology for the utilization of natural gas and similar refinery-derived light hydrocarbon streams. Processes for converting natural gas or its components (methane, ethane, propane, and the butanes) to alcohols for use as motor fuels, fuel additives or fuel precursors will not only add a valuable alternative to crude oil but will produce a clean-burning, high octane alternative to conventional gasoline.

Lyons, J.E.

1992-07-01T23:59:59.000Z

363

Mild, Nontoxic Production of Fuels and Chemicals from Biomass  

Fossil fuel resources supply almost 90 percent of the world’s energy and the vast majority of its organic chemicals. This dependency is insupportable in light of rising emissions, demand and diminishing access. Abundant, renewable biomass is an ...

364

Self-reported Impacts of LED Lighting Technology Compared to Fuel-based Lighting on Night Market Business Prosperity in Kenya  

E-Print Network (OSTI)

Time period Pre 07/2008 Lighting Technology (Nightly Cost,2 Self-reported Impacts of LED Lighting Technology Comparedto Fuel-based Lighting on Night Market Business Prosperity

Johnstone, Peter

2009-01-01T23:59:59.000Z

365

Direct conversion of light hydrocarbon gases to liquid fuel  

DOE Green Energy (OSTI)

The objective of this program is to investigate the direct conversion of light gaseous hydrocarbons to liquid transportation fuels via a partial oxidation process. The process will be tested in existing pilot plant to obtain credible mass balances. Specific objectives to be met include determination of optimal process conditions, investigation of various processing options (e.g. feed injection, product quench, and recycle systems), and evaluation of an enhanced yield thermal/catalytic system. Economic evaluation of the various option will be performed as experimental data become available. The project is of two year's duration and contains three major tasks: Project Management Plan, Pilot Plant Modification, and Comparison of Preliminary Data With Los Alamos Model: We will determine if the kinetic model developed by Los Alamos National Laboratory can be used to guide our experimental effort. Other subtasks under Task 3 include: Pressure/Temperature/Reaction Time Effects; Study of Different Injection Systems: Different schemes for introducing and mixing reactants before or within the reactor will be evaluated theoretically and/or experimentally; Study of Different Quench Systems; Effect of Reactor Geometry; Effect of Reactor Recycle; and Enhanced-Yield Catalyst Study. 5 refs., 12 figs., 4 tabs.

Foral, M.J.

1990-01-01T23:59:59.000Z

366

Alternative Fuels Data Center: Light-Duty Vehicle Search  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

(Gasoline): 12 mpg city, 20 mpg highway Fuel Economy (Flex Fuel (E85)): 9 mpg city, 15 mpg highway Emission Certification: California LEV II, Tier 2 Bin 5 Engine: 12-cyl, 6.0L...

367

Alternative Fuels Data Center: Light-Duty Vehicle Search  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

(Gasoline): 12 mpg city, 20 mpg highway Fuel Economy (Flex Fuel (E85)): 9 mpg city, 15 mpg highway Emission Certification: California LEV II, Tier 2 Bin 5 Engine: 12-cyl, 6.0 L...

368

Alternative Fuels Data Center: Light-Duty Vehicle Search  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

mpg city, 29 mpg highway Fuel Economy (Flex Fuel (E85)): 15 mpg city, 21 mpg highway Emission Certification: California LEV II, Tier 2 Bin 5 Engine: 6-cyl, 3.5L Transmission: Auto...

369

The Fuel Cell Mobile Light Project - A DOE Market Transformation...  

NLE Websites -- All DOE Office Websites (Extended Search)

style , 5000 psi (350 bar) TN1 port, fill selector and fuel gauge Control panel with remote display and operation function from fuel cell. Built-in Service and maintenance...

370

Alternative Fuels Data Center: Light-Duty Vehicle Search  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Honda - Accord Plug-in Hybrid (2014) Fuel: Hybrid Electric (Hybrid Electric) Class: SedanWagon Fuel Economy (Gasoline): 36 mpg city, 39 mpg highway Engine: 4-cyl, 2.0L...

371

Alternative Fuels Data Center: Light-Duty Vehicle Search  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Acura - ILX (2013) Fuel: Hybrid Electric (Hybrid Electric) Class: SedanWagon Fuel Economy (Gasoline): 39 mpg city, 38 mpg highway Emission Certification: LEV II PZEV, Tier 2 Bin 3...

372

Alternative Fuels Data Center: Light-Duty Vehicle Search  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

ILX (2014) Fuel: Hybrid Electric Class: SedanWagon Fuel Economy: 39 mpg city, 38 mpg highway Emission Certification: LEV II PZEV, Tier 2 Bin 2 Engine: 1.5L I4 Transmission: ECVT...

373

Alternative Fuels Data Center: Light-Duty Vehicle Search  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Audi - Q5 Hybrid, AWD (2014) Fuel: Hybrid Electric Class: Sport Utility Vehicle Fuel Economy: 24 mpg city, 30 mpg highway Emission Certification: LEV II ULEV, Tier 2 Bin 5 Engine:...

374

"State","Fossil Fuels",,,,,,"Nuclear Electric Power",,"Renewable Energy",,,,,,"Total Energy Production"  

U.S. Energy Information Administration (EIA) Indexed Site

P2. Energy Production Estimates in Trillion Btu, 2011 " P2. Energy Production Estimates in Trillion Btu, 2011 " "State","Fossil Fuels",,,,,,"Nuclear Electric Power",,"Renewable Energy",,,,,,"Total Energy Production" ,"Coal a",,"Natural Gas b",,"Crude Oil c",,,,"Biofuels d",,"Other e",,"Total" ,"Trillion Btu" "Alabama",468.671,,226.821,,48.569,,411.822,,0,,245.307,,245.307,,1401.191 "Alaska",33.524,,404.72,,1188.008,,0,,0,,15.68,,15.68,,1641.933 "Arizona",174.841,,0.171,,0.215,,327.292,,7.784,,107.433,,115.217,,617.734 "Arkansas",2.985,,1090.87,,34.087,,148.531,,0,,113.532,,113.532,,1390.004 "California",0,,279.71,,1123.408,,383.644,,25.004,,812.786,,837.791,,2624.553

375

Topeka's "Green Light Tunnel" Saves Fuel and Time | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Topeka's "Green Light Tunnel" Saves Fuel and Time Topeka's "Green Light Tunnel" Saves Fuel and Time Topeka's "Green Light Tunnel" Saves Fuel and Time April 22, 2011 - 1:50pm Addthis Topeka, Kansas, has activated the first of three key traffic corridors to receive a "green light tunnel," a real-time adaptive traffic signal system that synchronizes signals to create a series of green lights for motorists. The result is fewer stops, less travel time and -- most importantly -- a lot of saved gasoline. Sallie Glaize Project Officer, Office of Energy Efficiency & Renewable Energy What does this project do? Saves motorists in Topeka time and money. The first of three key traffic corridors in Topeka, Kansas has received a "green light tunnel," a real-time adaptive traffic signal system that

376

Alternative Fuels Data Center: Light-Duty Vehicle Search  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Passenger Van (2011) Fuel: Electric (Dedicated) Class: Neighborhood Electric Vehicle Battery: 6 12-volt lead acid (72) Dealer: Locate a dealer Description: The Greentruck EVP1000...

377

Alternative Fuels Data Center: Light-Duty Vehicle Search  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Crew Cab (2011) Fuel: Electric (Dedicated) Class: Neighborhood Electric Vehicle Battery: 6 12-volt lead-acid (72) Dealer: Locate a dealer Description: The Greentruck EVX1000...

378

Alternative Fuels Data Center: Light-Duty Vehicle Search  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Extended Cab (2011) Fuel: Electric (Dedicated) Class: Neighborhood Electric Vehicle Battery: 12 6-volt lead-acid (72 volts) Dealer: Locate a dealer Description: The Greentruck...

379

The Monitor Blue Skies A future for fossil fuels http://www.epolitix.com/EN/Publications/Blue+Skies+Monitor/132... 1 of 2 30/10/05 11:40 pm  

E-Print Network (OSTI)

' production of carbon dioxide produced by all European power stations Ā­ some estimates state 500 years (CCS) hovers around two percent of the adult population. Yet many key players in the fossil fuel energy to miss its reduction targets in 2010 by 34 million tons per year. The rise of renewables is more than

Haszeldine, Stuart

380

Figure 71. Average fuel economy of new light-duty vehicles, 1980 ...  

U.S. Energy Information Administration (EIA)

Sheet3 Sheet2 Sheet1 Figure 71. Average fuel economy of new light-duty vehicles, 1980-2040 (miles per gallon, CAFE compliance values) History Reference case

Note: This page contains sample records for the topic "lighting fossil fuels" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Cheyenne Light, Fuel and Power Company Smart Grid Project | Open Energy  

Open Energy Info (EERE)

Light, Fuel and Power Company Smart Grid Project Light, Fuel and Power Company Smart Grid Project Jump to: navigation, search Project Lead Cheyenne Light, Fuel and Power Company Country United States Headquarters Location Cheyenne, Wyoming Recovery Act Funding $5,033,441.00 Total Project Value $10,066,882.00 Coverage Area Coverage Map: Cheyenne Light, Fuel and Power Company Smart Grid Project Coordinates 41.1399814Ā°, -104.8202462Ā° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

382

Can U.S. Supply Accommodate Shifts to Diesel-Fueled Light-Duty Vehicles?  

Reports and Publications (EIA)

The presentation explores if diesel-fueled light-duty vehicle growth in the U.S. might be large enough to create refinery constraints that would hinder that growth.

Information Center

2005-10-12T23:59:59.000Z

383

Can U.S. Supply Accommodate Shifts to Diesel-Fueled Light-Duty ...  

U.S. Energy Information Administration (EIA)

The presentation explores if diesel-fueled light-duty vehicle growth in the U.S. might be large enough to create refinery constraints that would hinder that growth.

384

Core Designs and Economic Analyses of Homogeneous Thoria-Urania Fuel in Light Water Reactors  

SciTech Connect

The objective is to develop equilibrium fuel cycle designs for a typical pressurized water reactor (PWR) loaded with homogeneously mixed uranium-thorium dioxide (ThO{sub 2}-UO{sub 2}) fuel and compare those designs with more conventional UO{sub 2} designs.The fuel cycle analyses indicate that ThO{sub 2}-UO{sub 2} fuel cycles are technically feasible in modern PWRs. Both power peaking and soluble boron concentrations tend to be lower than in conventional UO{sub 2} fuel cycles, and the burnable poison requirements are less.However, the additional costs associated with the use of homogeneous ThO{sub 2}-UO{sub 2} fuel in a PWR are significant, and extrapolation of the results gives no indication that further increases in burnup will make thoria-urania fuel economically competitive with the current UO{sub 2} fuel used in light water reactors.

Saglam, Mehmet; Sapyta, Joe J.; Spetz, Stewart W.; Hassler, Lawrence A. [Framatome ANP, Inc. (France)

2004-07-15T23:59:59.000Z

385

Meeting Summary Advanced Light Water Reactor Fuels Industry Meeting Washington DC October 27 - 28, 2011  

SciTech Connect

The Advanced LWR Fuel Working Group first met in November of 2010 with the objective of looking 20 years ahead to the role that advanced fuels could play in improving light water reactor technology, such as waste reduction and economics. When the group met again in March 2011, the Fukushima incident was still unfolding. After the March meeting, the focus of the program changed to determining what we could do in the near term to improve fuel accident tolerance. Any discussion of fuels with enhanced accident tolerance will likely need to consider an advanced light water reactor with enhanced accident tolerance, along with the fuel. The Advanced LWR Fuel Working Group met in Washington D.C. on October 72-18, 2011 to continue discussions on this important topic.

Not Listed

2011-11-01T23:59:59.000Z

386

Alternative Fuels Data Center: Light-Duty Vehicle Search  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fuel Type Fuel Type All Bi-Fuel Natural Gas (16) Bi-Fuel Propane (12) Biodiesel (B20) (11) Electric (13) Flex Fuel (E85) (91) Hybrid Electric (36) Hydrogen (3) Methanol (0) Natural Gas (4) Plug-in Hybrid Electric (10) Propane (2) Manufacturer All Acura (2) Audi (6) BMW (6) Bentley Motors (4) Buick (2) Cadillac (4) Chevrolet (25) Chrysler (3) Coda Automotive (0) Dodge (7) Fiat (1) Fisker Automotive (0) Ford (48) GMC (19) General Motors EV (0) HUMMER (0) Honda (8) Hyundai (2) Infiniti (4) Jaguar (6) Jeep (1) Kia (2) Land Rover (4) Lexus (5) Lincoln (2) Mazda (0) Mazda (0) McLaren (1) Mercedes-Benz (8) Mercury (0) Mitsubishi (1) Nissan (4) Plymouth (0) Porsche (2) QUANTUM-PROCON (0) Ram (5) Saab (0) Saturn (0) Scion (1) Smart (1) Solectria (0) Subaru (1) Tesla (1) Tesla Motors (0) Toyota (10) Vehicle

387

Fossil Energy Web System (FEWEB) PIA, Office of Fossil Energy...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Fossil Energy Web System (FEWEB) PIA, Office of Fossil Energy Headquaters Fossil Energy Web System (FEWEB) PIA, Office of Fossil Energy Headquaters Fossil Energy Web System (FEWEB)...

388

Fuel assembly for the production of tritium in light water reactors  

DOE Patents (OSTI)

A nuclear fuel assembly is described for producing tritium in a light water moderated reactor. The assembly consists of two intermeshing arrays of subassemblies. The first subassemblies comprise concentric annular elements of an outer containment tube, an annular target element, an annular fuel element, and an inner neutron spectrums shifting rod. The second subassemblies comprise an outer containment tube and an inner rod of either fuel, target, or neutron spectrum shifting neutral.

Cawley, W.E.; Trapp, T.J.

1983-06-10T23:59:59.000Z

389

Fuel assembly for the production of tritium in light water reactors  

DOE Patents (OSTI)

A nuclear fuel assembly is described for producing tritium in a light water moderated reactor. The assembly consists of two intermeshing arrays of subassemblies. The first subassemblies comprise concentric annular elements of an outer containment tube, an annular target element, an annular fuel element, and an inner neutron spectrums shifting rod. The second subassemblies comprise an outer containment tube and an inner rod of either fuel, target, or neutron spectrum shifting neutral.

Cawley, William E. (Richland, WA); Trapp, Turner J. (Richland, WA)

1985-01-01T23:59:59.000Z

390

A Future for Fossil Fuel By JOHN DEUTCH and ERNEST MONIZ March 15, 2007; Page A17  

E-Print Network (OSTI)

of heat energy from coal is $1-$2 per million BTUs, compared to $6-$8 for natural gas and $8-$12 for oil of choice for new, electricity-generating power plants at today's fuel prices. What about coal: This involves capturing the gas produced by coal combustion and burying it in deep geological formations

Deutch, John

391

Evaluation of unthrottled combustion system options for light duty applications with future syncrude derived fuels. Alternative Fuels Utilization Program  

DOE Green Energy (OSTI)

An experimental program examining the interaction between several fuel and light duty automotive engine combinations is detailed. Combustion systems addressed covered indirect and direct injection diesel and spark ignited stratified charge. Fuels primarily covered D2, naphtha and intermediate broadcut blends. Low ignition quality diesel fuels were also evaluated. The results indicate the baseline fuel tolerance of each combustion system and enable characteristics of the systems to be compared. Performance, gaseous and particulate emissions aspects were assessed. The data obtained assists in the selection of candidate combustion systems for potential future fuels. Performance and environmental penalties as appropriate are highlighted relative to the individual candidates. Areas of further work for increased understanding are also reviewed.

Needham, J. R.; Cooper, B. M.; Norris-Jones, S. R.

1982-12-01T23:59:59.000Z

392

Fossil Energy RSS Feeds | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Fossil Energy RSS Feeds Fossil Energy RSS Feeds Fossil Energy RSS Feeds RSS, sometimes known as Really Simple Syndication, is a popular means of sharing content (such as news headlines) without requiring readers to constantly visit a Web site to see what's new. RSS feeds contain headlines and hyperlinks to longer articles or Web pages. RSS feeds from the Office of Fossil Energy provide updates of specific interest to the fossil fuel community. Fossil Energy RSS feeds are free of charge. RSS content can be read using software called an RSS reader, feed reader, or an aggregator, which can be web-based or desktop-based. Click on RSS button below to subscribe to Fossil Energy latest news. All Fossil Energy News Clean Coal Technology News Carbon Capture and Storage News Oil & Natural Gas News

393

Fossil Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Fossil Energy Fossil Energy Natural gas production from "shale" formations (fine-grained sedimentary rocks with relatively low permeability that can be rich sources of petroleum and natural gas) is one of the most rapidly-growing trends in U.S. domestic energy exploration and production. In some cases, this fast expansion has resulted in natural gas drilling and production activity in parts of the country that have seen little or no activity of this type in the recent past. "Natural Gas from Shale" explains the basics, including what shale gas is, where it's found, why it's important, how it's produced, and challenges associated with production. Also included are a list of frequently asked questions, a glossary of major terms, and a list of

394

An Estimate of the Cost of Electricity from Light Water Reactors and Fossil Plants with Carbon Capture and Sequestration  

SciTech Connect

As envisioned in this report, LIFE technology lends itself to large, centralized, baseload (or 'always on') electrical generation. Should LIFE plants be built, they will have to compete in the electricity market with other generation technologies. We consider the economics of technologies with similar operating characteristics: significant economies of scale, limited capacity for turndown, zero dependence on intermittent resources and ability to meet environmental constraints. The five generation technologies examined here are: (1) Light Water Reactors (LWR); (2) Coal; (3) Coal with Carbon Capture and Sequestration (CCS); (4) Natural Gas; and (5) Natural Gas with Carbon Capture and Sequestration. We use MIT's cost estimation methodology (Du and Parsons, 2009) to determine the cost of electricity at which each of these technologies is viable.

Simon, A J

2009-08-21T23:59:59.000Z

395

Incorporation of Hydride Nuclear Fuels in Commercial Light Water Reactors  

E-Print Network (OSTI)

conductivity and volumetric heat capacity . 3.1.1.2 HydrogenBottom: volumetric heat capacity of the U 0.31 ZrH x fuel asThe volumetric heat capacity has the same dependencies;

Terrani, Kurt Amir

2010-01-01T23:59:59.000Z

396

Incorporation of Hydride Nuclear Fuels in Commercial Light Water Reactors  

E-Print Network (OSTI)

52] J.H. Rust. Nuclear Power Plant Engineering. Buchanan,the economics of nuclear power plants. In addition, the longin commercial nuclear power plants. The fuel designs and

Terrani, Kurt Amir

2010-01-01T23:59:59.000Z

397

Alternative Fuels Data Center: Light-Duty Vehicle Search  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Close Detail Chevrolet - Spark (2014) Fuel: Electric (Dedicated) Class: SedanWagon Battery: 20 kWh Emission Certification: California ZEV, Tier 2 Bin 1 Engine: 100 kW e-motor...

398

Program on Technology Innovation: Programmatic Risk Assessment Future Fossil- and Biomass-Fueled Power Generation System Configurations  

Science Conference Proceedings (OSTI)

Recent and upcoming regulatory activities will have a major impact on power plant design over the next few decades. To address various environmental concerns, including climate change, emissions of specific air toxics and waste-to-energy goals, a number of different power plant configurations have been proposed involving differences in fuel type, boiler designs and emissions control technology. The Electric Power Research Institute (EPRI) commissioned Gradient to evaluate risks associated with ...

2012-12-20T23:59:59.000Z

399

The burnup dependence of light water reactor spent fuel oxidation  

SciTech Connect

Over the temperature range of interest for dry storage or for placement of spent fuel in a permanent repository under the conditions now being considered, UO{sub 2} is thermodynamically unstable with respect to oxidation to higher oxides. The multiple valence states of uranium allow for the accommodation of interstitial oxygen atoms in the fuel matrix. A variety of stoichiometric and nonstoichiometric phases is therefore possible as the fuel oxidizers from UO{sub 2} to higher oxides. The oxidation of UO{sub 2} has been studied extensively for over 40 years. It has been shown that spent fuel and unirradiated UO{sub 2} oxidize via different mechanisms and at different rates. The oxidation of LWR spent fuel from UO{sub 2} to UO{sub 2.4} was studied previously and is reasonably well understood. The study presented here was initiated to determine the mechanism and rate of oxidation from UO{sub 2.4} to higher oxides. During the early stages of this work, a large variability in the oxidation behavior of samples oxidized under nearly identical conditions was found. Based on previous work on the effect of dopants on UO{sub 2} oxidation and this initial variability, it was hypothesized that the substitution of fission product and actinide impurities for uranium atoms in the spent fuel matrix was the cause of the variable oxidation behavior. Since the impurity concentration is roughly proportional to the burnup of a specimen, the oxidation behavior of spent fuel was expected to be a function of both temperature and burnup. This report (1) summarizes the previous oxidation work for both unirradiated UO{sub 2} and spent fuel (Section 2.2) and presents the theoretical basis for the burnup (i.e., impurity concentration) dependence of the rate of oxidation (Sections 2.3, 2.4, and 2.5), (2) describes the experimental approach (Section 3) and results (Section 4) for the current oxidation tests on spent fuel, and (3) establishes a simple model to determine the activation energies associated with spent fuel oxidation (Section 5).

Hanson, B.D.

1998-07-01T23:59:59.000Z

400

Fuel Economy of the Light-Duty Vehicle Fleet (released in AEO2005)  

Reports and Publications (EIA)

The U.S. fleet of light-duty vehicles consists of cars and light trucks, including minivans, sport utility vehicles (SUVs) and trucks with gross vehicle weight less than 8,500 pounds. The fuel economy of light-duty vehicles is regulated by the CAFE standards set by NHTSA. Currently, the CAFE standard is 27.5 miles per gallon (mpg) for cars and 20.7 mpg for light trucks. The most recent increase in the CAFE standard for cars was in 1990, and the most recent increase in the CAFE standard for light trucks was in 1996.

Information Center

2005-02-01T23:59:59.000Z

Note: This page contains sample records for the topic "lighting fossil fuels" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Light water reactor mixed-oxide fuel irradiation experiment  

SciTech Connect

The United States Department of Energy Office of Fissile Materials Disposition is sponsoring and Oak Ridge National Laboratory (ORNL) is leading an irradiation experiment to test mixed uranium-plutonium oxide (MOX) fuel made from weapons-grade (WG) plutonium. In this multiyear program, sealed capsules containing MOX fuel pellets fabricated at Los Alamos National Laboratory (LANL) are being irradiated in the Advanced Test Reactor (ATR) at the Idaho National Engineering and Environmental Laboratory (INEEL). The planned experiments will investigate the utilization of dry-processed plutonium, the effects of WG plutonium isotopics on MOX performance, and any material interactions of gallium with Zircaloy cladding.

Hodge, S.A.; Cowell, B.S. [Oak Ridge National Lab., TN (United States); Chang, G.S.; Ryskamp, J.M. [Lockheed Martin Idaho Technologies Co., Idaho Falls, ID (United States). Idaho National Engineering and Environmental Lab.

1998-06-01T23:59:59.000Z

402

NETL: News Release - Office of Fossil Energy Develops Educational...  

NLE Websites -- All DOE Office Websites (Extended Search)

them, and the current research and technologies being developed to allow us to use the fossil fuels in a more efficient and environmentally-sound manner. The Office of Fossil...

403

An integrated approach for techno-economic and environmental analysis of energy from biomass and fossil fuels  

E-Print Network (OSTI)

Biomass conversion into forms of energy is receiving current attention because of environmental, energy and agricultural concerns. The purpose of this thesis is to analyze the environmental, energy, economic, and technological aspects of using a form of biomass, switchgrass (panicum virgatum), as a partial or complete replacement for coal in power generation and cogeneration systems. To examine the effects of such a substitution, an environmental biocomplexity approach is used, wherein the agricultural, technological, economic, and environmental factors are addressed. In particular, lifecycle analysis (LCA) and a three-dimensional integrated economic, energy and environmental analysis is employed. The effectiveness of alternate technologies for switchgrass preparation, harvest and use in terms of greenhouse gas impact, cost and environmental implications is examined. Also, different scenarios of cofiring and biomass preparation pathways are investigated. Optimization of the total biomass power generation cost with minimum greenhouse gas effect is undertaken using mathematical programming for various alternate competitive biomass processing pathways. As a byproduct of this work a generic tool to optimize the cost and greenhouse gas emissions for allocation of fuel sources to the power generating sinks is developed. Further, this work discusses the sensitivity of the findings to varied cofiring ratios, coal prices, hauling distances, per acre yields, etc. Besides electricity generation in power plants, another viable alternative for reducing greenhouse gases (GHGs) is the utilization of biomass in conjunction with combined heat and power (CHP) in the process industries. This work addresses the utilization of biowaste or biomass source in a processing facility for CHP. A systematic algebraic procedure for targeting cogeneration potential ahead of detailed power generation network design is presented. The approach presented here effectively utilizes the biomass and biowaste sources as external fuel, and matches it with the use and dispatch of fuel sources within the process, heating and non-heating steam demands, and power generation. The concept of extractable energy coupled with flow balance via cascade diagram has been used as a basis to construct this approach. The work also discusses important economic factors and environmental policies required for the cost-effective utilization of biomass for electricity generation and CHP.

Mohan, Tanya

2005-12-01T23:59:59.000Z

404

Annual book of ASTM Standards 2008. Section Five. Petroleum products, lubricants, and fossil fuels. Volume 05.06. Gaseous fuels; coal and coke  

SciTech Connect

The first part covers standards for gaseous fuels. The second part covers standards on coal and coke including the classification of coals, determination of major elements in coal ash and trace elements in coal, metallurgical properties of coal and coke, methods of analysis of coal and coke, petrogrpahic analysis of coal and coke, physical characteristics of coal, quality assurance and sampling.

NONE

2008-09-15T23:59:59.000Z

405

Average effluent releases from U. S. nuclear power reactors, compared with those from fossil-fueled plants, in terms of currently applicable environmental standards  

SciTech Connect

From 3rd international congress of the International Radiation Protection Association meeting; Washington, District of Columbia, USA(9 Sep 1973). Between 1967 and 1972, eighteen second generation'' lightwater-cooled nuclear power plants, with capacities in the range of 500 to 800 MW(e) have been put into operation in the United States. These were in addition to ten smaller demonstration plants and one high-temperature gas-cooled nuclear power plant in operation at the start of this period. The reported yearly air effluent releases of radioactive gases, halogens and particulates, and liquid effluent fission and activation products and of tritium from these plants are evaluated on a Ci/10/sup 3/ MW(e) basis, and the overall yearly averages for the various types of reactors (boiling water (BWR), pressurized water (PWR) and high temperature gas-cooled (HTGR)! are compared. These and the amounts of effluents released from reference 1,000 MW(e) fossil-fueled plants are compared in terms of relative environmental concentrations and their relationship to the applicable U. S. environmental standards for the principal constituents in their respective plant air-effluent streams. 21 references. (auth)

Hull, A.P.

1973-09-19T23:59:59.000Z

406

Road Ahead for Light Duty Vehicle Fuel Demand, The  

Reports and Publications (EIA)

Explores some potential variations in light-duty vehicle demand to illustrate both the magnitude of demand changes and the length of time that it can take to affect demand when different levels of new-vehicle efficiencies and penetrations are assumed

Information Center

2005-07-11T23:59:59.000Z

407

Light-Duty Alternative Fuel Vehicles: Federal Test Procedure Emissions Results  

DOE Green Energy (OSTI)

In support of the U.S. Department of Energy's development and deployment of alternative fuels for environmental and national security reasons, NREL has managed a series of light-duty vehicle emissions tests on alternative fuel vehicles (AFVs). The purpose of this report is to give a detailed evaluation of the final emissions test results on vehicles tested on methanol, ethanol, and compressed natural gas.

Kelly, K.; Eudy, L.; Coburn, T.

1999-12-13T23:59:59.000Z

408

Feebates and Fuel Economy Standards: Impacts on Fuel Use in Light-Duty Vehicles and Greenhouse Gas Emissions  

Science Conference Proceedings (OSTI)

This study evaluates the potential impacts of a national feebate system, a market-based policy that consists of graduated fees on low-fuel-economy (or high-emitting) vehicles and rebates for high-fuel-economy (or lowemitting) vehicles. In their simplest form, feebate systems operate under three conditions: a benchmark divides all vehicles into two categories-those charged fees and those eligible for rebates; the sizes of the fees and rebates are a function of a vehicle's deviation from its benchmark; and placement of the benchmark ensures revenue neutrality or a desired level of subsidy or revenue. A model developed by the University of California for the California Air Resources Board was revised and used to estimate the effects of six feebate structures on fuel economy and sales of new light-duty vehicles, given existing and anticipated future fuel economy and emission standards. These estimates for new vehicles were then entered into a vehicle stock model that simulated the evolution of the entire vehicle stock. The results indicate that feebates could produce large, additional reductions in emissions and fuel consumption, in large part by encouraging market acceptance of technologies with advanced fuel economy, such as hybrid electric vehicles.

Greene, David L [ORNL

2011-01-01T23:59:59.000Z

409

Fossil-fuel processing technical/professional services: comparison of Fischer-Tropsch reactor systems. Phase I, final report  

DOE Green Energy (OSTI)

The Fischer-Tropsch reaction was commercialized in Germany and used to produce military fuels in fixed bed reactors. It was recognized from the start that this reactor system had severe operating and yield limitations and alternative reactor systems were sought. In 1955 the Sasol I complex, using an entrained bed (Synthol) reactor system, was started up in South Africa. Although this reactor was a definite improvement and is still operating, the literature is filled with proponents of other reactor systems, each claiming its own advantages. This report provides a summary of the results of a study to compare the development potential of three of these reactor systems with the commercially operating Synthol-entrained bed reactor system. The commercial Synthol reactor is used as a benchmark against which the development potential of the other three reactors can be compared. Most of the information on which this study is based was supplied by the M.W. Kellogg Co. No information beyond that in the literature on the operation of the Synthol reactor system was available for consideration in preparing this study, nor were any details of the changes made to the original Synthol system to overcome the operating problems reported in the literature. Because of conflicting claims and results found in the literature, it was decided to concentrate a large part of this study on a kinetic analysis of the reactor systems, in order to provide a theoretical analysis of intrinsic strengths and weaknesses of the reactors unclouded by different catalysts, operating conditions and feed compositions. The remainder of the study considers the physical attributes of the four reactor systems and compares their respective investment costs, yields, catalyst requirements and thermal efficiencies from simplified conceptual designs.

Thompson, G.J.; Riekena, M.L.; Vickers, A.G.

1981-09-01T23:59:59.000Z

410

Assessment of Fuel Economy Technologies for Light-Duty Vehicles  

SciTech Connect

An analysis of the number of stations and vehicles necessary to achieve future goals for sales of ethanol fuel (E85) is presented. Issues related to the supply of ethanol, which may turn out to be of even greater concern, are not analyzed here. A model of consumers decisions to purchase E85 versus gasoline based on prices, availability, and refueling frequency is derived, and preliminary results for 2010, 2017, and 2030 consistent with the president s 2007 biofuels program goals are presented. A limited sensitivity analysis is carried out to indicate key uncertainties in the trade-off between the number of stations and fuels. The analysis indicates that to meet a 2017 goal of 26 billion gallons of E85 sold, on the order of 30% to 80% of all stations may need to offer E85 and that 125 to 200 million flexible-fuel vehicles (FFVs) may need to be on the road, even if oil prices remain high. These conclusions are tentative for three reasons: there is considerable uncertainty about key parameter values, such as the price elasticity of choice between E85 and gasoline; the future prices of E85 and gasoline are uncertain; and the method of analysis used is highly aggregated it does not consider the potential benefits of regional strategies or the possible existence of market segments predisposed to purchase E85. Nonetheless, the preliminary results indicate that the 2017 biofuels program goals are ambitious and will require a massive effort to produce enough FFVs and ensure widespread availability of E85.

Greene, David L [ORNL

2008-01-01T23:59:59.000Z

411

EIA Short-Term Energy and Winter Fuels OutlookWinter Fuels Outlook  

U.S. Energy Information Administration (EIA)

Winter Fuels OutlookWinter Fuels Outlook ... for all fossil f elsMarch 31) for all fossil fuels Percent changg()e in fuel bills from last winter (forecast) Fuel bill ...

412

Fuel Economy Standards for New Light Trucks (released in AEO2007)  

Reports and Publications (EIA)

In March 2006, NHTSA finalized CAFE standards requiring higher fuel economy performance for light-duty trucks in MY 2008 through 2011. Unlike the proposed CAFE standards discussed in AEO2006 [13], which would have established minimum fuel economy requirements by six footprint size classes, the final reformed CAFE standards specify a continuous mathematical function that determines minimum fuel economy requirements by vehicle footprint, defined as the wheelbase (the distance from the front axle to the center of the rear axle) times the average track width (the distance between the center lines of the tires) of the vehicle in square feet.

Information Center

2007-02-22T23:59:59.000Z

413

Core design study of a supercritical light water reactor with double row fuel rods  

SciTech Connect

An equilibrium core for supercritical light water reactor has been designed. A novel type of fuel assembly with dual rows of fuel rods between water rods is chosen and optimized to get more uniform assembly power distributions. Stainless steel is used for fuel rod cladding and structural material. Honeycomb structure filled with thermal isolation is introduced to reduce the usage of stainless steel and to keep moderator temperature below the pseudo critical temperature. Water flow scheme with ascending coolant flow in inner regions is carried out to achieve high outlet temperature. In order to enhance coolant outlet temperature, the radial power distributions needs to be as flat as possible through operation cycle. Fuel loading pattern and control rod pattern are optimized to flatten power distribution at inner regions. Axial fuel enrichment is divided into three parts to control axial power peak, which affects maximum cladding surface temperature. (authors)

Zhao, C.; Wu, H.; Cao, L.; Zheng, Y. [School of Nuclear Science and Technology, Xi'an Jiaotong Univ., No. 28, Xianning West Road, Xi'an, ShannXi, 710049 (China); Yang, J.; Zhang, Y. [China Nuclear Power Technology Research Inst., Yitian Road, ShenZhen, GuangDong, 518026 (China)

2012-07-01T23:59:59.000Z

414

3D Simulation of Missing Pellet Surface Defects in Light Water Reactor Fuel Rods  

Science Conference Proceedings (OSTI)

The cladding on light water reactor (LWR) fuel rods provides a stable enclosure for fuel pellets and serves as a first barrier against fission product release. Consequently, it is important to design fuel to prevent cladding failure due to mechanical interactions with fuel pellets. Cladding stresses can be effectively limited by controlling power increase rates. However, it has been shown that local geometric irregularities caused by manufacturing defects known as missing pellet surfaces (MPS) in fuel pellets can lead to elevated cladding stresses that are sufficiently high to cause cladding failure. Accurate modeling of these defects can help prevent these types of failures. Nuclear fuel performance codes commonly use a 1.5D (axisymmetric, axially-stacked, one-dimensional radial) or 2D axisymmetric representation of the fuel rod. To study the effects of MPS defects, results from 1.5D or 2D fuel performance analyses are typically mapped to thermo-mechanical models that consist of a 2D plane-strain slice or a full 3D representation of the geometry of the pellet and clad in the region of the defect. The BISON fuel performance code developed at Idaho National Laboratory employs either a 2D axisymmetric or 3D representation of the full fuel rod. This allows for a computational model of the full fuel rod to include local defects. A 3D thermo-mechanical model is used to simulate the global fuel rod behavior, and includes effects on the thermal and mechanical behavior of the fuel due to accumulation of fission products, fission gas production and release, and the effects of fission gas accumulation on thermal conductivity across the fuel-clad gap. Local defects can be modeled simply by including them in the 3D fuel rod model, without the need for mapping between two separate models. This allows for the complete set of physics used in a fuel performance analysis to be included naturally in the computational representation of the local defect, and for the effects of the local defect to be coupled with the global fuel rod model. This approach for modeling fuel with MPS defects is demonstrated and compared with alternative techniques. The effects of varying parameters of the MPS defect are studied using this technique and presented here.

B.W. Spencer; J.D. Hales; S.R. Novascone; R.L. Williamson

2012-09-01T23:59:59.000Z

415

Fossil Energy - Idaho National Laboratory - Technology Transfer ...  

Fossil Energy Reduction of Regulated Emissions in Coal and Refuse-Derived Fuel Operations. Related Patents: 7,384,615. Contact: David R. Anderson . Phone: (208) 526-0837

416

Office of Fossil Energy | Department of Energy  

NLE Websites -- All DOE Office Websites

Fossil Energy Fossil Energy Search Search form Search Office of Fossil Energy Office of Fossil Energy Services Services Home Petroleum Reserves Petroleum Reserves Home Strategic Petroleum Reserve Heating Oil Reserve Naval Reserves International Cooperation Natural Gas Regulation Advisory Committees Science & Innovation Science & Innovation Home Clean Coal Clean Coal Home Turbines Gasification Fuel Cells Hydrogen from Coal Coal to Liquids Major Demonstrations Crosscutting Research Carbon Capture and Storage Carbon Capture and Storage Home Capture Storage Utilization MVA Regional Partnerships Oil & Gas Oil & Gas Home Methane Hydrate LNG Offshore Drilling Enhanced Oil Recovery Shale Gas Mission About Us About Us Home News & Blog News & Blog Home FE Today Press Releases & Techlines

417

Chromium Alloys for More Efficient Fossil Energy Conversion ...  

Science Conference Proceedings (OSTI)

Abstract Scope, In order to improve efficiency and reduce environmental emissions in fossil energy conversion systems, new technologies such as oxy- fuel gas ...

418

Cost and Performance Comparison Baseline for Fossil Energy Power...  

NLE Websites -- All DOE Office Websites (Extended Search)

for coal. Advances in technology are making it possible to generate power from fossil fuels with great improvements in the efficiency of energy use while at the same...

419

Cost and Performance Baseline for Fossil Energy Plants; Volume...  

NLE Websites -- All DOE Office Websites (Extended Search)

for coal. Advances in technology are making it possible to generate power from fossil fuels with great improvements in the efficiency of energy use while at the same...

420

EMGeo: Risk Minimizing Software for Finding Offshore Fossil ...  

EMGeo: Risk Minimizing Software for Finding Offshore Fossil Fuels by Fluid Identification Lawrence Berkeley National Laboratory. Contact LBL About This Technology

Note: This page contains sample records for the topic "lighting fossil fuels" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

RADIOLOGICAL HEALTH AND RELATED STANDARDS FOR NUCLEAR POWER PLANTS. VOLUME 2 OF HEALTH AND SAFETY IMPACTS OF NUCLEAR, GEOTHERMAL, AND FOSSIL-FUEL ELECTRIC GENERATION IN CALIFORNIA  

E-Print Network (OSTI)

2000. Total fuel mix is 11% MOX + 89% U0 fuel with PuRadionuclide H U0 Fuel U0 + MOX Fuel 14C Kr I llO Other

Nero, A.V.

2010-01-01T23:59:59.000Z

422

Technical System Targets: Onboard Hydrogen Storage for Light-Duty Fuel Cell Vehicles  

E-Print Network (OSTI)

is to be determined. e Onboard efficiency is the energy efficiency for delivering hydrogen from the storage systemTechnical System Targets: Onboard Hydrogen Storage for Light-Duty Fuel Cell Vehicles a Storage to the powerplant divided by the total mass/volume of the complete storage system, including all stored hydrogen

423

Light-Duty Vehicle Energy Consumption by Fuel Type from EIA AEO...  

Open Energy Info (EERE)

Light-Duty Vehicle Energy Consumption by Fuel Type from EIA AEO 2011 Early Release Supplemental Table 47 of EIA AEO 2011 Early Release
2011-02-23T16:04:28Z 2011-03-31T19:33:44Z...

424

Uncertainty in future global energy use and fossil fuel CO{sub 2} emissions 1975 to 2075: Appendices A--B  

Science Conference Proceedings (OSTI)

Appendix A contains the Monte Carlo Data Set. The data sheets give the distribution for input variables used in Monte Carlo analysis of the IEA/ORAU Global Energy, CO{sub 2} Model. The data sheets include a discussion of data sources, bibliographic sources, and other considerations used in developing the particular data format and values for distributions. As much detail as possible about how distributions are related to published estimates is given but in most cases it was necessary to make a significant leap from available data to the quantified distribution. The distributions are meant to be roughly accurate and to the degree that uncertainty exists about the form and value of distributions, the authors have tended to opt for wider bounds. Appendix B contains The IEA/ORAU Long-Term Global Energy-CO{sub 2} Model, Version A.84 -- Model Improvements. The model was originally developed in 1982 in support of work conducted for the US Department of Energy Carbon Dioxide Research Division in the area of future global fossil fuel related CO emissions research. The uncertainty analysis, documented in this report, made demands on the model that had not previously been made, and in the process of operating the model much was learned about areas in which simplification or elaboration was justified, or in which a different approach was warranted. As a consequence of these criticisms, demands, and learning numerous model modifications were undertaken. Since two versions of the model now exist, version specifications have been adopted. The 1984 version is designated A.84, while the version completed in 1982 is designated B.82. Model changes fall into three categories: those which affect the theoretical structure of the model, those which affect the computational processes of the model, and those which affect only the model by which model inputs are entered.

Edmonds, J.A. [Oak Ridge Associated Universities, Washington, DC (United States). Inst. for Energy Analysis; Reilly, J.M. [Pacific Northwest Labs., Washington, DC (United States); Gardner, R.H. [Oak Ridge National Lab., TN (United States); Brenkert, A. [Science Applications International Corp., Oak Ridge, TN (United States)

1985-12-01T23:59:59.000Z

425

A research needs assessment for the capture, utilization and disposal of carbon dioxide from fossil fuel-fired power plants. Volume 1, Executive summary: Final report  

SciTech Connect

This study identifies and assesses system approaches in order to prioritize research needs for the capture and non-atmospheric sequestering of a significant portion of the carbon dioxide (CO{sub 2}) emitted from fossil fuel-fired electric power plants (US power plants presently produce about 7% of the world`s CO{sub 2} emissions). The study considers capture technologies applicable either to existing plants or to those that optimistically might be demonstrated on a commercial scale over the next twenty years. Specific conclusions are as follows: (1) To implement CO{sub 2} capture and sequestration on a national scale will decrease power plant net efficiencies and significantly increase the cost of electricity. To make responsible societal decisions, accurate and consistent economic and environmental analysis of all alternatives for atmospheric CO{sub 2} mitigation are required. (2) Commercial CO{sub 2} capture technology, though expensive and energy intensive, exists today. (3) The most promising approach to more economical CO{sub 2} capture is to develop power plant systems that facilitate efficient CO{sub 2} capture. (4) While CO{sub 2} disposal in depleted oil and gas reservoirs is feasible today, the ability to dispose of large quantities Of CO{sub 2} is highly uncertain because of both technical and institutional issues. Disposal into the deep ocean or confined aquifers offers the potential for large quantity disposal, but there are technical, safety, liability, and environmental issues to resolve. Therefore, the highest priority research should focus on establishing the feasibility of large scale disposal options.

Not Available

1993-07-01T23:59:59.000Z

426

Fuel Cell Technologies Office: Fuel Cells  

NLE Websites -- All DOE Office Websites (Extended Search)

offering cleaner, more-efficient alternatives to the combustion of gasoline and other fossil fuels. Fuel cells have the potential to replace the internal-combustion engine in...

427

DOE - Fossil Energy:  

NLE Websites -- All DOE Office Websites (Extended Search)

and Trends Button National Security Button Safety and Health Button DOE Office of Fossil Energy Web Site Fossil Energy - Clean Coal Technologies - Carbon Capture,...

428

Advanced Fuel Cycle Economic Analysis of Symbiotic Light-Water Reactor and Fast Burner Reactor Systems  

Science Conference Proceedings (OSTI)

The Advanced Fuel Cycle Economic Analysis of Symbiotic Light-Water Reactor and Fast Burner Reactor Systems, prepared to support the U.S. Advanced Fuel Cycle Initiative (AFCI) systems analysis, provides a technology-oriented baseline system cost comparison between the open fuel cycle and closed fuel cycle systems. The intent is to understand their overall cost trends, cost sensitivities, and trade-offs. This analysis also improves the AFCI Program’s understanding of the cost drivers that will determine nuclear power’s cost competitiveness vis-a-vis other baseload generation systems. The common reactor-related costs consist of capital, operating, and decontamination and decommissioning costs. Fuel cycle costs include front-end (pre-irradiation) and back-end (post-iradiation) costs, as well as costs specifically associated with fuel recycling. This analysis reveals that there are large cost uncertainties associated with all the fuel cycle strategies, and that overall systems (reactor plus fuel cycle) using a closed fuel cycle are about 10% more expensive in terms of electricity generation cost than open cycle systems. The study concludes that further U.S. and joint international-based design studies are needed to reduce the cost uncertainties with respect to fast reactor, fuel separation and fabrication, and waste disposition. The results of this work can help provide insight to the cost-related factors and conditions needed to keep nuclear energy (including closed fuel cycles) economically competitive in the U.S. and worldwide. These results may be updated over time based on new cost information, revised assumptions, and feedback received from additional reviews.

D. E. Shropshire

2009-01-01T23:59:59.000Z

429

Economic Analyiss of "Symbiotic" Light Water Reactor/Fast Burner Reactor Fuel Cycles Proposed as Part of the U.S. Advanced Fuel Cycle Initiative (AFCI)  

Science Conference Proceedings (OSTI)

A spreadsheet-based 'static equilibrium' economic analysis was performed for three nuclear fuel cycle scenarios, each designed for 100 GWe-years of electrical generation annually: (1) a 'once-through' fuel cycle based on 100% LWRs fueled by standard UO2 fuel assemblies with all used fuel destined for geologic repository emplacement, (2) a 'single-tier recycle' scenario involving multiple fast burner reactors (37% of generation) accepting actinides (Pu,Np,Am,Cm) from the reprocessing of used fuel from the uranium-fueled LWR fleet (63% of generation), and (3) a 'two-tier' 'thermal+fast' recycle scenario where co-extracted U,Pu from the reprocessing of used fuel from the uranium-fueled part of the LWR fleet (66% of generation) is recycled once as full-core LWR MOX fuel (8% of generation), with the LWR MOX used fuel being reprocessed and all actinide products from both UO2 and MOX used fuel reprocessing being introduced into the closed fast burner reactor (26% of generation) fuel cycle. The latter two 'closed' fuel cycles, which involve symbiotic use of both thermal and fast reactors, have the advantages of lower natural uranium requirements per kilowatt-hour generated and less geologic repository space per kilowatt-hour as compared to the 'once-through' cycle. The overall fuel cycle cost in terms of $ per megawatt-hr of generation, however, for the closed cycles is 15% (single tier) to 29% (two-tier) higher than for the once-through cycle, based on 'expected values' from an uncertainty analysis using triangular distributions for the unit costs for each required step of the fuel cycle. (The fuel cycle cost does not include the levelized reactor life cycle costs.) Since fuel cycle costs are a relatively small percentage (10 to 20%) of the overall busbar cost (LUEC or 'levelized unit electricity cost') of nuclear power generation, this fuel cycle cost increase should not have a highly deleterious effect on the competitiveness of nuclear power. If the reactor life cycle costs are included in the analysis, with the fast reactors having a higher $/kw(e) capital cost than the LWRs, the overall busbar generation cost ($/MWh) for the closed cycles is approximately 12% higher than for the all-LWR once-through fuel cycle case, again based on the expected values from an uncertainty analysis. It should be noted that such a percentage increase in the cost of nuclear power is much smaller than that expected for fossil fuel electricity generation if CO2 is costed via a carbon tax, cap and trade regimes, or carbon capture and sequestration (CCS).

Williams, Kent Alan [ORNL; Shropshire, David E. [Idaho National Laboratory (INL)

2009-01-01T23:59:59.000Z

430

Survey of Worldwide Light Water Reactor Experience with Mixed Uranium-Plutonium Oxide Fuel  

SciTech Connect

The US and the Former Soviet Union (FSU) have recently declared quantities of weapons materials, including weapons-grade (WG) plutonium, excess to strategic requirements. One of the leading candidates for the disposition of excess WG plutonium is irradiation in light water reactors (LWRs) as mixed uranium-plutonium oxide (MOX) fuel. A description of the MOX fuel fabrication techniques in worldwide use is presented. A comprehensive examination of the domestic MOX experience in US reactors obtained during the 1960s, 1970s, and early 1980s is also presented. This experience is described by manufacturer and is also categorized by the reactor facility that irradiated the MOX fuel. A limited summary of the international experience with MOX fuels is also presented. A review of MOX fuel and its performance is conducted in view of the special considerations associated with the disposition of WG plutonium. Based on the available information, it appears that adoption of foreign commercial MOX technology from one of the successful MOX fuel vendors will minimize the technical risks to the overall mission. The conclusion is made that the existing MOX fuel experience base suggests that disposition of excess weapons plutonium through irradiation in LWRs is a technically attractive option.

Cowell, B.S.; Fisher, S.E.

1999-02-01T23:59:59.000Z

431

The Fuel Situation  

Science Conference Proceedings (OSTI)

The United States has an abundance of energy resources; fossil fuels (mostly coal and oil shale) adequate for centuries

J. C. Fisher

1974-01-01T23:59:59.000Z

432

Fossil Fuel Standard Reference Materials  

Science Conference Proceedings (OSTI)

... of greenhouse gases on climate change, there will be more focus in the future on the carbon budget and its role in the energy production cycle. ...

2012-10-01T23:59:59.000Z

433

Proposed Revisions to Light Truck Fuel Economy Standard (released in AEO2006)  

Reports and Publications (EIA)

In August 2005, NHTSA published proposed reforms to the structure of CAFE standards for light trucks and increases in light truck CAFE standards for model years 2008 through 2011 [8]. Under the proposed new structure, NHTSA would establish minimum fuel economy levels for six size categories defined by the vehicle footprint (wheelbase multiplied by track width), as summarized in Table 3. For model years 2008 through 2010, the new CAFE standards would provide manufacturers the option of complying with either the standards defined for each individual footprint category or a proposed average light truck fleet standard of 22.5 miles per gallon in 2008, 23.1 miles per gallon in 2009, and 23.5 miles per gallon in 2010. All light truck manufacturers would be required to meet an overall standard based on sales within each individual footprint category after model year 2010.

Information Center

2006-02-01T23:59:59.000Z

434

RADIOLOGICAL HEALTH AND RELATED STANDARDS FOR NUCLEAR POWER PLANTS. VOLUME 2 OF HEALTH AND SAFETY IMPACTS OF NUCLEAR, GEOTHERMAL, AND FOSSIL-FUEL ELECTRIC GENERATION IN CALIFORNIA  

E-Print Network (OSTI)

refabrication. through which nuclear fuel passes. Fusion.with the experience at the Nuclear Fuel Services Plant (seecommitment from the nuclear fuel cycle; see Section 3.2.3. )

Nero, A.V.

2010-01-01T23:59:59.000Z

435

Nuclide Composition Benchmark Data Set for Verifying Burnup Codes on Spent Light Water Reactor Fuels  

SciTech Connect

To establish a nuclide composition benchmark data set for the verification of burnup codes, destructive analyses of light water reactor spent-fuel samples, which were cut out from several heights of spent-fuel rods, were carried out at the analytical laboratory at the Japan Atomic Energy Research Institute. The 16 samples from three kinds of pressurized water reactor (PWR) fuel rods and the 18 samples from two boiling water reactor (BWR) fuel rods were examined. Their initial {sup 235}U enrichments and burnups were from 2.6 to 4.1% and from 4 to 50 GWd/t, respectively. One PWR fuel rod and one BWR fuel rod contained gadolinia as a burnable poison. The measurements for more than 40 nuclides of uranium, transuranium, and fission product elements were performed by destructive analysis using mass spectrometry, and alpha-ray and gamma-ray spectrometry. Burnup for each sample was determined by the {sup 148}Nd method. The analytical methods and the results as well as the related irradiation condition data are compiled as a complete benchmark data set.

Nakahara, Yoshinori; Suyama, Kenya; Inagawa, Jun; Nagaishi, Ryuji; Kurosawa, Setsumi; Kohno, Nobuaki; Onuki, Mamoru; Mochizuki, Hiroki [Japan Atomic Energy Research Institute (Japan)

2002-02-15T23:59:59.000Z

436

Storage of LWR (light-water-reactor) spent fuel in air  

Science Conference Proceedings (OSTI)

An experimental program is being conducted at Pacific Northwest Laboratory (PNL) to determine the oxidation response of light-water-reactor (LWR) spent fuels under conditions appropriate to fuel storage in air. The program is designed to investigate several independent variables that might affect the oxidation behavior of spent fuel. Included are temperature (135 to 230{degree}C), fuel burnup (to about 34 MWd/kgM), reactor type (pressurized and boiling water reactors), moisture level in the air, and the presence of a high gamma field. In continuing tests with declad spent fuel and nonirradiated UO{sub 2} specimens, oxidation rates were monitored by weight-gain measurements and the microstructures of subsamples taken during the weighing intervals were characterized by several analytical methods. The oxidation behavior indicated by weight gain and time to form powder will be reported in Volume III of this series. The characterization results obtained from x-ray diffractometry, transmission electron microscopy, scanning electron microscopy, and Auger electron spectrometry of oxidized fuel samples are presented in this report. 28 refs., 21 figs., 3 tabs.

Thomas, L.E.; Charlot, L.A.; Coleman, J.E. (Pacific Northwest Lab., Richland, WA (USA)); Knoll, R.W. (Johnson Controls, Inc., Madison, WI (USA))

1989-12-01T23:59:59.000Z

437

Fossil | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Fossil Fossil Fossil December 12, 2013 Department of Energy Releases $8 Billion Solicitation for Advanced Fossil Energy Projects The Energy Department published a solicitation today, making up to $8 billion in loan guarantee authority available to support innovative advanced fossil energy projects that avoid, reduce, or sequester greenhouse gases December 12, 2013 The National Energy Technology Laboratory's chemical looping reactor. This promising approach to capturing carbon dioxide will be among the technologies explored as part of the the Loan Program Office's advanced fossil energy solicitation. | Photo courtesy of the National Energy Technology Laboratory.

438

Response to several FOIA requests - Renewable Energy. Demand for Fossil  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Response to several FOIA requests - Renewable Energy. Demand for Response to several FOIA requests - Renewable Energy. Demand for Fossil Fuels Response to several FOIA requests - Renewable Energy. Demand for Fossil Fuels Response to several FOIA requests - Renewable Energy. nepdg_251_500.pdf. Demand for Fossil Fuels. Renewable sources of power. Demand for fossil fuels surely will overrun supply sooner or later, as indeed it already has in the casc of United States domestic oil drilling. Recognition also is growing that our air and land can no longer absorb unlimited quantities of waste from fossil fuel extraction and combustion. As that day draws nearer, policymakers will have no realistic alternative but to turn to sources of power that today make up a viable but small part of America's energy picture. And they will be

439

Predicting Light-Duty Vehicle Fuel Economy as a Function of Highway Speed  

SciTech Connect

The www.fueleconomy.gov website offers information such as window label fuel economy for city, highway, and combined driving for all U.S.-legal light-duty vehicles from 1984 to the present. The site is jointly maintained by the U.S. Department of Energy and the U.S. Environmental Protection Agency (EPA), and also offers a considerable amount of consumer information and advice pertaining to vehicle fuel economy and energy related issues. Included with advice pertaining to driving styles and habits is information concerning the trend that as highway cruising speed is increased, fuel economy will degrade. An effort was undertaken to quantify this conventional wisdom through analysis of dynamometer testing results for 74 vehicles at steady state speeds from 50 to 80 mph. Using this experimental data, several simple models were developed to predict individual vehicle fuel economy and its rate of change over the 50-80 mph speed range interval. The models presented require a minimal number of vehicle attributes. The simplest model requires only the EPA window label highway mpg value (based on the EPA specified estimation method for 2008 and beyond). The most complex of these simple model uses vehicle coast-down test coefficients (from testing prescribed by SAE Standard J2263) known as the vehicle Target Coefficients, and the raw fuel economy result from the federal highway test. Statistical comparisons of these models and discussions of their expected usefulness and limitations are offered.

Thomas, John F [ORNL; Hwang, Ho-Ling [ORNL; West, Brian H [ORNL; Huff, Shean P [ORNL

2013-01-01T23:59:59.000Z

440

Number 158 June 1, 2002 Development of technically and economically viable processes for the conversion and utilization of fossil fuels is a major objective of both the DOE Fossil  

E-Print Network (OSTI)

ODS Alloy Heat Exchangers for Solid-Fuel Thermal Systems A high-efficiency coal-fired power plant and liquefaction, improved power generation and advanced combustion. As these processes evolve to the pilot plant. The power plant was commissioned during the springof1998andhasbeeninoperationsincethen.Allthree headers were

Note: This page contains sample records for the topic "lighting fossil fuels" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Assessing deployment strategies for ethanol and flex fuel vehicles in the U.S. light-duty vehicle fleet  

E-Print Network (OSTI)

Within the next 3-7 years the US light duty fleet and fuel supply will encounter what is commonly referred to as the "blend wall". This phenomenon describes the situation when more ethanol production has been mandated than ...

McAulay, Jeffrey L. (Jeffrey Lewis)

2009-01-01T23:59:59.000Z

442

Evaluating the impact of advanced vehicle and fuel technologies in U.S. light duty vehicle fleet  

E-Print Network (OSTI)

The unrelenting increase in oil use by the U.S. light-duty vehicle (LDV) fleet presents an extremely challenging energy and environmental problem. A variety of propulsion technologies and fuels have the promise to reduce ...

Bandivadekar, Anup P

2008-01-01T23:59:59.000Z

443

www.biosciencemag.org November 2006 / Vol. 56 No. 11 BioScience 875 Green Plants, Fossil Fuels, and Now Biofuels  

E-Print Network (OSTI)

, and coal. As the human population increases, so too does the consumption of soil and fossil energy use, the largest per capita consumption of any country. Between 1850 and 2000, 90 percent of the US hundred years. By 1850, when wood accounted for 91 percent of US energy consumption and the US population

Patzek, Tadeusz W.

444

Fossil | Department of Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

Fossil Fossil For the first time since 1995, U.S. oil production has surpassed imports. Explore the trend with our interactive chart. | Graphic by Daniel...

445

Fossil energy: From laboratory to marketplace  

SciTech Connect

Fossil Energy-From Laboratory to Marketplace is a compendium of progress--progress achieved by teams of university, industrial, and government researchers working through the federal program to develop new, cleaner and more effective ways to produce and use the nation`s abundant fossil fuel resources. Generally, this report concentrates on research and development efforts conducted during the 1980s. Where necessary to provide an historical context, information is also drawn from the fossil energy research, development and demonstration programs of the 1970s.

Not Available

1991-04-01T23:59:59.000Z

446

Fossil energy: From laboratory to marketplace  

DOE Green Energy (OSTI)

Fossil Energy-From Laboratory to Marketplace is a compendium of progress--progress achieved by teams of university, industrial, and government researchers working through the federal program to develop new, cleaner and more effective ways to produce and use the nation's abundant fossil fuel resources. Generally, this report concentrates on research and development efforts conducted during the 1980s. Where necessary to provide an historical context, information is also drawn from the fossil energy research, development and demonstration programs of the 1970s.

Not Available

1991-04-01T23:59:59.000Z

447

Fossil energy biotechnology: A research needs assessment. Final report  

SciTech Connect

The Office of Program Analysis of the US Department of Energy commissioned this study to evaluate and prioritize research needs in fossil energy biotechnology. The objectives were to identify research initiatives in biotechnology that offer timely and strategic options for the more efficient and effective uses of the Nation`s fossil resource base, particularly the early identification of new and novel applications of biotechnology for the use or conversion of domestic fossil fuels. Fossil energy biotechnology consists of a number of diverse and distinct technologies, all related by the common denominator -- biocatalysis. The expert panel organized 14 technical subjects into three interrelated biotechnology programs: (1) upgrading the fuel value of fossil fuels; (2) bioconversion of fossil feedstocks and refined products to added value chemicals; and, (3) the development of environmental management strategies to minimize and mitigate the release of toxic and hazardous petrochemical wastes.

Not Available

1993-11-01T23:59:59.000Z

448

West Oahu Solar Powered LED Lighting System  

Science Conference Proceedings (OSTI)

This report describes the design and construction of a solar powered lighting system on the island of Oahu that uses a new Light Emitting Diode (LED) lamp technology. With oil in limited supply and ever increasing energy costs, the construction of photovoltaic (PV) systems has the potential to reduce Hawaiis dependence on imported fossil fuels and help Hawaiian Electric Company (HECO) to meet Hawaiis Renewable Portfolio Standards (RPS).

2006-03-21T23:59:59.000Z

449

Prospects for increased low-grade bio-fuels use in home and commercial heating applications  

E-Print Network (OSTI)

Though we must eventually find viable alternatives for fossil fuels in large segments of the energy market, there are economically attractive fossil fuel alternatives today for niche markets. The easiest fossil fuels to ...

Pendray, John Robert

2007-01-01T23:59:59.000Z

450

Metabolic Engineering and Synthetic Biology in Strain Development Every year, we consume about 27 billion barrels of fossil oil.  

E-Print Network (OSTI)

billion barrels of fossil oil. This enormous amount of oil is used for fueling our cars and airplanes

451

EIA Short-Term Energy and Winter Fuels Outlook  

U.S. Energy Information Administration (EIA)

Winter Fuels Outlook ... (October 1– March 31) for all fossil fuels Percent change in fuel bills from last winter (forecast) Fuel bill . Base case . forecast :

452

EIA Short-Term and Winter Fuels Outlook  

U.S. Energy Information Administration (EIA)

EIA Short-Term and Winter Fuels Outlook ... March 31) for fossil fuels but not electricity . Percent change in fuel bills from last winter (forecast) Fuel .

453

Solid State Ammonia Synthesis (SSAS) for Sustainable Fuel and Energy Storage Applications  

E-Print Network (OSTI)

Allen Haynes Energy Storage Claus Daniel Fossil Energy Peter Tortorelli Nuclear-Radioisotope Power Systems Jim King Nuclear Fuels Gary Bell* NuclearĀ­Light Water Reactors Jeremy Busby Office of Science BES Nuclear Fuel Materials Gary Bell* Nuclear Materials Science and Technology Randy Nanstad Physical

454

Draft Environmental Assessment for Proposed Rule, 10 CFR Part 433, Ā¨Energy Conservation and Fossil Fuel-Generated Energy Consumption Reduction Standards for the Design and Construction of New Federal Commercial and Multi-Family High-Rise Residential BuildingsĀˇ  

NLE Websites -- All DOE Office Websites (Extended Search)

Draft Environmental Assessment for Proposed Rule, 10 CFR Part 433, Draft Environmental Assessment for Proposed Rule, 10 CFR Part 433, "Energy Conservation and Fossil Fuel-Generated Energy Consumption Reduction Standards for the Design and Construction of New Federal Commercial and Multi-Family High-Rise Residential Buildings" and 10 CFR Part 435 "Energy Conservation and Fossil Fuel-Generated Energy Consumption Reduction Standards for the Design and Construction of New Federal Low-Rise Residential Buildings" (DOE/EA-1778) 2 SUMMARY The U.S. Department of Energy (DOE) has prepared this Environmental Assessment (EA) for DOE's Proposed Rule, 10 CFR Part 433, "Energy Conservation and Fossil Fuel-Generated Energy Consumption Reduction Standards for the Design and Construction of New Federal Commercial and Multi-Family High-Rise Residential

455

Draft Environmental Assessment for Proposed Rule, 10 CFR Part 433, Ā¨Energy Conservation and Fossil Fuel-Generated Energy Consumption Reduction Standards for the Design and Construction of New Federal Commercial and Multi-Family High-Rise Residential BuildingsĀˇ  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Draft Environmental Assessment for Proposed Rule, 10 CFR Part 433, Draft Environmental Assessment for Proposed Rule, 10 CFR Part 433, "Energy Conservation and Fossil Fuel-Generated Energy Consumption Reduction Standards for the Design and Construction of New Federal Commercial and Multi-Family High-Rise Residential Buildings" and 10 CFR Part 435 "Energy Conservation and Fossil Fuel-Generated Energy Consumption Reduction Standards for the Design and Construction of New Federal Low-Rise Residential Buildings" (DOE/EA-1778) 2 SUMMARY The U.S. Department of Energy (DOE) has prepared this Environmental Assessment (EA) for DOE's Proposed Rule, 10 CFR Part 433, "Energy Conservation and Fossil Fuel-Generated Energy Consumption Reduction Standards for the Design and Construction of New Federal Commercial and Multi-Family High-Rise Residential

456

Efficiency Improvement Opportunities for Light-Duty Natural-Gas-Fueled Vehicles  

Science Conference Proceedings (OSTI)

The purpose of this report is to evaluate and make recommendations concerning technologies that promise to improve the efilciency of compressed natural gas (CNG) light-duty vehicles. Technical targets for CNG automotive technology given in the March 1998 OffIce of Advanced Automotive Technologies research and development plan were used as guidance for this effort. The technical target that necessitates this current study is to validate technologies that enable CNG light vehicles to have at least 10% greater - fuel economy (on a miles per gallon equivalent basis) than equivalent gasoline vehicles by 2006. Other tar- gets important to natural gas (NG) automotive technology and this study are to: (1) increase CNG vehicle range to 380 miles, (2) reduce the incremental vehicle cost (CNG vs gasoline) to $1500, and (3) meet the California ultra low-emission vehicle (ULEV) and Federal Tier 2 emission standards expected to be in effect in 2004.

Staunton, R.H.; Thomas, J.F.

1998-12-01T23:59:59.000Z

457

Fuel  

E-Print Network (OSTI)

heavy-water-moderated, light-water-moderated and liquid-metal cooled fast breeder reactors fueled with natural or low-enriched uranium and containing thorium mixed with the uranium or in separate target channels. U-232 decays with a 69-year half-life through 1.9-year half-life Th-228 to Tl-208, which emits a 2.6 MeV gamma ray upon decay. We find that pressurized light-water-reactors fueled with LEU-thorium fuel at high burnup (70 MWd/kg) produce U-233 with U-232 contamination levels of about 0.4 percent. At this contamination level, a 5 kg sphere of U-233 would produce a gammaray dose rate of 13 and 38 rem/hr at 1 meter one and ten years after chemical purification respectively. The associated plutonium contains 7.5 percent of the undesirable heat-generating 88-year half-life isotope Pu-238. However, just as it is possible to produce weapon-grade plutonium in low-burnup fuel, it is also practical to use heavy-water reactors to produce U-233 containing only a few ppm of U-232 if the thorium is segregated in “target ” channels and discharged a few times more frequently than the natural-uranium “driver ” fuel. The dose rate from a 5-kg solid sphere of U-233 containing 5 ppm U-232 could be reduced by a further factor of 30, to about 2 mrem/hr, with a close-fitting lead sphere weighing about 100 kg. Thus the proliferation resistance of thorium fuel cycles depends very much upon how they are implemented. The original version of this manuscript was received by Science & Global Security on

Jungmin Kang A

2001-01-01T23:59:59.000Z

458

DESTRUCTIVE EXAMINATION OF 3-CYCLE LWR (LIGHT WATER REACTOR) FUEL RODS FROM TURKEY POINT UNIT 3 FOR THE CLIMAX - SPENT FUEL TEST  

DOE Green Energy (OSTI)

The destructive examination results of five light water reactor rods from the Turkey Point Unit 3 reactor are presented. The examinations included fission gas collection and analyses, burnup and hydrogen analyses, and a metallographic evaluation of the fuel, cladding, oxide, and hydrides. The rods exhibited a low fission gas release with all other results appearing representative for pressurized water reator fuel rods with similar burnups (28 GWd/MTU) and operating histories.

ATKIN SD

1981-06-01T23:59:59.000Z

459

Microbial Fuel Cells Offer Innovative Technology for Oil, Gas ...  

Microbial Fuel Cells Offer Innovative Technology ... where organics and salt contaminate water in significant amounts during fossil fuels production.

460

Evaluation of weapons-grade mixed oxide fuel performance in U.S. Light Water Reactors using COMETHE 4D release 23 computer code  

E-Print Network (OSTI)

The COMETHE 4D Release 23 computer code was used to evaluate the thermal, chemical and mechanical performance of weapons-grade MOX fuel irradiated under U.S. light water reactor typical conditions. Comparisons were made to and UO? fuels exhibited similar conventional UO? fuel. Weapons-grade MOX behavior. However, MOX fuel rods feature higher fuel centerline temperatures due to a lower thermal conductivity. Moreover, higher diffusion in MOX fuel results in a slightly higher fission gas release. Finally, MOX fuel shows better mechanical behavior than UO? fuel due to lower pellet-cladding mechanical interaction and rod deformation. These results indicate that the MOX fuel meets all potential licensing requirements.

Bellanger, Philippe

1999-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "lighting fossil fuels" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

DOE Hydrogen and Fuel Cells Program: Hydrogen Fuel Initiative  

NLE Websites -- All DOE Office Websites (Extended Search)

America's dependence on imported oil and reduce the environmental impacts of fossil fuel combustion. Beginning in fiscal year 2004, the Hydrogen Fuel Initiative (HFI) increased...

462

Pyrochemical recovery of actinide elements from spent light water reactor fuel  

Science Conference Proceedings (OSTI)

Argonne National Laboratory is investigating salt transport and lithium pyrochemical processes for recovery of transuranic (TRU) elements from spent light water reactor fuel. The two processes are designed to recover the TRU elements in a form compatible with the Integral Fast Reactor (IFR) fuel cycle. The IFR is uniquely effective in consuming these long-lived TRU elements. The salt transport process uses calcium dissolved in Cu-35 wt % Mg in the presence of a CaCl{sub 2} salt to reduce the oxide fuel. The reduced TRU elements are separated from uranium and most of the fission products by using a MgCl{sub 2} transport salt. The lithium process, which does not employ a solvent metal, uses lithium in the presence of a LiCl salt as the reductant. After separation from the salt, the reduced metal is introduced into an electrorefiner, which separates the TRU elements from the uranium and fission products. In both processes, reductant and reduction salt are recovered by electrochemical decomposition of the oxide reaction product.

Johnson, G.K.; Pierce, R.D.; Poa, D.S.; McPheeters, C.C.

1994-01-01T23:59:59.000Z

463

Fossil Energy Research Efforts in Carbon Capture and Storage | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Fossil Energy Research Efforts in Carbon Capture and Storage Fossil Energy Research Efforts in Carbon Capture and Storage Fossil Energy Research Efforts in Carbon Capture and Storage May 14, 2009 - 1:54pm Addthis Statement of Dr. Victor K. Der, Acting Assistant Secretary, Office of Fossil Energy before the Energy and Natural Resources Committee, United States Senate. Thank you, Mr. Chairman and members of the Committee. I appreciate this opportunity to provide testimony on the United States Department of Energy's (DOE's) research efforts in carbon capture and storage. The Department of Energy has not had an opportunity to fully analyze S. 1013, and therefore, cannot take a position on the bill at this time. Introduction Fossil fuel resources represent a tremendous national asset. An abundance of fossil fuels in North America has contributed to our Nation's economic

464

Illinois Nuclear Profile - All Fuels  

U.S. Energy Information Administration (EIA)

1Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; ... from fossil fuels, non-biogenic ...

465

Department of Energy - Fossil  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

61 en Department of Energy Releases $8 61 en Department of Energy Releases $8 Billion Solicitation for Advanced Fossil Energy Projects http://energy.gov/articles/department-energy-releases-8-billion-solicitation-advanced-fossil-energy-projects fossil-energy-projects" class="title-link">Department of Energy Releases $8 Billion Solicitation for Advanced Fossil Energy Projects

466

Fossil | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

energy.govfe Important Fossil Links Managing the Strategic Petroleum Reserve Enhanced Oil Recovery R&D National Petroleum Council Energy in Brief How Dependent Are We on...

467

Putting policy in drive : coordinating measures to reduce fuel use and greenhouse gas emissions from U.S. light-duty vehicles  

E-Print Network (OSTI)

The challenges of energy security and climate change have prompted efforts to reduce fuel use and greenhouse gas emissions in light-duty vehicles within the United States. Failures in the market for lower rates of fuel ...

Evans, Christopher W. (Christopher William)

2008-01-01T23:59:59.000Z

468

Geographic patterns of carbon dioxide emissions from fossil-fuel burning, hydraulic cement production, and gas flaring on a one degree by one degree grid cell basis: 1950 to 1990  

SciTech Connect

Data sets of one degree latitude by one degree longitude carbon dioxide (CO{sub 2}) emissions in units of thousand metric tons of carbon (C) per year from anthropogenic sources have been produced for 1950, 1960, 1970, 1980 and 1990. Detailed geographic information on CO{sub 2} emissions can be critical in understanding the pattern of the atmospheric and biospheric response to these emissions. Global, regional and national annual estimates for 1950 through 1992 were published previously. Those national, annual CO{sub 2} emission estimates were based on statistics on fossil-fuel burning, cement manufacturing and gas flaring in oil fields as well as energy production, consumption and trade data, using the methods of Marland and Rotty. The national annual estimates were combined with gridded one-degree data on political units and 1984 human populations to create the new gridded CO{sub 2} emission data sets. The same population distribution was used for each of the years as proxy for the emission distribution within each country. The implied assumption for that procedure was that per capita energy use and fuel mix is uniform over a political unit. The consequence of this first-order procedure is that the spatial changes observed over time are solely due to changes in national energy consumption and nation-based fuel mix. Increases in emissions over time are apparent for most areas.

Brenkert, A.L. [ed.] [Oak Ridge National Lab., TN (United States). Carbon Dioxide Information Analysis Center; Andres, R.J. [Univ. of Alaska, Fairbanks, AK (United States). Inst. of Northern Engineering; Marland, G. [Oak Ridge National Lab., TN (United States). Environmental Sciences Div.; Fung, I. [Univ. of Victoria, British Columbia (Canada)]|[National Aeronautics and Space Administration, New York, NY (United States). Goddard Inst. for Space Studies; Matthews, E. [Columbia Univ., New York, NY (United States)]|[National Aeronautics and Space Administration, New York, NY (United States). Goddard Inst. for Space Studies

1997-03-01T23:59:59.000Z

469

Fossil Energy Fiscal Year 2011 Budget Request | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Fiscal Year 2011 Budget Request Energy Fiscal Year 2011 Budget Request Fossil Energy Fiscal Year 2011 Budget Request March 17, 2010 - 1:12pm Addthis Mr. Chairman, Members of the Committee, it is my pleasure to appear before you today to present the Office of Fossil Energy's (FE) proposed Budget for Fiscal Year 2011 (FY 2011). The Office of Fossil Energy's primary objective is to ensure that we can continue to utilize our traditional fuel sources for clean, affordable, reliable energy. Fossil fuels are anticipated to play a critical role in meeting our Nation's future energy needs. Making use of the Nation's fossil fuel assets in an environmentally responsible manner will help the United States to meet its energy requirements, minimize detrimental environmental impacts, positively contribute to energy security and compete

470

Fossil-energy program. Progress report for June 1981  

SciTech Connect

This report - the eighty-third of series - is a compendium of monthly progress reports for the ORNL research and development programs that are in support of the increased utilization of coal and other fossil fuel alternatives as sources of clean energy. The projects reported this month include those for coal conversion development, chemical research and development, materials technology, component development and process evaluation, technical support to major liquefaction projects, process analysis and engineering evaluations, fossil energy environmental analysis, flue gas desulfurization, coal preparation waste utilization, atmospheric fluidized bed coal combustor for cogeneration, TVA FBC demonstration plant program technical support, PFBC systems analysis, fossil fuel applications assessments, performance assurance system support for fossil energy projects, international energy technology assessment, generalized equilibrium models for liquid and gaseous fuel supplies, analyses of coal production goals, and fossil energy information center.

Not Available

1981-08-01T23:59:59.000Z

471

Lighting.  

SciTech Connect

Since lighting accounts for about one-third of the energy used in commercial buildings, there is opportunity to conserve. There are two ways to reduce lighting energy use: modify lighting systems so that they used less electricity and/or reduce the number of hours the lights are used. This booklet presents a number of ways to do both. Topics covered include: reassessing lighting levels, reducing lighting levels, increasing bulb & fixture efficiency, using controls to regulate lighting, and taking advantage of daylight.

United States. Bonneville Power Administration.

1992-09-01T23:59:59.000Z

472

Fuel reforming for fuel cell application.  

E-Print Network (OSTI)

??xviii, 119 leaves : ill. ; 30 cm HKUST Call Number: Thesis CENG 2006 Hung Fossil fuels, such as natural gas, petroleum, and coal are… (more)

Hung, Tak Cheong

2006-01-01T23:59:59.000Z

473

Effects of Recent Fossil Energy Market Developments on  

E-Print Network (OSTI)

, fossil fuel prices decreased substantially in August and September of 2006 (figures 1 and 2). Ā· Crude oil major storms threatening Gulf of Mexico oil production. The price of crude oil to be deliveredEffects of Recent Fossil Energy Market Developments on US Ethanol AFPC Briefing Paper 06

474

Lighting  

Energy.gov (U.S. Department of Energy (DOE))

There are many different types of artificial lights, all of which have different applications and uses. Types of lighting include:

475

A Potential Path to Emissions-Free Fossil Energy | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

may not be a household term just yet, it represents one promising path forward for using fossil fuels as part of a clean energy future. At most coal fired power plants, the coal...

476

Independence Power and Light - New Homes Rebate Program | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Independence Power and Light - New Homes Rebate Program Independence Power and Light - New Homes Rebate Program Independence Power and Light - New Homes Rebate Program < Back Eligibility Construction Savings Category Heating & Cooling Commercial Heating & Cooling Cooling Home Weatherization Construction Commercial Weatherization Design & Remodeling Heat Pumps Appliances & Electronics Water Heating Program Info State Missouri Program Type Utility Rebate Program Rebate Amount Energy Star Certification Cost: $500 Central air conditioner: $300 Central heat pump (fossil fuel back-up): $600 Central heat pump system (electric back-up): $700 Central heat pump system (fossil fuel back-up); electric water heater: $700 Central heat pump system (electric back-up); electric water heater: $800 Provider Independence Power and Light