National Library of Energy BETA

Sample records for lighten energy loads

  1. LEDs and Specification for Parking Lots Lighten Energy Load

    Broader source: Energy.gov [DOE]

    An often-overlooked yet integral part of our communities' landscapes, parking lots influence how we live, work, and play. Parking lots also require substantial energy and money to operate. Business...

  2. 54.5 MPG and Beyond: Materials Lighten the Load for Fuel Economy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    54.5 MPG and Beyond: Materials Lighten the Load for Fuel Economy 54.5 MPG and Beyond: Materials Lighten the Load for Fuel Economy December 4, 2012 - 12:06pm Addthis Lightweight...

  3. 54.5 MPG and Beyond: Materials Lighten the Load for Fuel Economy |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Materials Lighten the Load for Fuel Economy 54.5 MPG and Beyond: Materials Lighten the Load for Fuel Economy December 4, 2012 - 12:06pm Addthis Lightweight materials, such as high-strength steel, aluminum, magnesium and carbon fiber can help improve fuel economy in future vehicles. This is a carbon fiber from microwave-assisted plasma unit -- a unit that is part of the process to transform precursor fibers into carbon fibers that can be used in vehicles. | Photo courtesy

  4. En.lighten | Open Energy Information

    Open Energy Info (EERE)

    for Developing and Emerging Countries AgencyCompany Organization United Nations Environment Programme Sector Energy Focus Area Energy Efficiency, Buildings Topics...

  5. En.lighten Country Lighting Assessments (CLAs) | Open Energy...

    Open Energy Info (EERE)

    References: CLAs1 Logo: En.lighten Country Lighting Assessments (CLAs) About "A large scale shift to efficient lighting is one of the most effective and economically...

  6. How Can China Lighten Up? Urbanization, Industrialization and Energy Demand Scenarios

    SciTech Connect (OSTI)

    Aden, Nathaniel T.; Zheng, Nina; Fridley, David G.

    2009-07-01

    Urbanization has re-shaped China's economy, society, and energy system. Between 1990 and 2007 China added 290 million new urban residents, bringing the total urbanization rate to 45%. This population adjustment spurred energy demand for construction of new buildings and infrastructure, as well as additional residential use as rural biomass was replaced with urban commercial energy services. Primary energy demand grew at an average annual rate of 10% between 2000 and 2007. Urbanization's effect on energy demand was compounded by the boom in domestic infrastructure investment, and in the export trade following World Trade Organization (WTO) accession in 2001. Industry energy consumption was most directly affected by this acceleration. Whereas industry comprised 32% of 2007 U.S. energy use, it accounted for 75% of China's 2007 energy consumption. Five sub-sectors accounted for 78% of China's industry energy use in 2007: iron and steel, energy extraction and processing, chemicals, cement, and non-ferrous metals. Ferrous metals alone accounted for 25% of industry and 18% of total primary energy use. The rapid growth of heavy industry has led China to become by far the world's largest producer of steel, cement, aluminum, and other energy-intensive commodities. However, the energy efficiency of heavy industrial production continues to lag world best practice levels. This study uses scenario analysis to quantify the impact of urbanization and trade on industrial and residential energy consumption from 2000 to 2025. The BAU scenario assumed 67% urbanization, frozen export amounts of heavy industrial products, and achievement of world best practices by 2025. The China Lightens Up (CLU) scenario assumed 55% urbanization, zero net exports of heavy industrial products, and more aggressive efficiency improvements by 2025. The five dominant industry sub-sectors were modeled in both scenarios using a LEAP energy end-use accounting model. The results of this study show that a CLU-style development path would avoid 430 million tonnes coal-equivalent energy use by 2025. More than 60% of these energy savings would come from reduced activity and production levels. In carbon terms, this would amount to more than a billion-tonne reduction of energy-related carbon emissions compared with the BAU scenario in 2025, though the absolute level of emissions rises in both scenarios. Aside from the energy and carbon savings related to CLU scenario development, this study showed impending saturation effects in commercial construction, urban appliance ownership, and fertilizer application. The implication of these findings is that urbanization will have a direct impact on future energy use and emissions - policies to guide urban growth can play a central role in China's efforts to mitigate emissions growth.

  7. Fuel Cell Technologies Researcher Lightens Green Fuel Production |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Fuel Cell Technologies Researcher Lightens Green Fuel Production Fuel Cell Technologies Researcher Lightens Green Fuel Production August 25, 2014 - 9:36am Addthis Research funded by EERE's Fuel Cell Technologies Office has dramatically increased the efficiency of biofuel production by changing certain genes in algae to make them pale green. Dr. Tasios Melis of the University of California, Berkeley is making stable changes to the algae's genes to reduce the size of the

  8. Uraninum-233 Inventory in Oak Ridge Lightened with First Shipment of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Material from Building 3019 | Department of Energy Uraninum-233 Inventory in Oak Ridge Lightened with First Shipment of Material from Building 3019 Uraninum-233 Inventory in Oak Ridge Lightened with First Shipment of Material from Building 3019 January 5, 2012 - 12:00pm Addthis OAK RIDGE, Tenn. - The first shipment of inventory from Building 3019 at the Oak Ridge National Laboratory arrived at the Nevada Nuclear Security Site (NNSS) on December 22, marking the beginning of the end for the

  9. EERE Success Story-Fuel Cell Technologies Researcher Lightens Green Fuel

    Office of Environmental Management (EM)

    Production | Department of Energy Fuel Cell Technologies Researcher Lightens Green Fuel Production EERE Success Story-Fuel Cell Technologies Researcher Lightens Green Fuel Production August 25, 2014 - 9:36am Addthis Research funded by EERE's Fuel Cell Technologies Office has dramatically increased the efficiency of biofuel production by changing certain genes in algae to make them pale green. Dr. Tasios Melis of the University of California, Berkeley is making stable changes to the algae's

  10. Sandia Energy - Sandia Wind Turbine Loads Database

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sandia Wind Turbine Loads Database Home Stationary Power Energy Conversion Efficiency Wind Energy Resources Wind Software Downloads Sandia Wind Turbine Loads Database Sandia Wind...

  11. Renewable Energy Load Matching Software - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Analysis Energy Analysis Find More Like This Return to Search Renewable Energy Load Matching Software National Renewable Energy Laboratory Contact NREL About This...

  12. Water Energy Load Profiling (WELP) Tool | Open Energy Information

    Open Energy Info (EERE)

    Load Profiling (WELP) Tool Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Water Energy Load Profiling (WELP) Tool AgencyCompany Organization: California Public...

  13. Warding Off Energy Vampires and Phantom Loads | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Warding Off Energy Vampires and Phantom Loads Warding Off Energy Vampires and Phantom Loads October 31, 2013 - 1:45pm Addthis This Halloween, keep energy vampires at bay -- while saving energy and money -- with these home energy efficiency tricks. | Infographic by Sarah Gerrity, Energy Department This Halloween, keep energy vampires at bay -- while saving energy and money -- with these home energy efficiency tricks. | Infographic by Sarah Gerrity, Energy Department Amy Royden-Bloom State Energy

  14. LIGHTEnUp Tool & Analysis Framework

    Broader source: Energy.gov (indexed) [DOE]

    Industrial Commercial Residential Transportation 20 EO Tables covering 17 Modes x 13 Energy Sources 2 EO Tables covering 3 Building Types, 6 Energy Sources x 14 End-Use ...

  15. net_energy_load_2006.xls

    U.S. Energy Information Administration (EIA) Indexed Site

    1. Net Energy For Load, Actual and Projected by North American Electric Reliability Corporation Region, 2006 and Projected 2007 through 2011 (Thousands of Megawatthours and 2006 Base Year) Net Energy For Load (Annual) Contiguous U.S. Eastern Power Grid Texas Power Grid Western Power Grid Projected Year Base Year FRCC MRO (U.S.) NPCC (U.S.) RFC SERC SPP ERCOT WECC (U.S.) 2006 3,911,914 230,115 222,748 294,319 926,279 1,011,173 201,521 305,672 720,087 Projected Contiguous U.S. FRCC MRO (U.S.) NPCC

  16. Bacman LowLoad GEPP | Open Energy Information

    Open Energy Info (EERE)

    Home Bacman LowLoad GEPP General Information Name Bacman LowLoad GEPP Facility Power Plant Sector Geothermal energy Location Information Coordinates 11.152427744569,...

  17. SEP Success Story: Warding Off Energy Vampires and Phantom Loads |

    Energy Savers [EERE]

    Department of Energy SEP Success Story: Warding Off Energy Vampires and Phantom Loads SEP Success Story: Warding Off Energy Vampires and Phantom Loads October 1, 2013 - 9:46am Addthis This Halloween, keep energy vampires at bay -- while saving energy and money -- with these home energy efficiency tricks. | Infographic by Sarah Gerrity, Energy Department This Halloween, keep energy vampires at bay -- while saving energy and money -- with these home energy efficiency tricks. | Infographic by

  18. net_energy_load_2003.xls

    U.S. Energy Information Administration (EIA) Indexed Site

    3 and Projected 2004 through 2008 (Thousands of Megawatthours and 2003 Base Year) Net Energy For Load (Annual) Contiguous U.S. Eastern Power Grid Texas Power Grid Western Power Grid Projected Year Base Year ECAR FRCC MAAC MAIN MAPP (U.S.) NPCC (U.S.) SERC SPP ERCOT WECC (U.S.) 1990 2,886,496 442,507 142,502 221,099 197,326 127,102 250,681 485,205 252,037 209,789 558,248 1991 2,941,669 450,586 146,903 228,588 205,880 129,826 253,701 501,794 257,434 211,568 555,389 1992 2,942,910 450,853 147,464

  19. net_energy_load_2004.xls

    U.S. Energy Information Administration (EIA) Indexed Site

    4 and Projected 2005 through 2009 (Thousands of Megawatthours and 2004 Base Year) Net Energy For Load (Annual) Contiguous U.S. Eastern Power Grid Texas Power Grid Western Power Grid Projected Year Base Year ECAR FRCC MAAC MAIN MAPP/MRO (U.S.) NPCC (U.S.) SERC SPP ERCOT WECC (U.S.) 1990 2,886,496 442,507 142,502 221,099 197,326 127,102 250,681 485,205 252,037 209,789 558,248 1991 2,941,669 450,586 146,903 228,588 205,880 129,826 253,701 501,794 257,434 211,568 555,389 1992 2,942,910 450,853

  20. net_energy_load_2005.xls

    U.S. Energy Information Administration (EIA) Indexed Site

    2005 and Projected 2006 through 2010 (Thousands of Megawatthours and 2005 Base Year) Net Energy For Load (Annual) Contiguous U.S. Eastern Power Grid Texas Power Grid Western Power Grid Projected Year Base Year FRCC MRO (U.S.) NPCC (U.S.) RFC SERC SPP ERCOT WECC (U.S.) 2005 3,900,461 226,544 216,633 303,607 1,005,226 962,054 201,548 299,225 685,624 Projected Contiguous U.S. FRCC MRO (U.S.) NPCC (U.S.) RFC SERC SPP ERCOT WECC (U.S.) In 2005 for 2006 3,926,389 232,561 220,006 301,893 992,742

  1. net_energy_load_2010.xls

    U.S. Energy Information Administration (EIA) Indexed Site

    1. Net Energy For Load, Actual and Projected by North American Electric Reliability Corporation Assessment Area, 1990-2010 Actual, 2011-2015 Projected (Thousands of Megawatthours) Interconnection NERC Regional Assesment Area 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 FRCC 142,502 146,903 147,464 153,468 159,861 169,021 173,377 175,557 188,384 188,598 196,561 200,134 211,116 NPCC 250,681 253,701 252,256 257,447 259,947 261,235 263,125 264,464 268,309 277,902 281,518 282,670

  2. Energy efficiency indicators for high electric-load buildings

    SciTech Connect (OSTI)

    Aebischer, Bernard; Balmer, Markus A.; Kinney, Satkartar; Le Strat, Pascale; Shibata, Yoshiaki; Varone, Frederic

    2003-06-01

    Energy per unit of floor area is not an adequate indicator for energy efficiency in high electric-load buildings. For two activities, restaurants and computer centres, alternative indicators for energy efficiency are discussed.

  3. net_energy_load_1990_2004.xls

    U.S. Energy Information Administration (EIA) Indexed Site

    for this table format Table 1a . Historical Net Energy For Load, Actual by North American Electric Reliability Council Region, 1990 through 2004. (Thousands of Megawatthours)...

  4. Healthcare Energy: Spotlight on Lighting and Other Electric Loads |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Lighting and Other Electric Loads Healthcare Energy: Spotlight on Lighting and Other Electric Loads Compact fluorescent, light-emitting diode, and energy-saving incandescent light bulbs. | Image by Dennis Schroeder/NREL 19469 Compact fluorescent, light-emitting diode, and energy-saving incandescent light bulbs. | Image by Dennis Schroeder/NREL 19469 The Building Technologies Office conducted a healthcare energy end-use monitoring project in partnership with two

  5. Addressing Plug and Process Loads | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    1, 2015 3:00PM to 4:00PM EST Presenters: Rois Langer, National Renewable Energy Laboratory (NREL); Moira Hafer, Stanford University; Jason Sielcken, U.S. General Services Administration (GSA) Plug and process loads become a larger piece of the building energy pie as the low hanging fruits of energy efficiency, such as lighting retrofits, are harvested. This webinar will include a discussion by NREL on simple low-cost and portable plug and process loads interventions. Stanford University will

  6. ,"Net Energy For Load (Annual)",,"Contiguous U.S. ","Eastern...

    U.S. Energy Information Administration (EIA) Indexed Site

    b. Historical Net Energy For Load, Actual by North American Electric Reliability Corporation Region, 2005 through 2009. " ,"(Thousands of Megawatthours)" ,"Net Energy For Load ...

  7. Preliminary Wave Energy Converters Extreme Load Analysis: Preprint

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Preliminary Wave Energy Converters Extreme Load Analysis Preprint Y-H. Yu, J. Van Rij, and M. Lawson National Renewable Energy Laboratory R. Coe Sandia National Laboratories To be presented at the 34 th International Conference on Ocean, Offshore and Arctic Engineering (OMAE 2015) St. John's, Newfoundland, Canada May 31-June 5, 2015 Conference Paper NREL/CP-5000-63677 March 2015 NOTICE The submitted manuscript has been offered by an employee of the Alliance for Sustainable Energy, LLC

  8. Load Reduction, Demand Response and Energy Efficient Technologies and Strategies

    SciTech Connect (OSTI)

    Boyd, Paul A.; Parker, Graham B.; Hatley, Darrel D.

    2008-11-19

    The Department of Energy’s (DOE’s) Pacific Northwest National Laboratory (PNNL) was tasked by the DOE Office of Electricity (OE) to recommend load reduction and grid integration strategies, and identify additional demand response (energy efficiency/conservation opportunities) and strategies at the Forest City Housing (FCH) redevelopment at Pearl Harbor and the Marine Corps Base Hawaii (MCBH) at Kaneohe Bay. The goal was to provide FCH staff a path forward to manage their electricity load and thus reduce costs at these FCH family housing developments. The initial focus of the work was at the MCBH given the MCBH has a demand-ratchet tariff, relatively high demand (~18 MW) and a commensurate high blended electricity rate (26 cents/kWh). The peak demand for MCBH occurs in July-August. And, on average, family housing at MCBH contributes ~36% to the MCBH total energy consumption. Thus, a significant load reduction in family housing can have a considerable impact on the overall site load. Based on a site visit to the MCBH and meetings with MCBH installation, FCH, and Hawaiian Electric Company (HECO) staff, recommended actions (including a "smart grid" recommendation) that can be undertaken by FCH to manage and reduce peak-demand in family housing are made. Recommendations are also made to reduce overall energy consumption, and thus reduce demand in FCH family housing.

  9. Community Energy: Analysis of Hydrogen Distributed Energy Systems with Photovoltaics for Load Leveling and Vehicle Refueling

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Community Energy: Analysis of Hydrogen Distributed Energy Systems with Photovoltaics for Load Leveling and Vehicle Refueling D. Steward National Renewable Energy Laboratory J. Zuboy Contractor Technical Report NREL/TP-6A20-62781 October 2014 NREL is a national laboratory of the U.S. Department of Energy Office of Energy Efficiency & Renewable Energy Operated by the Alliance for Sustainable Energy, LLC This report is available at no cost from the National Renewable Energy Laboratory (NREL) at

  10. EERE Success Story-Fuel Cell Technologies Researcher Lightens...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Dark green cells, which have larger antennae, collect more light than the cells can use. The excess light energy is lost as heat. Paler green cells with shorter antennae use ...

  11. Fuel Cell Technologies Researcher Lightens Green Fuel Production...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Dark green cells, which have larger antennae, collect more light than the cells can use. The excess light energy is lost as heat. Paler green cells with shorter antennae use ...

  12. enVerid Systems - HVAC Load Reduction | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Credit: Enverid Systems Credit: Enverid Systems Lead Performer: enVerid Systems Inc. - Houston, TX DOE Funding: $2,400,000 Cost Share: $2,400,000 Project Term: 10/1/2014 - 9/30/2017 Funding Opportunity: DE-FOA-0001084 PROJECT OBJECTIVE The objective is to install and operate modular HVAC Load Reduction (HLR) retrofits in multiple and diverse buildings, monitor their performance, analyze the energy savings, overall economics, and verify IEQ/IAQ with specific tests for CO2 and other contaminants

  13. ZERH Webinar: Low Load HVAC in Zero Energy Ready Homes (Text Version) |

    Energy Savers [EERE]

    Department of Energy Low Load HVAC in Zero Energy Ready Homes (Text Version) ZERH Webinar: Low Load HVAC in Zero Energy Ready Homes (Text Version) Below is the text version of the webinar Low Load HVAC in Zero Energy Ready Homes, presented in January 2016. Watch the presentation. Lindsay Parker: Hi, everyone. Welcome to the Department of Energy Zero Energy Ready Home technical training webinar series. We're very excited that you can join us today for this session on low-load HVAC for Zero

  14. Building America System Research Plan for Reduction of Miscellaneous Electrical Loads in Zero Energy Homes

    SciTech Connect (OSTI)

    Barley, C. D.; Haley, C.; Anderson, R.; Pratsch, L.

    2008-11-01

    This research plan describes the overall scope of system research that is needed to reduce miscellaneous electrical loads (MEL) in future net zero energy homes.

  15. DOE Zero Energy Ready Home Low Load High Efficiency HVAC Webinar (Text Version)

    Broader source: Energy.gov [DOE]

    Below is the text version of the DOE Zero Energy Ready Home webinar, Low Load High Efficiency HVAC, presented in May 2014.

  16. ,"Table 1. Net Energy For Load, Actual and Projected by North...

    U.S. Energy Information Administration (EIA) Indexed Site

    . Net Energy For Load, Actual and Projected by North American Electric Reliability Corporation Region, " ,"2009 and Projected 2010 through 2014" ,"(Thousands of Megawatthours and...

  17. ,"Table 1. Net Energy For Load, Actual and Projected by North...

    U.S. Energy Information Administration (EIA) Indexed Site

    1. Net Energy For Load, Actual and Projected by North American Electric Reliability Corporation Assessment Area," ,"1990-2010 Actual, 2011-2015 Projected" ,"(Thousands of...

  18. ,"Table 1. Net Energy For Load, Actual and Projected by North...

    U.S. Energy Information Administration (EIA) Indexed Site

    Update: October 2010" ,"Table 1. Net Energy For Load, Actual and Projected by North American Electric Reliability Corporation Region, " ,"2008 and Projected 2009 through 2013 "...

  19. ,"Table 1. Net Energy For Load, Actual and Projected by North...

    U.S. Energy Information Administration (EIA) Indexed Site

    1. Net Energy For Load, Actual and Projected by North American Electric Reliability Corporation Region, " ,"2006 and Projected 2008 through 2012 " ,"(Thousands of Megawatthours and...

  20. CoolCab Truck Thermal Load Reduction | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Truck Thermal Load Reduction CoolCab Truck Thermal Load Reduction 2009 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting, May 18-22, 2009 -- Washington D.C. PDF icon vssp_09_proc.pdf More Documents & Publications CoolCab Test and Evaluation CoolCab Thermal Load Reduction Project: CoolCalc HVAC Tool Development

  1. Property:Geothermal/LoadFactor | Open Energy Information

    Open Energy Info (EERE)

    to: navigation, search This is a property of type Number. Pages using the property "GeothermalLoadFactor" Showing 25 pages using this property. (previous 25) (next 25) 4 4 UR...

  2. Adjustable Speed Drive Part-Load Efficiency | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Drive Part-Load Efficiency Adjustable Speed Drive Part-Load Efficiency An adjustable speed drive (ASD) is a device that controls the rotational speed of motor-driven equipment. Variable frequency drives (VFDs), the most common type of ASDs, efficiently meet varying process requirements by adjusting the frequency and voltage of the power supplied to an AC motor to enable it to operate over a wide speed range. External sensors monitor flow, liquid levels, or pressure and then transmit a signal to

  3. Improved Lithium-Loaded Liquid Scintillators for Neutron Detection - Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Innovation Portal Improved Lithium-Loaded Liquid Scintillators for Neutron Detection Oak Ridge National Laboratory Contact ORNL About This Technology Technology Marketing Summary A liquid scintillator with a substantially increased lithium weight was developed by ORNL researchers. Scintillators are widely used for the detection of neutron radiation emitted by radioactive sources. Conventional liquid scintillators are loaded with neutron absorbers. However, these scintillators generally have

  4. ZERH Webinar: Low Load HVAC in Zero Energy Ready Homes | Department of

    Energy Savers [EERE]

    Energy Low Load HVAC in Zero Energy Ready Homes ZERH Webinar: Low Load HVAC in Zero Energy Ready Homes Building low-load homes creates a new set of challenges for HVAC designers and installers. Right-sizing equipment, managing ventilation, and controlling interior moisture levels are critical if you wish to: (1) deliver the energy efficiency benefits of a tight, well-insulated envelope, (2) maintain homeowner comfort and (3) ensure long-term structure durability. In this webinar you will

  5. ZERH Webinar: Low Load HVAC and Zero Energy Ready Homes | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Webinar: Low Load HVAC and Zero Energy Ready Homes ZERH Webinar: Low Load HVAC and Zero Energy Ready Homes January 28, 2016 12:00PM to 1:15PM EST GoToWebinar Description: Building low-load homes creates a new set of challenges for HVAC designers and installers. Right-sizing equipment, managing ventilation and controlling interior moisture levels are critical if you wish to: (1) deliver the energy efficiency benefits of a tight, well-insulated envelope, (2) maintain homeowner comfort

  6. HVAC Right-Sizing Part 1: Calculating Loads | Department of Energy

    Energy Savers [EERE]

    HVAC Right-Sizing Part 1: Calculating Loads HVAC Right-Sizing Part 1: Calculating Loads This webinar, presented by IBACOS (a Building America Research Team) will highlight the key criteria required to create accurate heating and cooling load calculations, following the guidelines of the Air Conditioning Contractors of America (ACCA) Manual J version 8 PDF icon webinar_hvac_calculatingloads_20110428.pdf More Documents & Publications 2014-08-28 Issuance: Energy Conservation Standards for

  7. General Merchandise 2009 TSD Chicago Low Plug Load 50% Energy...

    Open Energy Info (EERE)

    90.1 2004 Model Year 2009 IDF file http:apps1.eere.energy.govbuildingsenergyplusmodelsMiami2009TSDGeneralMerchLPL50percent.idf XML file http:apps1.eere.energy.gov...

  8. General Merchandise 2009 TSD Miami High Plug Load 50% Energy...

    Open Energy Info (EERE)

    90.1 2004 Model Year 2009 IDF file http:apps1.eere.energy.govbuildingsenergyplusmodelsMiami2009TSDGeneralMerchHPL50percent.idf XML file http:apps1.eere.energy.gov...

  9. General Merchandise 2009 TSD Chicago High Plug Load 50% Energy...

    Open Energy Info (EERE)

    90.1 2004 Model Year 2009 IDF file http:apps1.eere.energy.govbuildingsenergyplusmodelsChicago2009TSDGeneralMerchHPL50percent.idf XML file http:apps1.eere.energy.gov...

  10. ,"Table 1. Net Energy For Load, Actual and Projected by North...

    U.S. Energy Information Administration (EIA) Indexed Site

    3 and Projected 2004 through 2008 " ,"(Thousands of Megawatthours and 2003 Base Year)" ,"Net Energy For Load (Annual)",,"Contiguous U.S. ","Eastern Power Grid",,,"Texas Power...

  11. ,"Table 1. Net Energy For Load, Actual and Projected by North...

    U.S. Energy Information Administration (EIA) Indexed Site

    4 and Projected 2005 through 2009 " ,"(Thousands of Megawatthours and 2004 Base Year)" ,"Net Energy For Load (Annual)",,"Contiguous U.S. ","Eastern Power Grid",,,"Texas Power...

  12. ,"Table 1. Net Energy For Load, Actual and Projected by North...

    U.S. Energy Information Administration (EIA) Indexed Site

    2005 and Projected 2006 through 2010 " ,"(Thousands of Megawatthours and 2005 Base Year)" ,"Net Energy For Load (Annual)",,"Contiguous U.S. ","Eastern Power Grid",,,,,,"Texas Power...

  13. Community Energy: Analysis of Hydrogen Distributed Energy Systems with Photovoltaics for Load Leveling and Vehicle Refueling

    SciTech Connect (OSTI)

    Steward, D.; Zuboy, J.

    2014-10-01

    Energy storage could complement PV electricity generation at the community level. Because PV generation is intermittent, strategies must be implemented to integrate it into the electricity system. Hydrogen and fuel cell technologies offer possible PV integration strategies, including the community-level approaches analyzed in this report: (1) using hydrogen production, storage, and reconversion to electricity to level PV generation and grid loads (reconversion scenario); (2) using hydrogen production and storage to capture peak PV generation and refuel hydrogen fuel cell electric vehicles (FCEVs) (hydrogen fueling scenario); and (3) a comparison scenario using a battery system to store electricity for EV nighttime charging (electric charging scenario).

  14. Method and apparatus for transferring and injecting rf energy from a generator to a resonant load

    DOE Patents [OSTI]

    Hoffert, William J. (Albuquerque, NM)

    1987-01-01

    Improved apparatus and method are provided for the coherent amplification and injection of radio-frequency (rf) energy into a load cavity using a plurality of amplifier tubes. A plurality of strip line cavities (30, 32, 34, 36, 40, 42, 44) are laterally joined to define a continuous closed cavity (48), with an amplifier tube (50, 52, 54, 56, 58, 60, 62, 64) mounted within each resonant strip cavity. Rf energy is injected into the continuous cavity (48) from a single input (70) for coherent coupling to all of the amplifier tubes for amplification and injection into the load cavity (76).

  15. Effects of Fusion Zone Size and Failure Mode on Peak Load and Energy Absorption of Advanced High Strength Steel Spot Welds under Lap Shear Loading Conditions

    SciTech Connect (OSTI)

    Sun, Xin; Stephens, Elizabeth V.; Khaleel, Mohammad A.

    2008-06-01

    This paper examines the effects of fusion zone size on failure modes, static strength and energy absorption of resistance spot welds (RSW) of advanced high strength steels (AHSS) under lap shear loading condition. DP800 and TRIP800 spot welds are considered. The main failure modes for spot welds are nugget pullout and interfacial fracture. Partial interfacial fracture is also observed. Static weld strength tests using lap shear samples were performed on the joint populations with various fusion zone sizes. The resulted peak load and energy absorption levels associated with each failure mode were studied for all the weld populations using statistical data analysis tools. The results in this study show that AHSS spot welds with conventionally required fusion zone size of can not produce nugget pullout mode for both the DP800 and TRIP800 welds under lap shear loading. Moreover, failure mode has strong influence on weld peak load and energy absorption for all the DP800 welds and the TRIP800 small welds: welds failed in pullout mode have statistically higher strength and energy absorption than those failed in interfacial fracture mode. For TRIP800 welds above the critical fusion zone level, the influence of weld failure modes on peak load and energy absorption diminishes. Scatter plots of peak load and energy absorption versus weld fusion zone size were then constructed, and the results indicate that fusion zone size is the most critical factor in weld quality in terms of peak load and energy absorption for both DP800 and TRIP800 spot welds.

  16. Review of Evaluation, Measurement and Verification Approaches Used to Estimate the Load Impacts and Effectiveness of Energy Efficiency Programs

    SciTech Connect (OSTI)

    none,

    2012-04-01

    Provides an overview of evaluation, measurement, and verification approaches used to estimate the load impacts and effectiveness of energy efficiency programs.

  17. Development of an Energy-Savings Calculation Methodology for Residential Miscellaneous Electric Loads: Preprint

    SciTech Connect (OSTI)

    Hendron, R.; Eastment, M.

    2006-08-01

    In order to meet whole-house energy savings targets beyond 50% in residential buildings, it will be essential that new technologies and systems approaches be developed to address miscellaneous electric loads (MELs). These MELs are comprised of the small and diverse collection of energy-consuming devices found in homes, including what are commonly known as plug loads (televisions, stereos, microwaves), along with all hard-wired loads that do not fit into other major end-use categories (doorbells, security systems, garage door openers). MELs present special challenges because their purchase and operation are largely under the control of the occupants. If no steps are taken to address MELs, they can constitute 40-50% of the remaining source energy use in homes that achieve 60-70% whole-house energy savings, and this percentage is likely to increase in the future as home electronics become even more sophisticated and their use becomes more widespread. Building America (BA), a U.S. Department of Energy research program that targets 50% energy savings by 2015 and 90% savings by 2025, has begun to identify and develop advanced solutions that can reduce MELs.

  18. Reducing Plug Loads in Office Spaces: Hawaii and Guam Energy Improvement Technology Demonstration Project

    SciTech Connect (OSTI)

    Sheppy, M.; Metzger, I.; Cutler, D.; Holland, G.; Hanada, A.

    2014-01-01

    As part of its overall strategy to meet its energy goals, the Naval Facilities Engineering Command (NAVFAC) partnered with the Department of Energy's National Renewable Energy Laboratory (NREL) to rapidly demonstrate and deploy cost-effective renewable energy and energy efficiency technologies. This project was one of several demonstrations of new or underutilized commercial energy technologies. The common goal was to demonstrate and measure the performance and economic benefit of the system while monitoring any ancillary impacts to related standards of service and operation and maintenance (O&M) practices. In short, demonstrations at naval facilities simultaneously evaluate the benefits and compatibility of the technology with the U.S. Department of Defense (DOD) mission, and with NAVFAC's design, construction, operations, and maintenance practices, in particular. This project demonstrated the performance of commercially available advanced power strips (APSs) for plug load energy reductions in building A4 at Joint Base Pearl Harbor-Hickam (JBPHH), Hawaii.

  19. Part-Load Performance Characterization and Energy Savings Potential of the RTU Challenge Unit: Daikin Rebel

    SciTech Connect (OSTI)

    Wang, Weimin; Katipamula, Srinivas

    2013-09-30

    In 2011, the U.S. Department of Energy’s Building Technology Office (DOE’s BTO), with help from the Better Buildings Alliance (BBA) members, developed a specification for high performance rooftop air-conditioning units (RTU Challenge) with capacity ranges between 10 and 20 tons (DOE 2013). Daikin’s Rebel for the first rooftop unit system that was recognized by DOE in May 2012 as meeting the RTU Challenge specifications. This report documents the development of part-load performance curves and its use with EnergyPlus simulation tool to estimate the potential savings from use of Rebel compared to other standard options.

  20. Large Hybrid Energy Systems for Making Low CO2 Load-Following Power and Synthetic Fuel

    SciTech Connect (OSTI)

    Robert S. Cherry; Richard D. Boardman; Steven Aumeier

    2012-02-01

    Hybrid energy systems using nuclear heat sources can economically produce load-following electrical power by exploiting the surplus generation capacity available at night or seasonally to make synthetic fuel. Vehicle fuel is the only current energy use large enough to absorb all the energy capacity that might be diverted from the power industry, and its ease of storage obviates problems with discontinuous synfuel production. The potential benefits and challenges of synfuels integration are illustrated by the production of methanol from natural gas (as a source of carbon) using steam from a light water nuclear power reactor which is assumed to be available in accord with a year's worth of power demand data. Methanol's synthesis process is easily adapted to using 300 C heat from a light water reactor and this simple compound can be further processed into gasoline, biodiesel, or dimethyl ether, fuels which can be used with the current vehicle fleet. A supplemental feed to the methanol process of natural gas (for energy) allows operation at constant full rate when the nuclear heat is being used to produce electrical power. The higher capital costs of such a system are offset by a lower cost of heat and power production from a large base load type of plant and by reduced costs associated with much lower CO2 emissions. Other less tangible economic benefits of this and similar hybrid systems include better use of natural resource for fuels and greater energy services security from the domestic production of vehicle fuel.

  1. Reducing Plug and Process Loads for a Large Scale, Low Energy Office Building: NREL's Research Support Facility; Preprint

    SciTech Connect (OSTI)

    Lobato, C.; Pless, S.; Sheppy, M.; Torcellini, P.

    2011-02-01

    This paper documents the design and operational plug and process load energy efficiency measures needed to allow a large scale office building to reach ultra high efficiency building goals. The appendices of this document contain a wealth of documentation pertaining to plug and process load design in the RSF, including a list of equipment was selected for use.

  2. Method of energy load management using PCM for heating and cooling of buildings

    DOE Patents [OSTI]

    Stovall, T.K.; Tomlinson, J.J.

    1996-03-26

    A method is described for energy load management for the heating and cooling of a building. The method involves utilizing a wallboard as a portion of the building, the wallboard containing about 5 to about 30 wt.% phase change material such that melting of the phase change material occurs during a rise in temperature within the building to remove heat from the air, and a solidification of the phase change material occurs during a lowering of the temperature to dispense heat into the air. At the beginning of either of these cooling or heating cycles, the phase change material is preferably ``fully charged``. In preferred installations one type of wallboard is used on the interior surfaces of exterior walls, and another type as the surface on interior walls. The particular PCM is chosen for the desired wall and room temperature of these locations. In addition, load management is achieved by using PCM-containing wallboards that form cavities of the building such that the cavities can be used for the air handling duct and plenum system of the building. Enhanced load management is achieved by using a thermostat with reduced dead band of about the upper half of a normal dead band of over three degrees. In some applications, air circulation at a rate greater than normal convection provides additional comfort. 7 figs.

  3. Method of energy load management using PCM for heating and cooling of buildings

    DOE Patents [OSTI]

    Stovall, Therese K.; Tomlinson, John J.

    1996-01-01

    A method of energy load management for the heating and cooling of a building. The method involves utilizing a wallboard as a portion of the building, the wallboard containing about 5 to about 30 wt. % a phase change material such that melting of the phase change material occurs during a rise in temperature within the building to remove heat from the air, and a solidification of the phase change material occurs during a lowering of the temperature to dispense heat into the air. At the beginning of either of these cooling or heating cycles, the phase change material is preferably "fully charged". In preferred installations one type of wallboard is used on the interior surfaces of exterior walls, and another type as the surface on interior walls. The particular PCM is chosen for the desired wall and room temperature of these locations. In addition, load management is achieved by using PCM-containing wallboard that form cavities of the building such that the cavities can be used for the air handling duct and plenum system of the building. Enhanced load management is achieved by using a thermostat with reduced dead band of about the upper half of a normal dead band of over three degree. In some applications, air circulation at a rate greater than normal convection provides additional comfort.

  4. Effect of Large Scale Transmission Limitations on Renewable Energy Load Matching for Western U.S.: Preprint

    SciTech Connect (OSTI)

    Diakov, V.; Short, W.; Gilchrist, B.

    2012-06-01

    Based on the available geographically dispersed data for the Western U.S. (excluding Alaska), we analyze to what extent the geographic diversity of these resources can offset their variability. Without energy storage and assuming unlimited energy flows between regions, wind and PV can meet up to 80% of loads in Western U.S. while less than 10% of the generated power is curtailed. Limiting hourly energy flows by the aggregated transmission line carrying capacities decreases the fraction of the load that can be met with wind and PV generation to approximately 70%.

  5. 2012 Load as a Resource Program Peer Review | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Load as a Resource Program Peer Review 2012 Load as a Resource Program Peer Review The Transmission Reliability R&D Load as a Resource (LAAR) Program peer review included 8 presentations on September 20, 2012 at Lawrence Berkeley National Lab. Agenda and presentations are below. PDF icon 2012 LAAR Program Peer Review - Agenda PDF icon 2012 LAAR Program Peer Review - Frequency Response Demand - Jeff Dagle, PNNL PDF icon 2012 LAAR Program Peer Review - Frequency Responsive Load Evaluation and

  6. ,"Table 1. Net Energy For Load, Actual and Projected by North American Electric Reliability Corporation Region, "

    U.S. Energy Information Administration (EIA) Indexed Site

    1. Net Energy For Load, Actual and Projected by North American Electric Reliability Corporation Region, " ,"2006 and Projected 2007 through 2011 " ,"(Thousands of Megawatthours and 2006 Base Year)" ,"Net Energy For Load (Annual)",,"Contiguous U.S. ","Eastern Power Grid",,,,,,"Texas Power Grid","Western Power Grid" ,"Projected Year Base","Year",,"FRCC","MRO (U.S.) ","NPCC (U.S.)

  7. 2014 Load as a Resource Program Peer Review | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Load as a Resource Program Peer Review 2014 Load as a Resource Program Peer Review OE's Transmission Reliability program is conducting R&D projects on "Load as a Resource" (LaaR) that explore how various types of customer loads could be turned on and off for short periods of time to provide services normally performed by generators. Attached are materials from the September 2014 peer review. PDF icon 2014 LaaR Review - Agenda PDF icon 2014 LaaR Review - Load as a regulation

  8. Breakout Session: Solar as a Base Load Power Source | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    as a Base Load Power Source Breakout Session: Solar as a Base Load Power Source May 21, 2014 2:45PM to 3:45PM PDT Huntington Does solar have a future as a base load electricity source? This session explores a vision in which solar power plants can provide dispatchability, predictability, and reliability comparable to conventional generation, while offering affordable electricity for consumers. Panelists will address the possible configuration, components, and performance characteristics of such

  9. Short-Term Energy Outlook Supplement: Status of Libyan Loading Ports and Oil and Natural Gas Fields

    Gasoline and Diesel Fuel Update (EIA)

    Short-Term Energy Outlook Supplement: Status of Libyan Loading Ports and Oil and Natural Gas Fields Tuesday, September 10, 2013, 10:00AM EST Overview During July and August 2013, protests at major oil loading ports in the central-eastern region of Libya forced the complete or partial shut-in of oil fields linked to the ports. As a result of protests at ports and at some oil fields, crude oil production fell to 1.0 million barrels per day (bbl/d) in July and 600,000 bbl/d in August, although the

  10. California: Energy-Efficient Glass Saves Energy Costs, Increases Personal

    Broader source: Energy.gov (indexed) [DOE]

    Comfort | Department of Energy From 2010 to 2011, EERE invested in Soladigm, Inc., an energy-efficient buildings materials company, as one of 14 selections for projects focused on advancing windows and envelope component technologies to enhance energy savings and performance. Now known as View, Inc., the company is deploying its patented View Dynamic Glass. Currently used in windows at the W Hotel in San Francisco, this smart glass material constantly adjusts its tint, lightening and

  11. Wind Energy Management System EMS Integration Project: Incorporating Wind Generation and Load Forecast Uncertainties into Power Grid Operations

    SciTech Connect (OSTI)

    Makarov, Yuri V.; Huang, Zhenyu; Etingov, Pavel V.; Ma, Jian; Guttromson, Ross T.; Subbarao, Krishnappa; Chakrabarti, Bhujanga B.

    2010-01-01

    The power system balancing process, which includes the scheduling, real time dispatch (load following) and regulation processes, is traditionally based on deterministic models. Since the conventional generation needs time to be committed and dispatched to a desired megawatt level, the scheduling and load following processes use load and wind and solar power production forecasts to achieve future balance between the conventional generation and energy storage on the one side, and system load, intermittent resources (such as wind and solar generation), and scheduled interchange on the other side. Although in real life the forecasting procedures imply some uncertainty around the load and wind/solar forecasts (caused by forecast errors), only their mean values are actually used in the generation dispatch and commitment procedures. Since the actual load and intermittent generation can deviate from their forecasts, it becomes increasingly unclear (especially, with the increasing penetration of renewable resources) whether the system would be actually able to meet the conventional generation requirements within the look-ahead horizon, what the additional balancing efforts would be needed as we get closer to the real time, and what additional costs would be incurred by those needs. To improve the system control performance characteristics, maintain system reliability, and minimize expenses related to the system balancing functions, it becomes necessary to incorporate the predicted uncertainty ranges into the scheduling, load following, and, in some extent, into the regulation processes. It is also important to address the uncertainty problem comprehensively by including all sources of uncertainty (load, intermittent generation, generators’ forced outages, etc.) into consideration. All aspects of uncertainty such as the imbalance size (which is the same as capacity needed to mitigate the imbalance) and generation ramping requirement must be taken into account. The latter unique features make this work a significant step forward toward the objective of incorporating of wind, solar, load, and other uncertainties into power system operations. Currently, uncertainties associated with wind and load forecasts, as well as uncertainties associated with random generator outages and unexpected disconnection of supply lines, are not taken into account in power grid operation. Thus, operators have little means to weigh the likelihood and magnitude of upcoming events of power imbalance. In this project, funded by the U.S. Department of Energy (DOE), a framework has been developed for incorporating uncertainties associated with wind and load forecast errors, unpredicted ramps, and forced generation disconnections into the energy management system (EMS) as well as generation dispatch and commitment applications. A new approach to evaluate the uncertainty ranges for the required generation performance envelope including balancing capacity, ramping capability, and ramp duration has been proposed. The approach includes three stages: forecast and actual data acquisition, statistical analysis of retrospective information, and prediction of future grid balancing requirements for specified time horizons and confidence levels. Assessment of the capacity and ramping requirements is performed using a specially developed probabilistic algorithm based on a histogram analysis, incorporating all sources of uncertainties of both continuous (wind and load forecast errors) and discrete (forced generator outages and start-up failures) nature. A new method called the “flying brick” technique has been developed to evaluate the look-ahead required generation performance envelope for the worst case scenario within a user-specified confidence level. A self-validation algorithm has been developed to validate the accuracy of the confidence intervals.

  12. Building America Case Study: Calculating Design Heating Loads for Superinsulated Buildings, Ithaca, New York; Technology Solutions for New and Existing Homes, Energy Efficiency & Renewable Energy (EERE)

    SciTech Connect (OSTI)

    2015-08-01

    Designing a superinsulated home has many benefits including improved comfort, reduced exterior noise penetration, lower energy bills, and the ability to withstand power and fuel outages under much more comfortable conditions than a typical home. Extremely low heating and cooling loads equate to much smaller HVAC equipment than conventionally required. Sizing the mechanical system to these much lower loads reduces first costs and the size of the distribution system needed. While these homes aren't necessarily constructed with excessive mass in the form of concrete floors and walls, the amount of insulation and the increase in the thickness of the building envelope can lead to a mass effect, resulting in the structures ability to store much more heat than a code built home. This results in a very low thermal inertia making the building much less sensitive to drastic temperature swings thereby decreasing the peak heating load demand. Alternative methods that take this inertia into account along with solar and internal gains result in smaller more appropriate design loads than those calculated using Manual J version 8. During the winter of 2013/2014, CARB monitored the energy use of three homes in climate zone 6 in an attempt to evaluate the accuracy of two different mechanical system sizing methods for low load homes. Based on the results, it is recommended that internal and solar gains be included and some credit for thermal inertia be used in sizing calculations for superinsulated homes.

  13. 3 Easy Tips to Reduce Your Standby Power Loads | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    3 Easy Tips to Reduce Your Standby Power Loads 3 Easy Tips to Reduce Your Standby Power Loads November 1, 2012 - 3:35pm Addthis Using a power strip to turn off electronics and appliances when they aren't in use ensures that they are truly off and not using extra electricity. | Photo courtesy of ©iStockphoto.com/DonNichols. Using a power strip to turn off electronics and appliances when they aren't in use ensures that they are truly off and not using extra electricity. | Photo courtesy of

  14. Colorado - C.R.S. 42-4-502, Width of Load | Open Energy Information

    Open Energy Info (EERE)

    Colorado - C.R.S. 42-4-502, Width of Load Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- StatuteStatute: Colorado - C.R.S. 42-4-502, Width of...

  15. Reducing Data Center Loads for a Large-scale, Low Energy Office...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The project's request for proposals (RFP) set a whole-building demand-side energy use ... use intensity FEMP Federal Energy Management Program FLOPS Floating point ...

  16. General Merchandise 2009 TSD Miami Low Plug Load 50% Energy Savings...

    Open Energy Info (EERE)

    90.1 2004 Model Year 2009 IDF file http:apps1.eere.energy.govbuildingsenergyplusmodelsMiami2009TSDGeneralMerchLPL50percent.idf XML file http:apps1.eere.energy.gov...

  17. Validation of Simplified Load Equations through Loads Measurement and Modeling of a Small Horizontal-Axis Wind Turbine Tower; NREL (National Renewable Energy Laboratory)

    SciTech Connect (OSTI)

    Dana, S.; Damiani, R.; vanDam, J.

    2015-05-18

    As part of an ongoing effort to improve the modeling and prediction of small wind turbine dynamics, NREL tested a small horizontal axis wind turbine in the field at the National Wind Technology Center (NWTC). The test turbine was a 2.1-kW downwind machine mounted on an 18-meter multi-section fiberglass composite tower. The tower was instrumented and monitored for approximately 6 months. The collected data were analyzed to assess the turbine and tower loads and further validate the simplified loads equations from the International Electrotechnical Commission (IEC) 61400-2 design standards. Field-measured loads were also compared to the output of an aeroelastic model of the turbine. Ultimate loads at the tower base were assessed using both the simplified design equations and the aeroelastic model output. The simplified design equations in IEC 61400-2 do not accurately model fatigue loads. In this project, we compared fatigue loads as measured in the field, as predicted by the aeroelastic model, and as calculated using the simplified design equations.

  18. Electric load monitoring to support a shared energy savings procurement at the US Maritime Administration Merchant Marine Academy

    SciTech Connect (OSTI)

    Armstrong, P.R.; Parker, G.B.

    1992-06-01

    Equipment from the Mobile Energy Laboratory (MEL) testing and application program supported by the US Department of Energy Federal Energy Management Program (DOE-FEMP) was applied to measure three-phase power demand of three large buildings at the US Merchant Marine Academy (MMA) on Long Island, New York. The selected buildings were Bowditch Hall, Fulton-Gibbs Hall, and the Library. The MEL equipment was installed on March 17, 1991. Instruments to monitor the Bowditch Hall chiller as a separate load were added on June 2, 1991. MEL Test Procedure {number_sign}1, Building Energy Monitoring, was followed in the installation and operation of the monitoring equipment. The monitoring objectives were to (1) provide a baseline for assessing energy savings resulting from future energy conservation measures that are to be implemented in the monitored buildings, and (2) provide information for recommending cost-effective energy conservation opportunities. Results of the long-term, whole building monitoring project at the MMA are presented in this report.

  19. Electric load monitoring to support a shared energy savings procurement at the US Maritime Administration Merchant Marine Academy

    SciTech Connect (OSTI)

    Armstrong, P.R.; Parker, G.B.

    1992-06-01

    Equipment from the Mobile Energy Laboratory (MEL) testing and application program supported by the US Department of Energy Federal Energy Management Program (DOE-FEMP) was applied to measure three-phase power demand of three large buildings at the US Merchant Marine Academy (MMA) on Long Island, New York. The selected buildings were Bowditch Hall, Fulton-Gibbs Hall, and the Library. The MEL equipment was installed on March 17, 1991. Instruments to monitor the Bowditch Hall chiller as a separate load were added on June 2, 1991. MEL Test Procedure {number sign}1, Building Energy Monitoring, was followed in the installation and operation of the monitoring equipment. The monitoring objectives were to (1) provide a baseline for assessing energy savings resulting from future energy conservation measures that are to be implemented in the monitored buildings, and (2) provide information for recommending cost-effective energy conservation opportunities. Results of the long-term, whole building monitoring project at the MMA are presented in this report.

  20. Building America Case Study: Advanced Boiler Load Monitoring Controllers, Chicago, Illinois (Fact Sheet), Technology Solutions for New and Existing Homes, Energy Efficiency & Renewable Energy (EERE)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Boiler Load Monitoring Controllers Chicago, Illinois PROJECT INFORMATION Project Name: Field Test of Boiler Primary Loop Temperature Controller Location: Chicago, IL Partners: Partnership for Advanced Residential Retrofit (PARR), gastechnology.org/PARR Greffen Systems, greffensys.com Building Component: HVAC Application: New or retrofit; multifamily Year Tested: 2013-2014 Applicable Climate Zones: Cold, Very Cold, Mixed-Humid PERFORMANCE DATA Cost of energy efficiency measure (including labor):

  1. Three-phase uninterruptible power supply maintaining reserve energy sources in idling condition with unbalanced loads

    SciTech Connect (OSTI)

    Boettcher, C.W.; Hamilton, B.H.; Zweig, W.L.

    1980-12-09

    A control arrangement for a three-phase, uninterruptible power supply generates timing signals to drive the static switches of inverters located in each phase. This control arrangement precisely controls the phase differences of the inverter signals with relation to each other so that while the overall three-phase power supplied by the inverters is nulled, power circulation through the inverters compensates for unbalanced output loads thereby maintaining balanced phase angles between the output voltage and a balanced input impedance at the input of the power supply.

  2. Reducing Plug and Process Loads for a Large Scale, Low Energy...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Proposals (RFP) set a whole-building demand-side energy use requirement of a nominal 25 ... IT and management put in place policies that have eliminated shared and personal ...

  3. Load cell

    DOE Patents [OSTI]

    Spletzer, B.L.

    1998-12-15

    A load cell combines the outputs of a plurality of strain gauges to measure components of an applied load. Combination of strain gauge outputs allows measurement of any of six load components without requiring complex machining or mechanical linkages to isolate load components. An example six axis load cell produces six independent analog outputs, each directly proportional to one of the six general load components. 16 figs.

  4. Review of Evaluation, Measurement and Verification Approaches Used to Estimate the Load Impacts and Effectiveness of Energy Efficiency Programs

    SciTech Connect (OSTI)

    Messenger, Mike; Bharvirkar, Ranjit; Golemboski, Bill; Goldman, Charles A.; Schiller, Steven R.

    2010-04-14

    Public and private funding for end-use energy efficiency actions is expected to increase significantly in the United States over the next decade. For example, Barbose et al (2009) estimate that spending on ratepayer-funded energy efficiency programs in the U.S. could increase from $3.1 billion in 2008 to $7.5 and 12.4 billion by 2020 under their medium and high scenarios. This increase in spending could yield annual electric energy savings ranging from 0.58% - 0.93% of total U.S. retail sales in 2020, up from 0.34% of retail sales in 2008. Interest in and support for energy efficiency has broadened among national and state policymakers. Prominent examples include {approx}$18 billion in new funding for energy efficiency programs (e.g., State Energy Program, Weatherization, and Energy Efficiency and Conservation Block Grants) in the 2009 American Recovery and Reinvestment Act (ARRA). Increased funding for energy efficiency should result in more benefits as well as more scrutiny of these results. As energy efficiency becomes a more prominent component of the U.S. national energy strategy and policies, assessing the effectiveness and energy saving impacts of energy efficiency programs is likely to become increasingly important for policymakers and private and public funders of efficiency actions. Thus, it is critical that evaluation, measurement, and verification (EM&V) is carried out effectively and efficiently, which implies that: (1) Effective program evaluation, measurement, and verification (EM&V) methodologies and tools are available to key stakeholders (e.g., regulatory agencies, program administrators, consumers, and evaluation consultants); and (2) Capacity (people and infrastructure resources) is available to conduct EM&V activities and report results in ways that support program improvement and provide data that reliably compares achieved results against goals and similar programs in other jurisdictions (benchmarking). The National Action Plan for Energy Efficiency (2007) presented commonly used definitions for EM&V in the context of energy efficiency programs: (1) Evaluation (E) - The performance of studies and activities aimed at determining the effects and effectiveness of EE programs; (2) Measurement and Verification (M&V) - Data collection, monitoring, and analysis associated with the calculation of gross energy and demand savings from individual measures, sites or projects. M&V can be a subset of program evaluation; and (3) Evaluation, Measurement, and Verification (EM&V) - This term is frequently seen in evaluation literature. EM&V is a catchall acronym for determining both the effectiveness of program designs and estimates of load impacts at the portfolio, program and project level. This report is a scoping study that assesses current practices and methods in the evaluation, measurement and verification (EM&V) of ratepayer-funded energy efficiency programs, with a focus on methods and practices currently used for determining whether projected (ex-ante) energy and demand savings have been achieved (ex-post). M&V practices for privately-funded energy efficiency projects (e.g., ESCO projects) or programs where the primary focus is greenhouse gas reductions were not part of the scope of this study. We identify and discuss key purposes and uses of current evaluations of end-use energy efficiency programs, methods used to evaluate these programs, processes used to determine those methods; and key issues that need to be addressed now and in the future, based on discussions with regulatory agencies, policymakers, program administrators, and evaluation practitioners in 14 states and national experts in the evaluation field. We also explore how EM&V may evolve in a future in which efficiency funding increases significantly, innovative mechanisms for rewarding program performance are adopted, the role of efficiency in greenhouse gas mitigation is more closely linked, and programs are increasingly funded from multiple sources often with multiple program administrators and in

  5. NWTC Researchers Field-Test Advanced Control Turbine Systems to Increase Performance, Decrease Structural Loading of Wind Turbines and Plants (Fact Sheet), NREL (National Renewable Energy Laboratory)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Researchers Field-Test Advanced Control Turbine Systems to Increase Performance, Decrease Structural Loading of Wind Turbines and Plants Researchers at the National Renewable Energy Laboratory's (NREL's) National Wind Technology Center (NWTC) are studying component controls, including new advanced actuators and sensors, for both conventional turbines as well as wind plants. This research will help develop innovative control strategies that reduce aerodynamic structural loads and improve

  6. NREL's Energy-Saving Technology for Air Conditioning Cuts Peak Power Loads Without Using Harmful Refrigerants (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2012-07-01

    This fact sheet describes how the DEVAP air conditioner was invented, explains how the technology works, and why it won an R&D 100 Award. Desiccant-enhanced evaporative (DEVAP) air-conditioning will provide superior comfort for commercial buildings in any climate at a small fraction of the electricity costs of conventional air-conditioning equipment, releasing far less carbon dioxide and cutting costly peak electrical demand by an estimated 80%. Air conditioning currently consumes about 15% of the electricity generated in the United States and is a major contributor to peak electrical demand on hot summer days, which can lead to escalating power costs, brownouts, and rolling blackouts. DEVAP employs an innovative combination of air-cooling technologies to reduce energy use by up to 81%. DEVAP also shifts most of the energy needs to thermal energy sources, reducing annual electricity use by up to 90%. In doing so, DEVAP is estimated to cut peak electrical demand by nearly 80% in all climates. Widespread use of this cooling cycle would dramatically cut peak electrical loads throughout the country, saving billions of dollars in investments and operating costs for our nation's electrical utilities. Water is already used as a refrigerant in evaporative coolers, a common and widely used energy-saving technology for arid regions. The technology cools incoming hot, dry air by evaporating water into it. The energy absorbed by the water as it evaporates, known as the latent heat of vaporization, cools the air while humidifying it. However, evaporative coolers only function when the air is dry, and they deliver humid air that can lower the comfort level for building occupants. And even many dry climates like Phoenix, Arizona, have a humid season when evaporative cooling won't work well. DEVAP extends the applicability of evaporative cooling by first using a liquid desiccant-a water-absorbing material-to dry the air. The dry air is then passed to an indirect evaporative cooling stage, in which the incoming air is in thermal contact with a moistened surface that evaporates the water into a separate air stream. As the evaporation cools the moistened surface, it draws heat from the incoming air without adding humidity to it. A number of cooling cycles have been developed that employ indirect evaporative cooling, but DEVAP achieves a superior efficiency relative to its technological siblings.

  7. Sandia Wind Turbine Loads Database

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Turbine Loads Database - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs Advanced

  8. Plug Load Behavioral Change Demonstration Project

    SciTech Connect (OSTI)

    Metzger, I.; Kandt, A.; VanGeet, O.

    2011-08-01

    This report documents the methods and results of a plug load study of the Environmental Protection Agency's Region 8 Headquarters in Denver, Colorado, conducted by the National Renewable Energy Laboratory. The study quantified the effect of mechanical and behavioral change approaches on plug load energy reduction and identified effective ways to reduce plug load energy. Load reduction approaches included automated energy management systems and behavioral change strategies.

  9. Determining Electric Motor Load and Efficiency

    Broader source: Energy.gov [DOE]

    To compare the operating costs of an existing standard motor with an appropriately-sized energy-efficient replacement, you need to determine operating hours, efficiency improvement values, and load. Part-load is a term used to describe the actual load served by the motor as compared to the rated full-load capability of the motor. Motor part-loads may be estimated through using input power, amperage, or speed measurements. This fact sheet briefly discusses several load estimation techniques.

  10. Mechanical Loads Test Report for the U.S. Department of Energy 1.5-Megawatt Wind Turbine

    SciTech Connect (OSTI)

    Santos, Rick; van Dam, Jeroen

    2015-07-16

    The objective of the test was to obtain a baseline characterization of the mechanical loads of the DOE 1.5 wind turbine located at NREL. The test was conducted in accordance with the International Electrotechnical Commission (IEC) Technical Specification, IEC 61400-13 Wind Turbine Generator Systems – Part 13: Measurement of mechanical loads; First Edition 2001-06 [1]. The National Wind Technology Center (NWTC) at NREL conducted this test in accordance with its quality system procedures so that the final test report meets the full requirements of its accreditation by the American Association for Laboratory Accreditation (A2LA). NREL’s quality system requires that all applicable requirements specified by A2LA and International Standards Organization/IEC 17025 be met or to note any exceptions in the test report.

  11. Plug Loads Conservation Measures

    Energy Science and Technology Software Center (OSTI)

    2010-12-31

    This software requires inputs of simple plug loads inventory information and calculates the energy and cost benefits of various retrofit opportunities. This tool includes energy conservation measures for: Vending Machine Misers, Delamp Vending Machine, Desktop to Laptop retrofit, CRT to LCD monitors retrofit, Computer Power Management Settings, and Energy Star Refrigerator retrofit. This tool calculates energy savings, demand reduction, cost savings, building life cycle costs including: simple payback, discounted payback, net-present value, and savings tomore » investment ratio. In addition this tool also displays the environmental benefits of a project.« less

  12. ,"Net Energy For Load (Annual)",,"Contiguous U.S. ","Eastern Power Grid",,,,,,,,"Texas Power Grid","Western Power Grid"

    U.S. Energy Information Administration (EIA) Indexed Site

    7, 2008" ,"Next Update: Not applicable for this table format" ,"Table 1a. Historical Net Energy For Load, Actual by North American Electric Reliability Council Region, 1990 through 2004. " ,"(Thousands of Megawatthours)" ,"Net Energy For Load (Annual)",,"Contiguous U.S. ","Eastern Power Grid",,,,,,,,"Texas Power Grid","Western Power Grid"

  13. LOADED WAVEGUIDES

    DOE Patents [OSTI]

    Mullett, L.B.; Loach, B.G.; Adams, G.L.

    1958-06-24

    >Loaded waveguides are described for the propagation of electromagnetic waves with reduced phase velocities. A rectangular waveguide is dimensioned so as to cut-off the simple H/sub 01/ mode at the operating frequency. The waveguide is capacitance loaded, so as to reduce the phase velocity of the transmitted wave, by connecting an electrical conductor between directly opposite points in the major median plane on the narrower pair of waveguide walls. This conductor may take a corrugated shape or be an aperature member, the important factor being that the electrical length of the conductor is greater than one-half wavelength at the operating frequency. Prepared for the Second U.N. International ConferThe importance of nuclear standards is duscussed. A brief review of the international callaboration in this field is given. The proposal is made to let the International Organization for Standardization (ISO) coordinate the efforts from other groups. (W.D.M.)

  14. Effects of Fusion Zone Size and Failure Mode on Peak Load and Energy Absorption of Advanced High Strength Steel Spot Welds

    SciTech Connect (OSTI)

    Sun, Xin; Stephens, Elizabeth V.; Khaleel, Mohammad A.

    2007-01-01

    This paper examines the effects of fusion zone size on failure modes, static strength and energy absorption of resistance spot welds (RSW) of advanced high strength steels (AHSS). DP800 and TRIP800 spot welds are considered. The main failure modes for spot welds are nugget pullout and interfacial fracture. Partial interfacial fracture is also observed. The critical fusion zone sizes to ensure nugget pull-out failure mode are developed for both DP800 and TRIP800 using limit load based analytical model and micro-hardness measurements of the weld cross sections. Static weld strength tests using cross tension samples were performed on the joint populations with controlled fusion zone sizes. The resulted peak load and energy absorption levels associated with each failure mode were studied for all the weld populations using statistical data analysis tools. The results in this study show that AHSS spot welds with fusion zone size of can not produce nugget pullout mode for both the DP800 and TRIP800 materials examined. The critical fusion zone size for nugget pullout shall be derived for individual materials based on different base metal properties as well as different heat affected zone (HAZ) and weld properties resulted from different welding parameters.

  15. Reducing Data Center Loads for a Large-Scale, Low-Energy Office Building: NREL's Research Support Facility (Book)

    SciTech Connect (OSTI)

    Sheppy, M.; Lobato, C.; Van Geet, O.; Pless, S.; Donovan, K.; Powers, C.

    2011-12-01

    This publication detailing the design, implementation strategies, and continuous performance monitoring of NREL's Research Support Facility data center. Data centers are energy-intensive spaces that facilitate the transmission, receipt, processing, and storage of digital data. These spaces require redundancies in power and storage, as well as infrastructure, to cool computing equipment and manage the resulting waste heat (Tschudi, Xu, Sartor, and Stein, 2003). Data center spaces can consume more than 100 times the energy of standard office spaces (VanGeet 2011). The U.S. Environmental Protection Agency (EPA) reported that data centers used 61 billion kilowatt-hours (kWh) in 2006, which was 1.5% of the total electricity consumption in the U.S. (U.S. EPA, 2007). Worldwide, data centers now consume more energy annually than Sweden (New York Times, 2009). Given their high energy consumption and conventional operation practices, there is a potential for huge energy savings in data centers. The National Renewable Energy Laboratory (NREL) is world renowned for its commitment to green building construction. In June 2010, the laboratory finished construction of a 220,000-square-foot (ft{sup 2}), LEED Platinum, Research Support Facility (RSF), which included a 1,900-ft{sup 2} data center. The RSF will expand to 360,000 ft{sup 2} with the opening of an additional wing December, 2011. The project's request for proposals (RFP) set a whole-building demand-side energy use requirement of a nominal 35 kBtu/ft{sup 2} per year. On-site renewable energy generation will offset the annual energy consumption. To support the RSF's energy goals, NREL's new data center was designed to minimize its energy footprint without compromising service quality. Several implementation challenges emerged during the design, construction, and first 11 months of operation of the RSF data center. This document highlights these challenges and describes in detail how NREL successfully overcame them. The IT settings and strategies outlined in this document have been used to significantly reduce data center energy requirements in the RSF; however, these can also be used in existing buildings and retrofits.

  16. Strategy Guideline: Accurate Heating and Cooling Load Calculations

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the first step of HVAC system design. Accurate load calculations have a direct impact on energy efficiency, occupant comfort, indoor air quality, and building durability. The load...

  17. NRELs Energy-Saving Technology for Air Conditioning Cuts Peak Power Loads Without Using Harmful Refrigerants (Fact Sheet), NREL (National Renewable Energy Laboratory)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    DEVAP Slashes Peak Power Loads Desiccant-enhanced evaporative (DEVAP) air-condi- tioning will provide superior comfort for commercial buildings in any climate at a small fraction of the elec- tricity costs of conventional air-conditioning equip- ment, releasing far less carbon dioxide and cutting costly peak electrical demand by an estimated 80%. Air conditioning currently consumes about 15% of the electricity generated in the United States and is a major contributor to peak electrical demand on

  18. Building America Case Study: Calculating Design Heating Loads for Superinsulated Buildings, Ithaca, New York (Fact Sheet), Clean Cities, Energy Efficiency & Renewable Energy (EERE)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Calculating Design Heating Loads for Superinsulated Buildings Ithaca, New York PROJECT INFORMATION Project Name: Third Residential EcoVillage Experience (TREE) Location: Ithaca, NY Partners: Builder: AquaZephyr, LLC Consortium for Advanced Residential Buildings, carb-swa.com Building Component: Heating, ventilating, and air conditioning Application: New and/or retrofit; single- family and/or multifamily Year tested: 2014 Climate zones: Cold (5-8) PERFORMANCE DATA Accuracy of Sizing Method: PHPP

  19. HLW Glass Waste Loadings

    Office of Environmental Management (EM)

    HLW Glass Waste Loadings Ian L. Pegg Vitreous State Laboratory The Catholic University of ... (JHCM) technology Factors affecting waste loadings Waste loading requirements ...

  20. High-Power Rf Load

    DOE Patents [OSTI]

    Tantawi, Sami G. (San Mateo, CA); Vlieks, Arnold E. (Livermore, CA)

    1998-09-01

    A compact high-power RF load comprises a series of very low Q resonators, or chokes [16], in a circular waveguide [10]. The sequence of chokes absorb the RF power gradually in a short distance while keeping the bandwidth relatively wide. A polarizer [12] at the input end of the load is provided to convert incoming TE.sub.10 mode signals to circularly polarized TE.sub.11 mode signals. Because the load operates in the circularly polarized mode, the energy is uniformly and efficiently absorbed and the load is more compact than a rectangular load. Using these techniques, a load having a bandwidth of 500 MHz can be produced with an average power dissipation level of 1.5 kW at X-band, and a peak power dissipation of 100 MW. The load can be made from common lossy materials, such as stainless steel, and is less than 15 cm in length. These techniques can also produce loads for use as an alternative to ordinary waveguide loads in small and medium RF accelerators, in radar systems, and in other microwave applications. The design is easily scalable to other RF frequencies and adaptable to the use of other lossy materials.

  1. Energy Incentive Programs, Kentucky | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    What load managementdemand response options are available to me? Duke Energy offers two load management programs that may be of interest to federal customers. The Peak Load ...

  2. Building Technologies Office Load Control Strategies

    Broader source: Energy.gov [DOE]

    BTO researches and implements load control strategies, which support the Sustainable and Holistic IntegratioN of Energy storage and Solar PV (SHINES) FOA.

  3. Load Preheating Using Flue Gases from a Fuel-Fired Heating System; Industrial Technologies Program (ITP) Energy Tips - Process Heating Tip Sheet #9 (Fact Sheet).

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    9 * January 2006 Industrial Technologies Program Load Preheating Using Flue Gases from a Fuel-Fired Heating System The thermal efficiency of a heating system can be improved significantly by using heat contained in furnace flue gases to preheat the furnace load (material coming into the furnace). If exhaust gases leaving a fuel-fired furnace can be brought into contact with a relatively cool incoming load, heat will be transferred directly to the load. Since there is no intermediate step, like

  4. Strategies for Controlling Plug Loads. A Tool for Reducing Plug Loads in Commercial Buildings

    SciTech Connect (OSTI)

    Torcellini, Paul; Bonnema, Eric; Sheppy, Michael; Pless, Shanti

    2015-09-01

    Plug loads are often not considered as part of the energy savings measures in Commercial Buildings; however, they can account for up to 50% of the energy used in the building. These loads are numerous and often scattered throughout a building. Some of these loads are purchased by the owner and some designed into the building or the tenant finishes for a space. This document provides a strategy and a tool for minimizing these loads.

  5. Determining Electric Motor Load and Efficiency

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    DETERMINING ELECTRIC MOTOR LOAD AND EFFICIENCY Most likely your operation's motors account for a large part of your monthly electric bill. Far too often motors are mismatched-or oversized-for the load they are intended to serve, or have been re- wound multiple times. To compare the operating costs of an existing standard motor with an appropriately-sized energy- efficient replacement, you need to determine operating hours, efficiency improvement values, and load. Part-load is a term used to

  6. explicit representation of uncertainty in system load

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    system load - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs Advanced Nuclear

  7. 1993 Pacific Northwest Loads and Resources Study.

    SciTech Connect (OSTI)

    United States. Bonneville Power Administration.

    1993-12-01

    The Loads and Resources Study is presented in three documents: (1) this summary of Federal system and Pacific Northwest region loads and resources; (2) a technical appendix detailing forecasted Pacific Northwest economic trends and loads, and (3) a technical appendix detailing the loads and resources for each major Pacific Northwest generating utility. In this loads and resources study, resource availability is compared with a range of forecasted electricity consumption. The forecasted future electricity demands -- firm loads -- are subtracted from the projected capability of existing and {open_quotes}contracted for{close_quotes} resources to determine whether Bonneville Power Administration (BPA) and the region will be surplus or deficit. If resources are greater than loads in any particular year or month, there is a surplus of energy and/or capacity, which BPA can sell to increase revenues. Conversely, if firm loads exceed available resources, there is a deficit of energy and/or capacity, and additional conservation, contract purchases, or generating resources will be needed to meet load growth. The Pacific Northwest Loads and Resources Study analyzes the Pacific Northwest`s projected loads and available generating resources in two parts: (1) the loads and resources of the Federal system, for which BPA is the marketing agency; and (2) the larger Pacific Northwest regional power system, which includes loads and resource in addition to the Federal system. The loads and resources analysis in this study simulates the operation of the power system under the Pacific Northwest Coordination Agreement (PNCA) produced by the Pacific Northwest Coordinating Group. This study presents the Federal system and regional analyses for five load forecasts: high, medium-high, medium, medium-low, and low. This analysis projects the yearly average energy consumption and resource availability for Operating Years (OY) 1994--95 through 2003--04.

  8. Load Participation in Ancillary Services Workshop Materials | Department of

    Office of Environmental Management (EM)

    Energy Load Participation in Ancillary Services Workshop Materials Load Participation in Ancillary Services Workshop Materials In October 2011, the U.S. Department of Energy (DOE), Office of Energy Efficiency and Renewable Energy (EERE) and Office of Electricity Delivery and Energy Reliability (OE), hosted a two-day workshop in Washington, DC to examine technical, institutional, economic, regulatory, and policy issues regarding the participation of load as a provider of ancillary services

  9. OREM Press Releases | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Inventory in Oak Ridge Lightened with First Shipment of Material from Building 3019 The first shipment of inventory from ORNL's Building 3019 arrived at the Nevada Nuclear Security...

  10. Load sensing system

    DOE Patents [OSTI]

    Sohns, Carl W. (Oak Ridge, TN); Nodine, Robert N. (Knoxville, TN); Wallace, Steven Allen (Knoxville, TN)

    1999-01-01

    A load sensing system inexpensively monitors the weight and temperature of stored nuclear material for long periods of time in widely variable environments. The system can include an electrostatic load cell that encodes weight and temperature into a digital signal which is sent to a remote monitor via a coaxial cable. The same cable is used to supply the load cell with power. When multiple load cells are used, vast

  11. Low reflectance radio frequency load

    DOE Patents [OSTI]

    Ives, R. Lawrence; Mizuhara, Yosuke M

    2014-04-01

    A load for traveling microwave energy has an absorptive volume defined by cylindrical body enclosed by a first end cap and a second end cap. The first end cap has an aperture for the passage of an input waveguide with a rotating part that is coupled to a reflective mirror. The inner surfaces of the absorptive volume consist of a resistive material or are coated with a coating which absorbs a fraction of incident RF energy, and the remainder of the RF energy reflects. The angle of the reflector and end caps is selected such that reflected RF energy dissipates an increasing percentage of the remaining RF energy at each reflection, and the reflected RF energy which returns to the rotating mirror is directed to the back surface of the rotating reflector, and is not coupled to the input waveguide. Additionally, the reflector may have a surface which generates a more uniform power distribution function axially and laterally, to increase the power handling capability of the RF load. The input waveguide may be corrugated for HE11 mode input energy.

  12. Load sensing system

    DOE Patents [OSTI]

    Sohns, C.W.; Nodine, R.N.; Wallace, S.A.

    1999-05-04

    A load sensing system inexpensively monitors the weight and temperature of stored nuclear material for long periods of time in widely variable environments. The system can include an electrostatic load cell that encodes weight and temperature into a digital signal which is sent to a remote monitor via a coaxial cable. The same cable is used to supply the load cell with power. When multiple load cells are used, vast inventories of stored nuclear material can be continuously monitored and inventoried of minimal cost. 4 figs.

  13. Load regulating expansion fixture

    DOE Patents [OSTI]

    Wagner, Lawrence M. (San Jose, CA); Strum, Michael J. (San Jose, CA)

    1998-01-01

    A free standing self contained device for bonding ultra thin metallic films, such as 0.001 inch beryllium foils. The device will regulate to a predetermined load for solid state bonding when heated to a bonding temperature. The device includes a load regulating feature, whereby the expansion stresses generated for bonding are regulated and self adjusting. The load regulator comprises a pair of friction isolators with a plurality of annealed copper members located therebetween. The device, with the load regulator, will adjust to and maintain a stress level needed to successfully and economically complete a leak tight bond without damaging thin foils or other delicate components.

  14. Load regulating expansion fixture

    DOE Patents [OSTI]

    Wagner, L.M.; Strum, M.J.

    1998-12-15

    A free standing self contained device for bonding ultra thin metallic films, such as 0.001 inch beryllium foils is disclosed. The device will regulate to a predetermined load for solid state bonding when heated to a bonding temperature. The device includes a load regulating feature, whereby the expansion stresses generated for bonding are regulated and self adjusting. The load regulator comprises a pair of friction isolators with a plurality of annealed copper members located therebetween. The device, with the load regulator, will adjust to and maintain a stress level needed to successfully and economically complete a leak tight bond without damaging thin foils or other delicate components. 1 fig.

  15. Energy Guru | Open Energy Information

    Open Energy Info (EERE)

    Vienna, Virginia Zip: 22182 Sector: Renewable Energy Product: Washington-based renewable energy information provider. Coordinates: 48.202548, 16.368805 Show Map Loading map......

  16. Energy Concepts | Open Energy Information

    Open Energy Info (EERE)

    Energy Concepts Sector Wind energy Facility Type Small Scale Wind Facility Status In Service Location Hudson WI Coordinates 44.942933, -92.701608 Show Map Loading map......

  17. BQ Energy | Open Energy Information

    Open Energy Info (EERE)

    and focuses on the development of clean energy projects, including wind energy, on brownfield sites. Coordinates: 40.78141, -83.5252 Show Map Loading map......

  18. HVAC Loads in High-Performance Homes (Presentation)

    SciTech Connect (OSTI)

    Christensen, D.; Fang, X.; Winkler, J.

    2010-06-27

    This presentation was delivered at the ASHRAE 2010 Annual Summer Conference on June 27, 2010, and addresses humidity and AC loads in energy efficient houses.

  19. Analysis and Representation of Miscellaneous Electric Loads in...

    U.S. Energy Information Administration (EIA) Indexed Site

    Miscellaneous Electric Loads (MELs) comprise a growing portion of delivered energy ... Miscellaneous end uses, including televisions, personal computers, security systems, data ...

  20. Building America Case Study: Low-Load Space-Conditioning Needs Assessment, Northeast and Mid-Atlantic; Technology Solutions for New and Existing Homes, Energy Efficiency & Renewable Energy (EERE)

    SciTech Connect (OSTI)

    2015-07-01

    With limited low-load options in the HVAC market, many new-construction housing units are being fitted with oversized equipment - thus facing penalties in system efficiency, comfort, and cost. To bridge the gap between currently available HVAC equipment and the rising demand for low-load HVAC equipment in the marketplace, HVAC equipment manufacturers need to be fully aware of multifamily buildings and single-family homes market needs. Over the past decade, Steven Winter Associates, Inc. (SWA) has provided certification and consulting services on hundreds of housing projects and has accrued a large pool of data. CARB compiled and analyzed these data to see what the thermal load ranges are in various multifamily apartments and attached single-family home types (duplex and townhouse). In total, design loads from 941 dwellings from SWA's recent multifamily and attached single-family work across the Northeast and Mid-Atlantic were analyzed. Information on the dwelling characteristics, design loads, and the specifications of installed mechanical equipment were analyzed to determine any trends that exist within the dataset. Of the 941 dwellings, CARB found that only 1% had right-sized heating equipment and 6% of the dwellings had right-sized cooling equipment (within 25% or less of design load).

  1. Passive load control for large wind turbines.

    SciTech Connect (OSTI)

    Ashwill, Thomas D.

    2010-05-01

    Wind energy research activities at Sandia National Laboratories focus on developing large rotors that are lighter and more cost-effective than those designed with current technologies. Because gravity scales as the cube of the blade length, gravity loads become a constraining design factor for very large blades. Efforts to passively reduce turbulent loading has shown significant potential to reduce blade weight and capture more energy. Research in passive load reduction for wind turbines began at Sandia in the late 1990's and has moved from analytical studies to blade applications. This paper discusses the test results of two Sandia prototype research blades that incorporate load reduction techniques. The TX-100 is a 9-m long blade that induces bend-twist coupling with the use of off-axis carbon in the skin. The STAR blade is a 27-m long blade that induces bend-twist coupling by sweeping the blade in a geometric fashion.

  2. Load Participation in Ancillary Services Workshop

    Broader source: Energy.gov [DOE]

    The Load Participation in Ancillary Services Workshop was held October 25-26, 2011, in Washington, DC. This U.S. Department of Energy workshop was attended by members of the electric power industry, researchers, and policy makers. The results of the workshop informed the Demand Response and Energy Storage Study.

  3. 1997 Pacific Northwest Loads and Resources Study.

    SciTech Connect (OSTI)

    United States. Bonneville Power Administration.

    1997-12-01

    The 1997 White Book is presented in two documents: (1) this summary of Federal system and Pacific Northwest region loads and resources; and (2) a technical appendix detailing the loads and resources for each major Pacific Northwest generating utility. Data detailing Pacific Northwest non-utility generating (NUG) resources is also available upon request. This analysis updates the 1996 pacific Northwest Loads and Resources Study, published in December 1996. In this loads and resources study, resource availability is compared with a medium forecast of electricity consumption. This document analyzes the Pacific Northwest`s projected loads and available generating resources in two parts: (1) the loads and resources of the Federal system, for which BPA is the marketing agency; and (2) the larger Pacific Northwest regional power system which includes loads and resources in addition to the Federal system. This study presents the Federal system and regional analyses for the medium load forecast. This analysis projects the yearly average energy consumption and resource availability for Operating Years (OY) 1998--99 through 2007--08.

  4. Bioenergy Impacts … Self-Loading Trailer

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    FDC Enterprises, which partnered with Kelderman Manufacturing to develop a self- loading trailer. Biofuels company Abengoa purchased the self-loading trailer to streamline the movement of corn plant residues to its biorefinery, where they are converted into biofuel. Biorefineries are cutting their costs by using more efficient harvesting equipment BIOENERGY To learn more, visit bioenergy.energy.gov. BIOENERGY TECHNOLOGIES OFFICE Photo courtesy of Dave Jordan, MacDon Industries Ltd.

  5. Cable load sensing device

    DOE Patents [OSTI]

    Beus, Michael J. (Spokane, WA); McCoy, William G. (Spokane, WA)

    1998-01-01

    Apparatus for sensing the magnitude of a load on a cable as the cable is employed to support the load includes a beam structure clamped to the cable so that a length of the cable lies along the beam structure. A spacer associated with the beam structure forces a slight curvature in a portion of the length of cable under a cable "no-load" condition so that the portion of the length of cable is spaced from the beam structure to define a cable curved portion. A strain gauge circuit including strain gauges is secured to the beam structure by welding. As the cable is employed to support a load the load causes the cable curved portion to exert a force normal to the cable through the spacer and on the beam structure to deform the beam structure as the cable curved portion attempts to straighten under the load. As this deformation takes place, the resistance of the strain gauges is set to a value proportional to the magnitude of the normal strain on the beam structure during such deformation. The magnitude of the normal strain is manipulated in a control device to generate a value equal to the magnitude or weight of the load supported by the cable.

  6. A loaded thermoacoustic engine

    SciTech Connect (OSTI)

    Olson, J.R.; Swift, G.W.

    1995-11-01

    Measurements and analysis of the performance of a thermoacoustic engine driving a dissipative load are presented. The effect of the load can be explained qualitatively using a simple low-amplitude approximation and quantitatively by invoking a more accurate low-amplitude numerical solution. The heater power {ital @};DQ and hot-end temperature {ital T}{sub {ital H}} are found to be simple functions of the load impedance and the unloaded values of {ital @};DQ and {ital T}{sub {ital H}}. {copyright} {ital 1995} {ital Acoustical} {ital Society} {ital of} {ital America}.

  7. 2006 Pacific Northwest Loads and Resources Study.

    SciTech Connect (OSTI)

    United States. Bonneville Power Administration.

    2006-03-01

    The Pacific Northwest Loads and Resources Study (White Book), which is published annually by the Bonneville Power Administration (BPA), establishes one of the planning bases for supplying electricity to customers. The White Book contains projections of regional and Federal system load and resource capabilities, along with relevant definitions and explanations. The White Book also contains information obtained from formalized resource planning reports and data submittals including those from individual utilities, the Northwest Power and Conservation Council (Council), and the Pacific Northwest Utilities Conference Committee (PNUCC). The White Book is not an operational planning guide, nor is it used for determining BPA revenues, although the database that generates the data for the White Book analysis contributes to the development of BPA's inventory and ratemaking processes. Operation of the Federal Columbia River Power System (FCRPS) is based on a set of criteria different from that used for resource planning decisions. Operational planning is dependent upon real-time or near-term knowledge of system conditions that include expectations of river flows and runoff, market opportunities, availability of reservoir storage, energy exchanges, and other factors affecting the dynamics of operating a power system. The load resource balance of both the Federal system and the region is determined by comparing resource availability to an expected level of total retail electricity consumption. Resources include projected energy capability plus contract purchases. Loads include a forecast of retail obligations plus contract obligations. Surplus energy is available when resources are greater than loads. This surplus energy could be marketed to increase revenues. Energy deficits occur when resources are less than loads. These energy deficits will be met by any combination of the following: better-than-critical water conditions, demand-side management and conservation programs, permanent loss of loads due to economic conditions or closures, additional contract purchases, and/or the addition of new generating resources. This study incorporates information on Pacific Northwest (PNW) regional retail loads, contract obligations, and contract resources. This loads and resources analysis simulates the operation of the power system in the PNW. The simulated hydro operation incorporates plant characteristics, streamflows, and non-power requirements from the current Pacific Northwest Coordination Agreement (PNCA). Additional resource capability estimates were provided by BPA, PNW Federal agency, public agency, cooperative, U.S. Bureau of Reclamation (USBR), and investor-owned utility (IOU) customers furnished through annual PNUCC data submittals for 2005 and/or direct submittals to BPA. The 2006 White Book is presented in two documents: (1) this summary document of Federal system and PNW region loads and resources, and (2) a technical appendix which presents regional loads, grouped by major PNW utility categories, and detailed contract and resource information. The technical appendix is available only in electronic form. Individual customer information for marketer contracts is not detailed due to confidentiality agreements. The 2006 White Book analysis updates the 2004 White Book. This analysis shows projections of the Federal system and region's yearly average annual energy consumption and resource availability for the study period, OY 2007-2016. The study also presents projections of Federal system and region expected 1-hour monthly peak demand, monthly energy demand, monthly 1-hour peak generating capability, and monthly energy generation for OY 2007, 2011, and 2016. BPA is investigating a new approach in capacity planning depicting the monthly Federal system 120-hour peak generating capability and 120-hour peak surplus/deficit for OY 2007, 2011, and 2016. This document analyzes the PNW's projected loads and available generating resources in two parts: (1) the loads and resources of the Federal system, for which BPA is the marketing agency; and (2) the larger PNW regional power system loads and resources that include the Federal system as well other PNW entities.

  8. 1999 Pacific Northwest Loads and Resources Study.

    SciTech Connect (OSTI)

    United States. Bonneville Power Administration.

    1999-12-01

    The Pacific Northwest Loads and Resources Study (White Book) is published annually by BPA and establishes the planning basis for supplying electricity to customers. It serves a dual purpose. First, the White Book presents projections of regional and Federal system load and resource capabilities, along with relevant definitions and explanations. Second, the White Book serves as a benchmark for annual BPA determinations made pursuant to its regional power sales contracts. Specifically, BPA uses the information in the White Book for determining the notice required when customers request to increase or decrease the amount of power purchased from BPA. The White Book will not be used in calculations for the 2002 regional power sales contract subscription process. The White Book compiles information obtained from several formalized resource planning reports and data submittals, including those from the Northwest Power Planning Council (Council) and the Pacific Northwest Utilities Conference Committee (PNUCC). The White Book is not an operational planning guide, nor is it used for determining BPA revenues. Operation of the Federal Columbia River Power System (FCRPS) is based on a set of criteria different from that used for resource planning decisions. Operational planning is dependent upon real-time or near-term knowledge of system conditions, including expectations of river flows and runoff, market opportunities, availability of reservoir storage, energy exchanges, and other factors affecting the dynamics of operating a power system. In this loads and resources study, resource availability is compared with a medium forecast of electricity consumption. The forecasted future electricity demands--firm loads--are subtracted from the projected capability of existing and ''contracted for'' resources to determine whether BPA and the region will be surplus or deficit. If Federal system resources are greater than loads in any particular year or month, there is a surplus of energy and/or capacity, which BPA may use or market to increase revenues. Conversely, if Federal system firm loads exceed available resources, there is a deficit of energy and/or capacity and BPA would add conservation or contract purchases as needed to meet its firm loads. The load forecast is derived by using econometric models and analysis to predict the loads that will be placed on electric utilities in the region. This study incorporates information on contract obligations and contract resources, combined with the resource capabilities obtained from public utility and investor-owned utility (IOU) customers through their annual data submittals to the PNUCC, from BPA's Firm Resource Exhibit (FRE Exhibit I) submittals, and through analysis of the Federal hydroelectric power system. The loads and resources analysis in this study simulates the operation of the power system under the Pacific Northwest Coordination Agreement (PNCA) produced by the Pacific Northwest Coordinating Group. The PNCA defines the planning and operation of the regional hydrosystem. The 1999 White Book is presented in two documents: (1) this summary of Federal system and Pacific Northwest region loads and resources; and (2) a technical appendix (available electronically only) detailing the loads and resources for each major Pacific Northwest generating utility. This analysis updates the December 1998 Pacific Northwest Loads and Resources Study. This analysis projects the yearly average energy consumption and resource availability for Operating Years (OY) 2000-01 through 2009-10. The study shows the Federal system's and the region's monthly estimated maximum electricity demand, monthly energy demand, monthly energy generation, and monthly maximum generating capability--capacity--for OY 2000-01, 2004-05, and 2009-10. The Federal system and regional monthly capacity surplus/deficit projections are summarized for 10 operating years. This document analyzes the Pacific Northwest's projected loads and available generating resources in two parts: (1) the loads and resources of the Federal system, for which BPA is the marketing agency; and (2) the larger Pacific Northwest regional power system, which includes loads and resources in addition to the Federal system.

  9. LOADING MACHINE FOR REACTORS

    DOE Patents [OSTI]

    Simon, S.L.

    1959-07-01

    An apparatus is described for loading or charging slugs of fissionable material into a nuclear reactor. The apparatus of the invention is a "muzzle loading" type comprising a delivery tube or muzzle designed to be brought into alignment with any one of a plurality of fuel channels. The delivery tube is located within the pressure shell and it is also disposed within shielding barriers while the fuel cantridges or slugs are forced through the delivery tube by an externally driven flexible ram.

  10. Load research manual. Volume 3. Load research for advanced technologies

    SciTech Connect (OSTI)

    Brandenburg, L.; Clarkson, G.; Grund, Jr., C.; Leo, J.; Asbury, J.; Brandon-Brown, F.; Derderian, H.; Mueller, R.; Swaroop, R.

    1980-11-01

    This three-volume manual presents technical guidelines for electric utility load research. Special attention is given to issues raised by the load data reporting requirements of the Public Utility Regulatory Policies Act of 1978 and to problems faced by smaller utilities that are initiating load research programs. The manual includes guides to load research literature and glossaries of load research and statistical terms. In Volume 3, special load research procedures are presented for solar, wind, and cogeneration technologies.

  11. Load Monitoring CEC/LMTF Load Research Program

    SciTech Connect (OSTI)

    Huang, Zhenyu; Lesieutre, B.; Yang, Steve; Ellis, A.; Meklin, A.; Wong, B.; Gaikwad, A.; Brooks, D.; Hammerstrom, Donald J.; Phillips, John; Kosterev, Dmitry; Hoffman, M.; Ciniglio, O.; Hartwell, R.; Pourbeik, P.; Maitra, A.; Lu, Ning

    2007-11-30

    This white paper addresses the needs, options, current practices of load monitoring. Recommendations on load monitoring applications and future directions are also presented.

  12. APS high heat load monochromator

    SciTech Connect (OSTI)

    Lee, W.K.; Mills, D.

    1993-02-01

    This document contains the design specifications of the APS high heat load (HHL) monochromator and associated accessories as of February 1993. It should be noted that work is continuing on many parts of the monochromator including the mechanical design, crystal cooling designs, etc. Where appropriate, we have tried to add supporting documentation, references to published papers, and calculations from which we based our decisions. The underlying philosophy behind performance specifications of this monochromator was to fabricate a device that would be useful to as many APS users as possible, that is, the design should be as generic as possible. In other words, we believe that this design will be capable of operating on both bending magnet and ID beamlines (with the appropriate changes to the cooling and crystals) with both flat and inclined crystal geometries and with a variety of coolants. It was strongly felt that this monochromator should have good energy scanning capabilities over the classical energy range of about 4 to 20 keywith Si (111) crystals. For this reason, a design incorporating one rotation stage to drive both the first and second crystals was considered most promising. Separate rotary stages for the first and second crystals can sometimes provide more flexibility in their capacities to carry heavy loads (for heavily cooled first crystals or sagittal benders of second crystals), but their tuning capabilities were considered inferior to the single axis approach.

  13. Spinning Reserve From Responsive Loads

    SciTech Connect (OSTI)

    Kirby, B.J.

    2003-04-08

    Responsive load is the most underutilized reliability resource available to the power system today. It is currently not used at all to provide spinning reserve. Historically there were good reasons for this, but recent technological advances in communications and controls have provided new capabilities and eliminated many of the old obstacles. North American Electric Reliability Council (NERC), Federal Energy Regulatory Commission (FERC), Northeast Power Coordinating Council (NPCC), New York State Reliability Council (NYSRC), and New York Independent System Operator (NYISO) rules are beginning to recognize these changes and are starting to encourage responsive load provision of reliability services. The Carrier ComfortChoice responsive thermostats provide an example of these technological advances. This is a technology aimed at reducing summer peak demand through central control of residential and small commercial air-conditioning loads. It is being utilized by Long Island Power Authority (LIPA), Consolidated Edison (ConEd), Southern California Edison (SCE), and San Diego Gas and Electric (SDG&E). The technology is capable of delivering even greater response in the faster spinning reserve time frame (while still providing peak reduction). Analysis of demand reduction testing results from LIPA during the summer of 2002 provides evidence to back up this claim. It also demonstrates that loads are different from generators and that the conventional wisdom, which advocates for starting with large loads as better ancillary service providers, is flawed. The tempting approach of incrementally adapting ancillary service requirements, which were established when generators were the only available resources, will not work. While it is easier for most generators to provide replacement power and non-spinning reserve (the slower response services) than it is to supply spinning reserve (the fastest service), the opposite is true for many loads. Also, there is more financial reward for supplying spinning reserve than for supplying the other reserve services as a result of the higher spinning reserve prices. The LIPAedge program (LIPA's demand reduction program using Carrier ComfortChoice thermostats) provides an opportunity to test the use of responsive load for spinning reserve. With potentially 75 MW of spinning reserve capability already installed, this test program can also make an important contribution to the capacity needs of Long Island during the summer of 2003. Testing could also be done at ConEd ({approx}30 MW), SCE ({approx}15 MW), and/or SDG&E ({approx}15 MW). This paper is divided into six chapters. Chapter 2 discusses the contingency reserve ancillary services, their functions in supporting power system reliability, and their technical requirements. It also discusses the policy and tariff requirements and attempts to distinguish between ones that are genuinely necessary and ones that are artifacts of the technologies that were historically used to provide the services. Chapter 3 discusses how responsive load could provide contingency reserves (especially spinning reserve) for the power system. Chapter 4 specifically discusses the Carrier ComfortChoice responsive thermostat technology, the LIPAedge experience with that technology, and how the technology could be used to supply spinning reserve. Chapter 5 discusses a number of unresolved issues and suggests areas for further research. Chapter 6 offers conclusions and recommendations.

  14. Building America Case Study: Low-Load Space-Conditioning Needs Assessment, Northeast and Mid-Atlantic (Fact Sheet), Technology Solutions for New and Existing Homes, Energy Efficiency & Renewable Energy (EERE)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Low-Load Space-Conditioning Needs Assessment Northeast and Mid-Atlantic PROJECT INFORMATION Construction: New Type: Multifamily apartments, attached single-family dwellings Consortium for Advanced Residential Buildings, carb-swa.com Building Component: Space conditioning Size: 209 ft 2 -2,895 ft 2 Climate Zones: Cold, mixed-humid DATABASE ATTRIBUTES * Dwelling unit characteristics: Location, floor level, position, square footage, volume, total and exposed enclosure area, window-to-wall ratio,

  15. Heritage Garden | Open Energy Information

    Open Energy Info (EERE)

    Energy Developer Heritage Sustainable Energy Energy Purchaser Consumers Energy Detroit Edison Location Garden MI Coordinates 45.776334, -86.5527241 Show Map Loading...

  16. LOADING AND UNLOADING DEVICE

    DOE Patents [OSTI]

    Treshow, M.

    1960-08-16

    A device for loading and unloading fuel rods into and from a reactor tank through an access hole includes parallel links carrying a gripper. These links enable the gripper to go through the access hole and then to be moved laterally from the axis of the access hole to the various locations of the fuel rods in the reactor tank.

  17. Multidimensional spectral load balancing

    DOE Patents [OSTI]

    Hendrickson, Bruce A. (Albuquerque, NM); Leland, Robert W. (Albuquerque, NM)

    1996-12-24

    A method of and apparatus for graph partitioning involving the use of a plurality of eigenvectors of the Laplacian matrix of the graph of the problem for which load balancing is desired. The invention is particularly useful for optimizing parallel computer processing of a problem and for minimizing total pathway lengths of integrated circuits in the design stage.

  18. Measuring alignment of loading fixture

    DOE Patents [OSTI]

    Scavone, Donald W. (Saratoga Springs, NY)

    1989-01-01

    An apparatus and method for measuring the alignment of a clevis and pin type loading fixture for compact tension specimens include a pair of substantially identical flat loading ligaments. Each loading ligament has two apertures for the reception of a respective pin of the loading fixture and a thickness less than one-half of a width of the clevis opening. The pair of loading ligaments are mounted in the clevis openings at respective sides thereof. The loading ligaments are then loaded by the pins of the loading fixture and the strain in each loading ligament is measured. By comparing the relative strain of each loading ligament, the alignment of the loading fixture is determined. Preferably, a suitable strain gage device is located at each longitudinal edge of a respective loading ligament equidistant from the two apertures in order to determine the strain thereat and hence the strain of each ligament. The loading ligaments are made substantially identical by jig grinding the loading ligaments as a matched set. Each loading ligament can also be individually calibrated prior to the measurement.

  19. Energy Spectrum | Open Energy Information

    Open Energy Info (EERE)

    Services Product: Brooklyn-based energy management conslutants with services including demand response, load control, cogeneration and rate analysis. Coordinates: 42.852755,...

  20. Radiant Energy | Open Energy Information

    Open Energy Info (EERE)

    is an independent energy producer which develops and owns solar, geothermal, and hydroelectric generating assets. Coordinates: 28.967394, -98.478862 Show Map Loading map......

  1. Fellows Energy | Open Energy Information

    Open Energy Info (EERE)

    search Name: Fellows Energy Place: Broomfield, Colorado Product: US coal bed methane exploration company. Coordinates: 39.920863, -105.070582 Show Map Loading map......

  2. Recovery Act. Advanced Load Identification and Management for Buildings

    SciTech Connect (OSTI)

    Yang, Yi; Casey, Patrick; Du, Liang; He, Dawei

    2014-02-12

    In response to the U.S. Department of Energy (DoE)’s goal of achieving market ready, net-zero energy residential and commercial buildings by 2020 and 2025, Eaton partnered with the Department of Energy’s National Renewable Energy Laboratory (NREL) and Georgia Institute of Technology to develop an intelligent load identification and management technology enabled by a novel “smart power strip” to provide critical intelligence and information to improve the capability and functionality of building load analysis and building power management systems. Buildings account for 41% of the energy consumption in the United States, significantly more than either transportation or industrial. Within the building sector, plug loads account for a significant portion of energy consumption. Plug load consumes 15-20% of building energy on average. As building managers implement aggressive energy conservation measures, the proportion of plug load energy can increase to as much as 50% of building energy leaving plug loads as the largest remaining single source of energy consumption. This project focused on addressing plug-in load control and management to further improve building energy efficiency accomplished through effective load identification. The execution of the project falls into the following three major aspects; An intelligent load modeling, identification and prediction technology was developed to automatically determine the type, energy consumption, power quality, operation status and performance status of plug-in loads, using electric waveforms at a power outlet level. This project demonstrated the effectiveness of the developed technology through a large set of plug-in loads measurements and testing; A novel “Smart Power Strip (SPS) / Receptacle” prototype was developed to act as a vehicle to demonstrate the feasibility of load identification technology as a low-cost, embedded solution; and Market environment for plug-in load control and management solutions, in particular, advanced power strips (APSs) was studied. The project evaluated the market potential for Smart Power Strips (SPSs) with load identification and the likely impact of a load identification feature on APS adoption and effectiveness. The project also identified other success factors required for widespread APS adoption and market acceptance. Even though the developed technology is applicable for both residential and commercial buildings, this project is focused on effective plug-in load control and management for commercial buildings, accomplished through effective load identification. The project has completed Smart Receptacle (SR) prototype development with integration of Load ID, Control/Management, WiFi communication, and Web Service. Twenty SR units were built, tested, and demonstrated in the Eaton lab; eight SR units were tested in the National Renewable Energy Lab (NREL) for one-month of field testing. Load ID algorithm testing for extended load sets was conducted within the Eaton facility and at local university campuses. This report is to summarize the major achievements, activities, and outcomes under the execution of the project.

  3. CBEI: Virtual Refrigerant Charge Sensing and Load Metering - 2015 Peer

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Review | Department of Energy Virtual Refrigerant Charge Sensing and Load Metering - 2015 Peer Review CBEI: Virtual Refrigerant Charge Sensing and Load Metering - 2015 Peer Review Presenter: James Braun, Purdue University View the Presentation PDF icon CBEI: Virtual Refrigerant Charge Sensing and Load Metering - 2015 Peer Review More Documents & Publications CBEI: FDD for Advanced RTUs - 2015 Peer Review Control and Diagnostics for Rooftop Units - 2014 BTO Peer Review CBEI: Coordinating

  4. Local Soot Loading Distribution in Cordierite Diesel Particulate Filters by

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Dynamic Neutron Radiography | Department of Energy Local Soot Loading Distribution in Cordierite Diesel Particulate Filters by Dynamic Neutron Radiography Local Soot Loading Distribution in Cordierite Diesel Particulate Filters by Dynamic Neutron Radiography Quantitative analysis of the soot loading and soot distribution for Cordierite type DPFs are studied under controlled conditions. PDF icon deer10_harvel.pdf More Documents & Publications Neutron Imaging of Diesel Particulate Filters

  5. Technical Assistance to ISO's and Grid Operators For Loads Providing

    Energy Savers [EERE]

    Ancillary Services To Enhance Grid Reliability | Department of Energy Technical Assistance to ISO's and Grid Operators For Loads Providing Ancillary Services To Enhance Grid Reliability Technical Assistance to ISO's and Grid Operators For Loads Providing Ancillary Services To Enhance Grid Reliability Project demonstrates and promotes the use of responsive load to provide ancillary services; helps ISOsand grid operators understand the resource and how best to apply it. PDF icon Technical

  6. Thermal Cycling Combined with Dynamic Mechanical Load: Preliminary Report |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Thermal Cycling Combined with Dynamic Mechanical Load: Preliminary Report Thermal Cycling Combined with Dynamic Mechanical Load: Preliminary Report This PowerPoint presentation summarizes the efforts of the team led by ESPEC Corp. to investigate thermal cycling combined with dynamic mechanical load, a solar project funded by the SunShot Initiative. PDF icon pvmrw13_tmf_espec_tanahashi.pdf More Documents & Publications Failure and Degradation Modes of PV Modules in a

  7. Energy Incentive Programs, South Dakota | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... What load managementdemand response options are available to me? Xcel Energy offers two load management programs that may be of interest to federal customers: The Electric Rate ...

  8. Load responsive hydrodynamic bearing

    DOE Patents [OSTI]

    Kalsi, Manmohan S. (Houston, TX); Somogyi, Dezso (Sugar Land, TX); Dietle, Lannie L. (Stafford, TX)

    2002-01-01

    A load responsive hydrodynamic bearing is provided in the form of a thrust bearing or journal bearing for supporting, guiding and lubricating a relatively rotatable member to minimize wear thereof responsive to relative rotation under severe load. In the space between spaced relatively rotatable members and in the presence of a liquid or grease lubricant, one or more continuous ring shaped integral generally circular bearing bodies each define at least one dynamic surface and a plurality of support regions. Each of the support regions defines a static surface which is oriented in generally opposed relation with the dynamic surface for contact with one of the relatively rotatable members. A plurality of flexing regions are defined by the generally circular body of the bearing and are integral with and located between adjacent support regions. Each of the flexing regions has a first beam-like element being connected by an integral flexible hinge with one of the support regions and a second beam-like element having an integral flexible hinge connection with an adjacent support region. A least one local weakening geometry of the flexing region is located intermediate the first and second beam-like elements. In response to application of load from one of the relatively rotatable elements to the bearing, the beam-like elements and the local weakening geometry become flexed, causing the dynamic surface to deform and establish a hydrodynamic geometry for wedging lubricant into the dynamic interface.

  9. Shot loading trainer analysis

    SciTech Connect (OSTI)

    Peterson, T.K.

    1995-02-15

    This document presents the results from the analysis of the shot loading trainer (SLT). This device will be used to test the procedure for installing shot into the annulus of the Project W-320 shipping container. To ensure that the shot is installed uniformly around the container, vibrators will be used to settle the shot. The SLT was analyzed to ensure that it would not jeopardize worker safety during operation. The results from the static analysis of the SLT under deadweight and vibrator operating loads show that the stresses in the SLT are below code allowables. The results from the modal analysis show that the natural frequencies of the SLT are far below the operating frequencies of the vibrators, provided the SLT is mounted on pneumatic tires. The SLT was also analyzed for wind, seismic, deadweight, and moving/transporting loads. Analysis of the SLT is in accordance with SDC-4.1 for safety class 3 structures (DOE-RL 1993) and the American Institute of Steel Construction (AISC) Manual of Steel Construction (AISC 1989).

  10. Mogul Energy Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Facility Status In Service Developer Mogul Energy Energy Purchaser Southern California Edison Co Location Tehachapi CA Coordinates 35.07665, -118.25529 Show Map Loading map......

  11. G3 Energy LLC | Open Energy Information

    Open Energy Info (EERE)

    company that specializes in wind energy development, financing and management. They run three wind energy plants. Coordinates: 32.778155, -96.795404 Show Map Loading...

  12. Kingston Energy Development LLC | Open Energy Information

    Open Energy Info (EERE)

    Energy Development LLC Place: Evergreen, Colorado Zip: 80439 Product: Colorado-based waste-to-energy project developer. Coordinates: 37.31079, -78.770909 Show Map Loading...

  13. Octus Energy Inc | Open Energy Information

    Open Energy Info (EERE)

    of energy management software and services, including energy efficient lighting and HVAC systems. Coordinates: 39.12868, -79.465714 Show Map Loading map......

  14. Energy Incentive Programs, Mississippi | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Other resources include the Business Energy Advisor, which provides calculators and tips on common ways to reduce energy. What load managementdemand response options are available ...

  15. Energy Incentive Programs, Pennsylvania | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Across the state, utilities budgeted 280 million in 2014 for customer energy efficiency and load managementdemand response programs. What utility energy efficiency programs are ...

  16. Demand-Side Response from Industrial Loads

    SciTech Connect (OSTI)

    Starke, Michael R; Alkadi, Nasr E; Letto, Daryl; Johnson, Brandon; Dowling, Kevin; George, Raoule; Khan, Saqib

    2013-01-01

    Through a research study funded by the Department of Energy, Smart Grid solutions company ENBALA Power Networks along with the Oak Ridge National Laboratory (ORNL) have geospatially quantified the potential flexibility within industrial loads to leverage their inherent process storage to help support the management of the electricity grid. The study found that there is an excess of 12 GW of demand-side load flexibility available in a select list of top industrial facilities in the United States. Future studies will expand on this quantity of flexibility as more in-depth analysis of different industries is conducted and demonstrations are completed.

  17. Electrical Load Modeling and Simulation

    SciTech Connect (OSTI)

    Chassin, David P.

    2013-01-01

    Electricity consumer demand response and load control are playing an increasingly important role in the development of a smart grid. Smart grid load management technologies such as Grid FriendlyTM controls and real-time pricing are making their way into the conventional model of grid planning and operations. However, the behavior of load both affects, and is affected by load control strategies that are designed to support electric grid planning and operations. This chapter discussed the natural behavior of electric loads, how it interacts with various load control and demand response strategies, what the consequences are for new grid operation concepts and the computing issues these new technologies raise.

  18. Low-Load Space Conditioning Needs Assessment

    SciTech Connect (OSTI)

    Puttagunta, Srikanth

    2015-05-19

    Heating, ventilating, and air-conditioning (HVAC) equipment must be right-sized to ensure energy performance and comfort. With limited low-load options in the HVAC market, many new-construction housing units are being fitted with oversized equipment that creates system efficiency, comfort, and cost penalties. To bridge the gap between currently available HVAC equipment that is oversized or inefficient and the rising demand for low-load HVAC equipment in the marketplace, HVAC equipment manufacturers need to be fully aware of the needs of the multifamily building and attached single-family (duplex and townhouse) home market. Over the past decade, Steven Winter Associates, Inc. (SWA) has provided certification and consulting services for hundreds of housing projects and has accrued a large pool of data that describe multifamily and attached single-family home characteristics. The U.S. Department of Energy’s Building America research team Consortium for Advanced Residential Buildings (CARB) compiled and analyzed these data to outline the characteristics of low-load dwellings such as the heating and cooling design loads.

  19. DC switching regulated power supply for driving an inductive load

    DOE Patents [OSTI]

    Dyer, George R. (Norris, TN)

    1986-01-01

    A power supply for driving an inductive load current from a dc power supply hrough a regulator circuit including a bridge arrangement of diodes and switching transistors controlled by a servo controller which regulates switching in response to the load current to maintain a selected load current. First and second opposite legs of the bridge are formed by first and second parallel-connected transistor arrays, respectively, while the third and fourth legs of the bridge are formed by appropriately connected first and second parallel connected diode arrays, respectively. The regulator may be operated in three "stages" or modes: (1) For current runup in the load, both first and second transistor switch arrays are turned "on" and current is supplied to the load through both transistor arrays. (2) When load current reaches the desired level, the first switch is turned "off", and load current "flywheels" through the second switch array and the fourth leg diode array connecting the second switch array in series with the load. Current is maintained by alternating between modes 1 and 2 at a suitable duty cycle and switching rate set by the controller. (3) Rapid current rundown is accomplished by turning both switch arrays "off", allowing load current to be dumped back into the source through the third and fourth diode arrays connecting the source in series opposition with the load to recover energy from the inductive load. The three operating states are controlled automatically by the controller.

  20. DC switching regulated power supply for driving an inductive load

    DOE Patents [OSTI]

    Dyer, G.R.

    1983-11-29

    A dc switching regulated power supply for driving an inductive load is provided. The regulator basic circuit is a bridge arrangement of diodes and transistors. First and second opposite legs of the bridge are formed by first and second parallel-connected transistor arrays, respectively, while the third and fourth legs of the bridge are formed by appropriately connected first and second parallel connected diode arrays, respectively. A dc power supply is connected to the input of the bridge and the output is connected to the load. A servo controller is provided to control the switching rate of the transistors to maintain a desired current to the load. The regulator may be operated in three stages or modes: (1) for current runup in the load, both first and second transistor switch arrays are turned on and current is supplied to the load through both transistor arrays. (2) When load current reaches the desired level, the first switch is turned off, and load current flywheels through the second switch array and the fourth leg diode array connecting the second switch array in series with the load. Current is maintained by alternating between modes 1 and 2 at a suitable duty cycle and switching rate set by the controller. (3) Rapid current rundown is accomplished by turning both switch arrays off, allowing load current to be dumped back into the source through the third and fourth diode arrays connecting the source in series opposition with the load to recover energy from the inductive load.

  1. commercial load | OpenEI Community

    Open Energy Info (EERE)

    data load data load profile OpenEI residential load TMY3 United States Load data Image source: NREL Files: applicationzip icon System Advisor Model Tool for Downloading Load Data...

  2. residential load | OpenEI Community

    Open Energy Info (EERE)

    data load data load profile OpenEI residential load TMY3 United States Load data Image source: NREL Files: applicationzip icon System Advisor Model Tool for Downloading Load Data...

  3. load profile | OpenEI Community

    Open Energy Info (EERE)

    data load data load profile OpenEI residential load TMY3 United States Load data Image source: NREL Files: applicationzip icon System Advisor Model Tool for Downloading Load Data...

  4. 2003 Pacific Northwest Loads and Resources Study.

    SciTech Connect (OSTI)

    United States. Bonneville Power Administration.

    2003-12-01

    The Pacific Northwest Loads and Resources Study (White Book), which is published annually by the Bonneville Power Administration (BPA), establishes one of the planning bases for supplying electricity to customers. The White Book contains projections of regional and Federal system load and resource capabilities, along with relevant definitions and explanations. The White Book also contains information obtained from formalized resource planning reports and data submittals including those from individual utilities, the Northwest Power and Conservation Council (Council), and the Pacific Northwest Utilities Conference Committee (PNUCC). The White Book is not an operational planning guide, nor is it used for determining BPA revenues, although the database that generates the data for the White Book analysis contributes to the development of BPA's inventory and ratemaking processes. Operation of the Federal Columbia River Power System (FCRPS) is based on a set of criteria different from that used for resource planning decisions. Operational planning is dependent upon real-time or near-term knowledge of system conditions that include expectations of river flows and runoff, market opportunities, availability of reservoir storage, energy exchanges, and other factors affecting the dynamics of operating a power system. In this loads and resources study, resource availability is compared to an expected level of total retail electricity consumption. The forecasted annual energy electricity retail load plus contract obligations are subtracted from the sum of the projected annual energy capability of existing resources and contract purchases to determine whether BPA and/or the region will be surplus or deficit. Surplus energy is available when resources are greater than loads. This energy could be marketed to increase revenues. Deficits occur when resources are less than loads. Energy deficits could be met by any combination of the following: better-than-critical water conditions, demand-side management and conservation programs, permanent loss of a load (i.e., due to economic conditions or closures), additional contract purchases, and/or new generating resources. The loads and resources analysis in this study simulates the operation of the power system under the Pacific Northwest Coordination Agreement (PNCA). The PNCA defines the planning and operation of seventeen U.S. Pacific Northwest utilities and other parties with generating facilities within the region's hydroelectric (hydro) system. The hydroregulation study used for the 2003 White Book incorporates measures from the National Oceanographic and Atmospheric Administration Fisheries (NOAA Fisheries) Biological Opinion dated December 2000, and the U.S. Fish and Wildlife Service's 2000 Biological Opinion (2000 FCRPS BiOps) for the Snake River and Columbia River projects. These measures include: (1) Increased flow augmentation for juvenile fish migrations in the Snake and Columbia rivers in the spring and summer; (2) Mandatory spill requirements at the Lower Snake and Columbia dams to provide for non-turbine passage routes for juvenile fish migrants; and (3) Additional flows for Kootenai River white sturgeon in the spring. The hydroregulation criteria for this analysis includes: an updated Detailed Operation Plan for Treaty reservoirs for Operating Year (OY) 2004, updated PNCA planning criteria for OY 2003, and revised juvenile fish bypass spill levels for 2000 FCRPS BiOps implementation. The 2003 White Book is presented in two documents: (1) this summary document of Federal system and PNW region loads and resources, and (2) a technical appendix which presents regional loads, grouped by major PNW utility categories, and detailed contract and resource information. The technical appendix is available only in electronic form. Individual customer information regarding marketer contracts is not detailed due to confidentiality agreements. The 2003 White Book analysis updates the December 2002 White Book. This analysis projects the yearly average energy consumption and resource availability

  5. Variable loading roller

    DOE Patents [OSTI]

    Williams, D.M.

    1988-01-21

    An automatic loading roller for transmitting torque in traction drive devices in manipulator arm joints includes a two-part camming device having a first cam portion rotatable in place on a shaft by an input torque and a second cam portion coaxially rotatable and translatable having a rotating drive surface thereon for engaging the driven surface of an output roller with a resultant force proportional to the torque transmitted. Complementary helical grooves in the respective cam portions interconnected through ball bearings interacting with those grooves effect the rotation and translation of the second cam portion in response to rotation of the first. 14 figs.

  6. Variable loading roller

    DOE Patents [OSTI]

    Williams, Daniel M. (Oliver Springs, TN)

    1989-01-01

    An automatic loading roller for transmitting torque in traction drive devices in manipulator arm joints includes a two-part camming device having a first cam portion rotatable in place on a shaft by an input torque and a second cam portion coaxially rotatable and translatable having a rotating drive surface thereon for engaging the driven surface of an output roller with a resultant force proportional to the torque transmitted. Complementary helical grooves on the respective cam portions interconnected through ball bearings interacting with those grooves effect the rotation and translation of the second cam portion in response to rotation of the first.

  7. 2012 CERTS LAAR Program Peer Review - Frequency Responsive Load Evaluation and Benefits - Isabelle Snyder, ORNL

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Frequency responsive loads Isabelle Snyder, Ph.D. Power and Energy Systems Group ORNL 2 Managed by UT-Battelle for the U.S. Department of Energy Presentation_name Project objective * Study the use of load for frequency regulation: - Identify frequency measurement accuracies based on different approaches - Identify accuracy requirement for frequency responsive load applications - Study the impact of frequency responsive loads on a large system (ERCOT or EI) 3 Managed by UT-Battelle for the U.S.

  8. Active Aerodynamic Blade Control Design for Load Alleviation...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... The accurate evaluation of the impact of AALC fatigue load reductions on the Cost of Energy (COE) of a wind turbine will require a complete new turbine design that fully integrates ...

  9. Method for loading shape memory polymer gripper mechanisms (Patent) |

    Office of Scientific and Technical Information (OSTI)

    SciTech Connect Method for loading shape memory polymer gripper mechanisms Citation Details In-Document Search Title: Method for loading shape memory polymer gripper mechanisms × You are accessing a document from the Department of Energy's (DOE) SciTech Connect. This site is a product of DOE's Office of Scientific and Technical Information (OSTI) and is provided as a public service. Visit OSTI to utilize additional information resources in energy science and technology. A paper copy of this

  10. Load flow analysis: Base cases, data, diagrams, and results (Technical

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Report) | SciTech Connect Load flow analysis: Base cases, data, diagrams, and results Citation Details In-Document Search Title: Load flow analysis: Base cases, data, diagrams, and results × You are accessing a document from the Department of Energy's (DOE) SciTech Connect. This site is a product of DOE's Office of Scientific and Technical Information (OSTI) and is provided as a public service. Visit OSTI to utilize additional information resources in energy science and technology. A paper

  11. Coram Energy (Aeroman Repower) Wind Farm II | Open Energy Information

    Open Energy Info (EERE)

    Service Owner Coram Energy Developer Coram Energy Energy Purchaser Southern California Edison Co Location Tehachapi CA Coordinates 35.072998, -118.264046 Show Map Loading...

  12. Energy Unlimited Wind Farm II | Open Energy Information

    Open Energy Info (EERE)

    Owner Energy Unlimited Developer Energy Unlimited Energy Purchaser Southern California Edison Co Location San Gorgonio CA Coordinates 33.9095, -116.734 Show Map Loading map......

  13. Onsemble | Open Energy Information

    Open Energy Info (EERE)

    Colorado Zip: 80302 Region: Rockies Area Sector: Wind energy Product: wind energy forecasting Website: www.onsemble.ws Coordinates: 40.010492, -105.276843 Show Map Loading...

  14. Eclipse | Open Energy Information

    Open Energy Info (EERE)

    Clipper Windpower Development Company Energy Purchaser MidAmerican Energy Location Adair IA Coordinates 41.53604897, -94.65567112 Show Map Loading map... "minzoom":false,"mapp...

  15. Laurel | Open Energy Information

    Open Energy Info (EERE)

    RPM Access Wind Development Energy Purchaser MidAmerican Energy Location Haverhill IA Coordinates 41.89096884, -92.97214508 Show Map Loading map... "minzoom":false,"mapp...

  16. Vienna | Open Energy Information

    Open Energy Info (EERE)

    RPM Access Wind Development Energy Purchaser MidAmerican Energy Location Marshalltown IA Coordinates 42.159909, -92.779639 Show Map Loading map... "minzoom":false,"mappings...

  17. Nxegen | Open Energy Information

    Open Energy Info (EERE)

    Zip: 6457 Sector: Services Product: Intelligent energy management company. Provides real-time energy information and load management services to municipal, commercial, and...

  18. Ocotillo | Open Energy Information

    Open Energy Info (EERE)

    Scale Wind Facility Status In Service Owner Duke Energy Developer Duke Energy Location Big Spring TX Coordinates 32.1323035, -101.4208031 Show Map Loading map......

  19. Minimum Day Time Load Calculation and Screening

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Minimum Day Time Load Calculation and Screening" Dora Nakafuji and Anthony Hong, Hawaiian Electric Co. Babak Enayati, DG Techincal Standards Review Group April 30, 2014 2 Speakers Babak Enayati Chair of Massachusetts DG Technical Standards Review Group Dora Nakafuji Director of Renewable Energy Planning Hawaiian Electric Company (HECO) Kristen Ardani Solar Analyst, (today's moderator) NREL Anthony Hong Director of Distribution Planning Hawaiian Electric Company (HECO) Standardization of

  20. Minimum Day Time Load Calculation and Screening

    Office of Environmental Management (EM)

    Distributed Generation Interconnection Collaborative (DGIC) "Minimum Day Time Load Calculation and Screening" Dora Nakafuji and Anthony Hong, Hawaiian Electric Co. Babak Enayati, DG Techincal Standards Review Group April 30, 2014 2 Speakers Babak Enayati Chair of Massachusetts DG Technical Standards Review Group Dora Nakafuji Director of Renewable Energy Planning Hawaiian Electric Company (HECO) Kristen Ardani Solar Analyst, (today's moderator) NREL Anthony Hong Director of

  1. Meridian Way Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Energy Developer Horizon Wind Energy Energy Purchaser Westar EnergyEmpire District Electric Location Cloud County KS Coordinates 39.43274, -97.545217 Show Map Loading map......

  2. Overview of High Power Vacuum Dry RF Load Designs

    SciTech Connect (OSTI)

    Krasnykh, Anatoly

    2015-08-27

    A specific feature of RF linacs based on the pulsed traveling wave (TW) mode of operation is that only a portion of the RF energy is used for the beam acceleration. The residual RF energy has to be terminated into an RF load. Higher accelerating gradients require higher RF sources and RF loads, which can stably terminate the residual RF power. RF feeders (from the RF source though the accelerating section to the load) are vacuumed to transmit multi-megawatt high power RF. This overview will outline vacuumed RF loads only. A common method to terminate multi-MW RF power is to use circulated water (or other liquid) as an absorbing medium. A solid dielectric interface (a high quality ceramic) is required to separate vacuum and liquid RF absorber mediums. Using such RF load approaches in TW linacs is troubling because there is a fragile ceramic window barrier and a failure could become catastrophic for linac vacuum and RF systems. Traditional loads comprising of a ceramic disk have limited peak and average power handling capability and are therefore not suitable for high gradient TW linacs. This overview will focus on ''vacuum dry'' or ''all-metal'' loads that do not employ any dielectric interface between vacuum and absorber. The first prototype is an original design of RF loads for the Stanford Two-Mile Accelerator.

  3. Dynamic load balancing of applications

    DOE Patents [OSTI]

    Wheat, Stephen R. (Albuquerque, NM)

    1997-01-01

    An application-level method for dynamically maintaining global load balance on a parallel computer, particularly on massively parallel MIMD computers. Global load balancing is achieved by overlapping neighborhoods of processors, where each neighborhood performs local load balancing. The method supports a large class of finite element and finite difference based applications and provides an automatic element management system to which applications are easily integrated.

  4. Dynamic load balancing of applications

    DOE Patents [OSTI]

    Wheat, S.R.

    1997-05-13

    An application-level method for dynamically maintaining global load balance on a parallel computer, particularly on massively parallel MIMD computers is disclosed. Global load balancing is achieved by overlapping neighborhoods of processors, where each neighborhood performs local load balancing. The method supports a large class of finite element and finite difference based applications and provides an automatic element management system to which applications are easily integrated. 13 figs.

  5. Libra: Scalable Load Balance Analysis

    Energy Science and Technology Software Center (OSTI)

    2009-09-16

    Libra is a tool for scalable analysis of load balance data from all processes in a parallel application. Libra contains an instrumentation module that collects model data from parallel applications and a parallel compression mechanism that uses distributed wavelet transforms to gather load balance model data in a scalable fashion. Data is output to files, and these files can be viewed in a GUI tool by Libra users. The GUI tool associates particular load balancemore » data with regions for code, emabling users to view the load balance properties of distributed "slices" of their application code.« less

  6. 2004 Pacific Northwest Loads and Resources Study.

    SciTech Connect (OSTI)

    United States. Bonneville Power Administration.

    2004-12-01

    The Pacific Northwest Loads and Resources Study (White Book), which is published annually by the Bonneville Power Administration (BPA), establishes one of the planning bases for supplying electricity to customers. The White Book contains projections of regional and Federal system load and resource capabilities, along with relevant definitions and explanations. The White Book also contains information obtained from formalized resource planning reports and data submittals including those from individual utilities, the Northwest Power and Conservation Council (Council), and the Pacific Northwest Utilities Conference Committee (PNUCC). The White Book is not an operational planning guide, nor is it used for determining BPA revenues, although the database that generates the data for the White Book analysis contributes to the development of BPA's inventory and ratemaking processes. Operation of the Federal Columbia River Power System (FCRPS) is based on a set of criteria different from that used for resource planning decisions. Operational planning is dependent upon real-time or near-term knowledge of system conditions that include expectations of river flows and runoff, market opportunities, availability of reservoir storage, energy exchanges, and other factors affecting the dynamics of operating a power system. The load resource balance of BPA and/or the region is determined by comparing resource availability to an expected level of total retail electricity consumption. Resources include projected energy capability plus contract purchases. Loads include a forecast of retail obligations plus contract obligations. Surplus energy is available when resources are greater than loads. This energy could be marketed to increase revenues. Energy deficits occur when resources are less than loads. These deficits could be met by any combination of the following: better-than-critical water conditions, demand-side management and conservation programs, permanent loss of loads due to economic conditions or closures, additional contract purchases, and/or the addition of new generating resources. The loads and resources analysis in this study simulates the operation of the power system under the current Pacific Northwest Coordination Agreement (PNCA). The PNCA defines the planning and operation of seventeen U.S. Pacific Northwest utilities and other parties with generating facilities within the region's hydroelectric (hydro) system. The hydroregulation study used for the 2004 White Book incorporates measures from the National Oceanographic and Atmospheric Administration Fisheries (NOAA Fisheries) Biological Opinion dated December 2000, and the U.S. Fish and Wildlife Service's 2000 Biological Opinion (2000 FCRPS BiOps) for the Snake River and Columbia River projects. These measures include: (1) Increased flow augmentation for juvenile fish migrations in the Snake and Columbia rivers in the spring and summer; (2) Mandatory spill requirements at the Lower Snake and Columbia dams to provide for non-turbine passage routes for juvenile fish migrants; and (3) Additional flows for Kootenai River white sturgeon in the spring; The hydroregulation criteria for this analysis includes the following: (1) Detailed Operation Plan operation for Treaty reservoirs for Operating Year (OY) 2004; (2) PNCA planning criteria for OY 2004; and (3) Juvenile fish bypass spill levels for 2000 FCRPS BiOps implementation. The 2004 White Book is presented in two documents: (1) this summary document of Federal system and PNW region loads and resources, and (2) a technical appendix which presents regional loads, grouped by major PNW utility categories, and detailed contract and resource information. The technical appendix is available only in electronic form. Individual customer information for marketer contracts is not detailed due to confidentiality agreements. The 2004 White Book analysis updates the 2003 White Book. This analysis projects the yearly average energy consumption and resource availability for the study period, OY 2006 through 2015. The study shows the Federal system's and the region's expected monthly peak demand, monthly energy demand, monthly peak generating capability, and monthly energy generation for OY 2006, 2010, and 2015. The Federal system and regional monthly capacity surplus/deficit projections are summarized for the 10 operating years of the study period. This document analyzes the PNW's projected loads and available generating resources in two parts: (1) the loads and resources of the Federal system, for which BPA is the marketing agency; and (2) the larger PNW regional power system loads and resources that include the Federal system as well other PNW entities.

  7. Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs Advanced Nuclear Energy Nuclear

  8. Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2 - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs Advanced Nuclear Energy Nuclear

  9. Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3 - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs Advanced Nuclear Energy Nuclear

  10. Selecting a Control Strategy for Plug and Process Loads

    SciTech Connect (OSTI)

    Lobato, C.; Sheppy, M.; Brackney, L.; Pless, S.; Torcellini, P.

    2012-09-01

    Plug and Process Loads (PPLs) are building loads that are not related to general lighting, heating, ventilation, cooling, and water heating, and typically do not provide comfort to the building occupants. PPLs in commercial buildings account for almost 5% of U.S. primary energy consumption. On an individual building level, they account for approximately 25% of the total electrical load in a minimally code-compliant commercial building, and can exceed 50% in an ultra-high efficiency building such as the National Renewable Energy Laboratory's (NREL) Research Support Facility (RSF) (Lobato et al. 2010). Minimizing these loads is a primary challenge in the design and operation of an energy-efficient building. A complex array of technologies that measure and manage PPLs has emerged in the marketplace. Some fall short of manufacturer performance claims, however. NREL has been actively engaged in developing an evaluation and selection process for PPLs control, and is using this process to evaluate a range of technologies for active PPLs management that will cap RSF plug loads. Using a control strategy to match plug load use to users' required job functions is a huge untapped potential for energy savings.

  11. Spring loaded locator pin assembly

    DOE Patents [OSTI]

    Groll, Todd A. (Idaho Falls, ID); White, James P. (Pocatelo, ID)

    1998-01-01

    This invention deals with spring loaded locator pins. Locator pins are sometimes referred to as captured pins. This is a mechanism which locks two items together with the pin that is spring loaded so that it drops into a locator hole on the work piece.

  12. Spring loaded locator pin assembly

    DOE Patents [OSTI]

    Groll, T.A.; White, J.P.

    1998-03-03

    This invention deals with spring loaded locator pins. Locator pins are sometimes referred to as captured pins. This is a mechanism which locks two items together with the pin that is spring loaded so that it drops into a locator hole on the work piece. 5 figs.

  13. Design-Load Basis for LANL Structures, Systems, and Components

    SciTech Connect (OSTI)

    I. Cuesta

    2004-09-01

    This document supports the recommendations in the Los Alamos National Laboratory (LANL) Engineering Standard Manual (ESM), Chapter 5--Structural providing the basis for the loads, analysis procedures, and codes to be used in the ESM. It also provides the justification for eliminating the loads to be considered in design, and evidence that the design basis loads are appropriate and consistent with the graded approach required by the Department of Energy (DOE) Code of Federal Regulation Nuclear Safety Management, 10, Part 830. This document focuses on (1) the primary and secondary natural phenomena hazards listed in DOE-G-420.1-2, Appendix C, (2) additional loads not related to natural phenomena hazards, and (3) the design loads on structures during construction.

  14. Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    national energy security by developing energy sources with limited impacts on environment improving efficiency and reliability of nation's energy infrastructure Research...

  15. Review of Residential Low-Load HVAC Systems

    SciTech Connect (OSTI)

    Brown, Scott A.; Thornton, Brian; Widder, Sarah H.

    2013-09-01

    In support of the U.S. Department of Energy’s (DOE’s) Building America Program, Pacific Northwest National Laboratory (PNNL) conducted an investigation to inventory commercially available HVAC technologies that are being installed in low-load homes. The first step in this investigation was to conduct a review of published literature to identify low-load HVAC technologies available in the United States and abroad, and document the findings of existing case studies that have evaluated the performance of the identified technologies. This report presents the findings of the literature review, identifies gaps in the literature or technical understanding that must be addressed before low-load HVAC technologies can be fully evaluated, and introduces PNNL’s planned research and analysis for this project to address identified gaps and potential future work on residential low-load HVAC systems.

  16. News | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Revit and FormIt 360 Pro users can use EnergyPlus to calculate building heating and cooling loads and map the results onto the model for easy identification of high load zones...

  17. ENERGY

    Office of Environmental Management (EM)

    U.S. Department of ENERGY Department of Energy Quadrennial Technology Review-2015 Framing Document http://energy.gov/qtr 2015-01-13 Page 2 The United States faces serious energy-linked challenges as well as substantial energy opportunities. Disruptions, both natural and man-made, threaten our aging energy infrastructure; global patterns of energy use are changing our climate; and our nation's dependence on foreign sources of energy comes at a significant cost to our economy. We need clean,

  18. Multi-State Load Models for Distribution System Analysis

    SciTech Connect (OSTI)

    Schneider, Kevin P.; Fuller, Jason C.; Chassin, David P.

    2011-11-01

    Recent work in the field of distribution system analysis has shown that the traditional method of peak load analysis is not adequate for the analysis of emerging distribution system technologies. Voltage optimization, demand response, electric vehicle charging, and energy storage are examples of technologies with characteristics having daily, seasonal, and/or annual variations. In addition to the seasonal variations, emerging technologies such as demand response and plug in electric vehicle charging have the potential to send control signals to the end use loads which will affect how they consume energy. In order to support time-series analysis over different time frames and to incorporate potential control signal inputs it is necessary to develop detailed end use load models which accurately represent the load under various conditions, and not just during the peak load period. This paper will build on previous work on detail end use load modeling in order to outline the method of general multi-state load models for distribution system analysis.

  19. Distribution Workshop | Department of Energy

    Office of Environmental Management (EM)

    Variable distributed generation Dispatchable distributed generation Electric vehicle charging and electrolyzers Energy storage Building and industrial loads and demand response ...

  20. Comparison of Different Load Road Implementation Strategies on Fuel Economy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of USPS Step Vans | Department of Energy Different Load Road Implementation Strategies on Fuel Economy of USPS Step Vans Comparison of Different Load Road Implementation Strategies on Fuel Economy of USPS Step Vans An alternative form of measuring road loads, instead of using a chassis dynamometer and a method described in 40 CFR section 86.1229-85, was conducted on on-road coastdowns, and regression analysis was used to determine the characteristics of the two U.S. Postal Service step vans,

  1. LDRD final report : mesoscale modeling of dynamic loading of heterogeneous

    Office of Scientific and Technical Information (OSTI)

    materials. (Technical Report) | SciTech Connect LDRD final report : mesoscale modeling of dynamic loading of heterogeneous materials. Citation Details In-Document Search Title: LDRD final report : mesoscale modeling of dynamic loading of heterogeneous materials. × You are accessing a document from the Department of Energy's (DOE) SciTech Connect. This site is a product of DOE's Office of Scientific and Technical Information (OSTI) and is provided as a public service. Visit OSTI to utilize

  2. WIPP Mobile Loading Unit Contract - 8-27-12

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    DOE Awards Contract for WIPP Mobile Loading Unit Services Cincinnati, Ohio, August 27, 2012 - The U.S. Department of Energy (DOE) today awarded a competitive small business contract to Celeritex, LLC, (a Joint Venture between Project Services Group, LLC and DeNuke Contracting Services Inc.) of Suwanee, Georgia. The contract is to provide Mobile Loading Unit services in support of the National TRU Program and the DOE Carlsbad Field Office (CBFO) at the Waste Isolation Pilot Plant (WIPP) in New

  3. Carbon Monoxide Tolerant Electrocatalyst with Low Platinum Loading and a

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Process for its Preparation - Energy Innovation Portal Startup America Startup America Hydrogen and Fuel Cell Hydrogen and Fuel Cell Find More Like This Return to Search Carbon Monoxide Tolerant Electrocatalyst with Low Platinum Loading and a Process for its Preparation Brookhaven National Laboratory Contact BNL About This Technology Publications: PDF Document Publication Pt Submonolayers on Ru Nanoparticles: A Novel Low Pt Loading, High CO Tolerance Fuel Cell Electrocatalyst (173 KB)

  4. Used Nuclear Fuel Loading and Structural Performance Under Normal

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Conditions of Transport - Modeling, Simulation and Experimental Integration RD&D Plan | Department of Energy Nuclear Fuel Loading and Structural Performance Under Normal Conditions of Transport - Modeling, Simulation and Experimental Integration RD&D Plan Used Nuclear Fuel Loading and Structural Performance Under Normal Conditions of Transport - Modeling, Simulation and Experimental Integration RD&D Plan Used nuclear fuel (UNF) must maintain its integrity during the storage

  5. Repository Reference Disposal Concepts and Thermal Load Management Analysis

    Energy Savers [EERE]

    | Department of Energy Repository Reference Disposal Concepts and Thermal Load Management Analysis Repository Reference Disposal Concepts and Thermal Load Management Analysis A disposal concept consists of three parts: waste inventory (7 waste types examined), geologic setting (e.g., clay/shale, salt, crystalline, other sedimentary), and the engineering concept of operations (range of generic operational concepts examined). Two major categories for waste package emplacement modes are

  6. Spinning Reserve from Responsive Load

    SciTech Connect (OSTI)

    Kueck, John D; Kirby, Brendan J; Laughner, T; Morris, K

    2009-01-01

    As power system costs rise and capacity is strained demand response can provide a significant system reliability benefit at a potentially attractive cost. The 162 room Music Road Hotel in Pigeon Forge Tennessee agreed to host a spinning reserve test. The Tennessee Valley Authority (TVA) supplied real-time metering and monitoring expertise to record total hotel load during both normal operations and testing. Preliminary testing showed that hotel load can be curtailed by 22% to 37% depending on the outdoor temperature and the time of day. The load drop was very rapid, essentially as fast as the 2 second metering could detect.

  7. Transportation Electrification Load Development For a Renewable Future Analysis

    SciTech Connect (OSTI)

    Markel, Tony; Mai, Trieu; Kintner-Meyer, Michael CW

    2010-09-30

    Electrification of the transportation sector offers the opportunity to significantly reduce petroleum consumption. The transportation sector accounts for 70% of US petroleum consumption. The transition to electricity as a transportation fuel will create a new load for electricity generation. In support of a recent US Department of Energy funded activity that analyzed a future generation scenario with high renewable energy technology contributions, a set of regional hourly load profiles for electrified vehicles were developed for the 2010 to 2050 timeframe. These load profiles with their underlying assumptions will be presented in this paper. The transportation electrical energy was determined using regional population forecast data, historical vehicle per capita data, and market penetration growth functions to determine the number of plug-in electric vehicles (PEVs) in each analysis region. Two market saturation scenarios of 30% of sales and 50% of sales of PEVs consuming on average {approx}6 kWh per day were considered. Results were generated for 3109 counties and were consolidated to 134 Power Control Areas (PCA) for the use NREL's's regional generation planning analysis tool ReEDS. PEV aggregate load profiles from previous work were combined with vehicle population data to generate hourly loads on a regional basis. A transition from consumer-controlled charging toward utility-controlled charging was assumed such that by 2050 approximately 45% of the transportation energy demands could be delivered across 4 daily time slices under optimal control from the utility perspective. No other literature has addressed the potential flexibility in energy delivery to electric vehicles in connection with a regional power generation study. This electrified transportation analysis resulted in an estimate for both the flexible load and fixed load shapes on a regional basis that may evolve under two PEV market penetration scenarios. EVS25 Copyright.

  8. Hitchcock, Texas: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Hitchcock, Texas: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 29.3482905, -95.0160368 Show Map Loading map... "minzoom":false,"mappingservi...

  9. Wallingford, Connecticut: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Connecticut: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 41.4570418, -72.8231552 Show Map Loading map... "minzoom":false,"mappingservice":"...

  10. Martinez, California: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Martinez, California: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 38.0193657, -122.1341321 Show Map Loading map... "minzoom":false,"mapping...

  11. August, California: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    August, California: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 37.9788123, -121.2621683 Show Map Loading map... "minzoom":false,"mappingse...

  12. Gothenburg, Sweden: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Gothenburg, Sweden: Energy Resources Jump to: navigation, search Equivalent URI DBpedia GeoNames ID 2711537 Coordinates 57.70716, 11.96679 Show Map Loading map......

  13. Webster, Texas: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Webster, Texas: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 29.5377315, -95.1182645 Show Map Loading map... "minzoom":false,"mappingservice...

  14. Bethlehem, Pennsylvania: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Pennsylvania: Energy Resources (Redirected from Bethlehem, PA) Jump to: navigation, search Equivalent URI DBpedia Coordinates 40.6259316, -75.3704579 Show Map Loading map......

  15. Lancaster, Pennsylvania: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Pennsylvania: Energy Resources (Redirected from Lancaster, PA) Jump to: navigation, search Equivalent URI DBpedia Coordinates 40.0378755, -76.3055144 Show Map Loading map......

  16. Danbury, Connecticut: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Danbury, Connecticut: Energy Resources (Redirected from Danbury, CT) Jump to: navigation, search Equivalent URI DBpedia Coordinates 41.394817, -73.4540111 Show Map Loading...

  17. Stanley, Wisconsin: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Stanley, Wisconsin: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 44.9599657, -90.9370846 Show Map Loading map... "minzoom":false,"mappingser...

  18. Auburn, California: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Auburn, California: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 38.8965654, -121.0768901 Show Map Loading map... "minzoom":false,"mappingse...

  19. Huntersville, North Carolina: Energy Resources | Open Energy...

    Open Energy Info (EERE)

    Carolina: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 35.410694, -80.8428504 Show Map Loading map... "minzoom":false,"mappingservice":"goog...

  20. Princeton Energy Systems PES | Open Energy Information

    Open Energy Info (EERE)

    power generation (solar electric and combined heat and power) with traditional energy efficiency technologies. Coordinates: 39.95227, -75.162369 Show Map Loading map......

  1. Harrison Township, Pennsylvania: Energy Resources | Open Energy...

    Open Energy Info (EERE)

    Harrison Township, Pennsylvania: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 40.63664, -79.71669 Show Map Loading map......

  2. Utopia, Florida: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Utopia, Florida: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 27.2900476, -82.3600934 Show Map Loading map... "minzoom":false,"mappingservic...

  3. University, Florida: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    University, Florida: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 29.6435064, -82.3506142 Show Map Loading map... "minzoom":false,"mappingse...

  4. Dickinson, Texas: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Dickinson, Texas: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 29.4607876, -95.0513172 Show Map Loading map... "minzoom":false,"mappingservi...

  5. Jolly, Texas: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Jolly, Texas: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 33.8639877, -98.3494937 Show Map Loading map... "minzoom":false,"mappingservice":...

  6. Windthorst, Texas: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Windthorst, Texas: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 33.5762163, -98.4367186 Show Map Loading map... "minzoom":false,"mappingserv...

  7. Trumbull, Nebraska: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Nebraska: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 40.679457, -98.2733906 Show Map Loading map... "minzoom":false,"mappingservice":"goog...

  8. Petrolia, Texas: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Petrolia, Texas: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 34.0131515, -98.2322669 Show Map Loading map... "minzoom":false,"mappingservic...

  9. Dean, Texas: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Dean, Texas: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 33.9503748, -98.34616 Show Map Loading map... "minzoom":false,"mappingservice":"go...

  10. Byers, Texas: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Texas: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 34.0681503, -98.1905989 Show Map Loading map... "minzoom":false,"mappingservice":"google...

  11. Bellevue, Texas: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Texas: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 33.6364933, -98.0139278 Show Map Loading map... "minzoom":false,"mappingservice":"google...

  12. Henrietta, Texas: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Henrietta, Texas: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 33.8173224, -98.1953221 Show Map Loading map... "minzoom":false,"mappingservi...

  13. Hickman, Kentucky: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Kentucky: Energy Resources (Redirected from Hickman, KY) Jump to: navigation, search Equivalent URI DBpedia Coordinates 36.5711721, -89.1861791 Show Map Loading map......

  14. Hickman, California: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Hickman, California: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 37.6235428, -120.7538163 Show Map Loading map... "minzoom":false,"mappings...

  15. Sheldon, Texas: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Sheldon, Texas: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 29.8680014, -95.1282643 Show Map Loading map... "minzoom":false,"mappingservice...

  16. Bunkerville, Nevada: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Bunkerville, Nevada: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 36.7730306, -114.1280249 Show Map Loading map... "minzoom":false,"mappings...

  17. Coronado, California: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Coronado, California: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 32.6858853, -117.1830891 Show Map Loading map... "minzoom":false,"mapping...

  18. Council, Idaho: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Council, Idaho: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 44.7298876, -116.4381985 Show Map Loading map... "minzoom":false,"mappingservic...

  19. Dawson, Illinois: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Dawson, Illinois: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 39.8528262, -89.4634279 Show Map Loading map... "minzoom":false,"mappingservi...

  20. Baxter, Minnesota: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Baxter, Minnesota: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 46.341221, -94.282414 Show Map Loading map... "minzoom":false,"mappingservic...

  1. Kaaawa, Hawaii: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Kaaawa, Hawaii: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 21.5572221, -157.8536111 Show Map Loading map... "minzoom":false,"mappingservic...

  2. Kahului, Hawaii: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Kahului, Hawaii: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 20.8947222, -156.47 Show Map Loading map... "minzoom":false,"mappingservice":"...

  3. Haleiwa, Hawaii: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Haleiwa, Hawaii: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 21.59034, -158.114197 Show Map Loading map... "minzoom":false,"mappingservice"...

  4. Honolulu, Hawaii: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Honolulu, Hawaii: Energy Resources (Redirected from Honolulu, HI) Jump to: navigation, search Equivalent URI DBpedia Coordinates 21.3069444, -157.8583333 Show Map Loading...

  5. Waipio, Hawaii: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Waipio, Hawaii: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 21.418307, -158.000602 Show Map Loading map... "minzoom":false,"mappingservice"...

  6. Waimalu, Hawaii: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Waimalu, Hawaii: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 21.4047221, -157.9433333 Show Map Loading map... "minzoom":false,"mappingservi...

  7. Aiea, Hawaii: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Aiea, Hawaii: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 21.386338, -157.9255357 Show Map Loading map... "minzoom":false,"mappingservice":...

  8. Kahaluu, Hawaii: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Kahaluu, Hawaii: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 19.5833333, -155.9691667 Show Map Loading map... "minzoom":false,"mappingservi...

  9. Mokuleia, Hawaii: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Mokuleia, Hawaii: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 21.5841667, -158.1519444 Show Map Loading map... "minzoom":false,"mappingserv...

  10. Laie, Hawaii: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Laie, Hawaii: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 21.649067, -157.925454 Show Map Loading map... "minzoom":false,"mappingservice":"...

  11. Pahoa, Hawaii: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Pahoa, Hawaii: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 19.49786, -154.950897 Show Map Loading map... "minzoom":false,"mappingservice":"...

  12. Punaluu, Hawaii: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Punaluu, Hawaii: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 21.5926, -157.896576 Show Map Loading map... "minzoom":false,"mappingservice":...

  13. Nanakuli, Hawaii: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Nanakuli, Hawaii: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 21.3905556, -158.1547222 Show Map Loading map... "minzoom":false,"mappingserv...

  14. Pupukea, Hawaii: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Pupukea, Hawaii: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 21.6641667, -158.0536111 Show Map Loading map... "minzoom":false,"mappingservi...

  15. Kaneohe, Hawaii: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Kaneohe, Hawaii: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 21.417351, -157.803299 Show Map Loading map... "minzoom":false,"mappingservice...

  16. Waimanalo, Hawaii: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Waimanalo, Hawaii: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 21.347424, -157.7206161 Show Map Loading map... "minzoom":false,"mappingserv...

  17. Maili, Hawaii: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Maili, Hawaii: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 21.418733, -158.18042 Show Map Loading map... "minzoom":false,"mappingservice":"...

  18. Kahuku, Hawaii: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Kahuku, Hawaii: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 21.6802778, -157.9511111 Show Map Loading map... "minzoom":false,"mappingservic...

  19. Lihue, Hawaii: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Lihue, Hawaii: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 21.9811111, -159.3711111 Show Map Loading map... "minzoom":false,"mappingservice...

  20. Waipahu, Hawaii: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Waipahu, Hawaii: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 21.3866667, -158.0091667 Show Map Loading map... "minzoom":false,"mappingservi...

  1. Waianae, Hawaii: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Waianae, Hawaii: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 21.449089, -158.190704 Show Map Loading map... "minzoom":false,"mappingservice...

  2. Ahuimanu, Hawaii: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Ahuimanu, Hawaii: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 21.441237, -157.836518 Show Map Loading map... "minzoom":false,"mappingservic...

  3. Pahoa, Hawaii: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Pahoa, Hawaii: Energy Resources (Redirected from Phoa, Hawaii) Jump to: navigation, search Equivalent URI DBpedia Coordinates 19.49786, -154.950897 Show Map Loading map......

  4. Heeia, Hawaii: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Heeia, Hawaii: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 21.428, -157.817183 Show Map Loading map... "minzoom":false,"mappingservice":"go...

  5. Oahu, Hawaii: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Oahu, Hawaii: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 21.4389123, -158.0000565 Show Map Loading map... "minzoom":false,"mappingservice"...

  6. Honolulu, Hawaii: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Honolulu, Hawaii: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 21.3069444, -157.8583333 Show Map Loading map... "minzoom":false,"mappingserv...

  7. Waialua, Hawaii: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Waialua, Hawaii: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 21.5766667, -158.1302777 Show Map Loading map... "minzoom":false,"mappingservi...

  8. Maunawili, Hawaii: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Maunawili, Hawaii: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 21.3727778, -157.7705556 Show Map Loading map... "minzoom":false,"mappingser...

  9. Honolulu, Hawaii: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Honolulu, Hawaii: Energy Resources (Redirected from Honolulu) Jump to: navigation, search Equivalent URI DBpedia Coordinates 21.3069444, -157.8583333 Show Map Loading map......

  10. Waikane, Hawaii: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Waikane, Hawaii: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 21.501379, -157.875226 Show Map Loading map... "minzoom":false,"mappingservice...

  11. Wahiawa, Hawaii: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Wahiawa, Hawaii: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 21.5027778, -158.0236111 Show Map Loading map... "minzoom":false,"mappingservi...

  12. Makaha, Hawaii: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Makaha, Hawaii: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 21.468274, -158.215062 Show Map Loading map... "minzoom":false,"mappingservice"...

  13. Hauula, Hawaii: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Hauula, Hawaii: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 21.612869, -157.924301 Show Map Loading map... "minzoom":false,"mappingservice"...

  14. Ainaloa, Hawaii: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Ainaloa, Hawaii: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 19.5269444, -154.9930556 Show Map Loading map... "minzoom":false,"mappingservi...

  15. Halawa, Hawaii: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Halawa, Hawaii: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 21.37945, -157.92158 Show Map Loading map... "minzoom":false,"mappingservice":"...

  16. Gamesa Energy USA | Open Energy Information

    Open Energy Info (EERE)

    Wind energy Product: US subsidiary of Spanish wind project development and turbine manufacturing company Gamesa. Coordinates: 39.95227, -75.162369 Show Map Loading map......

  17. Carbon, Iowa: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Carbon, Iowa: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 40.8964065, -92.421852 Show Map Loading map... "minzoom":false,"mappingservice":"...

  18. Gray, Maine: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Gray, Maine: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 43.885632, -70.3317195 Show Map Loading map... "minzoom":false,"mappingservice":"g...

  19. El Salvador: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    El Salvador: Energy Resources Jump to: navigation, search Loading map... "minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":5,"types":"ROADMAP","SATELLITE","H...

  20. Elizabeth, Pennsylvania: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Elizabeth, Pennsylvania: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 40.2692367, -79.8897706 Show Map Loading map... "minzoom":false,"mappi...

  1. West Elizabeth, Pennsylvania: Energy Resources | Open Energy...

    Open Energy Info (EERE)

    Elizabeth, Pennsylvania: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 40.2709033, -79.8992153 Show Map Loading map... "minzoom":false,"mappi...

  2. Coastal Energy Ltd | Open Energy Information

    Open Energy Info (EERE)

    Coastal Energy Ltd. Place: Kolkata, West Bengal, India Product: Kolkata-based biodiesel production company. Coordinates: 22.52667, 88.34616 Show Map Loading map......

  3. Missoula, Montana: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Missoula, Montana: Energy Resources (Redirected from Missoula, MT) Jump to: navigation, search Equivalent URI DBpedia Coordinates 46.872146, -113.9939982 Show Map Loading...

  4. Custer, Montana: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Custer, Montana: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 46.1291529, -107.5550754 Show Map Loading map... "minzoom":false,"mappingservi...

  5. Broadview, Montana: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Montana: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 46.0977314, -108.8770972 Show Map Loading map... "minzoom":false,"mappingservice":"goo...

  6. Lockwood, Montana: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Lockwood, Montana: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 45.8191203, -108.414855 Show Map Loading map... "minzoom":false,"mappingserv...

  7. Huntley, Montana: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Montana: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 45.899401, -108.3015173 Show Map Loading map... "minzoom":false,"mappingservice":"goog...

  8. Carter, Montana: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Carter, Montana: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 47.7810776, -110.9563375 Show Map Loading map... "minzoom":false,"mappingservi...

  9. Shepherd, Montana: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Shepherd, Montana: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 45.943568, -108.3423516 Show Map Loading map... "minzoom":false,"mappingserv...

  10. Manhattan, Montana: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Montana: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 45.8563173, -111.3307931 Show Map Loading map... "minzoom":false,"mappingservice":"goo...

  11. Belgrade, Montana: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Montana: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 45.7760403, -111.1768973 Show Map Loading map... "minzoom":false,"mappingservice":"goo...

  12. Ballantine, Montana: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Ballantine, Montana: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 45.9488511, -108.1451196 Show Map Loading map... "minzoom":false,"mappings...

  13. Whitefish, Montana: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Whitefish, Montana: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 48.4110757, -114.3376334 Show Map Loading map... "minzoom":false,"mappingse...

  14. Absarokee, Montana: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Absarokee, Montana: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 45.5204982, -109.4429444 Show Map Loading map... "minzoom":false,"mappingse...

  15. Laurel, Montana: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Montana: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 45.6691159, -108.7715328 Show Map Loading map... "minzoom":false,"mappingservice":"goo...

  16. Agency, Montana: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Montana: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 47.3279854, -114.2934517 Show Map Loading map... "minzoom":false,"mappingservice":"goo...

  17. Butte, Montana: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Butte, Montana: Energy Resources (Redirected from Butte, MT) Jump to: navigation, search Equivalent URI DBpedia Coordinates 46.003917, -112.534446 Show Map Loading map......

  18. Worden, Montana: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Worden, Montana: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 45.959962, -108.1609536 Show Map Loading map... "minzoom":false,"mappingservic...

  19. Loma, Montana: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Loma, Montana: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 47.9369164, -110.5035455 Show Map Loading map... "minzoom":false,"mappingservice...

  20. Mitchell, Nebraska: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Mitchell, Nebraska: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 41.9402435, -103.8085573 Show Map Loading map... "minzoom":false,"mappingse...

  1. Cameron County, Pennsylvania: Energy Resources | Open Energy...

    Open Energy Info (EERE)

    Cameron County, Pennsylvania: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 41.4261564, -78.1564432 Show Map Loading map......

  2. Encinitas, California: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Encinitas, California: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 33.0369867, -117.2919818 Show Map Loading map... "minzoom":false,"mappin...

  3. Lancaster, California: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Lancaster, California: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 34.6980406, -118.1367393 Show Map Loading map... "minzoom":false,"mappin...

  4. Stanislaus County, California: Energy Resources | Open Energy...

    Open Energy Info (EERE)

    Stanislaus County, California: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 37.5090711, -120.9876321 Show Map Loading map......

  5. Mendocino County, California: Energy Resources | Open Energy...

    Open Energy Info (EERE)

    Mendocino County, California: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 39.5500194, -123.438353 Show Map Loading map......

  6. Modesto, California: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Modesto, California: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 37.6390972, -120.9968782 Show Map Loading map... "minzoom":false,"mappings...

  7. Calaveras County, California: Energy Resources | Open Energy...

    Open Energy Info (EERE)

    Calaveras County, California: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 38.2310851, -120.6199895 Show Map Loading map......

  8. Pasadena, California: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Pasadena, California: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 34.1477849, -118.1445155 Show Map Loading map... "minzoom":false,"mapping...

  9. Energy Events UK Ltd | Open Energy Information

    Open Energy Info (EERE)

    Expo is an event organiser dedicated to clean, efficient, sustainable energy consumption within the corporate world. Coordinates: 51.506325, -0.127144 Show Map Loading...

  10. Optimum Energy LLC | Open Energy Information

    Open Energy Info (EERE)

    HVAC systems performance optimiser, which it claims will reduce HVAC system energy consumption 30%-50%. Coordinates: 47.60356, -122.329439 Show Map Loading map......

  11. Cornwall, Vermont: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Cornwall, Vermont: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 43.960893, -73.2103951 Show Map Loading map... "minzoom":false,"mappingservi...

  12. Veazie, Maine: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 44.8386814, -68.7053114 Show Map Loading map... "minzoom":false,"mappingservice":"googlemaps...

  13. Howland, Maine: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 45.2386668, -68.6636391 Show Map Loading map... "minzoom":false,"mappingservice":"googlemaps3"...

  14. Maxfield, Maine: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 45.3076853, -68.7532578 Show Map Loading map... "minzoom":false,"mappingservice":"googlemaps...

  15. Glenburn, Maine: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 44.9168455, -68.8536313 Show Map Loading map... "minzoom":false,"mappingservice":"googlemap...

  16. Richmond, California: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Richmond, California: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 37.9357576, -122.3477486 Show Map Loading map... "minzoom":false,"mapping...

  17. Edgemoor, Delaware: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 39.7501139, -75.4996414 Show Map Loading map... "minzoom":false,"mappingservice":"googlem...

  18. Baltimore, Ohio: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Baltimore, Ohio: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 39.8453418, -82.6007185 Show Map Loading map... "minzoom":false,"mappingservic...

  19. Baltimore, Vermont: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Baltimore, Vermont: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 43.360351, -72.5731478 Show Map Loading map... "minzoom":false,"mappingserv...

  20. Minerva, Ohio: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Minerva, Ohio: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 40.7297816, -81.1053764 Show Map Loading map... "minzoom":false,"mappingservice"...

  1. Diversified Energy Corporation | Open Energy Information

    Open Energy Info (EERE)

    of renewable energy technologies, including gasification, biofuels conversion, and algae biomass cultivation. Coordinates: 37.614763, -81.866621 Show Map Loading map......

  2. Zhuhai Yintong Energy | Open Energy Information

    Open Energy Info (EERE)

    Zhuhai Yintong Energy Place: Zhuhai, Guangdong Province, China Product: Zhuhai-based lithium battery maker Coordinates: 22.277, 113.556808 Show Map Loading map......

  3. Alamo, Tennessee: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Alamo, Tennessee: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 35.7847949, -89.1172883 Show Map Loading map... "minzoom":false,"mappingservi...

  4. Alamo, Texas: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Alamo, Texas: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 26.1836854, -98.1230638 Show Map Loading map... "minzoom":false,"mappingservice":...

  5. Alamo, California: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Alamo, California: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 37.8502032, -122.032184 Show Map Loading map... "minzoom":false,"mappingserv...

  6. Dalton, Georgia: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Georgia: Energy Resources (Redirected from Dalton, GA) Jump to: navigation, search Equivalent URI DBpedia Coordinates 34.7698021, -84.9702228 Show Map Loading map......

  7. Wood, Wisconsin: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Wood, Wisconsin: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 43.568752, -90.330887 Show Map Loading map... "minzoom":false,"mappingservice"...

  8. Green, Ohio: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Green, Ohio: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 40.9458898, -81.4831714 Show Map Loading map... "minzoom":false,"mappingservice":"...

  9. Avignon, France: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Avignon, France: Energy Resources Jump to: navigation, search Equivalent URI DBpedia GeoNames ID 3035681 Coordinates 43.95, 4.81667 Show Map Loading map......

  10. Dixon, Illinois: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Dixon, Illinois: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 41.8389213, -89.4795478 Show Map Loading map... "minzoom":false,"mappingservic...

  11. Bradley, Maine: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Bradley, Maine: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 44.9209017, -68.6280864 Show Map Loading map... "minzoom":false,"mappingservice...

  12. Alpine Energy Group LLC | Open Energy Information

    Open Energy Info (EERE)

    Name: Alpine Energy Group LLC Place: Englewood, CO Region: Rockies Area Sector: Bioenergy Coordinates: 39.6477653, -104.9877597 Show Map Loading map......

  13. Merrifield, Virginia: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Merrifield, Virginia: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 38.8742785, -77.2269262 Show Map Loading map... "minzoom":false,"mappings...

  14. Smithfield, Virginia: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Virginia: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 36.9823709, -76.6310662 Show Map Loading map... "minzoom":false,"mappingservice":"goo...

  15. Jefferson, Virginia: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Virginia: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 38.8645565, -77.1877587 Show Map Loading map... "minzoom":false,"mappingservice":"goo...

  16. Newington, Virginia: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Virginia: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 38.7384477, -77.1849816 Show Map Loading map... "minzoom":false,"mappingservice":"goo...

  17. Fredericksburg, Virginia: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Virginia: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 38.3031837, -77.4605399 Show Map Loading map... "minzoom":false,"mappingservice":"goo...

  18. Franconia, Virginia: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Virginia: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 38.782058, -77.1463691 Show Map Loading map... "minzoom":false,"mappingservice":"goog...

  19. Northumberland County, Virginia: Energy Resources | Open Energy...

    Open Energy Info (EERE)

    Virginia: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 37.9035732, -76.4100267 Show Map Loading map... "minzoom":false,"mappingservice":"goo...

  20. Wachapreague, Virginia: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Wachapreague, Virginia: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 37.6042998, -75.6896502 Show Map Loading map... "minzoom":false,"mappin...

  1. Occoquan, Virginia: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Occoquan, Virginia: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 38.6837271, -77.260261 Show Map Loading map... "minzoom":false,"mappingserv...

  2. Hampton, Virginia: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Virginia: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 37.0298687, -76.3452218 Show Map Loading map... "minzoom":false,"mappingservice":"goo...

  3. Lorton, Virginia: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Lorton, Virginia: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 38.704282, -77.2277603 Show Map Loading map... "minzoom":false,"mappingservic...

  4. Williamsburg, Virginia: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Virginia: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 37.2707022, -76.7074571 Show Map Loading map... "minzoom":false,"mappingservice":"goo...

  5. Hallwood, Virginia: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Hallwood, Virginia: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 37.0634785, -76.2977197 Show Map Loading map... "minzoom":false,"mappingser...

  6. Vienna, Virginia: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Virginia: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 38.9012225, -77.2652604 Show Map Loading map... "minzoom":false,"mappingservice":"goo...

  7. Melfa, Virginia: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Melfa, Virginia: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 37.6492986, -75.7413182 Show Map Loading map... "minzoom":false,"mappingservic...

  8. Oakton, Virginia: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Oakton, Virginia: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 38.8809451, -77.3008172 Show Map Loading map... "minzoom":false,"mappingservi...

  9. Dublin, Virginia: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Virginia: Energy Resources (Redirected from Dublin, VA) Jump to: navigation, search Equivalent URI DBpedia Coordinates 37.1056784, -80.6853433 Show Map Loading map......

  10. Burke, Virginia: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Virginia: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 38.7934466, -77.2716505 Show Map Loading map... "minzoom":false,"mappingservice":"goo...

  11. Rappahannock County, Virginia: Energy Resources | Open Energy...

    Open Energy Info (EERE)

    Rappahannock County, Virginia: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 38.6762327, -78.1564432 Show Map Loading map......

  12. Chincoteague, Virginia: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Chincoteague, Virginia: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 37.933179, -75.3788086 Show Map Loading map... "minzoom":false,"mapping...

  13. Wytheville, Virginia: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Wytheville, Virginia: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 36.9484528, -81.084811 Show Map Loading map... "minzoom":false,"mappingse...

  14. Adwolf, Virginia: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Adwolf, Virginia: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 36.7892824, -81.5820609 Show Map Loading map... "minzoom":false,"mappingservi...

  15. Franklin, Virginia: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Virginia: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 36.6776507, -76.9224608 Show Map Loading map... "minzoom":false,"mappingservice":"goo...

  16. Greensville County, Virginia: Energy Resources | Open Energy...

    Open Energy Info (EERE)

    Greensville County, Virginia: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 36.6056886, -77.6077865 Show Map Loading map......

  17. Centreville, Virginia: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Centreville, Virginia: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 38.8403909, -77.4288769 Show Map Loading map... "minzoom":false,"mapping...

  18. Idylwood, Virginia: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Idylwood, Virginia: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 38.8951115, -77.2116478 Show Map Loading map... "minzoom":false,"mappingser...

  19. Groveton, Virginia: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Groveton, Virginia: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 38.7673362, -77.0847004 Show Map Loading map... "minzoom":false,"mappingser...

  20. Annandale, Virginia: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Virginia: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 38.8303905, -77.1963703 Show Map Loading map... "minzoom":false,"mappingservice":"goo...

  1. Saxis, Virginia: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Saxis, Virginia: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 37.9240145, -75.7218743 Show Map Loading map... "minzoom":false,"mappingservic...

  2. Spotsylvania County, Virginia: Energy Resources | Open Energy...

    Open Energy Info (EERE)

    County, Virginia: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 38.204165, -77.6077865 Show Map Loading map... "minzoom":false,"mappingservic...

  3. Clifton, Virginia: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Virginia: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 38.2834654, -78.0280542 Show Map Loading map... "minzoom":false,"mappingservice":"goo...

  4. Onancock, Virginia: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Onancock, Virginia: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 37.7117971, -75.7490966 Show Map Loading map... "minzoom":false,"mappingser...

  5. Mecklenburg County, Virginia: Energy Resources | Open Energy...

    Open Energy Info (EERE)

    Virginia: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 36.6421724, -78.3842227 Show Map Loading map... "minzoom":false,"mappingservice":"goo...

  6. Lincolnia, Virginia: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Lincolnia, Virginia: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 38.8184463, -77.1433132 Show Map Loading map... "minzoom":false,"mappingse...

  7. Abingdon, Virginia: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Virginia: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 36.7098335, -81.9773482 Show Map Loading map... "minzoom":false,"mappingservice":"goo...

  8. Mantua, Virginia: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Mantua, Virginia: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 38.8537233, -77.2594273 Show Map Loading map... "minzoom":false,"mappingservi...

  9. Southampton County, Virginia: Energy Resources | Open Energy...

    Open Energy Info (EERE)

    Southampton County, Virginia: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 36.6788512, -77.1024902 Show Map Loading map......

  10. Westmoreland County, Virginia: Energy Resources | Open Energy...

    Open Energy Info (EERE)

    Virginia: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 38.112732, -76.7798172 Show Map Loading map... "minzoom":false,"mappingservice":"goog...

  11. Fredericksburg County, Virginia: Energy Resources | Open Energy...

    Open Energy Info (EERE)

    Fredericksburg County, Virginia: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 38.3048885, -77.4816693 Show Map Loading map......

  12. Pittsylvania County, Virginia: Energy Resources | Open Energy...

    Open Energy Info (EERE)

    Pittsylvania County, Virginia: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 36.7440186, -79.4703885 Show Map Loading map......

  13. Alexandria, Virginia: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Virginia: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 38.8048355, -77.0469214 Show Map Loading map... "minzoom":false,"mappingservice":"goo...

  14. Lubec, Maine: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Lubec, Maine: Energy Resources (Redirected from Lubec, ME) Jump to: navigation, search Equivalent URI DBpedia Coordinates 44.8606355, -66.9841453 Show Map Loading map......

  15. Woolwich, Maine: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Woolwich, Maine: Energy Resources (Redirected from Woolwich, ME) Jump to: navigation, search Equivalent URI DBpedia Coordinates 43.9186904, -69.8011576 Show Map Loading map......

  16. Greenville, Maine: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Greenville, Maine: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 45.4594907, -69.5906101 Show Map Loading map... "minzoom":false,"mappingserv...

  17. Raymond, Maine: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Raymond, Maine: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 43.9014637, -70.4703332 Show Map Loading map... "minzoom":false,"mappingservice...

  18. Harpswell, Maine: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Harpswell, Maine: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 43.7560618, -69.9645482 Show Map Loading map... "minzoom":false,"mappingservi...

  19. Camden, Maine: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Camden, Maine: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 44.2098011, -69.0647593 Show Map Loading map... "minzoom":false,"mappingservice"...

  20. Shirley, Maine: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Shirley, Maine: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 45.3476081, -69.633903 Show Map Loading map... "minzoom":false,"mappingservice"...

  1. Portland, Maine: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Portland, Maine: Energy Resources (Redirected from Portland, ME) Jump to: navigation, search Equivalent URI DBpedia Coordinates 43.661471, -70.2553259 Show Map Loading map......

  2. Pownal, Maine: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Pownal, Maine: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 43.9087662, -70.1821738 Show Map Loading map... "minzoom":false,"mappingservice"...

  3. Sebec, Maine: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Sebec, Maine: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 45.2714408, -69.1167087 Show Map Loading map... "minzoom":false,"mappingservice":...

  4. Westbrook, Maine: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Westbrook, Maine: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 43.6770252, -70.3711617 Show Map Loading map... "minzoom":false,"mappingservi...

  5. Washington, Maine: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Washington, Maine: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 44.2736858, -69.3672657 Show Map Loading map... "minzoom":false,"mappingserv...

  6. Naples, Maine: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Naples, Maine: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 43.971739, -70.6092258 Show Map Loading map... "minzoom":false,"mappingservice":...

  7. Monson, Maine: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Monson, Maine: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 45.2869936, -69.5011619 Show Map Loading map... "minzoom":false,"mappingservice"...

  8. Appleton, Maine: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Appleton, Maine: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 44.289243, -69.2508768 Show Map Loading map... "minzoom":false,"mappingservice...

  9. Rockland, Maine: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Rockland, Maine: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 44.1036914, -69.1089293 Show Map Loading map... "minzoom":false,"mappingservic...

  10. Belgrade, Maine: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Belgrade, Maine: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 44.4472888, -69.832549 Show Map Loading map... "minzoom":false,"mappingservice...

  11. Whitney, Maine: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Whitney, Maine: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 45.3128633, -67.9860724 Show Map Loading map... "minzoom":false,"mappingservice...

  12. Etna, Maine: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Etna, Maine: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 44.8209007, -69.111155 Show Map Loading map... "minzoom":false,"mappingservice":"g...

  13. Charleston, Maine: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Charleston, Maine: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 45.0850615, -69.0405949 Show Map Loading map... "minzoom":false,"mappingserv...

  14. Parkman, Maine: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Parkman, Maine: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 45.1336651, -69.4331038 Show Map Loading map... "minzoom":false,"mappingservice...

  15. Sebago, Maine: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Sebago, Maine: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 43.8917267, -70.6709435 Show Map Loading map... "minzoom":false,"mappingservice"...

  16. Falmouth, Maine: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Falmouth, Maine: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 43.729525, -70.2419929 Show Map Loading map... "minzoom":false,"mappingservice...

  17. Brownville, Maine: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Brownville, Maine: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 45.3069957, -69.0333737 Show Map Loading map... "minzoom":false,"mappingserv...

  18. Thomaston, Maine: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Thomaston, Maine: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 44.0789697, -69.1817103 Show Map Loading map... "minzoom":false,"mappingservi...

  19. Eastport, Maine: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Eastport, Maine: Energy Resources (Redirected from Eastport, ME) Jump to: navigation, search Equivalent URI DBpedia Coordinates 44.9061906, -66.9899785 Show Map Loading map......

  20. Yarmouth, Maine: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Yarmouth, Maine: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 43.8006354, -70.1867161 Show Map Loading map... "minzoom":false,"mappingservic...

  1. Newburgh, Maine: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Newburgh, Maine: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 44.7249508, -69.0157987 Show Map Loading map... "minzoom":false,"mappingservic...

  2. Portland, Maine: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Portland, Maine: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 43.661471, -70.2553259 Show Map Loading map... "minzoom":false,"mappingservice...

  3. Northeast Piscataquis, Maine: Energy Resources | Open Energy...

    Open Energy Info (EERE)

    Northeast Piscataquis, Maine: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 45.9376353, -69.1023106 Show Map Loading map......

  4. Kingsbury, Maine: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Kingsbury, Maine: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 45.1194988, -69.6492194 Show Map Loading map... "minzoom":false,"mappingservi...

  5. Scarborough, Maine: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Scarborough, Maine: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 43.597774, -70.331846 Show Map Loading map... "minzoom":false,"mappingservi...

  6. Newport, Maine: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Newport, Maine: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 44.8353424, -69.2739365 Show Map Loading map... "minzoom":false,"mappingservice...

  7. Rockport, Maine: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Rockport, Maine: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 44.1845236, -69.0761491 Show Map Loading map... "minzoom":false,"mappingservic...

  8. Cumberland, Maine: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Cumberland, Maine: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 43.7964679, -70.2589388 Show Map Loading map... "minzoom":false,"mappingserv...

  9. Wellington, Maine: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Wellington, Maine: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 45.0397781, -69.5972731 Show Map Loading map... "minzoom":false,"mappingserv...

  10. Willimantic, Maine: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Willimantic, Maine: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 45.3067165, -69.4083826 Show Map Loading map... "minzoom":false,"mappingser...

  11. Sangerville, Maine: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Sangerville, Maine: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 45.1647763, -69.356436 Show Map Loading map... "minzoom":false,"mappingserv...

  12. Northwest Piscataquis, Maine: Energy Resources | Open Energy...

    Open Energy Info (EERE)

    Northwest Piscataquis, Maine: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 46.1101801, -69.383351 Show Map Loading map......

  13. Evans, Colorado: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Evans, Colorado: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 40.3763701, -104.6921874 Show Map Loading map... "minzoom":false,"mappingservi...

  14. Marion, Massachusetts: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Marion, Massachusetts: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 41.7001043, -70.7628129 Show Map Loading map... "minzoom":false,"mapping...

  15. Henry, Nebraska: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Henry, Nebraska: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 41.998285, -104.046297 Show Map Loading map... "minzoom":false,"mappingservice...

  16. Yarmouth Port, Massachusetts: Energy Resources | Open Energy...

    Open Energy Info (EERE)

    Yarmouth Port, Massachusetts: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 41.7020544, -70.249465 Show Map Loading map......

  17. Schofield, Wisconsin: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Schofield, Wisconsin: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 44.9096907, -89.6045659 Show Map Loading map... "minzoom":false,"mappings...

  18. Akhiok, Alaska: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Alaska: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 56.9455556, -154.1702778 Show Map Loading map... "minzoom":false,"mappingservice":"goo...

  19. Wall, Pennsylvania: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Wall, Pennsylvania: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 40.3936801, -79.7861577 Show Map Loading map... "minzoom":false,"mappingser...

  20. Spain: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Spain: Energy Resources Jump to: navigation, search Loading map... "minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":5,"types":"ROADMAP","SATELLITE","HYBRID"...

  1. Coachella, California: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Coachella, California: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 33.6803003, -116.173894 Show Map Loading map... "minzoom":false,"mapping...

  2. Waverly, Iowa: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Iowa: Energy Resources (Redirected from Waverly, IA) Jump to: navigation, search Equivalent URI DBpedia Coordinates 42.7272032, -92.4668511 Show Map Loading map......

  3. Richardson, Texas: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Richardson, Texas: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 32.9481789, -96.7297205 Show Map Loading map... "minzoom":false,"mappingserv...

  4. Colorado: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Colorado: Energy Resources Jump to: navigation, search Loading map... "minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":"ROADMAP","SATELLITE","HYBR...

  5. Wyoming: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Wyoming: Energy Resources Jump to: navigation, search Loading map... "minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":"ROADMAP","SATELLITE","HYBRI...

  6. Exeter, Maine: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Exeter, Maine: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 44.9418981, -69.1360449 Show Map Loading map... "minzoom":false,"mappingservice"...

  7. Mead, Colorado: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Mead, Colorado: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 40.2333174, -104.9985899 Show Map Loading map... "minzoom":false,"mappingservic...

  8. Moore, Oklahoma: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Moore, Oklahoma: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 35.3395079, -97.4867028 Show Map Loading map... "minzoom":false,"mappingservic...

  9. Curran, Illinois: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Curran, Illinois: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 39.7422737, -89.7720477 Show Map Loading map... "minzoom":false,"mappingservi...

  10. Steward, Illinois: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Steward, Illinois: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 41.8478069, -89.0200933 Show Map Loading map... "minzoom":false,"mappingserv...

  11. Acela Energy Group Inc | Open Energy Information

    Open Energy Info (EERE)

    Zip: 02056 Region: Greater Boston Area Sector: Efficiency Product: Aims to reduce energy costs via rate negotiation, conservation, load management, and competitive bidding...

  12. Focus On Energy | Open Energy Information

    Open Energy Info (EERE)

    Zip: 53707-7868 Product: Private partnership of companies educating the consumer about conservation of energy. Coordinates: 43.07295, -89.386694 Show Map Loading map......

  13. Tulsa, Oklahoma: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Tulsa, Oklahoma: Energy Resources (Redirected from Tulsa, OK) Jump to: navigation, search Equivalent URI DBpedia Coordinates 36.1539816, -95.992775 Show Map Loading map......

  14. East Bridgewater, Massachusetts: Energy Resources | Open Energy...

    Open Energy Info (EERE)

    Bridgewater, Massachusetts: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 42.0334341, -70.9592096 Show Map Loading map......

  15. West Bridgewater, Massachusetts: Energy Resources | Open Energy...

    Open Energy Info (EERE)

    Bridgewater, Massachusetts: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 42.0189894, -71.0078215 Show Map Loading map......

  16. Star, Idaho: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Star, Idaho: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 43.6921071, -116.4934631 Show Map Loading map... "minzoom":false,"mappingservice":...

  17. Recaptured Energy Technologies LLC | Open Energy Information

    Open Energy Info (EERE)

    Product: Chicago-based company providing energy solutions for fleet, commercial and transit vehicles. Coordinates: 41.88415, -87.632409 Show Map Loading map......

  18. Burnside, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Burnside, Arizona: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 35.7511228, -109.6245514 Show Map Loading map... "minzoom":false,"mappingser...

  19. Summit, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Summit, Arizona: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 32.0670238, -110.9514796 Show Map Loading map... "minzoom":false,"mappingservi...

  20. Cameron, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Arizona: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 35.8758285, -111.4129207 Show Map Loading map... "minzoom":false,"mappingservice":"goo...

  1. Ganado, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Ganado, Arizona: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 35.7114022, -109.5420492 Show Map Loading map... "minzoom":false,"mappingservi...

  2. Avondale, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Avondale, Arizona: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 33.4355977, -112.3496021 Show Map Loading map... "minzoom":false,"mappingser...

  3. Jerome, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Arizona: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 34.7489107, -112.1137716 Show Map Loading map... "minzoom":false,"mappingservice":"goo...

  4. Littletown, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Littletown, Arizona: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 32.1303561, -110.8728658 Show Map Loading map... "minzoom":false,"mappings...

  5. Peoria, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Peoria, Arizona: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 33.5805955, -112.2373779 Show Map Loading map... "minzoom":false,"mappingservi...

  6. Springerville, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Springerville, Arizona: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 34.1333799, -109.2859196 Show Map Loading map... "minzoom":false,"mappi...

  7. Surprise, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Surprise, Arizona: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 33.6305938, -112.333216 Show Map Loading map... "minzoom":false,"mappingserv...

  8. Cottonwood, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Arizona: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 34.7391876, -112.0098791 Show Map Loading map... "minzoom":false,"mappingservice":"goo...

  9. Maricopa, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Arizona: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 33.0581063, -112.0476423 Show Map Loading map... "minzoom":false,"mappingservice":"goo...

  10. Kaibab, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Kaibab, Arizona: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 36.896652, -112.7407596 Show Map Loading map... "minzoom":false,"mappingservic...

  11. Coolidge, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Coolidge, Arizona: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 32.977839, -111.517624 Show Map Loading map... "minzoom":false,"mappingservi...

  12. Gadsden, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Gadsden, Arizona: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 32.5544974, -114.7849577 Show Map Loading map... "minzoom":false,"mappingserv...

  13. Whetstone, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Whetstone, Arizona: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 31.701705, -110.340746 Show Map Loading map... "minzoom":false,"mappingserv...

  14. Chinle, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Chinle, Arizona: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 36.1544483, -109.5526072 Show Map Loading map... "minzoom":false,"mappingservi...

  15. Blackwater, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Blackwater, Arizona: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 33.0311702, -111.582627 Show Map Loading map... "minzoom":false,"mappingse...

  16. Vail, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Arizona: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 32.0478583, -110.7120272 Show Map Loading map... "minzoom":false,"mappingservice":"goo...

  17. Cornville, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Cornville, Arizona: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 34.7177989, -111.9215438 Show Map Loading map... "minzoom":false,"mappingse...

  18. Tsaile, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Tsaile, Arizona: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 36.303712, -109.214705 Show Map Loading map... "minzoom":false,"mappingservice...

  19. Wilhoit, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Wilhoit, Arizona: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 34.4258586, -112.5868398 Show Map Loading map... "minzoom":false,"mappingserv...

  20. Mountainaire, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Mountainaire, Arizona: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 35.0852924, -111.6659925 Show Map Loading map... "minzoom":false,"mappin...

  1. Kingman, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Arizona: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 35.189443, -114.0530065 Show Map Loading map... "minzoom":false,"mappingservice":"goog...

  2. Oracle, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Oracle, Arizona: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 32.6109054, -110.7709348 Show Map Loading map... "minzoom":false,"mappingservi...

  3. Fredonia, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Arizona: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 36.945542, -112.5265889 Show Map Loading map... "minzoom":false,"mappingservice":"goog...

  4. Chuichu, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Chuichu, Arizona: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 32.752002, -111.7831837 Show Map Loading map... "minzoom":false,"mappingservi...

  5. Sahuarita, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Sahuarita, Arizona: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 31.9575818, -110.955646 Show Map Loading map... "minzoom":false,"mappingser...

  6. Tortolita, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Tortolita, Arizona: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 32.4005302, -111.0400795 Show Map Loading map... "minzoom":false,"mappingse...

  7. Sacaton, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Sacaton, Arizona: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 33.0767225, -111.7392993 Show Map Loading map... "minzoom":false,"mappingserv...

  8. Moenkopi, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Moenkopi, Arizona: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 36.1111043, -111.2223624 Show Map Loading map... "minzoom":false,"mappingser...

  9. Paulden, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Paulden, Arizona: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 34.8855756, -112.4682271 Show Map Loading map... "minzoom":false,"mappingserv...

  10. Parks, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Parks, Arizona: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 35.2605664, -111.9487743 Show Map Loading map... "minzoom":false,"mappingservic...

  11. Tacna, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Tacna, Arizona: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 32.6975472, -113.9535427 Show Map Loading map... "minzoom":false,"mappingservic...

  12. Houck, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Houck, Arizona: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 35.2830803, -109.2070391 Show Map Loading map... "minzoom":false,"mappingservic...

  13. Tucson, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Tucson, Arizona: Energy Resources (Redirected from Tucson, AZ) Jump to: navigation, search Equivalent URI DBpedia Coordinates 32.2217429, -110.926479 Show Map Loading map......

  14. Congress, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Congress, Arizona: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 34.162526, -112.8507374 Show Map Loading map... "minzoom":false,"mappingserv...

  15. Supai, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Supai, Arizona: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 36.2369265, -112.6890791 Show Map Loading map... "minzoom":false,"mappingservic...

  16. Superior, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Superior, Arizona: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 33.293945, -111.0962305 Show Map Loading map... "minzoom":false,"mappingserv...

  17. Wellton, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Wellton, Arizona: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 32.6728256, -114.1468821 Show Map Loading map... "minzoom":false,"mappingserv...

  18. Carefree, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Carefree, Arizona: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 33.8222611, -111.918203 Show Map Loading map... "minzoom":false,"mappingserv...

  19. Willcox, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Willcox, Arizona: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 32.2528519, -109.8320124 Show Map Loading map... "minzoom":false,"mappingserv...

  20. Chandler, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Chandler, Arizona: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 33.3061605, -111.8412502 Show Map Loading map... "minzoom":false,"mappingser...

  1. Pirtleville, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Pirtleville, Arizona: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 31.3570467, -109.561734 Show Map Loading map... "minzoom":false,"mappings...

  2. Dudleyville, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Dudleyville, Arizona: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 32.914267, -110.733779 Show Map Loading map... "minzoom":false,"mappingse...

  3. Tonalea, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Tonalea, Arizona: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 36.3224923, -110.9634781 Show Map Loading map... "minzoom":false,"mappingserv...

  4. Mayer, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Mayer, Arizona: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 34.3978054, -112.2362734 Show Map Loading map... "minzoom":false,"mappingservic...

  5. Ajo, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Ajo, Arizona: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 32.3717248, -112.8607099 Show Map Loading map... "minzoom":false,"mappingservice"...

  6. Wickenburg, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Wickenburg, Arizona: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 33.9686412, -112.729622 Show Map Loading map... "minzoom":false,"mappingse...

  7. Glendale, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Arizona: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 33.5386523, -112.1859866 Show Map Loading map... "minzoom":false,"mappingservice":"goo...

  8. Bisbee, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Bisbee, Arizona: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 31.4481547, -109.9284084 Show Map Loading map... "minzoom":false,"mappingservi...

  9. Eloy, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Eloy, Arizona: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 32.7558962, -111.554844 Show Map Loading map... "minzoom":false,"mappingservice"...

  10. Tolleson, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Tolleson, Arizona: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 33.4500425, -112.259321 Show Map Loading map... "minzoom":false,"mappingserv...

  11. Nazlini, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Nazlini, Arizona: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 35.8963986, -109.4487147 Show Map Loading map... "minzoom":false,"mappingserv...

  12. Tombstone, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Tombstone, Arizona: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 31.7128683, -110.0675764 Show Map Loading map... "minzoom":false,"mappingse...

  13. Sedona, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Sedona, Arizona: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 34.8697395, -111.7609896 Show Map Loading map... "minzoom":false,"mappingservi...

  14. Sawmill, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Sawmill, Arizona: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 33.6181083, -110.3964911 Show Map Loading map... "minzoom":false,"mappingserv...

  15. Pisinemo, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Pisinemo, Arizona: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 32.0378487, -112.3209689 Show Map Loading map... "minzoom":false,"mappingser...

  16. Sells, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Sells, Arizona: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 31.9120215, -111.881234 Show Map Loading map... "minzoom":false,"mappingservice...

  17. Hayden, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Hayden, Arizona: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 33.0047878, -110.7853836 Show Map Loading map... "minzoom":false,"mappingservi...

  18. Kearny, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Arizona: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 33.0570085, -110.9106656 Show Map Loading map... "minzoom":false,"mappingservice":"goo...

  19. Eagar, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Eagar, Arizona: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 34.1111581, -109.291475 Show Map Loading map... "minzoom":false,"mappingservice...

  20. Stanfield, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Stanfield, Arizona: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 32.8825531, -111.9620805 Show Map Loading map... "minzoom":false,"mappingse...