Powered by Deep Web Technologies
Note: This page contains sample records for the topic "light-duty vehicles model" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

DOE Light Duty Vehicle Workshop  

Energy.gov (U.S. Department of Energy (DOE))

On July 26, 2010, the U.S. Department of Energy (DOE) sponsored a Light Duty Vehicle Workshop in Washington, D.C. Presentations from this workshop appear below as Adobe Acrobat PDFs.

2

Light Duty Vehicle Pathways | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Duty Vehicle Pathways Light Duty Vehicle Pathways Presented at the U.S. Department of Energy Light Duty Vehicle Workshop in Washington, D.C. on July 26, 2010....

3

Improving the Efficiency of Light-Duty Vehicle HVAC Systems using...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Light-Duty Vehicle HVAC Systems using Zonal Thermoelectric Devices and Comfort Modeling Improving the Efficiency of Light-Duty Vehicle HVAC Systems using Zonal Thermoelectric...

4

Light-duty vehicle mpg and market shares report, model year 1988  

SciTech Connect

This issue of Light-Duty Vehicle MPG and Market Shares Report: Model Year 1988 reports the estimated sales-weighted fuel economies, sales, market shares, and other vehicle characteristics of automobiles and light trucks. The estimates are made on a make and model basis, from model year 1976 to model year 1988. Vehicle sales data are used as weighting factors in the sales-weighted estimation procedure. Thus, the estimates represent averages of the overall new vehicle fleet, reflecting the composition of the fleet. Highlights are provided on the trends in the vehicle characteristics from one model year to the next. Analyses are also made on the fuel economy changes to determine the factors which caused the changes. The sales-weighted fuel economy for the new car fleet in model year 1988 showed an improvement of 0.1 mpg from model year 1987, while light trucks showed a 0.2 mpg loss. The 0.2 mpg loss by the light trucks can be attributed to the fact that every light truck size class experienced either losses or no change in their fuel economies from the previous model year, except for the large van size class. Overall, the sales-weighted fuel economy of the entire light-duty vehicle fleet (automobiles and light trucks combined) has remained relatively stable since model year 1986. Domestic light-duty vehicles began to gain popularity over their import counterparts; and light trucks increased their market shares relative to automobiles. Domestic cars regained 0.3% of the automobile market, reversing the previous trend. Similar to the automobile market, domestic light trucks continued to gain popularity over their import counterparts, partly due to the increasing popularity of domestic small vans. 3 refs., 35 figs., 48 tabs.

Hu, P.S.; Williams, L.S.; Beal, D.J.

1989-04-01T23:59:59.000Z

5

Advanced Vehicle Testing Activity: Light-Duty Vehicles  

NLE Websites -- All DOE Office Websites (Extended Search)

Light-Duty Light-Duty Vehicles to someone by E-mail Share Advanced Vehicle Testing Activity: Light-Duty Vehicles on Facebook Tweet about Advanced Vehicle Testing Activity: Light-Duty Vehicles on Twitter Bookmark Advanced Vehicle Testing Activity: Light-Duty Vehicles on Google Bookmark Advanced Vehicle Testing Activity: Light-Duty Vehicles on Delicious Rank Advanced Vehicle Testing Activity: Light-Duty Vehicles on Digg Find More places to share Advanced Vehicle Testing Activity: Light-Duty Vehicles on AddThis.com... Home Overview Light-Duty Vehicles Alternative Fuel Vehicles Plug-in Hybrid Electric Vehicles Hybrid Electric Vehicles Micro Hybrid Vehicles ARRA Vehicle and Infrastructure Projects EVSE Testing Energy Storage Testing Hydrogen Internal Combustion Engine Vehicles Other ICE

6

Fuel Cell Technologies Office: DOE Light Duty Vehicle Workshop  

NLE Websites -- All DOE Office Websites (Extended Search)

Light Duty Vehicle Light Duty Vehicle Workshop to someone by E-mail Share Fuel Cell Technologies Office: DOE Light Duty Vehicle Workshop on Facebook Tweet about Fuel Cell Technologies Office: DOE Light Duty Vehicle Workshop on Twitter Bookmark Fuel Cell Technologies Office: DOE Light Duty Vehicle Workshop on Google Bookmark Fuel Cell Technologies Office: DOE Light Duty Vehicle Workshop on Delicious Rank Fuel Cell Technologies Office: DOE Light Duty Vehicle Workshop on Digg Find More places to share Fuel Cell Technologies Office: DOE Light Duty Vehicle Workshop on AddThis.com... Publications Program Publications Technical Publications Educational Publications Newsletter Program Presentations Multimedia Conferences & Meetings Annual Merit Review Proceedings Workshop & Meeting Proceedings

7

Progress on DOE Vehicle Technologies Light-Duty Diesel Engine...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

DOE Vehicle Technologies Light-Duty Diesel Engine Efficiency and Emissions Milestones Progress on DOE Vehicle Technologies Light-Duty Diesel Engine Efficiency and Emissions...

8

Light Duty Fuel Cell Electric Vehicle Hydrogen Fueling Protocol...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Light Duty Fuel Cell Electric Vehicle Hydrogen Fueling Protocol Light Duty Fuel Cell Electric Vehicle Hydrogen Fueling Protocol Download the webinar slides from the U.S. Department...

9

alternative fuel light-duty vehicles  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fuel Light-Duty Vehicles Fuel Light-Duty Vehicles T O F E N E R G Y D E P A R T M E N U E N I T E D S T A T S O F A E R I C A M SUMMARY OF RESULTS FROM THE NATIONAL RENEWABLE ENERGY LABORATORY'S VEHICLE EVALUATION DATA COLLECTION EFFORTS Alternative Fuel Light-Duty Vehicles SUMMARY OF RESULTS FROM THE NATIONAL RENEWABLE ENERGY LABORATORY'S VEHICLE EVALUATION DATA COLLECTION EFFORTS PEG WHALEN KENNETH KELLY ROB MOTTA JOHN BRODERICK MAY 1996 N T Y A U E O F E N E R G D E P A R T M E N I T E D S T A T S O F A E R I C M Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2 Light-Duty Vehicles in the Program . . . . . . . . . . . . . . . . . . . . . . . . . . . .2

10

Alternative Fuels Data Center: Light-Duty Vehicle Search  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Light-Duty Vehicle Light-Duty Vehicle Search to someone by E-mail Share Alternative Fuels Data Center: Light-Duty Vehicle Search on Facebook Tweet about Alternative Fuels Data Center: Light-Duty Vehicle Search on Twitter Bookmark Alternative Fuels Data Center: Light-Duty Vehicle Search on Google Bookmark Alternative Fuels Data Center: Light-Duty Vehicle Search on Delicious Rank Alternative Fuels Data Center: Light-Duty Vehicle Search on Digg Find More places to share Alternative Fuels Data Center: Light-Duty Vehicle Search on AddThis.com... Light-Duty Vehicle Search Search our light-duty alternative fuel vehicle database to find and compare alternative fuel vehicles and generate printable reports to aid in decision-making. These vehicles might not qualify for vehicle-acquisition

11

Improving the Efficiency of Light-Duty Vehicle HVAC Systems using Zonal Thermoelectric Devices and Comfort Modeling  

Energy.gov (U.S. Department of Energy (DOE))

Summarizes results from a study to identify and demonstrate technical and commercial approaches necessary to accelerate the deployment of zonal TE HVAC systems in light-duty vehicles

12

DOE Hydrogen Analysis Repository: Biofuels in Light-Duty Vehicles  

NLE Websites -- All DOE Office Websites (Extended Search)

Biofuels in Light-Duty Vehicles Biofuels in Light-Duty Vehicles Project Summary Full Title: Mobility Chains Analysis of Technologies for Passenger Cars and Light-Duty Vehicles Fueled with Biofuels: Application of the GREET Model to the Role of Biomass in America's Energy Future (RBAEF) Project Project ID: 82 Principal Investigator: Michael Wang Brief Description: The mobility chains analysis estimated the energy consumption and emissions associated with the use of various biofuels in light-duty vehicles. Keywords: Well-to-wheels (WTW); ethanol; biofuels; Fischer Tropsch diesel; hybrid electric vehicles (HEV) Purpose The project was a multi-organization, multi-sponsor project to examine the potential of biofuels in the U.S. Argonne was responsible for the well-to-wheels analysis of biofuel production and use.

13

Overview of Light-Duty Vehicle Studies  

NLE Websites -- All DOE Office Websites (Extended Search)

Overview of Light-Duty Vehicle Studies Overview of Light-Duty Vehicle Studies Washington, DC Workshop Sponsored by EERE Transportation Cluster July 26, 2010 Energy Efficiency & Renewable Energy eere.energy.gov 2 * This workshop is intended to be a working meeting for analysts to discuss findings and assumptions because a number of key studies on light-duty vehicles (LDVs) and biofuels have been completed in the past 5 years and the insight gained from their findings would be valuable. * Outcomes: - common understanding of the effects of differing assumptions (today); - agreement on standard assumptions for future studies, where applicable (agreement on some assumptions today, follow-up discussions/meeting may be needed for others); - list of data/information gaps and needed research and studies (a

14

Overview of Light-Duty Vehicle Studies | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Studies Overview of Light-Duty Vehicle Studies Presented at the U.S. Department of Energy Light Duty Vehicle Workshop in Washington, D.C. on July 26, 2010. ldvpathways.pdf...

15

Light Duty Vehicle CNG Tanks  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Vehicle CNG Tanks Dane A. Boysen, PhD Program Director Advanced Research Projects Agency-Energy, US DOE dane.boysen@doe.gov Fiber Reinforced Polymer Composite Manufacturing...

16

Thermoelectric Opportunities in Light-Duty Vehicles | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Light-Duty Vehicles Overview of thermoelectric (TE) vehicle exhaust heat recovery, TE HVAC systems, and OEM role in establishing guidelines for cost, power density, systems...

17

Fueling U.S. Light Duty Diesel Vehicles  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

U.S. Light Duty Diesel Vehicles DEER Conference August 23, 2005 Joe Kaufman Manager, Fuel & Vehicle Trends ConocoPhillips NYSE: COP Core Activities * Petroleum & natural gas...

18

Light-Duty Lean GDI Vehicle Technology Benchmark  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

M. Wagner (PI) Paul H. Chambon (Presenter) Oak Ridge National Laboratory Light-Duty Lean GDI Vehicle Technology Benchmark This presentation does not contain any proprietary,...

19

Hybrid options for light-duty vehicles.  

SciTech Connect

Hybrid electric vehicles (HEVs) offer great promise in improving fuel economy. In this paper, we analyze why, how, and by how much vehicle hybridization can reduce energy consumption and improve fuel economy. Our analysis focuses on efficiency gains associated solely with vehicle hybridization. We do not consider such other measures as vehicle weight reduction or air- and tire-resistance reduction, because such measures would also benefit conventional technology vehicles. The analysis starts with understanding the energy inefficiencies of light-duty vehicles associated with different operation modes in US and Japanese urban and highway driving cycles, with the corresponding energy-saving potentials. The potential for fuel economy gains due to vehicle hybridization can be estimated almost exclusively on the basis of three elements: the reducibility of engine idling operation, the recoverability of braking energy losses, and the capability of improving engine load profiles to gain efficiency associated with specific HEV configurations and control strategies. Specifically, we evaluate the energy efficiencies and fuel economies of a baseline MY97 Corolla-like conventional vehicle (CV), a hypothetical Corolla-based minimal hybrid vehicle (MHV), and a MY98 Prius-like full hybrid vehicle (FHV). We then estimate energy benefits of both MHVs and FHVs over CVs on a performance-equivalent basis. We conclude that the energy benefits of hybridization vary not only with test cycles, but also with performance requirements. The hybrid benefits are greater for ''Corolla (high) performance-equivalent'' vehicles than for ''Prius (low) performance-equivalent'' vehicles. An increasing acceleration requirement would result in larger fuel economy benefits from vehicle hybridization.

An, F., Stodolsky, F.; Santini, D.

1999-07-19T23:59:59.000Z

20

Fuel Cell Technologies Office: DOE Light Duty Vehicle Workshop  

NLE Websites -- All DOE Office Websites (Extended Search)

Light Duty Vehicle Workshop Light Duty Vehicle Workshop On July 26, 2010, the U.S. Department of Energy (DOE) sponsored a Light Duty Vehicle Workshop in Washington, D.C. Presentations from this workshop appear below as Adobe Acrobat PDFs. Download Adobe Reader. Presentations Overview of Light-Duty Vehicle Studies (PDF 562 KB), Sam Baldwin, Chief Technology Officer, Office of Energy Efficiency and Renewable Energy (EERE), DOE Light Duty Vehicle Pathways (PDF 404 KB), Tien Nguyen, Fuel Cell Technologies Office, EERE, DOE Hydrogen Transition Study (PDF 2.6 MB), Paul N. Leiby, David Greene, Zhenhong Lin, David Bowman, and Sujit Das, Oak Ridge National Laboratory Alternative Transportation Technologies: Hydrogen, Biofuels, Advanced Efficiency, and Plug-in Hybrid Electric Vehicles (PDF 123 KB), Joan Ogden and Mike Ramage, National Research Council

Note: This page contains sample records for the topic "light-duty vehicles model" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

TTRDC - Light Duty E-Drive Vehicles Monthly Sales Updates  

NLE Websites -- All DOE Office Websites (Extended Search)

Light Duty Electric Drive Vehicles Monthly Sales Updates Currently available electric-drive vehicles (EDV) in the U.S market include hybrid electric vehicles (HEV), plug-in hybrid electric vehicles (PHEV), and all electric vehicles (AEV). Plug-in Vehicles (PEV) include both PHEV and AEV. HEVs debuted in the U.S. market in December 1999 with 17 sales of the first-generation Honda Insight, while the first PHEV (Chevrolet Volt) and AEV (Nissan Leaf) most recently debuted in December 2010. Electric drive vehicles are offered in several car and SUV models, and a few pickup and van models. Historical sales of HEV, PHEV, and AEV are compiled by Argonne's Center for Transportation Research and reported to the U.S. Department of Energy's Vehicle Technology Program Office each month. These sales are shown in Figures 1, 2 and 3. Figure 1 shows monthly new PHEV and AEV sales by model. Figure 2 shows yearly new HEV sales by model. Figure 3 shows electric drive vehicles sales share of total light-duty vehicle (LDV) sales since 1999. Figure 4 shows HEV and PEV sales change with gasoline price..

22

Fueling U.S. Light Duty Diesel Vehicles | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Fueling U.S. Light Duty Diesel Vehicles Fueling U.S. Light Duty Diesel Vehicles 2005 Diesel Engine Emissions Reduction (DEER) Conference Presentations and Posters...

23

Light Duty Fuel Cell Electric Vehicle Hydrogen Fueling Protocol  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

DOE Webinar Light Duty Fuel Cell Electric Vehicle Hydrogen Fueling Protocol U.S. DOE WEBINAR ON H2 FUELING PROTOCOLS: PARTICIPANTS Rob Burgess Moderator Jesse Schneider TIR J2601,...

24

WORKSHOP REPORT:Light-Duty Vehicles Technical Requirements and Gaps for Lightweight and Propulsion Materials  

Energy.gov (U.S. Department of Energy (DOE))

WORKSHOP REPORT:Light-Duty Vehicles Technical Requirements and Gaps for Lightweight and Propulsion Materials

25

Impact of Light-Duty Vehicle Emissions on 21st Century Carbon Dioxide Concentrations  

SciTech Connect

The impact of light-duty passenger vehicle emissions on global carbon dioxide concentrations was estimated using the MAGICC reduced-form climate model combined with the PNNL contribution to the CCSP scenarios product. Our central estimate is that tailpipe light duty vehicle emissions of carbon-dioxide over the 21st century will increase global carbon dioxide concentrations by slightly over 12 ppmv by 2100.

Smith, Steven J.; Kyle, G. Page

2007-08-04T23:59:59.000Z

26

Alternative Fuels Data Center: Light-Duty Vehicle Idle Reduction Strategies  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Light-Duty Vehicle Light-Duty Vehicle Idle Reduction Strategies to someone by E-mail Share Alternative Fuels Data Center: Light-Duty Vehicle Idle Reduction Strategies on Facebook Tweet about Alternative Fuels Data Center: Light-Duty Vehicle Idle Reduction Strategies on Twitter Bookmark Alternative Fuels Data Center: Light-Duty Vehicle Idle Reduction Strategies on Google Bookmark Alternative Fuels Data Center: Light-Duty Vehicle Idle Reduction Strategies on Delicious Rank Alternative Fuels Data Center: Light-Duty Vehicle Idle Reduction Strategies on Digg Find More places to share Alternative Fuels Data Center: Light-Duty Vehicle Idle Reduction Strategies on AddThis.com... More in this section... Idle Reduction Benefits & Considerations Heavy-Duty Vehicles Medium-Duty Vehicles

27

Alternative Fuels Data Center: Light-Duty Vehicle Data Collection Methods  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Data Collection Methods to someone by E-mail Data Collection Methods to someone by E-mail Share Alternative Fuels Data Center: Light-Duty Vehicle Data Collection Methods on Facebook Tweet about Alternative Fuels Data Center: Light-Duty Vehicle Data Collection Methods on Twitter Bookmark Alternative Fuels Data Center: Light-Duty Vehicle Data Collection Methods on Google Bookmark Alternative Fuels Data Center: Light-Duty Vehicle Data Collection Methods on Delicious Rank Alternative Fuels Data Center: Light-Duty Vehicle Data Collection Methods on Digg Find More places to share Alternative Fuels Data Center: Light-Duty Vehicle Data Collection Methods on AddThis.com... Light-Duty Vehicle Data Collection Methods To maintain the Light-Duty Vehicle Search tool, the National Renewable Energy Laboratory (NREL) gathers vehicle specifications, photos, and

28

Targets for Onboard Hydrogen Storage Systems for Light-Duty Vehicles...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Targets for Onboard Hydrogen Storage Systems for Light-Duty Vehicles Targets for Onboard Hydrogen Storage Systems for Light-Duty Vehicles This document describes the basis for the...

29

Outlook for Light-Duty-Vehicle Fuel Demand | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Outlook for Light-Duty-Vehicle Fuel Demand Outlook for Light-Duty-Vehicle Fuel Demand Gasoline and distillate demand impact of the Energy Independance and Security Act of 2007...

30

Low and high Temperature Dual Thermoelectric Generation Waste Heat Recovery System for Light-Duty Vehicles  

Energy.gov (U.S. Department of Energy (DOE))

Developing a low and high temperature dual thermoelectric generation waste heat recovery system for light-duty vehicles.

31

Myths Regarding Alternative Fuel Vehicle Demand by Light-Duty Vehicle Fleets  

E-Print Network (OSTI)

MythsRegarding Alternative Fuel Vehicte Demand Light-Dutyregulation Myths Regarding Alternative Fuel Vehicle DemandBy00006-6 MYTHS REGARDING ALTERNATIVE FUEL VEHICLE LIGHT-DUTY

Nesbitt, Kevin; Sperling, Daniel

1998-01-01T23:59:59.000Z

32

1 THE LIGHT-DUTY-VEHICLE FLEET'S EVOLUTION: 2 ANTICIPATING PHEV ADOPTION AND GREENHOUSE GAS  

E-Print Network (OSTI)

1 THE LIGHT-DUTY-VEHICLE FLEET'S EVOLUTION: 2 ANTICIPATING PHEV ADOPTION AND GREENHOUSE GAS 3 patterns ­ and associated petroleum use 33 and greenhouse gas (GHG) emissions ­ can change under different microsimulation, travel behavior modeling, greenhouse gas emissions60 INTRODUCTION AND MOTIVATION61 Per

Kockelman, Kara M.

33

DOE Targets for Onboard Hydrogen Storage Systems for Light-Duty Vehicles  

Energy.gov (U.S. Department of Energy (DOE))

This table lists the technical targets for onboard hydrogen storage for light-duty vehicles in the FCT Programs Multiyear Research, Development and Demonstration Plan.

34

Advanced Technologies for Light-Duty Vehicles (released in AEO2006)  

Reports and Publications (EIA)

A fundamental concern in projecting the future attributes of light-duty vehicles-passenger cars, sport utility vehicles, pickup trucks, and minivans-is how to represent technological change and the market forces that drive it. There is always considerable uncertainty about the evolution of existing technologies, what new technologies might emerge, and how consumer preferences might influence the direction of change. Most of the new and emerging technologies expected to affect the performance and fuel use of light-duty vehicles over the next 25 years are represented in the National Energy Modeling System (NEMS); however, the potential emergence of new, unforeseen technologies makes it impossible to address all the technology options that could come into play. The previous section of Issues in Focus discussed several potential technologies that currently are not represented in NEMS. This section discusses some of the key technologies represented in NEMS that are expected to be implemented in light-duty vehicles over the next 25 years.

2006-01-01T23:59:59.000Z

35

Non-Cost Barriers to Consumer Adoption of New Light-Duty Vehicle Technologies  

NLE Websites -- All DOE Office Websites (Extended Search)

LIGHT-DUTY VEHICLES LIGHT-DUTY VEHICLES Non-Cost Barriers to Consumer Adoption of New Light-Duty Vehicle Technologies TRANSPORTATION ENERGY FUTURES SERIES: Non-Cost Barriers to Consumer Adoption of New Light-Duty Vehicle Technologies A Study Sponsored by U.S. Department of Energy Office of Energy Efficiency and Renewable Energy March 2013 Prepared by ARGONNE NATIONAL LABORATORY Argonne, Illinois 60439 managed by U Chicago Argonne, LLC for the U.S. DEPARTMENT OF ENERGY under contract DE-AC02-06CH11357 This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, expressed or implied, or assumes any legal liability or

36

The Diesel Engine Powering Light-Duty Vehicles: Today and Tomorrow  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

diesel-powered light-duty vehicles 1990 1995 2000 2005 2010 2015 2020 2025 Energy Greenhouse effect CO 2 Exhaust gas emissions CO, NO x , HC, PM Importance Environmental driving...

37

Predicting Light-Duty Vehicle Fuel Economy as a Function of Highway Speed  

SciTech Connect

The www.fueleconomy.gov website offers information such as window label fuel economy for city, highway, and combined driving for all U.S.-legal light-duty vehicles from 1984 to the present. The site is jointly maintained by the U.S. Department of Energy and the U.S. Environmental Protection Agency (EPA), and also offers a considerable amount of consumer information and advice pertaining to vehicle fuel economy and energy related issues. Included with advice pertaining to driving styles and habits is information concerning the trend that as highway cruising speed is increased, fuel economy will degrade. An effort was undertaken to quantify this conventional wisdom through analysis of dynamometer testing results for 74 vehicles at steady state speeds from 50 to 80 mph. Using this experimental data, several simple models were developed to predict individual vehicle fuel economy and its rate of change over the 50-80 mph speed range interval. The models presented require a minimal number of vehicle attributes. The simplest model requires only the EPA window label highway mpg value (based on the EPA specified estimation method for 2008 and beyond). The most complex of these simple model uses vehicle coast-down test coefficients (from testing prescribed by SAE Standard J2263) known as the vehicle Target Coefficients, and the raw fuel economy result from the federal highway test. Statistical comparisons of these models and discussions of their expected usefulness and limitations are offered.

Thomas, John F [ORNL; Hwang, Ho-Ling [ORNL; West, Brian H [ORNL; Huff, Shean P [ORNL

2013-01-01T23:59:59.000Z

38

Retail Infrastructure Costs Comparison for Hydrogen and Electricity for Light-Duty Vehicles: Preprint  

SciTech Connect

Both hydrogen and plug-in electric vehicles offer significant social benefits to enhance energy security and reduce criteria and greenhouse gas emissions from the transportation sector. However, the rollout of electric vehicle supply equipment (EVSE) and hydrogen retail stations (HRS) requires substantial investments with high risks due to many uncertainties. We compare retail infrastructure costs on a common basis - cost per mile, assuming fueling service to 10% of all light-duty vehicles in a typical 1.5 million person city in 2025. Our analysis considers three HRS sizes, four distinct types of EVSE and two distinct EVSE scenarios. EVSE station costs, including equipment and installation, are assumed to be 15% less than today's costs. We find that levelized retail capital costs per mile are essentially indistinguishable given the uncertainty and variability around input assumptions. Total fuel costs per mile for battery electric vehicle (BEV) and plug-in hybrid vehicle (PHEV) are, respectively, 21% lower and 13% lower than that for hydrogen fuel cell electric vehicle (FCEV) under the home-dominant scenario. Including fuel economies and vehicle costs makes FCEVs and BEVs comparable in terms of costs per mile, and PHEVs are about 10% less than FCEVs and BEVs. To account for geographic variability in energy prices and hydrogen delivery costs, we use the Scenario Evaluation, Regionalization and Analysis (SERA) model and confirm the aforementioned estimate of cost per mile, nationally averaged, but see a 15% variability in regional costs of FCEVs and a 5% variability in regional costs for BEVs.

Melaina, M.; Sun, Y.; Bush, B.

2014-08-01T23:59:59.000Z

39

Future Potential of Hybrid and Diesel Powertrains in the U.S. Light-duty Vehicle Market  

SciTech Connect

Diesel and hybrid technologies each have the potential to increase light-duty vehicle fuel economy by a third or more without loss of performance, yet these technologies have typically been excluded from technical assessments of fuel economy potential on the grounds that hybrids are too expensive and diesels cannot meet Tier 2 emissions standards. Recently, hybrid costs have come down and the few hybrid makes available are selling well. Diesels have made great strides in reducing particulate and nitrogen oxide emissions, and are likely though not certain to meet future standards. In light of these developments, this study takes a detailed look at the market potential of these two powertrain technologies and their possible impacts on light-duty vehicle fuel economy. A nested multinomial logit model of vehicle choice was calibrated to 2002 model year sales of 930 makes, models and engine-transmission configurations. Based on an assessment of the status and outlook for the two technologies, market shares were predicted for 2008, 2012 and beyond, assuming no additional increase in fuel economy standards or other new policy initiatives. Current tax incentives for hybrids are assumed to be phased out by 2008. Given announced and likely introductions by 2008, hybrids could capture 4-7% and diesels 2-4% of the light-duty market. Based on our best guesses for further introductions, these shares could increase to 10-15% for hybrids and 4-7% for diesels by 2012. The resulting impacts on fleet average fuel economy would be about +2% in 2008 and +4% in 2012. If diesels and hybrids were widely available across vehicle classes, makes, and models, they could capture 40% or more of the light-duty vehicle market.

Greene, D.L.

2004-08-23T23:59:59.000Z

40

Light Duty Plug-in Hybrid Vehicle Systems Analysis  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Bennion, Aaron Brooker, Jeff Gonder, and Matt Thornton National Renewable Energy Laboratory 2009 DOE Vehicle Technologies Annual Merit Review May 19 th , 2009 Project ID:...

Note: This page contains sample records for the topic "light-duty vehicles model" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Assessment of Fuel Economy Technologies for Light-Duty Vehicles  

SciTech Connect

An analysis of the number of stations and vehicles necessary to achieve future goals for sales of ethanol fuel (E85) is presented. Issues related to the supply of ethanol, which may turn out to be of even greater concern, are not analyzed here. A model of consumers decisions to purchase E85 versus gasoline based on prices, availability, and refueling frequency is derived, and preliminary results for 2010, 2017, and 2030 consistent with the president s 2007 biofuels program goals are presented. A limited sensitivity analysis is carried out to indicate key uncertainties in the trade-off between the number of stations and fuels. The analysis indicates that to meet a 2017 goal of 26 billion gallons of E85 sold, on the order of 30% to 80% of all stations may need to offer E85 and that 125 to 200 million flexible-fuel vehicles (FFVs) may need to be on the road, even if oil prices remain high. These conclusions are tentative for three reasons: there is considerable uncertainty about key parameter values, such as the price elasticity of choice between E85 and gasoline; the future prices of E85 and gasoline are uncertain; and the method of analysis used is highly aggregated it does not consider the potential benefits of regional strategies or the possible existence of market segments predisposed to purchase E85. Nonetheless, the preliminary results indicate that the 2017 biofuels program goals are ambitious and will require a massive effort to produce enough FFVs and ensure widespread availability of E85.

Greene, David L [ORNL

2008-01-01T23:59:59.000Z

42

Alternative Fuels Data Center: Light-Duty Vehicle Search  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fuel Type Fuel Type All Bi-Fuel Natural Gas (16) Bi-Fuel Propane (12) Biodiesel (B20) (11) Electric (13) Flex Fuel (E85) (91) Hybrid Electric (36) Hydrogen (3) Methanol (0) Natural Gas (4) Plug-in Hybrid Electric (10) Propane (2) Manufacturer All Acura (2) Audi (6) BMW (6) Bentley Motors (4) Buick (2) Cadillac (4) Chevrolet (25) Chrysler (3) Coda Automotive (0) Dodge (7) Fiat (1) Fisker Automotive (0) Ford (48) GMC (19) General Motors EV (0) HUMMER (0) Honda (8) Hyundai (2) Infiniti (4) Jaguar (6) Jeep (1) Kia (2) Land Rover (4) Lexus (5) Lincoln (2) Mazda (0) Mazda (0) McLaren (1) Mercedes-Benz (8) Mercury (0) Mitsubishi (1) Nissan (4) Plymouth (0) Porsche (2) QUANTUM-PROCON (0) Ram (5) Saab (0) Saturn (0) Scion (1) Smart (1) Solectria (0) Subaru (1) Tesla (1) Tesla Motors (0) Toyota (10) Vehicle

43

Transportation Energy Futures Series: Potential for Energy Efficiency Improvement Beyond the Light-Duty-Vehicle Sector  

SciTech Connect

Considerable research has focused on energy efficiency and fuel substitution options for light-duty vehicles, while much less attention has been given to medium- and heavy-duty trucks, buses, aircraft, marine vessels, trains, pipeline, and off-road equipment. This report brings together the salient findings from an extensive review of literature on future energy efficiency options for these non-light-duty modes. Projected activity increases to 2050 are combined with forecasts of overall fuel efficiency improvement potential to estimate the future total petroleum and greenhouse gas (GHG) emissions relative to current levels. This is one of a series of reports produced as a result of the Transportation Energy Futures (TEF) project, a Department of Energy-sponsored multi-agency project initiated to pinpoint underexplored strategies for abating GHGs and reducing petroleum dependence related to transportation.

Vyas, A. D.; Patel, D. M.; Bertram, K. M.

2013-03-01T23:59:59.000Z

44

Light-Duty Lean GDI Vehicle Technology Benchmark | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Control for Lean Gasoline Engines Advanced PHEV Engine Systems and Emissions Control Modeling and Analysis Reductant Chemistry during LNT Regeneration for a Lean Gasoline Engine...

45

Organic Rankine Cycle for Light Duty Passenger Vehicles  

Energy.gov (U.S. Department of Energy (DOE))

Dynamic model of organic Rankine cycle with R245fa working fluid and conservative component efficiencies predict power generation in excess of electrical accessory load demand under highway drive cycle

46

Mobility chains analysis of technologies for passenger cars and light duty vehicles fueled with biofuels : application of the Greet model to project the role of biomass in America's energy future (RBAEF) project.  

SciTech Connect

The Role of Biomass in America's Energy Future (RBAEF) is a multi-institution, multiple-sponsor research project. The primary focus of the project is to analyze and assess the potential of transportation fuels derived from cellulosic biomass in the years 2015 to 2030. For this project, researchers at Dartmouth College and Princeton University designed and simulated an advanced fermentation process to produce fuel ethanol/protein, a thermochemical process to produce Fischer-Tropsch diesel (FTD) and dimethyl ether (DME), and a combined heat and power plant to co-produce steam and electricity using the ASPEN Plus{trademark} model. With support from the U.S. Department of Energy (DOE), Argonne National Laboratory (ANL) conducted, for the RBAEF project, a mobility chains or well-to-wheels (WTW) analysis using the Greenhouse gases, Regulated Emissions, and Energy use in Transportation (GREET) model developed at ANL. The mobility chains analysis was intended to estimate the energy consumption and emissions associated with the use of different production biofuels in light-duty vehicle technologies.

Wu, M.; Wu, Y.; Wang, M; Energy Systems

2008-01-31T23:59:59.000Z

47

Efficiency Improvement Opportunities for Light-Duty Natural-Gas-Fueled Vehicles  

SciTech Connect

The purpose of this report is to evaluate and make recommendations concerning technologies that promise to improve the efilciency of compressed natural gas (CNG) light-duty vehicles. Technical targets for CNG automotive technology given in the March 1998 OffIce of Advanced Automotive Technologies research and development plan were used as guidance for this effort. The technical target that necessitates this current study is to validate technologies that enable CNG light vehicles to have at least 10% greater - fuel economy (on a miles per gallon equivalent basis) than equivalent gasoline vehicles by 2006. Other tar- gets important to natural gas (NG) automotive technology and this study are to: (1) increase CNG vehicle range to 380 miles, (2) reduce the incremental vehicle cost (CNG vs gasoline) to $1500, and (3) meet the California ultra low-emission vehicle (ULEV) and Federal Tier 2 emission standards expected to be in effect in 2004.

Staunton, R.H.; Thomas, J.F.

1998-12-01T23:59:59.000Z

48

Speed-and Facility-Specific Emission Estimates for On-Road Light-Duty Vehicles based on Real-World Speed Profiles  

E-Print Network (OSTI)

06-1096 Speed- and Facility-Specific Emission Estimates for On-Road Light-Duty Vehicles based on Real-World Speed Profiles By H. Christopher Frey, Ph.D. Professor Department of Civil, Construction demand and land use models such as TransCAD, TranPlan or TRANUS produce average link speed and link VMT

Frey, H. Christopher

49

Fleet assessment for opportunities to effectively deploy light duty alternative fuel vehicles  

SciTech Connect

The City of Detroit conducted an initial program to assess the potential for substitution of vehicles currently in operation with alternative fuel vehicles. A key task involved the development of an operating profile of the participant light truck and van fleets involved in the study. To do this a survey of operators of light duty trucks and vans within the project participant fleets was conducted. These survey results were analyzed to define the potential for substitution of conventional vehicles with alternate fuel vehicles with alternate fuel vehicles and to identify candidates for participation in the Mini-Demonstration portion of the project. The test program involved the deployment of an electric van (two GM Griffon Electric Vans provided by Detroit Edison) at seven Mini-Demonstration sites for a period of four weeks each for test and evaluation. The Technical Work Group then analyzed vehicle performance data and used a questionnaire to obtain impressions and attitudes of the users toward the acceptability of the electric van. The Technical Work Group (TWG) and Management Assessment Group (MAG) then prepared recommendations and an implementation plan to develop further information aimed toward eventual expanded deployment of alternative fuel vehicles within project participant light duty fleets. The MAG concluded that the study had been beneficial in collecting and developing important quantitative information, introducing a set of public fleet managers to alternative fuel vehicle opportunities and features, and had provided specific experience with the Griffon van which provided some indications of requirements in such vehicles if they are to be a normal part of public fleet operations. These included the need for some increase of the mileage range of the Griffon, an improvement in the ride and handling of the Griffon, and several minor'' difficulties experienced with malfunctioning or inconvenient characteristics of the Griffon equipment. 25 figs., 1 tab.

Not Available

1990-05-01T23:59:59.000Z

50

Light-Duty Diesel Vehicles: Market Issues and Potential Energy and Emissions Impacts  

Gasoline and Diesel Fuel Update (EIA)

2 2 Light-Duty Diesel Vehicles: Market Issues and Potential Energy and Emissions Impacts January 2009 Energy Information Administration Office of Integrated Analysis and Forecasting U.S. Department of Energy Washington, DC 20585 This report was prepared by the Energy Information Administration, the independent statistical and analytical agency within the Department of Energy. Unless referenced otherwise, the information contained herein should be attributed to the Energy Information Administration and should not be construed as advocating or reflecting any policy position of the Department of Energy or any other organization. Service Reports are prepared by the Energy Information Administration upon special request and are based on assumptions specified by the requester.

51

Effect of Gasoline Properties on Exhaust Emissions from Tier 2 Light-Duty Vehicles -- Final Report: Phase 3; July 28, 2008 - July 27, 2013  

SciTech Connect

This report covers work the Southwest Research Institute (SwRI) Office of Automotive Engineering has conducted for the U.S. Environmental Protection Agency (EPA), the National Renewable Energy Laboratory (NREL), and the Coordinating Research Council (CRC) in support of the Energy Policy Act of 2005 (EPAct). Section 1506 of EPAct requires EPA to produce an updated fuel effects model representing the 2007 light - duty gasoline fleet, including determination of the emissions impacts of increased renewable fuel use. This report covers the exhaust emissions testing of 15 light-duty vehicles with 27 E0 through E20 test fuels, and 4 light-duty flexible fuel vehicles (FFVs) on an E85 fuel, as part of the EPAct Gasoline Light-Duty Exhaust Fuel Effects Test Program. This program will also be referred to as the EPAct/V2/E-89 Program based on the designations used for it by the EPA, NREL, and CRC, respectively. It is expected that this report will be an attachment or a chapter in the overall EPAct/V2/E-89 Program report prepared by EPA and NREL.

Whitney, K.

2014-05-01T23:59:59.000Z

52

Microsoft Word - EXT-12-27320_Idle-Stop_Light_Duty_Passenger_Vehicles.docx  

NLE Websites -- All DOE Office Websites (Extended Search)

7320 7320 Quantifying the Effects of Idle-Stop Systems on Fuel Economy in Light- Duty Passenger Vehicles Jeffrey Wishart Matthew Shirk Contract No. DE-FC26-05NT42486 December 2012 DISCLAIMER This information was prepared as an account of work sponsored by an agency of the U.S. Government. Neither the U.S. Government nor any agency thereof, nor any of their employees, makes any warranty, expressed or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness, of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. References herein to any specific commercial product, process, or service by trade name, trade mark, manufacturer, or otherwise,

53

The Diesel Engine Powering Light-Duty Vehicles: Today and Tomorrow...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Engine Emissions Reduction (DEER) Conference Presentation: Volkwagen AG, Wolfsburg, Germany 2004deerschindler.pdf More Documents & Publications Accelerating Light-Duty Diesel...

54

Comparative urban drive cycle simulations of light-duty hybrid vehicles with gasoline or diesel engines and emissions controls  

SciTech Connect

Electric hybridization is a very effective approach for reducing fuel consumption in light-duty vehicles. Lean combustion engines (including diesels) have also been shown to be significantly more fuel efficient than stoichiometric gasoline engines. Ideally, the combination of these two technologies would result in even more fuel efficient vehicles. However, one major barrier to achieving this goal is the implementation of lean-exhaust aftertreatment that can meet increasingly stringent emissions regulations without heavily penalizing fuel efficiency. We summarize results from comparative simulations of hybrid electric vehicles with either stoichiometric gasoline or diesel engines that include state-of-the-art aftertreatment emissions controls for both stoichiometric and lean exhaust. Fuel consumption and emissions for comparable gasoline and diesel light-duty hybrid electric vehicles were compared over a standard urban drive cycle and potential benefits for utilizing diesel hybrids were identified. Technical barriers and opportunities for improving the efficiency of diesel hybrids were identified.

Gao, Zhiming [ORNL] [ORNL; Daw, C Stuart [ORNL] [ORNL; Smith, David E [ORNL] [ORNL

2013-01-01T23:59:59.000Z

55

Present Status and Marketing Prospects of the Emerging Hybrid-Electric and Diesel Technologies to Reduce CO2 Emissions of New Light-Duty Vehicles in California  

E-Print Network (OSTI)

The subject of future markets for diesel powered and hybrid-as the European market for diesel-powered vehicles grows.of a large market for light duty diesel vehicles. Figure 2

Burke, Andy

2004-01-01T23:59:59.000Z

56

Transient in cab noise investigation on a light duty diesel passenger vehicle.  

Science Journals Connector (OSTI)

A diesel engine in cab sound quality for passenger car market is scrutinized more closely than in the mid? to heavy duty diesel truck applications. This is obviously due to the increasing expectations from the customers for gasolinelike sound quality. This paper deals with a sound quality issue recently investigated on a light duty diesel engine for a passenger van application. The objectionable noise complaint occurred during the vehicle transient operating conditions and was found to be caused by the change in the pilot quantity over a very short period of time. The root cause of the noise complaint was investigated on the noise complaint vehicle as well as simultaneously on a standalone engine in the noise test cell. Several critical combustion and performance parameters were recorded for diagnosing the issue. In addition various standard sound quality metrics were employed to differentiate the sound quality of the objectionable noise. The issue was resolved and verified by making appropriate changes to the engine calibration without affecting key requirements such as emissions and fuel economy. Finally the findings from the experimental tests are summarized and appropriate conclusions are drawn with respect to understanding characterizing and resolving this transient combustion related impulsive powertrain interior noise issue.

Dhanesh Purekar

2010-01-01T23:59:59.000Z

57

Myths Regarding Alternative Fuel Vehicle Demand by Light-Duty Vehicle Fleets  

E-Print Network (OSTI)

eet demand for alternative-fuel vehicles in California.Britain MYTHS REGARDING ALTERNATIVE FUEL VEHICLE DEMAND BYinitial market for alternative fuel vehicles (AFVs). We

Nesbitt, Kevin; Sperling, Daniel

1998-01-01T23:59:59.000Z

58

A techno-economic analysis and optimization of Li-ion batteries for light-duty passenger vehicle electrification  

E-Print Network (OSTI)

A techno-economic analysis and optimization of Li-ion batteries for light-duty passenger vehicle 15213, USA h i g h l i g h t s We analyze EV Li-ion NMC-G battery & pack designs and optimize thickness a b s t r a c t We conduct a techno-economic analysis of Li-ion NMC-G prismatic pouch battery

McGaughey, Alan

59

Putting policy in drive : coordinating measures to reduce fuel use and greenhouse gas emissions from U.S. light-duty vehicles  

E-Print Network (OSTI)

The challenges of energy security and climate change have prompted efforts to reduce fuel use and greenhouse gas emissions in light-duty vehicles within the United States. Failures in the market for lower rates of fuel ...

Evans, Christopher W. (Christopher William)

2008-01-01T23:59:59.000Z

60

Light-Duty Diesel Combustion | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Light-Duty Diesel Combustion Light-Duty Diesel Combustion 2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting...

Note: This page contains sample records for the topic "light-duty vehicles model" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Light Duty Efficient Clean Combustion | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Light Duty Efficient Clean Combustion Light Duty Efficient Clean Combustion 2009 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation...

62

Membrane-Based Air Composition Control for Light-Duty Diesel Vehicles: A Benefit and Cost Assessment  

SciTech Connect

This report presents the methodologies and results of a study conducted by Argonne National Laboratory (Argonne) to assess the benefits and costs of several membrane-based technologies. The technologies evaluated will be used in automotive emissions-control and performance-enhancement systems incorporated into light-duty diesel vehicle engines. Such engines are among the technologies that are being considered to power vehicles developed under the government-industry Partnership for a New Generation of Vehicles (PNGV). Emissions of nitrogen oxides (NO{sub x}) from diesel engines have long been considered a barrier to use of diesels in urban areas. Recently, particulate matter (PM) emissions have also become an area of increased concern because of new regulations regarding emissions of particulate matter measuring 2.5 micrometers or less (PM{sub 2.5}). Particulates are of special concern for diesel engines in the PNGV program; the program has a research goal of 0.01 gram per mile (g/mi) of particulate matter emissions under the Federal Test Procedure (FTP) cycle. This extremely low level (one-fourth the level of the Tier II standard) could threaten the viability of using diesel engines as stand-alone powerplants or in hybrid-electric vehicles. The techniques analyzed in this study can reduce NO{sub x} and particulate emissions and even increase the power density of the diesel engines used in light-duty diesel vehicles.

K. Stork; R. Poola

1998-10-01T23:59:59.000Z

63

Effect of Intake Air Filter Condition on Light-Duty Gasoline Vehicles  

SciTech Connect

Proper maintenance can help vehicles perform as designed, positively affecting fuel economy, emissions, and the overall drivability. This effort investigates the effect of one maintenance factor, intake air filter replacement, with primary focus on vehicle fuel economy, but also examining emissions and performance. Older studies, dealing with carbureted gasoline vehicles, have indicated that replacing a clogged or dirty air filter can improve vehicle fuel economy and conversely that a dirty air filter can be significantly detrimental to fuel economy. The effect of clogged air filters on the fuel economy, acceleration and emissions of five gasoline fueled vehicles is examined. Four of these were modern vehicles, featuring closed-loop control and ranging in model year from 2003 to 2007. Three vehicles were powered by naturally aspirated, port fuel injection (PFI) engines of differing size and cylinder configuration: an inline 4, a V6 and a V8. A turbocharged inline 4-cylinder gasoline direct injection (GDI) engine powered vehicle was the fourth modern gasoline vehicle tested. A vintage 1972 vehicle equipped with a carburetor (open-loop control) was also examined. Results reveal insignificant fuel economy and emissions sensitivity of modern vehicles to air filter condition, but measureable effects on the 1972 vehicle. All vehicles experienced a measured acceleration performance penalty with clogged intake air filters.

Thomas, John F [ORNL] [ORNL; Huff, Shean P [ORNL] [ORNL; West, Brian H [ORNL] [ORNL; Norman, Kevin M [ORNL] [ORNL

2012-01-01T23:59:59.000Z

64

Cost of Ownership and Well-to-Wheels Carbon Emissions/Oil Use of Alternative Fuels and Advanced Light-Duty Vehicle Technologies  

SciTech Connect

The U.S. Department of Energy (DOE), Argonne National Laboratory (Argonne), and the National Renewable Energy Laboratory (NREL) updated their analysis of the well-to-wheels (WTW) greenhouse gases (GHG) emissions, petroleum use, and the cost of ownership (excluding insurance, maintenance, and miscellaneous fees) of vehicle technologies that have the potential to significantly reduce GHG emissions and petroleum consumption. The analyses focused on advanced light-duty vehicle (LDV) technologies such as plug-in hybrid, battery electric, and fuel cell electric vehicles. Besides gasoline and diesel, alternative fuels considered include natural gas, advanced biofuels, electricity, and hydrogen. The Argonne Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation (GREET) and Autonomie models were used along with the Argonne and NREL H2A models.

Elgowainy, Mr. Amgad [Argonne National Laboratory (ANL); Rousseau, Mr. Aymeric [Argonne National Laboratory (ANL); Wang, Mr. Michael [Argonne National Laboratory (ANL); Ruth, Mr. Mark [National Renewable Energy Laboratory (NREL); Andress, Mr. David [David Andress & Associates, Inc.; Ward, Jacob [U.S. Department of Energy; Joseck, Fred [U.S. Department of Energy; Nguyen, Tien [U.S. Department of Energy; Das, Sujit [ORNL

2013-01-01T23:59:59.000Z

65

Light Duty Combustion Research: Advanced Light-Duty Combustion...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Light Duty Combustion Research: Advanced Light-Duty Combustion Experiments Light Duty Combustion Research: Advanced Light-Duty Combustion Experiments 2009 DOE Hydrogen Program and...

66

Rebound 2007: Analysis of U.S. Light-Duty Vehicle Travel Statistics  

SciTech Connect

U.S. national time series data on vehicle travel by passenger cars and light trucks covering the period 1966 2007 are used to test for the existence, size and stability of the rebound effect for motor vehicle fuel efficiency on vehicle travel. The data show a statistically significant effect of gasoline price on vehicle travel but do not support the existence of a direct impact of fuel efficiency on vehicle travel. Additional tests indicate that fuel price effects have not been constant over time, although the hypothesis of symmetry with respect to price increases and decreases is not rejected. Small and Van Dender (2007) model of a declining rebound effect with income is tested and similar results are obtained.

Greene, David L [ORNL

2010-01-01T23:59:59.000Z

67

On-vehicle emission measurement of a light-duty diesel van at various speeds at high altitude  

Science Journals Connector (OSTI)

Abstract As part of the research on the relationship between the speed of a vehicle operating at high altitude and its contaminant emissions, an on-vehicle emission measurement of a light-duty diesel van at the altitudes of 1000m, 2400m and 3200m was conducted. The test vehicle was a 2.8L turbocharged diesel Ford Transit. Its settings were consistent in all experiments. Regulated gaseous emissions, including CO, HC and NOx, together with particulate matter was measured at nine speeds ranged from 10kmh?1 to 90kmh?1 with 10kmh?1 intervals settings. At each speed, measurement lasted for at least 120s to ensure the sufficiency and reliability of the collected data. The results demonstrated that at all altitudes, CO and HC emissions decreased as the vehicle speed increased. However both \\{NOx\\} and PM increased with vehicle speed. In terms of the effects of altitude, an increase in CO, HC and PM was observed with the rising of altitude at each vehicle speed. \\{NOx\\} behaved different: emission of \\{NOx\\} initially increased as the vehicle was raised from 1000m to 2400m, but it decreased when the vehicle was further elevated to 3200m.

Xin Wang; Hang Yin; Yunshan Ge; Linxiao Yu; Zhenxian Xu; Chenglei Yu; Xuejiao Shi; Hongkun Liu

2013-01-01T23:59:59.000Z

68

Size-resolved engine exhaust aerosol characteristics in a metal foam particulate filter for GDI light-duty vehicle  

Science Journals Connector (OSTI)

The particulate emissions generated from a side-mounted 2.4L gasoline direct injection (GDI) engine were evaluated using a metal foam-type gasoline particulate filter (GPF), placed on the downstream of a three-way catalyst. An ULEV legislation-compliant light-duty vehicle was tested under the new European driving cycle (NEDC) and at constant-speed driving conditions. Particle number (PN) concentrations, particulate size distribution and the filtration efficiency of the GPF were evaluated with the condensation particle counter (CPC) and the differential mobility spectrometer (DMS). The PN emissions for the entire NEDC were 1.17E+12N/km for the base GDI vehicle and 4.99E+11N/km for the GPF-equipped GDI vehicle, and the filtration efficiency of the GPF was 57%. In particular, the number of sub-23nm particles formed in the GDI vehicle was substantially reduced, with 97% efficiency. The pressure drop in the metal foam-type GPF was constrained to be below 1.0kPa at a 120km/h vehicle speed, and as a result, the fuel economy and the CO2 emission for the GPF-applied vehicle were equivalent to those for the base vehicle.

Kwanhee Choi; Juwon Kim; Ahyun Ko; Cha-Lee Myung; Simsoo Park; Jeongmin Lee

2013-01-01T23:59:59.000Z

69

DOE Issues Request for Information on Fuel Cells for Continuous On-Board Recharging for Battery Electric Light-Duty Vehicles  

Energy.gov (U.S. Department of Energy (DOE))

The USDOE's Fuel Cell Technologies Office has issued an RFI seeking feedback from the research community and relevant stakeholders about fuel cell technology validation, commercial acceleration, and potential deployment strategies for continuous fuel cell rechargers on board light-duty electric vehicle fleets.

70

Impact of Canada's Voluntary Agreement on Greenhouse Gas Emissions from Light Duty Vehicles  

E-Print Network (OSTI)

Vehicle Fuel Economy and GHG Emission Standards Around theVehicle Industry to Reduce GHG Emissions in Canada Part of2 (After Various Areas of GHG Actual Ethanol Mobile Light

Lutsey, Nicholas P.

2006-01-01T23:59:59.000Z

71

Impact of Canadas Voluntary Agreement on Greenhouse Gas Emissions from Light Duty Vehicles  

E-Print Network (OSTI)

Vehicle Fuel Economy and GHG Emission Standards Around theVehicle Industry to Reduce GHG Emissions in Canada Part of2 (After Various Areas of GHG Actual Ethanol Mobile Light

Lutsey, Nicholas P.

2006-01-01T23:59:59.000Z

72

Advanced Combustion Concepts- Enabling Systems and Solutions (ACCESS) for High Efficiency Light Duty Vehicles  

Energy.gov (U.S. Department of Energy (DOE))

2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation

73

Advanced Combustion Concepts- Enabling Systems and Solutions (ACCESS) for High Efficiency Light Duty Vehicles  

Energy.gov (U.S. Department of Energy (DOE))

2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

74

Advanced Combustion Concepts- Enabling Systems and Solutions (ACCESS) for High Efficiency Light Duty Vehicles  

Energy.gov (U.S. Department of Energy (DOE))

2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

75

Vehicle Technologies Office Merit Review 2014: Light-Duty Diesel Combuston  

Energy.gov (U.S. Department of Energy (DOE))

Presentation given by Sandia Natonal Laboratories and University of Wisconsin at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation...

76

Program Record 13006 (Offices of Vehicle Technologies and Fuel Cell Technologies: Life-Cycle Costs of Mid-Size Light-Duty Vehicles  

NLE Websites -- All DOE Office Websites (Extended Search)

Program Record (Offices of Vehicle Technologies & Fuel Cell Program Record (Offices of Vehicle Technologies & Fuel Cell Technologies) Record #: 13006 Date: April 24, 2013 Title: Life-cycle Costs of Mid-Size Light-Duty Vehicles Originator: Tien Nguyen & Jake Ward Approved by: Sunita Satyapal Pat Davis Date: April 25, 2013 Items: DOE is pursuing a portfolio of technologies with the potential to significantly reduce greenhouse gases (GHG) emissions and petroleum consumption while being cost-effective. This record documents the assumptions and results of analyses conducted to estimate the life-cycle costs resulting from several fuel/vehicle pathways, for a future mid-size car. The results are summarized graphically in the following figure. Costs of Operation for Future Mid-Size Car

77

Light-Duty Advanced Diesel Combustion Research | Department of...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Light-Duty Advanced Diesel Combustion Research Light-Duty Advanced Diesel Combustion Research Presentation from the U.S. DOE Office of Vehicle Technologies "Mega" Merit Review 2008...

78

Global Assessment of Hydrogen Technologies - Task 1 Report Technology Evaluation of Hydrogen Light Duty Vehicles  

SciTech Connect

This task analyzes the candidate hydrogen-fueled vehicles for near-term use in the Southeastern U.S. The purpose of this work is to assess their potential in terms of efficiency and performance. This report compares conventional, hybrid electric vehicles (HEV) with gasoline and hydrogen-fueled internal combustion engines (ICEs) as well as fuel cell and fuel cell hybrids from a technology as well as fuel economy point of view. All the vehicles have been simulated using the Powertrain System Analysis Toolkit (PSAT). First, some background information is provided on recent American automotive market trends and consequences. Moreover, available options are presented for introducing cleaner and more economical vehicles in the market in the future. In this study, analysis of various candidate hydrogen-fueled vehicles is performed using PSAT and, thus, a brief description of PSAT features and capabilities are provided. Detailed information on the simulation analysis performed is also offered, including methodology assumptions, fuel economic results, and conclusions from the findings.

Fouad, Fouad H.; Peters, Robert W.; Sisiopiku, Virginia P.; Sullivan Andrew J.; Rousseau, Aymeric

2007-12-01T23:59:59.000Z

79

Carbon Emission Targets for Driving Sustainable Mobility with US Light-Duty Vehicles  

Science Journals Connector (OSTI)

The Intergovernmental Panel on Climate Change (IPCC) and many independent scientists warn that if global mean temperatures rise 1?5 C from 1990 levels due to anthropogenic greenhouse gas emissions, risks of extreme climate events and widespread regional ecological and economic impacts will significantly increase (11, 12). ... PHEVs can displace on-road gasoline-powered vehicles and help to meet the defined targets if the average carbon intensity of the remaining conventional and PHEV vehicle mix is less than the LDV g/mile target. ... Keoleian, G. A.; Kar, K.; Manion, M.; Bulkley, J. W. Industrial Ecology of the Automobile: A Life Cycle Assessment; Society of Automotive Engineers: Warrendale, PA, 1997. ...

Hilary G. Grimes-Casey; Gregory A. Keoleian; Blair Willcox

2008-12-31T23:59:59.000Z

80

Effect of E85 on Tailpipe Emissions from Light-Duty Vehicles  

SciTech Connect

E85, which consists of nominally 85% fuel grade ethanol and 15% gasoline, must be used in flexible-fuel (or 'flexfuel') vehicles (FFVs) that can operate on fuel with an ethanol content of 0-85%. Published studies include measurements of the effect of E85 on tailpipe emissions for Tier 1 and older vehicles. Car manufacturers have also supplied a large body of FFV certification data to the U.S. Environmental Protection Agency, primarily on Tier 2 vehicles. These studies and certification data reveal wide variability in the effects of E85 on emissions from different vehicles. Comparing Tier 1 FFVs running on E85 to similar non-FFVs running on gasoline showed, on average, significant reductions in emissions of oxides of nitrogen (NOx; 54%), non-methane hydrocarbons (NMHCs; 27%), and carbon monoxide (CO; 18%) for E85. Comparing Tier 2 FFVs running on E85 and comparable non-FFVs running on gasoline shows, for E85 on average, a significant reduction in emissions of CO (20%), and no significant effect on emissions of non-methane organic gases (NMOGs). NOx emissions from Tier 2 FFVs averaged approximately 28% less than comparable non-FFVs. However, perhaps because of the wide range of Tier 2 NOx standards, the absolute difference in NOx emissions between Tier 2 FFVs and non-FFVs is not significant (P 0.28). It is interesting that Tier 2 FFVs operating on gasoline produced approximately 13% less NMOGs than non-FFVs operating on gasoline. The data for Tier 1 vehicles show that E85 will cause significant reductions in emissions of benzene and butadiene, and significant increases in emissions of formaldehyde and acetaldehyde, in comparison to emissions from gasoline in both FFVs and non-FFVs. The compound that makes up the largest proportion of organic emissions from E85-fueled FFVs is ethanol.

Yanowitz, J.; McCormick, R. L.

2009-02-01T23:59:59.000Z

Note: This page contains sample records for the topic "light-duty vehicles model" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Ethanol or Bioelectricity? Life Cycle Assessment of Lignocellulosic Bioenergy Use in Light-Duty Vehicles  

Science Journals Connector (OSTI)

The remaining unfermented material, which includes lignin, is combusted to generate process heat and electricity. ... Delivered feedstock is combusted within a biomass boiler, generating steam to drive a steam turbine electrical generator, and flue gas to dry delivered feedstock. ... Fossil energy use in the bioenergy pathways is associated primarily with three aspects of the life cycle: (i) in the vehicle cycle (production/disposal) stage, coal and natural gas are used extensively. ...

Jason M. Luk; Mohammad Pourbafrani; Bradley A. Saville; Heather L. MacLean

2013-09-09T23:59:59.000Z

82

Determination of Single Particle Mass Spectral Signatures from Light-Duty Vehicle Emissions  

Science Journals Connector (OSTI)

Significant variability was observed in the chemical composition of particles emitted within the different car categories as well as for the same car operating under different driving conditions. ... This increase was also seen for the six TWC passenger cars, which were tested on the FTP and UC cycles (Supplemental Information, Figure S4). ... Given that the majority of those high-emitting vehicles had defective emission control systems (99), it is also likely that they emitted high levels of PM as well. ...

David A. Sodeman; Stephen M. Toner; Kimberly A. Prather

2005-05-12T23:59:59.000Z

83

Drive cycle analysis of butanol/diesel blends in a light-duty vehicle.  

SciTech Connect

The potential exists to displace a portion of the petroleum diesel demand with butanol and positively impact engine-out particulate matter. As a preliminary investigation, 20% and 40% by volume blends of butanol with ultra low sulfur diesel fuel were operated in a 1999 Mercedes Benz C220 turbo diesel vehicle (Euro III compliant). Cold and hot start urban as well as highway drive cycle tests were performed for the two blends of butanol and compared to diesel fuel. In addition, 35 MPH and 55 MPH steady-state tests were conducted under varying road loads for the two fuel blends. Exhaust gas emissions, fuel consumption, and intake and exhaust temperatures were acquired for each test condition. Filter smoke numbers were also acquired during the steady-state tests.

Miers, S. A.; Carlson, R. W.; McConnell, S. S.; Ng, H. K.; Wallner, T.; LeFeber, J.; Energy Systems; Esper Images Video & Multimedia

2008-10-01T23:59:59.000Z

84

On-road emission factors of PM pollutants for light-duty vehicles (LDVs) based on urban street driving conditions  

Science Journals Connector (OSTI)

An on-road sampling campaign was conducted on two major surface streets (Wilshire and Sunset Boulevards) in Los Angeles, CA, to characterize PM components including metals, trace elements, and organic species for three PM size fractions (PM102.5, PM2.50.25, and PM0.25). Fuel-based emission factors (mass of pollutant per kg of fuel) were calculated to assess the emissions profile of a light-duty vehicle (LDV) traffic fleet characterized by stop-and-go driving conditions that are reflective of urban street driving. Emission factors for metals and trace elements were highest in PM102.5 while emission factors for \\{PAHs\\} and hopanes and steranes were highest in PM0.25. PM2.5 emission factors were also compared to previous freeway, roadway tunnel, and dynamometer studies based on an LDV fleet to determine how various environments and driving conditions may influence concentrations of PM components. The on-road sampling methodology deployed in the current study captured substantially higher levels of metals and trace elements associated with vehicular abrasion (Fe, Ca, Cu, and Ba) and crustal origins (Mg and Al) than previous LDV studies. The semi-volatile nature of \\{PAHs\\} resulted in higher levels of \\{PAHs\\} in the particulate phase for LDV tunnel studies (Phuleria etal., 2006) and lower levels of \\{PAHs\\} in the particulate phase for freeway studies (Ning etal., 2008). With the exception of a few high molecular weight PAHs, the current study's emission factors were in between the LDV tunnel and LDV freeway studies. In contrast, hopane and sterane emission factors were generally comparable between the current study, the LDV tunnel, and LDV freeway, as expected given the greater atmospheric stability of these organic compounds. Overall, the emission factors from the dynamometer studies for metals, trace elements, and organic species are lower than the current study. Lastly, n-alkanes (C19C40) were quantified and alkane carbon preference indices (CPIs) were determined to be in the range of 12, indicating substantial anthropogenic source contribution for surface streets in Los Angeles.

Winnie Kam; James W. Liacos; James J. Schauer; Ralph J. Delfino; Constantinos Sioutas

2012-01-01T23:59:59.000Z

85

Vehicle Technologies Office Merit Review 2014: Advanced Combustion Concepts- Enabling Systems and Solutions (ACCESS) for High Efficiency Light Duty Vehicles  

Energy.gov (U.S. Department of Energy (DOE))

Presentation given by Robert Bosch at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about advanced combustion concepts -...

86

Effect of Gasoline Properties on Exhaust Emissions from Tier 2 Light-Duty Vehicles -- Final Report: Phases 4, 5, & 6; July 28, 2008 - July 27, 2013  

SciTech Connect

This report covers work the Southwest Research Institute (SwRI) Office of Automotive Engineering has conducted for the National Renewable Energy Laboratory (NREL) in support of the Energy Policy Act of 2005 (EPAct). Section 1506 of EPAct requires the EPA to produce an updated fuel effects model representing the 2007 light-duty gasoline fleet, including determination of the emissions impacts of increased renewable fuel use.

Whitney, K.; Shoffner, B.

2014-06-01T23:59:59.000Z

87

Economic Comparison of LNT Versus Urea SCR for Light-Duty Diesel...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Comparison of LNT Versus Urea SCR for Light-Duty Diesel Vehicles in the U.S. Market Economic Comparison of LNT Versus Urea SCR for Light-Duty Diesel Vehicles in the U.S. Market...

88

DOE Targets for Onboard Hydrogen Storage Systems for Light-Duty...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Targets for Onboard Hydrogen Storage Systems for Light-Duty Vehicles DOE Targets for Onboard Hydrogen Storage Systems for Light-Duty Vehicles This table lists the technical targets...

89

Real-world fuel consumption and CO2 (carbon dioxide) emissions by driving conditions for light-duty passenger vehicles in China  

Science Journals Connector (OSTI)

Abstract The increasing discrepancy between on-road and type-approval fuel consumption for \\{LDPVs\\} (light-duty passenger vehicles) has attracted tremendous attention. We measured on-road emissions for 60 \\{LDPVs\\} in three China's cities and calculated their fuel consumption and CO2 (carbon dioxide) emissions. We further evaluated the impacts of variations in area-averaged speed on relative fuel consumption of gasoline \\{LDPVs\\} for the UAB (urban area of Beijing). On-road fuel consumption under the average driving pattern is 102% higher than that normalized to the NEDC (new European driving cycle) cycle for all tested vehicles, and the on-road NEDC-normalized fuel consumption is higher by 3012% compared to type-approval values for gasoline vehicles. We observed very strong correlations between relative fuel consumption and average speed. Traffic control applied to \\{LDPVs\\} driving within the UAB during weekdays can substantially reduce total fleet fuel consumption by 235% during restriction hours by limiting vehicle use and improving driving conditions. Our results confirmed that a new cycle for the type approval test for \\{LDPVs\\} with more real-world driving features is of great necessity. Furthermore, enhanced traffic control measures could play an important role in mitigating real-world fuel consumption and CO2 emissions for \\{LDPVs\\} in China.

Shaojun Zhang; Ye Wu; Huan Liu; Ruikun Huang; Puikei Un; Yu Zhou; Lixin Fu; Jiming Hao

2014-01-01T23:59:59.000Z

90

High-Efficiency Clean Combustion in Light-Duty Multi-Cylinder...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

High-Efficiency Clean Combustion in Light-Duty Multi-Cylinder Diesel Engines High-Efficiency Clean Combustion in Light-Duty Multi-Cylinder Diesel Engines 2010 DOE Vehicle...

91

Alternative Fuels Data Center: Plug-In Hybrid and Zero Emission Light-Duty  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Plug-In Hybrid and Plug-In Hybrid and Zero Emission Light-Duty Vehicle Rebates to someone by E-mail Share Alternative Fuels Data Center: Plug-In Hybrid and Zero Emission Light-Duty Vehicle Rebates on Facebook Tweet about Alternative Fuels Data Center: Plug-In Hybrid and Zero Emission Light-Duty Vehicle Rebates on Twitter Bookmark Alternative Fuels Data Center: Plug-In Hybrid and Zero Emission Light-Duty Vehicle Rebates on Google Bookmark Alternative Fuels Data Center: Plug-In Hybrid and Zero Emission Light-Duty Vehicle Rebates on Delicious Rank Alternative Fuels Data Center: Plug-In Hybrid and Zero Emission Light-Duty Vehicle Rebates on Digg Find More places to share Alternative Fuels Data Center: Plug-In Hybrid and Zero Emission Light-Duty Vehicle Rebates on AddThis.com...

92

Transportation Energy Futures Series: Non-Cost Barriers to Consumer Adoption of New Light-Duty Vehicle Technologies  

SciTech Connect

Consumer preferences are key to the adoption of new vehicle technologies. Barriers to consumer adoption include price and other obstacles, such as limited driving range and charging infrastructure; unfamiliarity with the technology and uncertainty about direct benefits; limited makes and models with the technology; reputation or perception of the technology; standardization issues; and regulations. For each of these non-cost barriers, this report estimates an effective cost and summarizes underlying influences on consumer preferences, approximate magnitude and relative severity, and assesses potential actions, based on a comprehensive literature review. While the report concludes that non-cost barriers are significant, effective cost and potential market share are very uncertain. Policies and programs including opportunities for drivers to test drive advanced vehicles, general public outreach and information programs, incentives for providing charging and fueling infrastructure, and development of technology standards were examined for their ability to address barriers, but little quantitative data exists on the effectiveness of these measures. This is one in a series of reports produced as a result of the Transportation Energy Futures project, a Department of Energy-sponsored multi-agency effort to pinpoint underexplored strategies for reducing GHGs and petroleum dependence related to transportation.

Stephens, T.

2013-03-01T23:59:59.000Z

93

Commercializing light-duty plug-in/plug-out hydrogen-fuel-cell vehicles: Mobile Electricity technologies and opportunities  

E-Print Network (OSTI)

application of hydrogen and fuel cells in cars and trucks (hydrogen-fuel-cell vehicles (H 2 FCVs) not simply as clean carshydrogen on boats using conventional storage technology necessarily help LD fuel-cell cars

Williams, Brett D; Kurani, Kenneth S

2007-01-01T23:59:59.000Z

94

Vehicle Technologies Office Merit Review 2014: High Efficiency Clean Combustion in Multi-Cylinder Light-Duty Engines  

Energy.gov (U.S. Department of Energy (DOE))

Presentation given by Oak Ridge National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about high efficiency...

95

Feasibility Study Of Advanced Technology Hov Systems: Volume 2b: Emissions Impact Of Roadway-powered Electric Buses, Light-duty Vehicles, And Automobiles  

E-Print Network (OSTI)

EV's, roadway-powered electric automobiles, and light dutyFor Roadway-Powered Electric Automobiles -a---- Range ofFor Roadway-Powered Electric Automobiles Range of Estimated

Miller, Mark A.; Dato, Victor; Chira-chavala, Ted

1992-01-01T23:59:59.000Z

96

Global Assessment of Hydrogen Technologies - Task 2 Report Comparison of Performance and Emissions from Near-Term Hydrogen Fueled Light Duty Vehicles  

SciTech Connect

An investigation was conducted on the emissions and efficiency from hydrogen blended compressed natural gas (CNG) in light duty vehicles. The different blends used in this investigation were 0%, 15%, 30%, 50%, 80%, 95%, and ~100% hydrogen, the remainder being compressed natural gas. The blends were tested using a Ford F-150 and a Chevrolet Silverado truck supplied by Arizona Public Services. Tests on emissions were performed using four different driving condition tests. Previous investigation by Don Karner and James Frankfort on a similar Ford F-150 using a 30% hydrogen blend showed that there was substantial reduction when compared to gasoline in carbon monoxide (CO), nitrogen oxide (NOx), and carbon dioxide (CO2) emissions while the reduction in hydrocarbon (HC) emissions was minimal. This investigation was performed using different blends of CNG and hydrogen to evaluate the emissions reducing capabilities associated with the use of the different fuel blends. The results were then tested statistically to confirm or reject the hypotheses on the emission reduction capabilities. Statistically analysis was performed on the test results to determine whether hydrogen concentration in the HCNG had any effect on the emissions and the fuel efficiency. It was found that emissions from hydrogen blended compressed natural gas were a function of driving condition employed. Emissions were found to be dependent on the concentration of hydrogen in the compressed natural gas fuel blend.

Fouad, Fouad H.; Peters, Robert W.; Sisiopiku, Virginia P.; Sullivan Andrew J.; Ng, Henry K.; Waller, Thomas

2007-12-01T23:59:59.000Z

97

DOE/VTP Light-Duty Diesel Engine Commercialization  

NLE Websites -- All DOE Office Websites (Extended Search)

VTP Light-Duty Diesel Engine Commercialization VTP Light-Duty Diesel Engine Commercialization Vehicle Technologies Program (VTP) spearheaded the development of clean diesel engine technologies for passenger vehicles in the 1990s, spurring the current reintroduction of highly efficient diesel vehicles into the passenger market. Cummins partnered with VTP to develop a diesel engine that meets the 50-state 2010 emissions standards while boosting vehicle fuel economy by 30% over comparable gasoline-powered vehicles. The Cummins engine is scheduled to debut in 2010 Chrysler sport utility vehicles and pickup trucks. VTP-sponsored research demonstrated the ability of diesel passenger vehicles with advanced aftertreatment to meet EPA's stringent Tier II Bin 5 standards, representing an 83% reduction in NOx and more than 87% reduction in

98

Light-duty diesel engine development status and engine needs  

SciTech Connect

This report reviews, assesses, and summarizes the research and development status of diesel engine technology applicable to light-duty vehicles. In addition, it identifies specific basic and applied research and development needs in light-duty diesel technology and related health areas where initial or increased participation by the US Government would be desirable. The material presented in this report updates information provided in the first diesel engine status report prepared by the Aerospace Corporation for the Department of Energy in September, 1978.

Not Available

1980-08-01T23:59:59.000Z

99

Assessment of costs and benefits of flexible and alternative fuel use in the U.S. transportation sector. Technical report fourteen: Market potential and impacts of alternative fuel use in light-duty vehicles -- A 2000/2010 analysis  

SciTech Connect

In this report, estimates are provided of the potential, by 2010, to displace conventional light-duty vehicle motor fuels with alternative fuels--compressed natural gas (CNG), liquefied petroleum gas (LPG), methanol from natural gas, ethanol from grain and from cellulosic feedstocks, and electricity--and with replacement fuels such as oxygenates added to gasoline. The 2010 estimates include the motor fuel displacement resulting both from government programs (including the Clean Air Act and EPACT) and from potential market forces. This report also provides an estimate of motor fuel displacement by replacement and alterative fuels in the year 2000. However, in contrast to the 2010 estimates, the year 2000 estimate is restricted to an accounting of the effects of existing programs and regulations. 27 figs., 108 tabs.

NONE

1996-01-01T23:59:59.000Z

100

Status of advanced light-duty transportation technologies in the US  

Science Journals Connector (OSTI)

The need to reduce oil consumption and greenhouse gases is driving a fundamental change toward more efficient, advanced vehicles, and fuels in the transportation sector. The paper reviews the current status of light duty vehicles in the US and discusses policies to improve fuel efficiency, advanced electric drives, and sustainable cellulosic biofuels. The paper describes the cost, technical, infrastructure, and market barriers for alternative technologies, i.e., advanced biofuels and light-duty vehicles, including diesel vehicles, natural-gas vehicles, hybrid electric vehicles, plug-in hybrid electric vehicles, and fuel-cell electric vehicles. The paper also presents R&D targets and technology validation programs of the US government.

David Andress; Sujit Das; Fred Joseck; T. Dean Nguyen

2012-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "light-duty vehicles model" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Commercializing Light-Duty Plug-In/Plug-Out Hydrogen-Fuel-Cell Vehicles: "Mobile Electricity" Technologies, Early California Household Markets, and Innovation Management  

E-Print Network (OSTI)

2002. EPRI, "Advanced Batteries for Electric-Drive Vehicles:12 2.2.2.1 PHEV uncertainties: Batteries andwith big propulsion batteries. However, recent activities (

Williams, Brett D

2010-01-01T23:59:59.000Z

102

Commercializing Light-Duty Plug-In/Plug-Out Hydrogen-Fuel-Cell Vehicles:Mobile Electricity Technologies, Early California Household Markets, and Innovation Management  

E-Print Network (OSTI)

application of hydrogen and fuel cells in cars and trucks (hydrogen-fuel-cell vehicles (H 2 FCVs) not simply as clean carshydrogen on boats using conventional storage technology necessarily help LD fuel-cell cars

Williams, Brett D

2007-01-01T23:59:59.000Z

103

Commercializing Light-Duty Plug-In/Plug-Out Hydrogen-Fuel-Cell Vehicles: "Mobile Electricity" Technologies, Early California Household Markets, and Innovation Management  

E-Print Network (OSTI)

application of hydrogen and fuel cells in cars and trucks (hydrogen-fuel-cell vehicles (H 2 FCVs) not simply as clean carshydrogen on boats using conventional storage technology necessarily help LD fuel-cell cars

Williams, Brett D

2010-01-01T23:59:59.000Z

104

Commercializing Light-Duty Plug-In/Plug-Out Hydrogen-Fuel-Cell Vehicles: "Mobile Electricity" Technologies, Early California Household Markets, and Innovation Management  

E-Print Network (OSTI)

storage, and initial cost barriersenable hydrogen-fuel-cellHydrogen Economy. New York: Tarcher-Putnam, 2002. ) production, fuel-cell costfuel-cell vehicle fed hydrogen by a stationary reformer reforming natural gas to produce hydrogen at a cost

Williams, Brett D

2010-01-01T23:59:59.000Z

105

J. Air & Waste Manage. Assoc., vol 58, 2008, p. 45-54 On-board emission measurement of high loaded light duty vehicles in Algeria  

E-Print Network (OSTI)

; Nejjari et al., 2003, Atek et al., 2004). As a result, many stations of air pollution measurement and Boukadoum, 2005). Vehicle pollutant emissions constitute not only a problem of air quality in big citiesJ. Air & Waste Manage. Assoc., vol 58, 2008, p. 45-54 On-board emission measurement of high loaded

Boyer, Edmond

106

Technical Challenges and Opportunities Light-Duty Diesel Engines...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Challenges and Opportunities Light-Duty Diesel Engines in North America Technical Challenges and Opportunities Light-Duty Diesel Engines in North America 2005 Diesel Engine...

107

Business Case for Light-Duty Diesels | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Business Case for Light-Duty Diesels Business Case for Light-Duty Diesels 2005 Diesel Engine Emissions Reduction (DEER) Conference Presentations and Posters 2005deergodwin.pdf...

108

Advanced Technology Light Duty Diesel Aftertreatment System  

Energy.gov (U.S. Department of Energy (DOE))

Light duty diesel aftertreatment system consisting of a DOC and selective catalytic reduction catalyst on filter (SCRF), close coupled to the engine with direct gaseous ammonia delivery is designed to reduce cold start NOx and HC emissions

109

NGV and FCV Light Duty Transportation Perspective  

NLE Websites -- All DOE Office Websites (Extended Search)

G G presentation slides: Natural Gas and Fuel Cell Vehicle Light-Duty transportation perspectives Matt Fronk, Matt Fronk & Associates, LLC 1 OctOber 2011 | ArgOnne nAtiOnAl lAbOrAtOry NG Workshop summary report - appeNDIX G 2 OctOber 2011 | ArgOnne nAtiOnAl lAbOrAtOry NG Workshop summary report - appeNDIX G 3 OctOber 2011 | ArgOnne nAtiOnAl lAbOrAtOry NG Workshop summary report - appeNDIX G 4 OctOber 2011 | ArgOnne nAtiOnAl lAbOrAtOry NG Workshop summary report - appeNDIX G 5 OctOber 2011 | ArgOnne nAtiOnAl lAbOrAtOry NG Workshop summary report - appeNDIX G 6 OctOber 2011 | ArgOnne nAtiOnAl lAbOrAtOry NG Workshop summary report - appeNDIX G 7 OctOber 2011 | ArgOnne nAtiOnAl lAbOrAtOry NG Workshop summary report - appeNDIX G

110

Light Duty Combustion Research: Advanced Light-Duty Combustion Experiments  

Energy.gov (U.S. Department of Energy (DOE))

2009 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting, May 18-22, 2009 -- Washington D.C.

111

Technology Development for Light Duty High Efficient Diesel Engines  

Energy.gov (U.S. Department of Energy (DOE))

Improve the efficiency of diesel engines for light duty applications through technical advances in system optimization.

112

Comparison of Particle Sizing Instrument Technologies for Vehicle Emissions Testing  

E-Print Network (OSTI)

a PFI engine instead of a GDI engine. However, the responsesemissions from a light-duty GDI vehicle. Aerosol Science andInjection engine (WG-GDI), the 2012 Model Year Mercedes Benz

Chen, Vincent

2014-01-01T23:59:59.000Z

113

Light duty utility arm startup plan  

SciTech Connect

This plan details the methods and procedures necessary to ensure a safe transition in the operation of the Light Duty Utility Arm (LDUA) System. The steps identified here outline the work scope and identify responsibilities to complete startup, and turnover of the LDUA to Characterization Project Operations (CPO).

Barnes, G.A.

1998-09-01T23:59:59.000Z

114

Cummins Work Toward Successful Introduction of Light-Duty Clean...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Cummins Work Toward Successful Introduction of Light-Duty Clean Diesel Engines in US Cummins Work Toward Successful Introduction of Light-Duty Clean Diesel Engines in US 2005...

115

Design criteria for the light duty utility arm system end effectors  

SciTech Connect

This document provides the criteria for the design of end effectors that will be used as part of the Light Duty Utility Arm (LDUA) System. The LDUA System consists of a deployment vehicle, a vertical positioning mast, a light duty multi-axis robotic arm, a tank riser interface and confinement, a tool interface plate, a control system, and an operations control trailer. The criteria specified in this document will apply to all end effector systems being developed for use on or with the LDUA system at the Hanford site. The requirement stipulated in this document are mandatory.

Pardini, A.F.

1995-01-03T23:59:59.000Z

116

The Economic, Energy, and GHG Emissions Impacts of Proposed 20172025 Vehicle Fuel Economy Standards in the United States  

E-Print Network (OSTI)

Increases in the U.S. Corporate Average Fuel Economy (CAFE) Standards for 2017 to 2025 model year light-duty vehicles are currently under consideration. This analysis uses an economy-wide model with detail in the passenger ...

Karplus, Valerie

2012-07-31T23:59:59.000Z

117

A Waste Heat Recovery System for Light Duty Diesel Engines  

SciTech Connect

In order to achieve proposed fuel economy requirements, engines must make better use of the available fuel energy. Regardless of how efficient the engine is, there will still be a significant fraction of the fuel energy that is rejected in the exhaust and coolant streams. One viable technology for recovering this waste heat is an Organic Rankine Cycle. This cycle heats a working fluid using these heat streams and expands the fluid through a turbine to produce shaft power. The present work was the development of such a system applied to a light duty diesel engine. This lab demonstration was designed to maximize the peak brake thermal efficiency of the engine, and the combined system achieved an efficiency of 44.4%. The design of the system is discussed, as are the experimental performance results. The system potential at typical operating conditions was evaluated to determine the practicality of installing such a system in a vehicle.

Briggs, Thomas E [ORNL; Wagner, Robert M [ORNL; Edwards, Kevin Dean [ORNL; Curran, Scott [ORNL; Nafziger, Eric J [ORNL

2010-01-01T23:59:59.000Z

118

Clean Cities 2011 Vehicle Buyer's Guide  

SciTech Connect

The 2011 Clean Cities Light-Duty Vehicle Buyer's Guide is a consumer publication that provides a comprehensive list of commercially available alternative fuel and advanced vehicles in model year 2011. The guide allows for side-by-side comparisons of fuel economy, price, emissions, and vehicle specifications.

Not Available

2011-01-01T23:59:59.000Z

119

Optimizing U.S. Mitigation Strategies for the Light-Duty Transportation Sector: What We Learn from a Bottom-Up Model  

E-Print Network (OSTI)

on the adoption of alternative fuel vehicles: The case of07: 2007. 21. CEC State Alternative Fuel Plan. CEC-600-2007-972. (28) CEC. State Alternative Fuel Plan; CEC-600-2007-

Yeh, Sonia; Farrell, Alexander E.; Plevin, Richard J; Sanstad, Alan; Weyant, John

2008-01-01T23:59:59.000Z

120

Ricardo's ACTION Strategy: An Enabling Light Duty Diesel Technology...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

US Market 2005 Diesel Engine Emissions Reduction (DEER) Conference Presentations and Posters 2005deergreaney.pdf More Documents & Publications Light-Duty Diesel...

Note: This page contains sample records for the topic "light-duty vehicles model" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Light Duty Diesels in the United States - Some Perspectives ...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Emission Control Technology Review Update on Diesel Exhaust Emission Control Technology and Regulations Light Duty Diesels in the United States - Some Perspectives...

122

Ricardo's ACTION Strategy: An Enabling Light Duty Diesel Technology...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

light duty diesel solutions for the US market Technology Strategy Lowest system cost Engine technology selection Aftertreatment technology selection Control approach & OBD...

123

Mixture Formation in a Light-Duty Diesel Engine  

Energy.gov (U.S. Department of Energy (DOE))

Presents quantitative measurements of evolution of in-cylinder equivalence ratio distributions in a light-duty engine where wall interactions and strong swirl are significant

124

Technology Development for Light Duty High Efficient Diesel Engines...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

optimization. deer09stanton.pdf More Documents & Publications Light Duty Efficient Clean Combustion Advanced Diesel Engine Technology Development for HECC Effects of Biomass Fuels...

125

Light Duty Efficient Clean Combustion | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

25, 2008 in Bethesda, Maryland. merit08frazier.pdf More Documents & Publications Light Duty Efficient Clean Combustion Exhaust Energy Recovery: 2008 Semi-Mega Merit Review...

126

Optimizing U.S. Mitigation Strategies for the Light-Duty Transportation Sector: What We Learn from a Bottom-Up Model  

Science Journals Connector (OSTI)

Mitigating transportation emission reductions can result in significant changes in personal vehicle technologies, increases in vehicle fuel efficiency, and decreases in overall transportation fuel use. ... The Energy Independence and Security Act (H.R. 6), which includes a 36 billion gallon renewable fuel mandate, was passed by Congress and signed by President Bush on December 19, 2007. ... Mitigation strategies with the potential to achieve significant long-term transportation emission reductions often face significant competition for primary resources with other sectors, including biomass, natural gas, renewables, and coal, and for secondary energy sources such as electricity. ...

Sonia Yeh; Alex Farrell; Richard Plevin; Alan Sanstad; John Weyant

2008-10-21T23:59:59.000Z

127

Transportation Energy Futures Series: Potential for Energy Efficiency Improvement Beyond the Light-Duty-Vehilce Sector  

NLE Websites -- All DOE Office Websites (Extended Search)

COMMERCIAL TRUCKS COMMERCIAL TRUCKS AVIATION MARINE MODES RAILROADS PIPELINES OFF-ROAD EQUIPMENT Potential for Energy Efficiency Improvement Beyond the Light-Duty-Vehicle Sector TRANSPORTATION ENERGY FUTURES SERIES: Potential for Energy Efficiency Improvement Beyond the Light-Duty-Vehicle Sector A Study Sponsored by U.S. Department of Energy Office of Energy Efficiency and Renewable Energy February 2013 Prepared by ARGONNE NATIONAL LABORATORY Argonne, IL 60439 managed by U Chicago Argonne, LLC for the U.S. DEPARTMENT OF ENERGY under contract DE-AC02-06CH11357 This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, expressed or implied, or assumes any legal liability or

128

Marketing Light-Duty Diesels to U.S. Consumers | Department of...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Marketing Light-Duty Diesels to U.S. Consumers Marketing Light-Duty Diesels to U.S. Consumers Overview of Volkswagens approach in introducing light-duty diesels to the U.S....

129

NREL: Vehicles and Fuels Research - Light-Duty Vehicle Thermal...  

NLE Websites -- All DOE Office Websites (Extended Search)

and passenger thermal comfort. Analogous to crash-test dummies, these manikins measure heat loss and skin temperature through numerous sensors, making it possible to efficiently...

130

Vehicle Technologies Office Merit Review 2014: Computational design and development of a new, lightweight cast alloy for advanced cylinder heads in high-efficiency, light-duty engines FOA 648-3a  

Energy.gov (U.S. Department of Energy (DOE))

Presentation given by General Motors at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about computational design and...

131

Emission Control Strategy for Downsized Light-Duty Diesels |...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

p-18neely.pdf More Documents & Publications New Diesel Emissions Control Strategy for U.S. Tier 2 Light-Duty Diesel Market Potential in North America EPA Mobile Source Rule Update...

132

Marketing Light-Duty Diesels to U.S. Consumers  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Marketing Light-Duty Diesels to U.S. Consumers Norbert Krause Director Engineering and Environmental Office Volkswagen Group of America, Inc. 14 th Diesel Engine-Efficiency and...

133

An Activity-Based Assessment of the Potential Impacts of Plug-In Hybrid Electric Vehicles on Energy and Emissions Using One-Day Travel Data  

E-Print Network (OSTI)

of light-duty vehicles in Xcel Energy service territory inVehicle Charging in the Xcel Energy Colorado Service

Recker, W. W.; Kang, J. E.

2010-01-01T23:59:59.000Z

134

An Energy Evolution:Alternative Fueled Vehicle Comparisons |...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

An Energy Evolution:Alternative Fueled Vehicle Comparisons An Energy Evolution:Alternative Fueled Vehicle Comparisons Presented at the U.S. Department of Energy Light Duty Vehicle...

135

Fact #677: May 30, 2011 Number of Hybrid Models, 2001-2011 |...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

2009 19 2010 20 2011 29 Source: U.S. Department of Energy, Alternative Fuels and Advanced Vehicles Data Center, OEM AFVHEVDiesel Light Duty Model Offerings by Fuel Type 1991-2011...

136

Vehicle Technologies Office Merit Review 2014: High Efficiency...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

High Efficiency Clean Combustion in Multi-Cylinder Light-Duty Engines Vehicle Technologies Office Merit Review 2014: High Efficiency Clean Combustion in Multi-Cylinder Light-Duty...

137

Fact #559: February 23, 2009 Light Vehicle Sales per Dealership...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

slightly. Light Duty Sales per Dealership, 1997-2007 Graph showing the light duty automobile sales per dealership from 1997-2007. Dealerships and the average numer of vehicles...

138

High Efficiency Clean Combustion in Multi-Cylinder Light-Duty...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Efficiency Clean Combustion in Multi-Cylinder Light-Duty Engines High Efficiency Clean Combustion in Multi-Cylinder Light-Duty Engines 2012 DOE Hydrogen and Fuel Cells Program and...

139

Urea SCR and DPF System for Tier 2 Diesel Light-Duty Trucks ...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Tier 2 Diesel Light-Duty Trucks Urea SCR and DPF System for Tier 2 Diesel Light-Duty Trucks Presentation given at DEER 2006, August 20-24, 2006, Detroit, Michigan. Sponsored by the...

140

SCReaming for Low NOx - SCR for the Light Duty Market | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

SCReaming for Low NOx - SCR for the Light Duty Market SCReaming for Low NOx - SCR for the Light Duty Market Presentation given at DEER 2006, August 20-24, 2006, Detroit, Michigan....

Note: This page contains sample records for the topic "light-duty vehicles model" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Why Light Duty Diesels Make Sense in the North American Market...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Why Light Duty Diesels Make Sense in the North American Market Why Light Duty Diesels Make Sense in the North American Market Presentation given at DEER 2006, August 20-24, 2006,...

142

A Study of Emissions from a Light Duty Diesel Engine with the...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

A Study of Emissions from a Light Duty Diesel Engine with the European Particulate Measurement Programme A Study of Emissions from a Light Duty Diesel Engine with the European...

143

High Efficiency Clean Combustion in Multi-Cylinder Light-Duty...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

High Efficiency Clean Combustion in Multi-Cylinder Light-Duty Engines High Efficiency Clean Combustion in Multi-Cylinder Light-Duty Engines 2013 DOE Hydrogen and Fuel Cells Program...

144

Ultra-Low Sulfur diesel Update & Future Light Duty Diesel | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Ultra-Low Sulfur diesel Update & Future Light Duty Diesel Ultra-Low Sulfur diesel Update & Future Light Duty Diesel Presentation given at DEER 2006, August 20-24, 2006, Detroit,...

145

Thermoelectric Opportunities for Light-Duty Vehicles | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Heat Recovery Thermoelectric Activities of European Community within Framework Programme 7 and additional activities in Germany Automotive Thermoelectric Generator (TEG) Controls...

146

WORKSHOP REPORT:Light-Duty Vehicles Technical Requirements and...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

some body structure applications, such as shock towers, instrument panels, cross car beams, and interior components. However, to be useful in crash critical front-end...

147

Light Duty Fuel Cell Electric Vehicle Hydrogen Fueling Protocol  

Energy.gov (U.S. Department of Energy (DOE))

Webinar slides from the U.S. Department of Energy Fuel Cell Technologies Office webinar, "Hydrogen Refueling Protocols," held February 22, 2013.

148

Emissions from the European Light Duty Diesel Vehicle During...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

DPF Regeneration Events Repeated partial regenerations may cause changes in the mechanical and chemical properties of the PM in the DPF. deer09dwyer.pdf More Documents &...

149

Simulating Study of Premixed Charge Compression Ignition on Light-Duty Diesel Fuel Economy and Emissions Control  

SciTech Connect

We utilize the Powertrain Systems Analysis Toolkit (PSAT) combined with transient engine and aftertreatment component models to simulate the impact of premixed charge compression ignition (PCCI) on the fuel economy and emissions of light-duty (LD) diesel-powered conventional and hybrid electric vehicles (HEVs). Our simulated aftertreatment train consists of a diesel oxidation catalyst (DOC), lean NOx trap (LNT), and catalyzed diesel particulate filter (DPF). The results indicate that utilizing PCCI combustion significantly reduces fuel consumption and tailpipe emissions for the conventional diesel-powered vehicle with NOx and particulate emissions controls. These benefits result from a favorable engine speed-load distribution over the cycle combined with a corresponding reduction in the need to regenerate the LNT and DPF. However, the current PCCI technology appears to offer less potential benefit for diesel HEVs equipped with similar emissions controls. This is because PCCI can only be activated over a relatively small part of the drive cycle. Thus we conclude that future utilization of PCCI in diesel HEVs will require significant extension of the available speed-load range for PCCI and revision of current HEV engine management strategies before significant benefits can be realized.

Gao, Zhiming [ORNL] [ORNL; Daw, C Stuart [ORNL] [ORNL; Wagner, Robert M [ORNL] [ORNL

2012-01-01T23:59:59.000Z

150

Characteristics of Soot and Particle Size Distribution in the Exhaust of a Common Rail Light-Duty Diesel Engine Fuelled with Biodiesel  

Science Journals Connector (OSTI)

Limited studies have been accumulated as to the effects of biodiesel on PSD in light-duty modern diesel engines employed with common rail (CR) injection system and exhaust gas recirculation (EGR) that are currently widely used in transportation vehicles in European and U.S. markets. ... 0 diesel, which is commonly used in the Chinese market. ...

Xusheng Zhang; Zhijun Wu; Liguang Li

2012-08-09T23:59:59.000Z

151

Fuel Savings from Hybrid Electric Vehicles  

SciTech Connect

NREL's study shows that hybrid electric vehicles can significantly reduce oil imports for use in light-duty vehicles, particularly if drivers switch to smaller, more fuel-efficient vehicles overall.

Bennion, K.; Thornton, M.

2009-03-01T23:59:59.000Z

152

Trends in On-Road Vehicle Emissions of Ammonia  

NLE Websites -- All DOE Office Websites (Extended Search)

Trends in On-Road Vehicle Emissions of Ammonia Trends in On-Road Vehicle Emissions of Ammonia Title Trends in On-Road Vehicle Emissions of Ammonia Publication Type Journal Article Year of Publication 2008 Authors Kean, Andrew J., David Littlejohn, George Ban-Weiss, Robert A. Harley, Thomas W. Kirchstetter, and Melissa M. Lunden Journal Atmospheric Environment Abstract Motor vehicle emissions of ammonia have been measured at a California highway tunnel in the San Francisco Bay area. Between 1999 and 2006, light-duty vehicle ammonia emissions decreased by 38 ± 6%, from 640 ± 40 to 400 ± 20 mg kg-1. High time resolution measurements of ammonia made in summer 2001 at the same location indicate a minimum in ammonia emissions correlated with slower-speed driving conditions. Variations in ammonia emission rates track changes in carbon monoxide more closely than changes in nitrogen oxides, especially during later evening hours when traffic speeds are highest. Analysis of remote sensing data of Burgard et al. (Environ Sci. Technol. 2006, 40, 7018-7022) indicates relationships between ammonia and vehicle model year, nitrogen oxides, and carbon monoxide. Ammonia emission rates from diesel trucks were difficult to measure in the tunnel setting due to the large contribution to ammonia concentrations in a mixed-traffic bore that were assigned to light-duty vehicle emissions. Nevertheless, it is clear that heavy-duty diesel trucks are a minor source of ammonia emissions compared to light-duty gasoline vehicles.

153

Light duty utility arm deployment in Hanford tank T-106  

SciTech Connect

An existing gap in the technology for the remediation of underground waste storage tanks filled by the Light Duty Utility Arm (LDUA) System. On September 27 and 30, 1996, the LDUA System was deployed in underground storage tank T-106 at Hanford. The system performed successfully, satisfying all objectives of the in-tank operational test (hot test); performing close-up video inspection of features of tank dome, risers, and wall; and grasping and repositioning in-tank debris. The successful completion of hot testing at Hanford means that areas of tank structure and waste surface that were previously inaccessible are now within reach of remote tools for inspection, waste analysis, and small-scale retrieval. The LDUA System has become a new addition to the arsenal of technologies being applied to solve tank waste remediation challenges.

Kiebel, G.R.

1997-07-01T23:59:59.000Z

154

New Vehicle Fuel Economy Standards Will Continue to Inspire Innovation |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Vehicle Fuel Economy Standards Will Continue to Inspire Vehicle Fuel Economy Standards Will Continue to Inspire Innovation New Vehicle Fuel Economy Standards Will Continue to Inspire Innovation July 29, 2011 - 1:48pm Addthis President Barack Obama delivers remarks on fuel efficiency standards for 2017-2025 model year cars and light-duty trucks during an event at the Washington Convention Center in Washington, D.C., July 29, 2011. Seated behind the President are at left are auto industry executives and Transportation Secretary Ray LaHood. (Official White House Photo by Samantha Appleton) President Barack Obama delivers remarks on fuel efficiency standards for 2017-2025 model year cars and light-duty trucks during an event at the Washington Convention Center in Washington, D.C., July 29, 2011. Seated behind the President are at left are auto industry executives and

155

Simulating the Impact of Premixed Charge Compression Ignition on Light-Duty Diesel Fuel Economy and Emissions of Particulates and NOx  

SciTech Connect

We utilize the Powertrain Systems Analysis Toolkit (PSAT) combined with transient engine and aftertreatment component models implemented in Matlab/Simulink to simulate the effect of premixed charge compression ignition (PCCI) on the fuel economy and emissions of light-duty diesel-powered conventional and hybrid electric vehicles (HEVs). Our simulated engine is capable of both conventional diesel combustion (CDC) and premixed charge compression ignition (PCCI) over real transient driving cycles. Our simulated aftertreatment train consists of a diesel oxidation catalyst (DOC), lean NOx trap (LNT), and catalyzed diesel particulate filter (DPF). The results demonstrate that, in the simulated conventional vehicle, PCCI can significantly reduce fuel consumption and emissions by reducing the need for LNT and DPF regeneration. However, the opportunity for PCCI operation in the simulated HEV is limited because the engine typically experiences higher loads and multiple stop-start transients that are outside the allowable PCCI operating range. Thus developing ways of extending the PCCI operating range combined with improved control strategies for engine and emissions control management will be especially important for realizing the potential benefits of PCCI in HEVs.

Gao, Zhiming [ORNL; Daw, C Stuart [ORNL; Wagner, Robert M [ORNL; Edwards, Kevin Dean [ORNL; Smith, David E [ORNL

2013-01-01T23:59:59.000Z

156

Blog Feed: Vehicles | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

July 29, 2011 July 29, 2011 President Barack Obama delivers remarks on fuel efficiency standards for 2017-2025 model year cars and light-duty trucks during an event at the Washington Convention Center in Washington, D.C., July 29, 2011. Seated behind the President are at left are auto industry executives and Transportation Secretary Ray LaHood. (Official White House Photo by Samantha Appleton) New Vehicle Fuel Economy Standards Will Continue to Inspire Innovation President Obama announced a landmark agreement with automakers that sets aggressive new fuel-economy standards for cars and light-duty trucks. Find out how the Energy Department is unleashing innovation that will create jobs and make sure that the fuel-efficient vehicles of the future are made in America.

157

Fumigation of alcohol in a light duty automotive diesel engine  

SciTech Connect

A light-duty automotive diesel engine was fumigated with methanol and ethanol in amounts up to 35% and 50% of the total fuel energy respectively. The main purpose of this study was to determine the effect of alcohol (methanol and ethanol) fumigation on engine performance at various operating conditions. Engine fuel efficiency, emissions, smoke, and the occurrence of severe knock were the parameters used to evaluate performance. Raw exhaust particulate and its soluble organic extract were screened for biological activity using the Ames Salmonella typhimurium assay. Results are given for a test matrix made up of twelve steady-state operating conditions. For all conditions except the 1/4 rack (light load) condition, modest thermal efficiency gains were noted upon ethanol fumigation. Methanol showed the same increase at 3/4 and full rack (high load) conditions. However, engine roughness or the occurrence of severe knock limited the maximum amount of alcohol that could be fumigated. Brake specific NO/sub x/ concentrations were found to decrease for all ethanol conditions tested. Oxides of nitrogen emissions, on a volume basis, decreased for all alcohol conditions tested. Based on the limited particulate data analyzed, it appears as though ethanol fumigation, like methanol fumigation, while lowering the mass of particulate emitted, does enhance the biological activity of that particulate.

Broukhiyan, E.M.H.; Lestz, S.S.

1981-08-01T23:59:59.000Z

158

Business Case for Light-Duty Diesel in the U.S. | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Diesel in the U.S. Business Case for Light-Duty Diesel in the U.S. 2005 Diesel Engine Emissions Reduction (DEER) Conference Presentations and Posters 2005deermcmanus.pdf More...

159

Impact of Fuel Properties on Light-Duty Engine Performance and Emissions  

Energy.gov (U.S. Department of Energy (DOE))

Describes the effects of seven fuels with significantly different fuel properties on a state-of-the-art light-duty diesel engine. Cetane numbers range between 26 and 76 for the investigated fuels.

160

Fuel Effects on Low Temperature Combustion in a Light-Duty Diesel Engine  

Energy.gov (U.S. Department of Energy (DOE))

Six different fuels were investigated to study the influence of fuel properties on engine out emissions and performance of low temperature premixed compression ignition combustion light-duty HSDI engines

Note: This page contains sample records for the topic "light-duty vehicles model" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Addressing the Challenges of RCCI Operation on a Light-Duty Multi...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

the Challenges of RCCI Operation on a Light-Duty Multi-Cylinder Engine ORNL and UW collaboration in evaluating and developing RCCI operation in fully built multi-cylinder engine...

162

Alternative Transportation Technologies: Hydrogen, Biofuels, Advanced Efficiency, and Plug-in Hybrid Electric Vehicles  

Energy.gov (U.S. Department of Energy (DOE))

Presented at the U.S. Department of Energy Light Duty Vehicle Workshop in Washington, D.C. on July 26, 2010.

163

Testing Electric Vehicle Demand in `Hybrid Households' Using a Reflexive Survey  

E-Print Network (OSTI)

EV market studies In the absence of data on actual sales,EV, then we expect that 16-18%) of annual light-duty vehicle sales

Kurani, Kenneth; Turrentine, Thomas; Sperling, Daniel

1996-01-01T23:59:59.000Z

164

Vehicle Data for Alternative Fuel Vehicles (AFVs) and Hybrid Fuel Vehicles (HEVs) from the Alternative Fuels and Advanced Vehicles Data Center (AFCD)  

DOE Data Explorer (OSTI)

The AFDC provides search capabilities for many different models of both light-duty and heavy-duty vehicles. Engine and transmission type, fuel and class, fuel economy and emission certification are some of the facts available. The search will also help users locate dealers in their areas and do cost analyses. Information on alternative fuel vehicles and on advanced technology vehicles, along with calculators, resale and conversion information, links to incentives and programs such as Clean Cities, and dozens of fact sheets and publications make this section of the AFDC a valuable resource for car buyers.

165

Light-Duty Reactivity Controlled Compression Ignition Drive Cycle Fuel Economy and Emissions Estimates  

Energy.gov (U.S. Department of Energy (DOE))

Vehicle systems simulations using experimental data demonstrate improved modeled fuel economy of 15% for passenger vehicles solely from powertrain efficiency relative to a 2009 PFI gasoline baseline.

166

Safety equipment list for the light duty utility arm system  

SciTech Connect

The initial issue (Revision 0) of this Safety Equipment List (SEL) for the Light Duty Utility Arm (LDUA) requires an explanation for both its existence and its being what it is. All LDUA documentation leading up to creation of this SEL, and the SEL itself, is predicated on the LDUA only being approved for use in waste tanks designated as Facility Group 3, i.e., it is not approved for use in Facility Group 1 or 2 waste tanks. Facility Group 3 tanks are those in which a spontaneous or induced hydrogen gas release would be small, localized, and would not exceed 25% of the LFL when mixed with the remaining air volume in the dome space; exceeding these parameters is considered unlikely. Thus, from a NFPA flammable gas environment perspective the waste tank interior is not classified as a hazardous location. Furthermore, a hazards identification and evaluation (HNF-SD-WM-HIE-010, REV 0) performed for the LDUA system concluded that the consequences of actual LDUA system postulated accidents in Flammable Gas Facility Group 3 waste tanks would have either NO IMPACT or LOW IMPACT on the offsite public and onsite worker. Therefore, from a flammable gas perspective, there is not a rationale for classifying any of SSCs associated with the LDUA as either Safety Class (SC) or Safety Significant (SS) SSCs, which, by default, categorizes them as General Service (GS) SSCs. It follows then, based on current PHMC procedures (HNF-PRO-704 and HNF-IP-0842, Vol IV, Section 5.2) for SEL creation and content, and from a flammable gas perspective, that an SEL is NOT REQ@D HOWEVER!!! There is both a precedent and a prudency to capture all SSCS, which although GS, contribute to a Defense-In-Depth (DID) approach to the design and use of equipment in potentially flammable gas environments. This Revision 0 of the LDUA SEL has been created to capture these SSCs and they are designated as GS-DID in this document. The specific reasons for doing this are listed.

Barnes, G.A.

1998-03-02T23:59:59.000Z

167

Light-Duty Diesel Market Potential in North America  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Diesel Engineering General Motors Corporation GM's Long Term Vision Remove the automobile from the energy & environmental equation Reduced Vehicle Emissions and Increased...

168

Fuel Spray Research on Light-Duty Injection Systems  

Energy.gov (U.S. Department of Energy (DOE))

2010 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C.

169

Fuel Spray Research on Light-Duty Injection Systems  

Energy.gov (U.S. Department of Energy (DOE))

2009 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting, May 18-22, 2009 -- Washington D.C.

170

Well-to-Wheels Energy Use and Greenhouse Gas Emissions of Plug-In Hybrid Electric Vehicles  

Energy.gov (U.S. Department of Energy (DOE))

Presented at the U.S. Department of EnergyLight Duty Vehicle Workshop in Washington, D.C. on July 26, 2010.

171

Vehicle Modeling and Simulation  

Energy.gov (U.S. Department of Energy (DOE))

Presentation from the U.S. DOE Office of Vehicle Technologies "Mega" Merit Review 2008 on February 25, 2008 in Bethesda, Maryland.

172

Aggregate vehicle travel forecasting model  

SciTech Connect

This report describes a model for forecasting total US highway travel by all vehicle types, and its implementation in the form of a personal computer program. The model comprises a short-run, econometrically-based module for forecasting through the year 2000, as well as a structural, scenario-based longer term module for forecasting through 2030. The short-term module is driven primarily by economic variables. It includes a detailed vehicle stock model and permits the estimation of fuel use as well as vehicle travel. The longer-tenn module depends on demographic factors to a greater extent, but also on trends in key parameters such as vehicle load factors, and the dematerialization of GNP. Both passenger and freight vehicle movements are accounted for in both modules. The model has been implemented as a compiled program in the Fox-Pro database management system operating in the Windows environment.

Greene, D.L.; Chin, Shih-Miao; Gibson, R. [Tennessee Univ., Knoxville, TN (United States)

1995-05-01T23:59:59.000Z

173

Reactivity Controlled Compression Ignition (RCCI) Combustion on a Multi-Cylinder Light-Duty Diesel Engine  

SciTech Connect

Reactivity controlled compression ignition is a low-temperature combustion technique that has been shown, both in computational fluid dynamics modeling and single-cylinder experiments, to obtain diesel-like efficiency or better with ultra-low nitrogen oxide and soot emissions, while operating primarily on gasoline-like fuels. This paper investigates reactivity controlled compression ignition operation on a four-cylinder light-duty diesel engine with production-viable hardware using conventional gasoline and diesel fuel. Experimental results are presented over a wide speed and load range using a systematic approach for achieving successful steady-state reactivity controlled compression ignition combustion. The results demonstrated diesel-like efficiency or better over the operating range explored with low engine-out nitrogen oxide and soot emissions. A peak brake thermal efficiency of 39.0% was demonstrated for 2600 r/min and 6.9 bar brake mean effective pressure with nitrogen oxide emissions reduced by an order of magnitude compared to conventional diesel combustion operation. Reactivity controlled compression ignition emissions and efficiency results are compared to conventional diesel combustion operation on the same engine.

Curran, Scott [ORNL; Hanson, Reed M [ORNL; Wagner, Robert M [ORNL

2012-01-01T23:59:59.000Z

174

Consumer Vehicle Choice Model Documentation  

SciTech Connect

In response to the Fuel Economy and Greenhouse Gas (GHG) emissions standards, automobile manufacturers will need to adopt new technologies to improve the fuel economy of their vehicles and to reduce the overall GHG emissions of their fleets. The U.S. Environmental Protection Agency (EPA) has developed the Optimization Model for reducing GHGs from Automobiles (OMEGA) to estimate the costs and benefits of meeting GHG emission standards through different technology packages. However, the model does not simulate the impact that increased technology costs will have on vehicle sales or on consumer surplus. As the model documentation states, While OMEGA incorporates functions which generally minimize the cost of meeting a specified carbon dioxide (CO2) target, it is not an economic simulation model which adjusts vehicle sales in response to the cost of the technology added to each vehicle. Changes in the mix of vehicles sold, caused by the costs and benefits of added fuel economy technologies, could make it easier or more difficult for manufacturers to meet fuel economy and emissions standards, and impacts on consumer surplus could raise the costs or augment the benefits of the standards. Because the OMEGA model does not presently estimate such impacts, the EPA is investigating the feasibility of developing an adjunct to the OMEGA model to make such estimates. This project is an effort to develop and test a candidate model. The project statement of work spells out the key functional requirements for the new model.

Liu, Changzheng [ORNL] [ORNL; Greene, David L [ORNL] [ORNL

2012-08-01T23:59:59.000Z

175

Heavy Duty Vehicle Futures Analysis.  

SciTech Connect

This report describes work performed for an Early Career Research and Development project. This project developed a heavy-duty vehicle (HDV) sector model to assess the factors influencing alternative fuel and efficiency technology adoption. This model builds on a Sandia light duty vehicle sector model and provides a platform for assessing potential impacts of technological advancements developed at the Combustion Research Facility. Alternative fuel and technology adoption modeling is typically developed around a small set of scenarios. This HDV sector model segments the HDV sector and parameterizes input values, such as fuel prices, efficiencies, and vehicle costs. This parameterization enables sensitivity and trade space analyses to identify the inputs that are most associated with outputs of interest, such as diesel consumption and greenhouse gas emissions. Thus this analysis tool enables identification of the most significant HDV sector drivers that can be used to support energy security and climate change goals.

Askin, Amanda Christine; Barter, Garrett; West, Todd H.; Manley, Dawn Kataoka

2014-05-01T23:59:59.000Z

176

Detroit Diesel Engine Technology for Light Duty Truck Applications - DELTA Engine Update  

SciTech Connect

The early generation of the DELTA engine has been thoroughly tested and characterized in the virtual lab, during engine dynamometer testing, and on light duty trucks for personal transportation. This paper provides an up-to-date account of program findings. Further, the next generation engine design and future program plans will be briefly presented.

Freese, Charlie

2000-08-20T23:59:59.000Z

177

Development of a Waste Heat Recovery System for Light Duty Diesel Engines  

Energy.gov (U.S. Department of Energy (DOE))

Substantial increases in engine efficiency of a light-duty diesel engine, which require utilization of the waste energy found in the coolant, EGR, and exhaust streams, may be increased through the development of a Rankine cycle waste heat recovery system

178

Light Duty Diesels in the United States - Some Perspectives ...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Particulate Filters: Market Introducution in Europe Diesel Particulate Filter: A Success for Faurecia Exhaust Systems Aftertreatment Modeling Status, Futur Potential, and...

179

Vehicle Technologies Office: Modeling, Testing and Analysis  

NLE Websites -- All DOE Office Websites (Extended Search)

Modeling, Testing and Modeling, Testing and Analysis to someone by E-mail Share Vehicle Technologies Office: Modeling, Testing and Analysis on Facebook Tweet about Vehicle Technologies Office: Modeling, Testing and Analysis on Twitter Bookmark Vehicle Technologies Office: Modeling, Testing and Analysis on Google Bookmark Vehicle Technologies Office: Modeling, Testing and Analysis on Delicious Rank Vehicle Technologies Office: Modeling, Testing and Analysis on Digg Find More places to share Vehicle Technologies Office: Modeling, Testing and Analysis on AddThis.com... Goals Research & Development Testing and Analysis Workplace Charging Community and Fleet Readiness Workforce Development Plug-in Electric Vehicle Basics Modeling, Testing and Analysis The Vehicle Technologies Office's robust portfolio is supported by

180

Hybrid Electric Vehicles - HEV Modeling  

NLE Websites -- All DOE Office Websites (Extended Search)

Modeling Modeling Background Because of time and cost constraints, designers cannot build and test each of the many possible powertrain configurations for advanced vehicles. Thus, developing fuel cells and hybrid electric vehicles (HEVs) requires accurate, flexible simulation tools. Argonne undertook a collaborative effort to further develop Autonomie in collaboration with General Motors. Autonomie is sponsored by the U.S. Department of Energy (DOE) Vehicle Technologies Program. Autonomie is a Plug-and-Play Powertrain and Vehicle Model Architecture and Development Environment to support the rapid evaluation of new powertrain/propulsion technologies for improving fuel economy through virtual design and analysis in a math-based simulation environment. Autonomie is an open architecture to support the rapid integration and analysis of powertrain/propulsion systems and technologies for rapid technology sorting and evaluation of fuel economy improvement under dynamic/transient testing conditions. The capability to sort technologies rapidly in a virtual design environment results in faster improvements in real-world fuel consumption by reducing the time necessary to develop and bring new technologies onto our roads.

Note: This page contains sample records for the topic "light-duty vehicles model" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Summary of results from the National Renewable Energy Laboratory`s vehicle evaluation data collection efforts  

SciTech Connect

The U.S. DOE National Renewable Energy Laboratory conducted a data collection project for light-duty, alternative fuel vehicles (AFVs) for about 4 years. The project has collected data on 10 vehicle models (from the original equipment manufacturers) spanning model years 1991 through 1995. Emissions data have also been collected from a number of vehicles converted to natural gas (CNG) and liquefied petroleum gas (LPG). Most of the vehicles involved in the data collection and evaluation are part of the General Services Administration`s fleet of AFVs. This evaluation effort addressed the performance and reliability, fuel economy, and emissions of light- duty AFVs, with comparisons to similar gasoline vehicles when possible. Driver-reported complaints and unscheduled vehicle repairs were used to assess the performance and reliability of the AFVs compared to the comparable gasoline vehicles. Two sources of fuel economy were available, one from testing of vehicles on a chassis dynamometer, and the other from records of in-service fuel use. This report includes results from emissions testing completed on 169 AFVs and 161 gasoline control vehicles.

Whalen, P.; Kelly, K.; Motta, R.; Broderick, J.

1996-05-01T23:59:59.000Z

182

Renewable Fuel Vehicle Modeling and Analysis | Department of...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Renewable Fuel Vehicle Modeling and Analysis Renewable Fuel Vehicle Modeling and Analysis 2009 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer...

183

AVTA Vehicle Component Cost Model | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Vehicle Component Cost Model AVTA Vehicle Component Cost Model 2010 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010...

184

Household Vehicles Energy Use: Latest Data and Trends  

Reports and Publications (EIA)

This report provides newly available national and regional data and analyzes the nation's energy use by light-duty vehicles. This release represents the analytical component of the report, with a data component having been released in early 2005.

2005-01-01T23:59:59.000Z

185

Tank selection for Light Duty Utility Arm (LDUA) system hot testing in a single shell tank  

SciTech Connect

The purpose of this report is to recommend a single shell tank in which to hot test the Light Duty Utility Arm (LDUA) for the Tank Waste Remediation System (TWRS) in Fiscal Year 1996. The LDUA is designed to utilize a 12 inch riser. During hot testing, the LDUA will deploy two end effectors (a High Resolution Stereoscopic Video Camera System and a Still/Stereo Photography System mounted on the end of the arm`s tool interface plate). In addition, three other systems (an Overview Video System, an Overview Stereo Video System, and a Topographic Mapping System) will be independently deployed and tested through 4 inch risers.

Bhatia, P.K.

1995-01-31T23:59:59.000Z

186

Vehicle Technologies Office: Energy Storage  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Storage Energy Storage Improving the batteries for electric drive vehicles, including hybrid electric (HEV) and plug-in electric (PEV) vehicles, is key to improving vehicles' economic, social, and environmental sustainability. In fact, transitioning to a light-duty fleet of HEVs and PEVs could reduce U.S. foreign oil dependence by 30-60% and greenhouse gas emissions by 30-45%, depending on the exact mix of technologies. For a general overview of electric drive vehicles, see the DOE's Alternative Fuel Data Center's pages on Hybrid and Plug-in Electric Vehicles and Vehicle Batteries. While a number of electric drive vehicles are available on the market, further improvements in batteries could make them more affordable and convenient to consumers. In addition to light-duty vehicles, some heavy-duty manufacturers are also pursuing hybridization of medium and heavy-duty vehicles to improve fuel economy and reduce idling.

187

Vehicle Technologies Office Merit Review 2014: Emissions Modeling...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Feedstocks Vehicles Home About Vehicle Technologies Office Plug-in Electric Vehicles & Batteries Fuel Efficiency & Emissions Alternative Fuels Modeling, Testing, Data & Results...

188

Effects of Ethanol and Volatility Parameters on Exhaust Emissions of Light-Duty Vehicles  

E-Print Network (OSTI)

26-28, 2005 THE EFFECTS OF ETHANOL AND VOLATILITY PARAMETERSare changed to include ethanol. While past studies of theincluding many with ethanol, there are some contradictory

Durbin, T; Miller, J W; Huai, T; Cocker III, D R; Younglove, Y

2005-01-01T23:59:59.000Z

189

Impact of Canadas Voluntary Agreement on Greenhouse Gas Emissions from Light Duty Vehicles  

E-Print Network (OSTI)

Energys Argonne National Laboratory suggests that present corn-energy and GHG reduction can result from the introduction of grain-based corn

Lutsey, Nicholas P.

2006-01-01T23:59:59.000Z

190

Impact of Canada's Voluntary Agreement on Greenhouse Gas Emissions from Light Duty Vehicles  

E-Print Network (OSTI)

Energys Argonne National Laboratory suggests that present corn-energy and GHG reduction can result from the introduction of grain-based corn

Lutsey, Nicholas P.

2006-01-01T23:59:59.000Z

191

Impact of Canadas Voluntary Agreement on Greenhouse Gas Emissions from Light Duty Vehicles  

E-Print Network (OSTI)

components, charge reduction, or an alternative refrigerant,refrigerant system. However, more recent work suggests low-leak, reduced charge,

Lutsey, Nicholas P.

2006-01-01T23:59:59.000Z

192

Impact of Canada's Voluntary Agreement on Greenhouse Gas Emissions from Light Duty Vehicles  

E-Print Network (OSTI)

components, charge reduction, or an alternative refrigerant,refrigerant system. However, more recent work suggests low-leak, reduced charge,

Lutsey, Nicholas P.

2006-01-01T23:59:59.000Z

193

Progress on DOE Vehicle Technologies Light-Duty Diesel Engine Efficiency and Emissions Milestones  

Energy.gov (U.S. Department of Energy (DOE))

The path to 45 percent peak BTE in FY 2010 includes modern base engine plus enabling technologies demonstrated in FY 2008 plus the recovery of thermal energy from the exhaust and EGR systems

194

Impact of Canada's Voluntary Agreement on Greenhouse Gas Emissions from Light Duty Vehicles  

E-Print Network (OSTI)

Department of Energy. Argonne, Illinois. Schwarz, W. and J.of Energy. ANL/ ESD-38. January. Argonne, Illinois Watanabe,

Lutsey, Nicholas P.

2006-01-01T23:59:59.000Z

195

Impact of Canadas Voluntary Agreement on Greenhouse Gas Emissions from Light Duty Vehicles  

E-Print Network (OSTI)

Department of Energy. Argonne, Illinois. Schwarz, W. and J.of Energy. ANL/ ESD-38. January. Argonne, Illinois Watanabe,

Lutsey, Nicholas P.

2006-01-01T23:59:59.000Z

196

Hydrogen Storage Options: Technologies and Comparisons for Light-Duty Vehicle Applications  

E-Print Network (OSTI)

Stetson, N. , Solid Hydrogen Storage Systems for PortableA Review of On-Board Hydrogen Storage Alternatives for FuelA. , Materials for Hydrogen Storage, Materials Today,

Burke, Andrew; Gardnier, Monterey

2005-01-01T23:59:59.000Z

197

Hydrogen Storage Options: Technologies and Comparisons for Light-Duty Vehicle Applications  

E-Print Network (OSTI)

Uhlemann, M. , etals. , Hydrogen Storage in Different CarbonEckert, J. , etals. , Hydrogen Storage in Microporous Metal-16, 2003 40. Smalley,E. , Hydrogen Storage Eased, Technology

Burke, Andy; Gardiner, Monterey

2005-01-01T23:59:59.000Z

198

Hydrogen Storage Options: Technologies and Comparisons for Light-Duty Vehicle Applications  

E-Print Network (OSTI)

10 kpsi) in carbon fiber-composite tanks, liquid hydrogen incarbon fiber is the highest cost material component of high pressure compressed gas tanks.

Burke, Andy; Gardiner, Monterey

2005-01-01T23:59:59.000Z

199

The Diesel Engine Powering Light-Duty Vehicles: Today and Tomorrow  

Energy.gov (U.S. Department of Energy (DOE))

2004 Diesel Engine Emissions Reduction (DEER) Conference Presentation: Volkwagen AG, Wolfsburg, Germany

200

Light-Duty Vehicle CO2 Targets Consistent with 450 ppm CO2 Stabilization  

Science Journals Connector (OSTI)

We include increased shares of unconventional petroleum such as oil sands in the WTT factors, but assume those processes also have efficiency gains (Table S1 in SI-1). ... In a scenario simulating international trade of biofuel, we allow NA and LA to export ethanol to OECD Europe and China so that each of the four regions has the same volume of biofuel available for LDVs beginning in 2030. ... China and OECD Europes glide paths are relaxed by the ethanol imports, increasing 8% and up to 96%, respectively. ...

Sandra L. Winkler; Timothy J. Wallington; Heiko Maas; Heinz Hass

2014-05-05T23:59:59.000Z

Note: This page contains sample records for the topic "light-duty vehicles model" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Hydrogen Storage Options: Technologies and Comparisons for Light-Duty Vehicle Applications  

E-Print Network (OSTI)

hydrogen compressor in parallel with their system to compress boil-off gas. In general the system costs

Burke, Andy; Gardiner, Monterey

2005-01-01T23:59:59.000Z

202

NREL: Vehicle Ancillary Loads Reduction - Integrated Modeling  

NLE Websites -- All DOE Office Websites (Extended Search)

Integrated Modeling Integrated Modeling NREL's Vehicle Ancillary Loads Reduction (VALR) team predicts the impact of advanced vehicle cooling technologies before testing by using an integrated modeling process. Evaluating the heat load on a vehicle under real world conditions is a difficult task. An accepted method to evaluate passenger compartment airflow and heat transfer is computational fluid dynamics. (CFD). Combining analytical models with CFD provides a powerful tool to assist industry both on current vehicles and on future design studies. Flow chart showing the vehicle integrated modeling process which considers solar radiation, air conditioning, and vehicles with CAD, glazing, cabin thermal/fluid, and thermal comfort modeling tools. Results are provided for fuel economy, tailpipe emissions and occupant thermal comfort.

203

Vehicle Technologies Office: Modeling, Testing and Analysis  

NLE Websites -- All DOE Office Websites (Extended Search)

Modeling, Testing and Analysis Modeling, Testing and Analysis The Vehicle Technologies Office's robust portfolio is supported by modeling, testing, and analysis. This work complements the research on batteries, power electronics, and materials, helping researchers integrate these components and ensure the whole vehicle meets consumer and commercial needs. Modeling allows researchers to build "virtual vehicles" that simulate fuel economy, emissions and performance of a potential vehicle. The Office has supported the development of several software-based analytic tools that researchers can use or license. Integration and Validation allows researchers to test physical component and subsystem prototypes as if they are in a real vehicle. Laboratory and Fleet Testing provides data on PEVs through both dynamometer and on-the-road testing. Researchers use the data to benchmark current vehicles, as well as validate the accuracy of software models.

204

Topology-Based Vehicle Systems Modelling.  

E-Print Network (OSTI)

??The simulation tools that are used to model vehicle systems have not been advancing as quickly as the growth of research and technology surrounding the (more)

Yam, Edward

2013-01-01T23:59:59.000Z

205

Heavy Duty Vehicle Modeling & Simulation  

Energy.gov (U.S. Department of Energy (DOE))

2009 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting, May 18-22, 2009 -- Washington D.C.

206

Zero-Emission Vehicle Scenario Cost Analysis Using A Fuzzy Set-Based Framework  

E-Print Network (OSTI)

Now, a portion of the 10% EV sales mandate can be composeda small percentage of EV sales with the ZEV mandate). Withsale of more high-profit, light-duty trucks and sport-utility vehicles under CAFE regulations. EV

Lipman, Timothy Edward

1999-01-01T23:59:59.000Z

207

Traveled distance, stock and fuel efficiency of private vehicles in Canada: price elasticities and rebound effect  

Science Journals Connector (OSTI)

This paper presents estimates of the rebound effect and other elasticities for the Canadian light-duty vehicle fleet using panel data at the provincial level from 1990 to 2004. We estimate a simultaneous three-eq...

Philippe Barla; Bernard Lamonde; Luis F. Miranda-Moreno; Nathalie Boucher

2009-07-01T23:59:59.000Z

208

vehicle | OpenEI  

Open Energy Info (EERE)

vehicle vehicle Dataset Summary Description Supplemental Tables 48-56 of EIA AEO 2011 Early Release Source EIA Date Released December 08th, 2010 (4 years ago) Date Updated Unknown Keywords AEO Annual Energy Outlook EIA Energy Information Administration light-duty sales TEF Transportation Energy Futures vehicle Data text/csv icon Light-Duty_Vehicle_Sales_by_Technology_Type.csv (csv, 1.1 MiB) Quality Metrics Level of Review Some Review Comment Temporal and Spatial Coverage Frequency Annually Time Period 2008-2035 License License Open Data Commons Public Domain Dedication and Licence (PDDL) Comment Rate this dataset Usefulness of the metadata Average vote Your vote Usefulness of the dataset Average vote Your vote Ease of access Average vote Your vote Overall rating Average vote Your vote

209

Piston Bowl Optimization for RCCI Combustion in a Light-Duty Multi-Cylinder Engine  

SciTech Connect

Reactivity Controlled Compression Ignition (RCCI) is an engine combustion strategy that that produces low NO{sub x} and PM emissions with high thermal efficiency. Previous RCCI research has been investigated in single-cylinder heavy-duty engines. The current study investigates RCCI operation in a light-duty multi-cylinder engine at 3 operating points. These operating points were chosen to cover a range of conditions seen in the US EPA light-duty FTP test. The operating points were chosen by the Ad Hoc working group to simulate operation in the FTP test. The fueling strategy for the engine experiments consisted of in-cylinder fuel blending using port fuel-injection (PFI) of gasoline and early-cycle, direct-injection (DI) of diesel fuel. At these 3 points, the stock engine configuration is compared to operation with both the original equipment manufacturer (OEM) and custom machined pistons designed for RCCI operation. The pistons were designed with assistance from the KIVA 3V computational fluid dynamics (CFD) code. By using a genetic algorithm optimization, in conjunction with KIVA, the piston bowl profile was optimized for dedicated RCCI operation to reduce unburned fuel emissions and piston bowl surface area. By reducing these parameters, the thermal efficiency of the engine was improved while maintaining low NOx and PM emissions. Results show that with the new piston bowl profile and an optimized injection schedule, RCCI brake thermal efficiency was increased from 37%, with the stock EURO IV configuration, to 40% at the 2,600 rev/min, 6.9 bar BMEP condition, and NOx and PM emissions targets were met without the need for exhaust after-treatment.

Hanson, Reed M [ORNL; Curran, Scott [ORNL; Wagner, Robert M [ORNL; Reitz, Rolf [University of Wisconsin; Kokjohn, Sage [University of Wisconsin, Madison

2012-01-01T23:59:59.000Z

210

Model Year 2013: Alternative Fuel Vehicles and Advanced Technology Vehicles  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

13: Alternative Fuel and Advanced Technology Vehicles 13: Alternative Fuel and Advanced Technology Vehicles 1 (Updated 3/6/13) 1 Source: http:/afdc.energy.gov/vehicles/search/light/ Fuel/Powertrain Type Make Model Vehicle Type Engine Size/Cylinders Transmission Emissions Class 2 Fuel Economy Gasoline 3,4 City/Hwy Fuel Economy Alt Fuel 3,4 City/Hwy HEV Acura ILX Sedan 1.5L I4 ECVT Tier 2 Bin 3 LEVII PZEV 39 / 38 N/A FFV E85 Audi A4 Sedan 2.0 I4 Auto Tier 2 Bin 5 LEVII ULEV 20 / 29 14 / 20 FFV E85 Audi A5 Sedan 2.0 I4 Auto Tier 2 Bin 5 LEVII ULEV 20 / 29 14 / 20 FFV E85 Audi A5 Cabriolet Sedan 2.0 I4 Auto Tier 2 Bin 5 LEVII ULEV 20 / 29 14 / 20 FFV E85 Audi Allroad Quatro Wagon 2.0 I4 Auto Tier 2 Bin 5 LEVII ULEV 20 / 27 14 / 18 FFV E85 Audi Q5 SUV 2.0 I4 Auto Tier 2 Bin 5 LEVII ULEV 20 / 28 14 / 19 HEV Audi Q5 Hybrid SUV 2.0 I4 Auto Tier 2 Bin 5 LEVII ULEV 24 / 30 N/A FFV E85 Bentley

211

Integrated Mathematical Modeling Software Series of Vehicle Propulsion...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Mathematical Modeling Software Series of Vehicle Propulsion System: (1) Tractive Effort (T sub ew) of Vehicle Road WheelTrack Sprocket Integrated Mathematical Modeling Software...

212

Autonomie Modeling Tool Improves Vehicle Design and Testing,...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Autonomie Modeling Tool Improves Vehicle Design and Testing, Informs New Fuel Economy Standards Autonomie Modeling Tool Improves Vehicle Design and Testing, Informs New Fuel...

213

Advanced Vehicle Testing Activity: Medium- and Heavy-Duty Vehicles  

NLE Websites -- All DOE Office Websites (Extended Search)

Medium- and Medium- and Heavy-Duty Vehicles to someone by E-mail Share Advanced Vehicle Testing Activity: Medium- and Heavy-Duty Vehicles on Facebook Tweet about Advanced Vehicle Testing Activity: Medium- and Heavy-Duty Vehicles on Twitter Bookmark Advanced Vehicle Testing Activity: Medium- and Heavy-Duty Vehicles on Google Bookmark Advanced Vehicle Testing Activity: Medium- and Heavy-Duty Vehicles on Delicious Rank Advanced Vehicle Testing Activity: Medium- and Heavy-Duty Vehicles on Digg Find More places to share Advanced Vehicle Testing Activity: Medium- and Heavy-Duty Vehicles on AddThis.com... Home Overview Light-Duty Vehicles Medium- and Heavy-Duty Vehicles Transit Vehicles Trucks Idle Reduction Oil Bypass Filter Airport Ground Support Equipment Medium and Heavy Duty Hybrid Electric Vehicles

214

Vehicle Systems Integration Laboratory Accelerates Powertrain Development  

ScienceCinema (OSTI)

ORNL's Vehicle Systems Integration (VSI) Laboratory accelerates the pace of powertrain development by performing prototype research and characterization of advanced systems and hardware components. The VSI Lab is capable of accommodating a range of platforms from advanced light-duty vehicles to hybridized Class 8 powertrains with the goals of improving overall system efficiency and reducing emissions.

None

2014-06-25T23:59:59.000Z

215

On-Road Remote Sensing of Vehicle Emissions in Mexico  

Science Journals Connector (OSTI)

The Subsecretara de Ecologa's Office was able to provide vehicle registration information for 10?654 vehicles. ... The groups consisted of all light-duty passenger vehicles, which included vans and sport utility vehicles; light-duty pickup trucks; Eco taxis (ecological taxis are taxis for hire that are required by the Mexican government to be post-1990 gasoline powered and are painted green and white to signify this); post 1990-VW sedans (including any Eco taxis, nicknamed Beetles in the United States); pre-1991 VW sedans (including any painted as if an Eco taxi); gasoline-powered micro-transit buses, diesel-powered transit buses, and trucks larger than pickup trucks. ...

Gary A. Bishop; Donald H. Stedman; Julin de la Garza Castro; Franciso J. Dvalos

1997-11-26T23:59:59.000Z

216

Development of a dedicated ethanol ultra-low-emissions vehicle (ULEV): Phase 3 report  

SciTech Connect

The objective of the 3.5 year project discussed in this report was to develop a commercially competitive vehicle powered by ethanol (or an ethanol blend) that can meet California`s Ultra Low Emissions Vehicle (ULEV) standards and equivalent Corporate Average Fuel Economy (CAFE) energy efficiency for a light duty passenger car application. This particular report summarizes the third phase of the project, which lasted 12 months. Emissions tests were conducted with advanced after-treatment devices on one of the two, almost identical, test vehicles, a 1993 Ford Taurus flexible fuel vehicle. The report also covers tests on the engine removed from the second Taurus vehicle. This engine was modified for an increased compression ratio, fitted with air assist injectors, and included an advanced engine control system with model-based control.

Dodge, L.; Callahan, T.; Leone, D.; Naegeli, D.; Shouse, K.; Smith, L.; Whitney, K. [Southwest Research Inst., San Antonio, TX (United States)] [Southwest Research Inst., San Antonio, TX (United States)

1998-04-01T23:59:59.000Z

217

Light-Duty Diesel EngineTechnology to Meet Future Emissions and...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Vehicles 0 10 20 30 40 50 60 2000 3000 4000 5000 6000 7000 8000 Gross Vehicle Weight (lb) Combined Cycle MPG (US) . Gasoline Diesel Diesel average +45% MPG benefit Vehicle range...

218

www.steps.ucdavis.edu How vehicle fuel economy improvements can  

E-Print Network (OSTI)

from Internal Combustion Engine (ICE) vehicles · Role of plug-in electric vehicles (PEV) · Relative are very cost- effective Fuel savings more than pays for fuel economy improvements in light-duty vehicles Fuelsavings #12;7 Some cost/benefit estimates FE Improvement, hybrids, PEVs v. a base ICE vehicle over time

California at Davis, University of

219

Clean Cities 2013 Vehicle Buyer's Guide (Brochure), Energy Efficiency & Renewable Energy (EERE)  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Natural Gas Natural Gas Propane Electric Hybrid Ethanol Flex-Fuel Biodiesel Vehicle Buyer's Guide Clean Cities 2013 Today's auto manufacturers offer hundreds of light-duty vehicle models that take advantage of alternative fuels and advanced technologies in order to help drivers and fleets reduce petroleum use, cut emissions, and save on fuel costs. This guide features a comprehensive list of such vehicles set to arrive in Model Year 2013. Contents Introduction . . . . . . . . . . . . . . . . . 4 About This Guide . . . . . . . . . . . . 5 Compressed Natural Gas . . . . . 6 Propane . . . . . . . . . . . . . . . . . . . . 10 All-Electric . . . . . . . . . . . . . . . . . . 12 Plug-In Hybrid Electric . . . . . . . 16 Hybrid Electric . . . . . . . . . . . . . . 18 Ethanol Flex-Fuel . . . . . . . . . . . . 24 Biodiesel . . . . . . . . . . . . . . . . . . . 34 Vehicle Buyer's Guide Clean Cities 2013 Disclaimers This report was

220

NREL: Vehicles and Fuels Research - Vehicle Ancillary Loads Reduction  

NLE Websites -- All DOE Office Websites (Extended Search)

Research Research Search More Search Options Site Map Photo of Advanced Automotive Manikin Reducing fuel consumption by air conditioning systems is the focus of Vehicle Ancillary Loads Reduction (VALR) activities at NREL. About 7 billion gallons of fuel-about 5.5% of total national light-duty vehicle fuel use-are used annually just to cool light-duty vehicles in the United States. That's why our VALR team works with industry to help increase fuel economy and reduce tailpipe emissions by reducing the ancillary loads requirements in vehicles while maintaining the thermal comfort of the passengers. Approaches include improved cabin insulation, advanced window systems, advanced cooling and venting systems, and heat generated cooling. Another focus of the VALR project is ADAM, the ADvanced Automotive Manikin

Note: This page contains sample records for the topic "light-duty vehicles model" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Propane-Fueled Vehicle Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Propane-Fueled Vehicle Basics Propane-Fueled Vehicle Basics Propane-Fueled Vehicle Basics August 20, 2013 - 9:16am Addthis There are more than 270,000 on-road propane vehicles in the United States and more than 10 million worldwide. Many are used in fleets, including light- and heavy-duty trucks, buses, taxicabs, police cars, and rental and delivery vehicles. Compared with vehicles fueled with conventional diesel and gasoline, propane vehicles can produce significantly fewer harmful emissions. The availability of new light-duty original equipment manufacturer propane vehicles has declined in recent years. However, certified installers can economically and reliably retrofit many light-duty vehicles for propane operation. Propane engines and fueling systems are also available for heavy-duty vehicles such as school buses and street sweepers.

222

High Efficiency Clean Combustion in Multi-Cylinder Light-Duty Engines  

Energy.gov (U.S. Department of Energy (DOE))

2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation

223

High Efficiency Clean Combustion in Multi-Cylinder Light-Duty Engines  

Energy.gov (U.S. Department of Energy (DOE))

2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

224

High Efficiency Clean Combustion in Multi-Cylinder Light-Duty Engines  

Energy.gov (U.S. Department of Energy (DOE))

2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

225

Australia's Green Vehicle Guide | Open Energy Information  

Open Energy Info (EERE)

Australia's Green Vehicle Guide Australia's Green Vehicle Guide Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Australia's Green Vehicle Guide Agency/Company /Organization: Commonwealth of Australia Focus Area: Vehicles, Fuel Efficiency Topics: Analysis Tools, Market Analysis Website: www.greenvehicleguide.gov.au/GVGPublicUI/home.aspx Equivalent URI: cleanenergysolutions.org/content/australias-green-vehicle-guide,http:/ Language: English Policies: Regulations Regulations: Fuel Efficiency Standards The Green Vehicle Guide provides information about the environmental performance of new light-duty vehicles sold in Australia, including carbon dioxide (CO2) emissions and fuel consumption. The Guide includes resources such as a fuel calculator, electric vehicle information and a truck buyers

226

The Household Market for Electric Vehicles: Testing the Hybrid Household Hypothesis -- A Reflexively Designed Survey of New-Car-Buying Multi-Vehicle California Households  

E-Print Network (OSTI)

EV,then we expect 13.3 to 15.2% of all light-duty vehicle sales,EV marketpotential for smaller and shorter range velucles represented by our sampleis about 7%of annual, newhght duty vehicle sales.EV body styles" EVs ICEVs Total PAGE 66 THE HOUSEHOLD MA RKET FOR ELECTRIC VEHICLES percent mandatein the year 2003will dependon sales

Turrentine, Thomas; Kurani, Kenneth S.

2001-01-01T23:59:59.000Z

227

Natural gas as a fuel for road vehicles  

Science Journals Connector (OSTI)

The operation of light duty and heavy duty vehicles on natural gas for vehicles (NGV) is discussed in terms of the fuel combustion differences compared with conventional fuels, and engine design changes needed to match the fuel characteristics of NGV. Engine management system requirements are discussed, emissions performance of NGV-fuelled engines is described and fuel storage and supply issues are considered.

E.E. Milkins; J.D. Edsell

1996-01-01T23:59:59.000Z

228

The IMPACTT model: Structure and technical description  

SciTech Connect

The Integrated Market Penetration and Anticipated Cost of Transportation Technologies model, or IMPACTT, is a spreadsheet model that calculates the effect of advanced-technology vehicles and market penetration on baseline fuel use and emissions. Outputs include estimates of the quantity and value of oil displaced and emissions reduced by advanced-technology vehicles, the quantity of alternative fuels they consume, and the total incremental costs bome by purchasers of advanced-technology vehicles. In the current version of IMPACTT, up to eight fuel or engine technologies applicable to light-duty vehicles can be modeled by using a three-phase approach. First, the vehicle stock and miles traveled by the advanced-technology vehicle are determined. Second, assumptions about efficiency and fuel shares are used to estimate substitution-fuel use and oil displacement. Third, changes in emissions of carbon monoxide, non-methane hydrocarbons, nitrogen oxides, and carbon dioxide are computed.

Mintz, M.M.; Tompkins, M.M.; Camp, J.

1994-12-01T23:59:59.000Z

229

Alternative Fuels Data Center: Low Emission Vehicle (LEV) Standards  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Low Emission Vehicle Low Emission Vehicle (LEV) Standards to someone by E-mail Share Alternative Fuels Data Center: Low Emission Vehicle (LEV) Standards on Facebook Tweet about Alternative Fuels Data Center: Low Emission Vehicle (LEV) Standards on Twitter Bookmark Alternative Fuels Data Center: Low Emission Vehicle (LEV) Standards on Google Bookmark Alternative Fuels Data Center: Low Emission Vehicle (LEV) Standards on Delicious Rank Alternative Fuels Data Center: Low Emission Vehicle (LEV) Standards on Digg Find More places to share Alternative Fuels Data Center: Low Emission Vehicle (LEV) Standards on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Low Emission Vehicle (LEV) Standards Any new light-duty passenger car, light-duty truck, or medium-duty

230

DOD/NREL Model Integrates Vehicles, Renewables & Microgrid (Fact Sheet)  

SciTech Connect

Fact sheet on microgrid model created by the Electric Vehicle Grid Integration program at the Fort Carson Army facility.

Not Available

2011-02-01T23:59:59.000Z

231

High Efficiency Clean Combustion in Multi-Cylinder Light-Duty...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

not contain any proprietary, confidential, or otherwise restricted information. 2013 DOE Hydrogen Program and Vehicle Technologies Annual Merit Review May 14, 2013 Gurpreet...

232

High-Efficiency Clean Combustion in Light-Duty Multi-Cylinder Diesel Engines  

Energy.gov (U.S. Department of Energy (DOE))

2010 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C.

233

High Efficiency Clean Combustion in Multi-Cylinder Light-Duty Engines  

Energy.gov (U.S. Department of Energy (DOE))

2009 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting, May 18-22, 2009 -- Washington D.C.

234

Modeling and Simulation of Electric and Hybrid Vehicles  

E-Print Network (OSTI)

, and fuel cell vehicles, such as electric machines, power electronics, electronic continuously variableINVITED P A P E R Modeling and Simulation of Electric and Hybrid Vehicles Tools that can model embedded software as well as components, and can automate the details of electric and hybrid vehicle design

Mi, Chunting "Chris"

235

NREL: Vehicle Ancillary Loads Reduction - Physiological Model  

NLE Websites -- All DOE Office Websites (Extended Search)

Physiological Model Physiological Model The Vehicle Ancillary Loads Reduction team developed a three-dimensional model to simulate human internal thermal physiological systems (muscle, blood, etc.) and thermoregulatory responses such as metabolic heat generation. The model was developed with ANSYS, a finite element software which computes heat flow by conduction, convection, and mass transport of the blood. A human tissue system model represents the human body, including the physiological and thermal properties of the tissues. The arms and legs consist of bone, muscle, fat, and skin. There are additional lung, abdominal, and brain tissues in the torso and head zones. The model calculates the conduction heat transfer based on the temperature gradients between the tissue nodes. Blood flow is modeled with a network of supply

236

Drive Cycle Powertrain Efficiencies and Trends Derived From EPA Vehicle Dynamometer Results  

SciTech Connect

Vehicle manufacturers among others are putting great emphasis on improving fuel economy (FE) of light-duty vehicles in the U.S. market, with significant FE gains being realized in recent years. The U.S. Environmental Protection Agency (EPA) data indicates that the aggregate FE of vehicles produced for the U.S. market has improved by over 20% from model year (MY) 2005 to 2013. This steep climb in FE includes changes in vehicle choice, improvements in engine and transmission technology, and reducing aerodynamic drag, rolling resistance, and parasitic losses. The powertrain related improvements focus on optimizing in-use efficiency of the transmission and engine as a system, and may make use of what is termed downsizing and/or downspeeding. This study explores quantifying recent improvements in powertrain efficiency, viewed separately from other vehicle alterations and attributes (noting that most vehicle changes are not completely independent). A methodology is outlined to estimate powertrain efficiency for the U.S city and highway cycle tests using data from the EPA vehicle database. Comparisons of common conventional gasoline powertrains for similar MY 2005 and 2013 vehicles are presented, along with results for late-model hybrid electric vehicles, the Nissan Leaf, Chevy Volt and other selected vehicles.

Thomas, John F [ORNL

2014-01-01T23:59:59.000Z

237

Fact #598: November 23, 2009 Hybrid Vehicle Sales by Model  

Energy.gov (U.S. Department of Energy (DOE))

The number of all light vehicles sold declined about 18% from 2007 to 2008, while the number of hybrid vehicles sold declined about 11%. Five new hybrid models were sold in 2008; other than those,...

238

Phenomenological Driving Behavior Model of the Suburban Vehicle-to-Vehicle Propagation Channel at  

E-Print Network (OSTI)

Phenomenological Driving Behavior Model of the Suburban Vehicle-to-Vehicle Propagation Channel at 5 a hierarchical phenomenological model of driving behavior to describe this observation. As an example, we a phenomenological model in a hierarchical manner to describe the expected relative velocity vs. distance of two

Stancil, Daniel D.

239

Opportunity Assessment Clean Diesels in the North American Light Duty Market  

Energy.gov (U.S. Department of Energy (DOE))

Presentation given at the 2007 Diesel Engine-Efficiency & Emissions Research Conference (DEER 2007). 13-16 August, 2007, Detroit, Michigan. Sponsored by the U.S. Department of Energy's (DOE) Office of FreedomCAR and Vehicle Technologies (OFCVT).

240

Post Mortem of 120k mi Light-Duty Urea SCR and DPF System  

Energy.gov (U.S. Department of Energy (DOE))

Presentation given at the 2007 Diesel Engine-Efficiency & Emissions Research Conference (DEER 2007). 13-16 August, 2007, Detroit, Michigan. Sponsored by the U.S. Department of Energy's (DOE) Office of FreedomCAR and Vehicle Technologies (OFCVT).

Note: This page contains sample records for the topic "light-duty vehicles model" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Model Year 2013 SmartWay Vehicles  

NLE Websites -- All DOE Office Websites (Extended Search)

SmartWay Vehicles SmartWay Vehicles Updated August 14, 2013* *Vehicles may be added throughout the model year. Please check back for updates. Page 1 of 13 Model Displ Cyl Trans Drive Fuel Sales Area Stnd Stnd Description Underhood ID Veh Class Air Pollution Score City MPG Hwy MPG Cmb MPG Greenhouse Gas Score SmartWay ACURA ILX 1.5 4 SCV-7 2WD Gasoline FC B3 Federal Tier 2 Bin 3 DHNXV01.5WF2 small car 7 39 38 38 9 yes ACURA ILX 1.5 4 SCV-7 2WD Gasoline FA B2 Federal Tier 2 Bin 2 DHNXV01.5YD2 small car 8 39 38 38 9 yes ACURA ILX 1.5 4 SCV-7 2WD Gasoline CA PZEV California PZEV DHNXV01.5YD2 small car 9 39 38 38 9 yes ACURA ILX 2 4 SemiAuto-5 2WD Gasoline CA U2 California LEV-II ULEV DHNXV02.0CB2 small car 6 24 35 28 7 yes ACURA TSX 2.4 4 SemiAuto-5 2WD Gasoline CA U2 California LEV-II ULEV DHNXV02.4DB3 small car 6 22 31 26 7 yes AUDI A3 2 4 AMS-6 2WD Diesel FA B5 Federal Tier 2 Bin 5

242

Model Year 2014 SmartWay Vehicles  

NLE Websites -- All DOE Office Websites (Extended Search)

SmartWay Vehicles SmartWay Vehicles Updated December 20, 2013* *Vehicles may be added throughout the model year. Please check back for updates. Page 1 of 14 Model Displ Cyl Trans Drive Fuel Sales Area Stnd Stnd Description Underhood ID Veh Class Smog Rating City MPG Hwy MPG Cmb MPG Greenhouse Gas Rating SmartWay ACURA ILX 1.5 4 SCV-7 2WD Gasoline FA B2 Federal Tier 2 Bin 2 EHNXV01.58D2 small car 9 39 38 38 9 yes ACURA ILX 1.5 4 SCV-7 2WD Gasoline CA PZEV California PZEV EHNXV01.58D2 small car 9 39 38 38 9 yes ACURA ILX 2 4 SemiAuto-5 2WD Gasoline CA U2 California LEV-II ULEV EHNXV02.0EB3 small car 6 24 35 28 7 yes ACURA RLX 3.5 6 SemiAuto-7 4WD Gasoline FA B3 Federal Tier 2 Bin 3 EHNXV03.52G2 midsize car 7 28 32 30 8 yes ACURA RLX 3.5 6 SemiAuto-7 4WD Gasoline CA L3SULEV30 California LEV-III SULEV30 EHNXV03.52G2 midsize car 8 28 32 30 8 yes ACURA TSX 2.4 4 SemiAuto-5

243

Flexible Fuel Vehicles: Providing a Renewable Fuel Choice, Vehicle Technologies Program (VTP) (Fact Sheet)  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

an FFV? an FFV? An FFV, as its name implies, has the flex- ibility of running on more than one type of fuel. FFVs can be fueled with unleaded gasoline, E85, or any combination of the two. Like conventional gasoline vehicles, FFVs have a single fuel tank, fuel system, and engine. And they are available in a wide range of models such as sedans, pickups, and minivans. Light-duty FFVs are designed to operate with at least 15% gasoline in the fuel, mainly to ensure they start in cold weather. FFVs are equipped with modified components designed specifically to be compatible with ethanol's chemical properties. In the illustration on the back, the main modifications for FFVs are

244

Alternative Fuel Evaluation Program: Alternative Fuel Light Duty Vehicle Project - Data collection responsibilities, techniques, and test procedures  

SciTech Connect

This report describes the data gathering and analysis procedures that support the US Department of Energy`s implementation of the Alternative Motor Fuels Act (AMFA) of 1988. Specifically, test procedures, analytical methods, and data protocols are covered. The aim of these collection and analysis efforts, as mandated by AMFA, is to demonstrate the environmental, economic, and performance characteristics of alternative transportation fuels.

none,

1992-07-01T23:59:59.000Z

245

Future Potential of Hybrid and Diesel Powertrains in the U.S. Light-Duty Vehicle Market  

Energy.gov (U.S. Department of Energy (DOE))

2004 Diesel Engine Emissions Reduction (DEER) Conference Presentation: Oak Ridge National Laboratory

246

Commercializing light-duty plug-in/plug-out hydrogen-fuel-cell vehicles: Mobile Electricity technologies and opportunities  

E-Print Network (OSTI)

fuel-cell power production efficiencies, and engine degradationfuel-cell power production efficiencies, cooling requirements, and engine degradation

Williams, Brett D; Kurani, Kenneth S

2007-01-01T23:59:59.000Z

247

Commercializing light-duty plug-in/plug-out hydrogen-fuel-cell vehicles: Mobile Electricity technologies and opportunities  

E-Print Network (OSTI)

C. E. S. Thomas, "Hydrogen and Fuel Cells: Pathway to a4-2 incorporates hydrogen and fuel cells into a roadmap thatdevelopment efforts. Hydrogen and fuel-cell technologies are

Williams, Brett D; Kurani, Kenneth S

2007-01-01T23:59:59.000Z

248

Commercializing light-duty plug-in/plug-out hydrogen-fuel-cell vehicles: Mobile Electricity technologies and opportunities  

E-Print Network (OSTI)

power, and heat generation), and grid-side benefits (peakpre-) heat/cool, etc. ); home recharging using off-peak grid

Williams, Brett D; Kurani, Kenneth S

2007-01-01T23:59:59.000Z

249

Commercializing light-duty plug-in/plug-out hydrogen-fuel-cell vehicles: Mobile Electricity technologies and opportunities  

E-Print Network (OSTI)

battery Type Capacity (kWh) Saft Li- Ion Valence LiIon LiIonOvonic NiMH A-hr, 336V) Saft Li-Ion Valence LiIon EEEI

Williams, Brett D; Kurani, Kenneth S

2007-01-01T23:59:59.000Z

250

Parameter estimation of a linear vehicle model  

E-Print Network (OSTI)

(1987) . It has already been seen that the discrete-time vehicle model can be described by equation 5. 1 as Y(kr) = Md CdY((k 1)r) Md Rdr((k 2)Y) +ldd SldU((k 1)Y) + Md 82dU((k 1)Y) + N(kr) + Md CdN((k-1)Y) + ldd RdN((k ? 2) Y) A discrete state...-space representation of the model of the form T(k+1) = [F ]T(k) + [G ]U? X(k) = [HQT(k) Y(k) = X(k) + N(k) is now sought. If the state vector I (k) is given by (5. 28) x(k) 1(k) = X(k+1) Md SldU(k) then the state-space model can be described as follows: (5...

Helin, Franz

1990-01-01T23:59:59.000Z

251

Advanced Vehicle Testing Activity: Overview  

NLE Websites -- All DOE Office Websites (Extended Search)

Overview to Overview to someone by E-mail Share Advanced Vehicle Testing Activity: Overview on Facebook Tweet about Advanced Vehicle Testing Activity: Overview on Twitter Bookmark Advanced Vehicle Testing Activity: Overview on Google Bookmark Advanced Vehicle Testing Activity: Overview on Delicious Rank Advanced Vehicle Testing Activity: Overview on Digg Find More places to share Advanced Vehicle Testing Activity: Overview on AddThis.com... Home Overview Light-Duty Vehicles Medium- and Heavy-Duty Vehicles Publications Overview The marketplace for advanced transportation technologies and the focus, direction, and funding of transportation programs are continually changing. The Advanced Vehicle Testing Activity's "2005 Overview of Advanced Technology Transportation" (PDF 736 KB) gives the latest information about

252

Modeling and adaptive control of indoor unmanned aerial vehicles  

E-Print Network (OSTI)

The operation of unmanned aerial vehicles (UAVs) in constrained indoor environments presents many unique challenges in control and planning. This thesis investigates modeling, adaptive control and trajectory optimization ...

Michini, Bernard (Bernard J.)

2009-01-01T23:59:59.000Z

253

Testing Electric Vehicle Demand in "Hybrid Households" Using a Reflexive Survey  

E-Print Network (OSTI)

EV market studies In the absenceof data on actual sales,EV, then we expect 16 to 18% annual of of light-duty vehicle salesEV experiments indicate there is still more than adequatepotential marketsfor electric vehicles to have , exceededthe former 1998CARB mandatefor sales

Kurani, Kenneth S.; Turrentine, Thomas; Sperling, Daniel

2001-01-01T23:59:59.000Z

254

Supporting Multidisciplinary Vehicle Analysis Using a Vehicle Reference Architecture Model in SysML  

Science Journals Connector (OSTI)

To develop competitive vehicles with ever increasing complexity, automotive designers need to improve their ability to explore a broad range of system architectures efficiently and effectively. Whereas traditional vehicle systems are based on internal combustion (IC) engines, today's environmentally conscious vehicle manufacturers must consider alternatives to the IC engine- only systems such as hybrid or electric systems. To design a good vehicle, it is necessary to analyze each of these system architectures from a variety of perspectives including performance, fuel economy, or even thermal behavior. Creating all the necessary analysis models for all possible system architectures manually is very time-consuming, expensive, and error-prone. To overcome such challenges, a novel approach has been developed for partly automatically generating subsystem model templates to support the integration of analysis models in a consistent and convenient fashion. The approach starts from a Vehicle Reference Architecture (VRA) model defined in the Systems Modeling Language (OMG SysMLTM). After specialization of this VRA into a specific vehicle program model, this SysML model is automatically transformed into Modelica and Simulink templates for the corresponding analysis models. These templates embody interfaces that fit into a system-level integrated model so that individual subsystem experts can focus on modeling the physical or controls behavior of their particular subsystem without having to worry about subsequent integration issues. The subsystem template models guarantee consistency in the integration phase. The entire approach introduced in this paper is called the Vehicle Architecture Modeling Framework (VAMF), which includes the SysML VRA model, the corresponding analysis templates, and the transformation tools developed to support the approach. Throughout this paper, a specific (realistic but sanitized) vehicle program and a full pedal acceleration analysis test scenario are used as demonstration examples.

Jaclyn M. Branscomb; Christiaan J.J. Paredis; Judy Che; Mark J. Jennings

2013-01-01T23:59:59.000Z

255

VISION Model for Vehicle Technologies and Alternative Fuels | Open Energy  

Open Energy Info (EERE)

VISION Model for Vehicle Technologies and Alternative Fuels VISION Model for Vehicle Technologies and Alternative Fuels Jump to: navigation, search Tool Summary LAUNCH TOOL Name: VISION Model for Vehicle Technologies and Alternative Fuels Agency/Company /Organization: Argonne National Laboratory Sector: Energy Focus Area: Transportation Phase: Create a Vision Resource Type: Software/modeling tools User Interface: Desktop Application Website: www.transportation.anl.gov/modeling_simulation/VISION/ OpenEI Keyword(s): EERE tool, VISION Model for Vehicle Technologies and Alternative Fuels References: The VISION Model [1] Estimate the potential energy use, oil use, and carbon emission impacts of advanced light and heavy-duty vehicle technologies and alternative fuels through 2050. The VISION model has been developed to provide estimates of the potential

256

Engine coolant technology, performance, and life for light-duty applications  

SciTech Connect

Recently there has been interest by motor vehicle manufacturers in developing longer-lived automotive engine coolants with an emphasis on organic acid technology (OAT). Paradoxically, the lifetime of conventional technology remains largely undefined. Concerns arising from the depleting nature of silicate have led to modern conservative change recommendations of 30,000 to 50,000 miles ({approximately}48,279 to 80,464 km). In the present work, laboratory bench test, engine dynamometer and vehicle service data from traditional silicate, hybrid and nonsilicate coolants are compared and contrasted. A new electrochemical test is used to examine passivation kinetics on aluminum. It is shown that performance and lifetime are independent of chemistry and cannot be generalized. Examples include an American silicate coolant with excellent performance on high-heat-rejecting aluminum (80 W/cm{sup 2}). European and American silicate coolants with performance defined lifetimes in excess of 300,000 miles (482,790 km), and an OAT coolant with laboratory high lead solder protection. It is concluded that the primary benefit of OAT is to meet global specifications that include chemical limitations.

Turcotte, D.E.; Lockwood, F.E. [Valvoline Co., Lexington, KY (United States); Pfitzner, K.K.; Meszaros, L.L. [BASF Aktiengesellschaft, Ludwigshafen (Germany); Listebarger, J.K. [Ashland Chemical, Dublin, OH (United States)

1999-08-01T23:59:59.000Z

257

Heavy Duty Vehicle Modeling and Simulation  

Energy.gov (U.S. Department of Energy (DOE))

2010 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C.

258

Parametric study for a ceramic diesel particulate trap application on a light duty truck  

Science Journals Connector (OSTI)

The paper presents the results of an experimental evaluation of a number of parameters affecting both the loading and the regeneration conditions of the cellular cordierite diesel particulate filler (DPF), when a cerium based fuel additive is used to enhance regeneration at low temperatures. The parameters studied comprised the size of the filter, its positioning along the exhaust pipe and the additive concentration in the fuel. The results show that filter regeneration was always possible at continuous low speed driving at relatively high filter backpressure levels, with a measurable effect on fuel consumption. On the other hand, the New European Driving Cycle, with alternate urban and extra urban operation of the vehicle, always provides the necessary conditions for trap regeneration, affecting neither the fuel consumption nor the maximum engine power output.

Konstantin Pattas; Nikolas Kyriakis; Zissis Samaras; Theodoros Manikas; Panaylotis Pistikopoulos; William Mustelt; Pierre Rouveirolles

1998-01-01T23:59:59.000Z

259

Model Year 2004 SmartWay Vehicles  

NLE Websites -- All DOE Office Websites (Extended Search)

SmartWay Vehicles SmartWay Vehicles Page 1 of 5 Model Displ Cyl Trans Drive Fuel Sales Area Stnd Underhood ID Veh Class Air Pollution Score City MPG Hwy MPG Cmb MPG Greenhouse Gas Score SmartWay ACURA RSX 2 (4 cyl) Man-6 2WD Gasoline FA B5 4HNXV02.0RKC small car 6 21 28 24 7 yes ACURA RSX 2 (4 cyl) Auto-S5 2WD Gasoline FA B5 4HNXV02.0XKC small car 6 22 31 25 7 yes ACURA RSX 2 (4 cyl) Man-5 2WD Gasoline FA B5 4HNXV02.0XKC small car 6 24 30 26 8 yes ACURA RSX 2 (4 cyl) Man-6 2WD Gasoline CA LEV 4HNXV02.0RKC small car 6 21 28 24 7 yes ACURA RSX 2 (4 cyl) Auto-S5 2WD Gasoline CA LEV 4HNXV02.0XKC small car 6 22 31 25 7 yes ACURA RSX 2 (4 cyl) Man-5 2WD Gasoline CA LEV 4HNXV02.0XKC small car 6 24 30 26 8 yes ACURA TL 3.2 (6 cyl) Auto-S5 2WD Gasoline CA U2 4HNXV03.2CKR midsize car 7 18 26 21 6 yes ACURA TL 3.2 (6 cyl) Man-6 2WD Gasoline CA U2 4HNXV03.2CKR midsize car 7 18 28 21 6 yes ACURA TSX 2.4 (4 cyl) Auto-S5

260

Model Year 2005 SmartWay Vehicles  

NLE Websites -- All DOE Office Websites (Extended Search)

SmartWay Vehicles SmartWay Vehicles Page 1 of 9 Model Displ Cyl Trans Drive Fuel Sales Area Stnd Underhood ID Veh Class Air Pollution Score City MPG Hwy MPG Cmb MPG Greenhouse Gas Score SmartWay ACURA RSX 2 (4 cyl) Man-6 2WD Gasoline FA B5 5HNXV02.0HKC small car 6 20 28 23 7 yes ACURA RSX 2 (4 cyl) Auto-S5 2WD Gasoline FA B5 5HNXV02.4KBP small car 6 22 31 25 7 yes ACURA RSX 2 (4 cyl) Man-5 2WD Gasoline FA B5 5HNXV02.4KBP small car 6 24 31 26 8 yes ACURA RSX 2 (4 cyl) Man-6 2WD Gasoline CA L2 5HNXV02.0HKC small car 6 20 28 23 7 yes ACURA RSX 2 (4 cyl) Auto-S5 2WD Gasoline CA L2 5HNXV02.4KBP small car 6 22 31 25 7 yes ACURA RSX 2 (4 cyl) Man-5 2WD Gasoline CA L2 5HNXV02.4KBP small car 6 24 31 26 8 yes ACURA TL 3.2 (6 cyl) Auto-S5 2WD Gasoline CA U2 5HNXV03.24B4 midsize car 7 18 26 21 6 yes ACURA TL 3.2 (6 cyl) Man-6 2WD Gasoline CA U2 5HNXV03.24B4 midsize car 7 18 26 21 6 yes ACURA TSX 2.4 (4 cyl) Auto-S5 2WD

Note: This page contains sample records for the topic "light-duty vehicles model" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Model Year 2002 SmartWay Vehicles  

NLE Websites -- All DOE Office Websites (Extended Search)

SmartWay Vehicles SmartWay Vehicles Page 1 of 1 Model Displ Cyl Trans Drive Fuel Sales Area Stnd Underhood ID Veh Class Air Pollution Score City MPG Hwy MPG Cmb MPG GHG Score SmartWay ACURA RSX 2 (4 cyl) Man-6 2WD Gasoline CL LEV 2HNXV02.0EKC small car 6 21 28 24 7 yes ACURA RSX 2 (4 cyl) Auto-S5 2WD Gasoline CL LEV 2HNXV02.0VBP small car 6 21 30 24 7 yes ACURA RSX 2 (4 cyl) Man-5 2WD Gasoline CL LEV 2HNXV02.0VBP small car 6 23 30 26 8 yes HONDA Accord 2.3 (4 cyl) Auto-L4 2WD Gasoline CA SLEV 2HNXV02.3FK6 midsize car 9 20 28 23 7 yes HONDA CR-V 2.4 (4 cyl) Auto-L4 2WD Gasoline NF LEV 2HNXT02.4YBP SUV 6 20 26 23 7 yes HONDA Civic 1.7 (4 cyl) Auto-AV 2WD CNG CA SLEV 2HNXV01.74WN small car 9.5 26 31 28 9 yes HONDA Civic 1.7 (4 cyl) Auto-AV 2WD CNG NL+CF ULEV 2HNXV01.74WN small car 9 26 31 28 9 yes HONDA Civic 2 (4 cyl) Man-5 2WD Gasoline CL LEV 2HNXV02.0VBP small car 6 23 28 25 7 yes HONDA Insight 1 (3 cyl)

262

Model Year 2006 SmartWay Vehicles  

NLE Websites -- All DOE Office Websites (Extended Search)

SmartWay Vehicles SmartWay Vehicles Page 1 of 11 Model Displ Cyl Trans Drive Fuel Sales Area Stnd Underhood ID Veh Class Air Pollution Score City MPG Hwy MPG Cmb MPG Greenhouse Gas Score SmartWay ACURA RSX 2 (4 cyl) Man-6 2WD Gasoline FA B5 6HNXV02.0DKC small car 6 20 28 23 7 yes ACURA RSX 2 (4 cyl) Auto-S5 2WD Gasoline FA B5 6HNXV02.0DKC small car 6 22 31 25 7 yes ACURA RSX 2 (4 cyl) Man-5 2WD Gasoline FA B5 6HNXV02.0DKC small car 6 24 31 26 8 yes ACURA RSX 2 (4 cyl) Man-6 2WD Gasoline CA L2 6HNXV02.0DKC small car 6 20 28 23 7 yes ACURA RSX 2 (4 cyl) Auto-S5 2WD Gasoline CA L2 6HNXV02.0DKC small car 6 22 31 25 7 yes ACURA RSX 2 (4 cyl) Man-5 2WD Gasoline CA L2 6HNXV02.0DKC small car 6 24 31 26 8 yes ACURA TL 3.2 (6 cyl) Auto-S5 2WD Gasoline CA U2 6HNXV03.2NKR midsize car 7 18 26 21 6 yes ACURA TL 3.2 (6 cyl) Man-6 2WD Gasoline CA U2 6HNXV03.2NKR midsize car 7 18 26 21 6 yes ACURA TSX 2.4 (4 cyl) Auto-S5 2WD

263

Model Year 2011 SmartWay Vehicles  

NLE Websites -- All DOE Office Websites (Extended Search)

SmartWay Vehicles SmartWay Vehicles Page 1 of 10 Model Displ Cyl Trans Drive Fuel Sales Area Stnd Stnd Description Underhood ID Veh Class Air Pollution Score City MPG Hwy MPG Cmb MPG Greenhouse Gas Score SmartWay ACURA TSX 2.4 4 SemiAuto-5 2WD Gasoline CA U2 California LEV-II ULEV BHNXV02.4DB9 small car 6 22 31 26 6 yes ACURA TSX Wagon 2.4 4 SemiAuto-5 2WD Gasoline CA U2 California LEV-II ULEV BHNXV02.4DB9 station wagon 6 22 30 25 6 yes AUDI A3 2 4 SemiAuto-6 2WD Diesel CA U2 California LEV-II ULEV BVWXV02.0U5N station wagon 6 30 42 34 7 yes AUDI A3 2 4 SemiAuto-6 2WD Diesel FA B5 Federal Tier 2 Bin 5 BVWXV02.0U5N station wagon 5 30 42 34 7 yes AUDI A4 2 4 Man-6 4WD Gasoline CA U2 California LEV-II ULEV BADXJ02.03UB small car 6 21 31 25 6 yes AUDI A4 2 4 CVT 2WD Gasoline CA U2 California LEV-II ULEV BADXJ02.03UB small car 6 22 30 25 6 yes AUDI A5 2 4 Man-6 4WD Gasoline CA U2 California LEV-II ULEV

264

Model Year 2012 SmartWay Vehicles  

NLE Websites -- All DOE Office Websites (Extended Search)

SmartWay Vehicles SmartWay Vehicles Page 1 of 14 Model Displ Cyl Trans Drive Fuel Sales Area Stnd Stnd Description Underhood ID Veh Class Air Pollution Score City MPG Hwy MPG Cmb MPG Greenhouse Gas Score SmartWay ACURA TSX 2.4 4 SemiAuto-5 2WD Gasoline CA U2 California LEV-II ULEV CHNXV02.4DB9 small car 6 22 31 26 6 yes ACURA TSX Wagon 2.4 4 SemiAuto-5 2WD Gasoline CA U2 California LEV-II ULEV CHNXV02.4DB9 station wagon 6 22 30 25 6 yes AUDI A3 2 4 SemiAuto-6 2WD Diesel FA B5 Federal Tier 2 Bin 5 CVWXV02.0U5N station wagon 5 30 42 34 7 yes AUDI A3 2 4 SemiAuto-6 2WD Diesel CA U2 California LEV-II ULEV CVWXV02.0U5N station wagon 6 30 42 34 7 yes AUDI A4 2 4 CVT 2WD Gasoline CA U2 California LEV-II ULEV CADXJ02.03UB small car 6 22 30 25 6 yes AUDI A4 2 4 Man-6 4WD Gasoline CA U2 California LEV-II ULEV CADXJ02.03UB small car 6 21 31 25 6 yes AUDI A5 2 4 Man-6 4WD Gasoline CA U2 California LEV-II ULEV

265

Alternative Fuels Data Center: Diesel Vehicle Availability  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Diesel Vehicle Diesel Vehicle Availability to someone by E-mail Share Alternative Fuels Data Center: Diesel Vehicle Availability on Facebook Tweet about Alternative Fuels Data Center: Diesel Vehicle Availability on Twitter Bookmark Alternative Fuels Data Center: Diesel Vehicle Availability on Google Bookmark Alternative Fuels Data Center: Diesel Vehicle Availability on Delicious Rank Alternative Fuels Data Center: Diesel Vehicle Availability on Digg Find More places to share Alternative Fuels Data Center: Diesel Vehicle Availability on AddThis.com... More in this section... Biodiesel Basics Benefits & Considerations Stations Vehicles Availability Emissions Laws & Incentives Diesel Vehicle Availability According to J.D. Power Automotive Forecasting, demand for light-duty diesel vehicles might double in the next 10 years. More auto manufacturers

266

Vehicle Technologies Office: Modeling Collaboration Is a Win-Win Situation  

NLE Websites -- All DOE Office Websites (Extended Search)

Modeling Collaboration Modeling Collaboration Is a Win-Win Situation for Vehicle Research to someone by E-mail Share Vehicle Technologies Office: Modeling Collaboration Is a Win-Win Situation for Vehicle Research on Facebook Tweet about Vehicle Technologies Office: Modeling Collaboration Is a Win-Win Situation for Vehicle Research on Twitter Bookmark Vehicle Technologies Office: Modeling Collaboration Is a Win-Win Situation for Vehicle Research on Google Bookmark Vehicle Technologies Office: Modeling Collaboration Is a Win-Win Situation for Vehicle Research on Delicious Rank Vehicle Technologies Office: Modeling Collaboration Is a Win-Win Situation for Vehicle Research on Digg Find More places to share Vehicle Technologies Office: Modeling Collaboration Is a Win-Win Situation for Vehicle Research on AddThis.com...

267

Vehicle Technologies Office: Fact #234: September 16, 2002 2003 Model Year  

NLE Websites -- All DOE Office Websites (Extended Search)

4: September 16, 4: September 16, 2002 2003 Model Year Alternative Fuel Vehicles to someone by E-mail Share Vehicle Technologies Office: Fact #234: September 16, 2002 2003 Model Year Alternative Fuel Vehicles on Facebook Tweet about Vehicle Technologies Office: Fact #234: September 16, 2002 2003 Model Year Alternative Fuel Vehicles on Twitter Bookmark Vehicle Technologies Office: Fact #234: September 16, 2002 2003 Model Year Alternative Fuel Vehicles on Google Bookmark Vehicle Technologies Office: Fact #234: September 16, 2002 2003 Model Year Alternative Fuel Vehicles on Delicious Rank Vehicle Technologies Office: Fact #234: September 16, 2002 2003 Model Year Alternative Fuel Vehicles on Digg Find More places to share Vehicle Technologies Office: Fact #234: September 16, 2002 2003 Model Year Alternative Fuel Vehicles on

268

Investigation of BiodieselDiesel Fuel Blends on Combustion Characteristics in a Light-Duty Diesel Engine Using OpenFOAM  

Science Journals Connector (OSTI)

Investigation of BiodieselDiesel Fuel Blends on Combustion Characteristics in a Light-Duty Diesel Engine Using OpenFOAM ... (1) In addition, biodiesel can be used in existing compression ignition (CI) or diesel engines with minimal or no modifications because its physicochemical characteristics are very similar to those of fossil diesel. ... However, when CME, PME, and SME are blended with 50 vol % of diesel fuel, the general trend as discussed above is not reproduced. ...

Harun Mohamed Ismail; Hoon Kiat Ng; Suyin Gan; Xinwei Cheng; Tommaso Lucchini

2012-11-12T23:59:59.000Z

269

DRIVE CYCLE EFFICIENCY AND EMISSIONS ESTIMATES FOR REACTIVITY CONTROLLED COMPRESSION IGNITION IN A MULTI-CYLINDER LIGHT-DUTY DIESEL ENGINE  

SciTech Connect

In-cylinder blending of gasoline and diesel to achieve Reactivity Controlled Compression Ignition (RCCI) has been shown to reduce NOx and PM emissions while maintaining or improving brake thermal efficiency as compared to conventional diesel combustion (CDC). The RCCI concept has an advantage over many advanced combustion strategies in that by varying both the percent of premixed gasoline and EGR rate, stable combustion can be extended over more of the light-duty drive cycle load range. Changing the percent premixed gasoline changes the fuel reactivity stratification in the cylinder providing further control of combustion phasing and pressure rise rate than the use of EGR alone. This paper examines the combustion and emissions performance of light-duty diesel engine using direct injected diesel fuel and port injected gasoline to carry out RCCI for steady-state engine conditions which are consistent with a light-duty drive cycle. A GM 1.9L four-cylinder engine with the stock compression ratio of 17.5:1, common rail diesel injection system, high-pressure EGR system and variable geometry turbocharger was modified to allow for port fuel injection with gasoline. Engine-out emissions, engine performance and combustion behavior for RCCI operation is compared against both CDC and a premixed charge compression ignition (PCCI) strategy which relies on high levels of EGR dilution. The effect of percent of premixed gasoline, EGR rate, boost level, intake mixture temperature, combustion phasing and pressure rise rate is investigated for RCCI combustion for the light-duty modal points. Engine-out emissions of NOx and PM were found to be considerably lower for RCCI operation as compared to CDC and PCCI, while HC and CO emissions were higher. Brake thermal efficiency was similar or higher for many of the modal conditions for RCCI operation. The emissions results are used to estimate hot-start FTP-75 emissions levels with RCCI and are compared against CDC and PCCI modes.

Curran, Scott [ORNL; Briggs, Thomas E [ORNL; Cho, Kukwon [ORNL; Wagner, Robert M [ORNL

2011-01-01T23:59:59.000Z

270

Transportation Sector Model of the National Energy Modeling System. Volume 2 -- Appendices: Part 2  

SciTech Connect

The attachments contained within this appendix provide additional details about the model development and estimation process which do not easily lend themselves to incorporation in the main body of the model documentation report. The information provided in these attachments is not integral to the understanding of the model`s operation, but provides the reader with opportunity to gain a deeper understanding of some of the model`s underlying assumptions. There will be a slight degree of replication of materials found elsewhere in the documentation, made unavoidable by the dictates of internal consistency. Each attachment is associated with a specific component of the transportation model; the presentation follows the same sequence of modules employed in Volume 1. The following attachments are contained in Appendix F: Fuel Economy Model (FEM)--provides a discussion of the FEM vehicle demand and performance by size class models; Alternative Fuel Vehicle (AFV) Model--describes data input sources and extrapolation methodologies; Light-Duty Vehicle (LDV) Stock Model--discusses the fuel economy gap estimation methodology; Light Duty Vehicle Fleet Model--presents the data development for business, utility, and government fleet vehicles; Light Commercial Truck Model--describes the stratification methodology and data sources employed in estimating the stock and performance of LCT`s; Air Travel Demand Model--presents the derivation of the demographic index, used to modify estimates of personal travel demand; and Airborne Emissions Model--describes the derivation of emissions factors used to associate transportation measures to levels of airborne emissions of several pollutants.

NONE

1998-01-01T23:59:59.000Z

271

Energy use and CO2 emissions reduction potential in passenger car fleet using zero emission vehicles and lightweight materials  

Science Journals Connector (OSTI)

Introduction of \\{ZEVs\\} (zero emission vehicles) and lightweight materials in a conventional steel-intensive internal combustion engine vehicle fleet will affect energy consumption and automotive material requirements. We developed a bottom-up dynamic accounting model of the light-duty vehicle fleet, including vehicle production and disposal, with detailed coverage of powertrains and automotive materials. The model was used to study the potential for energy consumption and CO2 emissions reduction of \\{ZEVs\\} and lightweight materials in the Colombian passenger car fleet from 2010 to 2050. Results indicate that passenger car stock in Colombia is increased by 6.6 times between 2010 and 2050. In the base scenario energy consumption and CO2 emissions are increased by 5.5 and 4.9 times respectively. Lightweighting and battery electric vehicles offer the largest tank-to-wheel energy consumption and CO2 emissions reductions, 48 and 61% respectively, compared to 2050 baseline values. Slow stock turnover and fleet size increment prevent larger reductions. Switching to electric powertrains has larger impact than lightweighting on energy consumption and CO2 emissions. Iron and steel remain major materials in new cars. Aluminum consumption increases in all scenarios; while carbon fiber reinforced polymer consumption only increases due to fuel cell hybrid electric vehicle or lightweight vehicle use.

Juan C. Gonzlez Palencia; Takaaki Furubayashi; Toshihiko Nakata

2012-01-01T23:59:59.000Z

272

Modeling and Optimization of PEMFC Systems and its Application to Direct Hydrogen Fuel Cell Vehicles  

E-Print Network (OSTI)

a Direct-Hydrogen, Load-Following Fuel Cell Vehicle, SAEversus a Direct-Hydrogen Load-Following Fuel Cell Vehicle,vehicle model of a load-following direct hydrogen fuel cell

Zhao, Hengbing; Burke, Andy

2008-01-01T23:59:59.000Z

273

A Dynamic household Alternative-fuel Vehicle Demand Model Using Stated and Revealed Transaction Information  

E-Print Network (OSTI)

market share for alternative-fuel vehicles drop from thePreferences for Alternative-Fuel Vehicles, Brownstone DavidA Dynamic Household Alternative-fuel Vehicle Demand Model

Sheng, Hongyan

1999-01-01T23:59:59.000Z

274

EIA - Annual Energy Outlook 2013 Early Release  

Gasoline and Diesel Fuel Update (EIA)

the greenhouse gas (GHG) and corporate average fuel economy (CAFE) standards for light-duty vehicles (LDVs)1 through the 2025 model year, which increases the new vehicle...

275

Alternative Fuels Data Center: Low Emission Vehicle (LEV) Standards  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Low Emission Vehicle Low Emission Vehicle (LEV) Standards to someone by E-mail Share Alternative Fuels Data Center: Low Emission Vehicle (LEV) Standards on Facebook Tweet about Alternative Fuels Data Center: Low Emission Vehicle (LEV) Standards on Twitter Bookmark Alternative Fuels Data Center: Low Emission Vehicle (LEV) Standards on Google Bookmark Alternative Fuels Data Center: Low Emission Vehicle (LEV) Standards on Delicious Rank Alternative Fuels Data Center: Low Emission Vehicle (LEV) Standards on Digg Find More places to share Alternative Fuels Data Center: Low Emission Vehicle (LEV) Standards on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Low Emission Vehicle (LEV) Standards All new passenger vehicles, light-duty trucks, and medium-duty vehicles

276

Modeling Electric Vehicle Benefits Connected to Smart Grids  

NLE Websites -- All DOE Office Websites (Extended Search)

Modeling Electric Vehicle Benefits Connected to Smart Grids Modeling Electric Vehicle Benefits Connected to Smart Grids Title Modeling Electric Vehicle Benefits Connected to Smart Grids Publication Type Conference Paper Year of Publication 2011 Authors Stadler, Michael, Chris Marnay, Ratnesh Sharma, Gonçalo Mendes, Maximillian Kloess, Gonçalo Cardoso, Olivier Mégel, and Afzal S. Siddiqui Conference Name 7th IEEE Vehicle Power and Propulsion Conference Date Published 09/2011 Publisher LBNL Conference Location Chicago, IL Keywords electricity markets and policy group, energy analysis and environmental impacts department Abstract Connecting electric storage technologies to smartgrids will have substantial implications in building energy systems. Local storage will enable demand response. Mobile storage devices in electric vehicles (EVs) are in direct competition with conventional stationary sources at the building. EVs will change the financial as well as environmental attractiveness of on-site generation (e.g. PV, or fuel cells). In order to examine the impact of EVs on building energy costs and CO2 emissions in 2020, a distributed-energy-resources adoption problem is formulated as a mixed-integer linear program with minimization of annual building energy costs or CO2 emissions. The mixed-integer linear program is applied to a set of 139 different commercial buildings in California and example results as well as the aggregated economic and environmental benefits are reported. The research shows that considering second life of EV batteries might be very beneficial for commercial buildings.

277

Hydrogen Storage Requirements for Fuel Cell Vehicles  

NLE Websites -- All DOE Office Websites (Extended Search)

GENERAL MOTORS GENERAL MOTORS HYDROGEN STORAGE REQUIREMENTS FOR FUEL CELL VEHICLES Brian G. Wicke GM R&D and Planning DOE Hydrogen Storage Workshop August 14-15, 2002 Argonne National Laboratory General Motors Fuel Cell Vehicles * GM fuel cell vehicle Goal - be the first to profitably sell one million fuel cell vehicles * Fuel cell powerplant must be suitable for a broad range of light-duty vehicles (not just niche) * UNCOMPROMISED performance & reliability are REQUIRED * SAFETY IS A GIVEN * Evolutionary and Revolutionary vehicle designs are included-GM AUTONOMY-as long as the customer is (more than) satisfied GENERAL MOTORS AUTONOMY GENERAL MOTORS AUTONOMY General Motors Fuel Cell Vehicles * Focus on PEM fuel cell technology * Must consider entire hydrogen storage & (unique) fuel delivery systems,

278

Vehicle Technologies Office Merit Review 2014: Vehicle Thermal Systems Modeling in Simulink  

Energy.gov (U.S. Department of Energy (DOE))

Presentation given by Pacific Northwest National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about vehicle...

279

Biodiesel Effects on the Operation of U.S. Light Duty Tier 2 Engine and Aftertreatment Systems  

Energy.gov (U.S. Department of Energy (DOE))

Presentation given at 2007 Diesel Engine-Efficiency & Emissions Research Conference (DEER 2007). 13-16 August, 2007, Detroit, Michigan. Sponsored by the U.S. Department of Energy's (DOE) Office of FreedomCAR and Vehicle Technologies (OFCVT).

280

MOBILE6 Vehicle Emission Modeling Software | Open Energy Information  

Open Energy Info (EERE)

MOBILE6 Vehicle Emission Modeling Software MOBILE6 Vehicle Emission Modeling Software Jump to: navigation, search Tool Summary Name: MOBILE6 Agency/Company /Organization: United States Environmental Protection Agency Sector: Energy Focus Area: Transportation Topics: GHG inventory Resource Type: Software/modeling tools User Interface: Desktop Application Website: www.epa.gov/oms/m6.htm Cost: Free References: http://www.epa.gov/oms/m6.htm MOBILE6 is an emission factor model for predicting gram per mile emissions of Hydrocarbons (HC), Carbon Monoxide (CO), Nitrogen Oxides (NOx), Carbon Dioxide (CO2), Particulate Matter (PM), and toxics from cars, trucks, and motorcycles under various conditions. MOBILE6 is an emission factor model for predicting gram per mile emissions of Hydrocarbons (HC), Carbon Monoxide (CO), Nitrogen Oxides (NOx), Carbon

Note: This page contains sample records for the topic "light-duty vehicles model" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Market Acceptance of Advanced Automotive Technologies Model (MA3T) Consumer  

Open Energy Info (EERE)

Market Acceptance of Advanced Automotive Technologies Model (MA3T) Consumer Market Acceptance of Advanced Automotive Technologies Model (MA3T) Consumer Choice Model Jump to: navigation, search Tool Summary Name: Market Acceptance of Advanced Automotive Technologies Model (MA3T) Consumer Choice Model Agency/Company /Organization: Oak Ridge National Laboratory OpenEI Keyword(s): EERE tool, Market Acceptance of Advanced Automotive Technologies Model (MA3T) Consumer Choice Model, MA3T Project U.S. consumer demand for plug-in hybrid electric vehicles (PHEV) in competition among various light-duty vehicle technologies for hundreds of market segments based and multiple regions. For more information, contact the ORNL Energy and Transportation Science Division at http://www.ornl.gov/sci/ees/etsd/contactus.shtml References Retrieved from

282

Vehicle Technologies Office: Hybrid and Vehicle Systems  

NLE Websites -- All DOE Office Websites (Extended Search)

Hybrid and Vehicle Hybrid and Vehicle Systems to someone by E-mail Share Vehicle Technologies Office: Hybrid and Vehicle Systems on Facebook Tweet about Vehicle Technologies Office: Hybrid and Vehicle Systems on Twitter Bookmark Vehicle Technologies Office: Hybrid and Vehicle Systems on Google Bookmark Vehicle Technologies Office: Hybrid and Vehicle Systems on Delicious Rank Vehicle Technologies Office: Hybrid and Vehicle Systems on Digg Find More places to share Vehicle Technologies Office: Hybrid and Vehicle Systems on AddThis.com... Just the Basics Hybrid & Vehicle Systems Modeling & Simulation Integration & Validation Benchmarking Parasitic Loss Reduction Propulsion Systems Advanced Vehicle Evaluations Energy Storage Advanced Power Electronics & Electrical Machines

283

Multibody Models for Vehicle Accident Reconstruction  

Science Journals Connector (OSTI)

Simplified multibody models can be used to reconstruct accidents involving complex dynamics, particularly, in the first stages of accident investigation, accidents involving motorcycles and pedestrians [1], [2].

Ricardo J. F. Portal; Joo M. P. Dias

2006-01-01T23:59:59.000Z

284

Modeling Electric Vehicle Benefits Connected to Smart Grids  

E-Print Network (OSTI)

Vehicle Benefits Connected to Smart Grids M. Stadler 1,2,a ,Electric Vehicle Benefits Connected to Smart Grids Michael

Stadler, Michael

2012-01-01T23:59:59.000Z

285

Household vehicles energy consumption 1994  

SciTech Connect

Household Vehicles Energy Consumption 1994 reports on the results of the 1994 Residential Transportation Energy Consumption Survey (RTECS). The RTECS is a national sample survey that has been conducted every 3 years since 1985. For the 1994 survey, more than 3,000 households that own or use some 6,000 vehicles provided information to describe vehicle stock, vehicle-miles traveled, energy end-use consumption, and energy expenditures for personal vehicles. The survey results represent the characteristics of the 84.9 million households that used or had access to vehicles in 1994 nationwide. (An additional 12 million households neither owned or had access to vehicles during the survey year.) To be included in then RTECS survey, vehicles must be either owned or used by household members on a regular basis for personal transportation, or owned by a company rather than a household, but kept at home, regularly available for the use of household members. Most vehicles included in the RTECS are classified as {open_quotes}light-duty vehicles{close_quotes} (weighing less than 8,500 pounds). However, the RTECS also includes a very small number of {open_quotes}other{close_quotes} vehicles, such as motor homes and larger trucks that are available for personal use.

NONE

1997-08-01T23:59:59.000Z

286

Neural Network Based Energy Storage System Modeling for Hybrid Electric Vehicles  

SciTech Connect

Demonstrates the application of an artificial neural network (ANN) for modeling the energy storage system of a hybrid electric vehicle.

Bhatikar, S. R.; Mahajan, R. L.; Wipke, K.; Johnson, V.

1999-08-01T23:59:59.000Z

287

Alternative Fuels Data Center: Low Emission Vehicle (LEV) Standards  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Low Emission Vehicle Low Emission Vehicle (LEV) Standards to someone by E-mail Share Alternative Fuels Data Center: Low Emission Vehicle (LEV) Standards on Facebook Tweet about Alternative Fuels Data Center: Low Emission Vehicle (LEV) Standards on Twitter Bookmark Alternative Fuels Data Center: Low Emission Vehicle (LEV) Standards on Google Bookmark Alternative Fuels Data Center: Low Emission Vehicle (LEV) Standards on Delicious Rank Alternative Fuels Data Center: Low Emission Vehicle (LEV) Standards on Digg Find More places to share Alternative Fuels Data Center: Low Emission Vehicle (LEV) Standards on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Low Emission Vehicle (LEV) Standards Under the Oregon LEV Program, all new passenger cars, light-duty trucks,

288

Vehicle Technologies Office: Closed Solicitations  

NLE Websites -- All DOE Office Websites (Extended Search)

Closed Solicitations Closed Solicitations Technology Solicitation Title Open Date Close Date Hydrogen and Fuel Cells- Hydrogen and Fuel Cells Request for Information (RFI) on performance, durability, and cost targets for fuel cells designed for Combined Heat and Power (CHP) and Auxiliary Power Unit (APU) applications Office of Energy Efficiency and Renewable Energy 05/28/2009 06/30/2009 Vehicle Technologies- Vehicle Technologies Recovery Act - Systems Level Technology Development, Integration,and Demonstration for Efficient Class 8 Trucks (SuperTruck) and Advanced Technology Powertrains For Light-Duty Vehicles (ATP-LD) Office of Energy Efficiency and Renewable Energy 06/09/2009 09/09/2009 Crosscutting U.S. China Clean Energy Research Center (CERC) Office of Energy Efficiency and Renewable Energy 03/30/2010 05/21/2010

289

Construction of a driver-vehicle model and identification of the driver model parameters  

E-Print Network (OSTI)

CONSTRUCTION OF A DRIVER-VEHICLE MODEL AND IDENTIFICATION OF THE DRIVER MODEL PARAMETERS A Thesis by , JEMENG SU Submitted to the Graduate College of Texas A8M University in partial fulfillment of the requiremr nt for the degree of MASTER... OF SCIENCE December 1981 Major Subject: Mechanical Engineering CONSTRUCTION OF A DRIVER-VEHICLE MODEL AND IDENTIFICATION OF THE DRIVER MODEL PARAMETERS A Thesis by JEMENG SU Approved as to style and content by: (Chairman of Committe ) / I...

Su, Jemeng

2012-06-07T23:59:59.000Z

290

TAFV Alternative Fuels and Vehicles Choice Model Documentation  

NLE Websites -- All DOE Office Websites (Extended Search)

34 34 ORNL/TM-2001/134 TAFV Alternative Fuels and TAFV Alternative Fuels and Vehicles Choice Model Vehicles Choice Model Documentation Documentation July 2001 David L. Greene David L. Greene Corporate Fellow Corporate Fellow DOCUMENT AVAILABILITY Reports produced after January 1, 1996, are generally available free via the U.S. Department of Energy (DOE) Information Bridge: Web site: http://www.osti.gov/bridge Reports produced before January 1, 1996, may be purchased by members of the public from the following source: National Technical Information Service 5285 Port Royal Road Springfield, VA 22161 Telephone: 703-605-6000 (1-800-553-6847) TDD: 703-487-4639 Fax: 703-605-6900 E-mail: info@ntis.fedworld.gov Web site: http://www.ntis.gov/support/ordernowabout.htm Reports are available to DOE employees, DOE contractors, Energy Technology Data Exchange

291

Assessment of the effect of low viscosity oils usage on a light duty diesel engine fuel consumption in stationary and transient conditions  

Science Journals Connector (OSTI)

Abstract Regarding the global warming due to CO2 emissions, the crude oil depletion and its corresponding rising prices, \\{OEMs\\} are exploring different solutions to increase the internal combustion engine efficiency, among which, the use of Low Viscosity Oils (LVO) represents one attractive cost-effective way to accomplish this goal. Reported in terms of fuel consumption, the effect of LVO is round 2%, depending on the test conditions, especially if the test has taken place in laboratory or on road conditions. This study presents the fuel consumption benefits of a commercial 5W20, compared against higher SAE grade oils, on a light duty diesel engine, when it is running under motored test, stationary fired test and the New European Driving Cycle (NEDC).

Vicente Macin; Bernardo Tormos; Vicente Bermdez; Leonardo Ramrez

2014-01-01T23:59:59.000Z

292

Model Year 2006: Alternative Fuel and Advanced Technology Vehicles  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

06: Alternative Fuel and Advanced Technology Vehicles 06: Alternative Fuel and Advanced Technology Vehicles Fuel Type EPAct Compliant? Model Vehicle Type Emission Class Powertrain Fuel Capacity Range American Honda Motor Corporation 888-CCHONDA www.honda.com CNG Dedicated EPAct Yes Civic GX Compact Sedan SULEV Tier 2 Bin II 1.7L, 4-cylinder 8 GGE 200 mi HEV (NiMH) EPAct No Accord Hybrid Sedan ULEV 3.0L V6 144 volt NiMH + 17.1 Gal Gasoline TBD HEV (NiMH) EPAct No Civic Hybrid Sedan CA ULEV 1.3L, 4-cylinder 144 volt NiMH + 13.2 Gal Gasoline TBD HEV (NiMH) EPAct No Insight Two-seater SULEV (CVT model) ULEV (MT model) 1.0L, 3-cylinder 144 volt NiMH + 10.6 Gal Gasoline 636 mi DaimlerChrysler 800-999-FLEET www.fleet.chrysler.com E85 FFV EPAct Yes Dodge Ram Pickup 1500 Series 1 Pickup Tier 2 Bin 10A 4.7L V8 26 Gal 416 mi E85 FFV

293

Modeling effects of vehicle specifications on fuel economy based on engine fuel consumption map and vehicle dynamics  

Science Journals Connector (OSTI)

Abstract The present study conducts a vehicle dynamic modeling of gasoline and diesel vehicles by using the AVL commercial program. 10 passenger vehicles were tested for 7 types of driving modes containing city, express and highway driving mode. The various vehicle data (specifications, fuel consumption map, gear shifting curve data, etc.) were collected and implemented as input data. The calculations were conducted with changing driving modes and vehicle types, and prediction accuracy of the calculation results were validated based on chassis dynamometer test data. In order to increase prediction accuracy for a wide vehicle operating range, some modifications regarding gear shifting was also conducted. From these processes, it is confirmed that the prediction accuracy of fuel efficiency and CO2 emissions shows a strong correlations with test results. After ensuring the accuracy of the calculation result, parametric studies were conducted to reveal correlations between vehicle specifications (e.g., vehicle weight and frontal area) on fuel efficiency and CO2 emissions and check which parameters were highly impact on fuel efficiency.

Yunjung Oh; Junhong Park; Jongtae Lee; Myung Do Eom; Sungwook Park

2014-01-01T23:59:59.000Z

294

Effect of E85 on RCCI Performance and Emissions on a Multi-Cylinder Light-Duty Diesel Engine - SAE World Congress  

SciTech Connect

This paper investigates the effect of E85 on load expansion and FTP modal point emissions indices under reactivity controlled compression ignition (RCCI) operation on a light-duty multi-cylinder diesel engine. A General Motors (GM) 1.9L four-cylinder diesel engine with the stock compression ratio of 17.5:1, common rail diesel injection system, high-pressure exhaust gas recirculation (EGR) system and variable geometry turbocharger was modified to allow for port fuel injection with gasoline or E85. Controlling the fuel reactivity in-cylinder by the adjustment of the ratio of premixed low-reactivity fuel (gasoline or E85) to direct injected high reactivity fuel (diesel fuel) has been shown to extend the operating range of high-efficiency clean combustion (HECC) compared to the use of a single fuel alone as in homogeneous charge compression ignition (HCCI) or premixed charge compression ignition (PCCI). The effect of E85 on the Ad-hoc federal test procedure (FTP) modal points is explored along with the effect of load expansion through the light-duty diesel speed operating range. The Ad-hoc FTP modal points of 1500 rpm, 1.0bar brake mean effective pressure (BMEP); 1500rpm, 2.6bar BMEP; 2000rpm, 2.0bar BMEP; 2300rpm, 4.2bar BMEP; and 2600rpm, 8.8bar BMEP were explored. Previous results with 96 RON unleaded test gasoline (UTG-96) and ultra-low sulfur diesel (ULSD) showed that with stock hardware, the 2600rpm, 8.8bar BMEP modal point was not obtainable due to excessive cylinder pressure rise rate and unstable combustion both with and without the use of EGR. Brake thermal efficiency and emissions performance of RCCI operation with E85 and ULSD is explored and compared against conventional diesel combustion (CDC) and RCCI operation with UTG 96 and ULSD.

Curran, Scott [ORNL; Hanson, Reed M [ORNL; Wagner, Robert M [ORNL

2012-01-01T23:59:59.000Z

295

Development of a Dynamic Model of a Small High-Speed Autonomous Underwater Vehicle  

E-Print Network (OSTI)

Development of a Dynamic Model of a Small High-Speed Autonomous Underwater Vehicle Haider N. Arafat-- A dynamic model is developed for a small, high- speed autonomous underwater vehicle. The vehicle has manner: 1) Wind angle and angle : From u = V cos , v = V sin sin , and w = V sin cos , we have tan

Virginia Tech

296

Autonomie Modeling Tool Improves Vehicle Design and Testing, Informs New Fuel Economy Standards  

Office of Energy Efficiency and Renewable Energy (EERE)

Autonomie, an advanced vehicle modeling and design software package created by Argonne National laboratory with EERE support, is helping U.S. auto manufacturers develop the next generation of hybrid and electric vehicles.

297

Fact #765: February 4, 2013 EPA's Top 10 Conventionally-Fueled Vehicles for Model Year 2013  

Energy.gov (U.S. Department of Energy (DOE))

For the 2013 model year, the Toyota Prius and smaller Prius c took the top spot with a combined average of 50 mpg. All vehicles making this list are hybrid vehicles, and six of the ten cars making...

298

Vehicle Level Model and Control Development and Validation Under...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Relevance 5 The objective is to develop the entire vehicle thermal management system for advanced electric drive vehicles (EREVs, HEVs, EVs, PHEVs). Additional energy...

299

Plug-In Hybrid Electric Vehicles - PHEV Modeling - Component Technologies  

NLE Websites -- All DOE Office Websites (Extended Search)

Technologies Impact on Fuel Efficiency Technologies Impact on Fuel Efficiency One of the main objectives of the U.S. Department of Energy's (DOE's) Plug-in Hybrid Electric Vehicle (PHEV) R&D Plan (2.2Mb pdf) is to "determine component development requirements" through simulation analysis. Overall fuel efficiency is affected by component technologies from a component sizing and efficiency aspect. To properly define component requirements, several technologies for each of the main components (energy storage, engine and electric machines) are being compared at Argonne using PSAT. Per the R&D plan, several Li-ion battery materials are being modeled to evaluate their impacts on fuel efficiency and vehicle mass. Different Power to Energy ratios are being considered to understand the relative impact of power and energy.

300

Full documents available at: http://www.epa.gov/otaq/climate/regulations.htm EPA's section of the Preamble for the Light-Duty GHG Rule (see pp. 388-396)  

E-Print Network (OSTI)

of the Preamble for the Light-Duty GHG Rule (see pp. 388-396) III.H. What are the Estimated Cost, Economic, and Other Impacts of the Program? In this section, EPA presents the costs and impacts of EPA's GHG program. It is important to note that NHTSA's CAFE standards and EPA's GHG standards will both be in effect, and each

Edwards, Paul N.

Note: This page contains sample records for the topic "light-duty vehicles model" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Hydrogen-Enhanced Natural Gas Vehicle Program  

SciTech Connect

The project objective is to demonstrate the viability of HCNG fuel (30 to 50% hydrogen by volume and the remainder natural gas) to reduce emissions from light-duty on-road vehicles with no loss in performance or efficiency. The City of Las Vegas has an interest in alternative fuels and already has an existing hydrogen refueling station. Collier Technologies Inc (CT) supplied the latest design retrofit kits capable of converting nine compressed natural gas (CNG) fueled, light-duty vehicles powered by the Ford 5.4L Triton engine. CT installed the kits on the first two vehicles in Las Vegas, trained personnel at the City of Las Vegas (the City) to perform the additional seven retrofits, and developed materials for allowing other entities to perform these retrofits as well. These vehicles were used in normal service by the City while driver impressions, reliability, fuel efficiency and emissions were documented for a minimum of one year after conversion. This project has shown the efficacy of operating vehicles originally designed to operate on compressed natural gas with HCNG fuel incorporating large quantities of exhaust gas recirculation (EGR). There were no safety issues experienced with these vehicles. The only maintenance issue in the project was some rough idling due to problems with the EGR valve and piping parts. Once the rough idling was corrected no further maintenance issues with these vehicles were experienced. Fuel economy data showed no significant changes after conversion even with the added power provided by the superchargers that were part of the conversions. Driver feedback for the conversions was very favorable. The additional power provided by the HCNG vehicles was greatly appreciated, especially in traffic. The drivability of the HCNG vehicles was considered to be superior by the drivers. Most of the converted vehicles showed zero oxides of nitrogen throughout the life of the project using the State of Nevada emissions station.

Hyde, Dan; Collier, Kirk

2009-01-22T23:59:59.000Z

302

Richmond Electric Vehicle Initiative Electric Vehicle Readiness...  

Office of Environmental Management (EM)

MO) Vehicles Home About Vehicle Technologies Office Plug-in Electric Vehicles & Batteries Fuel Efficiency & Emissions Alternative Fuels Modeling, Testing, Data & Results Education...

303

Optical and Physical Properties from Primary On-Road Vehicle ParticleEmissions And Their Implications for Climate Change  

SciTech Connect

During the summers of 2004 and 2006, extinction and scattering coefficients of particle emissions inside a San Francisco Bay Area roadway tunnel were measured using a combined cavity ring-down and nephelometer instrument. Particle size distributions and humidification were also measured, as well as several gas phase species. Vehicles in the tunnel traveled up a 4% grade at a speed of approximately 60 km h{sup -1}. The traffic situation in the tunnel allows the apportionment of emission factors between light duty gasoline vehicles and diesel trucks. Cross-section emission factors for optical properties were determined for the apportioned vehicles to be consistent with gas phase and particulate matter emission factors. The absorption emission factor (the absorption cross-section per mass of fuel burned) for diesel trucks (4.4 {+-} 0.79 m{sup 2} kg{sup -1}) was 22 times larger than for light-duty gasoline vehicles (0.20 {+-} 0.05 m{sup 2} kg{sup -1}). The single scattering albedo of particles - which represents the fraction of incident light that is scattered as opposed to absorbed - was 0.2 for diesel trucks and 0.3 for light duty gasoline vehicles. These facts indicate that particulate matter from motor vehicles exerts a positive (i.e., warming) radiative climate forcing. Average particulate mass absorption efficiencies for diesel trucks and light duty gasoline vehicles were 3.14 {+-} 0.88 m{sup 2} g{sub PM}{sup -1} and 2.9 {+-} 1.07 m{sup 2} g{sub PM}{sup -1}, respectively. Particle size distributions and optical properties were insensitive to increases in relative humidity to values in excess of 90%, reinforcing previous findings that freshly emitted motor vehicle particulate matter is hydrophobic.

Strawa, A.W.; Kirchstetter, T.W.; Hallar, A.G.; Ban-Weiss, G.A.; McLaughlin, J.P.; Harley, R.A.; Lunden, M.M.

2009-01-23T23:59:59.000Z

304

Vehicle Technologies Office Merit Review 2014: ParaChoice: Parametric Vehicle Choice Modeling  

Energy.gov (U.S. Department of Energy (DOE))

Presentation given by Sandia National Laboratories at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about parametric...

305

MODEL-BASED VEHICLE STATE ESTIMATION USING PREVIEWED ROAD GEOMETRY AND NOISY SENSORS  

E-Print Network (OSTI)

to the automotive world. Unfortunately for the designers of vehicle driver assist systems, however, most low- cost states from low-cost sensors remains [2]. In the case of autonomous vehicle guidance or in modeling another sen- sor input to estimate vehicle state. This is a particularly low-cost data source, especially

Brennan, Sean

306

The 1991 natural gas vehicle challenge: Developing dedicated natural gas vehicle technology  

SciTech Connect

An engineering research and design competition to develop and demonstrate dedicated natural gas-powered light-duty trucks, the Natural Gas Vehicle (NGV) Challenge, was held June 6--11, 1191, in Oklahoma. Sponsored by the US Department of Energy (DOE), Energy, Mines, and Resources -- Canada (EMR), the Society of Automative Engineers (SAE), and General Motors Corporation (GM), the competition consisted of rigorous vehicle testing of exhaust emissions, fuel economy, performance parameters, and vehicle design. Using Sierra 2500 pickup trucks donated by GM, 24 teams of college and university engineers from the US and Canada participated in the event. A gasoline-powered control testing as a reference vehicle. This paper discusses the results of the event, summarizes the technologies employed, and makes observations on the state of natural gas vehicle technology.

Larsen, R.; Rimkus, W. (Argonne National Lab., IL (United States)); Davies, J. (General Motors of Canada Ltd., Toronto, ON (Canada)); Zammit, M. (AC Rochester, NY (United States)); Patterson, P. (USDOE, Washington, DC (United States))

1992-01-01T23:59:59.000Z

307

The 1991 natural gas vehicle challenge: Developing dedicated natural gas vehicle technology  

SciTech Connect

An engineering research and design competition to develop and demonstrate dedicated natural gas-powered light-duty trucks, the Natural Gas Vehicle (NGV) Challenge, was held June 6--11, 1191, in Oklahoma. Sponsored by the US Department of Energy (DOE), Energy, Mines, and Resources -- Canada (EMR), the Society of Automative Engineers (SAE), and General Motors Corporation (GM), the competition consisted of rigorous vehicle testing of exhaust emissions, fuel economy, performance parameters, and vehicle design. Using Sierra 2500 pickup trucks donated by GM, 24 teams of college and university engineers from the US and Canada participated in the event. A gasoline-powered control testing as a reference vehicle. This paper discusses the results of the event, summarizes the technologies employed, and makes observations on the state of natural gas vehicle technology.

Larsen, R.; Rimkus, W. [Argonne National Lab., IL (United States); Davies, J. [General Motors of Canada Ltd., Toronto, ON (Canada); Zammit, M. [AC Rochester, NY (United States); Patterson, P. [USDOE, Washington, DC (United States)

1992-02-01T23:59:59.000Z

308

Fact #779: May 13, 2013 EPA's Top Ten Rated Vehicles List for Model Year 2013 is All Electric  

Energy.gov (U.S. Department of Energy (DOE))

The 2013 model year marks the first time when the Environmental Protection Agency's (EPA's) top ten most fuel efficient vehicles list is comprised entirely of electric vehicles. Electric vehicles...

309

Feasibility Study Of Advanced Technology Hov Systems: Volume 2b: Emissions Impact Of Roadway-powered Electric Buses, Light-duty Vehicles, And Automobiles  

E-Print Network (OSTI)

Gas-fired: Simple Turbine Combined Turbine Cogen-Turbine Boiler Coal-fired: Conventional CFB IGCC Oil-fired: ResidualGas-fired Simple Turbine Combined Turbine Cogen-Turbine Boiler Coal-fired CFB IGCC Conventional Oil-fired Residual

Miller, Mark A.; Dato, Victor; Chira-chavala, Ted

1992-01-01T23:59:59.000Z

310

Feasible Caf Standard Increases Using Emerging Diesel and Hybrid-Electric Technologies for Light-Duty Vehicles in the United States  

E-Print Network (OSTI)

USING EMERGING DIESEL AND HYBRID-ELECTRIC TECHNOLOGIES FORusing Emerging Diesel and Hybrid- Electric Technologies forusing Emerging Diesel and Hybrid- Electric Technologies for

Burke, Andy; Abeles, Ethan

2004-01-01T23:59:59.000Z

311

Commercializing Light-Duty Plug-In/Plug-Out Hydrogen-Fuel-Cell Vehicles: "Mobile Electricity" Technologies, Early California Household Markets, and Innovation Management  

E-Print Network (OSTI)

4 demonstration of a plug-in diesel-electric HUMVEE by thediesel max output (kW) continuous/Me- kW type efficiency electric

Williams, Brett D

2010-01-01T23:59:59.000Z

312

Feasible CAFE Standard Increases Using Emerging Diesel and Hybrid-Electric Technologies for Light-Duty Vehicles in the United States  

E-Print Network (OSTI)

USING EMERGING DIESEL AND HYBRID-ELECTRIC TECHNOLOGIES FORusing Emerging Diesel and Hybrid- Electric Technologies forusing Emerging Diesel and Hybrid- Electric Technologies for

Burke, Andy; Abeles, Ethan C.

2004-01-01T23:59:59.000Z

313

Present Status and Marketing Prospects of the Emerging Hybrid-Electric and Diesel Technologies to Reduce CO2 Emissions of New Light-Duty Vehicles in California  

E-Print Network (OSTI)

OF THE EMERGING HYBRID-ELECTRIC AND DIESEL TECHNOLOGIES TOof the Emerging Hybrid-Electric and Diesel Technologies tomodern clean diesel engines and hybrid-electric powertrains

Burke, Andy

2004-01-01T23:59:59.000Z

314

Commercializing Light-Duty Plug-In/Plug-Out Hydrogen-Fuel-Cell Vehicles:Mobile Electricity Technologies, Early California Household Markets, and Innovation Management  

E-Print Network (OSTI)

fuel-cell power production efficiencies, and engine degradationfuel-cell power production efficiencies, cooling requirements, and engine degradation

Williams, Brett D

2007-01-01T23:59:59.000Z

315

Commercializing Light-Duty Plug-In/Plug-Out Hydrogen-Fuel-Cell Vehicles: "Mobile Electricity" Technologies, Early California Household Markets, and Innovation Management  

E-Print Network (OSTI)

fuel-cell power production efficiencies, and engine degradationfuel-cell power production efficiencies, cooling requirements, and engine degradation

Williams, Brett D

2010-01-01T23:59:59.000Z

316

Commercializing Light-Duty Plug-In/Plug-Out Hydrogen-Fuel-Cell Vehicles: "Mobile Electricity" Technologies, Early California Household Markets, and Innovation Management  

E-Print Network (OSTI)

C. E. S. Thomas, "Hydrogen and Fuel Cells: Pathway to a4-2 incorporates hydrogen and fuel cells into a roadmap thatdevelopment efforts. Hydrogen and fuel-cell technologies are

Williams, Brett D

2010-01-01T23:59:59.000Z

317

Commercializing Light-Duty Plug-In/Plug-Out Hydrogen-Fuel-Cell Vehicles:Mobile Electricity Technologies, Early California Household Markets, and Innovation Management  

E-Print Network (OSTI)

C. E. S. Thomas, "Hydrogen and Fuel Cells: Pathway to a4-2 incorporates hydrogen and fuel cells into a roadmap thatdevelopment efforts. Hydrogen and fuel-cell technologies are

Williams, Brett D

2007-01-01T23:59:59.000Z

318

Commercializing Light-Duty Plug-In/Plug-Out Hydrogen-Fuel-Cell Vehicles: "Mobile Electricity" Technologies, Early California Household Markets, and Innovation Management  

E-Print Network (OSTI)

power, and heat generation), and grid-side benefits (peakpre-) heat/cool, etc. ); home recharging using off-peak grid

Williams, Brett D

2010-01-01T23:59:59.000Z

319

Commercializing Light-Duty Plug-In/Plug-Out Hydrogen-Fuel-Cell Vehicles:Mobile Electricity Technologies, Early California Household Markets, and Innovation Management  

E-Print Network (OSTI)

power, and heat generation), and grid-side benefits (peakpre-) heat/cool, etc. ); home recharging using off-peak grid

Williams, Brett D

2007-01-01T23:59:59.000Z

320

Commercializing Light-Duty Plug-In/Plug-Out Hydrogen-Fuel-Cell Vehicles:Mobile Electricity Technologies, Early California Household Markets, and Innovation Management  

E-Print Network (OSTI)

battery Type Capacity (kWh) Saft Li- Ion Valence LiIon LiIonOvonic NiMH A-hr, 336V) Saft Li-Ion Valence LiIon EEEI

Williams, Brett D

2007-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "light-duty vehicles model" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Commercializing Light-Duty Plug-In/Plug-Out Hydrogen-Fuel-Cell Vehicles: "Mobile Electricity" Technologies, Early California Household Markets, and Innovation Management  

E-Print Network (OSTI)

battery Type Capacity (kWh) Saft Li- Ion Price EDrive PriusPM synchron AC PM synchron AC Saft Li-Ion Valence LiIon EEEI

Williams, Brett D

2010-01-01T23:59:59.000Z

322

EIA - Household Transportation report: Household Vehicles Energy  

U.S. Energy Information Administration (EIA) Indexed Site

4 4 Transportation logo printer-friendly version logo for Portable Document Format file Household Vehicles Energy Consumption 1994 August 1997 Release Next Update: EIA has discontinued this series. Based on the 1994 Residential Transportation Energy Consumption Survey conducted by the Energy Information Administration (EIA) - survey series has been discontinued Only light-duty vehicles and recreational vehicles are included in this report. EIA has excluded motorcycles, mopeds, large trucks, and buses. Household Vehicles Energy Consumption 1994 reports on the results of the 1994 Residential Transportation Energy Consumption Survey (RTECS). The RTECS is a national sample survey that has been conducted every 3 years since 1985. For the 1994 survey, more than 3,000 households that own or use

323

NREL: Vehicles and Fuels Research Home Page  

NLE Websites -- All DOE Office Websites (Extended Search)

NREL helps industry partners develop the next generation of energy efficient, high performance vehicles and fuels. NREL's transportation research spans from the materials to the systems level. NREL conducts research on the full range of vehicle types, from light-duty passenger cars to heavy-duty freight trucks. NREL's credible transportation research is grounded in real-world data. NREL's integrated approach links automotive technology advances to the full spectrum of renewable energy solutions. NREL researchers examine infrastructure, market conditions and driver behavior, as well as fuels and vehicles. NREL helps put fuel-efficient, low-emission cars and trucks on the road through research and innovation in electric vehicle, biofuel, and conventional automotive technologies. Researchers collaborate with industry

324

How Will You Shop for Your Next Vehicle? | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

How Will You Shop for Your Next Vehicle? How Will You Shop for Your Next Vehicle? How Will You Shop for Your Next Vehicle? July 28, 2011 - 11:41am Addthis On Monday, Shannon talked about how she's been using the online tools from the Advanced Technology Vehicle Data Center (AFDC) to help her decide what type of highly efficient vehicle may be best for her household. The AFDC provides excellent information such as a Light Duty Vehicle Search, an Alternative Fueling Station Locator, and a Hybrid and Plug-in Electric Vehicles section. All of these are helpful if you're wondering what type of vehicle can fit your needs while using the least possible amount of gasoline. In June, Eric's post Driving Home to a Clean Energy Future shared the latest in gasoline, electric, and hybrid vehicle labels. How about you? Are you starting to research vehicles, and if so, what tools

325

Carbonyl Emissions from Gasoline and Diesel Motor Vehicles  

Science Journals Connector (OSTI)

In the present study we describe measurements of gas- and particle-phase carbonyl emissions from light-duty gasoline (LDV) and heavy-duty diesel (HDDV) motor vehicles operated on a chassis dynamometer under realistic driving cycles. ... Vehicles were tested under a five-mode driving cycle (HHDDT, heavy heavy-duty diesel truck) consisting of 30-min idle, 17-min creep, and 11-min transient stages and two cruise stages of 34 and 31 min, with a top speed of 65 miles h?1 for the second cruise (30). ... In general, as the volatility of the carbonyl decreased, so did the PUF/total particulate carbonyl ratio. ...

Chris A. Jakober; Michael A. Robert; Sarah G. Riddle; Hugo Destaillats; M. Judith Charles; Peter G. Green; Michael J. Kleeman

2008-05-24T23:59:59.000Z

326

In-Use Emissions from Heavy-Duty Diesel Vehicles  

Science Journals Connector (OSTI)

A recent study that included 21 vehicles found that in general, g/mi emissions levels for regulated pollutants were highest for the CBD cycle, followed by the HDT cycle. ... Here g/mi NOx from the HDT and WVT driving cycles is plotted against NOx on the CBD cycle for all of the vehicles included in this paper that were tested on more than one of these driving cycles. ... The heavy-duty diesel EPM contained a higher proportion of OC than that from the light-duty diesels. ...

Janet Yanowitz; Robert L. McCormick; Michael S. Graboski

2000-01-29T23:59:59.000Z

327

Equivalent circuit modeling of hybrid electric vehicle drive train  

E-Print Network (OSTI)

The main goals of the advanced vehicles designer are to improve efficiency, to decrease emissions and to meet customer's requirements. The design of such vehicles is challenging and cannot efficiently be achieved without an appropriate tool...

Routex, Jean-Yves

2012-06-07T23:59:59.000Z

328

Vehicle Technologies Office Merit Review 2014: Atomistic models of LMRNMC Materials  

Energy.gov (U.S. Department of Energy (DOE))

Presentation given by Argonne National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about atomistic models...

329

Vehicle Technologies Office Merit Review 2014: Coupled Hierarchical Models for Thermal, Mechanical, Electrical and Electrochemical Processes  

Energy.gov (U.S. Department of Energy (DOE))

Presentation given by [company name] at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about coupled hierarchical models...

330

Vehicle Technologies Office Merit Review 2014: Model Development and Analysis of Clean & Efficient Engine Combustion  

Energy.gov (U.S. Department of Energy (DOE))

Presentation given by Lawrence Livermore National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about model...

331

Macro-System Model: A Federated Object Model for Cross-Cutting Analysis of Hydrogen Production, Delivery, Consumption and Associated Emissions; Preprint  

SciTech Connect

It is commonly accepted that the introduction of hydrogen as an energy carrier for light-duty vehicles involves concomitant technological development of infrastructure elements, such as production, delivery, and consumption, all associated with certain emission levels. To analyze these at a system level, the suite of corresponding models developed by the United States Department of Energy and involving several national laboratories is combined in one macro-system model (MSM). The macro-system model is being developed as a cross-cutting analysis tool that combines a set of hydrogen technology analysis models. Within the MSM, a federated simulation framework is used for consistent data transfer between the component models. The framework is built to suit cross-model as well as cross-platform data exchange and involves features of 'over-the-net' computation.

Ruth, M.; Diakov, V.; Goldsby, M. E.; Sa, T. J.

2010-12-01T23:59:59.000Z

332

Evaluating Indoor Exposure Modeling Alternatives for LCA: A Case Study in the Vehicle Repair Industry  

Science Journals Connector (OSTI)

Evaluating Indoor Exposure Modeling Alternatives for LCA: A Case Study in the Vehicle Repair Industry ... Alternatives for modeling occupational exposure in LCA are evaluated using experimental monitoring data in the vehicle-repair industry. ... In addition to their use in occupational hygiene, exposure models may also be applied in environmental assessments, such as risk assessment (RA) and life-cycle assessment (LCA). ...

Evangelia Demou; Stefanie Hellweg; Michael P. Wilson; S. Katharine Hammond; Thomas E. McKone

2009-06-25T23:59:59.000Z

333

Experimental Investigation of the Effects of Fuel Characteristics on High Efficiency Clean Combustion (HECC) in a Light-Duty Diesel Engine  

SciTech Connect

An experimental study was performed to understand fuel property effects on low temperature combustion (LTC) processes in a light-duty diesel engine. These types of combustion modes are often collectively referred to as high efficiency clean combustion (HECC). A statistically designed set of research fuels, the Fuels for Advanced Combustion Engines (FACE), were used for this study. Engine conditions consistent with low speed cruise (1500 rpm, 2.6 bar BMEP) were chosen for investigating fuel property effects on HECC operation in a GM 1.9-L common rail diesel engine. The FACE fuel matrix includes nine combinations of fuel properties including cetane number (30 to 55), aromatic contents (20 to 45 %), and 90 % distillation temperature (270 to 340 C). HECC operation was achieved with high levels of EGR and adjusting injection parameters, e.g. higher fuel rail pressure and single injection event, which is also known as Premixed Charge Compression Ignition (PCCI) combustion. Engine performance, pollutant emissions, and details of the combustion process are discussed in this paper. Cetane number was found to significantly affect the combustion process with variations in the start of injection (SOI) timing, which revealed that the ranges of SOI timing for HECC operation and the PM emission levels were distinctively different between high cetane number (55) and low cetane number fuels (30). Low cetane number fuels showed comparable levels of regulated gas emissions with high cetane number fuels and had an advantage in PM emissions.

Cho, Kukwon [ORNL; Han, Manbae [ORNL; Wagner, Robert M [ORNL; Sluder, Scott [ORNL

2009-01-01T23:59:59.000Z

334

Fleet-averaged engine matrices for Australian vehicles and their use in fuel economy modelling  

Science Journals Connector (OSTI)

Data obtained during standard chassis dynamometer testing at the University of Sydney is used to produce an engine fuel consumption matrix for the test vehicle. The matrix includes the effect of engine operational transients and is presented in a generalised engine parameter form which allows comparisons between dissimilar vehicles. A sufficient number of tests have been carried out to construct a fleet-averaged engine matrix for in-use Australian vehicles. A model is described which uses this matrix to predict the effect of variations in vehicle parameters and traffic flow patterns on the fuel consumption of a motor vehicle on the road or on the dynamometer.

T.J. Gibson; R.W. Bilger

1987-01-01T23:59:59.000Z

335

Vehicle purchase and use data matrices: J. D. Power/DOE New Vehicle Owner Surveys  

SciTech Connect

Vehicle purchase and use data collected in two recent surveys from buyers of new 1978 and 1979 cars and light-duty trucks are presented. The survey information is broad in scope, extending from the public awareness of fuel economy information to decision-making in the purchase process, to in-use fuel economy. The survey data consequently have many applications in transportation studies. The objective of this report is to make a general summary of the data base contents available to interested individuals and organizations.

Crawford, R.; Dulla, R.

1981-04-01T23:59:59.000Z

336

Ethanol Blends and Engine Operating Strategy Effects on Light-Duty Spark-Ignition Engine Particle Emissions  

SciTech Connect

Spark ignition (SI) engines with direct injection (DI) fueling can improve fuel economy and vehicle power beyond that of port fuel injection (PFI). Despite this distinct advantage, DI fueling often increases particle emissions such that SI exhaust may be subject to future particle emissions regulations. Challenges in controlling particle emissions arise as engines encounter varied fuel composition such as intermediate ethanol blends. Furthermore, modern engines are operated using unconventional breathing strategies with advanced cam-based variable valve actuation systems. In this study, we investigate particle emissions from a multi-cylinder DI engine operated with three different breathing strategies, fueling strategies and fuels. The breathing strategies are conventional throttled operation, early intake valve closing (EIVC) and late intake valve closing (LIVC); the fueling strategies are single injection DI (sDI), multi-injection DI (mDI), and PFI; and the fuels are emissions certification gasoline, E20 and E85. The results indicate the dominant factor influencing particle number concentration emissions for the sDI and mDI strategies is the fuel injection timing. Overly advanced injection timing results in particle formation due to fuel spray impingement on the piston, and overly retarded injection timing results in particle formation due to poor fuel and air mixing. In addition, fuel type has a significant effect on particle emissions for the DI fueling strategies. Gasoline and E20 fuels generate comparable levels of particle emissions, but E85 produces dramatically lower particle number concentration. The particle emissions for E85 are near the detection limit for the FSN instrument, and particle number emissions are one to two orders of magnitude lower for E85 relative to gasoline and E20. We found PFI fueling produces very low levels of particle emissions under all conditions and is much less sensitive to engine breathing strategy and fuel type than the DI fueling strategies. The particle number-size distributions for PFI fueling are of the same order for all of the breathing strategies and fuel types and are one to two orders lower than for the sDI fuel injection strategy with gasoline and E20. Remarkably, the particle emissions for E85 under the sDI fueling strategy are similar to particle emissions with a PFI fueling strategy. Thus by using E85, the efficiency and power advantages of DI fueling can be gained without generating high particle emissions.

Szybist, James P [ORNL; Youngquist, Adam D [ORNL; Barone, Teresa L [ORNL; Storey, John Morse [ORNL; Moore, Wayne [Delphi; Foster, Matthew [Delphi; Confer, Keith [Delphi

2011-01-01T23:59:59.000Z

337

Comparison of Conventional Diesel and Reactivity Controlled Compression Ignition (RCCI) Combustion in a Light-Duty Engine  

Energy.gov (U.S. Department of Energy (DOE))

CFD modeling was used to compare conventional diesel and dual-fuel Reactivity Controlled Compression Ignition combustion at US Tier 2 Bin 5 NOx levels, while accounting for Diesel Exhaust Fluid needed to meet NOx constraints with aftertreatment.

338

Vehicle Technologies Office: Natural Gas Research  

NLE Websites -- All DOE Office Websites (Extended Search)

Natural Gas Research Natural Gas Research Natural gas offers tremendous opportunities for reducing the use of petroleum in transportation. Medium and heavy-duty fleets, which have significant potential to use natural gas, currently consume more than a third of the petroleum in transportation in the U.S. Natural gas is an excellent fit for a wide range of heavy-duty applications, especially transit buses, refuse haulers, and Class 8 long-haul or delivery trucks. In addition, natural gas can be a very good choice for light-duty vehicle fleets with central refueling. See the Alternative Fuels Data Center for a description of the uses and benefits of natural gas vehicles or its Laws and Incentives database for information on tax incentives. The Vehicle Technologies Office (VTO) supports the development of natural gas engines and research into renewable natural gas production.

339

Lightweight Composite Materials for Heavy Duty Vehicles  

SciTech Connect

The main objective of this project is to develop, analyze and validate data, methodologies and tools that support widespread applications of automotive lightweighting technologies. Two underlying principles are guiding the research efforts towards this objective: Seamless integration between the lightweight materials selected for certain vehicle systems, cost-effective methods for their design and manufacturing, and practical means to enhance their durability while reducing their Life-Cycle-Costs (LCC). Smooth migration of the experience and findings accumulated so far at WVU in the areas of designing with lightweight materials, innovative joining concepts and durability predictions, from applications to the area of weight savings for heavy vehicle systems and hydrogen storage tanks, to lightweighting applications of selected systems or assemblies in lightduty vehicles.

Pruez, Jacky; Shoukry, Samir; Williams, Gergis; Shoukry, Mark

2013-08-31T23:59:59.000Z

340

An agent-based model to study market penetration of plug-in hybrid electric vehicles  

E-Print Network (OSTI)

An agent-based model to study market penetration of plug-in hybrid electric vehicles Margaret J 2011 Available online 29 April 2011 Keywords: Plug-in hybrid electric vehicles Market penetration Agent-based models. A recent joint report by the Electric Power Research Institute (EPRI) and the Natural Resources

Vermont, University of

Note: This page contains sample records for the topic "light-duty vehicles model" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

A model to evaluate vehicle emission incentive policies in Japan  

Science Journals Connector (OSTI)

Using 3years of data from the 47 prefectures of Japan, we estimate the behavior of households that simultaneously make discrete decisions about vehicle...

Don Fullerton; Li Gan; Miwa Hattori

2014-07-01T23:59:59.000Z

342

Technical options for energy conservation and controlling environmental impact in highway vehicles  

Science Journals Connector (OSTI)

Manufacturers of light-duty highway vehicles are sometimes caught between the desire of the consumer for a reasonable-cast conveyance that is a pleasure to operate and the mandates of regulation seeking societal objectives of energy conservation and preservation of air quality. The prospects for improving conventional vehicles in these areas by the year 2000 are considered. Alternative engines and fuels are reviewed for the same time-frame. The status of the battery-electric vehicle is assessed. Shifting attention to the mid-2lst century, the possibility of global warming is chanelling thought toward non-fossil fuels, with hydrogen being added to the list of options.

C.A. Amann

1993-01-01T23:59:59.000Z

343

Onboard Hydrogen/Helium Sensors in Support of the Global Technical Regulation: An Assessment of Performance in Fuel Cell Electric Vehicle Crash Tests  

SciTech Connect

Automobile manufacturers in North America, Europe, and Asia project a 2015 release of commercial hydrogen fuel cell powered light-duty road vehicles. These vehicles will be for general consumer applications, albeit initially in select markets but with much broader market penetration expected by 2025. To assure international harmony, North American, European, and Asian regulatory representatives are striving to base respective national regulations on an international safety standard, the Global Technical Regulation (GTR), Hydrogen Fueled Vehicle, which is part of an international agreement pertaining to wheeled vehicles and equipment for wheeled vehicles.

Post, M. B.; Burgess, R.; Rivkin, C.; Buttner, W.; O'Malley, K.; Ruiz, A.

2012-09-01T23:59:59.000Z

344

Use of the Modified Light Duty Utility Arm to Perform Nuclear Waste Cleanup of Underground Waste Storage Tanks at Oak Ridge National Laboratory  

SciTech Connect

The Modified Light Duty Utility Arm (MLDUA) is a selectable seven or eight degree-of-freedom robot arm with a 16.5 ft (5.03 m) reach and a payload capacity of 200 lb. (90.72 kg). The utility arm is controlled in either joystick-based telerobotic mode or auto sequence robotics mode. The MLDUA deployment system deploys the utility arm vertically into underground radioactive waste storage tanks located at Oak Ridge National Laboratory. These tanks are constructed of gunite material and consist of two 25 ft (7.62 m) diameter tanks in the North Tank Farm and six 50 ft (15.24 m) diameter tanks in the South Tank Farm. After deployment inside a tank, the utility arm reaches and grasps the confined sluicing end effecter (CSEE) which is attached to the hose management arm (HMA). The utility arm positions the CSEE within the tank to allow the HMA to sluice the tank's liquid and solid waste from the tank. The MLDUA is used to deploy the characterization end effecter (CEE) and gunite scarifying end effecter (GSEE) into the tank. The CEE is used to survey the tank wall's radiation levels and the physical condition of the walls. The GSEE is used to scarify the tank walls with high-pressure water to remove the wall scale buildup and a thin layer of gunite which reduces the radioactive contamination that is embedded into the gunite walls. The MLDUA is also used to support waste sampling and wall core-sampling operations. Other tools that have been developed for use by the MLDUA include a pipe-plugging end effecter, pipe-cutting end effecter, and pipe-cleaning end effecter. Washington University developed advance robotics path control algorithms for use in the tanks. The MLDUA was first deployed in June 1997 and has operated continuously since then. Operational experience in the first four tanks remediated is presented in this paper.

Blank, J.A.; Burks, B.L.; DePew, R.E.; Falter, D.D.; Glassell, R.L.; Glover, W.H.; Killough, S.M.; Lloyd, P.D.; Love, L.J.; Randolph, J.D.; Van Hoesen, S.D.; Vesco, D.P.

1999-04-01T23:59:59.000Z

345

Experimental Investigation of Fuel-Reactivity Controlled Compression Ignition (RCCI) Combustion Mode in a Multi-Cylinder, Light-Duty Diesel Engine  

SciTech Connect

An experimental study was performed to provide the combustion and emission characteristics resulting from fuel-reactivity controlled compression ignition (RCCI) combustion mode utilizing dual-fuel approach in a light-duty, multi-cylinder diesel engine. In-cylinder fuel blending using port fuel injection of gasoline before intake valve opening (IVO) and early-cycle, direct injection of diesel fuel was used as the charge preparation and fuel blending strategy. In order to achieve the desired auto-ignition quality through the stratification of the fuel-air equivalence ratio ( ), blends of commercially available gasoline and diesel fuel were used. Engine experiments were performed at an engine speed of 2300rpm and an engine load of 4.3bar brake mean effective pressure (BMEP). It was found that significant reduction in both nitrogen oxide (NOx) and particulate matter (PM) was realized successfully through the RCCI combustion mode even without applying exhaust gas recirculation (EGR). However, high carbon monoxide (CO) and hydrocarbon (HC) emissions were observed. The low combustion gas temperature during the expansion and exhaust processes seemed to be the dominant source of high CO emissions in the RCCI combustion mode. The high HC emissions during the RCCI combustion mode could be due to the increased combustion quenching layer thickness as well as the -stratification at the periphery of the combustion chamber. The slightly higher brake thermal efficiency (BTE) of the RCCI combustion mode was observed than the other combustion modes, such as the conventional diesel combustion (CDC) mode, and single-fuel, premixed charge compression ignition (PCCI) combustion mode. The parametric study of the RCCI combustion mode revealed that the combustion phasing and/or the peak cylinder pressure rise rate of the RCCI combustion mode could be controlled by several physical parameters premixed ratio (rp), intake swirl intensity, and start of injection (SOI) timing of directly injected fuel unlike other low temperature combustion (LTC) strategies.

Cho, Kukwon [ORNL] [ORNL; Curran, Scott [ORNL] [ORNL; Prikhodko, Vitaly Y [ORNL] [ORNL; Sluder, Scott [ORNL] [ORNL; Parks, II, James E [ORNL; Wagner, Robert M [ORNL] [ORNL

2011-01-01T23:59:59.000Z

346

EIA - Gasoline and Diesel Fuel report: Household Vehicles Energy  

U.S. Energy Information Administration (EIA) Indexed Site

1 1 Transportation logo printer-friendly version logo for Portable Document Format file Household Vehicles Energy Consumption 1991 December 1993 Release Next Update: August 1997. Based on the 1991 Residential Transportation Energy Consumption Survey conducted by the Energy Information Administration (EIA) - survey series has been discontinued after EIA's 1994 survey. Only light-duty vehicles and recreational vehicles are included in this report. EIA has excluded motorcycles, mopeds, large trucks, and buses. This report, Household Vehicles Energy Consumption 1991, is based on data from the 1991 Residential Transportation Energy Consumption Survey (RTECS). Focusing on vehicle miles traveled (VMT) and energy enduse consumption and expenditures by households for personal transportation, the 1991 RTECS is

347

In-vehicle mm-Wave Channel Model and Measurement  

E-Print Network (OSTI)

and costly cable bundles with wireless links. The current upswing of electrically-propelled vehicles, Ales Prokes The Faculty of Electrical Engineering and Communication Brno University of Technology Brno kilometers of wires weighing easily up to 50 kg [1], while vehicle manufacturers appreciate weight savings

Zemen, Thomas

348

Modelling and control strategy development for fuel cell electric vehicles  

E-Print Network (OSTI)

and applied to the energy management of this FCEV, which allow fuel economy optimisation while keeping a good storage. It is essential for advanced vehicles to obtain a range comparable to that of mass production and maximize the energy stored onboard a vehicle. A stochastic dynamic programming algorithm was developed

Peng, Huei

349

Light Duty Combustion Research: Advanced Light-Duty Combustion...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

reactor simulations with detailed chemistry clarified expected impact of , T, and EGR rate on CO and UHC oxidation Clearance volume CO and UHC measurements identify...

350

Vehicle Technologies Office Merit Review 2014: Consumer-Segmented Vehicle Choice Modeling: the MA3T Model  

Energy.gov (U.S. Department of Energy (DOE))

Presentation given by Oak Ridge National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about consumer...

351

Vehicle Technologies Office: Active Solicitations  

NLE Websites -- All DOE Office Websites (Extended Search)

Active Solicitations Active Solicitations To explore current financial opportunity solicitations, click on the opportunity titles in the table below. To sort the list, click on the arrows in the column headings. Technology Solicitation Title Open Date Close Date Hydrogen and Fuel Cells Research and Development for Hydrogen Storage Office of Energy Efficiency and Renewable Energy 10/29/2013 01/17/2014 Hydrogen and Fuel Cells RFI: Light Duty Vehicle Hydrogen Fueling Infrastructure Financing Strategies Office of Energy Efficiency and Renewable Energy 12/11/2013 01/31/2014 Hydrogen and Fuel Cells Hydrogen Delivery Technologies Office of Energy Efficiency and Renewable Energy 11/14/2013 02/14/2014 Hydrogen and Fuel Cells Notice of Intent to Issue Funding Opportunity Announcement Number DE-FOA-0000826

352

Microsimulation analysis of a hybrid system model of multiple merge junction highway and semiautomatic vehicles  

E-Print Network (OSTI)

Microsimulation analysis of a hybrid system model of multiple merge junction highway and semi Abstract In this paper we present a protocol that controls semi­automated autonomous vehicles driving is in the merge lane) and the yielding (the vehicle is in the main lane). We show a simulation study that presents

Girault, Alain

353

A versatile computer model for the design and analysis of electric and hybrid vehicles  

E-Print Network (OSTI)

The primary purpose of the work reported in this thesis was to develop a versatile computer model to facilitate the design and analysis of hybrid vehicle drive-trains. A hybrid vehicle is one in which power for propulsion comes from two distinct...

Stevens, Kenneth Michael

1996-01-01T23:59:59.000Z

354

Light Duty Efficient Clean Combustion  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

fuel efficiency over the FTP city drive cycle by 10.5% over today's state-of-the-art diesel engine. Develop & design an advanced combustion system that synergistically meets...

355

In-vehicle UWB Channel Measurement, Model and Spatial Stationarity  

E-Print Network (OSTI)

devices of the passengers with the vehicle. Considering the average weight of wire harness in modern- hicle's communication systems. Connection of moving parts, such as wheels for tyre pressure monitoring

Zemen, Thomas

356

AVCEM: Advanced-Vehicle Cost and Energy Use Model  

E-Print Network (OSTI)

stack); fuel-cell salvage value (fraction of initial coststack); total cost of vehicle electronics needed specifically for the fuel-cellcosts, expressed as a wage multiplier); specific weight of the fuel-cell stack (

Delucchi, Mark

2005-01-01T23:59:59.000Z

357

Modeling and control of a biorobotic autonomous underwater vehicle  

E-Print Network (OSTI)

Current research into Autonomous Underwater Vehicles (AUVs) has included work on biologically inspired propulsion mechanisms, for instance flapping foils. The first aim of this thesis is to develop an accurate non-linear ...

Booth, William Duncan Lewis

2006-01-01T23:59:59.000Z

358

Modeling and vehicle performance analysis of Earth and lunar hoppers  

E-Print Network (OSTI)

Planetary hoppers-vehicles which travel over the surface as opposed to on it-offer significant advantages over existing rovers. Above all, they are able to travel quickly and can overcome terrain obstacles such as boulders ...

Middleton, Akil J

2010-01-01T23:59:59.000Z

359

Vehicle Technologies Office Merit Review 2014: Vehicle Level Model and Control Development and Validation Under Various Thermal Conditions  

Energy.gov (U.S. Department of Energy (DOE))

Presentation given by Argonne National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about vehicle level...

360

Modelling and analysis of electric power steering system and its effect on vehicle dynamic behaviour  

Science Journals Connector (OSTI)

While most passenger vehicles equipped with power steering systems are hydraulic power assisted, Electric Power Steering (EPS) systems are becoming wide spread since they can afford higher fuel efficiency. This paper develops an integrated simulation of an EPS control system with a full vehicle model. Using co-simulation technique, a full vehicle model interacting with EPS control algorithm is concurrently simulated on a single bump road condition. The effects of EPS on the vehicle dynamic behaviour and handling responses resulting from steer and road input are analysed and compared with proving ground experimental data. The comparisons show reasonable agreement on tie-rod load, rack displacement, steering wheel torque and tyre centre acceleration. This developed co-simulation capability may be useful for EPS performance evaluation and calibration as well as for vehicle handling performance integration.

Y. Gene Liao; H. Isaac Du

2003-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "light-duty vehicles model" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

NREL: Vehicles and Fuels Research - Biofuels Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

Biofuels Projects Biofuels Projects NREL biofuels projects help overcome technical barriers and expand markets for renewable, biodegradable vehicle fuels. These new liquid fuels include higher-level ethanol blends, butanol, biodiesel, renewable diesel, and other biomass-derived fuels. NREL's biofuels research and development helps improve engine efficiency, reduce polluting emissions, and improve U.S. energy security by reducing petroleum dependency. Biofuels for Diesel Engines NREL's diesel biofuels research and development focuses on developing fuel quality standards and demonstrating compatibility with engines and emission control systems. Highly efficient heavy-duty diesel truck engines are the primary power source for global transportation of freight. Light-duty diesel-fueled passenger vehicles have much higher fuel economy than

362

Electric vehicles energy consumption of car-following models  

Science Journals Connector (OSTI)

In this paper, we use the optimal velocity model, full velocity difference model, full velocity and acceleration difference model, and the car-following model with consideration of the traffic interruption probab...

Shichun Yang; Cheng Deng; Tieqiao Tang; Yongsheng Qian

2013-01-01T23:59:59.000Z

363

NREL: Vehicles and Fuels Research - ReFUEL Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

Research Research Search More Search Options Site Map NREL's Renewable Fuels and Lubricants (ReFUEL) Laboratory is a state-of-the-art research and testing facility for advanced fuels and vehicles. Research and development focuses on overcoming barriers to the increased use of renewable diesel and other nonpetroleum-based fuels, such as biodiesel and synthetic diesel derived from biomass, and improving vehicle efficiency. Using biofuels and improving vehicle efficiency reduces our dependence on imported petroleum and enhances our national energy security. The ReFUEL Laboratory houses the following specialized equipment: Heavy-duty chassis dynamometer with a simulation capability of 8,000 to 80,000 lbs for vehicle performance and emissions research Heavy-duty (up to 600 hp) and light-duty (up to 75 hp) engine

364

EIA - Household Transportation report: Household Vehicles Energy Use:  

U.S. Energy Information Administration (EIA) Indexed Site

Transportation logo printer-friendly version logo for Portable Document Format file Household Vehicles Energy Use: Latest Data & Trends November 2005 Release (Next Update: Discontinued) Based on the 2001 National Household Travel Survey conducted by the U.S. Department of Transportation and augmented by EIA Only light-duty vehicles and recreational vehicles are included in this report. EIA has excluded motorcycles, mopeds, large trucks, and buses in an effort to maintain consistency with its past residential transportation series, which was discontinued after 1994. This report, Household Vehicles Energy Use: Latest Data & Trends, provides details on the nation's energy use for household passenger travel. A primary purpose of this report is to release the latest consumer-based data

365

Vehicle Technologies Office Merit Review 2014: Validation of Material Models for Automotive Carbon Fiber Composite Structures  

Energy.gov (U.S. Department of Energy (DOE))

Presentation given by General Motors at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about validation of material models...

366

Advances in Electric Drive Vehicle Modeling with Subsequent Experimentation and Analysis  

E-Print Network (OSTI)

coefficients in order to build a high-level, yet accurate state of charge prediction model. Moreover, this work utilizes automotive grade lithium-based batteries for realistic outcomes in the electrified vehicle realm. The fourth chapter describes an advanced...

Hausmann, Austin Joseph

2012-08-31T23:59:59.000Z

367

Development of a computational model for nuclear electric orbital transfer vehicles  

E-Print Network (OSTI)

DEVELOPMENT OF A COMPUTATIONAL MODEL FOR NUCLEAR ELECTRIC ORBITAL TRANSFER VEHICLES A Thesis by WILLIAM FOUNTAIN LYON III Submitted to the Office of Graduate Studies of Texas ARM University in partial fulfillment of the requirements... for the degree of MASTER OF SCIENCE August 1989 Major Subject: Nuclear Engineering DEVELOPMENT OF A COMPUTATIONAL MODEL FOR NUCLEAR ELECTRIC ORBITAL TRANSFER VEHICLES A Thesis by WILLIAM FOUNTAIN LYON III Approved as to style and content by: K. L...

Lyon, William Fountain

2012-06-07T23:59:59.000Z

368

Incident detection using the Standard Normal Deviate model and travel time information from probe vehicles  

E-Print Network (OSTI)

INCIDENT DETECTION USING THE STANDARD iNORMAL DEVIATE MODEL AND TRAVEL TECHIE INFORMATION FROM PROBE VEHICLES A Thesis by CHRISTOPHER EUGENE MOUNTAIN Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment... of the requirement for the degree of MASTFR OF SCIENCE December 1993 Major Subject: Civil Engineering INCIDENT DETECTION USING THE STANDARD NORMAL DEVIATE MODEL AND TRAVEL TIME INFORMATION FROM PROBE VEHICLES A Thesis by CHRISTOPHER EUGENE MOUNTAIN Submitted...

Mountain, Christopher Eugene

2012-06-07T23:59:59.000Z

369

Vehicle-emission characteristics using mechanically emulsified alcohol/diesel fuels  

SciTech Connect

A light-duty diesel vehicle fueled with an emulsified alcohol/diesel fuel was operated under cyclic mode. Emission and fuel economy measurements were taken during vehicle operation. The test results showed the volumetric fuel economy decreased slightly. Carbon monoxide emissions increased slightly, and oxides of nitrogen showed no significant change. Particulate emissions were reduced slightly, and the particulate extractables increased slightly. The environmental effect of these data cancel each other resulting in no significant changes in the total release of biological activity into the environment.

Allsup, J.R.; Seizinger, D.E.; Cox, F.W.; Brook, A.L.; McClellan, R.O.

1983-07-01T23:59:59.000Z

370

Artificial neural network modelling of driver handling behaviour in a driver-vehicle-environment system  

Science Journals Connector (OSTI)

Modelling driver handling behaviour in a driver-vehicle-environment (DVE) system is essentially useful for the design of vehicle systems and transport systems in the light of the safety and efficiency of human mobility. Driver handling behaviour is reflected in two aspects: the mental workload and the performance. Further, this behaviour is exposed through the interactions between driver-vehicle and driver-environment. There is generally a lack of the first principle with which to develop a model for human behaviour. In this study, several more sophisticated artificial neural network architectures for developing models for human drivers in a DVE system were used. The vehicle dynamics are modelled by a 3-d.o.f. model derived from the first principle. The experiment was performed and compared with a DVE simulation system in which the developed human driver behaviour model was included, together with the vehicle dynamics model. The comparative study showed that the simulation result is in good agreement with the experimental result, which further justifies the effectiveness of the developed driver behaviour model.

Y. Lin; P. Tang; W.J. Zhang; Q. Yu

2005-01-01T23:59:59.000Z

371

Climate and Energy Policy for U.S. Passenger Vehicles: A Technology-Rich Economic Modeling and Policy Analysis  

E-Print Network (OSTI)

-based relationship between income growth and travel demand, turnover of the vehicle stock, and cost-driven investment both in reduction of internal combustion engine (ICE) vehicle fuel consumption as well as in adoptionClimate and Energy Policy for U.S. Passenger Vehicles: A Technology-Rich Economic Modeling

372

A Discrete Event Simulation Model for "Efficient Selection of Relay Vehicles for  

E-Print Network (OSTI)

1 A Discrete Event Simulation Model for "Efficient Selection of Relay Vehicles for Broadcasting discrete event-driven simulation model for DIB and EDIB protocols on VANET. We define six types of events the ACK message to the sender. The following variables are used in the simulation model: · vehs stores

Lin, Jason Yi-Bing

373

Plug-In Hybrid Electric Vehicles - PHEV Modeling - Component Requirement  

NLE Websites -- All DOE Office Websites (Extended Search)

Requirement Definition for PHEVs Requirement Definition for PHEVs One of the main objectives of the U.S. Department of Energy's (DOE's) Plug-in Hybrid Electric Vehicle R&D Plan (2.2Mb pdf) is to "determine component development requirements" through simulation analysis. PSAT has been used to design and evaluate a series of PHEVs to define the requirements of different components, focusing on the energy storage system's power and energy. Several vehicle classes (including midsize car, crossover SUV and midsize SUV) and All Electric Range (AER from 10 to 40 miles) were considered. The preliminary simulations were performed at Argonne using a pre-transmission parallel hybrid configuration with an energy storage system sized to run the Urban Dynanometer Driving Schedule (UDDS) in electric mode. Additional powertrain configurations and sizing algorithm are currently being considered. Trade-off studies are being performed as ways to achieve some level of performance while easing requirements on one area or another. As shown in the figure below, the FreedomCAR Energy Storage Technical Team selected a short term and a long term All Electric Range (AER) goals based on several vehicle simulations.

374

The National Energy Modeling System: An Overview 1998 - Transportation  

Gasoline and Diesel Fuel Update (EIA)

TRANSPORTATION DEMAND MODULE TRANSPORTATION DEMAND MODULE blueball.gif (205 bytes) Fuel Economy Submodule blueball.gif (205 bytes) Regional Sales Submodule blueball.gif (205 bytes) Alternative-Fuel Vehicle Submodule blueball.gif (205 bytes) Light-Duty Vehicle Stock Submodule blueball.gif (205 bytes) Vehicle-Miles Traveled (VMT) Submodule blueball.gif (205 bytes) Light-Duty Vehicle Commercial Fleet Submodule blueball.gif (205 bytes) Commercial Light Truck Submodule blueball.gif (205 bytes) Air Travel Demand Submodule blueball.gif (205 bytes) Aircraft Fleet Efficiency Submodule blueball.gif (205 bytes) Freight Transport Submodule blueball.gif (205 bytes) Miscellaneous Energy Use Submodule The transportation demand module (TRAN) forecasts the consumption of transportation sector fuels by transportation mode, including the use of

375

The Smart Grid, A Scale Demonstration Model Incorporating Electrified Vehicles  

E-Print Network (OSTI)

renewable energy resources that can generate and manage power locally, leading to precision control of the electrical grid. Renewable energy is captured using both a student-built 45W solar panel and a 50W wind turbine to charge two separate battery..., further decentralization occurs by employing the LiFeYPO4 battery pack of a PHEV/BEV as a reserve or dynamic storage bank. Use of a commercial vehicle in this manner can lower greenhouse-gas emissions, improve urban air quality, save consumers...

Clemon, Lee; Mattson, Jon; Moore, Andrew; Necefer, Len; Heilman, Shelton

2011-04-01T23:59:59.000Z

376

An Optimization Model for Plug-In Hybrid Electric Vehicles  

SciTech Connect

The necessity for environmentally conscious vehicle designs in conjunction with increasing concerns regarding U.S. dependency on foreign oil and climate change have induced significant investment towards enhancing the propulsion portfolio with new technologies. More recently, plug-in hybrid electric vehicles (PHEVs) have held great intuitive appeal and have attracted considerable attention. PHEVs have the potential to reduce petroleum consumption and greenhouse gas (GHG) emissions in the commercial transportation sector. They are especially appealing in situations where daily commuting is within a small amount of miles with excessive stop-and-go driving. The research effort outlined in this paper aims to investigate the implications of motor/generator and battery size on fuel economy and GHG emissions in a medium-duty PHEV. An optimization framework is developed and applied to two different parallel powertrain configurations, e.g., pre-transmission and post-transmission, to derive the optimal design with respect to motor/generator and battery size. A comparison between the conventional and PHEV configurations with equivalent size and performance under the same driving conditions is conducted, thus allowing an assessment of the fuel economy and GHG emissions potential improvement. The post-transmission parallel configuration yields higher fuel economy and less GHG emissions compared to pre-transmission configuration partly attributable to the enhanced regenerative braking efficiency.

Malikopoulos, Andreas [ORNL] [ORNL; Smith, David E [ORNL] [ORNL

2011-01-01T23:59:59.000Z

377

Using Local and Regional Air Quality Modeling and Source Apportionment Tools to Evaluate Vehicles and Biogenic Emission Factors  

E-Print Network (OSTI)

and inventories of CO, NO_(x) and VOCs from on-road vehicles estimated by vehicle emission factor models and biogenic emissions of isoprene estimated by a popular biogenic emission model are evaluated using local and regional scale air quality modeling and source...

Kota, Sri H

2014-07-25T23:59:59.000Z

378

Response Surface Energy Modeling of an Electric Vehicle over a Reduced Composite Drive Cycle  

SciTech Connect

Response surface methodology (RSM) techniques were applied to develop a predictive model of electric vehicle (EV) energy consumption over the Environmental Protection Agency's (EPA) standardized drive cycles. The model is based on measurements from a synthetic composite drive cycle. The synthetic drive cycle is a minimized statistical composite of the standardized urban (UDDS), highway (HWFET), and US06 cycles. The composite synthetic drive cycle is 20 minutes in length thereby reducing testing time of the three standard EPA cycles by over 55%. Vehicle speed and acceleration were used as model inputs for a third order least squared regression model predicting vehicle battery power output as a function of the drive cycle. The approach reduced three cycles and 46 minutes of drive time to a single test of 20 minutes. Application of response surface modeling to the synthetic drive cycle is shown to predict energy consumption of the three EPA cycles within 2.6% of the actual measured values. Additionally, the response model may be used to predict energy consumption of any cycle within the speed/acceleration envelope of the synthetic cycle. This technique results in reducing test time, which additionally provides a model that may be used to expand the analysis and understanding of the vehicle under consideration.

Jehlik, Forrest [Argonne National Laboratory (ANL)] [Argonne National Laboratory (ANL); LaClair, Tim J [ORNL] [ORNL

2014-01-01T23:59:59.000Z

379

Plug-In Hybrid Electric Vehicles - PHEV Modeling - Powertrain Configuration  

NLE Websites -- All DOE Office Websites (Extended Search)

Impact of Powertrain Configuration on Fuel Efficiency To evaluate the fuel efficiency potential of plug-in hybrid electric vehicles, it is necessary to compare the advantages and drawbacks of several powertrain configurations, ranging from power split to parallel and series. PSAT offers the unique ability to simulate and compare hundreds of powertrain configurations. The goal of the effort is to define the most promising configurations depending on the particular usage. Component sizes, fuel efficiency and cost will be used to make appropriate decisions. The configurations currently being considered include, but are not limited to: Pre-transmission parallel HEV Post-transmission parallel HEV Power split HEV (including THS II and GM 2 Mode) Series The figure below shows an example comparison of three powertrain configurations (parallel, series and power split).

380

Plug-In Hybrid Electric Vehicles - PHEV Modeling - Control Strategy  

NLE Websites -- All DOE Office Websites (Extended Search)

Control Strategy Assessment of PHEVs Control Strategy Assessment of PHEVs A generic global optimization algorithm for plug-in hybrid electric vehicle (PHEV) powertrain flows has been developed based on the Bellman optimality principle. Optimization results are used to isolate control patterns, both dependent and independent of the cycle characteristics, in order to develop real-time control strategies in Simulink/Stateflow. These controllers are then implemented in PSAT to validate their performances. Heuristic optimization algorithms (such as DIRECT or genetic algorithms) are then used to tune the parameters of the real-time controller implemented in PSAT. The control strategy development process is described below. PHEV control strategy development process diagram Control Strategy Development Process

Note: This page contains sample records for the topic "light-duty vehicles model" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Application of Finite Mixture Models for Vehicle Crash Data Analysis  

E-Print Network (OSTI)

heterogeneity through the use of finite mixture regression models. A Finite mixture of Poisson or NB regression models is especially useful when the count data were generated from a heterogeneous population. To evaluate these models, Poisson and NB mixture...

Park, Byung Jung

2010-07-14T23:59:59.000Z

382

An agent-based model to study market penetration of plug-in hybrid electric vehicles  

Science Journals Connector (OSTI)

A spatially explicit agent-based vehicle consumer choice model is developed to explore sensitivities and nonlinear interactions between various potential influences on plug-in hybrid vehicle (PHEV) market penetration. The model accounts for spatial and social effects (including threshold effects, homophily, and conformity) and media influences. Preliminary simulations demonstrate how such a model could be used to identify nonlinear interactions among potential leverage points, inform policies affecting PHEV market penetration, and help identify future data collection necessary to more accurately model the system. We examine sensitivity of the model to gasoline prices, to accuracy in estimation of fuel costs, to agent willingness to adopt the PHEV technology, to PHEV purchase price and rebates, to PHEV battery range, and to heuristic values related to gasoline usage. Our simulations indicate that PHEV market penetration could be enhanced significantly by providing consumers with ready estimates of expected lifetime fuel costs associated with different vehicles (e.g., on vehicle stickers), and that increases in gasoline prices could nonlinearly magnify the impact on fleet efficiency. We also infer that a potential synergy from a gasoline tax with proceeds is used to fund research into longer-range lower-cost PHEV batteries.

Margaret J. Eppstein; David K. Grover; Jeffrey S. Marshall; Donna M. Rizzo

2011-01-01T23:59:59.000Z

383

Joint mixed logit models of stated and revealed preferences for alternative-fuel vehicles  

E-Print Network (OSTI)

for forecasting demand for alternative-fuel vehicles. In:preferences for alternative-fuel vehicles David Brownstonespondents' preferences for alternative-fuel vehicles. The e

Brownston, David; Bunch, David S.; Train, Kenneth

1999-01-01T23:59:59.000Z

384

Optimizing U.S. Mitigation Strategies for the Light-Duty Transportation Sector: What We Learn from a Bottom-Up Model  

E-Print Network (OSTI)

Energy carrier input (PJ): Corn Energy carrier input (PJ):energy requirement (in natural gas, specifically) for corn

Yeh, Sonia; Farrell, Alexander E.; Plevin, Richard J; Sanstad, Alan; Weyant, John

2008-01-01T23:59:59.000Z

385

Optimizing U.S. Mitigation Strategies for the Light-Duty Transportation Sector: What We Learn from a Bottom-Up Model  

E-Print Network (OSTI)

carrier output (PJ): Ethanol Energy carrier input (PJ): Corncarrier output (PJ): Ethanol Energy carrier input (PJ):D. M. , Ethanol can contribute to energy and environmental

Yeh, Sonia; Farrell, Alexander E.; Plevin, Richard J; Sanstad, Alan; Weyant, John

2008-01-01T23:59:59.000Z

386

Vehicle Technologies Office: Fact #598: November 23, 2009 Hybrid Vehicle  

NLE Websites -- All DOE Office Websites (Extended Search)

8: November 23, 8: November 23, 2009 Hybrid Vehicle Sales by Model to someone by E-mail Share Vehicle Technologies Office: Fact #598: November 23, 2009 Hybrid Vehicle Sales by Model on Facebook Tweet about Vehicle Technologies Office: Fact #598: November 23, 2009 Hybrid Vehicle Sales by Model on Twitter Bookmark Vehicle Technologies Office: Fact #598: November 23, 2009 Hybrid Vehicle Sales by Model on Google Bookmark Vehicle Technologies Office: Fact #598: November 23, 2009 Hybrid Vehicle Sales by Model on Delicious Rank Vehicle Technologies Office: Fact #598: November 23, 2009 Hybrid Vehicle Sales by Model on Digg Find More places to share Vehicle Technologies Office: Fact #598: November 23, 2009 Hybrid Vehicle Sales by Model on AddThis.com... Fact #598: November 23, 2009

387

NREL: Vehicle Ancillary Loads Reduction - Heat Generated Cooling  

NLE Websites -- All DOE Office Websites (Extended Search)

Heat Generated Cooling Heat Generated Cooling A counterintuitive but promising path to reducing the loads imposed by automotive air conditioning systems is to use heat-specifically the waste heat generated by engines. This can be an abundant source of energy, since most light-duty vehicles with combustion engines are only about 30% efficient at best. With that degree of thermal efficiency, an engine releases 70% of its fuel energy as waste heat through the coolant, exhaust gases, and engine compartment warm-up. During much of a typical drive cycle, the engine efficiency is even lower than 30%. As efficiency decreases, the amount of waste heat increases, representing a larger potential energy source. NREL's Vehicle Ancillary Loads Reduction (VALR) team is investigating a number of heat generated cooling technologies

388

DOE to Provide up to $21.5 million for Research to Improve Vehicle  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

up to $21.5 million for Research to Improve Vehicle up to $21.5 million for Research to Improve Vehicle Efficiency DOE to Provide up to $21.5 million for Research to Improve Vehicle Efficiency August 7, 2007 - 3:16pm Addthis BENTON HARBOR, MI - U.S. Department of Energy (DOE) Secretary Samuel W. Bodman today announced the Department will award a total of up to $21.5 million for eleven cost-shared research and development (R&D) projects that aim to improve the fuel efficiency of light-duty vehicle engines. These projects, selected for negotiation of awards, will focus on three areas: improving fuel utilization in ethanol-powered engines (engine optimization), developing advanced lubrication systems, and exploring high efficiency, clean combustion engines. Projects announced today will help advance President Bush's 20-in-10 Initiative, which calls for displacing 20

389

Development of a dedicated ethanol ultra-low emission vehicle (ULEV) -- Phase 2 report  

SciTech Connect

The objective of this 3.5-year project is to develop a commercially competitive vehicle powered by ethanol (or an ethanol blend) that can meet California`s ultra-low emission vehicle (ULEV) standards and equivalent corporate average fuel economy (CAFE) energy efficiency for a light-duty passenger car application. The definition of commercially competitive is independent of fuel cost, but does include technical requirements for competitive power, performance, refueling times, vehicle range, driveability, fuel handling safety, and overall emissions performance. This report summarizes the second phase of this project, which lasted 12 months. This report documents two baseline vehicles, the engine modifications made to the original equipment manufacturer (OEM) engines, advanced aftertreatment testing, and various fuel tests to evaluate the flammability, lubricity, and material compatibility of the ethanol fuel blends.

Dodge, L.G.; Bourn, G.; Callahan, T.J.; Naegeli, D.W.; Shouse, K.R.; Smith, L.R.; Whitney, K.A. [Southwest Research Inst., San Antonio, TX (United States)

1995-09-01T23:59:59.000Z

390

Hybrid Electric Vehicle Testing  

NLE Websites -- All DOE Office Websites (Extended Search)

Transportation Association Conference Transportation Association Conference Vancouver, Canada December 2005 Hybrid Electric Vehicle Testing Jim Francfort U.S. Department of Energy - FreedomCAR & Vehicle Technologies Program, Advanced Vehicle Testing Activity INL/CON-05-00964 Presentation Outline * Background & goals * Testing partners * Hybrid electric vehicle testing - Baseline performance testing (new HEV models) - 1.5 million miles of HEV fleet testing (160k miles per vehicle in 36 months) - End-of-life HEV testing (rerun fuel economy & conduct battery testing @ 160k miles per vehicle) - Benchmark data: vehicle & battery performance, fuel economy, maintenance & repairs, & life-cycle costs * WWW information location Background * Advanced Vehicle Testing Activity (AVTA) - part of the

391

Transient modeling and validation of lithium ion battery pack with air cooled thermal management system for electric vehicles  

Science Journals Connector (OSTI)

A transient numerical model of a lithium ion battery (LiB) pack with air cooled thermal management system is developed and validated for electric vehicle applications. In the battery model, the open circuit volta...

G. Y. Cho; J. W. Choi; J. H. Park; S. W. Cha

2014-08-01T23:59:59.000Z

392

NREL: Vehicle Ancillary Loads Reduction - Thermal Comfort Model  

NLE Websites -- All DOE Office Websites (Extended Search)

Comfort Model Comfort Model Photo of human testing to determine thermal comfort perception data. Photo of human testing to determine thermal comfort perception data. Working with researchers at the University of California, Berkeley, our team at NREL developed an empirical model of people's temperature sensation (hot/cold) as well as perceptions (comfortable/uncomfortable) in a transient non-homogeneous environment. The model predicts sensation and comfort locally (at specific points on the body) as well as globally (overall). The university performed more than 100 tests on human test subjects in a controlled environmental chamber under a range of steady state and transient thermal conditions. Participants subjectively recorded their thermal comfort on a simple form. Core and local skin temperature data was

393

Model Year 2010 Green Vehicle Guide Model Displ Cyl Trans Drive  

NLE Websites -- All DOE Office Websites (Extended Search)

Green Vehicle Guide Green Vehicle Guide Model Displ Cyl Trans Drive Fuel Sales Area Stnd Stnd Description Underhood ID Veh Class Air Pollution Score City MPG Hwy MPG Cmb MPG Greenhouse Gas Score SmartWay ACURA MDX 3.7 6 SemiAuto-6 4WD Gasoline CA U2 California LEV-II ULEV AHNXT03.7W19 SUV 7 16 21 18 4 no ACURA MDX 3.7 6 SemiAuto-6 4WD Gasoline FA B5 Federal Tier 2 Bin 5 AHNXT03.7W19 SUV 6 16 21 18 4 no ACURA RDX 2.3 4 SemiAuto-5 2WD Gasoline CA U2 California LEV-II ULEV AHNXT02.3Y19 SUV 7 19 24 21 5 no ACURA RDX 2.3 4 SemiAuto-5 4WD Gasoline CA U2 California LEV-II ULEV AHNXT02.3Y19 SUV 7 17 22 19 4 no ACURA RDX 2.3 4 SemiAuto-5 2WD Gasoline FA B5 Federal Tier 2 Bin 5 AHNXT02.3Y19 SUV 6 19 24 21 5 no ACURA RDX 2.3 4 SemiAuto-5 4WD Gasoline FA B5 Federal Tier 2 Bin 5 AHNXT02.3Y19 SUV 6 17 22 19 4 no ACURA RL 3.7 6 SemiAuto-5 4WD Gasoline CA U2 California LEV-II ULEV AHNXV03.7PB9 midsize car

394

Model Year 2011 Green Vehicle Guide Model Displ Cyl Trans Drive  

NLE Websites -- All DOE Office Websites (Extended Search)

Green Vehicle Guide Green Vehicle Guide Model Displ Cyl Trans Drive Fuel Sales Area Stnd Stnd Description Underhood ID Veh Class Air Pollution Score City MPG Hwy MPG Cmb MPG Greenhouse Gas Score SmartWay ACURA MDX 3.5 6 SemiAuto-6 4WD Gasoline CA U2 California LEV-II ULEV BHNXT03.7M19 SUV 6 16 21 18 3 no ACURA MDX 3.5 6 SemiAuto-6 4WD Gasoline FA B5 Federal Tier 2 Bin 5 BHNXT03.7M19 SUV 5 16 21 18 3 no ACURA RDX 2.3 4 SemiAuto-5 2WD Gasoline CA U2 California LEV-II ULEV BHNXT02.3X19 SUV 6 19 24 21 4 no ACURA RDX 2.3 4 SemiAuto-5 4WD Gasoline CA U2 California LEV-II ULEV BHNXT02.3X19 SUV 6 17 22 19 3 no ACURA RDX 2.3 4 SemiAuto-5 2WD Gasoline FA B5 Federal Tier 2 Bin 5 BHNXT02.3X19 SUV 5 19 24 21 4 no ACURA RDX 2.3 4 SemiAuto-5 4WD Gasoline FA B5 Federal Tier 2 Bin 5 BHNXT02.3X19 SUV 5 17 22 19 3 no ACURA RL 3.7 6 SemiAuto-6 4WD Gasoline CA U2 California LEV-II ULEV BHNXV03.7PB9 midsize car

395

Model Year 2012 Green Vehicle Guide Model Displ Cyl Trans Drive  

NLE Websites -- All DOE Office Websites (Extended Search)

Green Vehicle Guide Green Vehicle Guide Model Displ Cyl Trans Drive Fuel Sales Area Stnd Stnd Description Underhood ID Veh Class Air Pollution Score City MPG Hwy MPG Cmb MPG Greenhouse Gas Score SmartWay ACURA MDX 3.7 6 SemiAuto-6 4WD Gasoline FA B5 Federal Tier 2 Bin 5 CHNXT03.7R19 SUV 5 16 21 18 3 no ACURA MDX 3.7 6 SemiAuto-6 4WD Gasoline CA U2 California LEV-II ULEV CHNXT03.7R19 SUV 6 16 21 18 3 no ACURA RDX 2.3 4 SemiAuto-5 4WD Gasoline FA B5 Federal Tier 2 Bin 5 CHNXT02.3Y19 SUV 5 17 22 19 3 no ACURA RDX 2.3 4 SemiAuto-5 4WD Gasoline CA U2 California LEV-II ULEV CHNXT02.3Y19 SUV 6 17 22 19 3 no ACURA RDX 2.3 4 SemiAuto-5 2WD Gasoline FA B5 Federal Tier 2 Bin 5 CHNXT02.3Y19 SUV 5 19 24 21 4 no ACURA RDX 2.3 4 SemiAuto-5 2WD Gasoline CA U2 California LEV-II ULEV CHNXT02.3Y19 SUV 6 19 24 21 4 no ACURA TL 3.5 6 SemiAuto-6 2WD Gasoline FA B5 Federal Tier 2 Bin 5 CHNXV03.5EB3 midsize car 5

396

Journal of Asian Electric Vehicles, Volume 8, Number 1, June 2010 Simplified Thermal Model of PM Motors in Hybrid Vehicle Applications Taking  

E-Print Network (OSTI)

to develop a complete and representative model of the heat processes in the electric motors. In this paper in Ansoft ePhysics soft- ware. Keywords hybrid electric vehicle, surface permanent magnet synchronous motors needs to be thor- oughly understood. The optimal design of electrical motors with solid thermal

Mi, Chunting "Chris"

397

Dynamic Modeling of a Two Wheeled Vehicle : Jourdain Formalism  

E-Print Network (OSTI)

This paper presents a motorcycle direct dynamic formulation by the Jourdain's principle approach on the motorcycle's handlebar. Simulation results reveal some dynamics features like load transfer and counter-steering phenomena. keywords Motorcycle modeling, motorcycle control, Jourdain's dynamics principle. 1 Introduction

Paris-Sud XI, Université de

398

Co-training of context models for real-time vehicle detection Alexander R.T. Gepperth1,1  

E-Print Network (OSTI)

Co-training of context models for real-time vehicle detection Alexander R.T. Gepperth1,1 ENSTA the feasibility of our approach in a very challenging vehicle detection scenario comprising multiple weather-time detection system effectively composed of two trainable components: an exhaustive multiscale object detector

Paris-Sud XI, Université de

399

Comparative Life Cycle Assessment (LCA) of passenger seats and their impact on different vehicle models  

Science Journals Connector (OSTI)

The main purpose of Life Cycle Assessment (LCA) to date has been to evaluate life cycle impacts of different design solutions and materials for a car, its sub-systems and components. Considerable number of publications are available on LCA of automotive components. This research aims to extend the LCA approach by evaluating and comparing the effects of mass reduction of passenger seats for different vehicle models in order to provide strategic support for decision making in the development process and to validate the environmental benefits of design alternatives under investigation. For this purpose, the paper presents a comprehensive LCA of passenger seats with detailed consideration of alternative scenarios for the use phase for different vehicle models.

Aleksandar Subic; Francesco Schiavone; Martin Leary; Jack Manning

2010-01-01T23:59:59.000Z

400

Vehicle Technologies Office: Fact #806: December 2, 2013 Light Vehicle  

NLE Websites -- All DOE Office Websites (Extended Search)

6: December 2, 6: December 2, 2013 Light Vehicle Market Shares, Model Years 1975-2012 to someone by E-mail Share Vehicle Technologies Office: Fact #806: December 2, 2013 Light Vehicle Market Shares, Model Years 1975-2012 on Facebook Tweet about Vehicle Technologies Office: Fact #806: December 2, 2013 Light Vehicle Market Shares, Model Years 1975-2012 on Twitter Bookmark Vehicle Technologies Office: Fact #806: December 2, 2013 Light Vehicle Market Shares, Model Years 1975-2012 on Google Bookmark Vehicle Technologies Office: Fact #806: December 2, 2013 Light Vehicle Market Shares, Model Years 1975-2012 on Delicious Rank Vehicle Technologies Office: Fact #806: December 2, 2013 Light Vehicle Market Shares, Model Years 1975-2012 on Digg Find More places to share Vehicle Technologies Office: Fact #806:

Note: This page contains sample records for the topic "light-duty vehicles model" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Fact #806: December 2, 2013 Light Vehicle Market Shares, Model Years 19752012  

Energy.gov (U.S. Department of Energy (DOE))

In 1975, cars were by far the dominant vehicle style among new light vehicle sales, with a few vans and pickup trucks. Sport Utility Vehicles (SUVs) accounted for less than 2% of the market at that...

402

A Transaction Choice Model for Forecasting Demand for Alternative-Fuel Vehicles  

E-Print Network (OSTI)

Forecasting Demand Alternative-Fuel Vehicles for DavldNG DEMANDFOR ALTERNATIVE-FUEL VEHICLES DavidBrownstone,interested in promoting alternative-fuel vehicles. Tlus is

Brownstone, David; Bunch, David S.; Golob, Thomas F.; Ren, Weiping

1996-01-01T23:59:59.000Z

403

A Transactions Choice Model for Forecasting Demand for Alternative-Fuel Vehicles  

E-Print Network (OSTI)

Forecasting Demand Alternative-Fuel Vehicles for DavldNG DEMANDFOR ALTERNATIVE-FUEL VEHICLES DavidBrownstone,interested in promoting alternative-fuel vehicles. Tlus is

Brownstone, David; Bunch, David S; Golob, Thomas F; Ren, Weiping

1996-01-01T23:59:59.000Z

404

Shifting primary energy source and NOx emission location with plug-in hybrid vehicles  

Science Journals Connector (OSTI)

Plug-in hybrid vehicles (PHEVs) present an interesting technological opportunity for using non-fossil primary energy in light duty passenger vehicles, with the associated potential for reducing air pollutant and greenhouse gas emissions, to the extent that the electric power grid is fed by non-fossil sources. This perspective, accompanying the article by Thompson et al (2011) in this issue, will touch on two other studies that are directly related: the Argonne study (Elgowainy et al 2010) and a PhD thesis from Utrecht (van Vliet 2010). Thompson et al (2011) have examined air quality effects in a case where the grid is predominantly fossil fed. They estimate a reduction of 7.42 tons/day of NOx from motor vehicles as a result of substituting electric VMTs for 20% of the light duty gasoline vehicle miles traveled. To estimate the impact of this reduction on air quality they also consider the increases in NOx emissions due to the increased load on electricity generating units. The NOx emission increases are estimated as 4.0, 5.5 and 6.3 tons for the Convenience, Battery and Night charging scenarios respectively. The net reductions are thus in the 1.13.4 tons/day range. The air quality modelling results presented show that the air quality impact from a ground-level ozone perspective is favorable overall, and while the effect is stronger in some localities, the difference between the three scenarios is small. This is quite significant and suggests that localization of the NOx emissions to point sources has a more pronounced effect than the absolute reductions achieved. Furthermore it demonstrates that localization of NOx emissions to electricity generating units by using PHEVs in vehicle traffic has beneficial effects for air quality not only by minimizing direct human exposure to motor vehicle emissions, but also due to reduced exposure to secondary pollutants (i.e. ozone). In an electric power grid with a smaller share of fossil fired generating units, the beneficial effects would be more pronounced. In such a case, it would also be possible to realize reductions in greenhouse gas emissions. The significance of the electric power generation mix for plug-in hybrid vehicles and battery electric vehicles is a key aspect of Argonne National Laboratories' well-to-wheel study which focuses on petroleum use and greenhouse gas emissions (Elgowainy et al 2010). The study evaluates possible reductions in petroleum use and GHG emissions in the electric power systems in four major regions of the United States as well as the US average generation mix, using Argonne's GREET life-cycle analysis model. Two PHEV designs are investigated through a Powertrain System Analysis Toolkit (PSAT) model: the power-split configuration (e.g. the current Toyota Prius model with Hymotion conversion), and a future series configuration where the engine powers a generator, which charges a battery that is used by the electric motor to propel the vehicle. Since the petroleum share is small in the electricity generation mix for most regions in the United States, it is possible to achieve significant reductions in petroleum use by PHEVs. However, GHG reduction is another story. In one of the cases in the study, PHEVs in the charge depleting mode and recharging from a mix with a large share of coal generation (e.g., Illinois marginal mix) produce GHG emissions comparable to those of baseline gasoline internal combustion engine vehicles (with a range from ?15% to +10%) but significantly higher than those of gasoline hybrid electric vehicles (with a range from +20% to +60%). In what is called the unconstrained charging scenario where investments in new generation capacity with high efficiency and low carbon intensity are envisaged, it becomes possible to achieve significant reductions in both petroleum use and GHG emissions. In a PhD dissertation at Utrecht University, van Vliet (2010) presents a comprehensive analysis of alternatives to gasoline and diesel by looking at various fuel and vehicle technologies. Three chapters are of particular interest from the

Deniz Karman

2011-01-01T23:59:59.000Z

405

Coordinated formation pattern control of multiple marine surface vehicles with model uncertainty and time-varying ocean currents  

Science Journals Connector (OSTI)

This paper considers the coordinated formation pattern control of multiple marine surface vehicles in the presence of model uncertainty and time-varying ocean disturbances induced wind, waves and ocean currents. ...

Zhouhua Peng; Dan Wang; Hao Wang; Wei Wang

2014-12-01T23:59:59.000Z

406

Annual Energy Outlook 2013 Early Release Reference Case  

Gasoline and Diesel Fuel Update (EIA)

Flex-Fuel Vehicle Modeling in the Flex-Fuel Vehicle Modeling in the Annual Energy Outlook John Maples Office of Energy Consumption and Energy Analysis March 20, 2013 | Washington, DC Light duty vehicle technology and alternative fuel market penetration 2 * Technologies affecting light-duty vehicle fuel economy are considered as either: - subsystem technologies (transmissions, materials, turbo charging) - advanced/alternative fuel vehicles (hybrids, EVs, FFVs) * Manufacturers Technology Choice Component (MTCC) - 9 manufacturers, 16 vehicle types, 6 size classes - adopts vehicle subsystem technologies for all vehicle types (conventional gasoline, FFV, hybrid, diesel, etc.) based on value of fuel economy and/or performance improvement * Consumer Vehicle Choice Component (CVCC)

407

Electric Drive Vehicle Demonstration and Vehicle Infrastructure...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Electric Drive Vehicle Demonstration and Vehicle Infrastructure Evaluation Electric Drive Vehicle Demonstration and Vehicle Infrastructure Evaluation 2010 DOE Vehicle Technologies...

408

Heavy Vehicle Systems, Int. J. of Vehicle Design, Vol. 11, Nos. 3/4, 2004 349 Modelling and control of a medium-duty hybrid  

E-Print Network (OSTI)

tool, and its application to the design of a power management control algorithm. The hybrid electric to improve vehicle fuel economy significantly, compared with the original vehicle, powered only by a diesel engine. Keywords: electric vehicles, electric-vehicle simulation, hybrid electric vehicles, hybrid

Peng, Huei

409

NREL: Energy Analysis - Transportation Energy Futures Project  

NLE Websites -- All DOE Office Websites (Extended Search)

Pathways: An Examination of Timing and Investment Constraints Non-Light-Duty Vehicles Potential for Energy Efficiency Improvement Beyond the Light-Duty Sector Fuels Alternative...

410

High-frequency equivalent model of AC motor for electric vehicle drive system  

Science Journals Connector (OSTI)

The application of the motor drive system in electric and hybrid-electric vehicles can lead to a significant increase in electromagnetic compatibility. The AC motor as an important part of motor drive system must be considered. In this paper, a high frequency modelling method of the AC motor is presented. The modelling method consists of deriving the motor model parameters from mathematical resolution of the electrical circuit equations and observation of the variations of the motor impedance with the frequency. All parameters of the proposed models are obtained by differential mode (DM) and common mode (CM) impedance measurement in the frequency domain. The model is verified by impedance measurement of a synchronous motor. The method proposed can be used to obtain a high-frequency equivalent circuit of an AC motor and predict conducted electromagnetic interference in a motor drive system.

Yongming Yang; Hemeng Peng; Quandi Wang

2013-01-01T23:59:59.000Z

411

Electric and Gasoline Vehicle Lifecycle Cost and Energy-Use Model  

E-Print Network (OSTI)

analyses of the manufacturing cost of the key unique components of electric vehicles: batteries, fuel cells,

Delucchi, Mark; Burke, Andy; Lipman, Timothy; Miller, Marshall

2000-01-01T23:59:59.000Z

412

UPDATING THE FREIGHT TRUCK STOCK ADJUSTMENT MODEL: 1997 VEHICLE INVENTORY AND USE SURVEY DATA  

NLE Websites -- All DOE Office Websites (Extended Search)

36 36 UPDATING THE FREIGHT TRUCK STOCK ADJUSTMENT MODEL: 1997 VEHICLE INVENTORY AND USE SURVEY DATA Stacy C. Davis November 2000 Prepared for the Energy Information Administration U.S. Department of Energy Prepared by the OAK RIDGE NATIONAL LABORATORY Oak Ridge, Tennessee 37831-6073 managed by UT-BATTELLE, LLC for the U.S. DEPARTMENT OF ENERGY under Contract No. DE-AC05-00OR22725 Updating the FTSAM: 1997 VIUS Data iii TABLE OF CONTENTS ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 OBJECTIVE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 VIUS DATA PREPARATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Table 1. Share of Trucks by Fuel Type and Truck Size -

413

Identification of powered parafoil-vehicle dynamics from modelling and flight test data  

E-Print Network (OSTI)

S consisting of N particles P1,...,PN, suppose that n -m gen- eralized speeds have been introduced, and let vPir denote the rth partial velocity of Pi. Then, if Ri is the resultant of all contact and body forces acting on Pi, then the n -m quantities F1,...,Fn-m...IDENTIFICATION OF POWERED PARAFOIL-VEHICLE DYNAMICS FROM MODELLING AND FLIGHT TEST DATA A Dissertation by GI-BONG HUR Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree...

Hur, Gi-Bong

2006-08-16T23:59:59.000Z

414

Appending High-Resolution Elevation Data to GPS Speed Traces for Vehicle Energy Modeling and Simulation  

SciTech Connect

Accurate and reliable global positioning system (GPS)-based vehicle use data are highly valuable for many transportation, analysis, and automotive considerations. Model-based design, real-world fuel economy analysis, and the growing field of autonomous and connected technologies (including predictive powertrain control and self-driving cars) all have a vested interest in high-fidelity estimation of powertrain loads and vehicle usage profiles. Unfortunately, road grade can be a difficult property to extract from GPS data with consistency. In this report, we present a methodology for appending high-resolution elevation data to GPS speed traces via a static digital elevation model. Anomalous data points in the digital elevation model are addressed during a filtration/smoothing routine, resulting in an elevation profile that can be used to calculate road grade. This process is evaluated against a large, commercially available height/slope dataset from the Navteq/Nokia/HERE Advanced Driver Assistance Systems product. Results will show good agreement with the Advanced Driver Assistance Systems data in the ability to estimate road grade between any two consecutive points in the contiguous United States.

Wood, E.; Burton, E.; Duran, A.; Gonder, J.

2014-06-01T23:59:59.000Z

415

Household Vehicles Energy Consumption 1991  

U.S. Energy Information Administration (EIA) Indexed Site

. . Trends in Household Vehicle Stock The 1991 RTECS counted more than 150 million vehicles in use by U.S. households. This chapter examines recent trends in the vehicle stock, as measured by the RTECS and other reputable vehicle surveys. It also provides some details on the type and model year of the household vehicle stock, and identifies regional differences in vehicle stock. Because vehicles are continuously being bought and sold, this chapter also reports findings relating to turnover of the vehicle stock in 1991. Finally, it examines the average vehicle stock in 1991 (which takes into account the acquisition and disposal of household vehicles over the course of the year) and identifies variations in the average number of household vehicles based on differences in household characteristics. Number of Household Vehicles Over the past 8 years, the stock of household vehicles has

416

Vehicle Research Laboratory - FEERC  

NLE Websites -- All DOE Office Websites (Extended Search)

Vehicle Research Laboratory Vehicle Research Laboratory Expertise The overall FEERC team has been developed to encompass the many disciplines necessary for world-class fuels, engines, and emissions-related research, with experimental, analytical, and modeling capabilities. Staff members specialize in areas including combustion and thermodynamics, emissions measurements, analytical chemistry, catalysis, sensors and diagnostics, dynamometer cell operations, engine controls and control theory. FEERC engineers have many years of experience in vehicle research, chassis laboratory development and operation, and have developed specialized systems and methods for vehicle R&D. Selected Vehicle Research Topics In-use investigation of Lean NOx Traps (LNTs). Vehicle fuel economy features such as lean operation GDI engines,

417

Vehicle Ancillary Load Reduction Project Close-Out Report: An Overview of the Task and a Compilation of the Research Results  

SciTech Connect

The amount of fuel used for climate control in U.S. vehicles reduces the fuel economy of more than 200 million light-duty conventional vehicles and thus affects U.S. energy security. Researchers at the DOE National Renewable Energy Laboratory estimated that the United States consumes about 7 billion gallons of fuel per year for air-conditioning (A/C) light-duty vehicles. Using a variety of tools, NREL researchers developed innovative techniques and technologies to reduce the amount of fuel needed for these vehicles' ancillary loads. For example, they found that the A/C cooling capacity of 5.7 kW in a Cadillac STS could be reduced by 30% while maintaining a cooldown performance of 30 minutes. A simulation showed that reducing the A/C load by 30% decreased A/C fuel consumption by 26%. Other simulations supported the great potential for improving fuel economy by using new technologies and techniques developed to reduce ancillary loads.

Rugh, J.; Farrington, R.

2008-01-01T23:59:59.000Z

418

Vehicle Technologies Office: Favorites  

NLE Websites -- All DOE Office Websites (Extended Search)

Favorites to someone by Favorites to someone by E-mail Share Vehicle Technologies Office: Favorites on Facebook Tweet about Vehicle Technologies Office: Favorites on Twitter Bookmark Vehicle Technologies Office: Favorites on Google Bookmark Vehicle Technologies Office: Favorites on Delicious Rank Vehicle Technologies Office: Favorites on Digg Find More places to share Vehicle Technologies Office: Favorites on AddThis.com... Favorites #248 Top Ten Net Petroleum Importing Countries, 2000 December 23, 2002 #246 U.S. Oil Imports - Top 10 Countries of Origin December 9, 2002 #244 Sport Utility Vehicle Spotlight November 25, 2002 #243 Fuel Economy Leaders for 2003 Model Year Light Trucks November 18, 2002 #242 Fuel Economy Leaders for 2003 Model Year Cars November 11, 2002 #238 Automobile and Truck Population by Vehicle Age, 2001 October 14, 2002

419

Fact #854 January 5, 2015 Driving Ranges for All-Electric Vehicles in Model Year 2014 Vary from 62 to 265 Miles Dataset  

Energy.gov (U.S. Department of Energy (DOE))

Excel file with dataset for Driving Ranges for All-Electric Vehicles in Model Year 2014 Vary from 62 to 265 Miles

420

Modelling and control of a symmetric flapping wing vehicle: an optimal control approach  

E-Print Network (OSTI)

This thesis presents a method for designing a flapping wing stroke for a flapping wing vehicle. A flapping wing vehicle is a vehicle such as a bird or an insect that uses its wings for propulsion instead of a conventional propeller or a jet engine...

Jackson, Justin Patrick

2009-05-15T23:59:59.000Z

Note: This page contains sample records for the topic "light-duty vehicles model" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Modelling market diffusion of electric vehicles with real world driving data Part I: Model structure and validation  

Science Journals Connector (OSTI)

Abstract The future market diffusion of electric vehicles (EVs) is of great importance for transport related green house gas emissions and energy demand. But most studies on the market diffusion of \\{EVs\\} focus on average driving patters and neglect the great variations in daily driving of individuals present in real-world driving data. Yet these variations are important for \\{EVs\\} since range limitations and the electric driving share of plug-in hybrids strongly impact the economic evaluation and consumer acceptance of EVs. Additionally, studies often focus on private cars only and neglect that commercial buyers account for relevant market shares in vehicle sales. Here, we propose a detailed, user specific model for the market diffusion of \\{EVs\\} and evaluation of EV market diffusion policies based on real-world driving data. The data and model proposed include both private and commercial users in Germany and allow the calculation of realistic electric driving shares for all usage patterns. The proposed model explicitly includes user heterogeneity in driving behaviour, different user groups, psychological aspects and the effect of charge-at-home options. Our results show that the proposed model reproduces group specific market shares, gives confidence bands of market shares and simulates individual electric driving shares.

Patrick Pltz; Till Gnann; Martin Wietschel

2014-01-01T23:59:59.000Z

422

NGV and FCV Light Duty Transportation Perspective  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

transportation perspectives Matt Fronk, Matt Fronk & Associates, LLC 1 OctOber 2011 | ArgOnne nAtiOnAl lAbOrAtOry NG Workshop summary report - appeNDIX G 2 OctOber 2011 | ArgOnne...

423

Business Case for Light-Duty Diesels  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

(NSC) 12 Cost of Diesel Systems Aftertreatment - components SCR has a high NOx conversion rate and good durability Potential exists for Bin 5 for light trucks up to 8,500 lbs...

424

Advanced Technology Light Duty Diesel Aftertreatment System ...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Approach to Low Temperature NOx Emission Abatement Cummins' Next Generation Tier 2, Bin 2 Light Truck Diesel Engine ATP-LD; Cummins Next Generation Tier 2 Bin 2 Diesel Engine...

425

Advanced Technology Light Duty Diesel Aftertreatment System  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Dearborn, MI T2B2 FTP-75 NOx Cycle Limit http:www.dieselnet.comstandardscyclesftp75.php ATLAS T2B2 AT Strategy Summary 1162012 U.S. Department of Energy DEER 2012 -...

426

Smith Electric Vehicles: Advanced Vehicle Electrification + Transporta...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Smith Electric Vehicles: Advanced Vehicle Electrification + Transportation Sector Electrification Smith Electric Vehicles: Advanced Vehicle Electrification + Transportation Sector...

427

Well-to-wheel Energy Consumption and Pollutant Emissions Comparison between Electric and Non-electric Vehicles: a Modeling Approach  

Science Journals Connector (OSTI)

Although electric vehicles (EVs) gain more and more popularity these years, the issue on whether they are really more environmentally and ecologically sound than non-electric vehicles, e.g. gasoline and diesel fuel burned internal combustion engine (ICE) vehicles has become a heat-debated one. This paper outlines an assessment model which intends to compare well-to-wheel energy consumption and pollutant emissions between \\{EVs\\} and non-electric ones, using Analytic Hierarchy Process (AHP) technique based on the potential environmental and ecological impact. The modeling in this case predicted that from the perspective of total energy consumption and pollution, further improvements are still necessary for the feasibility and widespread use of EVs.

Z.J. Li; X.L. Chen; M. Ding

2012-01-01T23:59:59.000Z

428

HyDIVE (Hydrogen Dynamic Infrastructure and Vehicle Evolution) Model Analysis  

NLE Websites -- All DOE Office Websites (Extended Search)

HyDIVE(tm) HyDIVE(tm) (Hydrogen Dynamic Infrastructure and Vehicle Evolution) model analysis Cory Welch Hydrogen Analysis Workshop, August 9-10 Washington, D.C. Disclaimer and Government License This work has been authored by Midwest Research Institute (MRI) under Contract No. DE- AC36-99GO10337 with the U.S. Department of Energy (the "DOE"). The United States Government (the "Government") retains and the publisher, by accepting the work for publication, acknowledges that the Government retains a non-exclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this work, or allow others to do so, for Government purposes. Neither MRI, the DOE, the Government, nor any other agency thereof, nor any of their

429

GREET 1.0 -- Transportation fuel cycles model: Methodology and use  

SciTech Connect

This report documents the development and use of the Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation (GREET) model. The model, developed in a spreadsheet format, estimates the full fuel-cycle emissions and energy use associated with various transportation fuels for light-duty vehicles. The model calculates fuel-cycle emissions of five criteria pollutants (volatile organic compounds, Co, NOx, SOx, and particulate matter measuring 10 microns or less) and three greenhouse gases (carbon dioxide, methane, and nitrous oxide). The model also calculates the total fuel-cycle energy consumption, fossil fuel consumption, and petroleum consumption using various transportation fuels. The GREET model includes 17 fuel cycles: petroleum to conventional gasoline, reformulated gasoline, clean diesel, liquefied petroleum gas, and electricity via residual oil; natural gas to compressed natural gas, liquefied petroleum gas, methanol, hydrogen, and electricity; coal to electricity; uranium to electricity; renewable energy (hydropower, solar energy, and wind) to electricity; corn, woody biomass, and herbaceous biomass to ethanol; and landfill gases to methanol. This report presents fuel-cycle energy use and emissions for a 2000 model-year car powered by each of the fuels that are produced from the primary energy sources considered in the study.

Wang, M.Q.

1996-06-01T23:59:59.000Z

430

Vehicle Technologies Office's Research Recognized by R&D 100...  

Office of Environmental Management (EM)

Vehicles Home About Vehicle Technologies Office Plug-in Electric Vehicles & Batteries Fuel Efficiency & Emissions Alternative Fuels Modeling, Testing, Data & Results Education...

431

EcoCAR 3 Pushes the Vehicle Efficiency Envelope | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

III Vehicles Home About Vehicle Technologies Office Plug-in Electric Vehicles & Batteries Fuel Efficiency & Emissions Alternative Fuels Modeling, Testing, Data & Results Education...

432

Model-Free Learning-Based Online Management of Hybrid Electrical Energy Storage Systems in Electric Vehicles  

E-Print Network (OSTI)

Model-Free Learning-Based Online Management of Hybrid Electrical Energy Storage Systems in Electric@elpl.snu.ac.kr Abstract--To improve the cycle efficiency and peak output power density of energy storage systems in electric vehicles (EVs), supercapacitors have been proposed as auxiliary energy storage elements

Pedram, Massoud

433

Vehicle Technologies Office Merit Review 2014: Chemical Kinetic Models for Advanced Engine Combustion  

Energy.gov (U.S. Department of Energy (DOE))

Presentation given by Lawrence Livermore National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about...

434

Vehicle Technologies Office Merit Review 2014: Cell Analysis, Modeling, and Prototyping (CAMP) Facility Research Activities  

Energy.gov (U.S. Department of Energy (DOE))

Presentation given by Argonne National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about cell analysis,...

435

Vehicle Technologies Office Merit Review 2014: Emissions Modeling: GREET Life Cycle Analysis  

Energy.gov (U.S. Department of Energy (DOE))

Presentation given by Argonne National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about emissions...

436

Vehicle Technologies Office Merit Review 2014: Unified Modeling, Simulation, and Market Implications: FASTSim and ADOPT  

Energy.gov (U.S. Department of Energy (DOE))

Presentation given by National Renewable Energy Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about the...

437

Vehicle Technologies Office Merit Review 2014: Development of Thermoplastic Pultrusion with Modeling and Experiments  

Energy.gov (U.S. Department of Energy (DOE))

Presentation given by University of Alabama at Birmingham at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about...

438

Modeling and Optimization of PEMFC Systems and its Application to Direct Hydrogen Fuel Cell Vehicles  

E-Print Network (OSTI)

operating conditions. Direct Hydrogen Fuel Cell System Modelconditions for a direct hydrogen fuel cell system Table 1simulation tool for hydrogen fuel cell vehicles, Journal of

Zhao, Hengbing; Burke, Andy

2008-01-01T23:59:59.000Z

439

Vehicle Technologies Office Merit Review 2014: Electrochemical Modeling of LMR-NMC Materials and Electrodes  

Energy.gov (U.S. Department of Energy (DOE))

Presentation given by Argonne National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about electrochemical...

440

Analytical models to evaluate system performance measures for vehicle based material-handling systems under various dispatching policies  

E-Print Network (OSTI)

are considered. Those are workcenter-initiated vehicle dispatching rules and vehicle-initiated vehicle dispatching rules. For the workcenterinitiated vehicle dispatching rule, the Closest Transporter Allocation Rule (CTAR) was used to assign empty transporters...

Lee, Moonsu

2005-08-29T23:59:59.000Z

Note: This page contains sample records for the topic "light-duty vehicles model" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Vehicle Technologies Office: Favorites  

NLE Websites -- All DOE Office Websites (Extended Search)

Favorites Favorites #248 Top Ten Net Petroleum Importing Countries, 2000 December 23, 2002 #246 U.S. Oil Imports - Top 10 Countries of Origin December 9, 2002 #244 Sport Utility Vehicle Spotlight November 25, 2002 #243 Fuel Economy Leaders for 2003 Model Year Light Trucks November 18, 2002 #242 Fuel Economy Leaders for 2003 Model Year Cars November 11, 2002 #238 Automobile and Truck Population by Vehicle Age, 2001 October 14, 2002 #234 2003 Model Year Alternative Fuel Vehicles September 16, 2002 #233 Vehicles per Thousand People: U.S. Compared to Other Countries September 9, 2002 #230 Hybrid Electric Vehicles in the United States August 19, 2002 #229 Medium and Heavy Truck Sales August 12, 2002 #228 New Light Vehicle Sales Shares, 1976-2001 August 5, 2002

442

IN-VEHICLE, HIGH-POWER ENERGY STORAGE SYSTEMS  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

- electric and hybrid vehicle configurations - vehicle modeling (Autonomie) - fuel cells - Hardware in the Loop (HIL) techniques - power electronics - combustion - controls -...

443

GASOLINE VEHICLE EXHAUST PARTICLE SAMPLING STUDY  

SciTech Connect

The University of Minnesota collaborated with the Paul Scherrer Institute, the University of Wisconsin (UWI) and Ricardo, Inc to physically and chemically characterize the exhaust plume from recruited gasoline spark ignition (SI) vehicles. The project objectives were: (1) Measure representative particle size distributions from a set of on-road SI vehicles and compare these data to similar data collected on a small subset of light-duty gasoline vehicles tested on a chassis dynamometer with a dilution tunnel using the Unified Drive Cycle, at both room temperature (cold start) and 0 C (cold-cold start). (2) Compare data collected from SI vehicles to similar data collected from Diesel engines during the Coordinating Research Council E-43 project. (3) Characterize on-road aerosol during mixed midweek traffic and Sunday midday periods and determine fleet-specific emission rates. (4) Characterize bulk- and size-segregated chemical composition of the particulate matter (PM) emitted in the exhaust from the gasoline vehicles. Particle number concentrations and size distributions are strongly influenced by dilution and sampling conditions. Laboratory methods were evaluated to dilute SI exhaust in a way that would produce size distributions that were similar to those measured during laboratory experiments. Size fractionated samples were collected for chemical analysis using a nano-microorifice uniform deposit impactor (nano-MOUDI). In addition, bulk samples were collected and analyzed. A mixture of low, mid and high mileage vehicles were recruited for testing during the study. Under steady highway cruise conditions a significant particle signature above background was not measured, but during hard accelerations number size distributions for the test fleet were similar to modern heavy-duty Diesel vehicles. Number emissions were much higher at high speed and during cold-cold starts. Fuel specific number emissions range from 1012 to 3 x 1016 particles/kg fuel. A simple relationship between number and mass emissions was not observed. Data were collected on-road to compare weekday with weekend air quality around the Twin Cities area. This portion of the study resulted in the development of a method to apportion the Diesel and SI contribution to on-road aerosol.

Kittelson, D; Watts, W; Johnson, J; Zarling, D Schauer,J Kasper, K; Baltensperger, U; Burtscher, H

2003-08-24T23:59:59.000Z

444

Propane vehicles : status, challenges, and opportunities.  

SciTech Connect

Propane as an auto fuel has a high octane value and has key properties required for spark-ignited internal combustion engines. To operate a vehicle on propane as either a dedicated fuel or bi-fuel (i.e., switching between gasoline and propane) vehicle, only a few modifications must be made to the engine. Until recently propane vehicles have commonly used a vapor pressure system that was somewhat similar to a carburetion system, wherein the propane would be vaporized and mixed with combustion air in the intake plenum of the engine. This leads to lower efficiency as more air, rather than fuel, is inducted into the cylinder for combustion (Myers 2009). A newer liquid injection system has become available that injects propane directly into the cylinder, resulting in no mixing penalty because air is not diluted with the gaseous fuel in the intake manifold. Use of a direct propane injection system will improve engine efficiency (Gupta 2009). Other systems include the sequential multi-port fuel injection system and a bi-fuel 'hybrid' sequential propane injection system. Carbureted systems remain in use but mostly for non-road applications. In the United States a closed-loop system is used in after-market conversions. This system incorporates an electronic sensor that provides constant feedback to the fuel controller to allow it to measure precisely the proper air/fuel ratio. A complete conversion system includes a fuel controller, pressure regulator valves, fuel injectors, electronics, fuel tank, and software. A slight power loss is expected in conversion to a vapor pressure system, but power can still be optimized with vehicle modifications of such items as the air/fuel mixture and compression ratios. Cold start issues are eliminated for vapor pressure systems since the air/fuel mixture is gaseous. In light-duty propane vehicles, the fuel tank is typically mounted in the trunk; for medium- and heavy-duty vans and trucks, the tank is located under the body of the vehicle. Propane tanks add weight to a vehicle and can slightly increase the consumption of fuel. On a gallon-to-gallon basis, the energy content of propane is 73% that of gasoline, thus requiring more propane fuel to travel an equivalent distance, even in an optimized engine (EERE 2009b).

Rood Werpy, M.; Burnham, A.; Bertram, K.; Energy Systems

2010-06-17T23:59:59.000Z

445

Hybrid Vehicle Technology - Home  

NLE Websites -- All DOE Office Websites (Extended Search)

* Batteries * Batteries * Modeling * Testing Hydrogen & Fuel Cells Materials Modeling, Simulation & Software Plug-In Hybrid Electric Vehicles PSAT Smart Grid Student Competitions Technology Analysis Transportation Research and Analysis Computing Center Working With Argonne Contact TTRDC Hybrid Vehicle Technology revolutionize transportation Argonne's Research Argonne researchers are developing and testing various hybrid electric vehicles (HEVs) and their components to identify the technologies, configurations, and engine control strategies that provide the best combination of high fuel economy and low emissions. Vehicle Validation Argonne also serves as the lead laboratory for hardware-in-the-loop (HIL) and technology validation for the U.S. Department of Energy (DOE). HIL is a

446

Proceedings of the International Electronics Packaging Education Conference (at the ECTC), May 30, 2006 Using Teardown Analysis as a Vehicle to Teach Electronic Systems Manufacturing Cost Modeling  

E-Print Network (OSTI)

, 2006 Using Teardown Analysis as a Vehicle to Teach Electronic Systems Manufacturing Cost Modeling Peter product teardowns and reverse engineering ideas has proven to be an effective vehicle for educating engineers involved in the design of electronic systems did not concern themselves with the cost

Sandborn, Peter

447

Modeling of passive thermal management for electric vehicle battery packs with PCM between cells  

Science Journals Connector (OSTI)

Abstract A passive thermal management system is examined for an electric vehicle battery pack. Phase change material (PCM) is infused in foam layers separating the lithium-ion (Li-ion) cells. Known operating conditions lead to selecting a suitable PCM for the application, n-octadecane wax. Suitable porous foam for infusion is decided on through experimentation. Finite volume based simulations are conducted to study the thermal behavior of a 4 cell sub-module. The effect of different discharge rates are compared for this sub-module, with and without the PCM's presence. The results show that the maximum temperature in the system is decreased up to 7.3K by replacing dry foam with PCM-soaked wet foam. The addition of PCM also makes the temperature distribution more uniform across the cells. The modeling results give indication of the quantity of PCM required, show the influence of the transient melt behavior under dynamic operating conditions, and examine design constraints associated with this approach.

N. Javani; I. Dincer; G.F. Naterer; G.L. Rohrauer

2014-01-01T23:59:59.000Z

448

Development and use of the GREET model to estimate fuel-cycle energy use and emissions of various transportation technologies and fuels  

SciTech Connect

This report documents the development and use of the Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation (GREET) model. The model, developed in a spreadsheet format, estimates the full fuel- cycle emissions and energy use associated with various transportation fuels for light-duty vehicles. The model calculates fuel-cycle emissions of five criteria pollutants (volatile organic compounds, carbon monoxide, nitrogen oxides, sulfur oxides, and particulate matter measuring 10 microns or less) and three greenhouse gases (carbon dioxide, methane, and nitrous oxide). The model also calculates the total fuel-cycle energy consumption, fossil fuel consumption, and petroleum consumption using various transportation fuels. The GREET model includes 17 fuel cycles: petroleum to conventional gasoline, reformulated gasoline, clean diesel, liquefied petroleum gas, and electricity via residual oil; natural gas to compressed natural gas, liquefied petroleum gas, methanol, hydrogen, and electricity; coal to electricity; uranium to electricity; renewable energy (hydrogen, solar energy, and wind) to electricity; corn, woody biomass, and herbaceous biomass to ethanol; and landfill gases to methanol. This report presents fuel-cycle energy use and emissions for a 2000 model-year car powered by each of the fuels that are produced from the primary energy sources considered in the study.

Wang, M.Q.

1996-03-01T23:59:59.000Z

449

Developing a methodology to account for commercial motor vehicles using microscopic traffic simulation models  

E-Print Network (OSTI)

vehicle (CMV) weight and classification data used as input to critical tasks in transportation design, operations, and planning. The evolution of Intelligent Transportation System (ITS) technologies has been providing transportation engineers and planners...

Schultz, Grant George

2004-09-30T23:59:59.000Z

450

Learning, Modeling, and Understanding Vehicle Surround Using Multi-Modal Sensing /  

E-Print Network (OSTI)

Simon, W. Niehsen, and C. Stiller, Detection of close cut-Liu, J. Sparbert, and C. Stiller, Immpda vehicle trackingH. Loose, U. Franke, and C. Stiller, Kalman particle filter

Sivaraman, Sayanan

2013-01-01T23:59:59.000Z

451

Characterization and modeling of a shape memory allow actuated biomimetic vehicle  

E-Print Network (OSTI)

The development of a biomimetic active hydrofoil that utilizes Shape Memory Alloy (SMA) actuator technology is presented herein. This work is the first stage prototype of a vehicle that will consist of many actuated body segments. The current work...

Garner, Luke Jay

1999-01-01T23:59:59.000Z

452

Vehicle Technologies Office Merit Review 2014: CLEERS: Aftertreatment Modeling and Analysis  

Energy.gov (U.S. Department of Energy (DOE))

Presentation given by Pacific Northwest National Lab at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about CLEERS, a R...

453

Verification of a six-degree of freedom simulation model for the REMUS autonomous underwater vehicle  

E-Print Network (OSTI)

mproving the performance of modular, low-cost autonomous underwater vehicles (AUVs) in such applications as long-range oceanographic survey, autonomous docking, and shallow-water mine countermeasures requires improving the ...

Prestero, Timothy (Timothy Jason), 1970-

2001-01-01T23:59:59.000Z

454

Adaptive control of hypersonic vehicles in the presence of modeling uncertainties  

E-Print Network (OSTI)

This paper proposes an adaptive controller for a hypersonic cruise vehicle subject to aerodynamic uncertainties, center-of-gravity movements, actuator saturation, failures, and time-delays. The adaptive control architecture ...

Gibson, Travis Eli

455

HyDIVE (Hydrogen Dynamic Infrastructure and Vehicle Evolution) Model Analysis  

Energy.gov (U.S. Department of Energy (DOE))

Presentation by NREL's Cory Welch at the 2010 - 2025 Scenario Analysis for Hydrogen Fuel Cell Vehicles and Infrastructure Meeting on August 9 - 10, 2006 in Washington, D.C.

456

Vehicle Technologies Office Merit Review 2014: Modeling for Market Analysis: HTEB, TRUCK, and LVChoice  

Energy.gov (U.S. Department of Energy (DOE))

Presentation given by TA Engineering, Inc. at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about HTEB, TRUCK, and...

457

AVCEM: Advanced Vehicle Cost and Energy Use Model. Overview of AVCEM  

E-Print Network (OSTI)

stack); fuel-cell salvage value (fraction of initial coststack); total cost of vehicle electronics needed specifically for the fuel-cellcosts, expressed as a wage multiplier); specific weight of the fuel-cell stack (

Delucchi, Mark

2005-01-01T23:59:59.000Z

458

Modeling real-time human-automation collaborative scheduling of unmanned vehicles  

E-Print Network (OSTI)

Recent advances in autonomy have enabled a future vision of single operator control of multiple heterogeneous Unmanned Vehicles (UVs). Real-time scheduling for multiple UVs in uncertain environments will require the ...

Clare, Andrew S

2013-01-01T23:59:59.000Z

459

A discrete event simulation model for unstructured supervisory control of unmanned vehicles  

E-Print Network (OSTI)

Most current Unmanned Vehicle (UV) systems consist of teams of operators controlling a single UV. Technological advances will likely lead to the inversion of this ratio, and automation of low level tasking. These advances ...

McDonald, Anthony D. (Anthony Douglas)

2010-01-01T23:59:59.000Z

460

Vehicle Technologies Office: Maximizing Alternative Fuel Vehicle...  

Energy Savers (EERE)

Maximizing Alternative Fuel Vehicle Efficiency Vehicle Technologies Office: Maximizing Alternative Fuel Vehicle Efficiency Besides their energy security and environmental benefits,...

Note: This page contains sample records for the topic "light-duty vehicles model" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Smith Electric Vehicles: Advanced Vehicle Electrification + Transporta...  

Energy Savers (EERE)

Confidential, 4222013 2013 DOE VEHICLE TECHNOLOGIES PROGRAM REVIEW PRESENTATION Smith Electric Vehicles: Advanced Vehicle Electrification + Transportation Sector Electrification...

462

NREL: Vehicles and Fuels Research - Publications  

NLE Websites -- All DOE Office Websites (Extended Search)

Publications Publications NREL researchers document their findings in technical reports, conference papers, journal articles, and fact sheets. Visit the following online resources to find publications about alternative and advanced transportation technologies and systems. NREL Publications Database This database features a wide variety of publications produced by NREL from 1977 to the present. Search the database or find publications according to these popular key words: Advanced vehicles and systems | Alternative fuels | Batteries | Electric vehicles | Energy storage | Fuel cell vehicles | Hybrid electric vehicles | Plug-in electric vehicles | Vehicle analysis | Vehicle modeling | Vehicle emissions Selected Publications Read selected publications related to our vehicles and fuels projects:

463

Which Vehicles Are Tested  

NLE Websites -- All DOE Office Websites (Extended Search)

Which Vehicles Are Tested Which Vehicles Are Tested Popular Vehicles Exempt from Federal Fuel Economy Standards Prior to 2011 Pickups SUVs Vans Manufacturer Model Chevrolet Avalanche 2500 Series ¾ Ton Silverado 2500/3500 Series Dodge RAM 2500/3500 Series Ford F-250/350 Series GMC Sierra 2500/3500 Series Manufacturer Model Chevrolet Suburban ¾ Ton* Ford Excursion§ GMC Yukon XL ¾ Ton* Hummer H1§ and H2§ Manufacturer Model Chevrolet Express 2500 Passenger* Express 3500 Cargo Ford E Series Passenger (w/ 6.8L Triton or 6.0L Diesel Engine)* E Series Cargo (w/ 6.8L Triton or 6.0L Diesel Engine) GMC Savanna 2500/3500 Passenger* Savanna 3500 Cargo Note: These vehicles are given as examples. This is not a comprehensive list. * No longer exempt as of 2011 § No longer made Manufacturers do not test every new vehicle offered for sale. They are only

464

AVTA: 2010 Electric Vehicles International Neighborhood Electric Vehicle Testing Results  

Energy.gov (U.S. Department of Energy (DOE))

The Vehicle Technologies Office's Advanced Vehicle Testing Activity carries out testing on a wide range of advanced vehicles and technologies on dynamometers, closed test tracks, and on-the-road. These results provide benchmark data that researchers can use to develop technology models and guide future research and development. The following reports describe testing results of the 2010 Electric Vehicles International neighborhood electric vehicle. Neighborhood electric vehicles reach speeds of no more than 35 miles per hour and are only allowed on roads with speed limits of up to 35 miles per hour. This research was conducted by Idaho National Laboratory.

465

Test and evaluation of the Philips Model PE 1701 and Lester Model 9865 electric vehicle battery chargers  

SciTech Connect

The Philips Model PE 1701 and the Lester Model 9865 electric vehicle battery chargers have been tested by the Tennessee Valley Authority. Charger input/output voltage, current, power characteristics, and input waveform distortion were measured and induced electromagnetic interference was evaluated while the chargers recharged a fully discharged lead-acid battery pack. Electrical quantities were measured with precision volt-ampere-watt meters, frequency counters, a digital storage oscilloscope, and a spectrum analyzer. The Philips charger required 12.2 hours to recharge a 144-V battery; it had an energy efficiency of 86.0 percent and a specific power of 87.4 W/kg (39.7 W/lb). Input current distortion was between 6.9 and 23.0 percent, and electromagnetic interference was observed on AM radio. The Lester charger required 8.2 hours to recharge a 106-V battery; it had an energy efficiency of 83.0 percent and a specific power of 117.3 W/kg (53.3 W/lb). Current distortion was between 52.7 and 97.4 percent, and electromagnetic interference was observed on AM radio.

Reese, R.W.; Driggans, R.L.; Keller, A.S.

1984-04-01T23:59:59.000Z

466

Vehicle Technologies Office: 2009 Advanced Vehicle Technology...  

Office of Environmental Management (EM)

Vehicle Technologies Office: 2009 Advanced Vehicle Technology Analysis and Evaluation Activities and Heavy Vehicle Systems Optimization Program Annual Progress Report Vehicle...

467

Development of a dedicated ethanol ultra-low emission vehicle (ULEV): Final report  

SciTech Connect

The objective of this project was to develop a commercially competitive vehicle powered by ethanol (or an ethanol blend) that can meet California`s ultra-low emission vehicle (ULEV) standards and equivalent corporate average fuel economy (CAFE) energy efficiency for a light-duty passenger car application. The definition of commercially competitive is independent of fuel cost, but does include technical requirements for competitive power, performance, refueling times, vehicle range, driveability, fuel handling safety, and overall emissions performance. This report summarizes the fourth and final phase of this project, and also the overall project. The focus of this report is the technology used to develop a dedicated ethanol-fueled ULEV, and the emissions results documenting ULV performance. Some of the details for the control system and hardware changes are presented in two appendices that are SAE papers. The demonstrator vehicle has a number of advanced technological features, but it is currently configured with standard original equipment manufacturer (OEM) under-engine catalysts. Close-coupled catalysts would improve emissions results further, but no close-coupled catalysts were available for this testing. Recently, close-coupled catalysts were obtained, but installation and testing will be performed in the future. This report also briefly summarizes work in several other related areas that supported the demonstrator vehicle work.

Dodge, L.; Bourn, G.; Callahan, T.; Grogan, J.; Leone, D.; Naegeli, D.; Shouse, K.; Thring, R.; Whitney, K. [Southwest Research Inst., San Antonio, TX (United States)

1998-09-01T23:59:59.000Z

468

Development of a dedicated ethanol ultra-low emission vehicle (ULEV) system design  

SciTech Connect

The objective of this 3.5 year project is to develop a commercially competitive vehicle powered by ethanol (or ethanol blend) that can meet California`s ultra-low emission vehicle (ULEV) standards and equivalent corporate average fuel economy (CAFE) energy efficiency for a light-duty passenger car application. The definition of commercially competitive is independent of fuel cost, but does include technical requirements for competitive power, performance, refueling times, vehicle range, driveability, fuel handling safety, and overall emissions performance. This report summarizes a system design study completed after six months of effort on this project. The design study resulted in recommendations for ethanol-fuel blends that shall be tested for engine low-temperature cold-start performance and other criteria. The study also describes three changes to the engine, and two other changes to the vehicle to improve low-temperature starting, efficiency, and emissions. The three engine changes are to increase the compression ratio, to replace the standard fuel injectors with fine spray injectors, and to replace the powertrain controller. The two other vehicle changes involve the fuel tank and the aftertreatment system. The fuel tank will likely need to be replaced to reduce evaporative emissions. In addition to changes in the main catalyst, supplemental aftertreatment systems will be analyzed to reduce emissions before the main catalyst reaches operating temperature.

Bourn, G.; Callahan, T.; Dodge, L.; Mulik, J.; Naegeli, D.; Shouse, K.; Smith, L.; Whitney, K. [Southwest Research Inst., San Antonio, TX (United States)

1995-02-01T23:59:59.000Z

469

A joint model for vehicle type and fuel type choice: evidence from a cross-nested logit study  

Science Journals Connector (OSTI)

Growing environmental concerns and oil price volatility have led to increasing interest in the potential demand for alternative fuel vehicles. Dedicated fuel vehicles such as EV and CNG vehicles use only the alte...

Stephane Hess; Mark Fowler; Thomas Adler; Aniss Bahreinian

2012-05-01T23:59:59.000Z

470

Vehicle Technologies Office: 2013 Archive  

NLE Websites -- All DOE Office Websites (Extended Search)

3 Archive to someone 3 Archive to someone by E-mail Share Vehicle Technologies Office: 2013 Archive on Facebook Tweet about Vehicle Technologies Office: 2013 Archive on Twitter Bookmark Vehicle Technologies Office: 2013 Archive on Google Bookmark Vehicle Technologies Office: 2013 Archive on Delicious Rank Vehicle Technologies Office: 2013 Archive on Digg Find More places to share Vehicle Technologies Office: 2013 Archive on AddThis.com... 2013 Archive #810 Leasing on the Rise December 30, 2013 #809 What Do We Pay for in a Gallon of Gasoline? December 23, 2013 #808 Declining Use of Six- and Eight-Cylinder Engines December 16, 2013 #807 Light Vehicle Weights Leveling Off December 9, 2013 #806 Light Vehicle Market Shares, Model Years 1975-2012 December 2, 2013 #805 Vehicle Technology Penetration November 25, 2013

471

Vehicle Technologies Office Merit Review 2014: Development of Cell/Pack Level Models for Automotive Li-Ion Batteries with Experimental Validation  

Energy.gov (U.S. Department of Energy (DOE))

Presentation given by EC Power at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about evelopment of cell/pack level models...

472

Why Some Vehicles Are Not Listed / 1  

NLE Websites -- All DOE Office Websites (Extended Search)

Understanding the Guide Listings / 1 Understanding the Guide Listings / 1 * Why Some Vehicles Are Not Listed / 1 * Vehicle Classes Used in This Guide / 2 * Tax Incentives and Disincentives / 2 * Why Consider Fuel Economy / 2 * Fueling Options / 3 * Fuel Economy and Annual Fuel Cost Ranges for Vehicle Classes / 3 * Model Year 2011 Fuel Economy Leaders / 4 * 2011 Model Year Vehicles / 6 * Battery Electric Vehicles / 18 * Plug-in Hybrid Electric Vehicles / 19 * Hybrid Electric Vehicles / 20 * Compressed Natural Gas Vehicles / 22 * Diesel Vehicles / 22 * Ethanol Flexible Fuel Vehicles / 24 * Fuel Cell Vehicles / 28 * Index / 29 * USING THE FUEL ECONOMY GUIDE The U.S. Environmental Protection Agency (EPA) and U.S. Department of Energy (DOE) produce the Fuel Economy Guide to help car buyers choose the most fuel-efficient vehicle that meets their

473

Application of Distribution Transformer Thermal Life Models to Electrified Vehicle Charging Loads Using Monte-Carlo Method: Preprint  

NLE Websites -- All DOE Office Websites (Extended Search)

Application of Distribution Application of Distribution Transformer Thermal Life Models to Electrified Vehicle Charging Loads Using Monte-Carlo Method Preprint Michael Kuss, Tony Markel, and William Kramer Presented at the 25th World Battery, Hybrid and Fuel Cell Electric Vehicle Symposium & Exhibition Shenzhen, China November 5 - 9, 2010 Conference Paper NREL/CP-5400-48827 January 2011 NOTICE The submitted manuscript has been offered by an employee of the Alliance for Sustainable Energy, LLC (Alliance), a contractor of the US Government under Contract No. DE-AC36-08GO28308. Accordingly, the US Government and Alliance retain a nonexclusive royalty-free license to publish or reproduce the published form of this contribution, or allow others to do so, for US Government purposes.

474

Vehicle Technologies Office Merit Review 2014: Transportation Energy Transition Modeling and Analysis: the LAVE-Trans Model  

Energy.gov (U.S. Department of Energy (DOE))

Presentation given by Oak Ridge National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about the LAVE-Trans...

475

Full vehicle dynamics model of a formula SAE racecar using ADAMS/Car  

E-Print Network (OSTI)

The Texas A&M University Formula SAE program currently has no rigorous method for analyzing or predicting the overall dynamic behavior of the student-designed racecars. The objective of this study is to fulfill this need by creating a full vehicle...

Mueller, Russell Lee

2005-11-01T23:59:59.000Z

476

Modeling demand for electric vehicles: the effect of car users' attitudes and perceptions  

E-Print Network (OSTI)

electric cars and petrol-driven ones and in particular which include the respondents' own cars to electric cars on vehicle preferences. Opinion and perception data are also collected to capture the impact) and currently, few charging stations and infrastructures are available. The electric car user is hence compelled

Bierlaire, Michel

477

HYBRID ELECTRIC VEHICLE OWNERSHIP AND FUEL ECONOMY ACROSS TEXAS: AN APPLICATION OF SPATIAL MODELS  

E-Print Network (OSTI)

and environmental policies (Koo et al. 2012). While EV sales (including both HEVs and PEVs) have risen considerably significant. If households registering more fuel- efficient vehicles, including hybrid EVs, are also more inclined to purchase plug-in EVs, these #12;findings can assist in spatial planning of charging

Kockelman, Kara M.

478

Dynamic modelling and simulation of a polymer electrolyte membrane fuel cell used in vehicle considering heat transfer effects  

Science Journals Connector (OSTI)

Fuel cell technology is recently becoming one of the most interesting fields for the car companies to invest in. This interest is because of their high efficiency and zero environmental pollution. Polymer electrolyte membrane fuel cells are the most appropriate type of fuel cells for use in vehicles due to their low performance temperature and high power density. Air and fuel mass flow rate and partial pressure fuel cell stack temperature relative humidity of fuel cellmembrane and heat and water management are the effective parameters of fuel cellpower systems. Good transient behavior is one of the important factors that affect the success of fuel cell vehicles. In order to avoid stack voltage drop during transient condition the control system of fuel cell vehicle is required to preserve optimal temperature membrane hydration and partial pressure of reactants across the membrane. In this paper we developed a dynamic model for fuel cellpower system. The compressor dynamic supply and return manifold filling dynamics (anode and cathode) cooling system dynamic membrane hydration and time-evolving reactant partial pressure are the most significant parameters in transient and steady state of system. The effects of membrane humidity varying inlet air pressure and compressor performance condition on the generated power are studied in this paper.

S. M. Hosseini; A. H. Shamekhi; A. Yazdani

2012-01-01T23:59:59.000Z

479

Vehicle Technologies Office: Vehicle Technologies Office Recognizes  

NLE Websites -- All DOE Office Websites (Extended Search)

Vehicle Technologies Vehicle Technologies Office Recognizes Outstanding Researchers to someone by E-mail Share Vehicle Technologies Office: Vehicle Technologies Office Recognizes Outstanding Researchers on Facebook Tweet about Vehicle Technologies Office: Vehicle Technologies Office Recognizes Outstanding Researchers on Twitter Bookmark Vehicle Technologies Office: Vehicle Technologies Office Recognizes Outstanding Researchers on Google Bookmark Vehicle Technologies Office: Vehicle Technologies Office Recognizes Outstanding Researchers on Delicious Rank Vehicle Technologies Office: Vehicle Technologies Office Recognizes Outstanding Researchers on Digg Find More places to share Vehicle Technologies Office: Vehicle Technologies Office Recognizes Outstanding Researchers on AddThis.com...

480

Alternative Fuels Data Center: Vehicle Cost Calculator  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Vehicle Cost Vehicle Cost Calculator to someone by E-mail Share Alternative Fuels Data Center: Vehicle Cost Calculator on Facebook Tweet about Alternative Fuels Data Center: Vehicle Cost Calculator on Twitter Bookmark Alternative Fuels Data Center: Vehicle Cost Calculator on Google Bookmark Alternative Fuels Data Center: Vehicle Cost Calculator on Delicious Rank Alternative Fuels Data Center: Vehicle Cost Calculator on Digg Find More places to share Alternative Fuels Data Center: Vehicle Cost Calculator on AddThis.com... Vehicle Cost Calculator Vehicle Cost Calculator This tool uses basic information about your driving habits to calculate total cost of ownership and emissions for makes and models of most vehicles, including alternative fuel and advanced technology vehicles. Also

Note: This page contains sample records for the topic "light-duty vehicles model" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

HyDIVE (Hydrogen Dynamic Infrastructure and Vehicle Evolution...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

HyDIVE (Hydrogen Dynamic Infrastructure and Vehicle Evolution) Model Analysis HyDIVE (Hydrogen Dynamic Infrastructure and Vehicle Evolution) Model Analysis Presentation by NREL's...

482

Vehicle Technologies Office: Benchmarking  

NLE Websites -- All DOE Office Websites (Extended Search)

Benchmarking Benchmarking Research funded by the Vehicle Technologies Office produces a great deal of valuable data, but it is important to compare those research results with similar work done elsewhere in the world. Through laboratory testing, researchers can compare vehicles and components to validate models, support technical target-setting, and provide data to help guide technology development tasks. Benchmarking activities fall into two primary areas: Vehicle and component testing, in which researchers test and analyze emerging technologies obtained from sources throughout the world. The results are used to continually assess program efforts. Model validation, in which researchers use test data to validate the accuracy of vehicle and component computer models including: overall measures such as fuel economy, state-of-charge energy storage across the driving cycle, and transient component behavior, such as fuel rate and torque.

483

Comparing the Performance of SunDiesel and Conventional Diesel...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

the Performance of SunDiesel and Conventional Diesel in a Light-Duty Vehicle and Engines Comparing the Performance of SunDiesel and Conventional Diesel in a Light-Duty Vehicle and...

484

Electric Vehicles  

ScienceCinema (OSTI)

Burak Ozpineci sees a future where electric vehicles charge while we drive them down the road, thanks in part to research under way at ORNL.

Ozpineci, Burak

2014-07-23T23:59:59.000Z

485

Electric Vehicles  

SciTech Connect

Burak Ozpineci sees a future where electric vehicles charge while we drive them down the road, thanks in part to research under way at ORNL.

Ozpineci, Burak

2014-05-02T23:59:59.000Z

486

Changes in release cycles for EIA's  

Gasoline and Diesel Fuel Update (EIA)

Potential efficiency improvements and their impacts on end-use energy demand Increasing light-duty vehicle greenhouse gas and fuel economy standards for model years 2017 to 2025 Energy intensity trends in AEO2010 Potential efficiency improvements and their impacts on end-use energy demand Increasing light-duty vehicle greenhouse gas and fuel economy standards for model years 2017 to 2025 Energy intensity trends in AEO2010 Energy impacts of proposed CAFE standards for light-duty vehicles, model years 2017 to 2025 Fuel consumption and greenhouse gas emissions standards for heavy-duty vehicles Natural gas as a fuel for heavy trucks: issues and incentives Nuclear power in AEO2012 Carbon capture and storage: economics and issues Potential impact of minimum pipeline throughput constraints on Alaska North Slope oil production Power sector environmental regulations on the horizon U.S. crude oil and natural gas resource uncertainty Evolving Marcellus Shale gas resource estimates

487

E-Print Network 3.0 - advanced vehicle control Sample Search...  

NLE Websites -- All DOE Office Websites (Extended Search)

a resolution of major vehicle components for advanced class vehicles and systems. The Cost Model ASCM estimates... -duty EPA vehicle classes can be considered for the life cycle...

488

Consumer Convenience and the Availability of Retail Stations as a Market Barrier for Alternative Fuel Vehicles: Preprint  

SciTech Connect

The availability of retail stations can be a significant barrier to the adoption of alternative fuel light-duty vehicles in household markets. This is especially the case during early market growth when retail stations are likely to be sparse and when vehicles are dedicated in the sense that they can only be fuelled with a new alternative fuel. For some bi-fuel vehicles, which can also fuel with conventional gasoline or diesel, limited availability will not necessarily limit vehicle sales but can limit fuel use. The impact of limited availability on vehicle purchase decisions is largely a function of geographic coverage and consumer perception. In this paper we review previous attempts to quantify the value of availability and present results from two studies that rely upon distinct methodologies. The first study relies upon stated preference data from a discrete choice survey and the second relies upon a station clustering algorithm and a rational actor value of time framework. Results from the two studies provide an estimate of the discrepancy between stated preference cost penalties and a lower bound on potential revealed cost penalties.

Melaina, M.; Bremson, J.; Solo, K.

2013-01-01T23:59:59.000Z

489

Cost effectiveness of converting to alternative motor vehicle fuels. A technical assistance study for the City of Longview  

SciTech Connect

The City of Longview can obtain significant fuel savings benefits by converting a portion of their vehicle fleet to operate on either compressed natural gas (CNG) or liquid petroleum gas (LPG) fuels. The conversion of 41 vehicles including police units, sedans, pickups, and light duty trucks to CNG use would offset approximately 47% of the city's 1982 gasoline consumption. The CNG conversion capital outlay of $115,000 would be recovered through fuel cost reductions. The Cascade Natural Gas Corporation sells natural gas under an interruptible tariff for $0.505 per therm, equivalent to slightly less than one gallon of gasoline. The city currently purchases unleaded gasoline at $1.115 per gallon. A payback analysis indicates that 39.6 months are required for the CNG fuel savings benefits to offset the initial or first costs of the conversion. The conversion of fleet vehicles to liquid petroleum gas (LPG) or propane produces comparable savings in vehicle operating costs. The conversion of 59 vehicles including police units, pickup and one ton trucks, street sweepers, and five cubic yard dump trucks would cost approximately $59,900. The annual purchase of 107,000 gallons of propane would offset the consumption of 96,300 gallons of gasoline, or approximately 67% of the city's 1982 usage. Propane is currently retailing for $0.68 to $0.74 per gallon. A payback analysis indicates that 27.7 months are required for the fuel savings benefits to offset the initial LPG conversion costs.

McCoy, G.A.

1983-11-18T23:59:59.000Z

490

Vehicle Technologies Office: 2008 Advanced Vehicle Technology...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

8 Advanced Vehicle Technology Analysis and Evaluation Activities and Heavy Vehicle Systems Optimization Program Annual Progress Report Vehicle Technologies Office: 2008 Advanced...

491

2014 Ninth International Conference on Ecological Vehicles and Renewable Energies (EVER) Enhanced Aging Model for Supercapacitors taking  

E-Print Network (OSTI)

production from fluctuating renewable energies, especially in the case of direct wave energy conversion2014 Ninth International Conference on Ecological Vehicles and Renewable Energies (EVER) Enhanced in a Direct Wave Energy Converter," Ecological Vehicles and Renewable Energies (EVER), 2014 Ninth

492

Foreseeing the Market for Hydrogen Fuel-Cell Vehicles: Stakeholders' Perspectives and Models of New Technology Diffusion  

E-Print Network (OSTI)

the Market for Hydrogen Fuel-Cell Vehicles: Stakeholdersdual superiority of hydrogen fuel-cell vehicles (FCVs) hasneeded to position the hydrogen-fuel cell combination as a

Collantes, Gustavo O

2005-01-01T23:59:59.000Z

493

FORESEEING THE MARKET FOR HYDROGEN FUEL-CELL VEHICLES: STAKEHOLDERS PERSPECTIVES AND MODELS OF NEW TECHNOLOGY DIFFUSION  

E-Print Network (OSTI)

the Market for Hydrogen Fuel-Cell Vehicles: Stakeholdersdual superiority of hydrogen fuel-cell vehicles (FCVs) hasneeded to position the hydrogen-fuel cell combination as a

Collantes, Gustavo

2005-01-01T23:59:59.000Z

494

California's Energy Future - The View to 2050  

E-Print Network (OSTI)

Lawrence Livermore National Laboratory LDV Light-duty vehicles LED light emitting diode LWR Light water reactor NIF

2011-01-01T23:59:59.000Z

495

Californias Energy Future: The View to 2050 - Summary Report  

E-Print Network (OSTI)

Lawrence Livermore National Laboratory LDV Light-duty vehicles LED light emitting diode LWR Light water reactor NIF

Yang, Christopher

2011-01-01T23:59:59.000Z

496

International Hydrogen Infrastructure Challenges Workshop Summary...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

More Documents & Publications Introduction to SAE Hydrogen Fueling Standardization Light Duty Fuel Cell Electric Vehicle Hydrogen Fueling Protocol Fuel Cell...

497

Vehicle Technologies Office: Upcoming Events | Department of...  

Energy Savers (EERE)

Electric Vehicles & Batteries Fuel Efficiency & Emissions Alternative Fuels Modeling, Testing, Data & Results Education & Workforce Development Financial Opportunities News Events...

498

Annual Energy Outlook 2013 Early Release Reference Case  

U.S. Energy Information Administration (EIA) Indexed Site

Vehicle Choice Modeling and Vehicle Choice Modeling and Projections for the Annual Energy Outlook John Maples Office of Energy Analysis, Energy Efficiency and End Use January 25, 2013 | Detroit, MI Outline John Maples, Vehicle Choice Models and Markets Detroit, MI, January 25, 2013 2 * Overview of model structure and inputs * Battery electric vehicles and current state of the market * Projections of battery electric vehicles in the Annual Energy Outlook 2013 * High Battery Technology case in the Annual Energy Outlook 2012 Overview of model structure and inputs 3 John Maples, Vehicle Choice Models and Markets Detroit, MI, January 25, 2013 Light duty vehicle technology market penetration John Maples, Vehicle Choice Models and Markets Detroit, MI, January 25, 2013 4 * Technologies affecting light-duty vehicle fuel economy are

499

Diesel Vehicles  

NLE Websites -- All DOE Office Websites (Extended Search)

Vehicles Vehicles Audi A3 Diesel vehicles may be making a comeback. Diesel engines are more powerful and fuel-efficient than similar-sized gasoline engines (about 30-35% more fuel efficient). Plus, today's diesel vehicles are much improved over diesels of the past. Better Performance Improved fuel injection and electronic engine control technologies have Increased power Improved acceleration Increased efficiency New engine designs, along with noise- and vibration-damping technologies, have made them quieter and smoother. Cold-weather starting has been improved also. Cleaner Mercedes ML320 BlueTEC Today's diesels must meet the same emissions standards as gasoline vehicles. Advances in engine technologies, ultra-low sulfur diesel fuel, and improved exhaust treatment have made this possible.

500

OR Forum---Modeling the Impacts of Electricity Tariffs on Plug-In Hybrid Electric Vehicle Charging, Costs, and Emissions  

Science Journals Connector (OSTI)

Plug-in hybrid electric vehicles (PHEVs) have been touted as a transportation technology with lower fuel costs and emissions impacts than other vehicle types. Most analyses of PHEVs assume that the power system operator can either directly or indirectly ... Keywords: environment, plug-in hybrid electric vehicles, pricing

Ramteen Sioshansi

2012-05-01T23:59:59.000Z