National Library of Energy BETA

Sample records for light-duty vehicles cars

  1. BEHAVIORAL DISTINCTIONS: THE USE OF LIGHT-DUTY TRUCKS AND PASSENGER CARS

    E-Print Network [OSTI]

    Kockelman, Kara M.

    BEHAVIORAL DISTINCTIONS: THE USE OF LIGHT-DUTY TRUCKS AND PASSENGER CARS by Kara Maria Kockelman as light-duty trucks (LDTs), resulting in a variety of regulatory protections. Production and purchase as light-duty trucks (LDTs), and they currently capture 51% of new U.S. passenger vehicle sales1 ­ much

  2. Vehicle Technologies Office AVTA: Light Duty Alternative Fuel...

    Energy Savers [EERE]

    Office AVTA: Light Duty Alternative Fuel and Advanced Vehicle Data Vehicle Technologies Office AVTA: Light Duty Alternative Fuel and Advanced Vehicle Data The Vehicle Technologies...

  3. Light Duty Fuel Cell Electric Vehicle Hydrogen Fueling Protocol...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Light Duty Fuel Cell Electric Vehicle Hydrogen Fueling Protocol Light Duty Fuel Cell Electric Vehicle Hydrogen Fueling Protocol Download the webinar slides from the U.S. Department...

  4. Emissions from the European Light Duty Diesel Vehicle During...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    the European Light Duty Diesel Vehicle During DPF Regeneration Events Emissions from the European Light Duty Diesel Vehicle During DPF Regeneration Events Repeated partial...

  5. Progress on DOE Vehicle Technologies Light-Duty Diesel Engine...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    on DOE Vehicle Technologies Light-Duty Diesel Engine Efficiency and Emissions Milestones Progress on DOE Vehicle Technologies Light-Duty Diesel Engine Efficiency and Emissions...

  6. QUANTIFYING THE EXTERNAL COSTS OF VEHICLE USE: EVIDENCE FROM AMERICA'S TOP SELLING LIGHT-DUTY MODELS

    E-Print Network [OSTI]

    Kockelman, Kara M.

    -selling passenger cars and light-duty trucks in the U.S. Among these external costs, those associated with crashes estimated for several other vehicles of particular interest, including GM's Hummer and several hybrid drive: small cars, mid-sized cars, large cars, luxury cars, crossover utility vehicles (CUVs), sport

  7. Light Duty Vehicle CNG Tanks

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i nAand DOE Safety StandardsLabor SeptemberofDepartmentDuty Vehicle CNG Tanks

  8. Fuel Economy of the Light-Duty Vehicle Fleet (released in AEO2005)

    Reports and Publications (EIA)

    2005-01-01

    The U.S. fleet of light-duty vehicles consists of cars and light trucks, including minivans, sport utility vehicles (SUVs) and trucks with gross vehicle weight less than 8,500 pounds. The fuel economy of light-duty vehicles is regulated by the (Corporate Average Fuel Economy) CAFE standards set by the National Highway Traffic Safety Administration. Currently, the CAFE standard is 27.5 miles per gallon (mpg) for cars and 20.7 mpg for light trucks. The most recent increase in the CAFE standard for cars was in 1990, and the most recent increase in the CAFE standard for light trucks was in 1996.

  9. Reducing Light Duty Vehicle Fuel Consumption and Greenhouse Gas...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and Greenhouse Gas Emissions: The Combined Potential of Hybrid Technology and Behavioral Adaptation Title Reducing Light Duty Vehicle Fuel Consumption and Greenhouse Gas...

  10. WORKSHOP REPORT:Light-Duty Vehicles Technical Requirements and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technical Requirements and Gaps for Lightweight and Propulsion Materials WORKSHOP REPORT:Light-Duty Vehicles Technical Requirements and Gaps for Lightweight and Propulsion...

  11. Fueling U.S. Light Duty Diesel Vehicles | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fueling U.S. Light Duty Diesel Vehicles Fueling U.S. Light Duty Diesel Vehicles 2005 Diesel Engine Emissions Reduction (DEER) Conference Presentations and Posters...

  12. Improving the Efficiency of Light-Duty Vehicle HVAC Systems using...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Light-Duty Vehicle HVAC Systems using Zonal Thermoelectric Devices and Comfort Modeling Improving the Efficiency of Light-Duty Vehicle HVAC Systems using Zonal Thermoelectric...

  13. Registrations and vehicle miles of travel of light duty vehicles, 1985--1995

    SciTech Connect (OSTI)

    Hu, P.S.; Davis, S.C.; Schmoyer, R.L.

    1998-02-01

    To obtain vehicle registration data that consistently and accurately reflect the distinction between automobiles and light-duty trucks, Oak Ridge National Laboratory (ORNL) was asked by FHWA to estimate the current and historical vehicle registration numbers of automobiles and of other two-axle four-tire vehicles (i.e., light-duty trucks), and their associated travel. The term automobile is synonymous with passenger car. Passenger cars are defined as all sedans, coupes, and station wagons manufactured primarily for the purpose of carrying passengers. This includes taxicabs, rental cars, and ambulances and hearses on an automobile chassis. Light-duty trucks refer to all two-axle four-tire vehicles other than passenger cars. They include pickup trucks, panel trucks, delivery and passenger vans, and other vehicles such as campers, motor homes, ambulances on a truck chassis, hearses on a truck chassis, and carryalls. In this study, light-duty trucks include four major types: (1) pickup truck, (2) van, (3) sport utility vehicle, and (4) other 2-axle 4-tire truck. Specifically, this project re-estimates statistics that appeared in Tables MV-1 and MV-9 of the 1995 Highway Statistics. Given the complexity of the approach developed in this effort and the incompleteness and inconsistency of the state-submitted data, it is recommended that alternatives be considered by FHWA to obtain vehicle registration data. One alternative is the Polk`s NVPP data (via the US Department of Transportation`s annual subscription to Polk). The second alternative is to obtain raw registration files from individual states` Departments of Motor Vehicles and to decode individual VINs.

  14. WORKSHOP REPORT:Light-Duty Vehicles Technical Requirements and Gaps for Lightweight and Propulsion Materials

    Office of Energy Efficiency and Renewable Energy (EERE)

    WORKSHOP REPORT:Light-Duty Vehicles Technical Requirements and Gaps for Lightweight and Propulsion Materials

  15. Marketable Credits for Light-Duty Vehicle Emission Control in California

    E-Print Network [OSTI]

    Wang, Quanlu; Kling, Catherine; Sperling, Daniel

    1992-01-01

    for Light-Duty Vehicle Emission CQntrol, Ph.D dissertation,for Light-Duty Vehicle Emission Control in Califorr6a QuantuSince the beginning of vehicle emission regulation in the

  16. Outlook for Light-Duty-Vehicle Fuel Demand | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Outlook for Light-Duty-Vehicle Fuel Demand Outlook for Light-Duty-Vehicle Fuel Demand Gasoline and distillate demand impact of the Energy Independance and Security Act of 2007...

  17. Low and high Temperature Dual Thermoelectric Generation Waste Heat Recovery System for Light-Duty Vehicles

    Broader source: Energy.gov [DOE]

    Developing a low and high temperature dual thermoelectric generation waste heat recovery system for light-duty vehicles.

  18. Impacts of Oxygenated Gasoline Use on California Light-Duty Vehicle Emissions

    E-Print Network [OSTI]

    Kirchstetter, Thomas W.; Singer, Brett C.; Harley, Robert A.

    1996-01-01

    on-road motor vehicle emissions (BURDEN7F). Mobile Sourcespeciation profile for vehicle emissions agrees with cold=Light-Duty Vehicle Emissions Thomas W. Kirchstetter Brett C°

  19. Light-Duty Vehicle Exhaust Emission Control Cost Estimates Using a Part-Pricing Approach

    E-Print Network [OSTI]

    Wang, Quanlu; Kling, Catherine; Sperling, Daniel

    1993-01-01

    System for Light-Duty Vehicle: Emission Control," Ph.D.reductions motor in vehicle emissions have that Today’scorresponding to consumers vehicle emission one path over

  20. Light Duty Vehicle Pathways | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCED MANUFACTURING OFFICE INDUSTRIALU.S.Leadership on Clean Energys oElectrical EnergyDOEDuty Vehicle

  1. alternative fuel light-duty vehicles

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home PageBlender PumpVehiclesThe HeatClean CitiesWhich Is5:

  2. Advanced Technologies for Light-Duty Vehicles (released in AEO2006)

    Reports and Publications (EIA)

    2006-01-01

    A fundamental concern in projecting the future attributes of light-duty vehicles-passenger cars, sport utility vehicles, pickup trucks, and minivans-is how to represent technological change and the market forces that drive it. There is always considerable uncertainty about the evolution of existing technologies, what new technologies might emerge, and how consumer preferences might influence the direction of change. Most of the new and emerging technologies expected to affect the performance and fuel use of light-duty vehicles over the next 25 years are represented in the National Energy Modeling System (NEMS); however, the potential emergence of new, unforeseen technologies makes it impossible to address all the technology options that could come into play. The previous section of Issues in Focus discussed several potential technologies that currently are not represented in NEMS. This section discusses some of the key technologies represented in NEMS that are expected to be implemented in light-duty vehicles over the next 25 years.

  3. Diesel Exhaust Emissions Control for Light-Duty Vehicles

    SciTech Connect (OSTI)

    Mital, R.; Li, J.; Huang, S. C.; Stroia, B. J.; Yu, R. C. (Cummins, Inc.); Anderson, J.A. (Argonne National Laboratory); Howden, Kenneth C. (U.S. Department of Energy)

    2003-03-01

    The objective of this paper is to present the results of diesel exhaust aftertreatment testing and analysis done under the FreedomCAR program. Nitrogen Oxides (NOx) adsorber technology was selected based on a previous investigation of various NOx aftertreatment technologies including non-thermal plasma, NOx adsorber and active lean NOx. Particulate Matter (PM) emissions were addressed by developing a catalyzed particulate filter. After various iterations of the catalyst formulation, the aftertreatment components were integrated and optimized for a light duty vehicle application. This compact exhaust aftertreatment system is dual leg and consists of a sulfur trap, NOx adsorbers, and catalyzed particulate filters (CPF). During regeneration, supplementary ARCO ECD low-sulfur diesel fuel is injected upstream of the adsorber and CPF in the exhaust. Steady state and transient emission test results with and without the exhaust aftertreatment system (EAS) are presented. Results of soot filter regeneration by injecting low-sulfur diesel fuel and slip of unregulated emissions, such as NH3, are discussed. Effects of adsorber size and bypass strategy on NOx conversion efficiency and fuel economy penalty are also presented in this paper. The results indicate that if the supplementary fuel injection is optimized, NH3 slip is negligible. During the FTP cycle, injection of low sulfur diesel fuel can create temperature exotherms high enough to regenerate a loaded CPF. With the optimized NOx adsorber regeneration strategies the fuel injection penalty can be reduced by 40 to 50%. Results for various other issues like low temperature light off, reductant optimization, exhaust sulfur management, system integration and design trade-off, are also presented and discussed in this paper. (SAE Paper SAE-2003-01-0041 © 2003 SAE International. This paper is published on this website with permission from SAE International. As a user of this website, you are permitted to view this paper on-line, download this pdf file and print one copy of this paper at no cost for your use only. The downloaded pdf file and printout of this SAE paper may not be copied, distributed or forwarded to others or for the use of others.)

  4. Desulfurization Effects on a Light-Duty Diesel Vehicle NOx Adsorber Exhaust Emission Control System

    SciTech Connect (OSTI)

    Tatur, M.; Tomazic, D.; Tyrer, H.; Thornton, M.; Kubsh, J.

    2006-05-01

    Analyzes the effects on gaseous emissions, before and after desulfurization, on a light-duty diesel vehicle with a NOx adsorber catalyst.

  5. An Emission Saved is an Emission Earned: An Empirical Study of Emission Banking for Light-Duty Vehicle Manufacturers

    E-Print Network [OSTI]

    Rubin, Jonathan D.; Kling, Catherine

    1993-01-01

    System for Light-Duty Vehicle Emission Control," Ph.D.the same number of vehicles and emissions in each category.estimates for vehicle emissions, unpublished manuscript,

  6. Application for certification, 1991 model-year light-duty vehicles - Sterling

    SciTech Connect (OSTI)

    Not Available

    1992-01-01

    Every year, each manufacturer of passenger cars, light-duty trucks, motorcycles, or heavy-duty engines submits to EPA an application for certification. In the application, the manufacturer gives a detailed technical description of the vehicles or engineering data include explanations and/or drawings which describe engine/vehicle parameters such as basic engine design, fuel systems, ignition systems or exhaust and evaporative emission control systems. It also provides information on emission test procedures, service accumulation procedures, fuels to be used, and proposed maintenance requirements to be followed during testing. Section 16 of the application contains the results of emission testing, a statement of compliance to the regulations, production engine parameters, and a Summary Sheet Input Form on which issuance of a Certificate of Conformity is based.

  7. Vehicle Technologies Office Merit Review 2015: Light-Duty Diesel Combustion

    Broader source: Energy.gov [DOE]

    Presentation given by Sandia National Laboratories at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about light-duty...

  8. Vehicle Technologies Office Merit Review 2015: Ultra Efficient Light Duty Powertrain with Gasoline Low Temperature Combustion

    Broader source: Energy.gov [DOE]

    Presentation given by Delphi Powertrain at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about ultra efficient light duty...

  9. California Greenhouse Gas Emissions Standards for Light-Duty Vehicles (Update) (released in AEO2006)

    Reports and Publications (EIA)

    2006-01-01

    The state of California was given authority under the Clean Air Act Amendments of 1990 (CAAA90) to set emissions standards for light-duty vehicles that exceed federal standards. In addition, other states that do not comply with the National Ambient Air Quality Standards (NAAQS) set by the Environmental Protection Agency under CAAA90 were given the option to adopt Californias light-duty vehicle emissions standards in order to achieve air quality compliance. CAAA90 specifically identifies hydrocarbon, carbon monoxide, and NOx as vehicle-related air pollutants that can be regulated. California has led the nation in developing stricter vehicle emissions standards, and other states have adopted the California standards.

  10. Mobility chains analysis of technologies for passenger cars and light duty vehicles fueled with biofuels : application of the Greet model to project the role of biomass in America's energy future (RBAEF) project.

    SciTech Connect (OSTI)

    Wu, M.; Wu, Y.; Wang, M; Energy Systems

    2008-01-31

    The Role of Biomass in America's Energy Future (RBAEF) is a multi-institution, multiple-sponsor research project. The primary focus of the project is to analyze and assess the potential of transportation fuels derived from cellulosic biomass in the years 2015 to 2030. For this project, researchers at Dartmouth College and Princeton University designed and simulated an advanced fermentation process to produce fuel ethanol/protein, a thermochemical process to produce Fischer-Tropsch diesel (FTD) and dimethyl ether (DME), and a combined heat and power plant to co-produce steam and electricity using the ASPEN Plus{trademark} model. With support from the U.S. Department of Energy (DOE), Argonne National Laboratory (ANL) conducted, for the RBAEF project, a mobility chains or well-to-wheels (WTW) analysis using the Greenhouse gases, Regulated Emissions, and Energy use in Transportation (GREET) model developed at ANL. The mobility chains analysis was intended to estimate the energy consumption and emissions associated with the use of different production biofuels in light-duty vehicle technologies.

  11. Improving the Efficiency of Light-Duty Vehicle HVAC Systems using Zonal Thermoelectric Devices and Comfort Modeling

    Broader source: Energy.gov [DOE]

    Summarizes results from a study to identify and demonstrate technical and commercial approaches necessary to accelerate the deployment of zonal TE HVAC systems in light-duty vehicles

  12. Overview of Light-Duty Vehicle Studies | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCED MANUFACTURINGEnergy Bills andOrder 422.1, CONDUCT OFER-B-00-020 DOEProgram |&|Light-Duty

  13. Evaluating the impact of advanced vehicle and fuel technologies in U.S. light duty vehicle fleet

    E-Print Network [OSTI]

    Bandivadekar, Anup P

    2008-01-01

    The unrelenting increase in oil use by the U.S. light-duty vehicle (LDV) fleet presents an extremely challenging energy and environmental problem. A variety of propulsion technologies and fuels have the promise to reduce ...

  14. Plasma Catalysis for NOx Reduction from Light-Duty Diesel Vehicles

    SciTech Connect (OSTI)

    2005-12-15

    On behalf of the Department of Energy's Office of FreedomCAR and Vehicle Technologies, we are pleased to introduce the Fiscal Year (FY) 2004 Annual Progress Report for the Advanced Combustion Engine R&D Sub-Program. The mission of the FreedomCAR and Vehicle Technologies Program is to develop more energy efficient and environmentally friendly highway transportation technologies that enable Americans to use less petroleum for their vehicles. The Advanced Combustion Engine R&D Sub-Program supports this mission by removing the critical technical barriers to commercialization of advanced internal combustion engines for light-, medium-, and heavy-duty highway vehicles that meet future Federal and state emissions regulations. The primary objective of the Advanced Combustion Engine R&D Sub-Program is to improve the brake thermal efficiency of internal combustion engines from 30 to 45 percent for light-duty applications by 2010; and 40 to 55 percent for heavy-duty applications by 2012; while meeting cost, durability, and emissions constraints. R&D activities include work on combustion technologies that increase efficiency and minimize in-cylinder formation of emissions, as well as aftertreatment technologies that further reduce exhaust emissions. Work is also being conducted on ways to reduce parasitic and heat transfer losses through the development and application of thermoelectrics and turbochargers that include electricity generating capability, and conversion of mechanically driven engine components to be driven via electric motors. This introduction serves to outline the nature, current progress, and future directions of the Advanced Combustion Engine R&D Sub-Program. The research activities of this Sub-Program are planned in conjunction with the FreedomCAR Partnership and the 21st Century Truck Partnership and are carried out in collaboration with industry, national laboratories, and universities. Because of the importance of clean fuels in achieving low emissions, R&D activities are closely coordinated with the relevant activities of the Fuel Technologies Sub-Program, also within the Office of FreedomCAR and Vehicle Technologies. Research is also being undertaken on hydrogen-fueled internal combustion engines to provide an interim hydrogen-based powertrain technology that promotes the longer-range FreedomCAR Partnership goal of transitioning to a hydrogen-fueled transportation system. Hydrogen engine technologies being developed have the potential to provide diesel-like engine efficiencies with near-zero emissions.

  15. Light-Duty Diesel Vehicles: Market Issues and Potential Energy and Emissions Impacts

    Reports and Publications (EIA)

    2009-01-01

    This report responds to a request from Senator Jeff Sessions for an analysis of the environmental and energy efficiency attributes of light-duty diesel vehicles. Specifically, the inquiry asked for a comparison of the characteristics of diesel-fueled vehicles with those of similar gasoline-fueled, E85-fueled, and hybrid vehicles, as well as a discussion of any technical, economic, regulatory, or other obstacles to increasing the use of diesel-fueled vehicles in the United States.

  16. TEST: DOE Hydrogen Storage Technical Performance Targets for Light-Duty Vehicles

    Broader source: Energy.gov [DOE]

    This table summarizes technical performance targets for hydrogen storage systems onboard light-duty vehicles. These targets were established through the U.S. DRIVE Partnership, a partnership between the U.S. Department of Energy (DOE), the U.S. Council for Automotive Research (USCAR), energy companies, and utility companies and organizations.

  17. California Greenhouse Gas Emissions Standards for Light-Duty Vehicles (released in AEO2005)

    Reports and Publications (EIA)

    2005-01-01

    In July 2002, California Assembly Bill 1493 (A.B. 1493) was signed into law. The law requires that the California Air Resources Board (CARB) develop and adopt, by January 1, 2005, greenhouse gas emission standards for light-duty vehicles that provide the maximum feasible reduction in emissions. In estimating the feasibility of the standard, CARB is required to consider cost-effectiveness, technological capability, economic impacts, and flexibility for manufacturers in meeting the standard.

  18. Vehicle Technologies Office AVTA: Light Duty Alternative Fuel and Advanced

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LIST OF APPLICABLEStatutoryin theNuclearEnergyVBA-0082 -Remote Sens. 2012,Vehicle

  19. First Semi-Annual Report AFDC Light Duty Vehicles

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home PageBlender PumpVehiclesThe Heat Is andFederal Test Procedure

  20. Clean Cities Strategic Planning White Paper: Light Duty Vehicle Fuel Economy

    SciTech Connect (OSTI)

    Saulsbury, Bo; Hopson, Dr Janet L; Greene, David; Gibson, Robert

    2015-04-01

    Increasing the energy efficiency of motor vehicles is critical to achieving national energy goals of reduced petroleum dependence, protecting the global climate, and promoting continued economic prosperity. Even with fuel economy and greenhouse gas emissions standards and various economic incentives for clean and efficient vehicles, providing reliable and accurate fuel economy information to the public is important to achieving these goals. This white paper reviews the current status of light-duty vehicle fuel economy in the United States and the role of the Department of Energy (DOE) Clean Cities Program in disseminating fuel economy information to the public.

  1. Assessment of Fuel Economy Technologies for Light-Duty Vehicles

    SciTech Connect (OSTI)

    Greene, David L [ORNL

    2008-01-01

    An analysis of the number of stations and vehicles necessary to achieve future goals for sales of ethanol fuel (E85) is presented. Issues related to the supply of ethanol, which may turn out to be of even greater concern, are not analyzed here. A model of consumers decisions to purchase E85 versus gasoline based on prices, availability, and refueling frequency is derived, and preliminary results for 2010, 2017, and 2030 consistent with the president s 2007 biofuels program goals are presented. A limited sensitivity analysis is carried out to indicate key uncertainties in the trade-off between the number of stations and fuels. The analysis indicates that to meet a 2017 goal of 26 billion gallons of E85 sold, on the order of 30% to 80% of all stations may need to offer E85 and that 125 to 200 million flexible-fuel vehicles (FFVs) may need to be on the road, even if oil prices remain high. These conclusions are tentative for three reasons: there is considerable uncertainty about key parameter values, such as the price elasticity of choice between E85 and gasoline; the future prices of E85 and gasoline are uncertain; and the method of analysis used is highly aggregated it does not consider the potential benefits of regional strategies or the possible existence of market segments predisposed to purchase E85. Nonetheless, the preliminary results indicate that the 2017 biofuels program goals are ambitious and will require a massive effort to produce enough FFVs and ensure widespread availability of E85.

  2. Catalyzed Diesel Particulate Filter Performance in a Light-Duty Vehicle

    SciTech Connect (OSTI)

    Sluder, C.S.

    2001-04-23

    Light-duty chassis dynamometer driving cycle tests were conducted on a Mercedes A170 diesel vehicle with various sulfur-level fuels and exhaust emission control systems. Triplicate runs of a modified light-duty federal test procedure (FTP), US06 cycle, and SCO3 cycle were conducted with each exhaust configuration and fuel. Ultra-low sulfur (3-ppm) diesel fuel was doped to 30- and 150-ppm sulfur so that all other fuel properties remained the same. The fuels used in these experiments met the specifications of the fuels from the DECSE (Diesel Emission Control Sulfur Effects) program. Although the Mercedes A170 vehicle is not available in the US, its emissions in the as tested condition fell within the U.S. Tier 1 full useful life standards with the OEM catalysts installed. Tests with the OEM catalysts removed showed that the OEM catalysts reduced PM emissions from the engine-out condition by 30-40% but had negligible effects on NOx emissions. Fuel sulfur level had very little effect on th e OEM catalyst performance. A prototype catalyzed diesel particulate filter (CDPF) mounted in an underfloor configuration reduced particulate matter emissions by more than 90% compared to the factory emissions control system. The results show that the CDPF did not promote any significant amounts of SO{sub 2}-to-sulfate conversion during these light-duty drive cycles.

  3. Transportation Energy Futures Series. Potential for Energy Efficiency Improvement Beyond the Light-Duty-Vehicle Sector

    SciTech Connect (OSTI)

    Vyas, A. D.; Patel, D. M.; Bertram, K. M.

    2013-02-01

    Considerable research has focused on energy efficiency and fuel substitution options for light-duty vehicles, while much less attention has been given to medium- and heavy-duty trucks, buses, aircraft, marine vessels, trains, pipeline, and off-road equipment. This report brings together the salient findings from an extensive review of literature on future energy efficiency options for these non-light-duty modes. Projected activity increases to 2050 are combined with forecasts of overall fuel efficiency improvement potential to estimate the future total petroleum and greenhouse gas (GHG) emissions relative to current levels. This is one of a series of reports produced as a result of the Transportation Energy Futures (TEF) project, a Department of Energy-sponsored multi-agency project initiated to pinpoint underexplored strategies for abating GHGs and reducing petroleum dependence related to transportation.

  4. Transportation Energy Futures Series: Potential for Energy Efficiency Improvement Beyond the Light-Duty-Vehicle Sector

    SciTech Connect (OSTI)

    Vyas, A. D.; Patel, D. M.; Bertram, K. M.

    2013-03-01

    Considerable research has focused on energy efficiency and fuel substitution options for light-duty vehicles, while much less attention has been given to medium- and heavy-duty trucks, buses, aircraft, marine vessels, trains, pipeline, and off-road equipment. This report brings together the salient findings from an extensive review of literature on future energy efficiency options for these non-light-duty modes. Projected activity increases to 2050 are combined with forecasts of overall fuel efficiency improvement potential to estimate the future total petroleum and greenhouse gas (GHG) emissions relative to current levels. This is one of a series of reports produced as a result of the Transportation Energy Futures (TEF) project, a Department of Energy-sponsored multi-agency project initiated to pinpoint underexplored strategies for abating GHGs and reducing petroleum dependence related to transportation.

  5. Efficiency Improvement Opportunities for Light-Duty Natural-Gas-Fueled Vehicles

    SciTech Connect (OSTI)

    Staunton, R.H.; Thomas, J.F.

    1998-12-01

    The purpose of this report is to evaluate and make recommendations concerning technologies that promise to improve the efilciency of compressed natural gas (CNG) light-duty vehicles. Technical targets for CNG automotive technology given in the March 1998 OffIce of Advanced Automotive Technologies research and development plan were used as guidance for this effort. The technical target that necessitates this current study is to validate technologies that enable CNG light vehicles to have at least 10% greater - fuel economy (on a miles per gallon equivalent basis) than equivalent gasoline vehicles by 2006. Other tar- gets important to natural gas (NG) automotive technology and this study are to: (1) increase CNG vehicle range to 380 miles, (2) reduce the incremental vehicle cost (CNG vs gasoline) to $1500, and (3) meet the California ultra low-emission vehicle (ULEV) and Federal Tier 2 emission standards expected to be in effect in 2004.

  6. APBF-DEC NOx Adsorber/DPF Project: Light-Duty Passenger Car Platform

    SciTech Connect (OSTI)

    Tomazic, D; Tatur, M; Thornton, M

    2003-08-24

    A 1.9L turbo direct injection (TDI) diesel engine was modified to achieve the upcoming Tier 2 Bin 5 emission standard in combination with a NOx adsorber catalyst (NAC) and a diesel particulate filter (DPF). The primary objective for developing this test bed is to investigating the effects of different fuel sulfur contents on the performance of an advanced emission control system (ECS) in a light-duty application. During the development process, the engine-out emissions were minimized by applying a state-of-the-art combustion system in combination with cooled exhaust gas recirculation (EGR). The subsequent calibration effort resulted in emission levels requiring 80-90 percent nitrogen-oxide (NOx) and particulate matter (PM) conversion rates by the corresponding ECS. The strategy development included ean/rich modulation for NAC regeneration, as well as, the desulfurization of the NAC and the regeneration of the DPF. Two slightly different ECS were investigated and calibrated. The initial vehicle results in an Audi A4 station wagon over the federal test procedure (FTP), US 06, and the highway fuel economy test (HFET) cycle indicate the potential of these configuration to meet the future Tier 2 emission standard.

  7. Critical analysis of thermodynamic cycle modeling of adsorption cooling systems for light-duty vehicle air conditioning applications

    E-Print Network [OSTI]

    Bahrami, Majid

    -duty vehicle air conditioning applications Amir Sharafian, Majid Bahrami n Laboratory for Alternative Energy Keywords: Adsorption cooling system Vehicle air conditioning Thermodynamic cycle Fully dynamic modeling a b different operating conditions for light-duty vehicles air conditioning applications. Available ACS

  8. Global warming impact of gasoline and alcohol use in light-duty highway vehicles in Brazil

    SciTech Connect (OSTI)

    Uria, L.A.B.; Schaeffer, R.

    1997-12-31

    This paper examines the direct and indirect global warming impact of gasoline and alcohol use in light-duty highway vehicles in Brazil. In order to do that, it quantifies emissions of CO{sub 2}, CO{sub 2} HC and NO{sub x} in terms of CO{sub 2}-equivalent units for time spans of 20, 100 and 500 years. It shows that the consideration of CO{sub 2} HC and NO{sub x} emissions in addition to CO{sub 2} provides an important contribution for better understanding the total warming impact of transportation fuels in Brazil.

  9. Alternative Fuels Data Center: Light-Duty Vehicle Idle Reduction Strategies

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home Page on Digg FindPortsasIdle ReductionLight-Duty Vehicle Idle

  10. Retail Infrastructure Costs Comparison for Hydrogen and Electricity for Light-Duty Vehicles: Preprint

    SciTech Connect (OSTI)

    Melaina, M.; Sun, Y.; Bush, B.

    2014-08-01

    Both hydrogen and plug-in electric vehicles offer significant social benefits to enhance energy security and reduce criteria and greenhouse gas emissions from the transportation sector. However, the rollout of electric vehicle supply equipment (EVSE) and hydrogen retail stations (HRS) requires substantial investments with high risks due to many uncertainties. We compare retail infrastructure costs on a common basis - cost per mile, assuming fueling service to 10% of all light-duty vehicles in a typical 1.5 million person city in 2025. Our analysis considers three HRS sizes, four distinct types of EVSE and two distinct EVSE scenarios. EVSE station costs, including equipment and installation, are assumed to be 15% less than today's costs. We find that levelized retail capital costs per mile are essentially indistinguishable given the uncertainty and variability around input assumptions. Total fuel costs per mile for battery electric vehicle (BEV) and plug-in hybrid vehicle (PHEV) are, respectively, 21% lower and 13% lower than that for hydrogen fuel cell electric vehicle (FCEV) under the home-dominant scenario. Including fuel economies and vehicle costs makes FCEVs and BEVs comparable in terms of costs per mile, and PHEVs are about 10% less than FCEVs and BEVs. To account for geographic variability in energy prices and hydrogen delivery costs, we use the Scenario Evaluation, Regionalization and Analysis (SERA) model and confirm the aforementioned estimate of cost per mile, nationally averaged, but see a 15% variability in regional costs of FCEVs and a 5% variability in regional costs for BEVs.

  11. The Diesel Engine Powering Light-Duty Vehicles: Today and Tomorrow...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Engine Emissions Reduction (DEER) Conference Presentation: Volkwagen AG, Wolfsburg, Germany 2004deerschindler.pdf More Documents & Publications Accelerating Light-Duty Diesel...

  12. Thermoelectric HVAC and Thermal Comfort Enablers for Light-Duty...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Thermal Comfort Enablers for Light-Duty Vehicle Applications Thermoelectric HVAC and Thermal Comfort Enablers for Light-Duty Vehicle Applications 2012 DOE Hydrogen and Fuel...

  13. Comparative urban drive cycle simulations of light-duty hybrid vehicles with gasoline or diesel engines and emissions controls

    SciTech Connect (OSTI)

    Gao, Zhiming; Daw, C Stuart; Smith, David E

    2013-01-01

    Electric hybridization is a very effective approach for reducing fuel consumption in light-duty vehicles. Lean combustion engines (including diesels) have also been shown to be significantly more fuel efficient than stoichiometric gasoline engines. Ideally, the combination of these two technologies would result in even more fuel efficient vehicles. However, one major barrier to achieving this goal is the implementation of lean-exhaust aftertreatment that can meet increasingly stringent emissions regulations without heavily penalizing fuel efficiency. We summarize results from comparative simulations of hybrid electric vehicles with either stoichiometric gasoline or diesel engines that include state-of-the-art aftertreatment emissions controls for both stoichiometric and lean exhaust. Fuel consumption and emissions for comparable gasoline and diesel light-duty hybrid electric vehicles were compared over a standard urban drive cycle and potential benefits for utilizing diesel hybrids were identified. Technical barriers and opportunities for improving the efficiency of diesel hybrids were identified.

  14. Increasing the Fuel Economy and Safety of New Light-Duty Vehicles

    E-Print Network [OSTI]

    Wenzel, Tom; Ross, Marc

    2006-01-01

    Automotive Technology and Fuel Economy Trends: 1975 Through2004. “The effect of fuel economy on automobile safety: aM. , 2002. “Near-term fuel economy potential for light-duty

  15. Future Potential of Hybrid and Diesel Powertrains in the U.S. Light-duty Vehicle Market

    SciTech Connect (OSTI)

    Greene, D.L.

    2004-08-23

    Diesel and hybrid technologies each have the potential to increase light-duty vehicle fuel economy by a third or more without loss of performance, yet these technologies have typically been excluded from technical assessments of fuel economy potential on the grounds that hybrids are too expensive and diesels cannot meet Tier 2 emissions standards. Recently, hybrid costs have come down and the few hybrid makes available are selling well. Diesels have made great strides in reducing particulate and nitrogen oxide emissions, and are likely though not certain to meet future standards. In light of these developments, this study takes a detailed look at the market potential of these two powertrain technologies and their possible impacts on light-duty vehicle fuel economy. A nested multinomial logit model of vehicle choice was calibrated to 2002 model year sales of 930 makes, models and engine-transmission configurations. Based on an assessment of the status and outlook for the two technologies, market shares were predicted for 2008, 2012 and beyond, assuming no additional increase in fuel economy standards or other new policy initiatives. Current tax incentives for hybrids are assumed to be phased out by 2008. Given announced and likely introductions by 2008, hybrids could capture 4-7% and diesels 2-4% of the light-duty market. Based on our best guesses for further introductions, these shares could increase to 10-15% for hybrids and 4-7% for diesels by 2012. The resulting impacts on fleet average fuel economy would be about +2% in 2008 and +4% in 2012. If diesels and hybrids were widely available across vehicle classes, makes, and models, they could capture 40% or more of the light-duty vehicle market.

  16. Putting policy in drive : coordinating measures to reduce fuel use and greenhouse gas emissions from U.S. light-duty vehicles

    E-Print Network [OSTI]

    Evans, Christopher W. (Christopher William)

    2008-01-01

    The challenges of energy security and climate change have prompted efforts to reduce fuel use and greenhouse gas emissions in light-duty vehicles within the United States. Failures in the market for lower rates of fuel ...

  17. Rebound 2007: Analysis of U.S. Light-Duty Vehicle Travel Statistics

    SciTech Connect (OSTI)

    Greene, David L

    2010-01-01

    U.S. national time series data on vehicle travel by passenger cars and light trucks covering the period 1966 2007 are used to test for the existence, size and stability of the rebound effect for motor vehicle fuel efficiency on vehicle travel. The data show a statistically significant effect of gasoline price on vehicle travel but do not support the existence of a direct impact of fuel efficiency on vehicle travel. Additional tests indicate that fuel price effects have not been constant over time, although the hypothesis of symmetry with respect to price increases and decreases is not rejected. Small and Van Dender (2007) model of a declining rebound effect with income is tested and similar results are obtained.

  18. Light Duty Fuel Cell Electric Vehicle Validation Data. Final Technical Report

    SciTech Connect (OSTI)

    Jelen, Deborah; Odom, Sara

    2015-04-30

    Electricore, along with partners from Quong & Associates, Inc., Honda R&D Americas (Honda), Nissan Technical Center North America (Nissan), and Toyota Motor Engineering & Manufacturing North America, Inc. (Toyota), participated in the Light Duty Fuel Cell Electric Vehicle (FCEV) Validation Data program sponsored by the Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy (EERE) (Cooperative Agreement No. DE-EE0005968). The goal of this program was to provide real world data from the operation of past and current FCEVs, in order to measure their performance and improvements over time. The program was successful; 85% of the data fields requested were provided and not restricted due to proprietary reasons. Overall, the team from Electricore provided at least 4.8 GB of data to DOE, which was combined with data from other participants to produce over 33 key data products. These products included vehicle performance and fuel cell stack performance/durability. The data were submitted to the National Renewable Energy Laboratory’s National Fuel Cell Technology Evaluation Center (NREL NFCTEC) and combined with input from other participants. NREL then produced composite data products (CDP) which anonymized the data in order to maintain confidentiality. The results were compared with past data, which showed a measurable improvement in FCEVs over the past several years. The results were presented by NREL at the 2014 Fuel Cell Seminar, and 2014 and 2015 (planned) DOE Annual Merit Review. The project was successful. The team provided all of the data agreed upon and met all of its goals. The project finished on time and within budget. In addition, an extra $62,911 of cost sharing was provided by the Electricore team. All participants believed that the method used to collect, combine, anonymize, and present the data was technically and economically effective. This project helped EERE meet its mission of ensuring America’s security and prosperity by documenting progress in addressing energy and environmental challenges. Information from this project will be used by the hydrogen and vehicle industries to help advance the introduction of FCEVs and associated hydrogen infrastructure.

  19. Vehicle Technologies Office Merit Review 2015: Lean Miller Cycle System Development for Light-Duty Vehicles

    Broader source: Energy.gov [DOE]

    Presentation given by General Motors at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about lean miller cycle system...

  20. Assessing deployment strategies for ethanol and flex fuel vehicles in the U.S. light-duty vehicle fleet

    E-Print Network [OSTI]

    McAulay, Jeffrey L. (Jeffrey Lewis)

    2009-01-01

    Within the next 3-7 years the US light duty fleet and fuel supply will encounter what is commonly referred to as the "blend wall". This phenomenon describes the situation when more ethanol production has been mandated than ...

  1. Light Duty Combustion Research: Advanced Light-Duty Combustion...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Light Duty Combustion Research: Advanced Light-Duty Combustion Experiments Light Duty Combustion Research: Advanced Light-Duty Combustion Experiments 2009 DOE Hydrogen Program and...

  2. Impact of Canada’s Voluntary Agreement on Greenhouse Gas Emissions from Light Duty Vehicles

    E-Print Network [OSTI]

    Lutsey, Nicholas P.

    2006-01-01

    Restrictions of Car Emissions. ” http://www.metronews.ca/passenger cars and 95% for light trucks from Tier 1 emissionPassenger Cars - With low-GHG MAC Credit GHG Emission Rate (

  3. Impact of Canada's Voluntary Agreement on Greenhouse Gas Emissions from Light Duty Vehicles

    E-Print Network [OSTI]

    Lutsey, Nicholas P.

    2006-01-01

    Restrictions of Car Emissions. ” http://www.metronews.ca/passenger cars and 95% for light trucks from Tier 1 emissionPassenger Cars - With low-GHG MAC Credit GHG Emission Rate (

  4. Feebates and Fuel Economy Standards: Impacts on Fuel Use in Light-Duty Vehicles and Greenhouse Gas Emissions

    SciTech Connect (OSTI)

    Greene, David L

    2011-01-01

    This study evaluates the potential impacts of a national feebate system, a market-based policy that consists of graduated fees on low-fuel-economy (or high-emitting) vehicles and rebates for high-fuel-economy (or lowemitting) vehicles. In their simplest form, feebate systems operate under three conditions: a benchmark divides all vehicles into two categories-those charged fees and those eligible for rebates; the sizes of the fees and rebates are a function of a vehicle's deviation from its benchmark; and placement of the benchmark ensures revenue neutrality or a desired level of subsidy or revenue. A model developed by the University of California for the California Air Resources Board was revised and used to estimate the effects of six feebate structures on fuel economy and sales of new light-duty vehicles, given existing and anticipated future fuel economy and emission standards. These estimates for new vehicles were then entered into a vehicle stock model that simulated the evolution of the entire vehicle stock. The results indicate that feebates could produce large, additional reductions in emissions and fuel consumption, in large part by encouraging market acceptance of technologies with advanced fuel economy, such as hybrid electric vehicles.

  5. Impact of Canada's Voluntary Agreement on Greenhouse Gas Emissions from Light Duty Vehicles

    E-Print Network [OSTI]

    Lutsey, Nicholas P.

    2006-01-01

    Conditions on Vehicle Emissions and Fuel Economy. ” SocietyGM Canada), 2005. “Vehicle Emissions & Fuels. ” http://downward trend in vehicle emissions is shown as vehicles

  6. Impact of Canada’s Voluntary Agreement on Greenhouse Gas Emissions from Light Duty Vehicles

    E-Print Network [OSTI]

    Lutsey, Nicholas P.

    2006-01-01

    Conditions on Vehicle Emissions and Fuel Economy. ” SocietyGM Canada), 2005. “Vehicle Emissions & Fuels. ” http://downward trend in vehicle emissions is shown as vehicles

  7. Trends in Exhaust Emissions from In-Use California Light-Duty Vehicles, 1994-2001

    E-Print Network [OSTI]

    Kean, Andrew J.; Sawyer, Robert F.; Harley, Robert A.; Kendall, Gary R.

    2002-01-01

    efforts to control motor vehicle emissions have been made inVOC) [1]. Motor vehicle emissions are particularlythe concentrations of vehicles, emissions, and people are

  8. Effects of Ethanol and Volatility Parameters on Exhaust Emissions of Light-Duty Vehicles

    E-Print Network [OSTI]

    Durbin, T; Miller, J W; Huai, T; Cocker III, D R; Younglove, Y

    2005-01-01

    in-use vehicles ranging from Low-Emission Vehicle (LEV) toSuper-Ultra-Low- Emission Vehicle (SULEV) certification. Thecontent on exhaust emissions from vehicles that can meet

  9. Reduce growth rate of light-duty vehicle travel to meet 2050 global climate goals This article has been downloaded from IOPscience. Please scroll down to see the full text article.

    E-Print Network [OSTI]

    Kammen, Daniel M.

    Reduce growth rate of light-duty vehicle travel to meet 2050 global climate goals This article has of contents for this issue, or go to the journal homepage for more Home Search Collections Journals About) 024018 (6pp) doi:10.1088/1748-9326/6/2/024018 Reduce growth rate of light-duty vehicle travel to meet

  10. Light-Duty Drive Cycle Simulations of Diesel Engine-Out Exhaust Properties for an RCCI-Enabled Vehicle

    SciTech Connect (OSTI)

    Gao, Zhiming; Curran, Scott; Daw, C Stuart; Wagner, Robert M

    2013-01-01

    In-cylinder blending of gasoline and diesel fuels to achieve low-temperature reactivity controlled compression ignition (RCCI) can reduce NOx and PM emissions while maintaining or improving brake thermal efficiency compared to conventional diesel combustion (CDC). Moreover, the dual-fueling RCCI is able to achieve these benefits by tailoring combustion reactivity over a wider range of engine operation than is possible with a single fuel. However, the currently demonstrated range of stable RCCI combustion just covers a portion of the engine speed-load range required in several light-duty drive cycles. This means that engines must switch from RCCI to CDC when speed and load fall outside of the stable RCCI range. In this study we investigated the impact of RCCI as it has recently been demonstrated on practical engine-out exhaust temperature and emissions by simulating a multi-mode RCCI-enabled vehicle operating over two urban and two highway driving cycles. To implement our simulations, we employed experimental engine maps for a multi-mode RCCI/CDC engine combined with a standard mid-size, automatic transmission, passenger vehicle in the Autonomie vehicle simulation platform. Our results include both detailed transient and cycle-averaged engine exhaust temperature and emissions for each case, and we note the potential implications of the modified exhaust properties on catalytic emissions control and utilization of waste heat recovery on future RCCI-enabled vehicles.

  11. Marketing Light-Duty Diesels to U.S. Consumers

    Broader source: Energy.gov [DOE]

    Overview of Volkswagen's approach in introducing light-duty diesels to the U.S. passenger vehicle market.

  12. Vehicle Systems Integration Laboratory | Clean Energy | ORNL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    simulate, and evaluate engines, electric motors, and transmissions in conventional and hybrid powertrain configurations for vehicles ranging from light-duty cars to Class 8...

  13. Effect of Intake Air Filter Condition on Light-Duty Gasoline Vehicles

    SciTech Connect (OSTI)

    Thomas, John F; Huff, Shean P; West, Brian H; Norman, Kevin M

    2012-01-01

    Proper maintenance can help vehicles perform as designed, positively affecting fuel economy, emissions, and the overall drivability. This effort investigates the effect of one maintenance factor, intake air filter replacement, with primary focus on vehicle fuel economy, but also examining emissions and performance. Older studies, dealing with carbureted gasoline vehicles, have indicated that replacing a clogged or dirty air filter can improve vehicle fuel economy and conversely that a dirty air filter can be significantly detrimental to fuel economy. The effect of clogged air filters on the fuel economy, acceleration and emissions of five gasoline fueled vehicles is examined. Four of these were modern vehicles, featuring closed-loop control and ranging in model year from 2003 to 2007. Three vehicles were powered by naturally aspirated, port fuel injection (PFI) engines of differing size and cylinder configuration: an inline 4, a V6 and a V8. A turbocharged inline 4-cylinder gasoline direct injection (GDI) engine powered vehicle was the fourth modern gasoline vehicle tested. A vintage 1972 vehicle equipped with a carburetor (open-loop control) was also examined. Results reveal insignificant fuel economy and emissions sensitivity of modern vehicles to air filter condition, but measureable effects on the 1972 vehicle. All vehicles experienced a measured acceleration performance penalty with clogged intake air filters.

  14. Advanced Combustion Concepts- Enabling Systems and Solutions (ACCESS) for High Efficiency Light Duty Vehicles

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  15. Thermoelectric HVAC and Thermal Comfort Enablers for Light-Duty Vehicle Applications

    Office of Energy Efficiency and Renewable Energy (EERE)

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  16. Non-Cost Barriers to Consumer Adoption of New Light-Duty Vehicle Technologies

    Office of Energy Efficiency and Renewable Energy (EERE)

    The rate of adoption of new vehicle technologies and related reductions in petroleum use and greenhouse gas emissions rely on how rapidly technology innovations enter the fleet through new vehicle purchases. New technologies often increase vehicle price, which creates a barrier to consumer purchase, but other barriers to adoption are not due to increased purchase prices. For example, plug-in vehicles, dedicated alternative fuel vehicles, and other new technologies face non-cost barriers such as consumer unfamiliarity or requirements for drivers to adjust behavior. This report reviews recent research to help classify these non-cost barriers and determine federal government programs and actions with the greatest potential to overcome them.

  17. Effect of Gasoline Properties on Exhaust Emissions from Tier 2 Light-Duty Vehicles -- Final Report: Phase 3; July 28, 2008 - July 27, 2013

    SciTech Connect (OSTI)

    Whitney, K.

    2014-05-01

    This report covers work the Southwest Research Institute (SwRI) Office of Automotive Engineering has conducted for the U.S. Environmental Protection Agency (EPA), the National Renewable Energy Laboratory (NREL), and the Coordinating Research Council (CRC) in support of the Energy Policy Act of 2005 (EPAct). Section 1506 of EPAct requires EPA to produce an updated fuel effects model representing the 2007 light - duty gasoline fleet, including determination of the emissions impacts of increased renewable fuel use. This report covers the exhaust emissions testing of 15 light-duty vehicles with 27 E0 through E20 test fuels, and 4 light-duty flexible fuel vehicles (FFVs) on an E85 fuel, as part of the EPAct Gasoline Light-Duty Exhaust Fuel Effects Test Program. This program will also be referred to as the EPAct/V2/E-89 Program based on the designations used for it by the EPA, NREL, and CRC, respectively. It is expected that this report will be an attachment or a chapter in the overall EPAct/V2/E-89 Program report prepared by EPA and NREL.

  18. Lightweight materials in the light-duty passenger vehicle market: Their market penetration potential and impacts

    SciTech Connect (OSTI)

    Stodolsky, F. [Argonne National Lab., IL (United States). Center for Transportation Research]|[Argonne National Lab., Washington, DC (United States); Vyas, A.; Cuenca, R. [Argonne National Lab., IL (United States). Center for Transportation Research

    1995-06-01

    This paper summarizes the results of a lightweight materials study. Various lightweight materials are examined and the most cost effective are selected for further analysis. Aluminum and high-performance polymer matrix composites (PMCS) are found to have the highest potential for reducing the weight of automobiles and passenger-oriented light trucks. Weight reduction potential for aluminum and carbon fiber-based PMCs are computed based on a set of component-specific replacement criteria (such as stiffness and strength), and the consequent incremental cost scenarios are developed. The authors assume that a materials R and D program successfully reduces the cost of manufacturing aluminum and carbon fiber PMC-intensive vehicles. A vehicle choice model is used to project market shares for the lightweight vehicles. A vehicle survival and age-related usage model is employed to compute energy consumption over time for the vehicle stock. After a review of projected costs, the following two sets of vehicles are characterized to compete with the conventional materials vehicles: (1) aluminum vehicles with limited replacement providing 19% weight reduction (AIV-Mid), and (2) aluminum vehicles with the maximum replacement providing 31% weight reduction (AIV-Max). Assuming mass-market introduction in 2005, the authors project a national petroleum energy savings of 3% for AIV-Mid and 5% for AIV-Max in 2030.

  19. Vehicle Technologies Office Merit Review 2014: Light-Duty Diesel Combuston

    Broader source: Energy.gov [DOE]

    Presentation given by Sandia Natonal Laboratories and  University of Wisconsin at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation...

  20. 1 THE LIGHT-DUTY-VEHICLE FLEET'S EVOLUTION: 2 ANTICIPATING PHEV ADOPTION AND GREENHOUSE GAS

    E-Print Network [OSTI]

    Kockelman, Kara M.

    Research Board, January 2011 29 30 ABSTRACT 31 With environmental degradation and energy security-year simulations predicted the highest market share for PHEVs, HEVs, 40 and Smart Cars under pivot point, to motivate significant 45 behavioral shifts and a lower pivot point to achieve revenue

  1. Electric powertrains : opportunities and challenges in the US light-duty vehicle fleet

    E-Print Network [OSTI]

    Kromer, Matthew A

    2007-01-01

    Managing impending environmental and energy challenges in the transport sector requires a dramatic reduction in both the petroleum consumption and greenhouse gas (GHG) emissions of in-use vehicles. This study quantifies ...

  2. Increasing the Fuel Economy and Safety of New Light-Duty Vehicles

    E-Print Network [OSTI]

    Wenzel, Tom; Ross, Marc

    2006-01-01

    Automotive Technology and Fuel Economy Trends: 1975 ThroughD.C. Khazzoom, D.J. , 1994. “Fuel efficiency and automobileR.B. , 2004. “Motor vehicle fuel efficiency and traffic

  3. Light-Duty Advanced Diesel Combustion Research | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Light-Duty Advanced Diesel Combustion Research Light-Duty Advanced Diesel Combustion Research Presentation from the U.S. DOE Office of Vehicle Technologies "Mega" Merit Review 2008...

  4. Global Assessment of Hydrogen Technologies - Task 1 Report Technology Evaluation of Hydrogen Light Duty Vehicles

    SciTech Connect (OSTI)

    Fouad, Fouad H.; Peters, Robert W.; Sisiopiku, Virginia P.; Sullivan Andrew J.; Rousseau, Aymeric

    2007-12-01

    This task analyzes the candidate hydrogen-fueled vehicles for near-term use in the Southeastern U.S. The purpose of this work is to assess their potential in terms of efficiency and performance. This report compares conventional, hybrid electric vehicles (HEV) with gasoline and hydrogen-fueled internal combustion engines (ICEs) as well as fuel cell and fuel cell hybrids from a technology as well as fuel economy point of view. All the vehicles have been simulated using the Powertrain System Analysis Toolkit (PSAT). First, some background information is provided on recent American automotive market trends and consequences. Moreover, available options are presented for introducing cleaner and more economical vehicles in the market in the future. In this study, analysis of various candidate hydrogen-fueled vehicles is performed using PSAT and, thus, a brief description of PSAT features and capabilities are provided. Detailed information on the simulation analysis performed is also offered, including methodology assumptions, fuel economic results, and conclusions from the findings.

  5. Light duty vehicle full fuel cycle emissions analysis. Topical report, April 1993-April 1994

    SciTech Connect (OSTI)

    Darrow, K.G.

    1994-04-01

    The report provides a methodology for analyzing full fuel cycle emissions of alternative fuels for vehicles. Included in this analysis is an assessment of the following fuel cycles relevant to vehicle use: gasoline, reformulated gasoline, natural gas, liquefied petroleum gas, electric power (with onboard battery storage), ethanol, and methanol fuels. The analysis focuses on basic criteria pollutants (reactive organic gases, nitrous oxides, carbon monoxide, sulfurous oxides, and particulates less than 10 microns (PM10)). Emissions of greenhouse gases (carbon dioxide, methane, and nitrous oxide) are also defined. The analysis was conducted for two cases, United States and the State of California and two time frames, current and year 2000.

  6. Light-duty Diesels: Clean Enough? | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Diesel Passenger Car Technology for Low Emissions and CO2 Compliance EPA Mobile Source Rule Update Light Duty Diesels in the United States - Some...

  7. Drive cycle analysis of butanol/diesel blends in a light-duty vehicle.

    SciTech Connect (OSTI)

    Miers, S. A.; Carlson, R. W.; McConnell, S. S.; Ng, H. K.; Wallner, T.; LeFeber, J.; Energy Systems; Esper Images Video & Multimedia

    2008-10-01

    The potential exists to displace a portion of the petroleum diesel demand with butanol and positively impact engine-out particulate matter. As a preliminary investigation, 20% and 40% by volume blends of butanol with ultra low sulfur diesel fuel were operated in a 1999 Mercedes Benz C220 turbo diesel vehicle (Euro III compliant). Cold and hot start urban as well as highway drive cycle tests were performed for the two blends of butanol and compared to diesel fuel. In addition, 35 MPH and 55 MPH steady-state tests were conducted under varying road loads for the two fuel blends. Exhaust gas emissions, fuel consumption, and intake and exhaust temperatures were acquired for each test condition. Filter smoke numbers were also acquired during the steady-state tests.

  8. Evaluation of aftermarket CNG conversion kits in light-duty vehicle applications. Final report

    SciTech Connect (OSTI)

    Blazek, C.F.; Rowley, P.F.; Grimes, J.W.

    1995-07-01

    The Institute of Gas Technology (IGT) was contracted by the National Renewable Energy Laboratory (NREL) to evaluate three compressed natural gas (CNG) conversion systems using a 1993 Chevrolet Lumina baseline vehicle. A fourth conversion system was added to the test matrix through funding support from Brooklyn Union. The objective of this project was to measure the Federal Test Procedure (FTP) emissions and fuel economy of the different conversion systems, and to compare the performance to gasoline-fueled operation and each other. Different natural gas compositions were selected to represent the 10th percentile, mean, and 90th percentile compositions distributed in the Continental United States. Testing with these different compositions demonstrated the systems` ability to accommodate the spectrum of gas found in the United States. Each compressed natural gas conversion system was installed and adjusted according to the manufacturer`s instructions. In addition to the FTP testing, an evaluation of the comparative installation times and derivability tests (based on AGA and CRC guidelines) were conducted on each system.

  9. Vehicle Technologies Office Merit Review 2014: Advanced Combustion Concepts- Enabling Systems and Solutions (ACCESS) for High Efficiency Light Duty Vehicles

    Broader source: Energy.gov [DOE]

    Presentation given by Robert Bosch at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about advanced combustion concepts -...

  10. Cost of Ownership and Well-to-Wheels Carbon Emissions/Oil Use of Alternative Fuels and Advanced Light-Duty Vehicle Technologies

    SciTech Connect (OSTI)

    Elgowainy, Mr. Amgad; Rousseau, Mr. Aymeric; Wang, Mr. Michael; Ruth, Mr. Mark; Andress, Mr. David; Ward, Jacob; Joseck, Fred; Nguyen, Tien; Das, Sujit

    2013-01-01

    The U.S. Department of Energy (DOE), Argonne National Laboratory (Argonne), and the National Renewable Energy Laboratory (NREL) updated their analysis of the well-to-wheels (WTW) greenhouse gases (GHG) emissions, petroleum use, and the cost of ownership (excluding insurance, maintenance, and miscellaneous fees) of vehicle technologies that have the potential to significantly reduce GHG emissions and petroleum consumption. The analyses focused on advanced light-duty vehicle (LDV) technologies such as plug-in hybrid, battery electric, and fuel cell electric vehicles. Besides gasoline and diesel, alternative fuels considered include natural gas, advanced biofuels, electricity, and hydrogen. The Argonne Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation (GREET) and Autonomie models were used along with the Argonne and NREL H2A models.

  11. DOE Targets for Onboard Hydrogen Storage Systems for Light-Duty...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Targets for Onboard Hydrogen Storage Systems for Light-Duty Vehicles DOE Targets for Onboard Hydrogen Storage Systems for Light-Duty Vehicles This table lists the technical targets...

  12. Commercializing light-duty plug-in/plug-out hydrogen-fuel-cell vehicles: “Mobile Electricity” technologies and opportunities

    E-Print Network [OSTI]

    Williams, Brett D; Kurani, Kenneth S

    2007-01-01

    Commercializing an alternate vehicle fuel: lessons learnedCommercializing an alternate vehicle fuel: lessons learned

  13. Light Duty Efficient, Clean Combustion

    SciTech Connect (OSTI)

    Donald Stanton

    2010-12-31

    Cummins has successfully completed the Light Duty Efficient Clean Combustion (LDECC) cooperative program with DoE. This program was established in 2007 in support of the Department of Energy's Vehicles Technologies Advanced Combustion and Emissions Control initiative to remove critical barriers to the commercialization of advanced, high efficiency, emissions compliant internal combustion (IC) engines for light duty vehicles. Work in this area expanded the fundamental knowledge of engine combustion to new regimes and advanced the knowledge of fuel requirements for these diesel engines to realize their full potential. All of the following objectives were met with fuel efficiency improvement targets exceeded: (1) Improve light duty vehicle (5000 lb. test weight) fuel efficiency by 10.5% over today's state-of-the-art diesel engine on the FTP city drive cycle; (2) Develop and design an advanced combustion system plus aftertreatment system that synergistically meets Tier 2 Bin 5 NOx and PM emissions standards while demonstrating the efficiency improvements; (3) Maintain power density comparable to that of current conventional engines for the applicable vehicle class; and (4) Evaluate different fuel components and ensure combustion system compatibility with commercially available biofuels. Key accomplishments include: (1) A 25% improvement in fuel efficiency was achieved with the advanced LDECC engine equipped with a novel SCR aftertreatment system compared to the 10.5% target; (2) An 11% improvement in fuel efficiency was achieved with the advanced LDECC engine and no NOx aftertreamtent system; (3) Tier 2 Bin 5 and SFTP II emissions regulations were met with the advanced LDECC engine equipped with a novel SCR aftertreatment system; (4) Tier 2 Bin 5 emissions regulations were met with the advanced LDECC engine and no NOx aftertreatment, but SFTP II emissions regulations were not met for the US06 test cycle - Additional technical barriers exist for the no NOx aftertreatment engine; (5) Emissions and efficiency targets were reached with the use of biodiesel. A variety of biofuel feedstocks (soy, rapeseed, etc.) was investigated; (6) The advanced LDECC engine with low temperature combustion was compatible with commercially available biofuels as evaluated by engine performance testing and not durability testing; (7) The advanced LDECC engine equipped with a novel SCR aftertreatment system is the engine system architecture that is being further developed by the Cummins product development organization. Cost reduction and system robustness activities have been identified for future deployment; (8) The new engine and aftertreatment component technologies are being developed by the Cummins Component Business units (e.g. fuel system, turbomachinery, aftertreatment, electronics, etc.) to ensure commercial viability and deployment; (9) Cummins has demonstrated that the technologies developed for this program are scalable across the complete light duty engine product offerings (2.8L to 6.7L engines); and (10) Key subsystems developed include - sequential two stage turbo, combustions system for low temperature combustion, novel SCR aftertreatment system with feedback control, and high pressure common rail fuel system. An important element of the success of this project was leveraging Cummins engine component technologies. Innovation in component technology coupled with system integration is enabling Cummins to move forward with the development of high efficiency clean diesel products with a long term goal of reaching a 40% improvement in thermal efficiency for the engine plus aftertreatment system. The 40% improvement is in-line with the current light duty vehicle efficiency targets set by the 2010 DoE Vehicle Technologies MYPP and supported through co-operative projects such as the Cummins Advanced Technology Powertrains for Light-Duty Vehicles (ATP-LD) started in 2010.

  14. Light Duty Efficient, Clean Combustion

    SciTech Connect (OSTI)

    Stanton, Donald W

    2011-06-03

    Cummins has successfully completed the Light Duty Efficient Clean Combustion (LDECC) cooperative program with DoE. This program was established in 2007 in support of the Department of Energy’s Vehicles Technologies Advanced Combustion and Emissions Control initiative to remove critical barriers to the commercialization of advanced, high efficiency, emissions compliant internal combustion (IC) engines for light duty vehicles. Work in this area expanded the fundamental knowledge of engine combustion to new regimes and advanced the knowledge of fuel requirements for these diesel engines to realize their full potential. All of the following objectives were met with fuel efficiency improvement targets exceeded: 1. Improve light duty vehicle (5000 lb. test weight) fuel efficiency by 10.5% over today’s state-ofthe- art diesel engine on the FTP city drive cycle 2. Develop & design an advanced combustion system plus aftertreatment system that synergistically meets Tier 2 Bin 5 NOx and PM emissions standards while demonstrating the efficiency improvements. 3. Maintain power density comparable to that of current conventional engines for the applicable vehicle class. 4. Evaluate different fuel components and ensure combustion system compatibility with commercially available biofuels. Key accomplishments include: ? A 25% improvement in fuel efficiency was achieved with the advanced LDECC engine equipped with a novel SCR aftertreatment system compared to the 10.5% target ? An 11% improvement in fuel efficiency was achieved with the advanced LDECC engine and no NOx aftertreamtent system ? Tier 2 Bin 5 and SFTP II emissions regulations were met with the advanced LDECC engine equipped with a novel SCR aftertreatment system ? Tier 2 Bin 5 emissions regulations were met with the advanced LDECC engine and no NOx aftertreatment, but SFTP II emissions regulations were not met for the US06 test cycle – Additional technical barriers exist for the no NOx aftertreatment engine ? Emissions and efficiency targets were reached with the use of biodiesel. A variety of biofuel feedstocks (soy, rapeseed, etc.) was investigated. ? The advanced LDECC engine with low temperature combustion was compatible with commercially available biofuels as evaluated by engine performance testing and not durability testing. ? The advanced LDECC engine equipped with a novel SCR aftertreatment system is the engine system architecture that is being further developed by the Cummins product development organization. Cost reduction and system robustness activities have been identified for future deployment. ? The new engine and aftertreatment component technologies are being developed by the Cummins Component Business units (e.g. fuel system, turbomachinery, aftertreatment, electronics, etc.) to ensure commercial viability and deployment ? Cummins has demonstrated that the technologies developed for this program are scalable across the complete light duty engine product offerings (2.8L to 6.7L engines) ? Key subsystems developed include – sequential two stage turbo, combustions system for low temperature combustion, novel SCR aftertreatment system with feedback control, and high pressure common rail fuel system An important element of the success of this project was leveraging Cummins engine component technologies. Innovation in component technology coupled with system integration is enabling Cummins to move forward with the development of high efficiency clean diesel products with a long term goal of reaching a 40% improvement in thermal efficiency for the engine plus aftertreatment system. The 40% improvement is in-line with the current light duty vehicle efficiency targets set by the 2010 DoE Vehicle Technologies MYPP and supported through co-operative projects such as the Cummins Advanced Technology Powertrains for Light- Duty Vehicles (ATP-LD) started in 2010.

  15. Commercializing light-duty plug-in/plug-out hydrogen-fuel-cell vehicles: “Mobile Electricity” technologies and opportunities

    E-Print Network [OSTI]

    Williams, Brett D; Kurani, Kenneth S

    2007-01-01

    of electric and natural gas vehicles: draft report for yeardevice to compressed-natural-gas-vehicle consumers. ) Theof electric and natural gas vehicles” report for year one.

  16. Commercializing light-duty plug-in/plug-out hydrogen-fuel-cell vehicles: “Mobile Electricity” technologies and opportunities

    E-Print Network [OSTI]

    Williams, Brett D; Kurani, Kenneth S

    2007-01-01

    combustion Prius, Eco Fuel CNG Hybrid Escape, and Solara methanol vehicle, and a CNG vehicle. The participants werewas predominately the CNG vehicle. The authors explain the

  17. Commercializing light-duty plug-in/plug-out hydrogen-fuel-cell vehicles: “Mobile Electricity” technologies and opportunities

    E-Print Network [OSTI]

    Williams, Brett D; Kurani, Kenneth S

    2007-01-01

    and S. E. Letendre, "Electric Vehicles as a New Power Sourceassessment for fuel cell electric vehicles." Argonne, Ill. :at 20th International Electric Vehicle Symposium (EVS-20),

  18. Advanced Clean Cars Zero Emission Vehicle Regulation

    E-Print Network [OSTI]

    California at Davis, University of

    Advanced Clean Cars Zero Emission Vehicle Regulation ZEV #12;Advanced Clean Cars ZEV Program.4% of Annual Sales in 2025 Projected: ZEVs #12;Advanced Clean Cars Hydrogen Infrastructure · Without infrastructure, the cars won't come · Complementary Policies to support ZEV regulation ­ Clean Fuels Outlet

  19. Commercializing light-duty plug-in/plug-out hydrogen-fuel-cell vehicles: “Mobile Electricity” technologies and opportunities

    E-Print Network [OSTI]

    Williams, Brett D; Kurani, Kenneth S

    2007-01-01

    car recharging, the availability of adequate electricalcars to support the complex operation of the electrical gridcars requiring at-home recharging. Although the electrical

  20. Impacts of ethanol fuel level on emissions of regulated and unregulated pollutants from a fleet of gasoline light-duty vehicles

    SciTech Connect (OSTI)

    Karavalakis, Georgios; Durbin, Thomas; Shrivastava, ManishKumar B.; Zheng, Zhongqing; Villella, Phillip M.; Jung, Hee-Jung

    2012-03-30

    The study investigated the impact of ethanol blends on criteria emissions (THC, NMHC, CO, NOx), greenhouse gas (CO2), and a suite of unregulated pollutants in a fleet of gasoline-powered light-duty vehicles. The vehicles ranged in model year from 1984 to 2007 and included one Flexible Fuel Vehicle (FFV). Emission and fuel consumption measurements were performed in duplicate or triplicate over the Federal Test Procedure (FTP) driving cycle using a chassis dynamometer for four fuels in each of seven vehicles. The test fuels included a CARB phase 2 certification fuel with 11% MTBE content, a CARB phase 3 certification fuel with a 5.7% ethanol content, and E10, E20, E50, and E85 fuels. In most cases, THC and NMHC emissions were lower with the ethanol blends, while the use of E85 resulted in increases of THC and NMHC for the FFV. CO emissions were lower with ethanol blends for all vehicles and significantly decreased for earlier model vehicles. Results for NOx emissions were mixed, with some older vehicles showing increases with increasing ethanol level, while other vehicles showed either no impact or a slight, but not statistically significant, decrease. CO2 emissions did not show any significant trends. Fuel economy showed decreasing trends with increasing ethanol content in later model vehicles. There was also a consistent trend of increasing acetaldehyde emissions with increasing ethanol level, but other carbonyls did not show strong trends. The use of E85 resulted in significantly higher formaldehyde and acetaldehyde emissions than the specification fuels or other ethanol blends. BTEX and 1,3-butadiene emissions were lower with ethanol blends compared to the CARB 2 fuel, and were almost undetectable from the E85 fuel. The largest contribution to total carbonyls and other toxics was during the cold-start phase of FTP.

  1. Tier 2 Useful Life (120,000 miles) Exhaust Emission Results for a NOx Adsorber and Diesel Particle Filter Equipped Light-Duty Diesel Vehicle

    SciTech Connect (OSTI)

    Tatur, M.; Tomazic, D.; Thornton, M.; Orban, J.; Slone, E.

    2006-05-01

    Investigates the emission control system performance and system desulfurization effects on regulated and unregulated emissions in a light-duty diesel engine.

  2. Post Mortem of 120k mi Light-Duty Urea SCR and DPF System | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    DPF System for Tier 2 Diesel Light-Duty Trucks Urea SCR Durability Assessment for Tier 2 Light-Duty Truck Urea SCR and DPF System for Diesel Sport Utility Vehicle Meeting Tier II...

  3. High Efficiency Clean Combustion in Multi-Cylinder Light-Duty...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of RCCI Operation on a Light-Duty Multi-Cylinder Engine High Efficiency Clean Combustion in Multi-Cylinder Light-Duty Engines Vehicle Technologies Office Merit Review 2014:...

  4. Vehicle Technologies Office Merit Review 2015: High Efficiency Clean Combustion in Multi-Cylinder Light-Duty Engines

    Broader source: Energy.gov [DOE]

    Presentation given by Oak Ridge National Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about clean...

  5. Commercializing light-duty plug-in/plug-out hydrogen-fuel-cell vehicles: “Mobile Electricity” technologies and opportunities

    E-Print Network [OSTI]

    Williams, Brett D; Kurani, Kenneth S

    2007-01-01

    NGVs were assigned artificially low NGV ranges. ) found thenatural-gas-vehicle (NGV) commercialization failures duringGas utilities recognized NGV commercialization as an

  6. Vehicle Technologies Office Merit Review 2014: High Efficiency Clean Combustion in Multi-Cylinder Light-Duty Engines

    Broader source: Energy.gov [DOE]

    Presentation given by Oak Ridge National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about high efficiency...

  7. Quantifying the Effects of Idle-Stop Systems on Fuel Economy in Light-Duty Passenger Vehicles

    SciTech Connect (OSTI)

    Jeff Wishart; Matthew Shirk

    2012-12-01

    Vehicles equipped with idle-stop (IS) systems are capable of engine shut down when the vehicle is stopped and rapid engine re-start for the vehicle launch. This capability reduces fuel consumption and emissions during periods when the engine is not being utilized to provide propulsion or to power accessories. IS systems are a low-cost and fast-growing technology in the industry-wide pursuit of increased vehicle efficiency, possibly becoming standard features in European vehicles in the near future. In contrast, currently there are only three non-hybrid vehicle models for sale in North America with IS systems and these models are distinctly low-volume models. As part of the United States Department of Energy’s Advanced Vehicle Testing Activity, ECOtality North America has tested the real-world effect of IS systems on fuel consumption in three vehicle models imported from Europe. These vehicles were chosen to represent three types of systems: (1) spark ignition with 12-V belt alternator starter; (2) compression ignition with 12-V belt alternator starter; and (3) direct-injection spark ignition, with 12-V belt alternator starter/combustion restart. The vehicles have undergone both dynamometer and on-road testing; the test results show somewhat conflicting data. The laboratory data and the portion of the on-road data in which driving is conducted on a prescribed route with trained drivers produced significant fuel economy improvement. However, the fleet data do not corroborate improvement, even though the data show significant engine-off time. It is possible that the effects of the varying driving styles and routes in the fleet testing overshadowed the fuel economy improvements. More testing with the same driver over routes that are similar with the IS system-enabled and disabled is recommended. There is anecdotal evidence that current Environmental Protection Agency fuel economy test procedures do not capture the fuel economy gains that IS systems produce in real-world driving. The program test results provide information on the veracity of these claims.

  8. Global Assessment of Hydrogen Technologies - Task 2 Report Comparison of Performance and Emissions from Near-Term Hydrogen Fueled Light Duty Vehicles

    SciTech Connect (OSTI)

    Fouad, Fouad H.; Peters, Robert W.; Sisiopiku, Virginia P.; Sullivan Andrew J.; Ng, Henry K.; Waller, Thomas

    2007-12-01

    An investigation was conducted on the emissions and efficiency from hydrogen blended compressed natural gas (CNG) in light duty vehicles. The different blends used in this investigation were 0%, 15%, 30%, 50%, 80%, 95%, and ~100% hydrogen, the remainder being compressed natural gas. The blends were tested using a Ford F-150 and a Chevrolet Silverado truck supplied by Arizona Public Services. Tests on emissions were performed using four different driving condition tests. Previous investigation by Don Karner and James Frankfort on a similar Ford F-150 using a 30% hydrogen blend showed that there was substantial reduction when compared to gasoline in carbon monoxide (CO), nitrogen oxide (NOx), and carbon dioxide (CO2) emissions while the reduction in hydrocarbon (HC) emissions was minimal. This investigation was performed using different blends of CNG and hydrogen to evaluate the emissions reducing capabilities associated with the use of the different fuel blends. The results were then tested statistically to confirm or reject the hypotheses on the emission reduction capabilities. Statistically analysis was performed on the test results to determine whether hydrogen concentration in the HCNG had any effect on the emissions and the fuel efficiency. It was found that emissions from hydrogen blended compressed natural gas were a function of driving condition employed. Emissions were found to be dependent on the concentration of hydrogen in the compressed natural gas fuel blend.

  9. Transportation Energy Futures Series: Non-Cost Barriers to Consumer Adoption of New Light-Duty Vehicle Technologies

    SciTech Connect (OSTI)

    Stephens, T.

    2013-03-01

    Consumer preferences are key to the adoption of new vehicle technologies. Barriers to consumer adoption include price and other obstacles, such as limited driving range and charging infrastructure; unfamiliarity with the technology and uncertainty about direct benefits; limited makes and models with the technology; reputation or perception of the technology; standardization issues; and regulations. For each of these non-cost barriers, this report estimates an effective cost and summarizes underlying influences on consumer preferences, approximate magnitude and relative severity, and assesses potential actions, based on a comprehensive literature review. While the report concludes that non-cost barriers are significant, effective cost and potential market share are very uncertain. Policies and programs including opportunities for drivers to test drive advanced vehicles, general public outreach and information programs, incentives for providing charging and fueling infrastructure, and development of technology standards were examined for their ability to address barriers, but little quantitative data exists on the effectiveness of these measures. This is one in a series of reports produced as a result of the Transportation Energy Futures project, a Department of Energy-sponsored multi-agency effort to pinpoint underexplored strategies for reducing GHGs and petroleum dependence related to transportation.

  10. Transportation Energy Futures Series. Non-Cost Barriers to Consumer Adoption of New Light-Duty Vehicle Technologies

    SciTech Connect (OSTI)

    Stephens, Thomas

    2013-03-01

    Consumer preferences are key to the adoption of new vehicle technologies. Barriers to consumer adoption include price and other obstacles, such as limited driving range and charging infrastructure; unfamiliarity with the technology and uncertainty about direct benefits; limited makes and models with the technology; reputation or perception of the technology; standardization issues; and regulations. For each of these non-cost barriers, this report estimates an effective cost and summarizes underlying influences on consumer preferences, approximate magnitude and relative severity, and assesses potential actions, based on a comprehensive literature review. While the report concludes that non-cost barriers are significant, effective cost and potential market share are very uncertain. Policies and programs including opportunities for drivers to test drive advanced vehicles, general public outreach and information programs, incentives for providing charging and fueling infrastructure, and development of technology standards were examined for their ability to address barriers, but little quantitative data exists on the effectiveness of these measures. This is one in a series of reports produced as a result of the Transportation Energy Futures project, a Department of Energy-sponsored multi-agency effort to pinpoint underexplored strategies for reducing GHGs and petroleum dependence related to transportation. View all reports on the TEF Web page, http://www.eere.energy.gov/analysis/transportationenergyfutures/index.html.

  11. High Efficiency Clean Combustion in Multi-Cylinder Light-Duty...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Engine Vehicle Technologies Office Merit Review 2015: High Efficiency Clean Combustion in Multi-Cylinder Light-Duty Engines Gasoline-Like Fuel Effects on Advanced...

  12. Light Duty Vehicle CNG Tanks

    Broader source: Energy.gov (indexed) [DOE]

    Advanced Research Projects Agency-Energy, US DOE dane.boysen@doe.gov Fiber Reinforced Polymer Composite Manufacturing Workshop Advanced Manufacturing Office, EERE, US DOE...

  13. The effects of driving style and vehicle performance on the real-world fuel consumption of U.S. light-duty vehicles

    E-Print Network [OSTI]

    Berry, Irene Michelle

    2010-01-01

    Even with advances in vehicle technology, both conservation and methods for reducing the fuel consumption of existing vehicles are needed to decrease the petroleum consumption and greenhouse gas emissions of the U.S. ...

  14. Effect of Gasoline Properties on Exhaust Emissions from Tier 2 Light-Duty Vehicles -- Final Report: Phases 4, 5, & 6; July 28, 2008 - July 27, 2013

    SciTech Connect (OSTI)

    Whitney, K.; Shoffner, B.

    2014-06-01

    This report covers work the Southwest Research Institute (SwRI) Office of Automotive Engineering has conducted for the National Renewable Energy Laboratory (NREL) in support of the Energy Policy Act of 2005 (EPAct). Section 1506 of EPAct requires the EPA to produce an updated fuel effects model representing the 2007 light-duty gasoline fleet, including determination of the emissions impacts of increased renewable fuel use.

  15. The projected pathways and environmental impact of China's electrified passenger vehicles

    E-Print Network [OSTI]

    Zhao, Summer Jiakun

    2015-01-01

    As the world's largest market for car sales, China's rapidly rising number of light-duty vehicles (LDVs) on the road have resulted in serious problems such as increasing CO2 emissions, energy insecurity, and air pollution. ...

  16. Urea SCR and DPF System for Tier 2 Diesel Light-Duty Trucks ...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Tier 2 Diesel Light-Duty Trucks Presentation given at DEER 2006, August 20-24, 2006, Detroit, Michigan. Sponsored by the U.S. DOE's EERE FreedomCar and Fuel Partnership and 21st...

  17. SCReaming for Low NOx - SCR for the Light Duty Market | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    - SCR for the Light Duty Market Presentation given at DEER 2006, August 20-24, 2006, Detroit, Michigan. Sponsored by the U.S. DOE's EERE FreedomCar and Fuel Partnership and 21st...

  18. Technology Development for Light Duty High Efficient Diesel Engines...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Light Duty High Efficient Diesel Engines Technology Development for Light Duty High Efficient Diesel Engines Improve the efficiency of diesel engines for light duty applications...

  19. Commercializing Light-Duty Plug-In/Plug-Out Hydrogen-Fuel-Cell Vehicles:“Mobile Electricity” Technologies, Early California Household Markets, and Innovation Management

    E-Print Network [OSTI]

    Williams, Brett D

    2007-01-01

    Commercializing an alternate vehicle fuel: lessons learnedCommercializing an alternate vehicle fuel: lessons learned

  20. Commercializing Light-Duty Plug-In/Plug-Out Hydrogen-Fuel-Cell Vehicles: "Mobile Electricity" Technologies, Early California Household Markets, and Innovation Management

    E-Print Network [OSTI]

    Williams, Brett D

    2010-01-01

    Commercializing an alternate vehicle fuel: lessons learnedCommercializing an alternate vehicle fuel: lessons learned

  1. Business Case for Light-Duty Diesel in the U.S. | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Cleaning Up Non-Road Diesel Vehicles: A Public Health Imperative Future Potential of Hybrid and Diesel Powertrains in the U.S. Light-Duty Vehicle Market Opportunity Assessment...

  2. Commercializing Light-Duty Plug-In/Plug-Out Hydrogen-Fuel-Cell Vehicles: "Mobile Electricity" Technologies, Early California Household Markets, and Innovation Management

    E-Print Network [OSTI]

    Williams, Brett D

    2010-01-01

    of electric and natural gas vehicles: draft report for yeardevice to compressed-natural-gas-vehicle consumers. ) Theof electric and natural gas vehicles” report for year one.

  3. Commercializing Light-Duty Plug-In/Plug-Out Hydrogen-Fuel-Cell Vehicles:“Mobile Electricity” Technologies, Early California Household Markets, and Innovation Management

    E-Print Network [OSTI]

    Williams, Brett D

    2007-01-01

    of electric and natural gas vehicles: draft report for yeardevice to compressed-natural-gas-vehicle consumers. ) Theof electric and natural gas vehicles” report for year one.

  4. Commercializing Light-Duty Plug-In/Plug-Out Hydrogen-Fuel-Cell Vehicles: "Mobile Electricity" Technologies, Early California Household Markets, and Innovation Management

    E-Print Network [OSTI]

    Williams, Brett D

    2010-01-01

    combustion Prius, Eco Fuel CNG Hybrid Escape, and Solara methanol vehicle, and a CNG vehicle. The participants werewas predominately the CNG vehicle. The authors explain the

  5. Commercializing Light-Duty Plug-In/Plug-Out Hydrogen-Fuel-Cell Vehicles:“Mobile Electricity” Technologies, Early California Household Markets, and Innovation Management

    E-Print Network [OSTI]

    Williams, Brett D

    2007-01-01

    combustion Prius, Eco Fuel CNG Hybrid Escape, and Solara methanol vehicle, and a CNG vehicle. The participants werewas predominately the CNG vehicle. The authors explain the

  6. Commercializing Light-Duty Plug-In/Plug-Out Hydrogen-Fuel-Cell Vehicles:“Mobile Electricity” Technologies, Early California Household Markets, and Innovation Management

    E-Print Network [OSTI]

    Williams, Brett D

    2007-01-01

    and S. E. Letendre, "Electric Vehicles as a New Power Sourceassessment for fuel cell electric vehicles." Argonne, Ill. :at 20th International Electric Vehicle Symposium (EVS-20),

  7. Commercializing Light-Duty Plug-In/Plug-Out Hydrogen-Fuel-Cell Vehicles: "Mobile Electricity" Technologies, Early California Household Markets, and Innovation Management

    E-Print Network [OSTI]

    Williams, Brett D

    2010-01-01

    assessment for fuel cell electric vehicles." Argonne, Ill. :of Plug-In Hybrid Electric Vehicles on Wind Energy Markets,"Recharging and Household Electric Vehicle Market: A Near-

  8. Assessment of costs and benefits of flexible and alternative fuel use in the U.S. transportation sector. Technical report fourteen: Market potential and impacts of alternative fuel use in light-duty vehicles -- A 2000/2010 analysis

    SciTech Connect (OSTI)

    1996-01-01

    In this report, estimates are provided of the potential, by 2010, to displace conventional light-duty vehicle motor fuels with alternative fuels--compressed natural gas (CNG), liquefied petroleum gas (LPG), methanol from natural gas, ethanol from grain and from cellulosic feedstocks, and electricity--and with replacement fuels such as oxygenates added to gasoline. The 2010 estimates include the motor fuel displacement resulting both from government programs (including the Clean Air Act and EPACT) and from potential market forces. This report also provides an estimate of motor fuel displacement by replacement and alterative fuels in the year 2000. However, in contrast to the 2010 estimates, the year 2000 estimate is restricted to an accounting of the effects of existing programs and regulations. 27 figs., 108 tabs.

  9. ChargeCar Community Conversions: Practical, Electric Commuter Vehicles Now!

    E-Print Network [OSTI]

    ChargeCar Community Conversions: Practical, Electric Commuter Vehicles Now! H. Ben Brown, Illah-range electric commuter vehicles (EVs) is here now! The ChargeCar project at Carnegie Mellon University aims to exploit today's technology to make efficient, clean, quiet, commuter electric vehicles avail- able

  10. Commercializing Light-Duty Plug-In/Plug-Out Hydrogen-Fuel-Cell Vehicles:“Mobile Electricity” Technologies, Early California Household Markets, and Innovation Management

    E-Print Network [OSTI]

    Williams, Brett D

    2007-01-01

    car recharging, the availability of adequate electricalcars to support the complex operation of the electrical gridcars requiring at-home recharging. Although the electrical

  11. Commercializing Light-Duty Plug-In/Plug-Out Hydrogen-Fuel-Cell Vehicles: "Mobile Electricity" Technologies, Early California Household Markets, and Innovation Management

    E-Print Network [OSTI]

    Williams, Brett D

    2010-01-01

    car recharging, the availability of adequate electricalcars to support the complex operation of the electrical gridcars requiring at-home recharging. Although the electrical

  12. Commercializing Light-Duty Plug-In/Plug-Out Hydrogen-Fuel-Cell Vehicles:“Mobile Electricity” Technologies, Early California Household Markets, and Innovation Management

    E-Print Network [OSTI]

    Williams, Brett D

    2007-01-01

    goals for automotive fuel cell power systems hydrogen vs.a comparative assessment for fuel cell electric vehicles."plug-out hydrogen-fuel- cell vehicles: “Mobile Electricity"

  13. Ultra-Low Sulfur diesel Update & Future Light Duty Diesel | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Light Duty Diesel Vehicles BiodieselFuelManagementBestPracticesReport.pdf A Life-Cycle Assessment Comparing Select Gas-to-Liquid Fuels with Conventional Fuels in the...

  14. Variability of Battery Wear in Light Duty Plug-In Electric Vehicles Subject to Ambient Temperature, Battery Size, and Consumer Usage: Preprint

    SciTech Connect (OSTI)

    Wood, E.; Neubauer, J.; Brooker, A. D.; Gonder, J.; Smith, K. A.

    2012-08-01

    Battery wear in plug-in electric vehicles (PEVs) is a complex function of ambient temperature, battery size, and disparate usage. Simulations capturing varying ambient temperature profiles, battery sizes, and driving patterns are of great value to battery and vehicle manufacturers. A predictive battery wear model developed by the National Renewable Energy Laboratory captures the effects of multiple cycling and storage conditions in a representative lithium chemistry. The sensitivity of battery wear rates to ambient conditions, maximum allowable depth-of-discharge, and vehicle miles travelled is explored for two midsize vehicles: a battery electric vehicle (BEV) with a nominal range of 75 mi (121 km) and a plug-in hybrid electric vehicle (PHEV) with a nominal charge-depleting range of 40 mi (64 km). Driving distance distributions represent the variability of vehicle use, both vehicle-to-vehicle and day-to-day. Battery wear over an 8-year period was dominated by ambient conditions for the BEV with capacity fade ranging from 19% to 32% while the PHEV was most sensitive to maximum allowable depth-of-discharge with capacity fade ranging from 16% to 24%. The BEV and PHEV were comparable in terms of petroleum displacement potential after 8 years of service, due to the BEV?s limited utility for accomplishing long trips.

  15. Commercializing Light-Duty Plug-In/Plug-Out Hydrogen-Fuel-Cell Vehicles:“Mobile Electricity” Technologies, Early California Household Markets, and Innovation Management

    E-Print Network [OSTI]

    Williams, Brett D

    2007-01-01

    NGVs were assigned artificially low NGV ranges. ) found thenatural-gas-vehicle (NGV) commercialization failures duringGas utilities recognized NGV commercialization as an

  16. Commercializing Light-Duty Plug-In/Plug-Out Hydrogen-Fuel-Cell Vehicles: "Mobile Electricity" Technologies, Early California Household Markets, and Innovation Management

    E-Print Network [OSTI]

    Williams, Brett D

    2010-01-01

    NGVs were assigned artificially low NGV ranges. ) found thenatural-gas-vehicle (NGV) commercialization failures duringGas utilities recognized NGV commercialization as an

  17. Vehicle Technologies Office Merit Review 2015: Computational Design and Development of a New, Lightweight Cast Alloy for Advanced Cylinder Heads in High-Efficiency, Light-Duty Engines

    Broader source: Energy.gov [DOE]

    Presentation given by General Motors at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about computational design and...

  18. Present Status and Marketing Prospects of the Emerging Hybrid-Electric and Diesel Technologies to Reduce CO2 Emissions of New Light-Duty Vehicles in California

    E-Print Network [OSTI]

    Burke, Andy

    2004-01-01

    modern clean diesel engines and hybrid-electric powertrainsare advanced, clean diesel engines and hybrid-electricmarkets for diesel powered and hybrid-electric vehicles in

  19. Commercializing Light-Duty Plug-In/Plug-Out Hydrogen-Fuel-Cell Vehicles: "Mobile Electricity" Technologies, Early California Household Markets, and Innovation Management

    E-Print Network [OSTI]

    Williams, Brett D

    2010-01-01

    goals for automotive fuel cell power systems hydrogen vs.a comparative assessment for fuel cell electric vehicles."Transition: Designing a Fuel- Cell Hypercar. ” 8th Annual

  20. J. Air & Waste Manage. Assoc., vol 58, 2008, p. 45-54 On-board emission measurement of high loaded light duty vehicles in Algeria

    E-Print Network [OSTI]

    Boyer, Edmond

    ; Nejjari et al., 2003, Atek et al., 2004). As a result, many stations of air pollution measurement and Boukadoum, 2005). Vehicle pollutant emissions constitute not only a problem of air quality in big citiesJ. Air & Waste Manage. Assoc., vol 58, 2008, p. 45-54 On-board emission measurement of high loaded

  1. Technical Challenges and Opportunities Light-Duty Diesel Engines...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Challenges and Opportunities Light-Duty Diesel Engines in North America Technical Challenges and Opportunities Light-Duty Diesel Engines in North America 2005 Diesel Engine...

  2. Light-Duty Reactivity Controlled Compression Ignition Drive Cycle...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Light-Duty Reactivity Controlled Compression Ignition Drive Cycle Fuel Economy and Emissions Estimates Light-Duty Reactivity Controlled Compression Ignition Drive Cycle Fuel...

  3. Light Duty Utility Arm System hot test

    SciTech Connect (OSTI)

    Howden, G.F.; Conrad, R.B.; Kiebel, G.R.

    1996-02-01

    This Engineering Task Plan describes the scope of work and cost for implementing a hot test of the Light Duty Utility Arm System in Tank T-106 in September 1996.

  4. Fact #693: September 19, 2011 Average Vehicle Footprint for Cars...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    information below. Supporting Information Average Vehicle Footprint, 2008-2010 Model Year Car Light Truck All Light Vehicles 2008 45.4 53.0 49.0 2009 45.2 52.7 48.2 2010 45.2 54.0...

  5. EVS-25 Shenzhen, China, Nov. 5-9, 2010 The 25th World Battery, Hybrid and Fuel Cell Electric Vehicle Symposium & Exhibition

    E-Print Network [OSTI]

    © EVS-25 Shenzhen, China, Nov. 5-9, 2010 The 25th World Battery, Hybrid and Fuel Cell Electric Vehicle Symposium & Exhibition Impact Assessment of Plug-in Hybrid Vehicles on the U.S. Power Grid Michael significant amounts of the daily driving energy for the US light duty vehicle (cars, pickups, SUVs, and vans

  6. Light Duty Vehicle Pathways July 26, 2010

    E-Print Network [OSTI]

    Efficiency and Renewable Energy U.S. Department of Energy #12;2 Conventional Oil International Energy Agency #12;3 InterAcademy Panel Statement On Ocean Acidification, 1 June 2009 · Signed by the National;4 Renewable Electricity Systems Photovoltaics Concentrating Solar Power (CSP) Smart Grid Distributed

  7. Fact #847: November 17, 2014 Cars were Over 50% of Light Vehicle...

    Office of Environmental Management (EM)

    7: November 17, 2014 Cars were Over 50% of Light Vehicle Production in 2014 - Dataset Fact 847: November 17, 2014 Cars were Over 50% of Light Vehicle Production in 2014 - Dataset...

  8. Modeling demand for electric vehicles: the effect of car users' attitudes and perceptions

    E-Print Network [OSTI]

    Bierlaire, Michel

    Modeling demand for electric vehicles: the effect of car users' attitudes and perceptions Aur Abstract The near arrival of electric vehicles on the car market generates a need for new models in order electric cars and petrol-driven ones and in particular which include the respondents' own cars

  9. Light duty utility arm startup plan

    SciTech Connect (OSTI)

    Barnes, G.A.

    1998-09-01

    This plan details the methods and procedures necessary to ensure a safe transition in the operation of the Light Duty Utility Arm (LDUA) System. The steps identified here outline the work scope and identify responsibilities to complete startup, and turnover of the LDUA to Characterization Project Operations (CPO).

  10. The Ability of Automakers to Introduce a Costly, Regulated New Technology: A Case Study of Automotive Airbags in the U.S. Light-Duty Vehicle Market with Implications for Future Automobile and Light Truck Regulation

    E-Print Network [OSTI]

    Abeles, Ethan

    2004-01-01

    of Passenger Cars and Light Trucks Sold in the U.S. (1987-passenger cars and 1999 for light trucks. By 2003, over 117than 216 million cars and light trucks on U.S. roads were

  11. Design criteria for the light duty utility arm system end effectors

    SciTech Connect (OSTI)

    Pardini, A.F.

    1995-01-03

    This document provides the criteria for the design of end effectors that will be used as part of the Light Duty Utility Arm (LDUA) System. The LDUA System consists of a deployment vehicle, a vertical positioning mast, a light duty multi-axis robotic arm, a tank riser interface and confinement, a tool interface plate, a control system, and an operations control trailer. The criteria specified in this document will apply to all end effector systems being developed for use on or with the LDUA system at the Hanford site. The requirement stipulated in this document are mandatory.

  12. Fact #847: November 17, 2014 Cars were Over 50% of Light Vehicle Production in 2014

    Broader source: Energy.gov [DOE]

    In 1975, cars were just over 80% of light vehicle production. From the early 1980s to 2005, light trucks were an increasing share of the light vehicles produced. The share of sport utility vehicles...

  13. Additional Development of a Dedicated Liquefied Petroleum Gas (LPG) Ultra Low Emissions Vehicle (ULEV)

    SciTech Connect (OSTI)

    IMPCO Technologies

    1998-10-28

    This report describes the last in a series of three projects designed to develop a commercially competitive LPG light-duty passenger car that meets California ULEV standards and corporate average fuel economy (CAFE) energy efficiency guidelines for such a vehicle. In this project, IMPCO upgraded the vehicle's LPG vapor fuel injection system and performed emissions testing. The vehicle met the 1998 ULEV standards successfully, demonstrating the feasibility of meeting ULEV standards with a dedicated LPG vehicle.

  14. EMISSIONS OF NITROUS OXIDE AND METHANE FROM CONVENTIONAL AND ALTERNATIVE FUEL MOTOR VEHICLES

    E-Print Network [OSTI]

    Kammen, Daniel M.

    fuel passenger cars, light-duty trucks, and heavy-duty vehicles. 1. Introduction The use of energy). In most industrialized countries, trans- portation fuel use produces a major fraction of all energy/electric hybrid and fuel cell/electric hybrid drivetrain technologies offers the potential for significant

  15. A Waste Heat Recovery System for Light Duty Diesel Engines

    SciTech Connect (OSTI)

    Briggs, Thomas E; Wagner, Robert M; Edwards, Kevin Dean; Curran, Scott; Nafziger, Eric J

    2010-01-01

    In order to achieve proposed fuel economy requirements, engines must make better use of the available fuel energy. Regardless of how efficient the engine is, there will still be a significant fraction of the fuel energy that is rejected in the exhaust and coolant streams. One viable technology for recovering this waste heat is an Organic Rankine Cycle. This cycle heats a working fluid using these heat streams and expands the fluid through a turbine to produce shaft power. The present work was the development of such a system applied to a light duty diesel engine. This lab demonstration was designed to maximize the peak brake thermal efficiency of the engine, and the combined system achieved an efficiency of 44.4%. The design of the system is discussed, as are the experimental performance results. The system potential at typical operating conditions was evaluated to determine the practicality of installing such a system in a vehicle.

  16. Light Duty Diesels in the United States - Some Perspectives ...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Emission Control Technology Review Update on Diesel Exhaust Emission Control Technology and Regulations Light Duty Diesels in the United States - Some Perspectives...

  17. Mixture Formation in a Light-Duty Diesel Engine

    Broader source: Energy.gov [DOE]

    Presents quantitative measurements of evolution of in-cylinder equivalence ratio distributions in a light-duty engine where wall interactions and strong swirl are significant

  18. Business Case for Light-Duty Diesels | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Diesels Business Case for Light-Duty Diesels 2005 Diesel Engine Emissions Reduction (DEER) Conference Presentations and Posters 2005deergodwin.pdf More Documents & Publications...

  19. Light Duty Efficient Clean Combustion | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    25, 2008 in Bethesda, Maryland. merit08frazier.pdf More Documents & Publications Light Duty Efficient Clean Combustion Exhaust Energy Recovery: 2008 Semi-Mega Merit Review...

  20. Performance targets for electric vehicle batteries

    E-Print Network [OSTI]

    Chang, Michael Tse-Gene

    2015-01-01

    Light-duty vehicle transportation accounted for 17.2% of US greenhouse gas emissions in 2012 [95]. An important strategy for reducing CO? emissions emitted by light-duty vehicles is to reduce per-mile CO? emissions. While ...

  1. Application of Radio Control Cars as Intelligent Unmanned Ground Vehicles with Collaborative and Independent Behavior

    E-Print Network [OSTI]

    Wedeward, Kevin

    Application of Radio Control Cars as Intelligent Unmanned Ground Vehicles with Collaborative Systems & Robotics Group, New Mexico Tech, Socorro, NM, 87801, USA ABSTRACT Simple radio control cars-cost radio control cars manufactured by Nikko. Initial tests have involved using a small number (two to ten

  2. Vehicle Technologies Office Merit Review 2014: Computational design and development of a new, lightweight cast alloy for advanced cylinder heads in high-efficiency, light-duty engines FOA 648-3a

    Broader source: Energy.gov [DOE]

    Presentation given by General Motors at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about computational design and...

  3. Small Cars In Neighborhoods

    E-Print Network [OSTI]

    Bosselmann, Peter C.; Cullinane, Daniel; Garrison, William L.; Maxey, Carl M.

    1993-01-01

    52 3. Neighborhood Cars for LivableVehicle Studies Inferences for the Neighborhood Car Usesof Neighborhood Cars Safety . . . . . . . . . . .

  4. Decontamination trade study for the Light Duty Utility Arm

    SciTech Connect (OSTI)

    Rieck, R.H.

    1994-09-29

    Various methods were evaluated for decontaminating the Light Duty Utility Arm (LDUA). Physical capabilities of each method were compared with the constraints and requirements for the LDUA Decontamination System. Costs were compared and a referred alternative was chosen.

  5. Light duty utility arm walkdown report

    SciTech Connect (OSTI)

    Smalley, J.L.

    1998-09-25

    This document is a report of the Light Duty Utility Arm (LDUA) drawing walkdown. The purpose of this walkdown was to validate the essential configuration of the LDUA in preparation of deploying the equipment in a Hanford waste tank. The LDUA system has, over the course of its development, caused the generation of a considerable number of design drawings. The number of drawings is estimated to be well over 1,000. A large number consist of vendor type drawings, furnished by both Pacific Northwest National Laboratory (PNNL) and SPAR Aerospace Limited (SPAR). A smaller number, approximately 200, are H-6 type drawing sheets in the Project Hanford Management Contract (PHMC) document control system. A preliminary inspection of the drawings showed that the physical configuration of the LDUA did not match the documented configuration. As a result of these findings, a scoping walkdown of 20 critical drawing sheets was performed to determine if a problem existed in configuration management of the LDUA system. The results of this activity showed that 18 of the 20 drawing sheets were found to contain errors or omissions of varying concern. Given this, Characterization Engineering determined that a walkdown of the drawings necessary and sufficient to enable safe operation and maintenance of the LDUA should be performed. A review team was assembled to perform a review of all of the drawings and determine the set which would need to be verified through an engineering walkdown. The team determined that approximately 150 H-6 type drawing sheets would need to be verified, 12 SPAR/PNNL drawing sheets would need to be verified and converted to H-6 drawings, and three to six new drawings would be created (see Appendix A). This report documents the results of that walkdown.

  6. Vehicle Emissions Review- 2011

    Broader source: Energy.gov [DOE]

    Reviews regulatory requirements and general technology approaches for heavy- and light-duty vehicle emissions control - filter technology, new catalysts, NOx control, diesel oxidation catalysts, gasoline particulate filters

  7. EcoCAR 2: Racing Towards Vehicle Efficiency | Department of Energy

    Office of Environmental Management (EM)

    Education & Outreach Manager, Vehicle Technologies Program What are the key facts? First year finals of the EcoCAR2 competition conclude today in Los Angeles, CA. For the second...

  8. Carbonyl Emissions from Gasoline and Diesel Motor Vehicles

    E-Print Network [OSTI]

    Jakober, Chris A.

    2008-01-01

    fraction of light-duty gasoline vehicle particulate matterQuinone emissions from gasoline and diesel motor vehicles.32 organic compounds from gasoline- powered motor vehicles.

  9. Exposure to motor vehicle emissions: An intake fraction approach

    E-Print Network [OSTI]

    Marshall, Julian D.

    2002-01-01

    on California Light-Duty Vehicle Emissions." EnvironmentalGasoline on Motor Vehicle Emissions. 2. Volatile OrganicGasoline on Motor Vehicle Emissions. I. Mass Emission

  10. Vehicle Data for Alternative Fuel Vehicles (AFVs) and Hybrid Fuel Vehicles (HEVs) from the Alternative Fuels and Advanced Vehicles Data Center (AFCD)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    The AFDC provides search capabilities for many different models of both light-duty and heavy-duty vehicles. Engine and transmission type, fuel and class, fuel economy and emission certification are some of the facts available. The search will also help users locate dealers in their areas and do cost analyses. Information on alternative fuel vehicles and on advanced technology vehicles, along with calculators, resale and conversion information, links to incentives and programs such as Clean Cities, and dozens of fact sheets and publications make this section of the AFDC a valuable resource for car buyers.

  11. Vehicle Technologies Office: Propulsion Materials for Cars and Trucks

    Broader source: Energy.gov [DOE]

    Manufacturers use propulsion (or powertrain) materials in the components that move vehicles of every size and shape. Conventional vehicles use these materials in components such as the engine,...

  12. A MULTI-COUNTRY ANALYSIS OF LIFECYCLE EMISSIONS FROM TRANSPORTATION FUELS AND MOTOR VEHICLES

    E-Print Network [OSTI]

    Delucchi, Mark

    2005-01-01

    of Alternative Fuel Vehicles: Emissions, Energy, and Costof Transport, Vehicle Emissions Trends, Organization forvehicles) Motor-vehicle emissions (light-duty and heavy-

  13. Evaluating Air Quality Benefits of Freeway High-Occupancy Vehicle Lanes in Southern California

    E-Print Network [OSTI]

    Boriboonsomsin, K; Barth, M

    2007-01-01

    on Light-Duty Vehicle Emissions: Experimental Study withtheir impacts on vehicle emissions. Four general HOV laneand compared. Vehicle emissions and fuel consumption were

  14. A Multi-Country Analysis of Lifecycle Emissions From Transportation Fuels and Motor Vehicles

    E-Print Network [OSTI]

    Delucchi, Mark

    2005-01-01

    of Alternative Fuel Vehicles: Emissions, Energy, and Costof Transport, Vehicle Emissions Trends, Organization forvehicles) Motor-vehicle emissions (light-duty and heavy-

  15. Inhalation of motor vehicle emissions: effects of urban population and land area

    E-Print Network [OSTI]

    Marshall, Julian D.; McKone, Thomas E.; Deakin, Elizabeth; Nazaroff, William W.

    2006-01-01

    in California light-duty vehicle emissions. Environmentalload on motor vehicle emissions. Environmental Science andpollutants: motor vehicle emissions in the South Coast Air

  16. A Study of Emissions from a Light Duty Diesel Engine with the...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    A Study of Emissions from a Light Duty Diesel Engine with the European Particulate Measurement Programme A Study of Emissions from a Light Duty Diesel Engine with the European...

  17. Biodiesel Effects on the Operation of U.S. Light Duty Tier 2...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Light Duty Tier 2 Engine and Aftertreatment Systems Biodiesel Effects on the Operation of U.S. Light Duty Tier 2 Engine and Aftertreatment Systems Presentation given at 2007 Diesel...

  18. Fuel Effects on Low Temperature Combustion in a Light-Duty Diesel...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Low Temperature Combustion in a Light-Duty Diesel Engine Fuel Effects on Low Temperature Combustion in a Light-Duty Diesel Engine Six different fuels were investigated to study the...

  19. Development of a Waste Heat Recovery System for Light Duty Diesel...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    a Waste Heat Recovery System for Light Duty Diesel Engines Development of a Waste Heat Recovery System for Light Duty Diesel Engines Substantial increases in engine efficiency of a...

  20. WORKSHOP REPORT:Light-Duty Vehicles Technical Requirements and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    on petroleum. In support of these goals, the mission of the VTO is to develop more energy-efficient and environmentally friendly transportation technologies while meeting or...

  1. Organic Rankine Cycle for Light Duty Passenger Vehicles

    Broader source: Energy.gov [DOE]

    Dynamic model of organic Rankine cycle with R245fa working fluid and conservative component efficiencies predict power generation in excess of electrical accessory load demand under highway drive cycle

  2. DOE Light Duty Vehicle Workshop | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: AlternativeCommunication & Engagement » Tribal Programs| Department ofSave Energy

  3. Light Duty Fuel Cell Electric Vehicle Hydrogen Fueling Protocol |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Financing Tool Fits the BillDepartment ofEnergyJoe25, 2015LegaltheDepartmentfrom

  4. Light Duty Fuel Cell Electric Vehicle Hydrogen Fueling Protocol

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCED MANUFACTURING OFFICE INDUSTRIALU.S.Leadership on Clean Energys oElectrical EnergyDOE Webinar

  5. Thermoelectric HVAC for Light-Duty Vehicle Applications | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCEDInstallers/ContractorsPhotovoltaicsState ofSavings for Specific MeasuresDepartment

  6. Thermoelectric HVAC for Light-Duty Vehicle Applications | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCEDInstallers/ContractorsPhotovoltaicsState ofSavings for Specific MeasuresDepartmentEnergy 0

  7. Thermoelectric Opportunities for Light-Duty Vehicles | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCEDInstallers/ContractorsPhotovoltaicsState ofSavings for Specific2 DOE Hydrogen and Fuelfor

  8. Thermoelectric Opportunities in Light-Duty Vehicles | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCEDInstallers/ContractorsPhotovoltaicsState ofSavings for Specific2 DOE Hydrogen and Fuelforin

  9. Light-Duty Vehicle Energy Demand, Demographics, and Travel Behavior

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would likeUniverseIMPACTThousand CubicResourcelogo and-E C H N13, 2009LienertProducts,NuclearFor

  10. Internship Students Engine / Powertrain Development FEV is offering challenging internships in the field of light-duty diesel powertrain. This internship is designed

    E-Print Network [OSTI]

    Hutcheon, James M.

    in the field of light-duty diesel powertrain. This internship is designed for Masters of Science candidates but are not limited to engine dynamometer testing of diesel engines, vehicle testing for emissions and performance: Harsha Nanjundaswamy Manager Diesel Engine Development Nanjundaswamy@FEV.COM FEV is a global engineering

  11. Overview of FreedomCAR & Vehicle Technologies Program

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Financing Tool Fits theCommittee Charter OperatingSemprius Confidential 1of FreedomCAR &

  12. The FreedomCAR & Vehicle Technologies Health Impacts Program- The Collaborative Lubricating Oil Study on Emissions (CLOSE) Project

    Broader source: Energy.gov [DOE]

    Poster presentation at the 2007 Diesel Engine-Efficiency & Emissions Research Conference (DEER 2007). 13-16 August, 2007, Detroit, Michigan. Sponsored by the U.S. Department of Energy's (DOE) Office of FreedomCAR and Vehicle Technologies (OFCVT).

  13. DOE FreedomCAR and vehicle technologies program advanced power electronic and electrical machines annual review report

    SciTech Connect (OSTI)

    Olszewski, Mitch

    2006-10-11

    This report is a summary of the Review Panel at the FY06 DOE FreedomCAR and Vehicle Technologies (FCVT) Annual Review of Advanced Power Electronics and Electric Machine (APEEM) research activities held on August 15-17, 2006.

  14. Opportunity Assessment Clean Diesels in the North American Light Duty Market

    Office of Energy Efficiency and Renewable Energy (EERE)

    Presentation given at the 2007 Diesel Engine-Efficiency & Emissions Research Conference (DEER 2007). 13-16 August, 2007, Detroit, Michigan. Sponsored by the U.S. Department of Energy's (DOE) Office of FreedomCAR and Vehicle Technologies (OFCVT).

  15. Non-Light Duty Energy and Greenhouse Gas (GHG) Emissions Accounting...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Non-Light Duty Energy and Greenhouse Gas (GHG) Emissions Accounting Tool (NEAT) for Long Term Energy and GHG Impacts Evaluation: Domestic Freight Component Documentation and User's...

  16. High-Efficiency Clean Combustion in Light-Duty Multi-Cylinder...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Combustion and Emissions Performance of Dual-Fuel Gasoline and Diesel HECC on a Multi-Cylinder Light Duty Diesel Engine Addressing...

  17. Fuel Savings from Hybrid Electric Vehicles

    SciTech Connect (OSTI)

    Bennion, K.; Thornton, M.

    2009-03-01

    NREL's study shows that hybrid electric vehicles can significantly reduce oil imports for use in light-duty vehicles, particularly if drivers switch to smaller, more fuel-efficient vehicles overall.

  18. Vehicle purchase and use data matrices: J. D. Power/DOE New Vehicle Owner Surveys

    SciTech Connect (OSTI)

    Crawford, R.; Dulla, R.

    1981-04-01

    Vehicle purchase and use data collected in two recent surveys from buyers of new 1978 and 1979 cars and light-duty trucks are presented. The survey information is broad in scope, extending from the public awareness of fuel economy information to decision-making in the purchase process, to in-use fuel economy. The survey data consequently have many applications in transportation studies. The objective of this report is to make a general summary of the data base contents available to interested individuals and organizations.

  19. Vehicle Technologies Office Merit Review 2014: Advanced Combustion...

    Broader source: Energy.gov (indexed) [DOE]

    and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about advanced combustion concepts - enabling systems and solutions for high efficiency light duty...

  20. Vehicle Technologies Office Merit Review 2015: High Efficiency...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Evaluation Meeting about clean combustion in multi-cylinder light-duty engines. ace016curran2015o.pdf More Documents & Publications Vehicle Technologies Office Merit Review...

  1. Vehicle Technologies Office Merit Review 2014: High Efficiency...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    about high efficiency clean combustion in multi-cylinder light-duty engines. ace016curran2014o.pdf More Documents & Publications Vehicle Technologies Office Merit Review...

  2. Vehicle Technologies Office Merit Review 2015: Analyzing Real...

    Broader source: Energy.gov (indexed) [DOE]

    Office Annual Merit Review and Peer Evaluation Meeting about analyzing real-world light duty vehicle efficiency benefits. vss155gonder2015o.pdf More Documents &...

  3. Vehicle Technologies Office: AVTA- All-Electric Vehicle (Car) Performance Data

    Broader source: Energy.gov [DOE]

    The Advanced Vehicle Testing Activity (AVTA) uses standard procedures and test specifications to test and collect data from vehicles on dynamometers, closed test tracks, and on-the-road. Downloadable performance and testing data on the all-electric versions of the following vehicles is available: 2014 Smart Electric Drive Coupe, 2013 Ford Focus, 2013 Nissan Leaf, 2012 Mitsubishi i-MiEV, 2012 Nissan Leaf, 2011 Nissan Leaf, 2010 USPS eLLV Conversions, and 2009 BMW Mini-E.

  4. CityCarControl : an electric vehicle drive-by-wire solution for distributed steering, braking and throttle control

    E-Print Network [OSTI]

    Brown, Thomas B., M. Eng. Massachusetts Institute of Technology

    2010-01-01

    In this paper, we propose CityCarControl, a system to manage the steering, braking, and throttle of a new class of intra-city electric vehicles. These vehicles have a focus on extreme light-weight and a small parking ...

  5. FreedomCAR and vehicle technologies heavy vehicle program FY 2006. Benefits analysis : methodology and results - final report.

    SciTech Connect (OSTI)

    Singh, M.; Energy Systems; TA Engineering, Inc.

    2006-01-31

    This report describes the approach to estimating benefits and the analysis results for the Heavy Vehicle Technologies activities of the Freedom Car and Vehicle Technologies (FCVT) Program of EERE. The scope of the effort includes: (1) Characterizing baseline and advanced technology vehicles for Class 3-6 and Class 7 and 8 trucks, (2) Identification of technology goals associated with the DOE EERE programs, (3) Estimating the market potential of technologies that improve fuel efficiency and/or use alternative fuels, (4) Determining the petroleum and greenhouse gas emissions reductions associated with the advanced technologies. In FY 05 the Heavy Vehicles program activity expanded its technical involvement to more broadly address various sources of energy loss as compared to focusing more narrowly on engine efficiency and alternative fuels. This broadening of focus has continued in the activities planned for FY 06. These changes are the result of a planning effort that occurred during FY 04 and 05. (Ref. 1) This narrative describes characteristics of the heavy truck market as they relate to the analysis, a description of the analysis methodology (including a discussion of the models used to estimate market potential and benefits), and a presentation of the benefits estimated as a result of the adoption of the advanced technologies. These benefits estimates, along with market penetrations and other results, are then modeled as part of the EERE-wide integrated analysis to provide final benefit estimates reported in the FY06 Budget Request.

  6. Freedom car and vehicle technologies heavy vehicle program : FY 2007 benefits analysis, methodology and results -- final report.

    SciTech Connect (OSTI)

    SIngh, M.; Energy Systems; TA Engineering

    2008-02-29

    This report describes the approach to estimating the benefits and analysis results for the Heavy Vehicle Technologies activities of the FreedomCar and Vehicle Technologies (FCVT) Program of EERE. The scope of the effort includes: (1) Characterizing baseline and advanced technology vehicles for Class 3-6 and Class 7 and 8 trucks, (2) Identifying technology goals associated with the DOE EERE programs, (3) Estimating the market potential of technologies that improve fuel efficiency and/or use alternative fuels, (4) Determining the petroleum and greenhouse gas emissions reductions associated with the advanced technologies. In FY 05 the Heavy Vehicles program activity expanded its technical involvement to more broadly address various sources of energy loss as compared to focusing more narrowly on engine efficiency and alternative fuels. This broadening of focus has continued in subsequent activities. These changes are the result of a planning effort that occurred during FY 04 and 05. (Ref. 1) This narrative describes characteristics of the heavy truck market as they relate to the analysis, a description of the analysis methodology (including a discussion of the models used to estimate market potential and benefits), and a presentation of the benefits estimated as a result of the adoption of the advanced technologies. The market penetrations are used as part of the EERE-wide integrated analysis to provide final benefit estimates reported in the FY07 Budget Request. The energy savings models are utilized by the FCVT program for internal project management purposes.

  7. Mitsubishi iMiEV: An Electric Mini-Car in NREL's Advanced Technology Vehicle Fleet (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2011-10-01

    This fact sheet highlights the Mitsubishi iMiEV, an electric mini-car in the advanced technology vehicle fleet at the National Renewable Energy Laboratory (NREL). In support of the U.S. Department of Energy's fast-charging research efforts, NREL engineers are conducting charge and discharge performance testing on the vehicle. NREL's advanced technology vehicle fleet features promising technologies to increase efficiency and reduce emissions without sacrificing safety or comfort. The fleet serves as a technology showcase, helping visitors learn about innovative vehicles that are available today or are in development. Vehicles in the fleet are representative of current, advanced, prototype, and emerging technologies.

  8. Lean Gasoline System Development for Fuel Efficient Small Cars

    SciTech Connect (OSTI)

    2013-08-30

    The General Motors and DOE cooperative agreement program DE-EE0003379 is completed. The program has integrated and demonstrated a lean-stratified gasoline engine, a lean aftertreatment system, a 12V Stop/Start system and an Active Thermal Management system along with the necessary controls that significantly improves fuel efficiency for small cars. The fuel economy objective of an increase of 25% over a 2010 Chevrolet Malibu and the emission objective of EPA T2B2 compliance have been accomplished. A brief review of the program, summarized from the narrative is: The program accelerates development and synergistic integration of four cost competitive technologies to improve fuel economy of a light-duty vehicle by at least 25% while meeting Tier 2 Bin 2 emissions standards. These technologies can be broadly implemented across the U.S. light-duty vehicle product line between 2015 and 2025 and are compatible with future and renewable biofuels. The technologies in this program are: lean combustion, innovative passive selective catalyst reduction lean aftertreatment, 12V stop/start and active thermal management. The technologies will be calibrated in a 2010 Chevrolet Malibu mid-size sedan for final fuel economy demonstration.

  9. Light Duty Utility Arm System applications for tank waste remediation

    SciTech Connect (OSTI)

    Carteret, B.A.

    1994-10-01

    The Light Duty Utility Arm (LDUA) System is being developed by the US Department of Energy`s (DOE`s) Office of Technology Development (OTD, EM-50) to obtain information about the conditions and contents of the DOE`s underground storage tanks. Many of these tanks are deteriorating and contain hazardous, radioactive waste generated over the past 50 years as a result of defense materials production at a member of DOE sites. Stabilization and remediation of these waste tanks is a high priority for the DOE`s environmental restoration program. The LDUA System will provide the capability to obtain vital data needed to develop safe and cost-effective tank remediation plans, to respond to ongoing questions about tank integrity and leakage, and to quickly investigate tank events that raise safety concerns. In-tank demonstrations of the LDUA System are planned for three DOE sites in 1996 and 1997: Hanford, Idaho National Engineering Laboratory (INEL), and Oak Ridge National Laboratory (ORNL). This paper provides a general description of the system design and discusses a number of planned applications of this technology to support the DOE`s environmental restoration program, as well as potential applications in other areas. Supporting papers by other authors provide additional in-depth technical information on specific areas of the system design.

  10. Overview of Vehicle Test and Analysis Results from NREL's A/C Fuel Use Reduction Research

    SciTech Connect (OSTI)

    Bharathan, D.; Chaney, L.; Farrington, R. B.; Lustbader, J.; Keyser, M.; Rugh, J. P.

    2007-06-01

    This paper summarizes results of air-conditioning fuel use reduction technologies and techniques for light-duty vehicles evaluated over the last 10 years.

  11. Assessment of the Greenhouse Gas Emission Reduction Potential of Ultra-Clean Hybrid-Electric Vehicles

    E-Print Network [OSTI]

    Burke, A.F.; Miller, M.

    1997-01-01

    are for total full fuel cycle emissions. References l.Light Duty Vehicle Full Fuel Cycle Emissions Analysis,AND FUEL ECONOMY FULL FUEL CYCLE EMISSIONS REGULATORY

  12. Light Duty Diesels in North America A Huge Opportunity | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Detroit, Michigan. Sponsored by the U.S. DOE's EERE FreedomCar and Fuel Partnership and 21st Century Truck Programs. 2006deerschmidt.pdf More Documents & Publications Diesel...

  13. Light-Duty Diesel EngineTechnology to Meet Future Emissions and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    to Meet Future Emissions and Performance Requirements of the U.S. Market Light-Duty Diesel EngineTechnology to Meet Future Emissions and Performance Requirements of the U.S....

  14. Impact of Fuel Properties on Light-Duty Engine Performance and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    effects of seven fuels with significantly different fuel properties on a state-of-the-art light-duty diesel engine. Cetane numbers range between 26 and 76 for the investigated...

  15. Biodiesel Effects on the Operation of U.S. Light-Duty Tier 2...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    the Operation of U.S. Light-Duty Tier 2 Engine and Aftertreatment Systems Results of the NOx adsorber system with catalyst aged to useful life conditions (simulated 120k miles),...

  16. High Efficiency Clean Combustion in Multi-Cylinder Light-Duty...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    D.C. ace17wagner.pdf More Documents & Publications High-Efficiency Clean Combustion in Light-Duty Multi-Cylinder Diesel Engines High Efficiency Clean Combustion in...

  17. Fuel Effects on Low Temperature Combustion in a Light-Duty Diesel Engine

    Broader source: Energy.gov [DOE]

    Six different fuels were investigated to study the influence of fuel properties on engine out emissions and performance of low temperature premixed compression ignition combustion light-duty HSDI engines

  18. Safety equipment list for the light duty utility arm system

    SciTech Connect (OSTI)

    Barnes, G.A.

    1998-03-02

    The initial issue (Revision 0) of this Safety Equipment List (SEL) for the Light Duty Utility Arm (LDUA) requires an explanation for both its existence and its being what it is. All LDUA documentation leading up to creation of this SEL, and the SEL itself, is predicated on the LDUA only being approved for use in waste tanks designated as Facility Group 3, i.e., it is not approved for use in Facility Group 1 or 2 waste tanks. Facility Group 3 tanks are those in which a spontaneous or induced hydrogen gas release would be small, localized, and would not exceed 25% of the LFL when mixed with the remaining air volume in the dome space; exceeding these parameters is considered unlikely. Thus, from a NFPA flammable gas environment perspective the waste tank interior is not classified as a hazardous location. Furthermore, a hazards identification and evaluation (HNF-SD-WM-HIE-010, REV 0) performed for the LDUA system concluded that the consequences of actual LDUA system postulated accidents in Flammable Gas Facility Group 3 waste tanks would have either NO IMPACT or LOW IMPACT on the offsite public and onsite worker. Therefore, from a flammable gas perspective, there is not a rationale for classifying any of SSCs associated with the LDUA as either Safety Class (SC) or Safety Significant (SS) SSCs, which, by default, categorizes them as General Service (GS) SSCs. It follows then, based on current PHMC procedures (HNF-PRO-704 and HNF-IP-0842, Vol IV, Section 5.2) for SEL creation and content, and from a flammable gas perspective, that an SEL is NOT REQ@D HOWEVER!!! There is both a precedent and a prudency to capture all SSCS, which although GS, contribute to a Defense-In-Depth (DID) approach to the design and use of equipment in potentially flammable gas environments. This Revision 0 of the LDUA SEL has been created to capture these SSCs and they are designated as GS-DID in this document. The specific reasons for doing this are listed.

  19. DOE FreedomCAR and Vehicle Technologies Program Advanced Power Electronics and Electrical Machines Annual Review Report

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative FuelsofProgram:Y-12Power,5Energyof|Department09FreedomCAR and VehicleFreedomCAR

  20. Biodiesel Effects on the Operation of U.S. Light Duty Tier 2 Engine and Aftertreatment Systems

    Broader source: Energy.gov [DOE]

    Presentation given at 2007 Diesel Engine-Efficiency & Emissions Research Conference (DEER 2007). 13-16 August, 2007, Detroit, Michigan. Sponsored by the U.S. Department of Energy's (DOE) Office of FreedomCAR and Vehicle Technologies (OFCVT).

  1. New Vehicle Fuel Economy Standards Will Continue to Inspire Innovation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    sets aggressive new fuel-economy standards for cars and light-duty trucks. A number of Energy Department projects and investments are unleashing innovation that will create jobs...

  2. Fact #847: November 17, 2014 Cars were Over 50% of Light Vehicle...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    SUV, Van, and Pickup) from 1975 to 2014. Note: Car SUVs are those SUVs that must meet the car greenhouse gas emissions and corporate average fuel economy (CAFE) standards that were...

  3. A Fuel-Based Approach to Estimating Motor Vehicle Exhaust Emissions

    E-Print Network [OSTI]

    Craig, Brett

    1998-01-01

    study with other on-road vehicle emission data. J. Air Wasteon California light-duty vehicle emissions. Environ. Sci.Sixth CRC 0n-Road Vehicle Emissions Workshop, San Diego, CA,

  4. Life cycle air quality impacts of conventional and alternative light-duty transportation in the United States

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Tessum, Christopher W.; Hill, Jason D.; Marshall, Julian D.

    2014-12-30

    Commonly considered strategies for reducing the environmental impact of light-duty transportation include using alternative fuels and improving vehicle fuel economy. We evaluate the air quality-related human health impacts of 10 such options, including the use of liquid biofuels, diesel, and compressed natural gas (CNG) in internal combustion engines; the use of electricity from a range of conventional and renewable sources to power electric vehicles (EVs); and the use of hybrid EV technology. Our approach combines spatially, temporally, and chemically detailed life cycle emission inventories; comprehensive, fine-scale state-of-the-science chemical transport modeling; and exposure, concentration–response, and economic health impact modeling for ozonemore »(O3) and fine particulate matter (PM2.5). We find that powering vehicles with corn ethanol or with coal-based or “grid average” electricity increases monetized environmental health impacts by 80% or more relative to using conventional gasoline. Conversely, EVs powered by low-emitting electricity from natural gas, wind, water, or solar power reduce environmental health impacts by 50% or more. Consideration of potential climate change impacts alongside the human health outcomes described here further reinforces the environmental preferability of EVs powered by low-emitting electricity relative to gasoline vehicles.« less

  5. Life cycle air quality impacts of conventional and alternative light-duty transportation in the United States

    SciTech Connect (OSTI)

    Tessum, Christopher W.; Hill, Jason D.; Marshall, Julian D.

    2014-12-30

    Commonly considered strategies for reducing the environmental impact of light-duty transportation include using alternative fuels and improving vehicle fuel economy. We evaluate the air quality-related human health impacts of 10 such options, including the use of liquid biofuels, diesel, and compressed natural gas (CNG) in internal combustion engines; the use of electricity from a range of conventional and renewable sources to power electric vehicles (EVs); and the use of hybrid EV technology. Our approach combines spatially, temporally, and chemically detailed life cycle emission inventories; comprehensive, fine-scale state-of-the-science chemical transport modeling; and exposure, concentration–response, and economic health impact modeling for ozone (O3) and fine particulate matter (PM2.5). We find that powering vehicles with corn ethanol or with coal-based or “grid average” electricity increases monetized environmental health impacts by 80% or more relative to using conventional gasoline. Conversely, EVs powered by low-emitting electricity from natural gas, wind, water, or solar power reduce environmental health impacts by 50% or more. Consideration of potential climate change impacts alongside the human health outcomes described here further reinforces the environmental preferability of EVs powered by low-emitting electricity relative to gasoline vehicles.

  6. Diesel Passenger Car Technology for Low Emissions and CO2 Compliance...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    for the US Market Laboratory and Vehicle Demonstration of a "2nd-Generation" LNT+in-situ SCR Diesel NOx Emission Control Concept Light-Duty Diesel Market Potential in North America...

  7. Fuel economy regulations and efficiency technology improvements in U.S. cars since 1975

    E-Print Network [OSTI]

    MacKenzie, Donald Warren

    2013-01-01

    Light-duty vehicles account for 43% of petroleum consumption and 23% of green- house gas emissions in the United States. Corporate Average Fuel Economy (CAFE) standards are the primary policy tool addressing petroleum ...

  8. Impacts of CO2 Mandates for New Cars in the European Union

    E-Print Network [OSTI]

    Paltsev, S.

    CO2 emissions mandates for new light-duty passenger vehicles have recently been adopted in the European Union (EU), which require steady reductions to 95 g CO2/km in 2021. Using a computable general equilibrium (CGE) model, ...

  9. Life cycle air quality impacts of conventional and alternative light-duty transportation in the

    E-Print Network [OSTI]

    Mlllet, Dylan B.

    Life cycle air quality impacts of conventional and alternative light-duty transportation biofuels, diesel, and compressed natural gas (CNG) in internal combustion engines; the use of electricity of hybrid EV technology. Our approach combines spatially, temporally, and chemically detailed life cycle

  10. Development of a Waste Heat Recovery System for Light Duty Diesel Engines

    Broader source: Energy.gov [DOE]

    Substantial increases in engine efficiency of a light-duty diesel engine, which require utilization of the waste energy found in the coolant, EGR, and exhaust streams, may be increased through the development of a Rankine cycle waste heat recovery system

  11. Simulating Study of Premixed Charge Compression Ignition on Light-Duty Diesel Fuel Economy and Emissions Control

    SciTech Connect (OSTI)

    Gao, Zhiming [ORNL] [ORNL; Daw, C Stuart [ORNL] [ORNL; Wagner, Robert M [ORNL] [ORNL

    2012-01-01

    We utilize the Powertrain Systems Analysis Toolkit (PSAT) combined with transient engine and aftertreatment component models to simulate the impact of premixed charge compression ignition (PCCI) on the fuel economy and emissions of light-duty (LD) diesel-powered conventional and hybrid electric vehicles (HEVs). Our simulated aftertreatment train consists of a diesel oxidation catalyst (DOC), lean NOx trap (LNT), and catalyzed diesel particulate filter (DPF). The results indicate that utilizing PCCI combustion significantly reduces fuel consumption and tailpipe emissions for the conventional diesel-powered vehicle with NOx and particulate emissions controls. These benefits result from a favorable engine speed-load distribution over the cycle combined with a corresponding reduction in the need to regenerate the LNT and DPF. However, the current PCCI technology appears to offer less potential benefit for diesel HEVs equipped with similar emissions controls. This is because PCCI can only be activated over a relatively small part of the drive cycle. Thus we conclude that future utilization of PCCI in diesel HEVs will require significant extension of the available speed-load range for PCCI and revision of current HEV engine management strategies before significant benefits can be realized.

  12. Future vehicle types and characteristics : reducing fuel consumption through shifts in vehicle segments and operating characteristics

    E-Print Network [OSTI]

    Perlman, David (David Lee)

    2015-01-01

    Light duty vehicles represent a notable target of regulation in the United States due to their environmental, safety, and economic externalities. Fuel economy regulation represents one of the more prominent attempts to ...

  13. Toyota Prius Plug-In HEV: A Plug-In Hybrid Electric Car in NREL's Advanced Technology Vehicle Fleet (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2011-10-01

    This fact sheet highlights the Toyota Prius plug-in HEV, a plug-in hybrid electric car in the advanced technology vehicle fleet at the National Renewable Energy Laboratory (NREL). In partnership with the University of Colorado, NREL uses the vehicle for grid-integration studies and for testing new hardware and charge-management algorithms. NREL's advanced technology vehicle fleet features promising technologies to increase efficiency and reduce emissions without sacrificing safety or comfort. The fleet serves as a technology showcase, helping visitors learn about innovative vehicles that are available today or are in development. Vehicles in the fleet are representative of current, advanced, prototype, and emerging technologies.

  14. Fact #693: September 19, 2011 Average Vehicle Footprint for Cars and Light Trucks

    Broader source: Energy.gov [DOE]

    A vehicle footprint is the area defined by the four points where the tires touch the ground. It is calculated as the product of the wheelbase and the average track width of the vehicle. The...

  15. Apps for Vehicles: What is the OBD port in my car and what information...

    Open Energy Info (EERE)

    The port is connected to the CAN bus within the vehicle that serves as the signal super highway connecting all of the sensors with the vehicles' on board computer. The CAN...

  16. Alternative fuel vehicles: The emerging emissions picture. Interim results, Summer 1996

    SciTech Connect (OSTI)

    1996-10-01

    In this pamphlet, program goal, description, vehicles/fuels tested, and selected emissions results are given for light-duty and heavy-duty vehicles. Other NREL R&D programs and publications are mentioned briefly.

  17. S/EV 91: Solar and electric vehicle symposium, car and trade show. Proceedings

    SciTech Connect (OSTI)

    Not Available

    1991-12-31

    These proceedings cover the fundamentals of electric vehicles. Papers on the design, testing and performance of the power supplies, drive trains, and bodies of solar and non-solar powered electric vehicles are presented. Results from demonstrations and races are described. Public policy on the economics and environmental impacts of using electric powered vehicles is also presented.

  18. Automotive is the domain of `self propelled, motorised vehicles'. Hence, although the car is dominant, the

    E-Print Network [OSTI]

    of the automotive industry and automotive industry standards. Programme This minor consists out of an introduction context, it widens even further. The automotive industry is one of the most complex ones, in terms Automotive Design "I believe, the most significant thing happening in the global car design industry

  19. Household Vehicles Energy Use: Latest Data and Trends

    Reports and Publications (EIA)

    2005-01-01

    This report provides newly available national and regional data and analyzes the nation's energy use by light-duty vehicles. This release represents the analytical component of the report, with a data component having been released in early 2005.

  20. CarFab AutoLab 2.0 Distributed Vehicle Development and Fabrication

    E-Print Network [OSTI]

    -Power, Solar, Fuel-Cell new transportation PARADIGM #12;CAD Design Easily exchanged open source design between · Form shell (fiber weave, epoxy) #12;Propulsion : Modular Design · Human Powered Base · Solar-Director, MIT Vehicle Design Summit #12;#12;MIT Vehicle Design Summit · June 13th-August 13th · 21 Teams, 13

  1. Interpersonal Influence within Car Buyers’ Social Networks: Five Perspectives on Plug-in Hybrid Electric Vehicle Demonstration Participants

    E-Print Network [OSTI]

    Axsen, Jonn; Kurani, Kenneth S.

    2009-01-01

    my money in my beliefs…and buy a hybrid car to help promotethe production of further hybrid cars…that year they wereCar Buyers’ Social Networks: Five Perspectives on Plug-in Hybrid

  2. The Household Market for Electric Vehicles: Testing the Hybrid Household Hypothesis--A Reflively Designed Survey of New-car-buying, Multi-vehicle California Households

    E-Print Network [OSTI]

    Turrentine, Thomas; Kurani, Kenneth

    1995-01-01

    HOW MANY HYBRID HOUSEHOLDS IN THE CALIFORNIA NEW CAR MARKET?average 2.43 cars per household, then the hybrid householdnumber of multi-car households that fit our hybrid household

  3. City-Car : optimizing vehicle and urban efficiencies through a shared adaptive platform

    E-Print Network [OSTI]

    Lark, William, 1981-

    2005-01-01

    Research focused on developing an innovative, yet simple automobile platform that maximizes its efficiency through shared convenience. Work was initially put into studying both current vehicles and urban architecture, in ...

  4. An analysis of hybrid-electric vehicles as the car of the future

    E-Print Network [OSTI]

    Kang, Heejay

    2007-01-01

    This thesis will examine the validity of the benefits of the Hybrid-Electric Vehicle (HEV). With the recent focus on energy initiatives, reflected through Bush's state of the union, as well as President Hockfield's MIT ...

  5. Selection of Light Duty Truck Engine Air Systems Using Virtual Lab Tests

    SciTech Connect (OSTI)

    Zhang, Houshun

    2000-08-20

    An integrated development approach using seasoned engine technology methodologies, virtual lab parametric investigations, and selected hardware verification tests reflects today's state-of-the-art R&D trends. This presentation will outline such a strategy. The use of this ''Wired'' approach results in substantial reduction in the development cycle time and hardware iterations. An example showing the virtual lab application for a viable design of the air-exhaust-turbocharger system of a light duty truck engine for personal transportation will be presented.

  6. Clean Cities 2011 Vehicle Buyer's Guide

    SciTech Connect (OSTI)

    Not Available

    2011-01-01

    The 2011 Clean Cities Light-Duty Vehicle Buyer's Guide is a consumer publication that provides a comprehensive list of commercially available alternative fuel and advanced vehicles in model year 2011. The guide allows for side-by-side comparisons of fuel economy, price, emissions, and vehicle specifications.

  7. Clean Cities 2014 Vehicle Buyer's Guide (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2013-12-01

    This annual guide features a comprehensive list of 2014 light-duty alternative fuel and advanced vehicles, grouped by fuel and technology. The guide provides model-specific information on vehicle specifications, manufacturer suggested retail price, fuel economy, energy impact, and emissions. The information can be used to identify options, compare vehicles, and help inform purchase decisions.

  8. Impact of Canada's Voluntary Agreement on Greenhouse Gas Emissions from Light Duty Vehicles

    E-Print Network [OSTI]

    Lutsey, Nicholas P.

    2006-01-01

    The increased use of ethanol in motor gasoline has thefuels, and mixing ethanol into motor gasoline to up to 15%United States) Motor fuel with 10% ethanol and 90%

  9. Impact of Canada’s Voluntary Agreement on Greenhouse Gas Emissions from Light Duty Vehicles

    E-Print Network [OSTI]

    Lutsey, Nicholas P.

    2006-01-01

    The increased use of ethanol in motor gasoline has thefuels, and mixing ethanol into motor gasoline to up to 15%United States) Motor fuel with 10% ethanol and 90%

  10. Advanced Combustion Concepts- Enabling Systems and Solutions (ACCESS) for High Efficiency Light Duty Vehicles

    Broader source: Energy.gov [DOE]

    Discusses development highly capable and flexible advanced control concepts and enabling system to manage multi-mode/multi-fuel combustion events and achieve an up to 30 percent fuel economy improvement

  11. Impacts of Oxygenated Gasoline Use on California Light-Duty Vehicle Emissions

    E-Print Network [OSTI]

    Kirchstetter, Thomas W.; Singer, Brett C.; Harley, Robert A.

    1996-01-01

    Addition of oxTgenates gasoline will not reduce ozone to (3)I. Y. remote sensing 1994 gasoline samples ranged from 0.7weight reported for liquid gasoline with an RVP Assoc. 1990,

  12. Impact of Canada’s Voluntary Agreement on Greenhouse Gas Emissions from Light Duty Vehicles

    E-Print Network [OSTI]

    Lutsey, Nicholas P.

    2006-01-01

    of the Effects of Air Conditioning Operation and AssociatedSystem for Mobile Air Conditioning. ” Society of Automotiveof R-134a Automotive Air Conditioning System. ” Society of

  13. Impact of Canada's Voluntary Agreement on Greenhouse Gas Emissions from Light Duty Vehicles

    E-Print Network [OSTI]

    Lutsey, Nicholas P.

    2006-01-01

    of the Effects of Air Conditioning Operation and AssociatedSystem for Mobile Air Conditioning. ” Society of Automotiveof R-134a Automotive Air Conditioning System. ” Society of

  14. Impact of Canada’s Voluntary Agreement on Greenhouse Gas Emissions from Light Duty Vehicles

    E-Print Network [OSTI]

    Lutsey, Nicholas P.

    2006-01-01

    and the Canadian Automotive Industry Respecting AutomobileAgreements with the Automotive Industry. ” http://www.nrcan-Government and the automotive industry trade associations.

  15. Impact of Canada's Voluntary Agreement on Greenhouse Gas Emissions from Light Duty Vehicles

    E-Print Network [OSTI]

    Lutsey, Nicholas P.

    2006-01-01

    and the Canadian Automotive Industry Respecting AutomobileAgreements with the Automotive Industry. ” http://www.nrcan-Government and the automotive industry trade associations.

  16. Emissions from the European Light Duty Diesel Vehicle During DPF Regeneration Events

    Broader source: Energy.gov [DOE]

    Repeated partial regenerations may cause changes in the mechanical and chemical properties of the PM in the DPF.

  17. Trends in Exhaust Emissions from In-Use California Light-Duty Vehicles, 1994-2001

    E-Print Network [OSTI]

    Kean, Andrew J.; Sawyer, Robert F.; Harley, Robert A.; Kendall, Gary R.

    2002-01-01

    and distillation properties. RESULTS AND DISCUSSION GASOLINEand gasoline reformulation (i.e. , modified distillation

  18. Evaluation of aftermarket LPG conversion kits in light-duty vehicle applications. Final report

    SciTech Connect (OSTI)

    Bass, E.A.

    1993-06-01

    SwRI was contracted by NREL to evaluate three LPG conversion kits on a Chevrolet Lumina. The objective of the project was to measure the Federal Test Procedure (FTP) emissions and fuel economy of these kits, and compare their performance to gasoline-fueled operation and to each other. Varying LPG fuel blends allowed a preliminary look at the potential for fuel system disturbance. The project required kit installation and adjustment according to manufacturer`s instructions. A limited amount of trouble diagnosis was also performed on the fuel systems. A simultaneous contract from the Texas Railroad Commission, in cooperation with NREL, provided funds for additional testing with market fuels (HD5 propane and industry average gasoline) and hydrocarbon (HC) emissions speciation to determine the ozone-forming potential of LPG HC emissions. This report documents the procurement, installation, and testing of these LPG conversion kits.

  19. Hydrogen Storage Options: Technologies and Comparisons for Light-Duty Vehicle Applications

    E-Print Network [OSTI]

    Burke, Andrew; Gardnier, Monterey

    2005-01-01

    Stetson, N. , Solid Hydrogen Storage Systems for PortableA Review of On-Board Hydrogen Storage Alternatives for FuelA. , Materials for Hydrogen Storage, Materials Today,

  20. Hydrogen Storage Options: Technologies and Comparisons for Light-Duty Vehicle Applications

    E-Print Network [OSTI]

    Burke, Andy; Gardiner, Monterey

    2005-01-01

    Uhlemann, M. , etals. , Hydrogen Storage in Different CarbonEckert, J. , etals. , Hydrogen Storage in Microporous Metal-16, 2003 40. Smalley,E. , Hydrogen Storage Eased, Technology

  1. Assessing the fuel Use and greenhouse gas emissions of future light-duty vehicles in Japan

    E-Print Network [OSTI]

    Nishimura, Eriko

    2011-01-01

    Reducing greenhouse gas (GHG) emissions is of great concern in Japan, as well as elsewhere, such as in the U.S. and EU. More than 20% of GHG emissions in Japan come from the transportation sector, and a more than 70% ...

  2. Progress on DOE Vehicle Technologies Light-Duty Diesel Engine Efficiency and Emissions Milestones

    Broader source: Energy.gov [DOE]

    The path to 45 percent peak BTE in FY 2010 includes modern base engine plus enabling technologies demonstrated in FY 2008 plus the recovery of thermal energy from the exhaust and EGR systems

  3. Non-Cost Barriers to Consumer Adoption of New Light-Duty Vehicle Technologies

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass map shinesSolarNew scholarshipThreeFebruary 2015NikkiBig Eddy Nominations Open

  4. Retail Infrastructure Costs Comparison for Hydrogen and Electricity for Light-Duty Vehicles: Preprint

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMassR&D100Nationalquestionnaires 0serial codes onInitiatives » Nuclear

  5. Light Duty Plug-in Hybrid Vehicle Systems Analysis | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCED MANUFACTURING OFFICE INDUSTRIALU.S.Leadership on Clean Energys oElectrical EnergyDOE

  6. Light-Duty Lean GDI Vehicle Technology Benchmark | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCED MANUFACTURING OFFICE INDUSTRIALU.S.Leadership on Clean EnergysR&D RoadmapPart of a

  7. DOE Targets for Onboard Hydrogen Storage Systems for Light-Duty Vehicles |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum Based| Department8, 2015 GATEWAY Takes onandField | SystemsTaps Universities

  8. Target Explanation Document: Onboard Hydrogen Storage for Light-Duty Fuel Cell Vehicles

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCED MANUFACTURINGEnergyPlan | DepartmentXIII--SMART GRID SEC.QuadrennialTank FarmsGas

  9. Thermoelectric HVAC and Thermal Comfort Enablers for Light-Duty Vehicle

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCEDInstallers/ContractorsPhotovoltaicsState ofSavings for Specific MeasuresDepartment ofApplications

  10. DOE Hydrogen Storage Technical Performance Targets for Light-Duty Vehicles

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels DataEnergy Webinar:IAbout Us »Buildings DOEDOE F 1340.3and| Department of

  11. U.S. Department of Energy FreedomCAR and Vehicle Technologies Program Advanced Vehicle Testing Activity Federal Fleet Use of Electric Vehicles

    SciTech Connect (OSTI)

    Mindy Kirpatrick; J. E. Francfort

    2003-11-01

    Per Executive Order 13031, “Federal Alternative Fueled Vehicle Leadership,” the U.S. Department of Energy’s (DOE’s) Advanced Vehicle Testing Activity provided $998,300 in incremental funding to support the deployment of 220 electric vehicles in 36 Federal fleets. The 145 electric Ford Ranger pickups and 75 electric Chrysler EPIC (Electric Powered Interurban Commuter) minivans were operated in 14 states and the District of Columbia. The 220 vehicles were driven an estimated average of 700,000 miles annually. The annual estimated use of the 220 electric vehicles contributed to 39,000 fewer gallons of petroleum being used by Federal fleets and the reduction in emissions of 1,450 pounds of smog-forming pollution. Numerous attempts were made to obtain information from all 36 fleets. Information responses were received from 25 fleets (69% response rate), as some Federal fleet personnel that were originally involved with the Incremental Funding Project were transferred, retired, or simply could not be found. In addition, many of the Department of Defense fleets indicated that they were supporting operations in Iraq and unable to provide information for the foreseeable future. It should be noted that the opinions of the 25 fleets is based on operating 179 of the 220 electric vehicles (81% response rate). The data from the 25 fleets is summarized in this report. Twenty-two of the 25 fleets reported numerous problems with the vehicles, including mechanical, traction battery, and charging problems. Some of these problems, however, may have resulted from attempting to operate the vehicles beyond their capabilities. The majority of fleets reported that most of the vehicles were driven by numerous drivers each week, with most vehicles used for numerous trips per day. The vehicles were driven on average from 4 to 50 miles per day on a single charge. However, the majority of the fleets reported needing gasoline vehicles for missions beyond the capabilities of the electric vehicles, usually because of range limitations. Twelve fleets reported experiencing at least one charge depletion while driving, whereas nine fleets reported not having this problem. Twenty-four of the 25 fleets responded that the electric vehicles were easy to use and 22 fleets indicated that the payload was adequate. Thirteen fleets reported charging problems; eleven fleets reported no charging problems. Nine fleets reported the vehicles broke down while driving; 14 fleets reported no onroad breakdowns. Some of the breakdowns while driving, however, appear to include normal flat tires and idiot lights coming on. In spite of operation and charging problems, 59% of the fleets responded that they were satisfied, very satisfied, or extremely satisfied with the performance of the electric vehicles. As of September 2003, 74 of the electric vehicles were still being used and 107 had been returned to the manufacturers because the leases had concluded.

  12. Piston Bowl Optimization for RCCI Combustion in a Light-Duty Multi-Cylinder Engine

    SciTech Connect (OSTI)

    Hanson, Reed M; Curran, Scott; Wagner, Robert M; Reitz, Rolf; Kokjohn, Sage

    2012-01-01

    Reactivity Controlled Compression Ignition (RCCI) is an engine combustion strategy that that produces low NO{sub x} and PM emissions with high thermal efficiency. Previous RCCI research has been investigated in single-cylinder heavy-duty engines. The current study investigates RCCI operation in a light-duty multi-cylinder engine at 3 operating points. These operating points were chosen to cover a range of conditions seen in the US EPA light-duty FTP test. The operating points were chosen by the Ad Hoc working group to simulate operation in the FTP test. The fueling strategy for the engine experiments consisted of in-cylinder fuel blending using port fuel-injection (PFI) of gasoline and early-cycle, direct-injection (DI) of diesel fuel. At these 3 points, the stock engine configuration is compared to operation with both the original equipment manufacturer (OEM) and custom machined pistons designed for RCCI operation. The pistons were designed with assistance from the KIVA 3V computational fluid dynamics (CFD) code. By using a genetic algorithm optimization, in conjunction with KIVA, the piston bowl profile was optimized for dedicated RCCI operation to reduce unburned fuel emissions and piston bowl surface area. By reducing these parameters, the thermal efficiency of the engine was improved while maintaining low NOx and PM emissions. Results show that with the new piston bowl profile and an optimized injection schedule, RCCI brake thermal efficiency was increased from 37%, with the stock EURO IV configuration, to 40% at the 2,600 rev/min, 6.9 bar BMEP condition, and NOx and PM emissions targets were met without the need for exhaust after-treatment.

  13. Sizes, graphitic structures and fractal geometry of light-duty diesel engine particulates.

    SciTech Connect (OSTI)

    Lee, K. O.; Zhu, J.; Ciatti, S.; Choi, M. Y.; Energy Systems; Drexel Univ.

    2003-01-01

    The particulate matter of a light-duty diesel engine was characterized in its morphology, sizes, internal microstructures, and fractal geometry. A thermophoretic sampling system was employed to collect particulates directly from the exhaust manifold of a 1.7-liter turbocharged common-rail direct-injection diesel engine. The particulate samples collected at various engine-operating conditions were then analyzed by using a high-resolution transmission electron microscope (TEM) and an image processing/data acquisition system. Results showed that mean primary particle diameters (dp), and radii of gyration (Rg), ranged from 19.4 nm to 32.5 nm and 77.4 nm to 134.1 nm, respectively, through the entire engine-operating conditions of 675 rpm (idling) to 4000 rpm and 0% to 100% loads. It was also revealed that the other important parameters sensitive to the particulate formation, such as exhaust-gas recirculation (EGR) rate, equivalence ratio, and temperature, affected particle sizes significantly. Bigger primary particles were measured at higher EGR rates, higher equivalence ratios (fuel-rich), and lower exhaust temperatures. Fractal dimensions (D{sup f}) were measured at a range of 1.5 - 1.7, which are smaller than those measured for heavy-duty direct-injection diesel engine particulates in our previous study. This finding implies that the light-duty diesel engine used in this study produces more stretched chain-like shape particles, while the heavy-duty diesel engine emits more spherical particles. The microstructures of diesel particulates were observed at high TEM magnifications and further analyzed by a Raman spectroscope. Raman spectra revealed an atomic structure of the particulates produced at high engine loads, which is similar to that of typical graphite.

  14. Vehicle Systems Integration Laboratory Accelerates Powertrain Development

    ScienceCinema (OSTI)

    None

    2014-06-25

    ORNL's Vehicle Systems Integration (VSI) Laboratory accelerates the pace of powertrain development by performing prototype research and characterization of advanced systems and hardware components. The VSI Lab is capable of accommodating a range of platforms from advanced light-duty vehicles to hybridized Class 8 powertrains with the goals of improving overall system efficiency and reducing emissions.

  15. Vehicle Systems Integration Laboratory Accelerates Powertrain Development

    SciTech Connect (OSTI)

    None

    2014-04-15

    ORNL's Vehicle Systems Integration (VSI) Laboratory accelerates the pace of powertrain development by performing prototype research and characterization of advanced systems and hardware components. The VSI Lab is capable of accommodating a range of platforms from advanced light-duty vehicles to hybridized Class 8 powertrains with the goals of improving overall system efficiency and reducing emissions.

  16. The Economic, Energy, and GHG Emissions Impacts of Proposed 2017–2025 Vehicle Fuel Economy Standards in the United States

    E-Print Network [OSTI]

    Karplus, Valerie

    2012-07-31

    Increases in the U.S. Corporate Average Fuel Economy (CAFE) Standards for 2017 to 2025 model year light-duty vehicles are currently under consideration. This analysis uses an economy-wide model with detail in the passenger ...

  17. Simulating the Impact of Premixed Charge Compression Ignition on Light-Duty Diesel Fuel Economy and Emissions of Particulates and NOx

    SciTech Connect (OSTI)

    Gao, Zhiming [ORNL; Daw, C Stuart [ORNL; Wagner, Robert M [ORNL; Edwards, Kevin Dean [ORNL; Smith, David E [ORNL

    2013-01-01

    We utilize the Powertrain Systems Analysis Toolkit (PSAT) combined with transient engine and aftertreatment component models implemented in Matlab/Simulink to simulate the effect of premixed charge compression ignition (PCCI) on the fuel economy and emissions of light-duty diesel-powered conventional and hybrid electric vehicles (HEVs). Our simulated engine is capable of both conventional diesel combustion (CDC) and premixed charge compression ignition (PCCI) over real transient driving cycles. Our simulated aftertreatment train consists of a diesel oxidation catalyst (DOC), lean NOx trap (LNT), and catalyzed diesel particulate filter (DPF). The results demonstrate that, in the simulated conventional vehicle, PCCI can significantly reduce fuel consumption and emissions by reducing the need for LNT and DPF regeneration. However, the opportunity for PCCI operation in the simulated HEV is limited because the engine typically experiences higher loads and multiple stop-start transients that are outside the allowable PCCI operating range. Thus developing ways of extending the PCCI operating range combined with improved control strategies for engine and emissions control management will be especially important for realizing the potential benefits of PCCI in HEVs.

  18. Cars on a diet : the material and energy impacts of passenger vehicle weight reduction in the U.S.

    E-Print Network [OSTI]

    Cheah, Lynette W. (Lynette Wan Ting)

    2010-01-01

    Vehicle weight reduction is a known strategy to address growing concerns about greenhouse gas emissions and fuel use by passenger vehicles. We find that every 10% reduction in vehicle weight can cut fuel consumption by ...

  19. The Household Market for Electric Vehicles: Testing the Hybrid Household Hypothesis--A Reflively Designed Survey of New-car-buying, Multi-vehicle California Households

    E-Print Network [OSTI]

    Turrentine, Thomas; Kurani, Kenneth

    1995-01-01

    a sidebar to a longer article on electric vehicles. ) Cogan,R. Electric vehicles: Powerplay on the auto circuit. MotorA Critical Review of Electric Vehicle Market Studies",

  20. The Household Market for Electric Vehicles: Testing the Hybrid Household Hypothesis -- A Reflexively Designed Survey of New-Car-Buying Multi-Vehicle California Households

    E-Print Network [OSTI]

    Turrentine, Thomas; Kurani, Kenneth S.

    2001-01-01

    and the demand electric vehicles", Transportation ResearchA,Critical Review Electric Vehicle MarketStudies", ReleasableR. (1993) Report of the Electric Vehicle at-HomeRefi~ehng

  1. Scenario analysis of hybrid class 3-7 heavy vehicles.

    SciTech Connect (OSTI)

    An, F.; Stodolsky, F.; Vyas, A.; Cuenca, R.; Eberhardt, J. J.

    1999-12-23

    The effects of hybridization on heavy-duty vehicles are not well understood. Heavy vehicles represent a broader range of applications than light-duty vehicles, resulting in a wide variety of chassis and engine combinations, as well as diverse driving conditions. Thus, the strategies, incremental costs, and energy/emission benefits associated with hybridizing heavy vehicles could differ significantly from those for passenger cars. Using a modal energy and emissions model, they quantify the potential energy savings of hybridizing commercial Class 3-7 heavy vehicles, analyze hybrid configuration scenarios, and estimate the associated investment cost and payback time. From the analysis, they conclude that (1) hybridization can significantly reduce energy consumption of Class 3-7 heavy vehicles under urban driving conditions; (2) the grid-independent, conventional vehicle (CV)-like hybrid is more cost-effective than the grid-dependent, electric vehicle (EV)-like hybrid, and the parallel configuration is more cost-effective than the series configuration; (3) for CV-like hybridization, the on-board engine can be significantly downsized, with a gasoline or diesel engine used for SUVs perhaps being a good candidate for an on-board engine; (4) over the long term, the incremental cost of a CV-like, parallel-configured Class 3-4 hybrid heavy vehicle is about %5,800 in the year 2005 and $3,000 in 2020, while for a Class 6-7 truck, it is about $7,100 in 2005 and $3,300 in 2020; and (5) investment payback time, which depends on the specific type and application of the vehicle, averages about 6 years under urban driving conditions in 2005 and 2--3 years in 2020.

  2. Light-Duty Reactivity Controlled Compression Ignition Drive Cycle Fuel Economy and Emissions Estimates

    Broader source: Energy.gov [DOE]

    Vehicle systems simulations using experimental data demonstrate improved modeled fuel economy of 15% for passenger vehicles solely from powertrain efficiency relative to a 2009 PFI gasoline baseline.

  3. Clean Cities 2014 Vehicle Buyer's Guide

    SciTech Connect (OSTI)

    2013-12-01

    The Clean Cities 2014 Vehicle Buyer's Guide is an annual guide which features a comprehensive list of 2014 light-duty alternative fuel and advanced vehicles, grouped by fuel and technology. The guide provides model-specific information on vehicle specifications, manufacturer suggested retail price, fuel economy, energy impact, and emissions. The information can be used to identify options, compare vehicles, and help inform purchase decisions.

  4. Reactivity Controlled Compression Ignition (RCCI) Combustion on a Multi-Cylinder Light-Duty Diesel Engine

    SciTech Connect (OSTI)

    Curran, Scott; Hanson, Reed M; Wagner, Robert M

    2012-01-01

    Reactivity controlled compression ignition is a low-temperature combustion technique that has been shown, both in computational fluid dynamics modeling and single-cylinder experiments, to obtain diesel-like efficiency or better with ultra-low nitrogen oxide and soot emissions, while operating primarily on gasoline-like fuels. This paper investigates reactivity controlled compression ignition operation on a four-cylinder light-duty diesel engine with production-viable hardware using conventional gasoline and diesel fuel. Experimental results are presented over a wide speed and load range using a systematic approach for achieving successful steady-state reactivity controlled compression ignition combustion. The results demonstrated diesel-like efficiency or better over the operating range explored with low engine-out nitrogen oxide and soot emissions. A peak brake thermal efficiency of 39.0% was demonstrated for 2600 r/min and 6.9 bar brake mean effective pressure with nitrogen oxide emissions reduced by an order of magnitude compared to conventional diesel combustion operation. Reactivity controlled compression ignition emissions and efficiency results are compared to conventional diesel combustion operation on the same engine.

  5. Vehicle Technologies Office: AVTA - Electric Vehicle Community...

    Energy Savers [EERE]

    AVTA - Electric Vehicle Community and Fleet Readiness Data and Reports Making plug-in electric vehicles (PEVs, also known as electric cars) as affordable and convenient as...

  6. Biological activity of exhaust emissions from two after-treatment device-equipped light-duty diesel engines

    SciTech Connect (OSTI)

    Carraro, E.; Locatelli, A.L.; Ferrero, C.; Fea, E.; Gilli, G. [Univ. of Turin (Italy)

    1995-10-01

    Whole diesel exhaust has recently been classified as a portable carcinogen, and particulate exhaust known to contain mutagenic and carcinogenic chemicals, has clearly shown to be mutagenic in several genotoxicity studies. The goal of this study was to determine whether, and to what extent, the installation of some exhaust aftertreatment devices on two light-duty diesel engines (1930 cc and 2500 cc) EGR-valve equipped may reduce mutagenic activity associated to particles collected during both USA and European driving cycles. The preliminary results point out the usefulness of mutagenicity tests in the research of even new more efficient automotive emission aftertreatment devices. The aim of this investigation is to determine whether, and to what range, the use of some new aftertreatment devices on light-duty diesel engines could reduce the particle-associated genotoxic potential of diesel emissions. 24 refs., 3 figs., 1 tab.

  7. Lean Gasoline System Development for Fuel Efficient Small Car...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Lean Gasoline System Development for Fuel Efficient Small Car Lean Gasoline System Development for Fuel Efficient Small Car Vehicle Technologies...

  8. Why Light Duty Diesels Make Sense in the North American Market

    Office of Energy Efficiency and Renewable Energy (EERE)

    Presentation given at DEER 2006, August 20-24, 2006, Detroit, Michigan. Sponsored by the U.S. DOE's EERE FreedomCar and Fuel Partnership and 21st Century Truck Programs.

  9. Accelerating Light-Duty Diesel Sales in the U.S. Market

    Office of Energy Efficiency and Renewable Energy (EERE)

    Presentation given at DEER 2006, August 20-24, 2006, Detroit, Michigan. Sponsored by the U.S. DOE's EERE FreedomCar and Fuel Partnership and 21st Century Truck Programs.

  10. Light-Duty Diesels in the U.S. | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Detroit, Michigan. Sponsored by the U.S. DOE's EERE FreedomCar and Fuel Partnership and 21st Century Truck Programs. 2006deersimon.pdf More Documents & Publications EPA Diesel...

  11. High Efficiency Clean Combustion in Multi-Cylinder Light-Duty Engines

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  12. The Household Market for Electric Vehicles: Testing the Hybrid Household Hypothesis--A Reflively Designed Survey of New-car-buying, Multi-vehicle California Households

    E-Print Network [OSTI]

    Turrentine, Thomas; Kurani, Kenneth

    1995-01-01

    companies claim that electric vehicles will be priced at much more than gasolinecompanies claim that electric vehicles will be priced at much more than the $4,000 price differential between gasoline andcompanies have argued that their research shows that electric vehicles are going to cost more than comparable gasoline

  13. Appendix J - GPRA06 vehicle technologies program

    SciTech Connect (OSTI)

    None, None

    2009-01-18

    The target market for the Office of FreedomCAR and Vehicle Technologies (FCVT) program include light vehicles (cars and light trucks) and heavy vehicles (trucks more than 10,000 pounds Gross Vehicle Weight).

  14. CyCAR'2013: First International Academic Workshop on Security, Privacy and Dependability for CyberVehicles

    E-Print Network [OSTI]

    knowledge by the ACM CCS community to the car industry while taking into account typical automotive, environments, and networks poses various design challenges for the automotive/transportation industry control units in novel automotive control applications. Recent work has demonstrated vulnerability

  15. Investigating potential light-duty efficiency improvements through simulation of turbo-compounding and waste-heat recovery systems

    SciTech Connect (OSTI)

    Edwards, Kevin Dean; Wagner, Robert M; Briggs, Thomas E

    2010-01-01

    Modern diesel engines used in light-duty transportation applications have peak brake thermal efficiencies in the range of 40-42% for high-load operation with substantially lower efficiencies at realistic road-load conditions. Thermodynamic energy and exergy analysis reveals that the largest losses from these engines are due to combustion irreversibility and heat loss to the coolant, through the exhaust, and by direct convection and radiation to the environment. Substantial improvement in overall engine efficiency requires reducing or recovering these losses. Unfortunately, much of the heat transfer either occurs at relatively low temperatures resulting in large entropy generation (such as in the air-charge cooler), is transferred to low-exergy flow streams (such as the oil and engine coolant), or is radiated or convected directly to the environment. While there are significant opportunities for recovery from the exhaust and EGR cooler for heavy-duty applications, achieving similar benefits for light-duty applications is complicated by transient, low-load operation at typical driving conditions and competition with the turbocharger and aftertreatment system for the limited thermal resources. We have developed an organic Rankine cycle model using GT-Suite to investigate the potential for efficiency improvement through waste-heat recovery from the exhaust and EGR cooler of a light-duty diesel engine. The model is used to examine the effects of efficiency-improvement strategies such as cylinder deactivation, use of advanced materials and improved insulation to limit ambient heat loss, and turbo-compounding on the steady-state performance of the ORC system and the availability of thermal energy for downstream aftertreatment systems. Results from transient drive-cycle simulations are also presented, and we discuss strategies to address operational difficulties associated with transient drive cycles and balancing the thermal requirements of waste-heat recovery, turbocharging or turbo-compounding, and exhaust aftertreatment.

  16. U.S. Department of Energy FreedomCAR & Vehicle Technologies Program Advanced Vehicle Testing Activity, Hydrogen/CNG Blended Fuels Performance Testing in a Ford F-150

    SciTech Connect (OSTI)

    James E. Francfort

    2003-11-01

    Federal regulation requires energy companies and government entities to utilize alternative fuels in their vehicle fleets. To meet this need, several automobile manufacturers are producing compressed natural gas (CNG)-fueled vehicles. In addition, several converters are modifying gasoline-fueled vehicles to operate on both gasoline and CNG (Bifuel). Because of the availability of CNG vehicles, many energy company and government fleets have adopted CNG as their principle alternative fuel for transportation. Meanwhile, recent research has shown that blending hydrogen with CNG (HCNG) can reduce emissions from CNG vehicles. However, blending hydrogen with CNG (and performing no other vehicle modifications) reduces engine power output, due to the lower volumetric energy density of hydrogen in relation to CNG. Arizona Public Service (APS) and the U.S. Department of Energy’s Advanced Vehicle Testing Activity (DOE AVTA) identified the need to determine the magnitude of these effects and their impact on the viability of using HCNG in existing CNG vehicles. To quantify the effects of using various blended fuels, a work plan was designed to test the acceleration, range, and exhaust emissions of a Ford F-150 pickup truck operating on 100% CNG and blends of 15 and 30% HCNG. This report presents the results of this testing conducted during May and June 2003 by Electric Transportation Applications (Task 4.10, DOE AVTA Cooperative Agreement DEFC36- 00ID-13859).

  17. Pooled Cars

    E-Print Network [OSTI]

    Shaheen, Susan

    1999-01-01

    many ideas for reducing car use. Most popular of course areand promising is the idea of pooling cars. It’s an ideain Europe, and has Pooled Cars sometimes proved successful.

  18. Floating Cars

    E-Print Network [OSTI]

    Hess, Daniel Baldwin

    2006-01-01

    land- scape of destroyed cars provides a stark illustrationTHE ACCESS ALMANAC Floating Cars BY DANIEL BALDWIN HESS S Uof the excessive number of cars in the United States, where

  19. Climate Change Action in Arizona

    E-Print Network [OSTI]

    Owens, Steve

    2009-01-01

    that increasing emissions of car- bon dioxide (C02), methaneCalifornia "Clean Car" GHG vehicle emissions standards; 28.gas exhaust emission limits for passenger car, light-duty

  20. The Household Market for Electric Vehicles: Testing the Hybrid Household Hypothesis--A Reflively Designed Survey of New-car-buying, Multi-vehicle California Households

    E-Print Network [OSTI]

    Turrentine, Thomas; Kurani, Kenneth

    1995-01-01

    HEV) - Natural Gas Vehicle (NGV) 140 or 180 80 or 120EV, and 20 percent chose an NGV. All EVs, including hybridHouseholds that wanted an NGV had a choice of two range

  1. Urea SCR Durability Assessment for Tier 2 Light-Duty Truck |...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Laboratory and Vehicle Demonstration of a "2nd-Generation" LNT+in-situ SCR Diesel NOx Emission Control Concept Future Trends for DPFSCR On-Filter (SCRF) Combination and...

  2. Economic Comparison of LNT Versus Urea SCR for Light-Duty Diesel...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Laboratory and Vehicle Demonstration of a "2nd-Generation" LNT+in-situ SCR Diesel NOx Emission Control Concept NH3 generation over commercial Three-Way Catalysts and...

  3. Adaptive Traffic Lights Using Car-to-Car Communication

    E-Print Network [OSTI]

    Iftode, Liviu

    Adaptive Traffic Lights Using Car-to-Car Communication Victor Gradinescu, Cristian Gorgorin, Raluca presents an adaptive traffic light system based on wireless communication between vehicles and fixed adaptive traffic light system. In section 4, we present the simulation framework we have developed

  4. Hydrogen/Natural Gas Blends for Heavy and Light-Duty Applications

    E-Print Network [OSTI]

    89502 Abstract NRG Tech is developing engine technology that is applicable for use in heavy-duty vehicle candidate engine platforms, ranging from 7.4 to 8.4 liters displacement, of its own for evaluation. Testing Current Results Tests on engine compression ratio ranged from 9.1 to 15.0 to 1. The desirable range

  5. Commercializing light-duty plug-in/plug-out hydrogen-fuel-cell vehicles: “Mobile Electricity” technologies and opportunities

    E-Print Network [OSTI]

    Williams, Brett D; Kurani, Kenneth S

    2007-01-01

    plots two different fuel-cell applications with dramaticallycommercializing fuel cells in various applications, startingMembrane Fuel Cell System for Transportation Applications:

  6. Commercializing light-duty plug-in/plug-out hydrogen-fuel-cell vehicles: “Mobile Electricity” technologies and opportunities

    E-Print Network [OSTI]

    Williams, Brett D; Kurani, Kenneth S

    2007-01-01

    the perspectives of innovation, product development, andseveral of the innovation and product- and market-the discussion of innovation and Me- product and business

  7. Commercializing light-duty plug-in/plug-out hydrogen-fuel-cell vehicles: “Mobile Electricity” technologies and opportunities

    E-Print Network [OSTI]

    Williams, Brett D; Kurani, Kenneth S

    2007-01-01

    designed for public battery EV charging could be used, andthe charging hardware from the 1998 Toyota RAV4-EV or abattery EV. Indeed, “On-board conductive charging allows V2G

  8. Commercializing light-duty plug-in/plug-out hydrogen-fuel-cell vehicles: “Mobile Electricity” technologies and opportunities

    E-Print Network [OSTI]

    Williams, Brett D; Kurani, Kenneth S

    2007-01-01

    of renewable energy commercialization, another case of as-using renewable energy. The air-quality case, strengthened

  9. Future Potential of Hybrid and Diesel Powertrains in the U.S. Light-Duty Vehicle Market

    Broader source: Energy.gov [DOE]

    2004 Diesel Engine Emissions Reduction (DEER) Conference Presentation: Oak Ridge National Laboratory

  10. Commercializing light-duty plug-in/plug-out hydrogen-fuel-cell vehicles: “Mobile Electricity” technologies and opportunities

    E-Print Network [OSTI]

    Williams, Brett D; Kurani, Kenneth S

    2007-01-01

    charge shaving, uninterruptible power, and heat generation),past work on uninterruptible/solar power systems and BEVs to

  11. Commercializing light-duty plug-in/plug-out hydrogen-fuel-cell vehicles: “Mobile Electricity” technologies and opportunities

    E-Print Network [OSTI]

    Williams, Brett D; Kurani, Kenneth S

    2007-01-01

    for example, fuel-cell refurbishment costs resulting fromand capital degradation/refurbishment. They also note twoassociated need for refurbishment). These trade-offs between

  12. Exploring the use of a higher octane gasoline for the U.S. light-duty vehicle fleet

    E-Print Network [OSTI]

    Chow, Eric W

    2013-01-01

    This thesis explores the possible benefits that can be achieved if U.S. oil companies produced and offered a grade of higher-octane gasoline to the consumer market. The octane number of a fuel represents how resistant the ...

  13. EcoCAR Challenge: Finish Line

    Broader source: Energy.gov [DOE]

    The EcoCAR Challenege is a competition that challenges participating students from across North America to re-engineer a vehicle donated by General Motors. With the goal of minimizing the vehicle...

  14. Vehicle Technologies Office: AVTA - Plug-in Electric Vehicle...

    Broader source: Energy.gov (indexed) [DOE]

    nation's vehicle fleet. VTO invested 400 million in 18 projects to demonstrate plug-in electric vehicles (PEVs, also known as electric cars) and infrastructure, including 10...

  15. Evaluation of unthrottled combustion system options for light duty applications with future syncrude derived fuels. Alternative Fuels Utilization Program

    SciTech Connect (OSTI)

    Needham, J. R.; Cooper, B. M.; Norris-Jones, S. R.

    1982-12-01

    An experimental program examining the interaction between several fuel and light duty automotive engine combinations is detailed. Combustion systems addressed covered indirect and direct injection diesel and spark ignited stratified charge. Fuels primarily covered D2, naphtha and intermediate broadcut blends. Low ignition quality diesel fuels were also evaluated. The results indicate the baseline fuel tolerance of each combustion system and enable characteristics of the systems to be compared. Performance, gaseous and particulate emissions aspects were assessed. The data obtained assists in the selection of candidate combustion systems for potential future fuels. Performance and environmental penalties as appropriate are highlighted relative to the individual candidates. Areas of further work for increased understanding are also reviewed.

  16. Autonomous Ground Vehicle Path Planning for Autocross Tracks: Optimal vs an Efficient Bézier Curve Path

    E-Print Network [OSTI]

    Ash, John Patrick

    2015-01-01

    race cars) cars to participate in the sport without the requirements for a vehicle with a large engine.

  17. Impact of Fuel Metal Impurities on the Durability of a Light-Duty Diesel Aftertreatment System

    SciTech Connect (OSTI)

    Williams, A.; Burton, J.; McCormick, R. L.; Toops, T.; Wereszczak, A. A.; Fox, E. E.; Lance, M. J.; Cavataio, G.; Dobson, D.; Warner, J.; Brezny, R.; Nguyen, K.; Brookshear, D. W.

    2013-04-01

    Alkali and alkaline earth metal impurities found in diesel fuels are potential poisons for diesel exhaust catalysts. A set of diesel engine production exhaust systems was aged to 150,000 miles. These exhaust systems included a diesel oxidation catalyst, selective catalytic reduction (SCR) catalyst, and diesel particulate filter (DPF). Four separate exhaust systems were aged, each with a different fuel: ultralow sulfur diesel containing no measureable metals, B20 (a common biodiesel blend) containing sodium, B20 containing potassium, and B20 containing calcium, which were selected to simulate the maximum allowable levels in B100 according to ASTM D6751. Analysis included Federal Test Procedure emissions testing, bench-flow reactor testing of catalyst cores, electron probe microanalysis (EPMA), and measurement of thermo-mechanical properties of the DPFs. EPMA imaging found that the sodium and potassium penetrated into the washcoat, while calcium remained on the surface. Bench-flow reactor experiments were used to measure the standard nitrogen oxide (NOx) conversion, ammonia storage, and ammonia oxidation for each of the aged SCR catalysts. Vehicle emissions tests were conducted with each of the aged catalyst systems using a chassis dynamometer. The vehicle successfully passed the 0.2 gram/mile NOx emission standard with each of the four aged exhaust systems.

  18. U.S. Department of Energy FreedomCAR & Vehicle Technologies Program: Oil Bypass Filter Technology Evaluation Seventh Quarterly Report April - June 2004

    SciTech Connect (OSTI)

    Larry Zirker; James Francfort; Jordan Fielding

    2004-08-01

    This Oil Bypass Filter Technology Evaluation quarterly report (April–June 2004) details the ongoing fleet evaluation of an oil bypass filter technology by the Idaho National Engineering and Environmental Laboratory (INEEL) for the U.S. Department of Energy’s (DOE) FreedomCAR & Vehicle Technologies Program. Eight INEEL four-cycle diesel engine buses used to transport INEEL employees on various routes and six INEEL Chevrolet Tahoes with gasoline engines are equipped with oil bypass filter systems from the puraDYN Corporation. The bypass filters are reported to have engine oil filtering capability of <1 micron and a built-in additive package to facilitate extended oil-drain intervals. This quarter, the eight diesel engine buses traveled 85,632 miles. As of the end of June 2004, the eight buses have accumulated 498,814 miles since the beginning of the test and 473,192 miles without an oil change. This represents an avoidance of 39 oil changes, which equates to 1,374 quarts (343 gallons) of new oil not consumed and, furthermore, 1,374 quarts of waste oil not generated. One bus had its oil changed due to the degraded quality of the engine oil. Also this quarter, the six Tahoe test vehicles traveled 48,193 miles; to date, the six Tahoes have accumulated 109,708 total test miles. The oil for all six of the Tahoes was changed this quarter due to low Total Base Numbers (TBN). The oil used initially in the Tahoe testing was recycled oil; the recycled oil has been replaced with Castrol virgin oil, and the testing was restarted. However, the six Tahoe’s did travel a total of 98,266 miles on the initial engine oil. This represents an avoidance of 26 oil changes, which equates to 130 quarts (32.5 gallons) of new oil not consumed and, consequently, 130 quarts of waste oil not generated. Based on the number of oil changes avoided by the test buses and Tahoes to date, the potential engine oil savings if an oil bypass filter system were used was estimated for the INEEL, DOE complex and all Federal fleets of on-road vehicles. The estimated potential annual engine oil savings for the three fleets are: INEEL – 3,400 gallons, all DOE fleets – 32,000 gallons, and all Federal fleet – 1.7 million gallons.

  19. Energy-consumption and carbon-emission analysis of vehicle and component manufacturing.

    SciTech Connect (OSTI)

    Sullivan, J. L.; Burnham, A.; Wang, M.; Energy Systems

    2010-10-12

    A model is presented for calculating the environmental burdens of the part manufacturing and vehicle assembly (VMA) stage of the vehicle life cycle. The approach is bottom-up, with a special focus on energy consumption and CO{sub 2} emissions. The model is applied to both conventional and advanced vehicles, the latter of which include aluminum-intensive, hybrid electric, plug-in hybrid electric and all-electric vehicles. An important component of the model, a weight-based distribution function of materials and associated transformation processes (casting, stamping, etc.), is developed from the United States Council for Automotive Research Generic Vehicle Life Cycle Inventory Study. As the approach is bottom-up, numerous transformation process data and plant operational data were extracted from the literature for use in representing the many operations included in the model. When the model was applied to conventional vehicles, reliable estimates of cumulative energy consumption (34 GJ/vehicle) and CO{sub 2} emission (2 tonnes/vehicle) were computed for the VMA life-cycle stage. The numerous data sets taken from the literature permitted the development of some statistics on model results. Because the model explicitly includes a greater coverage of relevant manufacturing processes than many earlier studies, our energy estimates are on the higher end of previously published values. Limitations of the model are also discussed. Because the material compositions of conventional vehicles within specific classes (cars, light duty trucks, etc.) are sensibly constant on a percent-by-weight basis, the model can be reduced to a simple linear form for each class dependent only on vehicle weight. For advanced vehicles, the material/transformation process distribution developed above needs to be adjusted for different materials and components. This is particularly so for aluminum-intensive and electric-drive vehicles. In fact, because of their comparatively high manufacturing energy, batteries required for an electric vehicle can significantly add to the energy burden of the VMA stage. Overall, for conventional vehicles, energy use and CO{sub 2} emissions from the VMA stage are about 4% of their total life-cycle values. They are expected to be somewhat higher for advanced vehicles.

  20. Optical and Physical Properties from Primary On-Road Vehicle Particle Emissions And Their Implications for Climate Change

    E-Print Network [OSTI]

    1 Optical and Physical Properties from Primary On-Road Vehicle Particle Emissions between light duty gasoline vehicles and diesel trucks. Cross-section emission factors for optical size distributions and optical properties were insensitive to increases in relative humidity to values

  1. U.S. Department of Energy FreedomCAR & Vehicle Technologies Program Oil Bypass Filter Technology Evaluation Final Report

    SciTech Connect (OSTI)

    L. R. Zirker; J. E. Francfort; J. J. Fielding

    2006-03-01

    This Oil Bypass Filter Technology Evaluation final report documents the feasibility of using oil bypass filters on 17 vehicles in the Idaho National Laboratory (INL) fleet during a 3-year test period. Almost 1.3 million test miles were accumulated, with eleven 4-cycle diesel engine buses accumulating 982,548 test miles and six gasoline-engine Chevrolet Tahoes accumulating 303,172 test miles. Two hundred and forty oil samples, taken at each 12,000-mile bus servicing event and at 3,000 miles for the Tahoes, documented the condition of the engine oils for continued service. Twenty-eight variables were normally tested, including the presence of desired additives and undesired wear metals such as iron and chrome, as well as soot, water, glycol, and fuel. Depending on the assumptions employed, the INL found that oil bypass filter systems for diesel engine buses have a positive payback between 72,000 and 144,000 miles. For the Tahoes, the positive payback was between 66,000 and 69,000 miles.

  2. FreedomCAR - Aftertreatment Subsystem Development

    SciTech Connect (OSTI)

    Lisa A. Prentiss

    2005-09-30

    The primary objective of this program was to develop generic aftertreatment technologies applicable for LDV and LDT engines ranging from 55 kW to 200kW, to develop an optimized and integrated aftertreatment system for a LDT (Light Duty Truck) type vehicle, and to demonstrate the technology which will enable light duty diesel engines to meet Federal Tier II regulation with minimum impact on fuel economy. Specifically, the development targets for emissions reduction and fuel injection penalty are given below: (1) NOx conversion efficiency > 90% (hot), > 84% (combined); (2) PM conversion efficiency > 90% (hot), > 84% (combined); (3) Fuel penalty over FTP-75 Less than 5%; and (4) Fuel penalty at Cruise condition Less than 3%. Development of cost-effective, highly efficient diesel exhaust aftertreatment systems in combination with very low engine out emission combustion development are essential elements for realization of Federal Tier II emission standards for Light Duty Trucks and Vehicles. Evaluation of several aftertreatment technologies was completed as part of this program. A combination of Diesel Oxidation Catalyst, NOx Adsorbing Catalyst and Catalyzed Soot Filter was found to provide the levels of conversion efficiency required to achieve the emission targets. While early systems required relatively large catalyst volumes, external dosing, sulfur traps, full bypass configurations and high levels of Platinum metals; the final system is a compact, scalable, flow-through, fully-integrated and engine-managed aftertreatment system capable of commercial application for Light Duty Vehicles and Trucks. NOx adsorber/particulate filter technology is particularly attractive for Light Duty applications due to the lower exhaust flow and temperature requirements as compared to Heavy Duty engines. Despite these strong positive aspects, NOx Adsorbers are challenged by their regeneration requirements and susceptibility to sulfur poisoning and thermal degradation. Capability was developed to regenerate the NOx Adsorber for NOx and SOx as well as the Particulate Filter for soot. This system was fully integrated into a truck and evaluated over the chassis dynamometer for emissions capability and in real-world winter field testing. Durability of the system was evaluated over a variety of accelerated and real-time dynamometer tests. Excellent NOx and PM conversion efficiency was demonstrated, even following 3000 hrs of endurance testing. Unregulated emissions emitted by the system were evaluated as was the fuel penalty associated with the DeNOx and DeSOx regeneration processes. In the final evaluation, the system demonstrated 90% NOx conversion and 99% PM conversion at a 6% fuel penalty over the FTP-75 test cycle. While target fuel penalty levels were demonstrated using full-bypass configuration systems, the cost associated with those systems was prohibitively high and would preclude successful commercialization of the technology. Although the flow-through configuration fell 1% short of the 5% fuel penalty target, the cost of this configuration is such that commercial application is feasible. Cost drivers for the final system configuration were identified and demonstrate areas where future development areas could focus.

  3. TrafficView: A Driver Assistant Device for Traffic Monitoring based on Car-to-Car Communication

    E-Print Network [OSTI]

    Iftode, Liviu

    TrafficView: A Driver Assistant Device for Traffic Monitoring based on Car-to-Car Communication an intelligent transportation system, a common platform for inter-vehicle communication is needed. This platform, Directions, etc. Slide bar for areas infront or behind you Your car Other cars Fig. 1. Example of Traffic

  4. Impact Assessment of Plug-in Hybrid Vehicles on the U.S. Power Grid

    SciTech Connect (OSTI)

    Kintner-Meyer, Michael CW; Nguyen, Tony B.; Jin, Chunlian; Balducci, Patrick J.; Secrest, Thomas J.

    2010-09-30

    The US electricity grid is a national infrastructure that has the potential to deliver significant amounts of the daily driving energy of the US light duty vehicle (cars, pickups, SUVs, and vans) fleet. This paper discusses a 2030 scenario with 37 million plug-in hybrid electric vehicles (PHEVs) on the road in the US demanding electricity for an average daily driving distance of about 33 miles (53 km). The paper addresses the potential grid impacts of the PHEVs fleet relative to their effects on the production cost of electricity, and the emissions from the electricity sector. The results of this analysis indicate significant regional difference on the cost impacts and the CO2 emissions. Battery charging during the day may have twice the cost impacts than charging during the night. The CO2 emissions impacts are very region-dependent. In predominantly coal regions (Midwest), the new PHEV load may reduce the CO2 emission intensity (ton/MWh), while in others regions with significant clean generation (hydro and renewable energy) the CO2 emission intensity may increase. Discussed will the potential impact of the results with the valuation of carbon emissions.

  5. Neighborhoods, Cars, and Commuting in New York City: A Discrete Choice Approach

    E-Print Network [OSTI]

    Salon, Deborah

    2008-01-01

    D. , 1999. Income’s effect on car and vehicle ownership,Jong, G. , 1990. An indirect utility model of car ownershipand private car use. European Economic Review 34, 971–985.

  6. Quantifying the benefits of hybrid vehicles

    E-Print Network [OSTI]

    Turrentine, Tom; Delucchi, Mark; Heffner, Reid R.; Kurani, Kenneth S; Sun, Yongling

    2006-01-01

    secrets, but the price of hybrid cars and trucks are betweenCosts of hybrid vehicles Depending on whether a car companydiesel-hybrid prototypes that attained 70 MPG (Green Car

  7. TrafficView: Traffic Data Dissemination using Car-to-Car Communication

    E-Print Network [OSTI]

    Iftode, Liviu

    TrafficView: Traffic Data Dissemination using Car-to-Car Communication Tamer Nadeema, Sasan high- tech devices are integrated, and a common platform for inter-vehicle communication is necessary platform for inter-vehicle communication is necessary to realize an intelligent transportation system

  8. DRIVE CYCLE EFFICIENCY AND EMISSIONS ESTIMATES FOR REACTIVITY CONTROLLED COMPRESSION IGNITION IN A MULTI-CYLINDER LIGHT-DUTY DIESEL ENGINE

    SciTech Connect (OSTI)

    Curran, Scott; Briggs, Thomas E; Cho, Kukwon; Wagner, Robert M

    2011-01-01

    In-cylinder blending of gasoline and diesel to achieve Reactivity Controlled Compression Ignition (RCCI) has been shown to reduce NOx and PM emissions while maintaining or improving brake thermal efficiency as compared to conventional diesel combustion (CDC). The RCCI concept has an advantage over many advanced combustion strategies in that by varying both the percent of premixed gasoline and EGR rate, stable combustion can be extended over more of the light-duty drive cycle load range. Changing the percent premixed gasoline changes the fuel reactivity stratification in the cylinder providing further control of combustion phasing and pressure rise rate than the use of EGR alone. This paper examines the combustion and emissions performance of light-duty diesel engine using direct injected diesel fuel and port injected gasoline to carry out RCCI for steady-state engine conditions which are consistent with a light-duty drive cycle. A GM 1.9L four-cylinder engine with the stock compression ratio of 17.5:1, common rail diesel injection system, high-pressure EGR system and variable geometry turbocharger was modified to allow for port fuel injection with gasoline. Engine-out emissions, engine performance and combustion behavior for RCCI operation is compared against both CDC and a premixed charge compression ignition (PCCI) strategy which relies on high levels of EGR dilution. The effect of percent of premixed gasoline, EGR rate, boost level, intake mixture temperature, combustion phasing and pressure rise rate is investigated for RCCI combustion for the light-duty modal points. Engine-out emissions of NOx and PM were found to be considerably lower for RCCI operation as compared to CDC and PCCI, while HC and CO emissions were higher. Brake thermal efficiency was similar or higher for many of the modal conditions for RCCI operation. The emissions results are used to estimate hot-start FTP-75 emissions levels with RCCI and are compared against CDC and PCCI modes.

  9. Learning from Consumers: Plug-In Hybrid Electric Vehicle (PHEV) Demonstration and Consumer Education, Outreach, and Market Research Program

    E-Print Network [OSTI]

    Kurani, Kenneth S; Axsen, Jonn; Caperello, Nicolette; Davies, Jamie; Stillwater, Tai

    2009-01-01

    production of further hybrid cars. ” Similarly, Larry Rhodesbuying Priuses as commute cars—hybrids were “fairly popularhybrid vehicles are being made available to (predominately new-car

  10. Evaluation of High Efficiency Clean Combustion (HECC) Strategies for Meeting Future Emissions Regulations in Light-Duty Engines

    Broader source: Energy.gov [DOE]

    Presentation given at DEER 2006, August 20-24, 2006, Detroit, Michigan. Sponsored by the U.S. DOE's EERE FreedomCar and Fuel Partnership and 21st Century Truck Programs.

  11. 2012 U.S. Vehicle Analysis

    E-Print Network [OSTI]

    Lam, Ho Yeung Michael

    2012-01-01

    per year if I choose an eco friendly car? In this thesis, welarge car may not be an eco-friendly vehicle class. Pickupthat SUV may not be an eco-friendly vehicle class. Country

  12. A computational investigation of diesel and biodiesel combustion and NOx formation in a light-duty compression ignition engine

    SciTech Connect (OSTI)

    Wang, Zihan; Srinivasan, Kalyan K.; Krishnan, Sundar R.; Som, Sibendu

    2012-04-24

    Diesel and biodiesel combustion in a multi-cylinder light duty diesel engine were simulated during a closed cycle (from IVC to EVO), using a commercial computational fluid dynamics (CFD) code, CONVERGE, coupled with detailed chemical kinetics. The computational domain was constructed based on engine geometry and compression ratio measurements. A skeletal n-heptane-based diesel mechanism developed by researchers at Chalmers University of Technology and a reduced biodiesel mechanism derived and validated by Luo and co-workers were applied to model the combustion chemistry. The biodiesel mechanism contains 89 species and 364 reactions and uses methyl decanoate, methyl-9- decenoate, and n-heptane as the surrogate fuel mixture. The Kelvin-Helmholtz and Rayleigh-Taylor (KH-RT) spray breakup model for diesel and biodiesel was calibrated to account for the differences in physical properties of the fuels which result in variations in atomization and spray development characteristics. The simulations were able to capture the experimentally observed pressure and apparent heat release rate trends for both the fuels over a range of engine loads (BMEPs from 2.5 to 10 bar) and fuel injection timings (from 0���° BTDC to 10���° BTDC), thus validating the overall modeling approach as well as the chemical kinetic models of diesel and biodiesel surrogates. Moreover, quantitative NOx predictions for diesel combustion and qualitative NOx predictions for biodiesel combustion were obtained with the CFD simulations and the in-cylinder temperature trends were correlated to the NOx trends."

  13. A Study of the Emissions Benefits of Commercial Vehicle Lane Management Strategies

    E-Print Network [OSTI]

    than light-duty (LD) vehicles. This research shows that the estimated emissions effects of congestion of a general purpose lane to a truck-only lane may produce more emissions benefits than adding either a truck-only lane or a general purpose lane. Furthermore, the expected emissions benefits from truck-only lane

  14. Analysis of the Relationship Between Vehicle Weight/Size and Safety, and Implications for Federal Fuel Economy Regulation

    SciTech Connect (OSTI)

    Wenzel, Thomas P.

    2010-03-02

    This report analyzes the relationship between vehicle weight, size (wheelbase, track width, and their product, footprint), and safety, for individual vehicle makes and models. Vehicle weight and footprint are correlated with a correlation coefficient (R{sup 2}) of about 0.62. The relationship is stronger for cars (0.69) than for light trucks (0.42); light trucks include minivans, fullsize vans, truck-based SUVs, crossover SUVs, and pickup trucks. The correlation between wheelbase and track width, the components of footprint, is about 0.61 for all light vehicles, 0.62 for cars and 0.48 for light trucks. However, the footprint data used in this analysis does not vary for different versions of the same vehicle model, as curb weight does; the analysis could be improved with more precise data on footprint for different versions of the same vehicle model. Although US fatality risk to drivers (driver fatalities per million registered vehicles) decreases as vehicle footprint increases, there is very little correlation either for all light vehicles (0.01), or cars (0.07) or trucks (0.11). The correlation between footprint and fatality risks cars impose on drivers of other vehicles is also very low (0.01); for trucks the correlation is higher (0.30), with risk to others increasing as truck footprint increases. Fatality risks reported here do not account for differences in annual miles driven, driver age or gender, or crash location by vehicle type or model. It is difficult to account for these factors using data on national fatal crashes because the number of vehicles registered to, for instance, young males in urban areas is not readily available by vehicle type or model. State data on all police-reported crashes can be used to estimate casualty risks that account for miles driven, driver age and gender, and crash location. The number of vehicles involved in a crash can act as a proxy of the number of miles a given vehicle type, or model, is driven per year, and is a preferable unit of exposure to a serious crash than the number of registered vehicles. However, because there are relatively few fatalities in the states providing crash data, we calculate casualty risks, which are the sum of fatalities and serious or incapacitating injuries, per vehicle involved in a crash reported to the police. We can account for driver age/gender and driving location effects by excluding from analysis crashes (and casualties) involving young males and the elderly, and occurring in very rural or very urban counties. Using state data on all police-reported crashes in five states, we find that excluding crashes involving young male and elderly drivers has little effect on casualty risk; however, excluding crashes that occurred in the most rural and most urban counties (based on population density) increases casualty risk for all vehicle types except pickups. This suggests that risks for pickups are overstated unless they account for the population density of the county in which the crashes occur. After removing crashes involving young males and elderly drivers, and those occurring in the most rural and most urban counties, we find that casualty risk in all light-duty vehicles tends to increase with increasing weight or footprint; however, the correlation (R{sup 2}) between casualty risk and vehicle weight is 0.31, while the correlation with footprint is 0.23. These relationships are stronger for cars than for light trucks. The correlation between casualty risk in frontal crashes and light-duty vehicle wheelbase is 0.12, while the correlation between casualty risk in left side crashes and track width is 0.36. We calculated separately the casualty risks vehicles impose on drivers of the other vehicles with which they crash. The correlation between casualty risk imposed by light trucks on drivers of other vehicles and light truck footprint is 0.15, while the correlation with light truck footprint is 0.33; risk imposed on others increases as light truck weight or footprint increases. Our analysis indicates that, after excluding crashes involving young m

  15. Nicole Lambiase: Aspiring Astronaut Turned Next-generation Car Designer

    Broader source: Energy.gov [DOE]

    How participating in the EcoCAR competition convinced one student to switch career paths and put her talents toward designing advanced vehicles.

  16. EcoCar Students Spread the Word

    Broader source: Energy.gov [DOE]

    An overview of the creative and engaging ways that teams participating in the EcoCar competition have worked to convey the benefits of advanced technology vehicles to policy makers and students across the U.S. and Canada.

  17. An Analysis of the Relationship between Casualty Risk Per Crash and Vehicle Mass and Footprint for Model Year 2000-2007 Light-Duty Vehicles-Preliminary report

    E-Print Network [OSTI]

    Wenzel, Tom

    2013-01-01

    from odometer data provided by RL Polk. For more details onodometer data provided by R.L. Polk. The data can be used toregistration years (from Polk). NHTSA selected non-culpable

  18. Symbolism in California’s Early Market for Hybrid Electric Vehicles

    E-Print Network [OSTI]

    Heffner, Reid R.; Kurani, Kenneth S; Turrentine, Tom

    2008-01-01

    2006. The Dollars and Sense of Hybrid Cars. AvailableSurvey of Oregon Hybrid Gas-Electric Car Owners. Portland.cars/new-cars/ high-cost-of-hybrid-vehicles-406/overview.htm

  19. DOE Hybrid and Electric Vehicle Test Platform

    SciTech Connect (OSTI)

    Gao, Yimin [Advanced Vehicle Research Center, Danville, VA (United States)

    2012-03-31

    Based on the contract NT-42790 to the Department of Energy, “Plug-in Hybrid Ethanol Research Platform”, Advanced Vehicle Research Center (AVRC) Virginia has successfully developed the phase I electric drive train research platform which has been named as Laboratory Rapid Application Testbed (LabRAT). In phase II, LabRAT is to be upgraded into plug-in hybrid research platform, which will be capable of testing power systems for electric vehicles, and plug-in hybrid electric vehicles running on conventional as well as alternative fuels. LabRAT is configured as a rolling testbed with plentiful space for installing various component configurations. Component connections are modularized for flexibility and are easily replaced for testing various mechanisms. LabRAT is designed and built as a full functional vehicle chassis with a steering system, brake system and four wheel suspension. The rear drive axle offers maximum flexibility with a quickly changeable gear ratio final drive to accommodate different motor speed requirements. The electric drive system includes an electric motor which is mechanically connected to the rear axle through an integrated speed/torque sensor. Initially, a 100 kW UQM motor and corresponding UQM motor controller is used which can be easily replaced with another motor/controller combination. A lithium iron phosphate (LiFePO4) battery pack is installed, which consists of 108 cells of 100 AH capacity, giving the total energy capacity of 32.5 kWh. Correspondingly, a fully functional battery management system (BMS) is installed to perform battery cell operation monitoring, cell voltage balancing, and reporting battery real time operating parameters to vehicle controller. An advanced vehicle controller ECU is installed for controlling the drive train. The vehicle controller ECU receives traction or braking torque command from driver through accelerator and brake pedal position sensors and battery operating signals from the BMS through CAN BUS, and then generates motor torque command (traction or braking) to the motor controller based on the control algorithm software embedded in the vehicle controller ECU. The vehicle controller ECU is a re-programmable electronic control unit. Any control algorithm software developed can be easily downloaded to vehicle controller ECU to test any newly developed control strategy. The flexibility of the control system significantly enhances the practical applicability of the LabRAT. A new test methodology has been developed for the LabRAT simulating any vehicles running on road with different weights from compact passenger car to light duty truck on an AC or eddy current dynamometers without much effort for modification of the system. LabRAT is equipped with a fully functional data acquisition system supplied by CyberMetrix. The measurement points along the drive train are DC electric power between battery pack and motor controller input, AC electric power between motor controller and electric motor, mechanical power between motor and rear axle. The data acquisition system is designed with more capability than current requirements in order to meet the requirements for phase II.

  20. Cable Car 

    E-Print Network [OSTI]

    Unknown

    2011-09-05

    implementation, savings are expected to total $500 million to $1 billion per year, with an associated reduction in carbon dioxide emissions of about 10 million tonnes per year - roughly equivalent to removing 1.5 million cars from the world's roads....

  1. Quantifying the benefits of hybrid vehicles

    E-Print Network [OSTI]

    Turrentine, Tom; Delucchi, Mark; Heffner, Reid R.; Kurani, Kenneth S; Sun, Yongling

    2006-01-01

    Car problems Pollution from motor vehicles Crude oil,the pollution from any one new motor vehicle is slight,of hybrid vehicles will reduce oil use and pollution in the

  2. Fact #656: January 3, 2011 Consumers Hold onto Vehicles Longer...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Vehicle Ownership by Quarter, 2008 - 2010 Bar graph showing the number of months a new car buyer and a used car buyer hold onto their vehicles before purchasing a...

  3. Fact #558: February 16, 2009 Transit Vehicle Age and Cost

    Broader source: Energy.gov [DOE]

    Heavy rail cars have the greatest longevity of the transit vehicles listed below with an average vehicle age of more than 22 years. However, in terms of cost for purchasing a new rail car, heavy...

  4. Heavy Duty Vehicle Futures Analysis.

    SciTech Connect (OSTI)

    Askin, Amanda Christine; Barter, Garrett; West, Todd H.; Manley, Dawn Kataoka

    2014-05-01

    This report describes work performed for an Early Career Research and Development project. This project developed a heavy-duty vehicle (HDV) sector model to assess the factors influencing alternative fuel and efficiency technology adoption. This model builds on a Sandia light duty vehicle sector model and provides a platform for assessing potential impacts of technological advancements developed at the Combustion Research Facility. Alternative fuel and technology adoption modeling is typically developed around a small set of scenarios. This HDV sector model segments the HDV sector and parameterizes input values, such as fuel prices, efficiencies, and vehicle costs. This parameterization enables sensitivity and trade space analyses to identify the inputs that are most associated with outputs of interest, such as diesel consumption and greenhouse gas emissions. Thus this analysis tool enables identification of the most significant HDV sector drivers that can be used to support energy security and climate change goals.

  5. Advanced Vehicle Testing and Evaluation

    SciTech Connect (OSTI)

    Garetson, Thomas

    2013-03-31

    The objective of the United States (U.S.) Department of Energy?s (DOEs) Advanced Vehicle Testing and Evaluation (AVTE) project was to provide test and evaluation services for advanced technology vehicles, to establish a performance baseline, to determine vehicle reliability, and to evaluate vehicle operating costs in fleet operations. Vehicles tested include light and medium-duty vehicles in conventional, hybrid, and all-electric configurations using conventional and alternative fuels, including hydrogen in internal combustion engines. Vehicles were tested on closed tracks and chassis dynamometers, as well as operated on public roads, in fleet operations, and over prescribed routes. All testing was controlled by procedures developed specifically to support such testing. Testing and evaluations were conducted in the following phases: ? Development of test procedures, which established testing procedures; ? Baseline performance testing, which established a performance baseline; ? Accelerated reliability testing, which determined vehicle reliability; ? Fleet testing, used to evaluate vehicle economics in fleet operation, and ? End of test performance evaluation. Test results are reported by two means and posted by Idaho National Laboratory (INL) to their website: quarterly progress reports, used to document work in progress; and final test reports. This final report documents work conducted for the entirety of the contract by the Clarity Group, Inc., doing business as ECOtality North America (ECOtality). The contract was performed from 1 October 2005 through 31 March 2013. There were 113 light-duty on-road (95), off-road (3) and low speed (15) vehicles tested.

  6. Car Parking Regulations_09.05.13_SGD University of St Andrews

    E-Print Network [OSTI]

    Brierley, Andrew

    Car Parking Regulations_09.05.13_SGD University of St Andrews Estates Car Parking Regulations Commencement and Citation These Regulations may be cited as the University of St Andrews Car Parking September in any year. 1. Car Parking Regulations 1.1 No person shall park a vehicle within a University

  7. Societal lifetime cost of hydrogen fuel cell vehicles

    E-Print Network [OSTI]

    Sun, Yongling; Ogden, J; Delucchi, Mark

    2010-01-01

    Comparative Assessment of Fuel Cell Cars, Massachusettselectric and hydrogen fuel cell vehicles, Journal of PowerTransition to Hydrogen Fuel Cell Vehicles & the Potential

  8. Optimizing U.S. Mitigation Strategies for the Light-Duty Transportation Sector: What We Learn from a Bottom-Up Model

    E-Print Network [OSTI]

    Yeh, Sonia; Farrell, Alexander E.; Plevin, Richard J; Sanstad, Alan; Weyant, John

    2008-01-01

    vehicles: The case of natural gas vehicles. Energy PolicyCNG: dedicated natural gas vehicles; LPG: liquefiedvehicles using low- GHG fuels such as compressed natural gas,

  9. Effect of E85 on RCCI Performance and Emissions on a Multi-Cylinder Light-Duty Diesel Engine - SAE World Congress

    SciTech Connect (OSTI)

    Curran, Scott; Hanson, Reed M; Wagner, Robert M

    2012-01-01

    This paper investigates the effect of E85 on load expansion and FTP modal point emissions indices under reactivity controlled compression ignition (RCCI) operation on a light-duty multi-cylinder diesel engine. A General Motors (GM) 1.9L four-cylinder diesel engine with the stock compression ratio of 17.5:1, common rail diesel injection system, high-pressure exhaust gas recirculation (EGR) system and variable geometry turbocharger was modified to allow for port fuel injection with gasoline or E85. Controlling the fuel reactivity in-cylinder by the adjustment of the ratio of premixed low-reactivity fuel (gasoline or E85) to direct injected high reactivity fuel (diesel fuel) has been shown to extend the operating range of high-efficiency clean combustion (HECC) compared to the use of a single fuel alone as in homogeneous charge compression ignition (HCCI) or premixed charge compression ignition (PCCI). The effect of E85 on the Ad-hoc federal test procedure (FTP) modal points is explored along with the effect of load expansion through the light-duty diesel speed operating range. The Ad-hoc FTP modal points of 1500 rpm, 1.0bar brake mean effective pressure (BMEP); 1500rpm, 2.6bar BMEP; 2000rpm, 2.0bar BMEP; 2300rpm, 4.2bar BMEP; and 2600rpm, 8.8bar BMEP were explored. Previous results with 96 RON unleaded test gasoline (UTG-96) and ultra-low sulfur diesel (ULSD) showed that with stock hardware, the 2600rpm, 8.8bar BMEP modal point was not obtainable due to excessive cylinder pressure rise rate and unstable combustion both with and without the use of EGR. Brake thermal efficiency and emissions performance of RCCI operation with E85 and ULSD is explored and compared against conventional diesel combustion (CDC) and RCCI operation with UTG 96 and ULSD.

  10. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Alternative Fuel Vehicle (AFV) Acquisition Goal North Carolina established a goal that at least 75% of new or replacement state government light-duty cars and trucks with a gross...

  11. Hydrogen-Enhanced Natural Gas Vehicle Program

    SciTech Connect (OSTI)

    Hyde, Dan; Collier, Kirk

    2009-01-22

    The project objective is to demonstrate the viability of HCNG fuel (30 to 50% hydrogen by volume and the remainder natural gas) to reduce emissions from light-duty on-road vehicles with no loss in performance or efficiency. The City of Las Vegas has an interest in alternative fuels and already has an existing hydrogen refueling station. Collier Technologies Inc (CT) supplied the latest design retrofit kits capable of converting nine compressed natural gas (CNG) fueled, light-duty vehicles powered by the Ford 5.4L Triton engine. CT installed the kits on the first two vehicles in Las Vegas, trained personnel at the City of Las Vegas (the City) to perform the additional seven retrofits, and developed materials for allowing other entities to perform these retrofits as well. These vehicles were used in normal service by the City while driver impressions, reliability, fuel efficiency and emissions were documented for a minimum of one year after conversion. This project has shown the efficacy of operating vehicles originally designed to operate on compressed natural gas with HCNG fuel incorporating large quantities of exhaust gas recirculation (EGR). There were no safety issues experienced with these vehicles. The only maintenance issue in the project was some rough idling due to problems with the EGR valve and piping parts. Once the rough idling was corrected no further maintenance issues with these vehicles were experienced. Fuel economy data showed no significant changes after conversion even with the added power provided by the superchargers that were part of the conversions. Driver feedback for the conversions was very favorable. The additional power provided by the HCNG vehicles was greatly appreciated, especially in traffic. The drivability of the HCNG vehicles was considered to be superior by the drivers. Most of the converted vehicles showed zero oxides of nitrogen throughout the life of the project using the State of Nevada emissions station.

  12. Fact #739: August 6, 2012 Light Vehicle Dealership Sales Trends – New Vehicles, Used Vehicles, and Service/Parts

    Broader source: Energy.gov [DOE]

    In 2007, almost 60% of sales from an average light vehicle dealership were new cars. New car sales declined to 52.3% of a dealership's sales in 2009, when service/parts rose to 15.7% and used...

  13. Fact #621: May 3, 2010 Gross Vehicle Weight vs. Empty Vehicle Weight

    Broader source: Energy.gov [DOE]

    The gross weight of a vehicle (GVW) is the weight of the empty vehicle plus the weight of the maximum payload that the vehicle was designed to carry. In cars and small light trucks, the difference...

  14. Optical and Physical Properties from Primary On-Road Vehicle ParticleEmissions And Their Implications for Climate Change

    SciTech Connect (OSTI)

    Strawa, A.W.; Kirchstetter, T.W.; Hallar, A.G.; Ban-Weiss, G.A.; McLaughlin, J.P.; Harley, R.A.; Lunden, M.M.

    2009-01-23

    During the summers of 2004 and 2006, extinction and scattering coefficients of particle emissions inside a San Francisco Bay Area roadway tunnel were measured using a combined cavity ring-down and nephelometer instrument. Particle size distributions and humidification were also measured, as well as several gas phase species. Vehicles in the tunnel traveled up a 4% grade at a speed of approximately 60 km h{sup -1}. The traffic situation in the tunnel allows the apportionment of emission factors between light duty gasoline vehicles and diesel trucks. Cross-section emission factors for optical properties were determined for the apportioned vehicles to be consistent with gas phase and particulate matter emission factors. The absorption emission factor (the absorption cross-section per mass of fuel burned) for diesel trucks (4.4 {+-} 0.79 m{sup 2} kg{sup -1}) was 22 times larger than for light-duty gasoline vehicles (0.20 {+-} 0.05 m{sup 2} kg{sup -1}). The single scattering albedo of particles - which represents the fraction of incident light that is scattered as opposed to absorbed - was 0.2 for diesel trucks and 0.3 for light duty gasoline vehicles. These facts indicate that particulate matter from motor vehicles exerts a positive (i.e., warming) radiative climate forcing. Average particulate mass absorption efficiencies for diesel trucks and light duty gasoline vehicles were 3.14 {+-} 0.88 m{sup 2} g{sub PM}{sup -1} and 2.9 {+-} 1.07 m{sup 2} g{sub PM}{sup -1}, respectively. Particle size distributions and optical properties were insensitive to increases in relative humidity to values in excess of 90%, reinforcing previous findings that freshly emitted motor vehicle particulate matter is hydrophobic.

  15. Scrapping Old Cars

    E-Print Network [OSTI]

    Dill, Jennifer

    2004-01-01

    fleet has been aging, in part because cars just last longer.households today own more cars than they did thirty yearsInstead of trading in an old car for a new one, they are now

  16. Cars for the Poor

    E-Print Network [OSTI]

    O'Regan, Katherine M.; Quigley, John M.

    1998-01-01

    Cars for the Poor BY KATHERINE M. O’REGAN & JOHN M. QUIGLEYcities have no access to cars, and 26 percent of black12, SPRING 1998 FIGURE 4 No Car, No Job? Average Journey to

  17. Cars and Demographics

    E-Print Network [OSTI]

    Lave, Charles

    1992-01-01

    Cars and Demographics BY CHARLES LAVE Imagine that it'sBut they will quickly buy cars once they have enough moneymore people means more cars), while more sophisti- Jflflfl

  18. Vehicle Technologies Market Report

    E-Print Network [OSTI]

    billion in 2010 · The average price of a new car is just under $25,000 · Sixteen percent of household.2% · Nearly 14% of cars sold in 2010 have continuously variable transmissions · Two-thirds of new lightVehicle Technologies Market Report February 2012 2011 #12;Quick Facts Energy and Economics

  19. car goat goat 1 Car Goat Goat

    E-Print Network [OSTI]

    McCann, Robert J.

    quite awesome. Read on! PMU 199S Aha! Math Discovery... Assignment #9 due 19 March 2015 #12;car goat

  20. The 1991 natural gas vehicle challenge: Developing dedicated natural gas vehicle technology

    SciTech Connect (OSTI)

    Larsen, R.; Rimkus, W. [Argonne National Lab., IL (United States); Davies, J. [General Motors of Canada Ltd., Toronto, ON (Canada); Zammit, M. [AC Rochester, NY (United States); Patterson, P. [USDOE, Washington, DC (United States)

    1992-02-01

    An engineering research and design competition to develop and demonstrate dedicated natural gas-powered light-duty trucks, the Natural Gas Vehicle (NGV) Challenge, was held June 6--11, 1191, in Oklahoma. Sponsored by the US Department of Energy (DOE), Energy, Mines, and Resources -- Canada (EMR), the Society of Automative Engineers (SAE), and General Motors Corporation (GM), the competition consisted of rigorous vehicle testing of exhaust emissions, fuel economy, performance parameters, and vehicle design. Using Sierra 2500 pickup trucks donated by GM, 24 teams of college and university engineers from the US and Canada participated in the event. A gasoline-powered control testing as a reference vehicle. This paper discusses the results of the event, summarizes the technologies employed, and makes observations on the state of natural gas vehicle technology.

  1. The 1991 natural gas vehicle challenge: Developing dedicated natural gas vehicle technology

    SciTech Connect (OSTI)

    Larsen, R.; Rimkus, W. (Argonne National Lab., IL (United States)); Davies, J. (General Motors of Canada Ltd., Toronto, ON (Canada)); Zammit, M. (AC Rochester, NY (United States)); Patterson, P. (USDOE, Washington, DC (United States))

    1992-01-01

    An engineering research and design competition to develop and demonstrate dedicated natural gas-powered light-duty trucks, the Natural Gas Vehicle (NGV) Challenge, was held June 6--11, 1191, in Oklahoma. Sponsored by the US Department of Energy (DOE), Energy, Mines, and Resources -- Canada (EMR), the Society of Automative Engineers (SAE), and General Motors Corporation (GM), the competition consisted of rigorous vehicle testing of exhaust emissions, fuel economy, performance parameters, and vehicle design. Using Sierra 2500 pickup trucks donated by GM, 24 teams of college and university engineers from the US and Canada participated in the event. A gasoline-powered control testing as a reference vehicle. This paper discusses the results of the event, summarizes the technologies employed, and makes observations on the state of natural gas vehicle technology.

  2. Natural gas vehicle technology and fuel performance evaluation program. Final report, November 1994-May 1997

    SciTech Connect (OSTI)

    Bevilacqua, O.M.

    1997-06-01

    This report presents the results of a comprehensive study which examined the impact of natural gas fuel composition variability on natural gas vehicle (NGV) emissions and performance. This study involved eight light-duty NGVs and five different blends of natural gas. The test vehicles were selected to establish a representative sample of state-of-the-art dedicated and bi-fuel models. Fuel blends included common commercial blends, and other gases representing `fringe` compositions. For each vehicle-fuel combination, the tests measured vehicle tailpipe and modal emissions, fuel economy, and driveability. Results show that the impacts of fuel variability are generally minor.

  3. Commercializing Light-Duty Plug-In/Plug-Out Hydrogen-Fuel-Cell Vehicles:“Mobile Electricity” Technologies, Early California Household Markets, and Innovation Management

    E-Print Network [OSTI]

    Williams, Brett D

    2007-01-01

    plots two different fuel-cell applications with dramaticallycommercializing fuel cells in various applications, startingMembrane Fuel Cell System for Transportation Applications:

  4. Commercializing Light-Duty Plug-In/Plug-Out Hydrogen-Fuel-Cell Vehicles: "Mobile Electricity" Technologies, Early California Household Markets, and Innovation Management

    E-Print Network [OSTI]

    Williams, Brett D

    2010-01-01

    plots two different fuel-cell applications with dramaticallycommercializing fuel cells in various applications, startingMembrane Fuel Cell System for Transportation Applications:

  5. Commercializing Light-Duty Plug-In/Plug-Out Hydrogen-Fuel-Cell Vehicles:“Mobile Electricity” Technologies, Early California Household Markets, and Innovation Management

    E-Print Network [OSTI]

    Williams, Brett D

    2007-01-01

    and other “Mobile Energy” innovations in California: Av. Hippel, Democratizing innovation. Cambridge, Mass. : MITusing lessons from the innovation and niche marketing

  6. Commercializing Light-Duty Plug-In/Plug-Out Hydrogen-Fuel-Cell Vehicles: "Mobile Electricity" Technologies, Early California Household Markets, and Innovation Management

    E-Print Network [OSTI]

    Williams, Brett D

    2010-01-01

    Gamble's New Model for Innovation," Harvard Business Review,v. Hippel, Democratizing innovation. Cambridge, Mass. : MITsupport decreases as the innovation is commercialized,

  7. Commercializing Light-Duty Plug-In/Plug-Out Hydrogen-Fuel-Cell Vehicles: "Mobile Electricity" Technologies, Early California Household Markets, and Innovation Management

    E-Print Network [OSTI]

    Williams, Brett D

    2010-01-01

    the perspectives of innovation, product development, andseveral of the innovation and product- and market-the discussion of innovation and Me- product and business

  8. Commercializing Light-Duty Plug-In/Plug-Out Hydrogen-Fuel-Cell Vehicles:“Mobile Electricity” Technologies, Early California Household Markets, and Innovation Management

    E-Print Network [OSTI]

    Williams, Brett D

    2007-01-01

    the perspectives of innovation, product development, andseveral of the innovation and product- and market-the discussion of innovation and Me- product and business

  9. Commercializing Light-Duty Plug-In/Plug-Out Hydrogen-Fuel-Cell Vehicles:“Mobile Electricity” Technologies, Early California Household Markets, and Innovation Management

    E-Print Network [OSTI]

    Williams, Brett D

    2007-01-01

    designed for public battery EV charging could be used, andthe charging hardware from the 1998 Toyota RAV4-EV or abattery EV. Indeed, “On-board conductive charging allows V2G

  10. Commercializing Light-Duty Plug-In/Plug-Out Hydrogen-Fuel-Cell Vehicles: "Mobile Electricity" Technologies, Early California Household Markets, and Innovation Management

    E-Print Network [OSTI]

    Williams, Brett D

    2010-01-01

    designed for public battery EV charging could be used, andthe charging hardware from the 1998 Toyota RAV4-EV or abattery EV. Indeed, “On-board conductive charging allows V2G

  11. Commercializing Light-Duty Plug-In/Plug-Out Hydrogen-Fuel-Cell Vehicles: "Mobile Electricity" Technologies, Early California Household Markets, and Innovation Management

    E-Print Network [OSTI]

    Williams, Brett D

    2010-01-01

    of renewable energy commercialization, another case of as-using renewable energy. The air-quality case, strengthened

  12. Commercializing Light-Duty Plug-In/Plug-Out Hydrogen-Fuel-Cell Vehicles:“Mobile Electricity” Technologies, Early California Household Markets, and Innovation Management

    E-Print Network [OSTI]

    Williams, Brett D

    2007-01-01

    of renewable energy commercialization, another case of as-using renewable energy. The air-quality case, strengthened

  13. Feasibility Study Of Advanced Technology Hov Systems: Volume 2b: Emissions Impact Of Roadway-powered Electric Buses, Light-duty Vehicles, And Automobiles

    E-Print Network [OSTI]

    Miller, Mark A.; Dato, Victor; Chira-chavala, Ted

    1992-01-01

    for: Types of power plants in California Uncontrolledboiler power plants in Southern California. The authorsCalifornia Air Resources Board, Uncontrolled and Controlled Power Industrial Plant

  14. Potential of electric propulsion systems to reduce petroleum use and greenhouse gas emissions in the U.S. light-duty vehicle fleet

    E-Print Network [OSTI]

    Khusid, Michael

    2010-01-01

    In the summer of 2008, the United States of America experienced an oil shock, first of a kind since 1970s. The American public became sensitized to the concerns about foreign oil supply and climate change and global warming, ...

  15. Comments on the Joint Proposed Rulemaking to Establish Light-Duty Vehicle Greenhouse Gas Emission Standards and Corporate Average Fuel Economy Standards

    E-Print Network [OSTI]

    Wenzel, Thomas P

    2010-01-01

    on occupant safety than fuel economy standards that arethe automobile fuel economy standards program, NHTSA docketCorporate Average Fuel Economy Standards Docket No. NHTSA–

  16. Commercializing Light-Duty Plug-In/Plug-Out Hydrogen-Fuel-Cell Vehicles:“Mobile Electricity” Technologies, Early California Household Markets, and Innovation Management

    E-Print Network [OSTI]

    Williams, Brett D

    2007-01-01

    charge shaving, uninterruptible power, and heat generation),past work on uninterruptible/solar power systems and BEVs to

  17. Commercializing Light-Duty Plug-In/Plug-Out Hydrogen-Fuel-Cell Vehicles: "Mobile Electricity" Technologies, Early California Household Markets, and Innovation Management

    E-Print Network [OSTI]

    Williams, Brett D

    2010-01-01

    charge shaving, uninterruptible power, and heat generation),past work on uninterruptible/solar power systems and BEVs to

  18. Feasible Café Standard Increases Using Emerging Diesel and Hybrid-Electric Technologies for Light-Duty Vehicles in the United States

    E-Print Network [OSTI]

    Burke, Andy; Abeles, Ethan

    2004-01-01

    USING EMERGING DIESEL AND HYBRID-ELECTRIC TECHNOLOGIES FORusing Emerging Diesel and Hybrid- Electric Technologies forusing Emerging Diesel and Hybrid- Electric Technologies for

  19. Feasible CAFE Standard Increases Using Emerging Diesel and Hybrid-Electric Technologies for Light-Duty Vehicles in the United States

    E-Print Network [OSTI]

    Burke, Andy; Abeles, Ethan C.

    2004-01-01

    USING EMERGING DIESEL AND HYBRID-ELECTRIC TECHNOLOGIES FORusing Emerging Diesel and Hybrid- Electric Technologies forusing Emerging Diesel and Hybrid- Electric Technologies for

  20. Commercializing Light-Duty Plug-In/Plug-Out Hydrogen-Fuel-Cell Vehicles: "Mobile Electricity" Technologies, Early California Household Markets, and Innovation Management

    E-Print Network [OSTI]

    Williams, Brett D

    2010-01-01

    for example, fuel-cell refurbishment costs resulting fromand capital degradation/refurbishment. They also note twoassociated need for refurbishment). These trade-offs between

  1. Commercializing Light-Duty Plug-In/Plug-Out Hydrogen-Fuel-Cell Vehicles:“Mobile Electricity” Technologies, Early California Household Markets, and Innovation Management

    E-Print Network [OSTI]

    Williams, Brett D

    2007-01-01

    for example, fuel-cell refurbishment costs resulting fromand capital degradation/refurbishment. They also note twoassociated need for refurbishment). These trade-offs between

  2. Electrochemical Capacitors as Energy Storage in Hybrid-Electric Vehicles: Present Status and Future Prospects

    E-Print Network [OSTI]

    Burke, Andy; Miller, Marshall

    2009-01-01

    passenger cars using the ultracapacitors in micro-hybrid,passenger car using both carbon/carbon and hybrid carbonhybrid vehicle designs and operating strategies are shown in Table 1 for a mid-size passenger car.

  3. Experimental Investigation of the Effects of Fuel Characteristics on High Efficiency Clean Combustion (HECC) in a Light-Duty Diesel Engine

    SciTech Connect (OSTI)

    Cho, Kukwon; Han, Manbae; Wagner, Robert M; Sluder, Scott

    2009-01-01

    An experimental study was performed to understand fuel property effects on low temperature combustion (LTC) processes in a light-duty diesel engine. These types of combustion modes are often collectively referred to as high efficiency clean combustion (HECC). A statistically designed set of research fuels, the Fuels for Advanced Combustion Engines (FACE), were used for this study. Engine conditions consistent with low speed cruise (1500 rpm, 2.6 bar BMEP) were chosen for investigating fuel property effects on HECC operation in a GM 1.9-L common rail diesel engine. The FACE fuel matrix includes nine combinations of fuel properties including cetane number (30 to 55), aromatic contents (20 to 45 %), and 90 % distillation temperature (270 to 340 C). HECC operation was achieved with high levels of EGR and adjusting injection parameters, e.g. higher fuel rail pressure and single injection event, which is also known as Premixed Charge Compression Ignition (PCCI) combustion. Engine performance, pollutant emissions, and details of the combustion process are discussed in this paper. Cetane number was found to significantly affect the combustion process with variations in the start of injection (SOI) timing, which revealed that the ranges of SOI timing for HECC operation and the PM emission levels were distinctively different between high cetane number (55) and low cetane number fuels (30). Low cetane number fuels showed comparable levels of regulated gas emissions with high cetane number fuels and had an advantage in PM emissions.

  4. Fact #806: December 2, 2013 Light Vehicle Market Shares, Model...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fact 806: December 2, 2013 Light Vehicle Market Shares, Model Years 1975-2012 In 1975, cars were by far the dominant vehicle style among new light vehicle sales, with a few vans...

  5. Summary of results from the National Renewable Energy Laboratory`s vehicle evaluation data collection efforts

    SciTech Connect (OSTI)

    Whalen, P.; Kelly, K.; Motta, R.; Broderick, J.

    1996-05-01

    The U.S. DOE National Renewable Energy Laboratory conducted a data collection project for light-duty, alternative fuel vehicles (AFVs) for about 4 years. The project has collected data on 10 vehicle models (from the original equipment manufacturers) spanning model years 1991 through 1995. Emissions data have also been collected from a number of vehicles converted to natural gas (CNG) and liquefied petroleum gas (LPG). Most of the vehicles involved in the data collection and evaluation are part of the General Services Administration`s fleet of AFVs. This evaluation effort addressed the performance and reliability, fuel economy, and emissions of light- duty AFVs, with comparisons to similar gasoline vehicles when possible. Driver-reported complaints and unscheduled vehicle repairs were used to assess the performance and reliability of the AFVs compared to the comparable gasoline vehicles. Two sources of fuel economy were available, one from testing of vehicles on a chassis dynamometer, and the other from records of in-service fuel use. This report includes results from emissions testing completed on 169 AFVs and 161 gasoline control vehicles.

  6. Lightweight Composite Materials for Heavy Duty Vehicles

    SciTech Connect (OSTI)

    Pruez, Jacky; Shoukry, Samir; Williams, Gergis; Shoukry, Mark

    2013-08-31

    The main objective of this project is to develop, analyze and validate data, methodologies and tools that support widespread applications of automotive lightweighting technologies. Two underlying principles are guiding the research efforts towards this objective: • Seamless integration between the lightweight materials selected for certain vehicle systems, cost-effective methods for their design and manufacturing, and practical means to enhance their durability while reducing their Life-Cycle-Costs (LCC). • Smooth migration of the experience and findings accumulated so far at WVU in the areas of designing with lightweight materials, innovative joining concepts and durability predictions, from applications to the area of weight savings for heavy vehicle systems and hydrogen storage tanks, to lightweighting applications of selected systems or assemblies in light–duty vehicles.

  7. Onboard Hydrogen/Helium Sensors in Support of the Global Technical Regulation: An Assessment of Performance in Fuel Cell Electric Vehicle Crash Tests

    SciTech Connect (OSTI)

    Post, M. B.; Burgess, R.; Rivkin, C.; Buttner, W.; O'Malley, K.; Ruiz, A.

    2012-09-01

    Automobile manufacturers in North America, Europe, and Asia project a 2015 release of commercial hydrogen fuel cell powered light-duty road vehicles. These vehicles will be for general consumer applications, albeit initially in select markets but with much broader market penetration expected by 2025. To assure international harmony, North American, European, and Asian regulatory representatives are striving to base respective national regulations on an international safety standard, the Global Technical Regulation (GTR), Hydrogen Fueled Vehicle, which is part of an international agreement pertaining to wheeled vehicles and equipment for wheeled vehicles.

  8. Compressed natural gas fueled vehicles: The Houston experience

    SciTech Connect (OSTI)

    Not Available

    1993-12-31

    The report describes the experience of the City of Houston in defining the compressed natural gas fueled vehicle research scope and issues. It details the ways in which the project met initial expectations, and how the project scope, focus, and duration were adjusted in response to unanticipated results. It provides examples of real world successes and failures in efforts to commercialize basic research in adapting a proven technology (natural gas) to a noncommercially proven application (vehicles). Phase one of the demonstration study investigates, develops, documents, and disseminates information regarding the economic, operational, and environmental implications of utilizing compressed natural gas (CNG) in various truck fueling applications. The four (4) truck classes investigated are light duty gasoline trucks, medium duty gasoline trucks, medium duty diesel trucks and heavy duty diesel trucks. The project researches aftermarket CNG conversions for the first three vehicle classes and original equipment manufactured (OEM) CNG vehicles for light duty gasoline and heavy duty diesel classes. In phase two of the demonstration project, critical issues are identified and assessed with respect to implementing use of CNG fueled vehicles in a large vehicle fleet. These issues include defining changes in local, state, and industry CNG fueled vehicle related codes and standards; addressing vehicle fuel storage limitations; using standardized vehicle emission testing procedures and results; and resolving CNG refueling infrastructure implementation issues and related cost factors. The report identifies which CNG vehicle fueling options were tried and failed and which were tried and succeeded, with and without modifications. The conclusions include a caution regarding overly optimistic assessments of CNG vehicle technology at the initiation of the project.

  9. ORIGINAL ARTICLE Car safety seats for children: rear facing for best protection

    E-Print Network [OSTI]

    ORIGINAL ARTICLE Car safety seats for children: rear facing for best protection B Henary, C P between rear-facing (RFCS) and forward-facing (FFCS) car seats for children less than 2 years of age riding in passenger cars, sport utility vehicles, or light trucks were included in the study. Logistic

  10. Queensland's 1.7 million cars use nearly 3 billion litres of petrol

    E-Print Network [OSTI]

    Patzek, Tadeusz W.

    Queensland's 1.7 million cars use nearly 3 billion litres of petrol per year. In December 2001 to lead-free petrol without modification. "I have been running my car on E10 since June and two of my, the EPA's 85 fleet cars will then start using E10, and the facility will be available to vehicles from

  11. eVADER: A Perceptual Approach to Finding Minimum Warning Sound Requirements for Quiet Cars.

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    , such as hybrid and electric vehicles, to pedestrians has become an important issue for public policy [1], car a localization paradigm to test the detectability of hybrid and internal combustion cars by measuring listenereVADER: A Perceptual Approach to Finding Minimum Warning Sound Requirements for Quiet Cars. Ryan

  12. Who Will Buy Electric Cars?

    E-Print Network [OSTI]

    Turrentine, Thomas

    1995-01-01

    new-car annual sales, in a car market that is now about 1.4eaatrtf, uw-ioiheet running car a woman can drive. Standarde Politics: Towards a Green Car Market", 1995. UCTC Diss No.

  13. Keeping Children Safe in Cars

    E-Print Network [OSTI]

    Cooper, Jill

    2004-01-01

    seats manufactured for older cars without shoulder belts,assembled and installed in the car, and that can be trickyimpossible depending on the car’s age and model. Finally,

  14. In-Cylinder Fuel Blending of Gasoline/Diesel for Improved Efficiency and Lowest Possible Emissions on a Multi-Cylinder Light-Duty Diesel Engine

    SciTech Connect (OSTI)

    Curran, Scott; Prikhodko, Vitaly Y; Wagner, Robert M; Parks, II, James E; Cho, Kukwon; Sluder, Scott; Kokjohn, Sage; Reitz, Rolf

    2010-01-01

    In-cylinder fuel blending of gasoline/diesel fuel is investigated on a multi-cylinder light-duty diesel engine as a potential strategy to control in-cylinder fuel reactivity for improved efficiency and lowest possible emissions. This approach was developed and demonstrated at the University of Wisconsin through modeling and single-cylinder engine experiments. The objective of this study is to better understand the potential and challenges of this method on a multi-cylinder engine. More specifically, the effect of cylinder-to-cylinder imbalances, heat rejection, and in-cylinder charge motion as well as the potential limitations imposed by real-world turbo-machinery were investigated on a 1.9-liter four-cylinder engine. This investigation focused on one engine condition, 2300 rpm, 4.2 bar brake mean effective pressure (BMEP). Gasoline was introduced with a port-fuel-injection system. Parameter sweeps included gasoline-to-diesel fuel ratio, intake air mixture temperature, in-cylinder swirl number, and diesel start-of-injection phasing. In addition, engine parameters were trimmed for each cylinder to balance the combustion process for maximum efficiency and lowest emissions. An important observation was the strong influence of intake charge temperature on cylinder pressure rise rate. Experiments were able to show increased thermal efficiency along with dramatic decreases in oxides of nitrogen (NOX) and particulate matter (PM). However, indicated thermal efficiency for the multi-cylinder experiments were less than expected based on modeling and single-cylinder results. The lower indicated thermal efficiency is believed to be due increased heat transfer as compared to the model predictions and suggest a need for improved cylinder-to-cylinder control and increased heat transfer control.

  15. Experimental Investigation of Fuel-Reactivity Controlled Compression Ignition (RCCI) Combustion Mode in a Multi-Cylinder, Light-Duty Diesel Engine

    SciTech Connect (OSTI)

    Cho, Kukwon; Curran, Scott; Prikhodko, Vitaly Y; Sluder, Scott; Parks, II, James E; Wagner, Robert M

    2011-01-01

    An experimental study was performed to provide the combustion and emission characteristics resulting from fuel-reactivity controlled compression ignition (RCCI) combustion mode utilizing dual-fuel approach in a light-duty, multi-cylinder diesel engine. In-cylinder fuel blending using port fuel injection of gasoline before intake valve opening (IVO) and early-cycle, direct injection of diesel fuel was used as the charge preparation and fuel blending strategy. In order to achieve the desired auto-ignition quality through the stratification of the fuel-air equivalence ratio ( ), blends of commercially available gasoline and diesel fuel were used. Engine experiments were performed at an engine speed of 2300rpm and an engine load of 4.3bar brake mean effective pressure (BMEP). It was found that significant reduction in both nitrogen oxide (NOx) and particulate matter (PM) was realized successfully through the RCCI combustion mode even without applying exhaust gas recirculation (EGR). However, high carbon monoxide (CO) and hydrocarbon (HC) emissions were observed. The low combustion gas temperature during the expansion and exhaust processes seemed to be the dominant source of high CO emissions in the RCCI combustion mode. The high HC emissions during the RCCI combustion mode could be due to the increased combustion quenching layer thickness as well as the -stratification at the periphery of the combustion chamber. The slightly higher brake thermal efficiency (BTE) of the RCCI combustion mode was observed than the other combustion modes, such as the conventional diesel combustion (CDC) mode, and single-fuel, premixed charge compression ignition (PCCI) combustion mode. The parametric study of the RCCI combustion mode revealed that the combustion phasing and/or the peak cylinder pressure rise rate of the RCCI combustion mode could be controlled by several physical parameters premixed ratio (rp), intake swirl intensity, and start of injection (SOI) timing of directly injected fuel unlike other low temperature combustion (LTC) strategies.

  16. EcoCAR Challenge: Finish Line

    SciTech Connect (OSTI)

    2011-01-01

    The EcoCAR Challenege is a competition that challenges participating students from across North America to re-engineer a vehicle donated by General Motors. With the goal of minimizing the vehicle's fuel consumption and emissions, while maintaining its utility, safety and performance, teams had to find the best combination of cutting-edge technologies to meet these objectives. In the final year, the vehicles ran through a series of safety and technical tests at GM's Proving Ground in Milford, Michigan very similar to those GM's own production vehicles undergo. As EcoCAR wraps up, it is only the beginning for the next chapter in the DOE's 23-year history of advanced vehicle technology competitions. In April, Assistant Secretary for Policy and International Affairs David Sandalow announced the launch of EcoCAR 2: Plugging into the Future http://www.ecocar2.org/index.html . We look forward to seeing the new and innovative designs that students bring to this challenge and know they will find a way to exceed even our highest expectations.

  17. EcoCAR Challenge: Finish Line

    ScienceCinema (OSTI)

    None

    2013-05-29

    The EcoCAR Challenege is a competition that challenges participating students from across North America to re-engineer a vehicle donated by General Motors. With the goal of minimizing the vehicle's fuel consumption and emissions, while maintaining its utility, safety and performance, teams had to find the best combination of cutting-edge technologies to meet these objectives. In the final year, the vehicles ran through a series of safety and technical tests at GM's Proving Ground in Milford, Michigan very similar to those GM's own production vehicles undergo. As EcoCAR wraps up, it is only the beginning for the next chapter in the DOE's 23-year history of advanced vehicle technology competitions. In April, Assistant Secretary for Policy and International Affairs David Sandalow announced the launch of EcoCAR 2: Plugging into the Future http://www.ecocar2.org/index.html . We look forward to seeing the new and innovative designs that students bring to this challenge and know they will find a way to exceed even our highest expectations.

  18. Light Duty Combustion Research: Advanced Light-Duty Combustion Experiments

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCED MANUFACTURING OFFICE INDUSTRIALU.S.Leadership on Clean Energys oElectrical Energy Storage|

  19. Inter-Vehicle Communication with Platooning

    E-Print Network [OSTI]

    Maguire Jr., Gerald Q.

    is the fossil fuel- consumption of vehicles. Hybrid-cars and all-electric cars are being developed to reduce of the disadvantages of current road systems and vehicles can be removed in the future by using appropriate information and communication technology. A disadvantage that has been considered to be a major problem for many years

  20. Fact #739: August 6, 2012 Light Vehicle Dealership Sales Trends...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    In 2007, almost 60% of sales from an average light vehicle dealership were new cars. New car sales declined to 52.3% of a dealership's sales in 2009, when serviceparts rose...

  1. APPLICATION FOR CAR SHARING PARKING PERMIT 2014/15 (EXETER CAMPUSES)

    E-Print Network [OSTI]

    Bearhop, Stuart

    is correct, and that I am the registered keeper of the vehicle(s) detailed above, and I undertake windscreen of my vehicle in accordance with the instructions determined by the University Council · To display the permit on the vehicle at all times when it is being used for car sharing purposes whilst

  2. Sneaking Interaction Techniques into Electric Vehicles Sebastian Loehmann

    E-Print Network [OSTI]

    Sneaking Interaction Techniques into Electric Vehicles Sebastian Loehmann University of Munich (LMU Due to the release of several electric vehicles (EV) to the car market, the number of sales from regular combustion engine cars to create electric vehicle information systems (EVIS). We argue

  3. Fuel-cycle energy and emissions impacts of tripled fuel-economy vehicles

    SciTech Connect (OSTI)

    Mintz, M. M.; Vyas, A. D.; Wang, M. Q.

    1997-12-18

    This paper presents estimates of the fill fuel-cycle energy and emissions impacts of light-duty vehicles with tripled fuel economy (3X vehicles) as currently being developed by the Partnership for a New Generation of Vehicles (PNGV). Seven engine and fuel combinations were analyzed: reformulated gasoline, methanol, and ethanol in spark-ignition, direct-injection engines; low-sulfur diesel and dimethyl ether in compression-ignition, direct-injection engines; and hydrogen and methanol in fuel-cell vehicles. Results were obtained for three scenarios: a Reference Scenario without PNGVs, a High Market Share Scenario in which PNGVs account for 60% of new light-duty vehicle sales by 2030, and a Low Market Share Scenario in which PNGVs account for half as many sales by 2030. Under the higher of these two, the fuel-efficiency gain by 3X vehicles translated directly into a nearly 50% reduction in total energy demand, petroleum demand, and carbon dioxide emissions. The combination of fuel substitution and fuel efficiency resulted in substantial reductions in emissions of nitrogen oxide (NO{sub x}), carbon monoxide (CO), volatile organic compounds (VOCs), sulfur oxide, (SO{sub x}), and particulate matter smaller than 10 microns (PM{sub 10}) for most of the engine-fuel combinations examined. The key exceptions were diesel- and ethanol-fueled vehicles for which PM{sub 10} emissions increased.

  4. Field assessment of an aluminum intensive passenger car

    SciTech Connect (OSTI)

    Cuenca, R.M.

    1994-12-31

    Ford Motor Co. has made a small batch of ``aluminum intensive vehicles`` (AIV), consisting of mid-size cars (Taurus/Sable) with all-aluminum bodies. The first twenty vehicles were made for internal evaluation at Ford, but the second batch of twenty has been placed on the hands of selected independent users, primarily automotive suppliers, for long term field assessment. The mass reduction achieved in the body of an AIV is shown, and compared with an equivalent standard steel body. Argonne obtained one of these vehicles last October; this is an assessment of the fuel consumption and other operational characteristics of this type of car to date.

  5. Advancing Transportation through Vehicle Electrification - PHEV

    SciTech Connect (OSTI)

    Bazzi, Abdullah; Barnhart, Steven

    2014-12-31

    FCA US LLC viewed the American Recovery and Reinvestment Act (ARRA) as an historic opportunity to learn about and develop PHEV technologies and create the FCA US LLC engineering center for Electrified Powertrains. The ARRA funding supported FCA US LLC’s light-duty electric drive vehicle and charging infrastructure-testing activities and enabled FCA US LLC to utilize the funding on advancing Plug-in Hybrid Electric Vehicle (PHEV) technologies for production on future programs. FCA US LLC intended to develop the next-generations of electric drive and energy batteries through a properly paced convergence of standards, technology, components and common modules. To support the development of a strong, commercially viable supplier base, FCA US LLC also utilized this opportunity to evaluate various designated component and sub-system suppliers. The original proposal of this project was submitted in May 2009 and selected in August 2009. The project ended in December 2014.

  6. BEEST: Electric Vehicle Batteries

    SciTech Connect (OSTI)

    2010-07-01

    BEEST Project: The U.S. spends nearly a $1 billion per day to import petroleum, but we need dramatically better batteries for electric and plug-in hybrid vehicles (EV/PHEV) to truly compete with gasoline-powered cars. The 10 projects in ARPA-E’s BEEST Project, short for “Batteries for Electrical Energy Storage in Transportation,” could make that happen by developing a variety of rechargeable battery technologies that would enable EV/PHEVs to meet or beat the price and performance of gasoline-powered cars, and enable mass production of electric vehicles that people will be excited to drive.

  7. Office of FreedomCAR & Vehicle Technologies

    SciTech Connect (OSTI)

    Cheryl Boucher

    2009-09-30

    High-level objective of this project is to develop nanoparticle based additive technology to improve friction and wear characteristics of engine oil with a long-term focus to enhance durability and efficiency of engines. The project encompasses a detailed investigation of various chemicals that favors stable boundary film formation and therefore reduce friction and wear of engine components. These active chemicals designed as nanomaterials will be surface-stabilized to gain maximum dispersion stability in a lubricant media. This effort shall be focused with the following objectives in mind: develop active nanoparticle composite, optimize process design, detailed tribological testing and surface characterization, physical and chemical characterization of nanomaterials, and limited component level testing to document friction and wear improvements. Additional motivation is to minimize sulfur/phosphorous contents and lower ash forming components in additives and therefore improve aftertreatment functioning and emission. This effort shall be focused, over a two year funding period: Phase-I will be primarily a feasibility study, which includes selection of components for active nanoparticles, design and formulation, and synthesis of the active nanoparticles, optimize process design, physical and chemical characterization of nanomaterials, tribological testing and document friction and wear improvements. As a continuous effort of the Phase-I, Phase-II will focus on the optimization of the identified nanoparticle-based additives specifically for DOE strategic goal - minimizing S and P contents in additives and lowering ash-forming components. Additional efforts will also be invested in extended component level tribo-testing, manufacturing process scale-up, cost evaluation, and commercial viability assessment. In boundary lubrication, mating surfaces in direct physical contact are in surface asperities dimensional scale. These conditions may benefit from the nanometric size of the advanced nanoparticle lubricants in the following ways: (1) by supplying nano to sub-micron size lubricating agents which reduce friction and wear at the asperity contact zone, (2) by enabling strong metal adsorption and easy wetting, (3) by reacting with the surface to form durable lubricating 'transient transfer' films, sustain high loads and also retain under high temperatures, and (4) by enabling all these at minimal cost and great environmental safety. Suitably designed nanomaterials can significantly lower sulfur and phosphorus level in the lubricant additive pack, and therefore positively impact after-treatment catalyst life and exhaust emissions.

  8. Evaluation of aftermarket fuel delivery systems for natural gas and LPG vehicles

    SciTech Connect (OSTI)

    Willson, B.

    1992-09-01

    This study was designed to evaluate the effectiveness of aftermarket fuel delivery systems for vehicles fueled by compressed natural gas (CNG) and liquefied petroleum gas (LPG). Most of the CNG and LPG vehicles studied were converted to the alternative fuel after purchase. There are wide variations in the quality of the conversion hardware and the installation. This leads to questions about the overall quality of the converted vehicles, in terms of emissions, safety, and performance. There is a considerable body of emissions data for converted light-duty vehicles, and a smaller amount for medium- and heavy-duty vehicles. However, very few of these data involve real world conditions, and there is growing concern about in-use emissions. This report also attempts to assess factors that could allow in-use emissions to vary from the ``best-case`` results normally reported. The study also addresses issues of fuel supply, fuel composition, performance, safety, and warranty waivers. The report is based on an extensive literature and product survey and on the author`s experience with fuel delivery systems for light-duty vehicles.

  9. Evaluation of aftermarket fuel delivery systems for natural gas and LPG vehicles

    SciTech Connect (OSTI)

    Willson, B. )

    1992-09-01

    This study was designed to evaluate the effectiveness of aftermarket fuel delivery systems for vehicles fueled by compressed natural gas (CNG) and liquefied petroleum gas (LPG). Most of the CNG and LPG vehicles studied were converted to the alternative fuel after purchase. There are wide variations in the quality of the conversion hardware and the installation. This leads to questions about the overall quality of the converted vehicles, in terms of emissions, safety, and performance. There is a considerable body of emissions data for converted light-duty vehicles, and a smaller amount for medium- and heavy-duty vehicles. However, very few of these data involve real world conditions, and there is growing concern about in-use emissions. This report also attempts to assess factors that could allow in-use emissions to vary from the best-case'' results normally reported. The study also addresses issues of fuel supply, fuel composition, performance, safety, and warranty waivers. The report is based on an extensive literature and product survey and on the author's experience with fuel delivery systems for light-duty vehicles.

  10. Bringing Electric Cars to Market

    E-Print Network [OSTI]

    Sperling, Daniel

    1995-01-01

    as promising alterna- tives to cars driven by internalnot only battery-powered cars, whose ultimate role may beElectric 1 QQ5). Studies, Cars" in In response to these

  11. Gearing Up for Electric Cars

    E-Print Network [OSTI]

    Sperling, Daniel

    1994-01-01

    James MacKenzie, The Keys to the Car Washing- ton. D C WorldGearing Up for Electric Cars Daniel Sperhng Reprint UCTC Noor Gearing Up for Electric Cars Daniel Sperling Department

  12. Driving Safely In Smart Cars

    E-Print Network [OSTI]

    Puri, Anuj; Varaiya, Pravin

    1995-01-01

    Control of the Lead Car of a Platoon. IEEE Transactions on1993. Var93 P.Varaiya. Smart Cars on Smart Roads: ProblemsDriving Safely in Smart Cars Anuj Puri, Pravin Varaiya

  13. Car buyers and fuel economy?

    E-Print Network [OSTI]

    Turrentine, Tom; Kurani, Kenneth S

    2007-01-01

    Fuel ef?ciency; Automobiles; Car buyers 1. Introduction 1.1.M. , ‘‘We probably drive each car about 7000 or 6000 milesgallons per year [for one car]; B. thinks this might be too

  14. Carly Wilkins | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    development consulting firm. Carly graduated from University of Maryland, Baltimore County with her BA in Visual Arts. When Carly isn't in the office creating...

  15. Vehicle Cost Calculator Helps You Add Up the Savings

    Broader source: Energy.gov [DOE]

    When most people go to the car dealership, they take a hard look at the vehicle’s window sticker. But that initial price doesn’t tell the whole story.

  16. Fact #637: August 23, 2010 World Motor Vehicle Production

    Broader source: Energy.gov [DOE]

    The number of vehicles produced, including cars, trucks, and buses, rose substantially from 1950 to 2005. In 1950, the majority of the vehicles were produced in the U.S. and Western Europe. In 2009...

  17. Fact #601: December 14, 2009 World Motor Vehicle Production

    Broader source: Energy.gov [DOE]

    The number of vehicles produced, including cars, trucks, and buses, has risen substantially from 1950 to 2008. In 1950, the majority of the vehicles were produced in the U.S. and Western Europe. In...

  18. Lie Group Integrators for Animation and Control of Vehicles Marin Kobilarov Keenan Crane

    E-Print Network [OSTI]

    Grinspun, Eitan

    dynamics such as helicopters, boats, and cars. Moti- vated by recent developments in discrete geometric environment, such as a car, helicopter, or boat. While vehicles constitute a highly visible component for all sorts of vehicles, including cars, boats, and helicopters. These Lie group-based integrators

  19. Materials Technical Team Roadmap

    SciTech Connect (OSTI)

    none,

    2013-08-01

    Roadmap identifying the efforts of the Materials Technical Team (MTT) to focus primarily on reducing the mass of structural systems such as the body and chassis in light-duty vehicles (including passenger cars and light trucks) which enables improved vehicle efficiency regardless of the vehicle size or propulsion system employed.

  20. Master Thesis Proposal: Simulation of Vehicle

    E-Print Network [OSTI]

    Zhao, Yuxiao

    of the engine or the battery in a hybrid electric vehicle determines how effective the components are used factors. If a vehicle manufacturer wants to do tests with varying combinations of driver models, vehicle. · Possibly focus more on passenger cars or on heavy-duty-trucks. · Documentation and presentation of results

  1. 2015 Summer STEM Program : Car to Car Communication

    E-Print Network [OSTI]

    Fernandez, Eduardo

    student will race their car to see which one travels the farthest Tuesday -Present the experiment kit#12;2015 Summer STEM Program : Car to Car Communication Instructors: Monika Rathod, Ph.D. and Imad Mahgoub, Ph.D. Week One: June 8 - 12 Would you like to build a prototype car that is able to talk to other

  2. Advanced Technology Vehicle Testing

    SciTech Connect (OSTI)

    James Francfort

    2004-06-01

    The goal of the U.S. Department of Energy's Advanced Vehicle Testing Activity (AVTA) is to increase the body of knowledge as well as the awareness and acceptance of electric drive and other advanced technology vehicles (ATV). The AVTA accomplishes this goal by testing ATVs on test tracks and dynamometers (Baseline Performance testing), as well as in real-world applications (Fleet and Accelerated Reliability testing and public demonstrations). This enables the AVTA to provide Federal and private fleet managers, as well as other potential ATV users, with accurate and unbiased information on vehicle performance and infrastructure needs so they can make informed decisions about acquiring and operating ATVs. The ATVs currently in testing include vehicles that burn gaseous hydrogen (H2) fuel and hydrogen/CNG (H/CNG) blended fuels in internal combustion engines (ICE), and hybrid electric (HEV), urban electric, and neighborhood electric vehicles. The AVTA is part of DOE's FreedomCAR and Vehicle Technologies Program.

  3. Fuel-cycle energy and emissions impacts of tripled fuel economy vehicles

    SciTech Connect (OSTI)

    Mintz, M.M.; Wang, M.Q.; Vyas, A.D.

    1998-12-31

    This paper presents estimates of the full cycle energy and emissions impacts of light-duty vehicles with tripled fuel economy (3X vehicles) as currently being developed by the Partnership for a New Generation of Vehicles (PNGV). Seven engine and fuel combinations were analyzed: reformulated gasoline, methanol, and ethanol in spark-ignition, direct-injection engines; low sulfur diesel and dimethyl ether in compression-ignition, direct-injection engines; and hydrogen and methanol in fuel-cell vehicles. The fuel efficiency gain by 3X vehicles translated directly into reductions in total energy demand, petroleum demand, and carbon dioxide emissions. The combination of fuel substitution and fuel efficiency resulted in substantial reductions in emissions of nitrogen oxide, carbon monoxide, volatile organic compounds, sulfur oxide, and particulate matter smaller than 10 microns, particularly under the High Market Share Scenario.

  4. Sports Car Club 

    E-Print Network [OSTI]

    Unknown

    2011-08-17

    This work is devoted to formulation and development of a laser spectroscopic technique for rapid detection of biohazards, such as Bacillus anthracis spores. Coherent anti-Stokes Raman scattering (CARS) is used as an underlying process for active...

  5. Towards CARS Endoscopy Franois Lgar*

    E-Print Network [OSTI]

    Xie, Xiaoliang Sunney

    Towards CARS Endoscopy François Légaré* Center for Nanoscale Systems and Department of Chemistry provide a proof-of-principle demonstration of CARS endoscopy. The design utilizes a single mode optical characteristics at intensities needed for endoscopy. CARS endoscopic images are recorded by collecting the epi-CARS

  6. Making CARS better Max Zimmerleya

    E-Print Network [OSTI]

    Potma, Eric Olaf

    Making CARS better Max Zimmerleya , Hyun Min Kima , Desiré Whitmorea , Vishnu Vardhan is presented of recent trends in coherent anti-Stokes Raman scattering (CARS) microscopy. We briefly discuss the influence of tissue scattering on the CARS signal, methods for controlling the CARS emission and prospects

  7. DOE Hydrogen Storage Technical Performance Targets for Light...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Light-Duty Vehicles DOE Hydrogen Storage Technical Performance Targets for Light-Duty Vehicles This table summarizes technical performance targets for hydrogen storage systems...

  8. Target Explanation Document: Onboard Hydrogen Storage for Light...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Target Explanation Document: Onboard Hydrogen Storage for Light-Duty Fuel Cell Vehicles Target Explanation Document: Onboard Hydrogen Storage for Light-Duty Fuel Cell Vehicles This...

  9. Lie Group Integrators for Animation and Control of Vehicles

    E-Print Network [OSTI]

    Desbrun, Mathieu

    of vehicles with complex dynamics such as helicopters, boats, and cars. Motivated by recent developments and interacts with its environment, such as a car, helicopter, or boat. While vehicles constitute a highly, a helicopter, a boat, and a snake-board, and demonstrate numerical superiority compared to traditional Euler

  10. Study Pinpoints Sources of Polluting Vehicle Emissions (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2012-03-01

    Unburned lubricant produces 60%-90% of organic carbon emissions. While diesel fuel is often viewed as the most polluting of conventional petroleum-based fuels, emissions from gasoline engines can more significantly degrade air quality. Gasoline exhaust is at least as toxic on a per-unit-mass basis as diesel exhaust, and contributes up to 10 times more particulate matter (PM) to the emission inventory. Because emissions from both fuels can gravely impact health and the environment, researchers at the National Renewable Energy Laboratory (NREL) launched a study to understand how these pollutants relate to fuels, lubricants, and engine operating conditions. NREL's Collaborative Lubricating Oil Study on Emissions (CLOSE) project tested a variety of vehicles over different drive cycles at moderate (72 F) and cold (20 F) temperatures. Testing included: (1) Normal and high-emitting light-, medium-, and heavy-duty vehicles; (2) Gasoline, diesel, and compressed natural gas (CNG)-powered vehicles; (3) New and aged lubricants representative of those currently on the market; and (4) Gasoline containing no ethanol, E10, Texas-mandated low-emission diesel fuel, biodiesel, and CNG. The study confirmed that normally functioning emission control systems for gasoline light-duty vehicles are very effective at controlling organic carbon (OC) emissions. Diesel vehicles without aftertreatment emission control systems exhibited OC emissions approximately one order of magnitude higher than gasoline vehicles. High-emitter gasoline vehicles produced OC emissions similar to diesel vehicles without exhaust aftertreatment emission control. Exhaust catalysts combusted or converted more than 75% of lubricating oil components in the exhaust gases. Unburned crankcase lubricant made up 60%-90% of OC emissions. This OC represented 20%-50% of emitted PM in all but two of the vehicles. Three-way catalysts proved effective at reducing most of the OC. With high PM emitters or vehicles with deteriorated aftertreatment, high-molecular-weight fuel components and unburned lubricant were emitted at higher rates than in vehicles in good repair, with functioning emissions systems. Light-duty gasoline, medium-duty diesel, and heavy-duty natural gas vehicles produced more particles with fresh oil than with aged oil. The opposite trend was observed in light- and medium-duty high PM emitters. This effect was not readily apparent with heavy-duty diesel vehicles, perhaps because the lubricant represented a much smaller fraction of the total PM in those trucks.

  11. Modeling design changes in vehicle assembly systems : platform transition strategies and manufacturing flexibility

    E-Print Network [OSTI]

    Wüstemeyer, Christoph

    2014-01-01

    Driven by rising environmental and geopolitical concerns, regulations have been put in place over the last decade to compel car makers to lower the CO2 emissions of their cars. Due to these increasingly stringent vehicle ...

  12. CREATING A LOW-COST AUTONOMOUS VEHICLE Richard W. Wall Jerry Bennett, Greg Eis,

    E-Print Network [OSTI]

    Idaho, University of

    . The platform for developing this control system was a radio- controlled model car. II. NAVIGATION To navigate the design of a low budget autonomous vehicle using a modified radio control car chassis equipped with a GPS

  13. Fact #715: February 20, 2012 The Average Age of Light Vehicles Continues to Rise

    Broader source: Energy.gov [DOE]

    The average age for cars and light trucks continues to rise as consumers hold onto their vehicles longer. Between 1995 and 2011, the average age for cars increased by 32% from 8.4 years to 11.1...

  14. Driving and passengering: notes on the ordinary organisation of car travel 

    E-Print Network [OSTI]

    Laurier, Eric; Lorimer, Hayden; Brown, Barry; Jones, Owain; Juhlin, Oskar; Noble, Allyson; Perry, Mark; Pica, Daniele; Sormani, Philippe; Strebel, Ignaz; Swan, Laurel; Taylor, Alex S; Watts, Laura; Weilenmann, Alexandra

    2008-01-01

    We spend ever increasing periods of our lives travelling in cars, yet quite what it is we do while travelling, aside from driving the vehicle itself, is largely overlooked. Drawing on analyses of video records of a series ...

  15. Autonomous Golf Cars for Public Trial of Mobility-on-Demand Service

    E-Print Network [OSTI]

    Frazzoli, Emilio

    We detail the design of autonomous golf cars which were used in public trials in Singapore’s Chinese and Japanese Gardens, for the purpose of raising public awareness and gaining user acceptance of autonomous vehicles. The ...

  16. Ohio State University Races to the Finish as the Winner of EcoCAR...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    GM provided each team with a 2013 Chevrolet Malibu to transform into an advanced plug-in hybrid vehicle that can compete with the most fuel-efficient cars on the market. The teams...

  17. Project Information Form Project Title Eco-Driving to Reduce Emissions Cars (Behavioral Focus)

    E-Print Network [OSTI]

    California at Davis, University of

    Project Information Form Project Title Eco-Driving to Reduce Emissions ­ Cars (Behavioral Focus) presently understood potential of feedback to vehicle drivers to reduce on-road energy use and emissions

  18. Fact #726: May 7, 2012 SUVs: Are They Cars or Trucks?

    Broader source: Energy.gov [DOE]

    The Corporate Average Fuel Economy (CAFE) Standards set for model years (MY) 2011 through 2016 include small, 2-wheel drive sport utility vehicles (SUVs) with cars instead of light trucks. Until...

  19. Fact #647: November 1, 2010 Sales Shifting from Light Trucks to Cars

    Broader source: Energy.gov [DOE]

    From 2005 to 2009 light vehicle sales have gradually shifted toward cars over light trucks. The graph below shows this trend broken down by the major manufacturers. This trend is more evident among...

  20. Fact #597: November 16, 2009 Median Age of Cars and Trucks Rising in 2008

    Broader source: Energy.gov [DOE]

    The median age of cars and trucks in the U.S. continued to grow in 2008. Due to the economic climate and high gasoline prices that summer, consumers held onto their vehicles longer and delayed new...

  1. Capstone Senior Design 2012-13 EcoCAR2: Mechanical (1) Thomas Bradley

    E-Print Network [OSTI]

    Connors, Daniel A.

    Capstone Senior Design 2012-13 #12;·EcoCAR2: Mechanical (1) Thomas Bradley ·EcoCAR2: User Interface Vehicle Challenge (7) Steven Schaeffer ·AFRL: Bridge Design Challenge (8) Tammy Donahue #12;·Wheelchair (17) Mitchell Stansloski ·Pioneer Engin.: Machinery Health Monitoring Inst.(18) Mitchell Stansloski

  2. Vehicle Technologies Office: Lightweighting Video Text Version

    Broader source: Energy.gov [DOE]

    This is a text version of the Motorweek video segment Materials Technology / Vehicle Lightweighting, which aired on April 21, 2014. The full video is on the Lightweight Materials for Cars and...

  3. Fuel Efficiency of New European HD Vehicles

    Broader source: Energy.gov [DOE]

    Presentation given at the 2007 Diesel Engine-Efficiency & Emissions Research Conference (DEER 2007). 13-16 August, 2007, Detroit, Michigan. Sponsored by the U.S. Department of Energy's (DOE) Office of FreedomCAR and Vehicle Technologies (OFCVT).

  4. Electric and Hydrogen Vehicles Past and Progress

    E-Print Network [OSTI]

    Kammen, Daniel M.

    in performance · Practical NiMH batteries did not yet exist · Production hybrid cars did not yet exist · Andy · Transportation Propulsion, Fuels, & Emissions ­ Electric-drive vehicles (including plug-in hybrid and fuel Research (IMR) · Intelligent Transportation Systems (ITS) ­ Smart cars, smart parking, goods movement

  5. Consumer preferences for electric vehicles. Final report

    SciTech Connect (OSTI)

    Garrison, W.L.; Calfee, J.E.; Bruck, H.W.

    1986-06-01

    A small-sample survey of consumer preferences for a second car - featuring both conventional and electric vehicle choices - indicates a proelectric bias. The potential of electric cars in the utility market largely depends on dramatic improvements in battery technology and the right mix of electricity and gasoline prices.

  6. TTrraavveell GGuuiiddee 1. Student Affairs REQUIRES overnight lodging when driving an Avis vehicle over 500 miles.

    E-Print Network [OSTI]

    Ronquist, Fredrik

    TTrraavveell GGuuiiddee 1. Student Affairs REQUIRES overnight lodging when driving an Avis vehicle over 500 miles. 2. Avis car rental (state contract) The vehicle is automatically covered under.) This will negate the contract and insurance coverage. You must use a compact car unless a different vehicle

  7. Alternative fuels for vehicles fleet demonstration program final report. Volume 1: Summary

    SciTech Connect (OSTI)

    NONE

    1997-03-01

    The Alternative Fuels for Vehicles Fleet Demonstration Program (AFV-FDP) was a multiyear effort to collect technical data for use in determining the costs and benefits of alternative-fuel vehicles in typical applications in New York State. During 3 years of collecting data, 7.3 million miles of driving were accumulated, 1,003 chassis-dynamometer emissions tests were performed, 862,000 gallons of conventional fuel were saved, and unique information was developed about garage safety recommendations, vehicle performance, and other topics. Findings are organized by vehicle and fuel type. For light-duty compressed natural gas (CNG) vehicles, technology has evolved rapidly and closed-loop, electronically-controlled fuel systems provide performance and emissions advantages over open-loop, mechanical systems. The best CNG technology produces consistently low tailpipe emissions versus gasoline, and can eliminate evaporative emissions. Reduced driving range remains the largest physical drawback. Fuel cost is low ($/Btu) but capital costs are high, indicating that economics are best with vehicles that are used intensively. Propane produces impacts similar to CNG and is less expensive to implement, but fuel cost is higher than gasoline and safety codes limit use in urban areas. Light-duty methanol/ethanol vehicles provide performance and emissions benefits over gasoline with little impact on capital costs, but fuel costs are high. Heavy-duty CNG engines are evolving rapidly and provide large reductions in emissions versus diesel. Capital costs are high for CNG buses and fuel efficiency is reduced, but the fuel is less expensive and overall operating costs are about equal to those of diesel buses. Methanol buses provide performance and emissions benefits versus diesel, but fuel costs are high. Other emerging technologies were also evaluated, including electric vehicles, hybrid-electric vehicles, and fuel cells.

  8. Review: Car Country: An Environmental History

    E-Print Network [OSTI]

    Karalus, Daniel E

    2013-01-01

    Review: Car Country: An Environmental History By ChristopherUSA Wells, Christopher W. Car Country: An Environmentalabout his experiences with cars. He describes the joy of

  9. Car Access and Welfare-To-Work

    E-Print Network [OSTI]

    Ong, Paul M.

    2002-01-01

    Problems Related to Child Car, Transportation, and Illness30. March. Ong, Paul "Work and Car Ownership Among WelfareRice (2000). "The Effect of Car Ownershipon the Employment

  10. Lifecycle Analysis of Air Quality Impacts of Hydrogen and Gasoline Transportation Fuel Pathways

    E-Print Network [OSTI]

    Wang, Guihua

    2008-01-01

    of light duty vehicles to urban air pollution are estimatedof on-road light duty vehicles to urban air pollution. Theof light duty fleets to urban air pollution using travel

  11. Why do we power our cars with gas? NBC Chicago

    SciTech Connect (OSTI)

    2009-01-01

    Why can we only power our cars with gas? NBC-Chicago tackles this question with a trip to Argonne National Lab, where work on the Omnivorous Engine (runs on any blend of ethanol, butanol, and gasoline) and electric vehicles continues. A segment from NBC-Chicago's "Good Question" series.

  12. Why do we power our cars with gas? NBC Chicago

    ScienceCinema (OSTI)

    None

    2013-04-19

    Why can we only power our cars with gas? NBC-Chicago tackles this question with a trip to Argonne National Lab, where work on the Omnivorous Engine (runs on any blend of ethanol, butanol, and gasoline) and electric vehicles continues. A segment from NBC-Chicago's "Good Question" series.

  13. EVS24 International Battery, Hybrid and Fuel Cell Electric Vehicle Symposium 1 Stavanger, Norway, May 13-16, 2009

    E-Print Network [OSTI]

    Boyer, Edmond

    EVS24 International Battery, Hybrid and Fuel Cell Electric Vehicle Symposium 1 EVS24 Stavanger, Norway, May 13-16, 2009 Site selection for electric cars of a car-sharing service Luminita Ion1 , T. Cucu is the car-sharing implementation. Car- sharing is defined as a self service which allows to each subscriber

  14. H ig h T e m p e ra tu re a n d F u e l Im p a c t o n H C E m issio n s

    E-Print Network [OSTI]

    Denver, University of

    's 2003 IM240 program data was conducted ! 427,146 Light Duty Vehicles ! 311,942 Light Duty Trucks =90Degrees Model Year =90 Degrees N=427,146 Overall Light Duty Truck Fail Rate Light Duty Vehicles and Light Duty Trucks Jan. 2003 ­ Sept. 2003 0% 10% 20% 30% 40% 50% 60% 70% 80

  15. Title: Optimal Design of a Thermoelectric Cooling/Heating for Car Seat Comfort Developed by Dr. HoSung Lee on 10/18/2014

    E-Print Network [OSTI]

    Lee, Ho Sung

    1 Title: Optimal Design of a Thermoelectric Cooling/Heating for Car Seat Comfort Developed by Dr. HoSung Lee on 10/18/2014 Car seat comfort is becoming more and more a competitive issue, moving optional to standard vehicle equipment. From early 1960s, it was shown that aerated car seats improved

  16. Blasting Rocks and Blasting Cars Applied Engineering

    SciTech Connect (OSTI)

    LBNL

    2008-07-02

    June 30, 2004 Berkeley Lab lecture: Deb Hopkins works with industries like automobile, mining and paper to improve their evaluation and measuring techniques. For several years, she has coordinated ... June 30, 2004 Berkeley Lab lecture: Deb Hopkins works with industries like automobile, mining and paper to improve their evaluation and measuring techniques. For several years, she has coordinated a program at Berkeley Lab funded under the Partnership for a New Generation of Vehicles, a collaboration between the federal government and the U.S. Council for Automotive Research. Nondestructive evaluation techniques to test a car's structural integrity are being developed for auto assembly lines.

  17. Blasting Rocks and Blasting Cars Applied Engineering

    ScienceCinema (OSTI)

    LBNL

    2009-09-01

    June 30, 2004 Berkeley Lab lecture: Deb Hopkins works with industries like automobile, mining and paper to improve their evaluation and measuring techniques. For several years, she has coordinated ... June 30, 2004 Berkeley Lab lecture: Deb Hopkins works with industries like automobile, mining and paper to improve their evaluation and measuring techniques. For several years, she has coordinated a program at Berkeley Lab funded under the Partnership for a New Generation of Vehicles, a collaboration between the federal government and the U.S. Council for Automotive Research. Nondestructive evaluation techniques to test a car's structural integrity are being developed for auto assembly lines.

  18. Motorization, Vehicle Purchase and Use Behavior in China: A Shanghai Survey????????????????????????????

    E-Print Network [OSTI]

    Ni, Jason

    2008-01-01

    powered by electricity or LPG. The “APV” is called as “Vehicle (____electricity/_____LPG) Motorcycle Car (_______by fuel (gasoline, electricity, LPG, etc. ) instead of human

  19. Fact #586: August 31, 2009 New Vehicle Fuel Economies by Vehicle Type

    Broader source: Energy.gov [DOE]

    The average fuel economy for new cars climbed to over 30 miles per gallon (mpg) in 2008 while the average for new pickup trucks stayed around 20 mpg. For new vans and sport utility vehicles (SUVs)...

  20. Apps for Vehicles: What sort of vehicle data isn't readily available...

    Open Energy Info (EERE)

    than the CAN messages used by all other in-vehicle systems. When you turn on your car, the CAN bus is very busy with so-called "normal" messages. For example, the engine...

  1. Algorithmic + Geometric characterization of CAR

    E-Print Network [OSTI]

    Gill, Richard D.

    Algorithmic + Geometric characterization of CAR (Coarsening at Random) Richard Gill - Utrecht but independent) CCAR 3 door problem X=door with car behind Y=two doors still closed = {your first choice, other door left closed} 3 door problem X=door with car behind Y=(your first choice, other door left closed

  2. Subcommittee meets and reviews CAR

    E-Print Network [OSTI]

    Alpay, S. Pamir

    Subcommittee meets and reviews CAR Does the course satisfy Content Area criteria? Yes errors in the CAR, separately send a list of corrections for Karen to make edits Karen will forward IF you are comfortable doing so, you may CC the course's instructor also Decide whether the CAR

  3. Effect of Information Modality on Geographic Cognition in Car Navigation Systems

    E-Print Network [OSTI]

    McCrickard, Scott

    Effect of Information Modality on Geographic Cognition in Car Navigation Systems Maxim Moldenhauer: Geographic cognition, notification systems, in-vehicle information systems 1 Introduction The introduction of information systems into vehicles is a growing trend that can provide drivers with useful tools for navigation

  4. Simulation of catalytic oxidation and selective catalytic NOx reduction in lean-exhaust hybrid vehicles

    SciTech Connect (OSTI)

    Gao, Zhiming; Daw, C Stuart; Chakravarthy, Veerathu K

    2012-01-01

    We utilize physically-based models for diesel exhaust catalytic oxidation and urea-based selective catalytic NOx reduction to study their impact on drive cycle performance of hypothetical light-duty diesel powered hybrid vehicles. The models have been implemented as highly flexible SIMULINK block modules that can be used to study multiple engine-aftertreatment system configurations. The parameters of the NOx reduction model have been adjusted to reflect the characteristics of Cu-zeolite catalysts, which are of widespread current interest. We demonstrate application of these models using the Powertrain System Analysis Toolkit (PSAT) software for vehicle simulations, along with a previously published methodology that accounts for emissions and temperature transients in the engine exhaust. Our results illustrate the potential impact of DOC and SCR interactions for lean hybrid electric and plug-in hybrid electric vehicles.

  5. Fact #660: January 31, 2011 Light Vehicle Sales Rise in 2010...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    January 31, 2011 Light Vehicle Sales Rise in 2010 The total sales of light vehicles (cars and light trucks) in the U.S. have ranged between 10 million and 17 million over the...

  6. Fact #886: August 17, 2015 New Light-Vehicle Leasing Penetration...

    Broader source: Energy.gov (indexed) [DOE]

    New Light-Vehicle Leasing Penetration for 2014 fotw886web.xlsx More Documents & Publications Fact 847: November 17, 2014 Cars were Over 50% of Light Vehicle Production in 2014 -...

  7. Getting Ready for Electric Drive: the Plug-In Vehicle and Infrastructure Workshop

    Office of Energy Efficiency and Renewable Energy (EERE)

    Local government leaders, utilities, car makers and electric-vehicle infrastructure providers came together to discuss how they can best coordinate their efforts at the Plug-in Vehicle and Infrastructure Workshop.

  8. Drive Cycle Powertrain Efficiencies and Trends Derived From EPA Vehicle Dynamometer Results

    SciTech Connect (OSTI)

    Thomas, John F

    2014-01-01

    Vehicle manufacturers among others are putting great emphasis on improving fuel economy (FE) of light-duty vehicles in the U.S. market, with significant FE gains being realized in recent years. The U.S. Environmental Protection Agency (EPA) data indicates that the aggregate FE of vehicles produced for the U.S. market has improved by over 20% from model year (MY) 2005 to 2013. This steep climb in FE includes changes in vehicle choice, improvements in engine and transmission technology, and reducing aerodynamic drag, rolling resistance, and parasitic losses. The powertrain related improvements focus on optimizing in-use efficiency of the transmission and engine as a system, and may make use of what is termed downsizing and/or downspeeding. This study explores quantifying recent improvements in powertrain efficiency, viewed separately from other vehicle alterations and attributes (noting that most vehicle changes are not completely independent). A methodology is outlined to estimate powertrain efficiency for the U.S city and highway cycle tests using data from the EPA vehicle database. Comparisons of common conventional gasoline powertrains for similar MY 2005 and 2013 vehicles are presented, along with results for late-model hybrid electric vehicles, the Nissan Leaf, Chevy Volt and other selected vehicles.

  9. Real-Time Particulate Mass Measurements Pre and Post Diesel Particulat...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Pre and Post Diesel Particulate Filters for LIght-Duty Diesel Vehicles Real-Time Particulate Mass Measurements Pre and Post Diesel Particulate Filters for LIght-Duty...

  10. THE TRAVEL AND ENVIRONMENTAL IMPLICATIONS OF SHARED AUTONOMOUS VEHICLES, USING AGENT-BASED MODEL SCENARIOS

    E-Print Network [OSTI]

    Kockelman, Kara M.

    the rental) like Car2Go and ZipCar have quickly expanded, with the number of U.S. users doubling every one traveler wait times. Next, the model is run over one-hundred days, with driverless vehicles ferrying. As of September 2013, Google had logged over 500,000 miles driven on public roadways using cars equipped with self

  11. Supplement for "Secondary organic aerosol1 formation from idling gasoline passenger vehicle2

    E-Print Network [OSTI]

    Meskhidze, Nicholas

    40 °C. This facilitates evaporation and1 degradation of organic contaminants on the chamber walls passenger vehicles were tested at idling, the three cars selected8 represented three different European emission classes. All tested vehicles used three way9 catalysts. In the idling case, the cars were driven

  12. ANALYSIS OF AUTO INDUSTRY AND CONSUMER RESPONSE TO REGULATIONS AND TECHNOLOGICAL CHANGE, AND CUSTOMIZATION OF CONSUMER RESPONSE MODELS IN SUPPORT OF AB 1493 RULEMAKING CASE STUDY OF LIGHT-DUTY VEHICLES IN EUROPE

    E-Print Network [OSTI]

    Chen, Belinda; Sperling, Dan

    2004-01-01

    determinant. Lower diesel fuel prices offer the potentialItaly, and Spain low diesel fuel prices relative to gasolineand Sweden higher diesel fuel prices are discouraging the

  13. Analysis of Auto Industry and Consumer Response to Regulations and Technological Change, and Customization of Consumer Response Models in Support of AB 1493 Rulemaking: Case Study of Light-Duty Diesel Vehicles in Europe

    E-Print Network [OSTI]

    Chen, Belinda; Sperling, Dan

    2004-01-01

    determinant. Lower diesel fuel prices offer the potentialItaly, and Spain low diesel fuel prices relative to gasolineand Sweden higher diesel fuel prices are discouraging the

  14. Are SUVs Really Safer Than Cars?

    E-Print Network [OSTI]

    Ross, Marc; Wenzel, Tom

    2002-01-01

    wrong. Many existing small-car models, built primarily byAre SUVs Really Safer Than Cars? BY TOM WENZEL AND MARC ROSSSUVs really are safer than cars, as some have alleged, we

  15. What If Cars Could Drive Themselves?

    E-Print Network [OSTI]

    Shladover, Steven E.

    2000-01-01

    What If Cars Could Drive Themselves? BY STEVEN E.SHLADOVER E V E N W H E N cars were still young, futuristssome of the implications of cars that could drive t h e m s

  16. Issue 5: High Interest in Hybrid Cars

    E-Print Network [OSTI]

    Ong, Paul M.; Haselhoff, Kim

    2005-01-01

    Reports. (2005). “Which Cars Would People Get Again? ” Con-Motor Trend Announces 2004 Car of the Year. ” Motor Trend,Oregon Hybrid Gas-Electric Car Owners. July. U.S. Internal

  17. Southern California: The Detroit of Electric Cars?

    E-Print Network [OSTI]

    Scott, Allen J.

    1993-01-01

    University o f An early alternative to an electric car.THE DETROIT O F ELECTRIC CARS? BY A L L E N J . S C O T TUnited States where domestic car producers are now planning

  18. Issue 5: High Interest in Hybrid Cars

    E-Print Network [OSTI]

    Ong, Paul M.; Haselhoff, Kim

    2005-01-01

    2005). “High Interest in Hybrid Cars. ” SCS Fact Sheet, Vol.May 2005 High Interest in Hybrid Cars I NTRODUCTION PublicThe unique features of a hybrid car mean that it is more

  19. Car Ownership and Welfare-to-Work

    E-Print Network [OSTI]

    Ong, Paul M.

    2001-01-01

    Problems Related to Child Car, Transportation, and IllnessCar Ownership and Welfare-to-Work Paul M Ong Reprint UCTC Nofor conte~ts thereof oruse Car Ownership and Welfare-to-Work

  20. Lane estimation for autonomous vehicles using vision and LIDAR

    E-Print Network [OSTI]

    Huang, Albert Shuyu

    2010-01-01

    Autonomous ground vehicles, or self-driving cars, require a high level of situational awareness in order to operate safely and eciently in real-world conditions. A system able to quickly and reliably estimate the location ...

  1. Plug-In Hybrid Electric Vehicles | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    electricity production and transmission capacity could fuel 84 percent of the 198 million cars, pickup trucks, and sport utility vehicles (SUVs) in the nation if they were plug-in...

  2. Simulation Algorithms in Vehicle System Dynamics MARTIN ARNOLD

    E-Print Network [OSTI]

    be considered as integration platform for simulation in vehicle system dynamics. In the present report we report the analysis of distributed physical phenomena like the elastic deformation of car components

  3. Integrated Vehicle and Powertrain Technology for EPA 2010 and Beyond

    Broader source: Energy.gov [DOE]

    Presentation given at the 2007 Diesel Engine-Efficiency & Emissions Research Conference (DEER 2007). 13-16 August, 2007, Detroit, Michigan. Sponsored by the U.S. Department of Energy's (DOE) Office of FreedomCAR and Vehicle Technologies (OFCVT).

  4. Aerodynamic optimization of a solar powered race vehicle

    E-Print Network [OSTI]

    Augenbergs, Peteris K

    2006-01-01

    Aerodynamic optimization was performed on Tesseract, the MIT Solar Electric Vehicle Team's 2003-2005 solar car using Wind Tunnel 8 at Jacobs/Sverdrup Drivability Test Facility in Allen Park, MI. These tests include angle ...

  5. Achievable safety of driverless ground vehicles Rodrigo Benenson

    E-Print Network [OSTI]

    Boyer, Edmond

    , France michel.parent@inria.fr Abstract--Safety is an important issue of driverless car. Yet, most currentAchievable safety of driverless ground vehicles Rodrigo Benenson INRIA Rocquencourt / Mines Paris guarantees can be given and how to achieve them. I. INTRODUCTION Driverless cars are an interesting robotics

  6. Design and Control of a Fully Automated Vehicle door 

    E-Print Network [OSTI]

    Hong, Kyung-Min

    2010-07-14

    The objective of the research was to develop a fully automated vehicle car door that can detect any object obstructing its path during operation. A fully automated door concept has not yet been implemented in the car industry. The door, operated via...

  7. Plug-in Hybrid Electric Vehicle Fuel Use Reporting Methods and Results

    SciTech Connect (OSTI)

    James E. Francfort

    2009-07-01

    The Plug-in Hybrid Electric Vehicle (PHEV) Fuel Use Reporting Methods and Results report provides real world test results from PHEV operations and testing in 20 United States and Canada. Examples are given that demonstrate the significant variations operational parameters can have on PHEV petroleum use. In addition to other influences, PHEV mpg results are significantly impacted by driver aggressiveness, cold temperatures, and whether or not the vehicle operator has charged the PHEV battery pack. The U.S. Department of Energy’s (DOE’s) Advanced Vehicle Testing Activity (AVTA) has been testing plug-in hybrid electric vehicles (PHEVs) for several years. The AVTA http://avt.inl.gov/), which is part of DOE’s Vehicle Technology Program, also tests other advanced technology vehicles, with 12 million miles of total test vehicle and data collection experience. The Idaho National Laboratory is responsible for conducting the light-duty vehicle testing of PHEVs. Electric Transportation Engineering Corporation also supports the AVTA by conducting PHEV and other types of testing. To date, 12 different PHEV models have been tested, with more than 600,000 miles of PHEV operations data collected.

  8. DEP Car Competition | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of physics preventing them."- Michio Kaku, Theoretical Physicist Each year 20 middle school teams compete for the regional title of fastest car in the Argonne Electric Car...

  9. Hydrogen ICE Vehicle Testing Activities

    SciTech Connect (OSTI)

    J. Francfort; D. Karner

    2006-04-01

    The Advanced Vehicle Testing Activity teamed with Electric Transportation Applications and Arizona Public Service to develop and monitor the operations of the APS Alternative Fuel (Hydrogen) Pilot Plant. The Pilot Plant provides 100% hydrogen, and hydrogen and compressed natural gas (H/CNG)-blended fuels for the evaluation of hydrogen and H/CNG internal combustion engine (ICE) vehicles in controlled and fleet testing environments. Since June 2002, twenty hydrogen and H/CNG vehicles have accumulated 300,000 test miles and 5,700 fueling events. The AVTA is part of the Department of Energy’s FreedomCAR and Vehicle Technologies Program. These testing activities are managed by the Idaho National Laboratory. This paper discusses the Pilot Plant design and monitoring, and hydrogen ICE vehicle testing methods and results.

  10. Greenhouse gas emission impacts of alternative-fueled vehicles: Near-term vs. long-term technology options

    SciTech Connect (OSTI)

    Wang, M.Q.

    1997-05-20

    Alternative-fueled vehicle technologies have been promoted and used for reducing petroleum use, urban air pollution, and greenhouse gas emissions. In this paper, greenhouse gas emission impacts of near-term and long-term light-duty alternative-fueled vehicle technologies are evaluated. Near-term technologies, available now, include vehicles fueled with M85 (85% methanol and 15% gasoline by volume), E85 (85% ethanol that is produced from corn and 15% gasoline by volume), compressed natural gas, and liquefied petroleum gas. Long-term technologies, assumed to be available around the year 2010, include battery-powered electric vehicles, hybrid electric vehicles, vehicles fueled with E85 (ethanol produced from biomass), and fuel-cell vehicles fueled with hydrogen or methanol. The near-term technologies are found to have small to moderate effects on vehicle greenhouse gas emissions. On the other hand, the long-term technologies, especially those using renewable energy (such as biomass and solar energy), have great potential for reducing vehicle greenhouse gas emissions. In order to realize this greenhouse gas emission reduction potential, R and D efforts must continue on the long-term technology options so that they can compete successfully with conventional vehicle technology.

  11. Advanced Combustion and Emission Control Technical Team Roadmap

    SciTech Connect (OSTI)

    2013-06-01

    The Advanced Combustion and Emission Control (ACEC) Technical Team is focused on removing technical barriers to the commercialization of advanced, high-efficiency, emission-compliant internal combustion (IC) engines for light-duty vehicle powertrains (i.e., passenger car, minivan, SUV, and pickup trucks).

  12. Light duty utility arm startup plan

    SciTech Connect (OSTI)

    Barnes, G.A.

    1998-03-11

    This Startup Plan encompasses activities necessary to perform startup and operation of the LDUA in Facility Group 3 tanks and complete turnover to CPO. The activities discussed in this plan will occur prior to, and following the US Department Energy, Richland Operations Office Operational Readiness Review. This startup plan does not authorize or direct any specific field activities or authorize a change of configuration. As such, this startup plan need not be Unresolved Safety Question (USQ) screened.

  13. Advanced Technology Light Duty Diesel Aftertreatment System ...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Passive Catalytic Approach to Low Temperature NOx Emission Abatement Cummins' Next Generation Tier 2, Bin 2 Light Truck Diesel Engine...

  14. The 18th Annual IEEE International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC'07) FIRST RESULTS FROM CAR-TO-CAR AND CAR-TO-INFRASTRUCTURE

    E-Print Network [OSTI]

    Zemen, Thomas

    (PIMRC'07) FIRST RESULTS FROM CAR-TO-CAR AND CAR-TO-INFRASTRUCTURE RADIO CHANNEL MEASUREMENTS AT 5.2 GHZ apaier@nt.tuwien.ac.at ABSTRACT Car-to-car and car-to-infrastructure (henceforth called C2X cor- responding to the relative speed of the cars, and very concen- trated (in the Doppler domain

  15. Coherent anti-Stokes Raman Scattering (CARS)

    E-Print Network [OSTI]

    Greenaway, Alan

    Coherent anti-Stokes Raman Scattering (CARS) For the study of biofilms Alexander Mc Vey1, Nils.f.mcvey@ed.ac.uk Polystyrene beads of diameter 2µm as imaged by the CARS system at COSMIC, The University of Edinburgh #12;Introduction Outline of CARS CARS set-up Results ­ Pushing the limits Results ­ Imaging E. coli Where do we go

  16. Comparative costs and benefits of hydrogen vehicles

    SciTech Connect (OSTI)

    Berry, G.D. [Lawrence Livermore National Lab., CA (United States)

    1996-10-01

    The costs and benefits of hydrogen as a vehicle fuel are compared to gasoline, natural gas, and battery-powered vehicles. Costs, energy, efficiency, and tail-pipe and full fuel cycle emissions of air pollutants and greenhouse gases were estimated for hydrogen from a broad range of delivery pathways and scales: from individual vehicle refueling systems to large stations refueling 300 cars/day. Hydrogen production from natural gas, methanol, and ammonia, as well as water electrolysis based on alkaline or polymer electrolytes and steam electrolysis using solid oxide electrolytes are considered. These estimates were compared to estimates for competing fuels and vehicles, and used to construct oil use, air pollutant, and greenhouse gas emission scenarios for the U.S. passenger car fleet from 2005-2050. Fuel costs need not be an overriding concern in evaluating the suitability of hydrogen as a fuel for passenger vehicles. The combined emissions and oil import reduction benefits of hydrogen cars are estimated to be significant, valued at up to {approximately}$400/yr for each hydrogen car when primarily clean energy sources are used for hydrogen production. These benefits alone, however, become tenuous as the basis supporting a compelling rationale for hydrogen fueled vehicles, if efficient, advanced fossil-fuel hybrid electric vehicles (HEV`s) can achieve actual on-road emissions at or below ULEV standards in the 2005-2015 timeframe. It appears a robust rationale for hydrogen fuel and vehicles will need to also consider unique, strategic, and long-range benefits of hydrogen vehicles which can be achieved through the use of production, storage, delivery, and utilization methods for hydrogen which are unique among fuels: efficient use of intermittent renewable energy sources, (e,g, wind, solar), small-scale feasibility, fuel production at or near the point of use, electrolytic production, diverse storage technologies, and electrochemical conversion to electricity.

  17. 10 Kammen and others/p. 1 Cost-Effectiveness of Greenhouse Gas Emission Reductions from Plug-in Hybrid Electric Vehicles

    E-Print Network [OSTI]

    Kammen, Daniel M.

    -in Hybrid Electric Vehicles Daniel M. Kammen1 , Samuel M. Arons, Derek M. Lemoine and Holmes Hummel Cars per year.2 Plug-in hybrid electric vehicles could alter these trends. On a vehicle technology spectrum that stretches from fossil fuel­powered conventional vehicles (CVs) through hybrid electric vehicles 1

  18. Model Year 2006 Fuel Economy Guide: EPA Fuel Economy Estimates

    SciTech Connect (OSTI)

    2005-11-01

    The Fuel Economy Guide is published by the U.S. Department of Energy as an aid to consumers considering the purchase of a new vehicle. The Guide lists estimates of miles per gallon (mpg) for each vehicle available for the new model year. These estimates are provided by the U.S. Environmental Protection Agency in compliance with Federal Law. By using this Guide, consumers can estimate the average yearly fuel cost for any vehicle. The Guide is intended to help consumers compare the fuel economy of similarly sized cars, light duty trucks and special purpose vehicles. The vehicles listed have been divided into three classes of cars, three classes of light duty trucks, and three classes of special purpose vehicles.

  19. Model Year 2005 Fuel Economy Guide: EPA Fuel Economy Estimates

    SciTech Connect (OSTI)

    2004-11-01

    The Fuel Economy Guide is published by the U.S. Department of Energy as an aid to consumers considering the purchase of a new vehicle. The Guide lists estimates of miles per gallon (mpg) for each vehicle available for the new model year. These estimates are provided by the U.S. Environmental Protection Agency in compliance with Federal Law. By using this Guide, consumers can estimate the average yearly fuel cost for any vehicle. The Guide is intended to help consumers compare the fuel economy of similarly sized cars, light duty trucks and special purpose vehicles. The vehicles listed have been divided into three classes of cars, three classes of light duty trucks, and three classes of special purpose vehicles.

  20. Model Year 2010 Fuel Economy Guide: EPA Fuel Economy Estimates

    SciTech Connect (OSTI)

    2009-10-14

    The Fuel Economy Guide is published by the U.S. Department of Energy as an aid to consumers considering the purchase of a new vehicle. The Guide lists estimates of miles per gallon (mpg) for each vehicle available for the new model year. These estimates are provided by the U.S. Environmental Protection Agency in compliance with Federal Law. By using this Guide, consumers can estimate the average yearly fuel cost for any vehicle. The Guide is intended to help consumers compare the fuel economy of similarly sized cars, light duty trucks and special purpose vehicles. The vehicles listed have been divided into three classes of cars, three classes of light duty trucks, and three classes of special purpose vehicles.