Powered by Deep Web Technologies
Note: This page contains sample records for the topic "light-duty vehicle sales" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

TTRDC - Light Duty E-Drive Vehicles Monthly Sales Updates  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Light Duty Electric Drive Vehicles Monthly Sales Updates Currently available electric-drive vehicles (EDV) in the U.S market include hybrid electric vehicles (HEV), plug-in hybrid electric vehicles (PHEV), and all electric vehicles (AEV). Plug-in Vehicles (PEV) include both PHEV and AEV. HEVs debuted in the U.S. market in December 1999 with 17 sales of the first-generation Honda Insight, while the first PHEV (Chevrolet Volt) and AEV (Nissan Leaf) most recently debuted in December 2010. Electric drive vehicles are offered in several car and SUV models, and a few pickup and van models. Historical sales of HEV, PHEV, and AEV are compiled by Argonne's Center for Transportation Research and reported to the U.S. Department of Energy's Vehicle Technology Program Office each month. These sales are shown in Figures 1, 2 and 3. Figure 1 shows monthly new PHEV and AEV sales by model. Figure 2 shows yearly new HEV sales by model. Figure 3 shows electric drive vehicles sales share of total light-duty vehicle (LDV) sales since 1999. Figure 4 shows HEV and PEV sales change with gasoline price..

2

DOE Light Duty Vehicle Workshop  

Broader source: Energy.gov [DOE]

On July 26, 2010, the U.S. Department of Energy (DOE) sponsored a Light Duty Vehicle Workshop in Washington, D.C. Presentations from this workshop appear below as Adobe Acrobat PDFs.

3

Light Duty Vehicle Pathways | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Duty Vehicle Pathways Light Duty Vehicle Pathways Presented at the U.S. Department of Energy Light Duty Vehicle Workshop in Washington, D.C. on July 26, 2010....

4

Advanced Vehicle Testing Activity: Light-Duty Vehicles  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Light-Duty Light-Duty Vehicles to someone by E-mail Share Advanced Vehicle Testing Activity: Light-Duty Vehicles on Facebook Tweet about Advanced Vehicle Testing Activity: Light-Duty Vehicles on Twitter Bookmark Advanced Vehicle Testing Activity: Light-Duty Vehicles on Google Bookmark Advanced Vehicle Testing Activity: Light-Duty Vehicles on Delicious Rank Advanced Vehicle Testing Activity: Light-Duty Vehicles on Digg Find More places to share Advanced Vehicle Testing Activity: Light-Duty Vehicles on AddThis.com... Home Overview Light-Duty Vehicles Alternative Fuel Vehicles Plug-in Hybrid Electric Vehicles Hybrid Electric Vehicles Micro Hybrid Vehicles ARRA Vehicle and Infrastructure Projects EVSE Testing Energy Storage Testing Hydrogen Internal Combustion Engine Vehicles Other ICE

5

Fuel Cell Technologies Office: DOE Light Duty Vehicle Workshop  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Light Duty Vehicle Light Duty Vehicle Workshop to someone by E-mail Share Fuel Cell Technologies Office: DOE Light Duty Vehicle Workshop on Facebook Tweet about Fuel Cell Technologies Office: DOE Light Duty Vehicle Workshop on Twitter Bookmark Fuel Cell Technologies Office: DOE Light Duty Vehicle Workshop on Google Bookmark Fuel Cell Technologies Office: DOE Light Duty Vehicle Workshop on Delicious Rank Fuel Cell Technologies Office: DOE Light Duty Vehicle Workshop on Digg Find More places to share Fuel Cell Technologies Office: DOE Light Duty Vehicle Workshop on AddThis.com... Publications Program Publications Technical Publications Educational Publications Newsletter Program Presentations Multimedia Conferences & Meetings Annual Merit Review Proceedings Workshop & Meeting Proceedings

6

Progress on DOE Vehicle Technologies Light-Duty Diesel Engine...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

DOE Vehicle Technologies Light-Duty Diesel Engine Efficiency and Emissions Milestones Progress on DOE Vehicle Technologies Light-Duty Diesel Engine Efficiency and Emissions...

7

Light Duty Fuel Cell Electric Vehicle Hydrogen Fueling Protocol...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Light Duty Fuel Cell Electric Vehicle Hydrogen Fueling Protocol Light Duty Fuel Cell Electric Vehicle Hydrogen Fueling Protocol Download the webinar slides from the U.S. Department...

8

alternative fuel light-duty vehicles  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Fuel Light-Duty Vehicles Fuel Light-Duty Vehicles T O F E N E R G Y D E P A R T M E N U E N I T E D S T A T S O F A E R I C A M SUMMARY OF RESULTS FROM THE NATIONAL RENEWABLE ENERGY LABORATORY'S VEHICLE EVALUATION DATA COLLECTION EFFORTS Alternative Fuel Light-Duty Vehicles SUMMARY OF RESULTS FROM THE NATIONAL RENEWABLE ENERGY LABORATORY'S VEHICLE EVALUATION DATA COLLECTION EFFORTS PEG WHALEN KENNETH KELLY ROB MOTTA JOHN BRODERICK MAY 1996 N T Y A U E O F E N E R G D E P A R T M E N I T E D S T A T S O F A E R I C M Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2 Light-Duty Vehicles in the Program . . . . . . . . . . . . . . . . . . . . . . . . . . . .2

9

Alternative Fuels Data Center: Light-Duty Vehicle Search  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Light-Duty Vehicle Light-Duty Vehicle Search to someone by E-mail Share Alternative Fuels Data Center: Light-Duty Vehicle Search on Facebook Tweet about Alternative Fuels Data Center: Light-Duty Vehicle Search on Twitter Bookmark Alternative Fuels Data Center: Light-Duty Vehicle Search on Google Bookmark Alternative Fuels Data Center: Light-Duty Vehicle Search on Delicious Rank Alternative Fuels Data Center: Light-Duty Vehicle Search on Digg Find More places to share Alternative Fuels Data Center: Light-Duty Vehicle Search on AddThis.com... Light-Duty Vehicle Search Search our light-duty alternative fuel vehicle database to find and compare alternative fuel vehicles and generate printable reports to aid in decision-making. These vehicles might not qualify for vehicle-acquisition

10

Overview of Light-Duty Vehicle Studies  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Overview of Light-Duty Vehicle Studies Overview of Light-Duty Vehicle Studies Washington, DC Workshop Sponsored by EERE Transportation Cluster July 26, 2010 Energy Efficiency & Renewable Energy eere.energy.gov 2 * This workshop is intended to be a working meeting for analysts to discuss findings and assumptions because a number of key studies on light-duty vehicles (LDVs) and biofuels have been completed in the past 5 years and the insight gained from their findings would be valuable. * Outcomes: - common understanding of the effects of differing assumptions (today); - agreement on standard assumptions for future studies, where applicable (agreement on some assumptions today, follow-up discussions/meeting may be needed for others); - list of data/information gaps and needed research and studies (a

11

Overview of Light-Duty Vehicle Studies | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Studies Overview of Light-Duty Vehicle Studies Presented at the U.S. Department of Energy Light Duty Vehicle Workshop in Washington, D.C. on July 26, 2010. ldvpathways.pdf...

12

Light Duty Vehicle CNG Tanks  

Broader source: Energy.gov (indexed) [DOE]

Vehicle CNG Tanks Dane A. Boysen, PhD Program Director Advanced Research Projects Agency-Energy, US DOE dane.boysen@doe.gov Fiber Reinforced Polymer Composite Manufacturing...

13

Thermoelectric Opportunities in Light-Duty Vehicles | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Light-Duty Vehicles Overview of thermoelectric (TE) vehicle exhaust heat recovery, TE HVAC systems, and OEM role in establishing guidelines for cost, power density, systems...

14

Fueling U.S. Light Duty Diesel Vehicles  

Broader source: Energy.gov (indexed) [DOE]

U.S. Light Duty Diesel Vehicles DEER Conference August 23, 2005 Joe Kaufman Manager, Fuel & Vehicle Trends ConocoPhillips NYSE: COP Core Activities * Petroleum & natural gas...

15

Light-Duty Lean GDI Vehicle Technology Benchmark  

Broader source: Energy.gov (indexed) [DOE]

M. Wagner (PI) Paul H. Chambon (Presenter) Oak Ridge National Laboratory Light-Duty Lean GDI Vehicle Technology Benchmark This presentation does not contain any proprietary,...

16

Hybrid options for light-duty vehicles.  

SciTech Connect (OSTI)

Hybrid electric vehicles (HEVs) offer great promise in improving fuel economy. In this paper, we analyze why, how, and by how much vehicle hybridization can reduce energy consumption and improve fuel economy. Our analysis focuses on efficiency gains associated solely with vehicle hybridization. We do not consider such other measures as vehicle weight reduction or air- and tire-resistance reduction, because such measures would also benefit conventional technology vehicles. The analysis starts with understanding the energy inefficiencies of light-duty vehicles associated with different operation modes in US and Japanese urban and highway driving cycles, with the corresponding energy-saving potentials. The potential for fuel economy gains due to vehicle hybridization can be estimated almost exclusively on the basis of three elements: the reducibility of engine idling operation, the recoverability of braking energy losses, and the capability of improving engine load profiles to gain efficiency associated with specific HEV configurations and control strategies. Specifically, we evaluate the energy efficiencies and fuel economies of a baseline MY97 Corolla-like conventional vehicle (CV), a hypothetical Corolla-based minimal hybrid vehicle (MHV), and a MY98 Prius-like full hybrid vehicle (FHV). We then estimate energy benefits of both MHVs and FHVs over CVs on a performance-equivalent basis. We conclude that the energy benefits of hybridization vary not only with test cycles, but also with performance requirements. The hybrid benefits are greater for ''Corolla (high) performance-equivalent'' vehicles than for ''Prius (low) performance-equivalent'' vehicles. An increasing acceleration requirement would result in larger fuel economy benefits from vehicle hybridization.

An, F., Stodolsky, F.; Santini, D.

1999-07-19T23:59:59.000Z

17

Fuel Cell Technologies Office: DOE Light Duty Vehicle Workshop  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Light Duty Vehicle Workshop Light Duty Vehicle Workshop On July 26, 2010, the U.S. Department of Energy (DOE) sponsored a Light Duty Vehicle Workshop in Washington, D.C. Presentations from this workshop appear below as Adobe Acrobat PDFs. Download Adobe Reader. Presentations Overview of Light-Duty Vehicle Studies (PDF 562 KB), Sam Baldwin, Chief Technology Officer, Office of Energy Efficiency and Renewable Energy (EERE), DOE Light Duty Vehicle Pathways (PDF 404 KB), Tien Nguyen, Fuel Cell Technologies Office, EERE, DOE Hydrogen Transition Study (PDF 2.6 MB), Paul N. Leiby, David Greene, Zhenhong Lin, David Bowman, and Sujit Das, Oak Ridge National Laboratory Alternative Transportation Technologies: Hydrogen, Biofuels, Advanced Efficiency, and Plug-in Hybrid Electric Vehicles (PDF 123 KB), Joan Ogden and Mike Ramage, National Research Council

18

Improving the Efficiency of Light-Duty Vehicle HVAC Systems using...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Light-Duty Vehicle HVAC Systems using Zonal Thermoelectric Devices and Comfort Modeling Improving the Efficiency of Light-Duty Vehicle HVAC Systems using Zonal Thermoelectric...

19

Fueling U.S. Light Duty Diesel Vehicles | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Fueling U.S. Light Duty Diesel Vehicles Fueling U.S. Light Duty Diesel Vehicles 2005 Diesel Engine Emissions Reduction (DEER) Conference Presentations and Posters...

20

DOE Hydrogen Analysis Repository: Biofuels in Light-Duty Vehicles  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Biofuels in Light-Duty Vehicles Biofuels in Light-Duty Vehicles Project Summary Full Title: Mobility Chains Analysis of Technologies for Passenger Cars and Light-Duty Vehicles Fueled with Biofuels: Application of the GREET Model to the Role of Biomass in America's Energy Future (RBAEF) Project Project ID: 82 Principal Investigator: Michael Wang Brief Description: The mobility chains analysis estimated the energy consumption and emissions associated with the use of various biofuels in light-duty vehicles. Keywords: Well-to-wheels (WTW); ethanol; biofuels; Fischer Tropsch diesel; hybrid electric vehicles (HEV) Purpose The project was a multi-organization, multi-sponsor project to examine the potential of biofuels in the U.S. Argonne was responsible for the well-to-wheels analysis of biofuel production and use.

Note: This page contains sample records for the topic "light-duty vehicle sales" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Light Duty Fuel Cell Electric Vehicle Hydrogen Fueling Protocol  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

DOE Webinar Light Duty Fuel Cell Electric Vehicle Hydrogen Fueling Protocol U.S. DOE WEBINAR ON H2 FUELING PROTOCOLS: PARTICIPANTS Rob Burgess Moderator Jesse Schneider TIR J2601,...

22

WORKSHOP REPORT:Light-Duty Vehicles Technical Requirements and Gaps for Lightweight and Propulsion Materials  

Broader source: Energy.gov [DOE]

WORKSHOP REPORT:Light-Duty Vehicles Technical Requirements and Gaps for Lightweight and Propulsion Materials

23

Fact #559: February 23, 2009 Light Vehicle Sales per Dealership...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

slightly. Light Duty Sales per Dealership, 1997-2007 Graph showing the light duty automobile sales per dealership from 1997-2007. Dealerships and the average numer of vehicles...

24

Alternative Fuels Data Center: Light-Duty Vehicle Idle Reduction Strategies  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Light-Duty Vehicle Light-Duty Vehicle Idle Reduction Strategies to someone by E-mail Share Alternative Fuels Data Center: Light-Duty Vehicle Idle Reduction Strategies on Facebook Tweet about Alternative Fuels Data Center: Light-Duty Vehicle Idle Reduction Strategies on Twitter Bookmark Alternative Fuels Data Center: Light-Duty Vehicle Idle Reduction Strategies on Google Bookmark Alternative Fuels Data Center: Light-Duty Vehicle Idle Reduction Strategies on Delicious Rank Alternative Fuels Data Center: Light-Duty Vehicle Idle Reduction Strategies on Digg Find More places to share Alternative Fuels Data Center: Light-Duty Vehicle Idle Reduction Strategies on AddThis.com... More in this section... Idle Reduction Benefits & Considerations Heavy-Duty Vehicles Medium-Duty Vehicles

25

Alternative Fuels Data Center: Light-Duty Vehicle Data Collection Methods  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Data Collection Methods to someone by E-mail Data Collection Methods to someone by E-mail Share Alternative Fuels Data Center: Light-Duty Vehicle Data Collection Methods on Facebook Tweet about Alternative Fuels Data Center: Light-Duty Vehicle Data Collection Methods on Twitter Bookmark Alternative Fuels Data Center: Light-Duty Vehicle Data Collection Methods on Google Bookmark Alternative Fuels Data Center: Light-Duty Vehicle Data Collection Methods on Delicious Rank Alternative Fuels Data Center: Light-Duty Vehicle Data Collection Methods on Digg Find More places to share Alternative Fuels Data Center: Light-Duty Vehicle Data Collection Methods on AddThis.com... Light-Duty Vehicle Data Collection Methods To maintain the Light-Duty Vehicle Search tool, the National Renewable Energy Laboratory (NREL) gathers vehicle specifications, photos, and

26

Targets for Onboard Hydrogen Storage Systems for Light-Duty Vehicles...  

Broader source: Energy.gov (indexed) [DOE]

Targets for Onboard Hydrogen Storage Systems for Light-Duty Vehicles Targets for Onboard Hydrogen Storage Systems for Light-Duty Vehicles This document describes the basis for the...

27

Outlook for Light-Duty-Vehicle Fuel Demand | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Outlook for Light-Duty-Vehicle Fuel Demand Outlook for Light-Duty-Vehicle Fuel Demand Gasoline and distillate demand impact of the Energy Independance and Security Act of 2007...

28

Low and high Temperature Dual Thermoelectric Generation Waste Heat Recovery System for Light-Duty Vehicles  

Broader source: Energy.gov [DOE]

Developing a low and high temperature dual thermoelectric generation waste heat recovery system for light-duty vehicles.

29

Light-duty vehicle mpg and market shares report, model year 1988  

SciTech Connect (OSTI)

This issue of Light-Duty Vehicle MPG and Market Shares Report: Model Year 1988 reports the estimated sales-weighted fuel economies, sales, market shares, and other vehicle characteristics of automobiles and light trucks. The estimates are made on a make and model basis, from model year 1976 to model year 1988. Vehicle sales data are used as weighting factors in the sales-weighted estimation procedure. Thus, the estimates represent averages of the overall new vehicle fleet, reflecting the composition of the fleet. Highlights are provided on the trends in the vehicle characteristics from one model year to the next. Analyses are also made on the fuel economy changes to determine the factors which caused the changes. The sales-weighted fuel economy for the new car fleet in model year 1988 showed an improvement of 0.1 mpg from model year 1987, while light trucks showed a 0.2 mpg loss. The 0.2 mpg loss by the light trucks can be attributed to the fact that every light truck size class experienced either losses or no change in their fuel economies from the previous model year, except for the large van size class. Overall, the sales-weighted fuel economy of the entire light-duty vehicle fleet (automobiles and light trucks combined) has remained relatively stable since model year 1986. Domestic light-duty vehicles began to gain popularity over their import counterparts; and light trucks increased their market shares relative to automobiles. Domestic cars regained 0.3% of the automobile market, reversing the previous trend. Similar to the automobile market, domestic light trucks continued to gain popularity over their import counterparts, partly due to the increasing popularity of domestic small vans. 3 refs., 35 figs., 48 tabs.

Hu, P.S.; Williams, L.S.; Beal, D.J.

1989-04-01T23:59:59.000Z

30

Myths Regarding Alternative Fuel Vehicle Demand by Light-Duty Vehicle Fleets  

E-Print Network [OSTI]

MythsRegarding Alternative Fuel Vehicte Demand Light-Dutyregulation Myths Regarding Alternative Fuel Vehicle DemandBy00006-6 MYTHS REGARDING ALTERNATIVE FUEL VEHICLE LIGHT-DUTY

Nesbitt, Kevin; Sperling, Daniel

1998-01-01T23:59:59.000Z

31

DOE Targets for Onboard Hydrogen Storage Systems for Light-Duty Vehicles  

Broader source: Energy.gov [DOE]

This table lists the technical targets for onboard hydrogen storage for light-duty vehicles in the FCT Program’s Multiyear Research, Development and Demonstration Plan.

32

Non-Cost Barriers to Consumer Adoption of New Light-Duty Vehicle Technologies  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

LIGHT-DUTY VEHICLES LIGHT-DUTY VEHICLES Non-Cost Barriers to Consumer Adoption of New Light-Duty Vehicle Technologies TRANSPORTATION ENERGY FUTURES SERIES: Non-Cost Barriers to Consumer Adoption of New Light-Duty Vehicle Technologies A Study Sponsored by U.S. Department of Energy Office of Energy Efficiency and Renewable Energy March 2013 Prepared by ARGONNE NATIONAL LABORATORY Argonne, Illinois 60439 managed by U Chicago Argonne, LLC for the U.S. DEPARTMENT OF ENERGY under contract DE-AC02-06CH11357 This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, expressed or implied, or assumes any legal liability or

33

The Diesel Engine Powering Light-Duty Vehicles: Today and Tomorrow  

Broader source: Energy.gov (indexed) [DOE]

diesel-powered light-duty vehicles 1990 1995 2000 2005 2010 2015 2020 2025 Energy Greenhouse effect CO 2 Exhaust gas emissions CO, NO x , HC, PM Importance Environmental driving...

34

Impact of Light-Duty Vehicle Emissions on 21st Century Carbon Dioxide Concentrations  

SciTech Connect (OSTI)

The impact of light-duty passenger vehicle emissions on global carbon dioxide concentrations was estimated using the MAGICC reduced-form climate model combined with the PNNL contribution to the CCSP scenarios product. Our central estimate is that tailpipe light duty vehicle emissions of carbon-dioxide over the 21st century will increase global carbon dioxide concentrations by slightly over 12 ppmv by 2100.

Smith, Steven J.; Kyle, G. Page

2007-08-04T23:59:59.000Z

35

Future Potential of Hybrid and Diesel Powertrains in the U.S. Light-duty Vehicle Market  

SciTech Connect (OSTI)

Diesel and hybrid technologies each have the potential to increase light-duty vehicle fuel economy by a third or more without loss of performance, yet these technologies have typically been excluded from technical assessments of fuel economy potential on the grounds that hybrids are too expensive and diesels cannot meet Tier 2 emissions standards. Recently, hybrid costs have come down and the few hybrid makes available are selling well. Diesels have made great strides in reducing particulate and nitrogen oxide emissions, and are likely though not certain to meet future standards. In light of these developments, this study takes a detailed look at the market potential of these two powertrain technologies and their possible impacts on light-duty vehicle fuel economy. A nested multinomial logit model of vehicle choice was calibrated to 2002 model year sales of 930 makes, models and engine-transmission configurations. Based on an assessment of the status and outlook for the two technologies, market shares were predicted for 2008, 2012 and beyond, assuming no additional increase in fuel economy standards or other new policy initiatives. Current tax incentives for hybrids are assumed to be phased out by 2008. Given announced and likely introductions by 2008, hybrids could capture 4-7% and diesels 2-4% of the light-duty market. Based on our best guesses for further introductions, these shares could increase to 10-15% for hybrids and 4-7% for diesels by 2012. The resulting impacts on fleet average fuel economy would be about +2% in 2008 and +4% in 2012. If diesels and hybrids were widely available across vehicle classes, makes, and models, they could capture 40% or more of the light-duty vehicle market.

Greene, D.L.

2004-08-23T23:59:59.000Z

36

Improving the Efficiency of Light-Duty Vehicle HVAC Systems using Zonal Thermoelectric Devices and Comfort Modeling  

Broader source: Energy.gov [DOE]

Summarizes results from a study to identify and demonstrate technical and commercial approaches necessary to accelerate the deployment of zonal TE HVAC systems in light-duty vehicles

37

Assessment of Fuel Economy Technologies for Light-Duty Vehicles  

SciTech Connect (OSTI)

An analysis of the number of stations and vehicles necessary to achieve future goals for sales of ethanol fuel (E85) is presented. Issues related to the supply of ethanol, which may turn out to be of even greater concern, are not analyzed here. A model of consumers decisions to purchase E85 versus gasoline based on prices, availability, and refueling frequency is derived, and preliminary results for 2010, 2017, and 2030 consistent with the president s 2007 biofuels program goals are presented. A limited sensitivity analysis is carried out to indicate key uncertainties in the trade-off between the number of stations and fuels. The analysis indicates that to meet a 2017 goal of 26 billion gallons of E85 sold, on the order of 30% to 80% of all stations may need to offer E85 and that 125 to 200 million flexible-fuel vehicles (FFVs) may need to be on the road, even if oil prices remain high. These conclusions are tentative for three reasons: there is considerable uncertainty about key parameter values, such as the price elasticity of choice between E85 and gasoline; the future prices of E85 and gasoline are uncertain; and the method of analysis used is highly aggregated it does not consider the potential benefits of regional strategies or the possible existence of market segments predisposed to purchase E85. Nonetheless, the preliminary results indicate that the 2017 biofuels program goals are ambitious and will require a massive effort to produce enough FFVs and ensure widespread availability of E85.

Greene, David L [ORNL

2008-01-01T23:59:59.000Z

38

1 THE LIGHT-DUTY-VEHICLE FLEET'S EVOLUTION: 2 ANTICIPATING PHEV ADOPTION AND GREENHOUSE GAS  

E-Print Network [OSTI]

1 THE LIGHT-DUTY-VEHICLE FLEET'S EVOLUTION: 2 ANTICIPATING PHEV ADOPTION AND GREENHOUSE GAS 3 patterns ­ and associated petroleum use 33 and greenhouse gas (GHG) emissions ­ can change under different microsimulation, travel behavior modeling, greenhouse gas emissions60 INTRODUCTION AND MOTIVATION61 Per

Kockelman, Kara M.

39

Light Duty Plug-in Hybrid Vehicle Systems Analysis  

Broader source: Energy.gov (indexed) [DOE]

Bennion, Aaron Brooker, Jeff Gonder, and Matt Thornton National Renewable Energy Laboratory 2009 DOE Vehicle Technologies Annual Merit Review May 19 th , 2009 Project ID:...

40

Advanced Technologies for Light-Duty Vehicles (released in AEO2006)  

Reports and Publications (EIA)

A fundamental concern in projecting the future attributes of light-duty vehicles-passenger cars, sport utility vehicles, pickup trucks, and minivans-is how to represent technological change and the market forces that drive it. There is always considerable uncertainty about the evolution of existing technologies, what new technologies might emerge, and how consumer preferences might influence the direction of change. Most of the new and emerging technologies expected to affect the performance and fuel use of light-duty vehicles over the next 25 years are represented in the National Energy Modeling System (NEMS); however, the potential emergence of new, unforeseen technologies makes it impossible to address all the technology options that could come into play. The previous section of Issues in Focus discussed several potential technologies that currently are not represented in NEMS. This section discusses some of the key technologies represented in NEMS that are expected to be implemented in light-duty vehicles over the next 25 years.

2006-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "light-duty vehicle sales" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Alternative Fuels Data Center: Light-Duty Vehicle Search  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Fuel Type Fuel Type All Bi-Fuel Natural Gas (16) Bi-Fuel Propane (12) Biodiesel (B20) (11) Electric (13) Flex Fuel (E85) (91) Hybrid Electric (36) Hydrogen (3) Methanol (0) Natural Gas (4) Plug-in Hybrid Electric (10) Propane (2) Manufacturer All Acura (2) Audi (6) BMW (6) Bentley Motors (4) Buick (2) Cadillac (4) Chevrolet (25) Chrysler (3) Coda Automotive (0) Dodge (7) Fiat (1) Fisker Automotive (0) Ford (48) GMC (19) General Motors EV (0) HUMMER (0) Honda (8) Hyundai (2) Infiniti (4) Jaguar (6) Jeep (1) Kia (2) Land Rover (4) Lexus (5) Lincoln (2) Mazda (0) Mazda (0) McLaren (1) Mercedes-Benz (8) Mercury (0) Mitsubishi (1) Nissan (4) Plymouth (0) Porsche (2) QUANTUM-PROCON (0) Ram (5) Saab (0) Saturn (0) Scion (1) Smart (1) Solectria (0) Subaru (1) Tesla (1) Tesla Motors (0) Toyota (10) Vehicle

42

Transportation Energy Futures Series: Potential for Energy Efficiency Improvement Beyond the Light-Duty-Vehicle Sector  

SciTech Connect (OSTI)

Considerable research has focused on energy efficiency and fuel substitution options for light-duty vehicles, while much less attention has been given to medium- and heavy-duty trucks, buses, aircraft, marine vessels, trains, pipeline, and off-road equipment. This report brings together the salient findings from an extensive review of literature on future energy efficiency options for these non-light-duty modes. Projected activity increases to 2050 are combined with forecasts of overall fuel efficiency improvement potential to estimate the future total petroleum and greenhouse gas (GHG) emissions relative to current levels. This is one of a series of reports produced as a result of the Transportation Energy Futures (TEF) project, a Department of Energy-sponsored multi-agency project initiated to pinpoint underexplored strategies for abating GHGs and reducing petroleum dependence related to transportation.

Vyas, A. D.; Patel, D. M.; Bertram, K. M.

2013-03-01T23:59:59.000Z

43

Efficiency Improvement Opportunities for Light-Duty Natural-Gas-Fueled Vehicles  

SciTech Connect (OSTI)

The purpose of this report is to evaluate and make recommendations concerning technologies that promise to improve the efilciency of compressed natural gas (CNG) light-duty vehicles. Technical targets for CNG automotive technology given in the March 1998 OffIce of Advanced Automotive Technologies research and development plan were used as guidance for this effort. The technical target that necessitates this current study is to validate technologies that enable CNG light vehicles to have at least 10% greater - fuel economy (on a miles per gallon equivalent basis) than equivalent gasoline vehicles by 2006. Other tar- gets important to natural gas (NG) automotive technology and this study are to: (1) increase CNG vehicle range to 380 miles, (2) reduce the incremental vehicle cost (CNG vs gasoline) to $1500, and (3) meet the California ultra low-emission vehicle (ULEV) and Federal Tier 2 emission standards expected to be in effect in 2004.

Staunton, R.H.; Thomas, J.F.

1998-12-01T23:59:59.000Z

44

Fleet assessment for opportunities to effectively deploy light duty alternative fuel vehicles  

SciTech Connect (OSTI)

The City of Detroit conducted an initial program to assess the potential for substitution of vehicles currently in operation with alternative fuel vehicles. A key task involved the development of an operating profile of the participant light truck and van fleets involved in the study. To do this a survey of operators of light duty trucks and vans within the project participant fleets was conducted. These survey results were analyzed to define the potential for substitution of conventional vehicles with alternate fuel vehicles with alternate fuel vehicles and to identify candidates for participation in the Mini-Demonstration portion of the project. The test program involved the deployment of an electric van (two GM Griffon Electric Vans provided by Detroit Edison) at seven Mini-Demonstration sites for a period of four weeks each for test and evaluation. The Technical Work Group then analyzed vehicle performance data and used a questionnaire to obtain impressions and attitudes of the users toward the acceptability of the electric van. The Technical Work Group (TWG) and Management Assessment Group (MAG) then prepared recommendations and an implementation plan to develop further information aimed toward eventual expanded deployment of alternative fuel vehicles within project participant light duty fleets. The MAG concluded that the study had been beneficial in collecting and developing important quantitative information, introducing a set of public fleet managers to alternative fuel vehicle opportunities and features, and had provided specific experience with the Griffon van which provided some indications of requirements in such vehicles if they are to be a normal part of public fleet operations. These included the need for some increase of the mileage range of the Griffon, an improvement in the ride and handling of the Griffon, and several minor'' difficulties experienced with malfunctioning or inconvenient characteristics of the Griffon equipment. 25 figs., 1 tab.

Not Available

1990-05-01T23:59:59.000Z

45

Light-Duty Diesel Vehicles: Market Issues and Potential Energy and Emissions Impacts  

Gasoline and Diesel Fuel Update (EIA)

2 2 Light-Duty Diesel Vehicles: Market Issues and Potential Energy and Emissions Impacts January 2009 Energy Information Administration Office of Integrated Analysis and Forecasting U.S. Department of Energy Washington, DC 20585 This report was prepared by the Energy Information Administration, the independent statistical and analytical agency within the Department of Energy. Unless referenced otherwise, the information contained herein should be attributed to the Energy Information Administration and should not be construed as advocating or reflecting any policy position of the Department of Energy or any other organization. Service Reports are prepared by the Energy Information Administration upon special request and are based on assumptions specified by the requester.

46

Retail Infrastructure Costs Comparison for Hydrogen and Electricity for Light-Duty Vehicles: Preprint  

SciTech Connect (OSTI)

Both hydrogen and plug-in electric vehicles offer significant social benefits to enhance energy security and reduce criteria and greenhouse gas emissions from the transportation sector. However, the rollout of electric vehicle supply equipment (EVSE) and hydrogen retail stations (HRS) requires substantial investments with high risks due to many uncertainties. We compare retail infrastructure costs on a common basis - cost per mile, assuming fueling service to 10% of all light-duty vehicles in a typical 1.5 million person city in 2025. Our analysis considers three HRS sizes, four distinct types of EVSE and two distinct EVSE scenarios. EVSE station costs, including equipment and installation, are assumed to be 15% less than today's costs. We find that levelized retail capital costs per mile are essentially indistinguishable given the uncertainty and variability around input assumptions. Total fuel costs per mile for battery electric vehicle (BEV) and plug-in hybrid vehicle (PHEV) are, respectively, 21% lower and 13% lower than that for hydrogen fuel cell electric vehicle (FCEV) under the home-dominant scenario. Including fuel economies and vehicle costs makes FCEVs and BEVs comparable in terms of costs per mile, and PHEVs are about 10% less than FCEVs and BEVs. To account for geographic variability in energy prices and hydrogen delivery costs, we use the Scenario Evaluation, Regionalization and Analysis (SERA) model and confirm the aforementioned estimate of cost per mile, nationally averaged, but see a 15% variability in regional costs of FCEVs and a 5% variability in regional costs for BEVs.

Melaina, M.; Sun, Y.; Bush, B.

2014-08-01T23:59:59.000Z

47

Predicting Light-Duty Vehicle Fuel Economy as a Function of Highway Speed  

SciTech Connect (OSTI)

The www.fueleconomy.gov website offers information such as window label fuel economy for city, highway, and combined driving for all U.S.-legal light-duty vehicles from 1984 to the present. The site is jointly maintained by the U.S. Department of Energy and the U.S. Environmental Protection Agency (EPA), and also offers a considerable amount of consumer information and advice pertaining to vehicle fuel economy and energy related issues. Included with advice pertaining to driving styles and habits is information concerning the trend that as highway cruising speed is increased, fuel economy will degrade. An effort was undertaken to quantify this conventional wisdom through analysis of dynamometer testing results for 74 vehicles at steady state speeds from 50 to 80 mph. Using this experimental data, several simple models were developed to predict individual vehicle fuel economy and its rate of change over the 50-80 mph speed range interval. The models presented require a minimal number of vehicle attributes. The simplest model requires only the EPA window label highway mpg value (based on the EPA specified estimation method for 2008 and beyond). The most complex of these simple model uses vehicle coast-down test coefficients (from testing prescribed by SAE Standard J2263) known as the vehicle Target Coefficients, and the raw fuel economy result from the federal highway test. Statistical comparisons of these models and discussions of their expected usefulness and limitations are offered.

Thomas, John F [ORNL; Hwang, Ho-Ling [ORNL; West, Brian H [ORNL; Huff, Shean P [ORNL

2013-01-01T23:59:59.000Z

48

Microsoft Word - EXT-12-27320_Idle-Stop_Light_Duty_Passenger_Vehicles.docx  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

7320 7320 Quantifying the Effects of Idle-Stop Systems on Fuel Economy in Light- Duty Passenger Vehicles Jeffrey Wishart Matthew Shirk Contract No. DE-FC26-05NT42486 December 2012 DISCLAIMER This information was prepared as an account of work sponsored by an agency of the U.S. Government. Neither the U.S. Government nor any agency thereof, nor any of their employees, makes any warranty, expressed or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness, of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. References herein to any specific commercial product, process, or service by trade name, trade mark, manufacturer, or otherwise,

49

The Diesel Engine Powering Light-Duty Vehicles: Today and Tomorrow...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Engine Emissions Reduction (DEER) Conference Presentation: Volkwagen AG, Wolfsburg, Germany 2004deerschindler.pdf More Documents & Publications Accelerating Light-Duty Diesel...

50

Comparative urban drive cycle simulations of light-duty hybrid vehicles with gasoline or diesel engines and emissions controls  

SciTech Connect (OSTI)

Electric hybridization is a very effective approach for reducing fuel consumption in light-duty vehicles. Lean combustion engines (including diesels) have also been shown to be significantly more fuel efficient than stoichiometric gasoline engines. Ideally, the combination of these two technologies would result in even more fuel efficient vehicles. However, one major barrier to achieving this goal is the implementation of lean-exhaust aftertreatment that can meet increasingly stringent emissions regulations without heavily penalizing fuel efficiency. We summarize results from comparative simulations of hybrid electric vehicles with either stoichiometric gasoline or diesel engines that include state-of-the-art aftertreatment emissions controls for both stoichiometric and lean exhaust. Fuel consumption and emissions for comparable gasoline and diesel light-duty hybrid electric vehicles were compared over a standard urban drive cycle and potential benefits for utilizing diesel hybrids were identified. Technical barriers and opportunities for improving the efficiency of diesel hybrids were identified.

Gao, Zhiming [ORNL] [ORNL; Daw, C Stuart [ORNL] [ORNL; Smith, David E [ORNL] [ORNL

2013-01-01T23:59:59.000Z

51

Present Status and Marketing Prospects of the Emerging Hybrid-Electric and Diesel Technologies to Reduce CO2 Emissions of New Light-Duty Vehicles in California  

E-Print Network [OSTI]

The subject of future markets for diesel powered and hybrid-as the European market for diesel-powered vehicles grows.of a large market for light duty diesel vehicles. Figure 2

Burke, Andy

2004-01-01T23:59:59.000Z

52

Transient in cab noise investigation on a light duty diesel passenger vehicle.  

Science Journals Connector (OSTI)

A diesel engine in cab sound quality for passenger car market is scrutinized more closely than in the mid? to heavy duty diesel truck applications. This is obviously due to the increasing expectations from the customers for gasolinelike sound quality. This paper deals with a sound quality issue recently investigated on a light duty diesel engine for a passenger van application. The objectionable noise complaint occurred during the vehicle transient operating conditions and was found to be caused by the change in the pilot quantity over a very short period of time. The root cause of the noise complaint was investigated on the noise complaint vehicle as well as simultaneously on a standalone engine in the noise test cell. Several critical combustion and performance parameters were recorded for diagnosing the issue. In addition various standard sound quality metrics were employed to differentiate the sound quality of the objectionable noise. The issue was resolved and verified by making appropriate changes to the engine calibration without affecting key requirements such as emissions and fuel economy. Finally the findings from the experimental tests are summarized and appropriate conclusions are drawn with respect to understanding characterizing and resolving this transient combustion related impulsive powertrain interior noise issue.

Dhanesh Purekar

2010-01-01T23:59:59.000Z

53

Accelerating Light-Duty Diesel Sales in the U.S. Market  

Broader source: Energy.gov (indexed) [DOE]

Diesel Sales in the U.S. Market Klaus-Peter Schindler Volkswagen AG, Wolfsburg, Germany Content Situation in Europe Situation in U.S. Motivation for customers to...

54

Myths Regarding Alternative Fuel Vehicle Demand by Light-Duty Vehicle Fleets  

E-Print Network [OSTI]

eet demand for alternative-fuel vehicles in California.Britain MYTHS REGARDING ALTERNATIVE FUEL VEHICLE DEMAND BYinitial market for alternative fuel vehicles (AFVs). We

Nesbitt, Kevin; Sperling, Daniel

1998-01-01T23:59:59.000Z

55

A techno-economic analysis and optimization of Li-ion batteries for light-duty passenger vehicle electrification  

E-Print Network [OSTI]

A techno-economic analysis and optimization of Li-ion batteries for light-duty passenger vehicle 15213, USA h i g h l i g h t s We analyze EV Li-ion NMC-G battery & pack designs and optimize thickness a b s t r a c t We conduct a techno-economic analysis of Li-ion NMC-G prismatic pouch battery

McGaughey, Alan

56

Putting policy in drive : coordinating measures to reduce fuel use and greenhouse gas emissions from U.S. light-duty vehicles  

E-Print Network [OSTI]

The challenges of energy security and climate change have prompted efforts to reduce fuel use and greenhouse gas emissions in light-duty vehicles within the United States. Failures in the market for lower rates of fuel ...

Evans, Christopher W. (Christopher William)

2008-01-01T23:59:59.000Z

57

Light-Duty Diesel Combustion | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Light-Duty Diesel Combustion Light-Duty Diesel Combustion 2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting...

58

Light Duty Efficient Clean Combustion | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Light Duty Efficient Clean Combustion Light Duty Efficient Clean Combustion 2009 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation...

59

Membrane-Based Air Composition Control for Light-Duty Diesel Vehicles: A Benefit and Cost Assessment  

SciTech Connect (OSTI)

This report presents the methodologies and results of a study conducted by Argonne National Laboratory (Argonne) to assess the benefits and costs of several membrane-based technologies. The technologies evaluated will be used in automotive emissions-control and performance-enhancement systems incorporated into light-duty diesel vehicle engines. Such engines are among the technologies that are being considered to power vehicles developed under the government-industry Partnership for a New Generation of Vehicles (PNGV). Emissions of nitrogen oxides (NO{sub x}) from diesel engines have long been considered a barrier to use of diesels in urban areas. Recently, particulate matter (PM) emissions have also become an area of increased concern because of new regulations regarding emissions of particulate matter measuring 2.5 micrometers or less (PM{sub 2.5}). Particulates are of special concern for diesel engines in the PNGV program; the program has a research goal of 0.01 gram per mile (g/mi) of particulate matter emissions under the Federal Test Procedure (FTP) cycle. This extremely low level (one-fourth the level of the Tier II standard) could threaten the viability of using diesel engines as stand-alone powerplants or in hybrid-electric vehicles. The techniques analyzed in this study can reduce NO{sub x} and particulate emissions and even increase the power density of the diesel engines used in light-duty diesel vehicles.

K. Stork; R. Poola

1998-10-01T23:59:59.000Z

60

Testing Electric Vehicle Demand in `Hybrid Households' Using a Reflexive Survey  

E-Print Network [OSTI]

EV market studies In the absence of data on actual sales,EV, then we expect that 16-18%) of annual light-duty vehicle sales

Kurani, Kenneth; Turrentine, Thomas; Sperling, Daniel

1996-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "light-duty vehicle sales" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Light Duty Combustion Research: Advanced Light-Duty Combustion...  

Broader source: Energy.gov (indexed) [DOE]

Light Duty Combustion Research: Advanced Light-Duty Combustion Experiments Light Duty Combustion Research: Advanced Light-Duty Combustion Experiments 2009 DOE Hydrogen Program and...

62

On-vehicle emission measurement of a light-duty diesel van at various speeds at high altitude  

Science Journals Connector (OSTI)

Abstract As part of the research on the relationship between the speed of a vehicle operating at high altitude and its contaminant emissions, an on-vehicle emission measurement of a light-duty diesel van at the altitudes of 1000 m, 2400 m and 3200 m was conducted. The test vehicle was a 2.8 L turbocharged diesel Ford Transit. Its settings were consistent in all experiments. Regulated gaseous emissions, including CO, HC and NOx, together with particulate matter was measured at nine speeds ranged from 10 km h?1 to 90 km h?1 with 10 km h?1 intervals settings. At each speed, measurement lasted for at least 120 s to ensure the sufficiency and reliability of the collected data. The results demonstrated that at all altitudes, CO and HC emissions decreased as the vehicle speed increased. However both \\{NOx\\} and PM increased with vehicle speed. In terms of the effects of altitude, an increase in CO, HC and PM was observed with the rising of altitude at each vehicle speed. \\{NOx\\} behaved different: emission of \\{NOx\\} initially increased as the vehicle was raised from 1000 m to 2400 m, but it decreased when the vehicle was further elevated to 3200 m.

Xin Wang; Hang Yin; Yunshan Ge; Linxiao Yu; Zhenxian Xu; Chenglei Yu; Xuejiao Shi; Hongkun Liu

2013-01-01T23:59:59.000Z

63

Size-resolved engine exhaust aerosol characteristics in a metal foam particulate filter for GDI light-duty vehicle  

Science Journals Connector (OSTI)

The particulate emissions generated from a side-mounted 2.4 L gasoline direct injection (GDI) engine were evaluated using a metal foam-type gasoline particulate filter (GPF), placed on the downstream of a three-way catalyst. An ULEV legislation-compliant light-duty vehicle was tested under the new European driving cycle (NEDC) and at constant-speed driving conditions. Particle number (PN) concentrations, particulate size distribution and the filtration efficiency of the GPF were evaluated with the condensation particle counter (CPC) and the differential mobility spectrometer (DMS). The PN emissions for the entire NEDC were 1.17E+12 N/km for the base GDI vehicle and 4.99E+11 N/km for the GPF-equipped GDI vehicle, and the filtration efficiency of the GPF was 57%. In particular, the number of sub-23 nm particles formed in the GDI vehicle was substantially reduced, with 97% efficiency. The pressure drop in the metal foam-type GPF was constrained to be below 1.0 kPa at a 120 km/h vehicle speed, and as a result, the fuel economy and the CO2 emission for the GPF-applied vehicle were equivalent to those for the base vehicle.

Kwanhee Choi; Juwon Kim; Ahyun Ko; Cha-Lee Myung; Simsoo Park; Jeongmin Lee

2013-01-01T23:59:59.000Z

64

DOE Issues Request for Information on Fuel Cells for Continuous On-Board Recharging for Battery Electric Light-Duty Vehicles  

Broader source: Energy.gov [DOE]

The USDOE's Fuel Cell Technologies Office has issued an RFI seeking feedback from the research community and relevant stakeholders about fuel cell technology validation, commercial acceleration, and potential deployment strategies for continuous fuel cell rechargers on board light-duty electric vehicle fleets.

65

Speed-and Facility-Specific Emission Estimates for On-Road Light-Duty Vehicles based on Real-World Speed Profiles  

E-Print Network [OSTI]

06-1096 Speed- and Facility-Specific Emission Estimates for On-Road Light-Duty Vehicles based on Real-World Speed Profiles By H. Christopher Frey, Ph.D. Professor Department of Civil, Construction demand and land use models such as TransCAD, TranPlan or TRANUS produce average link speed and link VMT

Frey, H. Christopher

66

Effect of Intake Air Filter Condition on Light-Duty Gasoline Vehicles  

SciTech Connect (OSTI)

Proper maintenance can help vehicles perform as designed, positively affecting fuel economy, emissions, and the overall drivability. This effort investigates the effect of one maintenance factor, intake air filter replacement, with primary focus on vehicle fuel economy, but also examining emissions and performance. Older studies, dealing with carbureted gasoline vehicles, have indicated that replacing a clogged or dirty air filter can improve vehicle fuel economy and conversely that a dirty air filter can be significantly detrimental to fuel economy. The effect of clogged air filters on the fuel economy, acceleration and emissions of five gasoline fueled vehicles is examined. Four of these were modern vehicles, featuring closed-loop control and ranging in model year from 2003 to 2007. Three vehicles were powered by naturally aspirated, port fuel injection (PFI) engines of differing size and cylinder configuration: an inline 4, a V6 and a V8. A turbocharged inline 4-cylinder gasoline direct injection (GDI) engine powered vehicle was the fourth modern gasoline vehicle tested. A vintage 1972 vehicle equipped with a carburetor (open-loop control) was also examined. Results reveal insignificant fuel economy and emissions sensitivity of modern vehicles to air filter condition, but measureable effects on the 1972 vehicle. All vehicles experienced a measured acceleration performance penalty with clogged intake air filters.

Thomas, John F [ORNL] [ORNL; Huff, Shean P [ORNL] [ORNL; West, Brian H [ORNL] [ORNL; Norman, Kevin M [ORNL] [ORNL

2012-01-01T23:59:59.000Z

67

Impact of Canada's Voluntary Agreement on Greenhouse Gas Emissions from Light Duty Vehicles  

E-Print Network [OSTI]

Vehicle Fuel Economy and GHG Emission Standards Around theVehicle Industry to Reduce GHG Emissions in Canada – Part of2 (After Various Areas of GHG Actual Ethanol Mobile Light “

Lutsey, Nicholas P.

2006-01-01T23:59:59.000Z

68

Impact of Canada’s Voluntary Agreement on Greenhouse Gas Emissions from Light Duty Vehicles  

E-Print Network [OSTI]

Vehicle Fuel Economy and GHG Emission Standards Around theVehicle Industry to Reduce GHG Emissions in Canada – Part of2 (After Various Areas of GHG Actual Ethanol Mobile Light “

Lutsey, Nicholas P.

2006-01-01T23:59:59.000Z

69

Advanced Combustion Concepts- Enabling Systems and Solutions (ACCESS) for High Efficiency Light Duty Vehicles  

Broader source: Energy.gov [DOE]

2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation

70

Advanced Combustion Concepts- Enabling Systems and Solutions (ACCESS) for High Efficiency Light Duty Vehicles  

Broader source: Energy.gov [DOE]

2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

71

Advanced Combustion Concepts- Enabling Systems and Solutions (ACCESS) for High Efficiency Light Duty Vehicles  

Broader source: Energy.gov [DOE]

2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

72

Effect of Gasoline Properties on Exhaust Emissions from Tier 2 Light-Duty Vehicles -- Final Report: Phase 3; July 28, 2008 - July 27, 2013  

SciTech Connect (OSTI)

This report covers work the Southwest Research Institute (SwRI) Office of Automotive Engineering has conducted for the U.S. Environmental Protection Agency (EPA), the National Renewable Energy Laboratory (NREL), and the Coordinating Research Council (CRC) in support of the Energy Policy Act of 2005 (EPAct). Section 1506 of EPAct requires EPA to produce an updated fuel effects model representing the 2007 light - duty gasoline fleet, including determination of the emissions impacts of increased renewable fuel use. This report covers the exhaust emissions testing of 15 light-duty vehicles with 27 E0 through E20 test fuels, and 4 light-duty flexible fuel vehicles (FFVs) on an E85 fuel, as part of the EPAct Gasoline Light-Duty Exhaust Fuel Effects Test Program. This program will also be referred to as the EPAct/V2/E-89 Program based on the designations used for it by the EPA, NREL, and CRC, respectively. It is expected that this report will be an attachment or a chapter in the overall EPAct/V2/E-89 Program report prepared by EPA and NREL.

Whitney, K.

2014-05-01T23:59:59.000Z

73

Vehicle Technologies Office Merit Review 2014: Light-Duty Diesel Combuston  

Broader source: Energy.gov [DOE]

Presentation given by Sandia Natonal Laboratories and  University of Wisconsin at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation...

74

Program Record 13006 (Offices of Vehicle Technologies and Fuel Cell Technologies: Life-Cycle Costs of Mid-Size Light-Duty Vehicles  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Program Record (Offices of Vehicle Technologies & Fuel Cell Program Record (Offices of Vehicle Technologies & Fuel Cell Technologies) Record #: 13006 Date: April 24, 2013 Title: Life-cycle Costs of Mid-Size Light-Duty Vehicles Originator: Tien Nguyen & Jake Ward Approved by: Sunita Satyapal Pat Davis Date: April 25, 2013 Items: DOE is pursuing a portfolio of technologies with the potential to significantly reduce greenhouse gases (GHG) emissions and petroleum consumption while being cost-effective. This record documents the assumptions and results of analyses conducted to estimate the life-cycle costs resulting from several fuel/vehicle pathways, for a future mid-size car. The results are summarized graphically in the following figure. Costs of Operation for Future Mid-Size Car

75

Rebound 2007: Analysis of U.S. Light-Duty Vehicle Travel Statistics  

SciTech Connect (OSTI)

U.S. national time series data on vehicle travel by passenger cars and light trucks covering the period 1966 2007 are used to test for the existence, size and stability of the rebound effect for motor vehicle fuel efficiency on vehicle travel. The data show a statistically significant effect of gasoline price on vehicle travel but do not support the existence of a direct impact of fuel efficiency on vehicle travel. Additional tests indicate that fuel price effects have not been constant over time, although the hypothesis of symmetry with respect to price increases and decreases is not rejected. Small and Van Dender (2007) model of a declining rebound effect with income is tested and similar results are obtained.

Greene, David L [ORNL

2010-01-01T23:59:59.000Z

76

Light-Duty Advanced Diesel Combustion Research | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Light-Duty Advanced Diesel Combustion Research Light-Duty Advanced Diesel Combustion Research Presentation from the U.S. DOE Office of Vehicle Technologies "Mega" Merit Review 2008...

77

Global Assessment of Hydrogen Technologies - Task 1 Report Technology Evaluation of Hydrogen Light Duty Vehicles  

SciTech Connect (OSTI)

This task analyzes the candidate hydrogen-fueled vehicles for near-term use in the Southeastern U.S. The purpose of this work is to assess their potential in terms of efficiency and performance. This report compares conventional, hybrid electric vehicles (HEV) with gasoline and hydrogen-fueled internal combustion engines (ICEs) as well as fuel cell and fuel cell hybrids from a technology as well as fuel economy point of view. All the vehicles have been simulated using the Powertrain System Analysis Toolkit (PSAT). First, some background information is provided on recent American automotive market trends and consequences. Moreover, available options are presented for introducing cleaner and more economical vehicles in the market in the future. In this study, analysis of various candidate hydrogen-fueled vehicles is performed using PSAT and, thus, a brief description of PSAT features and capabilities are provided. Detailed information on the simulation analysis performed is also offered, including methodology assumptions, fuel economic results, and conclusions from the findings.

Fouad, Fouad H.; Peters, Robert W.; Sisiopiku, Virginia P.; Sullivan Andrew J.; Rousseau, Aymeric

2007-12-01T23:59:59.000Z

78

Carbon Emission Targets for Driving Sustainable Mobility with US Light-Duty Vehicles  

Science Journals Connector (OSTI)

The Intergovernmental Panel on Climate Change (IPCC) and many independent scientists warn that if global mean temperatures rise 1?5 °C from 1990 levels due to anthropogenic greenhouse gas emissions, risks of extreme climate events and widespread regional ecological and economic impacts will significantly increase (11, 12). ... PHEVs can displace on-road gasoline-powered vehicles and help to meet the defined targets if the average carbon intensity of the remaining conventional and PHEV vehicle mix is less than the LDV g/mile target. ... Keoleian, G. A.; Kar, K.; Manion, M.; Bulkley, J. W. Industrial Ecology of the Automobile: A Life Cycle Assessment; Society of Automotive Engineers: Warrendale, PA, 1997. ...

Hilary G. Grimes-Casey; Gregory A. Keoleian; Blair Willcox

2008-12-31T23:59:59.000Z

79

Effect of E85 on Tailpipe Emissions from Light-Duty Vehicles  

SciTech Connect (OSTI)

E85, which consists of nominally 85% fuel grade ethanol and 15% gasoline, must be used in flexible-fuel (or 'flexfuel') vehicles (FFVs) that can operate on fuel with an ethanol content of 0-85%. Published studies include measurements of the effect of E85 on tailpipe emissions for Tier 1 and older vehicles. Car manufacturers have also supplied a large body of FFV certification data to the U.S. Environmental Protection Agency, primarily on Tier 2 vehicles. These studies and certification data reveal wide variability in the effects of E85 on emissions from different vehicles. Comparing Tier 1 FFVs running on E85 to similar non-FFVs running on gasoline showed, on average, significant reductions in emissions of oxides of nitrogen (NOx; 54%), non-methane hydrocarbons (NMHCs; 27%), and carbon monoxide (CO; 18%) for E85. Comparing Tier 2 FFVs running on E85 and comparable non-FFVs running on gasoline shows, for E85 on average, a significant reduction in emissions of CO (20%), and no significant effect on emissions of non-methane organic gases (NMOGs). NOx emissions from Tier 2 FFVs averaged approximately 28% less than comparable non-FFVs. However, perhaps because of the wide range of Tier 2 NOx standards, the absolute difference in NOx emissions between Tier 2 FFVs and non-FFVs is not significant (P 0.28). It is interesting that Tier 2 FFVs operating on gasoline produced approximately 13% less NMOGs than non-FFVs operating on gasoline. The data for Tier 1 vehicles show that E85 will cause significant reductions in emissions of benzene and butadiene, and significant increases in emissions of formaldehyde and acetaldehyde, in comparison to emissions from gasoline in both FFVs and non-FFVs. The compound that makes up the largest proportion of organic emissions from E85-fueled FFVs is ethanol.

Yanowitz, J.; McCormick, R. L.

2009-02-01T23:59:59.000Z

80

Ethanol or Bioelectricity? Life Cycle Assessment of Lignocellulosic Bioenergy Use in Light-Duty Vehicles  

Science Journals Connector (OSTI)

The remaining unfermented material, which includes lignin, is combusted to generate process heat and electricity. ... Delivered feedstock is combusted within a biomass boiler, generating steam to drive a steam turbine electrical generator, and flue gas to dry delivered feedstock. ... Fossil energy use in the bioenergy pathways is associated primarily with three aspects of the life cycle: (i) in the vehicle cycle (production/disposal) stage, coal and natural gas are used extensively. ...

Jason M. Luk; Mohammad Pourbafrani; Bradley A. Saville; Heather L. MacLean

2013-09-09T23:59:59.000Z

Note: This page contains sample records for the topic "light-duty vehicle sales" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Determination of Single Particle Mass Spectral Signatures from Light-Duty Vehicle Emissions  

Science Journals Connector (OSTI)

Significant variability was observed in the chemical composition of particles emitted within the different car categories as well as for the same car operating under different driving conditions. ... This increase was also seen for the six TWC passenger cars, which were tested on the FTP and UC cycles (Supplemental Information, Figure S4). ... Given that the majority of those high-emitting vehicles had defective emission control systems (99), it is also likely that they emitted high levels of PM as well. ...

David A. Sodeman; Stephen M. Toner; Kimberly A. Prather

2005-05-12T23:59:59.000Z

82

Drive cycle analysis of butanol/diesel blends in a light-duty vehicle.  

SciTech Connect (OSTI)

The potential exists to displace a portion of the petroleum diesel demand with butanol and positively impact engine-out particulate matter. As a preliminary investigation, 20% and 40% by volume blends of butanol with ultra low sulfur diesel fuel were operated in a 1999 Mercedes Benz C220 turbo diesel vehicle (Euro III compliant). Cold and hot start urban as well as highway drive cycle tests were performed for the two blends of butanol and compared to diesel fuel. In addition, 35 MPH and 55 MPH steady-state tests were conducted under varying road loads for the two fuel blends. Exhaust gas emissions, fuel consumption, and intake and exhaust temperatures were acquired for each test condition. Filter smoke numbers were also acquired during the steady-state tests.

Miers, S. A.; Carlson, R. W.; McConnell, S. S.; Ng, H. K.; Wallner, T.; LeFeber, J.; Energy Systems; Esper Images Video & Multimedia

2008-10-01T23:59:59.000Z

83

Fact #743: September 3, 2012 Used Vehicle Sales are Three Times Higher than New Vehicle Sales  

Broader source: Energy.gov [DOE]

From 1990 to 2008, the number of used vehicles sold was between 2.5 and 3 times higher than new vehicle sales. During the recent recession, both new and used vehicle sales declined to sales volumes...

84

Visualizing Electric Vehicle Sales  

Broader source: Energy.gov [DOE]

Data compiled by Yan (Joann) Zhou at Argonne National Laboratory. (*) Sales from the second quarter of 2013 for Tesla Model S are based off of estimates provided by the Hybrid Market Dashboard....

85

On-road emission factors of PM pollutants for light-duty vehicles (LDVs) based on urban street driving conditions  

Science Journals Connector (OSTI)

An on-road sampling campaign was conducted on two major surface streets (Wilshire and Sunset Boulevards) in Los Angeles, CA, to characterize PM components including metals, trace elements, and organic species for three PM size fractions (PM10–2.5, PM2.5–0.25, and PM0.25). Fuel-based emission factors (mass of pollutant per kg of fuel) were calculated to assess the emissions profile of a light-duty vehicle (LDV) traffic fleet characterized by stop-and-go driving conditions that are reflective of urban street driving. Emission factors for metals and trace elements were highest in PM10–2.5 while emission factors for \\{PAHs\\} and hopanes and steranes were highest in PM0.25. PM2.5 emission factors were also compared to previous freeway, roadway tunnel, and dynamometer studies based on an LDV fleet to determine how various environments and driving conditions may influence concentrations of PM components. The on-road sampling methodology deployed in the current study captured substantially higher levels of metals and trace elements associated with vehicular abrasion (Fe, Ca, Cu, and Ba) and crustal origins (Mg and Al) than previous LDV studies. The semi-volatile nature of \\{PAHs\\} resulted in higher levels of \\{PAHs\\} in the particulate phase for LDV tunnel studies (Phuleria et al., 2006) and lower levels of \\{PAHs\\} in the particulate phase for freeway studies (Ning et al., 2008). With the exception of a few high molecular weight PAHs, the current study's emission factors were in between the LDV tunnel and LDV freeway studies. In contrast, hopane and sterane emission factors were generally comparable between the current study, the LDV tunnel, and LDV freeway, as expected given the greater atmospheric stability of these organic compounds. Overall, the emission factors from the dynamometer studies for metals, trace elements, and organic species are lower than the current study. Lastly, n-alkanes (C19–C40) were quantified and alkane carbon preference indices (CPIs) were determined to be in the range of 1–2, indicating substantial anthropogenic source contribution for surface streets in Los Angeles.

Winnie Kam; James W. Liacos; James J. Schauer; Ralph J. Delfino; Constantinos Sioutas

2012-01-01T23:59:59.000Z

86

Vehicle Technologies Office Merit Review 2014: Advanced Combustion Concepts- Enabling Systems and Solutions (ACCESS) for High Efficiency Light Duty Vehicles  

Broader source: Energy.gov [DOE]

Presentation given by Robert Bosch at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about advanced combustion concepts -...

87

Cost of Ownership and Well-to-Wheels Carbon Emissions/Oil Use of Alternative Fuels and Advanced Light-Duty Vehicle Technologies  

SciTech Connect (OSTI)

The U.S. Department of Energy (DOE), Argonne National Laboratory (Argonne), and the National Renewable Energy Laboratory (NREL) updated their analysis of the well-to-wheels (WTW) greenhouse gases (GHG) emissions, petroleum use, and the cost of ownership (excluding insurance, maintenance, and miscellaneous fees) of vehicle technologies that have the potential to significantly reduce GHG emissions and petroleum consumption. The analyses focused on advanced light-duty vehicle (LDV) technologies such as plug-in hybrid, battery electric, and fuel cell electric vehicles. Besides gasoline and diesel, alternative fuels considered include natural gas, advanced biofuels, electricity, and hydrogen. The Argonne Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation (GREET) and Autonomie models were used along with the Argonne and NREL H2A models.

Elgowainy, Mr. Amgad [Argonne National Laboratory (ANL); Rousseau, Mr. Aymeric [Argonne National Laboratory (ANL); Wang, Mr. Michael [Argonne National Laboratory (ANL); Ruth, Mr. Mark [National Renewable Energy Laboratory (NREL); Andress, Mr. David [David Andress & Associates, Inc.; Ward, Jacob [U.S. Department of Energy; Joseck, Fred [U.S. Department of Energy; Nguyen, Tien [U.S. Department of Energy; Das, Sujit [ORNL

2013-01-01T23:59:59.000Z

88

Economic Comparison of LNT Versus Urea SCR for Light-Duty Diesel...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Comparison of LNT Versus Urea SCR for Light-Duty Diesel Vehicles in the U.S. Market Economic Comparison of LNT Versus Urea SCR for Light-Duty Diesel Vehicles in the U.S. Market...

89

DOE Targets for Onboard Hydrogen Storage Systems for Light-Duty...  

Broader source: Energy.gov (indexed) [DOE]

Targets for Onboard Hydrogen Storage Systems for Light-Duty Vehicles DOE Targets for Onboard Hydrogen Storage Systems for Light-Duty Vehicles This table lists the technical targets...

90

Visualizing Electric Vehicle Sales | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Visualizing Electric Vehicle Sales Visualizing Electric Vehicle Sales Visualizing Electric Vehicle Sales July 25, 2013 - 2:48pm Addthis Data compiled by Yan (Joann) Zhou at Argonne National Laboratory. (*) Sales from the second quarter of 2013 for Tesla Model S are based off of estimates provided by the Hybrid Market Dashboard. Data updated 9/25/2013. Daniel Wood Daniel Wood Data Integration Specialist More on eGallon: Read more about electric vehicle sales and eGallon's continued consistency. Check out our first blog post on the eGallon launch. Read the eGallon Q&A to learn more about the new tool. Last week, we reported on how electric vehicle sales have taken off in the last few months as prices have dropped and more manufacturers install fast charging stations across the country. Using the data we released last week, we created an interactive chart that

91

Visualizing Electric Vehicle Sales | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Visualizing Electric Vehicle Sales Visualizing Electric Vehicle Sales Visualizing Electric Vehicle Sales July 25, 2013 - 2:48pm Addthis Data compiled by Yan (Joann) Zhou at Argonne National Laboratory. (*) Sales from the second quarter of 2013 for Tesla Model S are based off of estimates provided by the Hybrid Market Dashboard. Data updated 9/25/2013. Daniel Wood Daniel Wood Data Integration Specialist More on eGallon: Read more about electric vehicle sales and eGallon's continued consistency. Check out our first blog post on the eGallon launch. Read the eGallon Q&A to learn more about the new tool. Last week, we reported on how electric vehicle sales have taken off in the last few months as prices have dropped and more manufacturers install fast charging stations across the country. Using the data we released last week, we created an interactive chart that

92

Real-world fuel consumption and CO2 (carbon dioxide) emissions by driving conditions for light-duty passenger vehicles in China  

Science Journals Connector (OSTI)

Abstract The increasing discrepancy between on-road and type-approval fuel consumption for \\{LDPVs\\} (light-duty passenger vehicles) has attracted tremendous attention. We measured on-road emissions for 60 \\{LDPVs\\} in three China's cities and calculated their fuel consumption and CO2 (carbon dioxide) emissions. We further evaluated the impacts of variations in area-averaged speed on relative fuel consumption of gasoline \\{LDPVs\\} for the UAB (urban area of Beijing). On-road fuel consumption under the average driving pattern is 10 ± 2% higher than that normalized to the NEDC (new European driving cycle) cycle for all tested vehicles, and the on-road NEDC-normalized fuel consumption is higher by 30 ± 12% compared to type-approval values for gasoline vehicles. We observed very strong correlations between relative fuel consumption and average speed. Traffic control applied to \\{LDPVs\\} driving within the UAB during weekdays can substantially reduce total fleet fuel consumption by 23 ± 5% during restriction hours by limiting vehicle use and improving driving conditions. Our results confirmed that a new cycle for the type approval test for \\{LDPVs\\} with more real-world driving features is of great necessity. Furthermore, enhanced traffic control measures could play an important role in mitigating real-world fuel consumption and CO2 emissions for \\{LDPVs\\} in China.

Shaojun Zhang; Ye Wu; Huan Liu; Ruikun Huang; Puikei Un; Yu Zhou; Lixin Fu; Jiming Hao

2014-01-01T23:59:59.000Z

93

Zero-Emission Vehicle Scenario Cost Analysis Using A Fuzzy Set-Based Framework  

E-Print Network [OSTI]

Now, a portion of the 10% EV sales mandate can be composeda small percentage of EV sales with the ZEV mandate). Withsale of more high-profit, light-duty trucks and sport-utility vehicles under CAFE regulations. EV

Lipman, Timothy Edward

1999-01-01T23:59:59.000Z

94

High-Efficiency Clean Combustion in Light-Duty Multi-Cylinder...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

High-Efficiency Clean Combustion in Light-Duty Multi-Cylinder Diesel Engines High-Efficiency Clean Combustion in Light-Duty Multi-Cylinder Diesel Engines 2010 DOE Vehicle...

95

Alternative Fuels Data Center: Plug-In Hybrid and Zero Emission Light-Duty  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Plug-In Hybrid and Plug-In Hybrid and Zero Emission Light-Duty Vehicle Rebates to someone by E-mail Share Alternative Fuels Data Center: Plug-In Hybrid and Zero Emission Light-Duty Vehicle Rebates on Facebook Tweet about Alternative Fuels Data Center: Plug-In Hybrid and Zero Emission Light-Duty Vehicle Rebates on Twitter Bookmark Alternative Fuels Data Center: Plug-In Hybrid and Zero Emission Light-Duty Vehicle Rebates on Google Bookmark Alternative Fuels Data Center: Plug-In Hybrid and Zero Emission Light-Duty Vehicle Rebates on Delicious Rank Alternative Fuels Data Center: Plug-In Hybrid and Zero Emission Light-Duty Vehicle Rebates on Digg Find More places to share Alternative Fuels Data Center: Plug-In Hybrid and Zero Emission Light-Duty Vehicle Rebates on AddThis.com...

96

Commercializing light-duty plug-in/plug-out hydrogen-fuel-cell vehicles: “Mobile Electricity” technologies and opportunities  

E-Print Network [OSTI]

application of hydrogen and fuel cells in cars and trucks (hydrogen-fuel-cell vehicles (H 2 FCVs) not simply as clean carshydrogen on boats using conventional storage technology necessarily help LD fuel-cell cars

Williams, Brett D; Kurani, Kenneth S

2007-01-01T23:59:59.000Z

97

Vehicle Technologies Office Merit Review 2014: High Efficiency Clean Combustion in Multi-Cylinder Light-Duty Engines  

Broader source: Energy.gov [DOE]

Presentation given by Oak Ridge National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about high efficiency...

98

Feasibility Study Of Advanced Technology Hov Systems: Volume 2b: Emissions Impact Of Roadway-powered Electric Buses, Light-duty Vehicles, And Automobiles  

E-Print Network [OSTI]

EV's, roadway-powered electric automobiles, and light dutyFor Roadway-Powered Electric Automobiles -a---- Range ofFor Roadway-Powered Electric Automobiles Range of Estimated

Miller, Mark A.; Dato, Victor; Chira-chavala, Ted

1992-01-01T23:59:59.000Z

99

Global Assessment of Hydrogen Technologies - Task 2 Report Comparison of Performance and Emissions from Near-Term Hydrogen Fueled Light Duty Vehicles  

SciTech Connect (OSTI)

An investigation was conducted on the emissions and efficiency from hydrogen blended compressed natural gas (CNG) in light duty vehicles. The different blends used in this investigation were 0%, 15%, 30%, 50%, 80%, 95%, and ~100% hydrogen, the remainder being compressed natural gas. The blends were tested using a Ford F-150 and a Chevrolet Silverado truck supplied by Arizona Public Services. Tests on emissions were performed using four different driving condition tests. Previous investigation by Don Karner and James Frankfort on a similar Ford F-150 using a 30% hydrogen blend showed that there was substantial reduction when compared to gasoline in carbon monoxide (CO), nitrogen oxide (NOx), and carbon dioxide (CO2) emissions while the reduction in hydrocarbon (HC) emissions was minimal. This investigation was performed using different blends of CNG and hydrogen to evaluate the emissions reducing capabilities associated with the use of the different fuel blends. The results were then tested statistically to confirm or reject the hypotheses on the emission reduction capabilities. Statistically analysis was performed on the test results to determine whether hydrogen concentration in the HCNG had any effect on the emissions and the fuel efficiency. It was found that emissions from hydrogen blended compressed natural gas were a function of driving condition employed. Emissions were found to be dependent on the concentration of hydrogen in the compressed natural gas fuel blend.

Fouad, Fouad H.; Peters, Robert W.; Sisiopiku, Virginia P.; Sullivan Andrew J.; Ng, Henry K.; Waller, Thomas

2007-12-01T23:59:59.000Z

100

Transportation Energy Futures Series: Non-Cost Barriers to Consumer Adoption of New Light-Duty Vehicle Technologies  

SciTech Connect (OSTI)

Consumer preferences are key to the adoption of new vehicle technologies. Barriers to consumer adoption include price and other obstacles, such as limited driving range and charging infrastructure; unfamiliarity with the technology and uncertainty about direct benefits; limited makes and models with the technology; reputation or perception of the technology; standardization issues; and regulations. For each of these non-cost barriers, this report estimates an effective cost and summarizes underlying influences on consumer preferences, approximate magnitude and relative severity, and assesses potential actions, based on a comprehensive literature review. While the report concludes that non-cost barriers are significant, effective cost and potential market share are very uncertain. Policies and programs including opportunities for drivers to test drive advanced vehicles, general public outreach and information programs, incentives for providing charging and fueling infrastructure, and development of technology standards were examined for their ability to address barriers, but little quantitative data exists on the effectiveness of these measures. This is one in a series of reports produced as a result of the Transportation Energy Futures project, a Department of Energy-sponsored multi-agency effort to pinpoint underexplored strategies for reducing GHGs and petroleum dependence related to transportation.

Stephens, T.

2013-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "light-duty vehicle sales" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Vehicle Technologies Office: Fact #762: January 14, 2013 Sales from  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

2: January 14, 2: January 14, 2013 Sales from Introduction: Hybrid Vehicles vs. Plug-in Vehicles to someone by E-mail Share Vehicle Technologies Office: Fact #762: January 14, 2013 Sales from Introduction: Hybrid Vehicles vs. Plug-in Vehicles on Facebook Tweet about Vehicle Technologies Office: Fact #762: January 14, 2013 Sales from Introduction: Hybrid Vehicles vs. Plug-in Vehicles on Twitter Bookmark Vehicle Technologies Office: Fact #762: January 14, 2013 Sales from Introduction: Hybrid Vehicles vs. Plug-in Vehicles on Google Bookmark Vehicle Technologies Office: Fact #762: January 14, 2013 Sales from Introduction: Hybrid Vehicles vs. Plug-in Vehicles on Delicious Rank Vehicle Technologies Office: Fact #762: January 14, 2013 Sales from Introduction: Hybrid Vehicles vs. Plug-in Vehicles on Digg

102

The Household Market for Electric Vehicles: Testing the Hybrid Household Hypothesis -- A Reflexively Designed Survey of New-Car-Buying Multi-Vehicle California Households  

E-Print Network [OSTI]

EV,then we expect 13.3 to 15.2% of all light-duty vehicle sales,EV marketpotential for smaller and shorter range velucles represented by our sampleis about 7%of annual, newhght duty vehicle sales.EV body styles" EVs ICEVs Total PAGE 66 THE HOUSEHOLD MA RKET FOR ELECTRIC VEHICLES percent mandatein the year 2003will dependon sales

Turrentine, Thomas; Kurani, Kenneth S.

2001-01-01T23:59:59.000Z

103

sales | OpenEI  

Open Energy Info (EERE)

sales sales Dataset Summary Description Supplemental Tables 48-56 of EIA AEO 2011 Early Release Source EIA Date Released December 08th, 2010 (3 years ago) Date Updated Unknown Keywords AEO Annual Energy Outlook EIA Energy Information Administration light-duty sales TEF Transportation Energy Futures vehicle Data text/csv icon Light-Duty_Vehicle_Sales_by_Technology_Type.csv (csv, 1.1 MiB) Quality Metrics Level of Review Some Review Comment Temporal and Spatial Coverage Frequency Annually Time Period 2008-2035 License License Open Data Commons Public Domain Dedication and Licence (PDDL) Comment Rate this dataset Usefulness of the metadata Average vote Your vote Usefulness of the dataset Average vote Your vote Ease of access Average vote Your vote Overall rating Average vote Your vote

104

Electric and Hybrid Electric Vehicle Sales: December 2010 - June 2013 |  

Broader source: Energy.gov (indexed) [DOE]

Electric and Hybrid Electric Vehicle Sales: December 2010 - June Electric and Hybrid Electric Vehicle Sales: December 2010 - June 2013 Electric and Hybrid Electric Vehicle Sales: December 2010 - June 2013 Sales data for various models of electric and hybrid electric vehicles from December 2010 through June 2013. 062010-092013_EV_HEV Sales.xlsx Description Electric and Hybrid Electric Vehicle Sales: December 2010 - June 2013 (Excel) 062010-092013_EV_HEV Sales.csv Description Electric and Hybrid Electric Vehicle Sales: December 2010 - June 2013 (CSV) 062010-092013_EV_HEV Sales.jpeg Description Chart of Electric and Hybrid Electric Vehicle Sales: December 2010 - June 2013 (JPG) More Documents & Publications Federal Reporting Recipient Information Natural Gas Imports and Exports - Second Quarter Report 2013 Federal Reporting Recipient Information

105

Electric and Hybrid Electric Vehicle Sales: December 2010 - June 2013 |  

Broader source: Energy.gov (indexed) [DOE]

Electric and Hybrid Electric Vehicle Sales: December 2010 - June Electric and Hybrid Electric Vehicle Sales: December 2010 - June 2013 Electric and Hybrid Electric Vehicle Sales: December 2010 - June 2013 Sales data for various models of electric and hybrid electric vehicles from December 2010 through June 2013. 062010-092013_EV_HEV Sales.xlsx Description Electric and Hybrid Electric Vehicle Sales: December 2010 - June 2013 (Excel) 062010-092013_EV_HEV Sales.csv Description Electric and Hybrid Electric Vehicle Sales: December 2010 - June 2013 (CSV) 062010-092013_EV_HEV Sales.jpeg Description Chart of Electric and Hybrid Electric Vehicle Sales: December 2010 - June 2013 (JPG) More Documents & Publications Federal Reporting Recipient Information Natural Gas Imports and Exports - Second Quarter Report 2013 Federal Reporting Recipient Information

106

Fact #811: January 6, 2014 Light Vehicle Sales Recoveries  

Broader source: Energy.gov [DOE]

The figure below shows the effect of the past three recessions on light vehicle sales. Of the last three recessions, the recent one had the most profound effect on light vehicle sales with a...

107

Effect of Gasoline Properties on Exhaust Emissions from Tier 2 Light-Duty Vehicles -- Final Report: Phases 4, 5, & 6; July 28, 2008 - July 27, 2013  

SciTech Connect (OSTI)

This report covers work the Southwest Research Institute (SwRI) Office of Automotive Engineering has conducted for the National Renewable Energy Laboratory (NREL) in support of the Energy Policy Act of 2005 (EPAct). Section 1506 of EPAct requires the EPA to produce an updated fuel effects model representing the 2007 light-duty gasoline fleet, including determination of the emissions impacts of increased renewable fuel use.

Whitney, K.; Shoffner, B.

2014-06-01T23:59:59.000Z

108

Vehicle Technologies Office: Fact #811: January 6, 2014 Light Vehicle Sales  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

1: January 6, 1: January 6, 2014 Light Vehicle Sales Recoveries to someone by E-mail Share Vehicle Technologies Office: Fact #811: January 6, 2014 Light Vehicle Sales Recoveries on Facebook Tweet about Vehicle Technologies Office: Fact #811: January 6, 2014 Light Vehicle Sales Recoveries on Twitter Bookmark Vehicle Technologies Office: Fact #811: January 6, 2014 Light Vehicle Sales Recoveries on Google Bookmark Vehicle Technologies Office: Fact #811: January 6, 2014 Light Vehicle Sales Recoveries on Delicious Rank Vehicle Technologies Office: Fact #811: January 6, 2014 Light Vehicle Sales Recoveries on Digg Find More places to share Vehicle Technologies Office: Fact #811: January 6, 2014 Light Vehicle Sales Recoveries on AddThis.com... Fact #811: January 6, 2014 Light Vehicle Sales Recoveries

109

Alternative Fuels Data Center: Low Emission Vehicle (LEV) Sales Tax  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Low Emission Vehicle Low Emission Vehicle (LEV) Sales Tax Exemption to someone by E-mail Share Alternative Fuels Data Center: Low Emission Vehicle (LEV) Sales Tax Exemption on Facebook Tweet about Alternative Fuels Data Center: Low Emission Vehicle (LEV) Sales Tax Exemption on Twitter Bookmark Alternative Fuels Data Center: Low Emission Vehicle (LEV) Sales Tax Exemption on Google Bookmark Alternative Fuels Data Center: Low Emission Vehicle (LEV) Sales Tax Exemption on Delicious Rank Alternative Fuels Data Center: Low Emission Vehicle (LEV) Sales Tax Exemption on Digg Find More places to share Alternative Fuels Data Center: Low Emission Vehicle (LEV) Sales Tax Exemption on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type

110

Testing Electric Vehicle Demand in "Hybrid Households" Using a Reflexive Survey  

E-Print Network [OSTI]

EV market studies In the absenceof data on actual sales,EV, then we expect 16 to 18% annual of of light-duty vehicle salesEV experiments indicate there is still more than adequatepotential marketsfor electric vehicles to have , exceededthe former 1998CARB mandatefor sales

Kurani, Kenneth S.; Turrentine, Thomas; Sperling, Daniel

2001-01-01T23:59:59.000Z

111

Vehicle Technologies Office: Fact #647: November 1, 2010 Sales Shifting  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

7: November 1, 7: November 1, 2010 Sales Shifting from Light Trucks to Cars to someone by E-mail Share Vehicle Technologies Office: Fact #647: November 1, 2010 Sales Shifting from Light Trucks to Cars on Facebook Tweet about Vehicle Technologies Office: Fact #647: November 1, 2010 Sales Shifting from Light Trucks to Cars on Twitter Bookmark Vehicle Technologies Office: Fact #647: November 1, 2010 Sales Shifting from Light Trucks to Cars on Google Bookmark Vehicle Technologies Office: Fact #647: November 1, 2010 Sales Shifting from Light Trucks to Cars on Delicious Rank Vehicle Technologies Office: Fact #647: November 1, 2010 Sales Shifting from Light Trucks to Cars on Digg Find More places to share Vehicle Technologies Office: Fact #647: November 1, 2010 Sales Shifting from Light Trucks to Cars on AddThis.com...

112

DOE/VTP Light-Duty Diesel Engine Commercialization  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

VTP Light-Duty Diesel Engine Commercialization VTP Light-Duty Diesel Engine Commercialization Vehicle Technologies Program (VTP) spearheaded the development of clean diesel engine technologies for passenger vehicles in the 1990s, spurring the current reintroduction of highly efficient diesel vehicles into the passenger market. Cummins partnered with VTP to develop a diesel engine that meets the 50-state 2010 emissions standards while boosting vehicle fuel economy by 30% over comparable gasoline-powered vehicles. The Cummins engine is scheduled to debut in 2010 Chrysler sport utility vehicles and pickup trucks. VTP-sponsored research demonstrated the ability of diesel passenger vehicles with advanced aftertreatment to meet EPA's stringent Tier II Bin 5 standards, representing an 83% reduction in NOx and more than 87% reduction in

113

Fact #599: November 30, 2009 Historical Trend for Light Vehicle Sales  

Broader source: Energy.gov [DOE]

The sales of light vehicles dropped from 16.1 million vehicles in 2007 to 13.2 million vehicles in 2008. Light vehicle sales haven't dropped off that sharply in one year since 1974, when sales fell...

114

Vehicle Technologies Office: Fact #754: November 19, 2012 Vehicle Sales in  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

4: November 19, 4: November 19, 2012 Vehicle Sales in the U.S. and China, 2002-2011 to someone by E-mail Share Vehicle Technologies Office: Fact #754: November 19, 2012 Vehicle Sales in the U.S. and China, 2002-2011 on Facebook Tweet about Vehicle Technologies Office: Fact #754: November 19, 2012 Vehicle Sales in the U.S. and China, 2002-2011 on Twitter Bookmark Vehicle Technologies Office: Fact #754: November 19, 2012 Vehicle Sales in the U.S. and China, 2002-2011 on Google Bookmark Vehicle Technologies Office: Fact #754: November 19, 2012 Vehicle Sales in the U.S. and China, 2002-2011 on Delicious Rank Vehicle Technologies Office: Fact #754: November 19, 2012 Vehicle Sales in the U.S. and China, 2002-2011 on Digg Find More places to share Vehicle Technologies Office: Fact #754:

115

Light-duty diesel engine development status and engine needs  

SciTech Connect (OSTI)

This report reviews, assesses, and summarizes the research and development status of diesel engine technology applicable to light-duty vehicles. In addition, it identifies specific basic and applied research and development needs in light-duty diesel technology and related health areas where initial or increased participation by the US Government would be desirable. The material presented in this report updates information provided in the first diesel engine status report prepared by the Aerospace Corporation for the Department of Energy in September, 1978.

Not Available

1980-08-01T23:59:59.000Z

116

Assessment of costs and benefits of flexible and alternative fuel use in the U.S. transportation sector. Technical report fourteen: Market potential and impacts of alternative fuel use in light-duty vehicles -- A 2000/2010 analysis  

SciTech Connect (OSTI)

In this report, estimates are provided of the potential, by 2010, to displace conventional light-duty vehicle motor fuels with alternative fuels--compressed natural gas (CNG), liquefied petroleum gas (LPG), methanol from natural gas, ethanol from grain and from cellulosic feedstocks, and electricity--and with replacement fuels such as oxygenates added to gasoline. The 2010 estimates include the motor fuel displacement resulting both from government programs (including the Clean Air Act and EPACT) and from potential market forces. This report also provides an estimate of motor fuel displacement by replacement and alterative fuels in the year 2000. However, in contrast to the 2010 estimates, the year 2000 estimate is restricted to an accounting of the effects of existing programs and regulations. 27 figs., 108 tabs.

NONE

1996-01-01T23:59:59.000Z

117

Fact #739: August 6, 2012 Light Vehicle Dealership Sales Trends – New Vehicles, Used Vehicles, and Service/Parts  

Broader source: Energy.gov [DOE]

In 2007, almost 60% of sales from an average light vehicle dealership were new cars. New car sales declined to 52.3% of a dealership's sales in 2009, when service/parts rose to 15.7% and used...

118

Status of advanced light-duty transportation technologies in the US  

Science Journals Connector (OSTI)

The need to reduce oil consumption and greenhouse gases is driving a fundamental change toward more efficient, advanced vehicles, and fuels in the transportation sector. The paper reviews the current status of light duty vehicles in the US and discusses policies to improve fuel efficiency, advanced electric drives, and sustainable cellulosic biofuels. The paper describes the cost, technical, infrastructure, and market barriers for alternative technologies, i.e., advanced biofuels and light-duty vehicles, including diesel vehicles, natural-gas vehicles, hybrid electric vehicles, plug-in hybrid electric vehicles, and fuel-cell electric vehicles. The paper also presents R&D targets and technology validation programs of the US government.

David Andress; Sujit Das; Fred Joseck; T. Dean Nguyen

2012-01-01T23:59:59.000Z

119

Fact #644: October 11, 2010 Share of Diesel Vehicle Sales Decline...  

Energy Savers [EERE]

However, from 2007 to 2009, the share of diesel vehicle sales has begun to decline. Germany and Italy have experienced the greatest declines in diesel vehicle sales, though...

120

Commercializing Light-Duty Plug-In/Plug-Out Hydrogen-Fuel-Cell Vehicles: "Mobile Electricity" Technologies, Early California Household Markets, and Innovation Management  

E-Print Network [OSTI]

2002. EPRI, "Advanced Batteries for Electric-Drive Vehicles:12 2.2.2.1 PHEV uncertainties: Batteries andwith big propulsion batteries. However, recent activities (

Williams, Brett D

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "light-duty vehicle sales" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Commercializing Light-Duty Plug-In/Plug-Out Hydrogen-Fuel-Cell Vehicles:“Mobile Electricity” Technologies, Early California Household Markets, and Innovation Management  

E-Print Network [OSTI]

application of hydrogen and fuel cells in cars and trucks (hydrogen-fuel-cell vehicles (H 2 FCVs) not simply as clean carshydrogen on boats using conventional storage technology necessarily help LD fuel-cell cars

Williams, Brett D

2007-01-01T23:59:59.000Z

122

Commercializing Light-Duty Plug-In/Plug-Out Hydrogen-Fuel-Cell Vehicles: "Mobile Electricity" Technologies, Early California Household Markets, and Innovation Management  

E-Print Network [OSTI]

application of hydrogen and fuel cells in cars and trucks (hydrogen-fuel-cell vehicles (H 2 FCVs) not simply as clean carshydrogen on boats using conventional storage technology necessarily help LD fuel-cell cars

Williams, Brett D

2010-01-01T23:59:59.000Z

123

Fact #754: November 19, 2012 Vehicle Sales in the U.S. and China, 2002-2011  

Broader source: Energy.gov [DOE]

In 2002, vehicle sales were about five times higher in the U.S. than in China. Due to a combination of declining sales in the U.S. and rising sales in China, vehicle sales in China exceeded vehicle...

124

Mobility chains analysis of technologies for passenger cars and light duty vehicles fueled with biofuels : application of the Greet model to project the role of biomass in America's energy future (RBAEF) project.  

SciTech Connect (OSTI)

The Role of Biomass in America's Energy Future (RBAEF) is a multi-institution, multiple-sponsor research project. The primary focus of the project is to analyze and assess the potential of transportation fuels derived from cellulosic biomass in the years 2015 to 2030. For this project, researchers at Dartmouth College and Princeton University designed and simulated an advanced fermentation process to produce fuel ethanol/protein, a thermochemical process to produce Fischer-Tropsch diesel (FTD) and dimethyl ether (DME), and a combined heat and power plant to co-produce steam and electricity using the ASPEN Plus{trademark} model. With support from the U.S. Department of Energy (DOE), Argonne National Laboratory (ANL) conducted, for the RBAEF project, a mobility chains or well-to-wheels (WTW) analysis using the Greenhouse gases, Regulated Emissions, and Energy use in Transportation (GREET) model developed at ANL. The mobility chains analysis was intended to estimate the energy consumption and emissions associated with the use of different production biofuels in light-duty vehicle technologies.

Wu, M.; Wu, Y.; Wang, M; Energy Systems

2008-01-31T23:59:59.000Z

125

Commercializing Light-Duty Plug-In/Plug-Out Hydrogen-Fuel-Cell Vehicles: "Mobile Electricity" Technologies, Early California Household Markets, and Innovation Management  

E-Print Network [OSTI]

storage, and initial cost barriers—enable hydrogen-fuel-cellHydrogen Economy. New York: Tarcher-Putnam, 2002. ) production, fuel-cell costfuel-cell vehicle fed hydrogen by a stationary reformer reforming natural gas to produce hydrogen at a cost

Williams, Brett D

2010-01-01T23:59:59.000Z

126

J. Air & Waste Manage. Assoc., vol 58, 2008, p. 45-54 On-board emission measurement of high loaded light duty vehicles in Algeria  

E-Print Network [OSTI]

; Nejjari et al., 2003, Atek et al., 2004). As a result, many stations of air pollution measurement and Boukadoum, 2005). Vehicle pollutant emissions constitute not only a problem of air quality in big citiesJ. Air & Waste Manage. Assoc., vol 58, 2008, p. 45-54 On-board emission measurement of high loaded

Boyer, Edmond

127

Technical Challenges and Opportunities Light-Duty Diesel Engines...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Challenges and Opportunities Light-Duty Diesel Engines in North America Technical Challenges and Opportunities Light-Duty Diesel Engines in North America 2005 Diesel Engine...

128

Business Case for Light-Duty Diesels | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Business Case for Light-Duty Diesels Business Case for Light-Duty Diesels 2005 Diesel Engine Emissions Reduction (DEER) Conference Presentations and Posters 2005deergodwin.pdf...

129

Advanced Technology Light Duty Diesel Aftertreatment System  

Broader source: Energy.gov [DOE]

Light duty diesel aftertreatment system consisting of a DOC and selective catalytic reduction catalyst on filter (SCRF), close coupled to the engine with direct gaseous ammonia delivery is designed to reduce cold start NOx and HC emissions

130

NGV and FCV Light Duty Transportation Perspective  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

G G presentation slides: Natural Gas and Fuel Cell Vehicle Light-Duty transportation perspectives Matt Fronk, Matt Fronk & Associates, LLC 1 OctOber 2011 | ArgOnne nAtiOnAl lAbOrAtOry NG Workshop summary report - appeNDIX G 2 OctOber 2011 | ArgOnne nAtiOnAl lAbOrAtOry NG Workshop summary report - appeNDIX G 3 OctOber 2011 | ArgOnne nAtiOnAl lAbOrAtOry NG Workshop summary report - appeNDIX G 4 OctOber 2011 | ArgOnne nAtiOnAl lAbOrAtOry NG Workshop summary report - appeNDIX G 5 OctOber 2011 | ArgOnne nAtiOnAl lAbOrAtOry NG Workshop summary report - appeNDIX G 6 OctOber 2011 | ArgOnne nAtiOnAl lAbOrAtOry NG Workshop summary report - appeNDIX G 7 OctOber 2011 | ArgOnne nAtiOnAl lAbOrAtOry NG Workshop summary report - appeNDIX G

131

Light Duty Combustion Research: Advanced Light-Duty Combustion Experiments  

Broader source: Energy.gov [DOE]

2009 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting, May 18-22, 2009 -- Washington D.C.

132

vehicle | OpenEI  

Open Energy Info (EERE)

vehicle vehicle Dataset Summary Description Supplemental Tables 48-56 of EIA AEO 2011 Early Release Source EIA Date Released December 08th, 2010 (4 years ago) Date Updated Unknown Keywords AEO Annual Energy Outlook EIA Energy Information Administration light-duty sales TEF Transportation Energy Futures vehicle Data text/csv icon Light-Duty_Vehicle_Sales_by_Technology_Type.csv (csv, 1.1 MiB) Quality Metrics Level of Review Some Review Comment Temporal and Spatial Coverage Frequency Annually Time Period 2008-2035 License License Open Data Commons Public Domain Dedication and Licence (PDDL) Comment Rate this dataset Usefulness of the metadata Average vote Your vote Usefulness of the dataset Average vote Your vote Ease of access Average vote Your vote Overall rating Average vote Your vote

133

Technology Development for Light Duty High Efficient Diesel Engines  

Broader source: Energy.gov [DOE]

Improve the efficiency of diesel engines for light duty applications through technical advances in system optimization.

134

Fact #713: February 6, 2012 Light Vehicle Sales Continue to Recover  

Broader source: Energy.gov [DOE]

In 2000, light vehicle sales reached a peak of more than 17 million. Sales remained above 16 million units until 2007. Due to economic conditions, sales dropped off sharply in 2008 and reached a...

135

Fact #768: February 25, 2013 New Light Vehicle Sales and Gross...  

Broader source: Energy.gov (indexed) [DOE]

downs. Those ups and downs are also reflected in the change in Gross Domestic Product (GDP) over time which shows a trend similar to the vehicle sales trend. Vehicle sales have...

136

Light duty utility arm startup plan  

SciTech Connect (OSTI)

This plan details the methods and procedures necessary to ensure a safe transition in the operation of the Light Duty Utility Arm (LDUA) System. The steps identified here outline the work scope and identify responsibilities to complete startup, and turnover of the LDUA to Characterization Project Operations (CPO).

Barnes, G.A.

1998-09-01T23:59:59.000Z

137

Cummins Work Toward Successful Introduction of Light-Duty Clean...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Cummins Work Toward Successful Introduction of Light-Duty Clean Diesel Engines in US Cummins Work Toward Successful Introduction of Light-Duty Clean Diesel Engines in US 2005...

138

Vehicle Technologies Office: Fact #512: March 31, 2008 Sales Price for  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

2: March 31, 2: March 31, 2008 Sales Price for Diesel and Gasoline, 1995-2007 to someone by E-mail Share Vehicle Technologies Office: Fact #512: March 31, 2008 Sales Price for Diesel and Gasoline, 1995-2007 on Facebook Tweet about Vehicle Technologies Office: Fact #512: March 31, 2008 Sales Price for Diesel and Gasoline, 1995-2007 on Twitter Bookmark Vehicle Technologies Office: Fact #512: March 31, 2008 Sales Price for Diesel and Gasoline, 1995-2007 on Google Bookmark Vehicle Technologies Office: Fact #512: March 31, 2008 Sales Price for Diesel and Gasoline, 1995-2007 on Delicious Rank Vehicle Technologies Office: Fact #512: March 31, 2008 Sales Price for Diesel and Gasoline, 1995-2007 on Digg Find More places to share Vehicle Technologies Office: Fact #512: March 31, 2008 Sales Price for Diesel and Gasoline, 1995-2007 on

139

Design criteria for the light duty utility arm system end effectors  

SciTech Connect (OSTI)

This document provides the criteria for the design of end effectors that will be used as part of the Light Duty Utility Arm (LDUA) System. The LDUA System consists of a deployment vehicle, a vertical positioning mast, a light duty multi-axis robotic arm, a tank riser interface and confinement, a tool interface plate, a control system, and an operations control trailer. The criteria specified in this document will apply to all end effector systems being developed for use on or with the LDUA system at the Hanford site. The requirement stipulated in this document are mandatory.

Pardini, A.F.

1995-01-03T23:59:59.000Z

140

Fact #660: January 31, 2011 Light Vehicle Sales Rise in 2010  

Broader source: Energy.gov [DOE]

The total sales of light vehicles (cars and light trucks) in the U.S. have ranged between 10 million and 17 million over the course of the last 40 years. Though the sales have experienced highs and...

Note: This page contains sample records for the topic "light-duty vehicle sales" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Fact #605: January 11, 2010 Light Vehicle Sales by Month, 2008-2009  

Broader source: Energy.gov [DOE]

The impact of the Federal Government's Car Allowance Rebate System, better known as the Cash for Clunkers Program, is evident in the monthly sales of light vehicles in 2009. August 2009 sales...

142

A Waste Heat Recovery System for Light Duty Diesel Engines  

SciTech Connect (OSTI)

In order to achieve proposed fuel economy requirements, engines must make better use of the available fuel energy. Regardless of how efficient the engine is, there will still be a significant fraction of the fuel energy that is rejected in the exhaust and coolant streams. One viable technology for recovering this waste heat is an Organic Rankine Cycle. This cycle heats a working fluid using these heat streams and expands the fluid through a turbine to produce shaft power. The present work was the development of such a system applied to a light duty diesel engine. This lab demonstration was designed to maximize the peak brake thermal efficiency of the engine, and the combined system achieved an efficiency of 44.4%. The design of the system is discussed, as are the experimental performance results. The system potential at typical operating conditions was evaluated to determine the practicality of installing such a system in a vehicle.

Briggs, Thomas E [ORNL; Wagner, Robert M [ORNL; Edwards, Kevin Dean [ORNL; Curran, Scott [ORNL; Nafziger, Eric J [ORNL

2010-01-01T23:59:59.000Z

143

Ricardo's ACTION Strategy: An Enabling Light Duty Diesel Technology...  

Broader source: Energy.gov (indexed) [DOE]

US Market 2005 Diesel Engine Emissions Reduction (DEER) Conference Presentations and Posters 2005deergreaney.pdf More Documents & Publications Light-Duty Diesel...

144

Light Duty Diesels in the United States - Some Perspectives ...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Emission Control Technology Review Update on Diesel Exhaust Emission Control Technology and Regulations Light Duty Diesels in the United States - Some Perspectives...

145

Ricardo's ACTION Strategy: An Enabling Light Duty Diesel Technology...  

Broader source: Energy.gov (indexed) [DOE]

light duty diesel solutions for the US market Technology Strategy Lowest system cost Engine technology selection Aftertreatment technology selection Control approach & OBD...

146

Mixture Formation in a Light-Duty Diesel Engine  

Broader source: Energy.gov [DOE]

Presents quantitative measurements of evolution of in-cylinder equivalence ratio distributions in a light-duty engine where wall interactions and strong swirl are significant

147

Technology Development for Light Duty High Efficient Diesel Engines...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

optimization. deer09stanton.pdf More Documents & Publications Light Duty Efficient Clean Combustion Advanced Diesel Engine Technology Development for HECC Effects of Biomass Fuels...

148

Light Duty Efficient Clean Combustion | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

25, 2008 in Bethesda, Maryland. merit08frazier.pdf More Documents & Publications Light Duty Efficient Clean Combustion Exhaust Energy Recovery: 2008 Semi-Mega Merit Review...

149

Fact #644: October 11, 2010 Share of Diesel Vehicle Sales Decline in Western Europe  

Broader source: Energy.gov [DOE]

The share of new diesel vehicles sold in Western Europe rose steadily from 1999 to 2007. However, from 2007 to 2009, the share of diesel vehicle sales has begun to decline. Germany and Italy have...

150

Fact #843: October 20, 2014 Cumulative Plug-in Electric Vehicle Sales are Two and a Half Times Higher than Hybrid Electric Vehicle Sales in the First 45 Months since Market Introduction – Dataset  

Broader source: Energy.gov [DOE]

Excel file with dataset for Fact #843: Cumulative Plug-in Electric Vehicle Sales are Two and a Half Times Higher than Hybrid Electric Vehicle Sales in the First 45 Months since Market Introduction

151

Vehicle Technologies Office: Fact #751: October 29, 2012 Plug-in Car Sales  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

1: October 29, 1: October 29, 2012 Plug-in Car Sales Higher in the U.S. Compared to Western Europe and China to someone by E-mail Share Vehicle Technologies Office: Fact #751: October 29, 2012 Plug-in Car Sales Higher in the U.S. Compared to Western Europe and China on Facebook Tweet about Vehicle Technologies Office: Fact #751: October 29, 2012 Plug-in Car Sales Higher in the U.S. Compared to Western Europe and China on Twitter Bookmark Vehicle Technologies Office: Fact #751: October 29, 2012 Plug-in Car Sales Higher in the U.S. Compared to Western Europe and China on Google Bookmark Vehicle Technologies Office: Fact #751: October 29, 2012 Plug-in Car Sales Higher in the U.S. Compared to Western Europe and China on Delicious Rank Vehicle Technologies Office: Fact #751: October 29, 2012

152

Transportation Energy Futures Series: Potential for Energy Efficiency Improvement Beyond the Light-Duty-Vehilce Sector  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

COMMERCIAL TRUCKS COMMERCIAL TRUCKS AVIATION MARINE MODES RAILROADS PIPELINES OFF-ROAD EQUIPMENT Potential for Energy Efficiency Improvement Beyond the Light-Duty-Vehicle Sector TRANSPORTATION ENERGY FUTURES SERIES: Potential for Energy Efficiency Improvement Beyond the Light-Duty-Vehicle Sector A Study Sponsored by U.S. Department of Energy Office of Energy Efficiency and Renewable Energy February 2013 Prepared by ARGONNE NATIONAL LABORATORY Argonne, IL 60439 managed by U Chicago Argonne, LLC for the U.S. DEPARTMENT OF ENERGY under contract DE-AC02-06CH11357 This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, expressed or implied, or assumes any legal liability or

153

Marketing Light-Duty Diesels to U.S. Consumers | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Marketing Light-Duty Diesels to U.S. Consumers Marketing Light-Duty Diesels to U.S. Consumers Overview of Volkswagens approach in introducing light-duty diesels to the U.S....

154

NREL: Vehicles and Fuels Research - Light-Duty Vehicle Thermal...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

and passenger thermal comfort. Analogous to crash-test dummies, these manikins measure heat loss and skin temperature through numerous sensors, making it possible to efficiently...

155

Fact #768: February 25, 2013 New Light Vehicle Sales and Gross Domestic Product  

Broader source: Energy.gov [DOE]

Over the last four decades, new light vehicle sales have gone from a low of 9.9 million vehicles in 1970 to a high of 17.1 million vehicles sold in 2001, but along the way, there have been...

156

Vehicle Technologies Office Merit Review 2014: Computational design and development of a new, lightweight cast alloy for advanced cylinder heads in high-efficiency, light-duty engines FOA 648-3a  

Broader source: Energy.gov [DOE]

Presentation given by General Motors at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about computational design and...

157

Emission Control Strategy for Downsized Light-Duty Diesels |...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

p-18neely.pdf More Documents & Publications New Diesel Emissions Control Strategy for U.S. Tier 2 Light-Duty Diesel Market Potential in North America EPA Mobile Source Rule Update...

158

Marketing Light-Duty Diesels to U.S. Consumers  

Broader source: Energy.gov (indexed) [DOE]

Marketing Light-Duty Diesels to U.S. Consumers Norbert Krause Director Engineering and Environmental Office Volkswagen Group of America, Inc. 14 th Diesel Engine-Efficiency and...

159

Fact #815: February 3, 2014 Global Sales of Top 10 Plug-In Vehicles  

Broader source: Energy.gov [DOE]

Global sales are important in the context of new automotive technologies because each vehicle sold, regardless of the market, provides the automakers with data and experience necessary for adapting...

160

Fact #769: March 4, 2013 Monthly Trend in Light Vehicle Sales, 2008-2012  

Broader source: Energy.gov [DOE]

Over the last five years, there have been peaks in light vehicle sales in the months of March, May, and December. There are two notable exceptions: in 2009, the Cash for Clunkers program caused a...

Note: This page contains sample records for the topic "light-duty vehicle sales" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

An Activity-Based Assessment of the Potential Impacts of Plug-In Hybrid Electric Vehicles on Energy and Emissions Using One-Day Travel Data  

E-Print Network [OSTI]

of light-duty vehicles in Xcel Energy service territory inVehicle Charging in the Xcel Energy Colorado Service

Recker, W. W.; Kang, J. E.

2010-01-01T23:59:59.000Z

162

An Energy Evolution:Alternative Fueled Vehicle Comparisons |...  

Broader source: Energy.gov (indexed) [DOE]

An Energy Evolution:Alternative Fueled Vehicle Comparisons An Energy Evolution:Alternative Fueled Vehicle Comparisons Presented at the U.S. Department of Energy Light Duty Vehicle...

163

Fact #739: August 6, 2012 Light Vehicle Dealership Sales Trends...  

Energy Savers [EERE]

32.4% 13.2% 34.7 Source: Crain Communications, "New car profits rise with sales surge," Automotive News, June 18, 2012. Original source: National Automobile Dealers Association....

164

Fact #598: November 23, 2009 Hybrid Vehicle Sales by Model  

Broader source: Energy.gov [DOE]

The number of all light vehicles sold declined about 18% from 2007 to 2008, while the number of hybrid vehicles sold declined about 11%. Five new hybrid models were sold in 2008; other than those,...

165

Vehicle Technologies Office Merit Review 2014: High Efficiency...  

Broader source: Energy.gov (indexed) [DOE]

High Efficiency Clean Combustion in Multi-Cylinder Light-Duty Engines Vehicle Technologies Office Merit Review 2014: High Efficiency Clean Combustion in Multi-Cylinder Light-Duty...

166

Analyzing the Sensitivity of Hydrogen Vehicle Sales to Consumers' Preferences  

SciTech Connect (OSTI)

The success of hydrogen vehicles will depend on consumer behavior as well as technology, energy prices and public policy. This study examines the sensitivity of the future market shares of hydrogen-powered vehicles to alternative assumptions about consumers preferences. The Market Acceptance of Advanced Automotive Technologies model was used to project future market shares. The model has 1,458 market segments, differentiated by travel behavior, geography, and tolerance to risk, among other factors, and it estimates market shares for twenty advanced power-train technologies. The market potential of hydrogen vehicles is most sensitive to the improvement of drive train technology, especially cost reduction. The long-run market success of hydrogen vehicles is less sensitive to the price elasticity of vehicle choice, how consumers evaluate future fuel costs, the importance of fuel availability and limited driving range. The importance of these factors will likely be greater in the early years following initial commercialization of hydrogen vehicles.

Greene, David L [ORNL] [ORNL; Lin, Zhenhong [ORNL] [ORNL; Dong, Jing [Iowa State University] [Iowa State University

2013-01-01T23:59:59.000Z

167

eGallon and Electric Vehicle Sales: The Big Picture  

Office of Energy Efficiency and Renewable Energy (EERE)

This month, we're updating eGallon prices and taking a look at how the U.S. electric vehicle market continues to strengthen.

168

eGallon and Electric Vehicle Sales: The Big Picture | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

eGallon and Electric Vehicle Sales: The Big Picture eGallon and Electric Vehicle Sales: The Big Picture eGallon and Electric Vehicle Sales: The Big Picture August 19, 2013 - 8:30am Addthis eGallon: Compare the costs of driving with electricity What is eGallon? It is the cost of fueling a vehicle with electricity compared to a similar vehicle that runs on gasoline. Did you know? On average, it costs about 3 times less to drive an electric vehicle. Find out how much it costs to fuel an electric vehicle in your state regular gasoline 0 6 4 1 0 3 · 0 2 0 4 8 6 0 8 9 2 3 5 0 electric eGallon 0 4 1 7 2 3 3 · 0 4 2 0 4 6 0 8 5 9 1 5 0 Data and Methodology The eGallon price is calculated using the most recently available state by state residential electricity prices. The state gasoline price above is either the statewide average retail price or a multi-state regional average

169

High Efficiency Clean Combustion in Multi-Cylinder Light-Duty...  

Broader source: Energy.gov (indexed) [DOE]

Efficiency Clean Combustion in Multi-Cylinder Light-Duty Engines High Efficiency Clean Combustion in Multi-Cylinder Light-Duty Engines 2012 DOE Hydrogen and Fuel Cells Program and...

170

Urea SCR and DPF System for Tier 2 Diesel Light-Duty Trucks ...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Tier 2 Diesel Light-Duty Trucks Urea SCR and DPF System for Tier 2 Diesel Light-Duty Trucks Presentation given at DEER 2006, August 20-24, 2006, Detroit, Michigan. Sponsored by the...

171

SCReaming for Low NOx - SCR for the Light Duty Market | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

SCReaming for Low NOx - SCR for the Light Duty Market SCReaming for Low NOx - SCR for the Light Duty Market Presentation given at DEER 2006, August 20-24, 2006, Detroit, Michigan....

172

Why Light Duty Diesels Make Sense in the North American Market...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Why Light Duty Diesels Make Sense in the North American Market Why Light Duty Diesels Make Sense in the North American Market Presentation given at DEER 2006, August 20-24, 2006,...

173

A Study of Emissions from a Light Duty Diesel Engine with the...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

A Study of Emissions from a Light Duty Diesel Engine with the European Particulate Measurement Programme A Study of Emissions from a Light Duty Diesel Engine with the European...

174

High Efficiency Clean Combustion in Multi-Cylinder Light-Duty...  

Broader source: Energy.gov (indexed) [DOE]

High Efficiency Clean Combustion in Multi-Cylinder Light-Duty Engines High Efficiency Clean Combustion in Multi-Cylinder Light-Duty Engines 2013 DOE Hydrogen and Fuel Cells Program...

175

Ultra-Low Sulfur diesel Update & Future Light Duty Diesel | Department...  

Broader source: Energy.gov (indexed) [DOE]

Ultra-Low Sulfur diesel Update & Future Light Duty Diesel Ultra-Low Sulfur diesel Update & Future Light Duty Diesel Presentation given at DEER 2006, August 20-24, 2006, Detroit,...

176

Thermoelectric Opportunities for Light-Duty Vehicles | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Heat Recovery Thermoelectric Activities of European Community within Framework Programme 7 and additional activities in Germany Automotive Thermoelectric Generator (TEG) Controls...

177

WORKSHOP REPORT:Light-Duty Vehicles Technical Requirements and...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

some body structure applications, such as shock towers, instrument panels, cross car beams, and interior components. However, to be useful in crash critical front-end...

178

Light Duty Fuel Cell Electric Vehicle Hydrogen Fueling Protocol  

Broader source: Energy.gov [DOE]

Webinar slides from the U.S. Department of Energy Fuel Cell Technologies Office webinar, "Hydrogen Refueling Protocols," held February 22, 2013.

179

Emissions from the European Light Duty Diesel Vehicle During...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

DPF Regeneration Events Repeated partial regenerations may cause changes in the mechanical and chemical properties of the PM in the DPF. deer09dwyer.pdf More Documents &...

180

Light-Duty Lean GDI Vehicle Technology Benchmark | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Control for Lean Gasoline Engines Advanced PHEV Engine Systems and Emissions Control Modeling and Analysis Reductant Chemistry during LNT Regeneration for a Lean Gasoline Engine...

Note: This page contains sample records for the topic "light-duty vehicle sales" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Organic Rankine Cycle for Light Duty Passenger Vehicles  

Broader source: Energy.gov [DOE]

Dynamic model of organic Rankine cycle with R245fa working fluid and conservative component efficiencies predict power generation in excess of electrical accessory load demand under highway drive cycle

182

Characteristics of Soot and Particle Size Distribution in the Exhaust of a Common Rail Light-Duty Diesel Engine Fuelled with Biodiesel  

Science Journals Connector (OSTI)

Limited studies have been accumulated as to the effects of biodiesel on PSD in light-duty modern diesel engines employed with common rail (CR) injection system and exhaust gas recirculation (EGR) that are currently widely used in transportation vehicles in European and U.S. markets. ... 0 diesel, which is commonly used in the Chinese market. ...

Xusheng Zhang; Zhijun Wu; Liguang Li

2012-08-09T23:59:59.000Z

183

Fact #796: September 9, 2013 Electric Vehicle and Plug-In Hybrid Electric Vehicle Sales History  

Broader source: Energy.gov [DOE]

Electric vehicles (EVs) and plug-in hybrid electric vehicles (PHEVs) have been available in the U.S. in limited numbers for many years. The introduction of the Nissan Leaf and Chevrolet Volt at the...

184

Fuel Savings from Hybrid Electric Vehicles  

SciTech Connect (OSTI)

NREL's study shows that hybrid electric vehicles can significantly reduce oil imports for use in light-duty vehicles, particularly if drivers switch to smaller, more fuel-efficient vehicles overall.

Bennion, K.; Thornton, M.

2009-03-01T23:59:59.000Z

185

Light duty utility arm deployment in Hanford tank T-106  

SciTech Connect (OSTI)

An existing gap in the technology for the remediation of underground waste storage tanks filled by the Light Duty Utility Arm (LDUA) System. On September 27 and 30, 1996, the LDUA System was deployed in underground storage tank T-106 at Hanford. The system performed successfully, satisfying all objectives of the in-tank operational test (hot test); performing close-up video inspection of features of tank dome, risers, and wall; and grasping and repositioning in-tank debris. The successful completion of hot testing at Hanford means that areas of tank structure and waste surface that were previously inaccessible are now within reach of remote tools for inspection, waste analysis, and small-scale retrieval. The LDUA System has become a new addition to the arsenal of technologies being applied to solve tank waste remediation challenges.

Kiebel, G.R.

1997-07-01T23:59:59.000Z

186

Vehicle Technologies Office Merit Review 2014: E-drive Vehicle Sales Analyses  

Broader source: Energy.gov [DOE]

Presentation given by Argonne National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about the E-drive...

187

Fact #762: January 14, 2013 Sales from Introduction: Hybrid Vehicles vs. Plug-in Vehicles  

Broader source: Energy.gov [DOE]

The Toyota Prius hybrid-electric vehicle (HEV) was first released in the U.S. market in January 2000 and 324 were sold in the first month. The Chevrolet Volt, a hybrid-electric plug-in, and the...

188

Fumigation of alcohol in a light duty automotive diesel engine  

SciTech Connect (OSTI)

A light-duty automotive diesel engine was fumigated with methanol and ethanol in amounts up to 35% and 50% of the total fuel energy respectively. The main purpose of this study was to determine the effect of alcohol (methanol and ethanol) fumigation on engine performance at various operating conditions. Engine fuel efficiency, emissions, smoke, and the occurrence of severe knock were the parameters used to evaluate performance. Raw exhaust particulate and its soluble organic extract were screened for biological activity using the Ames Salmonella typhimurium assay. Results are given for a test matrix made up of twelve steady-state operating conditions. For all conditions except the 1/4 rack (light load) condition, modest thermal efficiency gains were noted upon ethanol fumigation. Methanol showed the same increase at 3/4 and full rack (high load) conditions. However, engine roughness or the occurrence of severe knock limited the maximum amount of alcohol that could be fumigated. Brake specific NO/sub x/ concentrations were found to decrease for all ethanol conditions tested. Oxides of nitrogen emissions, on a volume basis, decreased for all alcohol conditions tested. Based on the limited particulate data analyzed, it appears as though ethanol fumigation, like methanol fumigation, while lowering the mass of particulate emitted, does enhance the biological activity of that particulate.

Broukhiyan, E.M.H.; Lestz, S.S.

1981-08-01T23:59:59.000Z

189

Business Case for Light-Duty Diesel in the U.S. | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Diesel in the U.S. Business Case for Light-Duty Diesel in the U.S. 2005 Diesel Engine Emissions Reduction (DEER) Conference Presentations and Posters 2005deermcmanus.pdf More...

190

Impact of Fuel Properties on Light-Duty Engine Performance and Emissions  

Broader source: Energy.gov [DOE]

Describes the effects of seven fuels with significantly different fuel properties on a state-of-the-art light-duty diesel engine. Cetane numbers range between 26 and 76 for the investigated fuels.

191

Fuel Effects on Low Temperature Combustion in a Light-Duty Diesel Engine  

Broader source: Energy.gov [DOE]

Six different fuels were investigated to study the influence of fuel properties on engine out emissions and performance of low temperature premixed compression ignition combustion light-duty HSDI engines

192

Addressing the Challenges of RCCI Operation on a Light-Duty Multi...  

Broader source: Energy.gov (indexed) [DOE]

the Challenges of RCCI Operation on a Light-Duty Multi-Cylinder Engine ORNL and UW collaboration in evaluating and developing RCCI operation in fully built multi-cylinder engine...

193

Alternative Transportation Technologies: Hydrogen, Biofuels, Advanced Efficiency, and Plug-in Hybrid Electric Vehicles  

Broader source: Energy.gov [DOE]

Presented at the U.S. Department of Energy Light Duty Vehicle Workshop in Washington, D.C. on July 26, 2010.

194

Safety equipment list for the light duty utility arm system  

SciTech Connect (OSTI)

The initial issue (Revision 0) of this Safety Equipment List (SEL) for the Light Duty Utility Arm (LDUA) requires an explanation for both its existence and its being what it is. All LDUA documentation leading up to creation of this SEL, and the SEL itself, is predicated on the LDUA only being approved for use in waste tanks designated as Facility Group 3, i.e., it is not approved for use in Facility Group 1 or 2 waste tanks. Facility Group 3 tanks are those in which a spontaneous or induced hydrogen gas release would be small, localized, and would not exceed 25% of the LFL when mixed with the remaining air volume in the dome space; exceeding these parameters is considered unlikely. Thus, from a NFPA flammable gas environment perspective the waste tank interior is not classified as a hazardous location. Furthermore, a hazards identification and evaluation (HNF-SD-WM-HIE-010, REV 0) performed for the LDUA system concluded that the consequences of actual LDUA system postulated accidents in Flammable Gas Facility Group 3 waste tanks would have either NO IMPACT or LOW IMPACT on the offsite public and onsite worker. Therefore, from a flammable gas perspective, there is not a rationale for classifying any of SSCs associated with the LDUA as either Safety Class (SC) or Safety Significant (SS) SSCs, which, by default, categorizes them as General Service (GS) SSCs. It follows then, based on current PHMC procedures (HNF-PRO-704 and HNF-IP-0842, Vol IV, Section 5.2) for SEL creation and content, and from a flammable gas perspective, that an SEL is NOT REQ@D HOWEVER!!! There is both a precedent and a prudency to capture all SSCS, which although GS, contribute to a Defense-In-Depth (DID) approach to the design and use of equipment in potentially flammable gas environments. This Revision 0 of the LDUA SEL has been created to capture these SSCs and they are designated as GS-DID in this document. The specific reasons for doing this are listed.

Barnes, G.A.

1998-03-02T23:59:59.000Z

195

Light-Duty Diesel Market Potential in North America  

Broader source: Energy.gov (indexed) [DOE]

Diesel Engineering General Motors Corporation GM's Long Term Vision Remove the automobile from the energy & environmental equation Reduced Vehicle Emissions and Increased...

196

Fuel Spray Research on Light-Duty Injection Systems  

Broader source: Energy.gov [DOE]

2010 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C.

197

Fuel Spray Research on Light-Duty Injection Systems  

Broader source: Energy.gov [DOE]

2009 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting, May 18-22, 2009 -- Washington D.C.

198

Well-to-Wheels Energy Use and Greenhouse Gas Emissions of Plug-In Hybrid Electric Vehicles  

Broader source: Energy.gov [DOE]

Presented at the U.S. Department of EnergyLight Duty Vehicle Workshop in Washington, D.C. on July 26, 2010.

199

Accelerating Light-Duty Diesel Sales in the U.S. Market  

Broader source: Energy.gov [DOE]

Presentation given at DEER 2006, August 20-24, 2006, Detroit, Michigan. Sponsored by the U.S. DOE's EERE FreedomCar and Fuel Partnership and 21st Century Truck Programs.

200

Detroit Diesel Engine Technology for Light Duty Truck Applications - DELTA Engine Update  

SciTech Connect (OSTI)

The early generation of the DELTA engine has been thoroughly tested and characterized in the virtual lab, during engine dynamometer testing, and on light duty trucks for personal transportation. This paper provides an up-to-date account of program findings. Further, the next generation engine design and future program plans will be briefly presented.

Freese, Charlie

2000-08-20T23:59:59.000Z

Note: This page contains sample records for the topic "light-duty vehicle sales" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Development of a Waste Heat Recovery System for Light Duty Diesel Engines  

Broader source: Energy.gov [DOE]

Substantial increases in engine efficiency of a light-duty diesel engine, which require utilization of the waste energy found in the coolant, EGR, and exhaust streams, may be increased through the development of a Rankine cycle waste heat recovery system

202

Simulating Study of Premixed Charge Compression Ignition on Light-Duty Diesel Fuel Economy and Emissions Control  

SciTech Connect (OSTI)

We utilize the Powertrain Systems Analysis Toolkit (PSAT) combined with transient engine and aftertreatment component models to simulate the impact of premixed charge compression ignition (PCCI) on the fuel economy and emissions of light-duty (LD) diesel-powered conventional and hybrid electric vehicles (HEVs). Our simulated aftertreatment train consists of a diesel oxidation catalyst (DOC), lean NOx trap (LNT), and catalyzed diesel particulate filter (DPF). The results indicate that utilizing PCCI combustion significantly reduces fuel consumption and tailpipe emissions for the conventional diesel-powered vehicle with NOx and particulate emissions controls. These benefits result from a favorable engine speed-load distribution over the cycle combined with a corresponding reduction in the need to regenerate the LNT and DPF. However, the current PCCI technology appears to offer less potential benefit for diesel HEVs equipped with similar emissions controls. This is because PCCI can only be activated over a relatively small part of the drive cycle. Thus we conclude that future utilization of PCCI in diesel HEVs will require significant extension of the available speed-load range for PCCI and revision of current HEV engine management strategies before significant benefits can be realized.

Gao, Zhiming [ORNL] [ORNL; Daw, C Stuart [ORNL] [ORNL; Wagner, Robert M [ORNL] [ORNL

2012-01-01T23:59:59.000Z

203

Household Vehicles Energy Use: Latest Data and Trends  

Reports and Publications (EIA)

This report provides newly available national and regional data and analyzes the nation's energy use by light-duty vehicles. This release represents the analytical component of the report, with a data component having been released in early 2005.

2005-01-01T23:59:59.000Z

204

Comparison of Particle Sizing Instrument Technologies for Vehicle Emissions Testing  

E-Print Network [OSTI]

a PFI engine instead of a GDI engine. However, the responsesemissions from a light-duty GDI vehicle. Aerosol Science andInjection engine (WG-GDI), the 2012 Model Year Mercedes Benz

Chen, Vincent

2014-01-01T23:59:59.000Z

205

Tank selection for Light Duty Utility Arm (LDUA) system hot testing in a single shell tank  

SciTech Connect (OSTI)

The purpose of this report is to recommend a single shell tank in which to hot test the Light Duty Utility Arm (LDUA) for the Tank Waste Remediation System (TWRS) in Fiscal Year 1996. The LDUA is designed to utilize a 12 inch riser. During hot testing, the LDUA will deploy two end effectors (a High Resolution Stereoscopic Video Camera System and a Still/Stereo Photography System mounted on the end of the arm`s tool interface plate). In addition, three other systems (an Overview Video System, an Overview Stereo Video System, and a Topographic Mapping System) will be independently deployed and tested through 4 inch risers.

Bhatia, P.K.

1995-01-31T23:59:59.000Z

206

Vehicle Technologies Office: Energy Storage  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Energy Storage Energy Storage Improving the batteries for electric drive vehicles, including hybrid electric (HEV) and plug-in electric (PEV) vehicles, is key to improving vehicles' economic, social, and environmental sustainability. In fact, transitioning to a light-duty fleet of HEVs and PEVs could reduce U.S. foreign oil dependence by 30-60% and greenhouse gas emissions by 30-45%, depending on the exact mix of technologies. For a general overview of electric drive vehicles, see the DOE's Alternative Fuel Data Center's pages on Hybrid and Plug-in Electric Vehicles and Vehicle Batteries. While a number of electric drive vehicles are available on the market, further improvements in batteries could make them more affordable and convenient to consumers. In addition to light-duty vehicles, some heavy-duty manufacturers are also pursuing hybridization of medium and heavy-duty vehicles to improve fuel economy and reduce idling.

207

Effects of Ethanol and Volatility Parameters on Exhaust Emissions of Light-Duty Vehicles  

E-Print Network [OSTI]

26-28, 2005 THE EFFECTS OF ETHANOL AND VOLATILITY PARAMETERSare changed to include ethanol. While past studies of theincluding many with ethanol, there are some contradictory

Durbin, T; Miller, J W; Huai, T; Cocker III, D R; Younglove, Y

2005-01-01T23:59:59.000Z

208

Impact of Canada’s Voluntary Agreement on Greenhouse Gas Emissions from Light Duty Vehicles  

E-Print Network [OSTI]

Energy’s Argonne National Laboratory suggests that present corn-energy and GHG reduction can result from the introduction of grain-based corn

Lutsey, Nicholas P.

2006-01-01T23:59:59.000Z

209

Impact of Canada's Voluntary Agreement on Greenhouse Gas Emissions from Light Duty Vehicles  

E-Print Network [OSTI]

Energy’s Argonne National Laboratory suggests that present corn-energy and GHG reduction can result from the introduction of grain-based corn

Lutsey, Nicholas P.

2006-01-01T23:59:59.000Z

210

Impact of Canada’s Voluntary Agreement on Greenhouse Gas Emissions from Light Duty Vehicles  

E-Print Network [OSTI]

components, charge reduction, or an alternative refrigerant,refrigerant system. However, more recent work suggests low-leak, reduced charge,

Lutsey, Nicholas P.

2006-01-01T23:59:59.000Z

211

Impact of Canada's Voluntary Agreement on Greenhouse Gas Emissions from Light Duty Vehicles  

E-Print Network [OSTI]

components, charge reduction, or an alternative refrigerant,refrigerant system. However, more recent work suggests low-leak, reduced charge,

Lutsey, Nicholas P.

2006-01-01T23:59:59.000Z

212

Progress on DOE Vehicle Technologies Light-Duty Diesel Engine Efficiency and Emissions Milestones  

Broader source: Energy.gov [DOE]

The path to 45 percent peak BTE in FY 2010 includes modern base engine plus enabling technologies demonstrated in FY 2008 plus the recovery of thermal energy from the exhaust and EGR systems

213

Impact of Canada's Voluntary Agreement on Greenhouse Gas Emissions from Light Duty Vehicles  

E-Print Network [OSTI]

Department of Energy. Argonne, Illinois. Schwarz, W. and J.of Energy. ANL/ ESD-38. January. Argonne, Illinois Watanabe,

Lutsey, Nicholas P.

2006-01-01T23:59:59.000Z

214

Impact of Canada’s Voluntary Agreement on Greenhouse Gas Emissions from Light Duty Vehicles  

E-Print Network [OSTI]

Department of Energy. Argonne, Illinois. Schwarz, W. and J.of Energy. ANL/ ESD-38. January. Argonne, Illinois Watanabe,

Lutsey, Nicholas P.

2006-01-01T23:59:59.000Z

215

Hydrogen Storage Options: Technologies and Comparisons for Light-Duty Vehicle Applications  

E-Print Network [OSTI]

Stetson, N. , Solid Hydrogen Storage Systems for PortableA Review of On-Board Hydrogen Storage Alternatives for FuelA. , Materials for Hydrogen Storage, Materials Today,

Burke, Andrew; Gardnier, Monterey

2005-01-01T23:59:59.000Z

216

Hydrogen Storage Options: Technologies and Comparisons for Light-Duty Vehicle Applications  

E-Print Network [OSTI]

Uhlemann, M. , etals. , Hydrogen Storage in Different CarbonEckert, J. , etals. , Hydrogen Storage in Microporous Metal-16, 2003 40. Smalley,E. , Hydrogen Storage Eased, Technology

Burke, Andy; Gardiner, Monterey

2005-01-01T23:59:59.000Z

217

Hydrogen Storage Options: Technologies and Comparisons for Light-Duty Vehicle Applications  

E-Print Network [OSTI]

10 kpsi) in carbon fiber-composite tanks, liquid hydrogen incarbon fiber is the highest cost material component of high pressure compressed gas tanks.

Burke, Andy; Gardiner, Monterey

2005-01-01T23:59:59.000Z

218

The Diesel Engine Powering Light-Duty Vehicles: Today and Tomorrow  

Broader source: Energy.gov [DOE]

2004 Diesel Engine Emissions Reduction (DEER) Conference Presentation: Volkwagen AG, Wolfsburg, Germany

219

Light-Duty Vehicle CO2 Targets Consistent with 450 ppm CO2 Stabilization  

Science Journals Connector (OSTI)

We include increased shares of unconventional petroleum such as oil sands in the WTT factors, but assume those processes also have efficiency gains (Table S1 in SI-1). ... In a scenario simulating international trade of biofuel, we allow NA and LA to export ethanol to OECD Europe and China so that each of the four regions has the same volume of biofuel available for LDVs beginning in 2030. ... China and OECD Europe’s glide paths are relaxed by the ethanol imports, increasing 8% and up to 96%, respectively. ...

Sandra L. Winkler; Timothy J. Wallington; Heiko Maas; Heinz Hass

2014-05-05T23:59:59.000Z

220

Hydrogen Storage Options: Technologies and Comparisons for Light-Duty Vehicle Applications  

E-Print Network [OSTI]

hydrogen compressor in parallel with their system to compress boil-off gas. In general the system costs

Burke, Andy; Gardiner, Monterey

2005-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "light-duty vehicle sales" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Clean Cities 2011 Vehicle Buyer's Guide  

SciTech Connect (OSTI)

The 2011 Clean Cities Light-Duty Vehicle Buyer's Guide is a consumer publication that provides a comprehensive list of commercially available alternative fuel and advanced vehicles in model year 2011. The guide allows for side-by-side comparisons of fuel economy, price, emissions, and vehicle specifications.

Not Available

2011-01-01T23:59:59.000Z

222

Traveled distance, stock and fuel efficiency of private vehicles in Canada: price elasticities and rebound effect  

Science Journals Connector (OSTI)

This paper presents estimates of the rebound effect and other elasticities for the Canadian light-duty vehicle fleet using panel data at the provincial level from 1990 to 2004. We estimate a simultaneous three-eq...

Philippe Barla; Bernard Lamonde; Luis F. Miranda-Moreno; Nathalie Boucher

2009-07-01T23:59:59.000Z

223

Piston Bowl Optimization for RCCI Combustion in a Light-Duty Multi-Cylinder Engine  

SciTech Connect (OSTI)

Reactivity Controlled Compression Ignition (RCCI) is an engine combustion strategy that that produces low NO{sub x} and PM emissions with high thermal efficiency. Previous RCCI research has been investigated in single-cylinder heavy-duty engines. The current study investigates RCCI operation in a light-duty multi-cylinder engine at 3 operating points. These operating points were chosen to cover a range of conditions seen in the US EPA light-duty FTP test. The operating points were chosen by the Ad Hoc working group to simulate operation in the FTP test. The fueling strategy for the engine experiments consisted of in-cylinder fuel blending using port fuel-injection (PFI) of gasoline and early-cycle, direct-injection (DI) of diesel fuel. At these 3 points, the stock engine configuration is compared to operation with both the original equipment manufacturer (OEM) and custom machined pistons designed for RCCI operation. The pistons were designed with assistance from the KIVA 3V computational fluid dynamics (CFD) code. By using a genetic algorithm optimization, in conjunction with KIVA, the piston bowl profile was optimized for dedicated RCCI operation to reduce unburned fuel emissions and piston bowl surface area. By reducing these parameters, the thermal efficiency of the engine was improved while maintaining low NOx and PM emissions. Results show that with the new piston bowl profile and an optimized injection schedule, RCCI brake thermal efficiency was increased from 37%, with the stock EURO IV configuration, to 40% at the 2,600 rev/min, 6.9 bar BMEP condition, and NOx and PM emissions targets were met without the need for exhaust after-treatment.

Hanson, Reed M [ORNL; Curran, Scott [ORNL; Wagner, Robert M [ORNL; Reitz, Rolf [University of Wisconsin; Kokjohn, Sage [University of Wisconsin, Madison

2012-01-01T23:59:59.000Z

224

Advanced Vehicle Testing Activity: Medium- and Heavy-Duty Vehicles  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Medium- and Medium- and Heavy-Duty Vehicles to someone by E-mail Share Advanced Vehicle Testing Activity: Medium- and Heavy-Duty Vehicles on Facebook Tweet about Advanced Vehicle Testing Activity: Medium- and Heavy-Duty Vehicles on Twitter Bookmark Advanced Vehicle Testing Activity: Medium- and Heavy-Duty Vehicles on Google Bookmark Advanced Vehicle Testing Activity: Medium- and Heavy-Duty Vehicles on Delicious Rank Advanced Vehicle Testing Activity: Medium- and Heavy-Duty Vehicles on Digg Find More places to share Advanced Vehicle Testing Activity: Medium- and Heavy-Duty Vehicles on AddThis.com... Home Overview Light-Duty Vehicles Medium- and Heavy-Duty Vehicles Transit Vehicles Trucks Idle Reduction Oil Bypass Filter Airport Ground Support Equipment Medium and Heavy Duty Hybrid Electric Vehicles

225

Vehicle Systems Integration Laboratory Accelerates Powertrain Development  

ScienceCinema (OSTI)

ORNL's Vehicle Systems Integration (VSI) Laboratory accelerates the pace of powertrain development by performing prototype research and characterization of advanced systems and hardware components. The VSI Lab is capable of accommodating a range of platforms from advanced light-duty vehicles to hybridized Class 8 powertrains with the goals of improving overall system efficiency and reducing emissions.

None

2014-06-25T23:59:59.000Z

226

On-Road Remote Sensing of Vehicle Emissions in Mexico  

Science Journals Connector (OSTI)

The Subsecretaría de Ecología's Office was able to provide vehicle registration information for 10?654 vehicles. ... The groups consisted of all light-duty passenger vehicles, which included vans and sport utility vehicles; light-duty pickup trucks; Eco taxis (ecological taxis are taxis for hire that are required by the Mexican government to be post-1990 gasoline powered and are painted green and white to signify this); post 1990-VW sedans (including any Eco taxis, nicknamed Beetles in the United States); pre-1991 VW sedans (including any painted as if an Eco taxi); gasoline-powered micro-transit buses, diesel-powered transit buses, and trucks larger than pickup trucks. ...

Gary A. Bishop; Donald H. Stedman; Julián de la Garza Castro; Franciso J. Dávalos

1997-11-26T23:59:59.000Z

227

Simulating the Impact of Premixed Charge Compression Ignition on Light-Duty Diesel Fuel Economy and Emissions of Particulates and NOx  

SciTech Connect (OSTI)

We utilize the Powertrain Systems Analysis Toolkit (PSAT) combined with transient engine and aftertreatment component models implemented in Matlab/Simulink to simulate the effect of premixed charge compression ignition (PCCI) on the fuel economy and emissions of light-duty diesel-powered conventional and hybrid electric vehicles (HEVs). Our simulated engine is capable of both conventional diesel combustion (CDC) and premixed charge compression ignition (PCCI) over real transient driving cycles. Our simulated aftertreatment train consists of a diesel oxidation catalyst (DOC), lean NOx trap (LNT), and catalyzed diesel particulate filter (DPF). The results demonstrate that, in the simulated conventional vehicle, PCCI can significantly reduce fuel consumption and emissions by reducing the need for LNT and DPF regeneration. However, the opportunity for PCCI operation in the simulated HEV is limited because the engine typically experiences higher loads and multiple stop-start transients that are outside the allowable PCCI operating range. Thus developing ways of extending the PCCI operating range combined with improved control strategies for engine and emissions control management will be especially important for realizing the potential benefits of PCCI in HEVs.

Gao, Zhiming [ORNL; Daw, C Stuart [ORNL; Wagner, Robert M [ORNL; Edwards, Kevin Dean [ORNL; Smith, David E [ORNL

2013-01-01T23:59:59.000Z

228

The Economic, Energy, and GHG Emissions Impacts of Proposed 2017–2025 Vehicle Fuel Economy Standards in the United States  

E-Print Network [OSTI]

Increases in the U.S. Corporate Average Fuel Economy (CAFE) Standards for 2017 to 2025 model year light-duty vehicles are currently under consideration. This analysis uses an economy-wide model with detail in the passenger ...

Karplus, Valerie

2012-07-31T23:59:59.000Z

229

The Household Market for Electric Vehicles: Testing the Hybrid Household Hypothesis--A Reflively Designed Survey of New-car-buying, Multi-vehicle California Households  

E-Print Network [OSTI]

duty vehicle sales. Additional EV sales to commercial andfor limited range, projected EV sales are very low. Marketinclude any potential EV sales to commercial or government

Turrentine, Thomas; Kurani, Kenneth

1995-01-01T23:59:59.000Z

230

Light-Duty Diesel EngineTechnology to Meet Future Emissions and...  

Broader source: Energy.gov (indexed) [DOE]

Vehicles 0 10 20 30 40 50 60 2000 3000 4000 5000 6000 7000 8000 Gross Vehicle Weight (lb) Combined Cycle MPG (US) . Gasoline Diesel Diesel average +45% MPG benefit Vehicle range...

231

Light-Duty Reactivity Controlled Compression Ignition Drive Cycle Fuel Economy and Emissions Estimates  

Broader source: Energy.gov [DOE]

Vehicle systems simulations using experimental data demonstrate improved modeled fuel economy of 15% for passenger vehicles solely from powertrain efficiency relative to a 2009 PFI gasoline baseline.

232

Fact #843: October 20, 2014 Cumulative Plug-in Electric Vehicle Sales are Two and a Half Times Higher than Hybrid Electric Vehicle Sales in the First 45 Months since Market Introduction  

Broader source: Energy.gov [DOE]

The first hybrid electric vehicle was introduced in December 1999 and for the next 45 months (through August 2003) there were a total of 95,778 hybrid vehicles sold. The first mass-marketed plug-in...

233

Reactivity Controlled Compression Ignition (RCCI) Combustion on a Multi-Cylinder Light-Duty Diesel Engine  

SciTech Connect (OSTI)

Reactivity controlled compression ignition is a low-temperature combustion technique that has been shown, both in computational fluid dynamics modeling and single-cylinder experiments, to obtain diesel-like efficiency or better with ultra-low nitrogen oxide and soot emissions, while operating primarily on gasoline-like fuels. This paper investigates reactivity controlled compression ignition operation on a four-cylinder light-duty diesel engine with production-viable hardware using conventional gasoline and diesel fuel. Experimental results are presented over a wide speed and load range using a systematic approach for achieving successful steady-state reactivity controlled compression ignition combustion. The results demonstrated diesel-like efficiency or better over the operating range explored with low engine-out nitrogen oxide and soot emissions. A peak brake thermal efficiency of 39.0% was demonstrated for 2600 r/min and 6.9 bar brake mean effective pressure with nitrogen oxide emissions reduced by an order of magnitude compared to conventional diesel combustion operation. Reactivity controlled compression ignition emissions and efficiency results are compared to conventional diesel combustion operation on the same engine.

Curran, Scott [ORNL; Hanson, Reed M [ORNL; Wagner, Robert M [ORNL

2012-01-01T23:59:59.000Z

234

www.steps.ucdavis.edu How vehicle fuel economy improvements can  

E-Print Network [OSTI]

from Internal Combustion Engine (ICE) vehicles · Role of plug-in electric vehicles (PEV) · Relative are very cost- effective Fuel savings more than pays for fuel economy improvements in light-duty vehicles Fuelsavings #12;7 Some cost/benefit estimates FE Improvement, hybrids, PEVs v. a base ICE vehicle over time

California at Davis, University of

235

NREL: Vehicles and Fuels Research - Vehicle Ancillary Loads Reduction  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Research Research Search More Search Options Site Map Photo of Advanced Automotive Manikin Reducing fuel consumption by air conditioning systems is the focus of Vehicle Ancillary Loads Reduction (VALR) activities at NREL. About 7 billion gallons of fuel-about 5.5% of total national light-duty vehicle fuel use-are used annually just to cool light-duty vehicles in the United States. That's why our VALR team works with industry to help increase fuel economy and reduce tailpipe emissions by reducing the ancillary loads requirements in vehicles while maintaining the thermal comfort of the passengers. Approaches include improved cabin insulation, advanced window systems, advanced cooling and venting systems, and heat generated cooling. Another focus of the VALR project is ADAM, the ADvanced Automotive Manikin

236

Vehicle Technologies Office: Fact #739: August 6, 2012 Light Vehicle  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

9: August 6, 9: August 6, 2012 Light Vehicle Dealership Sales Trends - New Vehicles, Used Vehicles, and Service/Parts to someone by E-mail Share Vehicle Technologies Office: Fact #739: August 6, 2012 Light Vehicle Dealership Sales Trends - New Vehicles, Used Vehicles, and Service/Parts on Facebook Tweet about Vehicle Technologies Office: Fact #739: August 6, 2012 Light Vehicle Dealership Sales Trends - New Vehicles, Used Vehicles, and Service/Parts on Twitter Bookmark Vehicle Technologies Office: Fact #739: August 6, 2012 Light Vehicle Dealership Sales Trends - New Vehicles, Used Vehicles, and Service/Parts on Google Bookmark Vehicle Technologies Office: Fact #739: August 6, 2012 Light Vehicle Dealership Sales Trends - New Vehicles, Used Vehicles, and Service/Parts on Delicious

237

Propane-Fueled Vehicle Basics | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Propane-Fueled Vehicle Basics Propane-Fueled Vehicle Basics Propane-Fueled Vehicle Basics August 20, 2013 - 9:16am Addthis There are more than 270,000 on-road propane vehicles in the United States and more than 10 million worldwide. Many are used in fleets, including light- and heavy-duty trucks, buses, taxicabs, police cars, and rental and delivery vehicles. Compared with vehicles fueled with conventional diesel and gasoline, propane vehicles can produce significantly fewer harmful emissions. The availability of new light-duty original equipment manufacturer propane vehicles has declined in recent years. However, certified installers can economically and reliably retrofit many light-duty vehicles for propane operation. Propane engines and fueling systems are also available for heavy-duty vehicles such as school buses and street sweepers.

238

High Efficiency Clean Combustion in Multi-Cylinder Light-Duty Engines  

Broader source: Energy.gov [DOE]

2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation

239

High Efficiency Clean Combustion in Multi-Cylinder Light-Duty Engines  

Broader source: Energy.gov [DOE]

2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

240

High Efficiency Clean Combustion in Multi-Cylinder Light-Duty Engines  

Broader source: Energy.gov [DOE]

2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

Note: This page contains sample records for the topic "light-duty vehicle sales" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Australia's Green Vehicle Guide | Open Energy Information  

Open Energy Info (EERE)

Australia's Green Vehicle Guide Australia's Green Vehicle Guide Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Australia's Green Vehicle Guide Agency/Company /Organization: Commonwealth of Australia Focus Area: Vehicles, Fuel Efficiency Topics: Analysis Tools, Market Analysis Website: www.greenvehicleguide.gov.au/GVGPublicUI/home.aspx Equivalent URI: cleanenergysolutions.org/content/australias-green-vehicle-guide,http:/ Language: English Policies: Regulations Regulations: Fuel Efficiency Standards The Green Vehicle Guide provides information about the environmental performance of new light-duty vehicles sold in Australia, including carbon dioxide (CO2) emissions and fuel consumption. The Guide includes resources such as a fuel calculator, electric vehicle information and a truck buyers

242

Vehicle Technologies Office: Fact #605: January 11, 2010 Light Vehicle  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

5: January 11, 5: January 11, 2010 Light Vehicle Sales by Month, 2008-2009 to someone by E-mail Share Vehicle Technologies Office: Fact #605: January 11, 2010 Light Vehicle Sales by Month, 2008-2009 on Facebook Tweet about Vehicle Technologies Office: Fact #605: January 11, 2010 Light Vehicle Sales by Month, 2008-2009 on Twitter Bookmark Vehicle Technologies Office: Fact #605: January 11, 2010 Light Vehicle Sales by Month, 2008-2009 on Google Bookmark Vehicle Technologies Office: Fact #605: January 11, 2010 Light Vehicle Sales by Month, 2008-2009 on Delicious Rank Vehicle Technologies Office: Fact #605: January 11, 2010 Light Vehicle Sales by Month, 2008-2009 on Digg Find More places to share Vehicle Technologies Office: Fact #605: January 11, 2010 Light Vehicle Sales by Month, 2008-2009 on AddThis.com...

243

Vehicle Technologies Office: Fact #598: November 23, 2009 Hybrid Vehicle  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

8: November 23, 8: November 23, 2009 Hybrid Vehicle Sales by Model to someone by E-mail Share Vehicle Technologies Office: Fact #598: November 23, 2009 Hybrid Vehicle Sales by Model on Facebook Tweet about Vehicle Technologies Office: Fact #598: November 23, 2009 Hybrid Vehicle Sales by Model on Twitter Bookmark Vehicle Technologies Office: Fact #598: November 23, 2009 Hybrid Vehicle Sales by Model on Google Bookmark Vehicle Technologies Office: Fact #598: November 23, 2009 Hybrid Vehicle Sales by Model on Delicious Rank Vehicle Technologies Office: Fact #598: November 23, 2009 Hybrid Vehicle Sales by Model on Digg Find More places to share Vehicle Technologies Office: Fact #598: November 23, 2009 Hybrid Vehicle Sales by Model on AddThis.com... Fact #598: November 23, 2009

244

Natural gas as a fuel for road vehicles  

Science Journals Connector (OSTI)

The operation of light duty and heavy duty vehicles on natural gas for vehicles (NGV) is discussed in terms of the fuel combustion differences compared with conventional fuels, and engine design changes needed to match the fuel characteristics of NGV. Engine management system requirements are discussed, emissions performance of NGV-fuelled engines is described and fuel storage and supply issues are considered.

E.E. Milkins; J.D. Edsell

1996-01-01T23:59:59.000Z

245

Alternative Fuels Data Center: Low Emission Vehicle (LEV) Standards  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Low Emission Vehicle Low Emission Vehicle (LEV) Standards to someone by E-mail Share Alternative Fuels Data Center: Low Emission Vehicle (LEV) Standards on Facebook Tweet about Alternative Fuels Data Center: Low Emission Vehicle (LEV) Standards on Twitter Bookmark Alternative Fuels Data Center: Low Emission Vehicle (LEV) Standards on Google Bookmark Alternative Fuels Data Center: Low Emission Vehicle (LEV) Standards on Delicious Rank Alternative Fuels Data Center: Low Emission Vehicle (LEV) Standards on Digg Find More places to share Alternative Fuels Data Center: Low Emission Vehicle (LEV) Standards on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Low Emission Vehicle (LEV) Standards Any new light-duty passenger car, light-duty truck, or medium-duty

246

High Efficiency Clean Combustion in Multi-Cylinder Light-Duty...  

Broader source: Energy.gov (indexed) [DOE]

not contain any proprietary, confidential, or otherwise restricted information. 2013 DOE Hydrogen Program and Vehicle Technologies Annual Merit Review May 14, 2013 Gurpreet...

247

High-Efficiency Clean Combustion in Light-Duty Multi-Cylinder Diesel Engines  

Broader source: Energy.gov [DOE]

2010 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C.

248

High Efficiency Clean Combustion in Multi-Cylinder Light-Duty Engines  

Broader source: Energy.gov [DOE]

2009 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting, May 18-22, 2009 -- Washington D.C.

249

Consumer Convenience and the Availability of Retail Stations as a Market Barrier for Alternative Fuel Vehicles: Preprint  

SciTech Connect (OSTI)

The availability of retail stations can be a significant barrier to the adoption of alternative fuel light-duty vehicles in household markets. This is especially the case during early market growth when retail stations are likely to be sparse and when vehicles are dedicated in the sense that they can only be fuelled with a new alternative fuel. For some bi-fuel vehicles, which can also fuel with conventional gasoline or diesel, limited availability will not necessarily limit vehicle sales but can limit fuel use. The impact of limited availability on vehicle purchase decisions is largely a function of geographic coverage and consumer perception. In this paper we review previous attempts to quantify the value of availability and present results from two studies that rely upon distinct methodologies. The first study relies upon stated preference data from a discrete choice survey and the second relies upon a station clustering algorithm and a rational actor value of time framework. Results from the two studies provide an estimate of the discrepancy between stated preference cost penalties and a lower bound on potential revealed cost penalties.

Melaina, M.; Bremson, J.; Solo, K.

2013-01-01T23:59:59.000Z

250

Opportunity Assessment Clean Diesels in the North American Light Duty Market  

Broader source: Energy.gov [DOE]

Presentation given at the 2007 Diesel Engine-Efficiency & Emissions Research Conference (DEER 2007). 13-16 August, 2007, Detroit, Michigan. Sponsored by the U.S. Department of Energy's (DOE) Office of FreedomCAR and Vehicle Technologies (OFCVT).

251

Post Mortem of 120k mi Light-Duty Urea SCR and DPF System  

Broader source: Energy.gov [DOE]

Presentation given at the 2007 Diesel Engine-Efficiency & Emissions Research Conference (DEER 2007). 13-16 August, 2007, Detroit, Michigan. Sponsored by the U.S. Department of Energy's (DOE) Office of FreedomCAR and Vehicle Technologies (OFCVT).

252

Alternative Fuel Evaluation Program: Alternative Fuel Light Duty Vehicle Project - Data collection responsibilities, techniques, and test procedures  

SciTech Connect (OSTI)

This report describes the data gathering and analysis procedures that support the US Department of Energy`s implementation of the Alternative Motor Fuels Act (AMFA) of 1988. Specifically, test procedures, analytical methods, and data protocols are covered. The aim of these collection and analysis efforts, as mandated by AMFA, is to demonstrate the environmental, economic, and performance characteristics of alternative transportation fuels.

none,

1992-07-01T23:59:59.000Z

253

Future Potential of Hybrid and Diesel Powertrains in the U.S. Light-Duty Vehicle Market  

Broader source: Energy.gov [DOE]

2004 Diesel Engine Emissions Reduction (DEER) Conference Presentation: Oak Ridge National Laboratory

254

Commercializing light-duty plug-in/plug-out hydrogen-fuel-cell vehicles: “Mobile Electricity” technologies and opportunities  

E-Print Network [OSTI]

fuel-cell power production efficiencies, and engine degradationfuel-cell power production efficiencies, cooling requirements, and engine degradation

Williams, Brett D; Kurani, Kenneth S

2007-01-01T23:59:59.000Z

255

Commercializing light-duty plug-in/plug-out hydrogen-fuel-cell vehicles: “Mobile Electricity” technologies and opportunities  

E-Print Network [OSTI]

C. E. S. Thomas, "Hydrogen and Fuel Cells: Pathway to a4-2 incorporates hydrogen and fuel cells into a roadmap thatdevelopment efforts. Hydrogen and fuel-cell technologies are

Williams, Brett D; Kurani, Kenneth S

2007-01-01T23:59:59.000Z

256

Commercializing light-duty plug-in/plug-out hydrogen-fuel-cell vehicles: “Mobile Electricity” technologies and opportunities  

E-Print Network [OSTI]

power, and heat generation), and grid-side benefits (peakpre-) heat/cool, etc. ); home recharging using off-peak grid

Williams, Brett D; Kurani, Kenneth S

2007-01-01T23:59:59.000Z

257

Commercializing light-duty plug-in/plug-out hydrogen-fuel-cell vehicles: “Mobile Electricity” technologies and opportunities  

E-Print Network [OSTI]

battery Type Capacity (kWh) Saft Li- Ion Valence LiIon LiIonOvonic NiMH A-hr, 336V) Saft Li-Ion Valence LiIon EEEI

Williams, Brett D; Kurani, Kenneth S

2007-01-01T23:59:59.000Z

258

Challenges in Electric Vehicle Adoption and Vehicle-Grid Integration.  

E-Print Network [OSTI]

??With rapid innovation in vehicle and battery technology and strong support from governmental bodies and regulators, electric vehicles (EV) sales are poised to rise. While… (more)

Xi, Xiaomin

2013-01-01T23:59:59.000Z

259

Advanced Vehicle Testing Activity: Overview  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Overview to Overview to someone by E-mail Share Advanced Vehicle Testing Activity: Overview on Facebook Tweet about Advanced Vehicle Testing Activity: Overview on Twitter Bookmark Advanced Vehicle Testing Activity: Overview on Google Bookmark Advanced Vehicle Testing Activity: Overview on Delicious Rank Advanced Vehicle Testing Activity: Overview on Digg Find More places to share Advanced Vehicle Testing Activity: Overview on AddThis.com... Home Overview Light-Duty Vehicles Medium- and Heavy-Duty Vehicles Publications Overview The marketplace for advanced transportation technologies and the focus, direction, and funding of transportation programs are continually changing. The Advanced Vehicle Testing Activity's "2005 Overview of Advanced Technology Transportation" (PDF 736 KB) gives the latest information about

260

Engine coolant technology, performance, and life for light-duty applications  

SciTech Connect (OSTI)

Recently there has been interest by motor vehicle manufacturers in developing longer-lived automotive engine coolants with an emphasis on organic acid technology (OAT). Paradoxically, the lifetime of conventional technology remains largely undefined. Concerns arising from the depleting nature of silicate have led to modern conservative change recommendations of 30,000 to 50,000 miles ({approximately}48,279 to 80,464 km). In the present work, laboratory bench test, engine dynamometer and vehicle service data from traditional silicate, hybrid and nonsilicate coolants are compared and contrasted. A new electrochemical test is used to examine passivation kinetics on aluminum. It is shown that performance and lifetime are independent of chemistry and cannot be generalized. Examples include an American silicate coolant with excellent performance on high-heat-rejecting aluminum (80 W/cm{sup 2}). European and American silicate coolants with performance defined lifetimes in excess of 300,000 miles (482,790 km), and an OAT coolant with laboratory high lead solder protection. It is concluded that the primary benefit of OAT is to meet global specifications that include chemical limitations.

Turcotte, D.E.; Lockwood, F.E. [Valvoline Co., Lexington, KY (United States); Pfitzner, K.K.; Meszaros, L.L. [BASF Aktiengesellschaft, Ludwigshafen (Germany); Listebarger, J.K. [Ashland Chemical, Dublin, OH (United States)

1999-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "light-duty vehicle sales" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Parametric study for a ceramic diesel particulate trap application on a light duty truck  

Science Journals Connector (OSTI)

The paper presents the results of an experimental evaluation of a number of parameters affecting both the loading and the regeneration conditions of the cellular cordierite diesel particulate filler (DPF), when a cerium based fuel additive is used to enhance regeneration at low temperatures. The parameters studied comprised the size of the filter, its positioning along the exhaust pipe and the additive concentration in the fuel. The results show that filter regeneration was always possible at continuous low speed driving at relatively high filter backpressure levels, with a measurable effect on fuel consumption. On the other hand, the New European Driving Cycle, with alternate urban and extra urban operation of the vehicle, always provides the necessary conditions for trap regeneration, affecting neither the fuel consumption nor the maximum engine power output.

Konstantin Pattas; Nikolas Kyriakis; Zissis Samaras; Theodoros Manikas; Panaylotis Pistikopoulos; William Mustelt; Pierre Rouveirolles

1998-01-01T23:59:59.000Z

262

Alternative Fuels Data Center: Diesel Vehicle Availability  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Diesel Vehicle Diesel Vehicle Availability to someone by E-mail Share Alternative Fuels Data Center: Diesel Vehicle Availability on Facebook Tweet about Alternative Fuels Data Center: Diesel Vehicle Availability on Twitter Bookmark Alternative Fuels Data Center: Diesel Vehicle Availability on Google Bookmark Alternative Fuels Data Center: Diesel Vehicle Availability on Delicious Rank Alternative Fuels Data Center: Diesel Vehicle Availability on Digg Find More places to share Alternative Fuels Data Center: Diesel Vehicle Availability on AddThis.com... More in this section... Biodiesel Basics Benefits & Considerations Stations Vehicles Availability Emissions Laws & Incentives Diesel Vehicle Availability According to J.D. Power Automotive Forecasting, demand for light-duty diesel vehicles might double in the next 10 years. More auto manufacturers

263

Trends in On-Road Vehicle Emissions of Ammonia  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Trends in On-Road Vehicle Emissions of Ammonia Trends in On-Road Vehicle Emissions of Ammonia Title Trends in On-Road Vehicle Emissions of Ammonia Publication Type Journal Article Year of Publication 2008 Authors Kean, Andrew J., David Littlejohn, George Ban-Weiss, Robert A. Harley, Thomas W. Kirchstetter, and Melissa M. Lunden Journal Atmospheric Environment Abstract Motor vehicle emissions of ammonia have been measured at a California highway tunnel in the San Francisco Bay area. Between 1999 and 2006, light-duty vehicle ammonia emissions decreased by 38 ± 6%, from 640 ± 40 to 400 ± 20 mg kg-1. High time resolution measurements of ammonia made in summer 2001 at the same location indicate a minimum in ammonia emissions correlated with slower-speed driving conditions. Variations in ammonia emission rates track changes in carbon monoxide more closely than changes in nitrogen oxides, especially during later evening hours when traffic speeds are highest. Analysis of remote sensing data of Burgard et al. (Environ Sci. Technol. 2006, 40, 7018-7022) indicates relationships between ammonia and vehicle model year, nitrogen oxides, and carbon monoxide. Ammonia emission rates from diesel trucks were difficult to measure in the tunnel setting due to the large contribution to ammonia concentrations in a mixed-traffic bore that were assigned to light-duty vehicle emissions. Nevertheless, it is clear that heavy-duty diesel trucks are a minor source of ammonia emissions compared to light-duty gasoline vehicles.

264

Blog Feed: Vehicles | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

July 29, 2011 July 29, 2011 President Barack Obama delivers remarks on fuel efficiency standards for 2017-2025 model year cars and light-duty trucks during an event at the Washington Convention Center in Washington, D.C., July 29, 2011. Seated behind the President are at left are auto industry executives and Transportation Secretary Ray LaHood. (Official White House Photo by Samantha Appleton) New Vehicle Fuel Economy Standards Will Continue to Inspire Innovation President Obama announced a landmark agreement with automakers that sets aggressive new fuel-economy standards for cars and light-duty trucks. Find out how the Energy Department is unleashing innovation that will create jobs and make sure that the fuel-efficient vehicles of the future are made in America.

265

Investigation of Biodiesel–Diesel Fuel Blends on Combustion Characteristics in a Light-Duty Diesel Engine Using OpenFOAM  

Science Journals Connector (OSTI)

Investigation of Biodiesel–Diesel Fuel Blends on Combustion Characteristics in a Light-Duty Diesel Engine Using OpenFOAM ... (1) In addition, biodiesel can be used in existing compression ignition (CI) or diesel engines with minimal or no modifications because its physicochemical characteristics are very similar to those of fossil diesel. ... However, when CME, PME, and SME are blended with 50 vol % of diesel fuel, the general trend as discussed above is not reproduced. ...

Harun Mohamed Ismail; Hoon Kiat Ng; Suyin Gan; Xinwei Cheng; Tommaso Lucchini

2012-11-12T23:59:59.000Z

266

DRIVE CYCLE EFFICIENCY AND EMISSIONS ESTIMATES FOR REACTIVITY CONTROLLED COMPRESSION IGNITION IN A MULTI-CYLINDER LIGHT-DUTY DIESEL ENGINE  

SciTech Connect (OSTI)

In-cylinder blending of gasoline and diesel to achieve Reactivity Controlled Compression Ignition (RCCI) has been shown to reduce NOx and PM emissions while maintaining or improving brake thermal efficiency as compared to conventional diesel combustion (CDC). The RCCI concept has an advantage over many advanced combustion strategies in that by varying both the percent of premixed gasoline and EGR rate, stable combustion can be extended over more of the light-duty drive cycle load range. Changing the percent premixed gasoline changes the fuel reactivity stratification in the cylinder providing further control of combustion phasing and pressure rise rate than the use of EGR alone. This paper examines the combustion and emissions performance of light-duty diesel engine using direct injected diesel fuel and port injected gasoline to carry out RCCI for steady-state engine conditions which are consistent with a light-duty drive cycle. A GM 1.9L four-cylinder engine with the stock compression ratio of 17.5:1, common rail diesel injection system, high-pressure EGR system and variable geometry turbocharger was modified to allow for port fuel injection with gasoline. Engine-out emissions, engine performance and combustion behavior for RCCI operation is compared against both CDC and a premixed charge compression ignition (PCCI) strategy which relies on high levels of EGR dilution. The effect of percent of premixed gasoline, EGR rate, boost level, intake mixture temperature, combustion phasing and pressure rise rate is investigated for RCCI combustion for the light-duty modal points. Engine-out emissions of NOx and PM were found to be considerably lower for RCCI operation as compared to CDC and PCCI, while HC and CO emissions were higher. Brake thermal efficiency was similar or higher for many of the modal conditions for RCCI operation. The emissions results are used to estimate hot-start FTP-75 emissions levels with RCCI and are compared against CDC and PCCI modes.

Curran, Scott [ORNL; Briggs, Thomas E [ORNL; Cho, Kukwon [ORNL; Wagner, Robert M [ORNL

2011-01-01T23:59:59.000Z

267

Fact #796: September 9, 2013 Electric Vehicle and Plug-In Hybrid...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

6: September 9, 2013 Electric Vehicle and Plug-In Hybrid Electric Vehicle Sales History Fact 796: September 9, 2013 Electric Vehicle and Plug-In Hybrid Electric Vehicle Sales...

268

Fact #804: November 18, 2013 Tool Available to Print Used Vehicle Fuel Economy Window Stickers  

Broader source: Energy.gov [DOE]

Because used vehicle sales outnumber new vehicle sales by about three to one, a new tool has been developed that allows those selling used vehicles to produce a fuel economy label for the vehicle....

269

Vehicle Technologies Office: Fact #599: November 30, 2009 Historical Trend  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

9: November 30, 9: November 30, 2009 Historical Trend for Light Vehicle Sales to someone by E-mail Share Vehicle Technologies Office: Fact #599: November 30, 2009 Historical Trend for Light Vehicle Sales on Facebook Tweet about Vehicle Technologies Office: Fact #599: November 30, 2009 Historical Trend for Light Vehicle Sales on Twitter Bookmark Vehicle Technologies Office: Fact #599: November 30, 2009 Historical Trend for Light Vehicle Sales on Google Bookmark Vehicle Technologies Office: Fact #599: November 30, 2009 Historical Trend for Light Vehicle Sales on Delicious Rank Vehicle Technologies Office: Fact #599: November 30, 2009 Historical Trend for Light Vehicle Sales on Digg Find More places to share Vehicle Technologies Office: Fact #599: November 30, 2009 Historical Trend for Light Vehicle Sales on

270

Vehicle Data for Alternative Fuel Vehicles (AFVs) and Hybrid Fuel Vehicles (HEVs) from the Alternative Fuels and Advanced Vehicles Data Center (AFCD)  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

The AFDC provides search capabilities for many different models of both light-duty and heavy-duty vehicles. Engine and transmission type, fuel and class, fuel economy and emission certification are some of the facts available. The search will also help users locate dealers in their areas and do cost analyses. Information on alternative fuel vehicles and on advanced technology vehicles, along with calculators, resale and conversion information, links to incentives and programs such as Clean Cities, and dozens of fact sheets and publications make this section of the AFDC a valuable resource for car buyers.

271

Although still a small share of the automobile marketplace, hybrid vehicle models and sales have been growing steadily. It is now  

E-Print Network [OSTI]

and conventional vehicles is the Chevrolet Volt, which can be powered by an electric motor for 40 mi and has-offs associated with distinct vehicle technologies (conventional fossil fuel, hybrid, and electric) using current gas (GHG) taxes and fiscal incentives for purchasing electric vehicles (EVs). This research also

Bertini, Robert L.

272

New Vehicle Fuel Economy Standards Will Continue to Inspire Innovation |  

Broader source: Energy.gov (indexed) [DOE]

Vehicle Fuel Economy Standards Will Continue to Inspire Vehicle Fuel Economy Standards Will Continue to Inspire Innovation New Vehicle Fuel Economy Standards Will Continue to Inspire Innovation July 29, 2011 - 1:48pm Addthis President Barack Obama delivers remarks on fuel efficiency standards for 2017-2025 model year cars and light-duty trucks during an event at the Washington Convention Center in Washington, D.C., July 29, 2011. Seated behind the President are at left are auto industry executives and Transportation Secretary Ray LaHood. (Official White House Photo by Samantha Appleton) President Barack Obama delivers remarks on fuel efficiency standards for 2017-2025 model year cars and light-duty trucks during an event at the Washington Convention Center in Washington, D.C., July 29, 2011. Seated behind the President are at left are auto industry executives and

273

Alternative Fuels Data Center: Low Emission Vehicle (LEV) Standards  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Low Emission Vehicle Low Emission Vehicle (LEV) Standards to someone by E-mail Share Alternative Fuels Data Center: Low Emission Vehicle (LEV) Standards on Facebook Tweet about Alternative Fuels Data Center: Low Emission Vehicle (LEV) Standards on Twitter Bookmark Alternative Fuels Data Center: Low Emission Vehicle (LEV) Standards on Google Bookmark Alternative Fuels Data Center: Low Emission Vehicle (LEV) Standards on Delicious Rank Alternative Fuels Data Center: Low Emission Vehicle (LEV) Standards on Digg Find More places to share Alternative Fuels Data Center: Low Emission Vehicle (LEV) Standards on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Low Emission Vehicle (LEV) Standards All new passenger vehicles, light-duty trucks, and medium-duty vehicles

274

SALES CONTRACT  

Office of Legacy Management (LM)

SALES CONTRACT SALES CONTRACT by and between the UNITED STATES DEPARTMENT OF ENERGY and the MIAMISBURG MOUND COMMUNITY IMPROVEMENT CORPORATION August 28,2008 TI-IIS SATRS CONTRACT made, entered into, and effective the 28th day of August 2008, between the MIAMISBURG MOUND COMMUNI'I'Y IMPROVEMENT CORPORATION (MMCIC), ail Ohio Corporation, located at 1 ' . 0. Box 232, Miamisburg, 01-1 45343-0232, hereinafter referred to as "Buyer," and the UNITED STATES OF AMERICA, acting by and Il~~ough the DEPARTMENT OF ENERGY, hereinafter referred to as "Seller." Buyer and Seller are hereinafter jointly referred to as "the Parties." WITNESSETH: WEIEREAS, Seller llas o w ~ ~ e d and maintained a facility at 1 Mound Road, City of Miamisburg, Montgomery County, Ohio, since late 1946 ("Mound Facility"); and

275

Hydrogen Storage Requirements for Fuel Cell Vehicles  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

GENERAL MOTORS GENERAL MOTORS HYDROGEN STORAGE REQUIREMENTS FOR FUEL CELL VEHICLES Brian G. Wicke GM R&D and Planning DOE Hydrogen Storage Workshop August 14-15, 2002 Argonne National Laboratory General Motors Fuel Cell Vehicles * GM fuel cell vehicle Goal - be the first to profitably sell one million fuel cell vehicles * Fuel cell powerplant must be suitable for a broad range of light-duty vehicles (not just niche) * UNCOMPROMISED performance & reliability are REQUIRED * SAFETY IS A GIVEN * Evolutionary and Revolutionary vehicle designs are included-GM AUTONOMY-as long as the customer is (more than) satisfied GENERAL MOTORS AUTONOMY GENERAL MOTORS AUTONOMY General Motors Fuel Cell Vehicles * Focus on PEM fuel cell technology * Must consider entire hydrogen storage & (unique) fuel delivery systems,

276

Biodiesel Effects on the Operation of U.S. Light Duty Tier 2 Engine and Aftertreatment Systems  

Broader source: Energy.gov [DOE]

Presentation given at 2007 Diesel Engine-Efficiency & Emissions Research Conference (DEER 2007). 13-16 August, 2007, Detroit, Michigan. Sponsored by the U.S. Department of Energy's (DOE) Office of FreedomCAR and Vehicle Technologies (OFCVT).

277

Fact #646: October 25, 2010 Prices for Used Vehicles Rise Sharply...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Vehicles Rise Sharply from 2008 to 2010 The collapse of new vehicle sales in 2008 has led to lower sales volumes of new vehicles. Also, consumers and business are holding on to...

278

Household vehicles energy consumption 1994  

SciTech Connect (OSTI)

Household Vehicles Energy Consumption 1994 reports on the results of the 1994 Residential Transportation Energy Consumption Survey (RTECS). The RTECS is a national sample survey that has been conducted every 3 years since 1985. For the 1994 survey, more than 3,000 households that own or use some 6,000 vehicles provided information to describe vehicle stock, vehicle-miles traveled, energy end-use consumption, and energy expenditures for personal vehicles. The survey results represent the characteristics of the 84.9 million households that used or had access to vehicles in 1994 nationwide. (An additional 12 million households neither owned or had access to vehicles during the survey year.) To be included in then RTECS survey, vehicles must be either owned or used by household members on a regular basis for personal transportation, or owned by a company rather than a household, but kept at home, regularly available for the use of household members. Most vehicles included in the RTECS are classified as {open_quotes}light-duty vehicles{close_quotes} (weighing less than 8,500 pounds). However, the RTECS also includes a very small number of {open_quotes}other{close_quotes} vehicles, such as motor homes and larger trucks that are available for personal use.

NONE

1997-08-01T23:59:59.000Z

279

Alternative Fuels Data Center: Low Emission Vehicle (LEV) Standards  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Low Emission Vehicle Low Emission Vehicle (LEV) Standards to someone by E-mail Share Alternative Fuels Data Center: Low Emission Vehicle (LEV) Standards on Facebook Tweet about Alternative Fuels Data Center: Low Emission Vehicle (LEV) Standards on Twitter Bookmark Alternative Fuels Data Center: Low Emission Vehicle (LEV) Standards on Google Bookmark Alternative Fuels Data Center: Low Emission Vehicle (LEV) Standards on Delicious Rank Alternative Fuels Data Center: Low Emission Vehicle (LEV) Standards on Digg Find More places to share Alternative Fuels Data Center: Low Emission Vehicle (LEV) Standards on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Low Emission Vehicle (LEV) Standards Under the Oregon LEV Program, all new passenger cars, light-duty trucks,

280

Vehicle Technologies Office: Fact #500: January 7, 2008 China is Second  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

0: January 7, 0: January 7, 2008 China is Second Largest in Vehicle Sales to someone by E-mail Share Vehicle Technologies Office: Fact #500: January 7, 2008 China is Second Largest in Vehicle Sales on Facebook Tweet about Vehicle Technologies Office: Fact #500: January 7, 2008 China is Second Largest in Vehicle Sales on Twitter Bookmark Vehicle Technologies Office: Fact #500: January 7, 2008 China is Second Largest in Vehicle Sales on Google Bookmark Vehicle Technologies Office: Fact #500: January 7, 2008 China is Second Largest in Vehicle Sales on Delicious Rank Vehicle Technologies Office: Fact #500: January 7, 2008 China is Second Largest in Vehicle Sales on Digg Find More places to share Vehicle Technologies Office: Fact #500: January 7, 2008 China is Second Largest in Vehicle Sales on AddThis.com...

Note: This page contains sample records for the topic "light-duty vehicle sales" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Vehicle Technologies Office: Fact #514: April 14, 2008 Historical U.S.  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

4: April 14, 4: April 14, 2008 Historical U.S. Hybrid Vehicle Sales to someone by E-mail Share Vehicle Technologies Office: Fact #514: April 14, 2008 Historical U.S. Hybrid Vehicle Sales on Facebook Tweet about Vehicle Technologies Office: Fact #514: April 14, 2008 Historical U.S. Hybrid Vehicle Sales on Twitter Bookmark Vehicle Technologies Office: Fact #514: April 14, 2008 Historical U.S. Hybrid Vehicle Sales on Google Bookmark Vehicle Technologies Office: Fact #514: April 14, 2008 Historical U.S. Hybrid Vehicle Sales on Delicious Rank Vehicle Technologies Office: Fact #514: April 14, 2008 Historical U.S. Hybrid Vehicle Sales on Digg Find More places to share Vehicle Technologies Office: Fact #514: April 14, 2008 Historical U.S. Hybrid Vehicle Sales on AddThis.com...

282

Vehicle Technologies Office: Fact #462: March 26, 2007 Historical U.S.  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

2: March 26, 2: March 26, 2007 Historical U.S. Hybrid Vehicle Sales to someone by E-mail Share Vehicle Technologies Office: Fact #462: March 26, 2007 Historical U.S. Hybrid Vehicle Sales on Facebook Tweet about Vehicle Technologies Office: Fact #462: March 26, 2007 Historical U.S. Hybrid Vehicle Sales on Twitter Bookmark Vehicle Technologies Office: Fact #462: March 26, 2007 Historical U.S. Hybrid Vehicle Sales on Google Bookmark Vehicle Technologies Office: Fact #462: March 26, 2007 Historical U.S. Hybrid Vehicle Sales on Delicious Rank Vehicle Technologies Office: Fact #462: March 26, 2007 Historical U.S. Hybrid Vehicle Sales on Digg Find More places to share Vehicle Technologies Office: Fact #462: March 26, 2007 Historical U.S. Hybrid Vehicle Sales on AddThis.com...

283

Vehicle Technologies Office: Closed Solicitations  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Closed Solicitations Closed Solicitations Technology Solicitation Title Open Date Close Date Hydrogen and Fuel Cells- Hydrogen and Fuel Cells Request for Information (RFI) on performance, durability, and cost targets for fuel cells designed for Combined Heat and Power (CHP) and Auxiliary Power Unit (APU) applications Office of Energy Efficiency and Renewable Energy 05/28/2009 06/30/2009 Vehicle Technologies- Vehicle Technologies Recovery Act - Systems Level Technology Development, Integration,and Demonstration for Efficient Class 8 Trucks (SuperTruck) and Advanced Technology Powertrains For Light-Duty Vehicles (ATP-LD) Office of Energy Efficiency and Renewable Energy 06/09/2009 09/09/2009 Crosscutting U.S. China Clean Energy Research Center (CERC) Office of Energy Efficiency and Renewable Energy 03/30/2010 05/21/2010

284

Heavy Duty Vehicle Futures Analysis.  

SciTech Connect (OSTI)

This report describes work performed for an Early Career Research and Development project. This project developed a heavy-duty vehicle (HDV) sector model to assess the factors influencing alternative fuel and efficiency technology adoption. This model builds on a Sandia light duty vehicle sector model and provides a platform for assessing potential impacts of technological advancements developed at the Combustion Research Facility. Alternative fuel and technology adoption modeling is typically developed around a small set of scenarios. This HDV sector model segments the HDV sector and parameterizes input values, such as fuel prices, efficiencies, and vehicle costs. This parameterization enables sensitivity and trade space analyses to identify the inputs that are most associated with outputs of interest, such as diesel consumption and greenhouse gas emissions. Thus this analysis tool enables identification of the most significant HDV sector drivers that can be used to support energy security and climate change goals.

Askin, Amanda Christine; Barter, Garrett; West, Todd H.; Manley, Dawn Kataoka

2014-05-01T23:59:59.000Z

285

Assessment of the effect of low viscosity oils usage on a light duty diesel engine fuel consumption in stationary and transient conditions  

Science Journals Connector (OSTI)

Abstract Regarding the global warming due to CO2 emissions, the crude oil depletion and its corresponding rising prices, \\{OEMs\\} are exploring different solutions to increase the internal combustion engine efficiency, among which, the use of Low Viscosity Oils (LVO) represents one attractive cost-effective way to accomplish this goal. Reported in terms of fuel consumption, the effect of LVO is round 2%, depending on the test conditions, especially if the test has taken place in laboratory or “on road” conditions. This study presents the fuel consumption benefits of a commercial 5W20, compared against higher SAE grade oils, on a light duty diesel engine, when it is running under motored test, stationary fired test and the New European Driving Cycle (NEDC).

Vicente Macián; Bernardo Tormos; Vicente Bermúdez; Leonardo Ramírez

2014-01-01T23:59:59.000Z

286

Effect of E85 on RCCI Performance and Emissions on a Multi-Cylinder Light-Duty Diesel Engine - SAE World Congress  

SciTech Connect (OSTI)

This paper investigates the effect of E85 on load expansion and FTP modal point emissions indices under reactivity controlled compression ignition (RCCI) operation on a light-duty multi-cylinder diesel engine. A General Motors (GM) 1.9L four-cylinder diesel engine with the stock compression ratio of 17.5:1, common rail diesel injection system, high-pressure exhaust gas recirculation (EGR) system and variable geometry turbocharger was modified to allow for port fuel injection with gasoline or E85. Controlling the fuel reactivity in-cylinder by the adjustment of the ratio of premixed low-reactivity fuel (gasoline or E85) to direct injected high reactivity fuel (diesel fuel) has been shown to extend the operating range of high-efficiency clean combustion (HECC) compared to the use of a single fuel alone as in homogeneous charge compression ignition (HCCI) or premixed charge compression ignition (PCCI). The effect of E85 on the Ad-hoc federal test procedure (FTP) modal points is explored along with the effect of load expansion through the light-duty diesel speed operating range. The Ad-hoc FTP modal points of 1500 rpm, 1.0bar brake mean effective pressure (BMEP); 1500rpm, 2.6bar BMEP; 2000rpm, 2.0bar BMEP; 2300rpm, 4.2bar BMEP; and 2600rpm, 8.8bar BMEP were explored. Previous results with 96 RON unleaded test gasoline (UTG-96) and ultra-low sulfur diesel (ULSD) showed that with stock hardware, the 2600rpm, 8.8bar BMEP modal point was not obtainable due to excessive cylinder pressure rise rate and unstable combustion both with and without the use of EGR. Brake thermal efficiency and emissions performance of RCCI operation with E85 and ULSD is explored and compared against conventional diesel combustion (CDC) and RCCI operation with UTG 96 and ULSD.

Curran, Scott [ORNL; Hanson, Reed M [ORNL; Wagner, Robert M [ORNL

2012-01-01T23:59:59.000Z

287

Hybrid & electric vehicle technology and its market feasibility ; Hybrid and electric vehicle technology and its market feasibility ; HEV technology and its market feasibility ; PHEV technology and its market feasibility ; EV technology and its market feasibility .  

E-Print Network [OSTI]

??In this thesis, Hybrid Electric Vehicles (HEV), Plug-In Hybrid Electric Vehicle (PHEV) and Electric Vehicle (EV) technology and their sales forecasts are discussed. First, the… (more)

Jeon, Sang Yeob

2010-01-01T23:59:59.000Z

288

Full documents available at: http://www.epa.gov/otaq/climate/regulations.htm EPA's section of the Preamble for the Light-Duty GHG Rule (see pp. 388-396)  

E-Print Network [OSTI]

of the Preamble for the Light-Duty GHG Rule (see pp. 388-396) III.H. What are the Estimated Cost, Economic, and Other Impacts of the Program? In this section, EPA presents the costs and impacts of EPA's GHG program. It is important to note that NHTSA's CAFE standards and EPA's GHG standards will both be in effect, and each

Edwards, Paul N.

289

Hydrogen-Enhanced Natural Gas Vehicle Program  

SciTech Connect (OSTI)

The project objective is to demonstrate the viability of HCNG fuel (30 to 50% hydrogen by volume and the remainder natural gas) to reduce emissions from light-duty on-road vehicles with no loss in performance or efficiency. The City of Las Vegas has an interest in alternative fuels and already has an existing hydrogen refueling station. Collier Technologies Inc (CT) supplied the latest design retrofit kits capable of converting nine compressed natural gas (CNG) fueled, light-duty vehicles powered by the Ford 5.4L Triton engine. CT installed the kits on the first two vehicles in Las Vegas, trained personnel at the City of Las Vegas (the City) to perform the additional seven retrofits, and developed materials for allowing other entities to perform these retrofits as well. These vehicles were used in normal service by the City while driver impressions, reliability, fuel efficiency and emissions were documented for a minimum of one year after conversion. This project has shown the efficacy of operating vehicles originally designed to operate on compressed natural gas with HCNG fuel incorporating large quantities of exhaust gas recirculation (EGR). There were no safety issues experienced with these vehicles. The only maintenance issue in the project was some rough idling due to problems with the EGR valve and piping parts. Once the rough idling was corrected no further maintenance issues with these vehicles were experienced. Fuel economy data showed no significant changes after conversion even with the added power provided by the superchargers that were part of the conversions. Driver feedback for the conversions was very favorable. The additional power provided by the HCNG vehicles was greatly appreciated, especially in traffic. The drivability of the HCNG vehicles was considered to be superior by the drivers. Most of the converted vehicles showed zero oxides of nitrogen throughout the life of the project using the State of Nevada emissions station.

Hyde, Dan; Collier, Kirk

2009-01-22T23:59:59.000Z

290

Optical and Physical Properties from Primary On-Road Vehicle ParticleEmissions And Their Implications for Climate Change  

SciTech Connect (OSTI)

During the summers of 2004 and 2006, extinction and scattering coefficients of particle emissions inside a San Francisco Bay Area roadway tunnel were measured using a combined cavity ring-down and nephelometer instrument. Particle size distributions and humidification were also measured, as well as several gas phase species. Vehicles in the tunnel traveled up a 4% grade at a speed of approximately 60 km h{sup -1}. The traffic situation in the tunnel allows the apportionment of emission factors between light duty gasoline vehicles and diesel trucks. Cross-section emission factors for optical properties were determined for the apportioned vehicles to be consistent with gas phase and particulate matter emission factors. The absorption emission factor (the absorption cross-section per mass of fuel burned) for diesel trucks (4.4 {+-} 0.79 m{sup 2} kg{sup -1}) was 22 times larger than for light-duty gasoline vehicles (0.20 {+-} 0.05 m{sup 2} kg{sup -1}). The single scattering albedo of particles - which represents the fraction of incident light that is scattered as opposed to absorbed - was 0.2 for diesel trucks and 0.3 for light duty gasoline vehicles. These facts indicate that particulate matter from motor vehicles exerts a positive (i.e., warming) radiative climate forcing. Average particulate mass absorption efficiencies for diesel trucks and light duty gasoline vehicles were 3.14 {+-} 0.88 m{sup 2} g{sub PM}{sup -1} and 2.9 {+-} 1.07 m{sup 2} g{sub PM}{sup -1}, respectively. Particle size distributions and optical properties were insensitive to increases in relative humidity to values in excess of 90%, reinforcing previous findings that freshly emitted motor vehicle particulate matter is hydrophobic.

Strawa, A.W.; Kirchstetter, T.W.; Hallar, A.G.; Ban-Weiss, G.A.; McLaughlin, J.P.; Harley, R.A.; Lunden, M.M.

2009-01-23T23:59:59.000Z

291

Monthly EV Sales Shatter Records | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Monthly EV Sales Shatter Records Monthly EV Sales Shatter Records Monthly EV Sales Shatter Records September 25, 2013 - 3:51pm Addthis Data compiled by Yan (Joann) Zhou at Argonne National Laboratory. (*) Sales from the second quarter of 2013 for Tesla Model S are based off of estimates provided by the Hybrid Market Dashboard. Data updated 9/25/2013. Daniel Wood Daniel Wood Data Integration Specialist Learn More About Electric Vehicles To find out how much you can save at the pump by switching to an EV, visit our eGallon tool. On September 5, media outlets reported that US monthly electric vehicle (EV) sales shattered the 10,000 unit barrier. Cumulative EV sales for August are estimated at 11,363 -- a 30 percent increase over the previous monthly record and a 75 percent increase since the same time last year.

292

Geographic Area Month Sales to End Users Sales  

Gasoline and Diesel Fuel Update (EIA)

by Sales Type and PAD District (Cents per Gallon Excluding Taxes) - Continued Geographic Area Month Sales to End Users Sales for Resale Residential Consumers Commercial...

293

The 1991 natural gas vehicle challenge: Developing dedicated natural gas vehicle technology  

SciTech Connect (OSTI)

An engineering research and design competition to develop and demonstrate dedicated natural gas-powered light-duty trucks, the Natural Gas Vehicle (NGV) Challenge, was held June 6--11, 1191, in Oklahoma. Sponsored by the US Department of Energy (DOE), Energy, Mines, and Resources -- Canada (EMR), the Society of Automative Engineers (SAE), and General Motors Corporation (GM), the competition consisted of rigorous vehicle testing of exhaust emissions, fuel economy, performance parameters, and vehicle design. Using Sierra 2500 pickup trucks donated by GM, 24 teams of college and university engineers from the US and Canada participated in the event. A gasoline-powered control testing as a reference vehicle. This paper discusses the results of the event, summarizes the technologies employed, and makes observations on the state of natural gas vehicle technology.

Larsen, R.; Rimkus, W. (Argonne National Lab., IL (United States)); Davies, J. (General Motors of Canada Ltd., Toronto, ON (Canada)); Zammit, M. (AC Rochester, NY (United States)); Patterson, P. (USDOE, Washington, DC (United States))

1992-01-01T23:59:59.000Z

294

The 1991 natural gas vehicle challenge: Developing dedicated natural gas vehicle technology  

SciTech Connect (OSTI)

An engineering research and design competition to develop and demonstrate dedicated natural gas-powered light-duty trucks, the Natural Gas Vehicle (NGV) Challenge, was held June 6--11, 1191, in Oklahoma. Sponsored by the US Department of Energy (DOE), Energy, Mines, and Resources -- Canada (EMR), the Society of Automative Engineers (SAE), and General Motors Corporation (GM), the competition consisted of rigorous vehicle testing of exhaust emissions, fuel economy, performance parameters, and vehicle design. Using Sierra 2500 pickup trucks donated by GM, 24 teams of college and university engineers from the US and Canada participated in the event. A gasoline-powered control testing as a reference vehicle. This paper discusses the results of the event, summarizes the technologies employed, and makes observations on the state of natural gas vehicle technology.

Larsen, R.; Rimkus, W. [Argonne National Lab., IL (United States); Davies, J. [General Motors of Canada Ltd., Toronto, ON (Canada); Zammit, M. [AC Rochester, NY (United States); Patterson, P. [USDOE, Washington, DC (United States)

1992-02-01T23:59:59.000Z

295

Feasibility Study Of Advanced Technology Hov Systems: Volume 2b: Emissions Impact Of Roadway-powered Electric Buses, Light-duty Vehicles, And Automobiles  

E-Print Network [OSTI]

Gas-fired: Simple Turbine Combined Turbine Cogen-Turbine Boiler Coal-fired: Conventional CFB IGCC Oil-fired: ResidualGas-fired Simple Turbine Combined Turbine Cogen-Turbine Boiler Coal-fired CFB IGCC Conventional Oil-fired Residual

Miller, Mark A.; Dato, Victor; Chira-chavala, Ted

1992-01-01T23:59:59.000Z

296

Feasible Café Standard Increases Using Emerging Diesel and Hybrid-Electric Technologies for Light-Duty Vehicles in the United States  

E-Print Network [OSTI]

USING EMERGING DIESEL AND HYBRID-ELECTRIC TECHNOLOGIES FORusing Emerging Diesel and Hybrid- Electric Technologies forusing Emerging Diesel and Hybrid- Electric Technologies for

Burke, Andy; Abeles, Ethan

2004-01-01T23:59:59.000Z

297

Commercializing Light-Duty Plug-In/Plug-Out Hydrogen-Fuel-Cell Vehicles: "Mobile Electricity" Technologies, Early California Household Markets, and Innovation Management  

E-Print Network [OSTI]

4 demonstration of a plug-in diesel-electric HUMVEE by thediesel max output (kW) continuous/Me- kW type efficiency electric

Williams, Brett D

2010-01-01T23:59:59.000Z

298

Feasible CAFE Standard Increases Using Emerging Diesel and Hybrid-Electric Technologies for Light-Duty Vehicles in the United States  

E-Print Network [OSTI]

USING EMERGING DIESEL AND HYBRID-ELECTRIC TECHNOLOGIES FORusing Emerging Diesel and Hybrid- Electric Technologies forusing Emerging Diesel and Hybrid- Electric Technologies for

Burke, Andy; Abeles, Ethan C.

2004-01-01T23:59:59.000Z

299

Present Status and Marketing Prospects of the Emerging Hybrid-Electric and Diesel Technologies to Reduce CO2 Emissions of New Light-Duty Vehicles in California  

E-Print Network [OSTI]

OF THE EMERGING HYBRID-ELECTRIC AND DIESEL TECHNOLOGIES TOof the Emerging Hybrid-Electric and Diesel Technologies tomodern clean diesel engines and hybrid-electric powertrains

Burke, Andy

2004-01-01T23:59:59.000Z

300

Commercializing Light-Duty Plug-In/Plug-Out Hydrogen-Fuel-Cell Vehicles:“Mobile Electricity” Technologies, Early California Household Markets, and Innovation Management  

E-Print Network [OSTI]

fuel-cell power production efficiencies, and engine degradationfuel-cell power production efficiencies, cooling requirements, and engine degradation

Williams, Brett D

2007-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "light-duty vehicle sales" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Commercializing Light-Duty Plug-In/Plug-Out Hydrogen-Fuel-Cell Vehicles: "Mobile Electricity" Technologies, Early California Household Markets, and Innovation Management  

E-Print Network [OSTI]

fuel-cell power production efficiencies, and engine degradationfuel-cell power production efficiencies, cooling requirements, and engine degradation

Williams, Brett D

2010-01-01T23:59:59.000Z

302

Commercializing Light-Duty Plug-In/Plug-Out Hydrogen-Fuel-Cell Vehicles: "Mobile Electricity" Technologies, Early California Household Markets, and Innovation Management  

E-Print Network [OSTI]

C. E. S. Thomas, "Hydrogen and Fuel Cells: Pathway to a4-2 incorporates hydrogen and fuel cells into a roadmap thatdevelopment efforts. Hydrogen and fuel-cell technologies are

Williams, Brett D

2010-01-01T23:59:59.000Z

303

Commercializing Light-Duty Plug-In/Plug-Out Hydrogen-Fuel-Cell Vehicles:“Mobile Electricity” Technologies, Early California Household Markets, and Innovation Management  

E-Print Network [OSTI]

C. E. S. Thomas, "Hydrogen and Fuel Cells: Pathway to a4-2 incorporates hydrogen and fuel cells into a roadmap thatdevelopment efforts. Hydrogen and fuel-cell technologies are

Williams, Brett D

2007-01-01T23:59:59.000Z

304

Commercializing Light-Duty Plug-In/Plug-Out Hydrogen-Fuel-Cell Vehicles: "Mobile Electricity" Technologies, Early California Household Markets, and Innovation Management  

E-Print Network [OSTI]

power, and heat generation), and grid-side benefits (peakpre-) heat/cool, etc. ); home recharging using off-peak grid

Williams, Brett D

2010-01-01T23:59:59.000Z

305

Commercializing Light-Duty Plug-In/Plug-Out Hydrogen-Fuel-Cell Vehicles:“Mobile Electricity” Technologies, Early California Household Markets, and Innovation Management  

E-Print Network [OSTI]

power, and heat generation), and grid-side benefits (peakpre-) heat/cool, etc. ); home recharging using off-peak grid

Williams, Brett D

2007-01-01T23:59:59.000Z

306

Commercializing Light-Duty Plug-In/Plug-Out Hydrogen-Fuel-Cell Vehicles:“Mobile Electricity” Technologies, Early California Household Markets, and Innovation Management  

E-Print Network [OSTI]

battery Type Capacity (kWh) Saft Li- Ion Valence LiIon LiIonOvonic NiMH A-hr, 336V) Saft Li-Ion Valence LiIon EEEI

Williams, Brett D

2007-01-01T23:59:59.000Z

307

Commercializing Light-Duty Plug-In/Plug-Out Hydrogen-Fuel-Cell Vehicles: "Mobile Electricity" Technologies, Early California Household Markets, and Innovation Management  

E-Print Network [OSTI]

battery Type Capacity (kWh) Saft Li- Ion Price EDrive PriusPM synchron AC PM synchron AC Saft Li-Ion Valence LiIon EEEI

Williams, Brett D

2010-01-01T23:59:59.000Z

308

EIA - Household Transportation report: Household Vehicles Energy  

U.S. Energy Information Administration (EIA) Indexed Site

4 4 Transportation logo printer-friendly version logo for Portable Document Format file Household Vehicles Energy Consumption 1994 August 1997 Release Next Update: EIA has discontinued this series. Based on the 1994 Residential Transportation Energy Consumption Survey conducted by the Energy Information Administration (EIA) - survey series has been discontinued Only light-duty vehicles and recreational vehicles are included in this report. EIA has excluded motorcycles, mopeds, large trucks, and buses. Household Vehicles Energy Consumption 1994 reports on the results of the 1994 Residential Transportation Energy Consumption Survey (RTECS). The RTECS is a national sample survey that has been conducted every 3 years since 1985. For the 1994 survey, more than 3,000 households that own or use

309

NREL: Vehicles and Fuels Research Home Page  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

NREL helps industry partners develop the next generation of energy efficient, high performance vehicles and fuels. NREL's transportation research spans from the materials to the systems level. NREL conducts research on the full range of vehicle types, from light-duty passenger cars to heavy-duty freight trucks. NREL's credible transportation research is grounded in real-world data. NREL's integrated approach links automotive technology advances to the full spectrum of renewable energy solutions. NREL researchers examine infrastructure, market conditions and driver behavior, as well as fuels and vehicles. NREL helps put fuel-efficient, low-emission cars and trucks on the road through research and innovation in electric vehicle, biofuel, and conventional automotive technologies. Researchers collaborate with industry

310

How Will You Shop for Your Next Vehicle? | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

How Will You Shop for Your Next Vehicle? How Will You Shop for Your Next Vehicle? How Will You Shop for Your Next Vehicle? July 28, 2011 - 11:41am Addthis On Monday, Shannon talked about how she's been using the online tools from the Advanced Technology Vehicle Data Center (AFDC) to help her decide what type of highly efficient vehicle may be best for her household. The AFDC provides excellent information such as a Light Duty Vehicle Search, an Alternative Fueling Station Locator, and a Hybrid and Plug-in Electric Vehicles section. All of these are helpful if you're wondering what type of vehicle can fit your needs while using the least possible amount of gasoline. In June, Eric's post Driving Home to a Clean Energy Future shared the latest in gasoline, electric, and hybrid vehicle labels. How about you? Are you starting to research vehicles, and if so, what tools

311

Carbonyl Emissions from Gasoline and Diesel Motor Vehicles  

Science Journals Connector (OSTI)

In the present study we describe measurements of gas- and particle-phase carbonyl emissions from light-duty gasoline (LDV) and heavy-duty diesel (HDDV) motor vehicles operated on a chassis dynamometer under realistic driving cycles. ... Vehicles were tested under a five-mode driving cycle (HHDDT, heavy heavy-duty diesel truck) consisting of 30-min idle, 17-min creep, and 11-min transient stages and two cruise stages of 34 and 31 min, with a top speed of 65 miles h?1 for the second cruise (30). ... In general, as the volatility of the carbonyl decreased, so did the PUF/total particulate carbonyl ratio. ...

Chris A. Jakober; Michael A. Robert; Sarah G. Riddle; Hugo Destaillats; M. Judith Charles; Peter G. Green; Michael J. Kleeman

2008-05-24T23:59:59.000Z

312

In-Use Emissions from Heavy-Duty Diesel Vehicles  

Science Journals Connector (OSTI)

A recent study that included 21 vehicles found that in general, g/mi emissions levels for regulated pollutants were highest for the CBD cycle, followed by the HDT cycle. ... Here g/mi NOx from the HDT and WVT driving cycles is plotted against NOx on the CBD cycle for all of the vehicles included in this paper that were tested on more than one of these driving cycles. ... The heavy-duty diesel EPM contained a higher proportion of OC than that from the light-duty diesels. ...

Janet Yanowitz; Robert L. McCormick; Michael S. Graboski

2000-01-29T23:59:59.000Z

313

Vehicle Technologies Office: Fact #445: November 27, 2006 U.S. Population  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

5: November 27, 5: November 27, 2006 U.S. Population Growth and Light Vehicle Sales to someone by E-mail Share Vehicle Technologies Office: Fact #445: November 27, 2006 U.S. Population Growth and Light Vehicle Sales on Facebook Tweet about Vehicle Technologies Office: Fact #445: November 27, 2006 U.S. Population Growth and Light Vehicle Sales on Twitter Bookmark Vehicle Technologies Office: Fact #445: November 27, 2006 U.S. Population Growth and Light Vehicle Sales on Google Bookmark Vehicle Technologies Office: Fact #445: November 27, 2006 U.S. Population Growth and Light Vehicle Sales on Delicious Rank Vehicle Technologies Office: Fact #445: November 27, 2006 U.S. Population Growth and Light Vehicle Sales on Digg Find More places to share Vehicle Technologies Office: Fact #445:

314

Vehicle Technologies Office: Fact #644: October 11, 2010 Share of Diesel  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

4: October 11, 4: October 11, 2010 Share of Diesel Vehicle Sales Decline in Western Europe to someone by E-mail Share Vehicle Technologies Office: Fact #644: October 11, 2010 Share of Diesel Vehicle Sales Decline in Western Europe on Facebook Tweet about Vehicle Technologies Office: Fact #644: October 11, 2010 Share of Diesel Vehicle Sales Decline in Western Europe on Twitter Bookmark Vehicle Technologies Office: Fact #644: October 11, 2010 Share of Diesel Vehicle Sales Decline in Western Europe on Google Bookmark Vehicle Technologies Office: Fact #644: October 11, 2010 Share of Diesel Vehicle Sales Decline in Western Europe on Delicious Rank Vehicle Technologies Office: Fact #644: October 11, 2010 Share of Diesel Vehicle Sales Decline in Western Europe on Digg Find More places to share Vehicle Technologies Office: Fact #644:

315

Vehicles | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Vehicles Vehicles Vehicles In the first half of 2013, Americans doubled the number of PEVs they purchased compared to the same period in 2012, and this summer, PEV sales reached a new record high. More than 11,000 PEVs were sold in August 2013 -- that's a 29 percent improvement in sales over the previous monthly record. Learn now about the clean technology revolution that is here today. In the first half of 2013, Americans doubled the number of PEVs they purchased compared to the same period in 2012, and this summer, PEV sales reached a new record high. More than 11,000 PEVs were sold in August 2013 -- that's a 29 percent improvement in sales over the previous monthly record. Learn now about the clean technology revolution that is here today.

316

ED Global Food Sale  

Broader source: Energy.gov [DOE]

Join us for a diverse sampling of tasty delicacies from around the world, all for sale to benefit the CFC.

317

Fact #843: October 20, 2014 Cumulative Plug-in Electric Vehicle...  

Broader source: Energy.gov (indexed) [DOE]

than Hybrid Electric Vehicle Sales in the First 45 Months since Market Introduction - Dataset Fact 843: October 20, 2014 Cumulative Plug-in Electric Vehicle Sales are Two and a...

318

Experimental Investigation of the Effects of Fuel Characteristics on High Efficiency Clean Combustion (HECC) in a Light-Duty Diesel Engine  

SciTech Connect (OSTI)

An experimental study was performed to understand fuel property effects on low temperature combustion (LTC) processes in a light-duty diesel engine. These types of combustion modes are often collectively referred to as high efficiency clean combustion (HECC). A statistically designed set of research fuels, the Fuels for Advanced Combustion Engines (FACE), were used for this study. Engine conditions consistent with low speed cruise (1500 rpm, 2.6 bar BMEP) were chosen for investigating fuel property effects on HECC operation in a GM 1.9-L common rail diesel engine. The FACE fuel matrix includes nine combinations of fuel properties including cetane number (30 to 55), aromatic contents (20 to 45 %), and 90 % distillation temperature (270 to 340 C). HECC operation was achieved with high levels of EGR and adjusting injection parameters, e.g. higher fuel rail pressure and single injection event, which is also known as Premixed Charge Compression Ignition (PCCI) combustion. Engine performance, pollutant emissions, and details of the combustion process are discussed in this paper. Cetane number was found to significantly affect the combustion process with variations in the start of injection (SOI) timing, which revealed that the ranges of SOI timing for HECC operation and the PM emission levels were distinctively different between high cetane number (55) and low cetane number fuels (30). Low cetane number fuels showed comparable levels of regulated gas emissions with high cetane number fuels and had an advantage in PM emissions.

Cho, Kukwon [ORNL; Han, Manbae [ORNL; Wagner, Robert M [ORNL; Sluder, Scott [ORNL

2009-01-01T23:59:59.000Z

319

Vehicle purchase and use data matrices: J. D. Power/DOE New Vehicle Owner Surveys  

SciTech Connect (OSTI)

Vehicle purchase and use data collected in two recent surveys from buyers of new 1978 and 1979 cars and light-duty trucks are presented. The survey information is broad in scope, extending from the public awareness of fuel economy information to decision-making in the purchase process, to in-use fuel economy. The survey data consequently have many applications in transportation studies. The objective of this report is to make a general summary of the data base contents available to interested individuals and organizations.

Crawford, R.; Dulla, R.

1981-04-01T23:59:59.000Z

320

Ethanol Blends and Engine Operating Strategy Effects on Light-Duty Spark-Ignition Engine Particle Emissions  

SciTech Connect (OSTI)

Spark ignition (SI) engines with direct injection (DI) fueling can improve fuel economy and vehicle power beyond that of port fuel injection (PFI). Despite this distinct advantage, DI fueling often increases particle emissions such that SI exhaust may be subject to future particle emissions regulations. Challenges in controlling particle emissions arise as engines encounter varied fuel composition such as intermediate ethanol blends. Furthermore, modern engines are operated using unconventional breathing strategies with advanced cam-based variable valve actuation systems. In this study, we investigate particle emissions from a multi-cylinder DI engine operated with three different breathing strategies, fueling strategies and fuels. The breathing strategies are conventional throttled operation, early intake valve closing (EIVC) and late intake valve closing (LIVC); the fueling strategies are single injection DI (sDI), multi-injection DI (mDI), and PFI; and the fuels are emissions certification gasoline, E20 and E85. The results indicate the dominant factor influencing particle number concentration emissions for the sDI and mDI strategies is the fuel injection timing. Overly advanced injection timing results in particle formation due to fuel spray impingement on the piston, and overly retarded injection timing results in particle formation due to poor fuel and air mixing. In addition, fuel type has a significant effect on particle emissions for the DI fueling strategies. Gasoline and E20 fuels generate comparable levels of particle emissions, but E85 produces dramatically lower particle number concentration. The particle emissions for E85 are near the detection limit for the FSN instrument, and particle number emissions are one to two orders of magnitude lower for E85 relative to gasoline and E20. We found PFI fueling produces very low levels of particle emissions under all conditions and is much less sensitive to engine breathing strategy and fuel type than the DI fueling strategies. The particle number-size distributions for PFI fueling are of the same order for all of the breathing strategies and fuel types and are one to two orders lower than for the sDI fuel injection strategy with gasoline and E20. Remarkably, the particle emissions for E85 under the sDI fueling strategy are similar to particle emissions with a PFI fueling strategy. Thus by using E85, the efficiency and power advantages of DI fueling can be gained without generating high particle emissions.

Szybist, James P [ORNL; Youngquist, Adam D [ORNL; Barone, Teresa L [ORNL; Storey, John Morse [ORNL; Moore, Wayne [Delphi; Foster, Matthew [Delphi; Confer, Keith [Delphi

2011-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "light-duty vehicle sales" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Vehicle Technologies Office: Fact #752: November 5, 2012 Western Europe  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

2: November 5, 2: November 5, 2012 Western Europe Plug-in Car Sales, 2012 to someone by E-mail Share Vehicle Technologies Office: Fact #752: November 5, 2012 Western Europe Plug-in Car Sales, 2012 on Facebook Tweet about Vehicle Technologies Office: Fact #752: November 5, 2012 Western Europe Plug-in Car Sales, 2012 on Twitter Bookmark Vehicle Technologies Office: Fact #752: November 5, 2012 Western Europe Plug-in Car Sales, 2012 on Google Bookmark Vehicle Technologies Office: Fact #752: November 5, 2012 Western Europe Plug-in Car Sales, 2012 on Delicious Rank Vehicle Technologies Office: Fact #752: November 5, 2012 Western Europe Plug-in Car Sales, 2012 on Digg Find More places to share Vehicle Technologies Office: Fact #752: November 5, 2012 Western Europe Plug-in Car Sales, 2012 on AddThis.com...

322

Vehicle Technologies Office: Natural Gas Research  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Natural Gas Research Natural Gas Research Natural gas offers tremendous opportunities for reducing the use of petroleum in transportation. Medium and heavy-duty fleets, which have significant potential to use natural gas, currently consume more than a third of the petroleum in transportation in the U.S. Natural gas is an excellent fit for a wide range of heavy-duty applications, especially transit buses, refuse haulers, and Class 8 long-haul or delivery trucks. In addition, natural gas can be a very good choice for light-duty vehicle fleets with central refueling. See the Alternative Fuels Data Center for a description of the uses and benefits of natural gas vehicles or its Laws and Incentives database for information on tax incentives. The Vehicle Technologies Office (VTO) supports the development of natural gas engines and research into renewable natural gas production.

323

Lightweight Composite Materials for Heavy Duty Vehicles  

SciTech Connect (OSTI)

The main objective of this project is to develop, analyze and validate data, methodologies and tools that support widespread applications of automotive lightweighting technologies. Two underlying principles are guiding the research efforts towards this objective: • Seamless integration between the lightweight materials selected for certain vehicle systems, cost-effective methods for their design and manufacturing, and practical means to enhance their durability while reducing their Life-Cycle-Costs (LCC). • Smooth migration of the experience and findings accumulated so far at WVU in the areas of designing with lightweight materials, innovative joining concepts and durability predictions, from applications to the area of weight savings for heavy vehicle systems and hydrogen storage tanks, to lightweighting applications of selected systems or assemblies in light–duty vehicles.

Pruez, Jacky; Shoukry, Samir; Williams, Gergis; Shoukry, Mark

2013-08-31T23:59:59.000Z

324

Summary of results from the National Renewable Energy Laboratory`s vehicle evaluation data collection efforts  

SciTech Connect (OSTI)

The U.S. DOE National Renewable Energy Laboratory conducted a data collection project for light-duty, alternative fuel vehicles (AFVs) for about 4 years. The project has collected data on 10 vehicle models (from the original equipment manufacturers) spanning model years 1991 through 1995. Emissions data have also been collected from a number of vehicles converted to natural gas (CNG) and liquefied petroleum gas (LPG). Most of the vehicles involved in the data collection and evaluation are part of the General Services Administration`s fleet of AFVs. This evaluation effort addressed the performance and reliability, fuel economy, and emissions of light- duty AFVs, with comparisons to similar gasoline vehicles when possible. Driver-reported complaints and unscheduled vehicle repairs were used to assess the performance and reliability of the AFVs compared to the comparable gasoline vehicles. Two sources of fuel economy were available, one from testing of vehicles on a chassis dynamometer, and the other from records of in-service fuel use. This report includes results from emissions testing completed on 169 AFVs and 161 gasoline control vehicles.

Whalen, P.; Kelly, K.; Motta, R.; Broderick, J.

1996-05-01T23:59:59.000Z

325

Vehicle Technologies Office: Favorites  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Favorites Favorites #248 Top Ten Net Petroleum Importing Countries, 2000 December 23, 2002 #246 U.S. Oil Imports - Top 10 Countries of Origin December 9, 2002 #244 Sport Utility Vehicle Spotlight November 25, 2002 #243 Fuel Economy Leaders for 2003 Model Year Light Trucks November 18, 2002 #242 Fuel Economy Leaders for 2003 Model Year Cars November 11, 2002 #238 Automobile and Truck Population by Vehicle Age, 2001 October 14, 2002 #234 2003 Model Year Alternative Fuel Vehicles September 16, 2002 #233 Vehicles per Thousand People: U.S. Compared to Other Countries September 9, 2002 #230 Hybrid Electric Vehicles in the United States August 19, 2002 #229 Medium and Heavy Truck Sales August 12, 2002 #228 New Light Vehicle Sales Shares, 1976-2001 August 5, 2002

326

Technical options for energy conservation and controlling environmental impact in highway vehicles  

Science Journals Connector (OSTI)

Manufacturers of light-duty highway vehicles are sometimes caught between the desire of the consumer for a reasonable-cast conveyance that is a pleasure to operate and the mandates of regulation seeking societal objectives of energy conservation and preservation of air quality. The prospects for improving conventional vehicles in these areas by the year 2000 are considered. Alternative engines and fuels are reviewed for the same time-frame. The status of the battery-electric vehicle is assessed. Shifting attention to the mid-2lst century, the possibility of global warming is chanelling thought toward non-fossil fuels, with hydrogen being added to the list of options.

C.A. Amann

1993-01-01T23:59:59.000Z

327

Onboard Hydrogen/Helium Sensors in Support of the Global Technical Regulation: An Assessment of Performance in Fuel Cell Electric Vehicle Crash Tests  

SciTech Connect (OSTI)

Automobile manufacturers in North America, Europe, and Asia project a 2015 release of commercial hydrogen fuel cell powered light-duty road vehicles. These vehicles will be for general consumer applications, albeit initially in select markets but with much broader market penetration expected by 2025. To assure international harmony, North American, European, and Asian regulatory representatives are striving to base respective national regulations on an international safety standard, the Global Technical Regulation (GTR), Hydrogen Fueled Vehicle, which is part of an international agreement pertaining to wheeled vehicles and equipment for wheeled vehicles.

Post, M. B.; Burgess, R.; Rivkin, C.; Buttner, W.; O'Malley, K.; Ruiz, A.

2012-09-01T23:59:59.000Z

328

Sales Tax Exemption for Hydrogen Fuel Cells | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Sales Tax Exemption for Hydrogen Fuel Cells Sales Tax Exemption for Hydrogen Fuel Cells Sales Tax Exemption for Hydrogen Fuel Cells < Back Eligibility Commercial Industrial Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Program Info Start Date 10/1/2007 State South Carolina Program Type Sales Tax Incentive Rebate Amount 100% of sales tax Provider South Carolina Hydrogen and Fuel Cell Alliance South Carolina offers a sales tax exemption for "any device, equipment, or machinery operated by hydrogen or fuel cells, any device, equipment or machinery used to generate, produce, or distribute hydrogen and designated specifically for hydrogen applications or for fuel cell applications, and any device, equipment, or machinery used predominantly for the manufacturing of, or research and development involving hydrogen or fuel

329

Sales Tax Exemption (New York) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Sales Tax Exemption (New York) Sales Tax Exemption (New York) Sales Tax Exemption (New York) < Back Eligibility Agricultural Commercial Industrial Institutional Investor-Owned Utility Municipal/Public Utility Rural Electric Cooperative Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State New York Program Type Corporate Tax Incentive Provider The New York State Department of Taxation and Finance The Sales Tax Exemption applies to the purchase of machinery and equipment, parts, tools, and supplies used or consumed in the production of tangible personal property for sale or in the production of gas, electricity, refrigeration, or steam, for sale; also, purchases of gas or electricity or

330

Renewable Energy Sales and Use Tax Abatement | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Sales and Use Tax Abatement Sales and Use Tax Abatement Renewable Energy Sales and Use Tax Abatement < Back Eligibility Agricultural Commercial Industrial Utility Savings Category Bioenergy Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Solar Heating & Cooling Commercial Heating & Cooling Wind Program Info Start Date 7/1/2009 State Nevada Program Type Sales Tax Incentive Rebate Amount Purchaser is only required to pay sales and use taxes imposed in Nevada at the rate of 2.6 % (effective through June 30, 2011) and at the rate of 2.25 % (effective July 01, 2011 - June 30, 2049) Purchaser is only required to pay sales and use taxes imposed in Nevada at the rate of 2.6 % (effective through June 30, 2011) and at the rate of 2.25 % (effective July 01, 2011 - June 30, 2049)

331

Renewable Energy Systems Sales Tax Exemption | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Sales Tax Exemption Sales Tax Exemption Renewable Energy Systems Sales Tax Exemption < Back Eligibility Agricultural Commercial General Public/Consumer Residential Savings Category Bioenergy Commercial Heating & Cooling Manufacturing Buying & Making Electricity Alternative Fuel Vehicles Hydrogen & Fuel Cells Solar Heating & Cooling Water Heating Wind Program Info Start Date 1999 State Vermont Program Type Sales Tax Incentive Rebate Amount 100% of sales tax for purchase Provider Vermont Department of Taxes Vermont's sales tax exemption for renewable-energy systems, originally enacted as part of the Miscellaneous Tax Reduction Act of 1999 (H. 0548), initially applied only to net-metered systems. The exemption now generally applies to systems up to 250 kilowatts (kW) in capacity that generate

332

Sales Tax Exemption for Manufacturing Facilities | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Sales Tax Exemption for Manufacturing Facilities Sales Tax Exemption for Manufacturing Facilities Sales Tax Exemption for Manufacturing Facilities < Back Eligibility Industrial Savings Category Wind Buying & Making Electricity Maximum Rebate 50% of capital investment in the eligible project Program Info Start Date 7/1/2008 State Kentucky Program Type Sales Tax Incentive Rebate Amount 100% sales and use tax refund Provider Kentucky Cabinet for Economic Development In August 2007 Kentucky established the ''Incentives for Energy Independence Act'' to promote the development of renewable energy and alternative fuel facilities, energy efficient buildings, alternative fuel vehicles, research and development activities and other energy initiatives. This includes a sales tax exemption which allows manufacturers to apply for

333

Use of the Modified Light Duty Utility Arm to Perform Nuclear Waste Cleanup of Underground Waste Storage Tanks at Oak Ridge National Laboratory  

SciTech Connect (OSTI)

The Modified Light Duty Utility Arm (MLDUA) is a selectable seven or eight degree-of-freedom robot arm with a 16.5 ft (5.03 m) reach and a payload capacity of 200 lb. (90.72 kg). The utility arm is controlled in either joystick-based telerobotic mode or auto sequence robotics mode. The MLDUA deployment system deploys the utility arm vertically into underground radioactive waste storage tanks located at Oak Ridge National Laboratory. These tanks are constructed of gunite material and consist of two 25 ft (7.62 m) diameter tanks in the North Tank Farm and six 50 ft (15.24 m) diameter tanks in the South Tank Farm. After deployment inside a tank, the utility arm reaches and grasps the confined sluicing end effecter (CSEE) which is attached to the hose management arm (HMA). The utility arm positions the CSEE within the tank to allow the HMA to sluice the tank's liquid and solid waste from the tank. The MLDUA is used to deploy the characterization end effecter (CEE) and gunite scarifying end effecter (GSEE) into the tank. The CEE is used to survey the tank wall's radiation levels and the physical condition of the walls. The GSEE is used to scarify the tank walls with high-pressure water to remove the wall scale buildup and a thin layer of gunite which reduces the radioactive contamination that is embedded into the gunite walls. The MLDUA is also used to support waste sampling and wall core-sampling operations. Other tools that have been developed for use by the MLDUA include a pipe-plugging end effecter, pipe-cutting end effecter, and pipe-cleaning end effecter. Washington University developed advance robotics path control algorithms for use in the tanks. The MLDUA was first deployed in June 1997 and has operated continuously since then. Operational experience in the first four tanks remediated is presented in this paper.

Blank, J.A.; Burks, B.L.; DePew, R.E.; Falter, D.D.; Glassell, R.L.; Glover, W.H.; Killough, S.M.; Lloyd, P.D.; Love, L.J.; Randolph, J.D.; Van Hoesen, S.D.; Vesco, D.P.

1999-04-01T23:59:59.000Z

334

Experimental Investigation of Fuel-Reactivity Controlled Compression Ignition (RCCI) Combustion Mode in a Multi-Cylinder, Light-Duty Diesel Engine  

SciTech Connect (OSTI)

An experimental study was performed to provide the combustion and emission characteristics resulting from fuel-reactivity controlled compression ignition (RCCI) combustion mode utilizing dual-fuel approach in a light-duty, multi-cylinder diesel engine. In-cylinder fuel blending using port fuel injection of gasoline before intake valve opening (IVO) and early-cycle, direct injection of diesel fuel was used as the charge preparation and fuel blending strategy. In order to achieve the desired auto-ignition quality through the stratification of the fuel-air equivalence ratio ( ), blends of commercially available gasoline and diesel fuel were used. Engine experiments were performed at an engine speed of 2300rpm and an engine load of 4.3bar brake mean effective pressure (BMEP). It was found that significant reduction in both nitrogen oxide (NOx) and particulate matter (PM) was realized successfully through the RCCI combustion mode even without applying exhaust gas recirculation (EGR). However, high carbon monoxide (CO) and hydrocarbon (HC) emissions were observed. The low combustion gas temperature during the expansion and exhaust processes seemed to be the dominant source of high CO emissions in the RCCI combustion mode. The high HC emissions during the RCCI combustion mode could be due to the increased combustion quenching layer thickness as well as the -stratification at the periphery of the combustion chamber. The slightly higher brake thermal efficiency (BTE) of the RCCI combustion mode was observed than the other combustion modes, such as the conventional diesel combustion (CDC) mode, and single-fuel, premixed charge compression ignition (PCCI) combustion mode. The parametric study of the RCCI combustion mode revealed that the combustion phasing and/or the peak cylinder pressure rise rate of the RCCI combustion mode could be controlled by several physical parameters premixed ratio (rp), intake swirl intensity, and start of injection (SOI) timing of directly injected fuel unlike other low temperature combustion (LTC) strategies.

Cho, Kukwon [ORNL] [ORNL; Curran, Scott [ORNL] [ORNL; Prikhodko, Vitaly Y [ORNL] [ORNL; Sluder, Scott [ORNL] [ORNL; Parks, II, James E [ORNL; Wagner, Robert M [ORNL] [ORNL

2011-01-01T23:59:59.000Z

335

The Effect of Monetary Incentives on Sales of Advanced Clean Cars  

E-Print Network [OSTI]

-scale commercialization of zero emission vehicles-- both hydrogen fuel cell vehicles (FCVs) and plug-in electric vehiclesThe Effect of Monetary Incentives on Sales of Advanced Clean Cars in the United States: Summary a transformation of the transportation sector to vehicles and fuels that have low-to-zero lifecycle emissions

California at Davis, University of

336

EIA - Gasoline and Diesel Fuel report: Household Vehicles Energy  

U.S. Energy Information Administration (EIA) Indexed Site

1 1 Transportation logo printer-friendly version logo for Portable Document Format file Household Vehicles Energy Consumption 1991 December 1993 Release Next Update: August 1997. Based on the 1991 Residential Transportation Energy Consumption Survey conducted by the Energy Information Administration (EIA) - survey series has been discontinued after EIA's 1994 survey. Only light-duty vehicles and recreational vehicles are included in this report. EIA has excluded motorcycles, mopeds, large trucks, and buses. This report, Household Vehicles Energy Consumption 1991, is based on data from the 1991 Residential Transportation Energy Consumption Survey (RTECS). Focusing on vehicle miles traveled (VMT) and energy enduse consumption and expenditures by households for personal transportation, the 1991 RTECS is

337

Light Duty Combustion Research: Advanced Light-Duty Combustion...  

Broader source: Energy.gov (indexed) [DOE]

reactor simulations with detailed chemistry clarified expected impact of , T, and EGR rate on CO and UHC oxidation Clearance volume CO and UHC measurements identify...

338

Vehicle Technologies Office: Active Solicitations  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Active Solicitations Active Solicitations To explore current financial opportunity solicitations, click on the opportunity titles in the table below. To sort the list, click on the arrows in the column headings. Technology Solicitation Title Open Date Close Date Hydrogen and Fuel Cells Research and Development for Hydrogen Storage Office of Energy Efficiency and Renewable Energy 10/29/2013 01/17/2014 Hydrogen and Fuel Cells RFI: Light Duty Vehicle Hydrogen Fueling Infrastructure Financing Strategies Office of Energy Efficiency and Renewable Energy 12/11/2013 01/31/2014 Hydrogen and Fuel Cells Hydrogen Delivery Technologies Office of Energy Efficiency and Renewable Energy 11/14/2013 02/14/2014 Hydrogen and Fuel Cells Notice of Intent to Issue Funding Opportunity Announcement Number DE-FOA-0000826

339

Light Duty Efficient Clean Combustion  

Broader source: Energy.gov (indexed) [DOE]

fuel efficiency over the FTP city drive cycle by 10.5% over today's state-of-the-art diesel engine. Develop & design an advanced combustion system that synergistically meets...

340

Vehicle Technologies Office: Fact #229: August 12, 2002 Medium and Heavy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

9: August 12, 9: August 12, 2002 Medium and Heavy Truck Sales to someone by E-mail Share Vehicle Technologies Office: Fact #229: August 12, 2002 Medium and Heavy Truck Sales on Facebook Tweet about Vehicle Technologies Office: Fact #229: August 12, 2002 Medium and Heavy Truck Sales on Twitter Bookmark Vehicle Technologies Office: Fact #229: August 12, 2002 Medium and Heavy Truck Sales on Google Bookmark Vehicle Technologies Office: Fact #229: August 12, 2002 Medium and Heavy Truck Sales on Delicious Rank Vehicle Technologies Office: Fact #229: August 12, 2002 Medium and Heavy Truck Sales on Digg Find More places to share Vehicle Technologies Office: Fact #229: August 12, 2002 Medium and Heavy Truck Sales on AddThis.com... Fact #229: August 12, 2002 Medium and Heavy Truck Sales

Note: This page contains sample records for the topic "light-duty vehicle sales" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

NREL: Vehicles and Fuels Research - Biofuels Projects  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Biofuels Projects Biofuels Projects NREL biofuels projects help overcome technical barriers and expand markets for renewable, biodegradable vehicle fuels. These new liquid fuels include higher-level ethanol blends, butanol, biodiesel, renewable diesel, and other biomass-derived fuels. NREL's biofuels research and development helps improve engine efficiency, reduce polluting emissions, and improve U.S. energy security by reducing petroleum dependency. Biofuels for Diesel Engines NREL's diesel biofuels research and development focuses on developing fuel quality standards and demonstrating compatibility with engines and emission control systems. Highly efficient heavy-duty diesel truck engines are the primary power source for global transportation of freight. Light-duty diesel-fueled passenger vehicles have much higher fuel economy than

342

NREL: Vehicles and Fuels Research - ReFUEL Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Research Research Search More Search Options Site Map NREL's Renewable Fuels and Lubricants (ReFUEL) Laboratory is a state-of-the-art research and testing facility for advanced fuels and vehicles. Research and development focuses on overcoming barriers to the increased use of renewable diesel and other nonpetroleum-based fuels, such as biodiesel and synthetic diesel derived from biomass, and improving vehicle efficiency. Using biofuels and improving vehicle efficiency reduces our dependence on imported petroleum and enhances our national energy security. The ReFUEL Laboratory houses the following specialized equipment: Heavy-duty chassis dynamometer with a simulation capability of 8,000 to 80,000 lbs for vehicle performance and emissions research Heavy-duty (up to 600 hp) and light-duty (up to 75 hp) engine

343

EIA - Household Transportation report: Household Vehicles Energy Use:  

U.S. Energy Information Administration (EIA) Indexed Site

Transportation logo printer-friendly version logo for Portable Document Format file Household Vehicles Energy Use: Latest Data & Trends November 2005 Release (Next Update: Discontinued) Based on the 2001 National Household Travel Survey conducted by the U.S. Department of Transportation and augmented by EIA Only light-duty vehicles and recreational vehicles are included in this report. EIA has excluded motorcycles, mopeds, large trucks, and buses in an effort to maintain consistency with its past residential transportation series, which was discontinued after 1994. This report, Household Vehicles Energy Use: Latest Data & Trends, provides details on the nation's energy use for household passenger travel. A primary purpose of this report is to release the latest consumer-based data

344

Sales and Use Tax Exemption for Electrical Generating Facilities |  

Broader source: Energy.gov (indexed) [DOE]

Sales and Use Tax Exemption for Electrical Generating Facilities Sales and Use Tax Exemption for Electrical Generating Facilities Sales and Use Tax Exemption for Electrical Generating Facilities < Back Eligibility Commercial Industrial Savings Category Bioenergy Commercial Heating & Cooling Manufacturing Buying & Making Electricity Alternative Fuel Vehicles Hydrogen & Fuel Cells Water Solar Wind Program Info State North Dakota Program Type Sales Tax Incentive Rebate Amount 100% Provider Office of the State Tax Commissioner Electrical generating facilities are exempt from sales and use taxes in North Dakota. The exemption is granted for the purchase of building materials, production equipment, and any other tangible personal property that is used for constructing or expanding the facility. In order to qualify, the facility must have at least one electrical generation unity

345

Renewable Energy Sales and Use Tax Exemption | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Renewable Energy Sales and Use Tax Exemption Renewable Energy Sales and Use Tax Exemption Renewable Energy Sales and Use Tax Exemption < Back Eligibility Commercial General Public/Consumer Residential Savings Category Bioenergy Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Solar Water Wind Program Info Start Date 7/1/2006 Expiration Date 6/30/2018 State District of Columbia Program Type Sales Tax Incentive Rebate Amount 100% exemption for solar photovoltaic systems 10 or less kilowatts; 75% exemption for other qualified systems Provider Washington State Department of Revenue In Washington State, there is a 75% exemption from tax for the sales of equipment used to generate electricity using fuel cells, wind, sun, biomass energy, tidal or wave energy, geothermal, anaerobic digestion or landfill

346

Sales Tax Exemption for Hydrogen Generation Facilities | Department of  

Broader source: Energy.gov (indexed) [DOE]

Tax Exemption for Hydrogen Generation Facilities Tax Exemption for Hydrogen Generation Facilities Sales Tax Exemption for Hydrogen Generation Facilities < Back Eligibility Commercial Industrial Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Program Info State North Dakota Program Type Sales Tax Incentive Rebate Amount 100% Provider Office of the State Tax Commissioner In North Dakota, the sale of hydrogen used to power an internal combustion engine or a fuel cell is exempt from sales tax. In addition, any equipment used by a hydrogen generation facility for the production and storage of hydrogen is exemption from sales tax. Stationary and portable hydrogen containers or pressure vessels, piping, tubing, fittings, gaskets, controls, valves, gauges, pressure regulators, safety relief devices are

347

Renewable Energy Facility Sales and Use Tax Reimbursement (South Dakota) |  

Broader source: Energy.gov (indexed) [DOE]

Energy Facility Sales and Use Tax Reimbursement (South Energy Facility Sales and Use Tax Reimbursement (South Dakota) Renewable Energy Facility Sales and Use Tax Reimbursement (South Dakota) < Back Eligibility Agricultural Commercial Industrial Installer/Contractor Savings Category Wind Buying & Making Electricity Bioenergy Commercial Heating & Cooling Manufacturing Water Alternative Fuel Vehicles Hydrogen & Fuel Cells Solar Home Weatherization Program Info Start Date 04/01/2013 State South Dakota Program Type Sales Tax Incentive Rebate Amount Up to 100% of the tax paid on project costs Provider South Dakota Governor's Office of Economic Development South Dakota allows for a reinvestment payment up to the total amount of sales and use taxes paid for certain new or expanded renewable energy systems, equipment upgrades to existing systems, and manufacturing

348

Energy Conversion and Thermal Efficiency Sales Tax Exemption | Department  

Broader source: Energy.gov (indexed) [DOE]

Energy Conversion and Thermal Efficiency Sales Tax Exemption Energy Conversion and Thermal Efficiency Sales Tax Exemption Energy Conversion and Thermal Efficiency Sales Tax Exemption < Back Eligibility Commercial Industrial Savings Category Heating & Cooling Commercial Heating & Cooling Heating Bioenergy Biofuels Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Wind Solar Water Heating Maximum Rebate None Program Info State Ohio Program Type Sales Tax Incentive Rebate Amount 100% exemption Provider Ohio Department of Taxation Ohio may provide a sales and use tax exemption for certain tangible personal property used in energy conversion, solid waste energy conversion, or thermal efficiency improvement facilities designed, constructed, or installed after December 31, 1974. Qualifying energy conversion facilities are those that are used for the

349

Energy Used in Manufacturing Sales and Use Tax Exemption | Department of  

Broader source: Energy.gov (indexed) [DOE]

Used in Manufacturing Sales and Use Tax Exemption Used in Manufacturing Sales and Use Tax Exemption Energy Used in Manufacturing Sales and Use Tax Exemption < Back Eligibility Industrial Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Water Buying & Making Electricity Home Weatherization Solar Wind Program Info State Georgia Program Type Sales Tax Incentive Georgia enacted legislation in April 2012 (HB 386) creating an exemption for energy used in the manufacturing of a product from the state's sales and use taxes. The sale, use, storage, or consumption of energy which is necessary and integral to the manufacture of tangible personal property at a manufacturing plant in the state of Georgia shall be exempt from all sales and use taxation except for the sales and use tax for educational

350

Vehicle-emission characteristics using mechanically emulsified alcohol/diesel fuels  

SciTech Connect (OSTI)

A light-duty diesel vehicle fueled with an emulsified alcohol/diesel fuel was operated under cyclic mode. Emission and fuel economy measurements were taken during vehicle operation. The test results showed the volumetric fuel economy decreased slightly. Carbon monoxide emissions increased slightly, and oxides of nitrogen showed no significant change. Particulate emissions were reduced slightly, and the particulate extractables increased slightly. The environmental effect of these data cancel each other resulting in no significant changes in the total release of biological activity into the environment.

Allsup, J.R.; Seizinger, D.E.; Cox, F.W.; Brook, A.L.; McClellan, R.O.

1983-07-01T23:59:59.000Z

351

Fact #806: December 2, 2013 Light Vehicle Market Shares, Model Years 1975–2012  

Broader source: Energy.gov [DOE]

In 1975, cars were by far the dominant vehicle style among new light vehicle sales, with a few vans and pickup trucks. Sport Utility Vehicles (SUVs) accounted for less than 2% of the market at that...

352

Optimizing U.S. Mitigation Strategies for the Light-Duty Transportation Sector: What We Learn from a Bottom-Up Model  

E-Print Network [OSTI]

on the adoption of alternative fuel vehicles: The case of07: 2007. 21. CEC State Alternative Fuel Plan. CEC-600-2007-972. (28) CEC. State Alternative Fuel Plan; CEC-600-2007-

Yeh, Sonia; Farrell, Alexander E.; Plevin, Richard J; Sanstad, Alan; Weyant, John

2008-01-01T23:59:59.000Z

353

Vehicle Technologies Office: 2012 Archive  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

2 Archive 2 Archive #760 Commuting to Work, 1960-2010 December 31, 2012 #759 Rural vs. Urban Driving Differences December 24, 2012 #758 U.S. Production of Crude Oil by State, 2011 December 17, 2012 #757 The U.S. Manufactures More Light Trucks than Cars December 10, 2012 #756 Midwest Produces Two-Thirds of All Light Vehicles December 3, 2012 #755 Chargepoint, Blink and Nissan Take the Lead in Public Electric Vehicle Chargers November 26, 2012 #754 Vehicle Sales in the U.S. and China, 2002-2011 November 19, 2012 #753 Sources of Electricity by State November 12, 2012 #752 Western Europe Plug-in Car Sales, 2012 November 5, 2012 #751 Plug-in Car Sales Higher in the U.S. Compared to Western Europe and China October 29, 2012 #750 Electric Vehicle Energy Requirements for Combined City/Highway Driving October 22, 2012

354

Fact #647: November 1, 2010 Sales Shifting from Light Trucks to Cars  

Broader source: Energy.gov [DOE]

From 2005 to 2009 light vehicle sales have gradually shifted toward cars over light trucks. The graph below shows this trend broken down by the major manufacturers. This trend is more evident among...

355

Optimizing U.S. Mitigation Strategies for the Light-Duty Transportation Sector: What We Learn from a Bottom-Up Model  

Science Journals Connector (OSTI)

Mitigating transportation emission reductions can result in significant changes in personal vehicle technologies, increases in vehicle fuel efficiency, and decreases in overall transportation fuel use. ... The Energy Independence and Security Act (H.R. 6), which includes a 36 billion gallon renewable fuel mandate, was passed by Congress and signed by President Bush on December 19, 2007. ... Mitigation strategies with the potential to achieve significant long-term transportation emission reductions often face significant competition for primary resources with other sectors, including biomass, natural gas, renewables, and coal, and for secondary energy sources such as electricity. ...

Sonia Yeh; Alex Farrell; Richard Plevin; Alan Sanstad; John Weyant

2008-10-21T23:59:59.000Z

356

Development of a dedicated ethanol ultra-low-emissions vehicle (ULEV): Phase 3 report  

SciTech Connect (OSTI)

The objective of the 3.5 year project discussed in this report was to develop a commercially competitive vehicle powered by ethanol (or an ethanol blend) that can meet California`s Ultra Low Emissions Vehicle (ULEV) standards and equivalent Corporate Average Fuel Economy (CAFE) energy efficiency for a light duty passenger car application. This particular report summarizes the third phase of the project, which lasted 12 months. Emissions tests were conducted with advanced after-treatment devices on one of the two, almost identical, test vehicles, a 1993 Ford Taurus flexible fuel vehicle. The report also covers tests on the engine removed from the second Taurus vehicle. This engine was modified for an increased compression ratio, fitted with air assist injectors, and included an advanced engine control system with model-based control.

Dodge, L.; Callahan, T.; Leone, D.; Naegeli, D.; Shouse, K.; Smith, L.; Whitney, K. [Southwest Research Inst., San Antonio, TX (United States)] [Southwest Research Inst., San Antonio, TX (United States)

1998-04-01T23:59:59.000Z

357

Vehicle Technologies Office: 2009 Archive  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

9 Archive to someone 9 Archive to someone by E-mail Share Vehicle Technologies Office: 2009 Archive on Facebook Tweet about Vehicle Technologies Office: 2009 Archive on Twitter Bookmark Vehicle Technologies Office: 2009 Archive on Google Bookmark Vehicle Technologies Office: 2009 Archive on Delicious Rank Vehicle Technologies Office: 2009 Archive on Digg Find More places to share Vehicle Technologies Office: 2009 Archive on AddThis.com... 2009 Archive #603 Where Does Lithium Come From? December 28, 2009 #602 Freight Statistics by Mode, 2007 Commodity Flow Survey December 21, 2009 #601 World Motor Vehicle Production December 14, 2009 #600 China Produced More Vehicles than the U.S. in 2008 December 7, 2009 #599 Historical Trend for Light Vehicle Sales November 30, 2009

358

SOLAR ON SALE  

Science Journals Connector (OSTI)

SOLAR ON SALE ... Given the region’s hot, sunny climate, they were considering technology that concentrates the sun’s rays to create steam and drive an electric turbine. ... But last month, when Pacific Gas & Electric agreed to buy the entire output of the project, NextLight disclosed that it has chosen to install polysilicon-based photovoltaic panels instead. ...

MELODY VOITH

2009-11-09T23:59:59.000Z

359

PARKING MAP Sales Office  

E-Print Network [OSTI]

PARKING MAP BayDr. Main Entrance Parking Sales Office Main Entrance Kiosk East Remote Lot, B, C111, MC, N, NC, , Medical M 2hr 112 Core West Structure A, B, EV, MC, N, NC, , Medical P 2hr 113

Wilmers, Chris

360

Retail Sales Allocation Tool (RSAT)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Showerheads Residential Weatherization Performance Tested Comfort Systems Ductless Heat Pumps New Construction Residential Marketing Toolkit Retail Sales Allocation Tool...

Note: This page contains sample records for the topic "light-duty vehicle sales" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Vehicle Technologies Office: 2010 Archive  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

0 Archive 0 Archive #655 New Freight Analysis Tool December 27, 2010 #654 New Light Vehicle Leasing is Big in 2010 December 20, 2010 #653 Import Cars and Trucks Gaining Ground December 13, 2010 #652 U.S. Crude Oil Production Rises December 6, 2010 #651 Hybrid Vehicles Dominate EPA's Top Ten Fuel Sippers List for 2011 November 29, 2010 #650 Diesel Fuel Prices hit a Two-Year High November 22, 2010 #649 Number of New Light Vehicle Dealerships Continues to Shrink November 15, 2010 #648 Conventional and Alternative Fuel Prices November 8, 2010 #647 Sales Shifting from Light Trucks to Cars November 1, 2010 #646 Prices for Used Vehicles Rise Sharply from 2008 to 2010 October 25, 2010 #645 Price of Diesel versus Gasoline in Europe October 18, 2010 #644 Share of Diesel Vehicle Sales Decline in Western Europe October 11, 2010

362

Which Vehicles Are Tested  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Which Vehicles Are Tested Which Vehicles Are Tested Popular Vehicles Exempt from Federal Fuel Economy Standards Prior to 2011 Pickups SUVs Vans Manufacturer Model Chevrolet Avalanche 2500 Series ¾ Ton Silverado 2500/3500 Series Dodge RAM 2500/3500 Series Ford F-250/350 Series GMC Sierra 2500/3500 Series Manufacturer Model Chevrolet Suburban ¾ Ton* Ford Excursion§ GMC Yukon XL ¾ Ton* Hummer H1§ and H2§ Manufacturer Model Chevrolet Express 2500 Passenger* Express 3500 Cargo Ford E Series Passenger (w/ 6.8L Triton or 6.0L Diesel Engine)* E Series Cargo (w/ 6.8L Triton or 6.0L Diesel Engine) GMC Savanna 2500/3500 Passenger* Savanna 3500 Cargo Note: These vehicles are given as examples. This is not a comprehensive list. * No longer exempt as of 2011 § No longer made Manufacturers do not test every new vehicle offered for sale. They are only

363

Vehicle Technologies Office: 2006 Archive  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

6 Archive to someone 6 Archive to someone by E-mail Share Vehicle Technologies Office: 2006 Archive on Facebook Tweet about Vehicle Technologies Office: 2006 Archive on Twitter Bookmark Vehicle Technologies Office: 2006 Archive on Google Bookmark Vehicle Technologies Office: 2006 Archive on Delicious Rank Vehicle Technologies Office: 2006 Archive on Digg Find More places to share Vehicle Technologies Office: 2006 Archive on AddThis.com... 2006 Archive #449 Biodiesel to Conventional Diesel: An Emissions Comparison December 25, 2006 #448 Fuel Purchasing Habits December 18, 2006 #447 World Ethanol Production December 11, 2006 #446 More Likely to Buy a Hybrid or Other More Fuel Efficient Vehicle? December 4, 2006 #445 U.S. Population Growth and Light Vehicle Sales November 27, 2006

364

NREL: Vehicle Ancillary Loads Reduction - Heat Generated Cooling  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Heat Generated Cooling Heat Generated Cooling A counterintuitive but promising path to reducing the loads imposed by automotive air conditioning systems is to use heat-specifically the waste heat generated by engines. This can be an abundant source of energy, since most light-duty vehicles with combustion engines are only about 30% efficient at best. With that degree of thermal efficiency, an engine releases 70% of its fuel energy as waste heat through the coolant, exhaust gases, and engine compartment warm-up. During much of a typical drive cycle, the engine efficiency is even lower than 30%. As efficiency decreases, the amount of waste heat increases, representing a larger potential energy source. NREL's Vehicle Ancillary Loads Reduction (VALR) team is investigating a number of heat generated cooling technologies

365

Flexible Fuel Vehicles: Providing a Renewable Fuel Choice, Vehicle Technologies Program (VTP) (Fact Sheet)  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

an FFV? an FFV? An FFV, as its name implies, has the flex- ibility of running on more than one type of fuel. FFVs can be fueled with unleaded gasoline, E85, or any combination of the two. Like conventional gasoline vehicles, FFVs have a single fuel tank, fuel system, and engine. And they are available in a wide range of models such as sedans, pickups, and minivans. Light-duty FFVs are designed to operate with at least 15% gasoline in the fuel, mainly to ensure they start in cold weather. FFVs are equipped with modified components designed specifically to be compatible with ethanol's chemical properties. In the illustration on the back, the main modifications for FFVs are

366

Clean Cities 2013 Vehicle Buyer's Guide (Brochure), Energy Efficiency & Renewable Energy (EERE)  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Natural Gas Natural Gas Propane Electric Hybrid Ethanol Flex-Fuel Biodiesel Vehicle Buyer's Guide Clean Cities 2013 Today's auto manufacturers offer hundreds of light-duty vehicle models that take advantage of alternative fuels and advanced technologies in order to help drivers and fleets reduce petroleum use, cut emissions, and save on fuel costs. This guide features a comprehensive list of such vehicles set to arrive in Model Year 2013. Contents Introduction . . . . . . . . . . . . . . . . . 4 About This Guide . . . . . . . . . . . . 5 Compressed Natural Gas . . . . . 6 Propane . . . . . . . . . . . . . . . . . . . . 10 All-Electric . . . . . . . . . . . . . . . . . . 12 Plug-In Hybrid Electric . . . . . . . 16 Hybrid Electric . . . . . . . . . . . . . . 18 Ethanol Flex-Fuel . . . . . . . . . . . . 24 Biodiesel . . . . . . . . . . . . . . . . . . . 34 Vehicle Buyer's Guide Clean Cities 2013 Disclaimers This report was

367

DOE to Provide up to $21.5 million for Research to Improve Vehicle  

Broader source: Energy.gov (indexed) [DOE]

up to $21.5 million for Research to Improve Vehicle up to $21.5 million for Research to Improve Vehicle Efficiency DOE to Provide up to $21.5 million for Research to Improve Vehicle Efficiency August 7, 2007 - 3:16pm Addthis BENTON HARBOR, MI - U.S. Department of Energy (DOE) Secretary Samuel W. Bodman today announced the Department will award a total of up to $21.5 million for eleven cost-shared research and development (R&D) projects that aim to improve the fuel efficiency of light-duty vehicle engines. These projects, selected for negotiation of awards, will focus on three areas: improving fuel utilization in ethanol-powered engines (engine optimization), developing advanced lubrication systems, and exploring high efficiency, clean combustion engines. Projects announced today will help advance President Bush's 20-in-10 Initiative, which calls for displacing 20

368

Development of a dedicated ethanol ultra-low emission vehicle (ULEV) -- Phase 2 report  

SciTech Connect (OSTI)

The objective of this 3.5-year project is to develop a commercially competitive vehicle powered by ethanol (or an ethanol blend) that can meet California`s ultra-low emission vehicle (ULEV) standards and equivalent corporate average fuel economy (CAFE) energy efficiency for a light-duty passenger car application. The definition of commercially competitive is independent of fuel cost, but does include technical requirements for competitive power, performance, refueling times, vehicle range, driveability, fuel handling safety, and overall emissions performance. This report summarizes the second phase of this project, which lasted 12 months. This report documents two baseline vehicles, the engine modifications made to the original equipment manufacturer (OEM) engines, advanced aftertreatment testing, and various fuel tests to evaluate the flammability, lubricity, and material compatibility of the ethanol fuel blends.

Dodge, L.G.; Bourn, G.; Callahan, T.J.; Naegeli, D.W.; Shouse, K.R.; Smith, L.R.; Whitney, K.A. [Southwest Research Inst., San Antonio, TX (United States)

1995-09-01T23:59:59.000Z

369

Food Sales | Open Energy Information  

Open Energy Info (EERE)

navigation, search Building Type Food Sales Definition Buildings used for retail or wholesale of food. Sub Categories grocery store or food market, gas station with a convenience...

370

Vice President, Transmission Marketing & Sales  

Broader source: Energy.gov [DOE]

Within Transmission Services at Bonneville Power Administration (BPA), Transmission Marketing and Sales (TS) provides open access to the Federal Transmission System (FTS) consistent with...

371

Strategic Petroleum Reserve Test Sale 2014 Report | Department...  

Energy Savers [EERE]

Strategic Petroleum Reserve Test Sale 2014 Report Strategic Petroleum Reserve Test Sale 2014 Report Strategic Petroleum Reserve Test Sale 2014 Report to Congress 2014 SPR Test Sale...

372

Sale of Water Resource Land (Maine) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Sale of Water Resource Land (Maine) Sale of Water Resource Land (Maine) Sale of Water Resource Land (Maine) < Back Eligibility Municipal/Public Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Maine Program Type Siting and Permitting This rule requires an eight month advance notice period whenever a consumer-owned water utility intends to transfer water resource land, defined as any land or real property owned by a water utility for the purposes of providing a source of supply, storing water or protecting sources of supply or water storage, including reservoirs, lakes, ponds, rivers or streams, wetlands and watershed areas. The rule also provides an assignable right of first refusal to the municipality or municipalities

373

Fact #654: December 20, 2010 New Light Vehicle Leasing is Big in 2010  

Broader source: Energy.gov [DOE]

New vehicle leasing has had ups and downs over the last five years, but from January to September 2010 the share of leases as a proportion of total new light vehicles sales is over 20%. Last year,...

374

Fact #813: January 20, 2014 New Light Vehicle Fuel Economy Continues to Rise  

Broader source: Energy.gov [DOE]

The sales-weighted fuel economy average of all light vehicles sold in model year (MY) 2013 was 1.6 miles per gallon (mpg) higher than MY 2011. This increase brings the new light vehicle fuel...

375

Zero-Emission Vehicle Scenario Cost Analysis Using A Fuzzy Set-Based Framework  

E-Print Network [OSTI]

a small percentage of EV sales with the ZEV mandate). WithNow, a portion of the 10% EV sales mandate can be composedSales - High Produciton Volume Scenario Subcompact Vehicle Chassis Manufacturing Costs GM Ovonics Projection of Selling Prices of NiMH EV

Lipman, Timothy E.

1999-01-01T23:59:59.000Z

376

PURDUE EXTENSION Estimating Breakeven Sales  

E-Print Network [OSTI]

, based on price and sales forecasts? · How low must fixed costs be to break even? · How sensitive, packaging, and energy costs (fuel, electricity, natural gas) associated with #12;2 Purdue Extension and special offers) by the number of units you expect to sell. If you have created a sales forecast as part

377

Sales, Earnings Shrink In Japan  

Science Journals Connector (OSTI)

Sales, Earnings Shrink In Japan ... Large chemical producers in Japan mostly reported lower sales and earnings in the first half of the fiscal year, which ends March 31, 2013. ... For instance, the profit margin at Mitsubishi Chemical, Japan’s largest chemical maker, is barely above zero. ...

JEAN-FRANÇOIS TREMBLAY

2012-11-12T23:59:59.000Z

378

Alternative Fuels Data Center: Biodiesel Sales Requirements  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Biodiesel Sales Biodiesel Sales Requirements to someone by E-mail Share Alternative Fuels Data Center: Biodiesel Sales Requirements on Facebook Tweet about Alternative Fuels Data Center: Biodiesel Sales Requirements on Twitter Bookmark Alternative Fuels Data Center: Biodiesel Sales Requirements on Google Bookmark Alternative Fuels Data Center: Biodiesel Sales Requirements on Delicious Rank Alternative Fuels Data Center: Biodiesel Sales Requirements on Digg Find More places to share Alternative Fuels Data Center: Biodiesel Sales Requirements on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Biodiesel Sales Requirements It is unlawful for any person to sell, offer for sale, assist in the sale of, deliver, or permit to be sold or offered for sale any biodiesel,

379

An Online Mechanism for Multi-Speed Electric Vehicle Charging  

E-Print Network [OSTI]

range of such vehicles, and EVs are expected to represent close to 10% of all vehicle sales by 2020 in electric vehicles (EVs). New hybrid de- signs, equipped with both an electric motor and an internal- nisms to schedule the charging of EVs, such that the local constraints of the distribution network

Southampton, University of

380

Electric Drive Vehicle Demonstration and Vehicle Infrastructure...  

Broader source: Energy.gov (indexed) [DOE]

Electric Drive Vehicle Demonstration and Vehicle Infrastructure Evaluation Electric Drive Vehicle Demonstration and Vehicle Infrastructure Evaluation 2010 DOE Vehicle Technologies...

Note: This page contains sample records for the topic "light-duty vehicle sales" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Drive Cycle Powertrain Efficiencies and Trends Derived From EPA Vehicle Dynamometer Results  

SciTech Connect (OSTI)

Vehicle manufacturers among others are putting great emphasis on improving fuel economy (FE) of light-duty vehicles in the U.S. market, with significant FE gains being realized in recent years. The U.S. Environmental Protection Agency (EPA) data indicates that the aggregate FE of vehicles produced for the U.S. market has improved by over 20% from model year (MY) 2005 to 2013. This steep climb in FE includes changes in vehicle choice, improvements in engine and transmission technology, and reducing aerodynamic drag, rolling resistance, and parasitic losses. The powertrain related improvements focus on optimizing in-use efficiency of the transmission and engine as a system, and may make use of what is termed downsizing and/or downspeeding. This study explores quantifying recent improvements in powertrain efficiency, viewed separately from other vehicle alterations and attributes (noting that most vehicle changes are not completely independent). A methodology is outlined to estimate powertrain efficiency for the U.S city and highway cycle tests using data from the EPA vehicle database. Comparisons of common conventional gasoline powertrains for similar MY 2005 and 2013 vehicles are presented, along with results for late-model hybrid electric vehicles, the Nissan Leaf, Chevy Volt and other selected vehicles.

Thomas, John F [ORNL

2014-01-01T23:59:59.000Z

382

NREL: Energy Analysis - Transportation Energy Futures Project  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Pathways: An Examination of Timing and Investment Constraints Non-Light-Duty Vehicles Potential for Energy Efficiency Improvement Beyond the Light-Duty Sector Fuels Alternative...

383

Fact #830: July 21, 2014 Diesel Light Vehicle Offerings Expand  

Broader source: Energy.gov [DOE]

The number of diesel light vehicles offered for sale by manufacturers has grown since 2000. In model year (MY) 2000 there were only 3 diesel models offered by one manufacturer (VW), but by MY 2014...

384

Strategies for the introduction of alternative fuel vehicles in India  

E-Print Network [OSTI]

Rapid growth in population and increase in disposable income has led to a robust increase in automotive sales in India. As in many parts of the world, the internal combustion engines are the dominant vehicle power train ...

Neerkaje, Abhijith

2013-01-01T23:59:59.000Z

385

Vehicle Technologies Office: Fact #42: September 29, 1997 People 65 and  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

2: September 29, 2: September 29, 1997 People 65 and Over Account for Nearly One-Quarter of Domestic Automakers' Sales to someone by E-mail Share Vehicle Technologies Office: Fact #42: September 29, 1997 People 65 and Over Account for Nearly One-Quarter of Domestic Automakers' Sales on Facebook Tweet about Vehicle Technologies Office: Fact #42: September 29, 1997 People 65 and Over Account for Nearly One-Quarter of Domestic Automakers' Sales on Twitter Bookmark Vehicle Technologies Office: Fact #42: September 29, 1997 People 65 and Over Account for Nearly One-Quarter of Domestic Automakers' Sales on Google Bookmark Vehicle Technologies Office: Fact #42: September 29, 1997 People 65 and Over Account for Nearly One-Quarter of Domestic Automakers' Sales on Delicious Rank Vehicle Technologies Office: Fact #42: September 29, 1997

386

Vehicle Ancillary Load Reduction Project Close-Out Report: An Overview of the Task and a Compilation of the Research Results  

SciTech Connect (OSTI)

The amount of fuel used for climate control in U.S. vehicles reduces the fuel economy of more than 200 million light-duty conventional vehicles and thus affects U.S. energy security. Researchers at the DOE National Renewable Energy Laboratory estimated that the United States consumes about 7 billion gallons of fuel per year for air-conditioning (A/C) light-duty vehicles. Using a variety of tools, NREL researchers developed innovative techniques and technologies to reduce the amount of fuel needed for these vehicles' ancillary loads. For example, they found that the A/C cooling capacity of 5.7 kW in a Cadillac STS could be reduced by 30% while maintaining a cooldown performance of 30 minutes. A simulation showed that reducing the A/C load by 30% decreased A/C fuel consumption by 26%. Other simulations supported the great potential for improving fuel economy by using new technologies and techniques developed to reduce ancillary loads.

Rugh, J.; Farrington, R.

2008-01-01T23:59:59.000Z

387

Renewable Energy Sales Tax Exemption  

Broader source: Energy.gov [DOE]

Certain renewable energy systems and equipment sold in Rhode Island are exempt from the state's sales and use tax. Eligible products include solar electric systems, DC-to-AC inverters that...

388

Forestry Commission Sale of Timber  

E-Print Network [OSTI]

shall be exclusive of Value Added Tax, which shall be added to the purchase price of each Lot of satisfactory credit- worthiness. 12. The Forestry Commission's normal terms of payment for credit sales

389

Forestry Commission Sale of Timber  

E-Print Network [OSTI]

. All bids shall be exclusive of Value Added Tax, which shall be added to the purchase price of each Lot of satisfactory credit- worthiness. 12. The Forestry Commission's normal terms of payment for credit sales

390

Sales Tax Incentives | Open Energy Information  

Open Energy Info (EERE)

Sales Tax Incentives Sales Tax Incentives Jump to: navigation, search Sales tax incentives typically provide an exemption from the state sales tax (or sales and use tax) for the purchase of a renewable energy system, an energy-efficient appliance, or other energy efficiency measures. Several states have established an annual “sales tax holiday” for energy efficiency measures by allowing a temporary exemption – usually for one or two days – from the state sales tax. [1] Contents 1 Sales Tax Incentive Incentives 2 References Sales Tax Incentive Incentives CSV (rows 1 - 104) Incentive Incentive Type Place Applicable Sector Eligible Technologies Active Advanced Energy Gross Receipts Tax Deduction (New Mexico) Sales Tax Incentive New Mexico Commercial Construction Installer/Contractor

391

NGV and FCV Light Duty Transportation Perspective  

Broader source: Energy.gov (indexed) [DOE]

transportation perspectives Matt Fronk, Matt Fronk & Associates, LLC 1 OctOber 2011 | ArgOnne nAtiOnAl lAbOrAtOry NG Workshop summary report - appeNDIX G 2 OctOber 2011 | ArgOnne...

392

Business Case for Light-Duty Diesels  

Broader source: Energy.gov (indexed) [DOE]

(NSC) 12 Cost of Diesel Systems Aftertreatment - components SCR has a high NOx conversion rate and good durability Potential exists for Bin 5 for light trucks up to 8,500 lbs...

393

Advanced Technology Light Duty Diesel Aftertreatment System ...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Approach to Low Temperature NOx Emission Abatement Cummins' Next Generation Tier 2, Bin 2 Light Truck Diesel Engine ATP-LD; Cummins Next Generation Tier 2 Bin 2 Diesel Engine...

394

Advanced Technology Light Duty Diesel Aftertreatment System  

Broader source: Energy.gov (indexed) [DOE]

Dearborn, MI T2B2 FTP-75 NOx Cycle Limit http:www.dieselnet.comstandardscyclesftp75.php ATLAS T2B2 AT Strategy Summary 1162012 U.S. Department of Energy DEER 2012 -...

395

Smith Electric Vehicles: Advanced Vehicle Electrification + Transporta...  

Broader source: Energy.gov (indexed) [DOE]

Smith Electric Vehicles: Advanced Vehicle Electrification + Transportation Sector Electrification Smith Electric Vehicles: Advanced Vehicle Electrification + Transportation Sector...

396

Sales Tax Incentive | Open Energy Information  

Open Energy Info (EERE)

Sales Tax Incentive Sales Tax Incentive Jump to: navigation, search Sales tax incentives typically provide an exemption from the state sales tax (or sales and use tax) for the purchase of a renewable energy system, an energy-efficient appliance, or other energy efficiency measures. Several states have established an annual “sales tax holiday” for energy efficiency measures by allowing a temporary exemption – usually for one or two days – from the state sales tax. [1] Sales Tax Incentive Incentives CSV (rows 1 - 104) Incentive Incentive Type Place Applicable Sector Eligible Technologies Active Advanced Energy Gross Receipts Tax Deduction (New Mexico) Sales Tax Incentive New Mexico Commercial Construction Installer/Contractor Retail Supplier CHP/Cogeneration Geothermal Electric

397

Hydrogen Fuel Cell Vehicles  

E-Print Network [OSTI]

Ratio of dealer Sales tax factor Gasoline EV calculatedinc. sales tax ($) Full retail price of complete EV, inc.

Delucchi, Mark

1992-01-01T23:59:59.000Z

398

U.S. Sales for Resale, Total Refiner Motor Gasoline Sales Volumes  

Gasoline and Diesel Fuel Update (EIA)

Type: Sales to End Users, Total Through Retail Outlets Sales for Resale, Total DTW Rack Bulk Download Series History Download Series History Definitions, Sources & Notes...

399

Price Competitive Sale of Strategic Petroleum Reserve Petroleum...  

Energy Savers [EERE]

Price Competitive Sale of Strategic Petroleum Reserve Petroleum; Standard Sales Provisions; Final Rule Price Competitive Sale of Strategic Petroleum Reserve Petroleum; Standard...

400

Position: IT pre-sales engineer. Job Description  

E-Print Network [OSTI]

Position: IT pre-sales engineer. Job Description: Develop sales proposals Provide technical sales. Ability to work under pressure in a dynamic environment. Excellent communication, interpersonal

Note: This page contains sample records for the topic "light-duty vehicle sales" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

SPR - Historical Oil Sales and Exchanges | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

- Historical Oil Sales and Exchanges SPR - Historical Oil Sales and Exchanges SPR - Historical Oil Sales and Exchanges More Documents & Publications SPR Annual Reports to Congress...

402

Sales and Use Tax Exclusion for Advanced Transportation and Alternative  

Broader source: Energy.gov (indexed) [DOE]

Exclusion for Advanced Transportation and Exclusion for Advanced Transportation and Alternative Energy Manufacturing Program Sales and Use Tax Exclusion for Advanced Transportation and Alternative Energy Manufacturing Program < Back Eligibility Industrial Savings Category Other Bioenergy Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Solar Wind Program Info Start Date 3/24/2010 State California Program Type Industry Recruitment/Support Rebate Amount 100% exemption [http://leginfo.ca.gov/pub/09-10/bill/sen/sb_0051-0100/sb_71_bill_2010032... SB 71] of 2010 established a sales and use tax exclusion (STE) for eligible projects on property utilized for the design, manufacture, production or assembly of advanced transportation technologies or alternative source (including energy efficiency) products, components or systems. The

403

Sales Tax Exemption for Energy-Efficient Products (Sales Tax Holiday) |  

Broader source: Energy.gov (indexed) [DOE]

Sales Tax Exemption for Energy-Efficient Products (Sales Tax Sales Tax Exemption for Energy-Efficient Products (Sales Tax Holiday) Sales Tax Exemption for Energy-Efficient Products (Sales Tax Holiday) < Back Eligibility Residential Savings Category Heating & Cooling Cooling Commercial Heating & Cooling Appliances & Electronics Commercial Lighting Lighting Program Info Start Date 3/23/2007 Expiration Date 7/1/2017 State Virginia Program Type Sales Tax Incentive Rebate Amount 100% exemption from state sales and use tax Provider Virginia Department of Taxation Virginia allows a four-day sales tax exemption on Energy Star products of $2,500 or less per product, purchased for non-commercial home or personal use. Beginning in 2007, the 100% exemption from the state sales and use tax applies to sales occurring during the four-day period that commencing

404

Energy and Financial Markets Overview: Crude Oil Price Formation  

U.S. Energy Information Administration (EIA) Indexed Site

John Maples John Maples 2011 EIA Energy Conference April 26, 2011 Transportation and the Environment Light-duty vehicle combined Corporate Average Fuel Economy Standards (CAFE) in three cases, 2005-2035 2 0 20 40 60 80 2005 2010 2015 2020 2025 2030 2035 miles per gallon Source: EIA, Annual Energy Outlook 2011 CAFE6 CAFE3 Reference John Maples, April 26, 2011 Light-duty vehicle delivered energy consumption and total transportation carbon dioxide emissions, 2005-2035 3 0 5 10 15 20 2005 2010 2015 2020 2025 2030 2035 Reference CAFE3 CAFE6 quadrillion Btu 0 500 1000 1500 2000 2500 2005 2010 2015 2020 2025 2030 2035 million metric tons carbon dioxide equivalent Source: EIA, Annual Energy Outlook 2011 John Maples, April 26, 2011 Distribution of new light-duty vehicle sales by price, 2010 and 2025 (2009$) 4 Source: EIA, Annual Energy Outlook 2011

405

Enterprise Zone Sales Tax Exemption (Kansas)  

Broader source: Energy.gov [DOE]

The Enterprise Zone Sales Tax Exemption offers businesses located in such economic development zones a 100 percent sales tax exemption on the purchase of labor and materials to construct or remodel...

406

Vehicle Technologies Office: 2006 Archive  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

6 Archive 6 Archive #449 Biodiesel to Conventional Diesel: An Emissions Comparison December 25, 2006 #448 Fuel Purchasing Habits December 18, 2006 #447 World Ethanol Production December 11, 2006 #446 More Likely to Buy a Hybrid or Other More Fuel Efficient Vehicle? December 4, 2006 #445 U.S. Population Growth and Light Vehicle Sales November 27, 2006 #444 Opinions on Plug-In Hybrid Vehicles November 20, 2006 #443 Motor Vehicle Trade between the U.S. and China November 13, 2006 #442 Automotive Parts Trade between the U.S. and China November 6, 2006 #441 Knowledge about E85 October 30, 2006 #440 Public Attitude on Hybrids 2005 October 23, 2006 Due to system upgrades, the Fact of the Week was not posted for the weeks of September 4 through October 16, 2006.

407

Consumer Vehicle Choice Model Documentation  

SciTech Connect (OSTI)

In response to the Fuel Economy and Greenhouse Gas (GHG) emissions standards, automobile manufacturers will need to adopt new technologies to improve the fuel economy of their vehicles and to reduce the overall GHG emissions of their fleets. The U.S. Environmental Protection Agency (EPA) has developed the Optimization Model for reducing GHGs from Automobiles (OMEGA) to estimate the costs and benefits of meeting GHG emission standards through different technology packages. However, the model does not simulate the impact that increased technology costs will have on vehicle sales or on consumer surplus. As the model documentation states, “While OMEGA incorporates functions which generally minimize the cost of meeting a specified carbon dioxide (CO2) target, it is not an economic simulation model which adjusts vehicle sales in response to the cost of the technology added to each vehicle.” Changes in the mix of vehicles sold, caused by the costs and benefits of added fuel economy technologies, could make it easier or more difficult for manufacturers to meet fuel economy and emissions standards, and impacts on consumer surplus could raise the costs or augment the benefits of the standards. Because the OMEGA model does not presently estimate such impacts, the EPA is investigating the feasibility of developing an adjunct to the OMEGA model to make such estimates. This project is an effort to develop and test a candidate model. The project statement of work spells out the key functional requirements for the new model.

Liu, Changzheng [ORNL] [ORNL; Greene, David L [ORNL] [ORNL

2012-08-01T23:59:59.000Z

408

Alternative Fuels Data Center: Low Emission Vehicle Standards  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Low Emission Vehicle Low Emission Vehicle Standards to someone by E-mail Share Alternative Fuels Data Center: Low Emission Vehicle Standards on Facebook Tweet about Alternative Fuels Data Center: Low Emission Vehicle Standards on Twitter Bookmark Alternative Fuels Data Center: Low Emission Vehicle Standards on Google Bookmark Alternative Fuels Data Center: Low Emission Vehicle Standards on Delicious Rank Alternative Fuels Data Center: Low Emission Vehicle Standards on Digg Find More places to share Alternative Fuels Data Center: Low Emission Vehicle Standards on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Low Emission Vehicle Standards New vehicles sold or offered for sale in Vermont must meet California emissions and compliance requirements in Title 13 of the California Code of

409

Blog Feed: Vehicles | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

July 25, 2013 July 25, 2013 Data compiled by Yan (Joann) Zhou at Argonne National Laboratory. (*) Sales from the second quarter of 2013 for Tesla Model S are based off of estimates provided by the Hybrid Market Dashboard. Data updated 9/25/2013. Visualizing Electric Vehicle Sales Our new interactive chart lets you explore the continued growth of electric vehicle sales. July 24, 2013 By applying pressure to the generator, one is able to generate about six nanoamperes of current and 400 millivolts of potential -- roughly a quarter of the voltage of a AAA battery and enough to flash a number on the small LCD screen. | Photo courtesy of Seung-Wuk Lee's lab at Lawrence Berkeley National Laboratory.

410

GASOLINE VEHICLE EXHAUST PARTICLE SAMPLING STUDY  

SciTech Connect (OSTI)

The University of Minnesota collaborated with the Paul Scherrer Institute, the University of Wisconsin (UWI) and Ricardo, Inc to physically and chemically characterize the exhaust plume from recruited gasoline spark ignition (SI) vehicles. The project objectives were: (1) Measure representative particle size distributions from a set of on-road SI vehicles and compare these data to similar data collected on a small subset of light-duty gasoline vehicles tested on a chassis dynamometer with a dilution tunnel using the Unified Drive Cycle, at both room temperature (cold start) and 0 C (cold-cold start). (2) Compare data collected from SI vehicles to similar data collected from Diesel engines during the Coordinating Research Council E-43 project. (3) Characterize on-road aerosol during mixed midweek traffic and Sunday midday periods and determine fleet-specific emission rates. (4) Characterize bulk- and size-segregated chemical composition of the particulate matter (PM) emitted in the exhaust from the gasoline vehicles. Particle number concentrations and size distributions are strongly influenced by dilution and sampling conditions. Laboratory methods were evaluated to dilute SI exhaust in a way that would produce size distributions that were similar to those measured during laboratory experiments. Size fractionated samples were collected for chemical analysis using a nano-microorifice uniform deposit impactor (nano-MOUDI). In addition, bulk samples were collected and analyzed. A mixture of low, mid and high mileage vehicles were recruited for testing during the study. Under steady highway cruise conditions a significant particle signature above background was not measured, but during hard accelerations number size distributions for the test fleet were similar to modern heavy-duty Diesel vehicles. Number emissions were much higher at high speed and during cold-cold starts. Fuel specific number emissions range from 1012 to 3 x 1016 particles/kg fuel. A simple relationship between number and mass emissions was not observed. Data were collected on-road to compare weekday with weekend air quality around the Twin Cities area. This portion of the study resulted in the development of a method to apportion the Diesel and SI contribution to on-road aerosol.

Kittelson, D; Watts, W; Johnson, J; Zarling, D Schauer,J Kasper, K; Baltensperger, U; Burtscher, H

2003-08-24T23:59:59.000Z

411

Propane vehicles : status, challenges, and opportunities.  

SciTech Connect (OSTI)

Propane as an auto fuel has a high octane value and has key properties required for spark-ignited internal combustion engines. To operate a vehicle on propane as either a dedicated fuel or bi-fuel (i.e., switching between gasoline and propane) vehicle, only a few modifications must be made to the engine. Until recently propane vehicles have commonly used a vapor pressure system that was somewhat similar to a carburetion system, wherein the propane would be vaporized and mixed with combustion air in the intake plenum of the engine. This leads to lower efficiency as more air, rather than fuel, is inducted into the cylinder for combustion (Myers 2009). A newer liquid injection system has become available that injects propane directly into the cylinder, resulting in no mixing penalty because air is not diluted with the gaseous fuel in the intake manifold. Use of a direct propane injection system will improve engine efficiency (Gupta 2009). Other systems include the sequential multi-port fuel injection system and a bi-fuel 'hybrid' sequential propane injection system. Carbureted systems remain in use but mostly for non-road applications. In the United States a closed-loop system is used in after-market conversions. This system incorporates an electronic sensor that provides constant feedback to the fuel controller to allow it to measure precisely the proper air/fuel ratio. A complete conversion system includes a fuel controller, pressure regulator valves, fuel injectors, electronics, fuel tank, and software. A slight power loss is expected in conversion to a vapor pressure system, but power can still be optimized with vehicle modifications of such items as the air/fuel mixture and compression ratios. Cold start issues are eliminated for vapor pressure systems since the air/fuel mixture is gaseous. In light-duty propane vehicles, the fuel tank is typically mounted in the trunk; for medium- and heavy-duty vans and trucks, the tank is located under the body of the vehicle. Propane tanks add weight to a vehicle and can slightly increase the consumption of fuel. On a gallon-to-gallon basis, the energy content of propane is 73% that of gasoline, thus requiring more propane fuel to travel an equivalent distance, even in an optimized engine (EERE 2009b).

Rood Werpy, M.; Burnham, A.; Bertram, K.; Energy Systems

2010-06-17T23:59:59.000Z

412

Fuel Economy Standards, New Vehicle Sales, and Average Fuel Efficiency  

Science Journals Connector (OSTI)

The average fuel efficiency of new automobiles sold in the ... trend stagnated in 1981, however, and average fuel efficiency has actually fallen since 1987. Corporate Average Fuel Economy (CAFE) standards—the maj...

Steven G. Thorpe

1997-05-01T23:59:59.000Z

413

Fuel oil and kerosene sales 1997  

SciTech Connect (OSTI)

The Fuel Oil and Kerosene Sales 1997 report provides information, illustrations and state-level statistical data on end-use sales of kerosene; No. 1, No. 2, and No. 4 distillate fuel oil; and residual fuel oil. State-level kerosene sales include volumes for residential, commercial, industrial, farm, and all other uses. State-level distillate sales include volumes for residential, commercial, industrial, oil company, railroad, vessel bunkering, military, electric utility, farm, on-highway, off highway construction, and other uses. State-level residual fuel sales include volumes for commercial, industrial, oil company, vessel bunkering, military, electric utility, and other uses. 24 tabs.

NONE

1998-08-01T23:59:59.000Z

414

Vehicle Technologies Office: Maximizing Alternative Fuel Vehicle...  

Energy Savers [EERE]

Maximizing Alternative Fuel Vehicle Efficiency Vehicle Technologies Office: Maximizing Alternative Fuel Vehicle Efficiency Besides their energy security and environmental benefits,...

415

Smith Electric Vehicles: Advanced Vehicle Electrification + Transporta...  

Energy Savers [EERE]

Confidential, 4222013 2013 DOE VEHICLE TECHNOLOGIES PROGRAM REVIEW PRESENTATION Smith Electric Vehicles: Advanced Vehicle Electrification + Transportation Sector Electrification...

416

,"Aviation Gasoline Sales to End Users Refiner Sales Volumes"  

U.S. Energy Information Administration (EIA) Indexed Site

Aviation Gasoline Sales to End Users Refiner Sales Volumes" Aviation Gasoline Sales to End Users Refiner Sales Volumes" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Aviation Gasoline Sales to End Users Refiner Sales Volumes",60,"Monthly","9/2013","1/15/1983" ,"Release Date:","12/2/2013" ,"Next Release Date:","1/2/2014" ,"Excel File Name:","pet_cons_refoth_a_eppv_vtr_mgalpd_m.xls" ,"Available from Web Page:","http://www.eia.gov/dnav/pet/pet_cons_refoth_a_eppv_vtr_mgalpd_m.htm" ,"Source:","Energy Information Administration"

417

Energy use and CO2 emissions reduction potential in passenger car fleet using zero emission vehicles and lightweight materials  

Science Journals Connector (OSTI)

Introduction of \\{ZEVs\\} (zero emission vehicles) and lightweight materials in a conventional steel-intensive internal combustion engine vehicle fleet will affect energy consumption and automotive material requirements. We developed a bottom-up dynamic accounting model of the light-duty vehicle fleet, including vehicle production and disposal, with detailed coverage of powertrains and automotive materials. The model was used to study the potential for energy consumption and CO2 emissions reduction of \\{ZEVs\\} and lightweight materials in the Colombian passenger car fleet from 2010 to 2050. Results indicate that passenger car stock in Colombia is increased by 6.6 times between 2010 and 2050. In the base scenario energy consumption and CO2 emissions are increased by 5.5 and 4.9 times respectively. Lightweighting and battery electric vehicles offer the largest tank-to-wheel energy consumption and CO2 emissions reductions, 48 and 61% respectively, compared to 2050 baseline values. Slow stock turnover and fleet size increment prevent larger reductions. Switching to electric powertrains has larger impact than lightweighting on energy consumption and CO2 emissions. Iron and steel remain major materials in new cars. Aluminum consumption increases in all scenarios; while carbon fiber reinforced polymer consumption only increases due to fuel cell hybrid electric vehicle or lightweight vehicle use.

Juan C. González Palencia; Takaaki Furubayashi; Toshihiko Nakata

2012-01-01T23:59:59.000Z

418

Vehicle Technologies Office: Hybrid and Vehicle Systems  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Hybrid and Vehicle Hybrid and Vehicle Systems to someone by E-mail Share Vehicle Technologies Office: Hybrid and Vehicle Systems on Facebook Tweet about Vehicle Technologies Office: Hybrid and Vehicle Systems on Twitter Bookmark Vehicle Technologies Office: Hybrid and Vehicle Systems on Google Bookmark Vehicle Technologies Office: Hybrid and Vehicle Systems on Delicious Rank Vehicle Technologies Office: Hybrid and Vehicle Systems on Digg Find More places to share Vehicle Technologies Office: Hybrid and Vehicle Systems on AddThis.com... Just the Basics Hybrid & Vehicle Systems Modeling & Simulation Integration & Validation Benchmarking Parasitic Loss Reduction Propulsion Systems Advanced Vehicle Evaluations Energy Storage Advanced Power Electronics & Electrical Machines

419

Vehicle Technologies Office: 2009 Advanced Vehicle Technology...  

Office of Environmental Management (EM)

Vehicle Technologies Office: 2009 Advanced Vehicle Technology Analysis and Evaluation Activities and Heavy Vehicle Systems Optimization Program Annual Progress Report Vehicle...

420

U.S. Energy Information Administration (EIA) - Source  

Gasoline and Diesel Fuel Update (EIA)

Transportation Transportation exec summary Executive Summary With more efficient light-duty vehicles, motor gasoline consumption.... Read full section Natural gas consumption grows in industrial and electric power sectors.... Read full section Mkt trends Market Trends Energy-intensive industries show strong early growth in output.... Read full section Industrial and commercial sectors lead U.S. growth in primary enerby use.... Read full section Growth in transportation energy consumption flat across projection.... Read full section CAFE and greenhouse gas emissions standards boost light-duty vehicle fuel economy.... Read full section Travel demand for personal vehicles continues to grow, but more slowly than in the past.... Read full section Sales of alternative fuel, fuel flexible, and hybrid vehicles sales

Note: This page contains sample records for the topic "light-duty vehicle sales" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

U.S. Energy Information Administration (EIA) - Source  

Gasoline and Diesel Fuel Update (EIA)

Transportation Transportation exec summary Executive Summary With more efficient light-duty vehicles, motor gasoline consumption.... Read full section Natural gas consumption grows in industrial and electric power sectors.... Read full section Mkt trends Market Trends Energy-intensive industries show strong early growth in output.... Read full section Industrial and commercial sectors lead U.S. growth in primary enerby use.... Read full section Growth in transportation energy consumption flat across projection.... Read full section CAFE and greenhouse gas emissions standards boost light-duty vehicle fuel economy.... Read full section Travel demand for personal vehicles continues to grow, but more slowly than in the past.... Read full section Sales of alternative fuel, fuel flexible, and hybrid vehicles sales

422

Development of a dedicated ethanol ultra-low emission vehicle (ULEV): Final report  

SciTech Connect (OSTI)

The objective of this project was to develop a commercially competitive vehicle powered by ethanol (or an ethanol blend) that can meet California`s ultra-low emission vehicle (ULEV) standards and equivalent corporate average fuel economy (CAFE) energy efficiency for a light-duty passenger car application. The definition of commercially competitive is independent of fuel cost, but does include technical requirements for competitive power, performance, refueling times, vehicle range, driveability, fuel handling safety, and overall emissions performance. This report summarizes the fourth and final phase of this project, and also the overall project. The focus of this report is the technology used to develop a dedicated ethanol-fueled ULEV, and the emissions results documenting ULV performance. Some of the details for the control system and hardware changes are presented in two appendices that are SAE papers. The demonstrator vehicle has a number of advanced technological features, but it is currently configured with standard original equipment manufacturer (OEM) under-engine catalysts. Close-coupled catalysts would improve emissions results further, but no close-coupled catalysts were available for this testing. Recently, close-coupled catalysts were obtained, but installation and testing will be performed in the future. This report also briefly summarizes work in several other related areas that supported the demonstrator vehicle work.

Dodge, L.; Bourn, G.; Callahan, T.; Grogan, J.; Leone, D.; Naegeli, D.; Shouse, K.; Thring, R.; Whitney, K. [Southwest Research Inst., San Antonio, TX (United States)

1998-09-01T23:59:59.000Z

423

Development of a dedicated ethanol ultra-low emission vehicle (ULEV) system design  

SciTech Connect (OSTI)

The objective of this 3.5 year project is to develop a commercially competitive vehicle powered by ethanol (or ethanol blend) that can meet California`s ultra-low emission vehicle (ULEV) standards and equivalent corporate average fuel economy (CAFE) energy efficiency for a light-duty passenger car application. The definition of commercially competitive is independent of fuel cost, but does include technical requirements for competitive power, performance, refueling times, vehicle range, driveability, fuel handling safety, and overall emissions performance. This report summarizes a system design study completed after six months of effort on this project. The design study resulted in recommendations for ethanol-fuel blends that shall be tested for engine low-temperature cold-start performance and other criteria. The study also describes three changes to the engine, and two other changes to the vehicle to improve low-temperature starting, efficiency, and emissions. The three engine changes are to increase the compression ratio, to replace the standard fuel injectors with fine spray injectors, and to replace the powertrain controller. The two other vehicle changes involve the fuel tank and the aftertreatment system. The fuel tank will likely need to be replaced to reduce evaporative emissions. In addition to changes in the main catalyst, supplemental aftertreatment systems will be analyzed to reduce emissions before the main catalyst reaches operating temperature.

Bourn, G.; Callahan, T.; Dodge, L.; Mulik, J.; Naegeli, D.; Shouse, K.; Smith, L.; Whitney, K. [Southwest Research Inst., San Antonio, TX (United States)

1995-02-01T23:59:59.000Z

424

Fact #790: July 29, 2013 States Beginning to Tax Electric Vehicles for Road Use  

Broader source: Energy.gov [DOE]

The maintenance of our highways has traditionally been funded from a combination or Federal and state taxes collected at the pump from the sale of motor fuels. Because electric vehicles (EVs) do...

425

Fact #678: June 6, 2011 Manufacturer Market Share of Hybrid Vehicles...  

Energy Savers [EERE]

Information Manufacturer Market Share of Hybrid Vehicles, 2010 Manufacturer Sales Market Share Toyota 189,187 69.0% Ford 35,496 12.9% Honda 33,547 12.2% GM 6,759 2.5%...

426

Fact #657: January 10, 2011 Record Increase for New Light Vehicle Fuel Economy  

Broader source: Energy.gov [DOE]

The sales-weighted fuel economy average of all light vehicles sold in model year (MY) 2009 was 1.4 miles per gallon (mpg) higher than MY2008. This is the largest annual increase in fuel economy...

427

Fact #790: July 29, 2013 States Beginning to Tax Electric Vehicles...  

Broader source: Energy.gov (indexed) [DOE]

the pump from the sale of motor fuels. Because electric vehicles (EVs) do not refuel at pumps that collect state and Federal highway taxes, they do not contribute to the upkeep of...

428

Fuel oil and kerosene sales 1996  

SciTech Connect (OSTI)

The Fuel Oil and Kerosene Sales 1996 report provides information, illustrations and State-level statistical data on end-use sales of kerosene; No. 1, No. 2, and No. 4 distillate fuel oil; and residual fuel oil. State-level kerosene sales include volumes for residential, commercial, industrial, farm, and all other uses. State-level distillate sales include volumes for residential, commercial, industrial, oil company, railroad, vessel bunkering, military, electric utility, farm, on-highway, off highway construction, and other uses. State-level residual fuel sales include volumes for commercial, industrial, oil company, vessel bunkering, military, electric utility, and other uses. The Petroleum Marketing Division, Office of Oil and Gas, Energy Information Administration ensures the accuracy, quality, and confidentiality of the published data in the Fuel Oil and Kerosene Sales 1996. 24 tabs.

NONE

1997-08-01T23:59:59.000Z

429

EV Sales Skyrocketing. eGallon Holds Steady. | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

EV Sales Skyrocketing. eGallon Holds Steady. EV Sales Skyrocketing. eGallon Holds Steady. EV Sales Skyrocketing. eGallon Holds Steady. July 19, 2013 - 8:45am Addthis eGallon: Compare the costs of driving with electricity What is eGallon? It is the cost of fueling a vehicle with electricity compared to a similar vehicle that runs on gasoline. Did you know? On average, it costs about 3 times less to drive an electric vehicle. Find out how much it costs to fuel an electric vehicle in your state regular gasoline 0 6 4 1 0 3 · 0 2 0 4 8 6 0 8 9 2 3 5 0 electric eGallon 0 4 1 7 2 3 3 · 0 4 2 0 4 6 0 8 5 9 1 5 0 Data and Methodology The eGallon price is calculated using the most recently available state by state residential electricity prices. The state gasoline price above is either the statewide average retail price or a multi-state regional average

430

RECORD OF CATEGORICAL EXCLUSION DETERMINATION Title: Price Competitive Sale of Strategic Petroleum Reserve Petroleum, Standard Sales  

Broader source: Energy.gov (indexed) [DOE]

Title: Price Competitive Sale of Strategic Petroleum Reserve Petroleum, Standard Sales Title: Price Competitive Sale of Strategic Petroleum Reserve Petroleum, Standard Sales Provisions, Revised Appendix A to Final Sales Rule Description: Publication in the Federal Register of Standard Sales Provisions containing or describing contract clauses, terms and conditions of sale, and performance and financial and responsibility measures which may be used for particular sales of Strategic Petroleum Reserve Petroleum Regulatory Requirements: NEPA Implementing Procedures (10 CFR 1021) 10 CFR 1021.410 (Application of Categorical Exclusions) (a) The actions listed in appendices A and B to this subpart D are classes of actions that DOE has determined do not individually or cumulatively have a significant effect on the human environment (categorical exclusions).

431

Sales  

Broader source: Energy.gov (indexed) [DOE]

Distributed Energy Storage Demonstration Distributed Energy Storage Demonstration for National Grid and Sacramento Municipal Utility District Presented to: ENERGY STORAGE SYSTEMS PROGRAM Update Conference - 2010 Presented by: Bill O'Donnell Premium Power Corporation 978-664-5000 November 3, 2010 Funded in part by the Energy Storage Systems Program of the U.S. Department Of Energy through National Energy Technology Laboratory 2 * Demonstrate competitively-priced, multi-megawatt, long-duration advanced batteries for utility grid applications. * Improve load management, including peak shaving and time shifting from low - to high - value periods * Develop and verify creative control algorithms to manage storage systems used in micro-grid applications and fleet operations * Validate the economic benefits of stored energy into multiple

432

EPIP - Marketing and Sales Study - March 2006  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Enterprise Process Improvement Program - Marketing and Sales study The Enterprise Process Improvement Program (EPIP) is a Bonneville Power Administration initiative to achieve one...

433

Annual Energy Outlook 2009 with Projections to 2030-Graphic Data  

Gasoline and Diesel Fuel Update (EIA)

Annual Energy Outlook 2009 with Projections to 2030 Annual Energy Outlook 2009 with Projections to 2030 Annual Energy Outlook 2009 with Projections to 2030 Graphic Data Figure 1. Total liquid fuels demand by sector Figure 1 Data Figure 2. Total natural gas supply by source Figure 2 Data Figure 3. New light-duty vehicle sales shares by type Figure 3 Data Figure 4. Proposed CAFE standards for passenger cars by vehicle footprint, model years 2011-2015 Figure 4 Data Figure 5. Proposed CAFE standards for light trucks by vehicle footprint, model years 2011-2015 Figure 5 Data Figure 6. Average fuel economy of new light-duty vehicles in the AEO2008 and AEO2009 projections, 1995-2030 Figure 6 Data Figure 7. Value of fuel saved by a PHEV compared with a conventional ICE vehicle over the life of the vehicles, by gasoline price and PHEV all-electric driving range

434

Vehicle Technologies Office: Vehicle Technologies Office Recognizes  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Vehicle Technologies Vehicle Technologies Office Recognizes Outstanding Researchers to someone by E-mail Share Vehicle Technologies Office: Vehicle Technologies Office Recognizes Outstanding Researchers on Facebook Tweet about Vehicle Technologies Office: Vehicle Technologies Office Recognizes Outstanding Researchers on Twitter Bookmark Vehicle Technologies Office: Vehicle Technologies Office Recognizes Outstanding Researchers on Google Bookmark Vehicle Technologies Office: Vehicle Technologies Office Recognizes Outstanding Researchers on Delicious Rank Vehicle Technologies Office: Vehicle Technologies Office Recognizes Outstanding Researchers on Digg Find More places to share Vehicle Technologies Office: Vehicle Technologies Office Recognizes Outstanding Researchers on AddThis.com...

435

Fuel oil and kerosene sales 1994  

SciTech Connect (OSTI)

This publication contains the 1994 survey results of the ``Annual Fuel Oil and Kerosene Sales Report`` (Form EIA-821). This is the sixth year that the survey data have appeared in a separate publication. Prior to the 1989 report, the statistics appeared in the Petroleum Marketing Annual (PMA)for reference year 1988 and the Petroleum Marketing Monthly (PMM) for reference years 1984 through 1987. The 1994 edition marks the 11th annual presentation of the results of the ongoing ``Annual Fuel Oil and Kerosene Sales Report`` survey. Distillate and residual fuel oil sales continued to move in opposite directions during 1994. Distillate sales rose for the third year in a row, due to a growing economy. Residual fuel oil sales, on the other hand, declined for the sixth year in a row, due to competitive natural gas prices, and a warmer heating season than in 1993. Distillate fuel oil sales increased 4.4 percent while residual fuel oil sales declined 1.6 percent. Kerosene sales decreased 1.4 percent in 1994.

NONE

1995-09-27T23:59:59.000Z

436

Export.gov - International Sales & Marketing  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

International Sales - Marketing International Sales - Marketing Print | E-mail Page International Sales - Marketing Int'l Sales/Mktg Home Information and Counseling Strategy and Planning Market Research and Due Diligence Advertising and Promotional Events Market Entry and Expansion Advocacy and Dispute Resolution Related Topics Learn to Benefit from FTAs Basics: Marketing Plan Export Trading Company Affairs International Sales & Marketing "Your international business partner" Leverage the knowledge and influence of the U.S. government and our vast global network of international business experts, contacts and partners. With offices in more than 100 U.S. cities and 80 countries across the globe, the U.S. government offers U.S. companies exporting information, advice and cost-effective end-to-end international business solutions.

437

Prices by Sales Type, PAD District, and Selected States  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

District, and Selected States b (Cents per Gallon Excluding Taxes) - Continued Geographic Area Month Sales to End Users Sales for Resale Residential Consumers Commercial...

438

Central Illinois Pub Serv Co (Illinois) EIA Revenue and Sales...  

Open Energy Info (EERE)

Commercial Sales (MWh) 128656 Commercial Consumers 48190 Industrial Revenue (Thousand ) 871 Industrial Sales (MWh) 14240 Industrial Consumers 485 Other Revenue (Thousand ) 70...

439

Better Buildings: Workforce, Spotlight on Maine: Contractor Sales...  

Broader source: Energy.gov (indexed) [DOE]

Workforce, Spotlight on Maine: Contractor Sales Training Boosts Energy Upgrade Conversions Better Buildings: Workforce, Spotlight on Maine: Contractor Sales Training Boosts Energy...

440

Comparing the Performance of SunDiesel and Conventional Diesel...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

the Performance of SunDiesel and Conventional Diesel in a Light-Duty Vehicle and Engines Comparing the Performance of SunDiesel and Conventional Diesel in a Light-Duty Vehicle and...

Note: This page contains sample records for the topic "light-duty vehicle sales" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Electric Vehicles  

ScienceCinema (OSTI)

Burak Ozpineci sees a future where electric vehicles charge while we drive them down the road, thanks in part to research under way at ORNL.

Ozpineci, Burak

2014-07-23T23:59:59.000Z

442

Electric Vehicles  

SciTech Connect (OSTI)

Burak Ozpineci sees a future where electric vehicles charge while we drive them down the road, thanks in part to research under way at ORNL.

Ozpineci, Burak

2014-05-02T23:59:59.000Z

443

Double Planetary Gear (PG) power-split hybrid powertrains have been used in production vehicles from Toyota  

E-Print Network [OSTI]

the challenging fuel economy standards set by the EU and US governments [1]. Hybrid and electric car sales.3% of the market, a significant increase from 2.2% market share in 2011[2]. 90% of the strong hybrid vehicle sales machines [4]. It is also possible to have parallel modes, series modes, pure EV modes and fixed-gear modes

Peng, Huei

444

Cost effectiveness of converting to alternative motor vehicle fuels. A technical assistance study for the City of Longview  

SciTech Connect (OSTI)

The City of Longview can obtain significant fuel savings benefits by converting a portion of their vehicle fleet to operate on either compressed natural gas (CNG) or liquid petroleum gas (LPG) fuels. The conversion of 41 vehicles including police units, sedans, pickups, and light duty trucks to CNG use would offset approximately 47% of the city's 1982 gasoline consumption. The CNG conversion capital outlay of $115,000 would be recovered through fuel cost reductions. The Cascade Natural Gas Corporation sells natural gas under an interruptible tariff for $0.505 per therm, equivalent to slightly less than one gallon of gasoline. The city currently purchases unleaded gasoline at $1.115 per gallon. A payback analysis indicates that 39.6 months are required for the CNG fuel savings benefits to offset the initial or first costs of the conversion. The conversion of fleet vehicles to liquid petroleum gas (LPG) or propane produces comparable savings in vehicle operating costs. The conversion of 59 vehicles including police units, pickup and one ton trucks, street sweepers, and five cubic yard dump trucks would cost approximately $59,900. The annual purchase of 107,000 gallons of propane would offset the consumption of 96,300 gallons of gasoline, or approximately 67% of the city's 1982 usage. Propane is currently retailing for $0.68 to $0.74 per gallon. A payback analysis indicates that 27.7 months are required for the fuel savings benefits to offset the initial LPG conversion costs.

McCoy, G.A.

1983-11-18T23:59:59.000Z

445

Compare Fuel Cell Vehicles Side-by-Side  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Recently Tested Vehicles Recently Tested Vehicles Fuel cell vehicles (FCVs) are not yet for sale in the United States. However, manufacturers are producing small fleets of FCVs for evaluation and have estimated the fuel economy of some vehicles using EPA test procedures. Fuel economy estimates and other information for recently tested vehicles are provided below. 2012 Honda FCX Clarity Honda FCX Clarity 2012 Mercedes-Benz F-Cell Mercedes F-Cell Fuel Economy and Driving Range Fuel Economy (miles/kg) Note: One kg of hydrogen is roughly equivalent to one gallon of gasoline. Hydrogen 60 Combined 60 City 60 Hwy Hydrogen 52 Combined 52 City 53 Hwy Range (miles) 240 190 Vehicle Characteristics Vehicle Class Midsize Car Small Station Wagon Motor DC Brushless 100kW DC Permanent Magnet (brushless) Type of Fuel Cell Proton Exchange Membrane Proton Exchange Membrane

446

Vehicle Technologies Office: 2008 Advanced Vehicle Technology...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

8 Advanced Vehicle Technology Analysis and Evaluation Activities and Heavy Vehicle Systems Optimization Program Annual Progress Report Vehicle Technologies Office: 2008 Advanced...

447

Richmond Electric Vehicle Initiative Electric Vehicle Readiness...  

Office of Environmental Management (EM)

MO) Vehicles Home About Vehicle Technologies Office Plug-in Electric Vehicles & Batteries Fuel Efficiency & Emissions Alternative Fuels Modeling, Testing, Data & Results Education...

448

Fuel oil and kerosene sales 1995  

SciTech Connect (OSTI)

This publication contains the 1995 survey results of the ``Annual Fuel Oil and Kerosene Sales Report`` (Form EIA-821). This is the seventh year that the survey data have appeared in a separate publication. Except for the kerosene and on-highway diesel information, data presented in Tables 1 through 12 (Sales of Fuel Oil and Kerosene) present results of the EIA-821 survey. Tables 13 through 24 (Adjusted Sales of Fuel Oil and Kerosene) include volumes that are based on the EIA-821 survey but have been adjusted to equal the product supplied volumes published in the Petroleum Supply Annual (PSA). 24 tabs.

NONE

1996-09-01T23:59:59.000Z

449

Vehicle Technologies Office: 2008 Archive  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

8 Archive 8 Archive #551 Truck Stop Electrification Sites December 29, 2008 #550 Clean Cities Coalitions December 22, 2008 #549 Biofuels Corridor extends from the Great Lakes to the Gulf of Mexico December 15, 2008 #548 Number of Gasoline Stations Continues to Decline in 2007 December 8, 2008 #547 Research and Development (R&D) Spending in the Automotive Industry December 1, 2008 #546 Automotive Sales Down in all Major World Markets for the Third Quarter of 2008 November 24, 2008 #545 Historical Alternative Fuel Prices Compared to Gasoline and Diesel November 17, 2008 #544 New Vehicle Leasing, 1997-2007 November 10, 2008 #543 Vehicle Trips to Work November 3, 2008 #542 Transit Trips to Increase in 2008 October 27, 2008 #541 New Car Prices: The Past 100 Years October 20, 2008

450

California's Energy Future - The View to 2050  

E-Print Network [OSTI]

Lawrence Livermore National Laboratory LDV Light-duty vehicles LED light emitting diode LWR Light water reactor NIF

2011-01-01T23:59:59.000Z

451

California’s Energy Future: The View to 2050 - Summary Report  

E-Print Network [OSTI]

Lawrence Livermore National Laboratory LDV Light-duty vehicles LED light emitting diode LWR Light water reactor NIF

Yang, Christopher

2011-01-01T23:59:59.000Z

452

International Hydrogen Infrastructure Challenges Workshop Summary...  

Broader source: Energy.gov (indexed) [DOE]

More Documents & Publications Introduction to SAE Hydrogen Fueling Standardization Light Duty Fuel Cell Electric Vehicle Hydrogen Fueling Protocol Fuel Cell...

453

,"Conventional Gasoline Sales to End Users, Total Refiner Sales Volumes"  

U.S. Energy Information Administration (EIA) Indexed Site

Conventional Gasoline Sales to End Users, Total Refiner Sales Volumes" Conventional Gasoline Sales to End Users, Total Refiner Sales Volumes" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Conventional Gasoline Sales to End Users, Total Refiner Sales Volumes",60,"Monthly","9/2013","1/15/1994" ,"Release Date:","12/2/2013" ,"Next Release Date:","1/2/2014" ,"Excel File Name:","pet_cons_refmg_a_epm0u_vtr_mgalpd_m.xls" ,"Available from Web Page:","http://www.eia.gov/dnav/pet/pet_cons_refmg_a_epm0u_vtr_mgalpd_m.htm" ,"Source:","Energy Information Administration"

454

,"No. 2 Distillate Sales to End Users Refiner Sales Volumes"  

U.S. Energy Information Administration (EIA) Indexed Site

Sales to End Users Refiner Sales Volumes" Sales to End Users Refiner Sales Volumes" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","No. 2 Distillate Sales to End Users Refiner Sales Volumes",60,"Monthly","9/2013","1/15/1983" ,"Release Date:","12/2/2013" ,"Next Release Date:","1/2/2014" ,"Excel File Name:","pet_cons_refoth_a_epd2_vtr_mgalpd_m.xls" ,"Available from Web Page:","http://www.eia.gov/dnav/pet/pet_cons_refoth_a_epd2_vtr_mgalpd_m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.gov"

455

,"Residual Fuel Oil Sales to End Users Refiner Sales Volumes"  

U.S. Energy Information Administration (EIA) Indexed Site

Sales to End Users Refiner Sales Volumes" Sales to End Users Refiner Sales Volumes" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Residual Fuel Oil Sales to End Users Refiner Sales Volumes",9,"Monthly","9/2013","1/15/1983" ,"Release Date:","12/2/2013" ,"Next Release Date:","1/2/2014" ,"Excel File Name:","pet_cons_refres_a_eppr_vtr_mgalpd_m.xls" ,"Available from Web Page:","http://www.eia.gov/dnav/pet/pet_cons_refres_a_eppr_vtr_mgalpd_m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.gov"

456

,"Kerosene-Type Jet Fuel Sales to End Users Refiner Sales Volumes"  

U.S. Energy Information Administration (EIA) Indexed Site

Kerosene-Type Jet Fuel Sales to End Users Refiner Sales Volumes" Kerosene-Type Jet Fuel Sales to End Users Refiner Sales Volumes" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Kerosene-Type Jet Fuel Sales to End Users Refiner Sales Volumes",60,"Monthly","9/2013","1/15/1983" ,"Release Date:","12/2/2013" ,"Next Release Date:","1/2/2014" ,"Excel File Name:","pet_cons_refoth_a_epjk_vtr_mgalpd_m.xls" ,"Available from Web Page:","http://www.eia.gov/dnav/pet/pet_cons_refoth_a_epjk_vtr_mgalpd_m.htm" ,"Source:","Energy Information Administration"

457

,"No. 2 Diesel Fuel Sales to End Users Refiner Sales Volumes"  

U.S. Energy Information Administration (EIA) Indexed Site

Sales to End Users Refiner Sales Volumes" Sales to End Users Refiner Sales Volumes" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","No. 2 Diesel Fuel Sales to End Users Refiner Sales Volumes",60,"Monthly","9/2013","1/15/1994" ,"Release Date:","12/2/2013" ,"Next Release Date:","1/2/2014" ,"Excel File Name:","pet_cons_refoth_a_epd2d_vtr_mgalpd_m.xls" ,"Available from Web Page:","http://www.eia.gov/dnav/pet/pet_cons_refoth_a_epd2d_vtr_mgalpd_m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.gov"

458

Diesel Vehicles  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Vehicles Vehicles Audi A3 Diesel vehicles may be making a comeback. Diesel engines are more powerful and fuel-efficient than similar-sized gasoline engines (about 30-35% more fuel efficient). Plus, today's diesel vehicles are much improved over diesels of the past. Better Performance Improved fuel injection and electronic engine control technologies have Increased power Improved acceleration Increased efficiency New engine designs, along with noise- and vibration-damping technologies, have made them quieter and smoother. Cold-weather starting has been improved also. Cleaner Mercedes ML320 BlueTEC Today's diesels must meet the same emissions standards as gasoline vehicles. Advances in engine technologies, ultra-low sulfur diesel fuel, and improved exhaust treatment have made this possible.

459

A Vehicle Manufacturer's Perspective on Higher-Octane Fuels  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

of octane rating 4 EPA report 420-R-13-011 "Light-Duty Automotive Technology, Carbon Dioxide Emissions, and Fuel Economy Trends: 1975 Through 2013" Technology is evolving rapidly...

460

Fuel Oil and Kerosene Sales 2012  

U.S. Energy Information Administration (EIA) Indexed Site

Fuel Oil and Kerosene Sales Fuel Oil and Kerosene Sales 2012 November 2013 Independent Statistics & Analysis www.eia.gov U.S. Department of Energy Washington, DC 20585 U.S. Energy Information Administration | Fuel Oil and Kerosene Sales 2012 i This report was prepared by the U.S. Energy Information Administration (EIA), the statistical and analytical agency within the U.S. Department of Energy. By law, EIA's data, analyses, and forecasts are independent of approval by any other officer or employee of the United States Government. The views in this report therefore should not be construed as representing those of the U.S. Department of Energy or other federal agencies. U.S. Energy Information Administration | Fuel Oil and Kerosene Sales 2012 1

Note: This page contains sample records for the topic "light-duty vehicle sales" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Account Executive Account Manager of Sales  

E-Print Network [OSTI]

Aerospace Engineer Air Quality Engineer Analyst Analyst/Consultant Applications Engineer ASIC VerificationAccount Executive Account Manager of Sales Administrative Assistant Advanced Systems Engineer Engineer Assistant Administrator Assistant Analyst Assistant Development Engineer Assistant Director

462

Fuel oil and kerosene sales 1993  

SciTech Connect (OSTI)

This publication contains the 1993 survey results of the ``Annual Fuel Oil and Kerosene, Sales Report`` (Form EIA-821). This is the fifth year that the survey data have appeared in a separate publication. Prior to the 1989 report, the statistics appeared in the Petroleum Marketing Annual (PMA) for reference year 1988 and the Petroleum Marketing Monthly (PMM) for reference years 1984 through 1987. The 1993 edition marks the 10th annual presentation of the results of the ongoing ``Annual Fuel Oil and Kerosene Sales Report`` survey. Except for the kerosene and on-highway diesel information, data presented in Tables 1 through 12 (Sales of Fuel Oil and Kerosene) present results of the EIA-821 survey. Tables 13 through 24 (Adjusted Sales of Fuel Oil and Kerosene) include volumes that are based on the EIA-821 survey but have been adjusted to equal the products supplied volumes published in the Petroleum Supply Annual (PSA).

Not Available

1994-10-03T23:59:59.000Z

463

Biomass Sales and Use Tax Exemption  

Broader source: Energy.gov [DOE]

Georgia enacted legislation in April 2006 (HB 1018) creating an exemption for biomass materials from the state's sales and use taxes. The term "biomass material" is defined as "organic matter,...

464

Effect of use of low oxygenate gasoline blends upon emissions from California vehicles. Final report  

SciTech Connect (OSTI)

The objective of this project was to investigate the emissions effects of low-oxygenate gasoline blends on exhaust and evaporative emissions from a test fleet of California certified light-duty autos. Thirteen vehicles were procured and tested using four gasoline-oxygenate blends over three test cycles. The four gasoline blends were: Methyl Tertiary Butyl Ether (MTBE), Ethyl Tertiary Butyl Ether (ETBE), and 'match' and 'splash' blends of ethanol (in the 'match' blend the fuel Reid Vapor Pressure (RVP) is held constant, while in the 'splash' blend the fuel RVP is allowed to increase). Hydrocarbon and carbon monoxide exhaust emissions were generally reduced for the oxygenated blends, the exception being the 'splash-blended' ethanol gasoline which showed mixed results. Older technology vehicles (e.g., non-catalyst and oxidation catalyst) showed the greatest emissions reductions regardless of gasoline blend, while later technology vehicles showed the smallest reductions. Evaporative emissions and toxics were generally reduced for ETBE, while results for the other blends were mixed.

Born, G.L.; Lucas, S.V.; Scott, R.D.; DeFries, T.H.; Kishan, S.

1994-02-01T23:59:59.000Z

465

Property:Com sales (mwh) | Open Energy Information  

Open Energy Info (EERE)

sales (mwh) sales (mwh) Jump to: navigation, search This is a property of type Number. Sales to commercial consumers Pages using the property "Com sales (mwh)" Showing 25 pages using this property. (previous 25) (next 25) 4 4-County Electric Power Assn (Mississippi) EIA Revenue and Sales - April 2008 + 14,949 + 4-County Electric Power Assn (Mississippi) EIA Revenue and Sales - August 2008 + 26,367 + 4-County Electric Power Assn (Mississippi) EIA Revenue and Sales - December 2008 + 15,395 + 4-County Electric Power Assn (Mississippi) EIA Revenue and Sales - February 2008 + 16,880 + 4-County Electric Power Assn (Mississippi) EIA Revenue and Sales - February 2009 + 16,286 + 4-County Electric Power Assn (Mississippi) EIA Revenue and Sales - January 2008 + 17,519 +

466

Alternative Fuels Data Center: Ethanol Sales Tax Exemption  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Ethanol Sales Tax Ethanol Sales Tax Exemption to someone by E-mail Share Alternative Fuels Data Center: Ethanol Sales Tax Exemption on Facebook Tweet about Alternative Fuels Data Center: Ethanol Sales Tax Exemption on Twitter Bookmark Alternative Fuels Data Center: Ethanol Sales Tax Exemption on Google Bookmark Alternative Fuels Data Center: Ethanol Sales Tax Exemption on Delicious Rank Alternative Fuels Data Center: Ethanol Sales Tax Exemption on Digg Find More places to share Alternative Fuels Data Center: Ethanol Sales Tax Exemption on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Ethanol Sales Tax Exemption The portion of ethanol (ethyl alcohol) sold and blended with motor fuel is exempt from sales tax. (Reference Oklahoma Statutes 68-500.10-1 and

467

CRSP Transmission Sales Rate History  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Updated: 12/20/2013 Updated: 12/20/2013 CRSP Transmission Sales Rate History Rate Schedule Effective Dates Nonfirm (Mills/kWh) Firm ($/kW-yr.) Firm ($/kW-mo.) None Through 3/83 1.000 $ 6.60 $0.55 SP-FT1 4/83 - 6/86 N.A. $10.27 $0.86 SP-NFT1 4/83 - 6/86 2.000 N.A. SP-FT2 7/86 - 6/89 N.A. $15.94 $1.33 SP-NFT2 7/86 - 7/89 3.100 N.A. SP-FT3 7/89 - 9/92 N.A. $21.72 $1.81 SP-NFT3 8/89 - 3/98 Mutually Agreed N.A. SP-FT4 10/92 - 3/98 N.A. $22.68 $1.89 SP-NFT4 4/98 - 3/03 Mutually Agreed N.A. SP-PTP5 4/98 - 3/99 N.A. $26.70 $2.23 4/99 - 3/00 N.A. $26.19 $2.18 4/00 - 3/01 N.A. $26.14 $2.18 4/01 - 3/02 N.A. $25.63 $2.14 4/02 - 9/02 N.A. $21.33 $1.78 SP-NFT5 10/02 - 9/07 Mutually Agreed N.A. 10/07-9/08 Mutually Agreed N.A. SP-PTP6 10/02 - 9/03 N.A. $24.72 $2.06

468

Vehicle Technologies Office: Key Activities in Vehicles  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Key Activities in Key Activities in Vehicles to someone by E-mail Share Vehicle Technologies Office: Key Activities in Vehicles on Facebook Tweet about Vehicle Technologies Office: Key Activities in Vehicles on Twitter Bookmark Vehicle Technologies Office: Key Activities in Vehicles on Google Bookmark Vehicle Technologies Office: Key Activities in Vehicles on Delicious Rank Vehicle Technologies Office: Key Activities in Vehicles on Digg Find More places to share Vehicle Technologies Office: Key Activities in Vehicles on AddThis.com... Key Activities Mission, Vision, & Goals Plans, Implementation, & Results Organization & Contacts National Laboratories Budget Partnerships Key Activities in Vehicles We conduct work in four key areas to develop and deploy vehicle technologies that reduce the use of petroleum while maintaining or

469

Residual Fuel Oil Prices, Average - Sales to End Users  

U.S. Energy Information Administration (EIA) Indexed Site

Product/Sales Type: Residual Fuel, Average - Sales to End Users Residual Fuel, Average - Sales for Resale Sulfur Less Than or Equal to 1% - Sales to End Users Sulfur Less Than or Equal to 1% - Sales for Resale Sulfur Greater Than 1% - Sales to End Users Sulfur Greater Than 1% - Sales for Resale Period: Monthly Annual Product/Sales Type: Residual Fuel, Average - Sales to End Users Residual Fuel, Average - Sales for Resale Sulfur Less Than or Equal to 1% - Sales to End Users Sulfur Less Than or Equal to 1% - Sales for Resale Sulfur Greater Than 1% - Sales to End Users Sulfur Greater Than 1% - Sales for Resale Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Product/Sales Type Area Apr-13 May-13 Jun-13 Jul-13 Aug-13 Sep-13 View History U.S. - - - - - - 1983-2013 East Coast (PADD 1) - - - - - - 1983-2013 New England (PADD 1A) - - - - - - 1983-2013 Connecticut - - - - - - 1983-2013 Maine - - - - - - 1983-2013 Massachusetts - - - - - - 1983-2013

470

VEHICLE SPECIFICATIONS  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Page 1 of 5 Page 1 of 5 VEHICLE SPECIFICATIONS 1 Vehicle Features Base Vehicle: 2011 Nissan Leaf VIN: JN1AZ0CP5BT000356 Class: Mid-size Seatbelt Positions: 5 Type: EV Motor Type: Three-Phase, Four-Pole Permanent Magnet AC Synchronous Max. Power/Torque: 80 kW/280 Nm Max. Motor Speed: 10,390 rpm Cooling: Active - Liquid cooled Battery Manufacturer: Automotive Energy Supply Corporation Type: Lithium-ion - Laminate type Cathode/Anode Material: LiMn 2 O 4 with LiNiO 2 /Graphite Pack Location: Under center of vehicle Number of Cells: 192 Cell Configuration: 2 parallel, 96 series Nominal Cell Voltage: 3.8 V Nominal System Voltage: 364.8 V Rated Pack Capacity: 66.2 Ah Rated Pack Energy: 24 kWh Max. Cell Charge Voltage 2 : 4.2 V Min. Cell Discharge Voltage 2 : 2.5 V

471

The National Energy Modeling System: An Overview 1998 - Transportation  

Gasoline and Diesel Fuel Update (EIA)

TRANSPORTATION DEMAND MODULE TRANSPORTATION DEMAND MODULE blueball.gif (205 bytes) Fuel Economy Submodule blueball.gif (205 bytes) Regional Sales Submodule blueball.gif (205 bytes) Alternative-Fuel Vehicle Submodule blueball.gif (205 bytes) Light-Duty Vehicle Stock Submodule blueball.gif (205 bytes) Vehicle-Miles Traveled (VMT) Submodule blueball.gif (205 bytes) Light-Duty Vehicle Commercial Fleet Submodule blueball.gif (205 bytes) Commercial Light Truck Submodule blueball.gif (205 bytes) Air Travel Demand Submodule blueball.gif (205 bytes) Aircraft Fleet Efficiency Submodule blueball.gif (205 bytes) Freight Transport Submodule blueball.gif (205 bytes) Miscellaneous Energy Use Submodule The transportation demand module (TRAN) forecasts the consumption of transportation sector fuels by transportation mode, including the use of

472

Policy 10-2 SALES TAX 10.2.1 Payment of Sales Tax  

E-Print Network [OSTI]

Policy 10-2 SALES TAX 10.2.1 Payment of Sales Tax As a public institution of higher education institution of higher education of the State of Colorado, the School is required to collect and remit state be disclosed in the event's promotional/publicity materials. i.e. posters, flyers, emails b. Meals are subject

473

Low-CO2 Electricity and Hydrogen: A Help or Hindrance for Electric and Hydrogen Vehicles?  

Science Journals Connector (OSTI)

The increased availability of low-cost, low-CO2 electricity/hydrogen delays (but does not prevent) the use of electric/hydrogen-powered vehicles in a global energy model. ... E-bikes in China are the single largest adoption of alternative fuel vehicles in history, with more than 100 million e-bikes purchased in the past decade and vehicle ownership about 2× larger for e-bikes as for conventional cars; e-car sales, too, are ... ...

T. J. Wallington; M. Grahn; J. E. Anderson; S. A. Mueller; M. I. Williander; K. Lindgren

2010-02-26T23:59:59.000Z

474

Technology Analysis  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

* Heavy Vehicle Technologies * Heavy Vehicle Technologies * Multi-Path Transportation Futures * Idling Studies * EDrive Vehicle Monthly Sales Transportation Research and Analysis Computing Center Working With Argonne Contact TTRDC Technology Analysis truck Heavy vehicle techologies are one subject of study. Research Reducing Greenhouse Gas Emissions from U.S. Transportation Heavy Vehicle Technologies Multi-Path Transportation Futures Study Idling Studies Light Duty Electric Drive Vehicles Monthly Sales Updates Lithium-Ion Battery Recycling and Life Cycle Analysis Reports Propane Vehicles: Status, Challenges, and Opportunities (pdf; 525 kB) Natural Gas Vehicles: Status, Barriers, and Opportunities (pdf; 696 kB) Regulatory Influences That Will Likely Affect Success of Plug-in Hybrid and Battery Electric Vehicles (pdf; 1.02 MB)

475

Alternative Fuels Data Center: Renewable Fuel Sales Volume Goals  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Renewable Fuel Sales Renewable Fuel Sales Volume Goals to someone by E-mail Share Alternative Fuels Data Center: Renewable Fuel Sales Volume Goals on Facebook Tweet about Alternative Fuels Data Center: Renewable Fuel Sales Volume Goals on Twitter Bookmark Alternative Fuels Data Center: Renewable Fuel Sales Volume Goals on Google Bookmark Alternative Fuels Data Center: Renewable Fuel Sales Volume Goals on Delicious Rank Alternative Fuels Data Center: Renewable Fuel Sales Volume Goals on Digg Find More places to share Alternative Fuels Data Center: Renewable Fuel Sales Volume Goals on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Renewable Fuel Sales Volume Goals The Wisconsin Legislature sets goals for minimum annual renewable fuel

476

Property:Oth sales (mwh) | Open Energy Information  

Open Energy Info (EERE)

other consumers other consumers Pages using the property "Oth sales (mwh)" Showing 25 pages using this property. (previous 25) (next 25) C Central Illinois Pub Serv Co (Illinois) EIA Revenue and Sales - April 2008 + 1,113 + Central Illinois Pub Serv Co (Illinois) EIA Revenue and Sales - December 2008 + 1,202 + Central Illinois Pub Serv Co (Illinois) EIA Revenue and Sales - February 2008 + 536 + Central Illinois Pub Serv Co (Illinois) EIA Revenue and Sales - February 2009 + 2,187 + Central Illinois Pub Serv Co (Illinois) EIA Revenue and Sales - January 2008 + 707 + Central Illinois Pub Serv Co (Illinois) EIA Revenue and Sales - January 2009 + 1,537 + Central Illinois Pub Serv Co (Illinois) EIA Revenue and Sales - June 2008 + 697 + Central Illinois Pub Serv Co (Illinois) EIA Revenue and Sales - March 2008 + 880 +

477

Alternative Fuels Data Center: E85 Retail Sales Reporting  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Retail Sales Retail Sales Reporting to someone by E-mail Share Alternative Fuels Data Center: E85 Retail Sales Reporting on Facebook Tweet about Alternative Fuels Data Center: E85 Retail Sales Reporting on Twitter Bookmark Alternative Fuels Data Center: E85 Retail Sales Reporting on Google Bookmark Alternative Fuels Data Center: E85 Retail Sales Reporting on Delicious Rank Alternative Fuels Data Center: E85 Retail Sales Reporting on Digg Find More places to share Alternative Fuels Data Center: E85 Retail Sales Reporting on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type E85 Retail Sales Reporting A retailer who dispenses E85 must report to the Indiana Department of State Revenue the total number of gallons of E85 sold from a metered pump.

478

Alternative Fuels Data Center: Biodiesel Sales Equipment Tax Credit  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Sales Sales Equipment Tax Credit to someone by E-mail Share Alternative Fuels Data Center: Biodiesel Sales Equipment Tax Credit on Facebook Tweet about Alternative Fuels Data Center: Biodiesel Sales Equipment Tax Credit on Twitter Bookmark Alternative Fuels Data Center: Biodiesel Sales Equipment Tax Credit on Google Bookmark Alternative Fuels Data Center: Biodiesel Sales Equipment Tax Credit on Delicious Rank Alternative Fuels Data Center: Biodiesel Sales Equipment Tax Credit on Digg Find More places to share Alternative Fuels Data Center: Biodiesel Sales Equipment Tax Credit on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Biodiesel Sales Equipment Tax Credit Qualified retailers may be eligible for a corporate income tax credit of

479

Connecticut Prices, Sales Volumes & Stocks  

Gasoline and Diesel Fuel Update (EIA)

- - - - - - 1986-2013 - - - - - - 1986-2013 Kerosene-Type Jet Fuel (Refiner Sales) W W W W W W 1984-2013 Kerosene (Refiner Sales) - W W - - NA 1984-2013 No. 1 Distillate (Refiner Sales) - - - - - - 1984-2013 No. 2 Distillate - - - - - - 1983-2013 No. 2 Fuel Oil (Residential) - - - - - - 1983-2013 No. 2 Diesel Fuel (Retail Outlets) - - - - - - 1994-2013 No. 4 Fuel Oil (Refiner Sales) W W W W W NA 1993-2013 Prime Supplier Sales Volumes (Thousand Gallons per Day) Motor Gasoline 3,969.5 4,012.0 3,982.9 4,034.9 3,938.4 3,955.8 1983-2013 Regular 3,431.9 3,470.2 3,458.0 3,486.5 3,382.7 3,432.7 1983-2013 Midgrade 62.5 64.9 67.3 73.9 67.8 57.4 1988-2013 Premium 475.0 476.9 457.6 474.5 487.9 465.7 1983-2013 Aviation Gasoline 2.7 4.1 3.0 6.1 3.4 3.5 1983-2013

480

Annual Energy Outlook with Projections to 2025- Legislation and Regulations  

Gasoline and Diesel Fuel Update (EIA)

California Low Emission Vehicle Program and Carbon Standard for Light-Duty Vehicles California Low Emission Vehicle Program and Carbon Standard for Light-Duty Vehicles Legislation and Regulations. California Low Emission Vehicle Program The Low Emission Vehicle Program (LEVP) was originally passed into legislation in 1990 in the State of California. It began as the implementation of a voluntary opt-in pilot program under the purview of CAAA90, which included a provision that other States could “opt in” to the California program to achieve lower emissions levels than would otherwise be achieved through CAAA90. The 1990 LEVP was an emissions-based policy, setting sales mandates for three categories of vehicles: low-emission vehicles (LEVs), ultra-low-emission vehicles (ULEVs), and zero-emission vehicles (ZEVs). The mandate required that ZEVs make up 2 percent of new vehicle sales in California by 1998, 5 percent by 2001, and 10 percent by 2003. At that time, the only vehicles certified as ZEVs by the California Air Resources Board (CARB) were battery-powered electric vehicles [1].

Note: This page contains sample records for the topic "light-duty vehicle sales" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

4-County Electric Power Assn (Mississippi) EIA Revenue and Sales -  

Open Energy Info (EERE)

September 2008 Jump to: navigation, search EIA Monthly Electric Utility Sales and Revenue Data for 4-County Electric Power Assn for September 2008. Monthly Electric Utility Sales and Revenue Data Short Name 2008-09 Utility Company 4-County Electric Power Assn (Mississippi) Place Mississippi Start Date 2008-09-01 End Date 2008-10-01 Residential Revenue(Thousand $) 4960 Residential Sales (MWh) 49913 Residential Consumers 35998 Commercial Revenue(Thousand $) 2510 Commercial Sales (MWh) 24408 Commercial Consumers 8569 Industrial Revenue (Thousand $) 1308 Industrial Sales (MWh) 17792 Industrial Consumers 19 Total Revenue (Thousand $) 8778 Total Sales (MWh) 92113 Total Consumers 44586 Source: Energy Information Administration. Form EIA-826 Database Monthly

482

VEHICLE SPECIFICATIONS  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

VEHICLE SPECIFICATIONS 1 Vehicle Features Base Vehicle: 2011 Chevrolet Volt VIN: 1G1RD6E48BUI00815 Class: Compact Seatbelt Positions: 4 Type 2 : Multi-Mode PHEV (EV, Series, and Power-split) Motor Type: 12-pole permanent magnet AC synchronous Max. Power/Torque: 111 kW/370 Nm Max. Motor Speed: 9500 rpm Cooling: Active - Liquid cooled Generator Type: 16-pole permanent magnet AC synchronous Max. Power/Torque: 55 kW/200 Nm Max. Generator Speed: 6000 rpm Cooling: Active - Liquid cooled Battery Manufacturer: LG Chem Type: Lithium-ion Cathode/Anode Material: LiMn 2 O 4 /Hard Carbon Number of Cells: 288 Cell Config.: 3 parallel, 96 series Nominal Cell Voltage: 3.7 V Nominal System Voltage: 355.2 V Rated Pack Capacity: 45 Ah Rated Pack Energy: 16 kWh Weight of Pack: 435 lb

483

Sales and Use Tax Credit for Emerging Clean Energy Industry | Department of  

Broader source: Energy.gov (indexed) [DOE]

Credit for Emerging Clean Energy Industry Credit for Emerging Clean Energy Industry Sales and Use Tax Credit for Emerging Clean Energy Industry < Back Eligibility Commercial Industrial Savings Category Bioenergy Buying & Making Electricity Water Alternative Fuel Vehicles Hydrogen & Fuel Cells Energy Sources Solar Home Weatherization Heating & Cooling Swimming Pool Heaters Water Heating Commercial Heating & Cooling Heating Wind Program Info Start Date 07/01/2009 State Tennessee Program Type Industry Recruitment/Support Rebate Amount Tax rate reduced to 0.5% Provider Tennessee Department of Revenue In June 2009, Tennessee enacted the [http://www.capitol.tn.gov/Bills/106/Chapter/PC0529.pdf Tennessee Clean Energy Future Act of 2009] and expanded its ''Sales and Use Tax Credit for Emerging Industries'' to manufacturers of clean energy technologies on the

484

Vehicle Technologies Office: Batteries  

Broader source: Energy.gov [DOE]

Improving the batteries for electric drive vehicles, including hybrid electric (HEV) and plug-in electric (PEV) vehicles, is key to improving vehicles' economic, social, and environmental...

485

U.S. Sales to End Users Refiner Sales Volumes of Aviation Fuels, Kerosene,  

Gasoline and Diesel Fuel Update (EIA)

Sales Type: Sales to End Users Sales for Resale Sales Type: Sales to End Users Sales for Resale Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Product Sales Type Area May-13 Jun-13 Jul-13 Aug-13 Sep-13 Oct-13 View History Aviation Gasoline 93.3 8.2 10.0 12.0 10.9 11.4 1983-2013 Kerosene-Type Jet Fuel 32,893.1 32,452.7 33,281.4 32,532.8 29,876.9 29,004.1 1983-2013 Propane (Consumer Grade) 6,321.3 6,161.4 5,990.4 6,377.7 6,892.8 3,264.5 1983-2013 Kerosene 3.5 2.4 3.6 2.2 3.6 8.8 1983-2013 No. 1 Distillate 45.2 31.9 36.3 32.5 44.6 103.0 1983-2013 No. 2 Distillate 11,266.8 11,311.6 11,647.9 11,375.1 11,192.1 12,138.1 1983-2013 No. 2 Diesel Fuel NA NA NA NA NA NA 1994-2013

486

U.S. Sales to End Users, Total Refiner Motor Gasoline Sales Volumes  

Gasoline and Diesel Fuel Update (EIA)

Sales Type: Sales to End Users, Total Through Retail Outlets Sales for Resale, Total DTW Rack Bulk Sales Type: Sales to End Users, Total Through Retail Outlets Sales for Resale, Total DTW Rack Bulk Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Product Sales Type Area Apr-13 May-13 Jun-13 Jul-13 Aug-13 Sep-13 View History Motor Gasoline 28,179.6 24,384.0 24,143.9 23,567.1 24,120.5 23,282.9 1983-2013 by Grade Regular 23,757.8 20,526.5 20,356.1 19,806.6 20,240.9 19,586.1 1983-2013 Midgrade 1,876.1 1,545.0 1,534.8 1,527.0 1,561.5 1,484.7 1988-2013 Premium 2,545.7 2,312.4 2,252.9 2,233.5 2,318.1 2,212.1 1983-2013 by Formulation Conventional 16,716.2 14,277.3 13,878.1 13,588.6 14,053.9 13,516.9 1994-2013 Oxygenated - - - - - - 1994-2013

487

Vehicles News  

Broader source: Energy.gov (indexed) [DOE]

news Office of Energy Efficiency & news Office of Energy Efficiency & Renewable Energy Forrestal Building 1000 Independence Avenue, SW Washington, DC 20585 en Energy Department Announces $45 Million to Advance Next-Generation Vehicle Technologies http://energy.gov/eere/articles/energy-department-announces-45-million-advance-next-generation Energy Department Announces $45 Million to Advance Next-Generation Vehicle Technologies

488

Shenyang Tianrui Wind Equipments Sales Company Co Ltd | Open Energy  

Open Energy Info (EERE)

Tianrui Wind Equipments Sales Company Co Ltd Tianrui Wind Equipments Sales Company Co Ltd Jump to: navigation, search Name Shenyang Tianrui Wind Equipments Sales Company Co., Ltd. Place Liaoning Province, China Sector Wind energy Product Lianoning Province-based JV responsible for the marketing and sales of the wind components made by Shenyang Tianxiang. References Shenyang Tianrui Wind Equipments Sales Company Co., Ltd.[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Shenyang Tianrui Wind Equipments Sales Company Co., Ltd. is a company located in Liaoning Province, China . References ↑ "Shenyang Tianrui Wind Equipments Sales Company Co., Ltd." Retrieved from "http://en.openei.org/w/index.php?title=Shenyang_Tianrui_Wind_Equipments_Sales_Company_Co_Ltd&oldid=35092

489

Property:Ind sales (mwh) | Open Energy Information  

Open Energy Info (EERE)

industrial consumers industrial consumers Pages using the property "Ind sales (mwh)" Showing 25 pages using this property. (previous 25) (next 25) 4 4-County Electric Power Assn (Mississippi) EIA Revenue and Sales - April 2008 + 18,637 + 4-County Electric Power Assn (Mississippi) EIA Revenue and Sales - August 2008 + 19,022 + 4-County Electric Power Assn (Mississippi) EIA Revenue and Sales - December 2008 + 14,148 + 4-County Electric Power Assn (Mississippi) EIA Revenue and Sales - February 2008 + 18,516 + 4-County Electric Power Assn (Mississippi) EIA Revenue and Sales - February 2009 + 14,517 + 4-County Electric Power Assn (Mississippi) EIA Revenue and Sales - January 2008 + 17,398 + 4-County Electric Power Assn (Mississippi) EIA Revenue and Sales - January 2009 + 14,930 +

490

Property:Tot sales (mwh) | Open Energy Information  

Open Energy Info (EERE)

all consumers all consumers Pages using the property "Tot sales (mwh)" Showing 25 pages using this property. (previous 25) (next 25) 4 4-County Electric Power Assn (Mississippi) EIA Revenue and Sales - April 2008 + 69,154 + 4-County Electric Power Assn (Mississippi) EIA Revenue and Sales - August 2008 + 104,175 + 4-County Electric Power Assn (Mississippi) EIA Revenue and Sales - December 2008 + 78,855 + 4-County Electric Power Assn (Mississippi) EIA Revenue and Sales - February 2008 + 93,756 + 4-County Electric Power Assn (Mississippi) EIA Revenue and Sales - February 2009 + 87,806 + 4-County Electric Power Assn (Mississippi) EIA Revenue and Sales - January 2008 + 87,721 + 4-County Electric Power Assn (Mississippi) EIA Revenue and Sales - January 2009 + 88,236 +

491

Property:Res sales (mwh) | Open Energy Information  

Open Energy Info (EERE)

residential consumers residential consumers Pages using the property "Res sales (mwh)" Showing 25 pages using this property. (previous 25) (next 25) 4 4-County Electric Power Assn (Mississippi) EIA Revenue and Sales - April 2008 + 35,568 + 4-County Electric Power Assn (Mississippi) EIA Revenue and Sales - August 2008 + 58,786 + 4-County Electric Power Assn (Mississippi) EIA Revenue and Sales - December 2008 + 49,312 + 4-County Electric Power Assn (Mississippi) EIA Revenue and Sales - February 2008 + 58,360 + 4-County Electric Power Assn (Mississippi) EIA Revenue and Sales - February 2009 + 57,003 + 4-County Electric Power Assn (Mississippi) EIA Revenue and Sales - January 2008 + 52,804 + 4-County Electric Power Assn (Mississippi) EIA Revenue and Sales - January 2009 + 56,047 +

492

Sales Trainee (Field) Quebec City/Montreal, QC  

E-Print Network [OSTI]

Sales Trainee (Field) Quebec City/Montreal, QC Company Information: Founded in 1866, Reynolds For in Selling Power Magazine. We are seeking a Sales Trainee (Field), based in Quebec City/Montreal, QC, to play

493

Colorado Dry Natural Gas Reserves Sales (Billion Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

Sales (Billion Cubic Feet) Colorado Dry Natural Gas Reserves Sales (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 1,049...

494

ZERH Webinar: Sales and Value Recognition of Zero Energy Ready...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

ZERH Webinar: Sales and Value Recognition of Zero Energy Ready Homes ZERH Webinar: Sales and Value Recognition of Zero Energy Ready Homes December 18, 2014 12:00PM to 1:15PM EST...

495

Michigan Dry Natural Gas Reserves Sales (Billion Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

Sales (Billion Cubic Feet) Michigan Dry Natural Gas Reserves Sales (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 479 24...

496

Wyoming Dry Natural Gas Reserves Sales (Billion Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

Sales (Billion Cubic Feet) Wyoming Dry Natural Gas Reserves Sales (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 1,780...

497

Oklahoma Dry Natural Gas Reserves Sales (Billion Cubic Feet)  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Sales (Billion Cubic Feet) Oklahoma Dry Natural Gas Reserves Sales (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 1,243...

498

Alabama Dry Natural Gas Reserves Sales (Billion Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

Sales (Billion Cubic Feet) Alabama Dry Natural Gas Reserves Sales (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 140 1 6...

499

Mississippi Dry Natural Gas Reserves Sales (Billion Cubic Feet...  

Gasoline and Diesel Fuel Update (EIA)

Sales (Billion Cubic Feet) Mississippi Dry Natural Gas Reserves Sales (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 96 34...

500

Utah Dry Natural Gas Reserves Sales (Billion Cubic Feet)  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Sales (Billion Cubic Feet) Utah Dry Natural Gas Reserves Sales (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 568 17 978...