Powered by Deep Web Technologies
Note: This page contains sample records for the topic "light-duty vehi cles" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Light Duty Combustion Research: Advanced Light-Duty Combustion...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Light Duty Combustion Research: Advanced Light-Duty Combustion Experiments Light Duty Combustion Research: Advanced Light-Duty Combustion Experiments 2009 DOE Hydrogen Program and...

2

DOE Light Duty Vehicle Workshop  

Energy.gov (U.S. Department of Energy (DOE))

On July 26, 2010, the U.S. Department of Energy (DOE) sponsored a Light Duty Vehicle Workshop in Washington, D.C. Presentations from this workshop appear below as Adobe Acrobat PDFs.

3

Light Duty Vehicle Pathways | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Duty Vehicle Pathways Light Duty Vehicle Pathways Presented at the U.S. Department of Energy Light Duty Vehicle Workshop in Washington, D.C. on July 26, 2010....

4

Fuel Cell Technologies Office: DOE Light Duty Vehicle Workshop  

NLE Websites -- All DOE Office Websites (Extended Search)

Light Duty Vehicle Light Duty Vehicle Workshop to someone by E-mail Share Fuel Cell Technologies Office: DOE Light Duty Vehicle Workshop on Facebook Tweet about Fuel Cell Technologies Office: DOE Light Duty Vehicle Workshop on Twitter Bookmark Fuel Cell Technologies Office: DOE Light Duty Vehicle Workshop on Google Bookmark Fuel Cell Technologies Office: DOE Light Duty Vehicle Workshop on Delicious Rank Fuel Cell Technologies Office: DOE Light Duty Vehicle Workshop on Digg Find More places to share Fuel Cell Technologies Office: DOE Light Duty Vehicle Workshop on AddThis.com... Publications Program Publications Technical Publications Educational Publications Newsletter Program Presentations Multimedia Conferences & Meetings Annual Merit Review Proceedings Workshop & Meeting Proceedings

5

Technical Challenges and Opportunities Light-Duty Diesel Engines...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Challenges and Opportunities Light-Duty Diesel Engines in North America Technical Challenges and Opportunities Light-Duty Diesel Engines in North America 2005 Diesel Engine...

6

Progress on DOE Vehicle Technologies Light-Duty Diesel Engine...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

DOE Vehicle Technologies Light-Duty Diesel Engine Efficiency and Emissions Milestones Progress on DOE Vehicle Technologies Light-Duty Diesel Engine Efficiency and Emissions...

7

Light Duty Fuel Cell Electric Vehicle Hydrogen Fueling Protocol...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Light Duty Fuel Cell Electric Vehicle Hydrogen Fueling Protocol Light Duty Fuel Cell Electric Vehicle Hydrogen Fueling Protocol Download the webinar slides from the U.S. Department...

8

Light-Duty Diesel Combustion | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Light-Duty Diesel Combustion Light-Duty Diesel Combustion 2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting...

9

Light Duty Efficient Clean Combustion | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Light Duty Efficient Clean Combustion Light Duty Efficient Clean Combustion 2009 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation...

10

Business Case for Light-Duty Diesels | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Business Case for Light-Duty Diesels Business Case for Light-Duty Diesels 2005 Diesel Engine Emissions Reduction (DEER) Conference Presentations and Posters 2005deergodwin.pdf...

11

alternative fuel light-duty vehicles  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fuel Light-Duty Vehicles Fuel Light-Duty Vehicles T O F E N E R G Y D E P A R T M E N U E N I T E D S T A T S O F A E R I C A M SUMMARY OF RESULTS FROM THE NATIONAL RENEWABLE ENERGY LABORATORY'S VEHICLE EVALUATION DATA COLLECTION EFFORTS Alternative Fuel Light-Duty Vehicles SUMMARY OF RESULTS FROM THE NATIONAL RENEWABLE ENERGY LABORATORY'S VEHICLE EVALUATION DATA COLLECTION EFFORTS PEG WHALEN KENNETH KELLY ROB MOTTA JOHN BRODERICK MAY 1996 N T Y A U E O F E N E R G D E P A R T M E N I T E D S T A T S O F A E R I C M Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2 Light-Duty Vehicles in the Program . . . . . . . . . . . . . . . . . . . . . . . . . . . .2

12

Advanced Technology Light Duty Diesel Aftertreatment System  

Energy.gov (U.S. Department of Energy (DOE))

Light duty diesel aftertreatment system consisting of a DOC and selective catalytic reduction catalyst on filter (SCRF), close coupled to the engine with direct gaseous ammonia delivery is designed to reduce cold start NOx and HC emissions

13

Technology Development for Light Duty High Efficient Diesel Engines  

Energy.gov (U.S. Department of Energy (DOE))

Improve the efficiency of diesel engines for light duty applications through technical advances in system optimization.

14

Alternative Fuels Data Center: Light-Duty Vehicle Search  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Light-Duty Vehicle Light-Duty Vehicle Search to someone by E-mail Share Alternative Fuels Data Center: Light-Duty Vehicle Search on Facebook Tweet about Alternative Fuels Data Center: Light-Duty Vehicle Search on Twitter Bookmark Alternative Fuels Data Center: Light-Duty Vehicle Search on Google Bookmark Alternative Fuels Data Center: Light-Duty Vehicle Search on Delicious Rank Alternative Fuels Data Center: Light-Duty Vehicle Search on Digg Find More places to share Alternative Fuels Data Center: Light-Duty Vehicle Search on AddThis.com... Light-Duty Vehicle Search Search our light-duty alternative fuel vehicle database to find and compare alternative fuel vehicles and generate printable reports to aid in decision-making. These vehicles might not qualify for vehicle-acquisition

15

Overview of Light-Duty Vehicle Studies  

NLE Websites -- All DOE Office Websites (Extended Search)

Overview of Light-Duty Vehicle Studies Overview of Light-Duty Vehicle Studies Washington, DC Workshop Sponsored by EERE Transportation Cluster July 26, 2010 Energy Efficiency & Renewable Energy eere.energy.gov 2 * This workshop is intended to be a working meeting for analysts to discuss findings and assumptions because a number of key studies on light-duty vehicles (LDVs) and biofuels have been completed in the past 5 years and the insight gained from their findings would be valuable. * Outcomes: - common understanding of the effects of differing assumptions (today); - agreement on standard assumptions for future studies, where applicable (agreement on some assumptions today, follow-up discussions/meeting may be needed for others); - list of data/information gaps and needed research and studies (a

16

Advanced Vehicle Testing Activity: Light-Duty Vehicles  

NLE Websites -- All DOE Office Websites (Extended Search)

Light-Duty Light-Duty Vehicles to someone by E-mail Share Advanced Vehicle Testing Activity: Light-Duty Vehicles on Facebook Tweet about Advanced Vehicle Testing Activity: Light-Duty Vehicles on Twitter Bookmark Advanced Vehicle Testing Activity: Light-Duty Vehicles on Google Bookmark Advanced Vehicle Testing Activity: Light-Duty Vehicles on Delicious Rank Advanced Vehicle Testing Activity: Light-Duty Vehicles on Digg Find More places to share Advanced Vehicle Testing Activity: Light-Duty Vehicles on AddThis.com... Home Overview Light-Duty Vehicles Alternative Fuel Vehicles Plug-in Hybrid Electric Vehicles Hybrid Electric Vehicles Micro Hybrid Vehicles ARRA Vehicle and Infrastructure Projects EVSE Testing Energy Storage Testing Hydrogen Internal Combustion Engine Vehicles Other ICE

17

Light duty utility arm startup plan  

SciTech Connect

This plan details the methods and procedures necessary to ensure a safe transition in the operation of the Light Duty Utility Arm (LDUA) System. The steps identified here outline the work scope and identify responsibilities to complete startup, and turnover of the LDUA to Characterization Project Operations (CPO).

Barnes, G.A.

1998-09-01T23:59:59.000Z

18

Cummins Work Toward Successful Introduction of Light-Duty Clean...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Cummins Work Toward Successful Introduction of Light-Duty Clean Diesel Engines in US Cummins Work Toward Successful Introduction of Light-Duty Clean Diesel Engines in US 2005...

19

Overview of Light-Duty Vehicle Studies | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Studies Overview of Light-Duty Vehicle Studies Presented at the U.S. Department of Energy Light Duty Vehicle Workshop in Washington, D.C. on July 26, 2010. ldvpathways.pdf...

20

Light-Duty Advanced Diesel Combustion Research | Department of...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Light-Duty Advanced Diesel Combustion Research Light-Duty Advanced Diesel Combustion Research Presentation from the U.S. DOE Office of Vehicle Technologies "Mega" Merit Review 2008...

Note: This page contains sample records for the topic "light-duty vehi cles" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Ricardo's ACTION Strategy: An Enabling Light Duty Diesel Technology...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

US Market 2005 Diesel Engine Emissions Reduction (DEER) Conference Presentations and Posters 2005deergreaney.pdf More Documents & Publications Light-Duty Diesel...

22

Light Duty Diesels in the United States - Some Perspectives ...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Emission Control Technology Review Update on Diesel Exhaust Emission Control Technology and Regulations Light Duty Diesels in the United States - Some Perspectives...

23

Ricardo's ACTION Strategy: An Enabling Light Duty Diesel Technology...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

light duty diesel solutions for the US market Technology Strategy Lowest system cost Engine technology selection Aftertreatment technology selection Control approach & OBD...

24

Mixture Formation in a Light-Duty Diesel Engine  

Energy.gov (U.S. Department of Energy (DOE))

Presents quantitative measurements of evolution of in-cylinder equivalence ratio distributions in a light-duty engine where wall interactions and strong swirl are significant

25

Thermoelectric Opportunities in Light-Duty Vehicles | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Light-Duty Vehicles Overview of thermoelectric (TE) vehicle exhaust heat recovery, TE HVAC systems, and OEM role in establishing guidelines for cost, power density, systems...

26

Light-Duty Lean GDI Vehicle Technology Benchmark  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

M. Wagner (PI) Paul H. Chambon (Presenter) Oak Ridge National Laboratory Light-Duty Lean GDI Vehicle Technology Benchmark This presentation does not contain any proprietary,...

27

Technology Development for Light Duty High Efficient Diesel Engines...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

optimization. deer09stanton.pdf More Documents & Publications Light Duty Efficient Clean Combustion Advanced Diesel Engine Technology Development for HECC Effects of Biomass Fuels...

28

Light Duty Efficient Clean Combustion | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

25, 2008 in Bethesda, Maryland. merit08frazier.pdf More Documents & Publications Light Duty Efficient Clean Combustion Exhaust Energy Recovery: 2008 Semi-Mega Merit Review...

29

Fueling U.S. Light Duty Diesel Vehicles  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

U.S. Light Duty Diesel Vehicles DEER Conference August 23, 2005 Joe Kaufman Manager, Fuel & Vehicle Trends ConocoPhillips NYSE: COP Core Activities * Petroleum & natural gas...

30

Fuel Cell Technologies Office: DOE Light Duty Vehicle Workshop  

NLE Websites -- All DOE Office Websites (Extended Search)

Light Duty Vehicle Workshop Light Duty Vehicle Workshop On July 26, 2010, the U.S. Department of Energy (DOE) sponsored a Light Duty Vehicle Workshop in Washington, D.C. Presentations from this workshop appear below as Adobe Acrobat PDFs. Download Adobe Reader. Presentations Overview of Light-Duty Vehicle Studies (PDF 562 KB), Sam Baldwin, Chief Technology Officer, Office of Energy Efficiency and Renewable Energy (EERE), DOE Light Duty Vehicle Pathways (PDF 404 KB), Tien Nguyen, Fuel Cell Technologies Office, EERE, DOE Hydrogen Transition Study (PDF 2.6 MB), Paul N. Leiby, David Greene, Zhenhong Lin, David Bowman, and Sujit Das, Oak Ridge National Laboratory Alternative Transportation Technologies: Hydrogen, Biofuels, Advanced Efficiency, and Plug-in Hybrid Electric Vehicles (PDF 123 KB), Joan Ogden and Mike Ramage, National Research Council

31

Marketing Light-Duty Diesels to U.S. Consumers | Department of...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Marketing Light-Duty Diesels to U.S. Consumers Marketing Light-Duty Diesels to U.S. Consumers Overview of Volkswagens approach in introducing light-duty diesels to the U.S....

32

Improving the Efficiency of Light-Duty Vehicle HVAC Systems using...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Light-Duty Vehicle HVAC Systems using Zonal Thermoelectric Devices and Comfort Modeling Improving the Efficiency of Light-Duty Vehicle HVAC Systems using Zonal Thermoelectric...

33

Fueling U.S. Light Duty Diesel Vehicles | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Fueling U.S. Light Duty Diesel Vehicles Fueling U.S. Light Duty Diesel Vehicles 2005 Diesel Engine Emissions Reduction (DEER) Conference Presentations and Posters...

34

NGV and FCV Light Duty Transportation Perspective  

NLE Websites -- All DOE Office Websites (Extended Search)

G G presentation slides: Natural Gas and Fuel Cell Vehicle Light-Duty transportation perspectives Matt Fronk, Matt Fronk & Associates, LLC 1 OctOber 2011 | ArgOnne nAtiOnAl lAbOrAtOry NG Workshop summary report - appeNDIX G 2 OctOber 2011 | ArgOnne nAtiOnAl lAbOrAtOry NG Workshop summary report - appeNDIX G 3 OctOber 2011 | ArgOnne nAtiOnAl lAbOrAtOry NG Workshop summary report - appeNDIX G 4 OctOber 2011 | ArgOnne nAtiOnAl lAbOrAtOry NG Workshop summary report - appeNDIX G 5 OctOber 2011 | ArgOnne nAtiOnAl lAbOrAtOry NG Workshop summary report - appeNDIX G 6 OctOber 2011 | ArgOnne nAtiOnAl lAbOrAtOry NG Workshop summary report - appeNDIX G 7 OctOber 2011 | ArgOnne nAtiOnAl lAbOrAtOry NG Workshop summary report - appeNDIX G

35

DOE Hydrogen Analysis Repository: Biofuels in Light-Duty Vehicles  

NLE Websites -- All DOE Office Websites (Extended Search)

Biofuels in Light-Duty Vehicles Biofuels in Light-Duty Vehicles Project Summary Full Title: Mobility Chains Analysis of Technologies for Passenger Cars and Light-Duty Vehicles Fueled with Biofuels: Application of the GREET Model to the Role of Biomass in America's Energy Future (RBAEF) Project Project ID: 82 Principal Investigator: Michael Wang Brief Description: The mobility chains analysis estimated the energy consumption and emissions associated with the use of various biofuels in light-duty vehicles. Keywords: Well-to-wheels (WTW); ethanol; biofuels; Fischer Tropsch diesel; hybrid electric vehicles (HEV) Purpose The project was a multi-organization, multi-sponsor project to examine the potential of biofuels in the U.S. Argonne was responsible for the well-to-wheels analysis of biofuel production and use.

36

Light Duty Fuel Cell Electric Vehicle Hydrogen Fueling Protocol  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

DOE Webinar Light Duty Fuel Cell Electric Vehicle Hydrogen Fueling Protocol U.S. DOE WEBINAR ON H2 FUELING PROTOCOLS: PARTICIPANTS Rob Burgess Moderator Jesse Schneider TIR J2601,...

37

Emission Control Strategy for Downsized Light-Duty Diesels |...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

p-18neely.pdf More Documents & Publications New Diesel Emissions Control Strategy for U.S. Tier 2 Light-Duty Diesel Market Potential in North America EPA Mobile Source Rule Update...

38

Marketing Light-Duty Diesels to U.S. Consumers  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Marketing Light-Duty Diesels to U.S. Consumers Norbert Krause Director Engineering and Environmental Office Volkswagen Group of America, Inc. 14 th Diesel Engine-Efficiency and...

39

Hybrid options for light-duty vehicles.  

SciTech Connect

Hybrid electric vehicles (HEVs) offer great promise in improving fuel economy. In this paper, we analyze why, how, and by how much vehicle hybridization can reduce energy consumption and improve fuel economy. Our analysis focuses on efficiency gains associated solely with vehicle hybridization. We do not consider such other measures as vehicle weight reduction or air- and tire-resistance reduction, because such measures would also benefit conventional technology vehicles. The analysis starts with understanding the energy inefficiencies of light-duty vehicles associated with different operation modes in US and Japanese urban and highway driving cycles, with the corresponding energy-saving potentials. The potential for fuel economy gains due to vehicle hybridization can be estimated almost exclusively on the basis of three elements: the reducibility of engine idling operation, the recoverability of braking energy losses, and the capability of improving engine load profiles to gain efficiency associated with specific HEV configurations and control strategies. Specifically, we evaluate the energy efficiencies and fuel economies of a baseline MY97 Corolla-like conventional vehicle (CV), a hypothetical Corolla-based minimal hybrid vehicle (MHV), and a MY98 Prius-like full hybrid vehicle (FHV). We then estimate energy benefits of both MHVs and FHVs over CVs on a performance-equivalent basis. We conclude that the energy benefits of hybridization vary not only with test cycles, but also with performance requirements. The hybrid benefits are greater for ''Corolla (high) performance-equivalent'' vehicles than for ''Prius (low) performance-equivalent'' vehicles. An increasing acceleration requirement would result in larger fuel economy benefits from vehicle hybridization.

An, F., Stodolsky, F.; Santini, D.

1999-07-19T23:59:59.000Z

40

WORKSHOP REPORT:Light-Duty Vehicles Technical Requirements and Gaps for Lightweight and Propulsion Materials  

Energy.gov (U.S. Department of Energy (DOE))

WORKSHOP REPORT:Light-Duty Vehicles Technical Requirements and Gaps for Lightweight and Propulsion Materials

Note: This page contains sample records for the topic "light-duty vehi cles" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Light-duty diesel engine development status and engine needs  

SciTech Connect

This report reviews, assesses, and summarizes the research and development status of diesel engine technology applicable to light-duty vehicles. In addition, it identifies specific basic and applied research and development needs in light-duty diesel technology and related health areas where initial or increased participation by the US Government would be desirable. The material presented in this report updates information provided in the first diesel engine status report prepared by the Aerospace Corporation for the Department of Energy in September, 1978.

Not Available

1980-08-01T23:59:59.000Z

42

Alternative Fuels Data Center: Light-Duty Vehicle Idle Reduction Strategies  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Light-Duty Vehicle Light-Duty Vehicle Idle Reduction Strategies to someone by E-mail Share Alternative Fuels Data Center: Light-Duty Vehicle Idle Reduction Strategies on Facebook Tweet about Alternative Fuels Data Center: Light-Duty Vehicle Idle Reduction Strategies on Twitter Bookmark Alternative Fuels Data Center: Light-Duty Vehicle Idle Reduction Strategies on Google Bookmark Alternative Fuels Data Center: Light-Duty Vehicle Idle Reduction Strategies on Delicious Rank Alternative Fuels Data Center: Light-Duty Vehicle Idle Reduction Strategies on Digg Find More places to share Alternative Fuels Data Center: Light-Duty Vehicle Idle Reduction Strategies on AddThis.com... More in this section... Idle Reduction Benefits & Considerations Heavy-Duty Vehicles Medium-Duty Vehicles

43

Alternative Fuels Data Center: Light-Duty Vehicle Data Collection Methods  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Data Collection Methods to someone by E-mail Data Collection Methods to someone by E-mail Share Alternative Fuels Data Center: Light-Duty Vehicle Data Collection Methods on Facebook Tweet about Alternative Fuels Data Center: Light-Duty Vehicle Data Collection Methods on Twitter Bookmark Alternative Fuels Data Center: Light-Duty Vehicle Data Collection Methods on Google Bookmark Alternative Fuels Data Center: Light-Duty Vehicle Data Collection Methods on Delicious Rank Alternative Fuels Data Center: Light-Duty Vehicle Data Collection Methods on Digg Find More places to share Alternative Fuels Data Center: Light-Duty Vehicle Data Collection Methods on AddThis.com... Light-Duty Vehicle Data Collection Methods To maintain the Light-Duty Vehicle Search tool, the National Renewable Energy Laboratory (NREL) gathers vehicle specifications, photos, and

44

High-Efficiency Clean Combustion in Light-Duty Multi-Cylinder...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

High-Efficiency Clean Combustion in Light-Duty Multi-Cylinder Diesel Engines High-Efficiency Clean Combustion in Light-Duty Multi-Cylinder Diesel Engines 2010 DOE Vehicle...

45

High Efficiency Clean Combustion in Multi-Cylinder Light-Duty...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Efficiency Clean Combustion in Multi-Cylinder Light-Duty Engines High Efficiency Clean Combustion in Multi-Cylinder Light-Duty Engines 2012 DOE Hydrogen and Fuel Cells Program and...

46

Economic Comparison of LNT Versus Urea SCR for Light-Duty Diesel...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Comparison of LNT Versus Urea SCR for Light-Duty Diesel Vehicles in the U.S. Market Economic Comparison of LNT Versus Urea SCR for Light-Duty Diesel Vehicles in the U.S. Market...

47

Urea SCR and DPF System for Tier 2 Diesel Light-Duty Trucks ...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Tier 2 Diesel Light-Duty Trucks Urea SCR and DPF System for Tier 2 Diesel Light-Duty Trucks Presentation given at DEER 2006, August 20-24, 2006, Detroit, Michigan. Sponsored by the...

48

SCReaming for Low NOx - SCR for the Light Duty Market | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

SCReaming for Low NOx - SCR for the Light Duty Market SCReaming for Low NOx - SCR for the Light Duty Market Presentation given at DEER 2006, August 20-24, 2006, Detroit, Michigan....

49

Why Light Duty Diesels Make Sense in the North American Market...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Why Light Duty Diesels Make Sense in the North American Market Why Light Duty Diesels Make Sense in the North American Market Presentation given at DEER 2006, August 20-24, 2006,...

50

A Study of Emissions from a Light Duty Diesel Engine with the...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

A Study of Emissions from a Light Duty Diesel Engine with the European Particulate Measurement Programme A Study of Emissions from a Light Duty Diesel Engine with the European...

51

Targets for Onboard Hydrogen Storage Systems for Light-Duty Vehicles...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Targets for Onboard Hydrogen Storage Systems for Light-Duty Vehicles Targets for Onboard Hydrogen Storage Systems for Light-Duty Vehicles This document describes the basis for the...

52

DOE Targets for Onboard Hydrogen Storage Systems for Light-Duty...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Targets for Onboard Hydrogen Storage Systems for Light-Duty Vehicles DOE Targets for Onboard Hydrogen Storage Systems for Light-Duty Vehicles This table lists the technical targets...

53

Outlook for Light-Duty-Vehicle Fuel Demand | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Outlook for Light-Duty-Vehicle Fuel Demand Outlook for Light-Duty-Vehicle Fuel Demand Gasoline and distillate demand impact of the Energy Independance and Security Act of 2007...

54

High Efficiency Clean Combustion in Multi-Cylinder Light-Duty...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

High Efficiency Clean Combustion in Multi-Cylinder Light-Duty Engines High Efficiency Clean Combustion in Multi-Cylinder Light-Duty Engines 2013 DOE Hydrogen and Fuel Cells Program...

55

Ultra-Low Sulfur diesel Update & Future Light Duty Diesel | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Ultra-Low Sulfur diesel Update & Future Light Duty Diesel Ultra-Low Sulfur diesel Update & Future Light Duty Diesel Presentation given at DEER 2006, August 20-24, 2006, Detroit,...

56

Low and high Temperature Dual Thermoelectric Generation Waste Heat Recovery System for Light-Duty Vehicles  

Energy.gov (U.S. Department of Energy (DOE))

Developing a low and high temperature dual thermoelectric generation waste heat recovery system for light-duty vehicles.

57

DOE/VTP Light-Duty Diesel Engine Commercialization  

NLE Websites -- All DOE Office Websites (Extended Search)

VTP Light-Duty Diesel Engine Commercialization VTP Light-Duty Diesel Engine Commercialization Vehicle Technologies Program (VTP) spearheaded the development of clean diesel engine technologies for passenger vehicles in the 1990s, spurring the current reintroduction of highly efficient diesel vehicles into the passenger market. Cummins partnered with VTP to develop a diesel engine that meets the 50-state 2010 emissions standards while boosting vehicle fuel economy by 30% over comparable gasoline-powered vehicles. The Cummins engine is scheduled to debut in 2010 Chrysler sport utility vehicles and pickup trucks. VTP-sponsored research demonstrated the ability of diesel passenger vehicles with advanced aftertreatment to meet EPA's stringent Tier II Bin 5 standards, representing an 83% reduction in NOx and more than 87% reduction in

58

Alternative Fuels Data Center: Plug-In Hybrid and Zero Emission Light-Duty  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Plug-In Hybrid and Plug-In Hybrid and Zero Emission Light-Duty Vehicle Rebates to someone by E-mail Share Alternative Fuels Data Center: Plug-In Hybrid and Zero Emission Light-Duty Vehicle Rebates on Facebook Tweet about Alternative Fuels Data Center: Plug-In Hybrid and Zero Emission Light-Duty Vehicle Rebates on Twitter Bookmark Alternative Fuels Data Center: Plug-In Hybrid and Zero Emission Light-Duty Vehicle Rebates on Google Bookmark Alternative Fuels Data Center: Plug-In Hybrid and Zero Emission Light-Duty Vehicle Rebates on Delicious Rank Alternative Fuels Data Center: Plug-In Hybrid and Zero Emission Light-Duty Vehicle Rebates on Digg Find More places to share Alternative Fuels Data Center: Plug-In Hybrid and Zero Emission Light-Duty Vehicle Rebates on AddThis.com...

59

TTRDC - Light Duty E-Drive Vehicles Monthly Sales Updates  

NLE Websites -- All DOE Office Websites (Extended Search)

Light Duty Electric Drive Vehicles Monthly Sales Updates Currently available electric-drive vehicles (EDV) in the U.S market include hybrid electric vehicles (HEV), plug-in hybrid electric vehicles (PHEV), and all electric vehicles (AEV). Plug-in Vehicles (PEV) include both PHEV and AEV. HEVs debuted in the U.S. market in December 1999 with 17 sales of the first-generation Honda Insight, while the first PHEV (Chevrolet Volt) and AEV (Nissan Leaf) most recently debuted in December 2010. Electric drive vehicles are offered in several car and SUV models, and a few pickup and van models. Historical sales of HEV, PHEV, and AEV are compiled by Argonne's Center for Transportation Research and reported to the U.S. Department of Energy's Vehicle Technology Program Office each month. These sales are shown in Figures 1, 2 and 3. Figure 1 shows monthly new PHEV and AEV sales by model. Figure 2 shows yearly new HEV sales by model. Figure 3 shows electric drive vehicles sales share of total light-duty vehicle (LDV) sales since 1999. Figure 4 shows HEV and PEV sales change with gasoline price..

60

The Diesel Engine Powering Light-Duty Vehicles: Today and Tomorrow...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Engine Emissions Reduction (DEER) Conference Presentation: Volkwagen AG, Wolfsburg, Germany 2004deerschindler.pdf More Documents & Publications Accelerating Light-Duty Diesel...

Note: This page contains sample records for the topic "light-duty vehi cles" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

DOE Targets for Onboard Hydrogen Storage Systems for Light-Duty Vehicles  

Energy.gov (U.S. Department of Energy (DOE))

This table lists the technical targets for onboard hydrogen storage for light-duty vehicles in the FCT Program’s Multiyear Research, Development and Demonstration Plan.

62

Light duty utility arm deployment in Hanford tank T-106  

SciTech Connect

An existing gap in the technology for the remediation of underground waste storage tanks filled by the Light Duty Utility Arm (LDUA) System. On September 27 and 30, 1996, the LDUA System was deployed in underground storage tank T-106 at Hanford. The system performed successfully, satisfying all objectives of the in-tank operational test (hot test); performing close-up video inspection of features of tank dome, risers, and wall; and grasping and repositioning in-tank debris. The successful completion of hot testing at Hanford means that areas of tank structure and waste surface that were previously inaccessible are now within reach of remote tools for inspection, waste analysis, and small-scale retrieval. The LDUA System has become a new addition to the arsenal of technologies being applied to solve tank waste remediation challenges.

Kiebel, G.R.

1997-07-01T23:59:59.000Z

63

A Waste Heat Recovery System for Light Duty Diesel Engines  

SciTech Connect

In order to achieve proposed fuel economy requirements, engines must make better use of the available fuel energy. Regardless of how efficient the engine is, there will still be a significant fraction of the fuel energy that is rejected in the exhaust and coolant streams. One viable technology for recovering this waste heat is an Organic Rankine Cycle. This cycle heats a working fluid using these heat streams and expands the fluid through a turbine to produce shaft power. The present work was the development of such a system applied to a light duty diesel engine. This lab demonstration was designed to maximize the peak brake thermal efficiency of the engine, and the combined system achieved an efficiency of 44.4%. The design of the system is discussed, as are the experimental performance results. The system potential at typical operating conditions was evaluated to determine the practicality of installing such a system in a vehicle.

Briggs, Thomas E [ORNL; Wagner, Robert M [ORNL; Edwards, Kevin Dean [ORNL; Curran, Scott [ORNL; Nafziger, Eric J [ORNL

2010-01-01T23:59:59.000Z

64

Fumigation of alcohol in a light duty automotive diesel engine  

SciTech Connect

A light-duty automotive diesel engine was fumigated with methanol and ethanol in amounts up to 35% and 50% of the total fuel energy respectively. The main purpose of this study was to determine the effect of alcohol (methanol and ethanol) fumigation on engine performance at various operating conditions. Engine fuel efficiency, emissions, smoke, and the occurrence of severe knock were the parameters used to evaluate performance. Raw exhaust particulate and its soluble organic extract were screened for biological activity using the Ames Salmonella typhimurium assay. Results are given for a test matrix made up of twelve steady-state operating conditions. For all conditions except the 1/4 rack (light load) condition, modest thermal efficiency gains were noted upon ethanol fumigation. Methanol showed the same increase at 3/4 and full rack (high load) conditions. However, engine roughness or the occurrence of severe knock limited the maximum amount of alcohol that could be fumigated. Brake specific NO/sub x/ concentrations were found to decrease for all ethanol conditions tested. Oxides of nitrogen emissions, on a volume basis, decreased for all alcohol conditions tested. Based on the limited particulate data analyzed, it appears as though ethanol fumigation, like methanol fumigation, while lowering the mass of particulate emitted, does enhance the biological activity of that particulate.

Broukhiyan, E.M.H.; Lestz, S.S.

1981-08-01T23:59:59.000Z

65

Non-Cost Barriers to Consumer Adoption of New Light-Duty Vehicle Technologies  

NLE Websites -- All DOE Office Websites (Extended Search)

LIGHT-DUTY VEHICLES LIGHT-DUTY VEHICLES Non-Cost Barriers to Consumer Adoption of New Light-Duty Vehicle Technologies TRANSPORTATION ENERGY FUTURES SERIES: Non-Cost Barriers to Consumer Adoption of New Light-Duty Vehicle Technologies A Study Sponsored by U.S. Department of Energy Office of Energy Efficiency and Renewable Energy March 2013 Prepared by ARGONNE NATIONAL LABORATORY Argonne, Illinois 60439 managed by U Chicago Argonne, LLC for the U.S. DEPARTMENT OF ENERGY under contract DE-AC02-06CH11357 This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, expressed or implied, or assumes any legal liability or

66

Business Case for Light-Duty Diesel in the U.S. | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Diesel in the U.S. Business Case for Light-Duty Diesel in the U.S. 2005 Diesel Engine Emissions Reduction (DEER) Conference Presentations and Posters 2005deermcmanus.pdf More...

67

Impact of Fuel Properties on Light-Duty Engine Performance and Emissions  

Energy.gov (U.S. Department of Energy (DOE))

Describes the effects of seven fuels with significantly different fuel properties on a state-of-the-art light-duty diesel engine. Cetane numbers range between 26 and 76 for the investigated fuels.

68

Fuel Effects on Low Temperature Combustion in a Light-Duty Diesel Engine  

Energy.gov (U.S. Department of Energy (DOE))

Six different fuels were investigated to study the influence of fuel properties on engine out emissions and performance of low temperature premixed compression ignition combustion light-duty HSDI engines

69

The Diesel Engine Powering Light-Duty Vehicles: Today and Tomorrow  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

diesel-powered light-duty vehicles 1990 1995 2000 2005 2010 2015 2020 2025 Energy Greenhouse effect CO 2 Exhaust gas emissions CO, NO x , HC, PM Importance Environmental driving...

70

Myths Regarding Alternative Fuel Vehicle Demand by Light-Duty Vehicle Fleets  

E-Print Network (OSTI)

MythsRegarding Alternative Fuel Vehicte Demand Light-Dutyregulation Myths Regarding Alternative Fuel Vehicle DemandBy00006-6 MYTHS REGARDING ALTERNATIVE FUEL VEHICLE LIGHT-DUTY

Nesbitt, Kevin; Sperling, Daniel

1998-01-01T23:59:59.000Z

71

Addressing the Challenges of RCCI Operation on a Light-Duty Multi...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

the Challenges of RCCI Operation on a Light-Duty Multi-Cylinder Engine ORNL and UW collaboration in evaluating and developing RCCI operation in fully built multi-cylinder engine...

72

Impact of Light-Duty Vehicle Emissions on 21st Century Carbon Dioxide Concentrations  

SciTech Connect

The impact of light-duty passenger vehicle emissions on global carbon dioxide concentrations was estimated using the MAGICC reduced-form climate model combined with the PNNL contribution to the CCSP scenarios product. Our central estimate is that tailpipe light duty vehicle emissions of carbon-dioxide over the 21st century will increase global carbon dioxide concentrations by slightly over 12 ppmv by 2100.

Smith, Steven J.; Kyle, G. Page

2007-08-04T23:59:59.000Z

73

Safety equipment list for the light duty utility arm system  

SciTech Connect

The initial issue (Revision 0) of this Safety Equipment List (SEL) for the Light Duty Utility Arm (LDUA) requires an explanation for both its existence and its being what it is. All LDUA documentation leading up to creation of this SEL, and the SEL itself, is predicated on the LDUA only being approved for use in waste tanks designated as Facility Group 3, i.e., it is not approved for use in Facility Group 1 or 2 waste tanks. Facility Group 3 tanks are those in which a spontaneous or induced hydrogen gas release would be small, localized, and would not exceed 25% of the LFL when mixed with the remaining air volume in the dome space; exceeding these parameters is considered unlikely. Thus, from a NFPA flammable gas environment perspective the waste tank interior is not classified as a hazardous location. Furthermore, a hazards identification and evaluation (HNF-SD-WM-HIE-010, REV 0) performed for the LDUA system concluded that the consequences of actual LDUA system postulated accidents in Flammable Gas Facility Group 3 waste tanks would have either NO IMPACT or LOW IMPACT on the offsite public and onsite worker. Therefore, from a flammable gas perspective, there is not a rationale for classifying any of SSCs associated with the LDUA as either Safety Class (SC) or Safety Significant (SS) SSCs, which, by default, categorizes them as General Service (GS) SSCs. It follows then, based on current PHMC procedures (HNF-PRO-704 and HNF-IP-0842, Vol IV, Section 5.2) for SEL creation and content, and from a flammable gas perspective, that an SEL is NOT REQ@D HOWEVER!!! There is both a precedent and a prudency to capture all SSCS, which although GS, contribute to a Defense-In-Depth (DID) approach to the design and use of equipment in potentially flammable gas environments. This Revision 0 of the LDUA SEL has been created to capture these SSCs and they are designated as GS-DID in this document. The specific reasons for doing this are listed.

Barnes, G.A.

1998-03-02T23:59:59.000Z

74

Improving the Efficiency of Light-Duty Vehicle HVAC Systems using Zonal Thermoelectric Devices and Comfort Modeling  

Energy.gov (U.S. Department of Energy (DOE))

Summarizes results from a study to identify and demonstrate technical and commercial approaches necessary to accelerate the deployment of zonal TE HVAC systems in light-duty vehicles

75

Design criteria for the light duty utility arm system end effectors  

SciTech Connect

This document provides the criteria for the design of end effectors that will be used as part of the Light Duty Utility Arm (LDUA) System. The LDUA System consists of a deployment vehicle, a vertical positioning mast, a light duty multi-axis robotic arm, a tank riser interface and confinement, a tool interface plate, a control system, and an operations control trailer. The criteria specified in this document will apply to all end effector systems being developed for use on or with the LDUA system at the Hanford site. The requirement stipulated in this document are mandatory.

Pardini, A.F.

1995-01-03T23:59:59.000Z

76

Status of advanced light-duty transportation technologies in the US  

Science Journals Connector (OSTI)

The need to reduce oil consumption and greenhouse gases is driving a fundamental change toward more efficient, advanced vehicles, and fuels in the transportation sector. The paper reviews the current status of light duty vehicles in the US and discusses policies to improve fuel efficiency, advanced electric drives, and sustainable cellulosic biofuels. The paper describes the cost, technical, infrastructure, and market barriers for alternative technologies, i.e., advanced biofuels and light-duty vehicles, including diesel vehicles, natural-gas vehicles, hybrid electric vehicles, plug-in hybrid electric vehicles, and fuel-cell electric vehicles. The paper also presents R&D targets and technology validation programs of the US government.

David Andress; Sujit Das; Fred Joseck; T. Dean Nguyen

2012-01-01T23:59:59.000Z

77

Detroit Diesel Engine Technology for Light Duty Truck Applications - DELTA Engine Update  

SciTech Connect

The early generation of the DELTA engine has been thoroughly tested and characterized in the virtual lab, during engine dynamometer testing, and on light duty trucks for personal transportation. This paper provides an up-to-date account of program findings. Further, the next generation engine design and future program plans will be briefly presented.

Freese, Charlie

2000-08-20T23:59:59.000Z

78

1 THE LIGHT-DUTY-VEHICLE FLEET'S EVOLUTION: 2 ANTICIPATING PHEV ADOPTION AND GREENHOUSE GAS  

E-Print Network (OSTI)

1 THE LIGHT-DUTY-VEHICLE FLEET'S EVOLUTION: 2 ANTICIPATING PHEV ADOPTION AND GREENHOUSE GAS 3 patterns ­ and associated petroleum use 33 and greenhouse gas (GHG) emissions ­ can change under different microsimulation, travel behavior modeling, greenhouse gas emissions60 INTRODUCTION AND MOTIVATION61 Per

Kockelman, Kara M.

79

Development of a Waste Heat Recovery System for Light Duty Diesel Engines  

Energy.gov (U.S. Department of Energy (DOE))

Substantial increases in engine efficiency of a light-duty diesel engine, which require utilization of the waste energy found in the coolant, EGR, and exhaust streams, may be increased through the development of a Rankine cycle waste heat recovery system

80

Transportation Energy Futures Series: Potential for Energy Efficiency Improvement Beyond the Light-Duty-Vehilce Sector  

NLE Websites -- All DOE Office Websites (Extended Search)

COMMERCIAL TRUCKS COMMERCIAL TRUCKS AVIATION MARINE MODES RAILROADS PIPELINES OFF-ROAD EQUIPMENT Potential for Energy Efficiency Improvement Beyond the Light-Duty-Vehicle Sector TRANSPORTATION ENERGY FUTURES SERIES: Potential for Energy Efficiency Improvement Beyond the Light-Duty-Vehicle Sector A Study Sponsored by U.S. Department of Energy Office of Energy Efficiency and Renewable Energy February 2013 Prepared by ARGONNE NATIONAL LABORATORY Argonne, IL 60439 managed by U Chicago Argonne, LLC for the U.S. DEPARTMENT OF ENERGY under contract DE-AC02-06CH11357 This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, expressed or implied, or assumes any legal liability or

Note: This page contains sample records for the topic "light-duty vehi cles" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Transportation Energy Futures Series: Potential for Energy Efficiency Improvement Beyond the Light-Duty-Vehicle Sector  

SciTech Connect

Considerable research has focused on energy efficiency and fuel substitution options for light-duty vehicles, while much less attention has been given to medium- and heavy-duty trucks, buses, aircraft, marine vessels, trains, pipeline, and off-road equipment. This report brings together the salient findings from an extensive review of literature on future energy efficiency options for these non-light-duty modes. Projected activity increases to 2050 are combined with forecasts of overall fuel efficiency improvement potential to estimate the future total petroleum and greenhouse gas (GHG) emissions relative to current levels. This is one of a series of reports produced as a result of the Transportation Energy Futures (TEF) project, a Department of Energy-sponsored multi-agency project initiated to pinpoint underexplored strategies for abating GHGs and reducing petroleum dependence related to transportation.

Vyas, A. D.; Patel, D. M.; Bertram, K. M.

2013-03-01T23:59:59.000Z

82

Advanced Technologies for Light-Duty Vehicles (released in AEO2006)  

Reports and Publications (EIA)

A fundamental concern in projecting the future attributes of light-duty vehicles-passenger cars, sport utility vehicles, pickup trucks, and minivans-is how to represent technological change and the market forces that drive it. There is always considerable uncertainty about the evolution of existing technologies, what new technologies might emerge, and how consumer preferences might influence the direction of change. Most of the new and emerging technologies expected to affect the performance and fuel use of light-duty vehicles over the next 25 years are represented in the National Energy Modeling System (NEMS); however, the potential emergence of new, unforeseen technologies makes it impossible to address all the technology options that could come into play. The previous section of Issues in Focus discussed several potential technologies that currently are not represented in NEMS. This section discusses some of the key technologies represented in NEMS that are expected to be implemented in light-duty vehicles over the next 25 years.

2006-01-01T23:59:59.000Z

83

Light-duty vehicle mpg and market shares report, model year 1988  

SciTech Connect

This issue of Light-Duty Vehicle MPG and Market Shares Report: Model Year 1988 reports the estimated sales-weighted fuel economies, sales, market shares, and other vehicle characteristics of automobiles and light trucks. The estimates are made on a make and model basis, from model year 1976 to model year 1988. Vehicle sales data are used as weighting factors in the sales-weighted estimation procedure. Thus, the estimates represent averages of the overall new vehicle fleet, reflecting the composition of the fleet. Highlights are provided on the trends in the vehicle characteristics from one model year to the next. Analyses are also made on the fuel economy changes to determine the factors which caused the changes. The sales-weighted fuel economy for the new car fleet in model year 1988 showed an improvement of 0.1 mpg from model year 1987, while light trucks showed a 0.2 mpg loss. The 0.2 mpg loss by the light trucks can be attributed to the fact that every light truck size class experienced either losses or no change in their fuel economies from the previous model year, except for the large van size class. Overall, the sales-weighted fuel economy of the entire light-duty vehicle fleet (automobiles and light trucks combined) has remained relatively stable since model year 1986. Domestic light-duty vehicles began to gain popularity over their import counterparts; and light trucks increased their market shares relative to automobiles. Domestic cars regained 0.3% of the automobile market, reversing the previous trend. Similar to the automobile market, domestic light trucks continued to gain popularity over their import counterparts, partly due to the increasing popularity of domestic small vans. 3 refs., 35 figs., 48 tabs.

Hu, P.S.; Williams, L.S.; Beal, D.J.

1989-04-01T23:59:59.000Z

84

Light-Duty Diesel Vehicles: Market Issues and Potential Energy and Emissions Impacts  

Gasoline and Diesel Fuel Update (EIA)

2 2 Light-Duty Diesel Vehicles: Market Issues and Potential Energy and Emissions Impacts January 2009 Energy Information Administration Office of Integrated Analysis and Forecasting U.S. Department of Energy Washington, DC 20585 This report was prepared by the Energy Information Administration, the independent statistical and analytical agency within the Department of Energy. Unless referenced otherwise, the information contained herein should be attributed to the Energy Information Administration and should not be construed as advocating or reflecting any policy position of the Department of Energy or any other organization. Service Reports are prepared by the Energy Information Administration upon special request and are based on assumptions specified by the requester.

85

Tank selection for Light Duty Utility Arm (LDUA) system hot testing in a single shell tank  

SciTech Connect

The purpose of this report is to recommend a single shell tank in which to hot test the Light Duty Utility Arm (LDUA) for the Tank Waste Remediation System (TWRS) in Fiscal Year 1996. The LDUA is designed to utilize a 12 inch riser. During hot testing, the LDUA will deploy two end effectors (a High Resolution Stereoscopic Video Camera System and a Still/Stereo Photography System mounted on the end of the arm`s tool interface plate). In addition, three other systems (an Overview Video System, an Overview Stereo Video System, and a Topographic Mapping System) will be independently deployed and tested through 4 inch risers.

Bhatia, P.K.

1995-01-31T23:59:59.000Z

86

Microsoft Word - EXT-12-27320_Idle-Stop_Light_Duty_Passenger_Vehicles.docx  

NLE Websites -- All DOE Office Websites (Extended Search)

7320 7320 Quantifying the Effects of Idle-Stop Systems on Fuel Economy in Light- Duty Passenger Vehicles Jeffrey Wishart Matthew Shirk Contract No. DE-FC26-05NT42486 December 2012 DISCLAIMER This information was prepared as an account of work sponsored by an agency of the U.S. Government. Neither the U.S. Government nor any agency thereof, nor any of their employees, makes any warranty, expressed or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness, of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. References herein to any specific commercial product, process, or service by trade name, trade mark, manufacturer, or otherwise,

87

Efficiency Improvement Opportunities for Light-Duty Natural-Gas-Fueled Vehicles  

SciTech Connect

The purpose of this report is to evaluate and make recommendations concerning technologies that promise to improve the efilciency of compressed natural gas (CNG) light-duty vehicles. Technical targets for CNG automotive technology given in the March 1998 OffIce of Advanced Automotive Technologies research and development plan were used as guidance for this effort. The technical target that necessitates this current study is to validate technologies that enable CNG light vehicles to have at least 10% greater - fuel economy (on a miles per gallon equivalent basis) than equivalent gasoline vehicles by 2006. Other tar- gets important to natural gas (NG) automotive technology and this study are to: (1) increase CNG vehicle range to 380 miles, (2) reduce the incremental vehicle cost (CNG vs gasoline) to $1500, and (3) meet the California ultra low-emission vehicle (ULEV) and Federal Tier 2 emission standards expected to be in effect in 2004.

Staunton, R.H.; Thomas, J.F.

1998-12-01T23:59:59.000Z

88

Piston Bowl Optimization for RCCI Combustion in a Light-Duty Multi-Cylinder Engine  

SciTech Connect

Reactivity Controlled Compression Ignition (RCCI) is an engine combustion strategy that that produces low NO{sub x} and PM emissions with high thermal efficiency. Previous RCCI research has been investigated in single-cylinder heavy-duty engines. The current study investigates RCCI operation in a light-duty multi-cylinder engine at 3 operating points. These operating points were chosen to cover a range of conditions seen in the US EPA light-duty FTP test. The operating points were chosen by the Ad Hoc working group to simulate operation in the FTP test. The fueling strategy for the engine experiments consisted of in-cylinder fuel blending using port fuel-injection (PFI) of gasoline and early-cycle, direct-injection (DI) of diesel fuel. At these 3 points, the stock engine configuration is compared to operation with both the original equipment manufacturer (OEM) and custom machined pistons designed for RCCI operation. The pistons were designed with assistance from the KIVA 3V computational fluid dynamics (CFD) code. By using a genetic algorithm optimization, in conjunction with KIVA, the piston bowl profile was optimized for dedicated RCCI operation to reduce unburned fuel emissions and piston bowl surface area. By reducing these parameters, the thermal efficiency of the engine was improved while maintaining low NOx and PM emissions. Results show that with the new piston bowl profile and an optimized injection schedule, RCCI brake thermal efficiency was increased from 37%, with the stock EURO IV configuration, to 40% at the 2,600 rev/min, 6.9 bar BMEP condition, and NOx and PM emissions targets were met without the need for exhaust after-treatment.

Hanson, Reed M [ORNL; Curran, Scott [ORNL; Wagner, Robert M [ORNL; Reitz, Rolf [University of Wisconsin; Kokjohn, Sage [University of Wisconsin, Madison

2012-01-01T23:59:59.000Z

89

Fleet assessment for opportunities to effectively deploy light duty alternative fuel vehicles  

SciTech Connect

The City of Detroit conducted an initial program to assess the potential for substitution of vehicles currently in operation with alternative fuel vehicles. A key task involved the development of an operating profile of the participant light truck and van fleets involved in the study. To do this a survey of operators of light duty trucks and vans within the project participant fleets was conducted. These survey results were analyzed to define the potential for substitution of conventional vehicles with alternate fuel vehicles with alternate fuel vehicles and to identify candidates for participation in the Mini-Demonstration portion of the project. The test program involved the deployment of an electric van (two GM Griffon Electric Vans provided by Detroit Edison) at seven Mini-Demonstration sites for a period of four weeks each for test and evaluation. The Technical Work Group then analyzed vehicle performance data and used a questionnaire to obtain impressions and attitudes of the users toward the acceptability of the electric van. The Technical Work Group (TWG) and Management Assessment Group (MAG) then prepared recommendations and an implementation plan to develop further information aimed toward eventual expanded deployment of alternative fuel vehicles within project participant light duty fleets. The MAG concluded that the study had been beneficial in collecting and developing important quantitative information, introducing a set of public fleet managers to alternative fuel vehicle opportunities and features, and had provided specific experience with the Griffon van which provided some indications of requirements in such vehicles if they are to be a normal part of public fleet operations. These included the need for some increase of the mileage range of the Griffon, an improvement in the ride and handling of the Griffon, and several minor'' difficulties experienced with malfunctioning or inconvenient characteristics of the Griffon equipment. 25 figs., 1 tab.

Not Available

1990-05-01T23:59:59.000Z

90

Transient in cab noise investigation on a light duty diesel passenger vehicle.  

Science Journals Connector (OSTI)

A diesel engine in cab sound quality for passenger car market is scrutinized more closely than in the mid? to heavy duty diesel truck applications. This is obviously due to the increasing expectations from the customers for gasolinelike sound quality. This paper deals with a sound quality issue recently investigated on a light duty diesel engine for a passenger van application. The objectionable noise complaint occurred during the vehicle transient operating conditions and was found to be caused by the change in the pilot quantity over a very short period of time. The root cause of the noise complaint was investigated on the noise complaint vehicle as well as simultaneously on a standalone engine in the noise test cell. Several critical combustion and performance parameters were recorded for diagnosing the issue. In addition various standard sound quality metrics were employed to differentiate the sound quality of the objectionable noise. The issue was resolved and verified by making appropriate changes to the engine calibration without affecting key requirements such as emissions and fuel economy. Finally the findings from the experimental tests are summarized and appropriate conclusions are drawn with respect to understanding characterizing and resolving this transient combustion related impulsive powertrain interior noise issue.

Dhanesh Purekar

2010-01-01T23:59:59.000Z

91

Retail Infrastructure Costs Comparison for Hydrogen and Electricity for Light-Duty Vehicles: Preprint  

SciTech Connect

Both hydrogen and plug-in electric vehicles offer significant social benefits to enhance energy security and reduce criteria and greenhouse gas emissions from the transportation sector. However, the rollout of electric vehicle supply equipment (EVSE) and hydrogen retail stations (HRS) requires substantial investments with high risks due to many uncertainties. We compare retail infrastructure costs on a common basis - cost per mile, assuming fueling service to 10% of all light-duty vehicles in a typical 1.5 million person city in 2025. Our analysis considers three HRS sizes, four distinct types of EVSE and two distinct EVSE scenarios. EVSE station costs, including equipment and installation, are assumed to be 15% less than today's costs. We find that levelized retail capital costs per mile are essentially indistinguishable given the uncertainty and variability around input assumptions. Total fuel costs per mile for battery electric vehicle (BEV) and plug-in hybrid vehicle (PHEV) are, respectively, 21% lower and 13% lower than that for hydrogen fuel cell electric vehicle (FCEV) under the home-dominant scenario. Including fuel economies and vehicle costs makes FCEVs and BEVs comparable in terms of costs per mile, and PHEVs are about 10% less than FCEVs and BEVs. To account for geographic variability in energy prices and hydrogen delivery costs, we use the Scenario Evaluation, Regionalization and Analysis (SERA) model and confirm the aforementioned estimate of cost per mile, nationally averaged, but see a 15% variability in regional costs of FCEVs and a 5% variability in regional costs for BEVs.

Melaina, M.; Sun, Y.; Bush, B.

2014-08-01T23:59:59.000Z

92

Reactivity Controlled Compression Ignition (RCCI) Combustion on a Multi-Cylinder Light-Duty Diesel Engine  

SciTech Connect

Reactivity controlled compression ignition is a low-temperature combustion technique that has been shown, both in computational fluid dynamics modeling and single-cylinder experiments, to obtain diesel-like efficiency or better with ultra-low nitrogen oxide and soot emissions, while operating primarily on gasoline-like fuels. This paper investigates reactivity controlled compression ignition operation on a four-cylinder light-duty diesel engine with production-viable hardware using conventional gasoline and diesel fuel. Experimental results are presented over a wide speed and load range using a systematic approach for achieving successful steady-state reactivity controlled compression ignition combustion. The results demonstrated diesel-like efficiency or better over the operating range explored with low engine-out nitrogen oxide and soot emissions. A peak brake thermal efficiency of 39.0% was demonstrated for 2600 r/min and 6.9 bar brake mean effective pressure with nitrogen oxide emissions reduced by an order of magnitude compared to conventional diesel combustion operation. Reactivity controlled compression ignition emissions and efficiency results are compared to conventional diesel combustion operation on the same engine.

Curran, Scott [ORNL; Hanson, Reed M [ORNL; Wagner, Robert M [ORNL

2012-01-01T23:59:59.000Z

93

Predicting Light-Duty Vehicle Fuel Economy as a Function of Highway Speed  

SciTech Connect

The www.fueleconomy.gov website offers information such as window label fuel economy for city, highway, and combined driving for all U.S.-legal light-duty vehicles from 1984 to the present. The site is jointly maintained by the U.S. Department of Energy and the U.S. Environmental Protection Agency (EPA), and also offers a considerable amount of consumer information and advice pertaining to vehicle fuel economy and energy related issues. Included with advice pertaining to driving styles and habits is information concerning the trend that as highway cruising speed is increased, fuel economy will degrade. An effort was undertaken to quantify this conventional wisdom through analysis of dynamometer testing results for 74 vehicles at steady state speeds from 50 to 80 mph. Using this experimental data, several simple models were developed to predict individual vehicle fuel economy and its rate of change over the 50-80 mph speed range interval. The models presented require a minimal number of vehicle attributes. The simplest model requires only the EPA window label highway mpg value (based on the EPA specified estimation method for 2008 and beyond). The most complex of these simple model uses vehicle coast-down test coefficients (from testing prescribed by SAE Standard J2263) known as the vehicle Target Coefficients, and the raw fuel economy result from the federal highway test. Statistical comparisons of these models and discussions of their expected usefulness and limitations are offered.

Thomas, John F [ORNL; Hwang, Ho-Ling [ORNL; West, Brian H [ORNL; Huff, Shean P [ORNL

2013-01-01T23:59:59.000Z

94

Comparative urban drive cycle simulations of light-duty hybrid vehicles with gasoline or diesel engines and emissions controls  

SciTech Connect

Electric hybridization is a very effective approach for reducing fuel consumption in light-duty vehicles. Lean combustion engines (including diesels) have also been shown to be significantly more fuel efficient than stoichiometric gasoline engines. Ideally, the combination of these two technologies would result in even more fuel efficient vehicles. However, one major barrier to achieving this goal is the implementation of lean-exhaust aftertreatment that can meet increasingly stringent emissions regulations without heavily penalizing fuel efficiency. We summarize results from comparative simulations of hybrid electric vehicles with either stoichiometric gasoline or diesel engines that include state-of-the-art aftertreatment emissions controls for both stoichiometric and lean exhaust. Fuel consumption and emissions for comparable gasoline and diesel light-duty hybrid electric vehicles were compared over a standard urban drive cycle and potential benefits for utilizing diesel hybrids were identified. Technical barriers and opportunities for improving the efficiency of diesel hybrids were identified.

Gao, Zhiming [ORNL] [ORNL; Daw, C Stuart [ORNL] [ORNL; Smith, David E [ORNL] [ORNL

2013-01-01T23:59:59.000Z

95

Future Potential of Hybrid and Diesel Powertrains in the U.S. Light-duty Vehicle Market  

SciTech Connect

Diesel and hybrid technologies each have the potential to increase light-duty vehicle fuel economy by a third or more without loss of performance, yet these technologies have typically been excluded from technical assessments of fuel economy potential on the grounds that hybrids are too expensive and diesels cannot meet Tier 2 emissions standards. Recently, hybrid costs have come down and the few hybrid makes available are selling well. Diesels have made great strides in reducing particulate and nitrogen oxide emissions, and are likely though not certain to meet future standards. In light of these developments, this study takes a detailed look at the market potential of these two powertrain technologies and their possible impacts on light-duty vehicle fuel economy. A nested multinomial logit model of vehicle choice was calibrated to 2002 model year sales of 930 makes, models and engine-transmission configurations. Based on an assessment of the status and outlook for the two technologies, market shares were predicted for 2008, 2012 and beyond, assuming no additional increase in fuel economy standards or other new policy initiatives. Current tax incentives for hybrids are assumed to be phased out by 2008. Given announced and likely introductions by 2008, hybrids could capture 4-7% and diesels 2-4% of the light-duty market. Based on our best guesses for further introductions, these shares could increase to 10-15% for hybrids and 4-7% for diesels by 2012. The resulting impacts on fleet average fuel economy would be about +2% in 2008 and +4% in 2012. If diesels and hybrids were widely available across vehicle classes, makes, and models, they could capture 40% or more of the light-duty vehicle market.

Greene, D.L.

2004-08-23T23:59:59.000Z

96

A techno-economic analysis and optimization of Li-ion batteries for light-duty passenger vehicle electrification  

E-Print Network (OSTI)

A techno-economic analysis and optimization of Li-ion batteries for light-duty passenger vehicle 15213, USA h i g h l i g h t s We analyze EV Li-ion NMC-G battery & pack designs and optimize thickness a b s t r a c t We conduct a techno-economic analysis of Li-ion NMC-G prismatic pouch battery

McGaughey, Alan

97

Present Status and Marketing Prospects of the Emerging Hybrid-Electric and Diesel Technologies to Reduce CO2 Emissions of New Light-Duty Vehicles in California  

E-Print Network (OSTI)

The subject of future markets for diesel powered and hybrid-as the European market for diesel-powered vehicles grows.of a large market for light duty diesel vehicles. Figure 2

Burke, Andy

2004-01-01T23:59:59.000Z

98

Putting policy in drive : coordinating measures to reduce fuel use and greenhouse gas emissions from U.S. light-duty vehicles  

E-Print Network (OSTI)

The challenges of energy security and climate change have prompted efforts to reduce fuel use and greenhouse gas emissions in light-duty vehicles within the United States. Failures in the market for lower rates of fuel ...

Evans, Christopher W. (Christopher William)

2008-01-01T23:59:59.000Z

99

Feasibility Study Of Advanced Technology Hov Systems: Volume 2b: Emissions Impact Of Roadway-powered Electric Buses, Light-duty Vehicles, And Automobiles  

E-Print Network (OSTI)

EV's, roadway-powered electric automobiles, and light dutyFor Roadway-Powered Electric Automobiles -a---- Range ofFor Roadway-Powered Electric Automobiles Range of Estimated

Miller, Mark A.; Dato, Victor; Chira-chavala, Ted

1992-01-01T23:59:59.000Z

100

Membrane-Based Air Composition Control for Light-Duty Diesel Vehicles: A Benefit and Cost Assessment  

SciTech Connect

This report presents the methodologies and results of a study conducted by Argonne National Laboratory (Argonne) to assess the benefits and costs of several membrane-based technologies. The technologies evaluated will be used in automotive emissions-control and performance-enhancement systems incorporated into light-duty diesel vehicle engines. Such engines are among the technologies that are being considered to power vehicles developed under the government-industry Partnership for a New Generation of Vehicles (PNGV). Emissions of nitrogen oxides (NO{sub x}) from diesel engines have long been considered a barrier to use of diesels in urban areas. Recently, particulate matter (PM) emissions have also become an area of increased concern because of new regulations regarding emissions of particulate matter measuring 2.5 micrometers or less (PM{sub 2.5}). Particulates are of special concern for diesel engines in the PNGV program; the program has a research goal of 0.01 gram per mile (g/mi) of particulate matter emissions under the Federal Test Procedure (FTP) cycle. This extremely low level (one-fourth the level of the Tier II standard) could threaten the viability of using diesel engines as stand-alone powerplants or in hybrid-electric vehicles. The techniques analyzed in this study can reduce NO{sub x} and particulate emissions and even increase the power density of the diesel engines used in light-duty diesel vehicles.

K. Stork; R. Poola

1998-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "light-duty vehi cles" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Characteristics of Soot and Particle Size Distribution in the Exhaust of a Common Rail Light-Duty Diesel Engine Fuelled with Biodiesel  

Science Journals Connector (OSTI)

Limited studies have been accumulated as to the effects of biodiesel on PSD in light-duty modern diesel engines employed with common rail (CR) injection system and exhaust gas recirculation (EGR) that are currently widely used in transportation vehicles in European and U.S. markets. ... 0 diesel, which is commonly used in the Chinese market. ...

Xusheng Zhang; Zhijun Wu; Liguang Li

2012-08-09T23:59:59.000Z

102

DOE Issues Request for Information on Fuel Cells for Continuous On-Board Recharging for Battery Electric Light-Duty Vehicles  

Energy.gov (U.S. Department of Energy (DOE))

The USDOE's Fuel Cell Technologies Office has issued an RFI seeking feedback from the research community and relevant stakeholders about fuel cell technology validation, commercial acceleration, and potential deployment strategies for continuous fuel cell rechargers on board light-duty electric vehicle fleets.

103

Effect of Gasoline Properties on Exhaust Emissions from Tier 2 Light-Duty Vehicles -- Final Report: Phase 3; July 28, 2008 - July 27, 2013  

SciTech Connect

This report covers work the Southwest Research Institute (SwRI) Office of Automotive Engineering has conducted for the U.S. Environmental Protection Agency (EPA), the National Renewable Energy Laboratory (NREL), and the Coordinating Research Council (CRC) in support of the Energy Policy Act of 2005 (EPAct). Section 1506 of EPAct requires EPA to produce an updated fuel effects model representing the 2007 light - duty gasoline fleet, including determination of the emissions impacts of increased renewable fuel use. This report covers the exhaust emissions testing of 15 light-duty vehicles with 27 E0 through E20 test fuels, and 4 light-duty flexible fuel vehicles (FFVs) on an E85 fuel, as part of the EPAct Gasoline Light-Duty Exhaust Fuel Effects Test Program. This program will also be referred to as the EPAct/V2/E-89 Program based on the designations used for it by the EPA, NREL, and CRC, respectively. It is expected that this report will be an attachment or a chapter in the overall EPAct/V2/E-89 Program report prepared by EPA and NREL.

Whitney, K.

2014-05-01T23:59:59.000Z

104

Speed-and Facility-Specific Emission Estimates for On-Road Light-Duty Vehicles based on Real-World Speed Profiles  

E-Print Network (OSTI)

06-1096 Speed- and Facility-Specific Emission Estimates for On-Road Light-Duty Vehicles based on Real-World Speed Profiles By H. Christopher Frey, Ph.D. Professor Department of Civil, Construction demand and land use models such as TransCAD, TranPlan or TRANUS produce average link speed and link VMT

Frey, H. Christopher

105

Simulating Study of Premixed Charge Compression Ignition on Light-Duty Diesel Fuel Economy and Emissions Control  

SciTech Connect

We utilize the Powertrain Systems Analysis Toolkit (PSAT) combined with transient engine and aftertreatment component models to simulate the impact of premixed charge compression ignition (PCCI) on the fuel economy and emissions of light-duty (LD) diesel-powered conventional and hybrid electric vehicles (HEVs). Our simulated aftertreatment train consists of a diesel oxidation catalyst (DOC), lean NOx trap (LNT), and catalyzed diesel particulate filter (DPF). The results indicate that utilizing PCCI combustion significantly reduces fuel consumption and tailpipe emissions for the conventional diesel-powered vehicle with NOx and particulate emissions controls. These benefits result from a favorable engine speed-load distribution over the cycle combined with a corresponding reduction in the need to regenerate the LNT and DPF. However, the current PCCI technology appears to offer less potential benefit for diesel HEVs equipped with similar emissions controls. This is because PCCI can only be activated over a relatively small part of the drive cycle. Thus we conclude that future utilization of PCCI in diesel HEVs will require significant extension of the available speed-load range for PCCI and revision of current HEV engine management strategies before significant benefits can be realized.

Gao, Zhiming [ORNL] [ORNL; Daw, C Stuart [ORNL] [ORNL; Wagner, Robert M [ORNL] [ORNL

2012-01-01T23:59:59.000Z

106

Size-resolved engine exhaust aerosol characteristics in a metal foam particulate filter for GDI light-duty vehicle  

Science Journals Connector (OSTI)

The particulate emissions generated from a side-mounted 2.4 L gasoline direct injection (GDI) engine were evaluated using a metal foam-type gasoline particulate filter (GPF), placed on the downstream of a three-way catalyst. An ULEV legislation-compliant light-duty vehicle was tested under the new European driving cycle (NEDC) and at constant-speed driving conditions. Particle number (PN) concentrations, particulate size distribution and the filtration efficiency of the GPF were evaluated with the condensation particle counter (CPC) and the differential mobility spectrometer (DMS). The PN emissions for the entire NEDC were 1.17E+12 N/km for the base GDI vehicle and 4.99E+11 N/km for the GPF-equipped GDI vehicle, and the filtration efficiency of the GPF was 57%. In particular, the number of sub-23 nm particles formed in the GDI vehicle was substantially reduced, with 97% efficiency. The pressure drop in the metal foam-type GPF was constrained to be below 1.0 kPa at a 120 km/h vehicle speed, and as a result, the fuel economy and the CO2 emission for the GPF-applied vehicle were equivalent to those for the base vehicle.

Kwanhee Choi; Juwon Kim; Ahyun Ko; Cha-Lee Myung; Simsoo Park; Jeongmin Lee

2013-01-01T23:59:59.000Z

107

On-vehicle emission measurement of a light-duty diesel van at various speeds at high altitude  

Science Journals Connector (OSTI)

Abstract As part of the research on the relationship between the speed of a vehicle operating at high altitude and its contaminant emissions, an on-vehicle emission measurement of a light-duty diesel van at the altitudes of 1000 m, 2400 m and 3200 m was conducted. The test vehicle was a 2.8 L turbocharged diesel Ford Transit. Its settings were consistent in all experiments. Regulated gaseous emissions, including CO, HC and NOx, together with particulate matter was measured at nine speeds ranged from 10 km h?1 to 90 km h?1 with 10 km h?1 intervals settings. At each speed, measurement lasted for at least 120 s to ensure the sufficiency and reliability of the collected data. The results demonstrated that at all altitudes, CO and HC emissions decreased as the vehicle speed increased. However both \\{NOx\\} and PM increased with vehicle speed. In terms of the effects of altitude, an increase in CO, HC and PM was observed with the rising of altitude at each vehicle speed. \\{NOx\\} behaved different: emission of \\{NOx\\} initially increased as the vehicle was raised from 1000 m to 2400 m, but it decreased when the vehicle was further elevated to 3200 m.

Xin Wang; Hang Yin; Yunshan Ge; Linxiao Yu; Zhenxian Xu; Chenglei Yu; Xuejiao Shi; Hongkun Liu

2013-01-01T23:59:59.000Z

108

Effect of Gasoline Properties on Exhaust Emissions from Tier 2 Light-Duty Vehicles -- Final Report: Phases 4, 5, & 6; July 28, 2008 - July 27, 2013  

SciTech Connect

This report covers work the Southwest Research Institute (SwRI) Office of Automotive Engineering has conducted for the National Renewable Energy Laboratory (NREL) in support of the Energy Policy Act of 2005 (EPAct). Section 1506 of EPAct requires the EPA to produce an updated fuel effects model representing the 2007 light-duty gasoline fleet, including determination of the emissions impacts of increased renewable fuel use.

Whitney, K.; Shoffner, B.

2014-06-01T23:59:59.000Z

109

Investigation of Biodiesel–Diesel Fuel Blends on Combustion Characteristics in a Light-Duty Diesel Engine Using OpenFOAM  

Science Journals Connector (OSTI)

Investigation of Biodiesel–Diesel Fuel Blends on Combustion Characteristics in a Light-Duty Diesel Engine Using OpenFOAM ... (1) In addition, biodiesel can be used in existing compression ignition (CI) or diesel engines with minimal or no modifications because its physicochemical characteristics are very similar to those of fossil diesel. ... However, when CME, PME, and SME are blended with 50 vol % of diesel fuel, the general trend as discussed above is not reproduced. ...

Harun Mohamed Ismail; Hoon Kiat Ng; Suyin Gan; Xinwei Cheng; Tommaso Lucchini

2012-11-12T23:59:59.000Z

110

DRIVE CYCLE EFFICIENCY AND EMISSIONS ESTIMATES FOR REACTIVITY CONTROLLED COMPRESSION IGNITION IN A MULTI-CYLINDER LIGHT-DUTY DIESEL ENGINE  

SciTech Connect

In-cylinder blending of gasoline and diesel to achieve Reactivity Controlled Compression Ignition (RCCI) has been shown to reduce NOx and PM emissions while maintaining or improving brake thermal efficiency as compared to conventional diesel combustion (CDC). The RCCI concept has an advantage over many advanced combustion strategies in that by varying both the percent of premixed gasoline and EGR rate, stable combustion can be extended over more of the light-duty drive cycle load range. Changing the percent premixed gasoline changes the fuel reactivity stratification in the cylinder providing further control of combustion phasing and pressure rise rate than the use of EGR alone. This paper examines the combustion and emissions performance of light-duty diesel engine using direct injected diesel fuel and port injected gasoline to carry out RCCI for steady-state engine conditions which are consistent with a light-duty drive cycle. A GM 1.9L four-cylinder engine with the stock compression ratio of 17.5:1, common rail diesel injection system, high-pressure EGR system and variable geometry turbocharger was modified to allow for port fuel injection with gasoline. Engine-out emissions, engine performance and combustion behavior for RCCI operation is compared against both CDC and a premixed charge compression ignition (PCCI) strategy which relies on high levels of EGR dilution. The effect of percent of premixed gasoline, EGR rate, boost level, intake mixture temperature, combustion phasing and pressure rise rate is investigated for RCCI combustion for the light-duty modal points. Engine-out emissions of NOx and PM were found to be considerably lower for RCCI operation as compared to CDC and PCCI, while HC and CO emissions were higher. Brake thermal efficiency was similar or higher for many of the modal conditions for RCCI operation. The emissions results are used to estimate hot-start FTP-75 emissions levels with RCCI and are compared against CDC and PCCI modes.

Curran, Scott [ORNL; Briggs, Thomas E [ORNL; Cho, Kukwon [ORNL; Wagner, Robert M [ORNL

2011-01-01T23:59:59.000Z

111

AFDC Update Volume 5, Issue 2, Summer 1996  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Drivers of Federal fleet Drivers of Federal fleet vehi- cles report that their alternative fuel vehicles (AFVs) are approach- ing the performance and reliability they expect from gasoline vehicles. That finding is part of the latest report recently released by the National Renewable Energy Laboratory (NREL) as part of the U.S. Department of Energy's AFV light-duty vehicle data collection effort. Although NREL is well known for its alternative fuel emissions data, its latest report, Alternative Fuel Light-Duty Vehicles, "is the first thing we've published specifically for fleet managers to see what we've learned about performance and reliability," said Peg Whalen, NREL staff project engineer. "We wanted to put something together that fleet managers and Clean Cities coordinators could use."

112

On-road emission factors of PM pollutants for light-duty vehicles (LDVs) based on urban street driving conditions  

Science Journals Connector (OSTI)

An on-road sampling campaign was conducted on two major surface streets (Wilshire and Sunset Boulevards) in Los Angeles, CA, to characterize PM components including metals, trace elements, and organic species for three PM size fractions (PM10–2.5, PM2.5–0.25, and PM0.25). Fuel-based emission factors (mass of pollutant per kg of fuel) were calculated to assess the emissions profile of a light-duty vehicle (LDV) traffic fleet characterized by stop-and-go driving conditions that are reflective of urban street driving. Emission factors for metals and trace elements were highest in PM10–2.5 while emission factors for \\{PAHs\\} and hopanes and steranes were highest in PM0.25. PM2.5 emission factors were also compared to previous freeway, roadway tunnel, and dynamometer studies based on an LDV fleet to determine how various environments and driving conditions may influence concentrations of PM components. The on-road sampling methodology deployed in the current study captured substantially higher levels of metals and trace elements associated with vehicular abrasion (Fe, Ca, Cu, and Ba) and crustal origins (Mg and Al) than previous LDV studies. The semi-volatile nature of \\{PAHs\\} resulted in higher levels of \\{PAHs\\} in the particulate phase for LDV tunnel studies (Phuleria et al., 2006) and lower levels of \\{PAHs\\} in the particulate phase for freeway studies (Ning et al., 2008). With the exception of a few high molecular weight PAHs, the current study's emission factors were in between the LDV tunnel and LDV freeway studies. In contrast, hopane and sterane emission factors were generally comparable between the current study, the LDV tunnel, and LDV freeway, as expected given the greater atmospheric stability of these organic compounds. Overall, the emission factors from the dynamometer studies for metals, trace elements, and organic species are lower than the current study. Lastly, n-alkanes (C19–C40) were quantified and alkane carbon preference indices (CPIs) were determined to be in the range of 1–2, indicating substantial anthropogenic source contribution for surface streets in Los Angeles.

Winnie Kam; James W. Liacos; James J. Schauer; Ralph J. Delfino; Constantinos Sioutas

2012-01-01T23:59:59.000Z

113

Program Record 13006 (Offices of Vehicle Technologies and Fuel Cell Technologies: Life-Cycle Costs of Mid-Size Light-Duty Vehicles  

NLE Websites -- All DOE Office Websites (Extended Search)

Program Record (Offices of Vehicle Technologies & Fuel Cell Program Record (Offices of Vehicle Technologies & Fuel Cell Technologies) Record #: 13006 Date: April 24, 2013 Title: Life-cycle Costs of Mid-Size Light-Duty Vehicles Originator: Tien Nguyen & Jake Ward Approved by: Sunita Satyapal Pat Davis Date: April 25, 2013 Items: DOE is pursuing a portfolio of technologies with the potential to significantly reduce greenhouse gases (GHG) emissions and petroleum consumption while being cost-effective. This record documents the assumptions and results of analyses conducted to estimate the life-cycle costs resulting from several fuel/vehicle pathways, for a future mid-size car. The results are summarized graphically in the following figure. Costs of Operation for Future Mid-Size Car

114

Cost of Ownership and Well-to-Wheels Carbon Emissions/Oil Use of Alternative Fuels and Advanced Light-Duty Vehicle Technologies  

SciTech Connect

The U.S. Department of Energy (DOE), Argonne National Laboratory (Argonne), and the National Renewable Energy Laboratory (NREL) updated their analysis of the well-to-wheels (WTW) greenhouse gases (GHG) emissions, petroleum use, and the cost of ownership (excluding insurance, maintenance, and miscellaneous fees) of vehicle technologies that have the potential to significantly reduce GHG emissions and petroleum consumption. The analyses focused on advanced light-duty vehicle (LDV) technologies such as plug-in hybrid, battery electric, and fuel cell electric vehicles. Besides gasoline and diesel, alternative fuels considered include natural gas, advanced biofuels, electricity, and hydrogen. The Argonne Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation (GREET) and Autonomie models were used along with the Argonne and NREL H2A models.

Elgowainy, Mr. Amgad [Argonne National Laboratory (ANL); Rousseau, Mr. Aymeric [Argonne National Laboratory (ANL); Wang, Mr. Michael [Argonne National Laboratory (ANL); Ruth, Mr. Mark [National Renewable Energy Laboratory (NREL); Andress, Mr. David [David Andress & Associates, Inc.; Ward, Jacob [U.S. Department of Energy; Joseck, Fred [U.S. Department of Energy; Nguyen, Tien [U.S. Department of Energy; Das, Sujit [ORNL

2013-01-01T23:59:59.000Z

115

Assessment of the effect of low viscosity oils usage on a light duty diesel engine fuel consumption in stationary and transient conditions  

Science Journals Connector (OSTI)

Abstract Regarding the global warming due to CO2 emissions, the crude oil depletion and its corresponding rising prices, \\{OEMs\\} are exploring different solutions to increase the internal combustion engine efficiency, among which, the use of Low Viscosity Oils (LVO) represents one attractive cost-effective way to accomplish this goal. Reported in terms of fuel consumption, the effect of LVO is round 2%, depending on the test conditions, especially if the test has taken place in laboratory or “on road” conditions. This study presents the fuel consumption benefits of a commercial 5W20, compared against higher SAE grade oils, on a light duty diesel engine, when it is running under motored test, stationary fired test and the New European Driving Cycle (NEDC).

Vicente Macián; Bernardo Tormos; Vicente Bermúdez; Leonardo Ramírez

2014-01-01T23:59:59.000Z

116

Effect of E85 on RCCI Performance and Emissions on a Multi-Cylinder Light-Duty Diesel Engine - SAE World Congress  

SciTech Connect

This paper investigates the effect of E85 on load expansion and FTP modal point emissions indices under reactivity controlled compression ignition (RCCI) operation on a light-duty multi-cylinder diesel engine. A General Motors (GM) 1.9L four-cylinder diesel engine with the stock compression ratio of 17.5:1, common rail diesel injection system, high-pressure exhaust gas recirculation (EGR) system and variable geometry turbocharger was modified to allow for port fuel injection with gasoline or E85. Controlling the fuel reactivity in-cylinder by the adjustment of the ratio of premixed low-reactivity fuel (gasoline or E85) to direct injected high reactivity fuel (diesel fuel) has been shown to extend the operating range of high-efficiency clean combustion (HECC) compared to the use of a single fuel alone as in homogeneous charge compression ignition (HCCI) or premixed charge compression ignition (PCCI). The effect of E85 on the Ad-hoc federal test procedure (FTP) modal points is explored along with the effect of load expansion through the light-duty diesel speed operating range. The Ad-hoc FTP modal points of 1500 rpm, 1.0bar brake mean effective pressure (BMEP); 1500rpm, 2.6bar BMEP; 2000rpm, 2.0bar BMEP; 2300rpm, 4.2bar BMEP; and 2600rpm, 8.8bar BMEP were explored. Previous results with 96 RON unleaded test gasoline (UTG-96) and ultra-low sulfur diesel (ULSD) showed that with stock hardware, the 2600rpm, 8.8bar BMEP modal point was not obtainable due to excessive cylinder pressure rise rate and unstable combustion both with and without the use of EGR. Brake thermal efficiency and emissions performance of RCCI operation with E85 and ULSD is explored and compared against conventional diesel combustion (CDC) and RCCI operation with UTG 96 and ULSD.

Curran, Scott [ORNL; Hanson, Reed M [ORNL; Wagner, Robert M [ORNL

2012-01-01T23:59:59.000Z

117

Full documents available at: http://www.epa.gov/otaq/climate/regulations.htm EPA's section of the Preamble for the Light-Duty GHG Rule (see pp. 388-396)  

E-Print Network (OSTI)

of the Preamble for the Light-Duty GHG Rule (see pp. 388-396) III.H. What are the Estimated Cost, Economic, and Other Impacts of the Program? In this section, EPA presents the costs and impacts of EPA's GHG program. It is important to note that NHTSA's CAFE standards and EPA's GHG standards will both be in effect, and each

Edwards, Paul N.

118

Real-world fuel consumption and CO2 (carbon dioxide) emissions by driving conditions for light-duty passenger vehicles in China  

Science Journals Connector (OSTI)

Abstract The increasing discrepancy between on-road and type-approval fuel consumption for \\{LDPVs\\} (light-duty passenger vehicles) has attracted tremendous attention. We measured on-road emissions for 60 \\{LDPVs\\} in three China's cities and calculated their fuel consumption and CO2 (carbon dioxide) emissions. We further evaluated the impacts of variations in area-averaged speed on relative fuel consumption of gasoline \\{LDPVs\\} for the UAB (urban area of Beijing). On-road fuel consumption under the average driving pattern is 10 ± 2% higher than that normalized to the NEDC (new European driving cycle) cycle for all tested vehicles, and the on-road NEDC-normalized fuel consumption is higher by 30 ± 12% compared to type-approval values for gasoline vehicles. We observed very strong correlations between relative fuel consumption and average speed. Traffic control applied to \\{LDPVs\\} driving within the UAB during weekdays can substantially reduce total fleet fuel consumption by 23 ± 5% during restriction hours by limiting vehicle use and improving driving conditions. Our results confirmed that a new cycle for the type approval test for \\{LDPVs\\} with more real-world driving features is of great necessity. Furthermore, enhanced traffic control measures could play an important role in mitigating real-world fuel consumption and CO2 emissions for \\{LDPVs\\} in China.

Shaojun Zhang; Ye Wu; Huan Liu; Ruikun Huang; Puikei Un; Yu Zhou; Lixin Fu; Jiming Hao

2014-01-01T23:59:59.000Z

119

Simulating the Impact of Premixed Charge Compression Ignition on Light-Duty Diesel Fuel Economy and Emissions of Particulates and NOx  

SciTech Connect

We utilize the Powertrain Systems Analysis Toolkit (PSAT) combined with transient engine and aftertreatment component models implemented in Matlab/Simulink to simulate the effect of premixed charge compression ignition (PCCI) on the fuel economy and emissions of light-duty diesel-powered conventional and hybrid electric vehicles (HEVs). Our simulated engine is capable of both conventional diesel combustion (CDC) and premixed charge compression ignition (PCCI) over real transient driving cycles. Our simulated aftertreatment train consists of a diesel oxidation catalyst (DOC), lean NOx trap (LNT), and catalyzed diesel particulate filter (DPF). The results demonstrate that, in the simulated conventional vehicle, PCCI can significantly reduce fuel consumption and emissions by reducing the need for LNT and DPF regeneration. However, the opportunity for PCCI operation in the simulated HEV is limited because the engine typically experiences higher loads and multiple stop-start transients that are outside the allowable PCCI operating range. Thus developing ways of extending the PCCI operating range combined with improved control strategies for engine and emissions control management will be especially important for realizing the potential benefits of PCCI in HEVs.

Gao, Zhiming [ORNL; Daw, C Stuart [ORNL; Wagner, Robert M [ORNL; Edwards, Kevin Dean [ORNL; Smith, David E [ORNL

2013-01-01T23:59:59.000Z

120

Experimental Investigation of the Effects of Fuel Characteristics on High Efficiency Clean Combustion (HECC) in a Light-Duty Diesel Engine  

SciTech Connect

An experimental study was performed to understand fuel property effects on low temperature combustion (LTC) processes in a light-duty diesel engine. These types of combustion modes are often collectively referred to as high efficiency clean combustion (HECC). A statistically designed set of research fuels, the Fuels for Advanced Combustion Engines (FACE), were used for this study. Engine conditions consistent with low speed cruise (1500 rpm, 2.6 bar BMEP) were chosen for investigating fuel property effects on HECC operation in a GM 1.9-L common rail diesel engine. The FACE fuel matrix includes nine combinations of fuel properties including cetane number (30 to 55), aromatic contents (20 to 45 %), and 90 % distillation temperature (270 to 340 C). HECC operation was achieved with high levels of EGR and adjusting injection parameters, e.g. higher fuel rail pressure and single injection event, which is also known as Premixed Charge Compression Ignition (PCCI) combustion. Engine performance, pollutant emissions, and details of the combustion process are discussed in this paper. Cetane number was found to significantly affect the combustion process with variations in the start of injection (SOI) timing, which revealed that the ranges of SOI timing for HECC operation and the PM emission levels were distinctively different between high cetane number (55) and low cetane number fuels (30). Low cetane number fuels showed comparable levels of regulated gas emissions with high cetane number fuels and had an advantage in PM emissions.

Cho, Kukwon [ORNL; Han, Manbae [ORNL; Wagner, Robert M [ORNL; Sluder, Scott [ORNL

2009-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "light-duty vehi cles" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Global Assessment of Hydrogen Technologies - Task 2 Report Comparison of Performance and Emissions from Near-Term Hydrogen Fueled Light Duty Vehicles  

SciTech Connect

An investigation was conducted on the emissions and efficiency from hydrogen blended compressed natural gas (CNG) in light duty vehicles. The different blends used in this investigation were 0%, 15%, 30%, 50%, 80%, 95%, and ~100% hydrogen, the remainder being compressed natural gas. The blends were tested using a Ford F-150 and a Chevrolet Silverado truck supplied by Arizona Public Services. Tests on emissions were performed using four different driving condition tests. Previous investigation by Don Karner and James Frankfort on a similar Ford F-150 using a 30% hydrogen blend showed that there was substantial reduction when compared to gasoline in carbon monoxide (CO), nitrogen oxide (NOx), and carbon dioxide (CO2) emissions while the reduction in hydrocarbon (HC) emissions was minimal. This investigation was performed using different blends of CNG and hydrogen to evaluate the emissions reducing capabilities associated with the use of the different fuel blends. The results were then tested statistically to confirm or reject the hypotheses on the emission reduction capabilities. Statistically analysis was performed on the test results to determine whether hydrogen concentration in the HCNG had any effect on the emissions and the fuel efficiency. It was found that emissions from hydrogen blended compressed natural gas were a function of driving condition employed. Emissions were found to be dependent on the concentration of hydrogen in the compressed natural gas fuel blend.

Fouad, Fouad H.; Peters, Robert W.; Sisiopiku, Virginia P.; Sullivan Andrew J.; Ng, Henry K.; Waller, Thomas

2007-12-01T23:59:59.000Z

122

Use of the Modified Light Duty Utility Arm to Perform Nuclear Waste Cleanup of Underground Waste Storage Tanks at Oak Ridge National Laboratory  

SciTech Connect

The Modified Light Duty Utility Arm (MLDUA) is a selectable seven or eight degree-of-freedom robot arm with a 16.5 ft (5.03 m) reach and a payload capacity of 200 lb. (90.72 kg). The utility arm is controlled in either joystick-based telerobotic mode or auto sequence robotics mode. The MLDUA deployment system deploys the utility arm vertically into underground radioactive waste storage tanks located at Oak Ridge National Laboratory. These tanks are constructed of gunite material and consist of two 25 ft (7.62 m) diameter tanks in the North Tank Farm and six 50 ft (15.24 m) diameter tanks in the South Tank Farm. After deployment inside a tank, the utility arm reaches and grasps the confined sluicing end effecter (CSEE) which is attached to the hose management arm (HMA). The utility arm positions the CSEE within the tank to allow the HMA to sluice the tank's liquid and solid waste from the tank. The MLDUA is used to deploy the characterization end effecter (CEE) and gunite scarifying end effecter (GSEE) into the tank. The CEE is used to survey the tank wall's radiation levels and the physical condition of the walls. The GSEE is used to scarify the tank walls with high-pressure water to remove the wall scale buildup and a thin layer of gunite which reduces the radioactive contamination that is embedded into the gunite walls. The MLDUA is also used to support waste sampling and wall core-sampling operations. Other tools that have been developed for use by the MLDUA include a pipe-plugging end effecter, pipe-cutting end effecter, and pipe-cleaning end effecter. Washington University developed advance robotics path control algorithms for use in the tanks. The MLDUA was first deployed in June 1997 and has operated continuously since then. Operational experience in the first four tanks remediated is presented in this paper.

Blank, J.A.; Burks, B.L.; DePew, R.E.; Falter, D.D.; Glassell, R.L.; Glover, W.H.; Killough, S.M.; Lloyd, P.D.; Love, L.J.; Randolph, J.D.; Van Hoesen, S.D.; Vesco, D.P.

1999-04-01T23:59:59.000Z

123

Experimental Investigation of Fuel-Reactivity Controlled Compression Ignition (RCCI) Combustion Mode in a Multi-Cylinder, Light-Duty Diesel Engine  

SciTech Connect

An experimental study was performed to provide the combustion and emission characteristics resulting from fuel-reactivity controlled compression ignition (RCCI) combustion mode utilizing dual-fuel approach in a light-duty, multi-cylinder diesel engine. In-cylinder fuel blending using port fuel injection of gasoline before intake valve opening (IVO) and early-cycle, direct injection of diesel fuel was used as the charge preparation and fuel blending strategy. In order to achieve the desired auto-ignition quality through the stratification of the fuel-air equivalence ratio ( ), blends of commercially available gasoline and diesel fuel were used. Engine experiments were performed at an engine speed of 2300rpm and an engine load of 4.3bar brake mean effective pressure (BMEP). It was found that significant reduction in both nitrogen oxide (NOx) and particulate matter (PM) was realized successfully through the RCCI combustion mode even without applying exhaust gas recirculation (EGR). However, high carbon monoxide (CO) and hydrocarbon (HC) emissions were observed. The low combustion gas temperature during the expansion and exhaust processes seemed to be the dominant source of high CO emissions in the RCCI combustion mode. The high HC emissions during the RCCI combustion mode could be due to the increased combustion quenching layer thickness as well as the -stratification at the periphery of the combustion chamber. The slightly higher brake thermal efficiency (BTE) of the RCCI combustion mode was observed than the other combustion modes, such as the conventional diesel combustion (CDC) mode, and single-fuel, premixed charge compression ignition (PCCI) combustion mode. The parametric study of the RCCI combustion mode revealed that the combustion phasing and/or the peak cylinder pressure rise rate of the RCCI combustion mode could be controlled by several physical parameters premixed ratio (rp), intake swirl intensity, and start of injection (SOI) timing of directly injected fuel unlike other low temperature combustion (LTC) strategies.

Cho, Kukwon [ORNL] [ORNL; Curran, Scott [ORNL] [ORNL; Prikhodko, Vitaly Y [ORNL] [ORNL; Sluder, Scott [ORNL] [ORNL; Parks, II, James E [ORNL; Wagner, Robert M [ORNL] [ORNL

2011-01-01T23:59:59.000Z

124

Light Duty Combustion Research: Advanced Light-Duty Combustion Experiments  

Energy.gov (U.S. Department of Energy (DOE))

2009 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting, May 18-22, 2009 -- Washington D.C.

125

Light Duty Combustion Research: Advanced Light-Duty Combustion...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

reactor simulations with detailed chemistry clarified expected impact of , T, and EGR rate on CO and UHC oxidation Clearance volume CO and UHC measurements identify...

126

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Do alternative fuel vehicles Do alternative fuel vehicles (AFVs) improve air quality? How does the use of alternative fuels affect smog formation? You may find answers to these and other questions through the U.S. Department of Energy's (DOE) Alternative Fuels Data Center (AFDC)-the nation's most com- prehensive repository of perfor- mance data and general informa- tion on AFVs. To date, more than 600 vehi- cles-including light-duty cars, trucks, vans, transit buses, and heavy-duty trucks-have been tested on various alternative and conventional fuels with the goal of identifying the potential for alter- native fuels to displace petroleum and improve our nation's air quality. Although comparing regu- lated emissions between fuels may seem straightforward, evaluating emissions is complicated by

127

Light Duty Vehicle CNG Tanks  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Vehicle CNG Tanks Dane A. Boysen, PhD Program Director Advanced Research Projects Agency-Energy, US DOE dane.boysen@doe.gov Fiber Reinforced Polymer Composite Manufacturing...

128

Light Duty Efficient Clean Combustion  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

fuel efficiency over the FTP city drive cycle by 10.5% over today's state-of-the-art diesel engine. Develop & design an advanced combustion system that synergistically meets...

129

Assessment of costs and benefits of flexible and alternative fuel use in the U.S. transportation sector. Technical report fourteen: Market potential and impacts of alternative fuel use in light-duty vehicles -- A 2000/2010 analysis  

SciTech Connect

In this report, estimates are provided of the potential, by 2010, to displace conventional light-duty vehicle motor fuels with alternative fuels--compressed natural gas (CNG), liquefied petroleum gas (LPG), methanol from natural gas, ethanol from grain and from cellulosic feedstocks, and electricity--and with replacement fuels such as oxygenates added to gasoline. The 2010 estimates include the motor fuel displacement resulting both from government programs (including the Clean Air Act and EPACT) and from potential market forces. This report also provides an estimate of motor fuel displacement by replacement and alterative fuels in the year 2000. However, in contrast to the 2010 estimates, the year 2000 estimate is restricted to an accounting of the effects of existing programs and regulations. 27 figs., 108 tabs.

NONE

1996-01-01T23:59:59.000Z

130

Exascale for Energy: The Role of Exascale Computing in Energy Security  

E-Print Network (OSTI)

Exascale for Energy The Electric Power Grid The current U.S.power grid is a huge, interconnected net- work composed ofelectric vehi- cles. The power grid is also in the midst of

Authors, Various

2010-01-01T23:59:59.000Z

131

Mobility chains analysis of technologies for passenger cars and light duty vehicles fueled with biofuels : application of the Greet model to project the role of biomass in America's energy future (RBAEF) project.  

SciTech Connect

The Role of Biomass in America's Energy Future (RBAEF) is a multi-institution, multiple-sponsor research project. The primary focus of the project is to analyze and assess the potential of transportation fuels derived from cellulosic biomass in the years 2015 to 2030. For this project, researchers at Dartmouth College and Princeton University designed and simulated an advanced fermentation process to produce fuel ethanol/protein, a thermochemical process to produce Fischer-Tropsch diesel (FTD) and dimethyl ether (DME), and a combined heat and power plant to co-produce steam and electricity using the ASPEN Plus{trademark} model. With support from the U.S. Department of Energy (DOE), Argonne National Laboratory (ANL) conducted, for the RBAEF project, a mobility chains or well-to-wheels (WTW) analysis using the Greenhouse gases, Regulated Emissions, and Energy use in Transportation (GREET) model developed at ANL. The mobility chains analysis was intended to estimate the energy consumption and emissions associated with the use of different production biofuels in light-duty vehicle technologies.

Wu, M.; Wu, Y.; Wang, M; Energy Systems

2008-01-31T23:59:59.000Z

132

NGV and FCV Light Duty Transportation Perspective  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

transportation perspectives Matt Fronk, Matt Fronk & Associates, LLC 1 OctOber 2011 | ArgOnne nAtiOnAl lAbOrAtOry NG Workshop summary report - appeNDIX G 2 OctOber 2011 | ArgOnne...

133

Business Case for Light-Duty Diesels  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

(NSC) 12 Cost of Diesel Systems Aftertreatment - components SCR has a high NOx conversion rate and good durability Potential exists for Bin 5 for light trucks up to 8,500 lbs...

134

Advanced Technology Light Duty Diesel Aftertreatment System ...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Approach to Low Temperature NOx Emission Abatement Cummins' Next Generation Tier 2, Bin 2 Light Truck Diesel Engine ATP-LD; Cummins Next Generation Tier 2 Bin 2 Diesel Engine...

135

Advanced Technology Light Duty Diesel Aftertreatment System  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Dearborn, MI T2B2 FTP-75 NOx Cycle Limit http:www.dieselnet.comstandardscyclesftp75.php ATLAS T2B2 AT Strategy Summary 1162012 U.S. Department of Energy DEER 2012 -...

136

PDE Estimation Techniques for Advanced Battery Management Systems -Part II: SOH Identification  

E-Print Network (OSTI)

vehi- cles and renewable energy resources is battery energy storage. Advanced battery systems representPDE Estimation Techniques for Advanced Battery Management Systems - Part II: SOH Identification S examines identification algorithms for state- of-health (SOH) related parameters in advanced batteries

Krstic, Miroslav

137

Atmos. Chem. Phys., 8, 737747, 2008 www.atmos-chem-phys.net/8/737/2008/  

E-Print Network (OSTI)

and Physics Capturing vertical profiles of aerosols and black carbon over the Indian Ocean using autonomous profiles of aerosol and water vapor were determined using autonomous unmanned aerial vehi- cles equipped and black carbon concentrations are presented along with the trade wind thermodynamic structure from the sur

Paris-Sud XI, Université de

138

n a bright spring morning in Pasadena, California, the air is rich with the smells  

E-Print Network (OSTI)

trucks with electric vehi- cles charged by solar cells or wind -- but that cannottacklethewholeproblem reported3 a complete system that showedamajoradvance--itstored12%ofthe incoming solar energy as fuel- rentglobaltransportationcannotbeelectrified. For example, barring a major breakthrough, there will never be a plug-in hybrid plane: no craft

Napp, Nils

139

Evaluating the Potential for Vehicle Transport of Propagules  

E-Print Network (OSTI)

Evaluating the Potential for Vehicle Transport of Propagules of Invasive Species Harold Balbach ­ U in the directive as threaten- ing the ecological integrity of native communities and ecosystems nationwide by a variety of natural and human actions. Roads and vehi- cles, including military vehicles and off

Maxwell, Bruce D.

140

Alternative Fuels Data Center: Light-Duty Vehicle Search  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fuel Type Fuel Type All Bi-Fuel Natural Gas (16) Bi-Fuel Propane (12) Biodiesel (B20) (11) Electric (13) Flex Fuel (E85) (91) Hybrid Electric (36) Hydrogen (3) Methanol (0) Natural Gas (4) Plug-in Hybrid Electric (10) Propane (2) Manufacturer All Acura (2) Audi (6) BMW (6) Bentley Motors (4) Buick (2) Cadillac (4) Chevrolet (25) Chrysler (3) Coda Automotive (0) Dodge (7) Fiat (1) Fisker Automotive (0) Ford (48) GMC (19) General Motors EV (0) HUMMER (0) Honda (8) Hyundai (2) Infiniti (4) Jaguar (6) Jeep (1) Kia (2) Land Rover (4) Lexus (5) Lincoln (2) Mazda (0) Mazda (0) McLaren (1) Mercedes-Benz (8) Mercury (0) Mitsubishi (1) Nissan (4) Plymouth (0) Porsche (2) QUANTUM-PROCON (0) Ram (5) Saab (0) Saturn (0) Scion (1) Smart (1) Solectria (0) Subaru (1) Tesla (1) Tesla Motors (0) Toyota (10) Vehicle

Note: This page contains sample records for the topic "light-duty vehi cles" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Light Duty Diesels in the United States - Some Perspectives ...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Particulate Filters: Market Introducution in Europe Diesel Particulate Filter: A Success for Faurecia Exhaust Systems Aftertreatment Modeling Status, Futur Potential, and...

142

Thermoelectric Opportunities for Light-Duty Vehicles | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Heat Recovery Thermoelectric Activities of European Community within Framework Programme 7 and additional activities in Germany Automotive Thermoelectric Generator (TEG) Controls...

143

Light-Duty Diesel Market Potential in North America  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Diesel Engineering General Motors Corporation GM's Long Term Vision Remove the automobile from the energy & environmental equation Reduced Vehicle Emissions and Increased...

144

Methanol fumigation of a light duty automotive diesel engine  

SciTech Connect

An Oldsmobile 5.7 l V-8 diesel engine was fumigated with methanol in amounts up to 40% of the fuel energy. The primary objectives of this study were to determine the effect of methanol fumigation on fuel efficiency, smoke, nitric oxide emission, and the occurrence of severe knock. An assessment of the biological activity for samples of the raw exhaust particulate and its soluable organic extract was also made using both the Ames Salmonella typhimurium test and the Bacillus subtilis Comptest. Results are presented for a test matrix consisting of twelve steady state operating conditions chosen to reflect over-the-road operation of a diesel engine powered automobile. Generally methanol fumigation was found to decrease NO emission for all conditions, to have a slight effect on smoke opacity, and to have a beneficial effect on fuel efficiency at higher loads. Also at higher loads the methanol was found to induce what was defined as knock limited operation. While the biological activity of the raw particulate was generally found to be lower than that of the soluble organic fraction, the fumigation of methanol appears to enhance this activity in both cases.

Houser, K.R.; Lestz, S.S.; Dukovich, M.; Yasbin, R.E.

1980-01-01T23:59:59.000Z

145

Light Duty Diesels in the United States - Some Perspectives ...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

2005 Diesel Engine Emissions Reduction (DEER) Conference Presentations and Posters 2005deerjohnson.pdf More Documents & Publications Update on Diesel Exhaust Emission...

146

Light Duty Diesels in North America A Huge Opportunity  

Energy.gov (U.S. Department of Energy (DOE))

Presentation given at DEER 2006, August 20-24, 2006, Detroit, Michigan. Sponsored by the U.S. DOE's EERE FreedomCar and Fuel Partnership and 21st Century Truck Programs.

147

Light-duty Diesels: Clean Enough? | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

of 2010 Emissions Regulations over Transient Operation Diesel Passenger Car Technology for Low Emissions and CO2 Compliance 2008 Annual Merit Review Results Summary - 17. Acronyms...

148

Assessment of Fuel Economy Technologies for Light-Duty Vehicles  

SciTech Connect

An analysis of the number of stations and vehicles necessary to achieve future goals for sales of ethanol fuel (E85) is presented. Issues related to the supply of ethanol, which may turn out to be of even greater concern, are not analyzed here. A model of consumers decisions to purchase E85 versus gasoline based on prices, availability, and refueling frequency is derived, and preliminary results for 2010, 2017, and 2030 consistent with the president s 2007 biofuels program goals are presented. A limited sensitivity analysis is carried out to indicate key uncertainties in the trade-off between the number of stations and fuels. The analysis indicates that to meet a 2017 goal of 26 billion gallons of E85 sold, on the order of 30% to 80% of all stations may need to offer E85 and that 125 to 200 million flexible-fuel vehicles (FFVs) may need to be on the road, even if oil prices remain high. These conclusions are tentative for three reasons: there is considerable uncertainty about key parameter values, such as the price elasticity of choice between E85 and gasoline; the future prices of E85 and gasoline are uncertain; and the method of analysis used is highly aggregated it does not consider the potential benefits of regional strategies or the possible existence of market segments predisposed to purchase E85. Nonetheless, the preliminary results indicate that the 2017 biofuels program goals are ambitious and will require a massive effort to produce enough FFVs and ensure widespread availability of E85.

Greene, David L [ORNL

2008-01-01T23:59:59.000Z

149

Fuel Spray Research on Light-Duty Injection Systems  

Energy.gov (U.S. Department of Energy (DOE))

2010 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C.

150

Fuel Spray Research on Light-Duty Injection Systems  

Energy.gov (U.S. Department of Energy (DOE))

2009 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting, May 18-22, 2009 -- Washington D.C.

151

Ultra-Low Sulfur diesel Update & Future Light Duty Diesel  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

MILLION BBL PER DAY ULSD DISTRIBUTION SYSTEM INVENTORY 50% CONVERTED TO ULSD CONVERSIONS PROCEEDING ON SCHEDULE RETAIL INVENTORY IS BEING CONVERTED BY...

152

Light Duty Plug-in Hybrid Vehicle Systems Analysis  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Bennion, Aaron Brooker, Jeff Gonder, and Matt Thornton National Renewable Energy Laboratory 2009 DOE Vehicle Technologies Annual Merit Review May 19 th , 2009 Project ID:...

153

NREL: Vehicles and Fuels Research - Light-Duty Vehicle Thermal...  

NLE Websites -- All DOE Office Websites (Extended Search)

and passenger thermal comfort. Analogous to crash-test dummies, these manikins measure heat loss and skin temperature through numerous sensors, making it possible to efficiently...

154

WORKSHOP REPORT:Light-Duty Vehicles Technical Requirements and...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

some body structure applications, such as shock towers, instrument panels, cross car beams, and interior components. However, to be useful in crash critical front-end...

155

Light Duty Fuel Cell Electric Vehicle Hydrogen Fueling Protocol  

Energy.gov (U.S. Department of Energy (DOE))

Webinar slides from the U.S. Department of Energy Fuel Cell Technologies Office webinar, "Hydrogen Refueling Protocols," held February 22, 2013.

156

Emissions from the European Light Duty Diesel Vehicle During...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

DPF Regeneration Events Repeated partial regenerations may cause changes in the mechanical and chemical properties of the PM in the DPF. deer09dwyer.pdf More Documents &...

157

Light-Duty Lean GDI Vehicle Technology Benchmark | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Control for Lean Gasoline Engines Advanced PHEV Engine Systems and Emissions Control Modeling and Analysis Reductant Chemistry during LNT Regeneration for a Lean Gasoline Engine...

158

Organic Rankine Cycle for Light Duty Passenger Vehicles  

Energy.gov (U.S. Department of Energy (DOE))

Dynamic model of organic Rankine cycle with R245fa working fluid and conservative component efficiencies predict power generation in excess of electrical accessory load demand under highway drive cycle

159

Effects of Ethanol and Volatility Parameters on Exhaust Emissions of Light-Duty Vehicles  

E-Print Network (OSTI)

26-28, 2005 THE EFFECTS OF ETHANOL AND VOLATILITY PARAMETERSare changed to include ethanol. While past studies of theincluding many with ethanol, there are some contradictory

Durbin, T; Miller, J W; Huai, T; Cocker III, D R; Younglove, Y

2005-01-01T23:59:59.000Z

160

Drive cycle analysis of butanol/diesel blends in a light-duty vehicle.  

SciTech Connect

The potential exists to displace a portion of the petroleum diesel demand with butanol and positively impact engine-out particulate matter. As a preliminary investigation, 20% and 40% by volume blends of butanol with ultra low sulfur diesel fuel were operated in a 1999 Mercedes Benz C220 turbo diesel vehicle (Euro III compliant). Cold and hot start urban as well as highway drive cycle tests were performed for the two blends of butanol and compared to diesel fuel. In addition, 35 MPH and 55 MPH steady-state tests were conducted under varying road loads for the two fuel blends. Exhaust gas emissions, fuel consumption, and intake and exhaust temperatures were acquired for each test condition. Filter smoke numbers were also acquired during the steady-state tests.

Miers, S. A.; Carlson, R. W.; McConnell, S. S.; Ng, H. K.; Wallner, T.; LeFeber, J.; Energy Systems; Esper Images Video & Multimedia

2008-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "light-duty vehi cles" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Impact of Canada’s Voluntary Agreement on Greenhouse Gas Emissions from Light Duty Vehicles  

E-Print Network (OSTI)

Energy’s Argonne National Laboratory suggests that present corn-energy and GHG reduction can result from the introduction of grain-based corn

Lutsey, Nicholas P.

2006-01-01T23:59:59.000Z

162

Impact of Canada's Voluntary Agreement on Greenhouse Gas Emissions from Light Duty Vehicles  

E-Print Network (OSTI)

Energy’s Argonne National Laboratory suggests that present corn-energy and GHG reduction can result from the introduction of grain-based corn

Lutsey, Nicholas P.

2006-01-01T23:59:59.000Z

163

High Efficiency Clean Combustion in Multi-Cylinder Light-Duty...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

VTP goals of reducing petroleum energy use (engine system) including potential market penetration with efficient, cost-effective aftertreatments. * Program Objectives (MYPP...

164

Accelerating Light-Duty Diesel Sales in the U.S. Market  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Diesel Sales in the U.S. Market Klaus-Peter Schindler Volkswagen AG, Wolfsburg, Germany Content Situation in Europe Situation in U.S. Motivation for customers to...

165

E-Print Network 3.0 - acceptable light-duty diesel Sample Search...  

NLE Websites -- All DOE Office Websites (Extended Search)

reactive nitrogen compounds from ... Source: Denver, University of - Fuel Efficiency Automobile Test Data Center Collection: Energy Storage, Conversion and Utilization 10 Shaping...

166

Hydrogen/Natural Gas Blends for Heavy and Light-Duty Applications  

E-Print Network (OSTI)

exhaust emissions that can be achieved relative to both diesel and natural gas alternatives. The design $ For applications that now use diesel engines $ Develop engine configurations that can replace existing diesel that minimizes the surface to volume ratio. However, care must be taken to avoid engine knock. This can require

167

Light-Duty Reactivity Controlled Compression Ignition Drive Cycle Fuel Economy and Emissions Estimates  

Energy.gov (U.S. Department of Energy (DOE))

Vehicle systems simulations using experimental data demonstrate improved modeled fuel economy of 15% for passenger vehicles solely from powertrain efficiency relative to a 2009 PFI gasoline baseline.

168

Impact of Canada’s Voluntary Agreement on Greenhouse Gas Emissions from Light Duty Vehicles  

E-Print Network (OSTI)

components, charge reduction, or an alternative refrigerant,refrigerant system. However, more recent work suggests low-leak, reduced charge,

Lutsey, Nicholas P.

2006-01-01T23:59:59.000Z

169

Impact of Canada's Voluntary Agreement on Greenhouse Gas Emissions from Light Duty Vehicles  

E-Print Network (OSTI)

components, charge reduction, or an alternative refrigerant,refrigerant system. However, more recent work suggests low-leak, reduced charge,

Lutsey, Nicholas P.

2006-01-01T23:59:59.000Z

170

Ethanol or Bioelectricity? Life Cycle Assessment of Lignocellulosic Bioenergy Use in Light-Duty Vehicles  

Science Journals Connector (OSTI)

The remaining unfermented material, which includes lignin, is combusted to generate process heat and electricity. ... Delivered feedstock is combusted within a biomass boiler, generating steam to drive a steam turbine electrical generator, and flue gas to dry delivered feedstock. ... Fossil energy use in the bioenergy pathways is associated primarily with three aspects of the life cycle: (i) in the vehicle cycle (production/disposal) stage, coal and natural gas are used extensively. ...

Jason M. Luk; Mohammad Pourbafrani; Bradley A. Saville; Heather L. MacLean

2013-09-09T23:59:59.000Z

171

Global Assessment of Hydrogen Technologies - Task 1 Report Technology Evaluation of Hydrogen Light Duty Vehicles  

SciTech Connect

This task analyzes the candidate hydrogen-fueled vehicles for near-term use in the Southeastern U.S. The purpose of this work is to assess their potential in terms of efficiency and performance. This report compares conventional, hybrid electric vehicles (HEV) with gasoline and hydrogen-fueled internal combustion engines (ICEs) as well as fuel cell and fuel cell hybrids from a technology as well as fuel economy point of view. All the vehicles have been simulated using the Powertrain System Analysis Toolkit (PSAT). First, some background information is provided on recent American automotive market trends and consequences. Moreover, available options are presented for introducing cleaner and more economical vehicles in the market in the future. In this study, analysis of various candidate hydrogen-fueled vehicles is performed using PSAT and, thus, a brief description of PSAT features and capabilities are provided. Detailed information on the simulation analysis performed is also offered, including methodology assumptions, fuel economic results, and conclusions from the findings.

Fouad, Fouad H.; Peters, Robert W.; Sisiopiku, Virginia P.; Sullivan Andrew J.; Rousseau, Aymeric

2007-12-01T23:59:59.000Z

172

Opportunity Assessment Clean Diesels in the North American Light Duty Market  

Energy.gov (U.S. Department of Energy (DOE))

Presentation given at the 2007 Diesel Engine-Efficiency & Emissions Research Conference (DEER 2007). 13-16 August, 2007, Detroit, Michigan. Sponsored by the U.S. Department of Energy's (DOE) Office of FreedomCAR and Vehicle Technologies (OFCVT).

173

Accelerating Light-Duty Diesel Sales in the U.S. Market  

Energy.gov (U.S. Department of Energy (DOE))

Presentation given at DEER 2006, August 20-24, 2006, Detroit, Michigan. Sponsored by the U.S. DOE's EERE FreedomCar and Fuel Partnership and 21st Century Truck Programs.

174

High Efficiency Clean Combustion in Multi-Cylinder Light-Duty Engines  

Energy.gov (U.S. Department of Energy (DOE))

2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation

175

Advanced Combustion Concepts- Enabling Systems and Solutions (ACCESS) for High Efficiency Light Duty Vehicles  

Energy.gov (U.S. Department of Energy (DOE))

2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation

176

Light-Duty Diesel EngineTechnology to Meet Future Emissions and...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Vehicles 0 10 20 30 40 50 60 2000 3000 4000 5000 6000 7000 8000 Gross Vehicle Weight (lb) Combined Cycle MPG (US) . Gasoline Diesel Diesel average +45% MPG benefit Vehicle range...

177

Addressing the Challenges of RCCI Operation on a Light-Duty Multi-Cylinder Engine  

Energy.gov (U.S. Department of Energy (DOE))

ORNL and UW collaboration in evaluating and developing RCCI operation in fully built multi-cylinder engine to address hardware, aftertreatment, and control challenges

178

Progress on DOE Vehicle Technologies Light-Duty Diesel Engine Efficiency and Emissions Milestones  

Energy.gov (U.S. Department of Energy (DOE))

The path to 45 percent peak BTE in FY 2010 includes modern base engine plus enabling technologies demonstrated in FY 2008 plus the recovery of thermal energy from the exhaust and EGR systems

179

High Efficiency Clean Combustion in Multi-Cylinder Light-Duty...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

not contain any proprietary, confidential, or otherwise restricted information. 2013 DOE Hydrogen Program and Vehicle Technologies Annual Merit Review May 14, 2013 Gurpreet...

180

Post Mortem of 120k mi Light-Duty Urea SCR and DPF System  

Energy.gov (U.S. Department of Energy (DOE))

Presentation given at the 2007 Diesel Engine-Efficiency & Emissions Research Conference (DEER 2007). 13-16 August, 2007, Detroit, Michigan. Sponsored by the U.S. Department of Energy's (DOE) Office of FreedomCAR and Vehicle Technologies (OFCVT).

Note: This page contains sample records for the topic "light-duty vehi cles" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Impact of Canada's Voluntary Agreement on Greenhouse Gas Emissions from Light Duty Vehicles  

E-Print Network (OSTI)

Vehicle Fuel Economy and GHG Emission Standards Around theVehicle Industry to Reduce GHG Emissions in Canada – Part of2 (After Various Areas of GHG Actual Ethanol Mobile Light “

Lutsey, Nicholas P.

2006-01-01T23:59:59.000Z

182

Impact of Canada’s Voluntary Agreement on Greenhouse Gas Emissions from Light Duty Vehicles  

E-Print Network (OSTI)

Vehicle Fuel Economy and GHG Emission Standards Around theVehicle Industry to Reduce GHG Emissions in Canada – Part of2 (After Various Areas of GHG Actual Ethanol Mobile Light “

Lutsey, Nicholas P.

2006-01-01T23:59:59.000Z

183

Efficiency analysis of varying EGR under PCI mode of combustion in a light duty diesel engine  

E-Print Network (OSTI)

(EGR) rates of 39%, 40%, 41% and 42%. The data is collected from the experimental apparatus located in General Motors Collaborative Research Laboratory at the University of Michigan. The heat release is calculated to obtain various in-cylinder energy...

Pillai, Rahul Radhakrishna

2008-10-10T23:59:59.000Z

184

High Efficiency Clean Combustion in Multi-Cylinder Light-Duty Engines  

Energy.gov (U.S. Department of Energy (DOE))

2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

185

High Efficiency Clean Combustion in Multi-Cylinder Light-Duty Engines  

Energy.gov (U.S. Department of Energy (DOE))

2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

186

Determination of Single Particle Mass Spectral Signatures from Light-Duty Vehicle Emissions  

Science Journals Connector (OSTI)

Significant variability was observed in the chemical composition of particles emitted within the different car categories as well as for the same car operating under different driving conditions. ... This increase was also seen for the six TWC passenger cars, which were tested on the FTP and UC cycles (Supplemental Information, Figure S4). ... Given that the majority of those high-emitting vehicles had defective emission control systems (99), it is also likely that they emitted high levels of PM as well. ...

David A. Sodeman; Stephen M. Toner; Kimberly A. Prather

2005-05-12T23:59:59.000Z

187

Effect of Oxygenated Fuel on Combustion and Emissions in a Light-Duty Turbo Diesel Engine  

Science Journals Connector (OSTI)

The influence of fuel oxygen content on soot reduction in diesel engines is well-known. ... Fuel consumption was determined by weighing the fuel at the beginning and end of each test mode or each fuel blend through a Sartorius precision scale, with an accuracy of ±2 g. ... studies on effects of oxygenated fuels in conjunction with single and split fuel injections were conducted at high and low loads on a Caterpillar SCOTE DI diesel engine. ...

Juhun Song; Kraipat Cheenkachorn; Jinguo Wang; Joseph Perez; André L. Boehman; Philip John Young; Francis J. Waller

2002-01-15T23:59:59.000Z

188

Impact of Canada's Voluntary Agreement on Greenhouse Gas Emissions from Light Duty Vehicles  

E-Print Network (OSTI)

Department of Energy. Argonne, Illinois. Schwarz, W. and J.of Energy. ANL/ ESD-38. January. Argonne, Illinois Watanabe,

Lutsey, Nicholas P.

2006-01-01T23:59:59.000Z

189

Impact of Canada’s Voluntary Agreement on Greenhouse Gas Emissions from Light Duty Vehicles  

E-Print Network (OSTI)

Department of Energy. Argonne, Illinois. Schwarz, W. and J.of Energy. ANL/ ESD-38. January. Argonne, Illinois Watanabe,

Lutsey, Nicholas P.

2006-01-01T23:59:59.000Z

190

Addressing the Challenges of RCCI Operation on a Light-Duty...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

efficiencies with very low NOx and PM emissions. * HC and CO emissions similar level to modern gasoline engine but with added challenge of very low exhaust temperatures...

191

High-Efficiency Clean Combustion in Light-Duty Multi-Cylinder...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

* Cylinder-to-cylinder balancing important for high efficiency. * Swirl level has optimum level depending on gasoline-to-diesel ratio and has strong impact on BTE. * Pressure rise...

192

Hydrogen Storage Options: Technologies and Comparisons for Light-Duty Vehicle Applications  

E-Print Network (OSTI)

Stetson, N. , Solid Hydrogen Storage Systems for PortableA Review of On-Board Hydrogen Storage Alternatives for FuelA. , Materials for Hydrogen Storage, Materials Today,

Burke, Andrew; Gardnier, Monterey

2005-01-01T23:59:59.000Z

193

Hydrogen Storage Options: Technologies and Comparisons for Light-Duty Vehicle Applications  

E-Print Network (OSTI)

Uhlemann, M. , etals. , Hydrogen Storage in Different CarbonEckert, J. , etals. , Hydrogen Storage in Microporous Metal-16, 2003 40. Smalley,E. , Hydrogen Storage Eased, Technology

Burke, Andy; Gardiner, Monterey

2005-01-01T23:59:59.000Z

194

Vehicle Technologies Office Merit Review 2014: Light-Duty Diesel Combuston  

Energy.gov (U.S. Department of Energy (DOE))

Presentation given by Sandia Natonal Laboratories and  University of Wisconsin at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation...

195

Advanced Combustion Concepts- Enabling Systems and Solutions (ACCESS) for High Efficiency Light Duty Vehicles  

Energy.gov (U.S. Department of Energy (DOE))

2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

196

Advanced Combustion Concepts- Enabling Systems and Solutions (ACCESS) for High Efficiency Light Duty Vehicles  

Energy.gov (U.S. Department of Energy (DOE))

2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

197

Rebound 2007: Analysis of U.S. Light-Duty Vehicle Travel Statistics  

SciTech Connect

U.S. national time series data on vehicle travel by passenger cars and light trucks covering the period 1966 2007 are used to test for the existence, size and stability of the rebound effect for motor vehicle fuel efficiency on vehicle travel. The data show a statistically significant effect of gasoline price on vehicle travel but do not support the existence of a direct impact of fuel efficiency on vehicle travel. Additional tests indicate that fuel price effects have not been constant over time, although the hypothesis of symmetry with respect to price increases and decreases is not rejected. Small and Van Dender (2007) model of a declining rebound effect with income is tested and similar results are obtained.

Greene, David L [ORNL

2010-01-01T23:59:59.000Z

198

Hydrogen Storage Options: Technologies and Comparisons for Light-Duty Vehicle Applications  

E-Print Network (OSTI)

10 kpsi) in carbon fiber-composite tanks, liquid hydrogen incarbon fiber is the highest cost material component of high pressure compressed gas tanks.

Burke, Andy; Gardiner, Monterey

2005-01-01T23:59:59.000Z

199

Carbon Emission Targets for Driving Sustainable Mobility with US Light-Duty Vehicles  

Science Journals Connector (OSTI)

The Intergovernmental Panel on Climate Change (IPCC) and many independent scientists warn that if global mean temperatures rise 1?5 °C from 1990 levels due to anthropogenic greenhouse gas emissions, risks of extreme climate events and widespread regional ecological and economic impacts will significantly increase (11, 12). ... PHEVs can displace on-road gasoline-powered vehicles and help to meet the defined targets if the average carbon intensity of the remaining conventional and PHEV vehicle mix is less than the LDV g/mile target. ... Keoleian, G. A.; Kar, K.; Manion, M.; Bulkley, J. W. Industrial Ecology of the Automobile: A Life Cycle Assessment; Society of Automotive Engineers: Warrendale, PA, 1997. ...

Hilary G. Grimes-Casey; Gregory A. Keoleian; Blair Willcox

2008-12-31T23:59:59.000Z

200

High Efficiency Clean Combustion in Multi-Cylinder Light-Duty...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

temperature effects to better understand implementation of low temperature combustion processes on multi-cylinder engines (September 30, 2008). FY 2008 Milestone complete...

Note: This page contains sample records for the topic "light-duty vehi cles" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

High Efficiency Clean Combustion in Multi-Cylinder Light-Duty...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Adam Dempsey Zhiming Gao, Vitaly Prikhodko, Jim Parks, David Smith and Robert Wagner Fuels, Engines and Emissions Research Center Oak Ridge National Laboratory ACE016 This...

202

The Diesel Engine Powering Light-Duty Vehicles: Today and Tomorrow  

Energy.gov (U.S. Department of Energy (DOE))

2004 Diesel Engine Emissions Reduction (DEER) Conference Presentation: Volkwagen AG, Wolfsburg, Germany

203

High-Efficiency Clean Combustion in Light-Duty Multi-Cylinder Diesel Engines  

Energy.gov (U.S. Department of Energy (DOE))

2010 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C.

204

Myths Regarding Alternative Fuel Vehicle Demand by Light-Duty Vehicle Fleets  

E-Print Network (OSTI)

eet demand for alternative-fuel vehicles in California.Britain MYTHS REGARDING ALTERNATIVE FUEL VEHICLE DEMAND BYinitial market for alternative fuel vehicles (AFVs). We

Nesbitt, Kevin; Sperling, Daniel

1998-01-01T23:59:59.000Z

205

Light-Duty Vehicle CO2 Targets Consistent with 450 ppm CO2 Stabilization  

Science Journals Connector (OSTI)

We include increased shares of unconventional petroleum such as oil sands in the WTT factors, but assume those processes also have efficiency gains (Table S1 in SI-1). ... In a scenario simulating international trade of biofuel, we allow NA and LA to export ethanol to OECD Europe and China so that each of the four regions has the same volume of biofuel available for LDVs beginning in 2030. ... China and OECD Europe’s glide paths are relaxed by the ethanol imports, increasing 8% and up to 96%, respectively. ...

Sandra L. Winkler; Timothy J. Wallington; Heiko Maas; Heinz Hass

2014-05-05T23:59:59.000Z

206

Effect of Intake Air Filter Condition on Light-Duty Gasoline Vehicles  

SciTech Connect

Proper maintenance can help vehicles perform as designed, positively affecting fuel economy, emissions, and the overall drivability. This effort investigates the effect of one maintenance factor, intake air filter replacement, with primary focus on vehicle fuel economy, but also examining emissions and performance. Older studies, dealing with carbureted gasoline vehicles, have indicated that replacing a clogged or dirty air filter can improve vehicle fuel economy and conversely that a dirty air filter can be significantly detrimental to fuel economy. The effect of clogged air filters on the fuel economy, acceleration and emissions of five gasoline fueled vehicles is examined. Four of these were modern vehicles, featuring closed-loop control and ranging in model year from 2003 to 2007. Three vehicles were powered by naturally aspirated, port fuel injection (PFI) engines of differing size and cylinder configuration: an inline 4, a V6 and a V8. A turbocharged inline 4-cylinder gasoline direct injection (GDI) engine powered vehicle was the fourth modern gasoline vehicle tested. A vintage 1972 vehicle equipped with a carburetor (open-loop control) was also examined. Results reveal insignificant fuel economy and emissions sensitivity of modern vehicles to air filter condition, but measureable effects on the 1972 vehicle. All vehicles experienced a measured acceleration performance penalty with clogged intake air filters.

Thomas, John F [ORNL] [ORNL; Huff, Shean P [ORNL] [ORNL; West, Brian H [ORNL] [ORNL; Norman, Kevin M [ORNL] [ORNL

2012-01-01T23:59:59.000Z

207

Transonic Combustion ?- Injection Strategy Development for Supercritical Gasoline Injection-Ignition in a Light Duty Engine  

Energy.gov (U.S. Department of Energy (DOE))

Novel fuel injection equipment enables knock-free ignition with low noise and smoke in compression-ignition engines and low-particulates in spark-ignition engines.

208

Effect of E85 on Tailpipe Emissions from Light-Duty Vehicles  

SciTech Connect

E85, which consists of nominally 85% fuel grade ethanol and 15% gasoline, must be used in flexible-fuel (or 'flexfuel') vehicles (FFVs) that can operate on fuel with an ethanol content of 0-85%. Published studies include measurements of the effect of E85 on tailpipe emissions for Tier 1 and older vehicles. Car manufacturers have also supplied a large body of FFV certification data to the U.S. Environmental Protection Agency, primarily on Tier 2 vehicles. These studies and certification data reveal wide variability in the effects of E85 on emissions from different vehicles. Comparing Tier 1 FFVs running on E85 to similar non-FFVs running on gasoline showed, on average, significant reductions in emissions of oxides of nitrogen (NOx; 54%), non-methane hydrocarbons (NMHCs; 27%), and carbon monoxide (CO; 18%) for E85. Comparing Tier 2 FFVs running on E85 and comparable non-FFVs running on gasoline shows, for E85 on average, a significant reduction in emissions of CO (20%), and no significant effect on emissions of non-methane organic gases (NMOGs). NOx emissions from Tier 2 FFVs averaged approximately 28% less than comparable non-FFVs. However, perhaps because of the wide range of Tier 2 NOx standards, the absolute difference in NOx emissions between Tier 2 FFVs and non-FFVs is not significant (P 0.28). It is interesting that Tier 2 FFVs operating on gasoline produced approximately 13% less NMOGs than non-FFVs operating on gasoline. The data for Tier 1 vehicles show that E85 will cause significant reductions in emissions of benzene and butadiene, and significant increases in emissions of formaldehyde and acetaldehyde, in comparison to emissions from gasoline in both FFVs and non-FFVs. The compound that makes up the largest proportion of organic emissions from E85-fueled FFVs is ethanol.

Yanowitz, J.; McCormick, R. L.

2009-02-01T23:59:59.000Z

209

High Efficiency Clean Combustion in Multi-Cylinder Light-Duty Engines  

Energy.gov (U.S. Department of Energy (DOE))

2009 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting, May 18-22, 2009 -- Washington D.C.

210

Performance of an Organic Rankine Cycle Waste Heat Recovery System for Light Duty Diesel Engines  

Energy.gov (U.S. Department of Energy (DOE))

Poster presented at the 16th Directions in Engine-Efficiency and Emissions Research (DEER) Conference in Detroit, MI, September 27-30, 2010.

211

Engine coolant technology, performance, and life for light-duty applications  

SciTech Connect

Recently there has been interest by motor vehicle manufacturers in developing longer-lived automotive engine coolants with an emphasis on organic acid technology (OAT). Paradoxically, the lifetime of conventional technology remains largely undefined. Concerns arising from the depleting nature of silicate have led to modern conservative change recommendations of 30,000 to 50,000 miles ({approximately}48,279 to 80,464 km). In the present work, laboratory bench test, engine dynamometer and vehicle service data from traditional silicate, hybrid and nonsilicate coolants are compared and contrasted. A new electrochemical test is used to examine passivation kinetics on aluminum. It is shown that performance and lifetime are independent of chemistry and cannot be generalized. Examples include an American silicate coolant with excellent performance on high-heat-rejecting aluminum (80 W/cm{sup 2}). European and American silicate coolants with performance defined lifetimes in excess of 300,000 miles (482,790 km), and an OAT coolant with laboratory high lead solder protection. It is concluded that the primary benefit of OAT is to meet global specifications that include chemical limitations.

Turcotte, D.E.; Lockwood, F.E. [Valvoline Co., Lexington, KY (United States); Pfitzner, K.K.; Meszaros, L.L. [BASF Aktiengesellschaft, Ludwigshafen (Germany); Listebarger, J.K. [Ashland Chemical, Dublin, OH (United States)

1999-08-01T23:59:59.000Z

212

Hydrogen Storage Options: Technologies and Comparisons for Light-Duty Vehicle Applications  

E-Print Network (OSTI)

hydrogen compressor in parallel with their system to compress boil-off gas. In general the system costs

Burke, Andy; Gardiner, Monterey

2005-01-01T23:59:59.000Z

213

Parametric study for a ceramic diesel particulate trap application on a light duty truck  

Science Journals Connector (OSTI)

The paper presents the results of an experimental evaluation of a number of parameters affecting both the loading and the regeneration conditions of the cellular cordierite diesel particulate filler (DPF), when a cerium based fuel additive is used to enhance regeneration at low temperatures. The parameters studied comprised the size of the filter, its positioning along the exhaust pipe and the additive concentration in the fuel. The results show that filter regeneration was always possible at continuous low speed driving at relatively high filter backpressure levels, with a measurable effect on fuel consumption. On the other hand, the New European Driving Cycle, with alternate urban and extra urban operation of the vehicle, always provides the necessary conditions for trap regeneration, affecting neither the fuel consumption nor the maximum engine power output.

Konstantin Pattas; Nikolas Kyriakis; Zissis Samaras; Theodoros Manikas; Panaylotis Pistikopoulos; William Mustelt; Pierre Rouveirolles

1998-01-01T23:59:59.000Z

214

A Study of Emissions from a Light Duty Diesel Engine with the European Particulate Measurement Programme  

Energy.gov (U.S. Department of Energy (DOE))

A comparison of regulated emissions measured by the California Air Resources Board (CARB) and particle number emissions with the Joint Research Committee participating international laboratories was a success, and the CARB measurements and standard deviations compared well with the other laboratories

215

Alternative Fuel Evaluation Program: Alternative Fuel Light Duty Vehicle Project - Data collection responsibilities, techniques, and test procedures  

SciTech Connect

This report describes the data gathering and analysis procedures that support the US Department of Energy`s implementation of the Alternative Motor Fuels Act (AMFA) of 1988. Specifically, test procedures, analytical methods, and data protocols are covered. The aim of these collection and analysis efforts, as mandated by AMFA, is to demonstrate the environmental, economic, and performance characteristics of alternative transportation fuels.

none,

1992-07-01T23:59:59.000Z

216

Effect of Biodiesel Blending on the Speciation of Soluble Organic Fraction from a Light Duty Diesel Engine  

SciTech Connect

Soy methyl ester (SME) biodiesel was volumetrically blended with 2007 certification ultra low sulfur diesel (ULSD) fuel and run in a 1.7L direct-injection common rail diesel engine at one speed-load point (1500rpm, 2.6bar BMEP). Engine fueling rate and injection timing were adjusted to maintain a constant load, while particulate samples were collected in a diesel particulate filter (DPF) and with a dilution tunnel sampling train. The samples collected at these two locations were found to contain different levels of soluble organic fraction (SOF) and the different hydrocarbon species in the SOF. This observation indicates that traditional SOF measurements, in light of the specific sampling procedure used, may not be appropriate to DPF applications.

Strzelec, Andrea [ORNL] [ORNL; Storey, John Morse [ORNL] [ORNL; Lewis Sr, Samuel Arthur [ORNL] [ORNL; Daw, C Stuart [ORNL] [ORNL; Foster, Prof. Dave [University of Wisconsin] [University of Wisconsin; Rutland, Prof. Christopher J. [University of Wisconsin] [University of Wisconsin

2010-01-01T23:59:59.000Z

217

Commercializing light-duty plug-in/plug-out hydrogen-fuel-cell vehicles: “Mobile Electricity” technologies and opportunities  

E-Print Network (OSTI)

application of hydrogen and fuel cells in cars and trucks (hydrogen-fuel-cell vehicles (H 2 FCVs) not simply as clean carshydrogen on boats using conventional storage technology necessarily help LD fuel-cell cars

Williams, Brett D; Kurani, Kenneth S

2007-01-01T23:59:59.000Z

218

Future Potential of Hybrid and Diesel Powertrains in the U.S. Light-Duty Vehicle Market  

Energy.gov (U.S. Department of Energy (DOE))

2004 Diesel Engine Emissions Reduction (DEER) Conference Presentation: Oak Ridge National Laboratory

219

Commercializing light-duty plug-in/plug-out hydrogen-fuel-cell vehicles: “Mobile Electricity” technologies and opportunities  

E-Print Network (OSTI)

fuel-cell power production efficiencies, and engine degradationfuel-cell power production efficiencies, cooling requirements, and engine degradation

Williams, Brett D; Kurani, Kenneth S

2007-01-01T23:59:59.000Z

220

Comparison of Conventional Diesel and Reactivity Controlled Compression Ignition (RCCI) Combustion in a Light-Duty Engine  

Energy.gov (U.S. Department of Energy (DOE))

CFD modeling was used to compare conventional diesel and dual-fuel Reactivity Controlled Compression Ignition combustion at US Tier 2 Bin 5 NOx levels, while accounting for Diesel Exhaust Fluid needed to meet NOx constraints with aftertreatment.

Note: This page contains sample records for the topic "light-duty vehi cles" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Durability Evaluation of an Integrated Diesel NOx Adsorber A/T Subsystem at Light-Duty Operation  

Energy.gov (U.S. Department of Energy (DOE))

2004 Diesel Engine Emissions Reduction (DEER) Conference Presentation: Cummins Inc. and Johnson-Matthey

222

Vehicle Technologies Office Merit Review 2014: High Efficiency Clean Combustion in Multi-Cylinder Light-Duty Engines  

Energy.gov (U.S. Department of Energy (DOE))

Presentation given by Oak Ridge National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about high efficiency...

223

Vehicle Technologies Office Merit Review 2014: Advanced Combustion Concepts- Enabling Systems and Solutions (ACCESS) for High Efficiency Light Duty Vehicles  

Energy.gov (U.S. Department of Energy (DOE))

Presentation given by Robert Bosch at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about advanced combustion concepts -...

224

Effects of Fuel Sulfur Content and Diesel Oxidation Catalyst on PM Emitted from Light-Duty Diesel Engine  

Science Journals Connector (OSTI)

This work aims at the particle number concentrations and size distributions, sulfate and trace metals emitted from a diesel engine fueled with three different sulfur content fuels, operating with and without DOC. ... Figure 2. Sulfate emission rate and fuel consumption as a function of sulfur content at engine speed of 2690 rpm. ... Thus, the use of low metal fuels and lubricating oil is as important to the environment and human health as low sulfur fuels, especially for engines with after-treatment devices. ...

Hong Zhao; Yunshan Ge; Xiaochen Wang; Jianwei Tan; Aijuan Wang; Kewei You

2010-01-05T23:59:59.000Z

225

Biodiesel Effects on the Operation of U.S. Light Duty Tier 2 Engine and Aftertreatment Systems  

Energy.gov (U.S. Department of Energy (DOE))

Presentation given at 2007 Diesel Engine-Efficiency & Emissions Research Conference (DEER 2007). 13-16 August, 2007, Detroit, Michigan. Sponsored by the U.S. Department of Energy's (DOE) Office of FreedomCAR and Vehicle Technologies (OFCVT).

226

Biodiesel Effects on the Operation of U.S. Light-Duty Tier 2 Engine and Aftertreatment Systems  

Energy.gov (U.S. Department of Energy (DOE))

Results of the NOx adsorber system with catalyst aged to useful life conditions (simulated 120k miles), comparing performance betweem B20 fuel blend and base ultra-low sulfur diesel fuel

227

Ethanol Blends and Engine Operating Strategy Effects on Light-Duty Spark-Ignition Engine Particle Emissions  

SciTech Connect

Spark ignition (SI) engines with direct injection (DI) fueling can improve fuel economy and vehicle power beyond that of port fuel injection (PFI). Despite this distinct advantage, DI fueling often increases particle emissions such that SI exhaust may be subject to future particle emissions regulations. Challenges in controlling particle emissions arise as engines encounter varied fuel composition such as intermediate ethanol blends. Furthermore, modern engines are operated using unconventional breathing strategies with advanced cam-based variable valve actuation systems. In this study, we investigate particle emissions from a multi-cylinder DI engine operated with three different breathing strategies, fueling strategies and fuels. The breathing strategies are conventional throttled operation, early intake valve closing (EIVC) and late intake valve closing (LIVC); the fueling strategies are single injection DI (sDI), multi-injection DI (mDI), and PFI; and the fuels are emissions certification gasoline, E20 and E85. The results indicate the dominant factor influencing particle number concentration emissions for the sDI and mDI strategies is the fuel injection timing. Overly advanced injection timing results in particle formation due to fuel spray impingement on the piston, and overly retarded injection timing results in particle formation due to poor fuel and air mixing. In addition, fuel type has a significant effect on particle emissions for the DI fueling strategies. Gasoline and E20 fuels generate comparable levels of particle emissions, but E85 produces dramatically lower particle number concentration. The particle emissions for E85 are near the detection limit for the FSN instrument, and particle number emissions are one to two orders of magnitude lower for E85 relative to gasoline and E20. We found PFI fueling produces very low levels of particle emissions under all conditions and is much less sensitive to engine breathing strategy and fuel type than the DI fueling strategies. The particle number-size distributions for PFI fueling are of the same order for all of the breathing strategies and fuel types and are one to two orders lower than for the sDI fuel injection strategy with gasoline and E20. Remarkably, the particle emissions for E85 under the sDI fueling strategy are similar to particle emissions with a PFI fueling strategy. Thus by using E85, the efficiency and power advantages of DI fueling can be gained without generating high particle emissions.

Szybist, James P [ORNL; Youngquist, Adam D [ORNL; Barone, Teresa L [ORNL; Storey, John Morse [ORNL; Moore, Wayne [Delphi; Foster, Matthew [Delphi; Confer, Keith [Delphi

2011-01-01T23:59:59.000Z

228

Commercializing light-duty plug-in/plug-out hydrogen-fuel-cell vehicles: “Mobile Electricity” technologies and opportunities  

E-Print Network (OSTI)

C. E. S. Thomas, "Hydrogen and Fuel Cells: Pathway to a4-2 incorporates hydrogen and fuel cells into a roadmap thatdevelopment efforts. Hydrogen and fuel-cell technologies are

Williams, Brett D; Kurani, Kenneth S

2007-01-01T23:59:59.000Z

229

Transportation Energy Futures Series: Non-Cost Barriers to Consumer Adoption of New Light-Duty Vehicle Technologies  

SciTech Connect

Consumer preferences are key to the adoption of new vehicle technologies. Barriers to consumer adoption include price and other obstacles, such as limited driving range and charging infrastructure; unfamiliarity with the technology and uncertainty about direct benefits; limited makes and models with the technology; reputation or perception of the technology; standardization issues; and regulations. For each of these non-cost barriers, this report estimates an effective cost and summarizes underlying influences on consumer preferences, approximate magnitude and relative severity, and assesses potential actions, based on a comprehensive literature review. While the report concludes that non-cost barriers are significant, effective cost and potential market share are very uncertain. Policies and programs including opportunities for drivers to test drive advanced vehicles, general public outreach and information programs, incentives for providing charging and fueling infrastructure, and development of technology standards were examined for their ability to address barriers, but little quantitative data exists on the effectiveness of these measures. This is one in a series of reports produced as a result of the Transportation Energy Futures project, a Department of Energy-sponsored multi-agency effort to pinpoint underexplored strategies for reducing GHGs and petroleum dependence related to transportation.

Stephens, T.

2013-03-01T23:59:59.000Z

230

Commercializing light-duty plug-in/plug-out hydrogen-fuel-cell vehicles: “Mobile Electricity” technologies and opportunities  

E-Print Network (OSTI)

power, and heat generation), and grid-side benefits (peakpre-) heat/cool, etc. ); home recharging using off-peak grid

Williams, Brett D; Kurani, Kenneth S

2007-01-01T23:59:59.000Z

231

High Thermal Efficiency and Low Emissions with Supercritical Gasoline Injection-Ignition in a Light Duty Engine  

Energy.gov (U.S. Department of Energy (DOE))

A novel fuel injector has been developed and tested that addresses the technical challenges of LTC, HCCI, gasoline PPC, and RCCI by reducing complexity and cost.

232

Commercializing light-duty plug-in/plug-out hydrogen-fuel-cell vehicles: “Mobile Electricity” technologies and opportunities  

E-Print Network (OSTI)

battery Type Capacity (kWh) Saft Li- Ion Valence LiIon LiIonOvonic NiMH A-hr, 336V) Saft Li-Ion Valence LiIon EEEI

Williams, Brett D; Kurani, Kenneth S

2007-01-01T23:59:59.000Z

233

Low-Temperature Automotive Diesel Combustion | Department of...  

Office of Environmental Management (EM)

in Low Temperature Automotive Diesel Combustion Systems Mixture Formation in a Light-Duty Diesel Engine Light Duty Combustion Research: Advanced Light-Duty Combustion Experiments...

234

Clean Cities Drive Vol 4 Issue 1 May 1997  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Cities Cities to the eighth issue of the I I U.S. Department of Energy's (DOE) Clean Cities Drive. Each issue 1 1 of the newsletter will bring you valuable information from the Clean Cities program to help you succeed I I in putting more alternative fuel vehi- cles onto our roads. If you have a I I story to tell, a picture to share, or information of interest to Clean Cities I I participants, call the Clean Cities I I L / National Partners to Be Honored at Clean Cities Stakeholders' Conference The Mid-Continent Trade Corridor .............. : The West .................................................. ; n . . rl . f i l l r 1. e. .. " LNG Trucks to Fleet 4 Coordinators' Corner 5 EV Market Launch New York Richmond R n c t n n DOE Comments on Proposed Priva

235

Heavy-Duty Trucks Poised to Accelerate Growth of American Alternative Transportation Fuels Market  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Background Background Since 1988, federal and state legislation has mandated the adoption of alternative transportation fuels, primarily because of environmental and energy security concerns. Recently, however, much of the alternative fuels activity has shifted. With the electoral revolution of 1992, Congress is rethinking environmental regulation and cutting federal appro- priations for alternative fueled vehi- cles (AFVs). The U.S. Enviromental Protection Agency (EPA) may delay implementation of stringent emission standards, and the U.S. Department of Energy (DOE) has delayed requirements for alternative fuel adoption that were set to go into effect on September 1, 1995. In the late 1980s and early 1990s, as federal and state legislation was being crafted across the country,

236

Federal Alternative Motor Fuels Programs Fifth Annual Report to Congress - 1996  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Abstract Abstract This annual report to Congress presents the current status of the U.S. Department of Energy's alterna- tive fuel vehicle demonstration and performance tracking programs being conducted across the country in accordance with the Energy Policy and Conservation Act (42 U.S.C. 6374, et seq.). These programs, which comprise the most compre- hensive data collection effort ever undertaken on alternative transporta- tion fuels and alternative fuel vehi- cles, are beginning their sixth year. This report summarizes tests and results from the fifth year. Even though present interest in electric vehicles is quite high, they are not currently included in these vehicle demonstration and performance tracking programs, and the annual report does not include information on them.

237

Feasibility Study Of Advanced Technology Hov Systems: Volume 2b: Emissions Impact Of Roadway-powered Electric Buses, Light-duty Vehicles, And Automobiles  

E-Print Network (OSTI)

Gas-fired: Simple Turbine Combined Turbine Cogen-Turbine Boiler Coal-fired: Conventional CFB IGCC Oil-fired: ResidualGas-fired Simple Turbine Combined Turbine Cogen-Turbine Boiler Coal-fired CFB IGCC Conventional Oil-fired Residual

Miller, Mark A.; Dato, Victor; Chira-chavala, Ted

1992-01-01T23:59:59.000Z

238

Optimizing U.S. Mitigation Strategies for the Light-Duty Transportation Sector: What We Learn from a Bottom-Up Model  

Science Journals Connector (OSTI)

Mitigating transportation emission reductions can result in significant changes in personal vehicle technologies, increases in vehicle fuel efficiency, and decreases in overall transportation fuel use. ... The Energy Independence and Security Act (H.R. 6), which includes a 36 billion gallon renewable fuel mandate, was passed by Congress and signed by President Bush on December 19, 2007. ... Mitigation strategies with the potential to achieve significant long-term transportation emission reductions often face significant competition for primary resources with other sectors, including biomass, natural gas, renewables, and coal, and for secondary energy sources such as electricity. ...

Sonia Yeh; Alex Farrell; Richard Plevin; Alan Sanstad; John Weyant

2008-10-21T23:59:59.000Z

239

Commercializing Light-Duty Plug-In/Plug-Out Hydrogen-Fuel-Cell Vehicles: "Mobile Electricity" Technologies, Early California Household Markets, and Innovation Management  

E-Print Network (OSTI)

2002. EPRI, "Advanced Batteries for Electric-Drive Vehicles:12 2.2.2.1 PHEV uncertainties: Batteries andwith big propulsion batteries. However, recent activities (

Williams, Brett D

2010-01-01T23:59:59.000Z

240

Feasible Café Standard Increases Using Emerging Diesel and Hybrid-Electric Technologies for Light-Duty Vehicles in the United States  

E-Print Network (OSTI)

USING EMERGING DIESEL AND HYBRID-ELECTRIC TECHNOLOGIES FORusing Emerging Diesel and Hybrid- Electric Technologies forusing Emerging Diesel and Hybrid- Electric Technologies for

Burke, Andy; Abeles, Ethan

2004-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "light-duty vehi cles" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Commercializing Light-Duty Plug-In/Plug-Out Hydrogen-Fuel-Cell Vehicles: "Mobile Electricity" Technologies, Early California Household Markets, and Innovation Management  

E-Print Network (OSTI)

4 demonstration of a plug-in diesel-electric HUMVEE by thediesel max output (kW) continuous/Me- kW type efficiency electric

Williams, Brett D

2010-01-01T23:59:59.000Z

242

Feasible CAFE Standard Increases Using Emerging Diesel and Hybrid-Electric Technologies for Light-Duty Vehicles in the United States  

E-Print Network (OSTI)

USING EMERGING DIESEL AND HYBRID-ELECTRIC TECHNOLOGIES FORusing Emerging Diesel and Hybrid- Electric Technologies forusing Emerging Diesel and Hybrid- Electric Technologies for

Burke, Andy; Abeles, Ethan C.

2004-01-01T23:59:59.000Z

243

Present Status and Marketing Prospects of the Emerging Hybrid-Electric and Diesel Technologies to Reduce CO2 Emissions of New Light-Duty Vehicles in California  

E-Print Network (OSTI)

OF THE EMERGING HYBRID-ELECTRIC AND DIESEL TECHNOLOGIES TOof the Emerging Hybrid-Electric and Diesel Technologies tomodern clean diesel engines and hybrid-electric powertrains

Burke, Andy

2004-01-01T23:59:59.000Z

244

Optimizing U.S. Mitigation Strategies for the Light-Duty Transportation Sector: What We Learn from a Bottom-Up Model  

E-Print Network (OSTI)

Energy carrier input (PJ): Corn Energy carrier input (PJ):energy requirement (in natural gas, specifically) for corn

Yeh, Sonia; Farrell, Alexander E.; Plevin, Richard J; Sanstad, Alan; Weyant, John

2008-01-01T23:59:59.000Z

245

Commercializing Light-Duty Plug-In/Plug-Out Hydrogen-Fuel-Cell Vehicles:“Mobile Electricity” Technologies, Early California Household Markets, and Innovation Management  

E-Print Network (OSTI)

application of hydrogen and fuel cells in cars and trucks (hydrogen-fuel-cell vehicles (H 2 FCVs) not simply as clean carshydrogen on boats using conventional storage technology necessarily help LD fuel-cell cars

Williams, Brett D

2007-01-01T23:59:59.000Z

246

Commercializing Light-Duty Plug-In/Plug-Out Hydrogen-Fuel-Cell Vehicles: "Mobile Electricity" Technologies, Early California Household Markets, and Innovation Management  

E-Print Network (OSTI)

application of hydrogen and fuel cells in cars and trucks (hydrogen-fuel-cell vehicles (H 2 FCVs) not simply as clean carshydrogen on boats using conventional storage technology necessarily help LD fuel-cell cars

Williams, Brett D

2010-01-01T23:59:59.000Z

247

Commercializing Light-Duty Plug-In/Plug-Out Hydrogen-Fuel-Cell Vehicles:“Mobile Electricity” Technologies, Early California Household Markets, and Innovation Management  

E-Print Network (OSTI)

fuel-cell power production efficiencies, and engine degradationfuel-cell power production efficiencies, cooling requirements, and engine degradation

Williams, Brett D

2007-01-01T23:59:59.000Z

248

Commercializing Light-Duty Plug-In/Plug-Out Hydrogen-Fuel-Cell Vehicles: "Mobile Electricity" Technologies, Early California Household Markets, and Innovation Management  

E-Print Network (OSTI)

fuel-cell power production efficiencies, and engine degradationfuel-cell power production efficiencies, cooling requirements, and engine degradation

Williams, Brett D

2010-01-01T23:59:59.000Z

249

Combustion and Emissions Performance of Dual-Fuel Gasoline and Diesel HECC on a Multi-Cylinder Light Duty Diesel Engine  

Energy.gov (U.S. Department of Energy (DOE))

Poster presented at the 16th Directions in Engine-Efficiency and Emissions Research (DEER) Conference in Detroit, MI, September 27-30, 2010.

250

Optimizing U.S. Mitigation Strategies for the Light-Duty Transportation Sector: What We Learn from a Bottom-Up Model  

E-Print Network (OSTI)

carrier output (PJ): Ethanol Energy carrier input (PJ): Corncarrier output (PJ): Ethanol Energy carrier input (PJ):D. M. , Ethanol can contribute to energy and environmental

Yeh, Sonia; Farrell, Alexander E.; Plevin, Richard J; Sanstad, Alan; Weyant, John

2008-01-01T23:59:59.000Z

251

Commercializing Light-Duty Plug-In/Plug-Out Hydrogen-Fuel-Cell Vehicles: "Mobile Electricity" Technologies, Early California Household Markets, and Innovation Management  

E-Print Network (OSTI)

C. E. S. Thomas, "Hydrogen and Fuel Cells: Pathway to a4-2 incorporates hydrogen and fuel cells into a roadmap thatdevelopment efforts. Hydrogen and fuel-cell technologies are

Williams, Brett D

2010-01-01T23:59:59.000Z

252

Commercializing Light-Duty Plug-In/Plug-Out Hydrogen-Fuel-Cell Vehicles:“Mobile Electricity” Technologies, Early California Household Markets, and Innovation Management  

E-Print Network (OSTI)

C. E. S. Thomas, "Hydrogen and Fuel Cells: Pathway to a4-2 incorporates hydrogen and fuel cells into a roadmap thatdevelopment efforts. Hydrogen and fuel-cell technologies are

Williams, Brett D

2007-01-01T23:59:59.000Z

253

Commercializing Light-Duty Plug-In/Plug-Out Hydrogen-Fuel-Cell Vehicles: "Mobile Electricity" Technologies, Early California Household Markets, and Innovation Management  

E-Print Network (OSTI)

storage, and initial cost barriers—enable hydrogen-fuel-cellHydrogen Economy. New York: Tarcher-Putnam, 2002. ) production, fuel-cell costfuel-cell vehicle fed hydrogen by a stationary reformer reforming natural gas to produce hydrogen at a cost

Williams, Brett D

2010-01-01T23:59:59.000Z

254

Commercializing Light-Duty Plug-In/Plug-Out Hydrogen-Fuel-Cell Vehicles: "Mobile Electricity" Technologies, Early California Household Markets, and Innovation Management  

E-Print Network (OSTI)

power, and heat generation), and grid-side benefits (peakpre-) heat/cool, etc. ); home recharging using off-peak grid

Williams, Brett D

2010-01-01T23:59:59.000Z

255

Commercializing Light-Duty Plug-In/Plug-Out Hydrogen-Fuel-Cell Vehicles:“Mobile Electricity” Technologies, Early California Household Markets, and Innovation Management  

E-Print Network (OSTI)

power, and heat generation), and grid-side benefits (peakpre-) heat/cool, etc. ); home recharging using off-peak grid

Williams, Brett D

2007-01-01T23:59:59.000Z

256

J. Air & Waste Manage. Assoc., vol 58, 2008, p. 45-54 On-board emission measurement of high loaded light duty vehicles in Algeria  

E-Print Network (OSTI)

; Nejjari et al., 2003, Atek et al., 2004). As a result, many stations of air pollution measurement and Boukadoum, 2005). Vehicle pollutant emissions constitute not only a problem of air quality in big citiesJ. Air & Waste Manage. Assoc., vol 58, 2008, p. 45-54 On-board emission measurement of high loaded

Boyer, Edmond

257

Optimizing U.S. Mitigation Strategies for the Light-Duty Transportation Sector: What We Learn from a Bottom-Up Model  

E-Print Network (OSTI)

on the adoption of alternative fuel vehicles: The case of07: 2007. 21. CEC State Alternative Fuel Plan. CEC-600-2007-972. (28) CEC. State Alternative Fuel Plan; CEC-600-2007-

Yeh, Sonia; Farrell, Alexander E.; Plevin, Richard J; Sanstad, Alan; Weyant, John

2008-01-01T23:59:59.000Z

258

Commercializing Light-Duty Plug-In/Plug-Out Hydrogen-Fuel-Cell Vehicles:“Mobile Electricity” Technologies, Early California Household Markets, and Innovation Management  

E-Print Network (OSTI)

battery Type Capacity (kWh) Saft Li- Ion Valence LiIon LiIonOvonic NiMH A-hr, 336V) Saft Li-Ion Valence LiIon EEEI

Williams, Brett D

2007-01-01T23:59:59.000Z

259

Commercializing Light-Duty Plug-In/Plug-Out Hydrogen-Fuel-Cell Vehicles: "Mobile Electricity" Technologies, Early California Household Markets, and Innovation Management  

E-Print Network (OSTI)

battery Type Capacity (kWh) Saft Li- Ion Price EDrive PriusPM synchron AC PM synchron AC Saft Li-Ion Valence LiIon EEEI

Williams, Brett D

2010-01-01T23:59:59.000Z

260

Reducing Petroleum Despendence in California: Uncertainties About...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Petroleum Despendence in California: Uncertainties About Light-Duty Diesel Reducing Petroleum Despendence in California: Uncertainties About Light-Duty Diesel 2002 DEER Conference...

Note: This page contains sample records for the topic "light-duty vehi cles" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

NREL: Energy Analysis - Transportation Energy Futures Project  

NLE Websites -- All DOE Office Websites (Extended Search)

Pathways: An Examination of Timing and Investment Constraints Non-Light-Duty Vehicles Potential for Energy Efficiency Improvement Beyond the Light-Duty Sector Fuels Alternative...

262

Opportunity Assessment Clean Diesels in the North American Light...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Opportunity Assessment Clean Diesels in the North American Light Duty Market Opportunity Assessment Clean Diesels in the North American Light Duty Market Presentation given at the...

263

Vehicle Technologies Office Merit Review 2014: Computational design and development of a new, lightweight cast alloy for advanced cylinder heads in high-efficiency, light-duty engines FOA 648-3a  

Energy.gov (U.S. Department of Energy (DOE))

Presentation given by General Motors at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about computational design and...

264

Comparing the Performance of SunDiesel and Conventional Diesel...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

the Performance of SunDiesel and Conventional Diesel in a Light-Duty Vehicle and Engines Comparing the Performance of SunDiesel and Conventional Diesel in a Light-Duty Vehicle and...

265

Vehicle Technologies Office Merit Review 2014: High Efficiency...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

High Efficiency Clean Combustion in Multi-Cylinder Light-Duty Engines Vehicle Technologies Office Merit Review 2014: High Efficiency Clean Combustion in Multi-Cylinder Light-Duty...

266

Session 6 - Environmentally Concerned Public Sector Panel Discussion...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Documents & Publications The Diesel Engine Powering Light-Duty Vehicles: Today and Tomorrow EPA Mobile Source Rule Update Urea SCR Durability Assessment for Tier 2 Light-Duty Truck...

267

Fact #559: February 23, 2009 Light Vehicle Sales per Dealership...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

slightly. Light Duty Sales per Dealership, 1997-2007 Graph showing the light duty automobile sales per dealership from 1997-2007. Dealerships and the average numer of vehicles...

268

2005 Diesel Engine Emissions Reduction (DEER) Conference Presentations...  

Energy Savers (EERE)

Agency (PDF 791 KB) Light-Duty Diesels in the United States - Some Perspectives Tim V. Johnson Corning Inc. (PDF 889 KB) Business Case for Light-Duty Diesel in the United States...

269

Overview of High-Efficiency Engine Technologies  

Energy.gov (U.S. Department of Energy (DOE))

Perspective on past and current status, and future directions in heavy- and light-duty diesel engines

270

California's Energy Future - The View to 2050  

E-Print Network (OSTI)

Lawrence Livermore National Laboratory LDV Light-duty vehicles LED light emitting diode LWR Light water reactor NIF

2011-01-01T23:59:59.000Z

271

California’s Energy Future: The View to 2050 - Summary Report  

E-Print Network (OSTI)

Lawrence Livermore National Laboratory LDV Light-duty vehicles LED light emitting diode LWR Light water reactor NIF

Yang, Christopher

2011-01-01T23:59:59.000Z

272

An Activity-Based Assessment of the Potential Impacts of Plug-In Hybrid Electric Vehicles on Energy and Emissions Using One-Day Travel Data  

E-Print Network (OSTI)

of light-duty vehicles in Xcel Energy service territory inVehicle Charging in the Xcel Energy Colorado Service

Recker, W. W.; Kang, J. E.

2010-01-01T23:59:59.000Z

273

International Hydrogen Infrastructure Challenges Workshop Summary...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

More Documents & Publications Introduction to SAE Hydrogen Fueling Standardization Light Duty Fuel Cell Electric Vehicle Hydrogen Fueling Protocol Fuel Cell...

274

Air Quality: Toxics and Transportation  

E-Print Network (OSTI)

://www.epa.gov/ttn/amtic #12;Emissions Inventory · MOBILE6 Vehicle Classifications · 1 LDGV Light-Duty Gasoline Vehicles (Passenger Cars) · 2 LDGT1 Light-Duty Gasoline Trucks 1 (0-6,000 lbs. GVWR, 0-3,750 lbs. LVW) · 3 LDGT2 Light-Duty Gasoline Trucks 2 (0-6,000 lbs. GVWR, 3,751-5,750 lbs. LVW) · 4 LDGT3 Light-Duty Gasoline Trucks 3 (6

Bertini, Robert L.

275

Protons Act as a Transmitter for Muscle Contraction in C. elegans  

E-Print Network (OSTI)

and pbo-6 genes encode subunits of a ``cys- loop'' proton-gated cation channel required for mus- cles. Usually, classical neurotransmitters are stored in synaptic vesi- cles. Calcium stimulates the fusion

Cooper, Robin L.

276

Evaluation of High Efficiency Clean Combustion (HECC) Strategies...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Combustion (HECC) Strategies for Meeting Future Emissions Regulations in Light-Duty Engines Evaluation of High Efficiency Clean Combustion (HECC) Strategies for Meeting Future...

277

Indiana: Improving Diesel Engine Performance for Trucks  

Office of Energy Efficiency and Renewable Energy (EERE)

Cummins, the world's largest diesel engine manufacturer, received funds from EERE to research advanced engine technology for heavy-duty and light-duty vehicles.

278

Snowmobile Contributions to Mobile Source Emissions in Yellowstone National Park  

Science Journals Connector (OSTI)

1984?Arctic?Cat?Panthere ... light-duty carsa ... a?Car and truck distinction based on U.S. emissions certification standards derived from vin information. ...

Gary A. Bishop; Jerome A. Morris; Donald H. Stedman

2001-06-07T23:59:59.000Z

279

Development and Field Demonstrations of the Low NO2 ACCRT? System...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Particulate Filter Technology for Low-Temperature and Low-NOxPM Applications Update on Diesel Exhaust Emission Control Technology and Regulations Light Duty Diesels in the...

280

Alternative Transportation Technologies: Hydrogen, Biofuels, Advanced Efficiency, and Plug-in Hybrid Electric Vehicles  

Energy.gov (U.S. Department of Energy (DOE))

Presented at the U.S. Department of Energy Light Duty Vehicle Workshop in Washington, D.C. on July 26, 2010.

Note: This page contains sample records for the topic "light-duty vehi cles" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Hydrogen Transition Study  

Energy.gov (U.S. Department of Energy (DOE))

Presented at the U.S. Department of Energy Light Duty Vehicle Workshop in Washington, D.C. on July 26, 2010.

282

Low and high Temperature Dual Thermoelectric Generation Waste...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Low and high Temperature Dual Thermoelectric Generation Waste Heat Recovery System for Light-Duty Vehicles Low and high Temperature Dual Thermoelectric Generation Waste Heat...

283

Cummins' Next Generation Tier 2, Bin 2 Light Truck Diesel Engine...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Technology Light Duty Diesel Aftertreatment System Passive Catalytic Approach to Low Temperature NOx Emission Abatement ATP-LD; Cummins Next Generation Tier 2 Bin 2 Diesel Engine...

284

Notice of Intent to Issue FOA DE-FOA-0001224: Hydrogen and Fuel...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

in mobile hydrogen refuelers, fuel cell powered range extenders for light-duty hybrid electric vehicles, and a Communities of Excellence topic featuring hydrogen and fuel cell...

285

Help Design the Hydrogen Fueling Station of Tomorrow | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

that use hydrogen and other fuels to produce electricity for fuel cell electric vehicles (FCEVs), buses and other light duty and specialty vehicles) increased by 34% in 2012...

286

Liquid Transportation Fuels from Coal and Biomass  

Energy.gov (U.S. Department of Energy (DOE))

Presented at the U.S. Department of Energy sponsored a Light Duty Vehicle Workshop in Washington, D.C. on July 26, 2010.

287

Reduction of NOx in Synthetic Diesel Exhaust via Two-Step Plasma...  

NLE Websites -- All DOE Office Websites (Extended Search)

light duty diesel exhaust has been achieved over a broad temperature window by combining atmospheric plasma with appropriate catalysts. The technique relies on the addition of...

288

Sources of UHC and CO in Low Temperature Automotive Diesel Combustion...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Directions in Engine-Efficiency and Emissions Research (DEER) Conference in Detroit, MI, September 27-30, 2010. deer10miles.pdf More Documents & Publications Light Duty...

289

Sandia National Laboratories: CRF Researchers Received "Best...  

NLE Websites -- All DOE Office Websites (Extended Search)

mixing * ICED * improving fuel efficiency * injection pressure * Internal Combustion Engine Division conference * light-duty diesel engine * LTC * mixture formation process *...

290

Appending High-Resolution Elevation Data to GPS Speed Traces...  

NLE Websites -- All DOE Office Websites (Extended Search)

Cycles for Light-Duty Vehicles." Innovative Automotive Transmissions, Hybrid and Electric Drives, May 2013. Accessed April 21, 2014: http:www.nrel.govvehiclesandfuels...

291

Market Implications of Synergism Between Low Drag Area and Electric Drive Fuel Savings  

Energy.gov (U.S. Department of Energy (DOE))

Presented at the U.S. Department of Energy Light Duty Vehicle Workshop in Washington, D.C. on July 26, 2010.

292

Requirements-Driven Diesel Catalyzed Particulate Trap Design...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Driven Diesel Catalyzed Particulate Trap (DCPT) Design and Optimization Tom Harris, Donna McConnell and Danan Dou Delphi Catalyst Tulsa, Oklahoma 2 Euro 45 Light Duty...

293

Well-to-Wheels Energy Use and Greenhouse Gas Emissions of Plug-In Hybrid Electric Vehicles  

Energy.gov (U.S. Department of Energy (DOE))

Presented at the U.S. Department of EnergyLight Duty Vehicle Workshop in Washington, D.C. on July 26, 2010.

294

Resource Assessment and Land Use Change  

Energy.gov (U.S. Department of Energy (DOE))

Presented at the U.S. Department of Energy Light Duty Vehicle Workshop in Washington, D.C. on July 26, 2010.

295

Testing Electric Vehicle Demand in `Hybrid Households' Using a Reflexive Survey  

E-Print Network (OSTI)

EV market studies In the absence of data on actual sales,EV, then we expect that 16-18%) of annual light-duty vehicle sales

Kurani, Kenneth; Turrentine, Thomas; Sperling, Daniel

1996-01-01T23:59:59.000Z

296

Development of a High-Efficiency Zonal Thermoelectric HVAC System for Automotive Applications  

Energy.gov (U.S. Department of Energy (DOE))

Identify a technical and business approach to accelerate the deployment of light-duty automotive TE HVAC technology, maintain occupant comfort, and improve energy efficiency.

297

Materials-Enabled High-Efficiency Diesel Engines (CRADA with...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Example of exhaust availability for a Light-duty diesel Example 2 nd Law Distribution 10% Heat Loss (engine block, head, intercooler, etc) 14% Availability Exhaust Flow 36%...

298

Hydrogen Delivery - Basics | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Delivery Hydrogen Delivery - Basics Hydrogen Delivery - Basics Photo of light-duty vehicle at hydrogen refueling station. Infrastructure is required to move hydrogen from the...

299

U.S. Energy Information Administration (EIA) - Pub  

Gasoline and Diesel Fuel Update (EIA)

consumption flat across projection CAFE and greenhouse gas emissions standards boost light-duty vehicle fuel economy Travel demand for personal vehicles continues to grow, but...

300

Federal Leadership in Renewable Energy and Energy Efficiency  

Energy Savers (EERE)

power for 14 Naval installations in California * Brookhaven National Laboratory - 32 MW solar plant 6 * Presidential goal that by 2016, all new light duty vehicles purchased for...

Note: This page contains sample records for the topic "light-duty vehi cles" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

EIA - Annual Energy Outlook 2013 Early Release  

Gasoline and Diesel Fuel Update (EIA)

the greenhouse gas (GHG) and corporate average fuel economy (CAFE) standards for light-duty vehicles (LDVs)1 through the 2025 model year, which increases the new vehicle...

302

U.S. Energy Information Administration (EIA) - Pub  

Annual Energy Outlook 2012 (EIA)

declines in the Reference case CAFE and greenhouse gas emissions standards boost light-duty vehicle fuel economy Miles traveled per licensed driver remains below its...

303

An Energy Evolution:Alternative Fueled Vehicle Comparisons |...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

An Energy Evolution:Alternative Fueled Vehicle Comparisons An Energy Evolution:Alternative Fueled Vehicle Comparisons Presented at the U.S. Department of Energy Light Duty Vehicle...

304

CX-007595: Categorical Exclusion Determination | Department of...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

National Energy Technology Laboratory Purchase of four original equipment manufacturer compressed natural gas-fueled light duty sedans. CX-007595.pdf More Documents &...

305

Requests for Information | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Light-Duty Vehicles Research and Development Needs and Technical Barriers for Fuel Cells Hydrogen Contamination Detectors Biological Hydrogen Production Workshop Report:...

306

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Credit to foster job creation, reduce dependence on imported energy sources, and reduce air pollution resulting from the manufacture or assembly of light-duty AFVs in Indiana....

307

Forensics of Soot: C5-Related Nanostructure as a Diagnostic of In-Cylinder Chemistry  

Energy.gov (U.S. Department of Energy (DOE))

Changes observed in nanostructure of soot produced by experimental light-duty diesel engine with varying degrees of biodiesel fuel blending

308

Emissions of Criteria Pollutants, Toxic Air Pollutants, and Greenhouse Gases, From the Use of Alternative Transportation Modes and Fuels  

E-Print Network (OSTI)

1994). D. E. Gushee, Alternative Fuels for Automobiles: AreElectric/Hybrid and Alternative Fuel Challenge, Florence,Replacing Gasoline: Alternative Fuels for Light-Duty

Delucchi, Mark

1996-01-01T23:59:59.000Z

309

Multi-Path Transportation Futures Study- Lessons for the Transportation Energy Futures Study  

Energy.gov (U.S. Department of Energy (DOE))

Presented at the U.S. Department of Energy Light Duty Vehicle Workshop in Washington, D.C. on July 26, 2010.

310

Biodiesel Impact on Engine Lubricant Oil Dilution | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Impact on Engine Lubricant Oil Dilution Biodiesel Impact on Engine Lubricant Oil Dilution Heavy-duty engine and light-duty vehicle experiments were conducted to investigate the...

311

GeT Move: An Efficient and Unifying Spatio-Temporal Pattern Mining System for  

E-Print Network (OSTI)

been applied in many real world applications, e.g., in ecological study, vehi- cle control, mobile and vehicle control. Despite the growing demands for diverse applications, there have been few scalable tools

Paris-Sud XI, Université de

312

Aerosol Science 38 (2007) 6982 www.elsevier.com/locate/jaerosci  

E-Print Network (OSTI)

the effective density and/or fractal dimension of diesel exhaust particles. These studies have generally used dimension of particles emitted from a light-duty diesel vehicle with a diesel oxidation catalyst J emitted from a light-duty diesel vehicle fitted with a diesel oxidation catalyst (DOC). It was found

313

Characteristics of Exhaust Diesel Particles from Different Oxygenated Fuels  

Science Journals Connector (OSTI)

Characteristics of Exhaust Diesel Particles from Different Oxygenated Fuels ... The characteristic variations of exhaust particles were investigated on a light-duty diesel engine. ... This study was conducted on a 2005 model-year light-duty diesel engine that meets Chinese national stage III emission standards (equivalent to Euro III emission standards) without any exhaust control device. ...

Zhen Xu; Xinling Li; Chun Guan; Zhen Huang

2013-12-02T23:59:59.000Z

314

NORTH CAROLINA 2013-2014 CLEAN TRANSPORTATION TECHNOLOGY INDUSTRY DIRECTORY  

E-Print Network (OSTI)

on following categories to jump to specific section � Biodiesel � Electric Vehicles � Hybrid Electric Vehicles (Light Duty) � Plug-In Hybrid Vehicles (Light Duty) � Electric Low-Speed Vehicles � Ethanol � Natural Gas � Motor Oils � Conservation BIODIESEL Biodiesel is a clean burning alternative fuel, produced from

315

NORTH CAROLINA 2013-2014 CLEAN TRANSPORTATION TECHNOLOGY INDUSTRY DIRECTORY  

E-Print Network (OSTI)

on following categories to jump to specific section Biodiesel Electric Vehicles Hybrid Electric Vehicles (Light Duty) Plug-In Hybrid Vehicles (Light Duty) Electric Low-Speed Vehicles Ethanol Natural Gas and Propane (CNG/LPG) Heavy Duty Vehicles Diesel Retrofit Technologies Idle Reduction Technologies Motor

316

ORNL/TM-2004/181 Future Potential of Hybrid and Diesel  

E-Print Network (OSTI)

ORNL/TM-2004/181 Future Potential of Hybrid and Diesel Powertrains in the U.S. Light-Duty Vehicle Analysis, Inc. Walter McManus J. D. Power and Associates #12;DOCUMENT AVAILABILITY Reports produced after. #12;FUTURE POTENTIAL OF HYBRID AND DIESEL POWERTRAINS IN THE U.S. LIGHT-DUTY VEHICLE MARKET David L

317

Corning and University Technology Collaborations Charles S. Philip  

E-Print Network (OSTI)

of materials science and process engineering knowledge, and a distinctive collaborative culture. #12;Corning Culture and Bioprocess � Assay and High- Throughput Screening � Genomics and Proteomics � General Products � Light-duty gasoline vehicles � Light-duty and heavy-duty on-road diesel vehicles � Heavy

318

Download  

Science Journals Connector (OSTI)

Comment. II45 quality or the hypothesis is unlikely. But ... mizing net nitrogen vs. net energy in- take) and ... cles: Testing the energy-optimization hypoth- esis.

2000-01-12T23:59:59.000Z

319

Hydrocarbon fouling of SCR during Premixed Charge Compression Ignition (PCCI) combustion  

Energy.gov (U.S. Department of Energy (DOE))

Analyzed the effects of higher hydrocarbon emissions from PCCI combustion on SCR catalysts in operating a light-duty 1.9-liter GM diesel engine in both PCCI and conventional combustion modes

320

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Requirements State and county agencies must purchase light-duty vehicles that reduce petroleum consumption and meet the needs of the agency. The priority to be used for purchasing...

Note: This page contains sample records for the topic "light-duty vehi cles" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Evidence from Animal Studies for the Carcinogenicity of Inhaled Diesel Exhaust  

Science Journals Connector (OSTI)

Concerns in the mid 1970s for petroleum shortages and the mandating of fuel efficiency standards for automobiles led to speculation that the use of diesel engines in the U. S. light-duty fleet would increase s...

Joe L. Mauderly; William C. Griffith; Rogene F. Henderson; Robert K. Jones…

1990-01-01T23:59:59.000Z

322

US Tier 2 Bin 2 Diesel Research Progress  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

8 US Tier 2 Bin 2 Diesel Research Progress Brian Cooper Ricardo plc 2 Ricardo plc 2008 Light Duty Diesel technology will continue to improve and meet long term emissions and...

323

Overview oi the DOE High Efficiency Engine Technologies R&D  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Class 8 Trucks (SuperTruck) and Advanced Technology Powertrains For Light-Duty Vehicles (ATP-LD) *Baseline is state-of-the-art port-fuel injected gasoline engine Vehicle...

324

Effects of Advanced Combustion Technologies on Particulate Matter...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

1.7 L TDI with full-pass control - HCCI: single cylinder research engine * Light Duty Ad Hoc modes 1-4 for PCCI * HCCI: 1800 RPM, varied fuel rate, intake T - Loads from 1.6 -...

325

NETL F 451.1/1-1, Categorical Exclusion Designation Form  

NLE Websites -- All DOE Office Websites (Extended Search)

of the Cummins project is to develop and demonstrate a state-of-the-art light-duty diesel engine. Work at Purdue is for engine testing in a test cell environment. CARL...

326

Progress on first-principles-based materials design for hydrogen storage  

Science Journals Connector (OSTI)

...Development DOE Hydrogen Program. Available at http://www1.eere.energy.gov/hydrogenandfuelcells/pdfs/storage.pdf...Systems for Light-Duty Vehicles. Available at http://www1.eere.energy.gov/hydrogenandfuelcells/storage/current_technology...

Noejung Park; Keunsu Choi; Jeongwoon Hwang; Dong Wook Kim; Dong Ok Kim; Jisoon Ihm

2012-01-01T23:59:59.000Z

327

Fuel Savings from Hybrid Electric Vehicles  

SciTech Connect

NREL's study shows that hybrid electric vehicles can significantly reduce oil imports for use in light-duty vehicles, particularly if drivers switch to smaller, more fuel-efficient vehicles overall.

Bennion, K.; Thornton, M.

2009-03-01T23:59:59.000Z

328

NETL F 451.1/1-1, Categorical Exclusion Designation Form  

NLE Websites -- All DOE Office Websites (Extended Search)

Pontiac, Oakland County,MI,48340 Lean Miller Cycle System Development for Light-Duty Vehicles The project will attempt to demonstrate a 35% improvement in fuel economy over a...

329

NETL F 451.1/1-1, Categorical Exclusion Designation Form  

NLE Websites -- All DOE Office Websites (Extended Search)

Milford, Oakland County, MI 48380 Lean Miller Cycle System Development for Light-Duty Vehicles The project will attempt to demonstrate a 35% improvement in fuel economy over a...

330

Argonne National Laboratory and U.S. Department of Energy Release...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Cities program to help Clean Cities stakeholders estimate petroleum use, greenhouse gas (GHG) emissions, air pollutant emissions and cost of ownership of light-duty and heavy-duty...

331

U.S. Energy Information Administration (EIA) - Pub  

Annual Energy Outlook 2012 (EIA)

concerns, EPA and NHTSA in December 2011 jointly issued a proposed rule covering GHG emissions and CAFE standards for passenger cars and light-duty trucks in MY 2017...

332

The Economic, Energy, and GHG Emissions Impacts of Proposed 2017–2025 Vehicle Fuel Economy Standards in the United States  

E-Print Network (OSTI)

Increases in the U.S. Corporate Average Fuel Economy (CAFE) Standards for 2017 to 2025 model year light-duty vehicles are currently under consideration. This analysis uses an economy-wide model with detail in the passenger ...

Karplus, Valerie

2012-07-31T23:59:59.000Z

333

CX-008869: Categorical Exclusion Determination  

Energy.gov (U.S. Department of Energy (DOE))

Gas Technology Institute- Commercial Prototype Adsorbed Natural Gas System for Light Duty Vehicles CX(s) Applied: B3.6 Date: 08/20/2012 Location(s): Illinois, Illinois Offices(s): Advanced Research Projects Agency-Energy

334

Fact #677: May 30, 2011 Number of Hybrid Models, 2001-2011 |...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

2009 19 2010 20 2011 29 Source: U.S. Department of Energy, Alternative Fuels and Advanced Vehicles Data Center, OEM AFVHEVDiesel Light Duty Model Offerings by Fuel Type 1991-2011...

335

Analysis Reveals Impact of Road Grade on Vehicle Energy Use (Fact Sheet)  

SciTech Connect

Findings of study indicate that, on average, road grade could be responsible for 1%-3% of fuel use in light-duty automobiles, with many individual trips impacted by as much as 40%.

Not Available

2014-04-01T23:59:59.000Z

336

Household Vehicles Energy Use: Latest Data and Trends  

Reports and Publications (EIA)

This report provides newly available national and regional data and analyzes the nation's energy use by light-duty vehicles. This release represents the analytical component of the report, with a data component having been released in early 2005.

2005-01-01T23:59:59.000Z

337

Zero-Emission Vehicle Scenario Cost Analysis Using A Fuzzy Set-Based Framework  

E-Print Network (OSTI)

Now, a portion of the 10% EV sales mandate can be composeda small percentage of EV sales with the ZEV mandate). Withsale of more high-profit, light-duty trucks and sport-utility vehicles under CAFE regulations. EV

Lipman, Timothy Edward

1999-01-01T23:59:59.000Z

338

America's Bottom-Up Climate Change Mitigation Policy  

E-Print Network (OSTI)

stabilize US GHG emissions at their 2010 levels until thefor US light-duty vehicle GHG emissions under varying levelsUS GHG emissions would be stabilized at 2010 levels by 2020—

Lutsey, Nicholas P.; Sperling, Dan

2008-01-01T23:59:59.000Z

339

Diesel Emission Control Technology Review | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

DOE's EERE FreedomCar and Fuel Partnership and 21st Century Truck Programs. 2006deerjohnson.pdf More Documents & Publications Light Duty Diesels in the United States - Some...

340

Optimization of a turbocharger for high EGR applications  

Energy.gov (U.S. Department of Energy (DOE))

Approach to optimize single turbocharger operation to drive high-EGR efficiently, and extend operating range and efficiency of diesels in cost-sensitive and packaging-constrained light-duty applications

Note: This page contains sample records for the topic "light-duty vehi cles" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

World Shale Resources  

Annual Energy Outlook 2012 (EIA)

with crude oil approaching the 1970 all-time high of 9.6 million barrels per day * Light-duty vehicle energy use declines sharply reflecting slowing growth in vehicle miles...

342

U.S. Energy Information Administration (EIA) - Ap  

Annual Energy Outlook 2012 (EIA)

use (1) generators (1) geothermal (1) greenhouse gases (1) hydroelectric (1) Iraq (1) light-duty vehicles (1) Marcellus (1) No Sunset Case (1) nuclear (1) oil prices (1) policy...

343

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

or individual that owns, controls, operates, or manages a facility that supplies electricity to the public exclusively to charge light-duty battery electric and plug-in hybrid...

344

Traveled distance, stock and fuel efficiency of private vehicles in Canada: price elasticities and rebound effect  

Science Journals Connector (OSTI)

This paper presents estimates of the rebound effect and other elasticities for the Canadian light-duty vehicle fleet using panel data at the provincial level from 1990 to 2004. We estimate a simultaneous three-eq...

Philippe Barla; Bernard Lamonde; Luis F. Miranda-Moreno; Nathalie Boucher

2009-07-01T23:59:59.000Z

345

Fuel Life-Cycle Analysis of Hydrogen vs. Conventional Transportation Fuels.  

E-Print Network (OSTI)

??Fuel life-cycle analyses were performed to compare the affects of hydrogen on annual U.S. light-duty transportation emissions in future year 2030. Five scenarios were developed… (more)

DeGolyer, Jessica Suzanne

2008-01-01T23:59:59.000Z

346

Comparison of Particle Sizing Instrument Technologies for Vehicle Emissions Testing  

E-Print Network (OSTI)

a PFI engine instead of a GDI engine. However, the responsesemissions from a light-duty GDI vehicle. Aerosol Science andInjection engine (WG-GDI), the 2012 Model Year Mercedes Benz

Chen, Vincent

2014-01-01T23:59:59.000Z

347

Overview of the Advanced Combustion Engine R&D  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

high-efficiency engines using hydrocarbon-based (petroleum and non-petroleum) fuels and hydrogen Light-Duty Heavy-Duty 2010 2015 2015 2018 Engine brake thermal efficiency 45% 50%...

348

Overview of DOE Emission Control R&D  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

for transportation. Supports U.S.DRIVE mid-term program goal * Light-duty - improve fuel economy by 25 to 40% by 2015 Supports 21 st Century Truck Program goal * Heavy-duty...

349

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Federal Fleets Under the Energy Policy Act (EPAct) of 1992, 75% of new light-duty vehicles acquired by covered federal fleets must be alternative fuel vehicles (AFVs). As amended...

350

Y  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

F uel a nd A dvanced T echnology V ehicles 1 (Updated 1 1242014) 1 Source:httpafdc.energy.govvehiclessearchLight---Duty V ehicle S earch MY FuelPowertrain T ype Make Model...

351

DOE Issues Request for Information on Fuel Cells for Continuous...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Fuel Cells for Continuous On-Board Recharging for Battery Electric Light-Duty Vehicles DOE Issues Request for Information on Fuel Cells for Continuous On-Board Recharging for...

352

A Vehicle Manufacturer's Perspective on Higher-Octane Fuels  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

of octane rating 4 EPA report 420-R-13-011 "Light-Duty Automotive Technology, Carbon Dioxide Emissions, and Fuel Economy Trends: 1975 Through 2013" Technology is evolving rapidly...

353

Fuel Cell Technologies Office FY 2015 Budget At-A-Glance  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Fuel Cell Technologies Office develops technologies to enable fuel cells to be cost-competitive in diverse applications, including light-duty vehicles (at less than 40kW) and...

354

Trends in Particulate Nanostructure | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

(nanostructure) of the soot across platforms, heavy-duty and light-duty, and biodiesel blend level. p-10strzelec.pdf More Documents & Publications Investigation of NO2...

355

Mg-Based Nano-layered Thin Films for Hydrogen Storage  

E-Print Network (OSTI)

-plane direction as a function of the distance from interface. . . . . . . . . . . . . . . 152 xvii LIST OF TABLES TABLE Page 1.1 Selected hydrogen storage targets for light-duty vehicles proposed by DOE in 2009... for hydrogen storage in light-duty vehicles shown in Table 1.1 [10]. Development of materials-based storage will be further discussed in the literature review section. 1.1.3 Hydrogen combustion: fuel cells Fuel cells are electrochemical devices that essentially...

Junkaew, Anchalee

2013-11-26T23:59:59.000Z

356

3D model-based tracking for UAV position control Celine Teuli`ere, Laurent Eck, Eric Marchand, Nicolas Guenard  

E-Print Network (OSTI)

3D model-based tracking for UAV position control C´eline Teuli`ere, Laurent Eck, Eric Marchand control of an unmanned aerial vehi- cle (UAV). Given a 3D model of the edges of its environment, the UAV approach. I. INTRODUCTION Unmanned aerial vehicles (UAVs) have a large range of in- door or outdoor

Paris-Sud XI, Université de

357

Advanced High Energy and High Power Battery Systems for Automotive Applications Khalil Amine  

E-Print Network (OSTI)

Geothermal 2.5 Wind 0.22 Solar 0.02 Coal 110 Natural Gas 107 Residential 50 Vehicle 39 Freight 40 Air 129.30am Advanced High Energy and High Power Battery Systems for Automotive Applications Khalil Amine electric drive Plug in Hybrid Electric Vehicle (P-HEVs), long range electric vehi cle (EV) and sm art grid

Levi, Anthony F. J.

358

Energy and Financial Markets Overview: Crude Oil Price Formation  

U.S. Energy Information Administration (EIA) Indexed Site

John Maples John Maples 2011 EIA Energy Conference April 26, 2011 Transportation and the Environment Light-duty vehicle combined Corporate Average Fuel Economy Standards (CAFE) in three cases, 2005-2035 2 0 20 40 60 80 2005 2010 2015 2020 2025 2030 2035 miles per gallon Source: EIA, Annual Energy Outlook 2011 CAFE6 CAFE3 Reference John Maples, April 26, 2011 Light-duty vehicle delivered energy consumption and total transportation carbon dioxide emissions, 2005-2035 3 0 5 10 15 20 2005 2010 2015 2020 2025 2030 2035 Reference CAFE3 CAFE6 quadrillion Btu 0 500 1000 1500 2000 2500 2005 2010 2015 2020 2025 2030 2035 million metric tons carbon dioxide equivalent Source: EIA, Annual Energy Outlook 2011 John Maples, April 26, 2011 Distribution of new light-duty vehicle sales by price, 2010 and 2025 (2009$) 4 Source: EIA, Annual Energy Outlook 2011

359

Changes in release cycles for EIA's  

Gasoline and Diesel Fuel Update (EIA)

Potential efficiency improvements and their impacts on end-use energy demand Increasing light-duty vehicle greenhouse gas and fuel economy standards for model years 2017 to 2025 Energy intensity trends in AEO2010 Potential efficiency improvements and their impacts on end-use energy demand Increasing light-duty vehicle greenhouse gas and fuel economy standards for model years 2017 to 2025 Energy intensity trends in AEO2010 Energy impacts of proposed CAFE standards for light-duty vehicles, model years 2017 to 2025 Fuel consumption and greenhouse gas emissions standards for heavy-duty vehicles Natural gas as a fuel for heavy trucks: issues and incentives Nuclear power in AEO2012 Carbon capture and storage: economics and issues Potential impact of minimum pipeline throughput constraints on Alaska North Slope oil production Power sector environmental regulations on the horizon U.S. crude oil and natural gas resource uncertainty Evolving Marcellus Shale gas resource estimates

360

U.S. Energy Information Administration (EIA)  

Gasoline and Diesel Fuel Update (EIA)

Energy Consumption by Sector Energy Consumption by Sector Transportation The AEO2011 Reference case does not include the proposed fuel economy standards for heavy-duty vehicles provided in The Proposed Rule for Greenhouse Gas Emissions Standards and Fuel Efficiency Standards for Medium- and Heavy-Duty Engines and Vehicles, published by the EPA and the National Highway Traffic Safety Administration (NHTSA) in November 2010, nor does it include increases in fuel economy standards for light-duty vehicles, as outlined in the September 2010 EPA/NHTSA Notice of Upcoming Joint Rulemaking to Establish 2017 and Later Model Year Light-Duty Vehicle Greenhouse Gas Emissions and Corporate Average Fuel Economy (CAFE) Standards because the specifi cs of the new standards are not yet available. Figure DataAEO2011 assumes the adoption of CAFE standards for light-duty

Note: This page contains sample records for the topic "light-duty vehi cles" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

EROSION-CORROSION-WEAR PROGRAM  

E-Print Network (OSTI)

of Fe-Cr-Ni Alloys in Coal Gasifier Environments," Oxidationof Structural Materials in Coal Gasifier Atmospheres/ UCLA,char parti- cles in coal gasifiers consist of materials with

Levy, Alan V.

2013-01-01T23:59:59.000Z

362

MATERIALS AND MOLECULAR RESEARCH DIVISION ANNUAL REPORT 1979  

E-Print Network (OSTI)

of Fe-Cr-Ni Alloys in Coal Gasifier Environments," OxidationStructural ~latorials in Coal Gasifier Atmospheres," UCLA,char parti- cles in coal gasifiers consist of materials with

Authors, Various

2013-01-01T23:59:59.000Z

363

Atmos. Chem. Phys., 11, 45054520, 2011 www.atmos-chem-phys.net/11/4505/2011/  

E-Print Network (OSTI)

of such parti- cles is soot, which is found in diesel engine exhaust, for ex- ample, due to incomplete and Planetary Atmospheres, School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY

Meskhidze, Nicholas

364

E-Print Network 3.0 - acids lipoprotein lipase Sample Search...  

NLE Websites -- All DOE Office Websites (Extended Search)

a review, see remain initially in the hemolymph. Fatty acids, however, (35... not store lipids, and hence all fatty acid cles, the hydrolysis should be catalyzed by a lipoprotein...

365

Annual Energy Outlook 2013 Early Release Reference Case  

Gasoline and Diesel Fuel Update (EIA)

Flex-Fuel Vehicle Modeling in the Flex-Fuel Vehicle Modeling in the Annual Energy Outlook John Maples Office of Energy Consumption and Energy Analysis March 20, 2013 | Washington, DC Light duty vehicle technology and alternative fuel market penetration 2 * Technologies affecting light-duty vehicle fuel economy are considered as either: - subsystem technologies (transmissions, materials, turbo charging) - advanced/alternative fuel vehicles (hybrids, EVs, FFVs) * Manufacturers Technology Choice Component (MTCC) - 9 manufacturers, 16 vehicle types, 6 size classes - adopts vehicle subsystem technologies for all vehicle types (conventional gasoline, FFV, hybrid, diesel, etc.) based on value of fuel economy and/or performance improvement * Consumer Vehicle Choice Component (CVCC)

366

Transportation Energy Futures: Project Overview and Findings (Presentation)  

SciTech Connect

The U.S. Department of Energy-sponsored Transportation Energy Futures (TEF) project examines how combining multiple strategies could reduce both GHG emissions and petroleum use by 80%. The project's primary objective was to help inform domestic decisions about transportation energy strategies, priorities, and investments, with an emphasis on previously underexplored opportunities related to energy efficiency and renewable energy in light-duty vehicles, non-light-duty vehicles, fuels, and transportation demand. This PowerPoint provides an overview of the project and its findings.

Not Available

2013-03-01T23:59:59.000Z

367

CAFE Standards (released in AEO2010)  

Reports and Publications (EIA)

Pursuant to the Presidents announcement of a National Fuel Efficiency Policy, the National Highway Traffic Safety Administration (NHTSA) and the EPA have promulgated nationally coordinated standards for tailpipe Carbon Dioxide (CO2)-equivalent emissions and fuel economy for light-duty vehicles (LDVs), which includes both passenger cars and light-duty trucks. In the joint rulemaking, the Environmental Protection Agency is enacting CO2-equivalent emissions standards under the Clean Air Act (CAA), and NHTSA is enacting companion Corporate Average Fuel Economy standards under the Energy Policy and Conservation Act, as amended by the Energy Independence and Security Act of 2007.

2010-01-01T23:59:59.000Z

368

On-Road Remote Sensing of Vehicle Emissions in Mexico  

Science Journals Connector (OSTI)

The Subsecretaría de Ecología's Office was able to provide vehicle registration information for 10?654 vehicles. ... The groups consisted of all light-duty passenger vehicles, which included vans and sport utility vehicles; light-duty pickup trucks; Eco taxis (ecological taxis are taxis for hire that are required by the Mexican government to be post-1990 gasoline powered and are painted green and white to signify this); post 1990-VW sedans (including any Eco taxis, nicknamed Beetles in the United States); pre-1991 VW sedans (including any painted as if an Eco taxi); gasoline-powered micro-transit buses, diesel-powered transit buses, and trucks larger than pickup trucks. ...

Gary A. Bishop; Donald H. Stedman; Julián de la Garza Castro; Franciso J. Dávalos

1997-11-26T23:59:59.000Z

369

ECOLE PRATIQUE DES HAUTES ETUDES Mention Histoire, textes et documents  

E-Print Network (OSTI)

Etude diachronique du système verbal persan (Xe -XVIe siècles) : d'un équilibre à l'autre ? Agnès changements morphologiques et syntaxiques du système verbal persan entre les Xe et XVIe siècles. Dix textes en prose représentatifs (régions et dialectes, judéo-persan compris) ont pu faire apparaître les évolutions

Paris-Sud XI, Université de

370

Assumptions to the Annual Energy Outlook 2000 - Transportation Demand  

Gasoline and Diesel Fuel Update (EIA)

Transportation Demand Module estimates energy consumption across the nine Census Divisions and over ten fuel types. Each fuel type is modeled according to fuel-specific technology attributes applicable by transportation mode. Total transportation energy consumption is the sum of energy use in eight transport modes: light-duty vehicles (cars, light trucks, industry sport utility vehicles and vans), commercial light trucks (8501-10,000 lbs), freight trucks (>10,000 lbs), freight and passenger airplanes, freight rail, freight shipping, mass transit, and miscellaneous transport such as mass transit. Light-duty vehicle fuel consumption is further subdivided into personal usage and commercial fleet consumption. Transportation Demand Module estimates energy consumption across the nine Census Divisions and over ten fuel types. Each fuel type is modeled according to fuel-specific technology attributes applicable by transportation mode. Total transportation energy consumption is the sum of energy use in eight transport modes: light-duty vehicles (cars, light trucks, industry sport utility vehicles and vans), commercial light trucks (8501-10,000 lbs), freight trucks (>10,000 lbs), freight and passenger airplanes, freight rail, freight shipping, mass transit, and miscellaneous transport such as mass transit. Light-duty vehicle fuel consumption is further subdivided into personal usage and commercial fleet consumption. Key Assumptions Macroeconomic Sector Inputs

371

Atmos. Chem. Phys., 11, 48514859, 2011 www.atmos-chem-phys.net/11/4851/2011/  

E-Print Network (OSTI)

: 24 May 2011 Abstract. Unlike exhaust emissions, non-exhaust traffic emissions are completely unregulated and in addition, there are large uncertainties in the non-exhaust emission factors re- quired) for individual vehicles including gaso- line/diesel light duty vehicles and heavy duty EFs (see e.g., Westerholm

Meskhidze, Nicholas

372

1 | Fuel Cell Technologies Program Source: US DOE 8/5/2011 eere.energy.gov 5th International Conference on Polymer  

E-Print Network (OSTI)

­50%+ reductions for CHP systems (>80% with biogas) · 55­90% reductions for light- duty vehicles · up to 60 -- including biogas, methanol, H2 · Hydrogen -- can be produced cleanly using sunlight or biomass directly Overview 0 25 50 75 100 2008 2009 2010 USA Japan South Korea Germany Other (MW) Megawatts Shipped, Key

373

1 | Fuel Cell Technologies Program Source: US DOE 3/19/2013 eere.energy.gov Fuel Cell Technologies Overview  

E-Print Network (OSTI)

(>80% with biogas) · 55­90% reductions for light- duty vehicles · > 60% (electrical) · > 70% reduction in criteria pollutants for CHP systems Fuel Flexibility · Clean fuels -- including biogas Year in Review from http://cepgi.typepad.com/heslin_rothenberg_farley_/ United States 47% Germany 7

374

Natural gas as a fuel for road vehicles  

Science Journals Connector (OSTI)

The operation of light duty and heavy duty vehicles on natural gas for vehicles (NGV) is discussed in terms of the fuel combustion differences compared with conventional fuels, and engine design changes needed to match the fuel characteristics of NGV. Engine management system requirements are discussed, emissions performance of NGV-fuelled engines is described and fuel storage and supply issues are considered.

E.E. Milkins; J.D. Edsell

1996-01-01T23:59:59.000Z

375

North Carolina State University, Campus Box 7409, Raleigh, NC 27695 | 919-515-3480 | www.ncsc.ncsu.edu | 8/2013 Advancing Clean Energy for a Sustainable Economy  

E-Print Network (OSTI)

in industrial and home applications. Increasingly it is also being employed as a clean burning vehicle fuel natural gas can also be produced from decaying organic materials, such as waste from plants, landfills. Emissions For light duty vehicles, CNG fuels some of the cleanest burning internal combustion engines

376

This article was published in an Elsevier journal. The attached copy is furnished to the author for non-commercial research and  

E-Print Network (OSTI)

. Introduction Fuel cell systems are being considered for automobiles (passenger cars and light-duty trucks of logistics fuels to hydrogen by steam reforming is attractive but poses great challenge since they contain/auxiliary power generation. The primary advan- tages of fuel cell system include increased efficiency, lower

Azad, Abdul-Majeed

377

Mass Production Cost Estimation of Direct H2 PEM Fuel Cell Systems for Transportation Applications: 2013 Update  

Energy.gov (U.S. Department of Energy (DOE))

This report is the seventh annual update of a comprehensive automotive fuel cell cost analysis conducted by Strategic Analysis under contract to the U.S. Department of Energy. The 2013 update covers fuel cell cost analysis of both light duty vehicle (automotive) and transit bus applications for only the current year (i.e., 2013).

378

THE PROBLEM OF COLD STARTS:1 A CLOSER LOOK AT MOBILE SOURCE EMISSIONS LEVELS2  

E-Print Network (OSTI)

(pre-)heated catalysts, using the bigger batteries available34 on hybrid drivetrains and plug Agency (EPA) has been regulating the light-duty vehicle fleet's hydrocarbon (HC), carbon41 monoxide (CO, when engine block and coolant temperatures are low, incomplete combustion results in44 #12

Kockelman, Kara M.

379

Clean Cities 2011 Vehicle Buyer's Guide  

SciTech Connect

The 2011 Clean Cities Light-Duty Vehicle Buyer's Guide is a consumer publication that provides a comprehensive list of commercially available alternative fuel and advanced vehicles in model year 2011. The guide allows for side-by-side comparisons of fuel economy, price, emissions, and vehicle specifications.

Not Available

2011-01-01T23:59:59.000Z

380

STATE OF CALIFORNIA --THE RESOURCES AGENCY ARNOLD SCHWARZENEGGER, Governor CALIFORNIA ENERGY COMMISSION  

E-Print Network (OSTI)

$23 Million Light-Duty Vehicles 300 $2 Million Fueling Station Installations 20 $8 Million Natural Gas Stop Electrification, and Other Non- Road Applications 125 $11.5 Million Charging Stations 6500 $12 Public Access Hydrogen Fueling Stations 11 $40 Million Subtotal $40 Million Ethanol Feedstock and Project

Note: This page contains sample records for the topic "light-duty vehi cles" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

www.steps.ucdavis.edu How vehicle fuel economy improvements can  

E-Print Network (OSTI)

from Internal Combustion Engine (ICE) vehicles · Role of plug-in electric vehicles (PEV) · Relative are very cost- effective Fuel savings more than pays for fuel economy improvements in light-duty vehicles Fuelsavings #12;7 Some cost/benefit estimates FE Improvement, hybrids, PEVs v. a base ICE vehicle over time

California at Davis, University of

382

Cytotoxicity and Inflammatory Potential of Soot Particles of Low-Emission Diesel Engines  

Science Journals Connector (OSTI)

This effect is assigned to the defective surface structure of Euro IV diesel soot, rendering it highly active. ... Since the implementation of the 1970 Clean Air Act in the United States of America, progress has been made in the reduction of exhaust gas and soot emissions of light-duty and heavy-duty vehicles (passenger cars and trucks). ...

Dang Sheng Su; Annalucia Serafino; Jens-Oliver Müller; Rolf E. Jentoft; Robert Schlögl; Silvana Fiorito

2008-01-25T23:59:59.000Z

383

E 1 5 T H AV E E 1 8 T H AV E  

E-Print Network (OSTI)

) Gaiters 4.00 Hiking Boots - light duty, nylon 4.00 Fleece Jackets 5.00 Rain Jackets 5.00 Rain Pants 5.00 Snowboard Boots 5.00 Snowshoe Equipment (Rental Price) Snow Shoe Pkg. - (Snowshoes/Boots/Poles) 10.00 Snow

Oregon, University of

384

E 1 5 T H AV E E 1 8 T H AV E  

E-Print Network (OSTI)

(Rental Price) Gaiters 4.00 Hiking Boots - light duty,nylon 4.00 Fleece Jackets 5.00 Rain Jackets 5. 20.00 Snowboard Only 15.00 Snowboard Boots 5.00 Snowshoe Equipment (Rental Price) Snow Shoe Pkg.- (Snowshoes/Boots/Poles) 10.00 Snow Shoes Only 6.00 Snow Boots Only 4.00 S

Oregon, University of

385

Vehicle Systems Integration Laboratory Accelerates Powertrain Development  

ScienceCinema (OSTI)

ORNL's Vehicle Systems Integration (VSI) Laboratory accelerates the pace of powertrain development by performing prototype research and characterization of advanced systems and hardware components. The VSI Lab is capable of accommodating a range of platforms from advanced light-duty vehicles to hybridized Class 8 powertrains with the goals of improving overall system efficiency and reducing emissions.

None

2014-06-25T23:59:59.000Z

386

Testing Electric Vehicle Demand in "Hybrid Households" Using a Reflexive Survey  

E-Print Network (OSTI)

EV market studies In the absenceof data on actual sales,EV, then we expect 16 to 18% annual of of light-duty vehicle salesEV experiments indicate there is still more than adequatepotential marketsfor electric vehicles to have , exceededthe former 1998CARB mandatefor sales

Kurani, Kenneth S.; Turrentine, Thomas; Sperling, Daniel

2001-01-01T23:59:59.000Z

387

The Household Market for Electric Vehicles: Testing the Hybrid Household Hypothesis -- A Reflexively Designed Survey of New-Car-Buying Multi-Vehicle California Households  

E-Print Network (OSTI)

EV,then we expect 13.3 to 15.2% of all light-duty vehicle sales,EV marketpotential for smaller and shorter range velucles represented by our sampleis about 7%of annual, newhght duty vehicle sales.EV body styles" EVs ICEVs Total PAGE 66 THE HOUSEHOLD MA RKET FOR ELECTRIC VEHICLES percent mandatein the year 2003will dependon sales

Turrentine, Thomas; Kurani, Kenneth S.

2001-01-01T23:59:59.000Z

388

buildings in Continued on p. 5  

E-Print Network (OSTI)

systems; ground-source and distributed heat pumps; and building-inte- grated, solar, combined heat carbon emissions," said David Sandalow, Department of Energy Assistant Secretary of Energy for Policy for the waste heat recovery system using exhaust from the light-duty diesel engine Exhaust from diesel vehicles

Pennycook, Steve

389

1. Report No. SWUTC/11/161023-1  

E-Print Network (OSTI)

and Subtitle The Light-Duty-Vehicle Fleet's Evolution: Anticipating PHEV Adoption and Greenhouse Gas Emissions-fleet composition, use, and greenhouse gas (GHG) emissions under nine different scenarios, including variations Evolution, Vehicle Ownership, Greenhouse Gas (GHG) emissions, Plug-In Hybrid Electric Vehicles (PHEVs

390

LowCostGHG ReductionCARB 3/03 Low-Cost and Near-Term Greenhouse Gas Emission Reduction  

E-Print Network (OSTI)

for Light Duty Vehicles Critical to the Pavley bill's goal to reduce greenhouse gas (GHG) emissions from symbols, and light trucks by large. Greenhouse Gas Emissions Intensity (kg/mi), urban driving cycleLowCostGHG ReductionCARB 3/03 1 Low-Cost and Near-Term Greenhouse Gas Emission Reduction Marc Ross

Edwards, Paul N.

391

Hydrogen & Fuel Cells Program Overview  

E-Print Network (OSTI)

Hydrogen & Fuel Cells Program Overview Dr. Sunita Satyapal Program Manager 2011 Annual Merit Review and Peer Evaluation Meeting May 9, 2011 #12;Enable widespread commercialization of hydrogen and fuel cell transportation applications/light duty vehicles Updated Program Plan May 2011 Hydrogen and Fuel Cells Key Goals 2

392

Prioritizing Climate Change Mitigation Alternatives: Comparing Transportation Technologies to Options in Other Sectors  

E-Print Network (OSTI)

electricity production cost of new coal and natural gasgas reduction cost-effectiveness of light duty vehicle refrigerant systems 56 Figure 17. Ethanol productionCost effectiveness curve for fuel feedstock GHG reduction technologies Greenhouse gas emissions (million tonne CO2e/yr) Reference Natural gas production

Lutsey, Nicholas P.

2008-01-01T23:59:59.000Z

393

Novel Spark Plugs Improve Energy Efficiency of Compressed Natural  

E-Print Network (OSTI)

by 99 percent and reduce greenhouse gas emissions by 29 percent relative to gasoline. In California technologies that reduce greenhouse gas emissions and air pollution beyond applicable standards of compressed natural gas light duty vehicles, thereby reducing harmful air emissions. The proposed innovation

394

COORDINATING RESEARCH COUNCIL, INC. 3650 MANSELL ROADSUITE 140ALPHARETTA, GA 30022  

E-Print Network (OSTI)

performance (e.g., diesel trucks); and light-duty vehicle fuels, lubricants, and equipment performance (e in this study is capable of measuring the ratios of CO, HC, and NO to CO2 in motor vehicle exhaust. From to determine the speed and acceleration of the vehicle, and was accompanied by a video system to record

Denver, University of

395

APPLIED SPECTROSCOPY 135A focal point  

E-Print Network (OSTI)

in Fig. 1A, and in Figs. 1B­1F in typical in-use setups measuring light-duty vehicles (LDV), heavy-duty trucks, locomotives, snow- mobiles, and airplanes respectively. The IR/UV light source and speed bar. In this article we discuss its application to the measurement of individual vehicle emissions remote- ly

Denver, University of

396

Annual Energy Outlook 2013 Early Release Reference Case  

U.S. Energy Information Administration (EIA) Indexed Site

Vehicle Choice Modeling and Vehicle Choice Modeling and Projections for the Annual Energy Outlook John Maples Office of Energy Analysis, Energy Efficiency and End Use January 25, 2013 | Detroit, MI Outline John Maples, Vehicle Choice Models and Markets Detroit, MI, January 25, 2013 2 * Overview of model structure and inputs * Battery electric vehicles and current state of the market * Projections of battery electric vehicles in the Annual Energy Outlook 2013 * High Battery Technology case in the Annual Energy Outlook 2012 Overview of model structure and inputs 3 John Maples, Vehicle Choice Models and Markets Detroit, MI, January 25, 2013 Light duty vehicle technology market penetration John Maples, Vehicle Choice Models and Markets Detroit, MI, January 25, 2013 4 * Technologies affecting light-duty vehicle fuel economy are

397

U.S. Energy Information Administration (EIA) - Sector  

Gasoline and Diesel Fuel Update (EIA)

Issues in focus Issues in focus Table 4. Key analyses from "Issues in focus" in recent AEOs AEO2012 AEO2011 AEO2010 Potential efficiency improvements and their impacts on end-use energy demand Increasing light-duty vehicle greenhouse gas and fuel economy standards for model years 2017 to 2025 Energy intensity trends in AEO2010 Energy impacts of proposed CAFE standards for light-duty vehicles, model years 2017 to 2025 Fuel consumption and greenhouse gas emissions standards for heavy-duty vehicles Natural gas as a fuel for heavy trucks: issues and incentives Impacts of a breakthrough in battery vehicle technology Potential efficiency improvements in alternative cases for appliance standards and building codes Factors affecting the relationship between crude oil and natural gas prices

398

Assumptions to the Annual Energy Outlook - Transportation Demand Module  

Gasoline and Diesel Fuel Update (EIA)

Transportation Demand Module Transportation Demand Module Assumption to the Annual Energy Outlook Transportation Demand Module The NEMS Transportation Demand Module estimates energy consumption across the nine Census Divisions (see Figure 5) and over ten fuel types. Each fuel type is modeled according to fuel-specific technology attributes applicable by transportation mode. Total transportation energy consumption is the sum of energy use in eight transport modes: light-duty vehicles (cars, light trucks, sport utility vehicles and vans), commercial light trucks (8,501-10,000 lbs gross vehicle weight), freight trucks (>10,000 lbs gross vehicle weight), freight and passenger airplanes, freight rail, freight shipping, and miscellaneous transport such as mass transit. Light-duty vehicle fuel consumption is further subdivided into personal usage and commercial fleet consumption.

399

Propane-Fueled Vehicle Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Propane-Fueled Vehicle Basics Propane-Fueled Vehicle Basics Propane-Fueled Vehicle Basics August 20, 2013 - 9:16am Addthis There are more than 270,000 on-road propane vehicles in the United States and more than 10 million worldwide. Many are used in fleets, including light- and heavy-duty trucks, buses, taxicabs, police cars, and rental and delivery vehicles. Compared with vehicles fueled with conventional diesel and gasoline, propane vehicles can produce significantly fewer harmful emissions. The availability of new light-duty original equipment manufacturer propane vehicles has declined in recent years. However, certified installers can economically and reliably retrofit many light-duty vehicles for propane operation. Propane engines and fueling systems are also available for heavy-duty vehicles such as school buses and street sweepers.

400

Energy Blog | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

9, 2011 9, 2011 President Barack Obama delivers remarks on fuel efficiency standards for 2017-2025 model year cars and light-duty trucks during an event at the Washington Convention Center in Washington, D.C., July 29, 2011. Seated behind the President are at left are auto industry executives and Transportation Secretary Ray LaHood. (Official White House Photo by Samantha Appleton) New Vehicle Fuel Economy Standards Will Continue to Inspire Innovation President Obama announced a landmark agreement with automakers that sets aggressive new fuel-economy standards for cars and light-duty trucks. Find out how the Energy Department is unleashing innovation that will create jobs and make sure that the fuel-efficient vehicles of the future are made in America. July 29, 2011

Note: This page contains sample records for the topic "light-duty vehi cles" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Vehicle Technologies Office: Energy Storage  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Storage Energy Storage Improving the batteries for electric drive vehicles, including hybrid electric (HEV) and plug-in electric (PEV) vehicles, is key to improving vehicles' economic, social, and environmental sustainability. In fact, transitioning to a light-duty fleet of HEVs and PEVs could reduce U.S. foreign oil dependence by 30-60% and greenhouse gas emissions by 30-45%, depending on the exact mix of technologies. For a general overview of electric drive vehicles, see the DOE's Alternative Fuel Data Center's pages on Hybrid and Plug-in Electric Vehicles and Vehicle Batteries. While a number of electric drive vehicles are available on the market, further improvements in batteries could make them more affordable and convenient to consumers. In addition to light-duty vehicles, some heavy-duty manufacturers are also pursuing hybridization of medium and heavy-duty vehicles to improve fuel economy and reduce idling.

402

Annual Energy Outlook 2007: With Projections to 2030  

Gasoline and Diesel Fuel Update (EIA)

Lower Lower Costs, Greater Demand Could Spur Cellulose Ethanol Production Figure 85. Cellulose ethanol production, 2005-2030 (billion gallons per year) For AEO2007, two alternative ethanol cases examine the potential impact on ethanol demand of lower costs for cellulosic ethanol production, in combination with policies that increase sales of FFVs [170]. The refer- ence case projects that 10.5 percent of new light-duty vehicles will be capable of burning E85 in 2016. The lower cost ethanol case using reference energy prices assumes that capital and operating costs for cellulose ethanol plants in 2018 are 20 percent lower than pro- jected in the reference case, that at least 80 percent of new light-duty vehicles in 2016 can run on E85, and that energy prices will be the same as projected in the reference case. The lower cost ethanol case using high energy prices is based on the same assumptions

403

Assumptions to the Annual Energy Outlook  

Gasoline and Diesel Fuel Update (EIA)

Transportation Demand Module Transportation Demand Module The NEMS Transportation Demand Module estimates energy consumption across the nine Census Divisions and over ten fuel types. Each fuel type is modeled according to fuel-specific technology attributes applicable by transportation mode. Total transportation energy consumption is the sum of energy use in eight transport modes: light-duty vehicles (cars, light trucks, sport utility vehicles and vans), commercial light trucks (8501-10,000 lbs gross vehicle weight), freight trucks (>10,000 lbs gross vehicle weight), freight and passenger airplanes, freight rail, freight shipping, and miscellaneous transport such as mass transit. Light-duty vehicle fuel consumption is further subdivided into personal usage and commercial fleet consumption.

404

U.S. Energy Information Administration (EIA) - Source  

Gasoline and Diesel Fuel Update (EIA)

Transportation Transportation exec summary Executive Summary With more efficient light-duty vehicles, motor gasoline consumption.... Read full section Natural gas consumption grows in industrial and electric power sectors.... Read full section Mkt trends Market Trends Energy-intensive industries show strong early growth in output.... Read full section Industrial and commercial sectors lead U.S. growth in primary enerby use.... Read full section Growth in transportation energy consumption flat across projection.... Read full section CAFE and greenhouse gas emissions standards boost light-duty vehicle fuel economy.... Read full section Travel demand for personal vehicles continues to grow, but more slowly than in the past.... Read full section Sales of alternative fuel, fuel flexible, and hybrid vehicles sales

405

Alternative Fuels Data Center: Low Emission Vehicle (LEV) Standards  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Low Emission Vehicle Low Emission Vehicle (LEV) Standards to someone by E-mail Share Alternative Fuels Data Center: Low Emission Vehicle (LEV) Standards on Facebook Tweet about Alternative Fuels Data Center: Low Emission Vehicle (LEV) Standards on Twitter Bookmark Alternative Fuels Data Center: Low Emission Vehicle (LEV) Standards on Google Bookmark Alternative Fuels Data Center: Low Emission Vehicle (LEV) Standards on Delicious Rank Alternative Fuels Data Center: Low Emission Vehicle (LEV) Standards on Digg Find More places to share Alternative Fuels Data Center: Low Emission Vehicle (LEV) Standards on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Low Emission Vehicle (LEV) Standards Any new light-duty passenger car, light-duty truck, or medium-duty

406

Blog Feed: Vehicles | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

July 29, 2011 July 29, 2011 President Barack Obama delivers remarks on fuel efficiency standards for 2017-2025 model year cars and light-duty trucks during an event at the Washington Convention Center in Washington, D.C., July 29, 2011. Seated behind the President are at left are auto industry executives and Transportation Secretary Ray LaHood. (Official White House Photo by Samantha Appleton) New Vehicle Fuel Economy Standards Will Continue to Inspire Innovation President Obama announced a landmark agreement with automakers that sets aggressive new fuel-economy standards for cars and light-duty trucks. Find out how the Energy Department is unleashing innovation that will create jobs and make sure that the fuel-efficient vehicles of the future are made in America.

407

STATEMENT OF CONSIDERATIONS  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Robert Bosch LLC for an Advance Waiver of Domestic and Robert Bosch LLC for an Advance Waiver of Domestic and Foreign Invention Rights under DOE Cooperative Agreement No. DE- EE0003533; W(A) 2012-008, CH-1652 The Petitioner, Robert Bosch LLC ., (Bosch) was awarded th is cooperative agreement fo r the performance of work entitled "Advanced Combustion Controls-Enabling Systems and Solutions (ACCESS) for High Effi ciency Light Duty Vehicles". The goal of the ACCESS project is to develop highly capable and flexible advanced control concepts with enabling system , sub- system and component level solutions for the management of multi-mode combustion events in order to achieve up to 30% fuel economy improvement in a gasoline fueled light-duty vehicle without comprom ising its performance while meeting future em

408

Energy Information Administration (EIA) - Assumptions to the Annual Energy  

Gasoline and Diesel Fuel Update (EIA)

Transportation Demand Module Transportation Demand Module Assumptions to the Annual Energy Outlook 2006 The NEMS Transportation Demand Module estimates energy consumption across the nine Census Divisions (see Figure 5) and over ten fuel types. Each fuel type is modeled according to fuel-specific technology attributes applicable by transportation mode. Total transportation energy consumption isthe sum of energy use in eight transport modes: light-duty vehicles (cars and light trucks), commercial light trucks (8,501-10,000 lbs gross vehicle weight), freight trucks (>10,000 lbs gross vehicle weight), freight and passenger aircraft, freight rail, freight shipping, and miscellaneous transport such as mass transit. Light-duty vehicle fuel consumption is further subdivided into personal usage and commercial fleet consumption.

409

EIA - Assumptions to the Annual Energy Outlook 2008 - Transportation Demand  

Gasoline and Diesel Fuel Update (EIA)

Transportation Demand Module Transportation Demand Module Assumptions to the Annual Energy Outlook 2008 Transportation Demand Module The NEMS Transportation Demand Module estimates energy consumption across the nine Census Divisions (see Figure 5) and over ten fuel types. Each fuel type is modeled according to fuel-specific technology attributes applicable by transportation mode. Total transportation energy consumption is the sum of energy use in eight transport modes: light-duty vehicles (cars and light trucks), commercial light trucks (8,501-10,000 lbs gross vehicle weight), freight trucks (>10,000 lbs gross vehicle weight), freight and passenger aircraft, freight rail, freight shipping, and miscellaneous transport such as mass transit. Light-duty vehicle fuel consumption is further subdivided into personal usage and commercial fleet consumption.

410

Propane, Liquefied Petroleum Gas (LPG)  

NLE Websites -- All DOE Office Websites (Extended Search)

Propane: Liquefied Petroleum Gas (LPG) Propane: Liquefied Petroleum Gas (LPG) Ford F-150 (Dual-Fuel LPG) Propane or liquefied petroleum gas (LPG) is a clean-burning fossil fuel that can be used to power internal combustion engines. LPG-fueled vehicles can produce significantly lower amounts of some harmful emissions and the greenhouse gas carbon dioxide (CO2). LPG is usually less expensive than gasoline, it can be used without degrading vehicle performance, and most LPG used in U.S. comes from domestic sources. The availability of LPG-fueled light-duty passenger vehicles is currently limited. A few light-duty vehicles-mostly larger trucks and vans-can be ordered from a dealer with a prep-ready engine package and converted to use propane. Existing conventional vehicles can also be converted for LPG use.

411

U.S. Energy Information Administration (EIA) - Sector  

Gasoline and Diesel Fuel Update (EIA)

4. Key analyses from "Issues in focus" in recent AEOs 4. Key analyses from "Issues in focus" in recent AEOs AEO2012 AEO2011 AEO2010 Potential efficiency improvements and their impacts on end-use energy demand Increasing light-duty vehicle greenhouse gas and fuel economy standards for model years 2017 to 2025 Energy intensity trends in AEO2010 Energy impacts of proposed CAFE standards for light-duty vehicles, model years 2017 to 2025 Fuel consumption and greenhouse gas emissions standards for heavy-duty vehicles Natural gas as a fuel for heavy trucks: issues and incentives Impacts of a breakthrough in battery vehicle technology Potential efficiency improvements in alternative cases for appliance standards and building codes Factors affecting the relationship between crude oil and natural gas prices

412

U.S. Energy Information Administration (EIA) - Pub  

Gasoline and Diesel Fuel Update (EIA)

Legislation AEO 2011 Legislation and regulations Legislation AEO 2011 Legislation and regulations Introduction 1. Greenhouse gas emissions and corporate average fuel economy standards for 2017 and later model year light-duty vehicles On October 15, 2012, EPA and the National Highway Traffic Safety Administration (NHTSA) jointly issued a final rule for tailpipe emissions of carbon dioxide (CO2) and CAFE standards for light-duty vehicles, model years 2017 and beyond [16]... 2. Recent rulings on the Cross-State Air Pollution Rule and the Clean Air Interstate Rule On August 21, 2012, the United States Court of Appeals for the District of Columbia Circuit announced its intent to vacate CSAPR, which it had stayed from going into effect earlier in 2012... 3. Nuclear waste disposal and the Waste Confidence Rule

413

vehicle | OpenEI  

Open Energy Info (EERE)

vehicle vehicle Dataset Summary Description Supplemental Tables 48-56 of EIA AEO 2011 Early Release Source EIA Date Released December 08th, 2010 (4 years ago) Date Updated Unknown Keywords AEO Annual Energy Outlook EIA Energy Information Administration light-duty sales TEF Transportation Energy Futures vehicle Data text/csv icon Light-Duty_Vehicle_Sales_by_Technology_Type.csv (csv, 1.1 MiB) Quality Metrics Level of Review Some Review Comment Temporal and Spatial Coverage Frequency Annually Time Period 2008-2035 License License Open Data Commons Public Domain Dedication and Licence (PDDL) Comment Rate this dataset Usefulness of the metadata Average vote Your vote Usefulness of the dataset Average vote Your vote Ease of access Average vote Your vote Overall rating Average vote Your vote

414

sales | OpenEI  

Open Energy Info (EERE)

sales sales Dataset Summary Description Supplemental Tables 48-56 of EIA AEO 2011 Early Release Source EIA Date Released December 08th, 2010 (3 years ago) Date Updated Unknown Keywords AEO Annual Energy Outlook EIA Energy Information Administration light-duty sales TEF Transportation Energy Futures vehicle Data text/csv icon Light-Duty_Vehicle_Sales_by_Technology_Type.csv (csv, 1.1 MiB) Quality Metrics Level of Review Some Review Comment Temporal and Spatial Coverage Frequency Annually Time Period 2008-2035 License License Open Data Commons Public Domain Dedication and Licence (PDDL) Comment Rate this dataset Usefulness of the metadata Average vote Your vote Usefulness of the dataset Average vote Your vote Ease of access Average vote Your vote Overall rating Average vote Your vote

415

U.S. Energy Information Administration (EIA) - Pub  

Gasoline and Diesel Fuel Update (EIA)

Legislation AEO 2011 Legislation and regulations Legislation AEO 2011 Legislation and regulations Introduction 1. Greenhouse gas emissions and corporate average fuel economy standards for 2017 and later model year light-duty vehicles On October 15, 2012, EPA and the National Highway Traffic Safety Administration (NHTSA) jointly issued a final rule for tailpipe emissions of carbon dioxide (CO2) and CAFE standards for light-duty vehicles, model years 2017 and beyond [16]... 2. Recent rulings on the Cross-State Air Pollution Rule and the Clean Air Interstate Rule On August 21, 2012, the United States Court of Appeals for the District of Columbia Circuit announced its intent to vacate CSAPR, which it had stayed from going into effect earlier in 2012... 3. Nuclear waste disposal and the Waste Confidence Rule

416

U.S. Energy Information Administration (EIA) - Source  

Gasoline and Diesel Fuel Update (EIA)

Transportation Transportation exec summary Executive Summary With more efficient light-duty vehicles, motor gasoline consumption.... Read full section Natural gas consumption grows in industrial and electric power sectors.... Read full section Mkt trends Market Trends Energy-intensive industries show strong early growth in output.... Read full section Industrial and commercial sectors lead U.S. growth in primary enerby use.... Read full section Growth in transportation energy consumption flat across projection.... Read full section CAFE and greenhouse gas emissions standards boost light-duty vehicle fuel economy.... Read full section Travel demand for personal vehicles continues to grow, but more slowly than in the past.... Read full section Sales of alternative fuel, fuel flexible, and hybrid vehicles sales

417

EIA-Assumptions to the Annual Energy Outlook - Transportation Demand Module  

Gasoline and Diesel Fuel Update (EIA)

Transportation Demand Module Transportation Demand Module Assumptions to the Annual Energy Outlook 2007 Transportation Demand Module The NEMS Transportation Demand Module estimates energy consumption across the nine Census Divisions (see Figure 5) and over ten fuel types. Each fuel type is modeled according to fuel-specific technology attributes applicable by transportation mode. Total transportation energy consumption isthe sum of energy use in eight transport modes: light-duty vehicles (cars and light trucks), commercial light trucks (8,501-10,000 lbs gross vehicle weight), freight trucks (>10,000 lbs gross vehicle weight), freight and passenger aircraft, freight rail, freight shipping, and miscellaneous transport such as mass transit. Light-duty vehicle fuel consumption is further subdivided into personal usage and commercial fleet consumption.

418

Assumptions to the Annual Energy Outlook 2001 - Transportation Demand  

Gasoline and Diesel Fuel Update (EIA)

Transportation Demand Module Transportation Demand Module The NEMS Transportation Demand Module estimates energy consumption across the nine Census Divisions and over ten fuel types. Each fuel type is modeled according to fuel-specific technology attributes applicable by transportation mode. Total transportation energy consumption is the sum of energy use in eight transport modes: light-duty vehicles (cars, light trucks, industry sport utility vehicles and vans), commercial light trucks (8501-10,000 lbs), freight trucks (>10,000 lbs), freight and passenger airplanes, freight rail, freight shipping, and miscellaneous transport such as mass transit. Light-duty vehicle fuel consumption is further subdivided into personal usage and commercial fleet consumption. Key Assumptions Macroeconomic Sector Inputs

419

Assumptions to the Annual Energy Outlook 1999 - Transportation Demand  

Gasoline and Diesel Fuel Update (EIA)

transportation.gif (5318 bytes) transportation.gif (5318 bytes) The NEMS Transportation Demand Module estimates energy consumption across the nine Census Divisions and over ten fuel types. Each fuel type is modeled according to fuel-specific technology attributes applicable by transportation mode. Total transportation energy consumption is the sum of energy use in eight transport modes: light-duty vehicles (cars, light trucks, industry sport utility vehicles and vans), commercial light trucks (8501-10,000 lbs), freight trucks (>10,000 lbs), freight and passenger airplanes, freight rail, freight shipping, mass transit, and miscellaneous transport such as mass transit. Light-duty vehicle fuel consumption is further subdivided into personal usage and commercial fleet consumption.

420

STATEMENT OF CONSIDERATIONS  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

4125, 4125, W(A) 2011-021, CH·1606 The Petitioner, Cummins, Inc. (Cummins) was awarded the subject cooperative agreement with DOE for the performance of work entitled, "Cummins Next Generation Tier 2 Bin 2 Diesel" The goal of this project is to design. develop and demonstrate a state-of-the-art light-duty diesel engine that meets U.S. EPA Light-Duty Tier 2 Bin 2 emission standards and increases fuel efficiency by at least 40% when compared with a state-of the art port fuel-injected gasoline engine. The work performed by Cummins and its subcontractors on this project will integrate advances in the ares of combustion, air handling, fuel systems. closed loop controls and aftertreatment to creat a low emission diesel engine suitable for both consumer and commercial applications. Cummins and its

Note: This page contains sample records for the topic "light-duty vehi cles" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

CX-003407: Categorical Exclusion Determination | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

7: Categorical Exclusion Determination 7: Categorical Exclusion Determination CX-003407: Categorical Exclusion Determination Recovery Act - State Energy Program CX(s) Applied: B5.1 Date: 08/16/2010 Location(s): Shreveport, Louisiana Office(s): Energy Efficiency and Renewable Energy, Golden Field Office The State of Louisiana will provide $238,260 in Recovery Act funds to the Parish of Caddo to convert up to seven 2009/2010 gasoline engine light duty vehicles to compressed natural gas (CNG) and to purchase up to nine CNG-ready light duty vehicles. The work will be performed at Steelweld, 245 West Bert Kouns, Shreveport, Louisiana. DOCUMENT(S) AVAILABLE FOR DOWNLOAD CX-003407.pdf More Documents & Publications CX-003409: Categorical Exclusion Determination CX-003408: Categorical Exclusion Determination

422

NREL: Vehicles and Fuels Research - Vehicle Ancillary Loads Reduction  

NLE Websites -- All DOE Office Websites (Extended Search)

Research Research Search More Search Options Site Map Photo of Advanced Automotive Manikin Reducing fuel consumption by air conditioning systems is the focus of Vehicle Ancillary Loads Reduction (VALR) activities at NREL. About 7 billion gallons of fuel-about 5.5% of total national light-duty vehicle fuel use-are used annually just to cool light-duty vehicles in the United States. That's why our VALR team works with industry to help increase fuel economy and reduce tailpipe emissions by reducing the ancillary loads requirements in vehicles while maintaining the thermal comfort of the passengers. Approaches include improved cabin insulation, advanced window systems, advanced cooling and venting systems, and heat generated cooling. Another focus of the VALR project is ADAM, the ADvanced Automotive Manikin

423

New Vehicle Fuel Economy Standards Will Continue to Inspire Innovation |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Vehicle Fuel Economy Standards Will Continue to Inspire Vehicle Fuel Economy Standards Will Continue to Inspire Innovation New Vehicle Fuel Economy Standards Will Continue to Inspire Innovation July 29, 2011 - 1:48pm Addthis President Barack Obama delivers remarks on fuel efficiency standards for 2017-2025 model year cars and light-duty trucks during an event at the Washington Convention Center in Washington, D.C., July 29, 2011. Seated behind the President are at left are auto industry executives and Transportation Secretary Ray LaHood. (Official White House Photo by Samantha Appleton) President Barack Obama delivers remarks on fuel efficiency standards for 2017-2025 model year cars and light-duty trucks during an event at the Washington Convention Center in Washington, D.C., July 29, 2011. Seated behind the President are at left are auto industry executives and

424

Microsoft Word - FY2012 Archived Highlights.docx  

NLE Websites -- All DOE Office Websites (Extended Search)

March 2012 March 2012 Fuels, Engines, and Emissions Research Center (FEERC) Demonstrates Potential of Biofuels to Expand High Efficiency Operation of Advanced Combustion Engines The Oak Ridge National Laboratory (ORNL) Reactivity Controlled Compression Ignition (RCCI) combustion methodology was used on a multi-cylinder light-duty diesel engine to demonstrate the potential of biofuels to expand speed/load operating range. Improved load expansion is important to enable RCCI operation over the majority of the light-duty drive cycle as well as to fully realize the efficiency and emissions potential of RCCI over conventional diesel combustion. Improvements in maximum engine load with RCCI using E85 (85% ethanol, 15% gasoline) and B20 (20% biodiesel, 80% diesel) were as high as 30% over that of using gasoline and diesel fuel and

425

Annual Energy Outlook 2009 with Projections to 2030-Graphic Data  

Gasoline and Diesel Fuel Update (EIA)

Annual Energy Outlook 2009 with Projections to 2030 Annual Energy Outlook 2009 with Projections to 2030 Annual Energy Outlook 2009 with Projections to 2030 Graphic Data Figure 1. Total liquid fuels demand by sector Figure 1 Data Figure 2. Total natural gas supply by source Figure 2 Data Figure 3. New light-duty vehicle sales shares by type Figure 3 Data Figure 4. Proposed CAFE standards for passenger cars by vehicle footprint, model years 2011-2015 Figure 4 Data Figure 5. Proposed CAFE standards for light trucks by vehicle footprint, model years 2011-2015 Figure 5 Data Figure 6. Average fuel economy of new light-duty vehicles in the AEO2008 and AEO2009 projections, 1995-2030 Figure 6 Data Figure 7. Value of fuel saved by a PHEV compared with a conventional ICE vehicle over the life of the vehicles, by gasoline price and PHEV all-electric driving range

426

The National Energy Modeling System: An Overview 1998 - Transportation  

Gasoline and Diesel Fuel Update (EIA)

TRANSPORTATION DEMAND MODULE TRANSPORTATION DEMAND MODULE blueball.gif (205 bytes) Fuel Economy Submodule blueball.gif (205 bytes) Regional Sales Submodule blueball.gif (205 bytes) Alternative-Fuel Vehicle Submodule blueball.gif (205 bytes) Light-Duty Vehicle Stock Submodule blueball.gif (205 bytes) Vehicle-Miles Traveled (VMT) Submodule blueball.gif (205 bytes) Light-Duty Vehicle Commercial Fleet Submodule blueball.gif (205 bytes) Commercial Light Truck Submodule blueball.gif (205 bytes) Air Travel Demand Submodule blueball.gif (205 bytes) Aircraft Fleet Efficiency Submodule blueball.gif (205 bytes) Freight Transport Submodule blueball.gif (205 bytes) Miscellaneous Energy Use Submodule The transportation demand module (TRAN) forecasts the consumption of transportation sector fuels by transportation mode, including the use of

427

EIA - Assumptions to the Annual Energy Outlook 2009 - Transportation Demand  

Gasoline and Diesel Fuel Update (EIA)

Transportation Demand Module Transportation Demand Module Assumptions to the Annual Energy Outlook 2009 Transportation Demand Module The NEMS Transportation Demand Module estimates energy consumption across the nine Census Divisions (see Figure 5) and over ten fuel types. Each fuel type is modeled according to fuel-specific technology attributes applicable by transportation mode. Total transportation energy consumption is the sum of energy use in eight transport modes: light-duty vehicles (cars and light trucks), commercial light trucks (8,501-10,000 lbs gross vehicle weight), freight trucks (>10,000 lbs gross vehicle weight), freight and passenger aircraft, freight, rail, freight shipping, and miscellaneous transport such as mass transit. Light-duty vehicle fuel consumption is further subdivided into personal usage and commercial fleet consumption.

428

FY2000 Progress Report for Combustion and Emission Control for Advanced CIDI Engines  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Energy Office of Transportation Technologies 1000 Independence Avenue, S.W. Washington, DC 20585-0121 FY 2000 Progress Report for Combustion and Emission Control for Advanced CIDI Engines Energy Efficiency and Renewable Energy Office of Transportation Technologies Approved by Steven Chalk November 2000 Combustion and Emission Control for Advanced CIDI Engines FY 2000 Progress Report CONTENTS Page iii I. INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1 II. EMISSION CONTROL SUBSYSTEM DEVELOPMENT. . . . . . . . . . . . . . . . . . . . . . . . . . . .9 A. Emission Control Subsystem Evaluation for Light-Duty CIDI Vehicles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

429

Optical and Physical Properties from Primary On-Road Vehicle ParticleEmissions And Their Implications for Climate Change  

SciTech Connect

During the summers of 2004 and 2006, extinction and scattering coefficients of particle emissions inside a San Francisco Bay Area roadway tunnel were measured using a combined cavity ring-down and nephelometer instrument. Particle size distributions and humidification were also measured, as well as several gas phase species. Vehicles in the tunnel traveled up a 4% grade at a speed of approximately 60 km h{sup -1}. The traffic situation in the tunnel allows the apportionment of emission factors between light duty gasoline vehicles and diesel trucks. Cross-section emission factors for optical properties were determined for the apportioned vehicles to be consistent with gas phase and particulate matter emission factors. The absorption emission factor (the absorption cross-section per mass of fuel burned) for diesel trucks (4.4 {+-} 0.79 m{sup 2} kg{sup -1}) was 22 times larger than for light-duty gasoline vehicles (0.20 {+-} 0.05 m{sup 2} kg{sup -1}). The single scattering albedo of particles - which represents the fraction of incident light that is scattered as opposed to absorbed - was 0.2 for diesel trucks and 0.3 for light duty gasoline vehicles. These facts indicate that particulate matter from motor vehicles exerts a positive (i.e., warming) radiative climate forcing. Average particulate mass absorption efficiencies for diesel trucks and light duty gasoline vehicles were 3.14 {+-} 0.88 m{sup 2} g{sub PM}{sup -1} and 2.9 {+-} 1.07 m{sup 2} g{sub PM}{sup -1}, respectively. Particle size distributions and optical properties were insensitive to increases in relative humidity to values in excess of 90%, reinforcing previous findings that freshly emitted motor vehicle particulate matter is hydrophobic.

Strawa, A.W.; Kirchstetter, T.W.; Hallar, A.G.; Ban-Weiss, G.A.; McLaughlin, J.P.; Harley, R.A.; Lunden, M.M.

2009-01-23T23:59:59.000Z

430

Hydrogen Storage and Supply for Vehicular Fuel Systems  

Various alternative-fuel systems have been proposed for passenger vehicles and light-duty trucks to reduce the worldwide reliance on fossils fuels and thus mitigate their polluting effects.  Replacing gasoline and other refined hydrocarbon fuels continues to present research and implementation challenges for the automotive industry. During the last decade, hydrogen fuel technology has emerged as the prime alternative that will finally drive automotive fuel systems into the new millennium....

2012-05-11T23:59:59.000Z

431

Advanced Boost System Developing for High EGR Applications  

SciTech Connect

To support industry efforts of clean and efficient internal combustion engine development for passenger and commercial applications • This program focuses on turbocharger improvement for medium and light duty diesel applications, from complete system optimization percepective to enable commercialization of advanced diesel combustion technologies, such as HCCI/LTC. • Improve combined turbocharger efficiency up to 10% or fuel economy by 3% on FTP cycle at Tier II Bin 5 emission level.

Sun, Harold

2012-09-30T23:59:59.000Z

432

E 1 5 T H AV E E 1 8 T H AV E  

E-Print Network (OSTI)

Price) Gaiters 4.00 Hiking Boots - light duty, nylon 4.00 Fleece Jackets 5.00 Rain Jackets 5.00 Rain Only 15.00 Snowboard Boots 5.00 Snowshoe Equipment (Rental Price) Snow Shoe Pkg. - (Snowshoes/Boots/Poles) 10.00 Snow Shoes Only 6.00 Snow Boots Only 4.00 Snow Accessories (Rental Price) Ice Axes 6

Oregon, University of

433

Trends in On-Road Vehicle Emissions of Ammonia  

NLE Websites -- All DOE Office Websites (Extended Search)

Trends in On-Road Vehicle Emissions of Ammonia Trends in On-Road Vehicle Emissions of Ammonia Title Trends in On-Road Vehicle Emissions of Ammonia Publication Type Journal Article Year of Publication 2008 Authors Kean, Andrew J., David Littlejohn, George Ban-Weiss, Robert A. Harley, Thomas W. Kirchstetter, and Melissa M. Lunden Journal Atmospheric Environment Abstract Motor vehicle emissions of ammonia have been measured at a California highway tunnel in the San Francisco Bay area. Between 1999 and 2006, light-duty vehicle ammonia emissions decreased by 38 ± 6%, from 640 ± 40 to 400 ± 20 mg kg-1. High time resolution measurements of ammonia made in summer 2001 at the same location indicate a minimum in ammonia emissions correlated with slower-speed driving conditions. Variations in ammonia emission rates track changes in carbon monoxide more closely than changes in nitrogen oxides, especially during later evening hours when traffic speeds are highest. Analysis of remote sensing data of Burgard et al. (Environ Sci. Technol. 2006, 40, 7018-7022) indicates relationships between ammonia and vehicle model year, nitrogen oxides, and carbon monoxide. Ammonia emission rates from diesel trucks were difficult to measure in the tunnel setting due to the large contribution to ammonia concentrations in a mixed-traffic bore that were assigned to light-duty vehicle emissions. Nevertheless, it is clear that heavy-duty diesel trucks are a minor source of ammonia emissions compared to light-duty gasoline vehicles.

434

STATISTICAL ANALYSIS OF HIGH-FREQUENCY DECIMETRIC TYPE III BURSTS  

E-Print Network (OSTI)

-970 São José dos Campos, SP, Brazil 2Institute of Astronomy, ETH, CH 8092 Zürich, Switzerland (Received 6 that the acceleration of the parti- cles and/or energy release to the flares is occurring around densities of the or observations renewed the interest in the decimetric obser- vations above 1000 MHz, with high sensitivity

435

Jur van den Berg Department of Computer Science,  

E-Print Network (OSTI)

Jur van den Berg Department of Computer Science, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA berg@cs.unc.edu Mark Overmars Department of Information and Computing Sciences://ijr.sagepub.com cles (Fiorini and Shiller 19981 Vasquez et al. 20041 van den Berg et al. 20061 Zucker et al. 2007

van den Berg, Jur

436

Learning from Demonstrations Jur van den Berg  

E-Print Network (OSTI)

Jur van den Berg Department of Computer Science, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA berg@cs.unc.edu Mark Overmars Department of Information and Computing Sciences://ijr.sagepub.com cles (Fiorini and Shiller 19981 Vasquez et al. 20041 van den Berg et al. 20061 Zucker et al. 2007

van den Berg, Jur

437

Estimation of viable airborne microbes downwind from a point source.  

Science Journals Connector (OSTI)

...Models, Biological Temperature Wind APPLIED AND ENVIRONMENTAL MICROBIOLOGY...microbial death rate, (ii) mean wind speed, (iii) atmospheric...nuclear and fossil-fueled power plants. The source of microorganisms...be by gravitational fallout, wind impaction of parti- cles onto...

B Lighthart; A S Frisch

1976-05-01T23:59:59.000Z

438

Gordon Research Conferences  

Science Journals Connector (OSTI)

...Fausett, "Reaction mecha-nisms of oil shale retorting"; T. F. Yen, "Structural studies of the bitumen and kerogen in oil shale." 3 July. Coal and residuals: gasifica-tion...L. Rowell, "Laser-Kerr studies of anisotropic colloidal parti-cles." 6 July...

Alexander M. Cruickshank

1979-03-16T23:59:59.000Z

439

The Roman General Varus in 9 AD, while watching his army being de-  

E-Print Network (OSTI)

­ the new central heat- ing plant ­ will be fueled primarily by natural gas at a time when natural gas pro five interrelated economic, social and ecological trends that may dramatically change the world in the next one or two decades. Future arti- cles will describe each trend in more de- tail. Institutions

Baltisberger, Jay H.

440

PDE Estimation Techniques for Advanced Battery Management Systems -Part I: SOC Estimation  

E-Print Network (OSTI)

- cles and renewable energy resources is battery energy storage. Advanced battery systems representPDE Estimation Techniques for Advanced Battery Management Systems - Part I: SOC Estimation S. J and renewable energy research, including advanced batteries, under the American Recovery and Rein- vestment Act

Krstic, Miroslav

Note: This page contains sample records for the topic "light-duty vehi cles" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Unresolved questions regarding the origins of Solar System solids  

Science Journals Connector (OSTI)

...Cassen SETI Institute, , 2035 Landings Drive, Mountain View, CA...Cassen SETI Institute, 2035 Landings Drive, Mountain View, CA...interplanetary dust parti- cles and comets|for clues regarding the origins...Constraints on the formation of comets from D/H ratios measured...

2001-01-01T23:59:59.000Z

442

1 INTRODUCTION The plastic behavior of a certain powder or soil sam-  

E-Print Network (OSTI)

1 INTRODUCTION The plastic behavior of a certain powder or soil sam- ple depends on the history in order to in- vestigate the elasto-plastic response of granular ma- terials. An alternative is obtained by the calculation of the interaction forces between parti- cles. This includes, e.g., plastic

Luding, Stefan

443

Computational Science Technical Note CSTN-163 Transients in a Forest-Fire Simulation Model with Varying Combustion  

E-Print Network (OSTI)

to the model system. KEY WORDS fire-model; simulation; dynamics; fire-break; transient; cy- cles. 10 Computational Science Technical Note CSTN-163 Transients in a Forest-Fire Simulation Model and the eect of a fractal watercourse introduced into the system is investigated. The presence of the water

Hawick, Ken

444

Australia antigen and the biology of hepatitis B  

Science Journals Connector (OSTI)

...20x20-200nm 2Sn Fig. 2. Diagram showing appearance of parti-cles...anti-gen and proposed using this material as a vaccine. To our knowledge...transmitted with the genetic material; that the virus could enter...the surface antigen contains material with antigenic specific-ities...

BS Blumberg

1977-07-01T23:59:59.000Z

445

Transfer Learning for Constituency-Based Grammars Yuan Zhang, Regina Barzilay  

E-Print Network (OSTI)

. The standard solution to this bottleneck has re- lied on manually crafted transformation rules that map readily these transformation rules is a major un- dertaking which requires multiple correction cy- cles and a deep manually-crafted transformation rules, this approach relies on a small amount of annotations in the target

Barzilay, Regina

446

FRONTIERS ARTICLE Efficiency enhancement of copper contaminated radial pn junction solar cells  

E-Print Network (OSTI)

distributed but tend to form metal-silicide parti- cles, especially transition metal impurities [5]. Many contains many metal impurities such as Fe, Al, Cu, Ti, etc. [3]. Some impurities are not uniformly studies have shown the detrimental effects of individual metal impurities on the efficiency of silicon

Yang, Peidong

447

1 2012 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim wileyonlinelibrary.com 1. Introduction  

E-Print Network (OSTI)

Nanoparticles (NPs) with an asymmetry in polarity or chem- ical composition, so-called Janus particles (JPs)[1�3] referring to the double-faced Roman god, or asymmetric patchy parti- cles,[4,5] are of great interest, since-shell particles. In this context silver/silver halide (Ag/AgX) NPs have recently been reported to be very

Steiner, Ullrich

448

Published: November 15, 2011 r 2011 American Chemical Society 23978 dx.doi.org/10.1021/jp207973b |J. Phys. Chem. C 2011, 115, 2397823983  

E-Print Network (OSTI)

in 1992. The term Janus particle was named after the Roman god Janus who is characterized as having two to synthesize these structures was to put two hemispherical particles, with different chemical composition and functionality, together. These parti- cles have been referred to as Janus particles, a term coined by De Gennes1

Pandey, Ravi

449

Solvothermal reduction synthesis and characterization of superparamagnetic magnetite nanoparticles{  

E-Print Network (OSTI)

- cles, surface-coated by a molecular layer, have been widely used in cleanup remediation4 and biological-separate technologies.5 Magnetite nanoparticles properly coated by a special surfac- tant could also form a water to produce superparamagnetic nanoparticles with diameter less than 15 nm and a narrow size distribution

Gao, Song

450

Colloque Organisation Media -Universit Jean Moulin -Lyon -19 et 20 novembre 2004 Messagerie lectronique synchrone et  

E-Print Network (OSTI)

restauration de la confiance. ABSTRACT : An empirical research reveals how the users of an intranet relay chat relationships. MOTS-CLES : Lien social, Entreprise, Technologies d'information et de communication, Confiance - Lyon - 19 et 20 novembre 2004 - 2 - 1. Introduction Les forums électroniques, sur Internet, intranet ou

Paris-Sud XI, Université de

451

From the Big Bang to the Higgs Boson in Less Than an Hour  

E-Print Network (OSTI)

From the Big Bang to the Higgs Boson in Less Than an Hour Jeffrey D neutrino Z0 W + W -g gluon (8) photon Z boson W bosons Quarks Leptons H Higgs boson Gauge bosons (force field quanta) Higgs boson and vacuum expectation value Strong force EM force Weak force #12;Par7cles

Fygenson, Deborah Kuchnir

452

90 Los Alamos Science Number 23 1995 Number 23 1995 Los Alamos Science 91  

E-Print Network (OSTI)

to the world-average annual dose per person from each of the major natural sources of ionizing radiation of location. This dose is due mainly to potassium-40, which is a naturally occurring isotope of potassium. The purple cir- cles represent excess cancer deaths above the normal rate. The job of the radiation

Massey, Thomas N.

453

The nested simple conformal loop ensembles in the Riemann sphere  

E-Print Network (OSTI)

Simple conformal loop ensembles (CLE) are a class of random collection of simple non-intersecting loops that are of particular interest in the study of conformally invariant systems. Among other things related to these CLEs, we prove the invariance in distribution of their nested "full-plane" versions under the inversion $z \\mapsto 1/z$.

Antti Kemppainen; Wendelin Werner

2014-05-23T23:59:59.000Z

454

Australia's Green Vehicle Guide | Open Energy Information  

Open Energy Info (EERE)

Australia's Green Vehicle Guide Australia's Green Vehicle Guide Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Australia's Green Vehicle Guide Agency/Company /Organization: Commonwealth of Australia Focus Area: Vehicles, Fuel Efficiency Topics: Analysis Tools, Market Analysis Website: www.greenvehicleguide.gov.au/GVGPublicUI/home.aspx Equivalent URI: cleanenergysolutions.org/content/australias-green-vehicle-guide,http:/ Language: English Policies: Regulations Regulations: Fuel Efficiency Standards The Green Vehicle Guide provides information about the environmental performance of new light-duty vehicles sold in Australia, including carbon dioxide (CO2) emissions and fuel consumption. The Guide includes resources such as a fuel calculator, electric vehicle information and a truck buyers

455

Microsoft PowerPoint - Francfort 41st Power Sources Conference - backup.ppt  

NLE Websites -- All DOE Office Websites (Extended Search)

Advanced Technology Vehicle Testing - 41 st Power Sources Conference Jim Francfort INEEL/CON-04-01691 DOE - Advanced Vehicle Testing Activity Presentation Outline * AVTA Goal * AVTA Testing Partners * Light-Duty Hybrid Electric Vehicle Testing * Hydrogen Fuel Pilot Plant * Hydrogen Internal Combustion Engine (ICE) Vehicle Testing * Neighborhood & Urban Electric Vehicles * WWW Information Address DOE - Advanced Vehicle Testing Activity AVTA Goal * Benchmark & validate the performance of light-, medium-, & heavy-duty vehicles that feature one or more advanced technologies, including: - ICE's burning advanced fuels, such as 100% hydrogen and hydrogen/CNG-blended fuels - Hybrid electric, pure electric, & hydraulic drive systems - Advanced batteries & engines -

456

Argonne TTRDC - Experts  

NLE Websites -- All DOE Office Websites (Extended Search)

Experts Experts Argonne's multidisciplinary approach to transportation research brings together scientists, engineers and researchers with diverse, but complementary, skills and experience. Researchers are experts in the fields of chemistry, physics, computing, engineering, economics and geography, environmental science, materials science, metallurgy and ceramics, as well as transportation planning. TTRDC Management Directors and managers APRF (Advanced Powertrain Research Facility) Researchers working with Argonne's integrated four-wheel drive chassis dynamometer Battery Technologies Researchers studying the energy storage needs of the light-duty vehicle market Engines & Fuels Researchers in combustion, ignition types, emissions, idling and much more Fuel Cell Technologies

457

DOE Hydrogen Analysis Repository: Transition to Hydrogen Transportation  

NLE Websites -- All DOE Office Websites (Extended Search)

Transition to Hydrogen Transportation Fuel Transition to Hydrogen Transportation Fuel Project Summary Full Title: A Smooth Transition to Hydrogen Transportation Fuel Project ID: 87 Principal Investigator: Gene Berry Brief Description: This project contrasts the options of decentralized production using the existing energy distribution network, and centralized production of hydrogen with a large-scale infrastructure. Keywords: Infrastructure; costs; hydrogen production Purpose The case for hydrogen-powered transportation requires an assessment of present and prospective methods for producing, storing, and delivering hydrogen. This project examines one potential pathway: on-site production of hydrogen to fuel light-duty vehicles. Performer Principal Investigator: Gene Berry Organization: Lawrence Livermore National Laboratory (LLNL)

458

EIA_Final_Testimony(1).pdf  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

HOWARD GRUENSPECHT HOWARD GRUENSPECHT DEPUTY ADMINISTRATOR ENERGY INFORMATION ADMINISTRATION U.S. DEPARTMENT OF ENERGY before the SUBCOMMITTEE ON ENERGY AND POWER COMMITTEE ON ENERGY AND COMMERCE U. S. HOUSE OF REPRESENTATIVES May 5, 2011 2 Mr. Chairman and Members of the Subcommittee, I appreciate the opportunity to appear before you today to address the outlook for light duty vehicles and the fuels used in those vehicles. The Energy Information Administration (EIA) is the statistical and analytical agency within the U.S. Department of Energy. EIA collects, analyzes, and disseminates independent and impartial energy information to promote sound policymaking, efficient markets, and public understanding regarding energy and its interaction with the economy

459

FY 2012 Annual Progress Report for Energy Storage R&D  

Energy.gov (U.S. Department of Energy (DOE))

FY 2012 annual report of the energy storage research and development effort within the VT Office. An important step for the electrification of the nations light duty transportation sector is the development of more cost-effective, long lasting, and abuse-tolerant PEV batteries. In fiscal year 2012, battery R&D work continued to focus on the development of high-energy batteries for PEVs and very high power devices for hybrid vehicles. This document provides a summary and progress update of the VTP battery R&D projects that were supported in 2012.

460

Vehicle Data for Alternative Fuel Vehicles (AFVs) and Hybrid Fuel Vehicles (HEVs) from the Alternative Fuels and Advanced Vehicles Data Center (AFCD)  

DOE Data Explorer (OSTI)

The AFDC provides search capabilities for many different models of both light-duty and heavy-duty vehicles. Engine and transmission type, fuel and class, fuel economy and emission certification are some of the facts available. The search will also help users locate dealers in their areas and do cost analyses. Information on alternative fuel vehicles and on advanced technology vehicles, along with calculators, resale and conversion information, links to incentives and programs such as Clean Cities, and dozens of fact sheets and publications make this section of the AFDC a valuable resource for car buyers.

Note: This page contains sample records for the topic "light-duty vehi cles" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Natural Gas Engine Development Gaps (Presentation)  

SciTech Connect

A review of current natural gas vehicle offerings is presented for both light-duty and medium- and heavy-duty applications. Recent gaps in the marketplace are discussed, along with how they have been or may be addressed. The stakeholder input process for guiding research and development needs via the Natural Gas Vehicle Technology Forum (NGVTF) to the U.S. Department of Energy and the California Energy Commission is reviewed. Current high-level natural gas engine development gap areas are highlighted, including efficiency, emissions, and the certification process.

Zigler, B.T.

2014-03-01T23:59:59.000Z

462

Onboard Hydrogen/Helium Sensors in Support of the Global Technical Regulation: An Assessment of Performance in Fuel Cell Electric Vehicle Crash Tests  

SciTech Connect

Automobile manufacturers in North America, Europe, and Asia project a 2015 release of commercial hydrogen fuel cell powered light-duty road vehicles. These vehicles will be for general consumer applications, albeit initially in select markets but with much broader market penetration expected by 2025. To assure international harmony, North American, European, and Asian regulatory representatives are striving to base respective national regulations on an international safety standard, the Global Technical Regulation (GTR), Hydrogen Fueled Vehicle, which is part of an international agreement pertaining to wheeled vehicles and equipment for wheeled vehicles.

Post, M. B.; Burgess, R.; Rivkin, C.; Buttner, W.; O'Malley, K.; Ruiz, A.

2012-09-01T23:59:59.000Z

463

Advanced Combustion Operation in a Compression Ignition Engine  

Science Journals Connector (OSTI)

In this study, advanced combustion operating modes were investigated on a DDC/VM Motori 2.5 L, four-cylinder, turbocharged, common rail, direct-injection light-duty diesel engine, with exhaust emission being the main focus. ... This process is based on work from Al-Qurashi et al., who conducted fundamental flame studies that showed that the thermal effect of EGR enhances the oxidative reactivity of diesel soot. ... Heywood, J. B. Internal Combustion Engine Fundamentals; McGraw-Hill Book Company: New York, 1988; p 930. ...

Gregory K. Lilik; José Martín Herreros; André L. Boehman

2008-12-15T23:59:59.000Z

464

Combustion and Emissions Characterization of Biodiesel Blends in a City-Car Engine  

Science Journals Connector (OSTI)

Whereas in the available literature, most of the researches addressed the multicylinders diesel engine of large displacement;(7, 22-27) only some works have investigated the light duty engines, designed for agricultural purpose and mainly tested for a fixed value of the engine speed. ... Rakopoulos, C. D.; Antonopoulos, K. A.; Rakopoulos, D. C.; Hountalas, D. T.; Giakoumis, E. G.Comparative performance and emissions study of a direct injection Diesel engine using blends of diesel fuel with vegetable oils or bio-diesels of various origins Energy Convers. ... Heywood, J. B. Internal combustion engine fundamentals; Mcgraw-Hill: New York, 1988. ...

Giancarlo Chiatti; Ornella Chiavola; Fulvio Palmieri; Stefano Albertini

2014-07-06T23:59:59.000Z

465

Vehicle-emission characteristics using mechanically emulsified alcohol/diesel fuels  

SciTech Connect

A light-duty diesel vehicle fueled with an emulsified alcohol/diesel fuel was operated under cyclic mode. Emission and fuel economy measurements were taken during vehicle operation. The test results showed the volumetric fuel economy decreased slightly. Carbon monoxide emissions increased slightly, and oxides of nitrogen showed no significant change. Particulate emissions were reduced slightly, and the particulate extractables increased slightly. The environmental effect of these data cancel each other resulting in no significant changes in the total release of biological activity into the environment.

Allsup, J.R.; Seizinger, D.E.; Cox, F.W.; Brook, A.L.; McClellan, R.O.

1983-07-01T23:59:59.000Z

466

On the Promoting Effect of Water during NOx Removal over Single-Site Copper in Hydrophobic Silica APD-Aerogels  

Science Journals Connector (OSTI)

Reversibility of the Cu2+/Cu+ redox pair was confirmed in the Cu-aerogel during and after wet redox cycling. ... (1) Popular solutions to selective catalytic reduction of NOx include the use of exhaust hydrocarbon residuals (SCR-HC-deNOx) or ammonia added to the exhaust (SCR-NH3-deNOx) as the reductant; the former technology being suitable for light duty passenger vehicles, whereas the latter is applied to medium or heavy duty vehicles. ... During vehicle use, the converter is exposed to heat, which causes the metal particles to agglomerate and grow, and their overall surface area to decrease. ...

Tina Kristiansen; Karina Mathisen

2014-01-10T23:59:59.000Z

467

Technical options for energy conservation and controlling environmental impact in highway vehicles  

Science Journals Connector (OSTI)

Manufacturers of light-duty highway vehicles are sometimes caught between the desire of the consumer for a reasonable-cast conveyance that is a pleasure to operate and the mandates of regulation seeking societal objectives of energy conservation and preservation of air quality. The prospects for improving conventional vehicles in these areas by the year 2000 are considered. Alternative engines and fuels are reviewed for the same time-frame. The status of the battery-electric vehicle is assessed. Shifting attention to the mid-2lst century, the possibility of global warming is chanelling thought toward non-fossil fuels, with hydrogen being added to the list of options.

C.A. Amann

1993-01-01T23:59:59.000Z

468

Characteristics of SME Biodiesel-Fueled Diesel Particle Emissions and the Kinetics of Oxidation  

Science Journals Connector (OSTI)

In general it is reported that biodiesel has a less adverse effect on human health than petroleum-based diesel fuel. ... The engine used in this study was a 1996 John Deere T04045TF250, which is a medium-duty, off-highway, direct-injection, 4 cylinder, 4 cycle, turbocharged diesel engine. ... These fuels were compared with a low-sulfur, petroleum #2 diesel fuel in a Caterpillar 3304, prechamber, 75 kW diesel engine, operated over heavy- and light-duty transient test cycles developed by the United States Bureau of Mines. ...

Heejung Jung; David B. Kittelson; Michael R. Zachariah

2006-07-19T23:59:59.000Z

469

Carbonyl Emissions from Gasoline and Diesel Motor Vehicles  

Science Journals Connector (OSTI)

In the present study we describe measurements of gas- and particle-phase carbonyl emissions from light-duty gasoline (LDV) and heavy-duty diesel (HDDV) motor vehicles operated on a chassis dynamometer under realistic driving cycles. ... Vehicles were tested under a five-mode driving cycle (HHDDT, heavy heavy-duty diesel truck) consisting of 30-min idle, 17-min creep, and 11-min transient stages and two cruise stages of 34 and 31 min, with a top speed of 65 miles h?1 for the second cruise (30). ... In general, as the volatility of the carbonyl decreased, so did the PUF/total particulate carbonyl ratio. ...

Chris A. Jakober; Michael A. Robert; Sarah G. Riddle; Hugo Destaillats; M. Judith Charles; Peter G. Green; Michael J. Kleeman

2008-05-24T23:59:59.000Z

470

In-Use Emissions from Heavy-Duty Diesel Vehicles  

Science Journals Connector (OSTI)

A recent study that included 21 vehicles found that in general, g/mi emissions levels for regulated pollutants were highest for the CBD cycle, followed by the HDT cycle. ... Here g/mi NOx from the HDT and WVT driving cycles is plotted against NOx on the CBD cycle for all of the vehicles included in this paper that were tested on more than one of these driving cycles. ... The heavy-duty diesel EPM contained a higher proportion of OC than that from the light-duty diesels. ...

Janet Yanowitz; Robert L. McCormick; Michael S. Graboski

2000-01-29T23:59:59.000Z

471

Forensics of Soot: Nanostructure as a Diagnostic of In-Cylinder Chemistry  

SciTech Connect

We report observations of changes in the microstructure of soot from an experimental light-duty diesel engine, produced with varying levels of biodiesel fuel blending. Based on these changes, we propose a hypothesis for how these changes relate to in-cylinder combustion chemistry. Our hypothesis centers on the assumption that fullerenic lamellar structures in soot trace their origin to 5-membered rings (C5s) formed early in the combustion process from gas-phase reaction intermediates. We also speculate that fullerenic microstructures may be a general feature of soot produced with oxygenated fuels and might be useful for diagnosing important changes in combustion trajectories.

Vander Wal, Dr. Randy [Pennsylvania State University, State College, PA] [Pennsylvania State University, State College, PA; Strzelec, Dr. Andrea [Texas A& M University] [Texas A& M University; Toops, Todd J [ORNL] [ORNL; Daw, C Stuart [ORNL] [ORNL

2012-01-01T23:59:59.000Z

472

Life Cycle Assessment of Potential Biojet Fuel Production in the United States  

Science Journals Connector (OSTI)

†System-of-Systems Laboratory, College of Engineering, ‡School of Mechanical Engineering and Division of Environmental and Ecological Engineering, §School of Agricultural and Biological Engineering, and ?School of Aeronautics and Astronautics, Purdue University 701 West Stadium Avenue, West Lafayette, Indiana 47907, United States ... (48) Air travel demand is commonly represented as revenue-passenger-kilometer (RPK), which equals the number of passengers multiplied by the flight distance, a counterpart of the vehicle-miles-traveled (VMT) measure for road transport. ... Light-duty vehicles are fundamental to our economy and will continue to be for the indefinite future. ...

Datu B. Agusdinata; Fu Zhao; Klein Ileleji; Dan DeLaurentis

2011-09-29T23:59:59.000Z

473

Vehicle purchase and use data matrices: J. D. Power/DOE New Vehicle Owner Surveys  

SciTech Connect

Vehicle purchase and use data collected in two recent surveys from buyers of new 1978 and 1979 cars and light-duty trucks are presented. The survey information is broad in scope, extending from the public awareness of fuel economy information to decision-making in the purchase process, to in-use fuel economy. The survey data consequently have many applications in transportation studies. The objective of this report is to make a general summary of the data base contents available to interested individuals and organizations.

Crawford, R.; Dulla, R.

1981-04-01T23:59:59.000Z

474

Alternative Fuels Data Center: Idle Reduction Benefits and Considerations  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Idle Reduction Idle Reduction Benefits and Considerations to someone by E-mail Share Alternative Fuels Data Center: Idle Reduction Benefits and Considerations on Facebook Tweet about Alternative Fuels Data Center: Idle Reduction Benefits and Considerations on Twitter Bookmark Alternative Fuels Data Center: Idle Reduction Benefits and Considerations on Google Bookmark Alternative Fuels Data Center: Idle Reduction Benefits and Considerations on Delicious Rank Alternative Fuels Data Center: Idle Reduction Benefits and Considerations on Digg Find More places to share Alternative Fuels Data Center: Idle Reduction Benefits and Considerations on AddThis.com... More in this section... Idle Reduction Benefits & Considerations Heavy-Duty Vehicles Medium-Duty Vehicles Light-Duty Vehicles

475

UNCORRECTEDPROOF Please cite this article in press as: J. Tomic, W. Kempton, J. Power Sources (2007), doi:10.1016/j.jpowsour.2007.03.010  

E-Print Network (OSTI)

.Weselectedbattery-electricvehi- 18 cles over plug-in hybrids and fuel cell vehicles because battery 19 vehicles already must be grid xxx (2007) xxx­xxx Using fleets of electric-drive vehicles for grid support3 Jasna Tomi´c, Willett to the electric grid when they are parked (vehicle-to-grid power). We evaluated the economic potential of two

Firestone, Jeremy

476

AGNS LENEPVEU-HOTZ (DOCTORANTE, COLE PRATIQUE DES HAUTES TUDES, PARIS)  

E-Print Network (OSTI)

PERSANS ET DE L'�VOLUTION DE LEUR CONSTRUCTION ENTRE LES XE ET XVIE SI�CLES R�SUM� Les verbes modaux persans byistan, « falloir », syad, « il se peut », « peut-être », tavnistan, « pouvoir », et xv stan sont exclus avec l'infinitif verbal. Mots clés : verbes modaux, persan classique, diachronie, modalités

Boyer, Edmond

477

Siph-i Ispahn : devenir des groupes consonantiques initiaux moyen-perses en persan  

E-Print Network (OSTI)

Siph-i Ispahn : devenir des groupes consonantiques initiaux moyen-perses en persan Agnès Lenepveu persan contemporain n'a plus cette structure. On s'interrogera sur les raisons et l'époque de cette transformation. Lorsqu'on observe de près le lexique du persan des Xe -XIe siècles, on a rapidement une

Paris-Sud XI, Université de

478

Constructions cach'ees en alg`ebre abstraite (2) le principe local-global  

E-Print Network (OSTI)

th'eor`emes d'alg`ebre abstrait* *e, des constructions de matrices inversibles dans des (th'eor`eme de Quillen-Susl* *in) et une preuve constructive du th'eor`eme de stabilit'e de's stability t* *heorem. MSC 2000 : 13C10, 19A13, 14Q20, 03F65. Mots cl'es : Th'eor`eme de Horrocks, Th'eor

Lombardi, Henri

479

THE JOURNAL OF CHEMICAL PHYSICS 139, 121918 (2013) Combinatoric analysis of heterogeneous stochastic self-assembly  

E-Print Network (OSTI)

stochastic self-assembly Maria R. D'Orsogna,1,2 Bingyu Zhao,3 Bijan Berenji,1,2 and Tom Chou2,4 1 Department of heterogeneous nucleation and self-assembly in a closed sys- tem with a fixed total particle number M. INTRODUCTION The self-assembly of molecules and macroscopic parti- cles into larger units is a common process

Levine, Alex J.

480

Congrs "Matriaux 2006", Colloque "Matrise des microstructures des matriaux", 13-17 nov. 2006, Dijon. Actes dits sur DVD, ISBN 978-2-9528-1400-3.  

E-Print Network (OSTI)

France par une conversion en voie sèche d'UF6 gazeux. Le procédé comporte deux étapes : hydrolyse en UO2F granulométrique finale. MOTS-CLES : poudre, dioxyde d'uranium, évolution morphologique, granulométrie, four tournant INTRODUCTION La poudre de dioxyde d'uranium UO2 utilisée pour la fabrication de pastilles de

Paris-Sud XI, Université de

Note: This page contains sample records for the topic "light-duty vehi cles" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Word Pro - S1.lwp  

U.S. Energy Information Administration (EIA) Indexed Site

8 8 Motor Vehicle Fuel Economy, 1949-2011 (Miles per Gallon) U.S. Energy Information Administration / Monthly Energy Review November 2013 17 Table 1.8 Motor Vehicle Mileage, Fuel Consumption, and Fuel Economy Light-Duty Vehicles, Short Wheelbase a Light-Duty Vehicles, Long Wheelbase b Heavy-Duty Trucks c All Motor Vehicles d Mileage Fuel Consumption Fuel Economy Mileage Fuel Consumption Fuel Economy Mileage Fuel Consumption Fuel Economy Mileage Fuel Consumption Fuel Economy Miles per Vehicle Gallons per Vehicle Miles per Gallon Miles per Vehicle Gallons per Vehicle Miles per Gallon Miles per Vehicle Gallons per Vehicle Miles per Gallon Miles per Vehicle Gallons per Vehicle Miles per Gallon 1950 .......... 9,060 603 15.0 e ( ) e ( ) e ( ) 10,316 1,229 8.4 9,321 725 12.8 1955 .......... 9,447 645 14.6 e ( ) e ( ) e ( ) 10,576 1,293 8.2 9,661

482

Word Pro - Untitled1  

Gasoline and Diesel Fuel Update (EIA)

9 9 Table 2.8 Motor Vehicle Mileage, Fuel Consumption, and Fuel Economy, Selected Years, 1949-2010 Year Light-Duty Vehicles, Short Wheelbase 1 Light-Duty Vehicles, Long Wheelbase 2 Heavy-Duty Trucks 3 All Motor Vehicles 4 Mileage Fuel Consumption Fuel Economy Mileage Fuel Consumption Fuel Economy Mileage Fuel Consumption Fuel Economy Mileage Fuel Consumption Fuel Economy Miles per Vehicle Gallons per Vehicle Miles per Gallon Miles per Vehicle Gallons per Vehicle Miles per Gallon Miles per vehicle Gallons per vehicle Miles per Gallon Miles per Vehicle Gallons per Vehicle Miles per Gallon 1949 9,388 627 15.0 5 ( ) 5 ( ) 5 ( ) 9,712 1,080 9.0 9,498 726 13.1 1950 9,060 603 15.0 5 ( ) 5 ( ) 5 ( ) 10,316 1,229 8.4 9,321 725 12.8 1955 9,447 645 14.6 5 ( ) 5 ( ) 5 ( ) 10,576 1,293 8.2 9,661 761 12.7 1960 9,518 668 14.3 5 ( ) 5 ( ) 5 ( ) 10,693 1,333 8.0 9,732 784 12.4 1965 9,603

483

Annual Energy Outlook with Projections to 2025- Legislation and Regulations  

Gasoline and Diesel Fuel Update (EIA)

California Low Emission Vehicle Program and Carbon Standard for Light-Duty Vehicles California Low Emission Vehicle Program and Carbon Standard for Light-Duty Vehicles Legislation and Regulations. California Low Emission Vehicle Program The Low Emission Vehicle Program (LEVP) was originally passed into legislation in 1990 in the State of California. It began as the implementation of a voluntary opt-in pilot program under the purview of CAAA90, which included a provision that other States could “opt in” to the California program to achieve lower emissions levels than would otherwise be achieved through CAAA90. The 1990 LEVP was an emissions-based policy, setting sales mandates for three categories of vehicles: low-emission vehicles (LEVs), ultra-low-emission vehicles (ULEVs), and zero-emission vehicles (ZEVs). The mandate required that ZEVs make up 2 percent of new vehicle sales in California by 1998, 5 percent by 2001, and 10 percent by 2003. At that time, the only vehicles certified as ZEVs by the California Air Resources Board (CARB) were battery-powered electric vehicles [1].

484

Caterpillar Light Truck Clean Diesel Program  

SciTech Connect

In 1998, light trucks accounted for over 48% of new vehicle sales in the U.S. and well over half the new Light Duty vehicle fuel consumption. The Light Truck Clean Diesel (LTCD) program seeks to introduce large numbers of advanced technology diesel engines in light-duty trucks that would improve their fuel economy (mpg) by at least 50% and reduce our nation's dependence on foreign oil. Incorporating diesel engines in this application represents a high-risk technical and economic challenge. To meet the challenge, a government-industry partnership (Department of Energy, diesel engine manufacturers, and the automotive original equipment manufacturers) is applying joint resources to meet specific goals that will provide benefits to the nation. [1] Caterpillar initially teamed with Ford Motor Company on a 5 year program (1997-2002) to develop prototype vehicles that demonstrate a 50% fuel economy improvement over the current 1997 gasoline powered light truck vehicle in this class while complying with EPA's Tier II emissions regulations. The light truck vehicle selected for the demonstration is a 1999 Ford F150 SuperCab. To meet the goals of the program, the 4.6 L V-8 gasoline engine in this vehicle will be replaced by an advanced compression ignition direct injection (CIDI) engine. Key elements of the Caterpillar LTCD program plan to develop the advanced CIDI engine are presented in this paper.

Robert L. Miller; Kevin P. Duffy; Michael A. Flinn; Steve A. Faulkner; Mike A. Graham

1999-04-26T23:59:59.000Z

485

Vehicle Ancillary Load Reduction Project Close-Out Report: An Overview of the Task and a Compilation of the Research Results  

SciTech Connect

The amount of fuel used for climate control in U.S. vehicles reduces the fuel economy of more than 200 million light-duty conventional vehicles and thus affects U.S. energy security. Researchers at the DOE National Renewable Energy Laboratory estimated that the United States consumes about 7 billion gallons of fuel per year for air-conditioning (A/C) light-duty vehicles. Using a variety of tools, NREL researchers developed innovative techniques and technologies to reduce the amount of fuel needed for these vehicles' ancillary loads. For example, they found that the A/C cooling capacity of 5.7 kW in a Cadillac STS could be reduced by 30% while maintaining a cooldown performance of 30 minutes. A simulation showed that reducing the A/C load by 30% decreased A/C fuel consumption by 26%. Other simulations supported the great potential for improving fuel economy by using new technologies and techniques developed to reduce ancillary loads.

Rugh, J.; Farrington, R.

2008-01-01T23:59:59.000Z

486

Summary of results from the National Renewable Energy Laboratory`s vehicle evaluation data collection efforts  

SciTech Connect

The U.S. DOE National Renewable Energy Laboratory conducted a data collection project for light-duty, alternative fuel vehicles (AFVs) for about 4 years. The project has collected data on 10 vehicle models (from the original equipment manufacturers) spanning model years 1991 through 1995. Emissions data have also been collected from a number of vehicles converted to natural gas (CNG) and liquefied petroleum gas (LPG). Most of the vehicles involved in the data collection and evaluation are part of the General Services Administration`s fleet of AFVs. This evaluation effort addressed the performance and reliability, fuel economy, and emissions of light- duty AFVs, with comparisons to similar gasoline vehicles when possible. Driver-reported complaints and unscheduled vehicle repairs were used to assess the performance and reliability of the AFVs compared to the comparable gasoline vehicles. Two sources of fuel economy were available, one from testing of vehicles on a chassis dynamometer, and the other from records of in-service fuel use. This report includes results from emissions testing completed on 169 AFVs and 161 gasoline control vehicles.

Whalen, P.; Kelly, K.; Motta, R.; Broderick, J.

1996-05-01T23:59:59.000Z

487

Recombination of He+ in a pulsed helium plasma  

E-Print Network (OSTI)

. . nla sas 1 y2 Air!os all of' the above nrocesses are denendent u?on tl e velocity or kinetic energy of the inter= ctjng ?arti- cles. All the ", articles in a ?lcsza c. o not have the sa. ? . . e velocity but are distributed over . -. co...)( &! i, . ' . '. . |-. );;:. j Cr U'i I j () -, 1, i)", , ') i)i ')- (! C. -!?-', I ), ('()r:;. -?-. 0 i' )) ) &(' (!: I ? ~ ?', , '((, ) (' ('. i; i ()-. . . ;;, ' &. ;1( ) ", 'i(&", '-, ', (& r p -j r, ')!C) y()r (! &1 ". h&) 1)('i r)(::j )111 C...

Chang, Cheng-shu

2012-06-07T23:59:59.000Z

488

Appendix A  

U.S. Energy Information Administration (EIA) Indexed Site

A7. Transportation sector key indicators and delivered energy consumption A7. Transportation sector key indicators and delivered energy consumption Key indicators and consumption Reference case Annual growth 2012-2040 (percent) 2011 2012 2020 2025 2030 2035 2040 Key indicators Travel indicators (billion vehicle miles traveled) Light-duty vehicles less than 8,501 pounds .... 2,623 2,662 2,851 2,977 3,138 3,303 3,434 0.9% Commercial light trucks 1 ................................. 62 63 76 83 90 96 103 1.8% Freight trucks greater than 10,000 pounds ..... 252 245 310 339 362 385 411 1.9% (billion seat miles available) Air ................................................................... 982 990 1,064 1,101 1,135 1,165 1,199 0.7%

489

Find the Right Solution for You with Tools from the AFDC | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Find the Right Solution for You with Tools from the AFDC Find the Right Solution for You with Tools from the AFDC Find the Right Solution for You with Tools from the AFDC July 25, 2011 - 11:00am Addthis Shannon Brescher Shea Communications Manager, Clean Cities Program With our current car making all sorts of "interesting" noises, my husband and I have been thinking long and hard about the type of vehicle to purchase in the near future. As I have a personal and professional interest in environmental and social sustainability, I would like to buy a vehicle that uses the least petroleum and emits the fewest greenhouse gases possible. Fortunately, there is an abundance of alternative fuel and fuel efficient vehicles options available. Using the Alternative Fuel and Advanced Technology Vehicle Data Center's (AFDC) Light Duty Vehicle Search, I can

490

REQUEST BY CATERPILLAR INC. FOR AN ADVANCE WAIVER OF DOMESTIC AND FOREIGN RIGHTS IN SUBJECT INVENTIONS MADE  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

CONTRACT NO. DE-FC05-970R22605; AND FOR CERTAIN LARGE CONTRACT NO. DE-FC05-970R22605; AND FOR CERTAIN LARGE BUSINESS SUBCONTRACTS THEREUNDER; DOE WAIVER DOCKET W(A)-97-014 [ORO-658] Caterpillar, Inc. (Caterpillar) has made a timely request for an advance waiver to worldwide rights in Subject Inventions made in the course of or under Department of Energy (DOE) Contract No. DE-FC05-970R22605 and under certain subcontracts entered thereunder with parties who do not qualify for treatment under Public Law 96- 517. The primary program goal of this work is the development of technologies for high efficiency, very low emission diesel engines for light duty trucks (including pickups and sport utility vehicles). The work is sponsored by the Office of Transportation Technologies (Energy Efficiency and Renewable Energy).

491

Microsoft Word - appa.docx  

Gasoline and Diesel Fuel Update (EIA)

Table A7.Transportation sector key indicators and delivered energy consumption Key indicators and consumption Reference case Annual growth 2011-2040 (percent) 2010 2011 2020 2025 2030 2035 2040 Key indicators Travel indicators (billion vehicle miles traveled) Light-duty vehicles less than 8,501 pounds .... 2,654 2,629 2,870 3,089 3,323 3,532 3,719 1.2% Commercial light trucks 1 ................................. 65 65 80 87 94 102 110 1.8% Freight trucks greater than 10,000 pounds ..... 235 240 323 350 371 401 438 2.1% (billion seat miles available) Air ................................................................... 999 982 1,082 1,131 1,177 1,222 1,274 0.9%

492

U.S. Energy Information Administration (EIA)  

Gasoline and Diesel Fuel Update (EIA)

Release Date: June 2013 | Release Date: June 2013 | Report Number: DOE/EIA-0383(2012) Acronyms List of Acronyms AB Assembly Bill IHSGI IHS Global Insight AB32 California Assembly Bill 32 INFORUM Interindustry Forecasting Project at the University of Maryland ACI Activated carbon injection IOU Invester-owned utility AEO Annual Energy Outlook IREC Interstate Renewable Energy Council AEO2012 Annual Energy Outlook 2012 ITC Investment tax credit ANWR Arctic National Wildlife Refuge LCFS Low Carbon Fuel Standard ARRA2009 American Recovery and Reinvestment Act of 2009 LDV Light-duty vehicle ASHRAE American Society of Heating, Refrigerating, and Air-Conditioning Engineers LED Light-emitting diode Blue Chip Blue Chip Consensus LFMM Liquid Fuels Market Module

493

U.S. DEPARTMENT OF ENERGY * SAVANNAH RIVER SITE * AIKEN * SC  

NLE Websites -- All DOE Office Websites (Extended Search)

Contact Information Contact Information SRNL Office of Communications 803.725.4396 Natural gas fuel systems for vehicles Innovation and collaboration Today's natural gas vehicle technologies require tanks that can withstand high pressures, are often cumbersome, and are either too large or too expensive to be suitable for light duty passenger vehicles. The Savannah River National Laboratory (SRNL) in partnership with Ford Motor Company, the University of California-Berkeley, and BASF has been awarded $5.5 million by the Department of Energy to help develop vehicles fueled by natural gas. This research will explore an innovative low pressure material-based natural gas fuel system for automobiles and other light vehicles. Innovation to reduce pressure The Advanced Research Projects Agency-Energy (ARPA-E) funded project will accelerate the

494

Presentations by Date | Merit Review Application  

NLE Websites -- All DOE Office Websites (Extended Search)

Presentations by Date Presentations by Date Friday May 17 2013 Title Presenting Organization Document Presentation date A MultiAir / MultiFuel Approach to Enhancing Engine System Efficiency Chrysler ace062_reese_2013_o.pdf 05/17/2013 Lean Gasoline System Development for Fuel Efficient Small Car General Motors ace063_smith_2013_o.pdf 05/17/2013 Gasoline Ultra Fuel Efficient Vehicle Delphi ace064_confer_2013_o.pdf 05/17/2013 Advanced Gasoline Turbocharged Direct Injection (GTDI) Engine Development Ford Motor Company ace065_weaver_2013_o.pdf 05/17/2013 Advanced Combustion Concepts - Enabling Systems and Solutions (ACCESS) for High Efficiency Light Duty Vehicles Robert Bosch ace066_yilmaz_2013_o.pdf 05/17/2013 ATP-LD; Cummins Next Generation Tier 2 Bin 2 Diesel Engine Cummins ace061_ruth_2013_o.pdf 05/17/2013

495

STATEMENT OF CONSIDERATIONS REQUEST BY DELPHI AUTOMOTIVE SYSTEMS (DELPHII) FOR AN  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DELPHII) FOR AN DELPHII) FOR AN ADVANCE WAIVER OF DOMESTIC AND FOREIGN RIGHTS TO INVENTIONS MADE UNDER COOPERATIVE AGREEMENT NUMBER DE-FC04-02AL67633, DOE WAIVER NO. W(A) 01-040. The Petitioner, Delphi, a subcontractor to Electricore, Inc (Electricore), has requested a waiver of all domestic and foreign patent rights to inventions that it may conceive or first reduce to practice in the course of work under Cooperative Agreement Number DE- FC04-02L67633 entitled "Lower Cost Wide Range Oxygen Sensor" with the U S. Department of Energy (DOE). The work to be done will be the development of a robust oxygen sensor for use in direct injection light duty diesel engines. The program goal is to create a low cost, wide range oxygen sensor compatible with high volume automotive use. Such sensors would be a

496

Transportation Fuel Basics - Propane | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Propane Propane Transportation Fuel Basics - Propane July 30, 2013 - 4:31pm Addthis Photo of a man standing next to a propane fuel pump with a tank in the background. Propane, also known as liquefied petroleum gas (LPG or LP-gas), or autogas in Europe, is a high-energy alternative fuel. It has been used for decades to fuel light-duty and heavy-duty propane vehicles. Propane is a three-carbon alkane gas (C3H8). Stored under pressure inside a tank, propane turns into a colorless, odorless liquid. As pressure is released, the liquid propane vaporizes and turns into gas that is used for combustion. An odorant, ethyl mercaptan, is added for leak detection. Propane has a high octane rating and excellent properties for spark-ignited internal combustion engines. It is nontoxic and presents no threat to soil,

497

We Can't Wait: Driving Forward with New Fuel Economy Standards |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Can't Wait: Driving Forward with New Fuel Economy Standards Can't Wait: Driving Forward with New Fuel Economy Standards We Can't Wait: Driving Forward with New Fuel Economy Standards November 16, 2011 - 4:04pm Addthis The Vehicle Cost Calculator helps consumers go beyond the sticker price of a vehicle and determine the lifetime cost when they head to the car lot. | Photo by Kino Praxis. The Vehicle Cost Calculator helps consumers go beyond the sticker price of a vehicle and determine the lifetime cost when they head to the car lot. | Photo by Kino Praxis. Heather Zichal Deputy Assistant to the President for Energy and Climate Change What does this project do? Saves you money by increasing the fuel efficiency equivalent of light-duty trucks and cars to 54.5 miles per gallon by 2025. Drives innovation in the manufacturing sector and helps create

498

Clean Cities: Coordinator Toolbox  

NLE Websites -- All DOE Office Websites (Extended Search)

Coordinator Toolbox Coordinator Toolbox The Coordinator Toolbox helps Clean Cities coordinators build successful, thriving coalitions. Use these tools to simplify complex tasks, improve communications with stakeholders, and stay informed about the Clean Cities program. Previous Next Photo of a vehicle on the road - Clean Cities 2014 Vehicle Buyer's Guide The new light-duty lineup Use the Clean Cities 2014 Vehicle Buyer's Guide to let consumers and stakeholders know about the latest options in alternative fuel vehicles and hybrids. Photo of an iPhone Alternative fuels, to go Download the new Alternative Fueling Station Locator iPhone app from the App Store. Clean Cities Blog Stay current on alternative transportation topics Check out the Clean Cities blog for weekly facts you can share with stakeholders about Clean Cities' successes.

499

EIA - Annual Energy Outlook 2012 Early Release  

Gasoline and Diesel Fuel Update (EIA)

Energy Consumption by Sector Energy Consumption by Sector Transportation figure data Delivered energy consumption in the transportation sector grows from 27.6 quadrillion Btu in 2010 to 28.8 quadrillion Btu in 2035 in the AEO2012 Reference case (Figure 7). Energy consumption by light-duty vehicles (LDVs) (including commercial light trucks) initially declines in the Reference case, from 16.5 quadrillion Btu in 2010 to 15.7 quadrillion Btu in 2025, due to projected increases in the fuel economy of highway vehicles. Projected energy consumption for LDVs increases after 2025, to 16.3 quadrillion Btu in 2035. The AEO2012 Reference case projections do not include proposed increases in LDV fuel economy standards-as outlined in the December 2011 EPA and NHTSA Notice of Proposed Rulemaking for 2017 and

500

D:\0myfiles\AEO2007\Final for PDF\AEO2007\AEO2007.vp  

Gasoline and Diesel Fuel Update (EIA)

7 7 (AEO2007), pre- pared by the Energy Information Administration (EIA), presents long-term projections of energy sup- ply, demand, and prices through 2030. The projec- tions are based on results from EIA's National Energy Modeling System (NEMS). The report begins with an "Overview" summarizing the AEO2007 reference case. The next section, "Leg- islation and Regulations," discusses evolving legisla- tion and regulatory issues, including recently enacted legislation and regulation, such as the new Corporate Average Fuel Economy (CAFE) standards for light- duty trucks finalized by the National Highway Traffic Safety Administration (NHTSA) in March 2006. It also provides an update on the handling of key provi- sions in the Energy Policy Act of 2005 (EPACT2005) that could not be incorporated in the Annual Energy Outlook 2006 (AEO2006) because of the absence