Sample records for light-duty vehi cles

  1. Light Duty Combustion Research: Advanced Light-Duty Combustion...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Combustion Research: Advanced Light-Duty Combustion Experiments Light Duty Combustion Research: Advanced Light-Duty Combustion Experiments 2009 DOE Hydrogen Program and Vehicle...

  2. Technology Development for Light Duty High Efficient Diesel Engines...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Light Duty High Efficient Diesel Engines Technology Development for Light Duty High Efficient Diesel Engines Improve the efficiency of diesel engines for light duty applications...

  3. Light Duty Efficient, Clean Combustion

    SciTech Connect (OSTI)

    Donald Stanton

    2010-12-31T23:59:59.000Z

    Cummins has successfully completed the Light Duty Efficient Clean Combustion (LDECC) cooperative program with DoE. This program was established in 2007 in support of the Department of Energy's Vehicles Technologies Advanced Combustion and Emissions Control initiative to remove critical barriers to the commercialization of advanced, high efficiency, emissions compliant internal combustion (IC) engines for light duty vehicles. Work in this area expanded the fundamental knowledge of engine combustion to new regimes and advanced the knowledge of fuel requirements for these diesel engines to realize their full potential. All of the following objectives were met with fuel efficiency improvement targets exceeded: (1) Improve light duty vehicle (5000 lb. test weight) fuel efficiency by 10.5% over today's state-of-the-art diesel engine on the FTP city drive cycle; (2) Develop and design an advanced combustion system plus aftertreatment system that synergistically meets Tier 2 Bin 5 NOx and PM emissions standards while demonstrating the efficiency improvements; (3) Maintain power density comparable to that of current conventional engines for the applicable vehicle class; and (4) Evaluate different fuel components and ensure combustion system compatibility with commercially available biofuels. Key accomplishments include: (1) A 25% improvement in fuel efficiency was achieved with the advanced LDECC engine equipped with a novel SCR aftertreatment system compared to the 10.5% target; (2) An 11% improvement in fuel efficiency was achieved with the advanced LDECC engine and no NOx aftertreamtent system; (3) Tier 2 Bin 5 and SFTP II emissions regulations were met with the advanced LDECC engine equipped with a novel SCR aftertreatment system; (4) Tier 2 Bin 5 emissions regulations were met with the advanced LDECC engine and no NOx aftertreatment, but SFTP II emissions regulations were not met for the US06 test cycle - Additional technical barriers exist for the no NOx aftertreatment engine; (5) Emissions and efficiency targets were reached with the use of biodiesel. A variety of biofuel feedstocks (soy, rapeseed, etc.) was investigated; (6) The advanced LDECC engine with low temperature combustion was compatible with commercially available biofuels as evaluated by engine performance testing and not durability testing; (7) The advanced LDECC engine equipped with a novel SCR aftertreatment system is the engine system architecture that is being further developed by the Cummins product development organization. Cost reduction and system robustness activities have been identified for future deployment; (8) The new engine and aftertreatment component technologies are being developed by the Cummins Component Business units (e.g. fuel system, turbomachinery, aftertreatment, electronics, etc.) to ensure commercial viability and deployment; (9) Cummins has demonstrated that the technologies developed for this program are scalable across the complete light duty engine product offerings (2.8L to 6.7L engines); and (10) Key subsystems developed include - sequential two stage turbo, combustions system for low temperature combustion, novel SCR aftertreatment system with feedback control, and high pressure common rail fuel system. An important element of the success of this project was leveraging Cummins engine component technologies. Innovation in component technology coupled with system integration is enabling Cummins to move forward with the development of high efficiency clean diesel products with a long term goal of reaching a 40% improvement in thermal efficiency for the engine plus aftertreatment system. The 40% improvement is in-line with the current light duty vehicle efficiency targets set by the 2010 DoE Vehicle Technologies MYPP and supported through co-operative projects such as the Cummins Advanced Technology Powertrains for Light-Duty Vehicles (ATP-LD) started in 2010.

  4. Light Duty Efficient, Clean Combustion

    SciTech Connect (OSTI)

    Stanton, Donald W

    2011-06-03T23:59:59.000Z

    Cummins has successfully completed the Light Duty Efficient Clean Combustion (LDECC) cooperative program with DoE. This program was established in 2007 in support of the Department of Energy’s Vehicles Technologies Advanced Combustion and Emissions Control initiative to remove critical barriers to the commercialization of advanced, high efficiency, emissions compliant internal combustion (IC) engines for light duty vehicles. Work in this area expanded the fundamental knowledge of engine combustion to new regimes and advanced the knowledge of fuel requirements for these diesel engines to realize their full potential. All of the following objectives were met with fuel efficiency improvement targets exceeded: 1. Improve light duty vehicle (5000 lb. test weight) fuel efficiency by 10.5% over today’s state-ofthe- art diesel engine on the FTP city drive cycle 2. Develop & design an advanced combustion system plus aftertreatment system that synergistically meets Tier 2 Bin 5 NOx and PM emissions standards while demonstrating the efficiency improvements. 3. Maintain power density comparable to that of current conventional engines for the applicable vehicle class. 4. Evaluate different fuel components and ensure combustion system compatibility with commercially available biofuels. Key accomplishments include: ? A 25% improvement in fuel efficiency was achieved with the advanced LDECC engine equipped with a novel SCR aftertreatment system compared to the 10.5% target ? An 11% improvement in fuel efficiency was achieved with the advanced LDECC engine and no NOx aftertreamtent system ? Tier 2 Bin 5 and SFTP II emissions regulations were met with the advanced LDECC engine equipped with a novel SCR aftertreatment system ? Tier 2 Bin 5 emissions regulations were met with the advanced LDECC engine and no NOx aftertreatment, but SFTP II emissions regulations were not met for the US06 test cycle – Additional technical barriers exist for the no NOx aftertreatment engine ? Emissions and efficiency targets were reached with the use of biodiesel. A variety of biofuel feedstocks (soy, rapeseed, etc.) was investigated. ? The advanced LDECC engine with low temperature combustion was compatible with commercially available biofuels as evaluated by engine performance testing and not durability testing. ? The advanced LDECC engine equipped with a novel SCR aftertreatment system is the engine system architecture that is being further developed by the Cummins product development organization. Cost reduction and system robustness activities have been identified for future deployment. ? The new engine and aftertreatment component technologies are being developed by the Cummins Component Business units (e.g. fuel system, turbomachinery, aftertreatment, electronics, etc.) to ensure commercial viability and deployment ? Cummins has demonstrated that the technologies developed for this program are scalable across the complete light duty engine product offerings (2.8L to 6.7L engines) ? Key subsystems developed include – sequential two stage turbo, combustions system for low temperature combustion, novel SCR aftertreatment system with feedback control, and high pressure common rail fuel system An important element of the success of this project was leveraging Cummins engine component technologies. Innovation in component technology coupled with system integration is enabling Cummins to move forward with the development of high efficiency clean diesel products with a long term goal of reaching a 40% improvement in thermal efficiency for the engine plus aftertreatment system. The 40% improvement is in-line with the current light duty vehicle efficiency targets set by the 2010 DoE Vehicle Technologies MYPP and supported through co-operative projects such as the Cummins Advanced Technology Powertrains for Light- Duty Vehicles (ATP-LD) started in 2010.

  5. Light Duty Fuel Cell Electric Vehicle Hydrogen Fueling Protocol...

    Broader source: Energy.gov (indexed) [DOE]

    Light Duty Fuel Cell Electric Vehicle Hydrogen Fueling Protocol Light Duty Fuel Cell Electric Vehicle Hydrogen Fueling Protocol Webinar slides from the U.S. Department of Energy...

  6. WORKSHOP REPORT:Light-Duty Vehicles Technical Requirements and...

    Energy Savers [EERE]

    Light-Duty Vehicles Technical Requirements and Gaps for Lightweight and Propulsion Materials WORKSHOP REPORT:Light-Duty Vehicles Technical Requirements and Gaps for Lightweight and...

  7. Thermoelectric HVAC and Thermal Comfort Enablers for Light-Duty...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Thermoelectric HVAC and Thermal Comfort Enablers for Light-Duty Vehicle Applications Thermoelectric HVAC and Thermal Comfort Enablers for Light-Duty Vehicle Applications 2012 DOE...

  8. Technical Challenges and Opportunities Light-Duty Diesel Engines...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Challenges and Opportunities Light-Duty Diesel Engines in North America Technical Challenges and Opportunities Light-Duty Diesel Engines in North America 2005 Diesel Engine...

  9. Light Duty Vehicle Pathways July 26, 2010

    E-Print Network [OSTI]

    Light Duty Vehicle Pathways July 26, 2010 Sam Baldwin Chief Technology Officer Office of Energy Efficiency and Renewable Energy U.S. Department of Energy #12;2 Conventional Oil International Energy Agency #12;3 InterAcademy Panel Statement On Ocean Acidification, 1 June 2009 · Signed by the National

  10. Cummins Work Toward Successful Introduction of Light-Duty Clean...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Cummins Work Toward Successful Introduction of Light-Duty Clean Diesel Engines in US Cummins Work Toward Successful Introduction of Light-Duty Clean Diesel Engines in US 2005...

  11. alternative fuel light-duty vehicles

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched FerromagnetismWaste andAnniversary, part 2Zenoss,AmineBroadbandLight-Duty Vehicles T

  12. Ricardo's ACTION Strategy: An Enabling Light Duty Diesel Technology...

    Broader source: Energy.gov (indexed) [DOE]

    light duty diesel solutions for the US market Technology Strategy Lowest system cost Engine technology selection Aftertreatment technology selection Control approach & OBD...

  13. Improving the Efficiency of Light-Duty Vehicle HVAC Systems using...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Light-Duty Vehicle HVAC Systems using Zonal Thermoelectric Devices and Comfort Modeling Improving the Efficiency of Light-Duty Vehicle HVAC Systems using Zonal Thermoelectric...

  14. Hybrid options for light-duty vehicles.

    SciTech Connect (OSTI)

    An, F., Stodolsky, F.; Santini, D.

    1999-07-19T23:59:59.000Z

    Hybrid electric vehicles (HEVs) offer great promise in improving fuel economy. In this paper, we analyze why, how, and by how much vehicle hybridization can reduce energy consumption and improve fuel economy. Our analysis focuses on efficiency gains associated solely with vehicle hybridization. We do not consider such other measures as vehicle weight reduction or air- and tire-resistance reduction, because such measures would also benefit conventional technology vehicles. The analysis starts with understanding the energy inefficiencies of light-duty vehicles associated with different operation modes in US and Japanese urban and highway driving cycles, with the corresponding energy-saving potentials. The potential for fuel economy gains due to vehicle hybridization can be estimated almost exclusively on the basis of three elements: the reducibility of engine idling operation, the recoverability of braking energy losses, and the capability of improving engine load profiles to gain efficiency associated with specific HEV configurations and control strategies. Specifically, we evaluate the energy efficiencies and fuel economies of a baseline MY97 Corolla-like conventional vehicle (CV), a hypothetical Corolla-based minimal hybrid vehicle (MHV), and a MY98 Prius-like full hybrid vehicle (FHV). We then estimate energy benefits of both MHVs and FHVs over CVs on a performance-equivalent basis. We conclude that the energy benefits of hybridization vary not only with test cycles, but also with performance requirements. The hybrid benefits are greater for ''Corolla (high) performance-equivalent'' vehicles than for ''Prius (low) performance-equivalent'' vehicles. An increasing acceleration requirement would result in larger fuel economy benefits from vehicle hybridization.

  15. Light-duty diesel engine development status and engine needs

    SciTech Connect (OSTI)

    Not Available

    1980-08-01T23:59:59.000Z

    This report reviews, assesses, and summarizes the research and development status of diesel engine technology applicable to light-duty vehicles. In addition, it identifies specific basic and applied research and development needs in light-duty diesel technology and related health areas where initial or increased participation by the US Government would be desirable. The material presented in this report updates information provided in the first diesel engine status report prepared by the Aerospace Corporation for the Department of Energy in September, 1978.

  16. Light-Duty Fuel Cell Vehicles State of Development

    E-Print Network [OSTI]

    Light-Duty Fuel Cell Vehicles State of Development Fuel Cell Vehicles (FCVs) An international race is under way to commercialize fuel cell vehicles (FCVs). The competition is characterized by rapid by taking full advantage of the characteristics and capabilities of fuel cells. But most of the vehicles

  17. A Study of Emissions from a Light Duty Diesel Engine with the...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    A Study of Emissions from a Light Duty Diesel Engine with the European Particulate Measurement Programme A Study of Emissions from a Light Duty Diesel Engine with the European...

  18. Economic Comparison of LNT Versus Urea SCR for Light-Duty Diesel...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Comparison of LNT Versus Urea SCR for Light-Duty Diesel Vehicles in the U.S. Market Economic Comparison of LNT Versus Urea SCR for Light-Duty Diesel Vehicles in the U.S. Market...

  19. High-Efficiency Clean Combustion in Light-Duty Multi-Cylinder...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    High-Efficiency Clean Combustion in Light-Duty Multi-Cylinder Diesel Engines High-Efficiency Clean Combustion in Light-Duty Multi-Cylinder Diesel Engines 2010 DOE Vehicle...

  20. Biodiesel Effects on the Operation of U.S. Light Duty Tier 2...

    Broader source: Energy.gov (indexed) [DOE]

    Biodiesel Effects on the Operation of U.S. Light Duty Tier 2 Engine and Aftertreatment Systems Biodiesel Effects on the Operation of U.S. Light Duty Tier 2 Engine and...

  1. Biodiesel Effects on the Operation of U.S. Light-Duty Tier 2...

    Broader source: Energy.gov (indexed) [DOE]

    Biodiesel Effects on the Operation of U.S. Light-Duty Tier 2 Engine and Aftertreatment Systems Biodiesel Effects on the Operation of U.S. Light-Duty Tier 2 Engine and...

  2. High Efficiency Clean Combustion in Multi-Cylinder Light-Duty...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    & Publications High-Efficiency Clean Combustion in Light-Duty Multi-Cylinder Diesel Engines High Efficiency Clean Combustion in Multi-Cylinder Light-Duty Engines High Efficiency...

  3. High Efficiency Clean Combustion in Multi-Cylinder Light-Duty...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Light-Duty Multi-Cylinder Engine High Efficiency Clean Combustion in Multi-Cylinder Light-Duty Engines Vehicle Technologies Office Merit Review 2014: Impacts of Advanced Combustion...

  4. High Efficiency Clean Combustion in Multi-Cylinder Light-Duty...

    Broader source: Energy.gov (indexed) [DOE]

    Efficiency Clean Combustion in Multi-Cylinder Light-Duty Engines High Efficiency Clean Combustion in Multi-Cylinder Light-Duty Engines 2012 DOE Hydrogen and Fuel Cells Program and...

  5. Light-Duty Reactivity Controlled Compression Ignition Drive Cycle Fuel

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensionalthe10IO1OP001 LetterLight-Duty Lean GDI Vehicle TechnologyEconomy

  6. Light-duty Diesels: Clean Enough? | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensionalthe10IO1OP001 LetterLight-Duty Lean GDI Vehicle

  7. The Diesel Engine Powering Light-Duty Vehicles: Today and Tomorrow...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Engine Emissions Reduction (DEER) Conference Presentation: Volkwagen AG, Wolfsburg, Germany 2004deerschindler.pdf More Documents & Publications Accelerating Light-Duty Diesel...

  8. Biodiesel Effects on the Operation of U.S. Light-Duty Tier 2...

    Broader source: Energy.gov (indexed) [DOE]

    NOx Adsorber SCR System Summary and Conclusions Overview Evaluate the impact of Biodiesel fuel blends on the performance of advanced emission control systems for light-duty...

  9. Biodiesel Effects on the Operation of U.S. Light Duty Tier 2...

    Broader source: Energy.gov (indexed) [DOE]

    Test Results Summary and Conclusions Project Goals Evaluate the impact of Biodiesel fuel blends on the performance of advanced emission control systems for light-duty...

  10. Grids of Stellar Models and Frequencies with CLES + LOSC

    E-Print Network [OSTI]

    J. Montalban; A. Miglio; A. Noels; R. Scuflaire

    2008-02-22T23:59:59.000Z

    We present a grid of stellar models, obtained with the CLES evolution code, following the specification of ESTA-Task1, and the corresponfing seismic properties, computed with the LOSC code. We provide a complete description of the corresponding files that will be available on the ESTA web-pages.

  11. A Waste Heat Recovery System for Light Duty Diesel Engines

    SciTech Connect (OSTI)

    Briggs, Thomas E [ORNL; Wagner, Robert M [ORNL; Edwards, Kevin Dean [ORNL; Curran, Scott [ORNL; Nafziger, Eric J [ORNL

    2010-01-01T23:59:59.000Z

    In order to achieve proposed fuel economy requirements, engines must make better use of the available fuel energy. Regardless of how efficient the engine is, there will still be a significant fraction of the fuel energy that is rejected in the exhaust and coolant streams. One viable technology for recovering this waste heat is an Organic Rankine Cycle. This cycle heats a working fluid using these heat streams and expands the fluid through a turbine to produce shaft power. The present work was the development of such a system applied to a light duty diesel engine. This lab demonstration was designed to maximize the peak brake thermal efficiency of the engine, and the combined system achieved an efficiency of 44.4%. The design of the system is discussed, as are the experimental performance results. The system potential at typical operating conditions was evaluated to determine the practicality of installing such a system in a vehicle.

  12. Thorough analysis of input physics in CESAM and CLES codes

    E-Print Network [OSTI]

    Josefina Montalban; Yveline Lebreton; Andrea Miglio; Richard Scuflaire; Pierre Morel; Arlette Noels

    2008-04-14T23:59:59.000Z

    This contribution is not about the quality of the agreement between stellar models computed by CESAM and CLES codes, but more interesting, on what ESTA-Task~1 run has taught us about these codes and about the input physics they use. We also quantify the effects of different implementations of the same physics on the seismic properties of the stellar models, that in fact is the main aim of ESTA experiments.

  13. Fumigation of alcohol in a light duty automotive diesel engine

    SciTech Connect (OSTI)

    Broukhiyan, E.M.H.; Lestz, S.S.

    1981-08-01T23:59:59.000Z

    A light-duty automotive diesel engine was fumigated with methanol and ethanol in amounts up to 35% and 50% of the total fuel energy respectively. The main purpose of this study was to determine the effect of alcohol (methanol and ethanol) fumigation on engine performance at various operating conditions. Engine fuel efficiency, emissions, smoke, and the occurrence of severe knock were the parameters used to evaluate performance. Raw exhaust particulate and its soluble organic extract were screened for biological activity using the Ames Salmonella typhimurium assay. Results are given for a test matrix made up of twelve steady-state operating conditions. For all conditions except the 1/4 rack (light load) condition, modest thermal efficiency gains were noted upon ethanol fumigation. Methanol showed the same increase at 3/4 and full rack (high load) conditions. However, engine roughness or the occurrence of severe knock limited the maximum amount of alcohol that could be fumigated. Brake specific NO/sub x/ concentrations were found to decrease for all ethanol conditions tested. Oxides of nitrogen emissions, on a volume basis, decreased for all alcohol conditions tested. Based on the limited particulate data analyzed, it appears as though ethanol fumigation, like methanol fumigation, while lowering the mass of particulate emitted, does enhance the biological activity of that particulate.

  14. Development of a Waste Heat Recovery System for Light Duty Diesel...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Light Duty Diesel Engines A Quantum Leap for Heavy-Duty Truck Engine Efficiency - Hybrid Power System of Diesel and WHR-ORC Engines High Efficiency Engine Systems Development and...

  15. Light-Duty Diesel EngineTechnology to Meet Future Emissions and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    to Meet Future Emissions and Performance Requirements of the U.S. Market Light-Duty Diesel EngineTechnology to Meet Future Emissions and Performance Requirements of the U.S....

  16. The Diesel Engine Powering Light-Duty Vehicles: Today and Tomorrow

    Broader source: Energy.gov (indexed) [DOE]

    diesel-powered light-duty vehicles 1990 1995 2000 2005 2010 2015 2020 2025 Energy Greenhouse effect CO 2 Exhaust gas emissions CO, NO x , HC, PM Importance Environmental driving...

  17. Myths Regarding Alternative Fuel Vehicle Demand by Light-Duty Vehicle Fleets

    E-Print Network [OSTI]

    Nesbitt, Kevin; Sperling, Daniel

    1998-01-01T23:59:59.000Z

    MythsRegarding Alternative Fuel Vehicte Demand Light-Dutyregulation Myths Regarding Alternative Fuel Vehicle DemandBy00006-6 MYTHS REGARDING ALTERNATIVE FUEL VEHICLE LIGHT-DUTY

  18. Safety equipment list for the light duty utility arm system

    SciTech Connect (OSTI)

    Barnes, G.A.

    1998-03-02T23:59:59.000Z

    The initial issue (Revision 0) of this Safety Equipment List (SEL) for the Light Duty Utility Arm (LDUA) requires an explanation for both its existence and its being what it is. All LDUA documentation leading up to creation of this SEL, and the SEL itself, is predicated on the LDUA only being approved for use in waste tanks designated as Facility Group 3, i.e., it is not approved for use in Facility Group 1 or 2 waste tanks. Facility Group 3 tanks are those in which a spontaneous or induced hydrogen gas release would be small, localized, and would not exceed 25% of the LFL when mixed with the remaining air volume in the dome space; exceeding these parameters is considered unlikely. Thus, from a NFPA flammable gas environment perspective the waste tank interior is not classified as a hazardous location. Furthermore, a hazards identification and evaluation (HNF-SD-WM-HIE-010, REV 0) performed for the LDUA system concluded that the consequences of actual LDUA system postulated accidents in Flammable Gas Facility Group 3 waste tanks would have either NO IMPACT or LOW IMPACT on the offsite public and onsite worker. Therefore, from a flammable gas perspective, there is not a rationale for classifying any of SSCs associated with the LDUA as either Safety Class (SC) or Safety Significant (SS) SSCs, which, by default, categorizes them as General Service (GS) SSCs. It follows then, based on current PHMC procedures (HNF-PRO-704 and HNF-IP-0842, Vol IV, Section 5.2) for SEL creation and content, and from a flammable gas perspective, that an SEL is NOT REQ@D HOWEVER!!! There is both a precedent and a prudency to capture all SSCS, which although GS, contribute to a Defense-In-Depth (DID) approach to the design and use of equipment in potentially flammable gas environments. This Revision 0 of the LDUA SEL has been created to capture these SSCs and they are designated as GS-DID in this document. The specific reasons for doing this are listed.

  19. California Greenhouse Gas Emissions Standards for Light-Duty Vehicles (Update) (released in AEO2006)

    Reports and Publications (EIA)

    2006-01-01T23:59:59.000Z

    The state of California was given authority under the Clean Air Act Amendments of 1990 (CAAA90) to set emissions standards for light-duty vehicles that exceed federal standards. In addition, other states that do not comply with the National Ambient Air Quality Standards (NAAQS) set by the Environmental Protection Agency under CAAA90 were given the option to adopt Californias light-duty vehicle emissions standards in order to achieve air quality compliance. CAAA90 specifically identifies hydrocarbon, carbon monoxide, and NOx as vehicle-related air pollutants that can be regulated. California has led the nation in developing stricter vehicle emissions standards, and other states have adopted the California standards.

  20. Fuel Economy of the Light-Duty Vehicle Fleet (released in AEO2005)

    Reports and Publications (EIA)

    2005-01-01T23:59:59.000Z

    The U.S. fleet of light-duty vehicles consists of cars and light trucks, including minivans, sport utility vehicles (SUVs) and trucks with gross vehicle weight less than 8,500 pounds. The fuel economy of light-duty vehicles is regulated by the (Corporate Average Fuel Economy) CAFE standards set by the National Highway Traffic Safety Administration. Currently, the CAFE standard is 27.5 miles per gallon (mpg) for cars and 20.7 mpg for light trucks. The most recent increase in the CAFE standard for cars was in 1990, and the most recent increase in the CAFE standard for light trucks was in 1996.

  1. Detroit Diesel Engine Technology for Light Duty Truck Applications - DELTA Engine Update

    SciTech Connect (OSTI)

    Freese, Charlie

    2000-08-20T23:59:59.000Z

    The early generation of the DELTA engine has been thoroughly tested and characterized in the virtual lab, during engine dynamometer testing, and on light duty trucks for personal transportation. This paper provides an up-to-date account of program findings. Further, the next generation engine design and future program plans will be briefly presented.

  2. QUANTIFYING THE EXTERNAL COSTS OF VEHICLE USE: EVIDENCE FROM AMERICA'S TOP SELLING LIGHT-DUTY MODELS

    E-Print Network [OSTI]

    Kockelman, Kara M.

    -selling passenger cars and light-duty trucks in the U.S. Among these external costs, those associated with crashes estimated for several other vehicles of particular interest, including GM's Hummer and several hybrid drive: small cars, mid-sized cars, large cars, luxury cars, crossover utility vehicles (CUVs), sport

  3. Transportation Energy Futures Series: Potential for Energy Efficiency Improvement Beyond the Light-Duty-Vehicle Sector

    SciTech Connect (OSTI)

    Vyas, A. D.; Patel, D. M.; Bertram, K. M.

    2013-03-01T23:59:59.000Z

    Considerable research has focused on energy efficiency and fuel substitution options for light-duty vehicles, while much less attention has been given to medium- and heavy-duty trucks, buses, aircraft, marine vessels, trains, pipeline, and off-road equipment. This report brings together the salient findings from an extensive review of literature on future energy efficiency options for these non-light-duty modes. Projected activity increases to 2050 are combined with forecasts of overall fuel efficiency improvement potential to estimate the future total petroleum and greenhouse gas (GHG) emissions relative to current levels. This is one of a series of reports produced as a result of the Transportation Energy Futures (TEF) project, a Department of Energy-sponsored multi-agency project initiated to pinpoint underexplored strategies for abating GHGs and reducing petroleum dependence related to transportation.

  4. California Greenhouse Gas Emissions Standards for Light-Duty Vehicles (released in AEO2005)

    Reports and Publications (EIA)

    2005-01-01T23:59:59.000Z

    In July 2002, California Assembly Bill 1493 (A.B. 1493) was signed into law. The law requires that the California Air Resources Board (CARB) develop and adopt, by January 1, 2005, greenhouse gas emission standards for light-duty vehicles that provide the maximum feasible reduction in emissions. In estimating the feasibility of the standard, CARB is required to consider cost-effectiveness, technological capability, economic impacts, and flexibility for manufacturers in meeting the standard.

  5. Advanced Technologies for Light-Duty Vehicles (released in AEO2006)

    Reports and Publications (EIA)

    2006-01-01T23:59:59.000Z

    A fundamental concern in projecting the future attributes of light-duty vehicles-passenger cars, sport utility vehicles, pickup trucks, and minivans-is how to represent technological change and the market forces that drive it. There is always considerable uncertainty about the evolution of existing technologies, what new technologies might emerge, and how consumer preferences might influence the direction of change. Most of the new and emerging technologies expected to affect the performance and fuel use of light-duty vehicles over the next 25 years are represented in the National Energy Modeling System (NEMS); however, the potential emergence of new, unforeseen technologies makes it impossible to address all the technology options that could come into play. The previous section of Issues in Focus discussed several potential technologies that currently are not represented in NEMS. This section discusses some of the key technologies represented in NEMS that are expected to be implemented in light-duty vehicles over the next 25 years.

  6. Assessing deployment strategies for ethanol and flex fuel vehicles in the U.S. light-duty vehicle fleet

    E-Print Network [OSTI]

    McAulay, Jeffrey L. (Jeffrey Lewis)

    2009-01-01T23:59:59.000Z

    Within the next 3-7 years the US light duty fleet and fuel supply will encounter what is commonly referred to as the "blend wall". This phenomenon describes the situation when more ethanol production has been mandated than ...

  7. Evaluating the impact of advanced vehicle and fuel technologies in U.S. light duty vehicle fleet

    E-Print Network [OSTI]

    Bandivadekar, Anup P

    2008-01-01T23:59:59.000Z

    The unrelenting increase in oil use by the U.S. light-duty vehicle (LDV) fleet presents an extremely challenging energy and environmental problem. A variety of propulsion technologies and fuels have the promise to reduce ...

  8. Light-duty vehicle mpg and market shares report, model year 1988

    SciTech Connect (OSTI)

    Hu, P.S.; Williams, L.S.; Beal, D.J.

    1989-04-01T23:59:59.000Z

    This issue of Light-Duty Vehicle MPG and Market Shares Report: Model Year 1988 reports the estimated sales-weighted fuel economies, sales, market shares, and other vehicle characteristics of automobiles and light trucks. The estimates are made on a make and model basis, from model year 1976 to model year 1988. Vehicle sales data are used as weighting factors in the sales-weighted estimation procedure. Thus, the estimates represent averages of the overall new vehicle fleet, reflecting the composition of the fleet. Highlights are provided on the trends in the vehicle characteristics from one model year to the next. Analyses are also made on the fuel economy changes to determine the factors which caused the changes. The sales-weighted fuel economy for the new car fleet in model year 1988 showed an improvement of 0.1 mpg from model year 1987, while light trucks showed a 0.2 mpg loss. The 0.2 mpg loss by the light trucks can be attributed to the fact that every light truck size class experienced either losses or no change in their fuel economies from the previous model year, except for the large van size class. Overall, the sales-weighted fuel economy of the entire light-duty vehicle fleet (automobiles and light trucks combined) has remained relatively stable since model year 1986. Domestic light-duty vehicles began to gain popularity over their import counterparts; and light trucks increased their market shares relative to automobiles. Domestic cars regained 0.3% of the automobile market, reversing the previous trend. Similar to the automobile market, domestic light trucks continued to gain popularity over their import counterparts, partly due to the increasing popularity of domestic small vans. 3 refs., 35 figs., 48 tabs.

  9. Tank selection for Light Duty Utility Arm (LDUA) system hot testing in a single shell tank

    SciTech Connect (OSTI)

    Bhatia, P.K.

    1995-01-31T23:59:59.000Z

    The purpose of this report is to recommend a single shell tank in which to hot test the Light Duty Utility Arm (LDUA) for the Tank Waste Remediation System (TWRS) in Fiscal Year 1996. The LDUA is designed to utilize a 12 inch riser. During hot testing, the LDUA will deploy two end effectors (a High Resolution Stereoscopic Video Camera System and a Still/Stereo Photography System mounted on the end of the arm`s tool interface plate). In addition, three other systems (an Overview Video System, an Overview Stereo Video System, and a Topographic Mapping System) will be independently deployed and tested through 4 inch risers.

  10. Light Duty Utility Arm system pre-operational (cold test) test plan

    SciTech Connect (OSTI)

    Bennett, K.L.

    1995-10-20T23:59:59.000Z

    The Light Duty Utility (LDUA) Cold Test Facility, located in the Hanford 400 Area, will be used to support cold testing (pre- operational tests) of LDUA subsystems. Pre-operational testing is composed of subsystem development testing and rework activities, and integrated system qualification testing. Qualification testing will be conducted once development work is complete and documentation is under configuration control. Operational (hot) testing of the LDUA system will follow the testing covered in this plan and will be covered in a separate test plan

  11. Selection of Light Duty Truck Engine Air Systems Using Virtual Lab Tests

    SciTech Connect (OSTI)

    Zhang, Houshun

    2000-08-20T23:59:59.000Z

    An integrated development approach using seasoned engine technology methodologies, virtual lab parametric investigations, and selected hardware verification tests reflects today's state-of-the-art R&D trends. This presentation will outline such a strategy. The use of this ''Wired'' approach results in substantial reduction in the development cycle time and hardware iterations. An example showing the virtual lab application for a viable design of the air-exhaust-turbocharger system of a light duty truck engine for personal transportation will be presented.

  12. Fueling U.S. Light Duty Diesel Vehicles | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensional ElectricalEnergyQuality ChallengesFueling U.S. Light Duty

  13. Non-Cost Barriers to Consumer Adoption of New Light-Duty Vehicle Technologies

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the Contributions andDataNationalNewportBig Eddy Archeological Siteornl.govLIGHT-DUTY

  14. Light-Duty Lean GDI Vehicle Technology Benchmark | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensionalthe10IO1OP001 LetterLight-Duty Lean GDI Vehicle Technology

  15. Alternative Fuels Data Center: Light-Duty Vehicle Idle Reduction Strategies

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc Documentation RUCProductstwrmrAreSmartWayElectricity FuelUse Knoxville UtilitiesLight-Duty

  16. Feasibility Study Of Advanced Technology Hov Systems: Volume 2b: Emissions Impact Of Roadway-powered Electric Buses, Light-duty Vehicles, And Automobiles

    E-Print Network [OSTI]

    Miller, Mark A.; Dato, Victor; Chira-chavala, Ted

    1992-01-01T23:59:59.000Z

    LIGHT-DUTY VEHICLES, AND AUTOMOBILES Mark A. Miller Victorand The analysis involves automobiles in California arePowered Electric Automobiles -a---- Range of Estimated

  17. Efficiency Improvement Opportunities for Light-Duty Natural-Gas-Fueled Vehicles

    SciTech Connect (OSTI)

    Staunton, R.H.; Thomas, J.F.

    1998-12-01T23:59:59.000Z

    The purpose of this report is to evaluate and make recommendations concerning technologies that promise to improve the efilciency of compressed natural gas (CNG) light-duty vehicles. Technical targets for CNG automotive technology given in the March 1998 OffIce of Advanced Automotive Technologies research and development plan were used as guidance for this effort. The technical target that necessitates this current study is to validate technologies that enable CNG light vehicles to have at least 10% greater - fuel economy (on a miles per gallon equivalent basis) than equivalent gasoline vehicles by 2006. Other tar- gets important to natural gas (NG) automotive technology and this study are to: (1) increase CNG vehicle range to 380 miles, (2) reduce the incremental vehicle cost (CNG vs gasoline) to $1500, and (3) meet the California ultra low-emission vehicle (ULEV) and Federal Tier 2 emission standards expected to be in effect in 2004.

  18. Piston Bowl Optimization for RCCI Combustion in a Light-Duty Multi-Cylinder Engine

    SciTech Connect (OSTI)

    Hanson, Reed M [ORNL; Curran, Scott [ORNL; Wagner, Robert M [ORNL; Reitz, Rolf [University of Wisconsin; Kokjohn, Sage [University of Wisconsin, Madison

    2012-01-01T23:59:59.000Z

    Reactivity Controlled Compression Ignition (RCCI) is an engine combustion strategy that that produces low NO{sub x} and PM emissions with high thermal efficiency. Previous RCCI research has been investigated in single-cylinder heavy-duty engines. The current study investigates RCCI operation in a light-duty multi-cylinder engine at 3 operating points. These operating points were chosen to cover a range of conditions seen in the US EPA light-duty FTP test. The operating points were chosen by the Ad Hoc working group to simulate operation in the FTP test. The fueling strategy for the engine experiments consisted of in-cylinder fuel blending using port fuel-injection (PFI) of gasoline and early-cycle, direct-injection (DI) of diesel fuel. At these 3 points, the stock engine configuration is compared to operation with both the original equipment manufacturer (OEM) and custom machined pistons designed for RCCI operation. The pistons were designed with assistance from the KIVA 3V computational fluid dynamics (CFD) code. By using a genetic algorithm optimization, in conjunction with KIVA, the piston bowl profile was optimized for dedicated RCCI operation to reduce unburned fuel emissions and piston bowl surface area. By reducing these parameters, the thermal efficiency of the engine was improved while maintaining low NOx and PM emissions. Results show that with the new piston bowl profile and an optimized injection schedule, RCCI brake thermal efficiency was increased from 37%, with the stock EURO IV configuration, to 40% at the 2,600 rev/min, 6.9 bar BMEP condition, and NOx and PM emissions targets were met without the need for exhaust after-treatment.

  19. Fleet assessment for opportunities to effectively deploy light duty alternative fuel vehicles

    SciTech Connect (OSTI)

    Not Available

    1990-05-01T23:59:59.000Z

    The City of Detroit conducted an initial program to assess the potential for substitution of vehicles currently in operation with alternative fuel vehicles. A key task involved the development of an operating profile of the participant light truck and van fleets involved in the study. To do this a survey of operators of light duty trucks and vans within the project participant fleets was conducted. These survey results were analyzed to define the potential for substitution of conventional vehicles with alternate fuel vehicles with alternate fuel vehicles and to identify candidates for participation in the Mini-Demonstration portion of the project. The test program involved the deployment of an electric van (two GM Griffon Electric Vans provided by Detroit Edison) at seven Mini-Demonstration sites for a period of four weeks each for test and evaluation. The Technical Work Group then analyzed vehicle performance data and used a questionnaire to obtain impressions and attitudes of the users toward the acceptability of the electric van. The Technical Work Group (TWG) and Management Assessment Group (MAG) then prepared recommendations and an implementation plan to develop further information aimed toward eventual expanded deployment of alternative fuel vehicles within project participant light duty fleets. The MAG concluded that the study had been beneficial in collecting and developing important quantitative information, introducing a set of public fleet managers to alternative fuel vehicle opportunities and features, and had provided specific experience with the Griffon van which provided some indications of requirements in such vehicles if they are to be a normal part of public fleet operations. These included the need for some increase of the mileage range of the Griffon, an improvement in the ride and handling of the Griffon, and several minor'' difficulties experienced with malfunctioning or inconvenient characteristics of the Griffon equipment. 25 figs., 1 tab.

  20. Sizes, graphitic structures and fractal geometry of light-duty diesel engine particulates.

    SciTech Connect (OSTI)

    Lee, K. O.; Zhu, J.; Ciatti, S.; Choi, M. Y.; Energy Systems; Drexel Univ.

    2003-01-01T23:59:59.000Z

    The particulate matter of a light-duty diesel engine was characterized in its morphology, sizes, internal microstructures, and fractal geometry. A thermophoretic sampling system was employed to collect particulates directly from the exhaust manifold of a 1.7-liter turbocharged common-rail direct-injection diesel engine. The particulate samples collected at various engine-operating conditions were then analyzed by using a high-resolution transmission electron microscope (TEM) and an image processing/data acquisition system. Results showed that mean primary particle diameters (dp), and radii of gyration (Rg), ranged from 19.4 nm to 32.5 nm and 77.4 nm to 134.1 nm, respectively, through the entire engine-operating conditions of 675 rpm (idling) to 4000 rpm and 0% to 100% loads. It was also revealed that the other important parameters sensitive to the particulate formation, such as exhaust-gas recirculation (EGR) rate, equivalence ratio, and temperature, affected particle sizes significantly. Bigger primary particles were measured at higher EGR rates, higher equivalence ratios (fuel-rich), and lower exhaust temperatures. Fractal dimensions (D{sup f}) were measured at a range of 1.5 - 1.7, which are smaller than those measured for heavy-duty direct-injection diesel engine particulates in our previous study. This finding implies that the light-duty diesel engine used in this study produces more stretched chain-like shape particles, while the heavy-duty diesel engine emits more spherical particles. The microstructures of diesel particulates were observed at high TEM magnifications and further analyzed by a Raman spectroscope. Raman spectra revealed an atomic structure of the particulates produced at high engine loads, which is similar to that of typical graphite.

  1. A techno-economic analysis and optimization of Li-ion batteries for light-duty passenger vehicle electrification

    E-Print Network [OSTI]

    McGaughey, Alan

    A techno-economic analysis and optimization of Li-ion batteries for light-duty passenger vehicle thickness a b s t r a c t We conduct a techno-economic analysis of Li-ion NMC-G prismatic pouch battery

  2. Retail Infrastructure Costs Comparison for Hydrogen and Electricity for Light-Duty Vehicles: Preprint

    SciTech Connect (OSTI)

    Melaina, M.; Sun, Y.; Bush, B.

    2014-08-01T23:59:59.000Z

    Both hydrogen and plug-in electric vehicles offer significant social benefits to enhance energy security and reduce criteria and greenhouse gas emissions from the transportation sector. However, the rollout of electric vehicle supply equipment (EVSE) and hydrogen retail stations (HRS) requires substantial investments with high risks due to many uncertainties. We compare retail infrastructure costs on a common basis - cost per mile, assuming fueling service to 10% of all light-duty vehicles in a typical 1.5 million person city in 2025. Our analysis considers three HRS sizes, four distinct types of EVSE and two distinct EVSE scenarios. EVSE station costs, including equipment and installation, are assumed to be 15% less than today's costs. We find that levelized retail capital costs per mile are essentially indistinguishable given the uncertainty and variability around input assumptions. Total fuel costs per mile for battery electric vehicle (BEV) and plug-in hybrid vehicle (PHEV) are, respectively, 21% lower and 13% lower than that for hydrogen fuel cell electric vehicle (FCEV) under the home-dominant scenario. Including fuel economies and vehicle costs makes FCEVs and BEVs comparable in terms of costs per mile, and PHEVs are about 10% less than FCEVs and BEVs. To account for geographic variability in energy prices and hydrogen delivery costs, we use the Scenario Evaluation, Regionalization and Analysis (SERA) model and confirm the aforementioned estimate of cost per mile, nationally averaged, but see a 15% variability in regional costs of FCEVs and a 5% variability in regional costs for BEVs.

  3. Reactivity Controlled Compression Ignition (RCCI) Combustion on a Multi-Cylinder Light-Duty Diesel Engine

    SciTech Connect (OSTI)

    Curran, Scott [ORNL; Hanson, Reed M [ORNL; Wagner, Robert M [ORNL

    2012-01-01T23:59:59.000Z

    Reactivity controlled compression ignition is a low-temperature combustion technique that has been shown, both in computational fluid dynamics modeling and single-cylinder experiments, to obtain diesel-like efficiency or better with ultra-low nitrogen oxide and soot emissions, while operating primarily on gasoline-like fuels. This paper investigates reactivity controlled compression ignition operation on a four-cylinder light-duty diesel engine with production-viable hardware using conventional gasoline and diesel fuel. Experimental results are presented over a wide speed and load range using a systematic approach for achieving successful steady-state reactivity controlled compression ignition combustion. The results demonstrated diesel-like efficiency or better over the operating range explored with low engine-out nitrogen oxide and soot emissions. A peak brake thermal efficiency of 39.0% was demonstrated for 2600 r/min and 6.9 bar brake mean effective pressure with nitrogen oxide emissions reduced by an order of magnitude compared to conventional diesel combustion operation. Reactivity controlled compression ignition emissions and efficiency results are compared to conventional diesel combustion operation on the same engine.

  4. Comparative urban drive cycle simulations of light-duty hybrid vehicles with gasoline or diesel engines and emissions controls

    SciTech Connect (OSTI)

    Gao, Zhiming [ORNL] [ORNL; Daw, C Stuart [ORNL] [ORNL; Smith, David E [ORNL] [ORNL

    2013-01-01T23:59:59.000Z

    Electric hybridization is a very effective approach for reducing fuel consumption in light-duty vehicles. Lean combustion engines (including diesels) have also been shown to be significantly more fuel efficient than stoichiometric gasoline engines. Ideally, the combination of these two technologies would result in even more fuel efficient vehicles. However, one major barrier to achieving this goal is the implementation of lean-exhaust aftertreatment that can meet increasingly stringent emissions regulations without heavily penalizing fuel efficiency. We summarize results from comparative simulations of hybrid electric vehicles with either stoichiometric gasoline or diesel engines that include state-of-the-art aftertreatment emissions controls for both stoichiometric and lean exhaust. Fuel consumption and emissions for comparable gasoline and diesel light-duty hybrid electric vehicles were compared over a standard urban drive cycle and potential benefits for utilizing diesel hybrids were identified. Technical barriers and opportunities for improving the efficiency of diesel hybrids were identified.

  5. Future Potential of Hybrid and Diesel Powertrains in the U.S. Light-duty Vehicle Market

    SciTech Connect (OSTI)

    Greene, D.L.

    2004-08-23T23:59:59.000Z

    Diesel and hybrid technologies each have the potential to increase light-duty vehicle fuel economy by a third or more without loss of performance, yet these technologies have typically been excluded from technical assessments of fuel economy potential on the grounds that hybrids are too expensive and diesels cannot meet Tier 2 emissions standards. Recently, hybrid costs have come down and the few hybrid makes available are selling well. Diesels have made great strides in reducing particulate and nitrogen oxide emissions, and are likely though not certain to meet future standards. In light of these developments, this study takes a detailed look at the market potential of these two powertrain technologies and their possible impacts on light-duty vehicle fuel economy. A nested multinomial logit model of vehicle choice was calibrated to 2002 model year sales of 930 makes, models and engine-transmission configurations. Based on an assessment of the status and outlook for the two technologies, market shares were predicted for 2008, 2012 and beyond, assuming no additional increase in fuel economy standards or other new policy initiatives. Current tax incentives for hybrids are assumed to be phased out by 2008. Given announced and likely introductions by 2008, hybrids could capture 4-7% and diesels 2-4% of the light-duty market. Based on our best guesses for further introductions, these shares could increase to 10-15% for hybrids and 4-7% for diesels by 2012. The resulting impacts on fleet average fuel economy would be about +2% in 2008 and +4% in 2012. If diesels and hybrids were widely available across vehicle classes, makes, and models, they could capture 40% or more of the light-duty vehicle market.

  6. Putting policy in drive : coordinating measures to reduce fuel use and greenhouse gas emissions from U.S. light-duty vehicles

    E-Print Network [OSTI]

    Evans, Christopher W. (Christopher William)

    2008-01-01T23:59:59.000Z

    The challenges of energy security and climate change have prompted efforts to reduce fuel use and greenhouse gas emissions in light-duty vehicles within the United States. Failures in the market for lower rates of fuel ...

  7. Plasma Catalysis for NOx Reduction from Light-Duty Diesel Vehicles

    SciTech Connect (OSTI)

    None

    2005-12-15T23:59:59.000Z

    On behalf of the Department of Energy's Office of FreedomCAR and Vehicle Technologies, we are pleased to introduce the Fiscal Year (FY) 2004 Annual Progress Report for the Advanced Combustion Engine R&D Sub-Program. The mission of the FreedomCAR and Vehicle Technologies Program is to develop more energy efficient and environmentally friendly highway transportation technologies that enable Americans to use less petroleum for their vehicles. The Advanced Combustion Engine R&D Sub-Program supports this mission by removing the critical technical barriers to commercialization of advanced internal combustion engines for light-, medium-, and heavy-duty highway vehicles that meet future Federal and state emissions regulations. The primary objective of the Advanced Combustion Engine R&D Sub-Program is to improve the brake thermal efficiency of internal combustion engines from 30 to 45 percent for light-duty applications by 2010; and 40 to 55 percent for heavy-duty applications by 2012; while meeting cost, durability, and emissions constraints. R&D activities include work on combustion technologies that increase efficiency and minimize in-cylinder formation of emissions, as well as aftertreatment technologies that further reduce exhaust emissions. Work is also being conducted on ways to reduce parasitic and heat transfer losses through the development and application of thermoelectrics and turbochargers that include electricity generating capability, and conversion of mechanically driven engine components to be driven via electric motors. This introduction serves to outline the nature, current progress, and future directions of the Advanced Combustion Engine R&D Sub-Program. The research activities of this Sub-Program are planned in conjunction with the FreedomCAR Partnership and the 21st Century Truck Partnership and are carried out in collaboration with industry, national laboratories, and universities. Because of the importance of clean fuels in achieving low emissions, R&D activities are closely coordinated with the relevant activities of the Fuel Technologies Sub-Program, also within the Office of FreedomCAR and Vehicle Technologies. Research is also being undertaken on hydrogen-fueled internal combustion engines to provide an interim hydrogen-based powertrain technology that promotes the longer-range FreedomCAR Partnership goal of transitioning to a hydrogen-fueled transportation system. Hydrogen engine technologies being developed have the potential to provide diesel-like engine efficiencies with near-zero emissions.

  8. Investigating potential light-duty efficiency improvements through simulation of turbo-compounding and waste-heat recovery systems

    SciTech Connect (OSTI)

    Edwards, Kevin Dean [ORNL; Wagner, Robert M [ORNL; Briggs, Thomas E [ORNL

    2010-01-01T23:59:59.000Z

    Modern diesel engines used in light-duty transportation applications have peak brake thermal efficiencies in the range of 40-42% for high-load operation with substantially lower efficiencies at realistic road-load conditions. Thermodynamic energy and exergy analysis reveals that the largest losses from these engines are due to combustion irreversibility and heat loss to the coolant, through the exhaust, and by direct convection and radiation to the environment. Substantial improvement in overall engine efficiency requires reducing or recovering these losses. Unfortunately, much of the heat transfer either occurs at relatively low temperatures resulting in large entropy generation (such as in the air-charge cooler), is transferred to low-exergy flow streams (such as the oil and engine coolant), or is radiated or convected directly to the environment. While there are significant opportunities for recovery from the exhaust and EGR cooler for heavy-duty applications, achieving similar benefits for light-duty applications is complicated by transient, low-load operation at typical driving conditions and competition with the turbocharger and aftertreatment system for the limited thermal resources. We have developed an organic Rankine cycle model using GT-Suite to investigate the potential for efficiency improvement through waste-heat recovery from the exhaust and EGR cooler of a light-duty diesel engine. The model is used to examine the effects of efficiency-improvement strategies such as cylinder deactivation, use of advanced materials and improved insulation to limit ambient heat loss, and turbo-compounding on the steady-state performance of the ORC system and the availability of thermal energy for downstream aftertreatment systems. Results from transient drive-cycle simulations are also presented, and we discuss strategies to address operational difficulties associated with transient drive cycles and balancing the thermal requirements of waste-heat recovery, turbocharging or turbo-compounding, and exhaust aftertreatment.

  9. Membrane-Based Air Composition Control for Light-Duty Diesel Vehicles: A Benefit and Cost Assessment

    SciTech Connect (OSTI)

    K. Stork; R. Poola

    1998-10-01T23:59:59.000Z

    This report presents the methodologies and results of a study conducted by Argonne National Laboratory (Argonne) to assess the benefits and costs of several membrane-based technologies. The technologies evaluated will be used in automotive emissions-control and performance-enhancement systems incorporated into light-duty diesel vehicle engines. Such engines are among the technologies that are being considered to power vehicles developed under the government-industry Partnership for a New Generation of Vehicles (PNGV). Emissions of nitrogen oxides (NO{sub x}) from diesel engines have long been considered a barrier to use of diesels in urban areas. Recently, particulate matter (PM) emissions have also become an area of increased concern because of new regulations regarding emissions of particulate matter measuring 2.5 micrometers or less (PM{sub 2.5}). Particulates are of special concern for diesel engines in the PNGV program; the program has a research goal of 0.01 gram per mile (g/mi) of particulate matter emissions under the Federal Test Procedure (FTP) cycle. This extremely low level (one-fourth the level of the Tier II standard) could threaten the viability of using diesel engines as stand-alone powerplants or in hybrid-electric vehicles. The techniques analyzed in this study can reduce NO{sub x} and particulate emissions and even increase the power density of the diesel engines used in light-duty diesel vehicles.

  10. Effect of Gasoline Properties on Exhaust Emissions from Tier 2 Light-Duty Vehicles -- Final Report: Phase 3; July 28, 2008 - July 27, 2013

    SciTech Connect (OSTI)

    Whitney, K.

    2014-05-01T23:59:59.000Z

    This report covers work the Southwest Research Institute (SwRI) Office of Automotive Engineering has conducted for the U.S. Environmental Protection Agency (EPA), the National Renewable Energy Laboratory (NREL), and the Coordinating Research Council (CRC) in support of the Energy Policy Act of 2005 (EPAct). Section 1506 of EPAct requires EPA to produce an updated fuel effects model representing the 2007 light - duty gasoline fleet, including determination of the emissions impacts of increased renewable fuel use. This report covers the exhaust emissions testing of 15 light-duty vehicles with 27 E0 through E20 test fuels, and 4 light-duty flexible fuel vehicles (FFVs) on an E85 fuel, as part of the EPAct Gasoline Light-Duty Exhaust Fuel Effects Test Program. This program will also be referred to as the EPAct/V2/E-89 Program based on the designations used for it by the EPA, NREL, and CRC, respectively. It is expected that this report will be an attachment or a chapter in the overall EPAct/V2/E-89 Program report prepared by EPA and NREL.

  11. Light-Duty Drive Cycle Simulations of Diesel Engine-Out Exhaust Properties for an RCCI-Enabled Vehicle

    SciTech Connect (OSTI)

    Gao, Zhiming [ORNL] [ORNL; Curran, Scott [ORNL] [ORNL; Daw, C Stuart [ORNL] [ORNL; Wagner, Robert M [ORNL] [ORNL

    2013-01-01T23:59:59.000Z

    In-cylinder blending of gasoline and diesel fuels to achieve low-temperature reactivity controlled compression ignition (RCCI) can reduce NOx and PM emissions while maintaining or improving brake thermal efficiency compared to conventional diesel combustion (CDC). Moreover, the dual-fueling RCCI is able to achieve these benefits by tailoring combustion reactivity over a wider range of engine operation than is possible with a single fuel. However, the currently demonstrated range of stable RCCI combustion just covers a portion of the engine speed-load range required in several light-duty drive cycles. This means that engines must switch from RCCI to CDC when speed and load fall outside of the stable RCCI range. In this study we investigated the impact of RCCI as it has recently been demonstrated on practical engine-out exhaust temperature and emissions by simulating a multi-mode RCCI-enabled vehicle operating over two urban and two highway driving cycles. To implement our simulations, we employed experimental engine maps for a multi-mode RCCI/CDC engine combined with a standard mid-size, automatic transmission, passenger vehicle in the Autonomie vehicle simulation platform. Our results include both detailed transient and cycle-averaged engine exhaust temperature and emissions for each case, and we note the potential implications of the modified exhaust properties on catalytic emissions control and utilization of waste heat recovery on future RCCI-enabled vehicles.

  12. Simulating Study of Premixed Charge Compression Ignition on Light-Duty Diesel Fuel Economy and Emissions Control

    SciTech Connect (OSTI)

    Gao, Zhiming [ORNL] [ORNL; Daw, C Stuart [ORNL] [ORNL; Wagner, Robert M [ORNL] [ORNL

    2012-01-01T23:59:59.000Z

    We utilize the Powertrain Systems Analysis Toolkit (PSAT) combined with transient engine and aftertreatment component models to simulate the impact of premixed charge compression ignition (PCCI) on the fuel economy and emissions of light-duty (LD) diesel-powered conventional and hybrid electric vehicles (HEVs). Our simulated aftertreatment train consists of a diesel oxidation catalyst (DOC), lean NOx trap (LNT), and catalyzed diesel particulate filter (DPF). The results indicate that utilizing PCCI combustion significantly reduces fuel consumption and tailpipe emissions for the conventional diesel-powered vehicle with NOx and particulate emissions controls. These benefits result from a favorable engine speed-load distribution over the cycle combined with a corresponding reduction in the need to regenerate the LNT and DPF. However, the current PCCI technology appears to offer less potential benefit for diesel HEVs equipped with similar emissions controls. This is because PCCI can only be activated over a relatively small part of the drive cycle. Thus we conclude that future utilization of PCCI in diesel HEVs will require significant extension of the available speed-load range for PCCI and revision of current HEV engine management strategies before significant benefits can be realized.

  13. Effect of Gasoline Properties on Exhaust Emissions from Tier 2 Light-Duty Vehicles -- Final Report: Phases 4, 5, & 6; July 28, 2008 - July 27, 2013

    SciTech Connect (OSTI)

    Whitney, K.; Shoffner, B.

    2014-06-01T23:59:59.000Z

    This report covers work the Southwest Research Institute (SwRI) Office of Automotive Engineering has conducted for the National Renewable Energy Laboratory (NREL) in support of the Energy Policy Act of 2005 (EPAct). Section 1506 of EPAct requires the EPA to produce an updated fuel effects model representing the 2007 light-duty gasoline fleet, including determination of the emissions impacts of increased renewable fuel use.

  14. DRIVE CYCLE EFFICIENCY AND EMISSIONS ESTIMATES FOR REACTIVITY CONTROLLED COMPRESSION IGNITION IN A MULTI-CYLINDER LIGHT-DUTY DIESEL ENGINE

    SciTech Connect (OSTI)

    Curran, Scott [ORNL; Briggs, Thomas E [ORNL; Cho, Kukwon [ORNL; Wagner, Robert M [ORNL

    2011-01-01T23:59:59.000Z

    In-cylinder blending of gasoline and diesel to achieve Reactivity Controlled Compression Ignition (RCCI) has been shown to reduce NOx and PM emissions while maintaining or improving brake thermal efficiency as compared to conventional diesel combustion (CDC). The RCCI concept has an advantage over many advanced combustion strategies in that by varying both the percent of premixed gasoline and EGR rate, stable combustion can be extended over more of the light-duty drive cycle load range. Changing the percent premixed gasoline changes the fuel reactivity stratification in the cylinder providing further control of combustion phasing and pressure rise rate than the use of EGR alone. This paper examines the combustion and emissions performance of light-duty diesel engine using direct injected diesel fuel and port injected gasoline to carry out RCCI for steady-state engine conditions which are consistent with a light-duty drive cycle. A GM 1.9L four-cylinder engine with the stock compression ratio of 17.5:1, common rail diesel injection system, high-pressure EGR system and variable geometry turbocharger was modified to allow for port fuel injection with gasoline. Engine-out emissions, engine performance and combustion behavior for RCCI operation is compared against both CDC and a premixed charge compression ignition (PCCI) strategy which relies on high levels of EGR dilution. The effect of percent of premixed gasoline, EGR rate, boost level, intake mixture temperature, combustion phasing and pressure rise rate is investigated for RCCI combustion for the light-duty modal points. Engine-out emissions of NOx and PM were found to be considerably lower for RCCI operation as compared to CDC and PCCI, while HC and CO emissions were higher. Brake thermal efficiency was similar or higher for many of the modal conditions for RCCI operation. The emissions results are used to estimate hot-start FTP-75 emissions levels with RCCI and are compared against CDC and PCCI modes.

  15. Investigating potential efficiency improvement for light-duty transportation applications through simulation of an organic Rankine cycle for waste-heat recovery

    SciTech Connect (OSTI)

    Edwards, Kevin Dean [ORNL; Wagner, Robert M [ORNL

    2010-01-01T23:59:59.000Z

    Modern diesel engines used in light-duty transportation applications have peak brake thermal efficiencies in the range of 40-42% for high-load operation with substantially lower efficiencies at realistic road-load conditions. Thermodynamic energy and exergy analysis reveals that the largest losses from these engines are due to heat loss and combustion irreversibility. Substantial improvement in overall engine efficiency requires reducing or recovering these losses. Unfortunately, much of the heat transfer either occurs at relatively low temperatures resulting in large entropy generation (such as in the air-charge cooler), is transferred to low-exergy flow streams (such as the oil and engine coolant), or is radiated or convected directly to the environment. While there are significant opportunities for recovery from the exhaust and EGR cooler for heavy-duty applications, the potential benefits of such a strategy for light-duty applications are unknown due to transient operation, low-load operation at typical driving conditions, and the added mass of the system. We have developed an organic Rankine cycle model using GT-Suite to investigate the potential for efficiency improvement through waste-heat recovery from the exhaust and EGR cooler of a light-duty diesel engine. Results from steady-state and drive-cycle simulations are presented, and we discuss strategies to address operational difficulties associated with transient drive cycles and competition between waste-heat recovery systems, turbochargers, aftertreatment devices, and other systems for the limited thermal resources.

  16. A computational investigation of diesel and biodiesel combustion and NOx formation in a light-duty compression ignition engine

    SciTech Connect (OSTI)

    Wang, Zihan; Srinivasan, Kalyan K.; Krishnan, Sundar R.; Som, Sibendu

    2012-04-24T23:59:59.000Z

    Diesel and biodiesel combustion in a multi-cylinder light duty diesel engine were simulated during a closed cycle (from IVC to EVO), using a commercial computational fluid dynamics (CFD) code, CONVERGE, coupled with detailed chemical kinetics. The computational domain was constructed based on engine geometry and compression ratio measurements. A skeletal n-heptane-based diesel mechanism developed by researchers at Chalmers University of Technology and a reduced biodiesel mechanism derived and validated by Luo and co-workers were applied to model the combustion chemistry. The biodiesel mechanism contains 89 species and 364 reactions and uses methyl decanoate, methyl-9- decenoate, and n-heptane as the surrogate fuel mixture. The Kelvin-Helmholtz and Rayleigh-Taylor (KH-RT) spray breakup model for diesel and biodiesel was calibrated to account for the differences in physical properties of the fuels which result in variations in atomization and spray development characteristics. The simulations were able to capture the experimentally observed pressure and apparent heat release rate trends for both the fuels over a range of engine loads (BMEPs from 2.5 to 10 bar) and fuel injection timings (from 0���° BTDC to 10���° BTDC), thus validating the overall modeling approach as well as the chemical kinetic models of diesel and biodiesel surrogates. Moreover, quantitative NOx predictions for diesel combustion and qualitative NOx predictions for biodiesel combustion were obtained with the CFD simulations and the in-cylinder temperature trends were correlated to the NOx trends."

  17. Cost of Ownership and Well-to-Wheels Carbon Emissions/Oil Use of Alternative Fuels and Advanced Light-Duty Vehicle Technologies

    SciTech Connect (OSTI)

    Elgowainy, Mr. Amgad [Argonne National Laboratory (ANL); Rousseau, Mr. Aymeric [Argonne National Laboratory (ANL); Wang, Mr. Michael [Argonne National Laboratory (ANL); Ruth, Mr. Mark [National Renewable Energy Laboratory (NREL); Andress, Mr. David [David Andress & Associates, Inc.; Ward, Jacob [U.S. Department of Energy; Joseck, Fred [U.S. Department of Energy; Nguyen, Tien [U.S. Department of Energy; Das, Sujit [ORNL

    2013-01-01T23:59:59.000Z

    The U.S. Department of Energy (DOE), Argonne National Laboratory (Argonne), and the National Renewable Energy Laboratory (NREL) updated their analysis of the well-to-wheels (WTW) greenhouse gases (GHG) emissions, petroleum use, and the cost of ownership (excluding insurance, maintenance, and miscellaneous fees) of vehicle technologies that have the potential to significantly reduce GHG emissions and petroleum consumption. The analyses focused on advanced light-duty vehicle (LDV) technologies such as plug-in hybrid, battery electric, and fuel cell electric vehicles. Besides gasoline and diesel, alternative fuels considered include natural gas, advanced biofuels, electricity, and hydrogen. The Argonne Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation (GREET) and Autonomie models were used along with the Argonne and NREL H2A models.

  18. Effect of E85 on RCCI Performance and Emissions on a Multi-Cylinder Light-Duty Diesel Engine - SAE World Congress

    SciTech Connect (OSTI)

    Curran, Scott [ORNL; Hanson, Reed M [ORNL; Wagner, Robert M [ORNL

    2012-01-01T23:59:59.000Z

    This paper investigates the effect of E85 on load expansion and FTP modal point emissions indices under reactivity controlled compression ignition (RCCI) operation on a light-duty multi-cylinder diesel engine. A General Motors (GM) 1.9L four-cylinder diesel engine with the stock compression ratio of 17.5:1, common rail diesel injection system, high-pressure exhaust gas recirculation (EGR) system and variable geometry turbocharger was modified to allow for port fuel injection with gasoline or E85. Controlling the fuel reactivity in-cylinder by the adjustment of the ratio of premixed low-reactivity fuel (gasoline or E85) to direct injected high reactivity fuel (diesel fuel) has been shown to extend the operating range of high-efficiency clean combustion (HECC) compared to the use of a single fuel alone as in homogeneous charge compression ignition (HCCI) or premixed charge compression ignition (PCCI). The effect of E85 on the Ad-hoc federal test procedure (FTP) modal points is explored along with the effect of load expansion through the light-duty diesel speed operating range. The Ad-hoc FTP modal points of 1500 rpm, 1.0bar brake mean effective pressure (BMEP); 1500rpm, 2.6bar BMEP; 2000rpm, 2.0bar BMEP; 2300rpm, 4.2bar BMEP; and 2600rpm, 8.8bar BMEP were explored. Previous results with 96 RON unleaded test gasoline (UTG-96) and ultra-low sulfur diesel (ULSD) showed that with stock hardware, the 2600rpm, 8.8bar BMEP modal point was not obtainable due to excessive cylinder pressure rise rate and unstable combustion both with and without the use of EGR. Brake thermal efficiency and emissions performance of RCCI operation with E85 and ULSD is explored and compared against conventional diesel combustion (CDC) and RCCI operation with UTG 96 and ULSD.

  19. Simulating the Impact of Premixed Charge Compression Ignition on Light-Duty Diesel Fuel Economy and Emissions of Particulates and NOx

    SciTech Connect (OSTI)

    Gao, Zhiming [ORNL; Daw, C Stuart [ORNL; Wagner, Robert M [ORNL; Edwards, Kevin Dean [ORNL; Smith, David E [ORNL

    2013-01-01T23:59:59.000Z

    We utilize the Powertrain Systems Analysis Toolkit (PSAT) combined with transient engine and aftertreatment component models implemented in Matlab/Simulink to simulate the effect of premixed charge compression ignition (PCCI) on the fuel economy and emissions of light-duty diesel-powered conventional and hybrid electric vehicles (HEVs). Our simulated engine is capable of both conventional diesel combustion (CDC) and premixed charge compression ignition (PCCI) over real transient driving cycles. Our simulated aftertreatment train consists of a diesel oxidation catalyst (DOC), lean NOx trap (LNT), and catalyzed diesel particulate filter (DPF). The results demonstrate that, in the simulated conventional vehicle, PCCI can significantly reduce fuel consumption and emissions by reducing the need for LNT and DPF regeneration. However, the opportunity for PCCI operation in the simulated HEV is limited because the engine typically experiences higher loads and multiple stop-start transients that are outside the allowable PCCI operating range. Thus developing ways of extending the PCCI operating range combined with improved control strategies for engine and emissions control management will be especially important for realizing the potential benefits of PCCI in HEVs.

  20. Global Assessment of Hydrogen Technologies - Task 2 Report Comparison of Performance and Emissions from Near-Term Hydrogen Fueled Light Duty Vehicles

    SciTech Connect (OSTI)

    Fouad, Fouad H.; Peters, Robert W.; Sisiopiku, Virginia P.; Sullivan Andrew J.; Ng, Henry K.; Waller, Thomas

    2007-12-01T23:59:59.000Z

    An investigation was conducted on the emissions and efficiency from hydrogen blended compressed natural gas (CNG) in light duty vehicles. The different blends used in this investigation were 0%, 15%, 30%, 50%, 80%, 95%, and ~100% hydrogen, the remainder being compressed natural gas. The blends were tested using a Ford F-150 and a Chevrolet Silverado truck supplied by Arizona Public Services. Tests on emissions were performed using four different driving condition tests. Previous investigation by Don Karner and James Frankfort on a similar Ford F-150 using a 30% hydrogen blend showed that there was substantial reduction when compared to gasoline in carbon monoxide (CO), nitrogen oxide (NOx), and carbon dioxide (CO2) emissions while the reduction in hydrocarbon (HC) emissions was minimal. This investigation was performed using different blends of CNG and hydrogen to evaluate the emissions reducing capabilities associated with the use of the different fuel blends. The results were then tested statistically to confirm or reject the hypotheses on the emission reduction capabilities. Statistically analysis was performed on the test results to determine whether hydrogen concentration in the HCNG had any effect on the emissions and the fuel efficiency. It was found that emissions from hydrogen blended compressed natural gas were a function of driving condition employed. Emissions were found to be dependent on the concentration of hydrogen in the compressed natural gas fuel blend.

  1. Experimental Investigation of Fuel-Reactivity Controlled Compression Ignition (RCCI) Combustion Mode in a Multi-Cylinder, Light-Duty Diesel Engine

    SciTech Connect (OSTI)

    Cho, Kukwon [ORNL] [ORNL; Curran, Scott [ORNL] [ORNL; Prikhodko, Vitaly Y [ORNL] [ORNL; Sluder, Scott [ORNL] [ORNL; Parks, II, James E [ORNL; Wagner, Robert M [ORNL] [ORNL

    2011-01-01T23:59:59.000Z

    An experimental study was performed to provide the combustion and emission characteristics resulting from fuel-reactivity controlled compression ignition (RCCI) combustion mode utilizing dual-fuel approach in a light-duty, multi-cylinder diesel engine. In-cylinder fuel blending using port fuel injection of gasoline before intake valve opening (IVO) and early-cycle, direct injection of diesel fuel was used as the charge preparation and fuel blending strategy. In order to achieve the desired auto-ignition quality through the stratification of the fuel-air equivalence ratio ( ), blends of commercially available gasoline and diesel fuel were used. Engine experiments were performed at an engine speed of 2300rpm and an engine load of 4.3bar brake mean effective pressure (BMEP). It was found that significant reduction in both nitrogen oxide (NOx) and particulate matter (PM) was realized successfully through the RCCI combustion mode even without applying exhaust gas recirculation (EGR). However, high carbon monoxide (CO) and hydrocarbon (HC) emissions were observed. The low combustion gas temperature during the expansion and exhaust processes seemed to be the dominant source of high CO emissions in the RCCI combustion mode. The high HC emissions during the RCCI combustion mode could be due to the increased combustion quenching layer thickness as well as the -stratification at the periphery of the combustion chamber. The slightly higher brake thermal efficiency (BTE) of the RCCI combustion mode was observed than the other combustion modes, such as the conventional diesel combustion (CDC) mode, and single-fuel, premixed charge compression ignition (PCCI) combustion mode. The parametric study of the RCCI combustion mode revealed that the combustion phasing and/or the peak cylinder pressure rise rate of the RCCI combustion mode could be controlled by several physical parameters premixed ratio (rp), intake swirl intensity, and start of injection (SOI) timing of directly injected fuel unlike other low temperature combustion (LTC) strategies.

  2. Impacts of ethanol fuel level on emissions of regulated and unregulated pollutants from a fleet of gasoline light-duty vehicles

    SciTech Connect (OSTI)

    Karavalakis, Georgios; Durbin, Thomas; Shrivastava, ManishKumar B.; Zheng, Zhongqing; Villella, Phillip M.; Jung, Hee-Jung

    2012-03-30T23:59:59.000Z

    The study investigated the impact of ethanol blends on criteria emissions (THC, NMHC, CO, NOx), greenhouse gas (CO2), and a suite of unregulated pollutants in a fleet of gasoline-powered light-duty vehicles. The vehicles ranged in model year from 1984 to 2007 and included one Flexible Fuel Vehicle (FFV). Emission and fuel consumption measurements were performed in duplicate or triplicate over the Federal Test Procedure (FTP) driving cycle using a chassis dynamometer for four fuels in each of seven vehicles. The test fuels included a CARB phase 2 certification fuel with 11% MTBE content, a CARB phase 3 certification fuel with a 5.7% ethanol content, and E10, E20, E50, and E85 fuels. In most cases, THC and NMHC emissions were lower with the ethanol blends, while the use of E85 resulted in increases of THC and NMHC for the FFV. CO emissions were lower with ethanol blends for all vehicles and significantly decreased for earlier model vehicles. Results for NOx emissions were mixed, with some older vehicles showing increases with increasing ethanol level, while other vehicles showed either no impact or a slight, but not statistically significant, decrease. CO2 emissions did not show any significant trends. Fuel economy showed decreasing trends with increasing ethanol content in later model vehicles. There was also a consistent trend of increasing acetaldehyde emissions with increasing ethanol level, but other carbonyls did not show strong trends. The use of E85 resulted in significantly higher formaldehyde and acetaldehyde emissions than the specification fuels or other ethanol blends. BTEX and 1,3-butadiene emissions were lower with ethanol blends compared to the CARB 2 fuel, and were almost undetectable from the E85 fuel. The largest contribution to total carbonyls and other toxics was during the cold-start phase of FTP.

  3. In-Cylinder Fuel Blending of Gasoline/Diesel for Improved Efficiency and Lowest Possible Emissions on a Multi-Cylinder Light-Duty Diesel Engine

    SciTech Connect (OSTI)

    Curran, Scott [ORNL] [ORNL; Prikhodko, Vitaly Y [ORNL] [ORNL; Wagner, Robert M [ORNL] [ORNL; Parks, II, James E [ORNL; Cho, Kukwon [ORNL] [ORNL; Sluder, Scott [ORNL] [ORNL; Kokjohn, Sage [University of Wisconsin, Madison] [University of Wisconsin, Madison; Reitz, Rolf [University of Wisconsin] [University of Wisconsin

    2010-01-01T23:59:59.000Z

    In-cylinder fuel blending of gasoline/diesel fuel is investigated on a multi-cylinder light-duty diesel engine as a potential strategy to control in-cylinder fuel reactivity for improved efficiency and lowest possible emissions. This approach was developed and demonstrated at the University of Wisconsin through modeling and single-cylinder engine experiments. The objective of this study is to better understand the potential and challenges of this method on a multi-cylinder engine. More specifically, the effect of cylinder-to-cylinder imbalances, heat rejection, and in-cylinder charge motion as well as the potential limitations imposed by real-world turbo-machinery were investigated on a 1.9-liter four-cylinder engine. This investigation focused on one engine condition, 2300 rpm, 4.2 bar brake mean effective pressure (BMEP). Gasoline was introduced with a port-fuel-injection system. Parameter sweeps included gasoline-to-diesel fuel ratio, intake air mixture temperature, in-cylinder swirl number, and diesel start-of-injection phasing. In addition, engine parameters were trimmed for each cylinder to balance the combustion process for maximum efficiency and lowest emissions. An important observation was the strong influence of intake charge temperature on cylinder pressure rise rate. Experiments were able to show increased thermal efficiency along with dramatic decreases in oxides of nitrogen (NOX) and particulate matter (PM). However, indicated thermal efficiency for the multi-cylinder experiments were less than expected based on modeling and single-cylinder results. The lower indicated thermal efficiency is believed to be due increased heat transfer as compared to the model predictions and suggest a need for improved cylinder-to-cylinder control and increased heat transfer control.

  4. Light Duty Combustion Research: Advanced Light-Duty Combustion...

    Broader source: Energy.gov (indexed) [DOE]

    Developed multi-component vaporization models 6 Facility and operating conditions The optical engine matches a metal test engine at UW The optical piston retains the same bowl and...

  5. Light Duty Combustion Research: Advanced Light-Duty Combustion Experiments

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensionalthe10IO1OP001 Letter Report:Life-Cycle Analysis of| Department of

  6. Light Duty Efficient Clean Combustion

    Broader source: Energy.gov (indexed) [DOE]

    (order of the components) Thermal management strategy Fuel injection strategies VGT turbo operation VVA 13 This presentation does not contain any proprietary or confidential...

  7. Light-Duty Diesel Combustion

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  8. Light Duty Vehicle CNG Tanks

    Broader source: Energy.gov (indexed) [DOE]

    Vehicle CNG Tanks Dane A. Boysen, PhD Program Director Advanced Research Projects Agency-Energy, US DOE dane.boysen@doe.gov Fiber Reinforced Polymer Composite Manufacturing...

  9. Light Duty Vehicle CNG Tanks

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGY TAX POLICIES7.pdfFuel2007 |KSRS25RV*)Boyd About UsMr. Brian MillsLEVERAGINGfromLight

  10. Assessment of costs and benefits of flexible and alternative fuel use in the U.S. transportation sector. Technical report fourteen: Market potential and impacts of alternative fuel use in light-duty vehicles -- A 2000/2010 analysis

    SciTech Connect (OSTI)

    NONE

    1996-01-01T23:59:59.000Z

    In this report, estimates are provided of the potential, by 2010, to displace conventional light-duty vehicle motor fuels with alternative fuels--compressed natural gas (CNG), liquefied petroleum gas (LPG), methanol from natural gas, ethanol from grain and from cellulosic feedstocks, and electricity--and with replacement fuels such as oxygenates added to gasoline. The 2010 estimates include the motor fuel displacement resulting both from government programs (including the Clean Air Act and EPACT) and from potential market forces. This report also provides an estimate of motor fuel displacement by replacement and alterative fuels in the year 2000. However, in contrast to the 2010 estimates, the year 2000 estimate is restricted to an accounting of the effects of existing programs and regulations. 27 figs., 108 tabs.

  11. Mobility chains analysis of technologies for passenger cars and light duty vehicles fueled with biofuels : application of the Greet model to project the role of biomass in America's energy future (RBAEF) project.

    SciTech Connect (OSTI)

    Wu, M.; Wu, Y.; Wang, M; Energy Systems

    2008-01-31T23:59:59.000Z

    The Role of Biomass in America's Energy Future (RBAEF) is a multi-institution, multiple-sponsor research project. The primary focus of the project is to analyze and assess the potential of transportation fuels derived from cellulosic biomass in the years 2015 to 2030. For this project, researchers at Dartmouth College and Princeton University designed and simulated an advanced fermentation process to produce fuel ethanol/protein, a thermochemical process to produce Fischer-Tropsch diesel (FTD) and dimethyl ether (DME), and a combined heat and power plant to co-produce steam and electricity using the ASPEN Plus{trademark} model. With support from the U.S. Department of Energy (DOE), Argonne National Laboratory (ANL) conducted, for the RBAEF project, a mobility chains or well-to-wheels (WTW) analysis using the Greenhouse gases, Regulated Emissions, and Energy use in Transportation (GREET) model developed at ANL. The mobility chains analysis was intended to estimate the energy consumption and emissions associated with the use of different production biofuels in light-duty vehicle technologies.

  12. Advanced Technology Light Duty Diesel Aftertreatment System

    Broader source: Energy.gov (indexed) [DOE]

    Dearborn, MI T2B2 FTP-75 NOx Cycle Limit http:www.dieselnet.comstandardscyclesftp75.php ATLAS T2B2 AT Strategy Summary 1162012 U.S. Department of Energy DEER 2012 -...

  13. NGV and FCV Light Duty Transportation Perspective

    Broader source: Energy.gov (indexed) [DOE]

    transportation perspectives Matt Fronk, Matt Fronk & Associates, LLC 1 OctOber 2011 | ArgOnne nAtiOnAl lAbOrAtOry NG Workshop summary report - appeNDIX G 2 OctOber 2011 | ArgOnne...

  14. Advanced Technology Light Duty Diesel Aftertreatment System ...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Approach to Low Temperature NOx Emission Abatement Cummins' Next Generation Tier 2, Bin 2 Light Truck Diesel Engine ATP-LD; Cummins Next Generation Tier 2 Bin 2 Diesel Engine...

  15. Business Case for Light-Duty Diesels

    Broader source: Energy.gov (indexed) [DOE]

    Laredo - Tallahassee (1039 miles) 2 days, 1 tank, 59 mpg Jeep Liberty CRD Factory fill B5 biodiesel Local production, local fuel 9 Cost of Diesel systems? The engine Modern PC...

  16. Light Duty Vehicle Pathways | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensionalthe10IO1OP001 Letter Report:Life-CycleDuty Vehicle Pathways Light

  17. Marine Technology Society A Unique, Multidisciplinary, Oceans and Marine Network

    E-Print Network [OSTI]

    Tan, Xiaobo

    in actuation and sensing materials and devices, there is a grow- ing interest in developing underwater robots. On the other hand, advances in smart materials have been explored to actuate robotic fish in a noiseless-driven underwater vehi- cles, which is an important advantage in applications requiring stealth. Recent advances

  18. The Latest Unanticipated Consequence in the Ethanol Fiasco

    E-Print Network [OSTI]

    Griffin, James M.

    to prove too optimistic about gasoline’s future. They do not factor in the substitution to natural gas powered vehi- cles. Because compressed natural gas is likely to be much cheaper than gasoline, it is only a matter of time before...

  19. and Co-Host Riverside Electric Vehicle Day

    E-Print Network [OSTI]

    Mills, Allen P.

    and Co-Host Riverside Electric Vehicle Day Where: UC Riverside | CE-CERT, 1084 Columbia Ave, 92507 renewable sourc- es, efficiently use electric transporta- tion through advanced vehicles and im- prove our million electric vehi- cles on California's roads by 2023 and to ensure that low-income communities, which

  20. PDE Estimation Techniques for Advanced Battery Management Systems -Part II: SOH Identification

    E-Print Network [OSTI]

    Krstic, Miroslav

    vehi- cles and renewable energy resources is battery energy storage. Advanced battery systems representPDE Estimation Techniques for Advanced Battery Management Systems - Part II: SOH Identification S sensing and actuation exists to monitor and control the internal state of these systems. As such, battery

  1. Atmos. Chem. Phys., 8, 737747, 2008 www.atmos-chem-phys.net/8/737/2008/

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    and Physics Capturing vertical profiles of aerosols and black carbon over the Indian Ocean using autonomous profiles of aerosol and water vapor were determined using autonomous unmanned aerial vehi- cles equipped and black carbon concentrations are presented along with the trade wind thermodynamic structure from the sur

  2. Multi-Agent Based Techniques for Coordinating the Distribution of Electricity in a Micro-Grid Environment

    E-Print Network [OSTI]

    Southampton, University of

    an increasing demand for electric heating technolo- gies such as ground-source and air-source heat pumps (Dep, such as the electrification of home heating and vehi- cles, will need to be introduced. This increase in demand emmissions, the majority of which is a consequence of heating living spaces and water (Gov, 2009). Currently

  3. State-of-the-Art in Protocol Research for Underwater Acoustic Sensor Networks

    E-Print Network [OSTI]

    Pompili, Dario

    to observe and predict the ocean. Unmanned or Autonomous Underwater Vehi- cles (UUVs, AUVs), equipped (UW-ASNs) will consist of sensors and vehicles deployed underwater and networked via acoustic linksState-of-the-Art in Protocol Research for Underwater Acoustic Sensor Networks Ian F. Akyildiz

  4. BACKGROUND IMAGE: PHOTODISC ecently, there has been a great interest in the

    E-Print Network [OSTI]

    Sastry, S. Shankar

    challenges than the ground robots or unmanned underwater vehicles (UUVs) [7] in terms of speed and accuracy of advanced unmanned aerial vehi- cles (UAVs) capable of missions in complex dynamic environments. The tracking control Conflict-Free Navigation in Unknown Urban Environments Autonomous Exploration for Unmanned

  5. Mobile Applications and Algorithms to Facilitate Electric Vehicle Deployment

    E-Print Network [OSTI]

    de Veciana, Gustavo

    side management, to make better use of volatile renewable generation, makes them an attractive that of traditional vehicles, but the possibility of integrating an electric fleet with the smart grid, using demand component in building an efficient smart grid. Various companies have introduced hybrid electric vehi- cles

  6. Ultra-Low Sulfur diesel Update & Future Light Duty Diesel

    Broader source: Energy.gov (indexed) [DOE]

    MARATHON PETROLEUM COMPANY LLC PARENT-MARATHON OIL COMPANY FIFTH LARGEST US REFINERY (OVER 1 MILLION BBLS OF CRUDE CAPACITY) MAJOR MARKETS IN MIDWEST AND SOUTHEAST ...

  7. Assessment of Fuel Economy Technologies for Light-Duty Vehicles

    SciTech Connect (OSTI)

    Greene, David L [ORNL

    2008-01-01T23:59:59.000Z

    An analysis of the number of stations and vehicles necessary to achieve future goals for sales of ethanol fuel (E85) is presented. Issues related to the supply of ethanol, which may turn out to be of even greater concern, are not analyzed here. A model of consumers decisions to purchase E85 versus gasoline based on prices, availability, and refueling frequency is derived, and preliminary results for 2010, 2017, and 2030 consistent with the president s 2007 biofuels program goals are presented. A limited sensitivity analysis is carried out to indicate key uncertainties in the trade-off between the number of stations and fuels. The analysis indicates that to meet a 2017 goal of 26 billion gallons of E85 sold, on the order of 30% to 80% of all stations may need to offer E85 and that 125 to 200 million flexible-fuel vehicles (FFVs) may need to be on the road, even if oil prices remain high. These conclusions are tentative for three reasons: there is considerable uncertainty about key parameter values, such as the price elasticity of choice between E85 and gasoline; the future prices of E85 and gasoline are uncertain; and the method of analysis used is highly aggregated it does not consider the potential benefits of regional strategies or the possible existence of market segments predisposed to purchase E85. Nonetheless, the preliminary results indicate that the 2017 biofuels program goals are ambitious and will require a massive effort to produce enough FFVs and ensure widespread availability of E85.

  8. Light Duty Plug-in Hybrid Vehicle Systems Analysis

    Broader source: Energy.gov (indexed) [DOE]

    and Hybrids-Plus - Have experience with hardware from all three conversion vendors * Tesla Motors and AC Propulsion - Interest and support in testing next generation EVs for...

  9. Marketing Light-Duty Diesels to U.S. Consumers

    Broader source: Energy.gov (indexed) [DOE]

    levels of performance and convenience * the best platform for renewable fuels including Biodiesel, SunFuel, and SunDiesel 14 Modern TDI Diesel technology has come a long way...

  10. Fire hazards evaluation for light duty utility arm system

    SciTech Connect (OSTI)

    HUCKFELDT, R.A.

    1999-02-24T23:59:59.000Z

    In accordance with DOE Order 5480.7A, Fire Protection, a Fire Hazards Analysis must be performed for all new facilities. LMHC Fire Protection has reviewed and approved the significant documentation leading up to the LDUA operation. This includes, but is not limited to, development criteria and drawings, Engineering Task Plan, Quality Assurance Program Plan, and Safety Program Plan. LMHC has provided an appropriate level of fire protection for this activity as documented.

  11. Light-Duty Diesel Market Potential in North America

    Broader source: Energy.gov (indexed) [DOE]

    Diesel Engineering General Motors Corporation GM's Long Term Vision Remove the automobile from the energy & environmental equation Reduced Vehicle Emissions and Increased...

  12. Methanol fumigation of a light duty automotive diesel engine

    SciTech Connect (OSTI)

    Houser, K.R.; Lestz, S.S.; Dukovich, M.; Yasbin, R.E.

    1980-01-01T23:59:59.000Z

    An Oldsmobile 5.7 l V-8 diesel engine was fumigated with methanol in amounts up to 40% of the fuel energy. The primary objectives of this study were to determine the effect of methanol fumigation on fuel efficiency, smoke, nitric oxide emission, and the occurrence of severe knock. An assessment of the biological activity for samples of the raw exhaust particulate and its soluable organic extract was also made using both the Ames Salmonella typhimurium test and the Bacillus subtilis Comptest. Results are presented for a test matrix consisting of twelve steady state operating conditions chosen to reflect over-the-road operation of a diesel engine powered automobile. Generally methanol fumigation was found to decrease NO emission for all conditions, to have a slight effect on smoke opacity, and to have a beneficial effect on fuel efficiency at higher loads. Also at higher loads the methanol was found to induce what was defined as knock limited operation. While the biological activity of the raw particulate was generally found to be lower than that of the soluble organic fraction, the fumigation of methanol appears to enhance this activity in both cases.

  13. Fueling U.S. Light Duty Diesel Vehicles

    Broader source: Energy.gov (indexed) [DOE]

    - Cylinder deactivation - Variable valve timing & lift - Direct injectionlean burn - Turbo chargingdownsizing - Integrated starter generators - Low temperature combustion *...

  14. Emissions from the European Light Duty Diesel Vehicle During...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    DPF Regeneration Events Repeated partial regenerations may cause changes in the mechanical and chemical properties of the PM in the DPF. deer09dwyer.pdf More Documents &...

  15. Light-Duty Lean GDI Vehicle Technology Benchmark

    Broader source: Energy.gov (indexed) [DOE]

    dynamometer * Milestone 2 - September 30, 2010 : - Finalize performanceemissions maps and make available with simulation example to Vehicle Systems team 5 Managed by...

  16. Opportunity Assessment Clean Diesels in the North American Light Duty

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department ofT ib l L d F SSales LLCDiesel Enginesthe U.S. -- An Overview |Market |

  17. Organic Rankine Cycle for Light Duty Passenger Vehicles | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department ofT ib l L d F SSales LLCDiesel Enginesthe U.S.Solar CompanyEngine |

  18. Overview of Light-Duty Vehicle Studies | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department ofT ib l L d F SSales LLCDieselEnergy Joining Activities in

  19. Vehicle Technologies Office AVTA: Light Duty Alternative Fuel and Advanced

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomen Owned SmallOf The 2012Nuclear Guide Remote55 Jefferson Ave.EmissionVehicle Data |

  20. Light Duty Efficient Clean Combustion | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector General Office0-72.pdfGeorgeDoesn't Happen toLeveraging National Laboratories toPower Systems

  1. Light-Duty Advanced Diesel Combustion Research | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector General Office0-72.pdfGeorgeDoesn't Happen toLeveraging National

  2. Technology Development for Light Duty High Efficient Diesel Engines |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy Usage »of Energy StrainClientDesignOffice - 20142012 |of Energy

  3. Thermoelectric HVAC for Light-Duty Vehicle Applications | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy Usage »of EnergyThe EnergyDepartment ofPowered Vehicle |DepartmentEnergy 1

  4. Thermoelectric HVAC for Light-Duty Vehicle Applications | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy Usage »of EnergyThe EnergyDepartment ofPowered Vehicle |DepartmentEnergy

  5. Thermoelectric Opportunities for Light-Duty Vehicles | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy Usage »of EnergyThe EnergyDepartment ofPowered VehicleDepartment offor2for

  6. Thermoelectric Opportunities in Light-Duty Vehicles | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy Usage »of EnergyThe EnergyDepartment ofPowered VehicleDepartment offor2forin

  7. Light-Duty Vehicle Energy Demand, Demographics, and Travel Behavior

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecember 2005 (Thousand9,0, 1997EnvironmentElectricityrgy81 § ¨,43332EIA

  8. Light Duty Efficient Clean Combustion | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensionalthe10IO1OP001 Letter Report:Life-Cycle AnalysisPresentation

  9. Light Duty Fuel Cell Electric Vehicle Hydrogen Fueling Protocol

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensionalthe10IO1OP001 Letter Report:Life-Cycle AnalysisPresentationDOE

  10. First Semi-Annual Report AFDC Light Duty Vehicles

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsing ZirconiaPolicyFeasibilityField OfficeFirmFirst Proof ofFirstFirst Savannah River

  11. Advanced Technology Light Duty Diesel Aftertreatment System | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartment of EnergyAdministrative2| Department ofDepartmentEnergy Light

  12. Emissions from the European Light Duty Diesel Vehicle During DPF

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeat PumpRecord ofESPC ENABLE: ECMConstructionApplications |Applicationsa Suezmax

  13. Sandia National Laboratories: light-duty diesel engine

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1developmentturbine blade manufacturinglife-cycle analysis Northrop-Grumman,

  14. Business Case for Light-Duty Diesels | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartmentTie Ltd:June 2015 < prevBuilding theINNOVATIONof EnergyDiesel

  15. DOE Light Duty Vehicle Workshop | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in Review: Top FiveDepartmentfor06/2015)09 I. Steps Taken5ofLNGDevelopment » DOELight Duty

  16. NGV and FCV Light Duty Transportation Perspective | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department ofT ib l L d F S i DOEToward aInnovation |NEXT STEPS The next major step inNGV

  17. Light Duty Fuel Cell Electric Vehicle Hydrogen Fueling Protocol |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in3.pdfEnergy Health andofIanJenniferLeslie Pezzullo: ...theDepartmentfrom

  18. Light-Duty Diesel EngineTechnology to Meet Future Emissions and...

    Broader source: Energy.gov (indexed) [DOE]

    Vehicles 0 10 20 30 40 50 60 2000 3000 4000 5000 6000 7000 8000 Gross Vehicle Weight (lb) Combined Cycle MPG (US) . Gasoline Diesel Diesel average +45% MPG benefit Vehicle range...

  19. Impact of Canada’s Voluntary Agreement on Greenhouse Gas Emissions from Light Duty Vehicles

    E-Print Network [OSTI]

    Lutsey, Nicholas P.

    2006-01-01T23:59:59.000Z

    Fuels, Natural Resources Canada. Sacramento, Calif. : SierraBustillo, M. , 2005. “Canada Considers Copying California’sPublishers (IWP), 2005. “Canada, Automakers Reach Historic

  20. Impact of Canada's Voluntary Agreement on Greenhouse Gas Emissions from Light Duty Vehicles

    E-Print Network [OSTI]

    Lutsey, Nicholas P.

    2006-01-01T23:59:59.000Z

    Fuels, Natural Resources Canada. Sacramento, Calif. : SierraBustillo, M. , 2005. “Canada Considers Copying California’sPublishers (IWP), 2005. “Canada, Automakers Reach Historic

  1. APBF-DEC Light-duty NOx Adsorber/DPF Project

    Broader source: Energy.gov (indexed) [DOE]

    emission standards, the goal of this project is Tier 2 - BIN 5 limits of 0.07 gmi NOx and 0.01 gmi PM. Additionally, HC and CO emissions standards must be met....

  2. Engine coolant technology, performance, and life for light-duty applications

    SciTech Connect (OSTI)

    Turcotte, D.E.; Lockwood, F.E. [Valvoline Co., Lexington, KY (United States); Pfitzner, K.K.; Meszaros, L.L. [BASF Aktiengesellschaft, Ludwigshafen (Germany); Listebarger, J.K. [Ashland Chemical, Dublin, OH (United States)

    1999-08-01T23:59:59.000Z

    Recently there has been interest by motor vehicle manufacturers in developing longer-lived automotive engine coolants with an emphasis on organic acid technology (OAT). Paradoxically, the lifetime of conventional technology remains largely undefined. Concerns arising from the depleting nature of silicate have led to modern conservative change recommendations of 30,000 to 50,000 miles ({approximately}48,279 to 80,464 km). In the present work, laboratory bench test, engine dynamometer and vehicle service data from traditional silicate, hybrid and nonsilicate coolants are compared and contrasted. A new electrochemical test is used to examine passivation kinetics on aluminum. It is shown that performance and lifetime are independent of chemistry and cannot be generalized. Examples include an American silicate coolant with excellent performance on high-heat-rejecting aluminum (80 W/cm{sup 2}). European and American silicate coolants with performance defined lifetimes in excess of 300,000 miles (482,790 km), and an OAT coolant with laboratory high lead solder protection. It is concluded that the primary benefit of OAT is to meet global specifications that include chemical limitations.

  3. Efficiency analysis of varying EGR under PCI mode of combustion in a light duty diesel engine

    E-Print Network [OSTI]

    Pillai, Rahul Radhakrishna

    2008-10-10T23:59:59.000Z

    (EGR) rates of 39%, 40%, 41% and 42%. The data is collected from the experimental apparatus located in General Motors Collaborative Research Laboratory at the University of Michigan. The heat release is calculated to obtain various in-cylinder energy...

  4. High Efficiency Clean Combustion in Multi-Cylinder Light-Duty Engines

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  5. Evaluation of Hydrogen Storage System Characteristics for Light-Duty Vehicle Applications (Poster)

    SciTech Connect (OSTI)

    Thornton, M.; Day, K.; Brooker, A.

    2010-05-01T23:59:59.000Z

    This poster presentation demonstrates an approach to evaluate trade-offs among hydrogen storage system characteristic across several vehicle configurations and estimates the sensitivity of hydrogen storage system improvements on vehicle viability.

  6. Hydrogen Storage Options: Technologies and Comparisons for Light-Duty Vehicle Applications

    E-Print Network [OSTI]

    Burke, Andy; Gardiner, Monterey

    2005-01-01T23:59:59.000Z

    Uhlemann, M. , etals. , Hydrogen Storage in Different CarbonEckert, J. , etals. , Hydrogen Storage in Microporous Metal-16, 2003 40. Smalley,E. , Hydrogen Storage Eased, Technology

  7. Hydrogen Storage Options: Technologies and Comparisons for Light-Duty Vehicle Applications

    E-Print Network [OSTI]

    Burke, Andrew; Gardnier, Monterey

    2005-01-01T23:59:59.000Z

    Stetson, N. , Solid Hydrogen Storage Systems for PortableA Review of On-Board Hydrogen Storage Alternatives for FuelA. , Materials for Hydrogen Storage, Materials Today,

  8. Fuel Effects on Low Temperature Combustion in a Light-Duty Diesel...

    Broader source: Energy.gov (indexed) [DOE]

    Engine Marek Tatur, Dean Tomazic, Alok Warey FEV Inc. William Cannella Chevron Energy Technology Company Project Goals To examine which fuel properties are desirable for...

  9. Impact of Fuel Metal Impurities on the Durability of a Light-Duty Diesel Aftertreatment System

    SciTech Connect (OSTI)

    Williams, A.; Burton, J.; McCormick, R. L.; Toops, T.; Wereszczak, A. A.; Fox, E. E.; Lance, M. J.; Cavataio, G.; Dobson, D.; Warner, J.; Brezny, R.; Nguyen, K.; Brookshear, D. W.

    2013-04-01T23:59:59.000Z

    Alkali and alkaline earth metal impurities found in diesel fuels are potential poisons for diesel exhaust catalysts. A set of diesel engine production exhaust systems was aged to 150,000 miles. These exhaust systems included a diesel oxidation catalyst, selective catalytic reduction (SCR) catalyst, and diesel particulate filter (DPF). Four separate exhaust systems were aged, each with a different fuel: ultralow sulfur diesel containing no measureable metals, B20 (a common biodiesel blend) containing sodium, B20 containing potassium, and B20 containing calcium, which were selected to simulate the maximum allowable levels in B100 according to ASTM D6751. Analysis included Federal Test Procedure emissions testing, bench-flow reactor testing of catalyst cores, electron probe microanalysis (EPMA), and measurement of thermo-mechanical properties of the DPFs. EPMA imaging found that the sodium and potassium penetrated into the washcoat, while calcium remained on the surface. Bench-flow reactor experiments were used to measure the standard nitrogen oxide (NOx) conversion, ammonia storage, and ammonia oxidation for each of the aged SCR catalysts. Vehicle emissions tests were conducted with each of the aged catalyst systems using a chassis dynamometer. The vehicle successfully passed the 0.2 gram/mile NOx emission standard with each of the four aged exhaust systems.

  10. Accelerating Light-Duty Diesel Sales in the U.S. Market

    Broader source: Energy.gov (indexed) [DOE]

    Diesel Sales in the U.S. Market Klaus-Peter Schindler Volkswagen AG, Wolfsburg, Germany Content Situation in Europe Situation in U.S. Motivation for customers to...

  11. DOE Targets for Onboard Hydrogen Storage Systems for Light-Duty...

    Broader source: Energy.gov (indexed) [DOE]

    FCT Program's Multiyear Research, Development and Demonstration Plan. targetsonboardhydrostorage.pdf More Documents & Publications Targets for Onboard Hydrogen Storage Systems...

  12. Targets for Onboard Hydrogen Storage Systems for Light-Duty Vehicles...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    A detailed explanation of each target is given in the following pages. targetsonboardhydrostorageexplanation.pdf More Documents & Publications US DRIVE Hydrogen Storage...

  13. E-Print Network 3.0 - acceptable light-duty diesel Sample Search...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    reactive nitrogen compounds from ... Source: Denver, University of - Fuel Efficiency Automobile Test Data Center Collection: Energy Storage, Conversion and Utilization 10 Shaping...

  14. Hydrogen/Natural Gas Blends for Heavy and Light-Duty Applications

    E-Print Network [OSTI]

    exhaust emissions that can be achieved relative to both diesel and natural gas alternatives. The design $ For applications that now use diesel engines $ Develop engine configurations that can replace existing diesel that minimizes the surface to volume ratio. However, care must be taken to avoid engine knock. This can require

  15. Remote Viewing End Effectors for Light Duty Utility Arm Robot (U)

    SciTech Connect (OSTI)

    Heckendorn, F.M. [Westinghouse Savannah River Company, AIKEN, SC (United States); Robinson, C.W.; Haynes, H.B.; Anderosn, E.K.; Pardini, A.F. [Westinghouse Hanford Co., Richland, WA (United States)

    1996-11-04T23:59:59.000Z

    The Robotics Development Groups at the Savannah River Site (SRS) and at the Hanford site have developed remote video and photography systems for deployment in underground radioactive-waste storage tanks at the Department of Energy (DOE) sites as a part of the Office of Science and Technology (OST) program within DOE. Viewing and documenting the tank interiors and their associated annular spaces is an extremely valuable tool in characterizing their condition and contents and in controlling their remediation. Several specialized video/photography systems and robotic End Effectors have been fabricated that provide remote viewing and lighting. All are remotely deployable into and out of the tank, with all viewing functions remotely operated. Positioning all control components away from the facility prevents the potential for personnel exposure to radiation and contamination. Only the remote video systems are discussed in this paper.

  16. Impact of Canada's Voluntary Agreement on Greenhouse Gas Emissions from Light Duty Vehicles

    E-Print Network [OSTI]

    Lutsey, Nicholas P.

    2006-01-01T23:59:59.000Z

    production and use of ethanol fuel is being attributed toCH 4 emissions, Increased ethanol fuel mixing, 2002-2010 On-D. Santini, 1999. “Effects of Fuel Ethanol Use on Fuel-Cycle

  17. Impact of Canada’s Voluntary Agreement on Greenhouse Gas Emissions from Light Duty Vehicles

    E-Print Network [OSTI]

    Lutsey, Nicholas P.

    2006-01-01T23:59:59.000Z

    production and use of ethanol fuel is being attributed toCH 4 emissions, Increased ethanol fuel mixing, 2002-2010 On-D. Santini, 1999. “Effects of Fuel Ethanol Use on Fuel-Cycle

  18. Impact of Canada's Voluntary Agreement on Greenhouse Gas Emissions from Light Duty Vehicles

    E-Print Network [OSTI]

    Lutsey, Nicholas P.

    2006-01-01T23:59:59.000Z

    Department of Energy. Argonne, Illinois. Schwarz, W. and J.of Energy. ANL/ ESD-38. January. Argonne, Illinois Watanabe,

  19. Impact of Canada’s Voluntary Agreement on Greenhouse Gas Emissions from Light Duty Vehicles

    E-Print Network [OSTI]

    Lutsey, Nicholas P.

    2006-01-01T23:59:59.000Z

    Department of Energy. Argonne, Illinois. Schwarz, W. and J.of Energy. ANL/ ESD-38. January. Argonne, Illinois Watanabe,

  20. Thermoelectric HVAC and Thermal Comfort Enablers for Light-Duty Vehicle Applications

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  1. Urea SCR and DPF System for Tier 2 Diesel Light-Duty Trucks

    Broader source: Energy.gov (indexed) [DOE]

    SCR Deflectormixer, long inlet cone Larger DOC, upstream injection with spray target Turbo & EGR modifications, post injection 2.01 Reduced tailpipe NOx PM: 2-5 mgmi Increased...

  2. Drive cycle analysis of butanol/diesel blends in a light-duty vehicle.

    SciTech Connect (OSTI)

    Miers, S. A.; Carlson, R. W.; McConnell, S. S.; Ng, H. K.; Wallner, T.; LeFeber, J.; Energy Systems; Esper Images Video & Multimedia

    2008-10-01T23:59:59.000Z

    The potential exists to displace a portion of the petroleum diesel demand with butanol and positively impact engine-out particulate matter. As a preliminary investigation, 20% and 40% by volume blends of butanol with ultra low sulfur diesel fuel were operated in a 1999 Mercedes Benz C220 turbo diesel vehicle (Euro III compliant). Cold and hot start urban as well as highway drive cycle tests were performed for the two blends of butanol and compared to diesel fuel. In addition, 35 MPH and 55 MPH steady-state tests were conducted under varying road loads for the two fuel blends. Exhaust gas emissions, fuel consumption, and intake and exhaust temperatures were acquired for each test condition. Filter smoke numbers were also acquired during the steady-state tests.

  3. High Efficiency Clean Combustion in Multi-Cylinder Light-Duty...

    Broader source: Energy.gov (indexed) [DOE]

    feedback control capability Gasoline Tank Air Exhaust Air HXN Exhaust HXN EGR HXN Turbo Fuel Rail Fuel Pump Fuel Pressure Regulator DRIVVEN Control * Engine thermal boundary...

  4. Addressing the Challenges of RCCI Operation on a Light-Duty...

    Broader source: Energy.gov (indexed) [DOE]

    + ULSD EGR controls MPR but may adversely impact BTE due to EGR heat rejection and turbo-machinery limitations. Ethanol-gasoline blends enable higher load operation with...

  5. High-Efficiency Clean Combustion in Light-Duty Multi-Cylinder...

    Broader source: Energy.gov (indexed) [DOE]

    issues related to cylinder-to-cylinder balancing, dilution, heat rejection, turbo-machinery, ... * Analysis Thermodynamic analysis to understand fuel usage...

  6. High Efficiency Clean Combustion in Multi-Cylinder Light-Duty...

    Broader source: Energy.gov (indexed) [DOE]

    EGR controls MPR but may adversely impact BTE stability due to EGR heat rejection and turbo-machinery limitations. Ethanol-gasoline blends enable higher load operation with...

  7. Vehicle Technologies Office Merit Review 2014: Light-Duty Diesel Combuston

    Broader source: Energy.gov [DOE]

    Presentation given by Sandia Natonal Laboratories and  University of Wisconsin at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation...

  8. Assessing the fuel Use and greenhouse gas emissions of future light-duty vehicles in Japan

    E-Print Network [OSTI]

    Nishimura, Eriko

    2011-01-01T23:59:59.000Z

    Reducing greenhouse gas (GHG) emissions is of great concern in Japan, as well as elsewhere, such as in the U.S. and EU. More than 20% of GHG emissions in Japan come from the transportation sector, and a more than 70% ...

  9. Advanced Combustion Concepts- Enabling Systems and Solutions (ACCESS) for High Efficiency Light Duty Vehicles

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  10. Global Assessment of Hydrogen Technologies - Task 1 Report Technology Evaluation of Hydrogen Light Duty Vehicles

    SciTech Connect (OSTI)

    Fouad, Fouad H.; Peters, Robert W.; Sisiopiku, Virginia P.; Sullivan Andrew J.; Rousseau, Aymeric

    2007-12-01T23:59:59.000Z

    This task analyzes the candidate hydrogen-fueled vehicles for near-term use in the Southeastern U.S. The purpose of this work is to assess their potential in terms of efficiency and performance. This report compares conventional, hybrid electric vehicles (HEV) with gasoline and hydrogen-fueled internal combustion engines (ICEs) as well as fuel cell and fuel cell hybrids from a technology as well as fuel economy point of view. All the vehicles have been simulated using the Powertrain System Analysis Toolkit (PSAT). First, some background information is provided on recent American automotive market trends and consequences. Moreover, available options are presented for introducing cleaner and more economical vehicles in the market in the future. In this study, analysis of various candidate hydrogen-fueled vehicles is performed using PSAT and, thus, a brief description of PSAT features and capabilities are provided. Detailed information on the simulation analysis performed is also offered, including methodology assumptions, fuel economic results, and conclusions from the findings.

  11. Hydrogen Storage Options: Technologies and Comparisons for Light-Duty Vehicle Applications

    E-Print Network [OSTI]

    Burke, Andy; Gardiner, Monterey

    2005-01-01T23:59:59.000Z

    10 kpsi) in carbon fiber-composite tanks, liquid hydrogen incarbon fiber is the highest cost material component of high pressure compressed gas tanks.

  12. Resource Assessment and Land Use Change Light Duty Vehicles/Fuels

    E-Print Network [OSTI]

    investments in research and development to expand biofuel production · Biomass feedstock supplies needed maintained by University of Tennessee for second generation biofuels ­ Forest sector model to derive supply #12;Biomass Program Strategic Analysis Activities Strategic Analysis Impact Assessment TEA Pathway

  13. Evaluation of aftermarket LPG conversion kits in light-duty vehicle applications. Final report

    SciTech Connect (OSTI)

    Bass, E.A. [Southwest Research Inst., San Antonio, TX (US)] [Southwest Research Inst., San Antonio, TX (US)

    1993-06-01T23:59:59.000Z

    SwRI was contracted by NREL to evaluate three LPG conversion kits on a Chevrolet Lumina. The objective of the project was to measure the Federal Test Procedure (FTP) emissions and fuel economy of these kits, and compare their performance to gasoline-fueled operation and to each other. Varying LPG fuel blends allowed a preliminary look at the potential for fuel system disturbance. The project required kit installation and adjustment according to manufacturer`s instructions. A limited amount of trouble diagnosis was also performed on the fuel systems. A simultaneous contract from the Texas Railroad Commission, in cooperation with NREL, provided funds for additional testing with market fuels (HD5 propane and industry average gasoline) and hydrocarbon (HC) emissions speciation to determine the ozone-forming potential of LPG HC emissions. This report documents the procurement, installation, and testing of these LPG conversion kits.

  14. High Efficiency Clean Combustion in Multi-Cylinder Light-Duty...

    Broader source: Energy.gov (indexed) [DOE]

    Adam Dempsey Zhiming Gao, Vitaly Prikhodko, Jim Parks, David Smith and Robert Wagner Fuels, Engines and Emissions Research Center Oak Ridge National Laboratory ACE016 This...

  15. Myths Regarding Alternative Fuel Vehicle Demand by Light-Duty Vehicle Fleets

    E-Print Network [OSTI]

    Nesbitt, Kevin; Sperling, Daniel

    1998-01-01T23:59:59.000Z

    eet demand for alternative-fuel vehicles in California.Britain MYTHS REGARDING ALTERNATIVE FUEL VEHICLE DEMAND BYinitial market for alternative fuel vehicles (AFVs). We

  16. Effects of Biodiesel Operation on Light-Duty Tier 2 Engine and Emission Control Systems: Preprint

    SciTech Connect (OSTI)

    Tatur, M.; Nanjundaswamy, H.; Tomazic, D.; Thornton, M.

    2008-08-01T23:59:59.000Z

    This paper documents the impact of biodiesel blends on engine-out emissions as well as overall system performance in terms of emissions control system calibration and overall system efficiency.

  17. Impacts of Biodiesel Fuel Blends Oil Dilution on Light-Duty Diesel Engine Operation

    SciTech Connect (OSTI)

    Thornton, M. J.; Alleman, T. L.; Luecke, J.; McCormick, R. L.

    2009-08-01T23:59:59.000Z

    Assesses oil dilution impacts on a diesel engine operating with a diesel particle filter, NOx storage, a selective catalytic reduction emission control system, and a soy-based 20% biodiesel fuel blend.

  18. Effect of Intake Air Filter Condition on Light-Duty Gasoline Vehicles

    SciTech Connect (OSTI)

    Thomas, John F [ORNL] [ORNL; Huff, Shean P [ORNL] [ORNL; West, Brian H [ORNL] [ORNL; Norman, Kevin M [ORNL] [ORNL

    2012-01-01T23:59:59.000Z

    Proper maintenance can help vehicles perform as designed, positively affecting fuel economy, emissions, and the overall drivability. This effort investigates the effect of one maintenance factor, intake air filter replacement, with primary focus on vehicle fuel economy, but also examining emissions and performance. Older studies, dealing with carbureted gasoline vehicles, have indicated that replacing a clogged or dirty air filter can improve vehicle fuel economy and conversely that a dirty air filter can be significantly detrimental to fuel economy. The effect of clogged air filters on the fuel economy, acceleration and emissions of five gasoline fueled vehicles is examined. Four of these were modern vehicles, featuring closed-loop control and ranging in model year from 2003 to 2007. Three vehicles were powered by naturally aspirated, port fuel injection (PFI) engines of differing size and cylinder configuration: an inline 4, a V6 and a V8. A turbocharged inline 4-cylinder gasoline direct injection (GDI) engine powered vehicle was the fourth modern gasoline vehicle tested. A vintage 1972 vehicle equipped with a carburetor (open-loop control) was also examined. Results reveal insignificant fuel economy and emissions sensitivity of modern vehicles to air filter condition, but measureable effects on the 1972 vehicle. All vehicles experienced a measured acceleration performance penalty with clogged intake air filters.

  19. Impacts of Oxygenated Gasoline Use on California Light-Duty Vehicle Emissions

    E-Print Network [OSTI]

    Kirchstetter, Thomas W.; Singer, Brett C.; Harley, Robert A.

    1996-01-01T23:59:59.000Z

    Addition of oxTgenates gasoline will not reduce ozone to (3)I. Y. remote sensing 1994 gasoline samples ranged from 0.7weight reported for liquid gasoline with an RVP Assoc. 1990,

  20. Effect of E85 on Tailpipe Emissions from Light-Duty Vehicles

    SciTech Connect (OSTI)

    Yanowitz, J.; McCormick, R. L.

    2009-02-01T23:59:59.000Z

    E85, which consists of nominally 85% fuel grade ethanol and 15% gasoline, must be used in flexible-fuel (or 'flexfuel') vehicles (FFVs) that can operate on fuel with an ethanol content of 0-85%. Published studies include measurements of the effect of E85 on tailpipe emissions for Tier 1 and older vehicles. Car manufacturers have also supplied a large body of FFV certification data to the U.S. Environmental Protection Agency, primarily on Tier 2 vehicles. These studies and certification data reveal wide variability in the effects of E85 on emissions from different vehicles. Comparing Tier 1 FFVs running on E85 to similar non-FFVs running on gasoline showed, on average, significant reductions in emissions of oxides of nitrogen (NOx; 54%), non-methane hydrocarbons (NMHCs; 27%), and carbon monoxide (CO; 18%) for E85. Comparing Tier 2 FFVs running on E85 and comparable non-FFVs running on gasoline shows, for E85 on average, a significant reduction in emissions of CO (20%), and no significant effect on emissions of non-methane organic gases (NMOGs). NOx emissions from Tier 2 FFVs averaged approximately 28% less than comparable non-FFVs. However, perhaps because of the wide range of Tier 2 NOx standards, the absolute difference in NOx emissions between Tier 2 FFVs and non-FFVs is not significant (P 0.28). It is interesting that Tier 2 FFVs operating on gasoline produced approximately 13% less NMOGs than non-FFVs operating on gasoline. The data for Tier 1 vehicles show that E85 will cause significant reductions in emissions of benzene and butadiene, and significant increases in emissions of formaldehyde and acetaldehyde, in comparison to emissions from gasoline in both FFVs and non-FFVs. The compound that makes up the largest proportion of organic emissions from E85-fueled FFVs is ethanol.

  1. Final report for measurement of primary particulate matter emissions from light-duty motor vehicles

    SciTech Connect (OSTI)

    Norbeck, J. M.; Durbin, T. D.; Truex, T. J.

    1998-12-31T23:59:59.000Z

    This report describes the results of a particulate emissions study conducted at the University of California, Riverside, College of Engineering-Center for Environmental Research and Technology (CE-CERT) from September of 1996 to August of 1997. The goal of this program was to expand the database of particulate emissions measurements from motor vehicles to include larger numbers of representative in-use vehicles. This work was co-sponsored by the Coordinating Research Council (CRC), the South Coast Air Quality Management District (SCAQMD), and the National Renewable Energy Laboratory (NREL) and was part of a larger study of particulate emissions being conducted in several states under sponsorship by CRC. For this work, FTP particulate mass emission rates were determined for gasoline and diesel vehicles, along with the fractions of particulates below 2.5 and 10 microns aerodynamic diameter. A total of 129 gasoline-fueled vehicles and 19 diesel-fueled vehicles were tested as part of the program.

  2. High Efficiency Clean Combustion in Multi-Cylinder Light-Duty...

    Broader source: Energy.gov (indexed) [DOE]

    Duty Engines (ACE 17) Presented by Robert Wagner 2009 DOE Hydrogen Program and Vehicle Technologies Annual Merit Review This presentation does not contain any proprietary,...

  3. Fuel Effects on Low Temperature Combustion in a Light-Duty Diesel Engine |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensional ElectricalEnergy FrozenNovemberDepartment of Energy Low

  4. Fuel Spray Research on Light-Duty Injection Systems | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensional ElectricalEnergyQuality Challenges An OEMLife10 DOE Vehicle

  5. Fuel Spray Research on Light-Duty Injection Systems | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensional ElectricalEnergyQuality Challenges An OEMLife10 DOE Vehicle09

  6. Future Potential of Hybrid and Diesel Powertrains in the U.S. Light-Duty

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensional ElectricalEnergyQualityAUGUSTPart

  7. Outlook for Light-Duty-Vehicle Fuel Demand | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department ofT ib l L d F SSales LLCDiesel Enginesthe U.S.SolarMarket-Based Programs

  8. Technical Challenges and Opportunities Light-Duty Diesel Engines in North

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy Usage »of Energy StrainClientDesign &Report TechnicalSHARING KNOWLEDGEAmerica

  9. Technical System Targets: Onboard Hydrogen Storage for Light-Duty Fuel Cell Vehicles

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy Usage »of Energy StrainClientDesignOffice - 20142012 | Department ofFebruaryPage

  10. The Diesel Engine Powering Light-Duty Vehicles: Today and Tomorrow |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy Usage »of Energy StrainClientDesignOfficeTheDepartment

  11. Thermoelectric HVAC and Thermal Comfort Enablers for Light-Duty Vehicle

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy Usage »of EnergyThe EnergyDepartment ofPowered Vehicle |Department

  12. Impact of Canada’s Voluntary Agreement on Greenhouse Gas Emissions from Light Duty Vehicles

    E-Print Network [OSTI]

    Lutsey, Nicholas P.

    2006-01-01T23:59:59.000Z

    components, charge reduction, or an alternative refrigerant,refrigerant system. However, more recent work suggests low-leak, reduced charge,

  13. Impact of Canada's Voluntary Agreement on Greenhouse Gas Emissions from Light Duty Vehicles

    E-Print Network [OSTI]

    Lutsey, Nicholas P.

    2006-01-01T23:59:59.000Z

    components, charge reduction, or an alternative refrigerant,refrigerant system. However, more recent work suggests low-leak, reduced charge,

  14. Electric powertrains : opportunities and challenges in the US light-duty vehicle fleet

    E-Print Network [OSTI]

    Kromer, Matthew A

    2007-01-01T23:59:59.000Z

    Managing impending environmental and energy challenges in the transport sector requires a dramatic reduction in both the petroleum consumption and greenhouse gas (GHG) emissions of in-use vehicles. This study quantifies ...

  15. High Efficiency Clean Combustion in Multi-Cylinder Light-Duty...

    Broader source: Energy.gov (indexed) [DOE]

    challenges and is currently focused on milestones associated with Vehicle Technologies efficiency and emissions objectives. Overview 11 *http:www1.eere.energy.gov...

  16. Light Duty Diesels in North America A Huge Opportunity | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensionalthe10IO1OP001 Letter Report:Life-Cycle Analysis of| Department

  17. Light Duty Diesels in the United States - Some Perspectives | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensionalthe10IO1OP001 Letter Report:Life-Cycle Analysis of|

  18. Light Duty Diesels in the United States - Some Perspectives | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensionalthe10IO1OP001 Letter Report:Life-Cycle Analysis of|Energy

  19. Light Duty Diesels in the United States - Some Perspectives | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensionalthe10IO1OP001 Letter Report:Life-Cycle Analysis

  20. Light Duty Plug-in Hybrid Vehicle Systems Analysis | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensionalthe10IO1OP001 Letter Report:Life-Cycle

  1. Light-Duty Diesel EngineTechnology to Meet Future Emissions and Performance

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensionalthe10IO1OP001 Letter Report:Life-CycleDutyR&DPart

  2. Light-Duty Diesel Market Potential in North America | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensionalthe10IO1OP001 Letter Report:Life-CycleDutyR&DPartMarket

  3. Light-Duty Diesels in the U.S. | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensionalthe10IO1OP001 Letter

  4. Marketing Light-Duty Diesels to U.S. Consumers | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department of EnergyDevelopment Accident Tolerant Fuel: FeCrAlMarkEnergy

  5. Development of a Waste Heat Recovery System for Light Duty Diesel Engines |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeat Pump Models |Conduct, Parent CompanyaUSAMP AMDHeavy DutyLow

  6. Targets for Onboard Hydrogen Storage Systems for Light-Duty Vehicles

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy Usage »of Energy StrainClient updateTRI-STATE GENERATIONDepartment of4.0 Page 1

  7. A Study of Emissions from a Light Duty Diesel Engine with the European

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up from theDepartment(October-DecemberBasedToward a MoreA RisingA1 A StrategicParticulate

  8. APBF-DEC Light-duty NOx Adsorber/DPF Project | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartment of Energy 601 High Integrity

  9. Accelerating Light-Duty Diesel Sales in the U.S. Market | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartment of Energy 601DepartmentContract and Project ManagementPrograms

  10. Addressing the Challenges of RCCI Operation on a Light-Duty Multi-Cylinder

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartment of Energy 601DepartmentContract.4Department ofGasEngine |

  11. Economic Comparison of LNT Versus Urea SCR for Light-Duty Diesel Vehicles

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeat PumpRecord ofESPC ENABLE: ECM Summary ECM IncludedEcoHousein the U.S. Market |

  12. Emission Control Strategy for Downsized Light-Duty Diesels | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeat PumpRecord ofESPC ENABLE: ECMConstruction

  13. Targets for Onboard Hydrogen Storage Systems for Light-Duty Vehicles |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up from the GridwiseSiteDepartmentChallengeCompliance7/109THETTU U . . SHouseholds

  14. Post Mortem of 120k mi Light-Duty Urea SCR and DPF System | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department ofT ib l L d FNEPA/309 Reviewers | DepartmentSite RegulatoryMAR 1 2 2013MAR

  15. Progress on DOE Vehicle Technologies Light-Duty Diesel Engine Efficiency

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department ofT ib l L d FNEPA/309Department ofDepartment ofProgram(S3TEC )Department ofand

  16. Multi-Mode RCCI Has Great Potential to Improve Fuel Economy in Light-Duty

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |EnergyonSupport0.pdf5 OPAM SEMIANNUAL REPORTMAMayCrossColoradoMotion to Withdraw

  17. Business Case for Light-Duty Diesel in the U.S. | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartmentTie Ltd:June 2015 < prevBuilding theINNOVATIONof EnergyDiesel in

  18. Cummins Work Toward Successful Introduction of Light-Duty Clean Diesel

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartmentTieCelebratePartners with Siemens onSiteDepartment ofMay 16, 2013Engines

  19. WORKSHOP REPORT:Light-Duty Vehicles Technical Requirements and Gaps for Lightweight and Propulsion Materials

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy Usage »of| Department of EnergyDepartment of5Department ofVEHICLES TECHNOLOGIES

  20. Why Light Duty Diesels Make Sense in the North American Market | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy Usage »of| Department ofDepartment ofAnnouncementAugust 30, 2007Who UsesWholeWhyof

  1. High Efficiency Clean Combustion in Multi-Cylinder Light-Duty Engines |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensional Subject:Ground Hawaii CleanHeatin N.J.DepartmentDepartment of

  2. High Efficiency Clean Combustion in Multi-Cylinder Light-Duty Engines |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensional Subject:Ground Hawaii CleanHeatin N.J.DepartmentDepartment

  3. High Efficiency Clean Combustion in Multi-Cylinder Light-Duty Engines |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensional Subject:Ground Hawaii CleanHeatin

  4. High-Efficiency Clean Combustion in Light-Duty Multi-Cylinder Diesel

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensional Subject:Ground Hawaii HIGH PERFORMANCEDOEDepartment ofEngines |

  5. Ricardo's ACTION Strategy: An Enabling Light Duty Diesel Technology for the

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department ofT ib l LPROJECTS IN RENEWABLEOperatedDepartment ofEnergy Funds: BasicsRe~US

  6. SCReaming for Low NOx - SCR for the Light Duty Market | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department ofT ib l LPROJECTS IN7 Roadmap for

  7. Impact of Fuel Properties on Light-Duty Engine Performance and Emissions |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensionalthe U.S. Department-2023 Idaho4 AUDITofDepartment of Energy

  8. Improving the Efficiency of Light-Duty Vehicle HVAC Systems using Zonal

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensionalthe U.S. Improving Fan System Performance a

  9. WORKSHOP REPORT:Light-Duty Vehicles Technical Requirements and Gaps for

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up from theDepartment of Dept.| DepartmentVolvo Trucksof Energy WIPPGaps

  10. DOE Targets for Onboard Hydrogen Storage Systems for Light-Duty Vehicles |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in Review: Top FiveDepartmentfor06/2015)09DepartmentSuperconductivityEnergy withDepartment

  11. Biodiesel Effects on the Operation of U.S. Light Duty Tier 2 Engine and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartmentTie Ltd: ScopeDepartment1, 2011 DRAFTofBio-Oil Deployment

  12. Biodiesel Effects on the Operation of U.S. Light-Duty Tier 2 Engine and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartmentTie Ltd: ScopeDepartment1, 2011 DRAFTofBio-Oil DeploymentAftertreatment

  13. Transportation Energy Futures Series: Potential for Energy Efficiency Improvement Beyond the Light-Duty-Vehilce Sector

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched Ferromagnetism in Layered NbS2Topo II: AnTrainingTransportationsearchDEMANDCOMMERCIAL

  14. Mixture Formation in a Light-Duty Diesel Engine | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department ofT ib l L d F S i DOE TribaltheMyMinutes from DecemberCannon, MOX

  15. Ultra-Low Sulfur diesel Update & Future Light Duty Diesel | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy Usage »of EnergyTheTwo New EnergyofDEVELOPMENTEnergy Low Sulfur diesel Update

  16. Urea SCR Durability Assessment for Tier 2 Light-Duty Truck | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy Usage »of EnergyTheTwo New12.'6/0.2 ......Uranium Lease TractsEnergy

  17. Urea SCR and DPF System for Tier 2 Diesel Light-Duty Trucks | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy Usage »of EnergyTheTwo New12.'6/0.2 ......Uranium Lease

  18. Hydrogen Storage Options: Technologies and Comparisons for Light-Duty Vehicle Applications

    E-Print Network [OSTI]

    Burke, Andy; Gardiner, Monterey

    2005-01-01T23:59:59.000Z

    hydrogen compressor in parallel with their system to compress boil-off gas. In general the system costs

  19. Quantifying the Effects of Idle-Stop Systems on Fuel Economy in Light-Duty Passenger Vehicles

    SciTech Connect (OSTI)

    Jeff Wishart; Matthew Shirk

    2012-12-01T23:59:59.000Z

    Vehicles equipped with idle-stop (IS) systems are capable of engine shut down when the vehicle is stopped and rapid engine re-start for the vehicle launch. This capability reduces fuel consumption and emissions during periods when the engine is not being utilized to provide propulsion or to power accessories. IS systems are a low-cost and fast-growing technology in the industry-wide pursuit of increased vehicle efficiency, possibly becoming standard features in European vehicles in the near future. In contrast, currently there are only three non-hybrid vehicle models for sale in North America with IS systems and these models are distinctly low-volume models. As part of the United States Department of Energy’s Advanced Vehicle Testing Activity, ECOtality North America has tested the real-world effect of IS systems on fuel consumption in three vehicle models imported from Europe. These vehicles were chosen to represent three types of systems: (1) spark ignition with 12-V belt alternator starter; (2) compression ignition with 12-V belt alternator starter; and (3) direct-injection spark ignition, with 12-V belt alternator starter/combustion restart. The vehicles have undergone both dynamometer and on-road testing; the test results show somewhat conflicting data. The laboratory data and the portion of the on-road data in which driving is conducted on a prescribed route with trained drivers produced significant fuel economy improvement. However, the fleet data do not corroborate improvement, even though the data show significant engine-off time. It is possible that the effects of the varying driving styles and routes in the fleet testing overshadowed the fuel economy improvements. More testing with the same driver over routes that are similar with the IS system-enabled and disabled is recommended. There is anecdotal evidence that current Environmental Protection Agency fuel economy test procedures do not capture the fuel economy gains that IS systems produce in real-world driving. The program test results provide information on the veracity of these claims.

  20. Vehicle Technologies Office Merit Review 2014: High Efficiency Clean Combustion in Multi-Cylinder Light-Duty Engines

    Broader source: Energy.gov [DOE]

    Presentation given by Oak Ridge National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about high efficiency...

  1. Commercializing light-duty plug-in/plug-out hydrogen-fuel-cell vehicles: “Mobile Electricity” technologies and opportunities

    E-Print Network [OSTI]

    Williams, Brett D; Kurani, Kenneth S

    2007-01-01T23:59:59.000Z

    fuel- cell vehicles: “Mobile Electricity" technologies andFuel-Cell Vehicles: “Mobile Electricity” Technologies, Early4 2 Mobile Electricity technologies and

  2. Vehicle Technologies Office Merit Review 2014: Advanced Combustion Concepts- Enabling Systems and Solutions (ACCESS) for High Efficiency Light Duty Vehicles

    Broader source: Energy.gov [DOE]

    Presentation given by Robert Bosch at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about advanced combustion concepts -...

  3. Commercializing light-duty plug-in/plug-out hydrogen-fuel-cell vehicles: “Mobile Electricity” technologies and opportunities

    E-Print Network [OSTI]

    Williams, Brett D; Kurani, Kenneth S

    2007-01-01T23:59:59.000Z

    House” by Tron Architecture conceptually This is relative to what might be used in a plug-in hybrid or battery

  4. Commercializing light-duty plug-in/plug-out hydrogen-fuel-cell vehicles: “Mobile Electricity” technologies and opportunities

    E-Print Network [OSTI]

    Williams, Brett D; Kurani, Kenneth S

    2007-01-01T23:59:59.000Z

    Table 2-5 presents the cost per kWh produced by variouselectricity rates on a cost per kWh basis only with someHybrid battery module cost per kWh required for lifecycle

  5. Commercializing light-duty plug-in/plug-out hydrogen-fuel-cell vehicles: “Mobile Electricity” technologies and opportunities

    E-Print Network [OSTI]

    Williams, Brett D; Kurani, Kenneth S

    2007-01-01T23:59:59.000Z

    into utility-friendly and distributed-generation-hardware-utility-side-of-the-meter interactions and, ultimately, vehicular distributed generation

  6. Alternative Fuel Evaluation Program: Alternative Fuel Light Duty Vehicle Project - Data collection responsibilities, techniques, and test procedures

    SciTech Connect (OSTI)

    none,

    1992-07-01T23:59:59.000Z

    This report describes the data gathering and analysis procedures that support the US Department of Energy`s implementation of the Alternative Motor Fuels Act (AMFA) of 1988. Specifically, test procedures, analytical methods, and data protocols are covered. The aim of these collection and analysis efforts, as mandated by AMFA, is to demonstrate the environmental, economic, and performance characteristics of alternative transportation fuels.

  7. Commercializing light-duty plug-in/plug-out hydrogen-fuel-cell vehicles: “Mobile Electricity” technologies and opportunities

    E-Print Network [OSTI]

    Williams, Brett D; Kurani, Kenneth S

    2007-01-01T23:59:59.000Z

    power, and heat generation), and grid-side benefits (peakpre-) heat/cool, etc. ); home recharging using off-peak grid

  8. Commercializing light-duty plug-in/plug-out hydrogen-fuel-cell vehicles: “Mobile Electricity” technologies and opportunities

    E-Print Network [OSTI]

    Williams, Brett D; Kurani, Kenneth S

    2007-01-01T23:59:59.000Z

    Transition: Designing a Fuel-Cell Hypercar," presented atgoals for automotive fuel cell power systems hydrogen vs.a comparative assessment for fuel cell electric vehicles."

  9. Exploring the use of a higher octane gasoline for the U.S. light-duty vehicle fleet

    E-Print Network [OSTI]

    Chow, Eric W

    2013-01-01T23:59:59.000Z

    This thesis explores the possible benefits that can be achieved if U.S. oil companies produced and offered a grade of higher-octane gasoline to the consumer market. The octane number of a fuel represents how resistant the ...

  10. Commercializing light-duty plug-in/plug-out hydrogen-fuel-cell vehicles: “Mobile Electricity” technologies and opportunities

    E-Print Network [OSTI]

    Williams, Brett D; Kurani, Kenneth S

    2007-01-01T23:59:59.000Z

    modes, allowing, say, fuel- cell costs to slide down ancurve that plots fuel-cell cost in dollars per kilowatt2002. ) production, fuel-cell cost is assumed to fall by

  11. Commercializing light-duty plug-in/plug-out hydrogen-fuel-cell vehicles: “Mobile Electricity” technologies and opportunities

    E-Print Network [OSTI]

    Williams, Brett D; Kurani, Kenneth S

    2007-01-01T23:59:59.000Z

    C. E. S. Thomas, "Hydrogen and Fuel Cells: Pathway to a4-2 incorporates hydrogen and fuel cells into a roadmap thatdevelopment efforts. Hydrogen and fuel-cell technologies are

  12. Transportation Energy Futures Series: Non-Cost Barriers to Consumer Adoption of New Light-Duty Vehicle Technologies

    SciTech Connect (OSTI)

    Stephens, T.

    2013-03-01T23:59:59.000Z

    Consumer preferences are key to the adoption of new vehicle technologies. Barriers to consumer adoption include price and other obstacles, such as limited driving range and charging infrastructure; unfamiliarity with the technology and uncertainty about direct benefits; limited makes and models with the technology; reputation or perception of the technology; standardization issues; and regulations. For each of these non-cost barriers, this report estimates an effective cost and summarizes underlying influences on consumer preferences, approximate magnitude and relative severity, and assesses potential actions, based on a comprehensive literature review. While the report concludes that non-cost barriers are significant, effective cost and potential market share are very uncertain. Policies and programs including opportunities for drivers to test drive advanced vehicles, general public outreach and information programs, incentives for providing charging and fueling infrastructure, and development of technology standards were examined for their ability to address barriers, but little quantitative data exists on the effectiveness of these measures. This is one in a series of reports produced as a result of the Transportation Energy Futures project, a Department of Energy-sponsored multi-agency effort to pinpoint underexplored strategies for reducing GHGs and petroleum dependence related to transportation.

  13. Commercializing Light-Duty Plug-In/Plug-Out Hydrogen-Fuel-Cell Vehicles: "Mobile Electricity" Technologies, Early California Household Markets, and Innovation Management

    E-Print Network [OSTI]

    Williams, Brett D

    2010-01-01T23:59:59.000Z

    challenges facing hydrogen storage technologies, refuelinguncertainties surrounding hydrogen storage, fuel-cell-system1) vehicle range/hydrogen storage and 2) home refueling. 1:

  14. Optimizing U.S. Mitigation Strategies for the Light-Duty Transportation Sector: What We Learn from a Bottom-Up Model

    E-Print Network [OSTI]

    Yeh, Sonia; Farrell, Alexander E.; Plevin, Richard J; Sanstad, Alan; Weyant, John

    2008-01-01T23:59:59.000Z

    GHG fuels such as compressed natural gas, low-GHG ethanol,LPG) Methane Compressed natural gas (CNG) Ethanol production

  15. Commercializing Light-Duty Plug-In/Plug-Out Hydrogen-Fuel-Cell Vehicles:“Mobile Electricity” Technologies, Early California Household Markets, and Innovation Management

    E-Print Network [OSTI]

    Williams, Brett D

    2007-01-01T23:59:59.000Z

    Mobile Electricity” Technologies, Early California Household Markets, and Innovation Managementtechnology-management, and strategic-marketing lenses to the problem of commercializing H 2 FCVs, other EDVs, and other Mobile

  16. Commercializing Light-Duty Plug-In/Plug-Out Hydrogen-Fuel-Cell Vehicles: "Mobile Electricity" Technologies, Early California Household Markets, and Innovation Management

    E-Print Network [OSTI]

    Williams, Brett D

    2010-01-01T23:59:59.000Z

    Mobile Electricity” Technologies, Early California Household Markets, and Innovation ManagementMobile Electricity” Technologies, Early California Household Markets, and Innovation Managementtechnology-management, and strategic-marketing lenses to the problem of commercializing H 2 FCVs, other EDVs, and other Mobile

  17. Commercializing Light-Duty Plug-In/Plug-Out Hydrogen-Fuel-Cell Vehicles:“Mobile Electricity” Technologies, Early California Household Markets, and Innovation Management

    E-Print Network [OSTI]

    Williams, Brett D

    2007-01-01T23:59:59.000Z

    fuel- cell vehicles: “Mobile Electricity" technologies andFuel-Cell Vehicles: “Mobile Electricity” Technologies, Early4 2 Mobile Electricity technologies and

  18. Commercializing Light-Duty Plug-In/Plug-Out Hydrogen-Fuel-Cell Vehicles: "Mobile Electricity" Technologies, Early California Household Markets, and Innovation Management

    E-Print Network [OSTI]

    Williams, Brett D

    2010-01-01T23:59:59.000Z

    fuel-cell vehicles: “Mobile Electricity" technologies andFuel-Cell Vehicles: “Mobile Electricity” Technologies, EarlyFuel-Cell Vehicles: “Mobile Electricity” Technologies, Early

  19. Variability of Battery Wear in Light Duty Plug-In Electric Vehicles Subject to Ambient Temperature, Battery Size, and Consumer Usage: Preprint

    SciTech Connect (OSTI)

    Wood, E.; Neubauer, J.; Brooker, A. D.; Gonder, J.; Smith, K. A.

    2012-08-01T23:59:59.000Z

    Battery wear in plug-in electric vehicles (PEVs) is a complex function of ambient temperature, battery size, and disparate usage. Simulations capturing varying ambient temperature profiles, battery sizes, and driving patterns are of great value to battery and vehicle manufacturers. A predictive battery wear model developed by the National Renewable Energy Laboratory captures the effects of multiple cycling and storage conditions in a representative lithium chemistry. The sensitivity of battery wear rates to ambient conditions, maximum allowable depth-of-discharge, and vehicle miles travelled is explored for two midsize vehicles: a battery electric vehicle (BEV) with a nominal range of 75 mi (121 km) and a plug-in hybrid electric vehicle (PHEV) with a nominal charge-depleting range of 40 mi (64 km). Driving distance distributions represent the variability of vehicle use, both vehicle-to-vehicle and day-to-day. Battery wear over an 8-year period was dominated by ambient conditions for the BEV with capacity fade ranging from 19% to 32% while the PHEV was most sensitive to maximum allowable depth-of-discharge with capacity fade ranging from 16% to 24%. The BEV and PHEV were comparable in terms of petroleum displacement potential after 8 years of service, due to the BEV?s limited utility for accomplishing long trips.

  20. Commercializing Light-Duty Plug-In/Plug-Out Hydrogen-Fuel-Cell Vehicles:“Mobile Electricity” Technologies, Early California Household Markets, and Innovation Management

    E-Print Network [OSTI]

    Williams, Brett D

    2007-01-01T23:59:59.000Z

    House” by Tron Architecture conceptually This is relative to what might be used in a plug-in hybrid or battery

  1. Commercializing Light-Duty Plug-In/Plug-Out Hydrogen-Fuel-Cell Vehicles: "Mobile Electricity" Technologies, Early California Household Markets, and Innovation Management

    E-Print Network [OSTI]

    Williams, Brett D

    2010-01-01T23:59:59.000Z

    House” by Tron Architecture conceptually This is relative to what might be used in a plug-in hybrid or battery

  2. Commercializing Light-Duty Plug-In/Plug-Out Hydrogen-Fuel-Cell Vehicles:“Mobile Electricity” Technologies, Early California Household Markets, and Innovation Management

    E-Print Network [OSTI]

    Williams, Brett D

    2007-01-01T23:59:59.000Z

    electricity rates on a cost per kWh basis only with someTable 2-5 presents the cost per kWh produced by variousHybrid battery module cost per kWh required for lifecycle

  3. Commercializing Light-Duty Plug-In/Plug-Out Hydrogen-Fuel-Cell Vehicles: "Mobile Electricity" Technologies, Early California Household Markets, and Innovation Management

    E-Print Network [OSTI]

    Williams, Brett D

    2010-01-01T23:59:59.000Z

    Table 2-5 presents the cost per kWh produced by variousHybrid battery module cost per kWh required for lifecycleelectricity rates on a cost per kWh basis only with some

  4. Optimizing U.S. Mitigation Strategies for the Light-Duty Transportation Sector: What We Learn from a Bottom-Up Model

    E-Print Network [OSTI]

    Yeh, Sonia; Farrell, Alexander E.; Plevin, Richard J; Sanstad, Alan; Weyant, John

    2008-01-01T23:59:59.000Z

    2005; Energy Information Administration, U.S. Department of0383(2007); Energy Information Administration: 2007. http://0383(2006); Energy Information Administration: Washington,

  5. Commercializing Light-Duty Plug-In/Plug-Out Hydrogen-Fuel-Cell Vehicles: "Mobile Electricity" Technologies, Early California Household Markets, and Innovation Management

    E-Print Network [OSTI]

    Williams, Brett D

    2010-01-01T23:59:59.000Z

    2002. EPRI, "Advanced Batteries for Electric-Drive Vehicles:12 2.2.2.1 PHEV uncertainties: Batteries andwith big propulsion batteries. However, recent activities (

  6. Feasible Café Standard Increases Using Emerging Diesel and Hybrid-Electric Technologies for Light-Duty Vehicles in the United States

    E-Print Network [OSTI]

    Burke, Andy; Abeles, Ethan

    2004-01-01T23:59:59.000Z

    USING EMERGING DIESEL AND HYBRID-ELECTRIC TECHNOLOGIES FORusing Emerging Diesel and Hybrid- Electric Technologies forusing Emerging Diesel and Hybrid- Electric Technologies for

  7. Commercializing Light-Duty Plug-In/Plug-Out Hydrogen-Fuel-Cell Vehicles: "Mobile Electricity" Technologies, Early California Household Markets, and Innovation Management

    E-Print Network [OSTI]

    Williams, Brett D

    2010-01-01T23:59:59.000Z

    4 demonstration of a plug-in diesel-electric HUMVEE by thediesel max output (kW) continuous/Me- kW type efficiency electric

  8. Feasible CAFE Standard Increases Using Emerging Diesel and Hybrid-Electric Technologies for Light-Duty Vehicles in the United States

    E-Print Network [OSTI]

    Burke, Andy; Abeles, Ethan C.

    2004-01-01T23:59:59.000Z

    USING EMERGING DIESEL AND HYBRID-ELECTRIC TECHNOLOGIES FORusing Emerging Diesel and Hybrid- Electric Technologies forusing Emerging Diesel and Hybrid- Electric Technologies for

  9. Present Status and Marketing Prospects of the Emerging Hybrid-Electric and Diesel Technologies to Reduce CO2 Emissions of New Light-Duty Vehicles in California

    E-Print Network [OSTI]

    Burke, Andy

    2004-01-01T23:59:59.000Z

    OF THE EMERGING HYBRID-ELECTRIC AND DIESEL TECHNOLOGIES TOof the Emerging Hybrid-Electric and Diesel Technologies tomodern clean diesel engines and hybrid-electric powertrains

  10. Optimizing U.S. Mitigation Strategies for the Light-Duty Transportation Sector: What We Learn from a Bottom-Up Model

    E-Print Network [OSTI]

    Yeh, Sonia; Farrell, Alexander E.; Plevin, Richard J; Sanstad, Alan; Weyant, John

    2008-01-01T23:59:59.000Z

    the production process for ethanol fuel including theS4). With the exception of ethanol, fuel CO 2 intensity ispolicy results in zero ethanol ?ex-fuel vehicle penetration

  11. The effects of driving style and vehicle performance on the real-world fuel consumption of U.S. light-duty vehicles

    E-Print Network [OSTI]

    Berry, Irene Michelle

    2010-01-01T23:59:59.000Z

    Even with advances in vehicle technology, both conservation and methods for reducing the fuel consumption of existing vehicles are needed to decrease the petroleum consumption and greenhouse gas emissions of the U.S. ...

  12. Commercializing Light-Duty Plug-In/Plug-Out Hydrogen-Fuel-Cell Vehicles: "Mobile Electricity" Technologies, Early California Household Markets, and Innovation Management

    E-Print Network [OSTI]

    Williams, Brett D

    2010-01-01T23:59:59.000Z

    into utility-friendly and distributed-generation-hardware-utility-side-of-the-meter interactions and, ultimately, vehicular distributed generation

  13. Commercializing Light-Duty Plug-In/Plug-Out Hydrogen-Fuel-Cell Vehicles:“Mobile Electricity” Technologies, Early California Household Markets, and Innovation Management

    E-Print Network [OSTI]

    Williams, Brett D

    2007-01-01T23:59:59.000Z

    into utility-friendly and distributed-generation-hardware-utility-side-of-the-meter interactions and, ultimately, vehicular distributed generation

  14. Commercializing Light-Duty Plug-In/Plug-Out Hydrogen-Fuel-Cell Vehicles: "Mobile Electricity" Technologies, Early California Household Markets, and Innovation Management

    E-Print Network [OSTI]

    Williams, Brett D

    2010-01-01T23:59:59.000Z

    power, and heat generation), and grid-side benefits (peakpre-) heat/cool, etc. ); home recharging using off-peak grid

  15. Commercializing Light-Duty Plug-In/Plug-Out Hydrogen-Fuel-Cell Vehicles:“Mobile Electricity” Technologies, Early California Household Markets, and Innovation Management

    E-Print Network [OSTI]

    Williams, Brett D

    2007-01-01T23:59:59.000Z

    power, and heat generation), and grid-side benefits (peakpre-) heat/cool, etc. ); home recharging using off-peak grid

  16. Optimizing U.S. Mitigation Strategies for the Light-Duty Transportation Sector: What We Learn from a Bottom-Up Model

    E-Print Network [OSTI]

    Yeh, Sonia; Farrell, Alexander E.; Plevin, Richard J; Sanstad, Alan; Weyant, John

    2008-01-01T23:59:59.000Z

    in hybrid vehicles and hydrogen fuel cell vehicles are notlower production cost. Hydrogen fuel cell vehicles (FCVs) doC.DHEV C.DSL C.ETHX Fuel Cell - Hydrogen C.FCH Conventional

  17. J. Air & Waste Manage. Assoc., vol 58, 2008, p. 45-54 On-board emission measurement of high loaded light duty vehicles in Algeria

    E-Print Network [OSTI]

    Boyer, Edmond

    ; Nejjari et al., 2003, Atek et al., 2004). As a result, many stations of air pollution measurement and Boukadoum, 2005). Vehicle pollutant emissions constitute not only a problem of air quality in big citiesJ. Air & Waste Manage. Assoc., vol 58, 2008, p. 45-54 On-board emission measurement of high loaded

  18. Optimizing U.S. Mitigation Strategies for the Light-Duty Transportation Sector: What We Learn from a Bottom-Up Model

    E-Print Network [OSTI]

    Yeh, Sonia; Farrell, Alexander E.; Plevin, Richard J; Sanstad, Alan; Weyant, John

    2008-01-01T23:59:59.000Z

    on the adoption of alternative fuel vehicles: The case of07: 2007. 21. CEC State Alternative Fuel Plan. CEC-600-2007-972. (28) CEC. State Alternative Fuel Plan; CEC-600-2007-

  19. Commercializing Light-Duty Plug-In/Plug-Out Hydrogen-Fuel-Cell Vehicles: "Mobile Electricity" Technologies, Early California Household Markets, and Innovation Management

    E-Print Network [OSTI]

    Williams, Brett D

    2010-01-01T23:59:59.000Z

    goals for automotive fuel cell power systems hydrogen vs.a comparative assessment for fuel cell electric vehicles."Honda's More Powerful Fuel Cell Concept with Home Hydrogen

  20. Commercializing Light-Duty Plug-In/Plug-Out Hydrogen-Fuel-Cell Vehicles:“Mobile Electricity” Technologies, Early California Household Markets, and Innovation Management

    E-Print Network [OSTI]

    Williams, Brett D

    2007-01-01T23:59:59.000Z

    Transition: Designing a Fuel-Cell Hypercar," presented atgoals for automotive fuel cell power systems hydrogen vs.a comparative assessment for fuel cell electric vehicles."

  1. Commercializing Light-Duty Plug-In/Plug-Out Hydrogen-Fuel-Cell Vehicles:“Mobile Electricity” Technologies, Early California Household Markets, and Innovation Management

    E-Print Network [OSTI]

    Williams, Brett D

    2007-01-01T23:59:59.000Z

    modes, allowing, say, fuel- cell costs to slide down ancurve that plots fuel-cell cost in dollars per kilowatt2002. ) production, fuel-cell cost is assumed to fall by

  2. Optimizing U.S. Mitigation Strategies for the Light-Duty Transportation Sector: What We Learn from a Bottom-Up Model

    E-Print Network [OSTI]

    Yeh, Sonia; Farrell, Alexander E.; Plevin, Richard J; Sanstad, Alan; Weyant, John

    2008-01-01T23:59:59.000Z

    is sensitive to the cost of fuel cell technology, oil price,lower production cost. Hydrogen fuel cell vehicles (FCVs) do

  3. Commercializing Light-Duty Plug-In/Plug-Out Hydrogen-Fuel-Cell Vehicles: "Mobile Electricity" Technologies, Early California Household Markets, and Innovation Management

    E-Print Network [OSTI]

    Williams, Brett D

    2010-01-01T23:59:59.000Z

    modes, allowing, say, fuel- cell costs to slide down ancurve that plots fuel-cell cost in dollars per kilowatt2002. ) production, fuel-cell cost is assumed to fall by

  4. Comments on the Joint Proposed Rulemaking to Establish Light-Duty Vehicle Greenhouse Gas Emission Standards and Corporate Average Fuel Economy Standards

    E-Print Network [OSTI]

    Wenzel, Thomas P

    2010-01-01T23:59:59.000Z

    on occupant safety than fuel economy standards that arethe automobile fuel economy standards program, NHTSA docketCorporate Average Fuel Economy Standards Docket No. NHTSA–

  5. Feasible Café Standard Increases Using Emerging Diesel and Hybrid-Electric Technologies for Light-Duty Vehicles in the United States

    E-Print Network [OSTI]

    Burke, Andy; Abeles, Ethan

    2004-01-01T23:59:59.000Z

    R&D Co. at the SAE Hybrid Vehicle Symposium in San Diego,already being utilized in hybrid vehicles being marketed byfirst marketed their hybrid vehicles in Japan before doing

  6. Present Status and Marketing Prospects of the Emerging Hybrid-Electric and Diesel Technologies to Reduce CO2 Emissions of New Light-Duty Vehicles in California

    E-Print Network [OSTI]

    Burke, Andy

    2004-01-01T23:59:59.000Z

    of Conventional vs. Hybrid Vehicles, paper to be presented15 Table 10 Hybrid Vehicle Sales to Date - North America &Power Projections of Hybrid Vehicle Characteristics (1999-

  7. Feasible CAFE Standard Increases Using Emerging Diesel and Hybrid-Electric Technologies for Light-Duty Vehicles in the United States

    E-Print Network [OSTI]

    Burke, Andy; Abeles, Ethan C.

    2004-01-01T23:59:59.000Z

    R&D Co. at the SAE Hybrid Vehicle Symposium in San Diego,already being utilized in hybrid vehicles being marketed byfirst marketed their hybrid vehicles in Japan before doing

  8. Internship Students Engine / Powertrain Development FEV is offering challenging internships in the field of light-duty diesel powertrain. This internship is designed

    E-Print Network [OSTI]

    Hutcheon, James M.

    Internship Students ­ Engine / Powertrain Development FEV is offering challenging internships. At FEV, engineering intern will be part of a team and receives project tasks and responsibilities within a group, which are mentored and supervised by an experienced project engineer. The tasks include

  9. Potential of electric propulsion systems to reduce petroleum use and greenhouse gas emissions in the U.S. light-duty vehicle fleet

    E-Print Network [OSTI]

    Khusid, Michael

    2010-01-01T23:59:59.000Z

    In the summer of 2008, the United States of America experienced an oil shock, first of a kind since 1970s. The American public became sensitized to the concerns about foreign oil supply and climate change and global warming, ...

  10. Optimizing U.S. Mitigation Strategies for the Light-Duty Transportation Sector: What We Learn from a Bottom-Up Model

    E-Print Network [OSTI]

    Yeh, Sonia; Farrell, Alexander E.; Plevin, Richard J; Sanstad, Alan; Weyant, John

    2008-01-01T23:59:59.000Z

    leg/leginx.asp 4. EIA Annual Energy Outlook 2007 with22, (4), 10. EIA Annual Energy Outlook 2006 with Projectionsto the Annual Energy Outlook 2007. Transportation Demand

  11. Commercializing Light-Duty Plug-In/Plug-Out Hydrogen-Fuel-Cell Vehicles: "Mobile Electricity" Technologies, Early California Household Markets, and Innovation Management

    E-Print Network [OSTI]

    Williams, Brett D

    2010-01-01T23:59:59.000Z

    C. E. S. Thomas, "Hydrogen and Fuel Cells: Pathway to a4-2 incorporates hydrogen and fuel cells into a roadmap thatdevelopment efforts. Hydrogen and fuel-cell technologies are

  12. Commercializing Light-Duty Plug-In/Plug-Out Hydrogen-Fuel-Cell Vehicles:“Mobile Electricity” Technologies, Early California Household Markets, and Innovation Management

    E-Print Network [OSTI]

    Williams, Brett D

    2007-01-01T23:59:59.000Z

    C. E. S. Thomas, "Hydrogen and Fuel Cells: Pathway to a4-2 incorporates hydrogen and fuel cells into a roadmap thatdevelopment efforts. Hydrogen and fuel-cell technologies are

  13. Commercializing Light-Duty Plug-In/Plug-Out Hydrogen-Fuel-Cell Vehicles: "Mobile Electricity" Technologies, Early California Household Markets, and Innovation Management

    E-Print Network [OSTI]

    Williams, Brett D

    2010-01-01T23:59:59.000Z

    storage, and initial cost barriers—enable hydrogen-fuel-cellHydrogen Economy. New York: Tarcher-Putnam, 2002. ) production, fuel-cell costfuel-cell vehicle fed hydrogen by a stationary reformer reforming natural gas to produce hydrogen at a cost

  14. Present Status and Marketing Prospects of the Emerging Hybrid-Electric and Diesel Technologies to Reduce CO2 Emissions of New Light-Duty Vehicles in California

    E-Print Network [OSTI]

    Burke, Andy

    2004-01-01T23:59:59.000Z

    Technologies to Reduce CO2 Emissions of New Light- Dutyreduce their CO2 emissions. The emerging technologiessignificantly reduce their CO2 emissions. These technologies

  15. Reducing Petroleum Despendence in California: Uncertainties About...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Petroleum Despendence in California: Uncertainties About Light-Duty Diesel Reducing Petroleum Despendence in California: Uncertainties About Light-Duty Diesel 2002 DEER Conference...

  16. Evaluating metalorganic frameworks for natural gas storage

    E-Print Network [OSTI]

    suited for light-duty passenger vehicles. For instance, compressed natural gas (CNG) requires expensive

  17. Acceptance test procedure for the overview video camera system (OVS)

    SciTech Connect (OSTI)

    Pardini, A.F.

    1995-10-01T23:59:59.000Z

    Acceptance Test Procedure for testing the Light Duty Utility Arm (LDUA) Overview Video Camera System (OVS).

  18. An Integrated Assessment of the Impacts of Hydrogen Economy on Transportation, Energy Use, and Air Emissions

    E-Print Network [OSTI]

    Yeh, Sonia; Loughlin, Daniel H.; Shay, Carol; Gage, Cynthia

    2007-01-01T23:59:59.000Z

    hybrid electric vehicle internal combustion engine light duty vehicles MARKet ALlocation energy system

  19. Full documents available at: http://www.epa.gov/otaq/climate/regulations.htm EPA's section of the Preamble for the Light-Duty GHG Rule (see pp. 388-396)

    E-Print Network [OSTI]

    Edwards, Paul N.

    on the value used for the social cost of carbon. The total monetized benefits (excluding fuel savings) under

  20. Vehicle Technologies Office Merit Review 2014: Computational design and development of a new, lightweight cast alloy for advanced cylinder heads in high-efficiency, light-duty engines FOA 648-3a

    Broader source: Energy.gov [DOE]

    Presentation given by General Motors at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about computational design and...

  1. Reduce growth rate of light-duty vehicle travel to meet 2050 global climate goals This article has been downloaded from IOPscience. Please scroll down to see the full text article.

    E-Print Network [OSTI]

    Kammen, Daniel M.

    assumptions and emissions pathways, year 2050 global carbon dioxide (CO2) emissions levels consistent with a 2 LDV emissions is often framed as a techno- logical challenge [9, 10]. Low-carbon fuel standards aim to stimulate production of fuels that produce fewer GHGs per unit energy; vehicle efficiency policies aim

  2. Session 6 - Environmentally Concerned Public Sector Panel Discussion...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Documents & Publications The Diesel Engine Powering Light-Duty Vehicles: Today and Tomorrow EPA Mobile Source Rule Update Urea SCR Durability Assessment for Tier 2 Light-Duty Truck...

  3. E-Print Network 3.0 - alloy battery grid Sample Search Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Mathematics 3 A Technical Assessment of High-Energy Batteries for Light-Duty Electric Vehicles Summary: A Technical Assessment of High-Energy Batteries for Light-Duty...

  4. Multi-Mode RCCI Has Great Potential to Improve Fuel Economy in...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Multi-Mode RCCI Has Great Potential to Improve Fuel Economy in Light-Duty Diesel Engines Multi-Mode RCCI Has Great Potential to Improve Fuel Economy in Light-Duty Diesel Engines...

  5. Comparing the Performance of SunDiesel and Conventional Diesel...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    the Performance of SunDiesel and Conventional Diesel in a Light-Duty Vehicle and Engines Comparing the Performance of SunDiesel and Conventional Diesel in a Light-Duty Vehicle and...

  6. Vehicle Technologies Office Merit Review 2014: High Efficiency...

    Broader source: Energy.gov (indexed) [DOE]

    High Efficiency Clean Combustion in Multi-Cylinder Light-Duty Engines Vehicle Technologies Office Merit Review 2014: High Efficiency Clean Combustion in Multi-Cylinder Light-Duty...

  7. Future Potential of Hybrid and Diesel Powertrains in the U.S...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Potential of Hybrid and Diesel Powertrains in the U.S. Light-Duty Vehicle Market Future Potential of Hybrid and Diesel Powertrains in the U.S. Light-Duty Vehicle Market 2004 Diesel...

  8. Fuels for Advanced Combustion Engines

    Broader source: Energy.gov (indexed) [DOE]

    2011-2015 MYPP Goals (cross-cut w Advanced Combustion Engines) - By 2015, improve the fuel economy of light-duty gasoline vehicles by 25% and of light-duty diesel vehicles by 40%...

  9. Fuels for Advanced Combustion Engines

    Broader source: Energy.gov (indexed) [DOE]

    2011-1015 MYPP Goals (cross-cut w Advanced Combustion Engines) - By 2015, improve the fuel economy of light-duty gasoline vehicles by 25% and of light-duty diesel vehicles by 40%...

  10. International Hydrogen Infrastructure Challenges Workshop Summary...

    Broader source: Energy.gov (indexed) [DOE]

    More Documents & Publications Introduction to SAE Hydrogen Fueling Standardization Light Duty Fuel Cell Electric Vehicle Hydrogen Fueling Protocol Fuel Cell...

  11. California's Energy Future - The View to 2050

    E-Print Network [OSTI]

    2011-01-01T23:59:59.000Z

    Lawrence Livermore National Laboratory LDV Light-duty vehicles LED light emitting diode LWR Light water reactor NIF

  12. California’s Energy Future: The View to 2050 - Summary Report

    E-Print Network [OSTI]

    Yang, Christopher

    2011-01-01T23:59:59.000Z

    Lawrence Livermore National Laboratory LDV Light-duty vehicles LED light emitting diode LWR Light water reactor NIF

  13. Transonic Combustion ? - Injection Strategy Development for...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Transonic Combustion - Injection Strategy Development for Supercritical Gasoline Injection-Ignition in a Light Duty Engine Transonic Combustion - Injection Strategy...

  14. Transportation Sector Model of the National Energy Modeling System. Volume 2 -- Appendices: Part 1

    SciTech Connect (OSTI)

    NONE

    1998-01-01T23:59:59.000Z

    This volume contains input data and parameters used in the model of the transportation sector of the National Energy Modeling System. The list of Transportation Sector Model variables includes parameters for the following: Light duty vehicle modules (fuel economy, regional sales, alternative fuel vehicles); Light duty vehicle stock modules; Light duty vehicle fleet module; Air travel module (demand model and fleet efficiency model); Freight transport module; Miscellaneous energy demand module; and Transportation emissions module. Also included in these appendices are: Light duty vehicle market classes; Maximum light duty vehicle market penetration parameters; Aircraft fleet efficiency model adjustment factors; and List of expected aircraft technology improvements.

  15. Protons Act as a Transmitter for Muscle Contraction in C. elegans

    E-Print Network [OSTI]

    Cooper, Robin L.

    and pbo-6 genes encode subunits of a ``cys- loop'' proton-gated cation channel required for mus- cles. Usually, classical neurotransmitters are stored in synaptic vesi- cles. Calcium stimulates the fusion

  16. Technical System Targets: Onboard Hydrogen Storage for Light...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Development and Demonstration Plan Table 3.3.3 Technical System Targets: Onboard Hydrogen Storage for Light-Duty Fuel Cell Vehicles a, i Storage Parameter Units 2020...

  17. Sources of UHC and CO in Low Temperature Automotive Diesel Combustion...

    Broader source: Energy.gov (indexed) [DOE]

    Directions in Engine-Efficiency and Emissions Research (DEER) Conference in Detroit, MI, September 27-30, 2010. deer10miles.pdf More Documents & Publications Light Duty...

  18. Indiana: Improving Diesel Engine Performance for Trucks

    Office of Energy Efficiency and Renewable Energy (EERE)

    Cummins, the world's largest diesel engine manufacturer, received funds from EERE to research advanced engine technology for heavy-duty and light-duty vehicles.

  19. Sandia National Laboratories: CRF Researchers Received "Best...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    mixing * ICED * improving fuel efficiency * injection pressure * Internal Combustion Engine Division conference * light-duty diesel engine * LTC * mixture formation process *...

  20. Alternative Fuels Data Center: Vehicle Search

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    School Bus Manufacturer - Light-Duty White plus All Manufacturers Acura Audi BMW Bentley Motors Buick Cadillac Chevrolet Chrysler Dodge Fiat Ford GMC Honda Hyundai Infiniti Jaguar...

  1. Low and high Temperature Dual Thermoelectric Generation Waste...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Low and high Temperature Dual Thermoelectric Generation Waste Heat Recovery System for Light-Duty Vehicles Low and high Temperature Dual Thermoelectric Generation Waste Heat...

  2. Document

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    represent a harmonized and consistent National Program. Under the National Program, automobile manufacturers will be able to build a single light-duty national fleet that...

  3. Cummins' Next Generation Tier 2, Bin 2 Light Truck Diesel Engine...

    Broader source: Energy.gov (indexed) [DOE]

    Technology Light Duty Diesel Aftertreatment System Passive Catalytic Approach to Low Temperature NOx Emission Abatement ATP-LD; Cummins Next Generation Tier 2 Bin 2 Diesel Engine...

  4. Notice of Intent to Issue FOA DE-FOA-0001224: Hydrogen and Fuel...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    in mobile hydrogen refuelers, fuel cell powered range extenders for light-duty hybrid electric vehicles, and a Communities of Excellence topic featuring hydrogen and fuel cell...

  5. Overview of Vehicle Test and Analysis Results from NREL's A/C Fuel Use Reduction Research

    SciTech Connect (OSTI)

    Bharathan, D.; Chaney, L.; Farrington, R. B.; Lustbader, J.; Keyser, M.; Rugh, J. P.

    2007-06-01T23:59:59.000Z

    This paper summarizes results of air-conditioning fuel use reduction technologies and techniques for light-duty vehicles evaluated over the last 10 years.

  6. Testing Electric Vehicle Demand in `Hybrid Households' Using a Reflexive Survey

    E-Print Network [OSTI]

    Kurani, Kenneth; Turrentine, Thomas; Sperling, Daniel

    1996-01-01T23:59:59.000Z

    EV market studies In the absence of data on actual sales,EV, then we expect that 16-18%) of annual light-duty vehicle sales

  7. Review of technical literature and trends related to automobile mass-reduction technology

    E-Print Network [OSTI]

    Lutsey, Nicholas P.

    2010-01-01T23:59:59.000Z

    projects have found a variety of different mass-reduction vehicle designs across different light-duty vehicle classes (sportscars, sedans,

  8. U.S. Energy Information Administration (EIA) - Pub

    Gasoline and Diesel Fuel Update (EIA)

    consumption flat across projection CAFE and greenhouse gas emissions standards boost light-duty vehicle fuel economy Travel demand for personal vehicles continues to grow, but...

  9. EIA - Annual Energy Outlook 2013 Early Release

    Gasoline and Diesel Fuel Update (EIA)

    the greenhouse gas (GHG) and corporate average fuel economy (CAFE) standards for light-duty vehicles (LDVs)1 through the 2025 model year, which increases the new vehicle...

  10. U.S. Energy Information Administration (EIA) - Pub

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    declines in the Reference case CAFE and greenhouse gas emissions standards boost light-duty vehicle fuel economy Miles traveled per licensed driver remains below its...

  11. CX-007595: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    National Energy Technology Laboratory Purchase of four original equipment manufacturer compressed natural gas-fueled light duty sedans. CX-007595.pdf More Documents &...

  12. Requirements-Driven Diesel Catalyzed Particulate Trap Design...

    Broader source: Energy.gov (indexed) [DOE]

    Requirements Driven Diesel Catalyzed Particulate Trap (DCPT) Design and Optimization Tom Harris, Donna McConnell and Danan Dou Delphi Catalyst Tulsa, Oklahoma 2 Euro 45 Light Duty...

  13. Emissions of Criteria Pollutants, Toxic Air Pollutants, and Greenhouse Gases, From the Use of Alternative Transportation Modes and Fuels

    E-Print Network [OSTI]

    Delucchi, Mark

    1996-01-01T23:59:59.000Z

    1994). D. E. Gushee, Alternative Fuels for Automobiles: AreElectric/Hybrid and Alternative Fuel Challenge, Florence,Replacing Gasoline: Alternative Fuels for Light-Duty

  14. Carbonyl Emissions from Gasoline and Diesel Motor Vehicles

    E-Print Network [OSTI]

    Jakober, Chris A.

    2008-01-01T23:59:59.000Z

    fraction of light-duty gasoline vehicle particulate matterQuinone emissions from gasoline and diesel motor vehicles.32 organic compounds from gasoline- powered motor vehicles.

  15. Evaluation of High Efficiency Clean Combustion (HECC) Strategies...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Combustion (HECC) Strategies for Meeting Future Emissions Regulations in Light-Duty Engines Evaluation of High Efficiency Clean Combustion (HECC) Strategies for Meeting Future...

  16. California’s Energy Future: Transportation Energy Use in California

    E-Print Network [OSTI]

    Yang, Christopher; Ogden, Joan M; Hwang, Roland; Sperling, Daniel

    2011-01-01T23:59:59.000Z

    and some other sectors to electricity and hydrogen, liquidand some other sectors to electricity and hydrogen, liquidto electricity or hydrogen in the light-duty sector would

  17. Hydrogen Infrastructure Market Readiness: Opportunities and Potential...

    Broader source: Energy.gov (indexed) [DOE]

    Technologies Program GGE H2I HSCC Gasoline gallon equivalent Hawaii Hydrogen Initiative Hydrogen Station Cost Calculator ICE Internal combustion engine LDV Light-duty vehicle LS...

  18. Hydrogen Delivery - Basics | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Delivery Hydrogen Delivery - Basics Hydrogen Delivery - Basics Photo of light-duty vehicle at hydrogen refueling station. Infrastructure is required to move hydrogen from the...

  19. Advanced Combustion Concepts - Enabling Systems and Solutions...

    Broader source: Energy.gov (indexed) [DOE]

    Evaluation Meeting ace066yilmaz2013o.pdf More Documents & Publications Advanced Combustion Concepts - Enabling Systems and Solutions (ACCESS) for High Efficiency Light Duty...

  20. ORNL/TM-2004/181 Future Potential of Hybrid and Diesel

    E-Print Network [OSTI]

    ORNL/TM-2004/181 Future Potential of Hybrid and Diesel Powertrains in the U.S. Light-Duty Vehicle Analysis, Inc. Walter McManus J. D. Power and Associates #12;DOCUMENT AVAILABILITY Reports produced after. #12;FUTURE POTENTIAL OF HYBRID AND DIESEL POWERTRAINS IN THE U.S. LIGHT-DUTY VEHICLE MARKET David L

  1. Proposed Modifications to Climate Change Proposed Scoping Plan and Appendices

    E-Print Network [OSTI]

    for ease of tracking. #12;2 Recycling and Waste Page 17: Table 2: Recommended Greenhouse Gas Reduction.7 California Light-Duty Vehicle Greenhouse Gas Standards · Implement Pavley standards · Develop Pavley II light-duty vehicle standards 31.7 Energy Efficiency · Building/appliance efficiency, new programs, etc. · Increase

  2. COMBUSTION RESEARCH - FY-1979

    E-Print Network [OSTI]

    ,

    2012-01-01T23:59:59.000Z

    expressions for the thermophoretic force. It was found thatparti·- cles due to thermophoretic force.3 However, data,of the fluid is the thermophoretic force, which arises when

  3. ENERGY & ENVIRONMENT DIVISION ANNUAL REPORT 1979

    E-Print Network [OSTI]

    Cairns, E.J.

    2010-01-01T23:59:59.000Z

    parti- cles due to thermophoretic force. 3 However, data,of the fluid is the thermophoretic force, which arises whenthe magnitude of the thermophoretic force, and for assessing

  4. NETL F 451.1/1-1, Categorical Exclusion Designation Form

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Pontiac, Oakland County,MI,48340 Lean Miller Cycle System Development for Light-Duty Vehicles The project will attempt to demonstrate a 35% improvement in fuel economy over a...

  5. NETL F 451.1/1-1, Categorical Exclusion Designation Form

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Milford, Oakland County, MI 48380 Lean Miller Cycle System Development for Light-Duty Vehicles The project will attempt to demonstrate a 35% improvement in fuel economy over a...

  6. Collecting Construction Equipment Activity Data from Caltrans Project Records

    E-Print Network [OSTI]

    Kable, Justin M

    2008-01-01T23:59:59.000Z

    the five categories, “Water Truck”, “Heavy Duty Truck” and “NONROAD Heavy Duty Truck Light Duty Truck Water Truck TOTALaround the job site. Water trucks are heavy duty trucks that

  7. The Economic, Energy, and GHG Emissions Impacts of Proposed 2017–2025 Vehicle Fuel Economy Standards in the United States

    E-Print Network [OSTI]

    Karplus, Valerie

    2012-07-31T23:59:59.000Z

    Increases in the U.S. Corporate Average Fuel Economy (CAFE) Standards for 2017 to 2025 model year light-duty vehicles are currently under consideration. This analysis uses an economy-wide model with detail in the passenger ...

  8. DOE Issues Request for Information on Fuel Cells for Continuous...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fuel Cells for Continuous On-Board Recharging for Battery Electric Light-Duty Vehicles DOE Issues Request for Information on Fuel Cells for Continuous On-Board Recharging for...

  9. Overview oi the DOE High Efficiency Engine Technologies R&D

    Broader source: Energy.gov (indexed) [DOE]

    Class 8 Trucks (SuperTruck) and Advanced Technology Powertrains For Light-Duty Vehicles (ATP-LD) *Baseline is state-of-the-art port-fuel injected gasoline engine Vehicle...

  10. Overview of the DOE Advanced Combustion Engine R&D

    Broader source: Energy.gov (indexed) [DOE]

    Class 8 Trucks (SuperTruck) and Advanced Technology Powertrains For Light-Duty Vehicles (ATP-LD) *Baseline is state-of-the-art port-fuel injected gasoline engine Vehicle...

  11. U.S. Energy Information Administration (EIA)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    power plants Update of the costs and sizes of electric and plug-in hybrid electric batteries Downward revision of light-duty vehicle travel demand due to the adoption of new...

  12. APBF-DEC NOx Adsorber/DPF Project: SUV/Pick-Up Platform

    Broader source: Energy.gov (indexed) [DOE]

    Status Principal Investigators: Cynthia Webb Phillip Weber DEER August 25, 2003 APBF-DEC NOx AdsorberDPF Project: SUVPick-Up Platform Program Goals Objectives Light-Duty SUV ...

  13. Fuel economy regulations and efficiency technology improvements in U.S. cars since 1975

    E-Print Network [OSTI]

    MacKenzie, Donald Warren

    2013-01-01T23:59:59.000Z

    Light-duty vehicles account for 43% of petroleum consumption and 23% of green- house gas emissions in the United States. Corporate Average Fuel Economy (CAFE) standards are the primary policy tool addressing petroleum ...

  14. Zero-Emission Vehicle Scenario Cost Analysis Using A Fuzzy Set-Based Framework

    E-Print Network [OSTI]

    Lipman, Timothy Edward

    1999-01-01T23:59:59.000Z

    Now, a portion of the 10% EV sales mandate can be composeda small percentage of EV sales with the ZEV mandate). Withsale of more high-profit, light-duty trucks and sport-utility vehicles under CAFE regulations. EV

  15. America's Bottom-Up Climate Change Mitigation Policy

    E-Print Network [OSTI]

    Lutsey, Nicholas P.; Sperling, Dan

    2008-01-01T23:59:59.000Z

    stabilize US GHG emissions at their 2010 levels until thefor US light-duty vehicle GHG emissions under varying levelsUS GHG emissions would be stabilized at 2010 levels by 2020—

  16. atrial transport function: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    cars & light trucks for 2009. Average is 15.7 Myr 2002-2007 11.5 Million barrels of oil per day consumed by on-road vehicles Light-duty vehicles consume 60 % of...

  17. Analysis Reveals Impact of Road Grade on Vehicle Energy Use (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2014-04-01T23:59:59.000Z

    Findings of study indicate that, on average, road grade could be responsible for 1%-3% of fuel use in light-duty automobiles, with many individual trips impacted by as much as 40%.

  18. Press Room - Press Releases - U.S. Energy Information Administration...

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    heavy-duty vehicles. AEO2013 incorporates the greenhouse gas (GHG) and CAFE standards for light-duty vehicles (LDVs) through the 2025 model year, which raise the new vehicle fuel...

  19. World Shale Resources

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    with crude oil approaching the 1970 all-time high of 9.6 million barrels per day * Light-duty vehicle energy use declines sharply reflecting slowing growth in vehicle miles...

  20. U.S. Energy Information Administration (EIA)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    (NHTSA) in November 2010, nor does it include increases in fuel economy standards for light-duty vehicles, as outlined in the September 2010 EPANHTSA Notice of Upcoming Joint...

  1. Annual Energy Outlook 2011 Reference Case

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    mile. Source: EIA, Annual Energy Outlook 2012 Early Release 2010 2035 Growth (2010-2035) Light duty vehicles Fuel consumption (million barrels per day oil equivalent) 8.6 8.8 2%...

  2. E-Print Network 3.0 - automotive power systems Sample Search...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    air conditioning systems used in the automotive industry are based on vapour-compression refrigeration... systems of light duty vehicles. An AC compressor can add up to 5-6 kW...

  3. Changes in release cycles for EIA's

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    light-duty vehicle greenhouse gas and fuel economy standards for model years 2017 to 2025 Energy intensity trends in AEO2010 Energy impacts of proposed CAFE standards for...

  4. U.S. Energy Information Administration (EIA) - Sector

    Gasoline and Diesel Fuel Update (EIA)

    light-duty vehicle greenhouse gas and fuel economy standards for model years 2017 to 2025 Energy intensity trends in AEO2010 Energy impacts of proposed CAFE standards for...

  5. Fuel Savings from Hybrid Electric Vehicles

    SciTech Connect (OSTI)

    Bennion, K.; Thornton, M.

    2009-03-01T23:59:59.000Z

    NREL's study shows that hybrid electric vehicles can significantly reduce oil imports for use in light-duty vehicles, particularly if drivers switch to smaller, more fuel-efficient vehicles overall.

  6. Life-Cycle Analysis of Transportation Fuels and Vehicle Technologies

    E-Print Network [OSTI]

    Bustamante, Fabián E.

    -cycle modeling for light-duty vehicles GREET CCLUB CCLUB: Carbon Calculator for Land Use Change from Biofuels, and black carbon (in a new release) CO2e of the three (with their global warming potentials) Criteria

  7. Combustion and Emissions Performance of Dual-Fuel Gasoline and...

    Broader source: Energy.gov (indexed) [DOE]

    Combustion and Emissions Performance of Dual-Fuel Gasoline and Diesel HECC on a Multi-Cylinder Light Duty Diesel Engine Combustion and Emissions Performance of Dual-Fuel Gasoline...

  8. Department of Defense INSTRUCTION

    E-Print Network [OSTI]

    shall: (1) Create a culture of safety consciousness. (2) Make every effort through light duty programs to a safe and healthful work environment that complies with the DoD safety and health policies identified............................................................................................8 ACTIVITY SAFETY OFFICES

  9. U.S. Energy Information Administration (EIA) - Sector

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    8. Estimateda average fuel economy and greenhouse gas emissions standards proposed for light-duty vehicles, model years 2017-2025 2016 (base) 2017 2018 2019 2020 2021 2022 2023...

  10. Overview of the Advanced Combustion Engine R&D

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    high-efficiency engines using hydrocarbon-based (petroleum and non-petroleum) fuels and hydrogen Light-Duty Heavy-Duty 2010 2015 2015 2018 Engine brake thermal efficiency 45% 50%...

  11. Optimization of Advanced Diesel Engine Combustion Strategies

    Broader source: Energy.gov (indexed) [DOE]

    - July 1, 2009 * End - December 31, 2012 * 60% Complete * Barriers addressed - improved fuel economy in light-duty and heavy-duty engines - create and apply advanced tools for...

  12. Introduction to SAE Hydrogen Fueling Standardization Webinar...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ? At this time, the SAE J2601 only covers fueling for light-duty vehicles. However, motorcycle fueling (<2 kg) is planned to be covered in the future. Q: I may sound a little...

  13. Mg-Based Nano-layered Thin Films for Hydrogen Storage

    E-Print Network [OSTI]

    Junkaew, Anchalee

    2013-11-26T23:59:59.000Z

    -plane direction as a function of the distance from interface. . . . . . . . . . . . . . . 152 xvii LIST OF TABLES TABLE Page 1.1 Selected hydrogen storage targets for light-duty vehicles proposed by DOE in 2009... for hydrogen storage in light-duty vehicles shown in Table 1.1 [10]. Development of materials-based storage will be further discussed in the literature review section. 1.1.3 Hydrogen combustion: fuel cells Fuel cells are electrochemical devices that essentially...

  14. 3D model-based tracking for UAV position control Celine Teuli`ere, Laurent Eck, Eric Marchand, Nicolas Guenard

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    3D model-based tracking for UAV position control C´eline Teuli`ere, Laurent Eck, Eric Marchand control of an unmanned aerial vehi- cle (UAV). Given a 3D model of the edges of its environment, the UAV approach. I. INTRODUCTION Unmanned aerial vehicles (UAVs) have a large range of in- door or outdoor

  15. JOINT ACOUSTIC-VIDEO FINGERPRINTING OF VEHICLES, PART II , F. Guo, A. C. Sankaranarayanan, and R. Chellappa

    E-Print Network [OSTI]

    Cevher, Volkan

    JOINT ACOUSTIC-VIDEO FINGERPRINTING OF VEHICLES, PART II V. Cevher , F. Guo, A. C. Sankaranarayanan, and R. Chellappa Center for Automation Research, University of Maryland, College Park, MD 20742 {volkan the wheelbase length of a vehicle using line metrology in video. We then address the vehi- cle fingerprinting

  16. OneBusAway: Results from Providing Real-Time Arrival Information for Public Transit

    E-Print Network [OSTI]

    Anderson, Richard

    ]. Use of public transportation reduced U.S. CO2 emissions by 6.9 million metric tons in 2005 [18]. While hybrid and electric vehi- cle technologies can reduce the carbon-footprint of single- occupancy vehicles@cs.washington.edu ABSTRACT Public transit systems play an important role in combating traffic congestion, reducing carbon

  17. E-Print Network 3.0 - area ti6al4v substrates Sample Search Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    geometry can be explained by local tissue strains Summary: V parti- cles of 45150 lm in diameter to a machined Ti6Al4V substrate. The resulting porous... -surfaced design)...

  18. andes chile estimated: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    in the southern hemisphere. It will be built in the Agua Negra tunnel planned between Argentina and Chile, and operated by the CLES, a Latin American consortium. With 1750m of rock...

  19. andes iahula 1974-2005: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    in the southern hemisphere. It will be built in the Agua Negra tunnel planned between Argentina and Chile, and operated by the CLES, a Latin American consortium. With 1750m of rock...

  20. andes: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    in the southern hemisphere. It will be built in the Agua Negra tunnel planned between Argentina and Chile, and operated by the CLES, a Latin American consortium. With 1750m of rock...

  1. andes centro-sur 1000-1450: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    in the southern hemisphere. It will be built in the Agua Negra tunnel planned between Argentina and Chile, and operated by the CLES, a Latin American consortium. With 1750m of rock...

  2. andes chile 27degree-33degrees: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    in the southern hemisphere. It will be built in the Agua Negra tunnel planned between Argentina and Chile, and operated by the CLES, a Latin American consortium. With 1750m of rock...

  3. EPP 06/04.13 Dnr UB 55/05-10

    E-Print Network [OSTI]

    Zhao, Yuxiao

    · Licentiate Theses (about halfway to a Ph.D.) · Student Theses · Individual research articles and other- cles etc., the editor of the series does the reviewing. In the case of doctoral theses and licentiate

  4. EROSION-CORROSION-WEAR PROGRAM

    E-Print Network [OSTI]

    Levy, Alan V.

    2013-01-01T23:59:59.000Z

    of Fe-Cr-Ni Alloys in Coal Gasifier Environments," Oxidationof Structural Materials in Coal Gasifier Atmospheres/ UCLA,char parti- cles in coal gasifiers consist of materials with

  5. MATERIALS AND MOLECULAR RESEARCH DIVISION ANNUAL REPORT 1979

    E-Print Network [OSTI]

    Authors, Various

    2013-01-01T23:59:59.000Z

    of Fe-Cr-Ni Alloys in Coal Gasifier Environments," OxidationStructural ~latorials in Coal Gasifier Atmospheres," UCLA,char parti- cles in coal gasifiers consist of materials with

  6. ECOLE PRATIQUE DES HAUTES ETUDES Mention Histoire, textes et documents

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Etude diachronique du système verbal persan (Xe -XVIe siècles) : d'un équilibre à l'autre ? Agnès changements morphologiques et syntaxiques du système verbal persan entre les Xe et XVIe siècles. Dix textes en prose représentatifs (régions et dialectes, judéo-persan compris) ont pu faire apparaître les évolutions

  7. CAFE Standards (released in AEO2010)

    Reports and Publications (EIA)

    2010-01-01T23:59:59.000Z

    Pursuant to the Presidents announcement of a National Fuel Efficiency Policy, the National Highway Traffic Safety Administration (NHTSA) and the EPA have promulgated nationally coordinated standards for tailpipe Carbon Dioxide (CO2)-equivalent emissions and fuel economy for light-duty vehicles (LDVs), which includes both passenger cars and light-duty trucks. In the joint rulemaking, the Environmental Protection Agency is enacting CO2-equivalent emissions standards under the Clean Air Act (CAA), and NHTSA is enacting companion Corporate Average Fuel Economy standards under the Energy Policy and Conservation Act, as amended by the Energy Independence and Security Act of 2007.

  8. Transportation Energy Futures: Project Overview and Findings (Presentation)

    SciTech Connect (OSTI)

    Not Available

    2013-03-01T23:59:59.000Z

    The U.S. Department of Energy-sponsored Transportation Energy Futures (TEF) project examines how combining multiple strategies could reduce both GHG emissions and petroleum use by 80%. The project's primary objective was to help inform domestic decisions about transportation energy strategies, priorities, and investments, with an emphasis on previously underexplored opportunities related to energy efficiency and renewable energy in light-duty vehicles, non-light-duty vehicles, fuels, and transportation demand. This PowerPoint provides an overview of the project and its findings.

  9. FUEL CELL TECHNOLOGIES PROGRAM Hydrogen is a versatile energy car-

    E-Print Network [OSTI]

    to power nearly every end-use energy need. The fuel cell -- an energy conversion device that can a particularly important role in the future by re- placing the imported petroleum we currently use in our cars) fuel cell, which is widely regarded as the most promising for light-duty transporta- tion, hydrogen gas

  10. Clean Cities 2011 Vehicle Buyer's Guide

    SciTech Connect (OSTI)

    Not Available

    2011-01-01T23:59:59.000Z

    The 2011 Clean Cities Light-Duty Vehicle Buyer's Guide is a consumer publication that provides a comprehensive list of commercially available alternative fuel and advanced vehicles in model year 2011. The guide allows for side-by-side comparisons of fuel economy, price, emissions, and vehicle specifications.

  11. www.steps.ucdavis.edu How vehicle fuel economy improvements can

    E-Print Network [OSTI]

    California at Davis, University of

    from Internal Combustion Engine (ICE) vehicles · Role of plug-in electric vehicles (PEV) · Relative are very cost- effective Fuel savings more than pays for fuel economy improvements in light-duty vehicles Fuelsavings #12;7 Some cost/benefit estimates FE Improvement, hybrids, PEVs v. a base ICE vehicle over time

  12. On-Road Emission Measurements of Reactive Nitrogen Compounds from

    E-Print Network [OSTI]

    Denver, University of

    , nitric oxide (NO), nitrogen dioxide (NO2), ammonia (NH3), and nitrous acid (HONO) produced by internalOn-Road Emission Measurements of Reactive Nitrogen Compounds from Three California Cities G A R Y measurements of reactive nitrogen compounds from light-duty vehicles. At the San Jose and wLA sites

  13. Curriculum Vita Robert J. Farrauto, Ph.D.

    E-Print Network [OSTI]

    of Hydrogen and Fuel Cell Technology Currently leads a team of 8scientists and engineers developing catalysts for hydrocarbon fuel processing for the generation of hydrogen and fuel cells. Our team has commercialized 25 new for heavy duty trucks, buses and light duty vehicles for the US, Asian and European market. Total revenues

  14. Durability is one of the most critical remaining issues impeding successful commercialization of broad

    E-Print Network [OSTI]

    fuel cells have the potential to replace the vehicle's internal combustion engine. Specifically is the current focus for light-duty vehicles. The durability of fuel cell sys- tems, however, has not been of broad PEM fuel cell stationary and transportation energy applications, and the durability of fuel cell

  15. E 1 5 T H AV E E 1 8 T H AV E

    E-Print Network [OSTI]

    Oregon, University of

    ) Gaiters 4.00 Hiking Boots - light duty, nylon 4.00 Fleece Jackets 5.00 Rain Jackets 5.00 Rain Pants 5.00 Snowboard Boots 5.00 Snowshoe Equipment (Rental Price) Snow Shoe Pkg. - (Snowshoes/Boots/Poles) 10.00 Snow

  16. E 1 5 T H AV E E 1 8 T H AV E

    E-Print Network [OSTI]

    Oregon, University of

    (Rental Price) Gaiters 4.00 Hiking Boots - light duty,nylon 4.00 Fleece Jackets 5.00 Rain Jackets 5. 20.00 Snowboard Only 15.00 Snowboard Boots 5.00 Snowshoe Equipment (Rental Price) Snow Shoe Pkg.- (Snowshoes/Boots/Poles) 10.00 Snow Shoes Only 6.00 Snow Boots Only 4.00 S

  17. For more information about Clean Transportation projects at the North Carolina Solar Center visit www.cleantransportation.org 12/3/13 Clean Fuel Advanced Technology Information Matrix

    E-Print Network [OSTI]

    www.cleantransportation.org 12/3/13 Clean Fuel Advanced Technology Information Matrix Fuel Type Infrastructure Biodiesel Light Duty (LD), Medium Duty (MD), and Heavy Duty (HD) diesel vehicles and equipment. Biodiesel used in all diesel engines as B100 or in a blend with ULSD. ASTM standards consider B5 (5

  18. Vehicle Systems Integration Laboratory Accelerates Powertrain Development

    ScienceCinema (OSTI)

    None

    2014-06-25T23:59:59.000Z

    ORNL's Vehicle Systems Integration (VSI) Laboratory accelerates the pace of powertrain development by performing prototype research and characterization of advanced systems and hardware components. The VSI Lab is capable of accommodating a range of platforms from advanced light-duty vehicles to hybridized Class 8 powertrains with the goals of improving overall system efficiency and reducing emissions.

  19. Clean Cities 2014 Vehicle Buyer's Guide (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2013-12-01T23:59:59.000Z

    This annual guide features a comprehensive list of 2014 light-duty alternative fuel and advanced vehicles, grouped by fuel and technology. The guide provides model-specific information on vehicle specifications, manufacturer suggested retail price, fuel economy, energy impact, and emissions. The information can be used to identify options, compare vehicles, and help inform purchase decisions.

  20. Testing Electric Vehicle Demand in "Hybrid Households" Using a Reflexive Survey

    E-Print Network [OSTI]

    Kurani, Kenneth S.; Turrentine, Thomas; Sperling, Daniel

    2001-01-01T23:59:59.000Z

    EV market studies In the absenceof data on actual sales,EV, then we expect 16 to 18% annual of of light-duty vehicle salesEV experiments indicate there is still more than adequatepotential marketsfor electric vehicles to have , exceededthe former 1998CARB mandatefor sales

  1. The Household Market for Electric Vehicles: Testing the Hybrid Household Hypothesis -- A Reflexively Designed Survey of New-Car-Buying Multi-Vehicle California Households

    E-Print Network [OSTI]

    Turrentine, Thomas; Kurani, Kenneth S.

    2001-01-01T23:59:59.000Z

    EV,then we expect 13.3 to 15.2% of all light-duty vehicle sales,EV marketpotential for smaller and shorter range velucles represented by our sampleis about 7%of annual, newhght duty vehicle sales.EV body styles" EVs ICEVs Total PAGE 66 THE HOUSEHOLD MA RKET FOR ELECTRIC VEHICLES percent mandatein the year 2003will dependon sales

  2. COMPARISON OF MOBILE5A, MOBILE6, VT-MICRO, AND CMEM MODELS FOR ESTIMATING HOT-STABILIZED LIGHT-

    E-Print Network [OSTI]

    Rakha, Hesham A.

    COMPARISON OF MOBILE5A, MOBILE6, VT-MICRO, AND CMEM MODELS FOR ESTIMATING HOT-STABILIZED LIGHT hot-stabilized, light-duty vehicle emissions. Specifically, Oak Ridge National Laboratory (ORNL comparisons. The comparisons demonstrate that the CMEM model exhibits some abnormal behaviors when compared

  3. Project Summary Report 4197-S 1 The University of Texas at Austiny of Texas at Austiny of T

    E-Print Network [OSTI]

    Texas at Austin, University of

    in order to provide a consistent platform for comparison. Modal emission models for light-duty vehicles such as factories, industrial units, and power plants, and (2) mobile sources such as cars, trucks, and buses applicable in metropolitan areas to readily predict the impact of different ITS strategies, especially those

  4. July 29, 2014 EXECUTIVE SUMMARY

    E-Print Network [OSTI]

    California at Davis, University of

    , Davis INTRODUCTION Hydrogen fuel cell vehicle (FCV) technologies experienced a surge of interest-accelerating the commercialization of hydrogen and fuel cell technologies. The next two to three years will see concerted efforts of the light-duty vehicle market. DRIVING FACTORS FOR HYDROGEN AND FUEL CELLS Perhaps the largest reason

  5. OnLocation, Inc., Energy Systems Consulting Hydrogen Scenarios

    E-Print Network [OSTI]

    -Gate Storage and Compressor or liquefier Natural Gas Reforming Storage and Dispensing Retail markup Consulting 7 NEMS-H2 Light Duty Vehicle Representation · Fuel price and availability varies among 3 markets, there are 16 vehicle technologies arranged in 5 groups ­ Conventional: gasoline, diesel, flex-fuel methanol

  6. Vehicle Systems Integration Laboratory Accelerates Powertrain Development

    SciTech Connect (OSTI)

    None

    2014-04-15T23:59:59.000Z

    ORNL's Vehicle Systems Integration (VSI) Laboratory accelerates the pace of powertrain development by performing prototype research and characterization of advanced systems and hardware components. The VSI Lab is capable of accommodating a range of platforms from advanced light-duty vehicles to hybridized Class 8 powertrains with the goals of improving overall system efficiency and reducing emissions.

  7. Cross-cutting Analysis Matthew Kauffman

    E-Print Network [OSTI]

    · Benefits analysis #12;Vision Model Light-duty Fuel Cell Vehicle Market Penetration Scenario 0% 20% 40% 60 stock 2015 Commercialization decision 2018 Aggressive market penetration begins #12;Vision Results Oil Model suggests reduction in U.S. demand for oil by over 11 million barrels per day by 2040 #12;Future

  8. Assistant Deputy Executive Officer Mobile Source Division

    E-Print Network [OSTI]

    California at Davis, University of

    sources, including all refineries and power plants Top NOx Emissions Sources in 2023 #12;Locomotive Light Duty Trucks/SUVs NOx(tons/day) * Oceangoing vessels = 32tons/day **RECLAIM: 320 largest stationary - Manufacturers may elect to meet a combined NOx+HC standard of 1.4 g/bhp-hr. Source: http://www.dieselnet.com/standards/us

  9. 1 | Fuel Cell Technologies Program Source: US DOE 8/5/2011 eere.energy.gov 5th International Conference on Polymer

    E-Print Network [OSTI]

    ­50%+ reductions for CHP systems (>80% with biogas) · 55­90% reductions for light- duty vehicles · up to 60 -- including biogas, methanol, H2 · Hydrogen -- can be produced cleanly using sunlight or biomass directly Overview 0 25 50 75 100 2008 2009 2010 USA Japan South Korea Germany Other (MW) Megawatts Shipped, Key

  10. 1 | Fuel Cell Technologies Program Source: US DOE 3/19/2013 eere.energy.gov Fuel Cell Technologies Overview

    E-Print Network [OSTI]

    (>80% with biogas) · 55­90% reductions for light- duty vehicles · > 60% (electrical) · > 70% reduction in criteria pollutants for CHP systems Fuel Flexibility · Clean fuels -- including biogas Year in Review from http://cepgi.typepad.com/heslin_rothenberg_farley_/ United States 47% Germany 7

  11. CEC-500-2010-FS-018 Automotive Thermoelectric

    E-Print Network [OSTI]

    to convert waste heat (exhaust gas) into electrical energy. PIER Program Objectives and Anticipated Benefits TRANSPORTATION ENERGY RESEARCH PIER Transportation Research www.energy.ca.gov/research/ transportation/ October annually in California for the purpose of cooling occupants in light-duty vehicles, resulting in a higher

  12. buildings in Continued on p. 5

    E-Print Network [OSTI]

    Pennycook, Steve

    for the waste heat recovery system using exhaust from the light-duty diesel engine Exhaust from diesel vehicles Laboratory No. 1 2011 ORNL is participating in two of three recently announced joint U.S.-China Clean Energy Research Centers (CERCs). ORNL was chosen because of its renowned expertise in building energy efficiency

  13. Vol. 14, No. 2 August 2010 University of Connecticut

    E-Print Network [OSTI]

    Alpay, S. Pamir

    equipment in both heavy- and light- duty vehicles. Dr. Gao, an assistant profes- sor in the CMBE Department commercially. Biodiesel, which has long generated interest in alternative-energy circles, is made from, environmen- tally conscious entrepreneurs are working to turn waste oil into a common part of the fuel mix

  14. FEATURE FOCUS: Fuels & Combustion a new dawn for

    E-Print Network [OSTI]

    way to boost fuel economy in light- duty vehicles and stem the rise in fuel consumption in the United economy, proponents say. Ultra-low sulfur fuel, set to become available in the United States in 2006 in the last decade or so. Engine manufacturers have succeeded in producing refined engines, to the extent

  15. Unburned lubricant produces 60%90% of organic carbon emissions.

    E-Print Network [OSTI]

    Unburned lubricant produces 60%­90% of organic carbon emissions. While diesel fuel is often viewed for gasoline light-duty vehicles are very effective at controlling organic carbon (OC) emissions. Diesel as the most polluting of conventional petroleum-based fuels, emissions from gasoline engines can more

  16. Transportation Energy Futures: Combining Strategies for Deep Reductions in Energy Consumption and GHG Emissions (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2013-03-01T23:59:59.000Z

    This fact sheet summarizes actions in the areas of light-duty vehicle, non-light-duty vehicle, fuel, and transportation demand that show promise for deep reductions in energy use. Energy efficient transportation strategies have the potential to simultaneously reduce oil consumption and greenhouse gas (GHG) emissions. The Transportation Energy Futures (TEF) project examined how the combination of multiple strategies could achieve deep reductions in GHG emissions and petroleum use on the order of 80%. Led by NREL, in collaboration with Argonne National Laboratory, the project's primary goal was to help inform domestic decisions about transportation energy strategies, priorities, and investments, with an emphasis on underexplored opportunities. TEF findings reveal three strategies with the potential to displace most transportation-related petroleum use and GHG emissions: 1) Stabilizing energy use in the transportation sector through efficiency and demand-side approaches. 2) Using additional advanced biofuels. 3) Expanding electric drivetrain technologies.

  17. E 1 5 T H AV E E 1 8 T H AV E

    E-Print Network [OSTI]

    Oregon, University of

    Price) Gaiters 4.00 Hiking Boots - light duty, nylon 4.00 Fleece Jackets 5.00 Rain Jackets 5.00 Rain Only 15.00 Snowboard Boots 5.00 Snowshoe Equipment (Rental Price) Snow Shoe Pkg. - (Snowshoes/Boots/Poles) 10.00 Snow Shoes Only 6.00 Snow Boots Only 4.00 Snow Accessories (Rental Price) Ice Axes 6

  18. Optical and Physical Properties from Primary On-Road Vehicle ParticleEmissions And Their Implications for Climate Change

    SciTech Connect (OSTI)

    Strawa, A.W.; Kirchstetter, T.W.; Hallar, A.G.; Ban-Weiss, G.A.; McLaughlin, J.P.; Harley, R.A.; Lunden, M.M.

    2009-01-23T23:59:59.000Z

    During the summers of 2004 and 2006, extinction and scattering coefficients of particle emissions inside a San Francisco Bay Area roadway tunnel were measured using a combined cavity ring-down and nephelometer instrument. Particle size distributions and humidification were also measured, as well as several gas phase species. Vehicles in the tunnel traveled up a 4% grade at a speed of approximately 60 km h{sup -1}. The traffic situation in the tunnel allows the apportionment of emission factors between light duty gasoline vehicles and diesel trucks. Cross-section emission factors for optical properties were determined for the apportioned vehicles to be consistent with gas phase and particulate matter emission factors. The absorption emission factor (the absorption cross-section per mass of fuel burned) for diesel trucks (4.4 {+-} 0.79 m{sup 2} kg{sup -1}) was 22 times larger than for light-duty gasoline vehicles (0.20 {+-} 0.05 m{sup 2} kg{sup -1}). The single scattering albedo of particles - which represents the fraction of incident light that is scattered as opposed to absorbed - was 0.2 for diesel trucks and 0.3 for light duty gasoline vehicles. These facts indicate that particulate matter from motor vehicles exerts a positive (i.e., warming) radiative climate forcing. Average particulate mass absorption efficiencies for diesel trucks and light duty gasoline vehicles were 3.14 {+-} 0.88 m{sup 2} g{sub PM}{sup -1} and 2.9 {+-} 1.07 m{sup 2} g{sub PM}{sup -1}, respectively. Particle size distributions and optical properties were insensitive to increases in relative humidity to values in excess of 90%, reinforcing previous findings that freshly emitted motor vehicle particulate matter is hydrophobic.

  19. Advanced Boost System Developing for High EGR Applications

    SciTech Connect (OSTI)

    Sun, Harold

    2012-09-30T23:59:59.000Z

    To support industry efforts of clean and efficient internal combustion engine development for passenger and commercial applications • This program focuses on turbocharger improvement for medium and light duty diesel applications, from complete system optimization percepective to enable commercialization of advanced diesel combustion technologies, such as HCCI/LTC. • Improve combined turbocharger efficiency up to 10% or fuel economy by 3% on FTP cycle at Tier II Bin 5 emission level.

  20. Sustainable Infrastructure

    E-Print Network [OSTI]

    Prevedouros, Panos D.

    of renewables State of Oregon (2006) Alt. fuel and hybrid light duty state vehicles Green bldg. policy level #12;Island Population 1 Azores-San miguel 140,000 2 Bahamas-N.Providence 307,000 3 Big Island 148 and Tobago 1,305,000 13 Crete 623,666 14 Malta 419,285 15 Guadaloupe 408,000 16 Martinique 401,000 17 Bahamas

  1. Hydrogen Storage and Supply for Vehicular Fuel Systems

    Energy Innovation Portal (Marketing Summaries) [EERE]

    2012-05-11T23:59:59.000Z

    Various alternative-fuel systems have been proposed for passenger vehicles and light-duty trucks to reduce the worldwide reliance on fossils fuels and thus mitigate their polluting effects.  Replacing gasoline and other refined hydrocarbon fuels continues to present research and implementation challenges for the automotive industry. During the last decade, hydrogen fuel technology has emerged as the prime alternative that will finally drive automotive fuel systems into the new millennium....

  2. Lightweight Materials Overview | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensionalthe10IO1OP001 LetterLight-Duty Lean

  3. Liquid Fuels from Biomass | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensionalthe10IO1OP001 LetterLight-Duty

  4. Shell Gas to Liquids in the context of a Future Fuel Strategy - Technical

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy Usage » SearchEnergyDepartment of EnergyLight-Duty Diesel

  5. Significant Cost Improvement of Li-Ion Cells Through Non-NMP Electrode

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy Usage » SearchEnergyDepartment of EnergyLight-DutyCoating, Direct Separator

  6. Silicon Nanostructure-based Technology for Next Generation Energy Storage

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy Usage » SearchEnergyDepartment of EnergyLight-DutyCoating, Direct

  7. Simplification of Diesel Emission Control System Packaging Using SCR Coated

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy Usage » SearchEnergyDepartment of EnergyLight-DutyCoating,

  8. Simulation and Analysis of HP/LP EGR for Heavy-Duty Applications |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy Usage » SearchEnergyDepartment of EnergyLight-DutyCoating,Department of

  9. Simulation of High Efficiency Clean Combustion Engines and Detailed

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy Usage » SearchEnergyDepartment of EnergyLight-DutyCoating,Department

  10. Simulation of High Efficiency Clean Combustion Engines and Detailed

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy Usage » SearchEnergyDepartment of EnergyLight-DutyCoating,DepartmentChemical

  11. Mining Users' Significant Driving Routes with Low-power Sensors

    E-Print Network [OSTI]

    Nawaz, Sarfraz; Mascolo, Cecilia

    2014-01-01T23:59:59.000Z

    sensing [38] from low power sensors, the energy cost of location sensing is high when location sensors are active. It is also possible for the phone to be plugged in a charging port in the vehi- cle during journeys but this places an extra constraint... on the user to remember to plug the phone in during each journey for energy intensive location sensing. Significantly lower- ing the energy consumption of sensing these journeys will relieve the user of this requirement and thus make it more likely...

  12. Optimal Motion Planning with constraints for mobile robot navigation

    E-Print Network [OSTI]

    Pearce, Roger Allan

    2013-02-22T23:59:59.000Z

    , " in IEEE Trans. Robot. Automat. , 1998, vol. 14, pp. 166 ? 171. [2] F. Lamiraux and J. -P. Lammond, "Smooth ¬ion planning for car-like vehi- cl&. s, " in Proc. IEEE Int. Conf. Robot. Autom. (ICRA), 2001, pp. 498 ? 501. [3] M. Yamamoto, M. Iwamura..., ansi A. Mohri, "Quasi-time-optimal motion plan- ning of &noh&le platforms in the presence of obstacles, " in Proc. IEEE Int. Conf. Robot, . Autom. (ICRA), 1999, pp. 2958 ? 2963. [4] Nancy t''I. Arnato, linsuck Kim, Roger A. Pearce, "Extracting...

  13. Trends in on-road vehicle emissions of ammonia

    SciTech Connect (OSTI)

    Kean, A.J.; Littlejohn, D.; Ban-Weiss, G.A.; Harley, R.A.; Kirchstetter, T.W.; Lunden, M. M.

    2008-07-15T23:59:59.000Z

    Motor vehicle emissions of ammonia have been measured at a California highway tunnel in the San Francisco Bay area. Between 1999 and 2006, light-duty vehicle ammonia emissions decreased by 38 {+-} 6%, from 640 {+-} 40 to 400 {+-} 20 mg kg{sup -1}. High time resolution measurements of ammonia made in summer 2001 at the same location indicate a minimum in ammonia emissions correlated with slower-speed driving conditions. Variations in ammonia emission rates track changes in carbon monoxide more closely than changes in nitrogen oxides, especially during later evening hours when traffic speeds are highest. Analysis of remote sensing data of Burgard et al. (Environ Sci. Technol. 2006, 40, 7018-7022) indicates relationships between ammonia and vehicle model year, nitrogen oxides, and carbon monoxide. Ammonia emission rates from diesel trucks were difficult to measure in the tunnel setting due to the large contribution to ammonia concentrations in a mixed-traffic bore that were assigned to light-duty vehicle emissions. Nevertheless, it is clear that heavy-duty diesel trucks are a minor source of ammonia emissions compared to light-duty gasoline vehicles.

  14. 2005 The Society for the Study of Evolution. All rights reserved. Evolution, 59(7), 2005, pp. 16001603

    E-Print Network [OSTI]

    Hohtola, Esa

    Lund, Sweden 6E-mail: jan-ake.nilsson@zooekol.lu.se Abstract. Sedentary passerine birds living- entary passerine birds living in temperate and boreal regions. During this period, energy requirements is produced by shivering, primarily in the flight mus- cles. In situations where an increased sustained work

  15. Transfer Learning for Constituency-Based Grammars Yuan Zhang, Regina Barzilay

    E-Print Network [OSTI]

    Barzilay, Regina

    . The standard solution to this bottleneck has re- lied on manually crafted transformation rules that map readily these transformation rules is a major un- dertaking which requires multiple correction cy- cles and a deep manually-crafted transformation rules, this approach relies on a small amount of annotations in the target

  16. arXiv:1412.0916v1[quant-ph]2Dec2014 Quantum Trajectories based on the Weak Value

    E-Print Network [OSTI]

    Tsutsui, Izumi

    -0033, Japan 2 Theory Center, Institute of Particle and Nuclear Studies, High Energy Accelerator Research for an ensemble of parti- cles by combining the weak value of the momentum and the determination of the position of the position disturbs the momentum of the particle rendering the successive determination of the position

  17. Automatic Signal Enhancement in Particle Physics Using Multivariate Classification and Physical Constraints

    E-Print Network [OSTI]

    Vilalta, Ricardo

    elementary particles produced at frontier energy colliders. Typical colliders have millions of channels. An energetic, strongly-interacting particle entering a calorimeter causes a chain reaction of nuclear breakup and particle production, resulting in a shower of parti- cles passing through the detector. These signals must

  18. Eur. Phys. J. Appl. Phys. 49, 13106 (2010) DOI: 10.1051/epjap/2009191

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    , is thermonuclear fusion. Indeed, in fusion devices like ITER, reactor walls can be severely eroded by the plasma. For fusion plasmas, production of dust particles from wall erosion is a serious issue for performance strongly reduce performances of the fusion plasma. Moreover, dust parti- cles can have a porous structure

  19. Solvothermal reduction synthesis and characterization of superparamagnetic magnetite nanoparticles{

    E-Print Network [OSTI]

    Gao, Song

    - cles, surface-coated by a molecular layer, have been widely used in cleanup remediation4 and biological-separate technologies.5 Magnetite nanoparticles properly coated by a special surfac- tant could also form a water to produce superparamagnetic nanoparticles with diameter less than 15 nm and a narrow size distribution

  20. MATERIAUX 2006 13-17 Novembre 2006 Dijon, France Fluage en flexion du dioxyde d'uranium aprs irradiation aux ions

    E-Print Network [OSTI]

    Boyer, Edmond

    MATERIAUX 2006 13-17 Novembre 2006 ­ Dijon, France Fluage en flexion du dioxyde d'uranium après du futur ». MOTS-CLES : Dioxyde d'uranium, irradiation, fluage, flexion, haute température Aujourd centrales qui peuvent moduler leur puissance de fonctionnement à la demande. Le dioxyde d'uranium est

  1. Dye Surface Coating Enables Visible Light Activation of TiO2 Nanoparticles Leading to Degradation of

    E-Print Network [OSTI]

    Brown, Eric

    Dye Surface Coating Enables Visible Light Activation of TiO2 Nanoparticles Leading to Degradation that an alizarin red S ~ARS! dye coating on TiO2 nanoparticles enables visible light activation of reactive oxygen species. Successful coating of nanoparti- cles with dye is demonstrated through

  2. WELDING RESEARCH -s77WELDING JOURNAL

    E-Print Network [OSTI]

    DuPont, John N.

    WELDING RESEARCH -s77WELDING JOURNAL ABSTRACT. The microstructure of AL- 6XN plates joined via a double-sided fric- tion stir weld has been investigated. The microstructural zones that develop during friction stir welding (FSW) reflect de- creasing strains and less severe thermal cy- cles with increasing

  3. 1 INTRODUCTION The plastic behavior of a certain powder or soil sam-

    E-Print Network [OSTI]

    Luding, Stefan

    1 INTRODUCTION The plastic behavior of a certain powder or soil sam- ple depends on the history in order to in- vestigate the elasto-plastic response of granular ma- terials. An alternative is obtained by the calculation of the interaction forces between parti- cles. This includes, e.g., plastic

  4. lectrotechnique du Futur 14&15 dcembre 2011, Belfort

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    requires the minimization and the ability to predict maintenance operations. In variable speed operation fonctionnement à vitesse variable ou en régime transitoire, des techniques de traitement du signal avancées sont and an analysis of the above techniques for failure detection in an induction generator. MOTS-CLES ­ Génératrice

  5. PDE Estimation Techniques for Advanced Battery Management Systems -Part I: SOC Estimation

    E-Print Network [OSTI]

    Krstic, Miroslav

    - cles and renewable energy resources is battery energy storage. Advanced battery systems representPDE Estimation Techniques for Advanced Battery Management Systems - Part I: SOC Estimation S. J sensing and actuation exists to monitor and control the internal state of these systems. As such, battery

  6. Extrait de De la conversion, sous la direction de Jean-Christophe Attias, collection Patrimoines , ditions du Cerf, Paris, 1998, p. 183-202.

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    1 Extrait de De la conversion, sous la direction de Jean-Christophe Attias, collection « Patrimoines », �ditions du Cerf, Paris, 1998, p. 183-202. Récits de conversion des XVIe et XVIIe siècles salut individuel1 ? L'étude des conversions devrait se prêter à merveille à une telle entreprise. On s

  7. Author's personal copy Towards optimization of a pyroelectric energy converter for harvesting waste heat

    E-Print Network [OSTI]

    Pilon, Laurent

    including heat pumps, cryogenic refrigera- tion, and air liquefaction [3]. In the last several decades im- pact to the environment. Power, refrigeration, and heat pump cy- cles release large amounts heat Ashcon Navid, Damien Vanderpool, Abubakarr Bah, Laurent Pilon * Mechanical and Aerospace

  8. From the Big Bang to the Higgs Boson in Less Than an Hour

    E-Print Network [OSTI]

    Fygenson, Deborah Kuchnir

    From the Big Bang to the Higgs Boson in Less Than an Hour Jeffrey D neutrino Z0 W + W -g gluon (8) photon Z boson W bosons Quarks Leptons H Higgs boson Gauge bosons (force field quanta) Higgs boson and vacuum expectation value Strong force EM force Weak force #12;Par7cles

  9. 90 Los Alamos Science Number 23 1995 Number 23 1995 Los Alamos Science 91

    E-Print Network [OSTI]

    Massey, Thomas N.

    to the world-average annual dose per person from each of the major natural sources of ionizing radiation of location. This dose is due mainly to potassium-40, which is a naturally occurring isotope of potassium. The purple cir- cles represent excess cancer deaths above the normal rate. The job of the radiation

  10. MATERIAUX 2006 13-17 Novembre 2006 Dijon, France Elaboration de gradients de composition continue dans des taillants PDC

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    dans des taillants PDC Elodie Sorlier a , Christophe Colin a , Hedi Sellami b , Alfazazi Dourfaye c of microhardness, cobalt concentration and grains size. The results obtained on PDC drill cutter show gradients never been reported before to our knowledge. MOTS-CLES : drilling, FGM, imbibition, PDC, WC

  11. 2001 Macmillan Magazines Ltd These observations also test a central

    E-Print Network [OSTI]

    nature of the parti- cles into account. This quantum coherence causes memory effects in the scattering integrals that are very different from the simple instantaneous Boltzmann scattering rates. These memory the vibra- tional dynamics of large biomolecules to nuclei containing lots of protons and neutrons

  12. DOI: 10.1002/chem.201001301 Imaging the Oxidation of ZnS Encapsulated in Carbon Nanotubes

    E-Print Network [OSTI]

    Dunin-Borkowski, Rafal E.

    -called "Kirkendall effect" has been used to explain the formation of a number of hollow nanoparti- cles[2,3] and nanotubes.[4,5] However, due to their dimensions, it has been difficult to characterise the "solid-to-hollow underlying the transition. However, definitive evidence to support this assumption for individual nano

  13. 29th International Cosmic Ray Conference Pune (2005) 00, 101104 Heliospheric cosmic ray observations with Pamela experiment

    E-Print Network [OSTI]

    Morselli, Aldo

    , will allow to address several items of cosmic-ray physics. In this paper we will focus on the solar of the instrument is a permanent magnet spectrometer equipped with a double-sided, microstrip silicon tracker. Under are the studies of Solar Particle Events, trapped and secondary parti- cles in Earth's magnetosphere and particles

  14. The nested simple conformal loop ensembles in the Riemann sphere

    E-Print Network [OSTI]

    Antti Kemppainen; Wendelin Werner

    2014-05-23T23:59:59.000Z

    Simple conformal loop ensembles (CLE) are a class of random collection of simple non-intersecting loops that are of particular interest in the study of conformally invariant systems. Among other things related to these CLEs, we prove the invariance in distribution of their nested "full-plane" versions under the inversion $z \\mapsto 1/z$.

  15. Colloids and Surfaces A: Physicochem. Eng. Aspects 385 (2011) 95103 Contents lists available at ScienceDirect

    E-Print Network [OSTI]

    Tafreshi, Hooman Vahedi

    aerogel particles), where no analytical method is applicable due to the complexity of the coatings May 2011 Available online 2 June 2011 Keywords: Superhydrophobic coating Granular surface Critical distributed spherical parti- cles (e.g., superhydrophobic coatings developed by depositing of hydrophobic

  16. GEOPHYSICAL RESEARCH LETTERS, VOL. , NO. , PAGES 14, Three-dimensional energetic ion sounding of the

    E-Print Network [OSTI]

    ,4 Abstract. We present new results using energetic parti- cles to remotely sound the highGEOPHYSICAL RESEARCH LETTERS, VOL. , NO. , PAGES 1­4, Three-dimensional energetic ion sounding present a new technique to remotely sense the magnetopause in three dimensions as a function of time

  17. Automated Requirements Testing with Abstract Oracles Bernhard K. Aichernig

    E-Print Network [OSTI]

    , a mapping between abstract and concrete test data is required. The presented framework focuses on the usage of formal requirements specifications as test ora­ cles for concrete implementations. The approach is based, then the model may serve as a test oracle and specification as well. In Fig­ A A op abstract C C op concrete r r

  18. tel-00506471,version1-27Jul2010 tel-00506471,version1-27Jul2010

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    of Variable-Valve-Actuation equipped Internal Combustion Engines Thesis Advisor: M. Nicolas PETIT Committee-mail: thomas.leroy@{ifp.fr, mines-paristech.fr} Key words. - Internal combustion engine, Variable Valve Actuation, Engine control, Cylinder filling, Dynamical coordination Mots cl´es. - Moteur `a combustion

  19. phys. stat. sol. (c) 1, No. 11, 29252928 (2004) / DOI 10.1002/pssc.200405364 2004 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

    E-Print Network [OSTI]

    Page, John

    of sintered glass beads. A transition to a very strong scattering regime is observed, whereupon the diffusion and foams [1­5]. In the low frequency, long wavelength limit, the medium appears uniform and the phonons modes of a model porous material formed from sintered networks of spherical glass parti- cles. We show

  20. Drinking Water Problems: Radionuclides

    E-Print Network [OSTI]

    Lesikar, Bruce J.; Melton, Rebecca; Hare, Michael; Hopkins, Janie; Dozier, Monty

    2006-08-04T23:59:59.000Z

    can accumulate to harmful levels in drinking water. As radionuclides decay, they emit radioactive parti- cles such as alpha particles, beta particles and gamma rays. Each type of particle produces different effects on humans. Alpha particles... penetrating, alpha particles cause more damage per unit volume than do beta particles or gamma rays. Beta particles and gamma rays deposit their ener- gy over longer distances. Beta particles can be stopped by a piece of wood or a thin sheet of metal...

  1. L'Antiquit tardive dans l'Est de la Gaule, I, p. 173-207 (30e suppl. la RAE), SAE 2011 * Inrap Grand-Est Sud (stephane.venault@inrap.fr; sylvie.mouton-venault@inrap.fr; nicolas.tisserand@inrap.fr).

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    ERS� : le cas intermédiaire d'une occupation rurale aux iiie et ive siècles ap. J.-C. entre Fragnes et Virey-le-Grand au nord-est de Chalon-sur-Saône (Saône-et-Loire) Stéphane venault*, Sylvie mouton-venault*, Nicolas tisseranD*, Pierre nouvel** Le projet d'aménagement d'un campus industriel au nord-est de Chalon

  2. AGNS LENEPVEU-HOTZ (DOCTORANTE, COLE PRATIQUE DES HAUTES TUDES, PARIS)

    E-Print Network [OSTI]

    Boyer, Edmond

    PERSANS ET DE L'�VOLUTION DE LEUR CONSTRUCTION ENTRE LES XE ET XVIE SI�CLES R�SUM� Les verbes modaux persans byistan, « falloir », syad, « il se peut », « peut-être », tavnistan, « pouvoir », et xv stan sont exclus avec l'infinitif verbal. Mots clés : verbes modaux, persan classique, diachronie, modalités

  3. Siph-i Ispahn : devenir des groupes consonantiques initiaux moyen-perses en persan

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Siph-i Ispahn : devenir des groupes consonantiques initiaux moyen-perses en persan Agnès Lenepveu persan contemporain n'a plus cette structure. On s'interrogera sur les raisons et l'époque de cette transformation. Lorsqu'on observe de près le lexique du persan des Xe -XIe siècles, on a rapidement une

  4. Constructions cach'ees en alg`ebre abstraite (2) le principe local-global

    E-Print Network [OSTI]

    Lombardi, Henri

    th'eor`emes d'alg`ebre abstrait* *e, des constructions de matrices inversibles dans des (th'eor`eme de Quillen-Susl* *in) et une preuve constructive du th'eor`eme de stabilit'e de's stability t* *heorem. MSC 2000 : 13C10, 19A13, 14Q20, 03F65. Mots cl'es : Th'eor`eme de Horrocks, Th'eor

  5. THE JOURNAL OF CHEMICAL PHYSICS 139, 121918 (2013) Combinatoric analysis of heterogeneous stochastic self-assembly

    E-Print Network [OSTI]

    Levine, Alex J.

    stochastic self-assembly Maria R. D'Orsogna,1,2 Bingyu Zhao,3 Bijan Berenji,1,2 and Tom Chou2,4 1 Department of heterogeneous nucleation and self-assembly in a closed sys- tem with a fixed total particle number M. INTRODUCTION The self-assembly of molecules and macroscopic parti- cles into larger units is a common process

  6. Some histological manifestations in the early postnatal vitamin B?? deficient albino rat

    E-Print Network [OSTI]

    Johnson, Elmer Marshall

    1955-01-01T23:59:59.000Z

    rats were slightly smeller in sine. Ilistologically the cortex was reduced in thickness ?nd therefore in total volume There was a considerable increase in intercellular space which was often filled with connective tissue and sometimes blood..., The renal corpus- cles were characterised by an increase in the space between Bowman's capsule and the glomerulus (I~'ig, 7). The loops of Henle in the medul- lary region showed reduoed lumina. The convoluted tubules (pr obably due to the fatty...

  7. Onboard Hydrogen/Helium Sensors in Support of the Global Technical Regulation: An Assessment of Performance in Fuel Cell Electric Vehicle Crash Tests

    SciTech Connect (OSTI)

    Post, M. B.; Burgess, R.; Rivkin, C.; Buttner, W.; O'Malley, K.; Ruiz, A.

    2012-09-01T23:59:59.000Z

    Automobile manufacturers in North America, Europe, and Asia project a 2015 release of commercial hydrogen fuel cell powered light-duty road vehicles. These vehicles will be for general consumer applications, albeit initially in select markets but with much broader market penetration expected by 2025. To assure international harmony, North American, European, and Asian regulatory representatives are striving to base respective national regulations on an international safety standard, the Global Technical Regulation (GTR), Hydrogen Fueled Vehicle, which is part of an international agreement pertaining to wheeled vehicles and equipment for wheeled vehicles.

  8. 2011 Vehicle Technologies Market Report

    SciTech Connect (OSTI)

    Davis, Stacy Cagle [ORNL; Boundy, Robert Gary [ORNL; Diegel, Susan W [ORNL

    2012-02-01T23:59:59.000Z

    This report details the major trends in U.S. light-duty vehicle and medium/heavy truck markets as well as the underlying trends that caused them. This report is supported by the U.S. Department of Energy s (DOE) Vehicle Technologies Program (VTP), and, in accord with its mission, pays special attention to the progress of high-efficiency and alternative-fuel technologies. This third edition since this report was started in 2008 offers several marked improvements relative to its predecessors. Most significantly, where earlier editions of this report focused on supplying information through an examination of market drivers, new vehicle trends, and supplier data, this edition uses a different structure. After opening with a discussion of energy and economics, this report features a section each on the light-duty vehicle and heavy/medium truck markets, and concluding with a section each on technology and policy. In addition to making this sectional re-alignment, this year s edition of the report also takes a different approach to communicating information. While previous editions relied heavily on text accompanied by auxiliary figures, this third edition relies primarily on charts and graphs to communicate trends. Any accompanying text serves to introduce the trends communication by the graphic and highlight any particularly salient observations. The opening section on Energy and Economics discusses the role of transportation energy and vehicle markets on a national (and even international) scale. For example, Figures 11 through 13 discuss the connections between global oil prices and U.S. GDP, and Figures 20 and 21 show U.S. employment in the automotive sector. The following section examines Light-Duty Vehicle use, markets, manufacture, and supply chains. Figures 26 through 33 offer snapshots of major light-duty vehicle brands in the U.S. and Figures 38 through 43 examine the performance and efficiency characteristics of vehicles sold. The discussion of Medium and Heavy Trucks offers information on truck sales (Figures 58 through 61) and fuel use (Figures 64 through 66). The Technology section offers information on alternative fuel vehicles and infrastructure (Figures 68 through 77), and the Policy section concludes with information on recent, current, and near-future Federal policies like the Cash for Clunkers program (Figures 87 and 88) and the Corporate Automotive Fuel Economy standard (Figures 90 through 99) and. In total, the information contained in this report is intended to communicate a fairly complete understanding of U.S. highway transportation energy through a series of easily digestible nuggets.

  9. Vehicle Data for Alternative Fuel Vehicles (AFVs) and Hybrid Fuel Vehicles (HEVs) from the Alternative Fuels and Advanced Vehicles Data Center (AFCD)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    The AFDC provides search capabilities for many different models of both light-duty and heavy-duty vehicles. Engine and transmission type, fuel and class, fuel economy and emission certification are some of the facts available. The search will also help users locate dealers in their areas and do cost analyses. Information on alternative fuel vehicles and on advanced technology vehicles, along with calculators, resale and conversion information, links to incentives and programs such as Clean Cities, and dozens of fact sheets and publications make this section of the AFDC a valuable resource for car buyers.

  10. Natural Gas Engine Development Gaps (Presentation)

    SciTech Connect (OSTI)

    Zigler, B.T.

    2014-03-01T23:59:59.000Z

    A review of current natural gas vehicle offerings is presented for both light-duty and medium- and heavy-duty applications. Recent gaps in the marketplace are discussed, along with how they have been or may be addressed. The stakeholder input process for guiding research and development needs via the Natural Gas Vehicle Technology Forum (NGVTF) to the U.S. Department of Energy and the California Energy Commission is reviewed. Current high-level natural gas engine development gap areas are highlighted, including efficiency, emissions, and the certification process.

  11. Ultra-low Sulfur Reduction Emission Control Device/Development of an On-board Fuel Sulfur Trap

    SciTech Connect (OSTI)

    Rohrbach, Ron; Barron, Ann

    2008-07-31T23:59:59.000Z

    Honeywell has completed working on a multiyear program to develop and demonstrate proof-of-concept for an 'on-vehicle' desulfurization fuel filter for both light duty and heavy-duty diesel engines. Integration of the filter into the vehicle fuel system will reduce the adverse effects sulfur has on post combustion emission control devices such as NOx adsorbers. The NOx adsorber may be required to meet the proposed new EPA Tier II and '2007-Rule' emission standards. The proposed filter concept is based on Honeywell's reactive filtration technology and experience in liquids handling and conditioning. A regeneration and recycling plan for the spent filters was also examined. We have chosen to develop and demonstrate this technology based on criteria set forth for a heavy duty CIDI engine system because it represents a more challenging set of conditions of service intervals and overall fuel usage over light duty systems. In the second phase of the program a light duty diesel engine test was also demonstrated. Further, technology developed under this proposal would also have application for the use of liquid based fuels for fuel cell power generation. The program consisted of four phases. Phase I focused on developing a concept design and analysis and resolution of technical barriers concerning removal of sulfur-containing species in low sulfur fuels. In Phase II concentrated on prototype filter design and preparation followed by qualification testing of this component in a fuel line application. Phase III studied life cycle and regeneration options for the spent filter. Phase IV focused on efficacy and benefits in the desulfation steps of a NOx adsorber on both a heavy and light duty engine. The project team included a number of partners, with Honeywell International as the prime contractor. The partners include an emission control technology developer (Honeywell International), a fuel technology developer (Marathon Ashland Petroleum), a catalyst technology developer (Johnson Matthey), a CIDI engine manufacturer (Navistar Inc. (formerly International Truck & Engine Corporation) and Mack Trucks Inc.), and filter recycler (American Wastes Industries).

  12. Particulate Measurements and Emissions Characterization of Alternative Fuel Vehicle Exhaust

    SciTech Connect (OSTI)

    Durbin, T. D.; Truex, T. J.; Norbeck, J. M. (Center for Environmental Research and Technology College of Engineering, University of California - Riverside, California)

    1998-11-19T23:59:59.000Z

    The objective of this project was to measure and characterize particulate emissions from light-duty alternative fuel vehicles (AFVs) and equivalent gasoline-fueled vehicles. The project included emission testing of a fleet of 129 gasoline-fueled vehicles and 19 diesel vehicles. Particulate measurements were obtained over Federal Test Procedure and US06 cycles. Chemical characterization of the exhaust particulate was also performed. Overall, the particulate emissions from modern technology compressed natural gas and methanol vehicles were low, but were still comparable to those of similar technology gasoline vehicles.

  13. Comparing the Performance of SunDiesel and Conventional Diesel in a

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartmentTieCelebrate Earth Codestheat TwoDepartment of EnergyLight-Duty

  14. Figure ES3. Sales-Weighted Horsepower and On-Road Fuel Mileage for New

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 633 6221,2372003ofDec. 31 705PC'sFigureLight-Duty

  15. Lighting Controls | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensionalthe10IO1OP001 LetterLight-Duty Lean GDI VehicleComposites

  16. Lighting Designer Roundtable on Solid-State Lighting | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensionalthe10IO1OP001 LetterLight-Duty Lean GDI VehicleCompositesLighting

  17. Lighting Energy Efficiency in Parking Campaign

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensionalthe10IO1OP001 LetterLight-Duty Lean GDI

  18. Lighting Principles and Terms | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensionalthe10IO1OP001 LetterLight-Duty Lean GDIPrinciples and Terms

  19. Lighting Retrofit Workbook: A Practical"How To" Guide for the National

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensionalthe10IO1OP001 LetterLight-Duty Lean GDIPrinciples andPark Service

  20. Lighting Tip Card | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensionalthe10IO1OP001 LetterLight-Duty Lean GDIPrinciples andPark

  1. Lighting Up Georgia Convenience Stores | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensionalthe10IO1OP001 LetterLight-Duty Lean GDIPrinciples andParkUp

  2. Lighting and Daylighting Products and Services | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensionalthe10IO1OP001 LetterLight-Duty Lean GDIPrinciples andParkUpand

  3. Lighting and Electrical Team Leadership and Project Delivery

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensionalthe10IO1OP001 LetterLight-Duty Lean GDIPrinciples

  4. Lighting the Way for Big Energy Savings in Los Angeles | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensionalthe10IO1OP001 LetterLight-Duty Lean GDIPrinciplesEnergy 14,

  5. Lighting the Way for Big Energy Savings in Los Angeles | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensionalthe10IO1OP001 LetterLight-Duty Lean GDIPrinciplesEnergy

  6. Lightweight Sealed Steel Fuel Tanks for Advanced Hybrid Electric Vehicles |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensionalthe10IO1OP001 LetterLight-Duty LeanDepartment of Energy Sealed

  7. Lightweighting and Propulsion Materials Roadmapping Workshop Outbrief |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensionalthe10IO1OP001 LetterLight-Duty LeanDepartment of Energy

  8. Lignin Utilization Presentation for BETO 2015 Project Peer Review

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensionalthe10IO1OP001 LetterLight-Duty LeanDepartment of EnergyLignin

  9. Lignol Innovations Inc | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensionalthe10IO1OP001 LetterLight-Duty LeanDepartment of

  10. Linda Vu | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensionalthe10IO1OP001 LetterLight-Duty LeanDepartmentLinda Vu About Us

  11. Liquefaction and Pipeline Costs | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensionalthe10IO1OP001 LetterLight-Duty LeanDepartmentLindaLiquefaction and

  12. Liquefaction of Forest Biomass to ÂŤDrop-inÂŽ Hydrocarbon Biofuels Presentation for BETO 2015 Project Peer Review

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensionalthe10IO1OP001 LetterLight-Duty LeanDepartmentLindaLiquefaction

  13. Liquefied Natural Gas Safety Research

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensionalthe10IO1OP001 LetterLight-Duty LeanDepartmentLindaLiquefactionMay

  14. Liquid Fuels via Upgrading of Syngas Intermediates Presentation for BETO 2015 Project Peer Review

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensionalthe10IO1OP001 LetterLight-Duty11.2.13 Liquid Fuels via Upgrading

  15. Liquid Fuels via Uprading of Syngas Intermediates Presentation for BETO 2015 Project Peer Review

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensionalthe10IO1OP001 LetterLight-Duty11.2.13 Liquid Fuels via

  16. Liquid Hydrogen Production and Delivery from a Dedicated Wind Power Plant |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensionalthe10IO1OP001 LetterLight-Duty11.2.13 Liquid Fuels viaDepartment

  17. Liquid Propane Injection Applications | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensionalthe10IO1OP001 LetterLight-Duty11.2.13 Liquid Fuels

  18. Liquid Propane Injection Applications | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensionalthe10IO1OP001 LetterLight-Duty11.2.13 Liquid FuelsLiquid propane

  19. Liquid Propane Injection Technology Conductive to Today's North American

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensionalthe10IO1OP001 LetterLight-Duty11.2.13 Liquid FuelsLiquid

  20. Liquid Transportation Fuels from Coal and Biomass | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensionalthe10IO1OP001 LetterLight-Duty11.2.13 Liquid