Sample records for light-duty trucks model

  1. Detroit Diesel Engine Technology for Light Duty Truck Applications - DELTA Engine Update

    SciTech Connect (OSTI)

    Freese, Charlie

    2000-08-20T23:59:59.000Z

    The early generation of the DELTA engine has been thoroughly tested and characterized in the virtual lab, during engine dynamometer testing, and on light duty trucks for personal transportation. This paper provides an up-to-date account of program findings. Further, the next generation engine design and future program plans will be briefly presented.

  2. Selection of Light Duty Truck Engine Air Systems Using Virtual Lab Tests

    SciTech Connect (OSTI)

    Zhang, Houshun

    2000-08-20T23:59:59.000Z

    An integrated development approach using seasoned engine technology methodologies, virtual lab parametric investigations, and selected hardware verification tests reflects today's state-of-the-art R&D trends. This presentation will outline such a strategy. The use of this ''Wired'' approach results in substantial reduction in the development cycle time and hardware iterations. An example showing the virtual lab application for a viable design of the air-exhaust-turbocharger system of a light duty truck engine for personal transportation will be presented.

  3. Light-duty vehicle mpg and market shares report, model year 1988

    SciTech Connect (OSTI)

    Hu, P.S.; Williams, L.S.; Beal, D.J.

    1989-04-01T23:59:59.000Z

    This issue of Light-Duty Vehicle MPG and Market Shares Report: Model Year 1988 reports the estimated sales-weighted fuel economies, sales, market shares, and other vehicle characteristics of automobiles and light trucks. The estimates are made on a make and model basis, from model year 1976 to model year 1988. Vehicle sales data are used as weighting factors in the sales-weighted estimation procedure. Thus, the estimates represent averages of the overall new vehicle fleet, reflecting the composition of the fleet. Highlights are provided on the trends in the vehicle characteristics from one model year to the next. Analyses are also made on the fuel economy changes to determine the factors which caused the changes. The sales-weighted fuel economy for the new car fleet in model year 1988 showed an improvement of 0.1 mpg from model year 1987, while light trucks showed a 0.2 mpg loss. The 0.2 mpg loss by the light trucks can be attributed to the fact that every light truck size class experienced either losses or no change in their fuel economies from the previous model year, except for the large van size class. Overall, the sales-weighted fuel economy of the entire light-duty vehicle fleet (automobiles and light trucks combined) has remained relatively stable since model year 1986. Domestic light-duty vehicles began to gain popularity over their import counterparts; and light trucks increased their market shares relative to automobiles. Domestic cars regained 0.3% of the automobile market, reversing the previous trend. Similar to the automobile market, domestic light trucks continued to gain popularity over their import counterparts, partly due to the increasing popularity of domestic small vans. 3 refs., 35 figs., 48 tabs.

  4. QUANTIFYING THE EXTERNAL COSTS OF VEHICLE USE: EVIDENCE FROM AMERICA'S TOP SELLING LIGHT-DUTY MODELS

    E-Print Network [OSTI]

    Kockelman, Kara M.

    -selling passenger cars and light-duty trucks in the U.S. Among these external costs, those associated with crashes estimated for several other vehicles of particular interest, including GM's Hummer and several hybrid drive: small cars, mid-sized cars, large cars, luxury cars, crossover utility vehicles (CUVs), sport

  5. Light Duty Combustion Research: Advanced Light-Duty Combustion...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Combustion Research: Advanced Light-Duty Combustion Experiments Light Duty Combustion Research: Advanced Light-Duty Combustion Experiments 2009 DOE Hydrogen Program and Vehicle...

  6. Improving the Efficiency of Light-Duty Vehicle HVAC Systems using...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Light-Duty Vehicle HVAC Systems using Zonal Thermoelectric Devices and Comfort Modeling Improving the Efficiency of Light-Duty Vehicle HVAC Systems using Zonal Thermoelectric...

  7. Aerodynamic Forces on Truck Models, Including Two Trucks in Tandem

    E-Print Network [OSTI]

    Hammache, Mustapha; Michaelian, Mark; Browand, Fred

    2001-01-01T23:59:59.000Z

    rear-edge shaping on the aerodynamic drag of bluff vehiclesOF CALIFORNIA, BERKELEY Aerodynamic Forces on Truck Models,TRANSIT AND HIGHWAYS Aerodynamic Forces on Truck Models,

  8. Development of a Waste Heat Recovery System for Light Duty Diesel...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Light Duty Diesel Engines A Quantum Leap for Heavy-Duty Truck Engine Efficiency - Hybrid Power System of Diesel and WHR-ORC Engines High Efficiency Engine Systems Development and...

  9. Fuel Economy of the Light-Duty Vehicle Fleet (released in AEO2005)

    Reports and Publications (EIA)

    2005-01-01T23:59:59.000Z

    The U.S. fleet of light-duty vehicles consists of cars and light trucks, including minivans, sport utility vehicles (SUVs) and trucks with gross vehicle weight less than 8,500 pounds. The fuel economy of light-duty vehicles is regulated by the (Corporate Average Fuel Economy) CAFE standards set by the National Highway Traffic Safety Administration. Currently, the CAFE standard is 27.5 miles per gallon (mpg) for cars and 20.7 mpg for light trucks. The most recent increase in the CAFE standard for cars was in 1990, and the most recent increase in the CAFE standard for light trucks was in 1996.

  10. Advanced Technologies for Light-Duty Vehicles (released in AEO2006)

    Reports and Publications (EIA)

    2006-01-01T23:59:59.000Z

    A fundamental concern in projecting the future attributes of light-duty vehicles-passenger cars, sport utility vehicles, pickup trucks, and minivans-is how to represent technological change and the market forces that drive it. There is always considerable uncertainty about the evolution of existing technologies, what new technologies might emerge, and how consumer preferences might influence the direction of change. Most of the new and emerging technologies expected to affect the performance and fuel use of light-duty vehicles over the next 25 years are represented in the National Energy Modeling System (NEMS); however, the potential emergence of new, unforeseen technologies makes it impossible to address all the technology options that could come into play. The previous section of Issues in Focus discussed several potential technologies that currently are not represented in NEMS. This section discusses some of the key technologies represented in NEMS that are expected to be implemented in light-duty vehicles over the next 25 years.

  11. Technology Development for Light Duty High Efficient Diesel Engines...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Light Duty High Efficient Diesel Engines Technology Development for Light Duty High Efficient Diesel Engines Improve the efficiency of diesel engines for light duty applications...

  12. Light Duty Efficient, Clean Combustion

    SciTech Connect (OSTI)

    Donald Stanton

    2010-12-31T23:59:59.000Z

    Cummins has successfully completed the Light Duty Efficient Clean Combustion (LDECC) cooperative program with DoE. This program was established in 2007 in support of the Department of Energy's Vehicles Technologies Advanced Combustion and Emissions Control initiative to remove critical barriers to the commercialization of advanced, high efficiency, emissions compliant internal combustion (IC) engines for light duty vehicles. Work in this area expanded the fundamental knowledge of engine combustion to new regimes and advanced the knowledge of fuel requirements for these diesel engines to realize their full potential. All of the following objectives were met with fuel efficiency improvement targets exceeded: (1) Improve light duty vehicle (5000 lb. test weight) fuel efficiency by 10.5% over today's state-of-the-art diesel engine on the FTP city drive cycle; (2) Develop and design an advanced combustion system plus aftertreatment system that synergistically meets Tier 2 Bin 5 NOx and PM emissions standards while demonstrating the efficiency improvements; (3) Maintain power density comparable to that of current conventional engines for the applicable vehicle class; and (4) Evaluate different fuel components and ensure combustion system compatibility with commercially available biofuels. Key accomplishments include: (1) A 25% improvement in fuel efficiency was achieved with the advanced LDECC engine equipped with a novel SCR aftertreatment system compared to the 10.5% target; (2) An 11% improvement in fuel efficiency was achieved with the advanced LDECC engine and no NOx aftertreamtent system; (3) Tier 2 Bin 5 and SFTP II emissions regulations were met with the advanced LDECC engine equipped with a novel SCR aftertreatment system; (4) Tier 2 Bin 5 emissions regulations were met with the advanced LDECC engine and no NOx aftertreatment, but SFTP II emissions regulations were not met for the US06 test cycle - Additional technical barriers exist for the no NOx aftertreatment engine; (5) Emissions and efficiency targets were reached with the use of biodiesel. A variety of biofuel feedstocks (soy, rapeseed, etc.) was investigated; (6) The advanced LDECC engine with low temperature combustion was compatible with commercially available biofuels as evaluated by engine performance testing and not durability testing; (7) The advanced LDECC engine equipped with a novel SCR aftertreatment system is the engine system architecture that is being further developed by the Cummins product development organization. Cost reduction and system robustness activities have been identified for future deployment; (8) The new engine and aftertreatment component technologies are being developed by the Cummins Component Business units (e.g. fuel system, turbomachinery, aftertreatment, electronics, etc.) to ensure commercial viability and deployment; (9) Cummins has demonstrated that the technologies developed for this program are scalable across the complete light duty engine product offerings (2.8L to 6.7L engines); and (10) Key subsystems developed include - sequential two stage turbo, combustions system for low temperature combustion, novel SCR aftertreatment system with feedback control, and high pressure common rail fuel system. An important element of the success of this project was leveraging Cummins engine component technologies. Innovation in component technology coupled with system integration is enabling Cummins to move forward with the development of high efficiency clean diesel products with a long term goal of reaching a 40% improvement in thermal efficiency for the engine plus aftertreatment system. The 40% improvement is in-line with the current light duty vehicle efficiency targets set by the 2010 DoE Vehicle Technologies MYPP and supported through co-operative projects such as the Cummins Advanced Technology Powertrains for Light-Duty Vehicles (ATP-LD) started in 2010.

  13. Light Duty Efficient, Clean Combustion

    SciTech Connect (OSTI)

    Stanton, Donald W

    2011-06-03T23:59:59.000Z

    Cummins has successfully completed the Light Duty Efficient Clean Combustion (LDECC) cooperative program with DoE. This program was established in 2007 in support of the Department of Energy’s Vehicles Technologies Advanced Combustion and Emissions Control initiative to remove critical barriers to the commercialization of advanced, high efficiency, emissions compliant internal combustion (IC) engines for light duty vehicles. Work in this area expanded the fundamental knowledge of engine combustion to new regimes and advanced the knowledge of fuel requirements for these diesel engines to realize their full potential. All of the following objectives were met with fuel efficiency improvement targets exceeded: 1. Improve light duty vehicle (5000 lb. test weight) fuel efficiency by 10.5% over today’s state-ofthe- art diesel engine on the FTP city drive cycle 2. Develop & design an advanced combustion system plus aftertreatment system that synergistically meets Tier 2 Bin 5 NOx and PM emissions standards while demonstrating the efficiency improvements. 3. Maintain power density comparable to that of current conventional engines for the applicable vehicle class. 4. Evaluate different fuel components and ensure combustion system compatibility with commercially available biofuels. Key accomplishments include: ? A 25% improvement in fuel efficiency was achieved with the advanced LDECC engine equipped with a novel SCR aftertreatment system compared to the 10.5% target ? An 11% improvement in fuel efficiency was achieved with the advanced LDECC engine and no NOx aftertreamtent system ? Tier 2 Bin 5 and SFTP II emissions regulations were met with the advanced LDECC engine equipped with a novel SCR aftertreatment system ? Tier 2 Bin 5 emissions regulations were met with the advanced LDECC engine and no NOx aftertreatment, but SFTP II emissions regulations were not met for the US06 test cycle – Additional technical barriers exist for the no NOx aftertreatment engine ? Emissions and efficiency targets were reached with the use of biodiesel. A variety of biofuel feedstocks (soy, rapeseed, etc.) was investigated. ? The advanced LDECC engine with low temperature combustion was compatible with commercially available biofuels as evaluated by engine performance testing and not durability testing. ? The advanced LDECC engine equipped with a novel SCR aftertreatment system is the engine system architecture that is being further developed by the Cummins product development organization. Cost reduction and system robustness activities have been identified for future deployment. ? The new engine and aftertreatment component technologies are being developed by the Cummins Component Business units (e.g. fuel system, turbomachinery, aftertreatment, electronics, etc.) to ensure commercial viability and deployment ? Cummins has demonstrated that the technologies developed for this program are scalable across the complete light duty engine product offerings (2.8L to 6.7L engines) ? Key subsystems developed include – sequential two stage turbo, combustions system for low temperature combustion, novel SCR aftertreatment system with feedback control, and high pressure common rail fuel system An important element of the success of this project was leveraging Cummins engine component technologies. Innovation in component technology coupled with system integration is enabling Cummins to move forward with the development of high efficiency clean diesel products with a long term goal of reaching a 40% improvement in thermal efficiency for the engine plus aftertreatment system. The 40% improvement is in-line with the current light duty vehicle efficiency targets set by the 2010 DoE Vehicle Technologies MYPP and supported through co-operative projects such as the Cummins Advanced Technology Powertrains for Light- Duty Vehicles (ATP-LD) started in 2010.

  14. Light Duty Fuel Cell Electric Vehicle Hydrogen Fueling Protocol...

    Broader source: Energy.gov (indexed) [DOE]

    Light Duty Fuel Cell Electric Vehicle Hydrogen Fueling Protocol Light Duty Fuel Cell Electric Vehicle Hydrogen Fueling Protocol Webinar slides from the U.S. Department of Energy...

  15. WORKSHOP REPORT:Light-Duty Vehicles Technical Requirements and...

    Energy Savers [EERE]

    Light-Duty Vehicles Technical Requirements and Gaps for Lightweight and Propulsion Materials WORKSHOP REPORT:Light-Duty Vehicles Technical Requirements and Gaps for Lightweight and...

  16. Thermoelectric HVAC and Thermal Comfort Enablers for Light-Duty...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Thermoelectric HVAC and Thermal Comfort Enablers for Light-Duty Vehicle Applications Thermoelectric HVAC and Thermal Comfort Enablers for Light-Duty Vehicle Applications 2012 DOE...

  17. Technical Challenges and Opportunities Light-Duty Diesel Engines...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Challenges and Opportunities Light-Duty Diesel Engines in North America Technical Challenges and Opportunities Light-Duty Diesel Engines in North America 2005 Diesel Engine...

  18. Light Duty Vehicle Pathways July 26, 2010

    E-Print Network [OSTI]

    Light Duty Vehicle Pathways July 26, 2010 Sam Baldwin Chief Technology Officer Office of Energy Efficiency and Renewable Energy U.S. Department of Energy #12;2 Conventional Oil International Energy Agency #12;3 InterAcademy Panel Statement On Ocean Acidification, 1 June 2009 · Signed by the National

  19. Cummins Work Toward Successful Introduction of Light-Duty Clean...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Cummins Work Toward Successful Introduction of Light-Duty Clean Diesel Engines in US Cummins Work Toward Successful Introduction of Light-Duty Clean Diesel Engines in US 2005...

  20. Light Duty Combustion Research: Advanced Light-Duty Combustion...

    Broader source: Energy.gov (indexed) [DOE]

    Developed multi-component vaporization models 6 Facility and operating conditions The optical engine matches a metal test engine at UW The optical piston retains the same bowl and...

  1. Transportation Energy Futures Series: Potential for Energy Efficiency Improvement Beyond the Light-Duty-Vehicle Sector

    SciTech Connect (OSTI)

    Vyas, A. D.; Patel, D. M.; Bertram, K. M.

    2013-03-01T23:59:59.000Z

    Considerable research has focused on energy efficiency and fuel substitution options for light-duty vehicles, while much less attention has been given to medium- and heavy-duty trucks, buses, aircraft, marine vessels, trains, pipeline, and off-road equipment. This report brings together the salient findings from an extensive review of literature on future energy efficiency options for these non-light-duty modes. Projected activity increases to 2050 are combined with forecasts of overall fuel efficiency improvement potential to estimate the future total petroleum and greenhouse gas (GHG) emissions relative to current levels. This is one of a series of reports produced as a result of the Transportation Energy Futures (TEF) project, a Department of Energy-sponsored multi-agency project initiated to pinpoint underexplored strategies for abating GHGs and reducing petroleum dependence related to transportation.

  2. alternative fuel light-duty vehicles

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched FerromagnetismWaste andAnniversary, part 2Zenoss,AmineBroadbandLight-Duty Vehicles T

  3. Ricardo's ACTION Strategy: An Enabling Light Duty Diesel Technology...

    Broader source: Energy.gov (indexed) [DOE]

    light duty diesel solutions for the US market Technology Strategy Lowest system cost Engine technology selection Aftertreatment technology selection Control approach & OBD...

  4. Mobility chains analysis of technologies for passenger cars and light duty vehicles fueled with biofuels : application of the Greet model to project the role of biomass in America's energy future (RBAEF) project.

    SciTech Connect (OSTI)

    Wu, M.; Wu, Y.; Wang, M; Energy Systems

    2008-01-31T23:59:59.000Z

    The Role of Biomass in America's Energy Future (RBAEF) is a multi-institution, multiple-sponsor research project. The primary focus of the project is to analyze and assess the potential of transportation fuels derived from cellulosic biomass in the years 2015 to 2030. For this project, researchers at Dartmouth College and Princeton University designed and simulated an advanced fermentation process to produce fuel ethanol/protein, a thermochemical process to produce Fischer-Tropsch diesel (FTD) and dimethyl ether (DME), and a combined heat and power plant to co-produce steam and electricity using the ASPEN Plus{trademark} model. With support from the U.S. Department of Energy (DOE), Argonne National Laboratory (ANL) conducted, for the RBAEF project, a mobility chains or well-to-wheels (WTW) analysis using the Greenhouse gases, Regulated Emissions, and Energy use in Transportation (GREET) model developed at ANL. The mobility chains analysis was intended to estimate the energy consumption and emissions associated with the use of different production biofuels in light-duty vehicle technologies.

  5. Advanced Technology Light Duty Diesel Aftertreatment System ...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Approach to Low Temperature NOx Emission Abatement Cummins' Next Generation Tier 2, Bin 2 Light Truck Diesel Engine ATP-LD; Cummins Next Generation Tier 2 Bin 2 Diesel Engine...

  6. Hybrid options for light-duty vehicles.

    SciTech Connect (OSTI)

    An, F., Stodolsky, F.; Santini, D.

    1999-07-19T23:59:59.000Z

    Hybrid electric vehicles (HEVs) offer great promise in improving fuel economy. In this paper, we analyze why, how, and by how much vehicle hybridization can reduce energy consumption and improve fuel economy. Our analysis focuses on efficiency gains associated solely with vehicle hybridization. We do not consider such other measures as vehicle weight reduction or air- and tire-resistance reduction, because such measures would also benefit conventional technology vehicles. The analysis starts with understanding the energy inefficiencies of light-duty vehicles associated with different operation modes in US and Japanese urban and highway driving cycles, with the corresponding energy-saving potentials. The potential for fuel economy gains due to vehicle hybridization can be estimated almost exclusively on the basis of three elements: the reducibility of engine idling operation, the recoverability of braking energy losses, and the capability of improving engine load profiles to gain efficiency associated with specific HEV configurations and control strategies. Specifically, we evaluate the energy efficiencies and fuel economies of a baseline MY97 Corolla-like conventional vehicle (CV), a hypothetical Corolla-based minimal hybrid vehicle (MHV), and a MY98 Prius-like full hybrid vehicle (FHV). We then estimate energy benefits of both MHVs and FHVs over CVs on a performance-equivalent basis. We conclude that the energy benefits of hybridization vary not only with test cycles, but also with performance requirements. The hybrid benefits are greater for ''Corolla (high) performance-equivalent'' vehicles than for ''Prius (low) performance-equivalent'' vehicles. An increasing acceleration requirement would result in larger fuel economy benefits from vehicle hybridization.

  7. Light-duty diesel engine development status and engine needs

    SciTech Connect (OSTI)

    Not Available

    1980-08-01T23:59:59.000Z

    This report reviews, assesses, and summarizes the research and development status of diesel engine technology applicable to light-duty vehicles. In addition, it identifies specific basic and applied research and development needs in light-duty diesel technology and related health areas where initial or increased participation by the US Government would be desirable. The material presented in this report updates information provided in the first diesel engine status report prepared by the Aerospace Corporation for the Department of Energy in September, 1978.

  8. Fleet assessment for opportunities to effectively deploy light duty alternative fuel vehicles

    SciTech Connect (OSTI)

    Not Available

    1990-05-01T23:59:59.000Z

    The City of Detroit conducted an initial program to assess the potential for substitution of vehicles currently in operation with alternative fuel vehicles. A key task involved the development of an operating profile of the participant light truck and van fleets involved in the study. To do this a survey of operators of light duty trucks and vans within the project participant fleets was conducted. These survey results were analyzed to define the potential for substitution of conventional vehicles with alternate fuel vehicles with alternate fuel vehicles and to identify candidates for participation in the Mini-Demonstration portion of the project. The test program involved the deployment of an electric van (two GM Griffon Electric Vans provided by Detroit Edison) at seven Mini-Demonstration sites for a period of four weeks each for test and evaluation. The Technical Work Group then analyzed vehicle performance data and used a questionnaire to obtain impressions and attitudes of the users toward the acceptability of the electric van. The Technical Work Group (TWG) and Management Assessment Group (MAG) then prepared recommendations and an implementation plan to develop further information aimed toward eventual expanded deployment of alternative fuel vehicles within project participant light duty fleets. The MAG concluded that the study had been beneficial in collecting and developing important quantitative information, introducing a set of public fleet managers to alternative fuel vehicle opportunities and features, and had provided specific experience with the Griffon van which provided some indications of requirements in such vehicles if they are to be a normal part of public fleet operations. These included the need for some increase of the mileage range of the Griffon, an improvement in the ride and handling of the Griffon, and several minor'' difficulties experienced with malfunctioning or inconvenient characteristics of the Griffon equipment. 25 figs., 1 tab.

  9. Light-Duty Fuel Cell Vehicles State of Development

    E-Print Network [OSTI]

    Light-Duty Fuel Cell Vehicles State of Development Fuel Cell Vehicles (FCVs) An international race is under way to commercialize fuel cell vehicles (FCVs). The competition is characterized by rapid by taking full advantage of the characteristics and capabilities of fuel cells. But most of the vehicles

  10. A Study of Emissions from a Light Duty Diesel Engine with the...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    A Study of Emissions from a Light Duty Diesel Engine with the European Particulate Measurement Programme A Study of Emissions from a Light Duty Diesel Engine with the European...

  11. Economic Comparison of LNT Versus Urea SCR for Light-Duty Diesel...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Comparison of LNT Versus Urea SCR for Light-Duty Diesel Vehicles in the U.S. Market Economic Comparison of LNT Versus Urea SCR for Light-Duty Diesel Vehicles in the U.S. Market...

  12. High-Efficiency Clean Combustion in Light-Duty Multi-Cylinder...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    High-Efficiency Clean Combustion in Light-Duty Multi-Cylinder Diesel Engines High-Efficiency Clean Combustion in Light-Duty Multi-Cylinder Diesel Engines 2010 DOE Vehicle...

  13. Biodiesel Effects on the Operation of U.S. Light Duty Tier 2...

    Broader source: Energy.gov (indexed) [DOE]

    Biodiesel Effects on the Operation of U.S. Light Duty Tier 2 Engine and Aftertreatment Systems Biodiesel Effects on the Operation of U.S. Light Duty Tier 2 Engine and...

  14. Biodiesel Effects on the Operation of U.S. Light-Duty Tier 2...

    Broader source: Energy.gov (indexed) [DOE]

    Biodiesel Effects on the Operation of U.S. Light-Duty Tier 2 Engine and Aftertreatment Systems Biodiesel Effects on the Operation of U.S. Light-Duty Tier 2 Engine and...

  15. High Efficiency Clean Combustion in Multi-Cylinder Light-Duty...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    & Publications High-Efficiency Clean Combustion in Light-Duty Multi-Cylinder Diesel Engines High Efficiency Clean Combustion in Multi-Cylinder Light-Duty Engines High Efficiency...

  16. High Efficiency Clean Combustion in Multi-Cylinder Light-Duty...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Light-Duty Multi-Cylinder Engine High Efficiency Clean Combustion in Multi-Cylinder Light-Duty Engines Vehicle Technologies Office Merit Review 2014: Impacts of Advanced Combustion...

  17. High Efficiency Clean Combustion in Multi-Cylinder Light-Duty...

    Broader source: Energy.gov (indexed) [DOE]

    Efficiency Clean Combustion in Multi-Cylinder Light-Duty Engines High Efficiency Clean Combustion in Multi-Cylinder Light-Duty Engines 2012 DOE Hydrogen and Fuel Cells Program and...

  18. Light-Duty Reactivity Controlled Compression Ignition Drive Cycle Fuel

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensionalthe10IO1OP001 LetterLight-Duty Lean GDI Vehicle TechnologyEconomy

  19. Light-duty Diesels: Clean Enough? | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensionalthe10IO1OP001 LetterLight-Duty Lean GDI Vehicle

  20. The Diesel Engine Powering Light-Duty Vehicles: Today and Tomorrow...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Engine Emissions Reduction (DEER) Conference Presentation: Volkwagen AG, Wolfsburg, Germany 2004deerschindler.pdf More Documents & Publications Accelerating Light-Duty Diesel...

  1. Biodiesel Effects on the Operation of U.S. Light-Duty Tier 2...

    Broader source: Energy.gov (indexed) [DOE]

    NOx Adsorber SCR System Summary and Conclusions Overview Evaluate the impact of Biodiesel fuel blends on the performance of advanced emission control systems for light-duty...

  2. Biodiesel Effects on the Operation of U.S. Light Duty Tier 2...

    Broader source: Energy.gov (indexed) [DOE]

    Test Results Summary and Conclusions Project Goals Evaluate the impact of Biodiesel fuel blends on the performance of advanced emission control systems for light-duty...

  3. Future Potential of Hybrid and Diesel Powertrains in the U.S. Light-duty Vehicle Market

    SciTech Connect (OSTI)

    Greene, D.L.

    2004-08-23T23:59:59.000Z

    Diesel and hybrid technologies each have the potential to increase light-duty vehicle fuel economy by a third or more without loss of performance, yet these technologies have typically been excluded from technical assessments of fuel economy potential on the grounds that hybrids are too expensive and diesels cannot meet Tier 2 emissions standards. Recently, hybrid costs have come down and the few hybrid makes available are selling well. Diesels have made great strides in reducing particulate and nitrogen oxide emissions, and are likely though not certain to meet future standards. In light of these developments, this study takes a detailed look at the market potential of these two powertrain technologies and their possible impacts on light-duty vehicle fuel economy. A nested multinomial logit model of vehicle choice was calibrated to 2002 model year sales of 930 makes, models and engine-transmission configurations. Based on an assessment of the status and outlook for the two technologies, market shares were predicted for 2008, 2012 and beyond, assuming no additional increase in fuel economy standards or other new policy initiatives. Current tax incentives for hybrids are assumed to be phased out by 2008. Given announced and likely introductions by 2008, hybrids could capture 4-7% and diesels 2-4% of the light-duty market. Based on our best guesses for further introductions, these shares could increase to 10-15% for hybrids and 4-7% for diesels by 2012. The resulting impacts on fleet average fuel economy would be about +2% in 2008 and +4% in 2012. If diesels and hybrids were widely available across vehicle classes, makes, and models, they could capture 40% or more of the light-duty vehicle market.

  4. A Waste Heat Recovery System for Light Duty Diesel Engines

    SciTech Connect (OSTI)

    Briggs, Thomas E [ORNL; Wagner, Robert M [ORNL; Edwards, Kevin Dean [ORNL; Curran, Scott [ORNL; Nafziger, Eric J [ORNL

    2010-01-01T23:59:59.000Z

    In order to achieve proposed fuel economy requirements, engines must make better use of the available fuel energy. Regardless of how efficient the engine is, there will still be a significant fraction of the fuel energy that is rejected in the exhaust and coolant streams. One viable technology for recovering this waste heat is an Organic Rankine Cycle. This cycle heats a working fluid using these heat streams and expands the fluid through a turbine to produce shaft power. The present work was the development of such a system applied to a light duty diesel engine. This lab demonstration was designed to maximize the peak brake thermal efficiency of the engine, and the combined system achieved an efficiency of 44.4%. The design of the system is discussed, as are the experimental performance results. The system potential at typical operating conditions was evaluated to determine the practicality of installing such a system in a vehicle.

  5. Urea SCR and DPF System for Tier 2 Diesel Light-Duty Trucks

    Broader source: Energy.gov (indexed) [DOE]

    SCR Deflectormixer, long inlet cone Larger DOC, upstream injection with spray target Turbo & EGR modifications, post injection 2.01 Reduced tailpipe NOx PM: 2-5 mgmi Increased...

  6. Urea SCR Durability Assessment for Tier 2 Light-Duty Truck | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy Usage »of EnergyTheTwo New12.'6/0.2 ......Uranium Lease TractsEnergy

  7. Urea SCR and DPF System for Tier 2 Diesel Light-Duty Trucks | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy Usage »of EnergyTheTwo New12.'6/0.2 ......Uranium Lease

  8. Caterpillar Light Truck Clean Diesel Program

    SciTech Connect (OSTI)

    Robert L. Miller; Kevin P. Duffy; Michael A. Flinn; Steve A. Faulkner; Mike A. Graham

    1999-04-26T23:59:59.000Z

    In 1998, light trucks accounted for over 48% of new vehicle sales in the U.S. and well over half the new Light Duty vehicle fuel consumption. The Light Truck Clean Diesel (LTCD) program seeks to introduce large numbers of advanced technology diesel engines in light-duty trucks that would improve their fuel economy (mpg) by at least 50% and reduce our nation's dependence on foreign oil. Incorporating diesel engines in this application represents a high-risk technical and economic challenge. To meet the challenge, a government-industry partnership (Department of Energy, diesel engine manufacturers, and the automotive original equipment manufacturers) is applying joint resources to meet specific goals that will provide benefits to the nation. [1] Caterpillar initially teamed with Ford Motor Company on a 5 year program (1997-2002) to develop prototype vehicles that demonstrate a 50% fuel economy improvement over the current 1997 gasoline powered light truck vehicle in this class while complying with EPA's Tier II emissions regulations. The light truck vehicle selected for the demonstration is a 1999 Ford F150 SuperCab. To meet the goals of the program, the 4.6 L V-8 gasoline engine in this vehicle will be replaced by an advanced compression ignition direct injection (CIDI) engine. Key elements of the Caterpillar LTCD program plan to develop the advanced CIDI engine are presented in this paper.

  9. Fumigation of alcohol in a light duty automotive diesel engine

    SciTech Connect (OSTI)

    Broukhiyan, E.M.H.; Lestz, S.S.

    1981-08-01T23:59:59.000Z

    A light-duty automotive diesel engine was fumigated with methanol and ethanol in amounts up to 35% and 50% of the total fuel energy respectively. The main purpose of this study was to determine the effect of alcohol (methanol and ethanol) fumigation on engine performance at various operating conditions. Engine fuel efficiency, emissions, smoke, and the occurrence of severe knock were the parameters used to evaluate performance. Raw exhaust particulate and its soluble organic extract were screened for biological activity using the Ames Salmonella typhimurium assay. Results are given for a test matrix made up of twelve steady-state operating conditions. For all conditions except the 1/4 rack (light load) condition, modest thermal efficiency gains were noted upon ethanol fumigation. Methanol showed the same increase at 3/4 and full rack (high load) conditions. However, engine roughness or the occurrence of severe knock limited the maximum amount of alcohol that could be fumigated. Brake specific NO/sub x/ concentrations were found to decrease for all ethanol conditions tested. Oxides of nitrogen emissions, on a volume basis, decreased for all alcohol conditions tested. Based on the limited particulate data analyzed, it appears as though ethanol fumigation, like methanol fumigation, while lowering the mass of particulate emitted, does enhance the biological activity of that particulate.

  10. Effect of Gasoline Properties on Exhaust Emissions from Tier 2 Light-Duty Vehicles -- Final Report: Phase 3; July 28, 2008 - July 27, 2013

    SciTech Connect (OSTI)

    Whitney, K.

    2014-05-01T23:59:59.000Z

    This report covers work the Southwest Research Institute (SwRI) Office of Automotive Engineering has conducted for the U.S. Environmental Protection Agency (EPA), the National Renewable Energy Laboratory (NREL), and the Coordinating Research Council (CRC) in support of the Energy Policy Act of 2005 (EPAct). Section 1506 of EPAct requires EPA to produce an updated fuel effects model representing the 2007 light - duty gasoline fleet, including determination of the emissions impacts of increased renewable fuel use. This report covers the exhaust emissions testing of 15 light-duty vehicles with 27 E0 through E20 test fuels, and 4 light-duty flexible fuel vehicles (FFVs) on an E85 fuel, as part of the EPAct Gasoline Light-Duty Exhaust Fuel Effects Test Program. This program will also be referred to as the EPAct/V2/E-89 Program based on the designations used for it by the EPA, NREL, and CRC, respectively. It is expected that this report will be an attachment or a chapter in the overall EPAct/V2/E-89 Program report prepared by EPA and NREL.

  11. Light-Duty Diesel EngineTechnology to Meet Future Emissions and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    to Meet Future Emissions and Performance Requirements of the U.S. Market Light-Duty Diesel EngineTechnology to Meet Future Emissions and Performance Requirements of the U.S....

  12. The Diesel Engine Powering Light-Duty Vehicles: Today and Tomorrow

    Broader source: Energy.gov (indexed) [DOE]

    diesel-powered light-duty vehicles 1990 1995 2000 2005 2010 2015 2020 2025 Energy Greenhouse effect CO 2 Exhaust gas emissions CO, NO x , HC, PM Importance Environmental driving...

  13. Myths Regarding Alternative Fuel Vehicle Demand by Light-Duty Vehicle Fleets

    E-Print Network [OSTI]

    Nesbitt, Kevin; Sperling, Daniel

    1998-01-01T23:59:59.000Z

    MythsRegarding Alternative Fuel Vehicte Demand Light-Dutyregulation Myths Regarding Alternative Fuel Vehicle DemandBy00006-6 MYTHS REGARDING ALTERNATIVE FUEL VEHICLE LIGHT-DUTY

  14. Investigating potential light-duty efficiency improvements through simulation of turbo-compounding and waste-heat recovery systems

    SciTech Connect (OSTI)

    Edwards, Kevin Dean [ORNL; Wagner, Robert M [ORNL; Briggs, Thomas E [ORNL

    2010-01-01T23:59:59.000Z

    Modern diesel engines used in light-duty transportation applications have peak brake thermal efficiencies in the range of 40-42% for high-load operation with substantially lower efficiencies at realistic road-load conditions. Thermodynamic energy and exergy analysis reveals that the largest losses from these engines are due to combustion irreversibility and heat loss to the coolant, through the exhaust, and by direct convection and radiation to the environment. Substantial improvement in overall engine efficiency requires reducing or recovering these losses. Unfortunately, much of the heat transfer either occurs at relatively low temperatures resulting in large entropy generation (such as in the air-charge cooler), is transferred to low-exergy flow streams (such as the oil and engine coolant), or is radiated or convected directly to the environment. While there are significant opportunities for recovery from the exhaust and EGR cooler for heavy-duty applications, achieving similar benefits for light-duty applications is complicated by transient, low-load operation at typical driving conditions and competition with the turbocharger and aftertreatment system for the limited thermal resources. We have developed an organic Rankine cycle model using GT-Suite to investigate the potential for efficiency improvement through waste-heat recovery from the exhaust and EGR cooler of a light-duty diesel engine. The model is used to examine the effects of efficiency-improvement strategies such as cylinder deactivation, use of advanced materials and improved insulation to limit ambient heat loss, and turbo-compounding on the steady-state performance of the ORC system and the availability of thermal energy for downstream aftertreatment systems. Results from transient drive-cycle simulations are also presented, and we discuss strategies to address operational difficulties associated with transient drive cycles and balancing the thermal requirements of waste-heat recovery, turbocharging or turbo-compounding, and exhaust aftertreatment.

  15. Safety equipment list for the light duty utility arm system

    SciTech Connect (OSTI)

    Barnes, G.A.

    1998-03-02T23:59:59.000Z

    The initial issue (Revision 0) of this Safety Equipment List (SEL) for the Light Duty Utility Arm (LDUA) requires an explanation for both its existence and its being what it is. All LDUA documentation leading up to creation of this SEL, and the SEL itself, is predicated on the LDUA only being approved for use in waste tanks designated as Facility Group 3, i.e., it is not approved for use in Facility Group 1 or 2 waste tanks. Facility Group 3 tanks are those in which a spontaneous or induced hydrogen gas release would be small, localized, and would not exceed 25% of the LFL when mixed with the remaining air volume in the dome space; exceeding these parameters is considered unlikely. Thus, from a NFPA flammable gas environment perspective the waste tank interior is not classified as a hazardous location. Furthermore, a hazards identification and evaluation (HNF-SD-WM-HIE-010, REV 0) performed for the LDUA system concluded that the consequences of actual LDUA system postulated accidents in Flammable Gas Facility Group 3 waste tanks would have either NO IMPACT or LOW IMPACT on the offsite public and onsite worker. Therefore, from a flammable gas perspective, there is not a rationale for classifying any of SSCs associated with the LDUA as either Safety Class (SC) or Safety Significant (SS) SSCs, which, by default, categorizes them as General Service (GS) SSCs. It follows then, based on current PHMC procedures (HNF-PRO-704 and HNF-IP-0842, Vol IV, Section 5.2) for SEL creation and content, and from a flammable gas perspective, that an SEL is NOT REQ@D HOWEVER!!! There is both a precedent and a prudency to capture all SSCS, which although GS, contribute to a Defense-In-Depth (DID) approach to the design and use of equipment in potentially flammable gas environments. This Revision 0 of the LDUA SEL has been created to capture these SSCs and they are designated as GS-DID in this document. The specific reasons for doing this are listed.

  16. Plasma Catalysis for NOx Reduction from Light-Duty Diesel Vehicles

    SciTech Connect (OSTI)

    None

    2005-12-15T23:59:59.000Z

    On behalf of the Department of Energy's Office of FreedomCAR and Vehicle Technologies, we are pleased to introduce the Fiscal Year (FY) 2004 Annual Progress Report for the Advanced Combustion Engine R&D Sub-Program. The mission of the FreedomCAR and Vehicle Technologies Program is to develop more energy efficient and environmentally friendly highway transportation technologies that enable Americans to use less petroleum for their vehicles. The Advanced Combustion Engine R&D Sub-Program supports this mission by removing the critical technical barriers to commercialization of advanced internal combustion engines for light-, medium-, and heavy-duty highway vehicles that meet future Federal and state emissions regulations. The primary objective of the Advanced Combustion Engine R&D Sub-Program is to improve the brake thermal efficiency of internal combustion engines from 30 to 45 percent for light-duty applications by 2010; and 40 to 55 percent for heavy-duty applications by 2012; while meeting cost, durability, and emissions constraints. R&D activities include work on combustion technologies that increase efficiency and minimize in-cylinder formation of emissions, as well as aftertreatment technologies that further reduce exhaust emissions. Work is also being conducted on ways to reduce parasitic and heat transfer losses through the development and application of thermoelectrics and turbochargers that include electricity generating capability, and conversion of mechanically driven engine components to be driven via electric motors. This introduction serves to outline the nature, current progress, and future directions of the Advanced Combustion Engine R&D Sub-Program. The research activities of this Sub-Program are planned in conjunction with the FreedomCAR Partnership and the 21st Century Truck Partnership and are carried out in collaboration with industry, national laboratories, and universities. Because of the importance of clean fuels in achieving low emissions, R&D activities are closely coordinated with the relevant activities of the Fuel Technologies Sub-Program, also within the Office of FreedomCAR and Vehicle Technologies. Research is also being undertaken on hydrogen-fueled internal combustion engines to provide an interim hydrogen-based powertrain technology that promotes the longer-range FreedomCAR Partnership goal of transitioning to a hydrogen-fueled transportation system. Hydrogen engine technologies being developed have the potential to provide diesel-like engine efficiencies with near-zero emissions.

  17. Fuel Economy Standards for New Light Trucks (released in AEO2007)

    Reports and Publications (EIA)

    2007-01-01T23:59:59.000Z

    In March 2006, the National Highway Traffic Safety Administration (NHTSA) finalized Corporate Average Fuel Economy (CAFE) standards requiring higher fuel economy performance for light-duty trucks in model year (MY) 2008 through 2011. Unlike the proposed CAFE standards discussed in Annual Energy Outlook 2006, which would have established minimum fuel economy requirements by six footprint size classes, the final reformed CAFE standards specify a continuous mathematical function that determines minimum fuel economy requirements by vehicle footprint, defined as the wheelbase (the distance from the front axle to the center of the rear axle) times the average track width (the distance between the center lines of the tires) of the vehicle in square feet.

  18. Effect of Gasoline Properties on Exhaust Emissions from Tier 2 Light-Duty Vehicles -- Final Report: Phases 4, 5, & 6; July 28, 2008 - July 27, 2013

    SciTech Connect (OSTI)

    Whitney, K.; Shoffner, B.

    2014-06-01T23:59:59.000Z

    This report covers work the Southwest Research Institute (SwRI) Office of Automotive Engineering has conducted for the National Renewable Energy Laboratory (NREL) in support of the Energy Policy Act of 2005 (EPAct). Section 1506 of EPAct requires the EPA to produce an updated fuel effects model representing the 2007 light-duty gasoline fleet, including determination of the emissions impacts of increased renewable fuel use.

  19. Retail Infrastructure Costs Comparison for Hydrogen and Electricity for Light-Duty Vehicles: Preprint

    SciTech Connect (OSTI)

    Melaina, M.; Sun, Y.; Bush, B.

    2014-08-01T23:59:59.000Z

    Both hydrogen and plug-in electric vehicles offer significant social benefits to enhance energy security and reduce criteria and greenhouse gas emissions from the transportation sector. However, the rollout of electric vehicle supply equipment (EVSE) and hydrogen retail stations (HRS) requires substantial investments with high risks due to many uncertainties. We compare retail infrastructure costs on a common basis - cost per mile, assuming fueling service to 10% of all light-duty vehicles in a typical 1.5 million person city in 2025. Our analysis considers three HRS sizes, four distinct types of EVSE and two distinct EVSE scenarios. EVSE station costs, including equipment and installation, are assumed to be 15% less than today's costs. We find that levelized retail capital costs per mile are essentially indistinguishable given the uncertainty and variability around input assumptions. Total fuel costs per mile for battery electric vehicle (BEV) and plug-in hybrid vehicle (PHEV) are, respectively, 21% lower and 13% lower than that for hydrogen fuel cell electric vehicle (FCEV) under the home-dominant scenario. Including fuel economies and vehicle costs makes FCEVs and BEVs comparable in terms of costs per mile, and PHEVs are about 10% less than FCEVs and BEVs. To account for geographic variability in energy prices and hydrogen delivery costs, we use the Scenario Evaluation, Regionalization and Analysis (SERA) model and confirm the aforementioned estimate of cost per mile, nationally averaged, but see a 15% variability in regional costs of FCEVs and a 5% variability in regional costs for BEVs.

  20. Reactivity Controlled Compression Ignition (RCCI) Combustion on a Multi-Cylinder Light-Duty Diesel Engine

    SciTech Connect (OSTI)

    Curran, Scott [ORNL; Hanson, Reed M [ORNL; Wagner, Robert M [ORNL

    2012-01-01T23:59:59.000Z

    Reactivity controlled compression ignition is a low-temperature combustion technique that has been shown, both in computational fluid dynamics modeling and single-cylinder experiments, to obtain diesel-like efficiency or better with ultra-low nitrogen oxide and soot emissions, while operating primarily on gasoline-like fuels. This paper investigates reactivity controlled compression ignition operation on a four-cylinder light-duty diesel engine with production-viable hardware using conventional gasoline and diesel fuel. Experimental results are presented over a wide speed and load range using a systematic approach for achieving successful steady-state reactivity controlled compression ignition combustion. The results demonstrated diesel-like efficiency or better over the operating range explored with low engine-out nitrogen oxide and soot emissions. A peak brake thermal efficiency of 39.0% was demonstrated for 2600 r/min and 6.9 bar brake mean effective pressure with nitrogen oxide emissions reduced by an order of magnitude compared to conventional diesel combustion operation. Reactivity controlled compression ignition emissions and efficiency results are compared to conventional diesel combustion operation on the same engine.

  1. California Greenhouse Gas Emissions Standards for Light-Duty Vehicles (Update) (released in AEO2006)

    Reports and Publications (EIA)

    2006-01-01T23:59:59.000Z

    The state of California was given authority under the Clean Air Act Amendments of 1990 (CAAA90) to set emissions standards for light-duty vehicles that exceed federal standards. In addition, other states that do not comply with the National Ambient Air Quality Standards (NAAQS) set by the Environmental Protection Agency under CAAA90 were given the option to adopt Californias light-duty vehicle emissions standards in order to achieve air quality compliance. CAAA90 specifically identifies hydrocarbon, carbon monoxide, and NOx as vehicle-related air pollutants that can be regulated. California has led the nation in developing stricter vehicle emissions standards, and other states have adopted the California standards.

  2. Investigating potential efficiency improvement for light-duty transportation applications through simulation of an organic Rankine cycle for waste-heat recovery

    SciTech Connect (OSTI)

    Edwards, Kevin Dean [ORNL; Wagner, Robert M [ORNL

    2010-01-01T23:59:59.000Z

    Modern diesel engines used in light-duty transportation applications have peak brake thermal efficiencies in the range of 40-42% for high-load operation with substantially lower efficiencies at realistic road-load conditions. Thermodynamic energy and exergy analysis reveals that the largest losses from these engines are due to heat loss and combustion irreversibility. Substantial improvement in overall engine efficiency requires reducing or recovering these losses. Unfortunately, much of the heat transfer either occurs at relatively low temperatures resulting in large entropy generation (such as in the air-charge cooler), is transferred to low-exergy flow streams (such as the oil and engine coolant), or is radiated or convected directly to the environment. While there are significant opportunities for recovery from the exhaust and EGR cooler for heavy-duty applications, the potential benefits of such a strategy for light-duty applications are unknown due to transient operation, low-load operation at typical driving conditions, and the added mass of the system. We have developed an organic Rankine cycle model using GT-Suite to investigate the potential for efficiency improvement through waste-heat recovery from the exhaust and EGR cooler of a light-duty diesel engine. Results from steady-state and drive-cycle simulations are presented, and we discuss strategies to address operational difficulties associated with transient drive cycles and competition between waste-heat recovery systems, turbochargers, aftertreatment devices, and other systems for the limited thermal resources.

  3. California Greenhouse Gas Emissions Standards for Light-Duty Vehicles (released in AEO2005)

    Reports and Publications (EIA)

    2005-01-01T23:59:59.000Z

    In July 2002, California Assembly Bill 1493 (A.B. 1493) was signed into law. The law requires that the California Air Resources Board (CARB) develop and adopt, by January 1, 2005, greenhouse gas emission standards for light-duty vehicles that provide the maximum feasible reduction in emissions. In estimating the feasibility of the standard, CARB is required to consider cost-effectiveness, technological capability, economic impacts, and flexibility for manufacturers in meeting the standard.

  4. Assessing deployment strategies for ethanol and flex fuel vehicles in the U.S. light-duty vehicle fleet

    E-Print Network [OSTI]

    McAulay, Jeffrey L. (Jeffrey Lewis)

    2009-01-01T23:59:59.000Z

    Within the next 3-7 years the US light duty fleet and fuel supply will encounter what is commonly referred to as the "blend wall". This phenomenon describes the situation when more ethanol production has been mandated than ...

  5. Evaluating the impact of advanced vehicle and fuel technologies in U.S. light duty vehicle fleet

    E-Print Network [OSTI]

    Bandivadekar, Anup P

    2008-01-01T23:59:59.000Z

    The unrelenting increase in oil use by the U.S. light-duty vehicle (LDV) fleet presents an extremely challenging energy and environmental problem. A variety of propulsion technologies and fuels have the promise to reduce ...

  6. Assessment of Fuel Economy Technologies for Light-Duty Vehicles

    SciTech Connect (OSTI)

    Greene, David L [ORNL

    2008-01-01T23:59:59.000Z

    An analysis of the number of stations and vehicles necessary to achieve future goals for sales of ethanol fuel (E85) is presented. Issues related to the supply of ethanol, which may turn out to be of even greater concern, are not analyzed here. A model of consumers decisions to purchase E85 versus gasoline based on prices, availability, and refueling frequency is derived, and preliminary results for 2010, 2017, and 2030 consistent with the president s 2007 biofuels program goals are presented. A limited sensitivity analysis is carried out to indicate key uncertainties in the trade-off between the number of stations and fuels. The analysis indicates that to meet a 2017 goal of 26 billion gallons of E85 sold, on the order of 30% to 80% of all stations may need to offer E85 and that 125 to 200 million flexible-fuel vehicles (FFVs) may need to be on the road, even if oil prices remain high. These conclusions are tentative for three reasons: there is considerable uncertainty about key parameter values, such as the price elasticity of choice between E85 and gasoline; the future prices of E85 and gasoline are uncertain; and the method of analysis used is highly aggregated it does not consider the potential benefits of regional strategies or the possible existence of market segments predisposed to purchase E85. Nonetheless, the preliminary results indicate that the 2017 biofuels program goals are ambitious and will require a massive effort to produce enough FFVs and ensure widespread availability of E85.

  7. Assessment of Out-of-State Heavy-Duty Truck Activity Trends In California

    E-Print Network [OSTI]

    Lutsey, Nicholas P.

    2008-01-01T23:59:59.000Z

    haul” trucks. These trucks tend to be the newest (median model year of 2004), have higher average fuel economy,

  8. Transportation Sector Model of the National Energy Modeling System. Volume 2 -- Appendices: Part 1

    SciTech Connect (OSTI)

    NONE

    1998-01-01T23:59:59.000Z

    This volume contains input data and parameters used in the model of the transportation sector of the National Energy Modeling System. The list of Transportation Sector Model variables includes parameters for the following: Light duty vehicle modules (fuel economy, regional sales, alternative fuel vehicles); Light duty vehicle stock modules; Light duty vehicle fleet module; Air travel module (demand model and fleet efficiency model); Freight transport module; Miscellaneous energy demand module; and Transportation emissions module. Also included in these appendices are: Light duty vehicle market classes; Maximum light duty vehicle market penetration parameters; Aircraft fleet efficiency model adjustment factors; and List of expected aircraft technology improvements.

  9. Aerospace Engineering Pickup Truck AerodynamicsPickup Truck Aerodynamics

    E-Print Network [OSTI]

    Al-Garni, Abdullah M.

    distribution on a generic pickup truck geometry. · To measure the unsteady flow field in the near wake, suction type wind tunnel · Pickup truck model provided by GM R&D · Ground board mounted on top side of tunnel · Actual wind tunnel cross section 60 x 50 cm · Model mounted 380 mm from ground board leading

  10. Tank selection for Light Duty Utility Arm (LDUA) system hot testing in a single shell tank

    SciTech Connect (OSTI)

    Bhatia, P.K.

    1995-01-31T23:59:59.000Z

    The purpose of this report is to recommend a single shell tank in which to hot test the Light Duty Utility Arm (LDUA) for the Tank Waste Remediation System (TWRS) in Fiscal Year 1996. The LDUA is designed to utilize a 12 inch riser. During hot testing, the LDUA will deploy two end effectors (a High Resolution Stereoscopic Video Camera System and a Still/Stereo Photography System mounted on the end of the arm`s tool interface plate). In addition, three other systems (an Overview Video System, an Overview Stereo Video System, and a Topographic Mapping System) will be independently deployed and tested through 4 inch risers.

  11. Light Duty Utility Arm system pre-operational (cold test) test plan

    SciTech Connect (OSTI)

    Bennett, K.L.

    1995-10-20T23:59:59.000Z

    The Light Duty Utility (LDUA) Cold Test Facility, located in the Hanford 400 Area, will be used to support cold testing (pre- operational tests) of LDUA subsystems. Pre-operational testing is composed of subsystem development testing and rework activities, and integrated system qualification testing. Qualification testing will be conducted once development work is complete and documentation is under configuration control. Operational (hot) testing of the LDUA system will follow the testing covered in this plan and will be covered in a separate test plan

  12. Fueling U.S. Light Duty Diesel Vehicles | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensional ElectricalEnergyQuality ChallengesFueling U.S. Light Duty

  13. Non-Cost Barriers to Consumer Adoption of New Light-Duty Vehicle Technologies

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the Contributions andDataNationalNewportBig Eddy Archeological Siteornl.govLIGHT-DUTY

  14. Light-Duty Lean GDI Vehicle Technology Benchmark | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensionalthe10IO1OP001 LetterLight-Duty Lean GDI Vehicle Technology

  15. Alternative Fuels Data Center: Light-Duty Vehicle Idle Reduction Strategies

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc Documentation RUCProductstwrmrAreSmartWayElectricity FuelUse Knoxville UtilitiesLight-Duty

  16. Feasibility Study Of Advanced Technology Hov Systems: Volume 2b: Emissions Impact Of Roadway-powered Electric Buses, Light-duty Vehicles, And Automobiles

    E-Print Network [OSTI]

    Miller, Mark A.; Dato, Victor; Chira-chavala, Ted

    1992-01-01T23:59:59.000Z

    LIGHT-DUTY VEHICLES, AND AUTOMOBILES Mark A. Miller Victorand The analysis involves automobiles in California arePowered Electric Automobiles -a---- Range of Estimated

  17. Examining factors affecting the safety performance and design of exclusive truck facilities

    E-Print Network [OSTI]

    Iragavarapu, Vichika

    2009-05-15T23:59:59.000Z

    models were developed for truck-related (involving at least one truck and another vehicle), truck-only (two trucks or more) and single-truck crashes. The results suggested that the percentage of trucks in Average Annual Daily Traffic (AADT...

  18. Global Assessment of Hydrogen Technologies - Task 2 Report Comparison of Performance and Emissions from Near-Term Hydrogen Fueled Light Duty Vehicles

    SciTech Connect (OSTI)

    Fouad, Fouad H.; Peters, Robert W.; Sisiopiku, Virginia P.; Sullivan Andrew J.; Ng, Henry K.; Waller, Thomas

    2007-12-01T23:59:59.000Z

    An investigation was conducted on the emissions and efficiency from hydrogen blended compressed natural gas (CNG) in light duty vehicles. The different blends used in this investigation were 0%, 15%, 30%, 50%, 80%, 95%, and ~100% hydrogen, the remainder being compressed natural gas. The blends were tested using a Ford F-150 and a Chevrolet Silverado truck supplied by Arizona Public Services. Tests on emissions were performed using four different driving condition tests. Previous investigation by Don Karner and James Frankfort on a similar Ford F-150 using a 30% hydrogen blend showed that there was substantial reduction when compared to gasoline in carbon monoxide (CO), nitrogen oxide (NOx), and carbon dioxide (CO2) emissions while the reduction in hydrocarbon (HC) emissions was minimal. This investigation was performed using different blends of CNG and hydrogen to evaluate the emissions reducing capabilities associated with the use of the different fuel blends. The results were then tested statistically to confirm or reject the hypotheses on the emission reduction capabilities. Statistically analysis was performed on the test results to determine whether hydrogen concentration in the HCNG had any effect on the emissions and the fuel efficiency. It was found that emissions from hydrogen blended compressed natural gas were a function of driving condition employed. Emissions were found to be dependent on the concentration of hydrogen in the compressed natural gas fuel blend.

  19. Simulating Study of Premixed Charge Compression Ignition on Light-Duty Diesel Fuel Economy and Emissions Control

    SciTech Connect (OSTI)

    Gao, Zhiming [ORNL] [ORNL; Daw, C Stuart [ORNL] [ORNL; Wagner, Robert M [ORNL] [ORNL

    2012-01-01T23:59:59.000Z

    We utilize the Powertrain Systems Analysis Toolkit (PSAT) combined with transient engine and aftertreatment component models to simulate the impact of premixed charge compression ignition (PCCI) on the fuel economy and emissions of light-duty (LD) diesel-powered conventional and hybrid electric vehicles (HEVs). Our simulated aftertreatment train consists of a diesel oxidation catalyst (DOC), lean NOx trap (LNT), and catalyzed diesel particulate filter (DPF). The results indicate that utilizing PCCI combustion significantly reduces fuel consumption and tailpipe emissions for the conventional diesel-powered vehicle with NOx and particulate emissions controls. These benefits result from a favorable engine speed-load distribution over the cycle combined with a corresponding reduction in the need to regenerate the LNT and DPF. However, the current PCCI technology appears to offer less potential benefit for diesel HEVs equipped with similar emissions controls. This is because PCCI can only be activated over a relatively small part of the drive cycle. Thus we conclude that future utilization of PCCI in diesel HEVs will require significant extension of the available speed-load range for PCCI and revision of current HEV engine management strategies before significant benefits can be realized.

  20. Vehicle Technologies Office Merit Review 2014: Modeling for Market Analysis: HTEB, TRUCK, and LVChoice

    Broader source: Energy.gov [DOE]

    Presentation given by TA Engineering, Inc. at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about HTEB, TRUCK, and...

  1. Efficiency Improvement Opportunities for Light-Duty Natural-Gas-Fueled Vehicles

    SciTech Connect (OSTI)

    Staunton, R.H.; Thomas, J.F.

    1998-12-01T23:59:59.000Z

    The purpose of this report is to evaluate and make recommendations concerning technologies that promise to improve the efilciency of compressed natural gas (CNG) light-duty vehicles. Technical targets for CNG automotive technology given in the March 1998 OffIce of Advanced Automotive Technologies research and development plan were used as guidance for this effort. The technical target that necessitates this current study is to validate technologies that enable CNG light vehicles to have at least 10% greater - fuel economy (on a miles per gallon equivalent basis) than equivalent gasoline vehicles by 2006. Other tar- gets important to natural gas (NG) automotive technology and this study are to: (1) increase CNG vehicle range to 380 miles, (2) reduce the incremental vehicle cost (CNG vs gasoline) to $1500, and (3) meet the California ultra low-emission vehicle (ULEV) and Federal Tier 2 emission standards expected to be in effect in 2004.

  2. Piston Bowl Optimization for RCCI Combustion in a Light-Duty Multi-Cylinder Engine

    SciTech Connect (OSTI)

    Hanson, Reed M [ORNL; Curran, Scott [ORNL; Wagner, Robert M [ORNL; Reitz, Rolf [University of Wisconsin; Kokjohn, Sage [University of Wisconsin, Madison

    2012-01-01T23:59:59.000Z

    Reactivity Controlled Compression Ignition (RCCI) is an engine combustion strategy that that produces low NO{sub x} and PM emissions with high thermal efficiency. Previous RCCI research has been investigated in single-cylinder heavy-duty engines. The current study investigates RCCI operation in a light-duty multi-cylinder engine at 3 operating points. These operating points were chosen to cover a range of conditions seen in the US EPA light-duty FTP test. The operating points were chosen by the Ad Hoc working group to simulate operation in the FTP test. The fueling strategy for the engine experiments consisted of in-cylinder fuel blending using port fuel-injection (PFI) of gasoline and early-cycle, direct-injection (DI) of diesel fuel. At these 3 points, the stock engine configuration is compared to operation with both the original equipment manufacturer (OEM) and custom machined pistons designed for RCCI operation. The pistons were designed with assistance from the KIVA 3V computational fluid dynamics (CFD) code. By using a genetic algorithm optimization, in conjunction with KIVA, the piston bowl profile was optimized for dedicated RCCI operation to reduce unburned fuel emissions and piston bowl surface area. By reducing these parameters, the thermal efficiency of the engine was improved while maintaining low NOx and PM emissions. Results show that with the new piston bowl profile and an optimized injection schedule, RCCI brake thermal efficiency was increased from 37%, with the stock EURO IV configuration, to 40% at the 2,600 rev/min, 6.9 bar BMEP condition, and NOx and PM emissions targets were met without the need for exhaust after-treatment.

  3. Sizes, graphitic structures and fractal geometry of light-duty diesel engine particulates.

    SciTech Connect (OSTI)

    Lee, K. O.; Zhu, J.; Ciatti, S.; Choi, M. Y.; Energy Systems; Drexel Univ.

    2003-01-01T23:59:59.000Z

    The particulate matter of a light-duty diesel engine was characterized in its morphology, sizes, internal microstructures, and fractal geometry. A thermophoretic sampling system was employed to collect particulates directly from the exhaust manifold of a 1.7-liter turbocharged common-rail direct-injection diesel engine. The particulate samples collected at various engine-operating conditions were then analyzed by using a high-resolution transmission electron microscope (TEM) and an image processing/data acquisition system. Results showed that mean primary particle diameters (dp), and radii of gyration (Rg), ranged from 19.4 nm to 32.5 nm and 77.4 nm to 134.1 nm, respectively, through the entire engine-operating conditions of 675 rpm (idling) to 4000 rpm and 0% to 100% loads. It was also revealed that the other important parameters sensitive to the particulate formation, such as exhaust-gas recirculation (EGR) rate, equivalence ratio, and temperature, affected particle sizes significantly. Bigger primary particles were measured at higher EGR rates, higher equivalence ratios (fuel-rich), and lower exhaust temperatures. Fractal dimensions (D{sup f}) were measured at a range of 1.5 - 1.7, which are smaller than those measured for heavy-duty direct-injection diesel engine particulates in our previous study. This finding implies that the light-duty diesel engine used in this study produces more stretched chain-like shape particles, while the heavy-duty diesel engine emits more spherical particles. The microstructures of diesel particulates were observed at high TEM magnifications and further analyzed by a Raman spectroscope. Raman spectra revealed an atomic structure of the particulates produced at high engine loads, which is similar to that of typical graphite.

  4. A techno-economic analysis and optimization of Li-ion batteries for light-duty passenger vehicle electrification

    E-Print Network [OSTI]

    McGaughey, Alan

    A techno-economic analysis and optimization of Li-ion batteries for light-duty passenger vehicle thickness a b s t r a c t We conduct a techno-economic analysis of Li-ion NMC-G prismatic pouch battery

  5. A computational investigation of diesel and biodiesel combustion and NOx formation in a light-duty compression ignition engine

    SciTech Connect (OSTI)

    Wang, Zihan; Srinivasan, Kalyan K.; Krishnan, Sundar R.; Som, Sibendu

    2012-04-24T23:59:59.000Z

    Diesel and biodiesel combustion in a multi-cylinder light duty diesel engine were simulated during a closed cycle (from IVC to EVO), using a commercial computational fluid dynamics (CFD) code, CONVERGE, coupled with detailed chemical kinetics. The computational domain was constructed based on engine geometry and compression ratio measurements. A skeletal n-heptane-based diesel mechanism developed by researchers at Chalmers University of Technology and a reduced biodiesel mechanism derived and validated by Luo and co-workers were applied to model the combustion chemistry. The biodiesel mechanism contains 89 species and 364 reactions and uses methyl decanoate, methyl-9- decenoate, and n-heptane as the surrogate fuel mixture. The Kelvin-Helmholtz and Rayleigh-Taylor (KH-RT) spray breakup model for diesel and biodiesel was calibrated to account for the differences in physical properties of the fuels which result in variations in atomization and spray development characteristics. The simulations were able to capture the experimentally observed pressure and apparent heat release rate trends for both the fuels over a range of engine loads (BMEPs from 2.5 to 10 bar) and fuel injection timings (from 0���° BTDC to 10���° BTDC), thus validating the overall modeling approach as well as the chemical kinetic models of diesel and biodiesel surrogates. Moreover, quantitative NOx predictions for diesel combustion and qualitative NOx predictions for biodiesel combustion were obtained with the CFD simulations and the in-cylinder temperature trends were correlated to the NOx trends."

  6. Cost of Ownership and Well-to-Wheels Carbon Emissions/Oil Use of Alternative Fuels and Advanced Light-Duty Vehicle Technologies

    SciTech Connect (OSTI)

    Elgowainy, Mr. Amgad [Argonne National Laboratory (ANL); Rousseau, Mr. Aymeric [Argonne National Laboratory (ANL); Wang, Mr. Michael [Argonne National Laboratory (ANL); Ruth, Mr. Mark [National Renewable Energy Laboratory (NREL); Andress, Mr. David [David Andress & Associates, Inc.; Ward, Jacob [U.S. Department of Energy; Joseck, Fred [U.S. Department of Energy; Nguyen, Tien [U.S. Department of Energy; Das, Sujit [ORNL

    2013-01-01T23:59:59.000Z

    The U.S. Department of Energy (DOE), Argonne National Laboratory (Argonne), and the National Renewable Energy Laboratory (NREL) updated their analysis of the well-to-wheels (WTW) greenhouse gases (GHG) emissions, petroleum use, and the cost of ownership (excluding insurance, maintenance, and miscellaneous fees) of vehicle technologies that have the potential to significantly reduce GHG emissions and petroleum consumption. The analyses focused on advanced light-duty vehicle (LDV) technologies such as plug-in hybrid, battery electric, and fuel cell electric vehicles. Besides gasoline and diesel, alternative fuels considered include natural gas, advanced biofuels, electricity, and hydrogen. The Argonne Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation (GREET) and Autonomie models were used along with the Argonne and NREL H2A models.

  7. Lift truck safety review

    SciTech Connect (OSTI)

    Cadwallader, L.C.

    1997-03-01T23:59:59.000Z

    This report presents safety information about powered industrial trucks. The basic lift truck, the counterbalanced sit down rider truck, is the primary focus of the report. Lift truck engineering is briefly described, then a hazard analysis is performed on the lift truck. Case histories and accident statistics are also given. Rules and regulations about lift trucks, such as the US Occupational Safety an Health Administration laws and the Underwriter`s Laboratories standards, are discussed. Safety issues with lift trucks are reviewed, and lift truck safety and reliability are discussed. Some quantitative reliability values are given.

  8. Examining factors affecting the safety performance and design of exclusive truck facilities

    E-Print Network [OSTI]

    Iragavarapu, Vichika

    2008-10-10T23:59:59.000Z

    were used to establish a relationship between truck crashes and various environmental, geometric and traffic variables. Separate models were developed for truck-related (involving at least one truck and another vehicle), truck-only (two trucks... Table 1: Proposed selection criterion for truck treatments (Middleton et al., 2006).......... 7 Table 2: Revised design vehicle dimensions to accommodate trucks in roadway design (Harwood et al., 2003...

  9. Field monitoring and modeling of pavement response and service life consumption due to overweight truck traffic

    E-Print Network [OSTI]

    Oh, Jeong-Ho

    2004-11-15T23:59:59.000Z

    A number of pavement structures experience deterioration due to high traffic volume and growing weights. Recently, the Texas Legislatures passed bills allowing trucks of gross vehicle weight (GVW) up to 556 kN routinely to use a route in south Texas...

  10. Comparative urban drive cycle simulations of light-duty hybrid vehicles with gasoline or diesel engines and emissions controls

    SciTech Connect (OSTI)

    Gao, Zhiming [ORNL] [ORNL; Daw, C Stuart [ORNL] [ORNL; Smith, David E [ORNL] [ORNL

    2013-01-01T23:59:59.000Z

    Electric hybridization is a very effective approach for reducing fuel consumption in light-duty vehicles. Lean combustion engines (including diesels) have also been shown to be significantly more fuel efficient than stoichiometric gasoline engines. Ideally, the combination of these two technologies would result in even more fuel efficient vehicles. However, one major barrier to achieving this goal is the implementation of lean-exhaust aftertreatment that can meet increasingly stringent emissions regulations without heavily penalizing fuel efficiency. We summarize results from comparative simulations of hybrid electric vehicles with either stoichiometric gasoline or diesel engines that include state-of-the-art aftertreatment emissions controls for both stoichiometric and lean exhaust. Fuel consumption and emissions for comparable gasoline and diesel light-duty hybrid electric vehicles were compared over a standard urban drive cycle and potential benefits for utilizing diesel hybrids were identified. Technical barriers and opportunities for improving the efficiency of diesel hybrids were identified.

  11. Heavy Truck Clean Diesel (HTCD) Program: 2007 Demonstration Truck...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Clean Diesel (HTCD) Program: 2007 Demonstration Truck Heavy Truck Clean Diesel (HTCD) Program: 2007 Demonstration Truck 2003 DEER Conference Presentation: Caterpillar Incorporated...

  12. Putting policy in drive : coordinating measures to reduce fuel use and greenhouse gas emissions from U.S. light-duty vehicles

    E-Print Network [OSTI]

    Evans, Christopher W. (Christopher William)

    2008-01-01T23:59:59.000Z

    The challenges of energy security and climate change have prompted efforts to reduce fuel use and greenhouse gas emissions in light-duty vehicles within the United States. Failures in the market for lower rates of fuel ...

  13. Indiana: Improving Diesel Engine Performance for Trucks

    Office of Energy Efficiency and Renewable Energy (EERE)

    Cummins, the world's largest diesel engine manufacturer, received funds from EERE to research advanced engine technology for heavy-duty and light-duty vehicles.

  14. Membrane-Based Air Composition Control for Light-Duty Diesel Vehicles: A Benefit and Cost Assessment

    SciTech Connect (OSTI)

    K. Stork; R. Poola

    1998-10-01T23:59:59.000Z

    This report presents the methodologies and results of a study conducted by Argonne National Laboratory (Argonne) to assess the benefits and costs of several membrane-based technologies. The technologies evaluated will be used in automotive emissions-control and performance-enhancement systems incorporated into light-duty diesel vehicle engines. Such engines are among the technologies that are being considered to power vehicles developed under the government-industry Partnership for a New Generation of Vehicles (PNGV). Emissions of nitrogen oxides (NO{sub x}) from diesel engines have long been considered a barrier to use of diesels in urban areas. Recently, particulate matter (PM) emissions have also become an area of increased concern because of new regulations regarding emissions of particulate matter measuring 2.5 micrometers or less (PM{sub 2.5}). Particulates are of special concern for diesel engines in the PNGV program; the program has a research goal of 0.01 gram per mile (g/mi) of particulate matter emissions under the Federal Test Procedure (FTP) cycle. This extremely low level (one-fourth the level of the Tier II standard) could threaten the viability of using diesel engines as stand-alone powerplants or in hybrid-electric vehicles. The techniques analyzed in this study can reduce NO{sub x} and particulate emissions and even increase the power density of the diesel engines used in light-duty diesel vehicles.

  15. Simulating the Impact of Premixed Charge Compression Ignition on Light-Duty Diesel Fuel Economy and Emissions of Particulates and NOx

    SciTech Connect (OSTI)

    Gao, Zhiming [ORNL; Daw, C Stuart [ORNL; Wagner, Robert M [ORNL; Edwards, Kevin Dean [ORNL; Smith, David E [ORNL

    2013-01-01T23:59:59.000Z

    We utilize the Powertrain Systems Analysis Toolkit (PSAT) combined with transient engine and aftertreatment component models implemented in Matlab/Simulink to simulate the effect of premixed charge compression ignition (PCCI) on the fuel economy and emissions of light-duty diesel-powered conventional and hybrid electric vehicles (HEVs). Our simulated engine is capable of both conventional diesel combustion (CDC) and premixed charge compression ignition (PCCI) over real transient driving cycles. Our simulated aftertreatment train consists of a diesel oxidation catalyst (DOC), lean NOx trap (LNT), and catalyzed diesel particulate filter (DPF). The results demonstrate that, in the simulated conventional vehicle, PCCI can significantly reduce fuel consumption and emissions by reducing the need for LNT and DPF regeneration. However, the opportunity for PCCI operation in the simulated HEV is limited because the engine typically experiences higher loads and multiple stop-start transients that are outside the allowable PCCI operating range. Thus developing ways of extending the PCCI operating range combined with improved control strategies for engine and emissions control management will be especially important for realizing the potential benefits of PCCI in HEVs.

  16. Solid Oxide Fuel Cell Auxiliary Power Units for Long-Haul Trucks

    E-Print Network [OSTI]

    Solid Oxide Fuel Cell Auxiliary Power Units for Long-Haul Trucks Modeling and Control Mohammad fuel ce · SOFC based truck APU will reduce long haul truck fuel usage and dependence on foreign oil Long-haul trucks require electrical power to operate lights, heating/air conditioning and televisions

  17. Impacts of ethanol fuel level on emissions of regulated and unregulated pollutants from a fleet of gasoline light-duty vehicles

    SciTech Connect (OSTI)

    Karavalakis, Georgios; Durbin, Thomas; Shrivastava, ManishKumar B.; Zheng, Zhongqing; Villella, Phillip M.; Jung, Hee-Jung

    2012-03-30T23:59:59.000Z

    The study investigated the impact of ethanol blends on criteria emissions (THC, NMHC, CO, NOx), greenhouse gas (CO2), and a suite of unregulated pollutants in a fleet of gasoline-powered light-duty vehicles. The vehicles ranged in model year from 1984 to 2007 and included one Flexible Fuel Vehicle (FFV). Emission and fuel consumption measurements were performed in duplicate or triplicate over the Federal Test Procedure (FTP) driving cycle using a chassis dynamometer for four fuels in each of seven vehicles. The test fuels included a CARB phase 2 certification fuel with 11% MTBE content, a CARB phase 3 certification fuel with a 5.7% ethanol content, and E10, E20, E50, and E85 fuels. In most cases, THC and NMHC emissions were lower with the ethanol blends, while the use of E85 resulted in increases of THC and NMHC for the FFV. CO emissions were lower with ethanol blends for all vehicles and significantly decreased for earlier model vehicles. Results for NOx emissions were mixed, with some older vehicles showing increases with increasing ethanol level, while other vehicles showed either no impact or a slight, but not statistically significant, decrease. CO2 emissions did not show any significant trends. Fuel economy showed decreasing trends with increasing ethanol content in later model vehicles. There was also a consistent trend of increasing acetaldehyde emissions with increasing ethanol level, but other carbonyls did not show strong trends. The use of E85 resulted in significantly higher formaldehyde and acetaldehyde emissions than the specification fuels or other ethanol blends. BTEX and 1,3-butadiene emissions were lower with ethanol blends compared to the CARB 2 fuel, and were almost undetectable from the E85 fuel. The largest contribution to total carbonyls and other toxics was during the cold-start phase of FTP.

  18. In-Cylinder Fuel Blending of Gasoline/Diesel for Improved Efficiency and Lowest Possible Emissions on a Multi-Cylinder Light-Duty Diesel Engine

    SciTech Connect (OSTI)

    Curran, Scott [ORNL] [ORNL; Prikhodko, Vitaly Y [ORNL] [ORNL; Wagner, Robert M [ORNL] [ORNL; Parks, II, James E [ORNL; Cho, Kukwon [ORNL] [ORNL; Sluder, Scott [ORNL] [ORNL; Kokjohn, Sage [University of Wisconsin, Madison] [University of Wisconsin, Madison; Reitz, Rolf [University of Wisconsin] [University of Wisconsin

    2010-01-01T23:59:59.000Z

    In-cylinder fuel blending of gasoline/diesel fuel is investigated on a multi-cylinder light-duty diesel engine as a potential strategy to control in-cylinder fuel reactivity for improved efficiency and lowest possible emissions. This approach was developed and demonstrated at the University of Wisconsin through modeling and single-cylinder engine experiments. The objective of this study is to better understand the potential and challenges of this method on a multi-cylinder engine. More specifically, the effect of cylinder-to-cylinder imbalances, heat rejection, and in-cylinder charge motion as well as the potential limitations imposed by real-world turbo-machinery were investigated on a 1.9-liter four-cylinder engine. This investigation focused on one engine condition, 2300 rpm, 4.2 bar brake mean effective pressure (BMEP). Gasoline was introduced with a port-fuel-injection system. Parameter sweeps included gasoline-to-diesel fuel ratio, intake air mixture temperature, in-cylinder swirl number, and diesel start-of-injection phasing. In addition, engine parameters were trimmed for each cylinder to balance the combustion process for maximum efficiency and lowest emissions. An important observation was the strong influence of intake charge temperature on cylinder pressure rise rate. Experiments were able to show increased thermal efficiency along with dramatic decreases in oxides of nitrogen (NOX) and particulate matter (PM). However, indicated thermal efficiency for the multi-cylinder experiments were less than expected based on modeling and single-cylinder results. The lower indicated thermal efficiency is believed to be due increased heat transfer as compared to the model predictions and suggest a need for improved cylinder-to-cylinder control and increased heat transfer control.

  19. Deterministic and Probabilistic Simple Model for Single Pile Behavior under Lateral Truck Impact

    E-Print Network [OSTI]

    Mirdamadi, Alireza

    2014-06-03T23:59:59.000Z

    is a simple model with an estimation of each parameter. In order to contribute uncertainties in parameters and the model, a probabilistic model is also designed, and finally a fragility estimation is made by using these models. The research covers 4...

  20. Analysis of Class 8 Hybrid-Electric Truck Technologies Using Diesel, LNG, Electricity, and Hydrogen, as the Fuel for Various Applications

    E-Print Network [OSTI]

    Zhao, Hengbing

    2013-01-01T23:59:59.000Z

    Heavy-Duty Long Haul Combination Truck Fuel Consumption andand fuel cell trucks over the day drive and the short and long hauland fuel cell trucks were modeled and simulated over the day drive, the short haul

  1. Light-Duty Drive Cycle Simulations of Diesel Engine-Out Exhaust Properties for an RCCI-Enabled Vehicle

    SciTech Connect (OSTI)

    Gao, Zhiming [ORNL] [ORNL; Curran, Scott [ORNL] [ORNL; Daw, C Stuart [ORNL] [ORNL; Wagner, Robert M [ORNL] [ORNL

    2013-01-01T23:59:59.000Z

    In-cylinder blending of gasoline and diesel fuels to achieve low-temperature reactivity controlled compression ignition (RCCI) can reduce NOx and PM emissions while maintaining or improving brake thermal efficiency compared to conventional diesel combustion (CDC). Moreover, the dual-fueling RCCI is able to achieve these benefits by tailoring combustion reactivity over a wider range of engine operation than is possible with a single fuel. However, the currently demonstrated range of stable RCCI combustion just covers a portion of the engine speed-load range required in several light-duty drive cycles. This means that engines must switch from RCCI to CDC when speed and load fall outside of the stable RCCI range. In this study we investigated the impact of RCCI as it has recently been demonstrated on practical engine-out exhaust temperature and emissions by simulating a multi-mode RCCI-enabled vehicle operating over two urban and two highway driving cycles. To implement our simulations, we employed experimental engine maps for a multi-mode RCCI/CDC engine combined with a standard mid-size, automatic transmission, passenger vehicle in the Autonomie vehicle simulation platform. Our results include both detailed transient and cycle-averaged engine exhaust temperature and emissions for each case, and we note the potential implications of the modified exhaust properties on catalytic emissions control and utilization of waste heat recovery on future RCCI-enabled vehicles.

  2. Resource Assessment and Land Use Change Light Duty Vehicles/Fuels

    E-Print Network [OSTI]

    investments in research and development to expand biofuel production · Biomass feedstock supplies needed maintained by University of Tennessee for second generation biofuels ­ Forest sector model to derive supply #12;Biomass Program Strategic Analysis Activities Strategic Analysis Impact Assessment TEA Pathway

  3. DRIVE CYCLE EFFICIENCY AND EMISSIONS ESTIMATES FOR REACTIVITY CONTROLLED COMPRESSION IGNITION IN A MULTI-CYLINDER LIGHT-DUTY DIESEL ENGINE

    SciTech Connect (OSTI)

    Curran, Scott [ORNL; Briggs, Thomas E [ORNL; Cho, Kukwon [ORNL; Wagner, Robert M [ORNL

    2011-01-01T23:59:59.000Z

    In-cylinder blending of gasoline and diesel to achieve Reactivity Controlled Compression Ignition (RCCI) has been shown to reduce NOx and PM emissions while maintaining or improving brake thermal efficiency as compared to conventional diesel combustion (CDC). The RCCI concept has an advantage over many advanced combustion strategies in that by varying both the percent of premixed gasoline and EGR rate, stable combustion can be extended over more of the light-duty drive cycle load range. Changing the percent premixed gasoline changes the fuel reactivity stratification in the cylinder providing further control of combustion phasing and pressure rise rate than the use of EGR alone. This paper examines the combustion and emissions performance of light-duty diesel engine using direct injected diesel fuel and port injected gasoline to carry out RCCI for steady-state engine conditions which are consistent with a light-duty drive cycle. A GM 1.9L four-cylinder engine with the stock compression ratio of 17.5:1, common rail diesel injection system, high-pressure EGR system and variable geometry turbocharger was modified to allow for port fuel injection with gasoline. Engine-out emissions, engine performance and combustion behavior for RCCI operation is compared against both CDC and a premixed charge compression ignition (PCCI) strategy which relies on high levels of EGR dilution. The effect of percent of premixed gasoline, EGR rate, boost level, intake mixture temperature, combustion phasing and pressure rise rate is investigated for RCCI combustion for the light-duty modal points. Engine-out emissions of NOx and PM were found to be considerably lower for RCCI operation as compared to CDC and PCCI, while HC and CO emissions were higher. Brake thermal efficiency was similar or higher for many of the modal conditions for RCCI operation. The emissions results are used to estimate hot-start FTP-75 emissions levels with RCCI and are compared against CDC and PCCI modes.

  4. Development of a Waste Heat Recovery System for Light Duty Diesel Engines |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeat Pump Models |Conduct, Parent CompanyaUSAMP AMDHeavy DutyLow

  5. Haul truck selection

    SciTech Connect (OSTI)

    Porter, D.

    1993-10-01T23:59:59.000Z

    Haul truck selection involves the consideration of a vast amount of information before the final decision is made. This judgment should not be made simply on the choice of power train, because to go for mechanical or electric drive has always been a case of horses for courses. Some sites are just better suited to electric drive. It could, for instance, be argued that coming out of deep mines with long haul roads is an ideal application for electric drive, but negotiating steep down gradients fully laden would favor mechanical drive. Engine selection on the other hand is easier to define but normally is the direct responsibility of the customer, with the truck manufacturer acting as impartial adviser. Understandably each will offer engines it believes to be well matched to the truck and to the site application requirements. Long term mine planning with careful attention to future equipment requirements is the key to all equipment purchases. This paper discusses the various considerations.

  6. Effect of Intake Air Filter Condition on Light-Duty Gasoline Vehicles

    SciTech Connect (OSTI)

    Thomas, John F [ORNL] [ORNL; Huff, Shean P [ORNL] [ORNL; West, Brian H [ORNL] [ORNL; Norman, Kevin M [ORNL] [ORNL

    2012-01-01T23:59:59.000Z

    Proper maintenance can help vehicles perform as designed, positively affecting fuel economy, emissions, and the overall drivability. This effort investigates the effect of one maintenance factor, intake air filter replacement, with primary focus on vehicle fuel economy, but also examining emissions and performance. Older studies, dealing with carbureted gasoline vehicles, have indicated that replacing a clogged or dirty air filter can improve vehicle fuel economy and conversely that a dirty air filter can be significantly detrimental to fuel economy. The effect of clogged air filters on the fuel economy, acceleration and emissions of five gasoline fueled vehicles is examined. Four of these were modern vehicles, featuring closed-loop control and ranging in model year from 2003 to 2007. Three vehicles were powered by naturally aspirated, port fuel injection (PFI) engines of differing size and cylinder configuration: an inline 4, a V6 and a V8. A turbocharged inline 4-cylinder gasoline direct injection (GDI) engine powered vehicle was the fourth modern gasoline vehicle tested. A vintage 1972 vehicle equipped with a carburetor (open-loop control) was also examined. Results reveal insignificant fuel economy and emissions sensitivity of modern vehicles to air filter condition, but measureable effects on the 1972 vehicle. All vehicles experienced a measured acceleration performance penalty with clogged intake air filters.

  7. Transportation Sector Model of the National Energy Modeling System. Volume 2 -- Appendices: Part 2

    SciTech Connect (OSTI)

    NONE

    1998-01-01T23:59:59.000Z

    The attachments contained within this appendix provide additional details about the model development and estimation process which do not easily lend themselves to incorporation in the main body of the model documentation report. The information provided in these attachments is not integral to the understanding of the model`s operation, but provides the reader with opportunity to gain a deeper understanding of some of the model`s underlying assumptions. There will be a slight degree of replication of materials found elsewhere in the documentation, made unavoidable by the dictates of internal consistency. Each attachment is associated with a specific component of the transportation model; the presentation follows the same sequence of modules employed in Volume 1. The following attachments are contained in Appendix F: Fuel Economy Model (FEM)--provides a discussion of the FEM vehicle demand and performance by size class models; Alternative Fuel Vehicle (AFV) Model--describes data input sources and extrapolation methodologies; Light-Duty Vehicle (LDV) Stock Model--discusses the fuel economy gap estimation methodology; Light Duty Vehicle Fleet Model--presents the data development for business, utility, and government fleet vehicles; Light Commercial Truck Model--describes the stratification methodology and data sources employed in estimating the stock and performance of LCT`s; Air Travel Demand Model--presents the derivation of the demographic index, used to modify estimates of personal travel demand; and Airborne Emissions Model--describes the derivation of emissions factors used to associate transportation measures to levels of airborne emissions of several pollutants.

  8. Truckstop -- and Truck!-- Electrification

    SciTech Connect (OSTI)

    Skip Yeakel

    2001-12-13T23:59:59.000Z

    The conclusions of this paper are: 0.5-1.5 G/H and/or BUSG/Y--how much time and money will it take to quantify and WHY BOTHER TO DO SO? No shortage of things to do re truckstop--+ truck!-- electrification; Better that government and industry should put many eggs in lots of baskets vs. all in one or few; Best concepts will surface as most viable; Economic appeal better than regulation or brute force; Launch Ground Freight Partnership and give it a chance to work; Demonstration is an effective means to educate, and learn from, customers--learning is a two way street; Research, Development, Demonstration, and Deployment (RD 3) are all important but only deployment gets results; TSE can start small in numbers of spaces to accommodate economically inspired growth but upfront plans should be made for expansion if meaningful idle reduction is to follow via TE; 110VAC 15A service/ parking space is minimal--if infrastructure starts like this, upfront plans must be made to increase capacity; Increased electrification of truckstop and truck alike will result in much better life on the road; Improved sleep will improve driver alertness and safety; Reduced idling will significantly reduce fuel use and emissions; Universal appeal for DOD, DOE, DOT, EPA, OEMs, and users alike; Clean coal, gas, hydro, nuclear, or wind energy sources are all distinctly American means by which to generate electricity; Nothing can compete with diesel fuel to serve mobile truck needs; stationary trucks are like power plants--they don't move and should NOT be powered by petroleum products whenever possible; Use American fueled power plants--electricity--to serve truck idling needs wherever practical to do so; encourage economic aspect; Create and reward industry initiatives to reduce fuel use; Eliminate FET on new trucks, provide tax credits (non highway fuel use and investment), provide incentives based on results; Encourage newer/ cleaner truck use; solicit BAAs with mandatory OEM/ fleet participation/ lead; and A gallon saved is a gallon earned-- start NOW, not later.

  9. CoolCab: Reducing Thermal Loads in Long-Haul Trucks (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2010-02-01T23:59:59.000Z

    This fact sheet describes how the National Renewable Energy Laboratory's CoolCab project tested and modeled the effects of several thermal-load reduction strategies applied to long-haul truck cabs. NREL partnered with two major truck manufacturers to evaluate three long-haul trucks at NREL's outdoor test facility in Golden, Colorado.

  10. Improving haul truck productivity

    SciTech Connect (OSTI)

    Fiscor, S.

    2007-06-15T23:59:59.000Z

    The paper reviews developments in payload management and cycle times. These were discussed at a roundtable held at the Haulage and Loading 2007 conference held in May in Phoenix, AZ, USA. Several original equipment manufacturers (OEMs) explaind what their companies were doing to improve cycle times for trucks, shovels and excavators used in surface coal mining. Quotations are given from Dion Domaschenz of Liebherr and Steve Plott of Cat Global Mining. 4 figs.

  11. FUEL ASSEMBLY SHAKER AND TRUCK TEST SIMULATION

    SciTech Connect (OSTI)

    Klymyshyn, Nicholas A.; Jensen, Philip J.; Sanborn, Scott E.; Hanson, Brady D.

    2014-09-25T23:59:59.000Z

    This study continues the modeling support of the SNL shaker table task from 2013 and includes analysis of the SNL 2014 truck test campaign. Detailed finite element models of the fuel assembly surrogate used by SNL during testing form the basis of the modeling effort. Additional analysis was performed to characterize and filter the accelerometer data collected during the SNL testing. The detailed fuel assembly finite element model was modified to improve the performance and accuracy of the original surrogate fuel assembly model in an attempt to achieve a closer agreement with the low strains measured during testing. The revised model was used to recalculate the shaker table load response from the 2013 test campaign. As it happened, the results remained comparable to the values calculated with the original fuel assembly model. From this it is concluded that the original model was suitable for the task and the improvements to the model were not able to bring the calculated strain values down to the extremely low level recorded during testing. The model needs more precision to calculate strains that are so close to zero. The truck test load case had an even lower magnitude than the shaker table case. Strain gage data from the test was compared directly to locations on the model. Truck test strains were lower than the shaker table case, but the model achieved a better relative agreement of 100-200 microstrains (or 0.0001-0.0002 mm/mm). The truck test data included a number of accelerometers at various locations on the truck bed, surrogate basket, and surrogate fuel assembly. This set of accelerometers allowed an evaluation of the dynamics of the conveyance system used in testing. It was discovered that the dynamic load transference through the conveyance has a strong frequency-range dependency. This suggests that different conveyance configurations could behave differently and transmit different magnitudes of loads to the fuel even when travelling down the same road at the same speed. It is recommended that the SNL conveyance system used in testing be characterized through modal analysis and frequency response analysis to provide context and assist in the interpretation of the strain data that was collected during the truck test campaign.

  12. Effect of E85 on RCCI Performance and Emissions on a Multi-Cylinder Light-Duty Diesel Engine - SAE World Congress

    SciTech Connect (OSTI)

    Curran, Scott [ORNL; Hanson, Reed M [ORNL; Wagner, Robert M [ORNL

    2012-01-01T23:59:59.000Z

    This paper investigates the effect of E85 on load expansion and FTP modal point emissions indices under reactivity controlled compression ignition (RCCI) operation on a light-duty multi-cylinder diesel engine. A General Motors (GM) 1.9L four-cylinder diesel engine with the stock compression ratio of 17.5:1, common rail diesel injection system, high-pressure exhaust gas recirculation (EGR) system and variable geometry turbocharger was modified to allow for port fuel injection with gasoline or E85. Controlling the fuel reactivity in-cylinder by the adjustment of the ratio of premixed low-reactivity fuel (gasoline or E85) to direct injected high reactivity fuel (diesel fuel) has been shown to extend the operating range of high-efficiency clean combustion (HECC) compared to the use of a single fuel alone as in homogeneous charge compression ignition (HCCI) or premixed charge compression ignition (PCCI). The effect of E85 on the Ad-hoc federal test procedure (FTP) modal points is explored along with the effect of load expansion through the light-duty diesel speed operating range. The Ad-hoc FTP modal points of 1500 rpm, 1.0bar brake mean effective pressure (BMEP); 1500rpm, 2.6bar BMEP; 2000rpm, 2.0bar BMEP; 2300rpm, 4.2bar BMEP; and 2600rpm, 8.8bar BMEP were explored. Previous results with 96 RON unleaded test gasoline (UTG-96) and ultra-low sulfur diesel (ULSD) showed that with stock hardware, the 2600rpm, 8.8bar BMEP modal point was not obtainable due to excessive cylinder pressure rise rate and unstable combustion both with and without the use of EGR. Brake thermal efficiency and emissions performance of RCCI operation with E85 and ULSD is explored and compared against conventional diesel combustion (CDC) and RCCI operation with UTG 96 and ULSD.

  13. Cummins SuperTruck Program - Technology and System Level Demonstration...

    Broader source: Energy.gov (indexed) [DOE]

    Cummins SuperTruck Program - Technology and System Level Demonstration of Highly Efficient and Clean, Diesel Powered Class 8 Trucks Cummins SuperTruck Program - Technology and...

  14. Cummins SuperTruck Program - Technology Demonstration of Highly...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    SuperTruck Program - Technology Demonstration of Highly Efficient Clean, Diesel Powered Class 8 Trucks Cummins SuperTruck Program - Technology Demonstration of Highly Efficient...

  15. Raley's LNG Truck Site Final Data Report

    SciTech Connect (OSTI)

    Battelle

    1999-07-01T23:59:59.000Z

    Raley's is a 120-store grocery chain with headquarters in Sacramento, California, that has been operating eight heavy-duty LNG trucks (Kenworth T800 trucks with Cummins L10-300G engines) and two LNG yard tractors (Ottawa trucks with Cummins B5.9G engines) since April 1997. This report describes the results of data collection and evaluation of the eight heavy-duty LNG trucks compared to similar heavy-duty diesel trucks operating at Raley's. The data collection and evaluation are a part of the U.S. Department of Energy (DOE)/National Renewable Energy Laboratory (NREL) Alternative Fuel Truck Evaluation Project.

  16. Heavy Truck Engine Program

    SciTech Connect (OSTI)

    Nelson, Christopher

    2009-01-08T23:59:59.000Z

    The Heavy Duty Truck Engine Program at Cummins embodied three significant development phases. All phases of work strove to demonstrate a high level of diesel engine efficiency in the face of increasingly stringent emission requirements. Concurrently, aftertreatment system development and refinement was pursued in support of these efficiency demonstrations. The program's first phase focused on the demonstration in-vehicle of a high level of heavy duty diesel engine efficiency (45% Brake Thermal Efficiency) at a typical cruise condition while achieving composite emissions results which met the 2004 U.S. EPA legislated standards. With a combination of engine combustion calibration tuning and the development and application of Urea-based SCR and particulate aftertreatment, these demonstrations were successfully performed by Q4 of 2002. The second phase of the program directed efforts towards an in-vehicle demonstration of an engine system capable of meeting 2007 U.S. EPA legislated emissions requirements while achieving 45% Brake Thermal Efficiency at cruise conditions. Through further combustion optimization, the refinement of Cummins Cooled EGR architecture, the application of a high pressure common rail fuel system and the incorporation of optimized engine parasitics, Cummins Inc. successfully demonstrated these deliverables in Q2 of 2004. The program's final phase set a stretch goal of demonstrating 50% Brake Thermal Efficiency from a heavy duty diesel engine system capable of meeting 2010 U.S. EPA legislated emissions requirements. Cummins chose to pursue this goal through further combustion development and refinement of the Cooled EGR system architecture and also applied a Rankine cycle Waste Heat Recovery technique to convert otherwise wasted thermal energy to useful power. The engine and heat recovery system was demonstrated to achieve 50% Brake Thermal Efficiency while operating at a torque peak condition in second quarter, 2006. The 50% efficient engine system was capable of meeting 2010 emissions requirements through the application of NOx and particulate matter reduction techniques proven earlier in the program.

  17. Heavy Truck Duty Cycle (HTDC) Project The Heavy Truck Duty Cycle (HTDC)

    E-Print Network [OSTI]

    data from trucks operating in long-haul operations. The research program was designed to be conductedHeavy Truck Duty Cycle (HTDC) Project OVERVIEW The Heavy Truck Duty Cycle (HTDC) Project. The project involves efforts to collect, analyze and archive data and information related to class -8 truck

  18. Analysis of liquid natural gas as a truck fuel: a system dynamics approach

    SciTech Connect (OSTI)

    Bray, M.A.; Sebo, D.E.; Mason, T.L.; Mills, J.I.; Rice, R.E.

    1996-10-01T23:59:59.000Z

    The purpose of this analysis is to evaluate the potential for growth in use of liquid natural gas (LNG) fueled trucks. . A system dynamics model was constructed for the analysis and a variety of scenarios were investigated. The analysis considers the economics of LNG fuel in the context of the trucking industry to identify barriers to the increased use of LNG trucks and potential interventions or leverage points which may overcome these barriers. The study showed that today, LNG use in trucks is not yet economically viable. A large change in the savings from fuel cost or capital cost is needed for the technology to take off. Fleet owners have no way now to benefit from the environmental benefits of LNG fuel nor do they benefit from the clean burning nature of the fuel. Changes in the fuel cost differential between diesel and LNG are not a research issue. However, quantifying the improvements in reliability and wear from the use of clean fuel could support increased maintenance and warranty periods. Many people involved in the use of LNG for trucks believe that LNG has the potential to occupy a niche within the larger diesel truck business. But if LNG in trucks can become economic, the spread of fuel stations and technology improvements could lead to LNG trucks becoming the dominant technology. An assumption in our simulation work is that LNG trucks will be purchased when economically attractive. None of the simulation results show LNG becoming economic but then only to the level of a niche market.

  19. Truck acoustic data analyzer system

    DOE Patents [OSTI]

    Haynes, Howard D.; Akerman, Alfred; Ayers, Curtis W.

    2006-07-04T23:59:59.000Z

    A passive vehicle acoustic data analyzer system having at least one microphone disposed in the acoustic field of a moving vehicle and a computer in electronic communication the microphone(s). The computer detects and measures the frequency shift in the acoustic signature emitted by the vehicle as it approaches and passes the microphone(s). The acoustic signature of a truck driving by a microphone can provide enough information to estimate the truck speed in miles-per-hour (mph), engine speed in rotations-per-minute (RPM), turbocharger speed in RPM, and vehicle weight.

  20. Collecting Construction Equipment Activity Data from Caltrans Project Records

    E-Print Network [OSTI]

    Kable, Justin M

    2008-01-01T23:59:59.000Z

    the five categories, “Water Truck”, “Heavy Duty Truck” and “NONROAD Heavy Duty Truck Light Duty Truck Water Truck TOTALaround the job site. Water trucks are heavy duty trucks that

  1. RESULTSRESULTS Assisted in selection of APU mounting configuration on truck

    E-Print Network [OSTI]

    Carver, Jeffrey C.

    subcomponents, using actual frame-rail data as vibration input from truck · Enabled measurement location Motion Fuel Cell Auxiliary Power Unit (APU): Dynamic ModelingFuel Cell Auxiliary Power Unit (APU@coe.eng.ua.edu OBJECTIVESOBJECTIVES ·Develop a computer model to predict the vibratory response of the fuel cell APU components ·Use

  2. Truck Thermoacoustic Generator and Chiller

    SciTech Connect (OSTI)

    Robert Keolian

    2011-03-31T23:59:59.000Z

    This Final Report describes the accomplishments of the US Department of Energy (DOE) cooperative agreement project DE-FC26-04NT42113 - Truck Thermoacoustic Generator and Chiller - whose goal is to design, fabricate and test a thermoacoustic piezoelectric generator and chiller system for use on over-the-road heavy-duty-diesel trucks, driven alternatively by the waste heat of the main diesel engine exhaust or by a burner integrated into the thermoacoustic system. The thermoacoustic system would utilize engine exhaust waste heat to generate electricity and cab air conditioning, and would also function as an auxiliary power unit (APU) for idle reduction. The unit was to be tested in Volvo engine performance and endurance test cells and then integrated onto a Class 8 over-the-road heavy-duty-diesel truck for further testing on the road. The project has been a collaboration of The Pennsylvania State University Applied Research Laboratory, Los Alamos National Laboratory, Clean Power Resources Inc., and Volvo Powertrain (Mack Trucks Inc.). Cost share funding was provided by Applied Research Laboratory, and by Clean Power Resources Inc via its grant from Innovation Works - funding that was derived from the Commonwealth of Pennsylvania. Los Alamos received its funding separately through DOE Field Work Proposal 04EE09.

  3. Cummins' Next Generation Tier 2, Bin 2 Light Truck Diesel Engine...

    Broader source: Energy.gov (indexed) [DOE]

    Technology Light Duty Diesel Aftertreatment System Passive Catalytic Approach to Low Temperature NOx Emission Abatement ATP-LD; Cummins Next Generation Tier 2 Bin 2 Diesel Engine...

  4. Technologies and policies for controlling greenhouse gas emissions from the U. S. automobile and light truck fleet.

    SciTech Connect (OSTI)

    Plotkin, S.

    1999-01-01T23:59:59.000Z

    The message conveyed by the above discussion is that there are no shortages of technologies available to improve the fuel efficiency of the U.S. fleet of autos and light trucks. It clearly is technically feasible to improve greatly the fuel economy of the average new light-duty vehicle. Many of these technologies require tradeoffs, however, that manufacturers are unwilling or (as yet) unable to make in today's market and regulatory environment. These tradeoffs involve higher costs (that might be reduced substantially over time with learning and economies of scale), technical risk and added complexity, emissions concerns (especially for direct injection engines, and especially with respect to diesel engine technology), and customer acceptance issues. Even with current low U.S. oil prices, however, many of these technologies may find their way into the U.S. market, or increase their market share, as a consequence of their penetration of European and Japanese markets with their high gasoline prices. Automotive technology is ''fungible'' that is, it can be easily transported from one market to another. Nevertheless, it probably is unrealistic to expect substantial increases in the average fuel economy of the U.S. light-duty fleet without significant changes in the market. Without such changes, the technologies that do penetrate the U.S. market are more likely to be used to increase acceleration performance or vehicle structures or enable four wheel drive to be included in vehicles without a net mpg penalty. In other words, technology by itself is not likely to be enough to raise fleet fuel economy levels - this was the conclusion of the 1995 Ailomar Conference on Energy and Sustainable Transportation, organized by the Transportation Research Board's Committees on Energy and Alternative Fuels, and it is one I share.

  5. Quantifying the Effects of Idle-Stop Systems on Fuel Economy in Light-Duty Passenger Vehicles

    SciTech Connect (OSTI)

    Jeff Wishart; Matthew Shirk

    2012-12-01T23:59:59.000Z

    Vehicles equipped with idle-stop (IS) systems are capable of engine shut down when the vehicle is stopped and rapid engine re-start for the vehicle launch. This capability reduces fuel consumption and emissions during periods when the engine is not being utilized to provide propulsion or to power accessories. IS systems are a low-cost and fast-growing technology in the industry-wide pursuit of increased vehicle efficiency, possibly becoming standard features in European vehicles in the near future. In contrast, currently there are only three non-hybrid vehicle models for sale in North America with IS systems and these models are distinctly low-volume models. As part of the United States Department of Energy’s Advanced Vehicle Testing Activity, ECOtality North America has tested the real-world effect of IS systems on fuel consumption in three vehicle models imported from Europe. These vehicles were chosen to represent three types of systems: (1) spark ignition with 12-V belt alternator starter; (2) compression ignition with 12-V belt alternator starter; and (3) direct-injection spark ignition, with 12-V belt alternator starter/combustion restart. The vehicles have undergone both dynamometer and on-road testing; the test results show somewhat conflicting data. The laboratory data and the portion of the on-road data in which driving is conducted on a prescribed route with trained drivers produced significant fuel economy improvement. However, the fleet data do not corroborate improvement, even though the data show significant engine-off time. It is possible that the effects of the varying driving styles and routes in the fleet testing overshadowed the fuel economy improvements. More testing with the same driver over routes that are similar with the IS system-enabled and disabled is recommended. There is anecdotal evidence that current Environmental Protection Agency fuel economy test procedures do not capture the fuel economy gains that IS systems produce in real-world driving. The program test results provide information on the veracity of these claims.

  6. Experimental Investigation of Fuel-Reactivity Controlled Compression Ignition (RCCI) Combustion Mode in a Multi-Cylinder, Light-Duty Diesel Engine

    SciTech Connect (OSTI)

    Cho, Kukwon [ORNL] [ORNL; Curran, Scott [ORNL] [ORNL; Prikhodko, Vitaly Y [ORNL] [ORNL; Sluder, Scott [ORNL] [ORNL; Parks, II, James E [ORNL; Wagner, Robert M [ORNL] [ORNL

    2011-01-01T23:59:59.000Z

    An experimental study was performed to provide the combustion and emission characteristics resulting from fuel-reactivity controlled compression ignition (RCCI) combustion mode utilizing dual-fuel approach in a light-duty, multi-cylinder diesel engine. In-cylinder fuel blending using port fuel injection of gasoline before intake valve opening (IVO) and early-cycle, direct injection of diesel fuel was used as the charge preparation and fuel blending strategy. In order to achieve the desired auto-ignition quality through the stratification of the fuel-air equivalence ratio ( ), blends of commercially available gasoline and diesel fuel were used. Engine experiments were performed at an engine speed of 2300rpm and an engine load of 4.3bar brake mean effective pressure (BMEP). It was found that significant reduction in both nitrogen oxide (NOx) and particulate matter (PM) was realized successfully through the RCCI combustion mode even without applying exhaust gas recirculation (EGR). However, high carbon monoxide (CO) and hydrocarbon (HC) emissions were observed. The low combustion gas temperature during the expansion and exhaust processes seemed to be the dominant source of high CO emissions in the RCCI combustion mode. The high HC emissions during the RCCI combustion mode could be due to the increased combustion quenching layer thickness as well as the -stratification at the periphery of the combustion chamber. The slightly higher brake thermal efficiency (BTE) of the RCCI combustion mode was observed than the other combustion modes, such as the conventional diesel combustion (CDC) mode, and single-fuel, premixed charge compression ignition (PCCI) combustion mode. The parametric study of the RCCI combustion mode revealed that the combustion phasing and/or the peak cylinder pressure rise rate of the RCCI combustion mode could be controlled by several physical parameters premixed ratio (rp), intake swirl intensity, and start of injection (SOI) timing of directly injected fuel unlike other low temperature combustion (LTC) strategies.

  7. Transportation Energy Futures Series: Non-Cost Barriers to Consumer Adoption of New Light-Duty Vehicle Technologies

    SciTech Connect (OSTI)

    Stephens, T.

    2013-03-01T23:59:59.000Z

    Consumer preferences are key to the adoption of new vehicle technologies. Barriers to consumer adoption include price and other obstacles, such as limited driving range and charging infrastructure; unfamiliarity with the technology and uncertainty about direct benefits; limited makes and models with the technology; reputation or perception of the technology; standardization issues; and regulations. For each of these non-cost barriers, this report estimates an effective cost and summarizes underlying influences on consumer preferences, approximate magnitude and relative severity, and assesses potential actions, based on a comprehensive literature review. While the report concludes that non-cost barriers are significant, effective cost and potential market share are very uncertain. Policies and programs including opportunities for drivers to test drive advanced vehicles, general public outreach and information programs, incentives for providing charging and fueling infrastructure, and development of technology standards were examined for their ability to address barriers, but little quantitative data exists on the effectiveness of these measures. This is one in a series of reports produced as a result of the Transportation Energy Futures project, a Department of Energy-sponsored multi-agency effort to pinpoint underexplored strategies for reducing GHGs and petroleum dependence related to transportation.

  8. Light Duty Combustion Research: Advanced Light-Duty Combustion Experiments

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensionalthe10IO1OP001 Letter Report:Life-Cycle Analysis of| Department of

  9. Light Duty Efficient Clean Combustion

    Broader source: Energy.gov (indexed) [DOE]

    (order of the components) Thermal management strategy Fuel injection strategies VGT turbo operation VVA 13 This presentation does not contain any proprietary or confidential...

  10. Light-Duty Diesel Combustion

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  11. Light Duty Vehicle CNG Tanks

    Broader source: Energy.gov (indexed) [DOE]

    Vehicle CNG Tanks Dane A. Boysen, PhD Program Director Advanced Research Projects Agency-Energy, US DOE dane.boysen@doe.gov Fiber Reinforced Polymer Composite Manufacturing...

  12. Light Duty Vehicle CNG Tanks

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGY TAX POLICIES7.pdfFuel2007 |KSRS25RV*)Boyd About UsMr. Brian MillsLEVERAGINGfromLight

  13. Solar hydrogen for urban trucks

    SciTech Connect (OSTI)

    Provenzano, J.: Scott, P.B.; Zweig, R. [Clean Air Now, Northridge, CA (United States)

    1997-12-31T23:59:59.000Z

    The Clean Air Now (CAN) Solar Hydrogen Project, located at Xerox Corp., El Segundo, California, includes solar photovoltaic powered hydrogen generation, compression, storage and end use. Three modified Ford Ranger trucks use the hydrogen fuel. The stand-alone electrolyzer and hydrogen dispensing system are solely powered by a photovoltaic array. A variable frequency DC-AC converter steps up the voltage to drive the 15 horsepower compressor motor. On site storage is available for up to 14,000 standard cubic feet (SCF) of solar hydrogen, and up to 80,000 SCF of commercial hydrogen. The project is 3 miles from Los Angeles International airport. The engine conversions are bored to 2.9 liter displacement and are supercharged. Performance is similar to that of the Ranger gasoline powered truck. Fuel is stored in carbon composite tanks (just behind the driver`s cab) at pressures up to 3600 psi. Truck range is 144 miles, given 3600 psi of hydrogen. The engine operates in lean burn mode, with nil CO and HC emissions. NO{sub x} emissions vary with load and rpm in the range from 10 to 100 ppm, yielding total emissions at a small fraction of the ULEV standard. Two trucks have been converted for the Xerox fleet, and one for the City of West Hollywood. A public outreach program, done in conjunction with the local public schools and the Department of Energy, introduces the local public to the advantages of hydrogen fuel technologies. The Clean Air Now program demonstrates that hydrogen powered fleet development is an appropriate, safe, and effective strategy for improvement of urban air quality, energy security and avoidance of global warming impact. Continued technology development and cost reduction promises to make such implementation market competitive.

  14. Project Information Form Project Title Reducing Truck Emissions and Improving Truck Fuel Economy via ITS

    E-Print Network [OSTI]

    California at Davis, University of

    Project Information Form Project Title Reducing Truck Emissions and Improving Truck Fuel Economy new traffic flow and traffic light control concepts with respect to emissions and fuel economy. Some

  15. Emission Controls for Heavy-Duty Trucks

    Broader source: Energy.gov (indexed) [DOE]

    DEER Conference Emission Controls for Heavy-Duty Trucks Overview Emission Standards - US and Worldwide Technology Options for Meeting Emissions System Integration ...

  16. Trucking | OpenEI Community

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectric Coop, IncTipmontInformationKentucky) JumpCorpDist JumpTrucking Home

  17. SCR Systems for Heavy Duty Trucks: Progress Towards Meeting Euro...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Systems for Heavy Duty Trucks: Progress Towards Meeting Euro 4 Emission Standards in 2005 SCR Systems for Heavy Duty Trucks: Progress Towards Meeting Euro 4 Emission Standards in...

  18. Fuel economy and emissions reduction of HD hybrid truck over...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    economy and emissions reduction of HD hybrid truck over transient driving cycles and interstate roads Fuel economy and emissions reduction of HD hybrid truck over transient driving...

  19. NJ Compressed Natural Gas Refuse Trucks, Shuttle Buses and Infrastruct...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    NJ Compressed Natural Gas Refuse Trucks, Shuttle Buses and Infrastructure NJ Compressed Natural Gas Refuse Trucks, Shuttle Buses and Infrastructure 2012 DOE Hydrogen and Fuel Cells...

  20. Design Considerations for a PEM Fuel Cell Powered Truck APU

    E-Print Network [OSTI]

    Grupp, David J; Forrest, Matthew E.; Mader, Pippin G.; Brodrick, Christie-Joy; Miller, Marshall; Dwyer, Harry A.

    2004-01-01T23:59:59.000Z

    of most line-haul class 8 trucks. Ballard Nexa Fuel Cell Thefuel cell powered auxiliary power units (APUs) to reduce idling in line-haul trucks.

  1. Vehicle Technologies Office Merit Review 2014: Class 8 Truck...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Class 8 Truck Freight Efficiency Improvement Project Vehicle Technologies Office Merit Review 2014: Class 8 Truck Freight Efficiency Improvement Project Presentation given by...

  2. Vehicle Technologies Office Merit Review 2014: SuperTruck Program...

    Energy Savers [EERE]

    SuperTruck Program: Engine Project Review Vehicle Technologies Office Merit Review 2014: SuperTruck Program: Engine Project Review Presentation given by Detroit Diesel Corporation...

  3. Thermoelectric Generator Development at Renault Trucks-Volvo...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Trucks-Volvo Group Reviews project to study the potential of thermoelectricity for diesel engines of trucks and passenger cars, where relatively low exhaust temperature is...

  4. NOx Adsorbers for Heavy Duty Truck Engines - Testing and Simulation...

    Broader source: Energy.gov (indexed) [DOE]

    NOx Adsorbers for Heavy Duty Truck Engines - Testing and Simulation NOx Adsorbers for Heavy Duty Truck Engines - Testing and Simulation This report provides the results of an...

  5. Ten Years of Development Experience with Advanced Light Truck...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Ten Years of Development Experience with Advanced Light Truck Diesel Engines Ten Years of Development Experience with Advanced Light Truck Diesel Engines 2004 Diesel Engine...

  6. Vehicle Technologies Office Merit Review 2014: Cummins SuperTruck...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Vehicle Technologies Office Merit Review 2014: Cummins SuperTruck Program Technology and System Level Demonstration of Highly Efficient and Clean, Diesel Powered Class 8 Trucks...

  7. Assessment of Out-of-State Heavy-Duty Truck Activity Trends In California

    E-Print Network [OSTI]

    Lutsey, Nicholas P.

    2008-01-01T23:59:59.000Z

    California-registered long-haul trucks that travel throughreferred to as “long haul” trucks. These trucks tend to beto include both “long haul” trucks and trucks that operate

  8. Proposed Revisions to Light Truck Fuel Economy Standard (released in AEO2006)

    Reports and Publications (EIA)

    2006-01-01T23:59:59.000Z

    In August 2005, the National Highway Traffic Safety Administration (NHTSA) published proposed reforms to the structure of CAFE standards for light trucks and increases in light truck Corporate Average Fuel Economy (CAFE) standards for model years 2008 through 201. Under the proposed new structure, NHTSA would establish minimum fuel economy levels for six size categories defined by the vehicle footprint (wheelbase multiplied by track width), as summarized in Table 3. For model years 2008 through 2010, the new CAFE standards would provide manufacturers the option of complying with either the standards defined for each individual footprint category or a proposed average light truck fleet standard of 22.5 miles per gallon in 2008, 23.1 miles per gallon in 2009, and 23.5 miles per gallon in 2010. All light truck manufacturers would be required to meet an overall standard based on sales within each individual footprint category after model year 2010.

  9. Comparative Study of Hybrid Powertrains on Fuel Saving, Emissions, and Component Energy Loss in HD Trucks

    SciTech Connect (OSTI)

    Gao, Zhiming [ORNL; FINNEY, Charles E A [ORNL; Daw, C Stuart [ORNL; LaClair, Tim J [ORNL; Smith, David E [ORNL

    2014-01-01T23:59:59.000Z

    We compared parallel and series hybrid powertrains on fuel economy, component energy loss, and emissions control in Class 8 trucks over both city and highway driving. A comprehensive set of component models describing battery energy, engine fuel efficiency, emissions control, and power demand interactions for heavy duty (HD) hybrids has been integrated with parallel and series hybrid Class 8 trucks in order to identify the technical barriers of these hybrid powertrain technologies. The results show that series hybrid is absolutely negative for fuel economy benefit of long-haul trucks due to an efficiency penalty associated with the dual-step conversions of energy (i.e. mechanical to electric to mechanical). The current parallel hybrid technology combined with 50% auxiliary load reduction could elevate 5-7% fuel economy of long-haul trucks, but a profound improvement of long-haul truck fuel economy requires additional innovative technologies for reducing aerodynamic drag and rolling resistance losses. The simulated emissions control indicates that hybrid trucks reduce more CO and HC emissions than conventional trucks. The simulated results further indicate that the catalyzed DPF played an important role in CO oxidations. Limited NH3 emissions could be slipped from the Urea SCR, but the average NH3 emissions are below 20 ppm. Meanwhile our estimations show 1.5-1.9% of equivalent fuel-cost penalty due to urea consumption in the simulated SCR cases.

  10. Test, Evaluation, and Demonstration of Practical Devices/Systems to Reduce Aerodynamic Drag of Tractor/Semitrailer Combination Unit Trucks

    SciTech Connect (OSTI)

    Scott Smith; Karla Younessi; Matt Markstaller; Dan Schlesinger; Bhaskar Bhatnagar; Donald Smith; Bruno Banceu; Ron Schoon; V.K. Sharma; Mark Kachmarsky; Srikant Ghantae; Michael Sorrels; Conal Deedy; Justin Clark; Skip Yeakel; Michael D. Laughlin; Charlotte Seigler; Sidney Diamond

    2007-04-30T23:59:59.000Z

    Class 8 heavy-duty trucks account for over three-quarters of the total diesel fuel used by commercial trucks (trucks with GVWRs more than 10,000 pounds) in the United States each year. At the highway speeds at which these trucks travel (i.e., 60 mph or greater), aerodynamic drag is a major part of total horsepower needed to move the truck down the highway, Reductions in aerodynamic drag can yield measurable benefits in fuel economy through the use of relatively inexpensive and simple devices. The goal of this project was to examine a number of aerodynamic drag reduction devices and systems and determine their effectiveness in reducing aerodynamic drag of Class 8 tractor/semitrailer combination-units, thus contributing to DOE's goal of reducing transportation petroleum use. The project team included major heavy truck manufacturers in the United States, along with the management and industry expertise of the Truck Manufacturers Association as the lead investigative organization. The Truck Manufacturers Association (TMA) is the national trade association representing the major North American manufacturers of Class 6-8 trucks (GVWRs over 19,500 lbs). Four major truck manufacturers participated in this project with TMA: Freightliner LLC; International Truck and Engine Corporation; Mack Trucks Inc.; and Volvo Trucks North America, Inc. Together, these manufacturers represent over three-quarters of total Class 8 truck sales in the United States. These four manufacturers pursued complementary research efforts as part of this project. The project work was separated into two phases conducted over a two-year period. In Phase I, candidate aerodynamic devices and systems were screened to focus research and development attention on devices that offered the most potential. This was accomplished using full-size vehicle tests, scale model tests, and computational fluid dynamics analyses. In Phase II, the most promising devices were installed on full-size trucks and their effect on fuel economy was determined, either through on-road testing or full-size wind tunnel testing. All of the manufacturers worked with devices and systems that offer practical solutions to reduce aerodynamic drag, accounting for functionality, durability, cost effectiveness, reliability, and maintainability. The project team members and their roles and responsibilities are shown in Figure 2-1. Figure 2-2 shows the Phase I and II project schedules for all four projects and associated management activities.

  11. Alternative fuel trucks case studies: Running line-haul trucks on ethanol

    SciTech Connect (OSTI)

    Norton, P.; Kelly, K.J.; Marek, N.J.

    1996-10-01T23:59:59.000Z

    This bulletin describes case studies of trucks operating on ethanol fuel. Cost, maintenance and repair, as well as fuel economy are discussed.

  12. In-Cab Air Quality of Trucks Air Conditioned and Kept in Electrified Truck Stop

    SciTech Connect (OSTI)

    Lee, Doh-Won [Texas Transportation Institute; Zietsman, Josias [Texas Transportation Institute; Farzaneh, Mohamadreza [Texas Transportation Institute; Li, Wen-Whai [University of Texas, El Paso; Olvera, Hector [University of Texas, El Paso; Storey, John Morse [ORNL; Kranendonk, Laura [ORNL

    2009-01-01T23:59:59.000Z

    At night, long-haul truck drivers rest inside the cabins of their vehicles. Therefore, the in-cab air quality while air conditioning (A/C) is being provided can be a great concern to the drivers health. The effect of using different A/C methods [truck's A/C, auxiliary power unit (APU), and truck stop electrification (TSE) unit] on in-cab air quality of a heavy-duty diesel vehicle was investigated at an electrified truck stop in the El Paso, Texas, area. The research team measured the in-cabin and the ambient air quality adjacent to the parked diesel truck as well as emissions from the truck and an APU while it was providing A/C. The measured results were compared and analyzed. On the basis of these results, it was concluded that the TSE unit provided better in-cab air quality while supplying A/C. Furthermore, the truck and APU exhaust emissions were measured, and fuel consumption of the truck (while idling) and the APU (during operation) were compared. The results led to the finding that emissions from the APU were less than those from the truck's engine idling, but the APU consumed more fuel than the engine while providing A/C under given conditions.

  13. Slow speed object detection for haul trucks

    SciTech Connect (OSTI)

    NONE

    2009-09-15T23:59:59.000Z

    Caterpillar integrates radar technology with its current camera based system. Caterpillar has developed the Integrated Object Detection System, a slow speed object detection system for mining haul trucks. Object detection is a system that aids the truck operator's awareness of their surroundings. The system consists of a color touch screen display along with medium- and short-range radar as well as cameras, harnesses and mounting hardware. It is integrated into the truck's Work Area Vision System (WAVS). After field testing in 2007, system commercialization began in 2008. Prototype systems are in operation in Australia, Utah and Arizona and the Integrated Object Detection System will be available in the fourth quarter of 2009 and on production trucks 785C, 789C, 793D and 797B. The article is adapted from a presentation by Mark Richards of Caterpillar to the Haulage & Loading 2009 conference, May, held in Phoenix, AZ. 1 fig., 5 photos.

  14. Water by truck in Mexico City

    E-Print Network [OSTI]

    Pike, Jill (Jill Susan)

    2005-01-01T23:59:59.000Z

    Supply of water to urban households by tanker truck in developing and advanced developing countries is often associated with early stages of urbanization or with the private markets on which water vendors serve households ...

  15. Assessment of costs and benefits of flexible and alternative fuel use in the U.S. transportation sector. Technical report fourteen: Market potential and impacts of alternative fuel use in light-duty vehicles -- A 2000/2010 analysis

    SciTech Connect (OSTI)

    NONE

    1996-01-01T23:59:59.000Z

    In this report, estimates are provided of the potential, by 2010, to displace conventional light-duty vehicle motor fuels with alternative fuels--compressed natural gas (CNG), liquefied petroleum gas (LPG), methanol from natural gas, ethanol from grain and from cellulosic feedstocks, and electricity--and with replacement fuels such as oxygenates added to gasoline. The 2010 estimates include the motor fuel displacement resulting both from government programs (including the Clean Air Act and EPACT) and from potential market forces. This report also provides an estimate of motor fuel displacement by replacement and alterative fuels in the year 2000. However, in contrast to the 2010 estimates, the year 2000 estimate is restricted to an accounting of the effects of existing programs and regulations. 27 figs., 108 tabs.

  16. Effect of Wide-Based Single Tires on Fuel Efficiency of Class 8 Combination Trucks

    SciTech Connect (OSTI)

    Franzese, Oscar [ORNL] [ORNL; Knee, Helmut E [ORNL] [ORNL; Slezak, Lee [U.S. Department of Energy] [U.S. Department of Energy

    2010-01-01T23:59:59.000Z

    In 2007 and 2008, the Oak Ridge National Laboratory, in collaboration with several industry partners, collected real-world performance and situational data for long-haul operations of Class- 8 trucks from a fleet engaged in normal freight operations. Such data and information is useful to support Class-8 modeling of heavy-truck performance, technology evaluation efforts for energy efficiency, and to provide a means of accounting for real-world driving performance within heavy-truck research and analyses. This paper presents some general statistics, including distribution of idling times during long-haul trucking operations. However, the main focus is on the analysis of some of the extensive real-world information collected in this project, specifically on the assessment of the effect that different types of tires (i.e., dual tires vs. new generation single wide-based tires or NGSWBTs) have on the fuel efficiency of Class-8 trucks. The tire effect is also evaluated as a function of the vehicle load level. In all cases analyzed, the statistical tests performed strongly suggest that fuel efficiencies achieved when using all NGSWBTs or combinations of duals and NGSWBTs are higher than in the case of a truck equipped with all dual tires.

  17. Optimizing U.S. Mitigation Strategies for the Light-Duty Transportation Sector: What We Learn from a Bottom-Up Model

    E-Print Network [OSTI]

    Yeh, Sonia; Farrell, Alexander E.; Plevin, Richard J; Sanstad, Alan; Weyant, John

    2008-01-01T23:59:59.000Z

    GHG fuels such as compressed natural gas, low-GHG ethanol,LPG) Methane Compressed natural gas (CNG) Ethanol production

  18. Optimizing U.S. Mitigation Strategies for the Light-Duty Transportation Sector: What We Learn from a Bottom-Up Model

    E-Print Network [OSTI]

    Yeh, Sonia; Farrell, Alexander E.; Plevin, Richard J; Sanstad, Alan; Weyant, John

    2008-01-01T23:59:59.000Z

    2005; Energy Information Administration, U.S. Department of0383(2007); Energy Information Administration: 2007. http://0383(2006); Energy Information Administration: Washington,

  19. Optimizing U.S. Mitigation Strategies for the Light-Duty Transportation Sector: What We Learn from a Bottom-Up Model

    E-Print Network [OSTI]

    Yeh, Sonia; Farrell, Alexander E.; Plevin, Richard J; Sanstad, Alan; Weyant, John

    2008-01-01T23:59:59.000Z

    the production process for ethanol fuel including theS4). With the exception of ethanol, fuel CO 2 intensity ispolicy results in zero ethanol ?ex-fuel vehicle penetration

  20. Optimizing U.S. Mitigation Strategies for the Light-Duty Transportation Sector: What We Learn from a Bottom-Up Model

    E-Print Network [OSTI]

    Yeh, Sonia; Farrell, Alexander E.; Plevin, Richard J; Sanstad, Alan; Weyant, John

    2008-01-01T23:59:59.000Z

    in hybrid vehicles and hydrogen fuel cell vehicles are notlower production cost. Hydrogen fuel cell vehicles (FCVs) doC.DHEV C.DSL C.ETHX Fuel Cell - Hydrogen C.FCH Conventional

  1. Optimizing U.S. Mitigation Strategies for the Light-Duty Transportation Sector: What We Learn from a Bottom-Up Model

    E-Print Network [OSTI]

    Yeh, Sonia; Farrell, Alexander E.; Plevin, Richard J; Sanstad, Alan; Weyant, John

    2008-01-01T23:59:59.000Z

    on the adoption of alternative fuel vehicles: The case of07: 2007. 21. CEC State Alternative Fuel Plan. CEC-600-2007-972. (28) CEC. State Alternative Fuel Plan; CEC-600-2007-

  2. Optimizing U.S. Mitigation Strategies for the Light-Duty Transportation Sector: What We Learn from a Bottom-Up Model

    E-Print Network [OSTI]

    Yeh, Sonia; Farrell, Alexander E.; Plevin, Richard J; Sanstad, Alan; Weyant, John

    2008-01-01T23:59:59.000Z

    is sensitive to the cost of fuel cell technology, oil price,lower production cost. Hydrogen fuel cell vehicles (FCVs) do

  3. Optimizing U.S. Mitigation Strategies for the Light-Duty Transportation Sector: What We Learn from a Bottom-Up Model

    E-Print Network [OSTI]

    Yeh, Sonia; Farrell, Alexander E.; Plevin, Richard J; Sanstad, Alan; Weyant, John

    2008-01-01T23:59:59.000Z

    leg/leginx.asp 4. EIA Annual Energy Outlook 2007 with22, (4), 10. EIA Annual Energy Outlook 2006 with Projectionsto the Annual Energy Outlook 2007. Transportation Demand

  4. Transportation Sector Model of the National Energy Modeling System. Volume 1

    SciTech Connect (OSTI)

    NONE

    1998-01-01T23:59:59.000Z

    This report documents the objectives, analytical approach and development of the National Energy Modeling System (NEMS) Transportation Model (TRAN). The report catalogues and describes the model assumptions, computational methodology, parameter estimation techniques, model source code, and forecast results generated by the model. The NEMS Transportation Model comprises a series of semi-independent models which address different aspects of the transportation sector. The primary purpose of this model is to provide mid-term forecasts of transportation energy demand by fuel type including, but not limited to, motor gasoline, distillate, jet fuel, and alternative fuels (such as CNG) not commonly associated with transportation. The current NEMS forecast horizon extends to the year 2010 and uses 1990 as the base year. Forecasts are generated through the separate consideration of energy consumption within the various modes of transport, including: private and fleet light-duty vehicles; aircraft; marine, rail, and truck freight; and various modes with minor overall impacts, such as mass transit and recreational boating. This approach is useful in assessing the impacts of policy initiatives, legislative mandates which affect individual modes of travel, and technological developments. The model also provides forecasts of selected intermediate values which are generated in order to determine energy consumption. These elements include estimates of passenger travel demand by automobile, air, or mass transit; estimates of the efficiency with which that demand is met; projections of vehicle stocks and the penetration of new technologies; and estimates of the demand for freight transport which are linked to forecasts of industrial output. Following the estimation of energy demand, TRAN produces forecasts of vehicular emissions of the following pollutants by source: oxides of sulfur, oxides of nitrogen, total carbon, carbon dioxide, carbon monoxide, and volatile organic compounds.

  5. Network Design Formulations, Modeling, and Solution Algorithms for Goods Movement Strategic Planning

    E-Print Network [OSTI]

    Apivatanagul, Pruttipong

    2008-01-01T23:59:59.000Z

    1956). The long haul less-than-truck-load and truckloadare competitive to truck when the line haul is more than 500haul freight demand is decided by the shipper model which represents the truck

  6. Heavy Truck Clean Diesel Cooperative Research Program

    SciTech Connect (OSTI)

    Milam, David

    2006-12-31T23:59:59.000Z

    This report is the final report for the Department of Energy on the Heavy Truck Engine Program (Contract No. DE-FC05-00OR22806) also known as Heavy Truck Clean Diesel (HTCD) Program. Originally, this was scoped to be a $38M project over 5 years, to be 50/50 co-funded by DOE and Caterpillar. The program started in June 2000. During the program the timeline was extended to a sixth year. The program completed in December 2006. The program goal was to develop and demonstrate the technologies required to enable compliance with the 2007 and 2010 (0.2g/bhph NOx, 0.01g/bhph PM) on-highway emission standards for Heavy Duty Trucks in the US with improvements in fuel efficiency compared to today's engines. Thermal efficiency improvement from a baseline of 43% to 50% was targeted.

  7. HEAVY-DUTY TRUCK EMISSIONS AND FUEL CONSUMPTION SIMULATING REAL...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    HEAVY-DUTY TRUCK EMISSIONS AND FUEL CONSUMPTION SIMULATING REAL-WORLD DRIVING IN LABORATORY CONDITIONS HEAVY-DUTY TRUCK EMISSIONS AND FUEL CONSUMPTION SIMULATING REAL-WORLD DRIVING...

  8. How to lighten trucks to haul bigger payloads

    SciTech Connect (OSTI)

    Smiely, C.H.

    1981-07-01T23:59:59.000Z

    The paper discusses how lighter truck components can be used wisely for the highway transportation of coal, with maintenance and costs in mind, to increase the hauling capacity of trucks.

  9. Improved performance of railcar/rail truck interface components

    E-Print Network [OSTI]

    Story, Brett Alan

    2009-05-15T23:59:59.000Z

    turning moments around curved track, wear of truck components, and increased detrimental dynamic effects. The recommended improvement of the rail truck interface is a set of two steel inserts, one concave and one convex, that can be retrofit to center...

  10. Fact #787: July 8, 2013 Truck Stop Electrification Reduces Idle...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    7: July 8, 2013 Truck Stop Electrification Reduces Idle Fuel Consumption Fact 787: July 8, 2013 Truck Stop Electrification Reduces Idle Fuel Consumption The U.S. Department of...

  11. Vehicle Technologies Office: 21st Century Truck Partners

    Broader source: Energy.gov [DOE]

    The 21st Century Truck Partnership is an industry-government collaboration among heavy-duty engine manufacturers, medium-duty and heavy-duty truck and bus manufacturers, heavy-duty hybrid...

  12. Hamilton Truck Route Study Prepared for the City of Hamilton

    E-Print Network [OSTI]

    Haykin, Simon

    Hamilton Truck Route Study Prepared for the City of Hamilton March 2012 #12;#12;Hamilton Truck and Logistics McMaster University Hamilton, Ontario March 2012 mitl.mcmaster.ca #12;#12;McMaster Institute

  13. Curbside eating : mobilizing food trucks to activate public space

    E-Print Network [OSTI]

    Sheppard, Alison Marguerite

    2013-01-01T23:59:59.000Z

    In the past 5 years, cities across the United States have seen the rise of a new form of street vending: the modern food truck. Nearly overnight, food trucks have become an expected and anticipated occurrence in many ...

  14. Driving Pattern Recognition for Control of Hybrid Electric Trucks

    E-Print Network [OSTI]

    Peng, Huei

    Driving Pattern Recognition for Control of Hybrid Electric Trucks CHAN-CHIAO LIN1 , SOONIL JEON2 strategy is to minimize fuel consumption and engine-out NOx and PM emissions on a set of diversified trucks. The 21st Century Truck program in the US, spearheaded by two government agencies, Department

  15. Diesel Trucks - Then and Now | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeat Pump Models |Conduct, Parent(CRADA and DOW Automotive) | DepartmentTrucks - Then

  16. Solar Energy for Charging Fork Truck Batteries

    E-Print Network [OSTI]

    Viljoen, T. A.; Turner, W. C.

    1980-01-01T23:59:59.000Z

    this price decrease in mind and does an economic study on the feasibility of using photovoltaic cells to charge electric fork lift trucks, at different costs per peak watt. This particular idea could be used as a measure of energy conservation for industrial...

  17. Fire Department Gets New Trucks, Saves Money

    Broader source: Energy.gov [DOE]

    RICHLAND, Wash. – Last year, the Hanford Fire Department (HFD) set out to replace its aging chemical truck used for metal fires. Originally purchased to respond to potential incidents at the Fast Flux Test Facility, the 31-year-old vehicle was at the end of its lifecycle.

  18. Analysis of Class 8 Hybrid-Electric Truck Technologies Using Diesel, LNG, Electricity, and Hydrogen, as the Fuel for Various Applications

    E-Print Network [OSTI]

    Zhao, Hengbing

    2013-01-01T23:59:59.000Z

    conventional truck; the hydrogen fuel cell truck can improveconventional truck; the hydrogen fuel cell truck can improveLNG engines, fuel cell vehicles using hydrogen, and battery

  19. Application of Sleeper Cab Thermal Management Technologies to Reduce Idle Climate Control Loads in Long-Haul Trucks

    SciTech Connect (OSTI)

    Lustbader, J. A.; Venson, T.; Adelman, S.; Dehart, C.; Yeakel, S.; Castillo, M. S.

    2012-10-01T23:59:59.000Z

    Each intercity long-haul truck in the U.S. idles approximately 1,800 hrs per year, primarily for sleeper cab hotel loads. Including workday idling, over 2 billion gallons of fuel are used annually for truck idling. NREL's CoolCab project works closely with industry to design efficient thermal management systems for long-haul trucks that keep the cab comfortable with minimized engine idling and fuel use. The impact of thermal load reduction technologies on idle reduction systems were characterized by conducting thermal soak tests, overall heat transfer tests, and 10-hour rest period A/C tests. Technologies evaluated include advanced insulation packages, a solar reflective film applied to the vehicle's opaque exterior surfaces, a truck featuring both film and insulation, and a battery-powered A/C system. Opportunities were identified to reduce heating and cooling loads for long-haul truck idling by 36% and 34%, respectively, which yielded a 23% reduction in battery pack capacity of the idle-reduction system. Data were also collected for development and validation of a CoolCalc HVAC truck cab model. CoolCalc is an easy-to-use, simplified, physics-based HVAC load estimation tool that requires no meshing, has flexible geometry, excludes unnecessary detail, and is less time-intensive than more detailed computer-aided engineering modeling approaches.

  20. Project Information Form Project Title Integrating Management of Truck and Rail Systems in Los Angeles

    E-Print Network [OSTI]

    California at Davis, University of

    Project Information Form Project Title Integrating Management of Truck and Rail Systems in Los or organization) Volvo Research and Educational Foundation- $79,604.00 Total Project Cost $79,604.00 Agency ID of Research Project This project will develop models to optimize the balance of freight demand across rail

  1. Mobile Truck Stop Electrification Site Locator

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home Page on DiggFederalNationalandElectric-driveMobile Truck Stop

  2. Variability of Battery Wear in Light Duty Plug-In Electric Vehicles Subject to Ambient Temperature, Battery Size, and Consumer Usage: Preprint

    SciTech Connect (OSTI)

    Wood, E.; Neubauer, J.; Brooker, A. D.; Gonder, J.; Smith, K. A.

    2012-08-01T23:59:59.000Z

    Battery wear in plug-in electric vehicles (PEVs) is a complex function of ambient temperature, battery size, and disparate usage. Simulations capturing varying ambient temperature profiles, battery sizes, and driving patterns are of great value to battery and vehicle manufacturers. A predictive battery wear model developed by the National Renewable Energy Laboratory captures the effects of multiple cycling and storage conditions in a representative lithium chemistry. The sensitivity of battery wear rates to ambient conditions, maximum allowable depth-of-discharge, and vehicle miles travelled is explored for two midsize vehicles: a battery electric vehicle (BEV) with a nominal range of 75 mi (121 km) and a plug-in hybrid electric vehicle (PHEV) with a nominal charge-depleting range of 40 mi (64 km). Driving distance distributions represent the variability of vehicle use, both vehicle-to-vehicle and day-to-day. Battery wear over an 8-year period was dominated by ambient conditions for the BEV with capacity fade ranging from 19% to 32% while the PHEV was most sensitive to maximum allowable depth-of-discharge with capacity fade ranging from 16% to 24%. The BEV and PHEV were comparable in terms of petroleum displacement potential after 8 years of service, due to the BEV?s limited utility for accomplishing long trips.

  3. SuperTruck Program: Engine Project Review | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Program: Engine Project Review SuperTruck Program: Engine Project Review 2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer...

  4. NJ Compressed Natural Gas Refuse Trucks, Shuttle Buses and Infrastruct...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Vehicle Technologies Program Review Presentation NJ COMPRESSED NATURAL GAS REFUSE TRUCKS, SHUTTLE BUSES AND INFRASTRUCTURE Chuck Feinberg, Principal Investigator New Jersey Clean...

  5. WORKSHOP REPORT: Trucks and Heavy-Duty Vehicles Technical Requirements...

    Energy Savers [EERE]

    Heavy-Duty Vehicles Technical Requirements and Gaps for Lightweight and Propulsion Materials WORKSHOP REPORT: Trucks and Heavy-Duty Vehicles Technical Requirements and Gaps for...

  6. 21st Century Truck Partnership Roadmap Roadmap and Technical...

    Broader source: Energy.gov (indexed) [DOE]

    Roadmap Roadmap and Technical White Papers - 21CTP-0003, December 2006 21st Century Truck Partnership Roadmap Roadmap and Technical White Papers - 21CTP-0003, December 2006 Report...

  7. 21st Century Truck Partnership - Roadmap and Technical White...

    Broader source: Energy.gov (indexed) [DOE]

    - Roadmap and Technical White Papers Appendix of Supporting Information - 21CTP-0003, December 2006 21st Century Truck Partnership - Roadmap and Technical White Papers Appendix of...

  8. Rollover analysis of rotary mode core sampler truck No. 2

    SciTech Connect (OSTI)

    Ziada, H.H.

    1994-11-08T23:59:59.000Z

    This document provides estimate of limiting speed and rollover analysis of rotary mode core sampler truck No. 2 (RMCST No. 2).

  9. VP 100: Producing Electric Truck Vehicles with a Little Something...

    Broader source: Energy.gov (indexed) [DOE]

    Truck Vehicles with a Little Something Extra Kevin Craft What does this mean for me? Smith Electric Vehicles included in Vice President's report on 100 Recovery Act Projects...

  10. Very High Fuel Economy, Heavy Duty Truck, Narrow Range Speed...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Heavy Duty Truck, Narrow Range Speed Engine, Optimized Via Unique Energy Recovery Turbines and Facilitated by High Efficiency Continuously Variable Drivetrain Very High Fuel...

  11. Heavy-Duty Natural Gas Drayage Truck Replacement Program

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Heavy-Duty Natural Gas Drayage Truck Replacement Program Principal Investigator: Vicki White South Coast Air Quality Management District May 16, 2012 Project ID ARRAVT045 This...

  12. High Fuel Economy Heavy-Duty Truck Engine

    Broader source: Energy.gov (indexed) [DOE]

    contain any proprietary, confidential, or otherwise restricted information ACE060 High Fuel Economy Heavy Duty Truck Engine Overview Timeline October 2007 - October 2011 Barriers...

  13. Zero Emission Heavy Duty Drayage Truck Demonstration | Department...

    Office of Environmental Management (EM)

    Zero Emission Heavy Duty Drayage Truck Demonstration 2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation...

  14. COMPARISON OF MOBILE5A, MOBILE6, VT-MICRO, AND CMEM MODELS FOR ESTIMATING HOT-STABILIZED LIGHT-

    E-Print Network [OSTI]

    Rakha, Hesham A.

    COMPARISON OF MOBILE5A, MOBILE6, VT-MICRO, AND CMEM MODELS FOR ESTIMATING HOT-STABILIZED LIGHT hot-stabilized, light-duty vehicle emissions. Specifically, Oak Ridge National Laboratory (ORNL comparisons. The comparisons demonstrate that the CMEM model exhibits some abnormal behaviors when compared

  15. Truck Essential Power Systems Efficiency Improvements for Medium-Duty Trucks

    SciTech Connect (OSTI)

    Larry Slone; Jeffery Birkel

    2007-12-31T23:59:59.000Z

    With a variety of hybrid vehicles available in the passenger car market, electric technologies and components of that scale are becoming readily available. Commercial vehicle segments have lagged behind passenger car markets, leaving opportunities for component and system development. Escalating fuel prices impact all markets and provide motivation for OEMs, suppliers, customers, and end-users to seek new techniques and technologies to deliver reduced fuel consumption. The research presented here specifically targets the medium-duty (MD), Class 4-7, truck market with technologies aimed at reducing fuel consumption. These technologies could facilitate not only idle, but also parasitic load reductions. The development efforts here build upon the success of the More Electric Truck (MET) demonstration program at Caterpillar Inc. Employing a variety of electric accessories, the MET demonstrated the improvement seen with such technologies on a Class 8 truck. The Truck Essential Power Systems Efficiency Improvements for Medium-Duty Trucks (TEPS) team scaled the concepts and successes of MET to a MD chassis. The team designed an integrated starter/generator (ISG) package and energy storage system (ESS), explored ways to replace belt and gear-driven accessory systems, and developed supervisory control algorithms to direct the usage of the generated electricity and system behavior on the vehicle. All of these systems needed to fit within the footprint of a MD vehicle and be compatible with the existing conventional systems to the largest extent possible. The overall goal of this effort was to demonstrate a reduction in fuel consumption across the drive cycle, including during idle periods, through truck electrification. Furthermore, the team sought to evaluate the benefits of charging the energy storage system during vehicle braking. The vehicle features an array of electric accessories facilitating on-demand, variable actuation. Removal of these accessories from the belt or geartrain of the engine yields efficiency improvements for the engine while freeing those accessories to perform at their individual peak efficiencies to meet instantaneous demand. The net result is a systems approach to fuel usage optimization. Unique control algorithms were specifically developed to capitalize on the flexibility afforded by the TEPS architecture. Moreover, the TEPS truck technology mixture exhibits a means to supplant current accessory power sources such as on-board or trailer-mounted gasoline-powered generators or air compressors. Such functionality further enhances the value of the electric systems beyond the fuel savings alone. To demonstrate the fuel economy improvement wrought via the TEPS components, vehicle fuel economy testing was performed on the nearly stock (baseline) truck and the TEPS truck. Table 1 illustrates the fuel economy gains produced by the TEPS truck electrification. While the fuel economy results shown in Table 1 do reflect specific test conditions, they show that electrification of accessory hardware can yield significant fuel savings. In this case, the savings equated to a 15 percent reduction in fuel consumption during controlled on-road testing. Truck electrification allows engine shutdown during idle conditions as well as independent on-demand actuation of accessory systems. In some cases, independent actuation may even include lack of operation, a feature not always present in mechanically driven components. This combination of attributes allows significant improvements in system efficiency and the fuel economy improvements demonstrated by the TEPS team.

  16. Assessing the impact of regulation and deregulation on the rail and trucking industries

    E-Print Network [OSTI]

    Lowtan, Donavan M. (Donavan Mahees), 1975-

    2004-01-01T23:59:59.000Z

    (cont.) Many Class I railroads disappeared and severe competition bankrupted many small carriers in the trucking industry. Larger trucking carriers gained market dominance. Real wages in the trucking industry fell. The ...

  17. Environmental implications of trade liberalization on North American transport services: the case of the trucking sector

    E-Print Network [OSTI]

    Fernandez, Linda

    2010-01-01T23:59:59.000Z

    drayage ?eet is older. Line-haul trucks in the US and Mexicoacross the border. Line-haul trucks then pick up theand older than line-haul trucks and tend to produce higher

  18. Roadmap and Technical White Papers for 21st Century Truck Partnership...

    Broader source: Energy.gov (indexed) [DOE]

    Roadmap and Technical White Papers for 21st Century Truck Partnership Roadmap and Technical White Papers for 21st Century Truck Partnership Roadmap document for 21st Century Truck...

  19. DOE SuperTruck utilizes ORNL technology to boost fuel economy...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and Media Relations 865.574.4165 DOE SuperTruck utilizes ORNL technology to boost fuel economy DOE SuperTruck DOE SuperTruck (hi-res image) Listen to the audio The Department of...

  20. CoolCalc: A Long-Haul Truck Thermal Load Estimation Tool: Preprint

    SciTech Connect (OSTI)

    Lustbader, J. A.; Rugh, J. P.; Rister, B. R.; Venson, T. S.

    2011-05-01T23:59:59.000Z

    In the United States, intercity long-haul trucks idle approximately 1,800 hrs annually for sleeper cab hotel loads, consuming 838 million gallons of diesel fuel per year. The objective of the CoolCab project is to work closely with industry to design efficient thermal management systems for long-haul trucks that keep the cab comfortable with minimized engine idling. Truck engine idling is primarily done to heat or cool the cab/sleeper, keep the fuel warm in cold weather, and keep the engine warm for cold temperature startup. Reducing the thermal load on the cab/sleeper will decrease air conditioning system requirements, improve efficiency, and help reduce fuel use. CoolCalc is an easy-to-use, simplified, physics-based HVAC load estimation tool that requires no meshing, has flexible geometry, excludes unnecessary detail, and is less time-intensive than more detailed computer-aided engineering modeling approaches. It is intended for rapid trade-off studies, technology impact estimation, and preliminary HVAC sizing design and to complement more detailed and expensive CAE tools by exploring and identifying regions of interest in the design space. This paper describes the CoolCalc tool, provides outdoor long-haul truck thermal testing results, shows validation using these test results, and discusses future applications of the tool.

  1. Advanced Technology Light Duty Diesel Aftertreatment System

    Broader source: Energy.gov (indexed) [DOE]

    Dearborn, MI T2B2 FTP-75 NOx Cycle Limit http:www.dieselnet.comstandardscyclesftp75.php ATLAS T2B2 AT Strategy Summary 1162012 U.S. Department of Energy DEER 2012 -...

  2. NGV and FCV Light Duty Transportation Perspective

    Broader source: Energy.gov (indexed) [DOE]

    transportation perspectives Matt Fronk, Matt Fronk & Associates, LLC 1 OctOber 2011 | ArgOnne nAtiOnAl lAbOrAtOry NG Workshop summary report - appeNDIX G 2 OctOber 2011 | ArgOnne...

  3. Business Case for Light-Duty Diesels

    Broader source: Energy.gov (indexed) [DOE]

    Laredo - Tallahassee (1039 miles) 2 days, 1 tank, 59 mpg Jeep Liberty CRD Factory fill B5 biodiesel Local production, local fuel 9 Cost of Diesel systems? The engine Modern PC...

  4. Light Duty Vehicle Pathways | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensionalthe10IO1OP001 Letter Report:Life-CycleDuty Vehicle Pathways Light

  5. Mechanical properties of radial truck tires

    E-Print Network [OSTI]

    Wasti, Mansoor-ul-Hassan

    1992-01-01T23:59:59.000Z

    determination of static properties of tire load vs. tire deflection and tire load vs. tire footprint area for radial and wide base radial truck tires is described and results are discussed. Determination of transmissibility for a conventional radial and a... (right) 12 13 15 Figure 7: Sidewall bulge measurement 16 Figure 8: Load vs. deflection; 385/65R22. 5 wide base tire tested at 90 psi inflation pressure 20 Figure 9: Load vs. deflection; 385/65R22. 5 wide base tire tested at 100 psi inflation...

  6. NREL: Transportation Research - Truck Platooning Testing

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the Contributions andData andFleet Test and Evaluation PhotoSystemsTransportationTruck

  7. Heavy-Duty Truck Engine: 2007 Emissions with Excellent Fuel Economy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Heavy-Duty Truck Engine: 2007 Emissions with Excellent Fuel Economy Heavy-Duty Truck Engine: 2007 Emissions with Excellent Fuel Economy 2004 Diesel Engine Emissions Reduction...

  8. SciTech Connect: Normal Conditions of Transport Truck Test of...

    Office of Scientific and Technical Information (OSTI)

    Normal Conditions of Transport Truck Test of a Surrogate Fuel Assembly. Citation Details In-Document Search Title: Normal Conditions of Transport Truck Test of a Surrogate Fuel...

  9. Cummins Improving Pick-Up Truck Engine Efficiency with DOE and...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    better fuel economy. | Photo courtesy of Cummins. Road to Fuel Savings: Clean Diesel Trucks Gain Momentum with Nissan and Cummins Collaboration Cummins Improving Pick-Up Truck...

  10. Session 6 - Environmentally Concerned Public Sector Panel Discussion...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Documents & Publications The Diesel Engine Powering Light-Duty Vehicles: Today and Tomorrow EPA Mobile Source Rule Update Urea SCR Durability Assessment for Tier 2 Light-Duty Truck...

  11. Can the Trucking Industry Benefit From Distance-Based Fees?

    E-Print Network [OSTI]

    Minnesota, University of

    capital cost: $129 billion (over 30 years); today's reconstruction cost estimate: $1.3 to $2.5 trillion trucks pay more · Neither trucks nor cars pay for most cost externalities · Estimated THF revenues: $32B and other highways Comments: · Initial capital and ongoing maintenance costs were paid for · The system

  12. Safeguarding Truck-Shipped Wholesale and Retail Fuels (STSWRF)

    E-Print Network [OSTI]

    Safeguarding Truck-Shipped Wholesale and Retail Fuels (STSWRF) Oak Ridge National Laboratory at the wholesaler/distributor level or below. This presents additional challenges in tracking untaxed fuel after approved ORNL's plan to conduct a Phase II Pilot Test titled Safeguarding Truck-Shipped Wholesale

  13. Anti-Idling Battery for Truck Applications

    SciTech Connect (OSTI)

    Keith Kelly

    2011-09-30T23:59:59.000Z

    In accordance to the Assistance Agreement DE-EE0001036, the objective of this project was to develop an advanced high voltage lithium-ion battery for use in an all-electric HVAC system for Class-7-8 heavy duty trucks. This system will help heavy duty truck drivers meet the tough new anti-idling laws being implemented by over 23 states. Quallion will be partnering with a major OEM supplier of HVAC systems to develop this system. The major OEM supplier will provide Quallion the necessary interface requirements and HVAC hardware to ensure successful testing of the all-electric system. At the end of the program, Quallion will deliver test data on three (3) batteries as well as test data for the prototype HVAC system. The objectives of the program are: (1) Battery Development - Objective 1 - Define battery and electronics specifications in preparation for building the prototype module. (Completed - summary included in report) and Objective 2 - Establish a functional prototype battery and characterize three batteries in-house. (Completed - photos and data included in report); (2) HVAC Development - Objective 1 - Collaborate with manufacturers to define HVAC components, layout, and electronics in preparation for establishing the prototype system. (Completed - photos and data included in report) and Objective 2 - Acquire components for three functional prototypes for use by Quallion. (Completed - photos and data included in report).

  14. Impact of Paint Color on Rest Period Climate Control Loads in Long-Haul Trucks: Preprint

    SciTech Connect (OSTI)

    Lustbader, J.; Kreutzer, C.; Jeffers, M.; Adelman, S.; Yeakel, S.; Brontz, P.; Olson, K.; Ohlinger, J.

    2014-02-01T23:59:59.000Z

    Cab climate conditioning is one of the primary reasons for operating the main engine in a long-haul truck during driver rest periods. In the United States, sleeper cab trucks use approximately 667 million gallons of fuel annually for rest period idling. The U.S. Department of Energy's National Renewable Energy Laboratory's (NREL) CoolCab Project works closely with industry to design efficient thermal management systems for long-haul trucks that minimize engine idling and fuel use while maintaining occupant comfort. Heat transfer to the vehicle interior from opaque exterior surfaces is one of the major heat pathways that contribute to air conditioning loads during long-haul truck daytime rest period idling. To quantify the impact of paint color and the opportunity for advanced paints, NREL collaborated with Volvo Group North America, PPG Industries, and Dometic Environmental Corporation. Initial screening simulations using CoolCalc, NREL's rapid HVAC load estimation tool, showed promising air-conditioning load reductions due to paint color selection. Tests conducted at NREL's Vehicle Testing and Integration Facility using long-haul truck cab sections, 'test bucks,' showed a 31.1% of maximum possible reduction in rise over ambient temperature and a 20.8% reduction in daily electric air conditioning energy use by switching from black to white paint. Additionally, changing from blue to an advanced color-matched solar reflective blue paint resulted in a 7.3% reduction in daily electric air conditioning energy use for weather conditions tested in Colorado. National-level modeling results using weather data from major U.S. cities indicated that the increase in heating loads due to lighter paint colors is much smaller than the reduction in cooling loads.

  15. Project Summary Report 4197-S 1 The University of Texas at Austiny of Texas at Austiny of T

    E-Print Network [OSTI]

    Texas at Austin, University of

    in order to provide a consistent platform for comparison. Modal emission models for light-duty vehicles such as factories, industrial units, and power plants, and (2) mobile sources such as cars, trucks, and buses applicable in metropolitan areas to readily predict the impact of different ITS strategies, especially those

  16. National Deployment Strategy for Truck Stop Electrification Josias Zietsman, Ph.D., P.E.*

    E-Print Network [OSTI]

    ,000 long-haul trucks operating in the United States (2). The U.S. Department of Transportation mandates that drivers spend resting and sleeping in the cabs of their trucks. As a consequence, long-haul truck driversNational Deployment Strategy for Truck Stop Electrification by Josias Zietsman, Ph.D., P

  17. Advanced Electric Systems and Aerodynamics for Efficiency Improvements in Heavy Duty Trucks

    SciTech Connect (OSTI)

    Larry Slone; Jeffrey Birkel

    2007-10-31T23:59:59.000Z

    The Advanced Electric Systems and Aerodynamics for Efficiency Improvements in Heavy Duty Trucks program (DE-FC26-04NT42189), commonly referred to as the AES program, focused on areas that will primarily benefit fuel economy and improve heat rejection while driving over the road. The AES program objectives were to: (1) Analyze, design, build, and test a cooling system that provided a minimum of 10 percent greater heat rejection in the same frontal area with no increase in parasitic fan load. (2) Realize fuel savings with advanced power management and acceleration assist by utilizing an integrated starter/generator (ISG) and energy storage devices. (3) Quantify the effect of aerodynamic drag due to the frontal shape mandated by the area required for the cooling system. The program effort consisted of modeling and designing components for optimum fuel efficiency, completing fabrication of necessary components, integrating these components into the chassis test bed, completing controls programming, and performance testing the system both on a chassis dynamometer and on the road. Emission control measures for heavy-duty engines have resulted in increased engine heat loads, thus introducing added parasitic engine cooling loads. Truck electrification, in the form of thermal management, offers technological solutions to mitigate or even neutralize the effects of this trend. Thermal control offers opportunities to avoid increases in cooling system frontal area and forestall reduced fuel economy brought about by additional aerodynamic vehicle drag. This project explored such thermal concepts by installing a 2007 engine that is compliant with current regulations and bears additional heat rejection associated with meeting these regulations. This newer engine replaced the 2002 engine from a previous project that generated less heat rejection. Advanced power management, utilizing a continuously optimized and controlled power flow between electric components, can offer additional fuel economy benefits to the heavy-duty trucking industry. Control software for power management brings added value to the power distribution and energy storage architecture on board a truck with electric accessories and an ISG. The research team has built upon a previous truck electrification project, formally, 'Parasitic Energy Loss Reduction and Enabling Technologies for Class 7/8 Trucks', DE-FC04-2000AL6701, where the fundamental concept of electrically-driven accessories replacing belt/gear-driven accessories was demonstrated on a Kenworth T2000 truck chassis. The electrical accessories, shown in Figure 1, were controlled to provide 'flow on demand' variable-speed operation and reduced parasitic engine loads for increased fuel economy. These accessories also provided solutions for main engine idle reduction in long haul trucks. The components and systems of the current project have been integrated into the same Kenworth T2000 truck platform. Reducing parasitic engine loading by decoupling accessory loads from the engine and driving them electrically has been a central concept of this project. Belt or gear-driven engine accessories, such as water pump, air conditioning compressor, or air compressor, are necessarily tied to the engine speed dictated by the current vehicle operating conditions. These conventional accessory pumps are sized to provide adequate flow or pressure at low idle or peak torque speeds, resulting in excess flow or pressure at cruising or rated speeds. The excess flow is diverted through a pressure-minimizing device such as a relief valve thereby expending energy to drive unnecessary and inefficient pump operation. This inefficiency causes an increased parasitic load to the engine, which leads to a loss of usable output power and decreased fuel economy. Controlling variable-speed electric motors to provide only the required flow or pressure of a particular accessory system can yield significant increases in fuel economy for a commercial vehicle. Motor loads at relatively high power levels (1-5 kW, or higher) can be efficiently provided

  18. Supercomputers, Semi Trucks and America's Clean Energy Future...

    Broader source: Energy.gov (indexed) [DOE]

    South Carolina and Georgia, the BMI corporation, has used the Jaguar to develop some aerodynamic components that can be attached to the undercarriage of a semi truck to reduce wind...

  19. SuperTruck Team Achieves 115% Freight Efficiency Improvement...

    Energy Savers [EERE]

    per gallon (MPG). Increasing the efficiency of Class 8 trucks is essential because they haul 80 percent of the goods in the U.S. and use about 20 percent of the fuel consumed in...

  20. Dual-Fuel Truck Fleet: Start-Up Experience

    SciTech Connect (OSTI)

    NREL

    1998-09-30T23:59:59.000Z

    Although dual-fuel engine technology has been in development and limited use for several years, it has only recently moved toward full-scale operational capability for heavy-duty truck applications. Unlike a bifuel engine, which has two separate fuel systems that are used one at a time, a dual-fuel engine uses two fuel systems simultaneously. One of California's South Coast Air Quality Management District (SCAQMD) current programs is a demonstration of dual-fuel engine technology in heavy-duty trucks. These trucks are being studied as part of the National Renewable Energy Laboratory's (NREL's) Alternative Fuel Truck Program. This report describes the start-up experience from the program.

  1. Design Considerations for a PEM Fuel Cell Powered Truck APU

    E-Print Network [OSTI]

    Grupp, David J; Forrest, Matthew E.; Mader, Pippin G.; Brodrick, Christie-Joy; Miller, Marshall; Dwyer, Harry A.

    2004-01-01T23:59:59.000Z

    performed a study on PEM fuel cell APUs. Based upon previousConsiderations for a PEM Fuel Cell Powered Truck APU Davidsuccessfully demonstrated a PEM fuel cell APU on a Century

  2. Road to Fuel Savings: Clean Diesel Trucks Gain Momentum with...

    Office of Environmental Management (EM)

    Plus, it's compliant with new emissions standards -- an important element in cutting our air pollution in the U.S. If all light trucks and SUVs used an engine like this, Americans...

  3. Shorepower Truck Electrification Project (STEP) - 2013 (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2014-01-01T23:59:59.000Z

    The Fleet Test and Evaluation Team at the U.S. Department of Energy's National Renewable Energy Laboratory (NREL) is evaluating and documenting the use of shorepower at 50 planned American Recovery and Reinvestment Act (ARRA)-funded truck stop electrification sites across the nation. Trucks participating in the study have idle-reduction equipment installed that was purchased with rebates through the ARRA. A total of 5,000 rebates will be approved.

  4. Medium Truck Duty Cycle Data from Real-World Driving Environments: Final Report

    SciTech Connect (OSTI)

    Lascurain, Mary Beth [ORNL; Franzese, Oscar [ORNL; Capps, Gary J [ORNL; Siekmann, Adam [ORNL; Thomas, Neil [ORNL; LaClair, Tim J [ORNL; Barker, Alan M [ORNL; Knee, Helmut E [ORNL

    2012-11-01T23:59:59.000Z

    Since the early part of the 20th century, the US trucking industry has provided a safe and economical means of moving commodities across the country. At present, nearly 80% of US domestic freight movement involves the use of trucks. The US Department of Energy (DOE) is spearheading a number of research efforts to improve heavy vehicle fuel efficiencies. This includes research in engine technologies (including hybrid and fuel cell technologies), lightweight materials, advanced fuels, and parasitic loss reductions. In addition, DOE is developing advanced tools and models to support heavy vehicle research and is leading the 21st Century Truck Partnership and the SuperTruck development effort. Both of these efforts have the common goal of decreasing the fuel consumption of heavy vehicles. In the case of SuperTruck, a goal of improving the overall freight efficiency of a combination tractor-trailer has been established. This Medium Truck Duty Cycle (MTDC) project is a critical element in DOE s vision for improved heavy vehicle energy efficiency; it is unique in that there is no other existing national database of characteristic duty cycles for medium trucks based on collecting data from Class 6 and 7 vehicles. It involves the collection of real-world data on medium trucks for various situational characteristics (e.g., rural/urban, freeway/arterial, congested/free-flowing, good/bad weather) and looks at the unique nature of medium trucks drive cycles (stop-and-go delivery, power takeoff, idle time, short-radius trips). This research provides a rich source of data that can contribute to the development of new tools for FE and modeling, provide DOE a sound basis upon which to make technology investment decisions, and provide a national archive of real-world-based medium-truck operational data to support energy efficiency research. The MTDC project involved a two-part field operational test (FOT). For the Part-1 FOT, three vehicles each from two vocations (urban transit and dry-box delivery) were instrumented for the collection of one year of operational data. The Part-2 FOT involved the towing and recovery and utility vocations for a second year of data collection. The vehicles that participated in the MTDC project did so through gratis partnerships in return for early access to the results of this study. Partnerships such as these are critical to FOTs in which real-world data is being collected. In Part 1 of the project, Oak Ridge National Laboratory (ORNL) established partnerships with the H.T. Hackney Company (HTH), one of the largest wholesale distributors in the country, distributing products to 21 states; and with Knoxville Area Transit (KAT), the city of Knoxville s transit system, which operates across Knoxville and parts of Knox County. These partnerships and agreements provided ORNL access to three Class-7 day-cab tractors that regularly haul 28 ft pup trailers (HTH) and three Class-7 buses for the collection of duty cycle data. In addition, ORNL collaborated with the Federal Motor Carrier Safety Administration (FMCSA) to determine if there were possible synergies between this duty cycle data collection effort and FMCSA s need to learn more about the operation and duty cycles of medium trucks. FMCSA s primary interest was in collecting safety data relative to the driver, carrier, and vehicle. In Part 2 of the project, ORNL partnered with the Knoxville Utilities Board, which made available three Class-8 trucks. Fountain City Wrecker Service was also a Part 2 partner, providing three Class-6 rollback trucks. In order to collect the duty cycle and safety-related data, ORNL developed a data acquisition system (DAS) that was placed on each test vehicle. Each signal recorded in this FOT was collected by means of one of the instruments incorporated into each DAS. Other signals were obtained directly from the vehicle s J1939 and J1708 data buses. A VBOX II Lite collected information available from a global positioning system (GPS), including speed, acceleration, and spatial location information at a rate of 5 Hz for the Part 1

  5. Liquefied Natural Gas for Trucks and Buses

    SciTech Connect (OSTI)

    James Wegrzyn; Michael Gurevich

    2000-06-19T23:59:59.000Z

    Liquefied natural gas (LNG) is being developed as a heavy vehicle fuel. The reason for developing LNG is to reduce our dependency on imported oil by eliminating technical and costs barriers associated with its usage. The U.S. Department of Energy (DOE) has a program, currently in its third year, to develop and advance cost-effective technologies for operating and refueling natural gas-fueled heavy vehicles (Class 7-8 trucks). The objectives of the DOE Natural Gas Vehicle Systems Program are to achieve market penetration by reducing vehicle conversion and fuel costs, to increase consumer acceptance by improving the reliability and efficiency, and to improve air quality by reducing tailpipe emissions. One way to reduce fuel costs is to develop new supplies of cheap natural gas. Significant progress is being made towards developing more energy-efficient, low-cost, small-scale natural gas liquefiers for exploiting alternative sources of natural gas such as from landfill and remote gas sites. In particular, the DOE program provides funds for research and development in the areas of; natural gas clean up, LNG production, advanced vehicle onboard storage tanks, improved fuel delivery systems and LNG market strategies. In general, the program seeks to integrate the individual components being developed into complete systems, and then demonstrate the technology to establish technical and economic feasibility. The paper also reviews the importance of cryogenics in designing LNG fuel delivery systems.

  6. Assessment of the risk of transporting propane by truck and train

    SciTech Connect (OSTI)

    Geffen, C.A.

    1980-03-01T23:59:59.000Z

    The risk of shipping propane is discussed and the risk assessment methodology is summarized. The risk assessment model has been constructed as a series of separate analysis steps to allow the risk to be readily reevaluated as additional data becomes available or as postulated system characteristics change. The transportation system and accident environment, the responses of the shipping system to forces in transportation accidents, and release sequences are evaluated to determine both the likelihood and possible consequences of a release. Supportive data and analyses are given in the appendices. The risk assessment results are related to the year 1985 to allow a comparison with other reports in this series. Based on the information presented, accidents involving tank truck shipments of propane will be expected to occur at a rate of 320 every year; accidents involving bobtails would be expected at a rate of 250 every year. Train accidents involving propane shipments would be expected to occur at a rate of about 60 every year. A release of any amount of material from propane trucks, under both normal transportation and transport accident conditions, is to be expected at a rate of about 110 per year. Releases from propane rail tank cars would occur about 40 times a year. However, only those releases that occur during a transportation accident or involve a major tank defect will include sufficient propane to present the potential for danger to the public. These significant releases can be expected at the lower rate of about fourteen events per year for truck transport and about one event every two years for rail tank car transport. The estimated number of public fatalities resulting from these significant releases in 1985 is fifteen. About eleven fatalities per year result from tank truck operation, and approximately half a death per year stems from the movement of propane in rail tank cars.

  7. THERMOELECTRICAL ENERGY RECOVERY FROM THE EXHAUST OF A LIGHT TRUCK

    SciTech Connect (OSTI)

    Karri, M; Thacher, E; Helenbrook, B; Compeau, M; Kushch, A; Elsner, N; Bhatti, M; O' Brien, J; Stabler, F

    2003-08-24T23:59:59.000Z

    A team formed by Clarkson University is engaged in a project to design, build, model, test, and develop a plan to commercialize a thermoelectric generator (TEG) system for recovering energy from the exhaust of light trucks and passenger cars. Clarkson University is responsible for project management, vehicle interface design, system modeling, and commercialization plan. Hi-Z Technology, Inc. (sub-contractor to Clarkson) is responsible for TEG design and construction. Delphi Corporation is responsible for testing services and engineering consultation and General Motors Corporation is responsible for providing the test vehicle and information about its systems. Funds were supplied by a grant from the Transportation Research Program of the New York State Energy Research and Development Authority (NYSERDA), through Joseph R. Wagner. Members of the team and John Fairbanks (Project Manager, Office of Heavy Vehicle Technology). Currently, the design of TEG has been completed and initial construction of the TEG has been initiated by Hi-Z. The TEG system consists of heat exchangers, thermoelectric modules and a power conditioning unit. The heat source for the TEG is the exhaust gas from the engine and the heat sink is the engine coolant. A model has been developed to simulate the performance of the TEG under varying operating conditions. Preliminary results from the model predict that up to 330 watts can be generated by the TEG which would increase fuel economy by 5 percent. This number could possibly increase to 20 percent with quantum-well technology. To assess the performance of the TEG and improve the accuracy of the modeling, experimental testing will be performed at Delphi Corporation. A preliminary experimental test plan is given. To determine the economic and commercial viability, a business study has been conducted and results from the study showing potential areas for TEG commercialization are discussed.

  8. Acceptance test report for core sample trucks 3 and 4

    SciTech Connect (OSTI)

    Corbett, J.E.

    1996-04-10T23:59:59.000Z

    The purpose of this Acceptance Test Report is to provide documentation for the acceptance testing of the rotary mode core sample trucks 3 and 4, designated as HO-68K-4600 and HO-68K-4647, respectively. This report conforms to the guidelines established in WHC-IP-1026, ``Engineering Practice Guidelines,`` Appendix M, ``Acceptance Test Procedures and Reports.`` Rotary mode core sample trucks 3 and 4 were based upon the design of the second core sample truck (HO-68K-4345) which was constructed to implement rotary mode sampling of the waste tanks at Hanford. Successful completion of acceptance testing on June 30, 1995 verified that all design requirements were met. This report is divided into four sections, beginning with general information. Acceptance testing was performed on trucks 3 and 4 during the months of March through June, 1995. All testing was performed at the ``Rock Slinger`` test site in the 200 West area. The sequence of testing was determined by equipment availability, and the initial revision of the Acceptance Test Procedure (ATP) was used for both trucks. Testing was directed by ICF-KH, with the support of WHC Characterization Equipment Engineering and Characterization Project Operations. Testing was completed per the ATP without discrepancies or deviations, except as noted.

  9. A Quantum Leap for Heavy-Duty Truck Engine Efficiency - Hybrid...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    A Quantum Leap for Heavy-Duty Truck Engine Efficiency - Hybrid Power System of Diesel and WHR-ORC Engines A Quantum Leap for Heavy-Duty Truck Engine Efficiency - Hybrid Power...

  10. Design & Development of e-TurboTM for SUV and Light Truck Applications...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    & Development of e-TurboTM for SUV and Light Truck Applications Design & Development of e-TurboTM for SUV and Light Truck Applications 2003 DEER Conference Presentation: Garrett...

  11. Design and Development of e-Turbo for SUV and Light Truck Applications...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Development of e-Turbo for SUV and Light Truck Applications Design and Development of e-Turbo for SUV and Light Truck Applications 2004 Diesel Engine Emissions Reduction (DEER)...

  12. Ann Arbor's New Recycling Trucks Get an 'Assist' from Clean Cities...

    Broader source: Energy.gov (indexed) [DOE]

    four recycling trucks with hydraulic hybrid power systems implemented by Ohio-based Eaton Corporation. For these trucks, which make up to 1,200 stops each day, the Hydraulic...

  13. Real-World Greenhouse Gas Emissions from a MY2010 Diesel Truck...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Real-World Greenhouse Gas Emissions from a MY2010 Diesel Truck Traveling Across the Continental United States Real-World Greenhouse Gas Emissions from a MY2010 Diesel Truck...

  14. Project Startup: Evaluating Coca-Cola's Class 8 Hybrid-Electric Delivery Trucks (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2011-03-01T23:59:59.000Z

    Fact sheet describing the project startup for evaluating Coca-Cola's Class 8 hybrid-electric delivery trucks.

  15. Heavy-Duty Truck Idling Characteristics: Results from a Nationwide Survey

    E-Print Network [OSTI]

    Lutsey, Nicholas P.; Brodrick, Christie-Joy; Sperling, Dan; Oglesby, Carollyn

    2004-01-01T23:59:59.000Z

    fuel consumption long-heul for trucks. CONCLUSIONS This study provides an enhanced understanding of long-haul

  16. The market for large rigid haul trucks in surface mining

    SciTech Connect (OSTI)

    Gilewicz, P.

    2002-04-15T23:59:59.000Z

    Originally published in 2001 this updated report provides a definition of the market for large rigid haulers in surface mining. The analysis covers changes to the mining market segments buying these machines including the gains made by coal producers, retrenchment in copper mining, the consolidation taking place among gold mining companies, and the expansion of iron ore producers in Australia and Brazil. It includes a detailed accounting of 2001 truck shipments, and an analysis of trends in the Ultra-truck segment. It concludes with a revised forecast for shipments through 2006. 12 charts, 56 tabs., 2 apps.

  17. ORNL/TM-2008/122 Class-8 Heavy Truck Duty Cycle

    E-Print Network [OSTI]

    .............................................................................................2 1.1.2 Heavy Truck Long-Haul OperationsORNL/TM-2008/122 Class-8 Heavy Truck Duty Cycle Project Final Report December 2008 Prepared by Mary Government or any agency thereof. #12;ORNL/TM-2008/122 Vehicle Systems Program CLASS-8 HEAVY TRUCK DUTY CYCLE

  18. Major Long Haul Truck Idling Generators in Key States ELECTRIC POWER RESEARCH INSTITUTE

    E-Print Network [OSTI]

    Major Long Haul Truck Idling Generators in Key States 1013776 #12;#12;ELECTRIC POWER RESEARCH-0813 USA 800.313.3774 650.855.2121 askepri@epri.com www.epri.com Major Long Haul Truck Idling Generators Haul Truck Idling Generators in Key States. EPRI, Palo Alto, CA: 2008. 1013776. #12;#12;v PRODUCT

  19. Definition and Evaluation of Bus and Truck Automation Operations Concepts: Final Report

    E-Print Network [OSTI]

    Taso, H. S. Jacob; Botha, Jan L.

    2003-01-01T23:59:59.000Z

    fuel efficiency Higher system capacity Rural Truck-AHS Long-haulhaul other companies’ trucks or just trailers; scheduled AHS Hauling services Better fuelhaul on some freight corridors (expedited Bus and Truck AHS – Final Report to California PATH Mainline Operations: Fuel

  20. Truck Stop Electrification as a Strategy To Reduce Greenhouse Gases, Fuel Consumption and Pollutant Emissions

    E-Print Network [OSTI]

    Truck Stop Electrification as a Strategy To Reduce Greenhouse Gases, Fuel Consumption and Pollutant, Schneider, Lee, Bubbosh 2 ABSTRACT Extended truck idling is a very large source of fuel wastage, greenhouse, most long-haul truck drivers idle their vehicles for close to 10 hours per day to operate heating

  1. On-Road Remote Sensing of Heavy-duty Diesel Truck

    E-Print Network [OSTI]

    Denver, University of

    On-Road Remote Sensing of Heavy-duty Diesel Truck Emissions in the Austin- San Marcos Area: August, HC, and NO to CO2 and to get percent opacity readings for heavy-duty diesel trucks with elevated. The fleet of these heavy-duty diesel trucks exhibits a distribution that is close to normal where the top 20

  2. The Effects of Altitude on Heavy-Duty Diesel Truck On-Road

    E-Print Network [OSTI]

    Denver, University of

    The Effects of Altitude on Heavy-Duty Diesel Truck On-Road Emissions G A R Y A . B I S H O P , * J oxide from 5772 heavy-duty diesel trucks at five locations in the United States and Europe show slightly health risk (2). These and other factors have brought new attention to diesel truck emissions. Because

  3. TRB 08-1311 Link-Based Emission Factors for Heavy-Duty Diesel Trucks Based

    E-Print Network [OSTI]

    Frey, H. Christopher

    TRB 08-1311 Link-Based Emission Factors for Heavy-Duty Diesel Trucks Based on Real-World Data H and Zhai 1 ABSTRACT Heavy-duty diesel vehicles contribute a substantial fraction of nitrogen oxides unloaded trucks. Replacing diesel fuel with biodiesel fuel for heavy-duty trucks may reduce tailpipe

  4. DOE Light Truck Clean Diesel (LTCD) Program Final Caterpillar Public Report Light Truck Clean Diesel Program

    SciTech Connect (OSTI)

    Eric Fluga

    2004-09-30T23:59:59.000Z

    The US Department of Energy and Caterpillar entered a Cooperative Agreement to develop compression ignition engine technology suitable for the light truck/SUV market. Caterpillar, in collaboration with a suitable commercialization partner, developed a new Compression Ignition Direct Injection (CIDI) engine technology to dramatically improve the emissions and performance of light truck engines. The overall program objective was to demonstrate engine prototypes by 2004, with an order of magnitude emission reduction while meeting challenging fuel consumption goals. Program emphasis was placed on developing and incorporating cutting edge technologies that could remove the current impediments to commercialization of CIDI power sources in light truck applications. The major obstacle to commercialization is emissions regulations with secondary concerns of driveability and NVH (noise, vibration and harshness). The target emissions levels were 0.05 g/mile NOx and 0.01 g/mile PM to be compliant with the EPA Tier 2 fleet average requirements of 0.07 g/mile and the CARB LEV 2 of 0.05 g/mile for NOx, both have a PM requirement of 0.01 g/mile. The program team developed a combustion process that fundamentally shifted the classic NOx vs. PM behavior of CIDI engines. The NOx vs. PM shift was accomplished with a form of Homogeneous Charge Compression Ignition (HCCI). The HCCI concept centers on appropriate mixing of air and fuel in the compression process and controlling the inception and rate of combustion through various means such as variable valve timing, inlet charge temperature and pressure control. Caterpillar has adapted an existing Caterpillar design of a single injector that: (1) creates the appropriate fuel and air mixture for HCCI, (2) is capable of a more conventional injection to overcome the low power density problems of current HCCI implementations, (3) provides a mixed mode where both the HCCI and conventional combustion are functioning in the same combustion cycle. Figure 1 illustrates the mixed mode injection system. Under the LTCD program Caterpillar developed a mixed mode injector for a multi-cylinder engine system. The mixed mode injection system represents a critical enabling technology for the implementation of HCCI. In addition, Caterpillar implemented variable valve system technology and air system technology on the multi-cylinder engine platform. The valve and air system technology were critical to system control. Caterpillar developed the combustion system to achieve a 93% reduction in NOx emissions. The resulting NOx emissions were 0.12 gm/mile NOx. The demonstrated emissions level meets the stringent Tier 2 Bin 8 requirement without NOx aftertreatment! However, combustion development alone was not adequate to meet the program goal of 0.05gm/mile NOx. To meet the program goals, an additional 60% NOx reduction technology will be required. Caterpillar evaluated a number of NOx reduction technologies to quantify and understand the NOx reduction potential and system performance implications. The NOx adsorber was the most attractive NOx aftertreatment option based on fuel consumption and NOx reduction potential. In spite of the breakthrough technology development conducted under the LTCD program there remains many significant challenges associated with the technology configuration. For HCCI, additional effort is needed to develop a robust control strategy, reduce the hydrocarbon emissions at light load condition, and develop a more production viable fuel system. Furthermore, the NOx adsorber suffers from cost, packaging, and durability challenges that must be addressed.

  5. Experimental Measurement of the Flow Field of Heavy Trucks

    SciTech Connect (OSTI)

    Fred Browand; Charles Radovich

    2005-05-31T23:59:59.000Z

    Flat flaps that enclose the trailer base on the sides and top are known to reduce truck drag and reduce fuel consumption. Such flapped-truck geometries have been studied in laboratory wind tunnels and in field tests. A recent review of wind tunnel data for a variety of truck geometries and flow Reynolds numbers show roughly similar values of peak drag reduction, but differ in the determination of the optimum flap angle. Optimum angles lie in the range 12 degrees-20 degrees, and may be sensitive to Reynolds number and truck geometry. The present field test is undertaken to provide additional estimates of the magnitude of the savings to be expected on a typical truck for five flap angles 10, 13, 16, 19, and 22 degrees. The flaps are constructed from a fiberglass-epoxy-matrix material and are one-quarter of the base width in length (about 61 cm, or 2 feet). They are attached along the rear door hinge lines on either side of the trailer, so that no gap appears at the joint between the flap and the side of the trailer The flap angle is adjusted by means of two aluminum supports. The present test is performed on the NASA Crows Landing Flight Facility at the northern end of the San Joaquin valley in California. The main runway is approximately 2400 meters in length, and is aligned approximately in a north-south direction The test procedure is to make a series of runs starting at either end of the runway. All runs are initiated under computer control to accelerate the truck to a target speed of 60 mph (96 6 km/hr), to proceed at the target speed for a fixed distance, and to decelerate at the far end of the runway. During a run, the broadcast fuel rate, the engine rpm, forward speed, elapsed time--as well as several other parameters (10 in all)--are digitized at a rate of 100 digitizations per second. Various flapped-conditions are interspersed with the ''no flaps'' control, and are sequenced in a different order on different days. Approximately 310 runs are accumulated over the 5-day test period, May 17-21, 2004. The runway slopes rather uniformly upward from north-to-south. Over the distance of 2424 meters between our two ''start'' markers at either end of the runway, the net change in elevation is a little over ten meters. Test results clearly show the greater fuel consumption required to lift the truck against gravity in the southbound direction For this reason, it is important that the tests be averaged over a round trip circuit--that is, a run in both directions over the identical portion of the roadway. Northbound-southbound averages require an overlap segment of the runway (near the middle of the runway) where the truck--starting from either end--has achieved its target speed. For the target truck speed of 60 mph, this overlap region is approximately 700 meters in length. Typically a run and the return run are accomplished within a time interval of 6 minutes. Analysis of the data show fuel consumption savings at all flap angle settings tested, when compared to the ''no flaps'' condition. The most beneficial flap angle appears to be 13 degrees, for which the fuel consumption is 0.3778 {+-} 0.0025 liters/km compared to the ''no flaps'' control of 0.3941 {+-} 0.0034 liters/km. The error bounds expressed above mark the 99% confidence interval in the mean values given. That is, additional estimates of the mean fuel consumption would be expected to lie within the bounds given, approximately 99% of the time. The fuel consumption saving is--to reasonable accuracy--about 1.63 liters/100 kilometers. These savings represent the increment associated only with the change in drag due to the presence or absence of flaps. The result will hold for any truck of similar size and shape and engine performance regardless of the loading of the truck or the rolling resistance. The economy achieved by use of base flaps can be compared to the economy resulting from driving two trucks in a tandem configuration. In December 2003, such fuel consumption tests were performed at the same Crows Landing testsite. In the tests, two identical trucks are ope

  6. Fuel Cell-Powered Lift Truck Fleet Deployment Projects Final Technical Report May 2014

    SciTech Connect (OSTI)

    Klingler, James J [GENCO Infrastructure Solutions, Inc.] [GENCO Infrastructure Solutions, Inc.

    2014-05-06T23:59:59.000Z

    The overall objectives of this project were to evaluate the performance, operability and safety of fork lift trucks powered by fuel cells in large distribution centers. This was accomplished by replacing the batteries in over 350 lift trucks with fuel cells at five distribution centers operated by GENCO. The annual cost savings of lift trucks powered by fuel cell power units was between $2,400 and $5,300 per truck compared to battery powered lift trucks, excluding DOE contributions. The greatest savings were in fueling labor costs where a fuel cell powered lift truck could be fueled in a few minutes per day compared to over an hour for battery powered lift trucks which required removal and replacement of batteries. Lift truck operators where generally very satisfied with the performance of the fuel cell power units, primarily because there was no reduction in power over the duration of a shift as experienced with battery powered lift trucks. The operators also appreciated the fast and easy fueling compared to the effort and potential risk of injury associated with switching heavy batteries in and out of lift trucks. There were no safety issues with the fueling or operation of the fuel cells. Although maintenance costs for the fuel cells were higher than for batteries, these costs are expected to decrease significantly in the next generation of fuel cells, making them even more cost effective.

  7. Overview oi the DOE High Efficiency Engine Technologies R&D

    Broader source: Energy.gov (indexed) [DOE]

    Class 8 Trucks (SuperTruck) and Advanced Technology Powertrains For Light-Duty Vehicles (ATP-LD) *Baseline is state-of-the-art port-fuel injected gasoline engine Vehicle...

  8. Overview of the DOE Advanced Combustion Engine R&D

    Broader source: Energy.gov (indexed) [DOE]

    Class 8 Trucks (SuperTruck) and Advanced Technology Powertrains For Light-Duty Vehicles (ATP-LD) *Baseline is state-of-the-art port-fuel injected gasoline engine Vehicle...

  9. The ethanol heavy-duty truck fleet demonstration project

    SciTech Connect (OSTI)

    NONE

    1997-06-01T23:59:59.000Z

    This project was designed to test and demonstrate the use of a high- percentage ethanol-blended fuel in a fleet of heavy-duty, over-the- road trucks, paying particular attention to emissions, performance, and repair and maintenance costs. This project also represents the first public demonstration of the use of ethanol fuels as a viable alternative to conventional diesel fuel in heavy-duty engines.

  10. Emissions from Trucks using Fischer-Tropsch Diesel Fuel

    SciTech Connect (OSTI)

    Paul Norton; Keith Vertin; Brent Bailey; Nigel N. Clark; Donald W. Lyons; Stephen Goguen; James Eberhardt

    1998-10-19T23:59:59.000Z

    The Fischer-Tropsch (F-T) catalytic conversion process can be used to synthesize diesel fuels from a variety of feedstocks, including coal, natural gas and biomass. Synthetic diesel fuels can have very low sulfur and aromatic content, and excellent autoignition characteristics. Moreover, Fischer-Tropsch diesel fuels may also be economically competitive with California B- diesel fuel if produced in large volumes. overview of Fischer-Tropsch diesel fuel production and engine emissions testing is presented. Previous engine laboratory tests indicate that F-T diesel is a promising alternative fuel because it can be used in unmodified diesel engines, and substantial exhaust emissions reductions can be realized. The authors have performed preliminary tests to assess the real-world performance of F-T diesel fuels in heavy-duty trucks. Seven White-GMC Class 8 trucks equipped with Caterpillar 10.3 liter engines were tested using F-T diesel fuel. Vehicle emissions tests were performed using West Virginia University's unique transportable chassis dynamometer. The trucks were found to perform adequately on neat F-T diesel fuel. Compared to a California diesel fuel baseline, neat F-T diesel fuel emitted about 12% lower oxides of nitrogen (NOx) and 24% lower particulate matter over a five-mile driving cycle.

  11. FUEL CONSUMPTION AND COST SAVINGS OF CLASS 8 HEAVY-DUTY TRUCKS POWERED BY NATURAL GAS

    SciTech Connect (OSTI)

    Gao, Zhiming [ORNL] [ORNL; LaClair, Tim J [ORNL] [ORNL; Daw, C Stuart [ORNL] [ORNL; Smith, David E [ORNL] [ORNL

    2013-01-01T23:59:59.000Z

    We compare the fuel consumption and greenhouse gas emissions of natural gas and diesel heavy-duty (HD) class 8 trucks under consistent simulated drive cycle conditions. Our study included both conventional and hybrid HD trucks operating with either natural gas or diesel engines, and we compare the resulting simulated fuel efficiencies, fuel costs, and payback periods. While trucks powered by natural gas engines have lower fuel economy, their CO2 emissions and costs are lower than comparable diesel trucks. Both diesel and natural gas powered hybrid trucks have significantly improved fuel economy, reasonable cost savings and payback time, and lower CO2 emissions under city driving conditions. However, under freeway-dominant driving conditions, the overall benefits of hybridization are considerably less. Based on payback period alone, non-hybrid natural gas trucks appear to be the most economic option for both urban and freeway driving environments.

  12. Medium Truck Duty Cycle Data from Real-World Driving Environments: Project Interim Report

    SciTech Connect (OSTI)

    Franzese, Oscar [ORNL; Lascurain, Mary Beth [ORNL; Capps, Gary J [ORNL

    2011-01-01T23:59:59.000Z

    Since the early part of the 20th century, the US trucking industry has provided a safe and economical means of moving commodities across the country. At the present time, nearly 80% of the US domestic freight movement involves the use of trucks. The US Department of Energy (DOE) is spearheading a number of research efforts to improve heavy vehicle fuel efficiencies. This includes research in engine technologies (including hybrid and fuel cell technologies), lightweight materials, advanced fuels, and parasitic loss reductions. In addition, DOE is developing advanced tools and models to support heavy vehicle truck research, and is leading the 21st Century Truck Partnership whose stretch goals involve a reduction by 50% of the fuel consumption of heavy vehicles on a ton-mile basis. This Medium Truck Duty Cycle (MTDC) Project is a critical element in DOE s vision for improved heavy vehicle energy efficiency and is unique in that there is no other national database of characteristic duty cycles for medium trucks. It involves the collection of real-world data for various situational characteristics (rural/urban, freeway/arterial, congested/free-flowing, good/bad weather, etc.) and looks at the unique nature of medium trucks drive cycles (stop-and-go delivery, power takeoff, idle time, short-radius trips), to provide a rich source of data that can contribute to the development of new tools for fuel efficiency and modeling, provide DOE a sound basis upon which to make technology investment decisions, and provide a national archive of real-world-based medium-truck operational data to support heavy vehicle energy efficiency research. The MTDC project involves a two-part field operational test (FOT). For the Part-1 FOT, three vehicles, each from two vocations (urban transit and dry-box delivery) were instrumented for one year of data collection. The Part-2 FOT will involve the towing/recovery and utility vocations. The vehicles participating in the MTDC project are doing so through gratis partnerships in return for early access to the results of this study. Partnerships such as these are critical to FOTs in which real-world data is being collected. In Part 1 of the project, Oak Ridge National Laboratory(ORNL) established partnerships with the H.T. Hackney Company, one of the largest wholesale distributors in the country, distributing products to 21 states; and with the Knoxville Area Transit (KAT), the City of Knoxville s transit system, operating services across the city of Knoxville and parts of Knox co. These partnerships and agreements provided ORNL access to three Class-7 2005/2007 International day-cab tractors, model 8600, which regularly haul 28 ft pup trailers (H.T. Hackney Co) and three Class-7 2005 Optima LF-34 buses (KAT), for collection of duty cycle data. In addition, ORNL has collaborated with the Federal Motor Carrier Safety Administration (FMCSA) to determine if there were possible synergies between this duty cycle data collection effort and FMCSA s need to learn more about the operation and duty cycles of the second-largest fuel consuming commercial vehicle category in the US. FMCSA s primary interest was in collecting safety data relative to the driver, carrier, and vehicle. In order to collect the duty cycle and safety-related data, ORNL developed a data acquisition and wireless communication system that was placed on each test vehicle. Each signal recorded in this FOT was collected by means of one of the instruments incorporated into each data acquisition system (DAS). Native signals were obtained directly from the vehicle s J1939 and J1708 data buses. A VBOX II Lite collected Global Positioning System related information including speed, acceleration, and spatial location information at a rate of 5 Hz, and communicated this data via the CAN (J1939) protocol. The Air-Weigh LoadMaxx, a self-weighing system which determines the vehicle s gross weight by means of pressure transducers and posts the weight to the vehicle s J1939 data bus, was used to collect vehicle payload information. A cellular modem, the Raven X

  13. Vehicle Technologies Office: 21st Century Truck Technical Goals and Teams

    Broader source: Energy.gov [DOE]

    Fuel efficiency in heavy trucks depends on a number of factors associated with the truck and its components. The top figure shows the power use inventory for a basic Class 8 tractor-trailer combination, listing its balance of fuel input, engine output, and tractive power (losses from aerodynamics, rolling resistance, and inertia). The power use inventory in this diagram highlights areas in which research efforts can lead to major benefits in truck fuel efficiency, including engine efficiency, aerodynamics, and rolling resistance.

  14. DOEs Effort to Reduce Truck Aerodynamic Drag through Joint...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Experiments DOEs Effort to Reduce Truck Aerodynamic Drag through Joint Experiments Presentation from the U.S. DOE Office of Vehicle Technologies "Mega" Merit Review 2008 on...

  15. DOEs Effort to Reduce Truck Aerodynamic Drag through Joint...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    D.C. vss14salari.pdf More Documents & Publications DOEs Effort to Reduce Truck Aerodynamic Drag through Joint Experiments and Computations Vehicle Technologies Office Merit...

  16. DOEs Effort to Reduce Truck Aerodynamic Drag through Joint...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Experiments and Computations DOEs Effort to Reduce Truck Aerodynamic Drag through Joint Experiments and Computations 2010 DOE Vehicle Technologies and Hydrogen Programs Annual...

  17. Cummins Next Generation Tier 2, Bin 2 Light Truck Diesel Engine

    Broader source: Energy.gov (indexed) [DOE]

    Ton Pick-up Truck application 40% Better miles per gallon - Compared to V8 gasoline powered equivalent US Tier 2, Bin 2 emissions levels Commercially Viable...

  18. Effect of Weight and Roadway Grade on the Fuel Economy of Class-8 Frieght Trucks

    SciTech Connect (OSTI)

    Franzese, Oscar [ORNL; Davidson, Diane [ORNL

    2011-11-01T23:59:59.000Z

    In 2006-08, the Oak Ridge National Laboratory, in collaboration with several industry partners, collected real-world performance and situational data for long-haul operations of Class-8 trucks from a fleet engaged in normal freight operations. Such data and information are useful to support Class-8 modeling of combination truck performance, technology evaluation efforts for energy efficiency, and to provide a means of accounting for real-world driving performance within combination truck research and analyses. The present study used the real-world information collected in that project to analyze the effects that vehicle speed and vehicle weight have on the fuel efficiency of Class-8 trucks. The analysis focused on two type of terrains, flat (roadway grades ranging from -1% to 1%) and mild uphill terrains (roadway grades ranging from 1% to 3%), which together covered more than 70% of the miles logged in the 2006-08 project (note: almost 2/3 of the distance traveled on mild uphill terrains was on terrains with 1% to 2% grades). In the flat-terrain case, the results of the study showed that for light and medium loads, fuel efficiency decreases considerably as speed increases. For medium-heavy and heavy loads (total vehicle weight larger than 65,000 lb), fuel efficiency tends to increase as the vehicle speed increases from 55 mph up to about 58-60 mph. For speeds higher than 60 mph, fuel efficiency decreases at an almost constant rate with increasing speed. At any given speed, fuel efficiency decreases and vehicle weight increases, although the relationship between fuel efficiency and vehicle weight is not linear, especially for vehicle weights above 65,000 lb. The analysis of the information collected while the vehicles were traveling on mild upslope terrains showed that the fuel efficiency of Class-8 trucks decreases abruptly with vehicle weight ranging from light loads up to medium-heavy loads. After that, increases in the vehicle weight only decrease fuel efficiency slightly. Fuel efficiency also decreases significantly with speed, but only for light and medium loads. For medium-heavy and heavy, FE is almost constant for speeds ranging from 57 to about 66 mph. For speeds higher than 66 mph, the FE decreases with speed, but at a lower rate than for light and medium loads. Statistical analyses that compared the fuel efficiencies obtained when the vehicles were traveling at 59 mph vs. those achieved when they were traveling at 65 mph or 70 mph indicated that the former were, on average, higher than the latter. This result was statistically significant at the 99.9% confidence level (note: the Type II error i.e., the probability of failing to reject the null hypothesis when the alternative hypothesis is true was 18% and 6%, respectively).

  19. Analysis of Class 8 Hybrid-Electric Truck Technologies Using Diesel, LNG, Electricity, and Hydrogen, as the Fuel for Various Applications

    E-Print Network [OSTI]

    Zhao, Hengbing

    2013-01-01T23:59:59.000Z

    of a Class 8 Line-Haul Truck, SAE 2010 Commercial VehicleHeavy-Duty Long Haul Combination Truck Fuel Consumption andhaul, and long haul driving cycles were constructed using truck

  20. Assessing economic impacts of clean diesel engines. Phase 1 report: U.S.- or foreign-produced clean diesel engines for selected light trucks

    SciTech Connect (OSTI)

    Teotia, A.P.; Vyas, A.D.; Cuenca, R.M.; Stodolsky, F.

    1999-11-02T23:59:59.000Z

    Light trucks' share of the US light vehicle market rose from 20% in 1980 to 41% in 1996. By 1996, annual energy consumption for light trucks was 6.0 x 10{sup 15} Btu (quadrillion Btu, or quad), compared with 7.9 quad for cars. Gasoline engines, used in almost 99% of light trucks, do not meet the Corporate Average Fuel Economy (CAFE) standards. These engines have poor fuel economy, many getting only 10--12 miles per gallon. Diesel engines, despite their much better fuel economy, had not been preferred by US light truck manufacturers because of problems with high NO{sub x} and particulate emissions. The US Department of Energy, Office of Heavy Vehicle Technologies, has funded research projects at several leading engine makers to develop a new low-emission, high-efficiency advanced diesel engine, first for large trucks, then for light trucks. Recent advances in diesel engine technology may overcome the NO{sub x} and particulate problems. Two plausible alternative clean diesel (CD) engine market penetration trajectories were developed, representing an optimistic case (High Case) and an industry response to meet the CAFE standards (CAFE Case). However, leadership in the technology to produce a successful small, advanced diesel engine for light trucks is an open issue between U.S. and foreign companies and could have major industry and national implications. Direct and indirect economic effects of the following CD scenarios were estimated by using the Standard and Poor's Data Resources, Inc., US economy model: High Case with US Dominance, High Case with Foreign Dominance, CAFE Case with US Dominance, and CAFE Case with Foreign Dominance. The model results demonstrate that the economic activity under each of the four CD scenarios is higher than in the Base Case (business as usual). The economic activity is highest for the High Case with US dominance, resulting in maximum gains in such key indicators as gross domestic product, total civilian employment, and federal government surplus. Specifically, the cumulative real gross domestic product surplus over the Base Case during the 2000--2022 period is about $56 x 10{sup 9} (constant 1992 dollars) under this high US dominance case. In contrast, the real gross domestic product gains under the high foreign dominance case would be only about half of the above gains with US dominance.

  1. The 21st Century Truck Partnership | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy Usage »of Energy StrainClientDesignOfficeThe 21st Century Truck Partnership The

  2. Analysis of Class 8 Hybrid-Electric Truck Technologies Using Diesel, LNG, Electricity, and Hydrogen, as the Fuel for Various Applications

    E-Print Network [OSTI]

    Zhao, Hengbing

    2013-01-01T23:59:59.000Z

    of the hybrid-electric diesel and LNG Class 8 trucks wereengine truck, diesel hybrid-electric, conventional LNGhybrid-electric vehicles with diesel and LNG engines, fuel

  3. 58 THE JOURNAL OF COMMERCE www.joc.com JUNE 14.2010 TRUCKING ECONOMICS

    E-Print Network [OSTI]

    de Weck, Olivier L.

    58 THE JOURNAL OF COMMERCE www.joc.com JUNE 14.2010 TRUCKING ECONOMICS By Chris CapliceBy Chris.Andwithaprivatefleetexperiencing.Andwithaprivatefleetexperiencing.Andwithaprivatefl ofmorethan6,500trucks part, long-haul full truckload ship- ments. Most vendors are moving these loads using contracted, for

  4. IMPACT OF TIRE AND AERODYNAMIC AIDS ON TRUCK PERFORMANCE ALONG UPGRADE SECTIONS

    E-Print Network [OSTI]

    Rakha, Hesham A.

    IMPACT OF TIRE AND AERODYNAMIC AIDS ON TRUCK PERFORMANCE ALONG UPGRADE SECTIONS Hesham Rakha1 and aerodynamics aids on the truck acceleration behavior. The objectives of this paper are two-fold. First of vehicle tires, the vehicle's aerodynamic features, the percentage mass on the tractive axle

  5. HEALTHY FOOD OUTSIDE: FARMERS' MARKETS, TACO TRUCKS, AND SIDEWALK FRUIT VENDORS

    E-Print Network [OSTI]

    Illinois at Chicago, University of

    HEALTHY FOOD OUTSIDE: FARMERS' MARKETS, TACO TRUCKS, AND SIDEWALK FRUIT VENDORS Alfonso Morales FOOD OUTSIDE: FARMERS' MARKETS, TACO TRUCKS, AND SIDEWALK FRUIT VENDORS Alfonso Morales1 and Gregg College School of Law. #12;2009 Healthy Food Outside 21 INTRODUCTION One hundred years ago street vendors

  6. The impact of incentives on the use of toll roads by trucks

    E-Print Network [OSTI]

    Zhou, Lin

    2010-07-14T23:59:59.000Z

    . Unfortunately, the low profit margin in the trucking industry and the relatively high tolls truckers pay leads to their reluctance to use toll facilities. Incentives for truck use of a toll road, State Highway 130 (SH 130) near Austin, Texas, were analyzed...

  7. Technology Roadmap for the 21st Century Truck Program, a government-industry research partnership

    SciTech Connect (OSTI)

    None

    2000-12-01T23:59:59.000Z

    The 21st Century Truck Program has been established as a government-industry research partnership to support the development and implementation of commercially viable technologies that will dramatically cut fuel use and emissions of commercial trucks and buses while enhancing their safety and affordability as well as maintaining or enhancing performance. The innovations resulting from this program will reduce dependence on foreign oil, improve our nation's air quality, provide advanced technology for military vehicles, and enhance the competitiveness of the U.S. truck and bus industry while ensuring safe and affordable freight and bus transportation for the nation's economy. This Technology Roadmap for the 21st Century Truck Program has been prepared to guide the development of the technical advancements that will enable the needed improvements in commercial truck fuel economy, emissions, and safety.

  8. Analysis of major trends in U.S. commercial trucking, 1977-2002.

    SciTech Connect (OSTI)

    Bertram, K. M.; Santini, D .J.; Vyas, A. D.

    2009-06-10T23:59:59.000Z

    This report focuses on various major long-range (1977-2002) and intermediate-range (1982-2002) U.S. commercial trucking trends. The primary sources of data for this period were the U.S. Bureau of the Census Vehicle Inventory and Use Survey and Truck Inventory and Use Survey. In addition, selected 1977-2002 data from the U.S. Department of Energy/Energy Information Administration and from the U.S. Department of Transportation/Federal Highway Administration's Highway Statistics were used. The report analyzes (1) overall gasoline and diesel fuel consumption patterns by passenger vehicles and trucks and (2) the population changes and fuels used by all commercial truck classes by selected truck type (single unit or combination), during specified time periods, with cargo-hauling commercial trucks given special emphasis. It also assesses trends in selected vehicle miles traveled, gallons per vehicle miles traveled, and gallons per cargo ton-mile traveled, as well as the effect of cargo tons per truck on fuel consumption. In addition, the report examines long-range trends for related factors (e.g., long-haul mileages driven by heavy trucks) and their impacts on reducing fuel consumption per cargo-ton-mile and the relative shares of total commercial fuel use among truck classes. It identifies the effects of these trends on U.S. petroleum consumption. The report also discusses basic engineering design and performance, national legislation on interstate highway construction, national demographic trends (e.g., suburbanization), and changes in U.S. corporate operations requirements, and it highlights their impacts on both the long-distance hauling and shorter-distance urban and suburban delivery markets of the commercial trucking industry.

  9. PHEV Parcel Delivery Truck Model - Development and Preliminary Results (Presentation)

    SciTech Connect (OSTI)

    Barnitt, R

    2009-10-28T23:59:59.000Z

    Describes results of a study to determine the impact of drive cycles on the energy- and cost-effectiveness of plug-in hybrid electric delivery vans.

  10. CONTAINER MOVEMENT BY TRUCKS IN METROPOLITAN NETWORKS: MODELING

    E-Print Network [OSTI]

    Dessouky, Maged

    , Maged Dessouky , Petros Ioannou , and Anastasios Chassiakos * Department of Electrical Engineering Engineering, University of Southern California, Los Angeles, CA 90089-0193 *** College of Engineering/LB) twin ports, the U.S. largest ocean freight hub and busiest container port complex, has been quite

  11. Modeling the interaction between passenger cars and trucks

    E-Print Network [OSTI]

    Jenkins, Jacqueline Marie

    2004-11-15T23:59:59.000Z

    an easier way to create calibrated traffic flows in driving simulations and to capture vehicle behavior within microscopic traffic simulations. The original design for the prototype was to establish a two-way, real time exchange of vehicle data, however...

  12. Modeling of air brakes for onboard diagnostics of heavy trucks

    E-Print Network [OSTI]

    Kankanala, Penchala N

    2000-01-01T23:59:59.000Z

    Accidents involving commercial vehicles have disastrous consequences; most of the times they result in human fatalities, environmental damage, traffic congestion leading to fuel wastage and associated productivity losses. Moreover, with the rapid...

  13. Clean Diesel Engine Component Improvement Program Diesel Truck Thermoelectric Generator

    SciTech Connect (OSTI)

    N.B. Elsner; J.C. Bass; S. Ghamaty; D. Krommenhoek; A. Kushch; D. Snowden; S. Marchetti

    2005-03-31T23:59:59.000Z

    Hi-Z Technology, Inc. (Hi-Z) is currently developing four different auxiliary generator designs that are used to convert a portion (5 to 20%) of the waste heat from vehicle engines exhaust directly to electricity. The four designs range from 200 Watts to 10 kW. The furthest along is the 1 kW Diesel Truck Thermoelectric Generator (DTTEG) for heavy duty Class 8 Diesel trucks, which, under this program, has been subjected to 543,000 equivalent miles of bouncing and jarring on PACCARâ??s test track. Test experience on an earlier version of the DTTEG on the same track showed the need for design modifications incorporated in DTTEG Mod 2, such as a heavy duty shock mounting system and reinforcement of the electrical leads mounting system, the thermocouple mounting system and the thermoelectric module restraints. The conclusion of the 543,000 mile test also pointed the way for an upgrading to heavy duty hose or flex connections for the internal coolant connections for the TEG, and consideration of a separate lower temperature cooling loop with its own radiator. Fuel savings of up to $750 per year and a three to five year payback are believed to be possible with the 5 % efficiency modules. The economics are expected to improve considerably to approach a two year payback when the 5 kW to 10 kW generators make it to the market in a few years with a higher efficiency (20%) thermoelectric module system called Quantum Wells, which are currently under development by Hi-Z. Ultimately, as automation takes over to reduce material and labor costs in the high volume production of QW modules, a one year payback for the 5 kW to10 kW generator appears possible. This was one of the stated goals at the beginning of the project. At some future point in time, with the DTTEG becoming standard equipment on all trucks and automobiles, fuel savings from the 25% conversion of exhaust heat to useable electricity nationwide equates to a 10% reduction in the 12 to 15 million barrels per day of imported oil, that much less air pollution, and an equivalent reduction in the trade deficit, which is expected to lower the inflation rate.

  14. Stress analysis of jacks, frame and bearing connections, and drill rod for core sampler truck No. 2

    SciTech Connect (OSTI)

    Ziada, H.H.

    1995-02-28T23:59:59.000Z

    This analysis evaluates the structural design adequacy of several components and connections for the rotary mode core sampler truck (RMCST) No. 2. This analysis was requested by the Characterization Equipment Group (WHC 1994a). The components addressed in this report are listed below: front jack assembly and connection to the truck chassis; rear jack assembly and connection to the truck chassis; center outrigger jacks and connection to the truck chassis; lower frame assembly and connection to the truck chassis; bolt connections for bearing plate assembly (for path of maximum load); traverse slide brackets and mounting of the traverse jack cylinders; and drill rod (failure loads).

  15. Ultra-Low Sulfur diesel Update & Future Light Duty Diesel

    Broader source: Energy.gov (indexed) [DOE]

    MARATHON PETROLEUM COMPANY LLC PARENT-MARATHON OIL COMPANY FIFTH LARGEST US REFINERY (OVER 1 MILLION BBLS OF CRUDE CAPACITY) MAJOR MARKETS IN MIDWEST AND SOUTHEAST ...

  16. Light Duty Plug-in Hybrid Vehicle Systems Analysis

    Broader source: Energy.gov (indexed) [DOE]

    and Hybrids-Plus - Have experience with hardware from all three conversion vendors * Tesla Motors and AC Propulsion - Interest and support in testing next generation EVs for...

  17. Marketing Light-Duty Diesels to U.S. Consumers

    Broader source: Energy.gov (indexed) [DOE]

    levels of performance and convenience * the best platform for renewable fuels including Biodiesel, SunFuel, and SunDiesel 14 Modern TDI Diesel technology has come a long way...

  18. Fire hazards evaluation for light duty utility arm system

    SciTech Connect (OSTI)

    HUCKFELDT, R.A.

    1999-02-24T23:59:59.000Z

    In accordance with DOE Order 5480.7A, Fire Protection, a Fire Hazards Analysis must be performed for all new facilities. LMHC Fire Protection has reviewed and approved the significant documentation leading up to the LDUA operation. This includes, but is not limited to, development criteria and drawings, Engineering Task Plan, Quality Assurance Program Plan, and Safety Program Plan. LMHC has provided an appropriate level of fire protection for this activity as documented.

  19. Light-Duty Diesel Market Potential in North America

    Broader source: Energy.gov (indexed) [DOE]

    Diesel Engineering General Motors Corporation GM's Long Term Vision Remove the automobile from the energy & environmental equation Reduced Vehicle Emissions and Increased...

  20. Methanol fumigation of a light duty automotive diesel engine

    SciTech Connect (OSTI)

    Houser, K.R.; Lestz, S.S.; Dukovich, M.; Yasbin, R.E.

    1980-01-01T23:59:59.000Z

    An Oldsmobile 5.7 l V-8 diesel engine was fumigated with methanol in amounts up to 40% of the fuel energy. The primary objectives of this study were to determine the effect of methanol fumigation on fuel efficiency, smoke, nitric oxide emission, and the occurrence of severe knock. An assessment of the biological activity for samples of the raw exhaust particulate and its soluable organic extract was also made using both the Ames Salmonella typhimurium test and the Bacillus subtilis Comptest. Results are presented for a test matrix consisting of twelve steady state operating conditions chosen to reflect over-the-road operation of a diesel engine powered automobile. Generally methanol fumigation was found to decrease NO emission for all conditions, to have a slight effect on smoke opacity, and to have a beneficial effect on fuel efficiency at higher loads. Also at higher loads the methanol was found to induce what was defined as knock limited operation. While the biological activity of the raw particulate was generally found to be lower than that of the soluble organic fraction, the fumigation of methanol appears to enhance this activity in both cases.

  1. Fueling U.S. Light Duty Diesel Vehicles

    Broader source: Energy.gov (indexed) [DOE]

    - Cylinder deactivation - Variable valve timing & lift - Direct injectionlean burn - Turbo chargingdownsizing - Integrated starter generators - Low temperature combustion *...

  2. Emissions from the European Light Duty Diesel Vehicle During...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    DPF Regeneration Events Repeated partial regenerations may cause changes in the mechanical and chemical properties of the PM in the DPF. deer09dwyer.pdf More Documents &...

  3. Light-Duty Lean GDI Vehicle Technology Benchmark

    Broader source: Energy.gov (indexed) [DOE]

    dynamometer * Milestone 2 - September 30, 2010 : - Finalize performanceemissions maps and make available with simulation example to Vehicle Systems team 5 Managed by...

  4. Opportunity Assessment Clean Diesels in the North American Light Duty

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department ofT ib l L d F SSales LLCDiesel Enginesthe U.S. -- An Overview |Market |

  5. Organic Rankine Cycle for Light Duty Passenger Vehicles | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department ofT ib l L d F SSales LLCDiesel Enginesthe U.S.Solar CompanyEngine |

  6. Overview of Light-Duty Vehicle Studies | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department ofT ib l L d F SSales LLCDieselEnergy Joining Activities in

  7. Vehicle Technologies Office AVTA: Light Duty Alternative Fuel and Advanced

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomen Owned SmallOf The 2012Nuclear Guide Remote55 Jefferson Ave.EmissionVehicle Data |

  8. Light Duty Efficient Clean Combustion | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector General Office0-72.pdfGeorgeDoesn't Happen toLeveraging National Laboratories toPower Systems

  9. Light-Duty Advanced Diesel Combustion Research | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector General Office0-72.pdfGeorgeDoesn't Happen toLeveraging National

  10. Technology Development for Light Duty High Efficient Diesel Engines |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy Usage »of Energy StrainClientDesignOffice - 20142012 |of Energy

  11. Thermoelectric HVAC for Light-Duty Vehicle Applications | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy Usage »of EnergyThe EnergyDepartment ofPowered Vehicle |DepartmentEnergy 1

  12. Thermoelectric HVAC for Light-Duty Vehicle Applications | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy Usage »of EnergyThe EnergyDepartment ofPowered Vehicle |DepartmentEnergy

  13. Thermoelectric Opportunities for Light-Duty Vehicles | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy Usage »of EnergyThe EnergyDepartment ofPowered VehicleDepartment offor2for

  14. Thermoelectric Opportunities in Light-Duty Vehicles | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy Usage »of EnergyThe EnergyDepartment ofPowered VehicleDepartment offor2forin

  15. Light-Duty Vehicle Energy Demand, Demographics, and Travel Behavior

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecember 2005 (Thousand9,0, 1997EnvironmentElectricityrgy81 § ¨,43332EIA

  16. Light Duty Efficient Clean Combustion | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensionalthe10IO1OP001 Letter Report:Life-Cycle AnalysisPresentation

  17. Light Duty Fuel Cell Electric Vehicle Hydrogen Fueling Protocol

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensionalthe10IO1OP001 Letter Report:Life-Cycle AnalysisPresentationDOE

  18. First Semi-Annual Report AFDC Light Duty Vehicles

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsing ZirconiaPolicyFeasibilityField OfficeFirmFirst Proof ofFirstFirst Savannah River

  19. Advanced Technology Light Duty Diesel Aftertreatment System | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartment of EnergyAdministrative2| Department ofDepartmentEnergy Light

  20. Emissions from the European Light Duty Diesel Vehicle During DPF

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeat PumpRecord ofESPC ENABLE: ECMConstructionApplications |Applicationsa Suezmax

  1. Sandia National Laboratories: light-duty diesel engine

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1developmentturbine blade manufacturinglife-cycle analysis Northrop-Grumman,

  2. Business Case for Light-Duty Diesels | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartmentTie Ltd:June 2015 < prevBuilding theINNOVATIONof EnergyDiesel

  3. DOE Light Duty Vehicle Workshop | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in Review: Top FiveDepartmentfor06/2015)09 I. Steps Taken5ofLNGDevelopment » DOELight Duty

  4. NGV and FCV Light Duty Transportation Perspective | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department ofT ib l L d F S i DOEToward aInnovation |NEXT STEPS The next major step inNGV

  5. Light Duty Fuel Cell Electric Vehicle Hydrogen Fueling Protocol |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in3.pdfEnergy Health andofIanJenniferLeslie Pezzullo: ...theDepartmentfrom

  6. Interim Results from Alternative Fuel Truck Evaluation Project

    SciTech Connect (OSTI)

    Kevin L. Chandler; Paul Norton; Nigel Clark

    1999-05-03T23:59:59.000Z

    The objective of this project, which is supported by the U.S. Department of Energy (DOE) through the National Renewable Energy Laboratory (NREL), is to provide a comprehensive comparison of heavy-duty trucks operating on alternative fuels and diesel fuel. Data collection from up to eight sites is planned. Currently, the project has four sites: Raley's in Sacramento, CA (Kenworth, Cummins LlO-300G, liquefied natural gas - LNG); Pima Gro Systems, Inc. in Fontana, CA (White/GMC, Caterpillar 31768 Dual-Fuel, compressed natural gas - CNG); Waste Management in Washington, PA (Mack, Mack E7G, LNG); and United Parcel Service in Hartford, CT (Freightliner Custom Chassis, Cummins B5.9G, CNG). This paper summarizes current data collection and evaluation results from this project.

  7. Alternative-fueled truck demonstration natural gas program: Caterpillar G3406LE development and demonstration

    SciTech Connect (OSTI)

    NONE

    1995-06-01T23:59:59.000Z

    In 1990, the California Energy Commission, the South Coast Air Quality Management District, and the Southern California Gas Company joined together to sponsor the development and demonstration of compressed natural gas engines for Class 8 heavy-duty line-haul trucking applications. This program became part of an overall Alternative-Fueled Truck Demonstration Program, with the goal of advancing the technological development of alternative-fueled engines. The demonstration showed natural gas to be a technically viable fuel for Class 8 truck engines.

  8. Unintended Impacts of Increased Truck Loads on Pavement Supply-Chain Emissions

    E-Print Network [OSTI]

    California at Berkeley, University of

    Unintended Impacts of Increased Truck Loads on Pavement Supply-Chain Emissions Nakul Sathaye, Arpad emissions, raising the question of whether increased vehicle weights may cause unintended environmental consequences. This paper presents scenarios with estimated emissions resulting from load consolidation

  9. Trucking country : food politics and the transformation of rural life in Postwar America

    E-Print Network [OSTI]

    Hamilton, Shane, 1976-

    2005-01-01T23:59:59.000Z

    Trucking replaced railroads as the primary link between rural producers and urban consumers in the mid-twentieth century. With this technological change came a fundamental transformation of the defining features of rural ...

  10. Engineering Task Plan for Water Supply for Spray Washers on the Support Trucks

    SciTech Connect (OSTI)

    BOGER, R.M.

    2000-02-03T23:59:59.000Z

    This Engineering Task Plan (ETP) defines the task and deliverables associated with the design, fabrication and testing of an improved spray wash system for the Rotary Mode Core Sampling (RMCS) System Support Trucks.

  11. Productivity and competition in the U.S. trucking industry since deregulation

    E-Print Network [OSTI]

    Parming, Veiko Paul

    2013-01-01T23:59:59.000Z

    In 1980 Congress passed the Motor Carrier Act, substantially liberating trucking carriers from a federal regulatory structure that had exercised broad economic control over the industry for over four decades. Changes in ...

  12. Cummins Next Generation Tier 2, Bin 2 Light Truck Diesel engine...

    Broader source: Energy.gov (indexed) [DOE]

    & Publications Cummins' Next Generation Tier 2, Bin 2 Light Truck Diesel Engine ATP-LD; Cummins Next Generation Tier 2 Bin 2 Diesel Engine ATP-LD; Cummins Next Generation...

  13. Fact #846: November 10, 2014 Trucks Move 70% of all Freight by Weight and 74% of Freight by Value – Dataset

    Broader source: Energy.gov [DOE]

    Excel file with dataset for Fact #846: Trucks Move 70% of all Freight by Weight and 74% of Freight by Value

  14. Estimating commercial truck VMT (vehicle miles of travel) of interstate motor carriers: Data evaluation

    SciTech Connect (OSTI)

    Hu, P.S.; Wright, T.; Miaou, Shaw-Pin; Beal, D.J.; Davis, S.C. (Oak Ridge National Lab., TN (USA); Tennessee Univ., Knoxville, TN (USA))

    1989-11-01T23:59:59.000Z

    This memorandum summarizes the evaluation results of six data sources in terms of their ability to estimate the number of commercial trucks operating in interstate commerce and their vehicle miles of travel (VMT) by carrier type and by state. The six data sources are: (1) Truck Inventory and Use Survey (TIUS) from the Bureau of the Census, (2) nationwide truck activity and commodity survey (NTACS) from the Bureau of the Census, (3) National Truck Trip Information Survey (NTTIS) from the University of Michigan Transportation Research Institute (UMTRI), (4) highway performance monitoring system (HPMS) from the Federal Highway Administration (FHWA), Department of Transportation, (5) state fuel tax reports from each individual state and the international fuel tax agreement (IFTA), and (6) International Registration Plan (IRP) of the American Association of Motor Vehicle Administrators (AAMVA). TIUS, NTACS, and NTTIS are designed to provide data on the physical and operational characteristics of the Nation's truck population (or sub-population); HPMS is implemented to collect information on the physical and usage characteristics of various highway systems; and state fuel tax reports and IRP are tax-oriented registrations. 16 figs., 13 tabs.

  15. FedEx Gasoline Hybrid Electric Delivery Truck Evaluation: 6-Month Interim Report

    SciTech Connect (OSTI)

    Barnitt, R.

    2010-05-01T23:59:59.000Z

    This interim report presents partial (six months) results for a technology evaluation of gasoline hybrid electric parcel delivery trucks operated by FedEx in and around Los Angeles, CA. A 12 month in-use technology evaluation comparing in-use fuel economy and maintenance costs of GHEVs and comparative diesel parcel delivery trucks was started in April 2009. Comparison data was collected and analyzed for in-use fuel economy and fuel costs, maintenance costs, total operating costs, and vehicle uptime. In addition, this interim report presents results of parcel delivery drive cycle collection and analysis activities as well as emissions and fuel economy results of chassis dynamometer testing of a gHEV and a comparative diesel truck at the National Renewable Energy Laboratory's (NREL) ReFUEL laboratory. A final report will be issued when 12 months of in-use data have been collected and analyzed.

  16. Trends in on-road vehicle emissions of ammonia

    SciTech Connect (OSTI)

    Kean, A.J.; Littlejohn, D.; Ban-Weiss, G.A.; Harley, R.A.; Kirchstetter, T.W.; Lunden, M. M.

    2008-07-15T23:59:59.000Z

    Motor vehicle emissions of ammonia have been measured at a California highway tunnel in the San Francisco Bay area. Between 1999 and 2006, light-duty vehicle ammonia emissions decreased by 38 {+-} 6%, from 640 {+-} 40 to 400 {+-} 20 mg kg{sup -1}. High time resolution measurements of ammonia made in summer 2001 at the same location indicate a minimum in ammonia emissions correlated with slower-speed driving conditions. Variations in ammonia emission rates track changes in carbon monoxide more closely than changes in nitrogen oxides, especially during later evening hours when traffic speeds are highest. Analysis of remote sensing data of Burgard et al. (Environ Sci. Technol. 2006, 40, 7018-7022) indicates relationships between ammonia and vehicle model year, nitrogen oxides, and carbon monoxide. Ammonia emission rates from diesel trucks were difficult to measure in the tunnel setting due to the large contribution to ammonia concentrations in a mixed-traffic bore that were assigned to light-duty vehicle emissions. Nevertheless, it is clear that heavy-duty diesel trucks are a minor source of ammonia emissions compared to light-duty gasoline vehicles.

  17. Zero-Emission Vehicle Scenario Cost Analysis Using A Fuzzy Set-Based Framework

    E-Print Network [OSTI]

    Lipman, Timothy Edward

    1999-01-01T23:59:59.000Z

    Now, a portion of the 10% EV sales mandate can be composeda small percentage of EV sales with the ZEV mandate). Withsale of more high-profit, light-duty trucks and sport-utility vehicles under CAFE regulations. EV

  18. atrial transport function: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    cars & light trucks for 2009. Average is 15.7 Myr 2002-2007 11.5 Million barrels of oil per day consumed by on-road vehicles Light-duty vehicles consume 60 % of...

  19. Texas A&M Veterinary Medical Diagnostic Laboratory Procedures 21.01.08.V0.03 Vehicle Use Reports: Automobiles/Trucks

    E-Print Network [OSTI]

    : Automobiles/Trucks Approved: September 20, 2011 Revised: March 26, 2013 Next Scheduled Review: March 26, 2015: Automobiles/Trucks Page 1 of 2 PROCEDURE STATEMENT To comply with the provisions of the applicable civil Laboratory Procedures 21.01.08.V0.03 Vehicle Use Reports: Automobiles/Trucks Page 2 of 2 2.6 Record

  20. NOx is emitted. In addition, extended idling can result in a consid-erable waste of fuel and cause wear on truck engines. More than

    E-Print Network [OSTI]

    ). Studies (5) have shown that a long-haul truck can idle away more than a gallon of diesel fuel per hour, Hector A. Olvera, John M. E. Storey, and Laura Kranendonk 17 At night, long-haul truck drivers rest were measured, and fuel consumption of the truck (while idling) and the APU (during operation) were

  1. Cost-Effective Fabrication Routes for the Production of Quantum Well Structures and Recovery of Waste Heat from Heavy Duty Trucks

    SciTech Connect (OSTI)

    Willigan, Rhonda

    2009-09-30T23:59:59.000Z

    The primary objectives of Phase I were: (a) carry out cost, performance and system level models, (b) quantify the cost benefits of cathodic arc and heterogeneous nanocomposites over sputtered material, (c) evaluate the expected power output of the proposed thermoelectric materials and predict the efficiency and power output of an integrated TE module, (d) define market acceptance criteria by engaging Caterpillar's truck OEMs, potential customers and dealers and identify high-level criteria for a waste heat thermoelectric generator (TEG), (e) identify potential TEG concepts, and (f) establish cost/kWatt targets as well as a breakdown of subsystem component cost targets for the commercially viable TEG.

  2. A Hybrid Multiobjective Evolutionary Algorithm For Solving Truck And Trailer Vehicle Routing Problems

    E-Print Network [OSTI]

    Coello, Carlos A. Coello

    cost) so that the day- to-day operational cost could be kept at the minimum. 1.2 Background on VehicleA Hybrid Multiobjective Evolutionary Algorithm For Solving Truck And Trailer Vehicle Routing Problems K. C. Tan, T. H. Lee, Y. H. Chew Department of Electrical and Computer Engineering National

  3. Home Away from Home: The Evolution and Meaning of American Truck Stops

    E-Print Network [OSTI]

    Day, Stephanie L.

    2009-12-03T23:59:59.000Z

    Truck stops provide a tie to place for mobile, long-haul drivers. Truckers rely on these businesses for necessities and help to shape their form and function with their perceptions and actions. An increasing domination of the industry by chain...

  4. Technology in Motion Vehicle (TMV) To promote truck and bus safety programs and

    E-Print Network [OSTI]

    Technology in Motion Vehicle (TMV) Goal To promote truck and bus safety programs and technologies messages at multiple venues Demonstrate proven and emerging safety technologies to state and motor carrier stakeholders Promote deployment of safety technologies by fleets and state MCSAP agencies Evaluate program

  5. Natural Gas as a Fuel for Heavy Trucks: Issues and Incentives (released in AEO2010)

    Reports and Publications (EIA)

    2010-01-01T23:59:59.000Z

    Environmental and energy security concerns related to petroleum use for transportation fuels, together with recent growth in U.S. proved reserves and technically recoverable natural gas resources, including shale gas, have sparked interest in policy proposals aimed at stimulating increased use of natural gas as a vehicle fuel, particularly for heavy trucks.

  6. Control System Development for an Advanced-Technology Medium-Duty Hybrid Electric Truck

    E-Print Network [OSTI]

    Grizzle, Jessy W.

    Chan-Chiao Lin, Huei Peng and J. W. Grizzle University of Michigan Jason Liu and Matt Busdiecker Eaton Corporation Copyright © 2003 SAE International ABSTRACT The power management control system development management control system for the prototype truck produced by the Eaton Innovation Center

  7. Development of LNG-Powered Heavy-Duty Trucks in Commercial Hauling

    SciTech Connect (OSTI)

    Detroit Diesel Corporation; Trucking Research Institute

    1998-12-03T23:59:59.000Z

    In support of the U.S. Department of Energy's development, deployment, and evaluation of alternative fuels, NREL and the Trucking Research Institute contracted with Detroit Diesel Corporation (DDC) to develop and operate a liquid natural gas fueled tractor powered by a DDC Series 50 prototype natural gas engine. This is the final report on the project.

  8. See More Jobs From Agrium Wholesale Truck Analyst (175535-001) -(Calgary, Alberta, Western Canada, Canada)

    E-Print Network [OSTI]

    Behmer, Spencer T.

    See More Jobs From Agrium Wholesale Truck Analyst (175535-001) - (Calgary, Alberta, Western Canada, Canada) Company: Agrium Wholesale Apply below Industry Sector: Agribusiness Industry Type: Agronomy a growing world. Growth is a top priority for Agrium Wholesale and it doesn't just apply to the nutrients we

  9. Analysis of Technology Options to Reduce the Fuel Consumption of Idling Trucks

    SciTech Connect (OSTI)

    F. Stodolsky; L. Gaines; A. Vyas

    2000-06-01T23:59:59.000Z

    Long-haul trucks idling overnight consume more than 838 million gallons (20 million barrels) of fuel annually. Idling also emits pollutants. Truck drivers idle their engines primarily to (1) heat or cool the cab and/or sleeper, (2) keep the fuel warm in winter, and (3) keep the engine warm in the winter so that the engine is easier to start. Alternatives to overnight idling could save much of this fuel, reduce emissions, and cut operating costs. Several fuel-efficient alternatives to idling are available to provide heating and cooling: (1) direct-fired heater for cab/sleeper heating, with or without storage cooling; (2) auxiliary power units; and (3) truck stop electrification. Many of these technologies have drawbacks that limit market acceptance. Options that supply electricity are economically viable for trucks that are idled for 1,000-3,000 or more hours a year, while heater units could be used across the board. Payback times for fleets, which would receive quantity discounts on the prices, would be somewhat shorter.

  10. Analysis of technology options to reduce the fuel consumption of idling trucks

    SciTech Connect (OSTI)

    Stodolsky, F.; Gaines, L.; Vyas, A.

    2000-08-22T23:59:59.000Z

    Long-haul trucks idling overnight consume more than 838 million gallons (20 million barrels) of fuel annually. Idling also emits pollutants. Truck drivers idle their engines primarily to (1) heat or cool the cab and/or sleeper, (2) keep the fuel warm in winter, and (3) keep the engine warm in the winter so that the engine is easier to start. Alternatives to overnight idling could save much of this fuel, reduce emissions, and cut operating costs. Several fuel-efficient alternatives to idling are available to provide heating and cooling: (1) direct-fired heater for cab/sleeper heating, with or without storage cooling; (2) auxiliary power units; and (3) truck stop electrification. Many of these technologies have drawbacks that limit market acceptance. Options that supply electricity are economically viable for trucks that are idled for 1,000--3,000 or more hours a year, while heater units could be used across the board. Payback times for fleets, which would receive quantity discounts on the prices, would be somewhat shorter.

  11. Hybrid Control of a Truck and Trailer Vehicle Claudio Altafini1

    E-Print Network [OSTI]

    Johansson, Karl Henrik

    Hybrid Control of a Truck and Trailer Vehicle Claudio Altafini1 , Alberto Speranzon2 , and Karl, SE-10044 Stockholm, Sweden, albspe@s3.kth.se, kallej@s3.kth.se Abstract. A hybrid control scheme is proposed for the stabilization of backward driving along simple paths for a miniature vehicle composed

  12. Measurement of Black Carbon and Particle Number Emission Factors from Individual Heavy-Duty Trucks

    E-Print Network [OSTI]

    Measurement of Black Carbon and Particle Number Emission Factors from Individual Heavy-Duty Trucks of California, Dept. of Civil & Environmental Engineering, Berkeley, CA 94720-1710 Abstract Emission factors for black carbon (BC) and particle number (PN) were measured from 226 individual heavy-duty (HD) diesel

  13. Emission Changes Resulting from the San Pedro Bay, California Ports Truck Retirement Program

    SciTech Connect (OSTI)

    Bishop, G. A.; Schuchmann, B. G.; Stedman, D. H.; Lawson, D. R.

    2012-01-03T23:59:59.000Z

    Recent U.S. Environmental Protection Agency emissions regulations have resulted in lower emissions of particulate matter and oxides of nitrogen from heavy-duty diesel trucks. To accelerate fleet turnover the State of California in 2008 along with the Ports of Los Angeles and Long Beach (San Pedro Bay Ports) in 2006 passed regulations establishing timelines forcing the retirement of older diesel trucks. On-road emissions measurements of heavy-duty diesel trucks were collected over a three-year period, beginning in 2008, at a Port of Los Angeles location and an inland weigh station on the Riverside freeway (CA SR91). At the Port location the mean fleet age decreased from 12.7 years in April of 2008 to 2.5 years in May of 2010 with significant reductions in carbon monoxide (30%), oxides of nitrogen (48%) and infrared opacity (a measure of particulate matter, 54%). We also observed a 20-fold increase in ammonia emissions as a result of new, stoichiometrically combusted, liquefied natural gas powered trucks. These results compare with changes at our inland site where the average ages were 7.9 years in April of 2008 and 8.3 years in April of 2010, with only small reductions in oxides of nitrogen (10%) being statistically significant. Both locations have experienced significant increases in nitrogen dioxide emissions from new trucks equipped with diesel particle filters; raising the mean nitrogen dioxide to oxides of nitrogen ratios from less than 10% to more than 30% at the Riverside freeway location.

  14. BuildSense Compressed natural gas (CNG) bi-fuel conversions for two Ford F-series pickup trucks.

    E-Print Network [OSTI]

    BuildSense Compressed natural gas (CNG) bi-fuel conversions for two Ford F-series pickup trucks $141,279 $35,320 $176,599 City of Charlotte Solid Waste Services Compressed natural gas ( CNG) up fits

  15. Hybrid 320 Ton Off Highway Haul Truck: Quarterly Technical Status Report 7, DOE/AL68080-TSR07

    SciTech Connect (OSTI)

    Lembit Salasoo

    2004-08-25T23:59:59.000Z

    Analysis and results show hybrid system weight and efficiency affect productivity and fuel usage. Analysis shows equivalent hybrid benefits for adjacent size classes of mine truck. Preparations are ongoing for full power test. The battery cycling test protocol was modified.

  16. Evaluation of the adequacy of the 2000P test vehicle as a surrogate for light truck subclasses

    E-Print Network [OSTI]

    Titus-Glover, Cyril James

    1996-01-01T23:59:59.000Z

    This study evaluated the adequacy of the 2000P test vehicle as a surrogate for light truck subclasses. The National Cooperative Highway Research Program (NCHRP) Report 350 recommended the use of a 3/4-ton (approximately 2000 kg) pickup...

  17. Air Pollution Impacts of Shifting San Pedro Bay Ports Freight from Truck to Rail in Southern California

    E-Print Network [OSTI]

    You, Soyoung Iris; Lee, Gunwoo; Ritchie, Stephen G.; Saphores, Jean-Daniel; Sangkapichai, Mana; Ayala, Roberto

    2010-01-01T23:59:59.000Z

    in pollutants compared to the baseline (Port trucks only).Improvement Program. 2008. 4. The Port of Long Beach.Port of Long Beach Air Emissions Inventory 2005. 2007. 5.

  18. Heavy-duty truck population, activity and usage patterns. Final report

    SciTech Connect (OSTI)

    Fischer, M.

    1998-07-01T23:59:59.000Z

    The objective of the study was to update the heavy-duty truck (HDT) population, activity (e.g., vehicle miles traveled (VMT), numbers of starts and trips, trip duration, etc.), and usage patterns type of service/business (e.g., delivery, construction, etc.), area of operation (i.e., local, short-haul, long-haul) for HDT`s registered and/or operated in California. The population and activity estimates were done on a weight-class-specific basis light-heavy-duty, medium-heavy-duty and heavy-heavy-duty. Population, activity and usage estimates were based primarily on Department of Motor Vehicles (DMV) registration data and Truck Inventory and Usage Survey (TIUS) data. In addition to the analysis of existing data (i.e., DMV and TIUS), 42 HDTs were fitted with on-board data loggers that recorded numbers of trips and starts, daily VMT and travel by time-of-day.

  19. American Recovery & Reinvestment Act: Fuel Cell Hybrid Power Packs and Hydrogen Refueling for Lift Trucks

    SciTech Connect (OSTI)

    Block, Gus

    2011-07-31T23:59:59.000Z

    HEB Grocery Company, Inc. (H-E-B) is a privately-held supermarket chain with 310 stores throughout Texas and northern Mexico. H-E-B converted 14 of its lift reach trucks to fuel cell power using Nuvera Fuel Cells’ PowerEdge™ units to verify the value proposition and environmental benefits associated with the technology. Issues associated with the increasing power requirements of the distribution center operation, along with high ambient temperature in the summer and other operating conditions (such as air quality and floor surface condition), surfaced opportunities for improving Nuvera’s PowerEdge fuel cell system design in high-throughput forklift environments. The project included on-site generation of hydrogen from a steam methane reformer, called PowerTap™ manufactured by Nuvera. The hydrogen was generated, compressed and stored in equipment located outside H-E-B’s facility, and provided to the forklifts by hydrogen dispensers located in high forklift traffic areas. The PowerEdge fuel cell units logged over 25,300 operating hours over the course of the two-year project period. The PowerTap hydrogen generator produced more than 11,100 kg of hydrogen over the same period. Hydrogen availability at the pump was 99.9%. H-E-B management has determined that fuel cell forklifts help alleviate several issues in its distribution centers, including truck operator downtime associated with battery changing, truck and battery maintenance costs, and reduction of grid electricity usage. Data collected from this initial installation demonstrated a 10% productivity improvement, which enabled H-E-B to make economic decisions on expanding the fleet of PowerEdge and PowerTap units in the fleet, which it plans to undertake upon successful demonstration of the new PowerEdge reach truck product. H-E-B has also expressed interst in other uses of hydrogen produced on site in the future, such as for APUs used in tractor trailers and refrigerated transport trucks in its fleet.

  20. Computer controlled feed delivery system for feed trucks

    E-Print Network [OSTI]

    Holt, Gregory Alan

    2012-06-07T23:59:59.000Z

    /ft), respectively. These values were selected for two reasons: 1) limitations of the model and 2) ease of testing. The scaled-down feed wagon was limited to a bed conveyor speed of 4. 27 m/min (14 fpm). Therefore, the maximum delivery rate/ground speed... the proportional control valve. 22 LIST OF FIGURES (continued) Page Figure 13. Picture of proportional control valve. . 22 Figure 14. Circuit diagram of the hydraulic system on the scaled-down model. . 24 Figure 15. Photograph of the collection box sitting...

  1. Dose estimates in a loss of lead shielding truck accident.

    SciTech Connect (OSTI)

    Dennis, Matthew L.; Osborn, Douglas M.; Weiner, Ruth F.; Heames, Terence John (Alion Science & Technology Albuquerque, NM)

    2009-08-01T23:59:59.000Z

    The radiological transportation risk & consequence program, RADTRAN, has recently added an updated loss of lead shielding (LOS) model to it most recent version, RADTRAN 6.0. The LOS model was used to determine dose estimates to first-responders during a spent nuclear fuel transportation accident. Results varied according to the following: type of accident scenario, percent of lead slump, distance to shipment, and time spent in the area. This document presents a method of creating dose estimates for first-responders using RADTRAN with potential accident scenarios. This may be of particular interest in the event of high speed accidents or fires involving cask punctures.

  2. Engineering task plan for upgrades to the leveling jacks on core sample trucks number 3 and 4

    SciTech Connect (OSTI)

    KOSTELNIK, A.J.

    1999-02-24T23:59:59.000Z

    Characterizing the waste in underground storage tanks at the Hanford Site is accomplished by obtaining a representative core sample for analysis. Core sampling is one of the numerous techniques that have been developed for use given the environmental and field conditions at the Hanford Site. Core sampling is currently accomplished using either Push Mode Core Sample Truck No.1 or; Rotary Mode Core Sample Trucks No.2, 3 or 4. Past analysis (WHC 1994) has indicated that the Core Sample Truck (CST) leveling jacks are structurally inadequate when lateral loads are applied. WHC 1994 identifies many areas where failure could occur. All these failures are based on exceeding the allowable stresses listed in the American Institute of Steel Construction (AISC) code. The mode of failure is for the outrigger attachments to the truck frame to fail resulting in dropping of the CST and possible overturning (Ref. Ziada and Hundal, 1996). Out of level deployment of the truck can exceed the code allowable stresses in the structure. Calculations have been performed to establish limits for maintaining the truck level when lifting. The calculations and the associated limits are included in appendix A. The need for future operations of the CSTS is limited. Sampling is expected to be complete in FY-2001. Since there is limited time at risk for continued use of the CSTS with the leveling controls without correcting the structural problems, there are several design changes that could give incremental improvements to the operational safety of the CSTS with limited impact on available operating time. The improvements focus on making the truck easier to control during lifting and leveling. Not all of the tasks identified in this ETP need to be performed. Each task alone can improve the safety. This engineering task plan is the management plan document for implementing the necessary additional structural analysis. Any additional changes to meet requirements of standing orders shall require a Letter of Instruction from Numatec Hanford Company (NHC).

  3. Analysis of Class 8 Hybrid-Electric Truck Technologies Using Diesel, LNG, Electricity, and Hydrogen, as the Fuel for Various Applications

    E-Print Network [OSTI]

    Zhao, Hengbing

    2013-01-01T23:59:59.000Z

    Duty Diesel Truck Internal Combustion Engine Lower Heatinglow efficiency internal combustion engine (ICE) operation,the fuel in internal combustion engines, there are several

  4. Analysis of Class 8 Hybrid-Electric Truck Technologies Using Diesel, LNG, Electricity, and Hydrogen, as the Fuel for Various Applications

    E-Print Network [OSTI]

    Zhao, Hengbing

    2013-01-01T23:59:59.000Z

    trucks can increase fuel economy by 3-6% over the long haultrucks can increase fuel economy by 3-6% over the long haul

  5. EERE: VTO - UPS Truck PNG Image | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeat Pump Models |Conduct,Final9:Department of EnergyQCJuly 2015 < prevRed

  6. Hydrogen Fuel Cells and Electric Forklift Trucks | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in3.pdfEnergy Health andof Energy Embrittlement Fundamentals, Modeling,DepartmentFuel

  7. Macro-System Model: A Federated Object Model for Cross-Cutting Analysis of Hydrogen Production, Delivery, Consumption and Associated Emissions; Preprint

    SciTech Connect (OSTI)

    Ruth, M.; Diakov, V.; Goldsby, M. E.; Sa, T. J.

    2010-12-01T23:59:59.000Z

    It is commonly accepted that the introduction of hydrogen as an energy carrier for light-duty vehicles involves concomitant technological development of infrastructure elements, such as production, delivery, and consumption, all associated with certain emission levels. To analyze these at a system level, the suite of corresponding models developed by the United States Department of Energy and involving several national laboratories is combined in one macro-system model (MSM). The macro-system model is being developed as a cross-cutting analysis tool that combines a set of hydrogen technology analysis models. Within the MSM, a federated simulation framework is used for consistent data transfer between the component models. The framework is built to suit cross-model as well as cross-platform data exchange and involves features of 'over-the-net' computation.

  8. Truck and rail charges for shipping spent fuel and nuclear waste

    SciTech Connect (OSTI)

    McNair, G.W.; Cole, B.M.; Cross, R.E.; Votaw, E.F.

    1986-06-01T23:59:59.000Z

    The Pacific Northwest Laboratory developed techniques for calculating estimates of nuclear-waste shipping costs and compiled a listing of representative data that facilitate incorporation of reference shipping costs into varius logistics analyses. The formulas that were developed can be used to estimate costs that will be incurred for shipping spent fuel or nuclear waste by either legal-weight truck or general-freight rail. The basic data for this study were obtained from tariffs of a truck carrier licensed to serve the 48 contiguous states and from various rail freight tariff guides. Also, current transportation regulations as issued by the US Department of Transportation and the Nuclear Regulatory Commission were investigated. The costs that will be incurred for shipping spent fuel and/or nuclear waste, as addressed by the tariff guides, are based on a complex set of conditions involving the shipment origin, route, destination, weight, size, and volume and the frequency of shipments, existing competition, and the length of contracts. While the complexity of these conditions is an important factor in arriving at a ''correct'' cost, deregulation of the transportation industry means that costs are much more subject to negotiation and, thus, the actual fee that will be charged will not be determined until a shipping contract is actually signed. This study is designed to provide the baseline data necessary for making comparisons of the estimated costs of shipping spent fuel and/or nuclear wastes by truck and rail transportation modes. The scope of the work presented in this document is limited to the costs incurred for shipping, and does not include packaging, cask purchase/lease costs, or local fees placed on shipments of radioactive materials.

  9. Electric Boosting System for Light Truck/SUV Application

    SciTech Connect (OSTI)

    Steve Arnold, Craig Balis, Pierre Barthelet, Etienne Poix, Tariq Samad, Greg Hampson, S.M. Shahed

    2005-06-22T23:59:59.000Z

    Turbo diesel engine use in passenger cars in Europe has resulted in 30-50% improvement in fuel economy. Diesel engine application is particularly suitable for US because of vehicle size and duty cycle patterns. Adopting this technology for use in the US presents two issues--emissions and driveability. Emissions reduction technology is being well addressed with advanced turbocharging, fuel injection and catalytic aftertreatment systems. One way to address driveability is to eliminate turbo lag and increase low speed torque. Electrically assisted turbocharging concepts incorporated in e-TurboTM designs do both. The purpose of this project is to design and develop an electrically assisted turbocharger, e-TurboTM, for diesel engine use in the US. In this report, early design and development of electrical assist technology is described together with issues and potential benefits. In this early phase a mathematical model was developed and verified. The model was used in a sensitivity study. The results of the sensitivity study together with the design and test of first generation hardware was fed into second generation designs. In order to fully realize the benefits of electrical assist technology it was necessary to expand the scope of work to include technology on the compressor side as well as electronic controls concepts. The results of the expanded scope of work are also reported here. In the first instance, designs and hardware were developed for a small engine to quantify and demonstrate benefits. The turbo size was such that it could be applied in a bi-turbo configuration to an SUV sized V engine. Mathematical simulation was used to quantify the possible benefits in an SUV application. It is shown that low speed torque can be increased to get the high performance expected in US, automatic transmission vehicles. It is also shown that e-TurboTM can be used to generate modest amounts of electrical power and supplement the alternator under most load-speed conditions. It is shown that a single (large) e-TurboTM consumes slightly less electrical power for the same steady state torque shaping than a bi-Turbo configuration. However, the transient response of a bi-Turbo configuration in slightly better. It was shown that in order to make full use of additional capabilities of e-TurboTM wide compressor flow range is required. Variable geometry compressor (VGC) technology developed under a separate project was evaluated for incorporation into e-TurboTM designs. It was shown that the combination of these two technologies enables very high torque at low engine speeds. Designs and hardware combining VGC and e-TurboTM are to be developed in a future project. There is concern about high power demands (even though momentary) of e-TurboTM. Reducing the inertia of the turbocharger can reduce power demand and increase battery life. Low inertia turbocharger technology called IBT developed under a separate project was evaluated for synergy with e-TurboTM designs. It was concluded that inertial reduction provided by IBT is very beneficial for e-TurboTM. Designs and hardware combining IBT and e-TurboTM are to be developed in a future project. e-TurboTM provides several additional flexibilities including exhaust gas recirculation (EGR) for emissions reduction with minimum fuel economy penalty and exhaust temperature control for aftertreatment. In integrated multi-parameter control system is needed to realize the full potential of e-TurboTM performance. Honeywell expertise in process control systems involving hundreds of sensors and actuators was applied to demonstrate the potential benefits of multi-parameter, model based control systems.

  10. Fact #647: November 1, 2010 Sales Shifting from Light Trucks to Cars |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeat PumpRecord ofESPCofConstructionofFY 20112: July 19, 2010 The CostsTrucks|to 2010

  11. SuperTruck Making Leaps in Fuel Efficiency | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartment of Energyof theRestoration at Young -Final ProgramAbout »SuperTruck Making Leaps

  12. SuperTruck Making Leaps in Fuel Efficiency | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartment of Energyof theRestoration at Young -Final ProgramAbout »SuperTruck Making

  13. Voluntary Truck and Bus Fuel-Economy-Program marketing plan. Final technical report, September 29, 1980-January 29, 1982

    SciTech Connect (OSTI)

    none,

    1982-01-01T23:59:59.000Z

    The aim of the program is to improve the utilization of fuel by commercial trucks and buses by updating and implementing specific approaches for educating and monitoring the trucking industry on methods and means of conserving fuels. The following outlines the marketing plan projects: increase use of program logo by voluntary program members and others; solicit trade publication membership and support; brief Congressional delegations on fuel conservation efforts; increase voluntary program presence before trade groups; increase voluntary program presence at truck and trade shows; create a voluntary program display for use at trade shows and in other areas; review voluntary program graphics; increase voluntary program membership; and produce placemats carrying fuel conservation messages; produce a special edition of Fuel Economy News, emphasizing the driver's involvement in fuel conservation; produce posters carrying voluntary program fuel conservation message. Project objectives, activities, and results for each project are summarized.

  14. System design specification for rotary mode core sample trucks No. 2, 3, and 4 programmable logic controller

    SciTech Connect (OSTI)

    Dowell, J.L.; Akers, J.C.

    1995-12-31T23:59:59.000Z

    The system this document describes controls several functions of the Core Sample Truck(s) used to obtain nuclear waste samples from various underground storage tanks at Hanford. The system will monitor the sampling process and provide alarms and other feedback to insure the sampling process is performed within the prescribed operating envelope. The intended audience for this document is anyone associated with rotary or push mode core sampling. This document describes the Alarm and Control logic installed on Rotary Mode Core Sample Trucks (RMCST) {number_sign}2, 3, and 4. It is intended to define the particular requirements of the RMCST alarm and control operation (not defined elsewhere) sufficiently for detailed design to implement on a Programmable Logic Controller (PLC).

  15. Advanced Hybrid Propulsion and Energy Management System for High Efficiency, Off Highway, 240 Ton Class, Diesel Electric Haul Trucks

    SciTech Connect (OSTI)

    Richter, Tim; Slezak, Lee; Johnson, Chris; Young, Henry; Funcannon, Dan

    2008-12-31T23:59:59.000Z

    The objective of this project is to reduce the fuel consumption of off-highway vehicles, specifically large tonnage mine haul trucks. A hybrid energy storage and management system will be added to a conventional diesel-electric truck that will allow capture of braking energy normally dissipated in grid resistors as heat. The captured energy will be used during acceleration and motoring, reducing the diesel engine load, thus conserving fuel. The project will work towards a system validation of the hybrid system by first selecting an energy storage subsystem and energy management subsystem. Laboratory testing at a subscale level will evaluate these selections and then a full-scale laboratory test will be performed. After the subsystems have been proven at the full-scale lab, equipment will be mounted on a mine haul truck and integrated with the vehicle systems. The integrated hybrid components will be exercised to show functionality, capability, and fuel economy impacts in a mine setting.

  16. Proceedings of the 2002 Advanced Vehicle Control Conference, Hiroshima, Japan, September 2002 Control of a Hybrid Electric Truck Based on Driving

    E-Print Network [OSTI]

    Peng, Huei

    initiated, aiming to duplicate the success of hybrid powertrain on passenger cars to light and heavy trucks demonstrated by several prototype hybrid passenger cars, produced by the PNGV program, will be an unrealistic Control of a Hybrid Electric Truck Based on Driving Pattern Recognition Chan-Chiao Lin, Huei Peng Soonil

  17. INTRODUCTION TEA 21 (Transportation Equity Act 21) of 1998 allows heavy sugarcane truck loads on Louisiana interstate highways.These heavier loads are currently being

    E-Print Network [OSTI]

    Harms, Kyle E.

    , are significant parameters of highway traffic.TEA 21 is allowing sugarcane trucks to haul loads up to 100,000 lb that the study include vehicles hauling sugarcane biomass for alternative fuel and electricity generation. DuringINTRODUCTION TEA 21 (Transportation Equity Act 21) of 1998 allows heavy sugarcane truck loads

  18. Heavy-Duty Truck Emissions in the South Coast Air Basin of Gary A. Bishop,* Brent G. Schuchmann,

    E-Print Network [OSTI]

    Denver, University of

    Heavy-Duty Truck Emissions in the South Coast Air Basin of California Gary A. Bishop,* Brent G, Colorado 80208, United States ABSTRACT: California and Federal emissions regulations for 2007 and newer of nitrogen spurring the introduction of new aftertreatment systems. Since 2008, four emission measurement

  19. Pollution-Related Health Effects of Truck-to-Train Freight Modal Shifts in the Midwestern United States

    E-Print Network [OSTI]

    Wisconsin at Madison, University of

    by reducing air pollution. Objective: This study sought to quantify the pollution-related health impactsPollution-Related Health Effects of Truck-to-Train Freight Modal Shifts in the Midwestern United Background: Outdoor air pollution causes increases in mortality, cardiovascular events, and respiratory

  20. Economic Feasibility of Converting Landfill Gas to Natural Gas for Use as a Transportation Fuel in Refuse Trucks

    E-Print Network [OSTI]

    Sprague, Stephen M.

    2011-02-22T23:59:59.000Z

    to global climate change, diesel-fueled refuse trucks are one of the most concentrated sources of health-threatening air pollution in most cities. The landfills that they ultimately place their waste in are the second largest source of human-related methane...

  1. Trends in the size distribution, highway use, and consumption of gasoline and diesel fuels of the U.S. Commercial Truck Fleet, 1977-2002.

    SciTech Connect (OSTI)

    Bertram, K. M.; Santini, D. J.; Anderson, J. L.; Vyas, A. D.

    2008-01-01T23:59:59.000Z

    This paper focuses on various major long-range (1977-2002, 1982-2002) U.S. commercial trucking trends by using U.S. Department of Commerce, Bureau of the Census Vehicle/Truck Inventory and Use Survey (VIUS/TIUS) data from this period, as well as selected 1977-2002 data from the U.S. Department of Energy's (DOE's) Energy Information Administration (EIA) and the U.S. Department of Transportation, Federal Highway Administration's (FHWA's) Highway Statistics. Analyses are made of (1) overall passenger vehicle versus truck consumption patterns of gasoline and diesel fuel and (2) the population growth and fuels used by all commercial truck classes and selected truck types (single unit and combination). Selected vehicle miles traveled, gallons per vehicle miles traveled, and gallons per cargo ton-miles traveled trends, as well as the effect of cargo tons per truck on fuel consumption, are also assessed. In addition, long-range trends of related factors (such as long-haul mileages driven by heavy trucks) and their impacts on both reducing fuel consumption per cargo-ton-mile and the relative shares of total commercial fuel use among truck classes were examined. Results of these trends on U.S. petroleum consumption are identified. The effects of basic engineering design and performance, national Interstate highway construction legislation, national demographic trends (such as suburbanization), and changes in U.S. corporate operational requirements are discussed. Their impacts on both the long-distance hauling and shorter-distance urban and suburban delivery markets of the commercial trucking industry are highlighted.

  2. UF{sub 6} tiedowns for truck transport - right way/wrong way

    SciTech Connect (OSTI)

    Stout, F.W. Jr. [Martin Marietta Energy Systems, Inc., Oak Ridge, TN (United States)

    1991-12-31T23:59:59.000Z

    Tiedown systems for truck transport of UF{sub 6} must be defined and controlled to assure the least risk for hauling the material over the highways. This paper and an associated poster display will present the current status of regulatory criteria for tiedowns, analyze the structural stresses involved in tiedowns for two major UF{sub 6} packaging systems, the 21PF series of overpacks and the 48 in. diameter shipping cylinders, and will present photographs showing some {open_quote}right ways{close_quotes} and some {open_quotes}wrong (or risky) ways{close_quotes} currently used for tiedown systems. Risky tiedown methods must be replaced with safer less risky methods to insure the safe transport of UF{sub 6}.

  3. Diesel Fueled SOFC for Class 7/Class 8 On-Highway Truck Auxiliary Power

    SciTech Connect (OSTI)

    Vesely, Charles John-Paul [Cummins Power Generation; Fuchs, Benjamin S. [Cummins Power Generation; Booten, Chuck W. [Protonex Technology, LLC

    2010-03-31T23:59:59.000Z

    The following report documents the progress of the Cummins Power Generation (CPG) Diesel Fueled SOFC for Class 7/Class 8 On-Highway Truck Auxiliary Power (SOFC APU) development and final testing under the U.S. Department of Energy (DOE) Energy Efficiency and Renewable Energy (EERE) contract DE-FC36-04GO14318. This report overviews and summarizes CPG and partner development leading to successful demonstration of the SOFC APU objectives and significant progress towards SOFC commercialization. Significant SOFC APU Milestones: Demonstrated: Operation meeting SOFC APU requirements on commercial Ultra Low Sulfur Diesel (ULSD) fuel. SOFC systems operating on dry CPOX reformate. Successful start-up and shut-down of SOFC APU system without inert gas purge. Developed: Low cost balance of plant concepts and compatible systems designs. Identified low cost, high volume components for balance of plant systems. Demonstrated efficient SOFC output power conditioning. Demonstrated SOFC control strategies and tuning methods.

  4. Fuel Economy Improvement Potential of a Heavy Duty Truck using V2x Communication

    SciTech Connect (OSTI)

    LaClair, Tim J [ORNL; Verma, Rajeev [Eaton Corporation; Norris, Sarah [Eaton Corporation; Cochran, Robert [Eaton Corporation

    2014-01-01T23:59:59.000Z

    In this paper, we introduce an intelligent driver assistance system to reduce fuel consumption in heavy duty vehicles irrespective of the driving style of the driver. We specifically study the potential of V2I and V2V communications to reduce fuel consumption in heavy duty trucks. Most ITS communications today are oriented towards vehicle safety, with communications strategies and hardware that tend to focus on low latency. This has resulted in technologies emerging with a relatively limited range for the communications. For fuel economy, it is expected that most benefits will be derived with greater communications distances, at the scale of many hundred meters or several kilometers, due to the large inertia of heavy duty vehicles. It may therefore be necessary to employ different communications strategies for ITS applications aimed at fuel economy and other environmental benefits than what is used for safety applications in order to achieve the greatest benefits.

  5. DESIGN & DEVELOPMENT OF E-TURBO FOR SUV AND LIGHT TRUCK APPLICATIONS

    SciTech Connect (OSTI)

    Balis, C; Middlemass, C; Shahed, SM

    2003-08-24T23:59:59.000Z

    The purpose of the project is to develop an electronically controlled, electrically assisted turbocharging system, e-Turbo, for application to SUV and light truck class of passenger vehicles. Earlier simulation work had shown the benefits of e-Turbo system on increasing low-end torque and improving fuel economy. This paper will present further data from the literature to show that advanced turbocharging can enable diesel engine downsizing of 10-30% with 6-17% improvement in fuel economy. This is in addition to the fuel economy benefit that a turbocharged diesel engine offers over conventional gasoline engines. E-Turbo is necessary to get acceptable driving characteristics with downsized diesel engines. As a first step towards the development of this technology for SUV/light truck sized diesel engines (4-6 litre displacement), design concepts and hardware were evaluated for a smaller engine (2 litre displacement). It was felt that design and developments issues could be minimized, the concept proven progressively on the bench, on a small engine and then applied to a large Vee engine (one on each bank). After successful demonstration of the concept, large turbomachinery could be designed and built specifically for larger SUV sized diesel engines. This paper presents the results of development of e-Turbo for a 2 litre diesel engine. A detailed comparison of several electric assist technologies including permanent magnet, six-phase induction and conventional induction motor/generator technology was done. A comparison of switched reluctance motor technology was also done although detailed design was not carried out.

  6. Multi-modal Transportation > Highway Transportation > Trucking > Railroad transportation > Public transit > Rural transportation > Rural transit > Freig pipeline transportation > Airport planning and development > Airport maintenance > Bicycle and pedestr

    E-Print Network [OSTI]

    Multi-modal Transportation > Highway Transportation > Trucking > Railroad transportation > Public transit > Rural transportation > Rural transit > Freig pipeline transportation > Airport planning and development > Airport maintenance > Bicycle and pedestrian > Ports and waterways >>> Transportation ope

  7. http://tti.tamu.edu Multi-modal Transportation > Highway Transportation > Trucking > Railroad transportation > Public transit > Rural transportation > Rural transit > Freight

    E-Print Network [OSTI]

    http://tti.tamu.edu Multi-modal Transportation > Highway Transportation > Trucking > Railroad transportation > Public transit > Rural transportation > Rural transit > Freight pipeline transportation >>> Transportation operat > Freight traffic > Commodities > Travel time > Travel demand > http

  8. Diesel Truck Traffic in Low-Income and Minority Communities Adjacent to Ports: Environmental Justice Implications of Near-Roadway Land Use Conflicts

    E-Print Network [OSTI]

    Houston, Douglas; Krudysz, Margaret; Winer, Arthur

    2008-01-01T23:59:59.000Z

    Panel OKs Cleanup Plan for Port Trucks. Los Angeles Times,in Communities near the Ports of Los Angeles and Long Beach.8. Emission Reduction Plan for Ports and Goods Movement.

  9. REPORT on the TRUCK BRAKE LINING WORKSHOP and FLEET OPERATORS' SURVEY

    SciTech Connect (OSTI)

    Blau, P.J.

    2003-02-03T23:59:59.000Z

    The report summarizes what transpired during brake linings-related workshop held at the Fall 2003 meeting of the Technology and Maintenance Council (TMC) in Charlotte, NC. The title of the workshop was ''Developing a Useful Friction Material Rating System''. It was organized by a team consisting of Peter Blau (Oak Ridge National Laboratory), Jim Britell (National Highway Traffic Safety Administration), and Jim Lawrence (Motor and Equipment Manufacturers Association). The workshop was held under the auspices of TMC Task Force S6 (Chassis), chaired by Joseph Stianche (Sanderson Farms, Inc.). Six invited speakers during the morning session provided varied perspectives on testing and rating aftermarket automotive and truck brake linings. They were: James R. Clark, Chief Engineer, Foundation Brakes and Wheel Equipment, Dana Corporation, Spicer Heavy Axle and Brake Division; Charles W. Greening, Jr, President, Greening Test Labs; Tim Duncan, General Manager, Link Testing Services;Dennis J. McNichol, President, Dennis NationaLease; Jim Fajerski, Business Manager, OE Sales and Applications Engineering, Federal Mogul Corporation; and Peter J. Blau, Senior Materials Development Engineer, Oak Ridge National Laboratory. The afternoon break-out sessions addressed nine questions concerning such issues as: ''Should the federal government regulate aftermarket lining quality?''; ''How many operators use RP 628, and if so, what's good or bad about it?''; and ''Would there be any value to you of a vocation-specific rating system?'' The opinions of each discussion group, consisting of 7-9 participants, were reported and consolidated in summary findings on each question. Some questions produced a greater degree of agreement than others. In general, the industry seems eager for more information that would allow those who are responsible for maintaining truck brakes to make better, more informed choices on aftermarket linings. A written fleet operator survey was also conducted during the TMC meeting. Twenty-one responses were received, spanning fleet sizes between 12 and 170,000 vehicles. Responses are summarized in a series of tables separated into responses from small (100 or fewer powered vehicles), medium (101-1000 vehicles), and large fleets (>1000 vehicles). The vast majority of fleets do their own brake maintenance, relying primarily on experience and lining manufactures to select aftermarket linings. At least half of the responders are familiar to some extent with TMC Recommended Practice 628 on brake linings, but most do not use this source of test data as the sole criterion to select linings. Significant shortfalls in the applicability of TMC RP 628 to certain types of brake systems were noted.

  10. Simulated fuel economy and emissions performance during city and interstate driving for a heavy-duty hybrid truck

    SciTech Connect (OSTI)

    Daw, C Stuart [ORNL; Gao, Zhiming [ORNL; Smith, David E [ORNL; LaClair, Tim J [ORNL; Pihl, Josh A [ORNL; Edwards, Kevin Dean [ORNL

    2013-01-01T23:59:59.000Z

    We compare simulated fuel economy and emissions for both conventional and hybrid class 8 heavy-duty diesel trucks operating over multiple urban and highway driving cycles. Both light and heavy freight loads were considered, and all simulations included full aftertreatment for NOx and particulate emissions controls. The aftertreatment components included a diesel oxidation catalyst (DOC), urea-selective catalytic NOx reduction (SCR), and a catalyzed diesel particulate filter (DPF). Our simulated hybrid powertrain was configured with a pre-transmission parallel drive, with a single electric motor between the clutch and gearbox. A conventional HD truck with equivalent diesel engine and aftertreatment was also simulated for comparison. Our results indicate that hybridization can significantly increase HD fuel economy and improve emissions control in city driving. However, there is less potential hybridization benefit for HD highway driving. A major factor behind the reduced hybridization benefit for highway driving is that there are fewer opportunities to utilize regenerative breaking. Our aftertreatment simulations indicate that opportunities for passive DPF regeneration are much greater for both hybrid and conventional trucks during highway driving due to higher sustained exhaust temperatures. When passive DPF regeneration is extensively utilized, the fuel penalty for particulate control is virtually eliminated, except for the 0.4%-0.9% fuel penalty associated with the slightly higher exhaust backpressure.

  11. EIA - Annual Energy Outlook 2013 Early Release

    Gasoline and Diesel Fuel Update (EIA)

    the greenhouse gas (GHG) and corporate average fuel economy (CAFE) standards for light-duty vehicles (LDVs)1 through the 2025 model year, which increases the new vehicle...

  12. Light-Duty Diesel EngineTechnology to Meet Future Emissions and...

    Broader source: Energy.gov (indexed) [DOE]

    Vehicles 0 10 20 30 40 50 60 2000 3000 4000 5000 6000 7000 8000 Gross Vehicle Weight (lb) Combined Cycle MPG (US) . Gasoline Diesel Diesel average +45% MPG benefit Vehicle range...

  13. Impact of Canada’s Voluntary Agreement on Greenhouse Gas Emissions from Light Duty Vehicles

    E-Print Network [OSTI]

    Lutsey, Nicholas P.

    2006-01-01T23:59:59.000Z

    Fuels, Natural Resources Canada. Sacramento, Calif. : SierraBustillo, M. , 2005. “Canada Considers Copying California’sPublishers (IWP), 2005. “Canada, Automakers Reach Historic

  14. Impact of Canada's Voluntary Agreement on Greenhouse Gas Emissions from Light Duty Vehicles

    E-Print Network [OSTI]

    Lutsey, Nicholas P.

    2006-01-01T23:59:59.000Z

    Fuels, Natural Resources Canada. Sacramento, Calif. : SierraBustillo, M. , 2005. “Canada Considers Copying California’sPublishers (IWP), 2005. “Canada, Automakers Reach Historic

  15. APBF-DEC Light-duty NOx Adsorber/DPF Project

    Broader source: Energy.gov (indexed) [DOE]

    emission standards, the goal of this project is Tier 2 - BIN 5 limits of 0.07 gmi NOx and 0.01 gmi PM. Additionally, HC and CO emissions standards must be met....

  16. Engine coolant technology, performance, and life for light-duty applications

    SciTech Connect (OSTI)

    Turcotte, D.E.; Lockwood, F.E. [Valvoline Co., Lexington, KY (United States); Pfitzner, K.K.; Meszaros, L.L. [BASF Aktiengesellschaft, Ludwigshafen (Germany); Listebarger, J.K. [Ashland Chemical, Dublin, OH (United States)

    1999-08-01T23:59:59.000Z

    Recently there has been interest by motor vehicle manufacturers in developing longer-lived automotive engine coolants with an emphasis on organic acid technology (OAT). Paradoxically, the lifetime of conventional technology remains largely undefined. Concerns arising from the depleting nature of silicate have led to modern conservative change recommendations of 30,000 to 50,000 miles ({approximately}48,279 to 80,464 km). In the present work, laboratory bench test, engine dynamometer and vehicle service data from traditional silicate, hybrid and nonsilicate coolants are compared and contrasted. A new electrochemical test is used to examine passivation kinetics on aluminum. It is shown that performance and lifetime are independent of chemistry and cannot be generalized. Examples include an American silicate coolant with excellent performance on high-heat-rejecting aluminum (80 W/cm{sup 2}). European and American silicate coolants with performance defined lifetimes in excess of 300,000 miles (482,790 km), and an OAT coolant with laboratory high lead solder protection. It is concluded that the primary benefit of OAT is to meet global specifications that include chemical limitations.

  17. Efficiency analysis of varying EGR under PCI mode of combustion in a light duty diesel engine

    E-Print Network [OSTI]

    Pillai, Rahul Radhakrishna

    2008-10-10T23:59:59.000Z

    (EGR) rates of 39%, 40%, 41% and 42%. The data is collected from the experimental apparatus located in General Motors Collaborative Research Laboratory at the University of Michigan. The heat release is calculated to obtain various in-cylinder energy...

  18. High Efficiency Clean Combustion in Multi-Cylinder Light-Duty Engines

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  19. Evaluation of Hydrogen Storage System Characteristics for Light-Duty Vehicle Applications (Poster)

    SciTech Connect (OSTI)

    Thornton, M.; Day, K.; Brooker, A.

    2010-05-01T23:59:59.000Z

    This poster presentation demonstrates an approach to evaluate trade-offs among hydrogen storage system characteristic across several vehicle configurations and estimates the sensitivity of hydrogen storage system improvements on vehicle viability.

  20. Hydrogen Storage Options: Technologies and Comparisons for Light-Duty Vehicle Applications

    E-Print Network [OSTI]

    Burke, Andy; Gardiner, Monterey

    2005-01-01T23:59:59.000Z

    Uhlemann, M. , etals. , Hydrogen Storage in Different CarbonEckert, J. , etals. , Hydrogen Storage in Microporous Metal-16, 2003 40. Smalley,E. , Hydrogen Storage Eased, Technology

  1. Hydrogen Storage Options: Technologies and Comparisons for Light-Duty Vehicle Applications

    E-Print Network [OSTI]

    Burke, Andrew; Gardnier, Monterey

    2005-01-01T23:59:59.000Z

    Stetson, N. , Solid Hydrogen Storage Systems for PortableA Review of On-Board Hydrogen Storage Alternatives for FuelA. , Materials for Hydrogen Storage, Materials Today,

  2. Fuel Effects on Low Temperature Combustion in a Light-Duty Diesel...

    Broader source: Energy.gov (indexed) [DOE]

    Engine Marek Tatur, Dean Tomazic, Alok Warey FEV Inc. William Cannella Chevron Energy Technology Company Project Goals To examine which fuel properties are desirable for...

  3. Impact of Fuel Metal Impurities on the Durability of a Light-Duty Diesel Aftertreatment System

    SciTech Connect (OSTI)

    Williams, A.; Burton, J.; McCormick, R. L.; Toops, T.; Wereszczak, A. A.; Fox, E. E.; Lance, M. J.; Cavataio, G.; Dobson, D.; Warner, J.; Brezny, R.; Nguyen, K.; Brookshear, D. W.

    2013-04-01T23:59:59.000Z

    Alkali and alkaline earth metal impurities found in diesel fuels are potential poisons for diesel exhaust catalysts. A set of diesel engine production exhaust systems was aged to 150,000 miles. These exhaust systems included a diesel oxidation catalyst, selective catalytic reduction (SCR) catalyst, and diesel particulate filter (DPF). Four separate exhaust systems were aged, each with a different fuel: ultralow sulfur diesel containing no measureable metals, B20 (a common biodiesel blend) containing sodium, B20 containing potassium, and B20 containing calcium, which were selected to simulate the maximum allowable levels in B100 according to ASTM D6751. Analysis included Federal Test Procedure emissions testing, bench-flow reactor testing of catalyst cores, electron probe microanalysis (EPMA), and measurement of thermo-mechanical properties of the DPFs. EPMA imaging found that the sodium and potassium penetrated into the washcoat, while calcium remained on the surface. Bench-flow reactor experiments were used to measure the standard nitrogen oxide (NOx) conversion, ammonia storage, and ammonia oxidation for each of the aged SCR catalysts. Vehicle emissions tests were conducted with each of the aged catalyst systems using a chassis dynamometer. The vehicle successfully passed the 0.2 gram/mile NOx emission standard with each of the four aged exhaust systems.

  4. Accelerating Light-Duty Diesel Sales in the U.S. Market

    Broader source: Energy.gov (indexed) [DOE]

    Diesel Sales in the U.S. Market Klaus-Peter Schindler Volkswagen AG, Wolfsburg, Germany Content Situation in Europe Situation in U.S. Motivation for customers to...

  5. DOE Targets for Onboard Hydrogen Storage Systems for Light-Duty...

    Broader source: Energy.gov (indexed) [DOE]

    FCT Program's Multiyear Research, Development and Demonstration Plan. targetsonboardhydrostorage.pdf More Documents & Publications Targets for Onboard Hydrogen Storage Systems...

  6. Targets for Onboard Hydrogen Storage Systems for Light-Duty Vehicles...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    A detailed explanation of each target is given in the following pages. targetsonboardhydrostorageexplanation.pdf More Documents & Publications US DRIVE Hydrogen Storage...

  7. E-Print Network 3.0 - acceptable light-duty diesel Sample Search...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    reactive nitrogen compounds from ... Source: Denver, University of - Fuel Efficiency Automobile Test Data Center Collection: Energy Storage, Conversion and Utilization 10 Shaping...

  8. Hydrogen/Natural Gas Blends for Heavy and Light-Duty Applications

    E-Print Network [OSTI]

    exhaust emissions that can be achieved relative to both diesel and natural gas alternatives. The design $ For applications that now use diesel engines $ Develop engine configurations that can replace existing diesel that minimizes the surface to volume ratio. However, care must be taken to avoid engine knock. This can require

  9. Remote Viewing End Effectors for Light Duty Utility Arm Robot (U)

    SciTech Connect (OSTI)

    Heckendorn, F.M. [Westinghouse Savannah River Company, AIKEN, SC (United States); Robinson, C.W.; Haynes, H.B.; Anderosn, E.K.; Pardini, A.F. [Westinghouse Hanford Co., Richland, WA (United States)

    1996-11-04T23:59:59.000Z

    The Robotics Development Groups at the Savannah River Site (SRS) and at the Hanford site have developed remote video and photography systems for deployment in underground radioactive-waste storage tanks at the Department of Energy (DOE) sites as a part of the Office of Science and Technology (OST) program within DOE. Viewing and documenting the tank interiors and their associated annular spaces is an extremely valuable tool in characterizing their condition and contents and in controlling their remediation. Several specialized video/photography systems and robotic End Effectors have been fabricated that provide remote viewing and lighting. All are remotely deployable into and out of the tank, with all viewing functions remotely operated. Positioning all control components away from the facility prevents the potential for personnel exposure to radiation and contamination. Only the remote video systems are discussed in this paper.

  10. Impact of Canada's Voluntary Agreement on Greenhouse Gas Emissions from Light Duty Vehicles

    E-Print Network [OSTI]

    Lutsey, Nicholas P.

    2006-01-01T23:59:59.000Z

    production and use of ethanol fuel is being attributed toCH 4 emissions, Increased ethanol fuel mixing, 2002-2010 On-D. Santini, 1999. “Effects of Fuel Ethanol Use on Fuel-Cycle

  11. Impact of Canada’s Voluntary Agreement on Greenhouse Gas Emissions from Light Duty Vehicles

    E-Print Network [OSTI]

    Lutsey, Nicholas P.

    2006-01-01T23:59:59.000Z

    production and use of ethanol fuel is being attributed toCH 4 emissions, Increased ethanol fuel mixing, 2002-2010 On-D. Santini, 1999. “Effects of Fuel Ethanol Use on Fuel-Cycle

  12. Impact of Canada's Voluntary Agreement on Greenhouse Gas Emissions from Light Duty Vehicles

    E-Print Network [OSTI]

    Lutsey, Nicholas P.

    2006-01-01T23:59:59.000Z

    Department of Energy. Argonne, Illinois. Schwarz, W. and J.of Energy. ANL/ ESD-38. January. Argonne, Illinois Watanabe,

  13. Impact of Canada’s Voluntary Agreement on Greenhouse Gas Emissions from Light Duty Vehicles

    E-Print Network [OSTI]

    Lutsey, Nicholas P.

    2006-01-01T23:59:59.000Z

    Department of Energy. Argonne, Illinois. Schwarz, W. and J.of Energy. ANL/ ESD-38. January. Argonne, Illinois Watanabe,

  14. Thermoelectric HVAC and Thermal Comfort Enablers for Light-Duty Vehicle Applications

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  15. Drive cycle analysis of butanol/diesel blends in a light-duty vehicle.

    SciTech Connect (OSTI)

    Miers, S. A.; Carlson, R. W.; McConnell, S. S.; Ng, H. K.; Wallner, T.; LeFeber, J.; Energy Systems; Esper Images Video & Multimedia

    2008-10-01T23:59:59.000Z

    The potential exists to displace a portion of the petroleum diesel demand with butanol and positively impact engine-out particulate matter. As a preliminary investigation, 20% and 40% by volume blends of butanol with ultra low sulfur diesel fuel were operated in a 1999 Mercedes Benz C220 turbo diesel vehicle (Euro III compliant). Cold and hot start urban as well as highway drive cycle tests were performed for the two blends of butanol and compared to diesel fuel. In addition, 35 MPH and 55 MPH steady-state tests were conducted under varying road loads for the two fuel blends. Exhaust gas emissions, fuel consumption, and intake and exhaust temperatures were acquired for each test condition. Filter smoke numbers were also acquired during the steady-state tests.

  16. High Efficiency Clean Combustion in Multi-Cylinder Light-Duty...

    Broader source: Energy.gov (indexed) [DOE]

    feedback control capability Gasoline Tank Air Exhaust Air HXN Exhaust HXN EGR HXN Turbo Fuel Rail Fuel Pump Fuel Pressure Regulator DRIVVEN Control * Engine thermal boundary...

  17. Addressing the Challenges of RCCI Operation on a Light-Duty...

    Broader source: Energy.gov (indexed) [DOE]

    + ULSD EGR controls MPR but may adversely impact BTE due to EGR heat rejection and turbo-machinery limitations. Ethanol-gasoline blends enable higher load operation with...

  18. High-Efficiency Clean Combustion in Light-Duty Multi-Cylinder...

    Broader source: Energy.gov (indexed) [DOE]

    issues related to cylinder-to-cylinder balancing, dilution, heat rejection, turbo-machinery, ... * Analysis Thermodynamic analysis to understand fuel usage...

  19. High Efficiency Clean Combustion in Multi-Cylinder Light-Duty...

    Broader source: Energy.gov (indexed) [DOE]

    EGR controls MPR but may adversely impact BTE stability due to EGR heat rejection and turbo-machinery limitations. Ethanol-gasoline blends enable higher load operation with...

  20. Vehicle Technologies Office Merit Review 2014: Light-Duty Diesel Combuston

    Broader source: Energy.gov [DOE]

    Presentation given by Sandia Natonal Laboratories and  University of Wisconsin at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation...

  1. Assessing the fuel Use and greenhouse gas emissions of future light-duty vehicles in Japan

    E-Print Network [OSTI]

    Nishimura, Eriko

    2011-01-01T23:59:59.000Z

    Reducing greenhouse gas (GHG) emissions is of great concern in Japan, as well as elsewhere, such as in the U.S. and EU. More than 20% of GHG emissions in Japan come from the transportation sector, and a more than 70% ...

  2. Advanced Combustion Concepts- Enabling Systems and Solutions (ACCESS) for High Efficiency Light Duty Vehicles

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  3. Global Assessment of Hydrogen Technologies - Task 1 Report Technology Evaluation of Hydrogen Light Duty Vehicles

    SciTech Connect (OSTI)

    Fouad, Fouad H.; Peters, Robert W.; Sisiopiku, Virginia P.; Sullivan Andrew J.; Rousseau, Aymeric

    2007-12-01T23:59:59.000Z

    This task analyzes the candidate hydrogen-fueled vehicles for near-term use in the Southeastern U.S. The purpose of this work is to assess their potential in terms of efficiency and performance. This report compares conventional, hybrid electric vehicles (HEV) with gasoline and hydrogen-fueled internal combustion engines (ICEs) as well as fuel cell and fuel cell hybrids from a technology as well as fuel economy point of view. All the vehicles have been simulated using the Powertrain System Analysis Toolkit (PSAT). First, some background information is provided on recent American automotive market trends and consequences. Moreover, available options are presented for introducing cleaner and more economical vehicles in the market in the future. In this study, analysis of various candidate hydrogen-fueled vehicles is performed using PSAT and, thus, a brief description of PSAT features and capabilities are provided. Detailed information on the simulation analysis performed is also offered, including methodology assumptions, fuel economic results, and conclusions from the findings.

  4. Hydrogen Storage Options: Technologies and Comparisons for Light-Duty Vehicle Applications

    E-Print Network [OSTI]

    Burke, Andy; Gardiner, Monterey

    2005-01-01T23:59:59.000Z

    10 kpsi) in carbon fiber-composite tanks, liquid hydrogen incarbon fiber is the highest cost material component of high pressure compressed gas tanks.

  5. Evaluation of aftermarket LPG conversion kits in light-duty vehicle applications. Final report

    SciTech Connect (OSTI)

    Bass, E.A. [Southwest Research Inst., San Antonio, TX (US)] [Southwest Research Inst., San Antonio, TX (US)

    1993-06-01T23:59:59.000Z

    SwRI was contracted by NREL to evaluate three LPG conversion kits on a Chevrolet Lumina. The objective of the project was to measure the Federal Test Procedure (FTP) emissions and fuel economy of these kits, and compare their performance to gasoline-fueled operation and to each other. Varying LPG fuel blends allowed a preliminary look at the potential for fuel system disturbance. The project required kit installation and adjustment according to manufacturer`s instructions. A limited amount of trouble diagnosis was also performed on the fuel systems. A simultaneous contract from the Texas Railroad Commission, in cooperation with NREL, provided funds for additional testing with market fuels (HD5 propane and industry average gasoline) and hydrocarbon (HC) emissions speciation to determine the ozone-forming potential of LPG HC emissions. This report documents the procurement, installation, and testing of these LPG conversion kits.

  6. High Efficiency Clean Combustion in Multi-Cylinder Light-Duty...

    Broader source: Energy.gov (indexed) [DOE]

    Adam Dempsey Zhiming Gao, Vitaly Prikhodko, Jim Parks, David Smith and Robert Wagner Fuels, Engines and Emissions Research Center Oak Ridge National Laboratory ACE016 This...

  7. Myths Regarding Alternative Fuel Vehicle Demand by Light-Duty Vehicle Fleets

    E-Print Network [OSTI]

    Nesbitt, Kevin; Sperling, Daniel

    1998-01-01T23:59:59.000Z

    eet demand for alternative-fuel vehicles in California.Britain MYTHS REGARDING ALTERNATIVE FUEL VEHICLE DEMAND BYinitial market for alternative fuel vehicles (AFVs). We

  8. Effects of Biodiesel Operation on Light-Duty Tier 2 Engine and Emission Control Systems: Preprint

    SciTech Connect (OSTI)

    Tatur, M.; Nanjundaswamy, H.; Tomazic, D.; Thornton, M.

    2008-08-01T23:59:59.000Z

    This paper documents the impact of biodiesel blends on engine-out emissions as well as overall system performance in terms of emissions control system calibration and overall system efficiency.

  9. Impacts of Biodiesel Fuel Blends Oil Dilution on Light-Duty Diesel Engine Operation

    SciTech Connect (OSTI)

    Thornton, M. J.; Alleman, T. L.; Luecke, J.; McCormick, R. L.

    2009-08-01T23:59:59.000Z

    Assesses oil dilution impacts on a diesel engine operating with a diesel particle filter, NOx storage, a selective catalytic reduction emission control system, and a soy-based 20% biodiesel fuel blend.

  10. Impacts of Oxygenated Gasoline Use on California Light-Duty Vehicle Emissions

    E-Print Network [OSTI]

    Kirchstetter, Thomas W.; Singer, Brett C.; Harley, Robert A.

    1996-01-01T23:59:59.000Z

    Addition of oxTgenates gasoline will not reduce ozone to (3)I. Y. remote sensing 1994 gasoline samples ranged from 0.7weight reported for liquid gasoline with an RVP Assoc. 1990,

  11. Effect of E85 on Tailpipe Emissions from Light-Duty Vehicles

    SciTech Connect (OSTI)

    Yanowitz, J.; McCormick, R. L.

    2009-02-01T23:59:59.000Z

    E85, which consists of nominally 85% fuel grade ethanol and 15% gasoline, must be used in flexible-fuel (or 'flexfuel') vehicles (FFVs) that can operate on fuel with an ethanol content of 0-85%. Published studies include measurements of the effect of E85 on tailpipe emissions for Tier 1 and older vehicles. Car manufacturers have also supplied a large body of FFV certification data to the U.S. Environmental Protection Agency, primarily on Tier 2 vehicles. These studies and certification data reveal wide variability in the effects of E85 on emissions from different vehicles. Comparing Tier 1 FFVs running on E85 to similar non-FFVs running on gasoline showed, on average, significant reductions in emissions of oxides of nitrogen (NOx; 54%), non-methane hydrocarbons (NMHCs; 27%), and carbon monoxide (CO; 18%) for E85. Comparing Tier 2 FFVs running on E85 and comparable non-FFVs running on gasoline shows, for E85 on average, a significant reduction in emissions of CO (20%), and no significant effect on emissions of non-methane organic gases (NMOGs). NOx emissions from Tier 2 FFVs averaged approximately 28% less than comparable non-FFVs. However, perhaps because of the wide range of Tier 2 NOx standards, the absolute difference in NOx emissions between Tier 2 FFVs and non-FFVs is not significant (P 0.28). It is interesting that Tier 2 FFVs operating on gasoline produced approximately 13% less NMOGs than non-FFVs operating on gasoline. The data for Tier 1 vehicles show that E85 will cause significant reductions in emissions of benzene and butadiene, and significant increases in emissions of formaldehyde and acetaldehyde, in comparison to emissions from gasoline in both FFVs and non-FFVs. The compound that makes up the largest proportion of organic emissions from E85-fueled FFVs is ethanol.

  12. Final report for measurement of primary particulate matter emissions from light-duty motor vehicles

    SciTech Connect (OSTI)

    Norbeck, J. M.; Durbin, T. D.; Truex, T. J.

    1998-12-31T23:59:59.000Z

    This report describes the results of a particulate emissions study conducted at the University of California, Riverside, College of Engineering-Center for Environmental Research and Technology (CE-CERT) from September of 1996 to August of 1997. The goal of this program was to expand the database of particulate emissions measurements from motor vehicles to include larger numbers of representative in-use vehicles. This work was co-sponsored by the Coordinating Research Council (CRC), the South Coast Air Quality Management District (SCAQMD), and the National Renewable Energy Laboratory (NREL) and was part of a larger study of particulate emissions being conducted in several states under sponsorship by CRC. For this work, FTP particulate mass emission rates were determined for gasoline and diesel vehicles, along with the fractions of particulates below 2.5 and 10 microns aerodynamic diameter. A total of 129 gasoline-fueled vehicles and 19 diesel-fueled vehicles were tested as part of the program.

  13. High Efficiency Clean Combustion in Multi-Cylinder Light-Duty...

    Broader source: Energy.gov (indexed) [DOE]

    Duty Engines (ACE 17) Presented by Robert Wagner 2009 DOE Hydrogen Program and Vehicle Technologies Annual Merit Review This presentation does not contain any proprietary,...

  14. Fuel Effects on Low Temperature Combustion in a Light-Duty Diesel Engine |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensional ElectricalEnergy FrozenNovemberDepartment of Energy Low

  15. Fuel Spray Research on Light-Duty Injection Systems | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensional ElectricalEnergyQuality Challenges An OEMLife10 DOE Vehicle

  16. Fuel Spray Research on Light-Duty Injection Systems | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensional ElectricalEnergyQuality Challenges An OEMLife10 DOE Vehicle09

  17. Future Potential of Hybrid and Diesel Powertrains in the U.S. Light-Duty

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensional ElectricalEnergyQualityAUGUSTPart

  18. Outlook for Light-Duty-Vehicle Fuel Demand | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department ofT ib l L d F SSales LLCDiesel Enginesthe U.S.SolarMarket-Based Programs

  19. Technical Challenges and Opportunities Light-Duty Diesel Engines in North

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy Usage »of Energy StrainClientDesign &Report TechnicalSHARING KNOWLEDGEAmerica

  20. Technical System Targets: Onboard Hydrogen Storage for Light-Duty Fuel Cell Vehicles

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy Usage »of Energy StrainClientDesignOffice - 20142012 | Department ofFebruaryPage

  1. The Diesel Engine Powering Light-Duty Vehicles: Today and Tomorrow |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy Usage »of Energy StrainClientDesignOfficeTheDepartment

  2. Thermoelectric HVAC and Thermal Comfort Enablers for Light-Duty Vehicle

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy Usage »of EnergyThe EnergyDepartment ofPowered Vehicle |Department

  3. Impact of Canada’s Voluntary Agreement on Greenhouse Gas Emissions from Light Duty Vehicles

    E-Print Network [OSTI]

    Lutsey, Nicholas P.

    2006-01-01T23:59:59.000Z

    components, charge reduction, or an alternative refrigerant,refrigerant system. However, more recent work suggests low-leak, reduced charge,

  4. Impact of Canada's Voluntary Agreement on Greenhouse Gas Emissions from Light Duty Vehicles

    E-Print Network [OSTI]

    Lutsey, Nicholas P.

    2006-01-01T23:59:59.000Z

    components, charge reduction, or an alternative refrigerant,refrigerant system. However, more recent work suggests low-leak, reduced charge,

  5. Electric powertrains : opportunities and challenges in the US light-duty vehicle fleet

    E-Print Network [OSTI]

    Kromer, Matthew A

    2007-01-01T23:59:59.000Z

    Managing impending environmental and energy challenges in the transport sector requires a dramatic reduction in both the petroleum consumption and greenhouse gas (GHG) emissions of in-use vehicles. This study quantifies ...

  6. High Efficiency Clean Combustion in Multi-Cylinder Light-Duty...

    Broader source: Energy.gov (indexed) [DOE]

    challenges and is currently focused on milestones associated with Vehicle Technologies efficiency and emissions objectives. Overview 11 *http:www1.eere.energy.gov...

  7. Light Duty Diesels in North America A Huge Opportunity | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensionalthe10IO1OP001 Letter Report:Life-Cycle Analysis of| Department

  8. Light Duty Diesels in the United States - Some Perspectives | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensionalthe10IO1OP001 Letter Report:Life-Cycle Analysis of|

  9. Light Duty Diesels in the United States - Some Perspectives | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensionalthe10IO1OP001 Letter Report:Life-Cycle Analysis of|Energy

  10. Light Duty Diesels in the United States - Some Perspectives | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensionalthe10IO1OP001 Letter Report:Life-Cycle Analysis

  11. Light Duty Plug-in Hybrid Vehicle Systems Analysis | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensionalthe10IO1OP001 Letter Report:Life-Cycle

  12. Light-Duty Diesel EngineTechnology to Meet Future Emissions and Performance

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensionalthe10IO1OP001 Letter Report:Life-CycleDutyR&DPart

  13. Light-Duty Diesel Market Potential in North America | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensionalthe10IO1OP001 Letter Report:Life-CycleDutyR&DPartMarket

  14. Light-Duty Diesels in the U.S. | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensionalthe10IO1OP001 Letter

  15. Marketing Light-Duty Diesels to U.S. Consumers | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department of EnergyDevelopment Accident Tolerant Fuel: FeCrAlMarkEnergy

  16. Targets for Onboard Hydrogen Storage Systems for Light-Duty Vehicles

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy Usage »of Energy StrainClient updateTRI-STATE GENERATIONDepartment of4.0 Page 1

  17. A Study of Emissions from a Light Duty Diesel Engine with the European

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up from theDepartment(October-DecemberBasedToward a MoreA RisingA1 A StrategicParticulate

  18. APBF-DEC Light-duty NOx Adsorber/DPF Project | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartment of Energy 601 High Integrity

  19. Accelerating Light-Duty Diesel Sales in the U.S. Market | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartment of Energy 601DepartmentContract and Project ManagementPrograms

  20. Addressing the Challenges of RCCI Operation on a Light-Duty Multi-Cylinder

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartment of Energy 601DepartmentContract.4Department ofGasEngine |

  1. Economic Comparison of LNT Versus Urea SCR for Light-Duty Diesel Vehicles

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeat PumpRecord ofESPC ENABLE: ECM Summary ECM IncludedEcoHousein the U.S. Market |

  2. Emission Control Strategy for Downsized Light-Duty Diesels | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeat PumpRecord ofESPC ENABLE: ECMConstruction

  3. Targets for Onboard Hydrogen Storage Systems for Light-Duty Vehicles |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up from the GridwiseSiteDepartmentChallengeCompliance7/109THETTU U . . SHouseholds

  4. Post Mortem of 120k mi Light-Duty Urea SCR and DPF System | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department ofT ib l L d FNEPA/309 Reviewers | DepartmentSite RegulatoryMAR 1 2 2013MAR

  5. Progress on DOE Vehicle Technologies Light-Duty Diesel Engine Efficiency

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department ofT ib l L d FNEPA/309Department ofDepartment ofProgram(S3TEC )Department ofand

  6. Multi-Mode RCCI Has Great Potential to Improve Fuel Economy in Light-Duty

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |EnergyonSupport0.pdf5 OPAM SEMIANNUAL REPORTMAMayCrossColoradoMotion to Withdraw

  7. Business Case for Light-Duty Diesel in the U.S. | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartmentTie Ltd:June 2015 < prevBuilding theINNOVATIONof EnergyDiesel in

  8. Cummins Work Toward Successful Introduction of Light-Duty Clean Diesel

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartmentTieCelebratePartners with Siemens onSiteDepartment ofMay 16, 2013Engines

  9. WORKSHOP REPORT:Light-Duty Vehicles Technical Requirements and Gaps for Lightweight and Propulsion Materials

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy Usage »of| Department of EnergyDepartment of5Department ofVEHICLES TECHNOLOGIES

  10. Why Light Duty Diesels Make Sense in the North American Market | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy Usage »of| Department ofDepartment ofAnnouncementAugust 30, 2007Who UsesWholeWhyof

  11. High Efficiency Clean Combustion in Multi-Cylinder Light-Duty Engines |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensional Subject:Ground Hawaii CleanHeatin N.J.DepartmentDepartment of

  12. High Efficiency Clean Combustion in Multi-Cylinder Light-Duty Engines |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensional Subject:Ground Hawaii CleanHeatin N.J.DepartmentDepartment

  13. High Efficiency Clean Combustion in Multi-Cylinder Light-Duty Engines |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensional Subject:Ground Hawaii CleanHeatin

  14. High-Efficiency Clean Combustion in Light-Duty Multi-Cylinder Diesel

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensional Subject:Ground Hawaii HIGH PERFORMANCEDOEDepartment ofEngines |

  15. Ricardo's ACTION Strategy: An Enabling Light Duty Diesel Technology for the

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department ofT ib l LPROJECTS IN RENEWABLEOperatedDepartment ofEnergy Funds: BasicsRe~US

  16. SCReaming for Low NOx - SCR for the Light Duty Market | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department ofT ib l LPROJECTS IN7 Roadmap for

  17. Impact of Fuel Properties on Light-Duty Engine Performance and Emissions |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensionalthe U.S. Department-2023 Idaho4 AUDITofDepartment of Energy

  18. Improving the Efficiency of Light-Duty Vehicle HVAC Systems using Zonal

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensionalthe U.S. Improving Fan System Performance a

  19. WORKSHOP REPORT:Light-Duty Vehicles Technical Requirements and Gaps for

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up from theDepartment of Dept.| DepartmentVolvo Trucksof Energy WIPPGaps

  20. DOE Targets for Onboard Hydrogen Storage Systems for Light-Duty Vehicles |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in Review: Top FiveDepartmentfor06/2015)09DepartmentSuperconductivityEnergy withDepartment

  1. Biodiesel Effects on the Operation of U.S. Light Duty Tier 2 Engine and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartmentTie Ltd: ScopeDepartment1, 2011 DRAFTofBio-Oil Deployment

  2. Biodiesel Effects on the Operation of U.S. Light-Duty Tier 2 Engine and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartmentTie Ltd: ScopeDepartment1, 2011 DRAFTofBio-Oil DeploymentAftertreatment

  3. Transportation Energy Futures Series: Potential for Energy Efficiency Improvement Beyond the Light-Duty-Vehilce Sector

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched Ferromagnetism in Layered NbS2Topo II: AnTrainingTransportationsearchDEMANDCOMMERCIAL

  4. Mixture Formation in a Light-Duty Diesel Engine | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department ofT ib l L d F S i DOE TribaltheMyMinutes from DecemberCannon, MOX

  5. Ultra-Low Sulfur diesel Update & Future Light Duty Diesel | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy Usage »of EnergyTheTwo New EnergyofDEVELOPMENTEnergy Low Sulfur diesel Update

  6. Hydrogen Storage Options: Technologies and Comparisons for Light-Duty Vehicle Applications

    E-Print Network [OSTI]

    Burke, Andy; Gardiner, Monterey

    2005-01-01T23:59:59.000Z

    hydrogen compressor in parallel with their system to compress boil-off gas. In general the system costs

  7. The Detroit Diesel DELTA Engine for Light Trucks and SUVs - Year 2000 Update

    SciTech Connect (OSTI)

    Nabil S. Hakim; Charles E. Freese; Stanley P. Miller

    2000-06-19T23:59:59.000Z

    Detroit Diesel Corporation (DDC) is developing the DELTA 4.0L V6 engine, specifically for the North American light truck market. This market poses unique requirements for a diesel engine, necessitating a clean sheet engine design. DELTA was developed from a clean sheet of paper, with the first engine firing just 228 days later. The process began with a Quality Function Deployment (QFD) analysis, which prioritized the development criteria. The development process integrated a co-located, fully cross-functional team. Suppliers were fully integrated and maintained on-site representation. The first demonstration vehicle moved under its own power 12 weeks after the first engine fired. It was demonstrated to the automotive press 18 days later. DELTA has repeatedly demonstrated its ability to disprove historical North American diesel perceptions and compete directly with gasoline engines. This paper outlines the Generation 0.0 development process and briefly defines the engine. A brief indication of the Generation 0.5 development status is given.

  8. Liquid natural gas as a transportation fuel in the heavy trucking industry. Final technical report

    SciTech Connect (OSTI)

    Sutton, W.H.

    1997-06-30T23:59:59.000Z

    This report encompasses the second year of a proposed three year project with emphasis focused on fundamental research issues in Use of Liquid Natural Gas as a Transportation Fuel in the Heavy Trucking Industry. These issues may be categorized as (1) direct diesel replacement with LNG fuel, and (2) long term storage/utilization of LNG vent gases produced by tank storage and fueling/handling operation. The results of this work are expected to enhance utilization of LNG as a transportation fuel. The paper discusses the following topics: (A) Fueling Delivery to the Engine, Engine Considerations, and Emissions: (1) Atomization and/or vaporization of LNG for direct injection diesel-type natural gas engines; (2) Fundamentals of direct replacement of diesel fuel by LNG in simulated combustion; (3) Distribution of nitric oxide and emissions formation from natural gas injection; and (B) Short and long term storage: (1) Modification by partial direct conversion of natural gas composition for improved storage characteristics; (2) LNG vent gas adsorption and recovery using activate carbon and modified adsorbents; (3) LNG storage at moderate conditions.

  9. Shielding and criticality analyses of phase I reference truck and rail cask designs for spent nuclear fuel

    SciTech Connect (OSTI)

    Broadhead, B.L.; Childs, R.L.; Parks, C.V.

    1996-03-01T23:59:59.000Z

    Results are presented herein to determine the adequacy with respect to shielding regulations of reference designs for a truck cask containing 2 PWR or 5 BWR assemblies of standard burnup (45 GWd/MTU for PWR, 40 GWd/MTU for BWR) and 1 PWR assembly with extended burnup (55 GWd/MTU). The study also includes reference and modified rail cask designs with projected payloads of 8, 10, or 12 PWR assemblies. The burnup/age trends are analyzed in one dimension for both Pb and depleted uranium (DU) gamma-ray shields. The results of the two-dimensional shielding analysis uphold the one-dimensional results as being an appropriate means of studying the burnup/age trends for the truck cask. These results show that the reference design for the Pb-shield truck cask is inadequate for all cases considered, while the DU-shield truck cask is capable of carrying the desired payloads. The one-dimensional shielding analysis results for the reference Pb and DU rail casks indicate substantial margins exist in the side doses for reasonable burnup/age combinations. For a Pb-cask configuration, margins exist primarily for long-cooled (15 years) fuel. For the modified Pb and DU rail casks, the 2-m dose rates offer substantial margins below the regulatory limits for all burnup values considered provided the spent fuel has cooled for {>=}10 years. The modified Pb and DU casks yield essentially identical results and, hence, could be considered equivalent from a shielding perspective. The criticality analyses that were performed indicate that a truck basket can be designed to provide an adequate subcritical margin for 2 PWR assemblies enriched to 5 wt%. While the 10- and 12- assembly rail cask designs are very close to the regulatory limit of 0.95 for k{sub eff}, after accounting for a 0.01 {Delta}k bias and 2 standard deviations, the limit is exceeded by about 3%. It is believed that a combination of decreased enrichments and/or increased water gaps should allow these baskets to be acceptable.

  10. "Dedicated To The Continued Education, Training and Demonstration of PEM Fuel Cell Powered Lift Trucks In Real-World Applications."

    SciTech Connect (OSTI)

    Dever, Thomas J.

    2011-11-29T23:59:59.000Z

    The project objective was to further assist in the commercialization of fuel cell and H2 technology by building further upon the successful fuel cell lift truck deployments that were executed by LiftOne in 2007, with longer deployments of this technology in real-world applications. We involved facilities management, operators, maintenance personnel, safety groups, and Authorities Having Jurisdiction. LiftOne strived to educate a broad group from many areas of industry and the community as to the benefits of this technology. Included were First Responders from the local areas. We conducted month long deployments with end-users to validate the value proposition and the market requirements for fuel cell powered lift trucks. Management, lift truck operators, Authorities Having Jurisdiction and the general public experienced 'hands on' fuel cell experience in the material handling applications. We partnered with Hydrogenics in the execution of the deployment segment of the program. Air Products supplied the compressed H2 gas and the mobile fueler. Data from the Fuel Cell Power Packs and the mobile fueler was sent to the DOE and NREL as required. Also, LiftOne conducted the H2 Education Seminars on a rotating basis at their locations for lift trucks users and for other selected segments of the community over the project's 36 month duration. Executive Summary The technology employed during the deployments program was not new, as the equipment had been used in several previous demos and early adoptions within the material handling industry. This was the case with the new HyPx Series PEM - Fuel Cell Power Packs used, which had been demo'd before during the 2007 Greater Columbia Fuel Cell Challenge. The Air Products HF-150 Fueler was used outdoors during the deployments and had similarly been used for many previous demo programs. The methods used centered on providing this technology as the power for electric sit-down lift trucks at high profile companies operating large fleets. As a long-standing lift truck dealership, LiftOne was able to introduce the fuel cells to such companies in the demanding applications. Accomplishments vs Objectives: We were successful in respect to the stated objectives. The Education Segment's H2 Education Sessions were able to introduce fuel cell technology to many companies and reached the intended broad audience. Also, demos of the lift truck at the sessions as well as the conferences; expos and area events provided great additional exposure. The Deployments were successful in allowing the 6 participating companies to test the 2 fuel cell powered lift trucks in their demanding applications. One of the 6 sites (BMW) eventually adopted over 80 fuel cells from Plug Power. LiftOne was one of the 3 fuel cell demonstrators at BMW for this trial and played a major role in helping to prove the viability and efficiency of this alternative form of energy for BMW. The other 5 companies that participated in the project's deployments were encouraged by the trials and while not converting over to fuel cell power at this time, expressed the desire to revisit acquisition scenarios in the near future as the cost of fuel cells and infrastructure continue to improve. The Education sessions began in March of 2009 at the 7 LiftOne Branches and continued throughout the duration of the project. Attendees came from a large base of lift truck users in North Carolina, South Carolina and Virginia. The sessions were free and invitations were sent out to potential users and companies with intrigue. In addition to the Education content at the sessions (which was offered in a 'H2 101' format), LiftOne was able to demonstrate a working fuel cell powered lift truck, which proved to be a big draw with the 'hands on' experience. LiftOne also demo'd the fuel cell lift trucks at many conferences, expos, professional association meetings, trade shows and 'Green' events in major cities region including Charlotte, Greenville, and Columbia. Such events allowed for H2 Education Material to be presented, and recruit attendees for future sessi

  11. In-Use and Vehicle Dynamometer Evaluation and Comparison of Class 7 Hybrid Electric and Conventional Diesel Delivery Trucks

    SciTech Connect (OSTI)

    Burton, J.; Walkowicz, K.; Sindler, P.; Duran, A.

    2013-10-01T23:59:59.000Z

    This study compared fuel economy and emissions between heavy-duty hybrid electric vehicles (HEVs) and equivalent conventional diesel vehicles. In-use field data were collected from daily fleet operations carried out at a FedEx facility in California on six HEV and six conventional 2010 Freightliner M2-106 straight box trucks. Field data collection primarily focused on route assessment and vehicle fuel consumption over a six-month period. Chassis dynamometer testing was also carried out on one conventional vehicle and one HEV to determine differences in fuel consumption and emissions. Route data from the field study was analyzed to determine the selection of dynamometer test cycles. From this analysis, the New York Composite (NYComp), Hybrid Truck Users Forum Class 6 (HTUF 6), and California Air Resource Board (CARB) Heavy Heavy-Duty Diesel Truck (HHDDT) drive cycles were chosen. The HEV showed 31% better fuel economy on the NYComp cycle, 25% better on the HTUF 6 cycle and 4% worse on the CARB HHDDT cycle when compared to the conventional vehicle. The in-use field data indicates that the HEVs had around 16% better fuel economy than the conventional vehicles. Dynamometer testing also showed that the HEV generally emitted higher levels of nitric oxides than the conventional vehicle over the drive cycles, up to 77% higher on the NYComp cycle (though this may at least in part be attributed to the different engine certification levels in the vehicles tested). The conventional vehicle was found to accelerate up to freeway speeds over ten seconds faster than the HEV.

  12. Large Scale Duty Cycle (LSDC) Project: Tractive Energy Analysis Methodology and Results from Long-Haul Truck Drive Cycle Evaluations

    SciTech Connect (OSTI)

    LaClair, Tim J [ORNL

    2011-05-01T23:59:59.000Z

    This report addresses the approach that will be used in the Large Scale Duty Cycle (LSDC) project to evaluate the fuel savings potential of various truck efficiency technologies. The methods and equations used for performing the tractive energy evaluations are presented and the calculation approach is described. Several representative results for individual duty cycle segments are presented to demonstrate the approach and the significance of this analysis for the project. The report is divided into four sections, including an initial brief overview of the LSDC project and its current status. In the second section of the report, the concepts that form the basis of the analysis are presented through a discussion of basic principles pertaining to tractive energy and the role of tractive energy in relation to other losses on the vehicle. In the third section, the approach used for the analysis is formalized and the equations used in the analysis are presented. In the fourth section, results from the analysis for a set of individual duty cycle measurements are presented and different types of drive cycles are discussed relative to the fuel savings potential that specific technologies could bring if these drive cycles were representative of the use of a given vehicle or trucking application. Additionally, the calculation of vehicle mass from measured torque and speed data is presented and the accuracy of the approach is demonstrated.

  13. DELTA-DIESEL ENGINE LIGHT TRUCK APPLICATION Contract DE-FC05-97OR22606 Final Report

    SciTech Connect (OSTI)

    Hakim, Nabil Balnaves, Mike

    2003-05-27T23:59:59.000Z

    DELTA Diesel Engine Light Truck Application End of Contract Report DE-FC05-97-OR22606 EXECUTIVE SUMMARY This report is the final technical report of the Diesel Engine Light Truck Application (DELTA) program under contract DE-FC05-97-OR22606. During the course of this contract, Detroit Diesel Corporation analyzed, designed, tooled, developed and applied the ''Proof of Concept'' (Generation 0) 4.0L V-6 DELTA engine and designed the successor ''Production Technology Demonstration'' (Generation 1) 4.0L V-6 DELTA engine. The objectives of DELTA Program contract DE-FC05-97-OR22606 were to: Demonstrate production-viable diesel engine technologies, specifically intended for the North American LDT and SUV markets; Demonstrate emissions compliance with significant fuel economy advantages. With a clean sheet design, DDC produced the DELTA engine concept promising the following attributes: 30-50% improved fuel economy; Low cost; Good durability and reliability; Acceptable noise, vibration and harshness (NVH); State-of-the-art features; Even firing, 4 valves per cylinder; High pressure common rail fuel system; Electronically controlled; Turbocharged, intercooled, cooled EGR; Extremely low emissions via CLEAN Combustion{copyright} technology. To demonstrate the engine technology in the SUV market, DDC repowered a 1999 Dodge Durango with the DELTA Generation 0 engine. Fuel economy improvements were approximately 50% better than the gasoline engine replaced in the vehicle.

  14. SUBMITTED TO IEEE TRANSACTIONS ON ROBOTICS AND AUTOMATION, JANUARY 2001; REVISED MAY 2001, AND AUG 2001 1 A feedback control scheme for reversing a truck

    E-Print Network [OSTI]

    Altafini, Claudio

    SUBMITTED TO IEEE TRANSACTIONS ON ROBOTICS AND AUTOMATION, JANUARY 2001; REVISED MAY 2001, AND AUG 2001 1 A feedback control scheme for reversing a truck and trailer vehicle Claudio Alta#12;ni, Alberto the parts of the multibody vehicle, sometimes it is necessary to drive forward to enter in a speci#12;c

  15. Testimony to the United States Senate Committee on Energy and Natural Resources POLICIES TO INCREASE PASSENGER CAR AND LIGHT TRUCK FUEL

    E-Print Network [OSTI]

    TO INCREASE PASSENGER CAR AND LIGHT TRUCK FUEL ECONOMY 2:30 pm, Tuesday, January 30, 2007 Dirksen Senate to formulate effective policies to significantly increase motor vehicle fuel economy. The views I express today to supply the world's growing demand for liquid fuels. Why do we need fuel economy policy? For too long we

  16. Since 1975, the fuel economy of passenger cars and light trucks has been regulated by the corporate average fuel economy (CAFE) standards,

    E-Print Network [OSTI]

    Since 1975, the fuel economy of passenger cars and light trucks has been regulated by the corporate average fuel economy (CAFE) standards, established during the energy crises of the 1970s. Calls to increase fuel economy are usually met by a fierce debate on the effectiveness of the CAFE standards

  17. Very High Fuel Economy, Heavy Duty, Constant Speed, Truck Engine Optimized Via Unique Energy Recovery Turbines and Facilitated High Efficiency Continuously Variable Drivetrain

    SciTech Connect (OSTI)

    Bahman Habibzadeh

    2010-01-31T23:59:59.000Z

    The project began under a corporative agreement between Mack Trucks, Inc and the Department of Energy starting from September 1, 2005. The major objective of the four year project is to demonstrate a 10% efficiency gain by operating a Volvo 13 Litre heavy-duty diesel engine at a constant or narrow speed and coupled to a continuously variable transmission. The simulation work on the Constant Speed Engine started on October 1st. The initial simulations are aimed to give a basic engine model for the VTEC vehicle simulations. Compressor and turbine maps are based upon existing maps and/or qualified, realistic estimations. The reference engine is a MD 13 US07 475 Hp. Phase I was completed in May 2006 which determined that an increase in fuel efficiency for the engine of 10.5% over the OICA cycle, and 8.2% over a road cycle was possible. The net increase in fuel efficiency would be 5% when coupled to a CVT and operated over simulated highway conditions. In Phase II an economic analysis was performed on the engine with turbocompound (TC) and a Continuously Variable Transmission (CVT). The system was analyzed to determine the payback time needed for the added cost of the TC and CVT system. The analysis was performed by considering two different production scenarios of 10,000 and 60,000 units annually. The cost estimate includes the turbocharger, the turbocompound unit, the interstage duct diffuser and installation details, the modifications necessary on the engine and the CVT. Even with the cheapest fuel and the lowest improvement, the pay back time is only slightly more than 12 months. A gear train is necessary between the engine crankshaft and turbocompound unit. This is considered to be relatively straight forward with no design problems.

  18. Curriculum Vita Robert J. Farrauto, Ph.D.

    E-Print Network [OSTI]

    of Hydrogen and Fuel Cell Technology Currently leads a team of 8scientists and engineers developing catalysts for hydrocarbon fuel processing for the generation of hydrogen and fuel cells. Our team has commercialized 25 new for heavy duty trucks, buses and light duty vehicles for the US, Asian and European market. Total revenues

  19. Assistant Deputy Executive Officer Mobile Source Division

    E-Print Network [OSTI]

    California at Davis, University of

    sources, including all refineries and power plants Top NOx Emissions Sources in 2023 #12;Locomotive Light Duty Trucks/SUVs NOx(tons/day) * Oceangoing vessels = 32tons/day **RECLAIM: 320 largest stationary - Manufacturers may elect to meet a combined NOx+HC standard of 1.4 g/bhp-hr. Source: http://www.dieselnet.com/standards/us

  20. Development of Technologies for a High Efficiency, Very Low Emission, Diesel Engine for Light Trucks and Sport Utility Vehicles

    SciTech Connect (OSTI)

    Stang, John H.

    2005-12-19T23:59:59.000Z

    Cummins Inc., in partnership with the Department of Energy, has developed technology for a new highly efficient, very low emission, diesel engine for light trucks and sport utility vehicles. This work began in April 1997, and started with very aggressive goals for vehicles in the 5751 to 8500 pound GCW weight class. The primary program goals were as follows: (1) EMISSIONS -- NOx = 0.50 g/mi; PM = 0.05 g/mi; CO = 2.8 g/mi; and NMHC = 0.07 g/mi. California decided to issue new and even tougher LEV II light truck regulations late in 1999. EPA also issued its lower Tier 2 regulations late in 2000. The net result was that the targets for this diesel engine project were lowered, and these goals were eventually modified by the publication of Federal Tier 2 emission standards early in 2000 to the following: NOx = 0.07 g/mi; and PM = 0.01 g/mi. (2) FUEL ECONOMY -- The fuel economy goal was 50 percent MPG improvement (combined city/highway) over the 1997 gasoline powered light truck or sport utility vehicle in the vehicle class for which this diesel engine is being designed to replace. The goal for fuel economy remained at 50 percent MPG improvement, even with the emissions goal revisions. (3) COOPERATIVE DEVELOPMENT -- Regular design reviews of the engine program will be conducted with a vehicle manufacturer to insure that the concepts and design specifics are commercially feasible. (DaimlerChrysler has provided Cummins with this design review input.) Cummins has essentially completed a demonstration of proof-of-principle for a diesel engine platform using advanced combustion and fuel system technologies. Cummins reported very early progress in this project, evidence that new diesel engine technology had been developed that demonstrated the feasibility of the above emissions goals. Emissions levels of NOx = 0.4 g/mi and PM = 0.06 g/mi were demonstrated for a 5250 lb. test weight vehicle with passive aftertreatment only. These results were achieved using the full chassis dynamometer FTP-75 test procedure that allowed compliance with the Tier 2 Interim Bin 10 Standards and would apply to vehicles in MY2004 through MY2007 timeframe. In further technology development with active aftertreatment management, Cummins has been able to report that the emissions goals for the Tier 2 Bin 5 standards were met on an engine running the full FTP-75 test procedure. The fuel economy on the chassis tests was measured at over 59 percent MPG improvement over the gasoline engines that are offered in typical SUVs and light trucks. The above demonstration used only in-cylinder fueling for management of the aftertreatment system.

  1. Development of Technologies for a High Efficiency, Very Low Emission, Diesel Engine for Light Trucks and Sport Utility Vehicles

    SciTech Connect (OSTI)

    John H. Stang

    2005-12-31T23:59:59.000Z

    Cummins Inc., in partnership with the Department of Energy, has developed technology for a new highly efficient, very low emission, diesel engine for light trucks and sport utility vehicles. This work began in April 1997, and started with very aggressive goals for vehicles in the 5751 to 8500 pound GCW weight class. The primary program goals were as follows: (1) EMISSIONS--NO{sub x} = 0.50 g/mi; PM = 0.05 g/mi; CO = 2.8 g/mi; and NMHC = 0.07 g/mi. California decided to issue new and even tougher LEV II light truck regulations late in 1999. EPA also issued its lower Tier 2 regulations late in 2000. The net result was that the targets for this diesel engine project were lowered, and these goals were eventually modified by the publication of Federal Tier 2 emission standards early in 2000 to the following: NO{sub x} = 0.07 g/mi; and PM = 0.01 g/mi. (2) FUEL ECONOMY--The fuel economy goal was 50 percent MPG improvement (combined city/highway) over the 1997 gasoline powered light truck or sport utility vehicle in the vehicle class for which this diesel engine is being designed to replace. The goal for fuel economy remained at 50 percent MPG improvement, even with the emissions goal revisions. (3) COOPERATIVE DEVELOPMENT--Regular design reviews of the engine program will be conducted with a vehicle manufacturer to insure that the concepts and design specifics are commercially feasible. (DaimlerChrysler has provided Cummins with this design review input.) Cummins has essentially completed a demonstration of proof-of-principle for a diesel engine platform using advanced combustion and fuel system technologies. Cummins reported very early progress in this project, evidence that new diesel engine technology had been developed that demonstrated the feasibility of the above emissions goals. Emissions levels of NOx = 0.4 g/mi and PM = 0.06 g/mi were demonstrated for a 5250 lb. test weight vehicle with passive aftertreatment only. These results were achieved using the full chassis dynamometer FTP-75 test procedure that allowed compliance with the Tier 2 Interim Bin 10 Standards and would apply to vehicles in MY2004 through MY2007 timeframe. In further technology development with active aftertreatment management, Cummins has been able to report that the emissions goals for the Tier 2 Bin 5 standards were met on an engine running the full FTP-75 test procedure. The fuel economy on the chassis tests was measured at over 59 percent MPG improvement over the gasoline engines that are offered in typical SUVs and light trucks. The above demonstration used only in-cylinder fueling for management of the aftertreatment system.

  2. Texas A&M AgriLife Extension Service Procedures 21.01.08.X0.03 Vehicle Use Reports: Automobiles/Trucks

    E-Print Network [OSTI]

    Texas A&M AgriLife Extension Service Procedures 21.01.08.X0.03 Vehicle Use Reports: Automobiles, 2014 Texas A&M AgriLife Extension Service Procedures 21.01.08.X0.03 Vehicle Use Reports: Automobiles Use Reports: Automobiles/Trucks Page 2 of 2 2.5 Enter the purpose of use for each trip. Terms

  3. Engineering task plan for the development, fabrication and installation of rotary mode core sample truck grapple hoist box level wind system

    SciTech Connect (OSTI)

    BOGER, R.M.

    1999-05-12T23:59:59.000Z

    This Engineering Task Plan is to design, generate fabrication drawings, fabricate, test, and install the grapple hoist level wind system for Rotary Mode Core Sample Trucks (RMCST) 3 and 4. Deliverables will include generating fabrication drawings, fabrication of one level wind system, updating fabrication drawings as required, and installation of level wind systems on RMCST 3 or 4. The installation of the level wind systems will be done during a preventive maintenance outage.

  4. STATE-OF-THE-ART AND EMERGING TRUCK ENGINE TECHNOLOGIES FOR OPTIMIZED PERFORMANCE, EMISSIONS AND LIFE CYCLE COSTS

    SciTech Connect (OSTI)

    Schittler, M

    2003-08-24T23:59:59.000Z

    The challenge for truck engine product engineering is not only to fulfill increasingly stringent emission requirements, but also to improve the engine's economical viability in its role as the backbone of our global economy. While societal impact and therefore emission limit values are to be reduced in big steps, continuous improvement is not enough but technological quantum leaps are necessary. The introduction and refinement of electronic control of all major engine systems has already been a quantum leap forward. Maximizing the benefits of these technologies to customers and society requires full use of parameter optimization and other enabling technologies. The next big step forward will be widespread use of exhaust aftertreatment on all transportation related diesel engines. While exhaust gas aftertreatment has been successfully established on gasoline (Otto cycle) engines, the introduction of exhaust aftertreatment especially for heavy-duty diesel engines will be much mo re demanding. Implementing exhaust gas aftertreatment into commercial vehicle applications is a challenging task but the emission requirements to be met starting in Europe, the USA and Japan in the 2005-2007 timeframe require this step. The engine industry will be able to implement the new technology if all stakeholders support the necessary decisions. One decision has already been taken: the reduction of sulfur in diesel fuel being comparable with the elimination of lead in gasoline as a prerequisite for the three-way catalyst. Now we have the chance to optimize ecology and economy of the Diesel engine simultaneously by taking the decision to provide an additional infrastructure for a NOx reduction agent needed for the introduction of the Selective Catalytic Reduction (SCR) technology that is already implemented in the electric power generation industry. This requires some effort, but the resulting societal benefits, fuel economy and vehicle life cycle costs are significantly better when compared to other competitive technologies. After long discussions this decision for SCR has been made in Europe and is supported by all truck and engine manufacturers. The necessary logistic support will be in place when it will be needed commercially in 2005. For the US the decision has to be taken this year in order to have the infrastructure available in 2007. It will enable the global engine industry to focus their R & D resources in one direction not only for 2007, but for the years beyond 2010 with the best benefit for the environment, the customers and the industry.

  5. Modeling the pneumatic relay valve of an s-cam air brake

    E-Print Network [OSTI]

    Vilayannur Natarajan, Shankar

    2005-08-29T23:59:59.000Z

    - niques. The design of a model-based diagnostic system requires the development and experimental corroboration of a mathematical model of the evolution of pressure in each brake chamber of a truck in response to the application of brake pedal input...

  6. Hybrid 320 Ton Off Highway Haul Truck: Quarterly Technical Status Report 8

    SciTech Connect (OSTI)

    Tim Richter

    2004-11-08T23:59:59.000Z

    The vehicle model has been improved with coastdown testing. The hybrid system was simplified by moving to one battery technology. Full-scale testing apparatus is under construction; majority of parts are ordered and received.

  7. Unintended Impacts of Increased Truck Loads on Pavement Supply-chain Emissions

    E-Print Network [OSTI]

    Sathaye, Nakul; Horvath, Arpad; Madanat, Samer M

    2009-01-01T23:59:59.000Z

    of environmental life-cycle assessment (LCA) has also comeInput-Output Life Cycle Assessment (EIO-LCA) Model. Greenanalysis-based life-cycle assessment (EIO-LCA) tool is used

  8. Unintended Impacts of Increased Truck Loads on Pavement Supply-Chain Emissions

    E-Print Network [OSTI]

    Sathaye, Nakul; Horvath, Arpad; Madanat, Samer

    2009-01-01T23:59:59.000Z

    of  environmental life?cycle assessment (LCA) has also come Input? Output Life Cycle Assessment (EIO?LCA) Model.  Green analysis?based life?cycle assessment  (EIO?LCA) tool is 

  9. CAFE Standards (released in AEO2010)

    Reports and Publications (EIA)

    2010-01-01T23:59:59.000Z

    Pursuant to the Presidents announcement of a National Fuel Efficiency Policy, the National Highway Traffic Safety Administration (NHTSA) and the EPA have promulgated nationally coordinated standards for tailpipe Carbon Dioxide (CO2)-equivalent emissions and fuel economy for light-duty vehicles (LDVs), which includes both passenger cars and light-duty trucks. In the joint rulemaking, the Environmental Protection Agency is enacting CO2-equivalent emissions standards under the Clean Air Act (CAA), and NHTSA is enacting companion Corporate Average Fuel Economy standards under the Energy Policy and Conservation Act, as amended by the Energy Independence and Security Act of 2007.

  10. GREET 1.0 -- Transportation fuel cycles model: Methodology and use

    SciTech Connect (OSTI)

    Wang, M.Q.

    1996-06-01T23:59:59.000Z

    This report documents the development and use of the Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation (GREET) model. The model, developed in a spreadsheet format, estimates the full fuel-cycle emissions and energy use associated with various transportation fuels for light-duty vehicles. The model calculates fuel-cycle emissions of five criteria pollutants (volatile organic compounds, Co, NOx, SOx, and particulate matter measuring 10 microns or less) and three greenhouse gases (carbon dioxide, methane, and nitrous oxide). The model also calculates the total fuel-cycle energy consumption, fossil fuel consumption, and petroleum consumption using various transportation fuels. The GREET model includes 17 fuel cycles: petroleum to conventional gasoline, reformulated gasoline, clean diesel, liquefied petroleum gas, and electricity via residual oil; natural gas to compressed natural gas, liquefied petroleum gas, methanol, hydrogen, and electricity; coal to electricity; uranium to electricity; renewable energy (hydropower, solar energy, and wind) to electricity; corn, woody biomass, and herbaceous biomass to ethanol; and landfill gases to methanol. This report presents fuel-cycle energy use and emissions for a 2000 model-year car powered by each of the fuels that are produced from the primary energy sources considered in the study.

  11. A methodology to evaluate the competitiveness of electric delivery trucks Brian A. Davis, Miguel A. Figliozzi

    E-Print Network [OSTI]

    Bertini, Robert L.

    constraints, speed profiles, energy consump- tion, and vehicle ownership costs is developed. The model like electricity cost that are current in the US (as of June 2012) and easily obtained from vehicle, the stress on the electricity grid caused by these vehicles is negligible, and their effects on the cost

  12. DOEs Effort to Reduce Truck Aerodynamic Drag through Joint Experiments

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeat Pump Models | Department1 Prepared by: U.S. DepartmentSeptemberand

  13. Development and Demonstration of a Fuel-Efficient HD Engine (DOE SuperTruck

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeat Pump Models |Conduct, Parent Companya new high capacity anodewithDepartment

  14. Hybrid 320 Ton Off Highway Haul Truck: Quarterly Technical Status Report 1

    SciTech Connect (OSTI)

    Salasoo, Lembit

    2003-02-11T23:59:59.000Z

    The mine proving ground to be used for the hybrid off highway vehicle (OHV) demonstration was visited, to obtain haul route profile data and OHV vehicle data. A 6500-ft haul mission with 7% average grade was selected. Enhancements made to a dynamic model of hybrid missions provided capability to analyze hybrid OHV performance. A benefits study defined relationships between fuel and productivity benefits and hybrid system parameters. OHV hybrid system requirements were established, and a survey of candidate energy storage technology characteristics was carried out. Testing of the performance of an existing power battery bank verified its suitability for use in the hybrid OHV demonstration.

  15. Development of an ORC system to improve HD truck fuel efficiency |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeat Pump Models |Conduct, Parent CompanyaUSAMP AMDHeavy DutyLow.4.3.100anan

  16. Downspeeding a Heavy-Duty Pickup Truck with a Combined Supercharger and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeat Pump Models |Conduct, Parent(CRADA and DOW AreaJuneDonna FriendHotDownload

  17. Daimler's SuperTruck Program; 50% Brake Thermal Efficiency | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeat Pump Models | Department1 Prepared by:DTE Energy Video (Text Version)000

  18. Design & Development of e-TurboTM for SUV and Light Truck Applications |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeat Pump Models |Conduct, Parent Company Agrees to CooperateJapan |ScarcityDesert

  19. Design and Development of e-Turbo for SUV and Light Truck Applications |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeat Pump Models |Conduct, Parent Company Agrees toDepartment of EnergyDepartment

  20. An analysis of variations in the value of time savings to trucks

    E-Print Network [OSTI]

    Ward, Allen William

    1965-01-01T23:59:59.000Z

    is not presented in this study; the adjustment ratio? "Line-Haul Vehicle License Fees/Total License Fees and Taxes" found in Exhibits Bl through Blg is computed from Trine's. 17 Before the model could be computed for Class I-A and I-B common carriers, certain...-Haul Drivers Wages 9 1 Line;Haul Employees' Welfare Line' Haul Workmen's Compensation Line-Haul Vehicle License and Registration Fees Line-Haul Real Estate and Personal Property Taxes Line-Haul Social Security Taxes Total Selected Expenses (TFC) Total...