Powered by Deep Web Technologies
Note: This page contains sample records for the topic "light-duty automotive technology" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Technology Development for Light Duty High Efficient Diesel Engines...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Light Duty High Efficient Diesel Engines Technology Development for Light Duty High Efficient Diesel Engines Improve the efficiency of diesel engines for light duty applications...

2

Ricardo's ACTION Strategy: An Enabling Light Duty Diesel Technology...  

Broader source: Energy.gov (indexed) [DOE]

light duty diesel solutions for the US market Technology Strategy Lowest system cost Engine technology selection Aftertreatment technology selection Control approach & OBD...

3

Fumigation of alcohol in a light duty automotive diesel engine  

SciTech Connect (OSTI)

A light-duty automotive diesel engine was fumigated with methanol and ethanol in amounts up to 35% and 50% of the total fuel energy respectively. The main purpose of this study was to determine the effect of alcohol (methanol and ethanol) fumigation on engine performance at various operating conditions. Engine fuel efficiency, emissions, smoke, and the occurrence of severe knock were the parameters used to evaluate performance. Raw exhaust particulate and its soluble organic extract were screened for biological activity using the Ames Salmonella typhimurium assay. Results are given for a test matrix made up of twelve steady-state operating conditions. For all conditions except the 1/4 rack (light load) condition, modest thermal efficiency gains were noted upon ethanol fumigation. Methanol showed the same increase at 3/4 and full rack (high load) conditions. However, engine roughness or the occurrence of severe knock limited the maximum amount of alcohol that could be fumigated. Brake specific NO/sub x/ concentrations were found to decrease for all ethanol conditions tested. Oxides of nitrogen emissions, on a volume basis, decreased for all alcohol conditions tested. Based on the limited particulate data analyzed, it appears as though ethanol fumigation, like methanol fumigation, while lowering the mass of particulate emitted, does enhance the biological activity of that particulate.

Broukhiyan, E.M.H.; Lestz, S.S.

1981-08-01T23:59:59.000Z

4

Light-Duty Diesel EngineTechnology to Meet Future Emissions and...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

to Meet Future Emissions and Performance Requirements of the U.S. Market Light-Duty Diesel EngineTechnology to Meet Future Emissions and Performance Requirements of the U.S....

5

Advanced Technologies for Light-Duty Vehicles (released in AEO2006)  

Reports and Publications (EIA)

A fundamental concern in projecting the future attributes of light-duty vehicles-passenger cars, sport utility vehicles, pickup trucks, and minivans-is how to represent technological change and the market forces that drive it. There is always considerable uncertainty about the evolution of existing technologies, what new technologies might emerge, and how consumer preferences might influence the direction of change. Most of the new and emerging technologies expected to affect the performance and fuel use of light-duty vehicles over the next 25 years are represented in the National Energy Modeling System (NEMS); however, the potential emergence of new, unforeseen technologies makes it impossible to address all the technology options that could come into play. The previous section of Issues in Focus discussed several potential technologies that currently are not represented in NEMS. This section discusses some of the key technologies represented in NEMS that are expected to be implemented in light-duty vehicles over the next 25 years.

2006-01-01T23:59:59.000Z

6

Evaluating the impact of advanced vehicle and fuel technologies in U.S. light duty vehicle fleet  

E-Print Network [OSTI]

The unrelenting increase in oil use by the U.S. light-duty vehicle (LDV) fleet presents an extremely challenging energy and environmental problem. A variety of propulsion technologies and fuels have the promise to reduce ...

Bandivadekar, Anup P

2008-01-01T23:59:59.000Z

7

Light-Duty Lean GDI Vehicle Technology Benchmark | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensionalthe10IO1OP001 LetterLight-Duty Lean GDI Vehicle Technology

8

Detroit Diesel Engine Technology for Light Duty Truck Applications - DELTA Engine Update  

SciTech Connect (OSTI)

The early generation of the DELTA engine has been thoroughly tested and characterized in the virtual lab, during engine dynamometer testing, and on light duty trucks for personal transportation. This paper provides an up-to-date account of program findings. Further, the next generation engine design and future program plans will be briefly presented.

Freese, Charlie

2000-08-20T23:59:59.000Z

9

Global Assessment of Hydrogen Technologies - Task 1 Report Technology Evaluation of Hydrogen Light Duty Vehicles  

SciTech Connect (OSTI)

This task analyzes the candidate hydrogen-fueled vehicles for near-term use in the Southeastern U.S. The purpose of this work is to assess their potential in terms of efficiency and performance. This report compares conventional, hybrid electric vehicles (HEV) with gasoline and hydrogen-fueled internal combustion engines (ICEs) as well as fuel cell and fuel cell hybrids from a technology as well as fuel economy point of view. All the vehicles have been simulated using the Powertrain System Analysis Toolkit (PSAT). First, some background information is provided on recent American automotive market trends and consequences. Moreover, available options are presented for introducing cleaner and more economical vehicles in the market in the future. In this study, analysis of various candidate hydrogen-fueled vehicles is performed using PSAT and, thus, a brief description of PSAT features and capabilities are provided. Detailed information on the simulation analysis performed is also offered, including methodology assumptions, fuel economic results, and conclusions from the findings.

Fouad, Fouad H.; Peters, Robert W.; Sisiopiku, Virginia P.; Sullivan Andrew J.; Rousseau, Aymeric

2007-12-01T23:59:59.000Z

10

Light Duty Combustion Research: Advanced Light-Duty Combustion...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Combustion Research: Advanced Light-Duty Combustion Experiments Light Duty Combustion Research: Advanced Light-Duty Combustion Experiments 2009 DOE Hydrogen Program and Vehicle...

11

Non-Cost Barriers to Consumer Adoption of New Light-Duty Vehicle Technologies  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the Contributions andDataNationalNewportBig Eddy Archeological Siteornl.govLIGHT-DUTY

12

Engine coolant technology, performance, and life for light-duty applications  

SciTech Connect (OSTI)

Recently there has been interest by motor vehicle manufacturers in developing longer-lived automotive engine coolants with an emphasis on organic acid technology (OAT). Paradoxically, the lifetime of conventional technology remains largely undefined. Concerns arising from the depleting nature of silicate have led to modern conservative change recommendations of 30,000 to 50,000 miles ({approximately}48,279 to 80,464 km). In the present work, laboratory bench test, engine dynamometer and vehicle service data from traditional silicate, hybrid and nonsilicate coolants are compared and contrasted. A new electrochemical test is used to examine passivation kinetics on aluminum. It is shown that performance and lifetime are independent of chemistry and cannot be generalized. Examples include an American silicate coolant with excellent performance on high-heat-rejecting aluminum (80 W/cm{sup 2}). European and American silicate coolants with performance defined lifetimes in excess of 300,000 miles (482,790 km), and an OAT coolant with laboratory high lead solder protection. It is concluded that the primary benefit of OAT is to meet global specifications that include chemical limitations.

Turcotte, D.E.; Lockwood, F.E. [Valvoline Co., Lexington, KY (United States); Pfitzner, K.K.; Meszaros, L.L. [BASF Aktiengesellschaft, Ludwigshafen (Germany); Listebarger, J.K. [Ashland Chemical, Dublin, OH (United States)

1999-08-01T23:59:59.000Z

13

Hydrogen Storage Options: Technologies and Comparisons for Light-Duty Vehicle Applications  

E-Print Network [OSTI]

Uhlemann, M. , etals. , Hydrogen Storage in Different CarbonEckert, J. , etals. , Hydrogen Storage in Microporous Metal-16, 2003 40. Smalley,E. , Hydrogen Storage Eased, Technology

Burke, Andy; Gardiner, Monterey

2005-01-01T23:59:59.000Z

14

Vehicle Technologies Office Merit Review 2014: Light-Duty Diesel Combuston  

Broader source: Energy.gov [DOE]

Presentation given by Sandia Natonal Laboratories and  University of Wisconsin at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation...

15

Development of Thermoelectric Technology for Automotive Waste...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Thermoelectric Technology for Automotive Waste Heat Recovery Development of Thermoelectric Technology for Automotive Waste Heat Recovery Overview and status of project to develop...

16

Development of Thermoelectric Technology for Automotive Waste...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Thermoelectric Technology for Automotive Waste Heat Recovery Development of Thermoelectric Technology for Automotive Waste Heat Recovery Presentation from the U.S. DOE Office of...

17

Innovative Drivetrains in Electric Automotive Technology Education...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Drivetrains in Electric Automotive Technology Education (IDEATE) Innovative Drivetrains in Electric Automotive Technology Education (IDEATE) 2012 DOE Hydrogen and Fuel Cells...

18

Light Duty Efficient, Clean Combustion  

SciTech Connect (OSTI)

Cummins has successfully completed the Light Duty Efficient Clean Combustion (LDECC) cooperative program with DoE. This program was established in 2007 in support of the Department of Energy's Vehicles Technologies Advanced Combustion and Emissions Control initiative to remove critical barriers to the commercialization of advanced, high efficiency, emissions compliant internal combustion (IC) engines for light duty vehicles. Work in this area expanded the fundamental knowledge of engine combustion to new regimes and advanced the knowledge of fuel requirements for these diesel engines to realize their full potential. All of the following objectives were met with fuel efficiency improvement targets exceeded: (1) Improve light duty vehicle (5000 lb. test weight) fuel efficiency by 10.5% over today's state-of-the-art diesel engine on the FTP city drive cycle; (2) Develop and design an advanced combustion system plus aftertreatment system that synergistically meets Tier 2 Bin 5 NOx and PM emissions standards while demonstrating the efficiency improvements; (3) Maintain power density comparable to that of current conventional engines for the applicable vehicle class; and (4) Evaluate different fuel components and ensure combustion system compatibility with commercially available biofuels. Key accomplishments include: (1) A 25% improvement in fuel efficiency was achieved with the advanced LDECC engine equipped with a novel SCR aftertreatment system compared to the 10.5% target; (2) An 11% improvement in fuel efficiency was achieved with the advanced LDECC engine and no NOx aftertreamtent system; (3) Tier 2 Bin 5 and SFTP II emissions regulations were met with the advanced LDECC engine equipped with a novel SCR aftertreatment system; (4) Tier 2 Bin 5 emissions regulations were met with the advanced LDECC engine and no NOx aftertreatment, but SFTP II emissions regulations were not met for the US06 test cycle - Additional technical barriers exist for the no NOx aftertreatment engine; (5) Emissions and efficiency targets were reached with the use of biodiesel. A variety of biofuel feedstocks (soy, rapeseed, etc.) was investigated; (6) The advanced LDECC engine with low temperature combustion was compatible with commercially available biofuels as evaluated by engine performance testing and not durability testing; (7) The advanced LDECC engine equipped with a novel SCR aftertreatment system is the engine system architecture that is being further developed by the Cummins product development organization. Cost reduction and system robustness activities have been identified for future deployment; (8) The new engine and aftertreatment component technologies are being developed by the Cummins Component Business units (e.g. fuel system, turbomachinery, aftertreatment, electronics, etc.) to ensure commercial viability and deployment; (9) Cummins has demonstrated that the technologies developed for this program are scalable across the complete light duty engine product offerings (2.8L to 6.7L engines); and (10) Key subsystems developed include - sequential two stage turbo, combustions system for low temperature combustion, novel SCR aftertreatment system with feedback control, and high pressure common rail fuel system. An important element of the success of this project was leveraging Cummins engine component technologies. Innovation in component technology coupled with system integration is enabling Cummins to move forward with the development of high efficiency clean diesel products with a long term goal of reaching a 40% improvement in thermal efficiency for the engine plus aftertreatment system. The 40% improvement is in-line with the current light duty vehicle efficiency targets set by the 2010 DoE Vehicle Technologies MYPP and supported through co-operative projects such as the Cummins Advanced Technology Powertrains for Light-Duty Vehicles (ATP-LD) started in 2010.

Donald Stanton

2010-12-31T23:59:59.000Z

19

Light Duty Efficient, Clean Combustion  

SciTech Connect (OSTI)

Cummins has successfully completed the Light Duty Efficient Clean Combustion (LDECC) cooperative program with DoE. This program was established in 2007 in support of the Department of Energy’s Vehicles Technologies Advanced Combustion and Emissions Control initiative to remove critical barriers to the commercialization of advanced, high efficiency, emissions compliant internal combustion (IC) engines for light duty vehicles. Work in this area expanded the fundamental knowledge of engine combustion to new regimes and advanced the knowledge of fuel requirements for these diesel engines to realize their full potential. All of the following objectives were met with fuel efficiency improvement targets exceeded: 1. Improve light duty vehicle (5000 lb. test weight) fuel efficiency by 10.5% over today’s state-ofthe- art diesel engine on the FTP city drive cycle 2. Develop & design an advanced combustion system plus aftertreatment system that synergistically meets Tier 2 Bin 5 NOx and PM emissions standards while demonstrating the efficiency improvements. 3. Maintain power density comparable to that of current conventional engines for the applicable vehicle class. 4. Evaluate different fuel components and ensure combustion system compatibility with commercially available biofuels. Key accomplishments include: ? A 25% improvement in fuel efficiency was achieved with the advanced LDECC engine equipped with a novel SCR aftertreatment system compared to the 10.5% target ? An 11% improvement in fuel efficiency was achieved with the advanced LDECC engine and no NOx aftertreamtent system ? Tier 2 Bin 5 and SFTP II emissions regulations were met with the advanced LDECC engine equipped with a novel SCR aftertreatment system ? Tier 2 Bin 5 emissions regulations were met with the advanced LDECC engine and no NOx aftertreatment, but SFTP II emissions regulations were not met for the US06 test cycle – Additional technical barriers exist for the no NOx aftertreatment engine ? Emissions and efficiency targets were reached with the use of biodiesel. A variety of biofuel feedstocks (soy, rapeseed, etc.) was investigated. ? The advanced LDECC engine with low temperature combustion was compatible with commercially available biofuels as evaluated by engine performance testing and not durability testing. ? The advanced LDECC engine equipped with a novel SCR aftertreatment system is the engine system architecture that is being further developed by the Cummins product development organization. Cost reduction and system robustness activities have been identified for future deployment. ? The new engine and aftertreatment component technologies are being developed by the Cummins Component Business units (e.g. fuel system, turbomachinery, aftertreatment, electronics, etc.) to ensure commercial viability and deployment ? Cummins has demonstrated that the technologies developed for this program are scalable across the complete light duty engine product offerings (2.8L to 6.7L engines) ? Key subsystems developed include – sequential two stage turbo, combustions system for low temperature combustion, novel SCR aftertreatment system with feedback control, and high pressure common rail fuel system An important element of the success of this project was leveraging Cummins engine component technologies. Innovation in component technology coupled with system integration is enabling Cummins to move forward with the development of high efficiency clean diesel products with a long term goal of reaching a 40% improvement in thermal efficiency for the engine plus aftertreatment system. The 40% improvement is in-line with the current light duty vehicle efficiency targets set by the 2010 DoE Vehicle Technologies MYPP and supported through co-operative projects such as the Cummins Advanced Technology Powertrains for Light- Duty Vehicles (ATP-LD) started in 2010.

Stanton, Donald W

2011-06-03T23:59:59.000Z

20

Commercializing light-duty plug-in/plug-out hydrogen-fuel-cell vehicles: “Mobile Electricity” technologies and opportunities  

E-Print Network [OSTI]

Transition: Designing a Fuel-Cell Hypercar," presented atgoals for automotive fuel cell power systems hydrogen vs.a comparative assessment for fuel cell electric vehicles."

Williams, Brett D; Kurani, Kenneth S

2007-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "light-duty automotive technology" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Efficiency Improvement Opportunities for Light-Duty Natural-Gas-Fueled Vehicles  

SciTech Connect (OSTI)

The purpose of this report is to evaluate and make recommendations concerning technologies that promise to improve the efilciency of compressed natural gas (CNG) light-duty vehicles. Technical targets for CNG automotive technology given in the March 1998 OffIce of Advanced Automotive Technologies research and development plan were used as guidance for this effort. The technical target that necessitates this current study is to validate technologies that enable CNG light vehicles to have at least 10% greater - fuel economy (on a miles per gallon equivalent basis) than equivalent gasoline vehicles by 2006. Other tar- gets important to natural gas (NG) automotive technology and this study are to: (1) increase CNG vehicle range to 380 miles, (2) reduce the incremental vehicle cost (CNG vs gasoline) to $1500, and (3) meet the California ultra low-emission vehicle (ULEV) and Federal Tier 2 emission standards expected to be in effect in 2004.

Staunton, R.H.; Thomas, J.F.

1998-12-01T23:59:59.000Z

22

High Efficiency Clean Combustion in Multi-Cylinder Light-Duty...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Light-Duty Multi-Cylinder Engine High Efficiency Clean Combustion in Multi-Cylinder Light-Duty Engines Vehicle Technologies Office Merit Review 2014: Impacts of Advanced Combustion...

23

Light Duty Vehicle Pathways July 26, 2010  

E-Print Network [OSTI]

Light Duty Vehicle Pathways July 26, 2010 Sam Baldwin Chief Technology Officer Office of Energy Efficiency and Renewable Energy U.S. Department of Energy #12;2 Conventional Oil International Energy Agency #12;3 InterAcademy Panel Statement On Ocean Acidification, 1 June 2009 · Signed by the National

24

Develop Thermoelectric Technology for Automotive Waste Heat Recovery...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

More Documents & Publications Development of Thermoelectric Technology for Automotive Waste Heat Recovery Development of Thermoelectric Technology for Automotive Waste Heat...

25

Feasibility Study Of Advanced Technology Hov Systems: Volume 2b: Emissions Impact Of Roadway-powered Electric Buses, Light-duty Vehicles, And Automobiles  

E-Print Network [OSTI]

LIGHT-DUTY VEHICLES, AND AUTOMOBILES Mark A. Miller Victorand The analysis involves automobiles in California arePowered Electric Automobiles -a---- Range of Estimated

Miller, Mark A.; Dato, Victor; Chira-chavala, Ted

1992-01-01T23:59:59.000Z

26

Cost of Ownership and Well-to-Wheels Carbon Emissions/Oil Use of Alternative Fuels and Advanced Light-Duty Vehicle Technologies  

SciTech Connect (OSTI)

The U.S. Department of Energy (DOE), Argonne National Laboratory (Argonne), and the National Renewable Energy Laboratory (NREL) updated their analysis of the well-to-wheels (WTW) greenhouse gases (GHG) emissions, petroleum use, and the cost of ownership (excluding insurance, maintenance, and miscellaneous fees) of vehicle technologies that have the potential to significantly reduce GHG emissions and petroleum consumption. The analyses focused on advanced light-duty vehicle (LDV) technologies such as plug-in hybrid, battery electric, and fuel cell electric vehicles. Besides gasoline and diesel, alternative fuels considered include natural gas, advanced biofuels, electricity, and hydrogen. The Argonne Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation (GREET) and Autonomie models were used along with the Argonne and NREL H2A models.

Elgowainy, Mr. Amgad [Argonne National Laboratory (ANL); Rousseau, Mr. Aymeric [Argonne National Laboratory (ANL); Wang, Mr. Michael [Argonne National Laboratory (ANL); Ruth, Mr. Mark [National Renewable Energy Laboratory (NREL); Andress, Mr. David [David Andress & Associates, Inc.; Ward, Jacob [U.S. Department of Energy; Joseck, Fred [U.S. Department of Energy; Nguyen, Tien [U.S. Department of Energy; Das, Sujit [ORNL

2013-01-01T23:59:59.000Z

27

Commercializing light-duty plug-in/plug-out hydrogen-fuel-cell vehicles: “Mobile Electricity” technologies and opportunities  

E-Print Network [OSTI]

fuel- cell vehicles: “Mobile Electricity" technologies andFuel-Cell Vehicles: “Mobile Electricity” Technologies, Early4 2 Mobile Electricity technologies and

Williams, Brett D; Kurani, Kenneth S

2007-01-01T23:59:59.000Z

28

PENN STATE DOE GRADUATE AUTOMOTIVE TECHNOLOGY EDUCATION (GATE...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

PENN STATE DOE GRADUATE AUTOMOTIVE TECHNOLOGY EDUCATION (GATE) PROGRAM FOR PENN STATE DOE GRADUATE AUTOMOTIVE TECHNOLOGY EDUCATION (GATE) PROGRAM FOR 2009 DOE Hydrogen Program and...

29

Penn State DOE Graduate Automotive Technology Education (Gate...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

DOE Graduate Automotive Technology Education (Gate) Program for In-Vehicle, High-Power Energy Storage Systems Penn State DOE Graduate Automotive Technology Education (Gate)...

30

Vehicle Technologies Office Merit Review 2014: Advanced Combustion Concepts- Enabling Systems and Solutions (ACCESS) for High Efficiency Light Duty Vehicles  

Broader source: Energy.gov [DOE]

Presentation given by Robert Bosch at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about advanced combustion concepts -...

31

Vehicle Technologies Office Merit Review 2014: High Efficiency Clean Combustion in Multi-Cylinder Light-Duty Engines  

Broader source: Energy.gov [DOE]

Presentation given by Oak Ridge National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about high efficiency...

32

Commercializing light-duty plug-in/plug-out hydrogen-fuel-cell vehicles: “Mobile Electricity” technologies and opportunities  

E-Print Network [OSTI]

C. E. S. Thomas, "Hydrogen and Fuel Cells: Pathway to a4-2 incorporates hydrogen and fuel cells into a roadmap thatdevelopment efforts. Hydrogen and fuel-cell technologies are

Williams, Brett D; Kurani, Kenneth S

2007-01-01T23:59:59.000Z

33

Transportation Energy Futures Series: Non-Cost Barriers to Consumer Adoption of New Light-Duty Vehicle Technologies  

SciTech Connect (OSTI)

Consumer preferences are key to the adoption of new vehicle technologies. Barriers to consumer adoption include price and other obstacles, such as limited driving range and charging infrastructure; unfamiliarity with the technology and uncertainty about direct benefits; limited makes and models with the technology; reputation or perception of the technology; standardization issues; and regulations. For each of these non-cost barriers, this report estimates an effective cost and summarizes underlying influences on consumer preferences, approximate magnitude and relative severity, and assesses potential actions, based on a comprehensive literature review. While the report concludes that non-cost barriers are significant, effective cost and potential market share are very uncertain. Policies and programs including opportunities for drivers to test drive advanced vehicles, general public outreach and information programs, incentives for providing charging and fueling infrastructure, and development of technology standards were examined for their ability to address barriers, but little quantitative data exists on the effectiveness of these measures. This is one in a series of reports produced as a result of the Transportation Energy Futures project, a Department of Energy-sponsored multi-agency effort to pinpoint underexplored strategies for reducing GHGs and petroleum dependence related to transportation.

Stephens, T.

2013-03-01T23:59:59.000Z

34

Market Acceptance of Advanced Automotive Technologies Model ...  

Open Energy Info (EERE)

Automotive Technologies Model (MA3T) Consumer Choice Model AgencyCompany Organization: Oak Ridge National Laboratory OpenEI Keyword(s): EERE tool, Market Acceptance of Advanced...

35

Light-duty diesel engine development status and engine needs  

SciTech Connect (OSTI)

This report reviews, assesses, and summarizes the research and development status of diesel engine technology applicable to light-duty vehicles. In addition, it identifies specific basic and applied research and development needs in light-duty diesel technology and related health areas where initial or increased participation by the US Government would be desirable. The material presented in this report updates information provided in the first diesel engine status report prepared by the Aerospace Corporation for the Department of Energy in September, 1978.

Not Available

1980-08-01T23:59:59.000Z

36

Commercializing Light-Duty Plug-In/Plug-Out Hydrogen-Fuel-Cell Vehicles: "Mobile Electricity" Technologies, Early California Household Markets, and Innovation Management  

E-Print Network [OSTI]

goals for automotive fuel cell power systems hydrogen vs.a comparative assessment for fuel cell electric vehicles."Honda's More Powerful Fuel Cell Concept with Home Hydrogen

Williams, Brett D

2010-01-01T23:59:59.000Z

37

Commercializing Light-Duty Plug-In/Plug-Out Hydrogen-Fuel-Cell Vehicles:“Mobile Electricity” Technologies, Early California Household Markets, and Innovation Management  

E-Print Network [OSTI]

Transition: Designing a Fuel-Cell Hypercar," presented atgoals for automotive fuel cell power systems hydrogen vs.a comparative assessment for fuel cell electric vehicles."

Williams, Brett D

2007-01-01T23:59:59.000Z

38

The certificate in automotive technology provides students with the education and training needed to become an entry level automotive  

E-Print Network [OSTI]

AUTOMOTIVE TECHNOLOGY The certificate in automotive technology provides students with the education and training needed to become an entry level automotive technician. The automotive service industry is one. The certificate qualifies students for entry-level positions within the automotive service and repair industry

Ickert-Bond, Steffi

39

Light Duty Fuel Cell Electric Vehicle Hydrogen Fueling Protocol...  

Broader source: Energy.gov (indexed) [DOE]

Light Duty Fuel Cell Electric Vehicle Hydrogen Fueling Protocol Light Duty Fuel Cell Electric Vehicle Hydrogen Fueling Protocol Webinar slides from the U.S. Department of Energy...

40

WORKSHOP REPORT:Light-Duty Vehicles Technical Requirements and...  

Energy Savers [EERE]

Light-Duty Vehicles Technical Requirements and Gaps for Lightweight and Propulsion Materials WORKSHOP REPORT:Light-Duty Vehicles Technical Requirements and Gaps for Lightweight and...

Note: This page contains sample records for the topic "light-duty automotive technology" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Thermoelectric HVAC and Thermal Comfort Enablers for Light-Duty...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Thermoelectric HVAC and Thermal Comfort Enablers for Light-Duty Vehicle Applications Thermoelectric HVAC and Thermal Comfort Enablers for Light-Duty Vehicle Applications 2012 DOE...

42

Technical Challenges and Opportunities Light-Duty Diesel Engines...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Challenges and Opportunities Light-Duty Diesel Engines in North America Technical Challenges and Opportunities Light-Duty Diesel Engines in North America 2005 Diesel Engine...

43

AutoMotive technology College of Rural and Community Development  

E-Print Network [OSTI]

AutoMotive technology College of Rural and Community Development Community and Technical College 907-455-2932 www.ctc.uaf.edu/programs/Automotive/ certificate Minimum Requirements for Certificate: 34 credits The automotive technology program provides students with the edu- cation and training needed

Hartman, Chris

44

automotive technology related: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Automotive Informatics: Information Technology and Enterprise Transformation in the Automobile Industry 1 CiteSeer Summary: This essay examines the role of information technology...

45

Low Cost PM Technology for Particle Reinforced Titanium Automotive...  

Broader source: Energy.gov (indexed) [DOE]

10 - Low Cost PM Technology for Particle Reinforced Titanium Automotive Components edm2@chrysler.com February 28, 2008 Low Cost PM Technology for Particle Reinforced Titanium...

46

Global Assessment of Hydrogen Technologies - Task 2 Report Comparison of Performance and Emissions from Near-Term Hydrogen Fueled Light Duty Vehicles  

SciTech Connect (OSTI)

An investigation was conducted on the emissions and efficiency from hydrogen blended compressed natural gas (CNG) in light duty vehicles. The different blends used in this investigation were 0%, 15%, 30%, 50%, 80%, 95%, and ~100% hydrogen, the remainder being compressed natural gas. The blends were tested using a Ford F-150 and a Chevrolet Silverado truck supplied by Arizona Public Services. Tests on emissions were performed using four different driving condition tests. Previous investigation by Don Karner and James Frankfort on a similar Ford F-150 using a 30% hydrogen blend showed that there was substantial reduction when compared to gasoline in carbon monoxide (CO), nitrogen oxide (NOx), and carbon dioxide (CO2) emissions while the reduction in hydrocarbon (HC) emissions was minimal. This investigation was performed using different blends of CNG and hydrogen to evaluate the emissions reducing capabilities associated with the use of the different fuel blends. The results were then tested statistically to confirm or reject the hypotheses on the emission reduction capabilities. Statistically analysis was performed on the test results to determine whether hydrogen concentration in the HCNG had any effect on the emissions and the fuel efficiency. It was found that emissions from hydrogen blended compressed natural gas were a function of driving condition employed. Emissions were found to be dependent on the concentration of hydrogen in the compressed natural gas fuel blend.

Fouad, Fouad H.; Peters, Robert W.; Sisiopiku, Virginia P.; Sullivan Andrew J.; Ng, Henry K.; Waller, Thomas

2007-12-01T23:59:59.000Z

47

Membrane-Based Air Composition Control for Light-Duty Diesel Vehicles: A Benefit and Cost Assessment  

SciTech Connect (OSTI)

This report presents the methodologies and results of a study conducted by Argonne National Laboratory (Argonne) to assess the benefits and costs of several membrane-based technologies. The technologies evaluated will be used in automotive emissions-control and performance-enhancement systems incorporated into light-duty diesel vehicle engines. Such engines are among the technologies that are being considered to power vehicles developed under the government-industry Partnership for a New Generation of Vehicles (PNGV). Emissions of nitrogen oxides (NO{sub x}) from diesel engines have long been considered a barrier to use of diesels in urban areas. Recently, particulate matter (PM) emissions have also become an area of increased concern because of new regulations regarding emissions of particulate matter measuring 2.5 micrometers or less (PM{sub 2.5}). Particulates are of special concern for diesel engines in the PNGV program; the program has a research goal of 0.01 gram per mile (g/mi) of particulate matter emissions under the Federal Test Procedure (FTP) cycle. This extremely low level (one-fourth the level of the Tier II standard) could threaten the viability of using diesel engines as stand-alone powerplants or in hybrid-electric vehicles. The techniques analyzed in this study can reduce NO{sub x} and particulate emissions and even increase the power density of the diesel engines used in light-duty diesel vehicles.

K. Stork; R. Poola

1998-10-01T23:59:59.000Z

48

Develop Thermoelectric Technology for Automotive Waste Heat Recovery...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Technology for Automotive Waste Heat Recovery Cost-Competitive Advanced Thermoelectric Generators for Direct Conversion of Vehicle Waste Heat into Useful Electrical Power...

49

Automotive and fuel technologies: current and future options  

SciTech Connect (OSTI)

The purpose of this work is to assess the likely commercial timeframe of a broad range of automotive and fuel technologies. The report assesses the status of existing and alternative engine technologies, associated fuels, and problems which may retard their introduction and use. It estimates, where possible, the earliest time of general commercial use for each developing automotive technology and fuel.

Price, R.; Stamets, L.

1984-03-01T23:59:59.000Z

50

Commercializing Light-Duty Plug-In/Plug-Out Hydrogen-Fuel-Cell Vehicles:“Mobile Electricity” Technologies, Early California Household Markets, and Innovation Management  

E-Print Network [OSTI]

fuel- cell vehicles: “Mobile Electricity" technologies andFuel-Cell Vehicles: “Mobile Electricity” Technologies, Early4 2 Mobile Electricity technologies and

Williams, Brett D

2007-01-01T23:59:59.000Z

51

Commercializing Light-Duty Plug-In/Plug-Out Hydrogen-Fuel-Cell Vehicles: "Mobile Electricity" Technologies, Early California Household Markets, and Innovation Management  

E-Print Network [OSTI]

fuel-cell vehicles: “Mobile Electricity" technologies andFuel-Cell Vehicles: “Mobile Electricity” Technologies, EarlyFuel-Cell Vehicles: “Mobile Electricity” Technologies, Early

Williams, Brett D

2010-01-01T23:59:59.000Z

52

Feasible Café Standard Increases Using Emerging Diesel and Hybrid-Electric Technologies for Light-Duty Vehicles in the United States  

E-Print Network [OSTI]

USING EMERGING DIESEL AND HYBRID-ELECTRIC TECHNOLOGIES FORusing Emerging Diesel and Hybrid- Electric Technologies forusing Emerging Diesel and Hybrid- Electric Technologies for

Burke, Andy; Abeles, Ethan

2004-01-01T23:59:59.000Z

53

Feasible CAFE Standard Increases Using Emerging Diesel and Hybrid-Electric Technologies for Light-Duty Vehicles in the United States  

E-Print Network [OSTI]

USING EMERGING DIESEL AND HYBRID-ELECTRIC TECHNOLOGIES FORusing Emerging Diesel and Hybrid- Electric Technologies forusing Emerging Diesel and Hybrid- Electric Technologies for

Burke, Andy; Abeles, Ethan C.

2004-01-01T23:59:59.000Z

54

Light-Duty Diesel Combustion  

Broader source: Energy.gov [DOE]

2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

55

E-Print Network 3.0 - advanced automotive technologies Sample...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

technologies Search Powered by Explorit Topic List Advanced Search Sample search results for: advanced automotive technologies Page: << < 1 2 3 4 5 > >> 1 Automotive Engineering...

56

Hybrid options for light-duty vehicles.  

SciTech Connect (OSTI)

Hybrid electric vehicles (HEVs) offer great promise in improving fuel economy. In this paper, we analyze why, how, and by how much vehicle hybridization can reduce energy consumption and improve fuel economy. Our analysis focuses on efficiency gains associated solely with vehicle hybridization. We do not consider such other measures as vehicle weight reduction or air- and tire-resistance reduction, because such measures would also benefit conventional technology vehicles. The analysis starts with understanding the energy inefficiencies of light-duty vehicles associated with different operation modes in US and Japanese urban and highway driving cycles, with the corresponding energy-saving potentials. The potential for fuel economy gains due to vehicle hybridization can be estimated almost exclusively on the basis of three elements: the reducibility of engine idling operation, the recoverability of braking energy losses, and the capability of improving engine load profiles to gain efficiency associated with specific HEV configurations and control strategies. Specifically, we evaluate the energy efficiencies and fuel economies of a baseline MY97 Corolla-like conventional vehicle (CV), a hypothetical Corolla-based minimal hybrid vehicle (MHV), and a MY98 Prius-like full hybrid vehicle (FHV). We then estimate energy benefits of both MHVs and FHVs over CVs on a performance-equivalent basis. We conclude that the energy benefits of hybridization vary not only with test cycles, but also with performance requirements. The hybrid benefits are greater for ''Corolla (high) performance-equivalent'' vehicles than for ''Prius (low) performance-equivalent'' vehicles. An increasing acceleration requirement would result in larger fuel economy benefits from vehicle hybridization.

An, F., Stodolsky, F.; Santini, D.

1999-07-19T23:59:59.000Z

57

Present Status and Marketing Prospects of the Emerging Hybrid-Electric and Diesel Technologies to Reduce CO2 Emissions of New Light-Duty Vehicles in California  

E-Print Network [OSTI]

OF THE EMERGING HYBRID-ELECTRIC AND DIESEL TECHNOLOGIES TOof the Emerging Hybrid-Electric and Diesel Technologies tomodern clean diesel engines and hybrid-electric powertrains

Burke, Andy

2004-01-01T23:59:59.000Z

58

Present Status and Marketing Prospects of the Emerging Hybrid-Electric and Diesel Technologies to Reduce CO2 Emissions of New Light-Duty Vehicles in California  

E-Print Network [OSTI]

Technologies to Reduce CO2 Emissions of New Light- Dutyreduce their CO2 emissions. The emerging technologiessignificantly reduce their CO2 emissions. These technologies

Burke, Andy

2004-01-01T23:59:59.000Z

59

Cummins Work Toward Successful Introduction of Light-Duty Clean...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Cummins Work Toward Successful Introduction of Light-Duty Clean Diesel Engines in US Cummins Work Toward Successful Introduction of Light-Duty Clean Diesel Engines in US 2005...

60

Final report: U.S. competitive position in automotive technologies  

SciTech Connect (OSTI)

Patent data are presented and analyzed to assess the U.S. competitive position in eleven advanced automotive technology categories, including automotive fuel cells, hydrogen storage, advanced batteries, hybrid electric vehicles and others. Inventive activity in most of the technologies is found to be growing at a rapid pace, particularly in advanced batteries, automotive fuel cells and ultracapacitors. The U.S. is the clear leader in automotive fuel cells, on-board hydrogen storage and light weight materials. Japan leads in advanced batteries, hybrid electric vehicles, ultracapacitors, and appears to be close to overtaking the U.S. in other areas of power electronics.

Albert, Michael B.; Cheney, Margaret; Thomas, Patrick; Kroll, Peter

2002-09-30T23:59:59.000Z

Note: This page contains sample records for the topic "light-duty automotive technology" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Graduate Automotive Technology Education (GATE) Center  

SciTech Connect (OSTI)

The Graduate Automotive Technology Education (GATE) Center at the University of Tennessee, Knoxville has completed its sixth year of operation. During this period the Center has involved thirteen GATE Fellows and ten GATE Research Assistants in preparing them to contribute to advanced automotive technologies in the center's focus area: hybrid drive trains and control systems. Eighteen GATE students have graduated, and three have completed their course work requirements. Nine faculty members from three departments in the College of Engineering have been involved in the GATE Center. In addition to the impact that the Center has had on the students and faculty involved, the presence of the center has led to the acquisition of resources that probably would not have been obtained if the GATE Center had not existed. Significant industry interaction such as internships, equipment donations, and support for GATE students has been realized. The value of the total resources brought to the university (including related research contracts) exceeds $4,000,000. Problem areas are discussed in the hope that future activities may benefit from the operation of the current program.

Jeffrey Hodgson; David Irick

2005-09-30T23:59:59.000Z

62

Mobility chains analysis of technologies for passenger cars and light duty vehicles fueled with biofuels : application of the Greet model to project the role of biomass in America's energy future (RBAEF) project.  

SciTech Connect (OSTI)

The Role of Biomass in America's Energy Future (RBAEF) is a multi-institution, multiple-sponsor research project. The primary focus of the project is to analyze and assess the potential of transportation fuels derived from cellulosic biomass in the years 2015 to 2030. For this project, researchers at Dartmouth College and Princeton University designed and simulated an advanced fermentation process to produce fuel ethanol/protein, a thermochemical process to produce Fischer-Tropsch diesel (FTD) and dimethyl ether (DME), and a combined heat and power plant to co-produce steam and electricity using the ASPEN Plus{trademark} model. With support from the U.S. Department of Energy (DOE), Argonne National Laboratory (ANL) conducted, for the RBAEF project, a mobility chains or well-to-wheels (WTW) analysis using the Greenhouse gases, Regulated Emissions, and Energy use in Transportation (GREET) model developed at ANL. The mobility chains analysis was intended to estimate the energy consumption and emissions associated with the use of different production biofuels in light-duty vehicle technologies.

Wu, M.; Wu, Y.; Wang, M; Energy Systems

2008-01-31T23:59:59.000Z

63

Commercializing Light-Duty Plug-In/Plug-Out Hydrogen-Fuel-Cell Vehicles: "Mobile Electricity" Technologies, Early California Household Markets, and Innovation Management  

E-Print Network [OSTI]

challenges facing hydrogen storage technologies, refuelinguncertainties surrounding hydrogen storage, fuel-cell-system1) vehicle range/hydrogen storage and 2) home refueling. 1:

Williams, Brett D

2010-01-01T23:59:59.000Z

64

Light-Duty Reactivity Controlled Compression Ignition Drive Cycle Fuel  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensionalthe10IO1OP001 LetterLight-Duty Lean GDI Vehicle TechnologyEconomy

65

Commercializing Light-Duty Plug-In/Plug-Out Hydrogen-Fuel-Cell Vehicles: "Mobile Electricity" Technologies, Early California Household Markets, and Innovation Management  

E-Print Network [OSTI]

Mobile Electricity” Technologies, Early California Household Markets, and Innovation ManagementMobile Electricity” Technologies, Early California Household Markets, and Innovation Managementtechnology-management, and strategic-marketing lenses to the problem of commercializing H 2 FCVs, other EDVs, and other Mobile

Williams, Brett D

2010-01-01T23:59:59.000Z

66

Commercializing Light-Duty Plug-In/Plug-Out Hydrogen-Fuel-Cell Vehicles:“Mobile Electricity” Technologies, Early California Household Markets, and Innovation Management  

E-Print Network [OSTI]

Mobile Electricity” Technologies, Early California Household Markets, and Innovation Managementtechnology-management, and strategic-marketing lenses to the problem of commercializing H 2 FCVs, other EDVs, and other Mobile

Williams, Brett D

2007-01-01T23:59:59.000Z

67

Commercializing Light-Duty Plug-In/Plug-Out Hydrogen-Fuel-Cell Vehicles: "Mobile Electricity" Technologies, Early California Household Markets, and Innovation Management  

E-Print Network [OSTI]

C. E. S. Thomas, "Hydrogen and Fuel Cells: Pathway to a4-2 incorporates hydrogen and fuel cells into a roadmap thatdevelopment efforts. Hydrogen and fuel-cell technologies are

Williams, Brett D

2010-01-01T23:59:59.000Z

68

Commercializing Light-Duty Plug-In/Plug-Out Hydrogen-Fuel-Cell Vehicles:“Mobile Electricity” Technologies, Early California Household Markets, and Innovation Management  

E-Print Network [OSTI]

C. E. S. Thomas, "Hydrogen and Fuel Cells: Pathway to a4-2 incorporates hydrogen and fuel cells into a roadmap thatdevelopment efforts. Hydrogen and fuel-cell technologies are

Williams, Brett D

2007-01-01T23:59:59.000Z

69

alternative fuel light-duty vehicles  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched FerromagnetismWaste andAnniversary, part 2Zenoss,AmineBroadbandLight-Duty Vehicles T

70

Advanced Technology Light Duty Diesel Aftertreatment System  

Broader source: Energy.gov (indexed) [DOE]

Dearborn, MI T2B2 FTP-75 NOx Cycle Limit http:www.dieselnet.comstandardscyclesftp75.php ATLAS T2B2 AT Strategy Summary 1162012 U.S. Department of Energy DEER 2012 -...

71

Advanced Technology Light Duty Diesel Aftertreatment System ...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Approach to Low Temperature NOx Emission Abatement Cummins' Next Generation Tier 2, Bin 2 Light Truck Diesel Engine ATP-LD; Cummins Next Generation Tier 2 Bin 2 Diesel Engine...

72

Methanol fumigation of a light duty automotive diesel engine  

SciTech Connect (OSTI)

An Oldsmobile 5.7 l V-8 diesel engine was fumigated with methanol in amounts up to 40% of the fuel energy. The primary objectives of this study were to determine the effect of methanol fumigation on fuel efficiency, smoke, nitric oxide emission, and the occurrence of severe knock. An assessment of the biological activity for samples of the raw exhaust particulate and its soluable organic extract was also made using both the Ames Salmonella typhimurium test and the Bacillus subtilis Comptest. Results are presented for a test matrix consisting of twelve steady state operating conditions chosen to reflect over-the-road operation of a diesel engine powered automobile. Generally methanol fumigation was found to decrease NO emission for all conditions, to have a slight effect on smoke opacity, and to have a beneficial effect on fuel efficiency at higher loads. Also at higher loads the methanol was found to induce what was defined as knock limited operation. While the biological activity of the raw particulate was generally found to be lower than that of the soluble organic fraction, the fumigation of methanol appears to enhance this activity in both cases.

Houser, K.R.; Lestz, S.S.; Dukovich, M.; Yasbin, R.E.

1980-01-01T23:59:59.000Z

73

A Waste Heat Recovery System for Light Duty Diesel Engines  

SciTech Connect (OSTI)

In order to achieve proposed fuel economy requirements, engines must make better use of the available fuel energy. Regardless of how efficient the engine is, there will still be a significant fraction of the fuel energy that is rejected in the exhaust and coolant streams. One viable technology for recovering this waste heat is an Organic Rankine Cycle. This cycle heats a working fluid using these heat streams and expands the fluid through a turbine to produce shaft power. The present work was the development of such a system applied to a light duty diesel engine. This lab demonstration was designed to maximize the peak brake thermal efficiency of the engine, and the combined system achieved an efficiency of 44.4%. The design of the system is discussed, as are the experimental performance results. The system potential at typical operating conditions was evaluated to determine the practicality of installing such a system in a vehicle.

Briggs, Thomas E [ORNL; Wagner, Robert M [ORNL; Edwards, Kevin Dean [ORNL; Curran, Scott [ORNL; Nafziger, Eric J [ORNL

2010-01-01T23:59:59.000Z

74

Graduate Automotive Technology Education (GATE) Program: Center of Automotive Technology Excellence in Advanced Hybrid Vehicle Technology at West Virginia University  

SciTech Connect (OSTI)

This report summarizes the technical and educational achievements of the Graduate Automotive Technology Education (GATE) Center at West Virginia University (WVU), which was created to emphasize Advanced Hybrid Vehicle Technology. The Center has supported the graduate studies of 17 students in the Department of Mechanical and Aerospace Engineering and the Lane Department of Computer Science and Electrical Engineering. These students have addressed topics such as hybrid modeling, construction of a hybrid sport utility vehicle (in conjunction with the FutureTruck program), a MEMS-based sensor, on-board data acquisition for hybrid design optimization, linear engine design and engine emissions. Courses have been developed in Hybrid Vehicle Design, Mobile Source Powerplants, Advanced Vehicle Propulsion, Power Electronics for Automotive Applications and Sensors for Automotive Applications, and have been responsible for 396 hours of graduate student coursework. The GATE program also enhanced the WVU participation in the U.S. Department of Energy Student Design Competitions, in particular FutureTruck and Challenge X. The GATE support for hybrid vehicle technology enhanced understanding of hybrid vehicle design and testing at WVU and encouraged the development of a research agenda in heavy-duty hybrid vehicles. As a result, WVU has now completed three programs in hybrid transit bus emissions characterization, and WVU faculty are leading the Transportation Research Board effort to define life cycle costs for hybrid transit buses. Research and enrollment records show that approximately 100 graduate students have benefited substantially from the hybrid vehicle GATE program at WVU.

Nigle N. Clark

2006-12-31T23:59:59.000Z

75

Improving the Efficiency of Light-Duty Vehicle HVAC Systems using...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Light-Duty Vehicle HVAC Systems using Zonal Thermoelectric Devices and Comfort Modeling Improving the Efficiency of Light-Duty Vehicle HVAC Systems using Zonal Thermoelectric...

76

Advanced Automotive Technologies annual report to Congress, fiscal year 1996  

SciTech Connect (OSTI)

This annual report serves to inform the United States Congress on the progress for fiscal year 1996 of programs under the Department of Energy`s Office of Advanced Automotive Technologies (OAAT). This document complies with the legislative requirement to report on the implementation of Title III of the Automotive Propulsion Research and Development Act of 1978. Also reported are related activities performed under subsequent relevant legislation without specific reporting requirements. Furthermore, this report serves as a vital means of communication from the Department to all public and private sector participants. Specific requirements that are addressed in this report are: Discussion of how each research and development contract, grant, or project funded under the authority of this Act satisfies the requirements of each subsection; Current comprehensive program definition for implementing Title III; Evaluation of the state of automotive propulsion system research and development in the United States; Number and amount of contracts and grants awarded under Title III; Analysis of the progress made in developing advanced automotive propulsion system technology; and Suggestions for improvements in automotive propulsion system research and development, including recommendations for legislation.

NONE

1998-03-01T23:59:59.000Z

77

Thermoelectrics: The New Green Automotive Technology  

Broader source: Energy.gov (indexed) [DOE]

2012 Annual Merit Review DOE Vehicle Technologies Program and Hydrogen and Fuel Cells Program Vehicle Technologies Program Mission To develop more energy efficient and...

78

California Greenhouse Gas Emissions Standards for Light-Duty Vehicles (released in AEO2005)  

Reports and Publications (EIA)

In July 2002, California Assembly Bill 1493 (A.B. 1493) was signed into law. The law requires that the California Air Resources Board (CARB) develop and adopt, by January 1, 2005, greenhouse gas emission standards for light-duty vehicles that provide the maximum feasible reduction in emissions. In estimating the feasibility of the standard, CARB is required to consider cost-effectiveness, technological capability, economic impacts, and flexibility for manufacturers in meeting the standard.

2005-01-01T23:59:59.000Z

79

3TU. STAN ACKERMANS INSTITUTESchool for Technological Design Automotive Systems Design  

E-Print Network [OSTI]

3TU. STAN ACKERMANS INSTITUTESchool for Technological Design Automotive Systems Design Post at the University of Halmstad, Sweden, I was looking for a way to rapidly gain more knowledge of automotive systems enables me to network actively with automotive partners, as I work on industry assignments from various

Franssen, Michael

80

E-Print Network 3.0 - automotive technologies annual Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

and technology, fuels... and logistics Better Place, Fiskar Automotive, Mission Motors, Tesla Motors WATER Filtration, purification... STORAGE Grid-scale storage, batteries,...

Note: This page contains sample records for the topic "light-duty automotive technology" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Vehicle Technologies Office Merit Review 2014: Automotive Low Temperature Gasoline Combustion Engine Research  

Broader source: Energy.gov [DOE]

Presentation given by Sandia National Laboratories at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about automotive low...

82

Light-Duty Fuel Cell Vehicles State of Development  

E-Print Network [OSTI]

Light-Duty Fuel Cell Vehicles State of Development Fuel Cell Vehicles (FCVs) An international race is under way to commercialize fuel cell vehicles (FCVs). The competition is characterized by rapid by taking full advantage of the characteristics and capabilities of fuel cells. But most of the vehicles

83

A Study of Emissions from a Light Duty Diesel Engine with the...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

A Study of Emissions from a Light Duty Diesel Engine with the European Particulate Measurement Programme A Study of Emissions from a Light Duty Diesel Engine with the European...

84

Economic Comparison of LNT Versus Urea SCR for Light-Duty Diesel...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Comparison of LNT Versus Urea SCR for Light-Duty Diesel Vehicles in the U.S. Market Economic Comparison of LNT Versus Urea SCR for Light-Duty Diesel Vehicles in the U.S. Market...

85

High-Efficiency Clean Combustion in Light-Duty Multi-Cylinder...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

High-Efficiency Clean Combustion in Light-Duty Multi-Cylinder Diesel Engines High-Efficiency Clean Combustion in Light-Duty Multi-Cylinder Diesel Engines 2010 DOE Vehicle...

86

Biodiesel Effects on the Operation of U.S. Light Duty Tier 2...  

Broader source: Energy.gov (indexed) [DOE]

Biodiesel Effects on the Operation of U.S. Light Duty Tier 2 Engine and Aftertreatment Systems Biodiesel Effects on the Operation of U.S. Light Duty Tier 2 Engine and...

87

Biodiesel Effects on the Operation of U.S. Light-Duty Tier 2...  

Broader source: Energy.gov (indexed) [DOE]

Biodiesel Effects on the Operation of U.S. Light-Duty Tier 2 Engine and Aftertreatment Systems Biodiesel Effects on the Operation of U.S. Light-Duty Tier 2 Engine and...

88

High Efficiency Clean Combustion in Multi-Cylinder Light-Duty...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

& Publications High-Efficiency Clean Combustion in Light-Duty Multi-Cylinder Diesel Engines High Efficiency Clean Combustion in Multi-Cylinder Light-Duty Engines High Efficiency...

89

High Efficiency Clean Combustion in Multi-Cylinder Light-Duty...  

Broader source: Energy.gov (indexed) [DOE]

Efficiency Clean Combustion in Multi-Cylinder Light-Duty Engines High Efficiency Clean Combustion in Multi-Cylinder Light-Duty Engines 2012 DOE Hydrogen and Fuel Cells Program and...

90

Effect of Gasoline Properties on Exhaust Emissions from Tier 2 Light-Duty Vehicles -- Final Report: Phases 4, 5, & 6; July 28, 2008 - July 27, 2013  

SciTech Connect (OSTI)

This report covers work the Southwest Research Institute (SwRI) Office of Automotive Engineering has conducted for the National Renewable Energy Laboratory (NREL) in support of the Energy Policy Act of 2005 (EPAct). Section 1506 of EPAct requires the EPA to produce an updated fuel effects model representing the 2007 light-duty gasoline fleet, including determination of the emissions impacts of increased renewable fuel use.

Whitney, K.; Shoffner, B.

2014-06-01T23:59:59.000Z

91

Develop Thermoelectric Technology for Automotive Waste Heat Recovery...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

More Documents & Publications Skutterudite Thermoelectric Generator For Automotive Waste Heat Recovery Thermoelectric Conversion of Exhaust Gas Waste Heat into Usable...

92

Selection of Light Duty Truck Engine Air Systems Using Virtual Lab Tests  

SciTech Connect (OSTI)

An integrated development approach using seasoned engine technology methodologies, virtual lab parametric investigations, and selected hardware verification tests reflects today's state-of-the-art R&D trends. This presentation will outline such a strategy. The use of this ''Wired'' approach results in substantial reduction in the development cycle time and hardware iterations. An example showing the virtual lab application for a viable design of the air-exhaust-turbocharger system of a light duty truck engine for personal transportation will be presented.

Zhang, Houshun

2000-08-20T23:59:59.000Z

93

Effect of Gasoline Properties on Exhaust Emissions from Tier 2 Light-Duty Vehicles -- Final Report: Phase 3; July 28, 2008 - July 27, 2013  

SciTech Connect (OSTI)

This report covers work the Southwest Research Institute (SwRI) Office of Automotive Engineering has conducted for the U.S. Environmental Protection Agency (EPA), the National Renewable Energy Laboratory (NREL), and the Coordinating Research Council (CRC) in support of the Energy Policy Act of 2005 (EPAct). Section 1506 of EPAct requires EPA to produce an updated fuel effects model representing the 2007 light - duty gasoline fleet, including determination of the emissions impacts of increased renewable fuel use. This report covers the exhaust emissions testing of 15 light-duty vehicles with 27 E0 through E20 test fuels, and 4 light-duty flexible fuel vehicles (FFVs) on an E85 fuel, as part of the EPAct Gasoline Light-Duty Exhaust Fuel Effects Test Program. This program will also be referred to as the EPAct/V2/E-89 Program based on the designations used for it by the EPA, NREL, and CRC, respectively. It is expected that this report will be an attachment or a chapter in the overall EPAct/V2/E-89 Program report prepared by EPA and NREL.

Whitney, K.

2014-05-01T23:59:59.000Z

94

E-Print Network 3.0 - automotive power systems Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

air conditioning systems used in the automotive industry are based on vapour-compression refrigeration... systems of light duty vehicles. An AC compressor can add up to 5-6 kW...

95

Develop Thermoelectric Technology for Automotive Waste Heat Recovery...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

& Publications Engineering and Materials for Automotive Thermoelectric Applications Electrical and Thermal Transport Optimization of High Efficient n-type Skutterudites Electrical...

96

Develop Thermoelectric Technology for Automotive Waste Heat Recovery...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Waste Heat Recovery Engineering and Materials for Automotive Thermoelectric Applications Electrical and Thermal Transport Optimization of High Efficient n-type Skutterudites...

97

Vehicle Technologies Office Merit Review 2014: Computational design and development of a new, lightweight cast alloy for advanced cylinder heads in high-efficiency, light-duty engines FOA 648-3a  

Broader source: Energy.gov [DOE]

Presentation given by General Motors at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about computational design and...

98

Future Potential of Hybrid and Diesel Powertrains in the U.S. Light-duty Vehicle Market  

SciTech Connect (OSTI)

Diesel and hybrid technologies each have the potential to increase light-duty vehicle fuel economy by a third or more without loss of performance, yet these technologies have typically been excluded from technical assessments of fuel economy potential on the grounds that hybrids are too expensive and diesels cannot meet Tier 2 emissions standards. Recently, hybrid costs have come down and the few hybrid makes available are selling well. Diesels have made great strides in reducing particulate and nitrogen oxide emissions, and are likely though not certain to meet future standards. In light of these developments, this study takes a detailed look at the market potential of these two powertrain technologies and their possible impacts on light-duty vehicle fuel economy. A nested multinomial logit model of vehicle choice was calibrated to 2002 model year sales of 930 makes, models and engine-transmission configurations. Based on an assessment of the status and outlook for the two technologies, market shares were predicted for 2008, 2012 and beyond, assuming no additional increase in fuel economy standards or other new policy initiatives. Current tax incentives for hybrids are assumed to be phased out by 2008. Given announced and likely introductions by 2008, hybrids could capture 4-7% and diesels 2-4% of the light-duty market. Based on our best guesses for further introductions, these shares could increase to 10-15% for hybrids and 4-7% for diesels by 2012. The resulting impacts on fleet average fuel economy would be about +2% in 2008 and +4% in 2012. If diesels and hybrids were widely available across vehicle classes, makes, and models, they could capture 40% or more of the light-duty vehicle market.

Greene, D.L.

2004-08-23T23:59:59.000Z

99

The impact of manufacturing offshore on technology development paths in the automotive and optoelectronics industries  

E-Print Network [OSTI]

This dissertation presents a two-case study of the impact of manufacturing offshore on the technology trajectory of the firm and the industry. It looks in particular at the automotive and optoelectronics industries. The ...

Fuchs, Erica R. H. (Erica Renee H.), 1977-

2006-01-01T23:59:59.000Z

100

Light-duty Diesels: Clean Enough? | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensionalthe10IO1OP001 LetterLight-Duty Lean GDI Vehicle

Note: This page contains sample records for the topic "light-duty automotive technology" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Comparative urban drive cycle simulations of light-duty hybrid vehicles with gasoline or diesel engines and emissions controls  

SciTech Connect (OSTI)

Electric hybridization is a very effective approach for reducing fuel consumption in light-duty vehicles. Lean combustion engines (including diesels) have also been shown to be significantly more fuel efficient than stoichiometric gasoline engines. Ideally, the combination of these two technologies would result in even more fuel efficient vehicles. However, one major barrier to achieving this goal is the implementation of lean-exhaust aftertreatment that can meet increasingly stringent emissions regulations without heavily penalizing fuel efficiency. We summarize results from comparative simulations of hybrid electric vehicles with either stoichiometric gasoline or diesel engines that include state-of-the-art aftertreatment emissions controls for both stoichiometric and lean exhaust. Fuel consumption and emissions for comparable gasoline and diesel light-duty hybrid electric vehicles were compared over a standard urban drive cycle and potential benefits for utilizing diesel hybrids were identified. Technical barriers and opportunities for improving the efficiency of diesel hybrids were identified.

Gao, Zhiming [ORNL] [ORNL; Daw, C Stuart [ORNL] [ORNL; Smith, David E [ORNL] [ORNL

2013-01-01T23:59:59.000Z

102

The Diesel Engine Powering Light-Duty Vehicles: Today and Tomorrow...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Engine Emissions Reduction (DEER) Conference Presentation: Volkwagen AG, Wolfsburg, Germany 2004deerschindler.pdf More Documents & Publications Accelerating Light-Duty Diesel...

103

Biodiesel Effects on the Operation of U.S. Light-Duty Tier 2...  

Broader source: Energy.gov (indexed) [DOE]

NOx Adsorber SCR System Summary and Conclusions Overview Evaluate the impact of Biodiesel fuel blends on the performance of advanced emission control systems for light-duty...

104

Biodiesel Effects on the Operation of U.S. Light Duty Tier 2...  

Broader source: Energy.gov (indexed) [DOE]

Test Results Summary and Conclusions Project Goals Evaluate the impact of Biodiesel fuel blends on the performance of advanced emission control systems for light-duty...

105

The Impact of Manufacturing Offshore on Technology Development Paths in the Automotive and Optoelectronics Industries  

E-Print Network [OSTI]

The Impact of Manufacturing Offshore on Technology Development Paths in the Automotive Systems and Civil and Environmental Engineering #12;The Impact of Manufacturing Offshore on Technology of the impact of manufacturing offshore on the technology trajectory of the firm and the industry. It looks

de Weck, Olivier L.

106

Technology transfer effectiveness through international joint ventures (IJVs) to their component suppliers: a study of the automotive industry of Pakistan.  

E-Print Network [OSTI]

??This thesis investigates the important topic of technology transfer effectiveness from international joint ventures (IJVs) established in the automotive industry of Pakistan to their local… (more)

Khan, Sardar Zaheer Ahmad

2011-01-01T23:59:59.000Z

107

Assessment of Fuel Economy Technologies for Light-Duty Vehicles  

SciTech Connect (OSTI)

An analysis of the number of stations and vehicles necessary to achieve future goals for sales of ethanol fuel (E85) is presented. Issues related to the supply of ethanol, which may turn out to be of even greater concern, are not analyzed here. A model of consumers decisions to purchase E85 versus gasoline based on prices, availability, and refueling frequency is derived, and preliminary results for 2010, 2017, and 2030 consistent with the president s 2007 biofuels program goals are presented. A limited sensitivity analysis is carried out to indicate key uncertainties in the trade-off between the number of stations and fuels. The analysis indicates that to meet a 2017 goal of 26 billion gallons of E85 sold, on the order of 30% to 80% of all stations may need to offer E85 and that 125 to 200 million flexible-fuel vehicles (FFVs) may need to be on the road, even if oil prices remain high. These conclusions are tentative for three reasons: there is considerable uncertainty about key parameter values, such as the price elasticity of choice between E85 and gasoline; the future prices of E85 and gasoline are uncertain; and the method of analysis used is highly aggregated it does not consider the potential benefits of regional strategies or the possible existence of market segments predisposed to purchase E85. Nonetheless, the preliminary results indicate that the 2017 biofuels program goals are ambitious and will require a massive effort to produce enough FFVs and ensure widespread availability of E85.

Greene, David L [ORNL

2008-01-01T23:59:59.000Z

108

Light-Duty Lean GDI Vehicle Technology Benchmark  

Broader source: Energy.gov (indexed) [DOE]

dynamometer * Milestone 2 - September 30, 2010 : - Finalize performanceemissions maps and make available with simulation example to Vehicle Systems team 5 Managed by...

109

Vehicle Technologies Office AVTA: Light Duty Alternative Fuel and Advanced  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomen Owned SmallOf The 2012Nuclear Guide Remote55 Jefferson Ave.EmissionVehicle Data |

110

Technology Development for Light Duty High Efficient Diesel Engines |  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy Usage »of Energy StrainClientDesignOffice - 20142012 |of Energy

111

Advanced Technology Light Duty Diesel Aftertreatment System | Department of  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartment of EnergyAdministrative2| Department ofDepartmentEnergy Light

112

Smart Mobility Dutch Automotive  

E-Print Network [OSTI]

Smart Mobility #12;Dutch Automotive Industry 300 companies 45k employees 17B revenue #12;Dutch Automotive Industry Focus area's: · Vehicle efficiency · Cooperative Mobility #12;Freedom, prosperity, fun;Automotive Technology Car as sustainable zero emission vehicles #12;Automotive Technology Electromagnetic car

Franssen, Michael

113

Update and Expansion of the Center of Automotive Technology Excellence Under the Graduate Automotive Technology Education (GATE) Program at the University of Tennessee, Knoxville  

SciTech Connect (OSTI)

The Graduate Automotive Technology Education (GATE) Center at the University of Tennessee, Knoxville has completed its seventh year of operation under this agreement, its thirteenth year in total. During this period the Center has involved eleven GATE Fellows and three GATE Research Assistants in preparing them to contribute to advanced automotive technologies in the center’s focus area: Advanced Hybrid Propulsion and Control Systems. In addition to the impact that the Center has had on the students and faculty involved, the presence of the center has led to the acquisition of resources that probably would not have been obtained if the GATE Center had not existed. Significant industry interaction such as equipment donations, and support for GATE students has been realized. The value of the total resources brought to the university (including related research contracts) exceeds $2,000,000.

Irick, David

2012-08-30T23:59:59.000Z

114

Fiber optic sensing technology for measuring in-cylinder pressure in automotive engines  

E-Print Network [OSTI]

A new fiber optic sensing technology for measuring in-cylinder pressure in automotive engines was investigated. The optic sensing element consists of two mirrors in an in-line single mode fiber that are separated by some distance. To withstand...

Bae, Taehan

2006-10-30T23:59:59.000Z

115

The Market Acceptance of Advanced Automotive Technologies (MA3T) Model  

E-Print Network [OSTI]

vehicles (PHEV), extended-range electric vehicle (EREV), battery electric vehicles (BEV) and fuel cell Vehicles by 2015 Using MA3T Model." The 26th International Battery, Hybrid and Fuel Cell Electric Vehicle: Energy Environment Safety Security Vehicle Technologies T he Market Acceptance of Advanced Automotive

116

ESTIMATING THE IMPACT OF DEMOGRAPHICS AND AUTOMOTIVE TECHNOLOGIES ON GREENHOUSE GAS  

E-Print Network [OSTI]

McNally, MASc Candidate Bruce Hellinga, PhD, PEng Department of Civil Engineering University of Transportation Engineers to be held May 12-15, 2002 in Ottawa Ontario #12;1 Estimating the Impact of Demographics and Automotive Technologies on Greenhouse Gas Emissions Ryan McNally, MASc Candidate Bruce Hellinga, PhD, PEng

Hellinga, Bruce

117

Development of a Waste Heat Recovery System for Light Duty Diesel...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Light Duty Diesel Engines A Quantum Leap for Heavy-Duty Truck Engine Efficiency - Hybrid Power System of Diesel and WHR-ORC Engines High Efficiency Engine Systems Development and...

118

The Diesel Engine Powering Light-Duty Vehicles: Today and Tomorrow  

Broader source: Energy.gov (indexed) [DOE]

diesel-powered light-duty vehicles 1990 1995 2000 2005 2010 2015 2020 2025 Energy Greenhouse effect CO 2 Exhaust gas emissions CO, NO x , HC, PM Importance Environmental driving...

119

Myths Regarding Alternative Fuel Vehicle Demand by Light-Duty Vehicle Fleets  

E-Print Network [OSTI]

MythsRegarding Alternative Fuel Vehicte Demand Light-Dutyregulation Myths Regarding Alternative Fuel Vehicle DemandBy00006-6 MYTHS REGARDING ALTERNATIVE FUEL VEHICLE LIGHT-DUTY

Nesbitt, Kevin; Sperling, Daniel

1998-01-01T23:59:59.000Z

120

Vehicle Technologies Office Merit Review 2014: High Efficiency...  

Broader source: Energy.gov (indexed) [DOE]

High Efficiency Clean Combustion in Multi-Cylinder Light-Duty Engines Vehicle Technologies Office Merit Review 2014: High Efficiency Clean Combustion in Multi-Cylinder Light-Duty...

Note: This page contains sample records for the topic "light-duty automotive technology" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Graduate Automotive Technology Education (GATE) Center for Hybrid Electric Drivetrains and Control Strategies  

SciTech Connect (OSTI)

Beginning the fall semester of 1999, The University of Maryland, Departments of Mechanical and Electrical Engineering and the Institute for Systems Research served as a U.S. Department of Energy (USDOE) Graduate Automotive Technology Education (GATE) Center for Hybrid Electric Drivetrains and Control Strategies. A key goal was to produce a graduate level education program that educated and prepared students to address the technical challenges of designing and developing hybrid electric vehicles, as they progressed into the workforce. A second goal was to produce research that fostered the advancement of hybrid electric vehicles, their controls, and other related automotive technologies. Participation ended at the University of Maryland after the 2004 fall semester. Four graduate courses were developed and taught during the course of this time, two of which evolved into annually-taught undergraduate courses, namely Vehicle Dynamics and Control Systems Laboratory. Five faculty members from Mechanical Engineering, Electrical Engineering, and the Institute for Systems Research participated. Four Ph.D. degrees (two directly supported and two indirectly supported) and seven Master's degrees in Mechanical Engineering resulted from the research conducted. Research topics included thermoelectric waste heat recovery, fuel cell modeling, pre- and post-transmission hybrid powertrain control and integration, hybrid transmission design, H{sub 2}-doped combustion, and vehicle dynamics. Many of the participating students accepted positions in the automotive industry or government laboratories involved in automotive technology work after graduation. This report discusses the participating faculty, the courses developed and taught, research conducted, the students directly and indirectly supported, and the publication list. Based on this collection of information, the University of Maryland firmly believes that the key goal of the program was met and that the majority of the participating students are now contributing to the advancement of automotive technology in this country.

David Holloway

2005-09-30T23:59:59.000Z

122

Safety equipment list for the light duty utility arm system  

SciTech Connect (OSTI)

The initial issue (Revision 0) of this Safety Equipment List (SEL) for the Light Duty Utility Arm (LDUA) requires an explanation for both its existence and its being what it is. All LDUA documentation leading up to creation of this SEL, and the SEL itself, is predicated on the LDUA only being approved for use in waste tanks designated as Facility Group 3, i.e., it is not approved for use in Facility Group 1 or 2 waste tanks. Facility Group 3 tanks are those in which a spontaneous or induced hydrogen gas release would be small, localized, and would not exceed 25% of the LFL when mixed with the remaining air volume in the dome space; exceeding these parameters is considered unlikely. Thus, from a NFPA flammable gas environment perspective the waste tank interior is not classified as a hazardous location. Furthermore, a hazards identification and evaluation (HNF-SD-WM-HIE-010, REV 0) performed for the LDUA system concluded that the consequences of actual LDUA system postulated accidents in Flammable Gas Facility Group 3 waste tanks would have either NO IMPACT or LOW IMPACT on the offsite public and onsite worker. Therefore, from a flammable gas perspective, there is not a rationale for classifying any of SSCs associated with the LDUA as either Safety Class (SC) or Safety Significant (SS) SSCs, which, by default, categorizes them as General Service (GS) SSCs. It follows then, based on current PHMC procedures (HNF-PRO-704 and HNF-IP-0842, Vol IV, Section 5.2) for SEL creation and content, and from a flammable gas perspective, that an SEL is NOT REQ@D HOWEVER!!! There is both a precedent and a prudency to capture all SSCS, which although GS, contribute to a Defense-In-Depth (DID) approach to the design and use of equipment in potentially flammable gas environments. This Revision 0 of the LDUA SEL has been created to capture these SSCs and they are designated as GS-DID in this document. The specific reasons for doing this are listed.

Barnes, G.A.

1998-03-02T23:59:59.000Z

123

Twenty-second automotive technology development contractors' coordination meeting: proceedings  

SciTech Connect (OSTI)

Fifty-four papers and reviews are arranged under the following session headings: alcohol fuels; liquid hydrocarbon and gaseous fuels; Stirling technology (two sessions); industry perspectives; heavy duty transport technology (two sessions); gas turbine technology; and ceramic technology (two sessions). (DLC)

Not Available

1985-03-01T23:59:59.000Z

124

Innovative Drivetrains in Electric Automotive Technology Education (IDEATE)  

Broader source: Energy.gov [DOE]

2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

125

Automotive electronics business  

E-Print Network [OSTI]

In the automotive industry, due to the trend to introduce active safety systems, concerns about protecting the environment, and advances in information technology, key automotive manufacturers are eager to acquire new ...

Hase, Yoshiko, M.B.A. Massachusetts Institute of Technology

2007-01-01T23:59:59.000Z

126

California Greenhouse Gas Emissions Standards for Light-Duty Vehicles (Update) (released in AEO2006)  

Reports and Publications (EIA)

The state of California was given authority under the Clean Air Act Amendments of 1990 (CAAA90) to set emissions standards for light-duty vehicles that exceed federal standards. In addition, other states that do not comply with the National Ambient Air Quality Standards (NAAQS) set by the Environmental Protection Agency under CAAA90 were given the option to adopt Californias light-duty vehicle emissions standards in order to achieve air quality compliance. CAAA90 specifically identifies hydrocarbon, carbon monoxide, and NOx as vehicle-related air pollutants that can be regulated. California has led the nation in developing stricter vehicle emissions standards, and other states have adopted the California standards.

2006-01-01T23:59:59.000Z

127

Fuel Economy of the Light-Duty Vehicle Fleet (released in AEO2005)  

Reports and Publications (EIA)

The U.S. fleet of light-duty vehicles consists of cars and light trucks, including minivans, sport utility vehicles (SUVs) and trucks with gross vehicle weight less than 8,500 pounds. The fuel economy of light-duty vehicles is regulated by the (Corporate Average Fuel Economy) CAFE standards set by the National Highway Traffic Safety Administration. Currently, the CAFE standard is 27.5 miles per gallon (mpg) for cars and 20.7 mpg for light trucks. The most recent increase in the CAFE standard for cars was in 1990, and the most recent increase in the CAFE standard for light trucks was in 1996.

2005-01-01T23:59:59.000Z

128

The ARPA-E Innovation Model: A Glimpse into the Future of Automotive Battery Technology  

SciTech Connect (OSTI)

The Department of Energy's Advanced Research Projects Agency-Energy (ARPA-E) focuses on funding game-changing R&D aimed at reducing U.S. foreign energy dependence and emissions. ARPA-E has made a strong commitment to support breakthrough energy storage technologies that can accelerate the mass adoption of electrified vehicles. This presentation will highlight the range of ARPA-E's efforts in this area, offering a glimpse into the ARPA-E innovation model and the future of automotive battery technology.

Gur, Ilan (Program Director and Senior Advisor, ARPA-E) [Program Director and Senior Advisor, ARPA-E

2014-03-07T23:59:59.000Z

129

The ARPA-E Innovation Model: A Glimpse into the Future of Automotive Battery Technology  

ScienceCinema (OSTI)

The Department of Energy's Advanced Research Projects Agency-Energy (ARPA-E) focuses on funding game-changing R&D aimed at reducing U.S. foreign energy dependence and emissions. ARPA-E has made a strong commitment to support breakthrough energy storage technologies that can accelerate the mass adoption of electrified vehicles. This presentation will highlight the range of ARPA-E's efforts in this area, offering a glimpse into the ARPA-E innovation model and the future of automotive battery technology.

Gur, Ilan (Program Director and Senior Advisor, ARPA-E)

2014-04-11T23:59:59.000Z

130

Plasma Catalysis for NOx Reduction from Light-Duty Diesel Vehicles  

SciTech Connect (OSTI)

On behalf of the Department of Energy's Office of FreedomCAR and Vehicle Technologies, we are pleased to introduce the Fiscal Year (FY) 2004 Annual Progress Report for the Advanced Combustion Engine R&D Sub-Program. The mission of the FreedomCAR and Vehicle Technologies Program is to develop more energy efficient and environmentally friendly highway transportation technologies that enable Americans to use less petroleum for their vehicles. The Advanced Combustion Engine R&D Sub-Program supports this mission by removing the critical technical barriers to commercialization of advanced internal combustion engines for light-, medium-, and heavy-duty highway vehicles that meet future Federal and state emissions regulations. The primary objective of the Advanced Combustion Engine R&D Sub-Program is to improve the brake thermal efficiency of internal combustion engines from 30 to 45 percent for light-duty applications by 2010; and 40 to 55 percent for heavy-duty applications by 2012; while meeting cost, durability, and emissions constraints. R&D activities include work on combustion technologies that increase efficiency and minimize in-cylinder formation of emissions, as well as aftertreatment technologies that further reduce exhaust emissions. Work is also being conducted on ways to reduce parasitic and heat transfer losses through the development and application of thermoelectrics and turbochargers that include electricity generating capability, and conversion of mechanically driven engine components to be driven via electric motors. This introduction serves to outline the nature, current progress, and future directions of the Advanced Combustion Engine R&D Sub-Program. The research activities of this Sub-Program are planned in conjunction with the FreedomCAR Partnership and the 21st Century Truck Partnership and are carried out in collaboration with industry, national laboratories, and universities. Because of the importance of clean fuels in achieving low emissions, R&D activities are closely coordinated with the relevant activities of the Fuel Technologies Sub-Program, also within the Office of FreedomCAR and Vehicle Technologies. Research is also being undertaken on hydrogen-fueled internal combustion engines to provide an interim hydrogen-based powertrain technology that promotes the longer-range FreedomCAR Partnership goal of transitioning to a hydrogen-fueled transportation system. Hydrogen engine technologies being developed have the potential to provide diesel-like engine efficiencies with near-zero emissions.

None

2005-12-15T23:59:59.000Z

131

Electrochemical Energy Storage Technologies and the Automotive Industry  

ScienceCinema (OSTI)

The first portion of the lecture will relate global energy challenges to trends in personal transportation. Following this introduction, a short overview of technology associated with lithium ion batteries for traction applications will be provided. Last, I shall present new research results that enable adaptive characterization of lithium ion cells. Experimental and modeling results help to clarify the underlying electrochemistry and system performance. Specifically, through chemical modification of the electrodes, it is possible to place markers within the electrodes that signal the state of charge of a battery through abrupt voltage changes during cell operation, thereby allowing full utilization of the battery in applications. In closing, I shall highlight some promising materials research efforts that are expected to lead to substantially improved battery technology

Mark Verbrugge

2010-01-08T23:59:59.000Z

132

Penn State DOE Graduate Automotive Technology Education (Gate) Program for  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department ofT ib l L d F SSalesOE0000652Grow Your EnergyTechnology toPaulStorage Systems

133

HYDROGEN GENERATION FROM PLASMATRON REFORMERS: A PROMISING TECHNOLOGY FOR NOX ADSORBER REGENERATION AND OTHER AUTOMOTIVE APPLICATIONS  

SciTech Connect (OSTI)

Plasmatron reformers are being developed at MIT and ArvinMeritor [1]. In these reformers a special low power electrical discharge is used to promote partial oxidation conversion of hydrocarbon fuels into hydrogen and CO. The partial oxidation reaction of this very fuel rich mixture is difficult to initiate. The plasmatron provides continuous enhanced volume initiation. To minimize electrode erosion and electrical power requirements, a low current, high voltage discharge with wide area electrodes is used. The reformers operate at or slightly above atmospheric pressure. Plasmatron reformers provide the advantages of rapid startup and transient response; efficient conversion of the fuel to hydrogen rich gas; compact size; relaxation or elimination of reformer catalyst requirements; and capability to process difficult to reform fuels, such as diesel and bio-oils. These advantages facilitate use of onboard hydrogen-generation technology for diesel exhaust after-treatment. Plasma-enhanced reformer technology can provide substantial conversion even without the use of a catalyst. Recent progress includes a substantial decrease in electrical power consumption (to about 200 W), increased flow rate (above 1 g/s of diesel fuel corresponding to approximately 40 kW of chemical energy), soot suppression and improvements in other operational features.. Plasmatron reformer technology has been evaluated for regeneration of NOx adsorber after-treatment systems. At ArvinMeritor tests were performed on a dual-leg NOx adsorber system using a Cummins 8.3L diesel engine both in a test cell and on a vehicle. A NOx adsorber system was tested using the plasmatron reformer as a regenerator and without the reformer i.e., with straight diesel fuel based regeneration as the baseline case. The plasmatron reformer was shown to improve NOx regeneration significantly compared to the baseline diesel case. The net result of these initial tests was a significant decrease in fuel penalty, roughly 50% at moderate adsorber temperatures. This fuel penalty improvement is accompanied by a dramatic drop in slipped hydrocarbon emissions, which decreased by 90% or more. Significant advantages are demonstrated across a wide range of engine conditions and temperatures. The study also indicated the potential to regenerate NOx adsorbers at low temperatures where diesel fuel based regeneration is not effective, such as those typical of idle conditions. Two vehicles, a bus and a light duty truck, have been equipped for plasmatron reformer NOx adsorber regeneration tests.

Bromberg, L.; Crane, S; Rabinovich, A.; Kong, Y; Cohn, D; Heywood, J; Alexeev, N.; Samokhin, A.

2003-08-24T23:59:59.000Z

134

QUANTIFYING THE EXTERNAL COSTS OF VEHICLE USE: EVIDENCE FROM AMERICA'S TOP SELLING LIGHT-DUTY MODELS  

E-Print Network [OSTI]

-selling passenger cars and light-duty trucks in the U.S. Among these external costs, those associated with crashes estimated for several other vehicles of particular interest, including GM's Hummer and several hybrid drive: small cars, mid-sized cars, large cars, luxury cars, crossover utility vehicles (CUVs), sport

Kockelman, Kara M.

135

Marketing Light-Duty Diesels to U.S. Consumers  

Broader source: Energy.gov (indexed) [DOE]

levels of performance and convenience * the best platform for renewable fuels including Biodiesel, SunFuel, and SunDiesel 14 Modern TDI Diesel technology has come a long way...

136

2011 Vehicle Technologies Market Report  

SciTech Connect (OSTI)

This report details the major trends in U.S. light-duty vehicle and medium/heavy truck markets as well as the underlying trends that caused them. This report is supported by the U.S. Department of Energy s (DOE) Vehicle Technologies Program (VTP), and, in accord with its mission, pays special attention to the progress of high-efficiency and alternative-fuel technologies. This third edition since this report was started in 2008 offers several marked improvements relative to its predecessors. Most significantly, where earlier editions of this report focused on supplying information through an examination of market drivers, new vehicle trends, and supplier data, this edition uses a different structure. After opening with a discussion of energy and economics, this report features a section each on the light-duty vehicle and heavy/medium truck markets, and concluding with a section each on technology and policy. In addition to making this sectional re-alignment, this year s edition of the report also takes a different approach to communicating information. While previous editions relied heavily on text accompanied by auxiliary figures, this third edition relies primarily on charts and graphs to communicate trends. Any accompanying text serves to introduce the trends communication by the graphic and highlight any particularly salient observations. The opening section on Energy and Economics discusses the role of transportation energy and vehicle markets on a national (and even international) scale. For example, Figures 11 through 13 discuss the connections between global oil prices and U.S. GDP, and Figures 20 and 21 show U.S. employment in the automotive sector. The following section examines Light-Duty Vehicle use, markets, manufacture, and supply chains. Figures 26 through 33 offer snapshots of major light-duty vehicle brands in the U.S. and Figures 38 through 43 examine the performance and efficiency characteristics of vehicles sold. The discussion of Medium and Heavy Trucks offers information on truck sales (Figures 58 through 61) and fuel use (Figures 64 through 66). The Technology section offers information on alternative fuel vehicles and infrastructure (Figures 68 through 77), and the Policy section concludes with information on recent, current, and near-future Federal policies like the Cash for Clunkers program (Figures 87 and 88) and the Corporate Automotive Fuel Economy standard (Figures 90 through 99) and. In total, the information contained in this report is intended to communicate a fairly complete understanding of U.S. highway transportation energy through a series of easily digestible nuggets.

Davis, Stacy Cagle [ORNL; Boundy, Robert Gary [ORNL; Diegel, Susan W [ORNL

2012-02-01T23:59:59.000Z

137

Transportation Energy Futures Series: Potential for Energy Efficiency Improvement Beyond the Light-Duty-Vehicle Sector  

SciTech Connect (OSTI)

Considerable research has focused on energy efficiency and fuel substitution options for light-duty vehicles, while much less attention has been given to medium- and heavy-duty trucks, buses, aircraft, marine vessels, trains, pipeline, and off-road equipment. This report brings together the salient findings from an extensive review of literature on future energy efficiency options for these non-light-duty modes. Projected activity increases to 2050 are combined with forecasts of overall fuel efficiency improvement potential to estimate the future total petroleum and greenhouse gas (GHG) emissions relative to current levels. This is one of a series of reports produced as a result of the Transportation Energy Futures (TEF) project, a Department of Energy-sponsored multi-agency project initiated to pinpoint underexplored strategies for abating GHGs and reducing petroleum dependence related to transportation.

Vyas, A. D.; Patel, D. M.; Bertram, K. M.

2013-03-01T23:59:59.000Z

138

Assessing deployment strategies for ethanol and flex fuel vehicles in the U.S. light-duty vehicle fleet  

E-Print Network [OSTI]

Within the next 3-7 years the US light duty fleet and fuel supply will encounter what is commonly referred to as the "blend wall". This phenomenon describes the situation when more ethanol production has been mandated than ...

McAulay, Jeffrey L. (Jeffrey Lewis)

2009-01-01T23:59:59.000Z

139

E-Print Network 3.0 - automotive technology excellence Sample...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

BIBLIOGRAPHY ON INTERNAL COMBUSTION ENGINES 1. F. Obert, Internal Combustion Engines and Air Pollution, Intext Educational Publishers, 1973 Summary: , Society of Automotive...

140

E-Print Network 3.0 - automotive technology status Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

This talk will focus on ... Source: Hawaii Natural Energy Institute Collection: Renewable Energy 4 APPLICATIONS OF ADVANCES IN AUTOMOTIVE ELECTRONICS TO RURAL ELECTRIFICATION: THE...

Note: This page contains sample records for the topic "light-duty automotive technology" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Light-duty vehicle mpg and market shares report, model year 1988  

SciTech Connect (OSTI)

This issue of Light-Duty Vehicle MPG and Market Shares Report: Model Year 1988 reports the estimated sales-weighted fuel economies, sales, market shares, and other vehicle characteristics of automobiles and light trucks. The estimates are made on a make and model basis, from model year 1976 to model year 1988. Vehicle sales data are used as weighting factors in the sales-weighted estimation procedure. Thus, the estimates represent averages of the overall new vehicle fleet, reflecting the composition of the fleet. Highlights are provided on the trends in the vehicle characteristics from one model year to the next. Analyses are also made on the fuel economy changes to determine the factors which caused the changes. The sales-weighted fuel economy for the new car fleet in model year 1988 showed an improvement of 0.1 mpg from model year 1987, while light trucks showed a 0.2 mpg loss. The 0.2 mpg loss by the light trucks can be attributed to the fact that every light truck size class experienced either losses or no change in their fuel economies from the previous model year, except for the large van size class. Overall, the sales-weighted fuel economy of the entire light-duty vehicle fleet (automobiles and light trucks combined) has remained relatively stable since model year 1986. Domestic light-duty vehicles began to gain popularity over their import counterparts; and light trucks increased their market shares relative to automobiles. Domestic cars regained 0.3% of the automobile market, reversing the previous trend. Similar to the automobile market, domestic light trucks continued to gain popularity over their import counterparts, partly due to the increasing popularity of domestic small vans. 3 refs., 35 figs., 48 tabs.

Hu, P.S.; Williams, L.S.; Beal, D.J.

1989-04-01T23:59:59.000Z

142

Tank selection for Light Duty Utility Arm (LDUA) system hot testing in a single shell tank  

SciTech Connect (OSTI)

The purpose of this report is to recommend a single shell tank in which to hot test the Light Duty Utility Arm (LDUA) for the Tank Waste Remediation System (TWRS) in Fiscal Year 1996. The LDUA is designed to utilize a 12 inch riser. During hot testing, the LDUA will deploy two end effectors (a High Resolution Stereoscopic Video Camera System and a Still/Stereo Photography System mounted on the end of the arm`s tool interface plate). In addition, three other systems (an Overview Video System, an Overview Stereo Video System, and a Topographic Mapping System) will be independently deployed and tested through 4 inch risers.

Bhatia, P.K.

1995-01-31T23:59:59.000Z

143

Light Duty Utility Arm system pre-operational (cold test) test plan  

SciTech Connect (OSTI)

The Light Duty Utility (LDUA) Cold Test Facility, located in the Hanford 400 Area, will be used to support cold testing (pre- operational tests) of LDUA subsystems. Pre-operational testing is composed of subsystem development testing and rework activities, and integrated system qualification testing. Qualification testing will be conducted once development work is complete and documentation is under configuration control. Operational (hot) testing of the LDUA system will follow the testing covered in this plan and will be covered in a separate test plan

Bennett, K.L.

1995-10-20T23:59:59.000Z

144

Fueling U.S. Light Duty Diesel Vehicles | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensional ElectricalEnergyQuality ChallengesFueling U.S. Light Duty

145

Alternative Fuels Data Center: Light-Duty Vehicle Idle Reduction Strategies  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc Documentation RUCProductstwrmrAreSmartWayElectricity FuelUse Knoxville UtilitiesLight-Duty

146

Company Profile Mobileye is the leading provider of automated driver assistance technologies to the automotive industry.  

E-Print Network [OSTI]

leading European car manufacturers. Additional OEMs and Tier 1 suppliers have Mobileye evaluation systems computers and at a fraction of the cost. EyeQ meets automotive cabin grade qualification requirements. Agreements have already been signed with several automotive manufacturers and Tier-1 suppliers

Adler, Joan

147

Simulating Study of Premixed Charge Compression Ignition on Light-Duty Diesel Fuel Economy and Emissions Control  

SciTech Connect (OSTI)

We utilize the Powertrain Systems Analysis Toolkit (PSAT) combined with transient engine and aftertreatment component models to simulate the impact of premixed charge compression ignition (PCCI) on the fuel economy and emissions of light-duty (LD) diesel-powered conventional and hybrid electric vehicles (HEVs). Our simulated aftertreatment train consists of a diesel oxidation catalyst (DOC), lean NOx trap (LNT), and catalyzed diesel particulate filter (DPF). The results indicate that utilizing PCCI combustion significantly reduces fuel consumption and tailpipe emissions for the conventional diesel-powered vehicle with NOx and particulate emissions controls. These benefits result from a favorable engine speed-load distribution over the cycle combined with a corresponding reduction in the need to regenerate the LNT and DPF. However, the current PCCI technology appears to offer less potential benefit for diesel HEVs equipped with similar emissions controls. This is because PCCI can only be activated over a relatively small part of the drive cycle. Thus we conclude that future utilization of PCCI in diesel HEVs will require significant extension of the available speed-load range for PCCI and revision of current HEV engine management strategies before significant benefits can be realized.

Gao, Zhiming [ORNL] [ORNL; Daw, C Stuart [ORNL] [ORNL; Wagner, Robert M [ORNL] [ORNL

2012-01-01T23:59:59.000Z

148

Vehicle Technologies Office Merit Review 2014: Innovative Drivetrains in Electric Automotive Technology Education (IDEATE)  

Broader source: Energy.gov [DOE]

Presentation given by University of Colorado at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about Innovative Drivetrains...

149

Piston Bowl Optimization for RCCI Combustion in a Light-Duty Multi-Cylinder Engine  

SciTech Connect (OSTI)

Reactivity Controlled Compression Ignition (RCCI) is an engine combustion strategy that that produces low NO{sub x} and PM emissions with high thermal efficiency. Previous RCCI research has been investigated in single-cylinder heavy-duty engines. The current study investigates RCCI operation in a light-duty multi-cylinder engine at 3 operating points. These operating points were chosen to cover a range of conditions seen in the US EPA light-duty FTP test. The operating points were chosen by the Ad Hoc working group to simulate operation in the FTP test. The fueling strategy for the engine experiments consisted of in-cylinder fuel blending using port fuel-injection (PFI) of gasoline and early-cycle, direct-injection (DI) of diesel fuel. At these 3 points, the stock engine configuration is compared to operation with both the original equipment manufacturer (OEM) and custom machined pistons designed for RCCI operation. The pistons were designed with assistance from the KIVA 3V computational fluid dynamics (CFD) code. By using a genetic algorithm optimization, in conjunction with KIVA, the piston bowl profile was optimized for dedicated RCCI operation to reduce unburned fuel emissions and piston bowl surface area. By reducing these parameters, the thermal efficiency of the engine was improved while maintaining low NOx and PM emissions. Results show that with the new piston bowl profile and an optimized injection schedule, RCCI brake thermal efficiency was increased from 37%, with the stock EURO IV configuration, to 40% at the 2,600 rev/min, 6.9 bar BMEP condition, and NOx and PM emissions targets were met without the need for exhaust after-treatment.

Hanson, Reed M [ORNL; Curran, Scott [ORNL; Wagner, Robert M [ORNL; Reitz, Rolf [University of Wisconsin; Kokjohn, Sage [University of Wisconsin, Madison

2012-01-01T23:59:59.000Z

150

Fleet assessment for opportunities to effectively deploy light duty alternative fuel vehicles  

SciTech Connect (OSTI)

The City of Detroit conducted an initial program to assess the potential for substitution of vehicles currently in operation with alternative fuel vehicles. A key task involved the development of an operating profile of the participant light truck and van fleets involved in the study. To do this a survey of operators of light duty trucks and vans within the project participant fleets was conducted. These survey results were analyzed to define the potential for substitution of conventional vehicles with alternate fuel vehicles with alternate fuel vehicles and to identify candidates for participation in the Mini-Demonstration portion of the project. The test program involved the deployment of an electric van (two GM Griffon Electric Vans provided by Detroit Edison) at seven Mini-Demonstration sites for a period of four weeks each for test and evaluation. The Technical Work Group then analyzed vehicle performance data and used a questionnaire to obtain impressions and attitudes of the users toward the acceptability of the electric van. The Technical Work Group (TWG) and Management Assessment Group (MAG) then prepared recommendations and an implementation plan to develop further information aimed toward eventual expanded deployment of alternative fuel vehicles within project participant light duty fleets. The MAG concluded that the study had been beneficial in collecting and developing important quantitative information, introducing a set of public fleet managers to alternative fuel vehicle opportunities and features, and had provided specific experience with the Griffon van which provided some indications of requirements in such vehicles if they are to be a normal part of public fleet operations. These included the need for some increase of the mileage range of the Griffon, an improvement in the ride and handling of the Griffon, and several minor'' difficulties experienced with malfunctioning or inconvenient characteristics of the Griffon equipment. 25 figs., 1 tab.

Not Available

1990-05-01T23:59:59.000Z

151

Sizes, graphitic structures and fractal geometry of light-duty diesel engine particulates.  

SciTech Connect (OSTI)

The particulate matter of a light-duty diesel engine was characterized in its morphology, sizes, internal microstructures, and fractal geometry. A thermophoretic sampling system was employed to collect particulates directly from the exhaust manifold of a 1.7-liter turbocharged common-rail direct-injection diesel engine. The particulate samples collected at various engine-operating conditions were then analyzed by using a high-resolution transmission electron microscope (TEM) and an image processing/data acquisition system. Results showed that mean primary particle diameters (dp), and radii of gyration (Rg), ranged from 19.4 nm to 32.5 nm and 77.4 nm to 134.1 nm, respectively, through the entire engine-operating conditions of 675 rpm (idling) to 4000 rpm and 0% to 100% loads. It was also revealed that the other important parameters sensitive to the particulate formation, such as exhaust-gas recirculation (EGR) rate, equivalence ratio, and temperature, affected particle sizes significantly. Bigger primary particles were measured at higher EGR rates, higher equivalence ratios (fuel-rich), and lower exhaust temperatures. Fractal dimensions (D{sup f}) were measured at a range of 1.5 - 1.7, which are smaller than those measured for heavy-duty direct-injection diesel engine particulates in our previous study. This finding implies that the light-duty diesel engine used in this study produces more stretched chain-like shape particles, while the heavy-duty diesel engine emits more spherical particles. The microstructures of diesel particulates were observed at high TEM magnifications and further analyzed by a Raman spectroscope. Raman spectra revealed an atomic structure of the particulates produced at high engine loads, which is similar to that of typical graphite.

Lee, K. O.; Zhu, J.; Ciatti, S.; Choi, M. Y.; Energy Systems; Drexel Univ.

2003-01-01T23:59:59.000Z

152

Engaging the Next Generation of Automotive Engineers through...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Engaging the Next Generation of Automotive Engineers through Advanced Vehicle Technology Competition Engaging the Next Generation of Automotive Engineers through Advanced Vehicle...

153

A techno-economic analysis and optimization of Li-ion batteries for light-duty passenger vehicle electrification  

E-Print Network [OSTI]

A techno-economic analysis and optimization of Li-ion batteries for light-duty passenger vehicle thickness a b s t r a c t We conduct a techno-economic analysis of Li-ion NMC-G prismatic pouch battery

McGaughey, Alan

154

A computational investigation of diesel and biodiesel combustion and NOx formation in a light-duty compression ignition engine  

SciTech Connect (OSTI)

Diesel and biodiesel combustion in a multi-cylinder light duty diesel engine were simulated during a closed cycle (from IVC to EVO), using a commercial computational fluid dynamics (CFD) code, CONVERGE, coupled with detailed chemical kinetics. The computational domain was constructed based on engine geometry and compression ratio measurements. A skeletal n-heptane-based diesel mechanism developed by researchers at Chalmers University of Technology and a reduced biodiesel mechanism derived and validated by Luo and co-workers were applied to model the combustion chemistry. The biodiesel mechanism contains 89 species and 364 reactions and uses methyl decanoate, methyl-9- decenoate, and n-heptane as the surrogate fuel mixture. The Kelvin-Helmholtz and Rayleigh-Taylor (KH-RT) spray breakup model for diesel and biodiesel was calibrated to account for the differences in physical properties of the fuels which result in variations in atomization and spray development characteristics. The simulations were able to capture the experimentally observed pressure and apparent heat release rate trends for both the fuels over a range of engine loads (BMEPs from 2.5 to 10 bar) and fuel injection timings (from 0���° BTDC to 10���° BTDC), thus validating the overall modeling approach as well as the chemical kinetic models of diesel and biodiesel surrogates. Moreover, quantitative NOx predictions for diesel combustion and qualitative NOx predictions for biodiesel combustion were obtained with the CFD simulations and the in-cylinder temperature trends were correlated to the NOx trends."

Wang, Zihan; Srinivasan, Kalyan K.; Krishnan, Sundar R.; Som, Sibendu

2012-04-24T23:59:59.000Z

155

Retail Infrastructure Costs Comparison for Hydrogen and Electricity for Light-Duty Vehicles: Preprint  

SciTech Connect (OSTI)

Both hydrogen and plug-in electric vehicles offer significant social benefits to enhance energy security and reduce criteria and greenhouse gas emissions from the transportation sector. However, the rollout of electric vehicle supply equipment (EVSE) and hydrogen retail stations (HRS) requires substantial investments with high risks due to many uncertainties. We compare retail infrastructure costs on a common basis - cost per mile, assuming fueling service to 10% of all light-duty vehicles in a typical 1.5 million person city in 2025. Our analysis considers three HRS sizes, four distinct types of EVSE and two distinct EVSE scenarios. EVSE station costs, including equipment and installation, are assumed to be 15% less than today's costs. We find that levelized retail capital costs per mile are essentially indistinguishable given the uncertainty and variability around input assumptions. Total fuel costs per mile for battery electric vehicle (BEV) and plug-in hybrid vehicle (PHEV) are, respectively, 21% lower and 13% lower than that for hydrogen fuel cell electric vehicle (FCEV) under the home-dominant scenario. Including fuel economies and vehicle costs makes FCEVs and BEVs comparable in terms of costs per mile, and PHEVs are about 10% less than FCEVs and BEVs. To account for geographic variability in energy prices and hydrogen delivery costs, we use the Scenario Evaluation, Regionalization and Analysis (SERA) model and confirm the aforementioned estimate of cost per mile, nationally averaged, but see a 15% variability in regional costs of FCEVs and a 5% variability in regional costs for BEVs.

Melaina, M.; Sun, Y.; Bush, B.

2014-08-01T23:59:59.000Z

156

Reactivity Controlled Compression Ignition (RCCI) Combustion on a Multi-Cylinder Light-Duty Diesel Engine  

SciTech Connect (OSTI)

Reactivity controlled compression ignition is a low-temperature combustion technique that has been shown, both in computational fluid dynamics modeling and single-cylinder experiments, to obtain diesel-like efficiency or better with ultra-low nitrogen oxide and soot emissions, while operating primarily on gasoline-like fuels. This paper investigates reactivity controlled compression ignition operation on a four-cylinder light-duty diesel engine with production-viable hardware using conventional gasoline and diesel fuel. Experimental results are presented over a wide speed and load range using a systematic approach for achieving successful steady-state reactivity controlled compression ignition combustion. The results demonstrated diesel-like efficiency or better over the operating range explored with low engine-out nitrogen oxide and soot emissions. A peak brake thermal efficiency of 39.0% was demonstrated for 2600 r/min and 6.9 bar brake mean effective pressure with nitrogen oxide emissions reduced by an order of magnitude compared to conventional diesel combustion operation. Reactivity controlled compression ignition emissions and efficiency results are compared to conventional diesel combustion operation on the same engine.

Curran, Scott [ORNL; Hanson, Reed M [ORNL; Wagner, Robert M [ORNL

2012-01-01T23:59:59.000Z

157

DOE Provides $4.7 Million to Support Excellence in Automotive...  

Office of Environmental Management (EM)

Automotive Technology Education (GATE) Centers of Excellence. The goal of GATE is to train a future workforce of automotive engineering professionals to overcome technology...

158

Light-Duty Diesel EngineTechnology to Meet Future Emissions and...  

Broader source: Energy.gov (indexed) [DOE]

Vehicles 0 10 20 30 40 50 60 2000 3000 4000 5000 6000 7000 8000 Gross Vehicle Weight (lb) Combined Cycle MPG (US) . Gasoline Diesel Diesel average +45% MPG benefit Vehicle range...

159

Hydrogen Storage Options: Technologies and Comparisons for Light-Duty Vehicle Applications  

E-Print Network [OSTI]

Stetson, N. , Solid Hydrogen Storage Systems for PortableA Review of On-Board Hydrogen Storage Alternatives for FuelA. , Materials for Hydrogen Storage, Materials Today,

Burke, Andrew; Gardnier, Monterey

2005-01-01T23:59:59.000Z

160

Hydrogen Storage Options: Technologies and Comparisons for Light-Duty Vehicle Applications  

E-Print Network [OSTI]

10 kpsi) in carbon fiber-composite tanks, liquid hydrogen incarbon fiber is the highest cost material component of high pressure compressed gas tanks.

Burke, Andy; Gardiner, Monterey

2005-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "light-duty automotive technology" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Light-Duty Diesel EngineTechnology to Meet Future Emissions and Performance  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensionalthe10IO1OP001 Letter Report:Life-CycleDutyR&DPart

162

Progress on DOE Vehicle Technologies Light-Duty Diesel Engine Efficiency  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department ofT ib l L d FNEPA/309Department ofDepartment ofProgram(S3TEC )Department ofand

163

Ricardo's ACTION Strategy: An Enabling Light Duty Diesel Technology for the  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department ofT ib l LPROJECTS IN RENEWABLEOperatedDepartment ofEnergy Funds: BasicsRe~US

164

Hydrogen Storage Options: Technologies and Comparisons for Light-Duty Vehicle Applications  

E-Print Network [OSTI]

hydrogen compressor in parallel with their system to compress boil-off gas. In general the system costs

Burke, Andy; Gardiner, Monterey

2005-01-01T23:59:59.000Z

165

Program Final Report - Develop Thermoelectric Technology for Automotive Waste Heat Recovery  

SciTech Connect (OSTI)

We conducted a vehicle analysis to assess the feasibility of thermoelectric technology for waste heat recovery and conversion to useful electrical power and found that eliminating the 500 W of electrical power generated by the alternator corresponded to about a 7% increase in fuel economy (FE) for a small car and about 6% for a full size truck. Electric power targets of 300 W were established for city and highway driving cycles for this project. We obtained critical vehicle level information for these driving cycles that enabled a high-level design and performance analysis of radiator and exhaust gas thermoelectric subsystems for several potential vehicle platforms, and we identified the location and geometric envelopes of the radiator and exhaust gas thermoelectric subsystems. Based on this analysis, we selected the Chevrolet Suburban as the most suitable demonstration vehicle for this project. Our modeling and thermal analysis assessment of a radiator-based thermoelectric generator (TEG), however, revealed severe practical limitations. Specifically the small temperature difference of 100°C or less between the engine coolant and ambient air results in a low Carnot conversion efficiency, and thermal resistance associated with air convection would reduce this conversion efficiency even further. We therefore decided not to pursue a radiator-based waste heat recovery system and focused only on the exhaust gas. Our overall approach was to combine science and engineering: (1) existing and newly developed TE materials were carefully selected and characterized by the material researcher members of our team, and most of the material property results were validated by our research partners, and (2) system engineers worked closely with vehicle engineers to ensure that accurate vehicle-level information was used for developing subsystem models and designs, and the subsystem output was analyzed for potential fuel economy gains. We incorporated material, module, subsystem, and integration costs into the material selection criteria in order to balance various materials, module and subsystem design, and vehicle integration options. Our work on advanced TE materials development and on TEG system design, assembly, vehicle integration, and testing proceeded in parallel efforts. Results from our two preliminary prototype TEGs using only Bi-Te TE modules allowed us to solve various mechanical challenges and to finalize and fine tune aspects of the design and implementation. Our materials research effort led us to quickly abandon work on PbTe and focus on the skutterudite materials due to their superior mechanical performance and suitability at automotive exhaust gas operating temperatures. We synthesized a sufficiently large quantity of skutterudite material for module fabrication for our third and final prototype. Our TEG#3 is the first of its kind to contain state-of-the-art skutterudite-based TE modules to be installed and tested on a production vehicle. The design, which consisted of 24 skutterudite modules and 18 Bi-Te modules, attempted to optimize electrical power generation by using these two kinds of TE modules that have their peak performance temperatures matched to the actual temperature profile of the TEG during operation. The performance of TEG#3 was limited by the maximum temperature allowable for the Bi-Te TE modules located in the colder end of the TEG, resulting in the operating temperature for the skutterudite modules to be considerably below optimum. We measured the power output for (1) the complete TEG (25 Watts) and (2) an individual TE module series string (1/3 of the TEG) operated at a 60°C higher temperature (19 Watts). We estimate that under optimum operating temperature conditions, TEG#3 will generate about 235 Watts. With additional improvements in thermal and electrical interfaces, temperature homogeneity, and power conditioning, we estimate TEG#3 could deliver a power output of about 425 Watts.

Gregory Meisner

2011-08-31T23:59:59.000Z

166

Putting policy in drive : coordinating measures to reduce fuel use and greenhouse gas emissions from U.S. light-duty vehicles  

E-Print Network [OSTI]

The challenges of energy security and climate change have prompted efforts to reduce fuel use and greenhouse gas emissions in light-duty vehicles within the United States. Failures in the market for lower rates of fuel ...

Evans, Christopher W. (Christopher William)

2008-01-01T23:59:59.000Z

167

Trends in Automotive Communication Systems Nicolas Navet  

E-Print Network [OSTI]

Trends in Automotive Communication Systems Nicolas Navet 1 , Françoise Simonot-Lion 2 May 29, 2008 of a large number of automotive networks such as LIN, J1850, CAN, FlexRay, MOST, etc.. This chap- ter rst is given. Next, the current eorts of the automotive industry on middleware technologies which may

Paris-Sud XI, Université de

168

Modeling learning when alternative technologies are learning & resource constrained : cases In semiconductor & advanced automotive manufacturing  

E-Print Network [OSTI]

When making technology choice decisions, firms must consider technology costs over time. In many industries, technology costs have been shown to decrease over time due to (a) improvements in production efficiency and the ...

Rand-Nash, Thomas

2012-01-01T23:59:59.000Z

169

Investigating potential light-duty efficiency improvements through simulation of turbo-compounding and waste-heat recovery systems  

SciTech Connect (OSTI)

Modern diesel engines used in light-duty transportation applications have peak brake thermal efficiencies in the range of 40-42% for high-load operation with substantially lower efficiencies at realistic road-load conditions. Thermodynamic energy and exergy analysis reveals that the largest losses from these engines are due to combustion irreversibility and heat loss to the coolant, through the exhaust, and by direct convection and radiation to the environment. Substantial improvement in overall engine efficiency requires reducing or recovering these losses. Unfortunately, much of the heat transfer either occurs at relatively low temperatures resulting in large entropy generation (such as in the air-charge cooler), is transferred to low-exergy flow streams (such as the oil and engine coolant), or is radiated or convected directly to the environment. While there are significant opportunities for recovery from the exhaust and EGR cooler for heavy-duty applications, achieving similar benefits for light-duty applications is complicated by transient, low-load operation at typical driving conditions and competition with the turbocharger and aftertreatment system for the limited thermal resources. We have developed an organic Rankine cycle model using GT-Suite to investigate the potential for efficiency improvement through waste-heat recovery from the exhaust and EGR cooler of a light-duty diesel engine. The model is used to examine the effects of efficiency-improvement strategies such as cylinder deactivation, use of advanced materials and improved insulation to limit ambient heat loss, and turbo-compounding on the steady-state performance of the ORC system and the availability of thermal energy for downstream aftertreatment systems. Results from transient drive-cycle simulations are also presented, and we discuss strategies to address operational difficulties associated with transient drive cycles and balancing the thermal requirements of waste-heat recovery, turbocharging or turbo-compounding, and exhaust aftertreatment.

Edwards, Kevin Dean [ORNL; Wagner, Robert M [ORNL; Briggs, Thomas E [ORNL

2010-01-01T23:59:59.000Z

170

E-Print Network 3.0 - automotive technology development Sample...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Planning at the MASSACHUSETTS INSTITUTE OF TECHNOLOGY... direct investment (FDI), intra-organizational proximity, and in-house technology development performances... for the...

171

Automotive Waste Heat Conversion to Power Program  

Broader source: Energy.gov (indexed) [DOE]

or otherwise restricted information Project ID ace47lagrandeur Automotive Waste Heat Conversion to Power Program- 2009 Hydrogen Program and Vehicle Technologies Program...

172

Automotive Waste Heat Conversion to Power Program  

Broader source: Energy.gov (indexed) [DOE]

Start Date: Oct '04 Program End date: Oct '10 Percent Complete: 80% 2 Automotive Waste Heat Conversion to Power Program- Vehicle Technologies Program Annual Merit Review- June...

173

Technology development goals for automotive fuel cell power systems. Final report  

SciTech Connect (OSTI)

This report determines cost and performance requirements for Proton Exchange Membrane (PEM) fuel cell vehicles carrying pure H{sub 2} fuel, to achieve parity with internal combustion engine (ICE) vehicles. A conceptual design of a near term FCEV (fuel cell electric vehicle) is presented. Complete power system weight and cost breakdowns are presented for baseline design. Near term FCEV power system weight is 6% higher than ICE system, mid-term FCEV projected weights are 29% lower than ICE`s. There are no inherently high-cost components in FCE, and at automotive production volumes, near term FCEV cost viability is closer at hand than at first thought. PEM current vs voltage performance is presented for leading PEM manufacturers and researchers. 5 current and proposed onboard hydrogen storage techniques are critically compared: pressurized gas, cryogenic liquid, combined pressurized/cryogenic, rechargeable hydride, adsorption. Battery, capacitor, and motor/controller performance is summarized. Fuel cell power system component weight and cost densities (threshold and goal) are tabulated.

James, B.D.; Baum, G.N.; Kuhn, I.F. Jr. [Directed Technologies, Inc., Arlington, VA (United States)

1994-08-01T23:59:59.000Z

174

Vehicle Technologies Office Merit Review 2014: Understanding Protective Film Formation on Magnesium Alloys in Automotive Applications  

Broader source: Energy.gov [DOE]

Presentation given by Oak Ridge National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about understanding...

175

Vehicle Technologies Office Merit Review 2014: Validation of Material Models for Automotive Carbon Fiber Composite Structures  

Broader source: Energy.gov [DOE]

Presentation given by General Motors at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about validation of material models...

176

Vehicle Technologies Office Merit Review 2014: Development of Computer-Aided Design Tools for Automotive Batteries  

Broader source: Energy.gov [DOE]

Presentation given by CD-Adapco at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about development of computer-aided...

177

Vehicle Technologies Office Merit Review 2014: New High-Energy Electrochemical Couple for Automotive Applications  

Broader source: Energy.gov [DOE]

Presentation given by [company name] at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about a new high-energy...

178

Vehicle Technologies Office Merit Review 2014: High Energy Novel Cathode / Alloy Automotive Cell  

Broader source: Energy.gov [DOE]

Presentation given by 3M at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about high energy novel cathode / alloy...

179

Technology Roadmap Analysis 2013: Assessing Automotive Technology R&D Relevant to DOE Power Electronics Cost Targets  

Broader source: Energy.gov [DOE]

2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

180

High Efficiency Clean Combustion in Multi-Cylinder Light-Duty Engines  

Broader source: Energy.gov [DOE]

2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

Note: This page contains sample records for the topic "light-duty automotive technology" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Thermoelectric HVAC and Thermal Comfort Enablers for Light-Duty Vehicle Applications  

Broader source: Energy.gov [DOE]

2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

182

Advanced Combustion Concepts- Enabling Systems and Solutions (ACCESS) for High Efficiency Light Duty Vehicles  

Broader source: Energy.gov [DOE]

2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

183

Fuel Effects on Low Temperature Combustion in a Light-Duty Diesel...  

Broader source: Energy.gov (indexed) [DOE]

Engine Marek Tatur, Dean Tomazic, Alok Warey FEV Inc. William Cannella Chevron Energy Technology Company Project Goals To examine which fuel properties are desirable for...

184

High Efficiency Clean Combustion in Multi-Cylinder Light-Duty...  

Broader source: Energy.gov (indexed) [DOE]

Duty Engines (ACE 17) Presented by Robert Wagner 2009 DOE Hydrogen Program and Vehicle Technologies Annual Merit Review This presentation does not contain any proprietary,...

185

High Efficiency Clean Combustion in Multi-Cylinder Light-Duty...  

Broader source: Energy.gov (indexed) [DOE]

challenges and is currently focused on milestones associated with Vehicle Technologies efficiency and emissions objectives. Overview 11 *http:www1.eere.energy.gov...

186

An Analysis of Energy Savings Possible Through Advances in Automotive Tooling Technology  

SciTech Connect (OSTI)

The use of lightweight and highly formable advanced materials in automobile and truck manufacturing has the potential to save fuel. Advances in tooling technology would promote the use of these materials. This report describes an energy savings analysis performed to approximate the potential fuel savings and consequential carbon-emission reductions that would be possible because of advances in tooling in the manufacturing of, in particular, non-powertrain components of passenger cars and heavy trucks. Separate energy analyses are performed for cars and heavy trucks. Heavy trucks are considered to be Class 7 and 8 trucks (trucks rated over 26,000 lbs gross vehicle weight). A critical input to the analysis is a set of estimates of the percentage reductions in weight and drag that could be achieved by the implementation of advanced materials, as a consequence of improved tooling technology, which were obtained by surveying tooling industry experts who attended a DOE Workshop, Tooling Technology for Low-Volume Vehicle Production, held in Seattle and Detroit in October and November 2003. The analysis is also based on 2001 fuel consumption totals and on energy-audit component proportions of fuel use due to drag, rolling resistance, and braking. The consumption proportions are assumed constant over time, but an allowance is made for fleet growth. The savings for a particular component is then the product of total fuel consumption, the percentage reduction of the component, and the energy audit component proportion. Fuel savings estimates for trucks also account for weight-limited versus volume-limited operations. Energy savings are assumed to be of two types: (1) direct energy savings incurred through reduced forces that must be overcome to move the vehicle or to slow it down in braking. and (2) indirect energy savings through reductions in the required engine power, the production and transmission of which incur thermodynamic losses, internal friction, and other inefficiencies. Total savings for an energy use component are estimated by scaling up the direct savings with an approximate total-to-direct savings ratio. Market penetration for new technology vehicles is estimated from projections about scrappage. Retrofit savings are assumed negligible, but savings are also assumed to accrue with increases in the fleet size, based on economic growth forecasts. It is assumed that as vehicles in the current fleet are scrapped, they are replaced with advanced-technology vehicles. Saving estimates are based on proportions of new vehicles, rather than new-vehicle mileages. In practice, of course, scrapped vehicles are often replaced with used vehicles, and used vehicles are replaced with new vehicles. Because new vehicles are typically driven more than old, savings estimates based on count rather than mileage proportions tend to be biased down (i.e., conservative). Savings are expressed in terms of gallons of fuel saved, metric tons of CO2 emissions reductions, and percentages relative to 2001 levels of fuel and CO2. The sensitivity of the savings projections to inputs such as energy-audit proportions of fuel consumed for rolling resistance, drag, braking, etc. is assessed by considering different scenarios. Though based on many approximations, the estimates approximate the potential energy savings possible because of improvements in tooling. For heavy trucks, annual diesel savings of 2.4-6.8 percent, and cumulative savings on the order of 54-154 percent, of 2001 consumption could accrue by 2050. By 2050, annual gasoline savings of 2.8-12 percent, and cumulative savings on the order of 83-350 percent of 2001 consumption could accrue for cars.

Rick Schmoyer, RLS

2004-12-03T23:59:59.000Z

187

A Review of Embedded Automotive Protocols Nicolas Navet  

E-Print Network [OSTI]

A Review of Embedded Automotive Protocols Nicolas Navet 1 , Françoise Simonot-Lion 2 April 14, 2008 of a large number of automotive networks such as LIN, J1850, CAN, FlexRay, MOST, etc.. This pa- per rst is given. Next, the current eorts of the automotive industry on middleware technologies which may

Navet, Nicolas

188

INNOVATION IN AUTOMOTIVE TELEMATICS SERVICES: CHARACTERISTICS OF THE FIELD AND  

E-Print Network [OSTI]

INNOVATION IN AUTOMOTIVE TELEMATICS SERVICES: CHARACTERISTICS OF THE FIELD AND MANAGEMENT is a radical innovation for automotive industry. Therefore traditional design models, such as heavyweight, published in "Int. J. of Automotive Technology et Management 3, 1/2 (2003) 144-159" #12;2 communication

Paris-Sud XI, Université de

189

Technologies and policies for controlling greenhouse gas emissions from the U. S. automobile and light truck fleet.  

SciTech Connect (OSTI)

The message conveyed by the above discussion is that there are no shortages of technologies available to improve the fuel efficiency of the U.S. fleet of autos and light trucks. It clearly is technically feasible to improve greatly the fuel economy of the average new light-duty vehicle. Many of these technologies require tradeoffs, however, that manufacturers are unwilling or (as yet) unable to make in today's market and regulatory environment. These tradeoffs involve higher costs (that might be reduced substantially over time with learning and economies of scale), technical risk and added complexity, emissions concerns (especially for direct injection engines, and especially with respect to diesel engine technology), and customer acceptance issues. Even with current low U.S. oil prices, however, many of these technologies may find their way into the U.S. market, or increase their market share, as a consequence of their penetration of European and Japanese markets with their high gasoline prices. Automotive technology is ''fungible'' that is, it can be easily transported from one market to another. Nevertheless, it probably is unrealistic to expect substantial increases in the average fuel economy of the U.S. light-duty fleet without significant changes in the market. Without such changes, the technologies that do penetrate the U.S. market are more likely to be used to increase acceleration performance or vehicle structures or enable four wheel drive to be included in vehicles without a net mpg penalty. In other words, technology by itself is not likely to be enough to raise fleet fuel economy levels - this was the conclusion of the 1995 Ailomar Conference on Energy and Sustainable Transportation, organized by the Transportation Research Board's Committees on Energy and Alternative Fuels, and it is one I share.

Plotkin, S.

1999-01-01T23:59:59.000Z

190

Light-Duty Drive Cycle Simulations of Diesel Engine-Out Exhaust Properties for an RCCI-Enabled Vehicle  

SciTech Connect (OSTI)

In-cylinder blending of gasoline and diesel fuels to achieve low-temperature reactivity controlled compression ignition (RCCI) can reduce NOx and PM emissions while maintaining or improving brake thermal efficiency compared to conventional diesel combustion (CDC). Moreover, the dual-fueling RCCI is able to achieve these benefits by tailoring combustion reactivity over a wider range of engine operation than is possible with a single fuel. However, the currently demonstrated range of stable RCCI combustion just covers a portion of the engine speed-load range required in several light-duty drive cycles. This means that engines must switch from RCCI to CDC when speed and load fall outside of the stable RCCI range. In this study we investigated the impact of RCCI as it has recently been demonstrated on practical engine-out exhaust temperature and emissions by simulating a multi-mode RCCI-enabled vehicle operating over two urban and two highway driving cycles. To implement our simulations, we employed experimental engine maps for a multi-mode RCCI/CDC engine combined with a standard mid-size, automatic transmission, passenger vehicle in the Autonomie vehicle simulation platform. Our results include both detailed transient and cycle-averaged engine exhaust temperature and emissions for each case, and we note the potential implications of the modified exhaust properties on catalytic emissions control and utilization of waste heat recovery on future RCCI-enabled vehicles.

Gao, Zhiming [ORNL] [ORNL; Curran, Scott [ORNL] [ORNL; Daw, C Stuart [ORNL] [ORNL; Wagner, Robert M [ORNL] [ORNL

2013-01-01T23:59:59.000Z

191

WORKSHOP REPORT:Light-Duty Vehicles Technical Requirements and Gaps for Lightweight and Propulsion Materials  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy Usage »of| Department of EnergyDepartment of5Department ofVEHICLES TECHNOLOGIES

192

Overview oi the DOE High Efficiency Engine Technologies R&D  

Broader source: Energy.gov (indexed) [DOE]

Class 8 Trucks (SuperTruck) and Advanced Technology Powertrains For Light-Duty Vehicles (ATP-LD) *Baseline is state-of-the-art port-fuel injected gasoline engine Vehicle...

193

Remote Viewing End Effectors for Light Duty Utility Arm Robot (U)  

SciTech Connect (OSTI)

The Robotics Development Groups at the Savannah River Site (SRS) and at the Hanford site have developed remote video and photography systems for deployment in underground radioactive-waste storage tanks at the Department of Energy (DOE) sites as a part of the Office of Science and Technology (OST) program within DOE. Viewing and documenting the tank interiors and their associated annular spaces is an extremely valuable tool in characterizing their condition and contents and in controlling their remediation. Several specialized video/photography systems and robotic End Effectors have been fabricated that provide remote viewing and lighting. All are remotely deployable into and out of the tank, with all viewing functions remotely operated. Positioning all control components away from the facility prevents the potential for personnel exposure to radiation and contamination. Only the remote video systems are discussed in this paper.

Heckendorn, F.M. [Westinghouse Savannah River Company, AIKEN, SC (United States); Robinson, C.W.; Haynes, H.B.; Anderosn, E.K.; Pardini, A.F. [Westinghouse Hanford Co., Richland, WA (United States)

1996-11-04T23:59:59.000Z

194

Final report for measurement of primary particulate matter emissions from light-duty motor vehicles  

SciTech Connect (OSTI)

This report describes the results of a particulate emissions study conducted at the University of California, Riverside, College of Engineering-Center for Environmental Research and Technology (CE-CERT) from September of 1996 to August of 1997. The goal of this program was to expand the database of particulate emissions measurements from motor vehicles to include larger numbers of representative in-use vehicles. This work was co-sponsored by the Coordinating Research Council (CRC), the South Coast Air Quality Management District (SCAQMD), and the National Renewable Energy Laboratory (NREL) and was part of a larger study of particulate emissions being conducted in several states under sponsorship by CRC. For this work, FTP particulate mass emission rates were determined for gasoline and diesel vehicles, along with the fractions of particulates below 2.5 and 10 microns aerodynamic diameter. A total of 129 gasoline-fueled vehicles and 19 diesel-fueled vehicles were tested as part of the program.

Norbeck, J. M.; Durbin, T. D.; Truex, T. J.

1998-12-31T23:59:59.000Z

195

DRIVE CYCLE EFFICIENCY AND EMISSIONS ESTIMATES FOR REACTIVITY CONTROLLED COMPRESSION IGNITION IN A MULTI-CYLINDER LIGHT-DUTY DIESEL ENGINE  

SciTech Connect (OSTI)

In-cylinder blending of gasoline and diesel to achieve Reactivity Controlled Compression Ignition (RCCI) has been shown to reduce NOx and PM emissions while maintaining or improving brake thermal efficiency as compared to conventional diesel combustion (CDC). The RCCI concept has an advantage over many advanced combustion strategies in that by varying both the percent of premixed gasoline and EGR rate, stable combustion can be extended over more of the light-duty drive cycle load range. Changing the percent premixed gasoline changes the fuel reactivity stratification in the cylinder providing further control of combustion phasing and pressure rise rate than the use of EGR alone. This paper examines the combustion and emissions performance of light-duty diesel engine using direct injected diesel fuel and port injected gasoline to carry out RCCI for steady-state engine conditions which are consistent with a light-duty drive cycle. A GM 1.9L four-cylinder engine with the stock compression ratio of 17.5:1, common rail diesel injection system, high-pressure EGR system and variable geometry turbocharger was modified to allow for port fuel injection with gasoline. Engine-out emissions, engine performance and combustion behavior for RCCI operation is compared against both CDC and a premixed charge compression ignition (PCCI) strategy which relies on high levels of EGR dilution. The effect of percent of premixed gasoline, EGR rate, boost level, intake mixture temperature, combustion phasing and pressure rise rate is investigated for RCCI combustion for the light-duty modal points. Engine-out emissions of NOx and PM were found to be considerably lower for RCCI operation as compared to CDC and PCCI, while HC and CO emissions were higher. Brake thermal efficiency was similar or higher for many of the modal conditions for RCCI operation. The emissions results are used to estimate hot-start FTP-75 emissions levels with RCCI and are compared against CDC and PCCI modes.

Curran, Scott [ORNL; Briggs, Thomas E [ORNL; Cho, Kukwon [ORNL; Wagner, Robert M [ORNL

2011-01-01T23:59:59.000Z

196

Investigating potential efficiency improvement for light-duty transportation applications through simulation of an organic Rankine cycle for waste-heat recovery  

SciTech Connect (OSTI)

Modern diesel engines used in light-duty transportation applications have peak brake thermal efficiencies in the range of 40-42% for high-load operation with substantially lower efficiencies at realistic road-load conditions. Thermodynamic energy and exergy analysis reveals that the largest losses from these engines are due to heat loss and combustion irreversibility. Substantial improvement in overall engine efficiency requires reducing or recovering these losses. Unfortunately, much of the heat transfer either occurs at relatively low temperatures resulting in large entropy generation (such as in the air-charge cooler), is transferred to low-exergy flow streams (such as the oil and engine coolant), or is radiated or convected directly to the environment. While there are significant opportunities for recovery from the exhaust and EGR cooler for heavy-duty applications, the potential benefits of such a strategy for light-duty applications are unknown due to transient operation, low-load operation at typical driving conditions, and the added mass of the system. We have developed an organic Rankine cycle model using GT-Suite to investigate the potential for efficiency improvement through waste-heat recovery from the exhaust and EGR cooler of a light-duty diesel engine. Results from steady-state and drive-cycle simulations are presented, and we discuss strategies to address operational difficulties associated with transient drive cycles and competition between waste-heat recovery systems, turbochargers, aftertreatment devices, and other systems for the limited thermal resources.

Edwards, Kevin Dean [ORNL; Wagner, Robert M [ORNL

2010-01-01T23:59:59.000Z

197

Automotive Fuel Efficiency Improvement via Exhaust Gas Waste...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

of thermoelectric technology beyond seat heating and cooling and in doing so reduce CO2 emissions and conserve energy. lagrandeur.pdf More Documents & Publications Automotive...

198

New Weld Process Increases Efficiency of Automotive Manufacturing...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Technologies Office (VTO) researchers at ORNL developed a non-destructive, infrared thermography-based system for evaluating weld quality. The new process enables automotive...

199

AMD 405: Improved Automotive Suspension Components Cast with...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Maryland. merit08mccarty5.pdf More Documents & Publications AMD 601 High Integrity -Magnesium Automotive Components (HI-MAC) Low Cost PM Technology for Particle Reinforced...

200

Development of mobile, on-site engine coolant recycling utilizing reverse-osmosis technology  

SciTech Connect (OSTI)

This paper presents the history of the development of self-contained, mobile, high-volume, engine coolant recycling by reverse osmosis (R/O). It explains the motivations, created by government regulatory agencies, to minimize the liability of waste generators who produce waste engine coolant by providing an engine coolant recycling service at the customer`s location. Recycling the used engine coolant at the point of origin minimizes the generators` exposure to documentation requirements, liability, and financial burdens by greatly reducing the volume of used coolant that must be hauled from the generator`s property. It describes the inherent difficulties of recycling such a highly contaminated, inconsistent input stream, such as used engine coolant, by reverse osmosis. The paper reports how the difficulties were addressed, and documents the state of the art in mobile R/O technology. Reverse osmosis provides a purified intermediate fluid that is reinhibited for use in automotive cooling systems. The paper offers a review of experiences in various automotive applications, including light-duty, medium-duty and heavy-duty vehicles operating on many types of fuel. The authors conclude that mobile embodiments of R/O coolant recycling technology provide finished coolants that perform equivalently to new coolants as demonstrated by their ability to protect vehicles from freezing, corrosion damage, and other cooling system related problems.

Kughn, W. [Toxguard Fluid Technologies, Irvine, CA (United States). CEO; Eaton, E.R. [Penray Companies, Inc., Elk Grove Village, IL (United States)

1999-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "light-duty automotive technology" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Commercializing light-duty plug-in/plug-out hydrogen-fuel-cell vehicles: “Mobile Electricity” technologies and opportunities  

E-Print Network [OSTI]

House” by Tron Architecture conceptually This is relative to what might be used in a plug-in hybrid or battery

Williams, Brett D; Kurani, Kenneth S

2007-01-01T23:59:59.000Z

202

Commercializing light-duty plug-in/plug-out hydrogen-fuel-cell vehicles: “Mobile Electricity” technologies and opportunities  

E-Print Network [OSTI]

Table 2-5 presents the cost per kWh produced by variouselectricity rates on a cost per kWh basis only with someHybrid battery module cost per kWh required for lifecycle

Williams, Brett D; Kurani, Kenneth S

2007-01-01T23:59:59.000Z

203

Commercializing light-duty plug-in/plug-out hydrogen-fuel-cell vehicles: “Mobile Electricity” technologies and opportunities  

E-Print Network [OSTI]

into utility-friendly and distributed-generation-hardware-utility-side-of-the-meter interactions and, ultimately, vehicular distributed generation

Williams, Brett D; Kurani, Kenneth S

2007-01-01T23:59:59.000Z

204

Commercializing light-duty plug-in/plug-out hydrogen-fuel-cell vehicles: “Mobile Electricity” technologies and opportunities  

E-Print Network [OSTI]

power, and heat generation), and grid-side benefits (peakpre-) heat/cool, etc. ); home recharging using off-peak grid

Williams, Brett D; Kurani, Kenneth S

2007-01-01T23:59:59.000Z

205

Commercializing light-duty plug-in/plug-out hydrogen-fuel-cell vehicles: “Mobile Electricity” technologies and opportunities  

E-Print Network [OSTI]

modes, allowing, say, fuel- cell costs to slide down ancurve that plots fuel-cell cost in dollars per kilowatt2002. ) production, fuel-cell cost is assumed to fall by

Williams, Brett D; Kurani, Kenneth S

2007-01-01T23:59:59.000Z

206

Advanced Thermoelectric Materials and Generator Technology for...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Thermoelectric Materials and Generator Technology for Automotive Waste Heat at GM Advanced Thermoelectric Materials and Generator Technology for Automotive Waste Heat at GM...

207

Transportation Perspectives on Automotive Cyber Physical System: Integrating Hardware-in-the-Loop, Software-in-the-Loop and Human-in-the-Loop Simulations  

E-Print Network [OSTI]

1 Transportation Perspectives on Automotive Cyber Physical System: Integrating Hardware and development environment to evaluate automotive cyber physical system (CPS) as well as its components foundation of the automotive CPS for developing and testing vehicular networking and sensing technologies

Rajkumar, Ragunathan "Raj"

208

Thermoelectrics Partnership: Automotive Thermoelectric Modules...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Solution for Automotive Thermoelectric Modules Application Thermoelectrics Partnership: Automotive Thermoelectric Modules with Scalable Thermo- and Electro-Mechanical Interfaces...

209

Thermoelectrics Partnership: Automotive Thermoelectric Modules...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Partnership: Automotive Thermoelectric Modules with Scalable Thermo- and Electro-Mechanical Interfaces Novel Nanostructured Interface Solution for Automotive Thermoelectric...

210

Automotive vehicle sensors  

SciTech Connect (OSTI)

This report is an introduction to the field of automotive vehicle sensors. It contains a prototype data base for companies working in automotive vehicle sensors, as well as a prototype data base for automotive vehicle sensors. A market analysis is also included.

Sheen, S.H.; Raptis, A.C.; Moscynski, M.J.

1995-09-01T23:59:59.000Z

211

Allgemeine Testverfahren Verfahren im Automotive  

E-Print Network [OSTI]

Allgemeine Testverfahren Verfahren im Automotive Hauptseminar Automotive Software Engineering Verfahren im Automotive ¨Uberblick 1 Allgemeine Testverfahren Statischer Test Dynamischer Test 2 Verfahren im Automotive X­in­the­loop Rapid Prototyping #12;Allgemeine Testverfahren Verfahren im Automotive

Cengarle, María Victoria

212

Automotive Component Product Development Enhancement  

E-Print Network [OSTI]

Automotive Component Product Development Enhancement Through Multi-Attribute System Design Engineering Systems Division #12;Automotive Component Product Development Enhancement Through Multi of Science in Engineering and Management February 2005 ABSTRACT Automotive industry is facing a tough period

213

The California greenhouse gas initiative and its implications to the automotive industry  

SciTech Connect (OSTI)

CAR undertook this investigation to better understand the costs and challenges of a local (state) regulation necessitating the implementation of alternative or advanced powertrain technology. CAR will attempt to add insight into the challenges that local regulations present to the automotive industry, and to contribute further to the discussion of how advanced powertrain technology may be used to meet such regulation. Any local law that (directly or indirectly) affects light duty motor vehicle fuel economy creates what in effect is a specialty market for powertrain technology. As such these small markets present significant challenges for automotive manufacturers. First, a small market with unique standards presents significant challenges to an industry that has sustained growth by relying on large volumes to achieve scale economies and deliver products at a cost acceptable to the consumer. Further, the challenges of the additional technology make it likely that any powertrain capable of meeting the stringent emissions standards will include costly additional components, and thus will be more costly to manufacture. It is likely that manufacturers would consider the following actions as steps to deliver products to meet the pending California regulatory requirements anticipated as a result of prior California legislation: (1) Substituting more fuel efficient vehicles: Bring in more efficient vehicles from global operations, while likely dropping existing domestic products. (2) Substituting powertrains: Add existing downsized engines (i.e. turbocharged versions, etc.) into California market-bound vehicles. (3) Powertrain enhancements: Add technology to current engine and transmission offerings to improve efficiency and reduce emissions. (4) Incorporating alternative powertrains into existing vehicle platforms: Develop a hybrid or other type of powertrain for an existing vehicle. (5) New powertrains and new platforms: Develop vehicles specifically intended to incorporate new powertrain technologies, materials and/or design (e.g. the General Motors EV1 or the Toyota Prius). These five actions represent the gamut from the least complicated solution to the most complex. They also generally represent the least expensive response to the most expensive. It is possible that the least expensive responses may be least likely to meet market demands while achieving required GHG emission limits. At the same time, the most expensive option may produce a vehicle that satisfies the GHG reduction requirements and meets some consumer requirements, but is far too costly to manufacture and sell profitably. The response of a manufacturer would certainly have to take market size, consumer acceptance, technology implication and cost, as well as internal capacities and constraints, into consideration. It is important to understand that individual companies may respond differently in the short term. However, it is probable that there would be a more consistent industry-wide response in the longer term. Options 1 and 2 present the simplest responses. A company may reach into its global portfolio to deliver vehicles that are more fuel-efficient. These vehicles are usually much smaller and significantly less powerful than current U.S. offerings. Industry respondents indicated that such a strategy may be possible but would likely be met with less than positive reaction from the buying public. A general estimate for the cost to homologize a vehicle--that is, to prepare an existing vehicle for entry into the United States provided all business conditions were met (reasonable product, capacity availability, etc.), would be approximately $50 million. Assuming an estimated cost for homologation to meet U.S. standards of $50 million and a 20,000 vehicle per year sales volume in California, the company would then incur a $2,500 per-vehicle cost to bring them into the market. A manufacturer may also choose to incorporate a more efficient powertrain into a vehicle already sold in the market. The costs associated with such a strategy would include reengineering

Smith, B. C.; Miller, R. T.; Center for Automotive Research

2006-05-31T23:59:59.000Z

214

Vehicle Technologies Office Merit Review 2014: Efficient Safety and Degradation Modeling of Automotive Li-ion Cells and Pack  

Broader source: Energy.gov [DOE]

Presentation given by EC Power at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about efficient safety and degradation...

215

Vehicle Technologies Office Merit Review 2014: ICME Guided Development of Advanced Cast Aluminum Alloys For Automotive Engine Applications  

Broader source: Energy.gov [DOE]

Presentation given by Ford at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about ICME guided development of advanced cast...

216

The Effects of Different Input Excitation on the Dynamic Characterization of an Automotive Shock Absorber  

E-Print Network [OSTI]

of an Automotive Shock Absorber Darin Kowalski, Mohan D. Rao Michigan Technological University, Houghton MI 49931 49931 Dave Griffiths Ford Motor Company, Dearborn MI 48121 Copyright © 2001 Society of Automotive Engineers, Inc. ABSTRACT This paper deals with the dynamic characterization of an automotive shock absorber

Rao, Mohan

217

Model-based Control of Automotive Engines and After-treatment Devices  

E-Print Network [OSTI]

Model-based Control of Automotive Engines and After-treatment Devices N. Petit MINES Paris on automotive vehicle emissions have steadily increased over the last decades, embedded control technology relating to the field of automotive engines. It exposes several milestones that have been identified

218

Effect of E85 on RCCI Performance and Emissions on a Multi-Cylinder Light-Duty Diesel Engine - SAE World Congress  

SciTech Connect (OSTI)

This paper investigates the effect of E85 on load expansion and FTP modal point emissions indices under reactivity controlled compression ignition (RCCI) operation on a light-duty multi-cylinder diesel engine. A General Motors (GM) 1.9L four-cylinder diesel engine with the stock compression ratio of 17.5:1, common rail diesel injection system, high-pressure exhaust gas recirculation (EGR) system and variable geometry turbocharger was modified to allow for port fuel injection with gasoline or E85. Controlling the fuel reactivity in-cylinder by the adjustment of the ratio of premixed low-reactivity fuel (gasoline or E85) to direct injected high reactivity fuel (diesel fuel) has been shown to extend the operating range of high-efficiency clean combustion (HECC) compared to the use of a single fuel alone as in homogeneous charge compression ignition (HCCI) or premixed charge compression ignition (PCCI). The effect of E85 on the Ad-hoc federal test procedure (FTP) modal points is explored along with the effect of load expansion through the light-duty diesel speed operating range. The Ad-hoc FTP modal points of 1500 rpm, 1.0bar brake mean effective pressure (BMEP); 1500rpm, 2.6bar BMEP; 2000rpm, 2.0bar BMEP; 2300rpm, 4.2bar BMEP; and 2600rpm, 8.8bar BMEP were explored. Previous results with 96 RON unleaded test gasoline (UTG-96) and ultra-low sulfur diesel (ULSD) showed that with stock hardware, the 2600rpm, 8.8bar BMEP modal point was not obtainable due to excessive cylinder pressure rise rate and unstable combustion both with and without the use of EGR. Brake thermal efficiency and emissions performance of RCCI operation with E85 and ULSD is explored and compared against conventional diesel combustion (CDC) and RCCI operation with UTG 96 and ULSD.

Curran, Scott [ORNL; Hanson, Reed M [ORNL; Wagner, Robert M [ORNL

2012-01-01T23:59:59.000Z

219

E-Print Network 3.0 - afv automotive technician Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

New automotive technologies could also be a source of additional... . 12;Alternative Fuel Vehicles (AFV) are vehicles that use the non-petroleum based ... Source: North...

220

Thermoelectric-Generator-Based DC-DC Conversion Network for Automotive Applications.  

E-Print Network [OSTI]

?? As waste heat recovering techniques, especially thermoelectric generator (TEG technologies, develop during recent years?its utilization in automotive industry is attempted from many aspects. Previous… (more)

Li, Molan

2011-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "light-duty automotive technology" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Interim Update: Global Automotive Power Electronics R&D Relevant...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Automotive Power Electronics R&D Relevant To DOE 2015 and 2020 Cost Targets 2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and...

222

City Browser: Developing a Conversational Automotive HMI  

E-Print Network [OSTI]

seanyliu@mit.edu Shannon Roberts1 MIT ­ AgeLab scr09@mit.edu Jeff Zabel2 BMW Technology Office jeff.zabel@bmw,4], in an automotive environment safety is a key consideration and device operation must not negatively impact

223

Status and Trend of Automotive Power Packaging  

SciTech Connect (OSTI)

Comprehensive requirements in aspects of cost, reliability, efficiency, form factor, weight, and volume for power electronics modules in modern electric drive vehicles have driven the development of automotive power packaging technology intensively. Innovation in materials, interconnections, and processing techniques is leading to enormous improvements in power modules. In this paper, the technical development of and trends in power module packaging are evaluated by examining technical details with examples of industrial products. The issues and development directions for future automotive power module packaging are also discussed.

Liang, Zhenxian [ORNL

2012-01-01T23:59:59.000Z

224

Vehicle Technologies Office Merit Review 2014: Validation of...  

Broader source: Energy.gov (indexed) [DOE]

Validation of Material Models for Automotive Carbon Fiber Composite Structures Vehicle Technologies Office Merit Review 2014: Validation of Material Models for Automotive Carbon...

225

Vehicle Technologies Office Merit Review 2014: Development of...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Development of Computer-Aided Design Tools for Automotive Batteries Vehicle Technologies Office Merit Review 2014: Development of Computer-Aided Design Tools for Automotive...

226

2008 Annual Merit Review Results Summary - 16. Technology Integration...  

Broader source: Energy.gov (indexed) [DOE]

DOE established the Graduate Automotive Technology Education (GATE) Program to train a future workforce of automotive engineering professionals knowledgeable about, and...

227

Skutterudite Thermoelectric Generator For Automotive Waste Heat...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Skutterudite Thermoelectric Generator For Automotive Waste Heat Recovery Skutterudite Thermoelectric Generator For Automotive Waste Heat Recovery Skutterudite TE modules were...

228

Engineering and Materials for Automotive Thermoelectric Applications...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

and Materials for Automotive Thermoelectric Applications Engineering and Materials for Automotive Thermoelectric Applications Design and optimization of TE exhaust generator,...

229

Novel Nanostructured Interface Solution for Automotive Thermoelectric...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Partnership: Automotive Thermoelectric Modules with Scalable Thermo- and Electro-Mechanical Interfaces Thermoelectrics Partnership: Automotive Thermoelectric Modules with...

230

Simulating the Impact of Premixed Charge Compression Ignition on Light-Duty Diesel Fuel Economy and Emissions of Particulates and NOx  

SciTech Connect (OSTI)

We utilize the Powertrain Systems Analysis Toolkit (PSAT) combined with transient engine and aftertreatment component models implemented in Matlab/Simulink to simulate the effect of premixed charge compression ignition (PCCI) on the fuel economy and emissions of light-duty diesel-powered conventional and hybrid electric vehicles (HEVs). Our simulated engine is capable of both conventional diesel combustion (CDC) and premixed charge compression ignition (PCCI) over real transient driving cycles. Our simulated aftertreatment train consists of a diesel oxidation catalyst (DOC), lean NOx trap (LNT), and catalyzed diesel particulate filter (DPF). The results demonstrate that, in the simulated conventional vehicle, PCCI can significantly reduce fuel consumption and emissions by reducing the need for LNT and DPF regeneration. However, the opportunity for PCCI operation in the simulated HEV is limited because the engine typically experiences higher loads and multiple stop-start transients that are outside the allowable PCCI operating range. Thus developing ways of extending the PCCI operating range combined with improved control strategies for engine and emissions control management will be especially important for realizing the potential benefits of PCCI in HEVs.

Gao, Zhiming [ORNL; Daw, C Stuart [ORNL; Wagner, Robert M [ORNL; Edwards, Kevin Dean [ORNL; Smith, David E [ORNL

2013-01-01T23:59:59.000Z

231

Lightweight Steel Solutions for Automotive Industry  

SciTech Connect (OSTI)

Recently, improvement in fuel efficiency and safety has become the biggest issue in worldwide automotive industry. Although the regulation of environment and safety has been tightened up more and more, the majority of vehicle bodies are still manufactured from stamped steel components. This means that the optimized steel solutions enable to demonstrate its ability to reduce body weight with high crashworthiness performance instead of expensive light weight materials such as Al, Mg and composites. To provide the innovative steel solutions for automotive industry, POSCO has developed AHSS and its application technologies, which is directly connected to EVI activities. EVI is a technical cooperation program with customer covering all stages of new car project from design to mass production. Integrated light weight solutions through new forming technologies such as TWB, hydroforming and HPF are continuously developed and provided for EVI activities. This paper will discuss the detailed status of these technologies especially light weight steel solutions based on innovative technologies.

Lee, Hong Woo; Kim, Gyosung; Park, Sung Ho [Technical Research Laboratories, POSCO, 699, Gumho-dong, Gwangyang-si, Jeonnam, 545-090 (Korea, Republic of)

2010-06-15T23:59:59.000Z

232

Why Process-Orientation is Scarce: An Empirical Study of Process-oriented Information Systems in the Automotive Industry  

E-Print Network [OSTI]

in the Automotive Industry Bela Mutschler, Johannes Bumiller DaimlerChrysler Research & Technology P.O. Box 2360 the reasons for this drawback, we con- ducted a case study in the automotive domain and a survey among 79 in this context concerns the alignment of information systems (IS) and business processes [6]. In the automotive

Ulm, Universität

233

Automotive Cyber Physical Systems in the Context of Human Mobility Daniel Work, Alexandre Bayen, and Quinn Jacobson  

E-Print Network [OSTI]

Automotive Cyber Physical Systems in the Context of Human Mobility Daniel Work, Alexandre Bayen with other technologies. In the larger context of human mobility, the automotive CPS must become more open in the surrounding physical environment. II. FUNDAMENTAL LIMITATIONS OF THE EXISTING AUTOMOTIVE CYBER PHYSICAL SYSTEM

234

Quantifying the Effects of Idle-Stop Systems on Fuel Economy in Light-Duty Passenger Vehicles  

SciTech Connect (OSTI)

Vehicles equipped with idle-stop (IS) systems are capable of engine shut down when the vehicle is stopped and rapid engine re-start for the vehicle launch. This capability reduces fuel consumption and emissions during periods when the engine is not being utilized to provide propulsion or to power accessories. IS systems are a low-cost and fast-growing technology in the industry-wide pursuit of increased vehicle efficiency, possibly becoming standard features in European vehicles in the near future. In contrast, currently there are only three non-hybrid vehicle models for sale in North America with IS systems and these models are distinctly low-volume models. As part of the United States Department of Energy’s Advanced Vehicle Testing Activity, ECOtality North America has tested the real-world effect of IS systems on fuel consumption in three vehicle models imported from Europe. These vehicles were chosen to represent three types of systems: (1) spark ignition with 12-V belt alternator starter; (2) compression ignition with 12-V belt alternator starter; and (3) direct-injection spark ignition, with 12-V belt alternator starter/combustion restart. The vehicles have undergone both dynamometer and on-road testing; the test results show somewhat conflicting data. The laboratory data and the portion of the on-road data in which driving is conducted on a prescribed route with trained drivers produced significant fuel economy improvement. However, the fleet data do not corroborate improvement, even though the data show significant engine-off time. It is possible that the effects of the varying driving styles and routes in the fleet testing overshadowed the fuel economy improvements. More testing with the same driver over routes that are similar with the IS system-enabled and disabled is recommended. There is anecdotal evidence that current Environmental Protection Agency fuel economy test procedures do not capture the fuel economy gains that IS systems produce in real-world driving. The program test results provide information on the veracity of these claims.

Jeff Wishart; Matthew Shirk

2012-12-01T23:59:59.000Z

235

Experimental Investigation of Fuel-Reactivity Controlled Compression Ignition (RCCI) Combustion Mode in a Multi-Cylinder, Light-Duty Diesel Engine  

SciTech Connect (OSTI)

An experimental study was performed to provide the combustion and emission characteristics resulting from fuel-reactivity controlled compression ignition (RCCI) combustion mode utilizing dual-fuel approach in a light-duty, multi-cylinder diesel engine. In-cylinder fuel blending using port fuel injection of gasoline before intake valve opening (IVO) and early-cycle, direct injection of diesel fuel was used as the charge preparation and fuel blending strategy. In order to achieve the desired auto-ignition quality through the stratification of the fuel-air equivalence ratio ( ), blends of commercially available gasoline and diesel fuel were used. Engine experiments were performed at an engine speed of 2300rpm and an engine load of 4.3bar brake mean effective pressure (BMEP). It was found that significant reduction in both nitrogen oxide (NOx) and particulate matter (PM) was realized successfully through the RCCI combustion mode even without applying exhaust gas recirculation (EGR). However, high carbon monoxide (CO) and hydrocarbon (HC) emissions were observed. The low combustion gas temperature during the expansion and exhaust processes seemed to be the dominant source of high CO emissions in the RCCI combustion mode. The high HC emissions during the RCCI combustion mode could be due to the increased combustion quenching layer thickness as well as the -stratification at the periphery of the combustion chamber. The slightly higher brake thermal efficiency (BTE) of the RCCI combustion mode was observed than the other combustion modes, such as the conventional diesel combustion (CDC) mode, and single-fuel, premixed charge compression ignition (PCCI) combustion mode. The parametric study of the RCCI combustion mode revealed that the combustion phasing and/or the peak cylinder pressure rise rate of the RCCI combustion mode could be controlled by several physical parameters premixed ratio (rp), intake swirl intensity, and start of injection (SOI) timing of directly injected fuel unlike other low temperature combustion (LTC) strategies.

Cho, Kukwon [ORNL] [ORNL; Curran, Scott [ORNL] [ORNL; Prikhodko, Vitaly Y [ORNL] [ORNL; Sluder, Scott [ORNL] [ORNL; Parks, II, James E [ORNL; Wagner, Robert M [ORNL] [ORNL

2011-01-01T23:59:59.000Z

236

Impacts of ethanol fuel level on emissions of regulated and unregulated pollutants from a fleet of gasoline light-duty vehicles  

SciTech Connect (OSTI)

The study investigated the impact of ethanol blends on criteria emissions (THC, NMHC, CO, NOx), greenhouse gas (CO2), and a suite of unregulated pollutants in a fleet of gasoline-powered light-duty vehicles. The vehicles ranged in model year from 1984 to 2007 and included one Flexible Fuel Vehicle (FFV). Emission and fuel consumption measurements were performed in duplicate or triplicate over the Federal Test Procedure (FTP) driving cycle using a chassis dynamometer for four fuels in each of seven vehicles. The test fuels included a CARB phase 2 certification fuel with 11% MTBE content, a CARB phase 3 certification fuel with a 5.7% ethanol content, and E10, E20, E50, and E85 fuels. In most cases, THC and NMHC emissions were lower with the ethanol blends, while the use of E85 resulted in increases of THC and NMHC for the FFV. CO emissions were lower with ethanol blends for all vehicles and significantly decreased for earlier model vehicles. Results for NOx emissions were mixed, with some older vehicles showing increases with increasing ethanol level, while other vehicles showed either no impact or a slight, but not statistically significant, decrease. CO2 emissions did not show any significant trends. Fuel economy showed decreasing trends with increasing ethanol content in later model vehicles. There was also a consistent trend of increasing acetaldehyde emissions with increasing ethanol level, but other carbonyls did not show strong trends. The use of E85 resulted in significantly higher formaldehyde and acetaldehyde emissions than the specification fuels or other ethanol blends. BTEX and 1,3-butadiene emissions were lower with ethanol blends compared to the CARB 2 fuel, and were almost undetectable from the E85 fuel. The largest contribution to total carbonyls and other toxics was during the cold-start phase of FTP.

Karavalakis, Georgios; Durbin, Thomas; Shrivastava, ManishKumar B.; Zheng, Zhongqing; Villella, Phillip M.; Jung, Hee-Jung

2012-03-30T23:59:59.000Z

237

In-Cylinder Fuel Blending of Gasoline/Diesel for Improved Efficiency and Lowest Possible Emissions on a Multi-Cylinder Light-Duty Diesel Engine  

SciTech Connect (OSTI)

In-cylinder fuel blending of gasoline/diesel fuel is investigated on a multi-cylinder light-duty diesel engine as a potential strategy to control in-cylinder fuel reactivity for improved efficiency and lowest possible emissions. This approach was developed and demonstrated at the University of Wisconsin through modeling and single-cylinder engine experiments. The objective of this study is to better understand the potential and challenges of this method on a multi-cylinder engine. More specifically, the effect of cylinder-to-cylinder imbalances, heat rejection, and in-cylinder charge motion as well as the potential limitations imposed by real-world turbo-machinery were investigated on a 1.9-liter four-cylinder engine. This investigation focused on one engine condition, 2300 rpm, 4.2 bar brake mean effective pressure (BMEP). Gasoline was introduced with a port-fuel-injection system. Parameter sweeps included gasoline-to-diesel fuel ratio, intake air mixture temperature, in-cylinder swirl number, and diesel start-of-injection phasing. In addition, engine parameters were trimmed for each cylinder to balance the combustion process for maximum efficiency and lowest emissions. An important observation was the strong influence of intake charge temperature on cylinder pressure rise rate. Experiments were able to show increased thermal efficiency along with dramatic decreases in oxides of nitrogen (NOX) and particulate matter (PM). However, indicated thermal efficiency for the multi-cylinder experiments were less than expected based on modeling and single-cylinder results. The lower indicated thermal efficiency is believed to be due increased heat transfer as compared to the model predictions and suggest a need for improved cylinder-to-cylinder control and increased heat transfer control.

Curran, Scott [ORNL] [ORNL; Prikhodko, Vitaly Y [ORNL] [ORNL; Wagner, Robert M [ORNL] [ORNL; Parks, II, James E [ORNL; Cho, Kukwon [ORNL] [ORNL; Sluder, Scott [ORNL] [ORNL; Kokjohn, Sage [University of Wisconsin, Madison] [University of Wisconsin, Madison; Reitz, Rolf [University of Wisconsin] [University of Wisconsin

2010-01-01T23:59:59.000Z

238

Light Duty Combustion Research: Advanced Light-Duty Combustion...  

Broader source: Energy.gov (indexed) [DOE]

Developed multi-component vaporization models 6 Facility and operating conditions The optical engine matches a metal test engine at UW The optical piston retains the same bowl and...

239

Light Duty Combustion Research: Advanced Light-Duty Combustion Experiments  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensionalthe10IO1OP001 Letter Report:Life-Cycle Analysis of| Department of

240

The status of ceramic turbine component fabrication and quality assurance relevant to automotive turbine needs  

SciTech Connect (OSTI)

This report documents a study funded by the U.S. Department of Energy (DOE) Office of Transportation Technologies (OTT) with guidance from the Ceramics Division of the United States Automotive Materials Partnership (USAMP). DOE and the automotive companies have funded extensive development of ceramic materials for automotive gas turbine components, the most recent effort being under the Partnership for a New Generation of Vehicles (PNGV) program.

Richerson, D.W.

2000-02-01T23:59:59.000Z

Note: This page contains sample records for the topic "light-duty automotive technology" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Light Duty Efficient Clean Combustion  

Broader source: Energy.gov (indexed) [DOE]

(order of the components) Thermal management strategy Fuel injection strategies VGT turbo operation VVA 13 This presentation does not contain any proprietary or confidential...

242

Light Duty Vehicle CNG Tanks  

Broader source: Energy.gov (indexed) [DOE]

Vehicle CNG Tanks Dane A. Boysen, PhD Program Director Advanced Research Projects Agency-Energy, US DOE dane.boysen@doe.gov Fiber Reinforced Polymer Composite Manufacturing...

243

Light Duty Vehicle CNG Tanks  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGY TAX POLICIES7.pdfFuel2007 |KSRS25RV*)Boyd About UsMr. Brian MillsLEVERAGINGfromLight

244

Comparative analysis of automotive powertrain choices for the near to mid-term future  

E-Print Network [OSTI]

This thesis attempts a technological assessment of automotive powertrain technologies for the near to mid term future. The powertrain types to be assessed include naturally aspirated gasoline engines, turbocharged gasoline ...

Kasseris, Emmanuel P

2006-01-01T23:59:59.000Z

245

Vehicle Technologies Office: Graduate Automotive Technology Education  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomen Owned SmallOf The 2012Nuclear GuideReport |(GATE) | Department of Energy

246

Vehicle Technologies Office: Graduate Automotive Technology Education...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

allow Purdue University's Hoosier Heavy Hybrid Center of Excellence to comprehensively train, educate, and equip the next generation of research scientists and engineers to...

247

Flash report: Automotive batteries  

SciTech Connect (OSTI)

Battery inventories soared early in the years after sales plunged 15% due to the mild winter. But in the last 90 days, admist a hot summer, industry leader Exide announced a 5% price hike to assess the current market, OTR interviewed 14 professionals from the battery industry - Contacts include four battery manufacturers, one industry specialists, seven retail chains plus two wholesalers. The nine sales groups supply about 10,000 stores an automotive shops nationwide.

Gates, J.H.

1995-12-01T23:59:59.000Z

248

United States Automotive Materials Partnership LLC (USAMP)  

SciTech Connect (OSTI)

The United States Automotive Materials Partnership LLC (USAMP) was formed in 1993 as a partnership between Chrysler Corporation, Ford Motor Company, and General Motors Corporation. Since then the U.S. Department of Energy (DOE) has supported its activities with funding and technical support. The mission of the USAMP is to conduct vehicle-oriented research and development in materials and materials processing to improve the competitiveness of the U.S. Auto Industry. Its specific goals are: (1) To conduct joint research to further the development of lightweight materials for improved automotive fuel economy; and (2) To work with the Federal government to explore opportunities for cooperative programs with the national laboratories, Federal agencies such as the DOE and universities. As a major component of the DOE's Office of FreedomCAR and Vehicle Technologies Program (FCVT) collaboration with the USAMP, the Automotive Lightweighting Materials (ALM) program focuses on the development and validation of advanced materials and manufacturing technologies to significantly reduce automotive vehicle body and chassis weight without compromising other attributes such as safety, performance, recyclability, and cost. The FCVT was announced in FY 2002 and implemented in FY 2003, as a successor of the Partnership for a New Generation of Vehicles (PNGV), largely addressed under the first Cooperative Agreement. This second USAMP Cooperative Agreement with the DOE has expanded a unique and valuable framework for collaboratively directing industry and government research efforts toward the development of technologies capable of solving important societal problems related to automobile transportation. USAMP efforts are conducted by the domestic automobile manufacturers, in collaboration with materials and manufacturing suppliers, national laboratories, universities, and other technology or trade organizations. These interactions provide a direct route for implementing newly developed materials and technologies, and have resulted in significant technical successes to date, as discussed in the individual project summary final reports. Over 70 materials-focused projects have been established by USAMP, in collaboration with participating suppliers, academic/non-profit organizations and national laboratories, and executed through its original three divisions: the Automotive Composites Consortium (ACC), the Automotive Metals Division (AMD), and Auto/Steel Partnership (A/SP). Two new divisions were formed by USAMP in 2006 to drive research emphasis on integration of structures incorporating dissimilar lightweighting materials, and on enabling technology for nondestructive evaluation of structures and joints. These new USAMP divisions are: Multi-Material Vehicle Research and Development Initiative (MMV), and the Non-Destructive Evaluation Steering Committee (NDE). In cooperation with USAMP and the FreedomCAR Materials Technical Team, a consensus process has been established to facilitate the development of projects to help move leveraged research to targeted development projects that eventually migrate to the original equipment manufacturers (OEMs) as application engineering projects. Research projects are assigned to one of three phases: concept feasibility, technical feasibility, and demonstration feasibility. Projects are guided through ongoing monitoring and USAMP offsite reviews, so as to meet the requirements of each phase before they are allowed to move on to the next phase. As progress is made on these projects, the benefits of lightweight construction and enabling technologies will be transferred to the supply base and implemented in production vehicles. The single greatest barrier to automotive use of lightweight materials is their high cost; therefore, priority is given to activities aimed at reducing costs through development of new materials, forming technologies, and manufacturing processes. The emphasis of the research projects reported in this document was largely on applied research and evaluation of mass savings opportunities thro

United States Automotive Materials Partnership

2011-01-31T23:59:59.000Z

249

Commercializing Light-Duty Plug-In/Plug-Out Hydrogen-Fuel-Cell Vehicles:“Mobile Electricity” Technologies, Early California Household Markets, and Innovation Management  

E-Print Network [OSTI]

House” by Tron Architecture conceptually This is relative to what might be used in a plug-in hybrid or battery

Williams, Brett D

2007-01-01T23:59:59.000Z

250

Commercializing Light-Duty Plug-In/Plug-Out Hydrogen-Fuel-Cell Vehicles: "Mobile Electricity" Technologies, Early California Household Markets, and Innovation Management  

E-Print Network [OSTI]

House” by Tron Architecture conceptually This is relative to what might be used in a plug-in hybrid or battery

Williams, Brett D

2010-01-01T23:59:59.000Z

251

Commercializing Light-Duty Plug-In/Plug-Out Hydrogen-Fuel-Cell Vehicles:“Mobile Electricity” Technologies, Early California Household Markets, and Innovation Management  

E-Print Network [OSTI]

electricity rates on a cost per kWh basis only with someTable 2-5 presents the cost per kWh produced by variousHybrid battery module cost per kWh required for lifecycle

Williams, Brett D

2007-01-01T23:59:59.000Z

252

Commercializing Light-Duty Plug-In/Plug-Out Hydrogen-Fuel-Cell Vehicles: "Mobile Electricity" Technologies, Early California Household Markets, and Innovation Management  

E-Print Network [OSTI]

Table 2-5 presents the cost per kWh produced by variousHybrid battery module cost per kWh required for lifecycleelectricity rates on a cost per kWh basis only with some

Williams, Brett D

2010-01-01T23:59:59.000Z

253

Commercializing Light-Duty Plug-In/Plug-Out Hydrogen-Fuel-Cell Vehicles: "Mobile Electricity" Technologies, Early California Household Markets, and Innovation Management  

E-Print Network [OSTI]

2002. EPRI, "Advanced Batteries for Electric-Drive Vehicles:12 2.2.2.1 PHEV uncertainties: Batteries andwith big propulsion batteries. However, recent activities (

Williams, Brett D

2010-01-01T23:59:59.000Z

254

Commercializing Light-Duty Plug-In/Plug-Out Hydrogen-Fuel-Cell Vehicles: "Mobile Electricity" Technologies, Early California Household Markets, and Innovation Management  

E-Print Network [OSTI]

4 demonstration of a plug-in diesel-electric HUMVEE by thediesel max output (kW) continuous/Me- kW type efficiency electric

Williams, Brett D

2010-01-01T23:59:59.000Z

255

Commercializing Light-Duty Plug-In/Plug-Out Hydrogen-Fuel-Cell Vehicles: "Mobile Electricity" Technologies, Early California Household Markets, and Innovation Management  

E-Print Network [OSTI]

into utility-friendly and distributed-generation-hardware-utility-side-of-the-meter interactions and, ultimately, vehicular distributed generation

Williams, Brett D

2010-01-01T23:59:59.000Z

256

Commercializing Light-Duty Plug-In/Plug-Out Hydrogen-Fuel-Cell Vehicles:“Mobile Electricity” Technologies, Early California Household Markets, and Innovation Management  

E-Print Network [OSTI]

into utility-friendly and distributed-generation-hardware-utility-side-of-the-meter interactions and, ultimately, vehicular distributed generation

Williams, Brett D

2007-01-01T23:59:59.000Z

257

Commercializing Light-Duty Plug-In/Plug-Out Hydrogen-Fuel-Cell Vehicles: "Mobile Electricity" Technologies, Early California Household Markets, and Innovation Management  

E-Print Network [OSTI]

power, and heat generation), and grid-side benefits (peakpre-) heat/cool, etc. ); home recharging using off-peak grid

Williams, Brett D

2010-01-01T23:59:59.000Z

258

Commercializing Light-Duty Plug-In/Plug-Out Hydrogen-Fuel-Cell Vehicles:“Mobile Electricity” Technologies, Early California Household Markets, and Innovation Management  

E-Print Network [OSTI]

power, and heat generation), and grid-side benefits (peakpre-) heat/cool, etc. ); home recharging using off-peak grid

Williams, Brett D

2007-01-01T23:59:59.000Z

259

Commercializing Light-Duty Plug-In/Plug-Out Hydrogen-Fuel-Cell Vehicles:“Mobile Electricity” Technologies, Early California Household Markets, and Innovation Management  

E-Print Network [OSTI]

modes, allowing, say, fuel- cell costs to slide down ancurve that plots fuel-cell cost in dollars per kilowatt2002. ) production, fuel-cell cost is assumed to fall by

Williams, Brett D

2007-01-01T23:59:59.000Z

260

Commercializing Light-Duty Plug-In/Plug-Out Hydrogen-Fuel-Cell Vehicles: "Mobile Electricity" Technologies, Early California Household Markets, and Innovation Management  

E-Print Network [OSTI]

modes, allowing, say, fuel- cell costs to slide down ancurve that plots fuel-cell cost in dollars per kilowatt2002. ) production, fuel-cell cost is assumed to fall by

Williams, Brett D

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "light-duty automotive technology" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Feasible Café Standard Increases Using Emerging Diesel and Hybrid-Electric Technologies for Light-Duty Vehicles in the United States  

E-Print Network [OSTI]

R&D Co. at the SAE Hybrid Vehicle Symposium in San Diego,already being utilized in hybrid vehicles being marketed byfirst marketed their hybrid vehicles in Japan before doing

Burke, Andy; Abeles, Ethan

2004-01-01T23:59:59.000Z

262

Present Status and Marketing Prospects of the Emerging Hybrid-Electric and Diesel Technologies to Reduce CO2 Emissions of New Light-Duty Vehicles in California  

E-Print Network [OSTI]

of Conventional vs. Hybrid Vehicles, paper to be presented15 Table 10 Hybrid Vehicle Sales to Date - North America &Power Projections of Hybrid Vehicle Characteristics (1999-

Burke, Andy

2004-01-01T23:59:59.000Z

263

Feasible CAFE Standard Increases Using Emerging Diesel and Hybrid-Electric Technologies for Light-Duty Vehicles in the United States  

E-Print Network [OSTI]

R&D Co. at the SAE Hybrid Vehicle Symposium in San Diego,already being utilized in hybrid vehicles being marketed byfirst marketed their hybrid vehicles in Japan before doing

Burke, Andy; Abeles, Ethan C.

2004-01-01T23:59:59.000Z

264

Commercializing Light-Duty Plug-In/Plug-Out Hydrogen-Fuel-Cell Vehicles: "Mobile Electricity" Technologies, Early California Household Markets, and Innovation Management  

E-Print Network [OSTI]

storage, and initial cost barriers—enable hydrogen-fuel-cellHydrogen Economy. New York: Tarcher-Putnam, 2002. ) production, fuel-cell costfuel-cell vehicle fed hydrogen by a stationary reformer reforming natural gas to produce hydrogen at a cost

Williams, Brett D

2010-01-01T23:59:59.000Z

265

Center for Lightweighting Automotive Materials and Processing...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

ti010mallick2011o.pdf More Documents & Publications Center for Lightweighting Automotive Materials and Processing Center for Lightweighting Automotive Materials and...

266

Center for Lightweighting Automotive Materials and Processing...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

D.C. ti06mallick.pdf More Documents & Publications Center for Lightweighting Automotive Materials and Processing Center for Lightweighting Automotive Materials and...

267

Magnesium Research in the Automotive Lightweighting Materials...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

in the Automotive Lightweighting Materials Program Magnesium Research in the Automotive Lightweighting Materials Program Presentation from the U.S. DOE Office of Vehicle...

268

Vehicle technologies program Government Performance and Results Act (GPA) report for fiscal year 2012  

SciTech Connect (OSTI)

The U.S. Department of Energy's Office of Energy Efficiency and Renewable Energy has defined milestones for its Vehicle Technologies Program (VTP). This report provides estimates of the benefits that would accrue from achieving these milestones relative to a base case that represents a future in which there is no VTP-supported vehicle technology development. Improvements in the fuel economy and reductions in the cost of light- and heavy-duty vehicles were estimated by using Argonne National Laboratory's Autonomie powertrain simulation software and doing some additional analysis. Argonne also estimated the fraction of the fuel economy improvements that were attributable to VTP-supported development in four 'subsystem' technology areas: batteries and electric drives, advanced combustion engines, fuels and lubricants, and materials (i.e., reducing vehicle mass, called 'lightweighting'). Oak Ridge National Laboratory's MA{sup 3}T (Market Acceptance of Advanced Automotive Technologies) tool was used to project the market penetration of light-duty vehicles, and TA Engineering's TRUCK tool was used to project the penetrations of medium- and heavy-duty trucks. Argonne's VISION transportation energy accounting model was used to estimate total fuel savings, reductions in primary energy consumption, and reductions in greenhouse gas emissions that would result from achieving VTP milestones. These projections indicate that by 2030, the on-road fuel economy of both light- and heavy-duty vehicles would improve by more than 20%, and that this positive impact would be accompanied by a reduction in oil consumption of nearly 2 million barrels per day and a reduction in greenhouse gas emissions of more than 300 million metric tons of CO{sub 2} equivalent per year. These benefits would have a significant economic value in the U.S. transportation sector and reduce its dependency on oil and its vulnerability to oil price shocks.

Ward, J.; Stephens, T. S.; Birky, A. K. (Energy Systems); (DOE-EERE); (TA Engineering)

2012-08-10T23:59:59.000Z

269

Embedded Automotive System Development Process  

E-Print Network [OSTI]

Model based design enables the automatic generation of final-build software from models for high-volume automotive embedded systems. This paper presents a framework of processes, methods and tools for the design of automotive embedded systems. A steer-by-wire system serves as an example.

Langenwalter, Joachim

2011-01-01T23:59:59.000Z

270

GATE Center of Excellence at UAB in Lightweight Materials for Automotive Applications  

SciTech Connect (OSTI)

This report summarizes the accomplishments of the UAB GATE Center of Excellence in Lightweight Materials for Automotive Applications. The first Phase of the UAB DOE GATE center spanned the period 2005-2011. The UAB GATE goals coordinated with the overall goals of DOE's FreedomCAR and Vehicles Technologies initiative and DOE GATE program. The FCVT goals are: (1) Development and validation of advanced materials and manufacturing technologies to significantly reduce automotive vehicle body and chassis weight without compromising other attributes such as safety, performance, recyclability, and cost; (2) To provide a new generation of engineers and scientists with knowledge and skills in advanced automotive technologies. The UAB GATE focused on both the FCVT and GATE goals in the following manner: (1) Train and produce graduates in lightweight automotive materials technologies; (2) Structure the engineering curricula to produce specialists in the automotive area; (3) Leverage automotive related industry in the State of Alabama; (4) Expose minority students to advanced technologies early in their career; (5) Develop innovative virtual classroom capabilities tied to real manufacturing operations; and (6) Integrate synergistic, multi-departmental activities to produce new product and manufacturing technologies for more damage tolerant, cost-effective, and lighter automotive structures.

None

2011-07-31T23:59:59.000Z

271

Exploiting Real-Time FPGA Based Adaptive Systems Technology for Real-Time Sensor Fusion in Next Generation Automotive Safety Systems  

E-Print Network [OSTI]

We present a system for the boresighting of sensors using inertial measurement devices as the basis for developing a range of dynamic real-time sensor fusion applications. The proof of concept utilizes a COTS FPGA platform for sensor fusion and real-time correction of a misaligned video sensor. We exploit a custom-designed 32-bit soft processor core and C-based design & synthesis for rapid, platform-neutral development. Kalman filter and sensor fusion techniques established in advanced aviation systems are applied to automotive vehicles with results exceeding typical industry requirements for sensor alignment. Results of the static and the dynamic tests demonstrate that using inexpensive accelerometers mounted on (or during assembly of) a sensor and an Inertial Measurement Unit (IMU) fixed to a vehicle can be used to compute the misalignment of the sensor to the IMU and thus vehicle. In some cases the model predications and test results exceeded the requirements by an order of magnitude with a 3-sigma or ...

Chappell, Steve; Preston, Dan; Olmstead, Dave; Flint, Bob; Sullivan, Chris

2011-01-01T23:59:59.000Z

272

AISI/DOE Technology Roadmap Program: Characterization of Fatigue and Crash Performance of New Generation High Strength Steels for Automotive Applications  

SciTech Connect (OSTI)

A 2-year project (2001-2002) to generate fatigue and high strain data for a new generation of high strength steels (HSS) has been completed in December 2002. The project tested eleven steel grades, including Dual Phase (DP) steels, Transformation-Induced Plasticity (TRIP) steels, Bake Hardenable (BH) steels, and conventional High Strength Low Alloy (HSLA) steels. All of these steels are of great interest in automotive industry due to the potential benefit in weight reduction, improved fuel economy, enhanced crash energy management and total system cost savings. Fatigue behavior includes strain controlled fatigue data notch sensitivity for high strength steels. High strain rate behavior includes stress-strain data for strain rates from 0.001/s to 1000/s, which are considered the important strain rate ranges for crash event. The steels were tested in two phases, seven were tested in Phase 1 and the remaining steels were tested in Phase. In a addition to the fatigue data and high st rain rate data generated for the steels studied in the project, analyses of the testing results revealed that Advanced High Strength Steels (AHSS) exhibit significantly higher fatigue strength and crash energy absorption capability than conventional HSS. TRIP steels exhibit exceptionally better fatigue strength than steels of similar tensile strength but different microstructure, for conditions both with or without notches present

Brenda Yan; Dennis Urban

2003-04-21T23:59:59.000Z

273

Automotive Fuel Cell Corporation  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAboutScience Program Cumulus Humilis, 2014AutomatedAutomotive Fuel Cell

274

Automotive Composites Consortium Focal Project 4: Automotive...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

DOE Office of Vehicle Technologies "Mega" Merit Review 2008 on February 25, 2008 in Bethesda, Maryland. merit08olszewski3.pdf More Documents & Publications Structural...

275

Sources of UHC and CO in Low Temperature Automotive Diesel Combustion...  

Broader source: Energy.gov (indexed) [DOE]

Directions in Engine-Efficiency and Emissions Research (DEER) Conference in Detroit, MI, September 27-30, 2010. deer10miles.pdf More Documents & Publications Light Duty...

276

Status and Outlook for the U.S. Non-Automotive Fuel Cell Industry: Impacts of Government Policies and Assessment of Future Opportunities  

Fuel Cell Technologies Publication and Product Library (EERE)

Non-Automotive Fuel Cell Industry, Government Policy and Future Opportunities. Fuel cells (FCs)are considered essential future energy technologies by developed and developing economies alike. Several

277

A design strategy applied to sulfur resistant lean NOx̳ automotive catalysts  

E-Print Network [OSTI]

Catalyst poisoning due to sulfur compounds derived from fuel sulfur presents a major challenge, intractable thus far, to development of many advanced technologies for automotive catalysts such as the lean NOx, trap. Under ...

Tang, Hairong

2005-01-01T23:59:59.000Z

278

Automotive Power Generation and Control  

E-Print Network [OSTI]

This paper describes some new developments in the application of power electronics to automotive power generation and control. A new load-matching technique is introduced that uses a simple switched-mode rectifier to achieve ...

Caliskan, Vahe

279

Assessment of costs and benefits of flexible and alternative fuel use in the U.S. transportation sector. Technical report fourteen: Market potential and impacts of alternative fuel use in light-duty vehicles -- A 2000/2010 analysis  

SciTech Connect (OSTI)

In this report, estimates are provided of the potential, by 2010, to displace conventional light-duty vehicle motor fuels with alternative fuels--compressed natural gas (CNG), liquefied petroleum gas (LPG), methanol from natural gas, ethanol from grain and from cellulosic feedstocks, and electricity--and with replacement fuels such as oxygenates added to gasoline. The 2010 estimates include the motor fuel displacement resulting both from government programs (including the Clean Air Act and EPACT) and from potential market forces. This report also provides an estimate of motor fuel displacement by replacement and alterative fuels in the year 2000. However, in contrast to the 2010 estimates, the year 2000 estimate is restricted to an accounting of the effects of existing programs and regulations. 27 figs., 108 tabs.

NONE

1996-01-01T23:59:59.000Z

280

Vehicle Technologies Office Merit Review 2014: Development of Cell/Pack Level Models for Automotive Li-Ion Batteries with Experimental Validation  

Broader source: Energy.gov [DOE]

Presentation given by EC Power at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about evelopment of cell/pack level models...

Note: This page contains sample records for the topic "light-duty automotive technology" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Vehicle Technologies Office Merit Review 2014: GATE Center of Excellence at UAB for Lightweight Materials and Manufacturing for Automotive, Truck and Mass Transit  

Broader source: Energy.gov [DOE]

Presentation given by University of Alabama at Birmingham at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about GATE...

282

Vehicle Technologies Office Merit Review 2014: GATE Center of Excellence at UAB for Lightweight Materials and Manufacturing for Automotive, Truck and Mass Transit  

Broader source: Energy.gov [DOE]

Presentation given by University of Alabama at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about GATE Center of...

283

NSF/DOE Thermoelectics Partnership: Thermoelectrics for Automotive...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Thermoelectics Partnership: Thermoelectrics for Automotive Waste Heat Recovery NSFDOE Thermoelectics Partnership: Thermoelectrics for Automotive Waste Heat Recovery 2011 DOE...

284

NSF/DOE Thermoelectrics Partnership: Thermoelectrics for Automotive...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Thermoelectrics for Automotive Waste Heat Recovery NSFDOE Thermoelectrics Partnership: Thermoelectrics for Automotive Waste Heat Recovery Development for commercialization of...

285

For more information about Clean Transportation projects at the North Carolina Solar Center visit www.cleantransportation.org 12/3/13 Clean Fuel Advanced Technology Information Matrix  

E-Print Network [OSTI]

www.cleantransportation.org 12/3/13 Clean Fuel Advanced Technology Information Matrix Fuel Type Infrastructure Biodiesel Light Duty (LD), Medium Duty (MD), and Heavy Duty (HD) diesel vehicles and equipment. Biodiesel used in all diesel engines as B100 or in a blend with ULSD. ASTM standards consider B5 (5

286

Upgrading the Center for Lightweighting Automotive Materials and Processing - a GATE Center of Excellence at the University of Michigan-Dearborn  

SciTech Connect (OSTI)

The Center for Lightweighting Materials and Processing (CLAMP) was established in September 1998 with a grant from the Department of Energy’s Graduate Automotive Technology Education (GATE) program. The center received the second round of GATE grant in 2005 under the title “Upgrading the Center for Lightweighting Automotive Materials and Processing”. Using the two grants, the Center has successfully created 10 graduate level courses on lightweight automotive materials, integrated them into master’s and PhD programs in Automotive Systems Engineering, and offered them regularly to the graduate students in the program. In addition, the Center has created a web-based lightweight automotive materials database, conducted research on lightweight automotive materials and organized seminars/symposia on lightweight automotive materials for both academia and industry. The faculty involved with the Center has conducted research on a variety of topics related to design, testing, characterization and processing of lightweight materials for automotive applications and have received numerous research grants from automotive companies and government agencies to support their research. The materials considered included advanced steels, light alloys (aluminum, magnesium and titanium) and fiber reinforced polymer composites. In some of these research projects, CLAMP faculty have collaborated with industry partners and students have used the research facilities at industry locations. The specific objectives of the project during the current funding period (2005 – 2012) were as follows: (1) develop new graduate courses and incorporate them in the automotive systems engineering curriculum (2) improve and update two existing courses on automotive materials and processing (3) upgrade the laboratory facilities used by graduate students to conduct research (4) expand the Lightweight Automotive Materials Database to include additional materials, design case studies and make it more accessible to outside users (5) provide support to graduate students for conducting research on lightweight automotive materials and structures (6) provide industry/university interaction through a graduate certificate program on automotive materials and technology idea exchange through focused seminars and symposia on automotive materials.

Mallick, P. K.

2012-08-30T23:59:59.000Z

287

Optimizing U.S. Mitigation Strategies for the Light-Duty Transportation Sector: What We Learn from a Bottom-Up Model  

E-Print Network [OSTI]

is sensitive to the cost of fuel cell technology, oil price,lower production cost. Hydrogen fuel cell vehicles (FCVs) do

Yeh, Sonia; Farrell, Alexander E.; Plevin, Richard J; Sanstad, Alan; Weyant, John

2008-01-01T23:59:59.000Z

288

Automotive Component Measurements forAutomotive Component Measurements for Determining VehicleDetermining Vehicle--Level RadiatedLevel Radiated  

E-Print Network [OSTI]

1 Automotive Component Measurements forAutomotive Component Measurements for Determining VehicleDetermining Vehicle--Level RadiatedLevel Radiated Automotive Component Measurements forAutomotive Component automotiveWe need to characterize automotive components the way we characterize circuitcomponents the way we

Stuart, Steven J.

289

GATE Center for Automotive Fuel Cell Systems at Virginia Tech  

SciTech Connect (OSTI)

The Virginia Tech GATE Center for Automotive Fuel Cell Systems (CAFCS) achieved the following objectives in support of the domestic automotive industry: â?¢ Expanded and updated fuel cell and vehicle technologies education programs; â?¢ Conducted industry directed research in three thrust areas â?? development and characterization of materials for PEM fuel cells; performance and durability modeling for PEM fuel cells; and fuel cell systems design and optimization, including hybrid and plug-in hybrid fuel cell vehicles; â?¢ Developed MS and Ph.D. engineers and scientists who are pursuing careers related to fuel cells and automotive applications; â?¢ Published research results that provide industry with new knowledge which contributes to the advancement of fuel cell and vehicle systems commercialization. With support from the Dept. of Energy, the CAFCS upgraded existing graduate course offerings; introduced a hands-on laboratory component that make use of Virginia Techâ??s comprehensive laboratory facilities, funded 15 GATE Fellowships over a five year period; and expanded our program of industry interaction to improve student awareness of challenges and opportunities in the automotive industry. GATE Center graduate students have a state-of-the-art research experience preparing them for a career to contribute to the advancement fuel cell and vehicle technologies.

Douglas Nelson

2011-05-31T23:59:59.000Z

290

Automotive HCCI Engine Research  

Broader source: Energy.gov [DOE]

2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

291

Automotive friction-induced noises A. Elmaiana  

E-Print Network [OSTI]

Automotive friction-induced noises A. Elmaiana , J.-M. Duffala , F. Gautiera , C. Pezeratb and J, France 3143 #12;Friction-induced noises are numerous in the automotive field. They also involve a large friction-induced noises with simple structures and automotive materials. Qualitative sensitivity studies

Paris-Sud XI, Université de

292

Industrial motivations: Conceptual Automotive Styling Tools (CAST)  

E-Print Network [OSTI]

Industrial motivations: Conceptual Automotive Styling Tools (CAST) Karan Singh #12;Conceptual. · What makes automotive design unique. · Existing modeling trends. · A proposed workflow for conceptual automotive design. #12;Conceptual design desirables · Abstraction from underlying surface math. · Invite

Toronto, University of

293

FRENCH APPROVAL PROCEDURES FOR PYROTECHNICAL AUTOMOTIVE SAFETY  

E-Print Network [OSTI]

FRENCH APPROVAL PROCEDURES FOR PYROTECHNICAL AUTOMOTIVE SAFETY EQUIPMENTS Lionel Aufauvre*, Ruddy and that are not excluded of the decree application have to conform to approved types. Pyrotechnical automotive safety appeared in automotive industry and their uses grew rapidly as they showed their efficiency to save lives

Paris-Sud XI, Université de

294

CFD-based Optimization for Automotive Aerodynamics  

E-Print Network [OSTI]

Chapter 1 CFD-based Optimization for Automotive Aerodynamics Laurent Dumas Abstract The car drag- ments. An overview of the main characteristics of automotive aerodynamics and a detailed presentation.dumas@upmc.fr) 1 #12;2 Laurent Dumas 1.1 Introducing Automotive Aerodynamics 1.1.1 A Major Concern for Car

Dumas, Laurent

295

Automotive EMC Workshop Clemson Vehicular Electronics Laboratory  

E-Print Network [OSTI]

Automotive EMC Workshop Clemson Vehicular Electronics Laboratory Reliable Automotive Electronics Design for Guaranteed EMC Compliance April 29, 2013 Todd Hubing Clemson University #12;EMC Requirements they reviewed/designed would meet all automotive EMC requirements the first time they were tested. #12;Clemson

Duchowski, Andrew T.

296

The effects of driving style and vehicle performance on the real-world fuel consumption of U.S. light-duty vehicles  

E-Print Network [OSTI]

Even with advances in vehicle technology, both conservation and methods for reducing the fuel consumption of existing vehicles are needed to decrease the petroleum consumption and greenhouse gas emissions of the U.S. ...

Berry, Irene Michelle

2010-01-01T23:59:59.000Z

297

The Progressive Insurance Automotive X PRIZE Education Program  

SciTech Connect (OSTI)

The Progressive Insurance Automotive X PRIZE Education Program conducted education and outreach activities and used the competition's technical goals and vehicle demonstrations as a means of attracting students and the public to learn more about advanced vehicle technologies, energy efficiency, climate change, alternative fuels, and the science and math behind efficient vehicle development. The Progressive Insurance Automotive X PRIZE Education Program comprised three integrated components that were designed to educate the general public and create a multi-tiered initiative to engage students and showcase the 21st century skills students will need to compete in our global economy: teamwork, creativity, strong literacy, math and science skills, and innovative thinking. The elements included an Online Experience, a National Student Contest, and in person education events and activites. The project leveraged online connections, strategic partnerships, in-classroom, and beyond-the-classroom initiatives, as well as mainstream media. This education program supported by the U.S. Department of Energy (DOE) also funded the specification of vehicle telemetry and the full development and operation of an interactive online experience that allowed internet users to follow the Progressive Insurance Automotive X PRIZE vehicles as they performed in real-time during the Progressive Insurance Automotive X PRIZE competition events.

Robyn Ready

2011-12-31T23:59:59.000Z

298

Vehicle Technologies Office: 2014 Advanced Combustion Engine...  

Broader source: Energy.gov (indexed) [DOE]

Advanced Combustion Engine research and development (R&D) subprogram within the DOE Vehicle Technologies Office (VTO) provides support and guidance for many cutting-edge automotive...

299

SVG for Automotive User Interfaces Dr. Sbastien Boisgrault  

E-Print Network [OSTI]

1 SVG for Automotive User Interfaces Dr. Sébastien Boisgérault ................................................................................................................. 1 EDONA and Human-Machine Interface Design for the Automotive Industry .................................................................................................... 7 SVG standards for automotive HMI modeling

Paris-Sud XI, Université de

300

Flexibility in Aerospace and Automotive Component Manufacturing Systems  

E-Print Network [OSTI]

Flexibility in Aerospace and Automotive Component Manufacturing Systems: Practice, Strategy Supervisor #12;2 #12;Flexibility in Aerospace and Automotive Component Manufacturing Systems: Practice Traditionally, parts fabrication in the aerospace and automotive industries has been associated with a number

de Weck, Olivier L.

Note: This page contains sample records for the topic "light-duty automotive technology" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Time and event triggered communication scheduling for automotive applications  

E-Print Network [OSTI]

Time and event triggered communication scheduling for automotive applications ROGER JOHANSSON and event triggered communication scheduling for automotive applications 1 ROGER JOHANSSON Department triggered communication scheduling for automotive applications ROGER JOHANSSON © ROGER JOHANSSON, 2004

Johansson, Roger

302

CEC-500-2010-FS-018 Automotive Thermoelectric  

E-Print Network [OSTI]

to convert waste heat (exhaust gas) into electrical energy. PIER Program Objectives and Anticipated Benefits TRANSPORTATION ENERGY RESEARCH PIER Transportation Research www.energy.ca.gov/research/ transportation/ October annually in California for the purpose of cooling occupants in light-duty vehicles, resulting in a higher

303

Automotive Turbocharging: Industrial Requirements and Technology...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

performance will be difficult to achieve requires a proper understanding of the trade-offs and engine effects and impacts must be part of turbocharger development...

304

Thermoelectrics: The New Green Automotive Technology  

Broader source: Energy.gov (indexed) [DOE]

Water Pump Higher reliability variable speed faster warm-up less white smoke lower cold weather emissions Electric Oil Pump Variable speed Higher efficiency Turbocompound...

305

Graduate Automotive Technology Education (GATE) Initiative Awards |  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensional Subject: GuidanceNot MeasurementLogging Systems (December 1983)

306

Automotive Turbocharging: Industrial Requirements and Technology  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartmentTie Ltd: Scope ChangeL-01-06 AuditAugust 5,ReDevelopments | Department

307

NREL: Transportation Research - Future Automotive Systems Technology  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the Contributions andData andFleet Test and Evaluation Photo of medium-dutySimulator

308

AUTOMOTIVE INDUSTRY ANALYSIS Submitted by Team A  

E-Print Network [OSTI]

, increased environmental regulation, increased energy constraints, and increased operational efficiency for many years. Hyundai, Maruti Udyog, and Shanghai Automotive Industry Corp., based in Korea, India

309

Validation of Material Models for Automotive Carbon Fiber Composite...  

Broader source: Energy.gov (indexed) [DOE]

Validation of Material Models for Automotive Carbon Fiber Composite Structures (VMM) Libby Berger (General Motors), Omar Faruque (Ford) Co-Principal Investigators US Automotive...

310

FY 2009 Progress Report for Lightweighting Materials - 5. Automotive...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

9 Progress Report for Lightweighting Materials - 5. Automotive Metals - Steel FY 2009 Progress Report for Lightweighting Materials - 5. Automotive Metals - Steel The primary...

311

Understanding Automotive Exhaust Catalysts Using a Surface Science...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Automotive Exhaust Catalysts Using a Surface Science Approach: Model NOx Storage Materials. Understanding Automotive Exhaust Catalysts Using a Surface Science Approach: Model NOx...

312

Future Automotive Aftertreatment Solutions: The 150 C Challenge  

E-Print Network [OSTI]

Page 1 Future Automotive Aftertreatment Solutions: The 150° C Challenge Workshop Report ACEC Low, the U.S. automotive manufacturer

313

Society of Automotive Engineers honors Storey, Wagner, Sluder...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Communications 865.574.4399 Society of Automotive Engineers honors Storey, Wagner, Sluder The Society of Automotive Engineers has honored ORNL researches (from left) Robert Wagner,...

314

FY 2009 Progress Report for Lightweighting Materials - 3. Automotive...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

9 Progress Report for Lightweighting Materials - 3. Automotive Metals - Cast FY 2009 Progress Report for Lightweighting Materials - 3. Automotive Metals - Cast The primary...

315

Membrane Performance and Durability Overview for Automotive Fuel...  

Broader source: Energy.gov (indexed) [DOE]

Membrane Performance and Durability Overview for Automotive Fuel Cell Applications Membrane Performance and Durability Overview for Automotive Fuel Cell Applications Presented by...

316

CX: Categorical Determination-Alcoa Tennessee Automotive Sheet...  

Broader source: Energy.gov (indexed) [DOE]

CX: Categorical Determination-Alcoa Tennessee Automotive Sheet Expansion Project CX: Categorical Determination-Alcoa Tennessee Automotive Sheet Expansion Project Categorical...

317

Sandia National Laboratories: ECIS-Automotive Fuel Cell Corporation...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

ClimateECAbout ECFacilitiesCRFECIS-Automotive Fuel Cell Corporation: Hydrocarbon Membrane Fuels the Success of Future Generation Vehicles ECIS-Automotive Fuel Cell Corporation:...

318

E-Print Network 3.0 - automotive computational aeroacoustics...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

for Automotive Research (WatCAR) conducts advanced research to enhance automotive... innovation and competitiveness. More than 115 researchers, the largest university-based...

319

Direct Hydrogen PEMFC Manufacturing Cost Estimation for Automotive...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Direct Hydrogen PEMFC Manufacturing Cost Estimation for Automotive Applications: Fuel Cell Tech Team Review Direct Hydrogen PEMFC Manufacturing Cost Estimation for Automotive...

320

Development of a Thermoelectric Device for an Automotive Zonal...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

a Thermoelectric Device for an Automotive Zonal HVAC System Development of a Thermoelectric Device for an Automotive Zonal HVAC System Presents development of a thermoelectric...

Note: This page contains sample records for the topic "light-duty automotive technology" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

automotive control systems: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

energy savings can be obtained. Copyright 2003 IFAC Keywords: Automotive Control, Energy Management Systems Johansson, Karl Henrik 128 Create Robust Automotive Designs with...

322

automotive engineering: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

to design Subramanian, Venkat 5 Faculty of Engineering Mechanical, Automotive and Physics Websites Summary: Faculty of Engineering Mechanical, Automotive and Materials...

323

Michigan: Universities Train Next Generation of Automotive Engineers...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Michigan: Universities Train Next Generation of Automotive Engineers Michigan: Universities Train Next Generation of Automotive Engineers November 6, 2013 - 12:00am Addthis...

324

Safe Automotive Software Karl Heckemann1  

E-Print Network [OSTI]

Safe Automotive Software Karl Heckemann1 , Manuel Gesell2 , Thomas Pfister3 , Karsten Berns3 of Kaiserslautern {pfister,berns}@cs.uni-kl.de http://agrosy.cs.uni-kl.de Abstract. For automotive manufacturers for the development of embedded electronics and software. In particular, the va- riety of driver assistance systems

Berns, Karsten

325

NGV and FCV Light Duty Transportation Perspective  

Broader source: Energy.gov (indexed) [DOE]

transportation perspectives Matt Fronk, Matt Fronk & Associates, LLC 1 OctOber 2011 | ArgOnne nAtiOnAl lAbOrAtOry NG Workshop summary report - appeNDIX G 2 OctOber 2011 | ArgOnne...

326

Business Case for Light-Duty Diesels  

Broader source: Energy.gov (indexed) [DOE]

Laredo - Tallahassee (1039 miles) 2 days, 1 tank, 59 mpg Jeep Liberty CRD Factory fill B5 biodiesel Local production, local fuel 9 Cost of Diesel systems? The engine Modern PC...

327

Light Duty Vehicle Pathways | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensionalthe10IO1OP001 Letter Report:Life-CycleDuty Vehicle Pathways Light

328

Tools and Techniques for Ensuring Automotive EMC Performance and Reliability  

E-Print Network [OSTI]

of the future ... 10 #12;Automotive EMC Today #12;Automotive EMC Standards Organizations 12 International Electrotechnical Commission (IEC) International Organization for Standards (IOS) Society of Automotive Engineers (SAE) CISPR, TC77 TC22, SC3, WG3 Surface Vehicle EMC Standards Committee #12;Automotive EMC

Stuart, Steven J.

329

A rubber mount model. Application to automotive equipment suspension  

E-Print Network [OSTI]

Introduction The qualification of on-board manufactured components forces the automotive suppliers to subject

Paris-Sud XI, Université de

330

E-Print Network 3.0 - automotive electrics automotive Sample...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

is the second most energy consuming system after the electric motor. Further, HVAC... air conditioning systems used in the automotive industry are based on vapour-compression...

331

2011 Annual Merit Review Results Report - Technology Integration...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

activities 2011amr08.pdf More Documents & Publications Penn State DOE Graduate Automotive Technology Education (Gate) Program for In-Vehicle, High-Power Energy Storage...

332

Doing More With Less: Cost-Effective Infrastructure for Automotive Vision Capabilities  

E-Print Network [OSTI]

recognition, and 360-degree sensing. At the same time, fully autonomous vehicles have been demonstrated is automotive systems. In this domain, a proliferation of advanced sensor technology is being fueled by an expanding range of autonomous capabilities. Driver-assist features, such as blind spot warnings, automatic

Jeffay, Kevin

333

Future Automotive Aftertreatment Solutions: The 150°C Challenge Workshop Report  

SciTech Connect (OSTI)

With future fuel economy standards enacted, the U.S. automotive manufacturers (OEMs) are committed to pursuing a variety of high risk/highly efficient stoichiometric and lean combustion strategies to achieve superior performance. In recognition of this need, the U.S. Department of Energy (DOE) has partnered with domestic automotive manufacturers through U.S. DRIVE to develop these advanced technologies. However, before these advancements can be introduced into the U.S. market, they must also be able to meet increasingly stringent emissions requirements. A significant roadblock to this implementation is the inability of current catalyst and aftertreatment technologies to provide the required activity at the much lower exhaust temperatures that will accompany highly efficient combustion processes and powertrain strategies. Therefore, the goal of this workshop and report is to create a U.S. DRIVE emission control roadmap that will identify new materials and aftertreatment approaches that offer the potential for 90% conversion of emissions at low temperature (150°C) and are consistent with highly efficient combustion technologies currently under investigation within U.S. DRIVE Advanced Combustion and Emission Control (ACEC) programs.

Zammit, Michael; DiMaggio, Craig L.; Kim, Chang H.; Lambert, Christine; Muntean, George G.; Peden, Charles HF; Parks, James E.; Howden, Ken

2013-10-15T23:59:59.000Z

334

Strategic frameworks in automotive systems architecting  

E-Print Network [OSTI]

More often than not, large-scale engineering concepts such as those used by creative automotive manufacturing companies require the incorporation of significant capital outlays and resources for the purposes of implementation ...

Tampi, Mahesh

2012-01-01T23:59:59.000Z

335

Hydrogen Storage and Supply for Vehicular Fuel Systems  

Energy Innovation Portal (Marketing Summaries) [EERE]

Various alternative-fuel systems have been proposed for passenger vehicles and light-duty trucks to reduce the worldwide reliance on fossils fuels and thus mitigate their polluting effects.  Replacing gasoline and other refined hydrocarbon fuels continues to present research and implementation challenges for the automotive industry. During the last decade, hydrogen fuel technology has emerged as the prime alternative that will finally drive automotive fuel systems into the new millennium....

2012-05-11T23:59:59.000Z

336

E-Print Network 3.0 - automotive medicine Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

support research directed... Professional Programs Automotive Engineering Design Science Energy Systems Engineering Financial Engineering... Global Automotive and Manufacturing...

337

Advanced thermoelectric materials and systems for automotive applications in the next millennium  

SciTech Connect (OSTI)

A combination of environmental, economic, and technological drivers has led to a reassessment of the potential for using thermoelectric devices in several automotive applications. In order for this technology to achieve its ultimate potential, new materials with enhanced thermoelectric properties are required. Experimental results on the fundamental physical properties of some new thermoelectric materials, including filled skutterudites and 1-1-1 intermetallic semiconductors, are presented.

Morelli, D.T.

1997-07-01T23:59:59.000Z

338

2012 Vehicle Technologies Market Report  

SciTech Connect (OSTI)

The Oak Ridge National Laboratory s Center for Transportation Analysis developed and published the first Vehicle Technologies Market Report in 2008. Three editions of the report have been published since that time. This 2012 report details the major trends in U.S. light vehicle and medium/heavy truck markets as well as the underlying trends that caused them. The opening section on Energy and Economics discusses the role of transportation energy and vehicle markets on a national scale. The following section examines light-duty vehicle use, markets, manufacture, and supply chains. The discussion of medium and heavy trucks offers information on truck sales and fuel use. The technology section offers information on alternative fuel vehicles and infrastructure, and the policy section concludes with information on recent, current, and near-future Federal policies like the Corporate Average Fuel Economy standards.

Davis, Stacy Cagle [ORNL; Diegel, Susan W [ORNL; Boundy, Robert Gary [ORNL

2013-03-01T23:59:59.000Z

339

Automotive Repair by Number Theory Bart Snapp and Chris Snapp  

E-Print Network [OSTI]

Automotive Repair by Number Theory Bart Snapp and Chris Snapp While repairing the ignition switch on a 1981 Fiat Spider, we discovered the following connection between number theory and automotive repair

Snapp, Bart

340

Life cycle cost modeling of automotive paint systems  

E-Print Network [OSTI]

Vehicle coating is an important component of automotive manufacturing. The paint shop constitutes the plurality of initial investment in an automotive assembly plant, consumes the majority of energy used in the plant's ...

Leitz, Christopher W. (Christopher William), 1976-

2007-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "light-duty automotive technology" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

automotive technician training: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

with Ttic5ms, Tcycle40ms. lic scheduling on automotive Navet, Nicolas 292 2001-01-0308 FMEA-based Design for Remanufacture using Automotive- Engineering Websites Summary: . The...

342

automotive shredder residue: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

with Ttic5ms, Tcycle40ms. lic scheduling on automotive Navet, Nicolas 240 2001-01-0308 FMEA-based Design for Remanufacture using Automotive- Engineering Websites Summary: . The...

343

automotive shredded residues: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

with Ttic5ms, Tcycle40ms. lic scheduling on automotive Navet, Nicolas 246 2001-01-0308 FMEA-based Design for Remanufacture using Automotive- Engineering Websites Summary: . The...

344

automotive shredder residues: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

with Ttic5ms, Tcycle40ms. lic scheduling on automotive Navet, Nicolas 240 2001-01-0308 FMEA-based Design for Remanufacture using Automotive- Engineering Websites Summary: . The...

345

automotive sensor manufacturing: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

with Ttic5ms, Tcycle40ms. lic scheduling on automotive Navet, Nicolas 427 2001-01-0308 FMEA-based Design for Remanufacture using Automotive- Engineering Websites Summary: . The...

346

AMD 601 High Integrity -Magnesium Automotive Components (HI-MAC...  

Broader source: Energy.gov (indexed) [DOE]

AMD 601 High Integrity -Magnesium Automotive Components (HI-MAC) AMD 601 High Integrity -Magnesium Automotive Components (HI-MAC) Presentation from the U.S. DOE Office of Vehicle...

347

AMD 601 High Integrity -Magnesium Automotive Components (HI-MAC...  

Broader source: Energy.gov (indexed) [DOE]

1 - High Integrity Magnesium Automotive Components (HI-MAC) edm2@chrysler.com February 28, 2008 AMD 601 High Integrity - Magnesium Automotive Components (HI-MAC) USAMP 2008 DOE...

348

Electrohydraulic Forming of Near-Net Shape Automotive Panels  

SciTech Connect (OSTI)

The objective of this project was to develop the electrohydraulic forming (EHF) process as a near-net shape automotive panel manufacturing technology that simultaneously reduces the energy embedded in vehicles and the energy consumed while producing automotive structures. Pulsed pressure is created via a shockwave generated by the discharge of high voltage capacitors through a pair of electrodes in a liquid-filled chamber. The shockwave in the liquid initiated by the expansion of the plasma channel formed between two electrodes propagates towards the blank and causes the blank to be deformed into a one-sided die cavity. The numerical model of the EHF process was validated experimentally and was successfully applied to the design of the electrode system and to a multi-electrode EHF chamber for full scale validation of the process. The numerical model was able to predict stresses in the dies during pulsed forming and was validated by the experimental study of the die insert failure mode for corner filling operations. The electrohydraulic forming process and its major subsystems, including durable electrodes, an EHF chamber, a water/air management system, a pulse generator and integrated process controls, were validated to be capable to operate in a fully automated, computer controlled mode for forming of a portion of a full-scale sheet metal component in laboratory conditions. Additionally, the novel processes of electrohydraulic trimming and electrohydraulic calibration were demonstrated at a reduced-scale component level. Furthermore, a hybrid process combining conventional stamping with EHF was demonstrated as a laboratory process for a full-scale automotive panel formed out of AHSS material. The economic feasibility of the developed EHF processes was defined by developing a cost model of the EHF process in comparison to the conventional stamping process.

Golovaschenko, Sergey F.

2013-09-26T23:59:59.000Z

349

Electrocatalysts for Automotive Fuel Cells: Status and Challenges  

Broader source: Energy.gov [DOE]

Presentation by Nilesh Dale for the 2013 DOE Catalyst Working Group Meeting on electrocatalysts for automotive fuel cells.

350

The Challenges for PEMFC Catalysts in Automotive Applications  

Broader source: Energy.gov [DOE]

Presentation by Stephen Campbell for the 2013 DOE Catalysis Working Group Meeting on PEMFC catalysts in automotive applications.

351

Automotive Thermoelectric Generators and HVAC  

Broader source: Energy.gov [DOE]

2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

352

Automotive Thermoelectric Generators and HVAC  

Broader source: Energy.gov (indexed) [DOE]

technologies including nanostructured interfaces, filled skutterudites, cold-side microfluidics. Practical TE characterization including interface effects and thermal...

353

Model based dependability evaluation for automotive control functions  

E-Print Network [OSTI]

Model based dependability evaluation for automotive control functions Sasa Vulinovic 1 , Bernd@informatik.hu-berlin.de Abstract In this paper, we study the evaluation of reliability for embedded functions in automotive. In order to assess fault tolerant designs for automotive software it is essential to be able to predict

Schlingloff, Holger

354

Complex Embedded Automotive Control Systems DaimlerChrysler  

E-Print Network [OSTI]

Complex Embedded Automotive Control Systems CEMACS DaimlerChrysler SINTEF Glasgow University Description The high level of complexity in automotive systems requires a new approach to design. Moreover, to achieve higher performance and increased safety a coordination of different automotive control systems

Duffy, Ken

355

Adaptive Rollover Prevention for Automotive Vehicles with Differential Braking  

E-Print Network [OSTI]

Adaptive Rollover Prevention for Automotive Vehicles with Differential Braking Selim Solmaz, switching, and tuning (MMST) paradigm [13, 14, 15] for preventing un­tripped rollover in automotive vehicles performance than its fixed robust counterpart. Keywords: Automotive control; Multiple models; Parameter

Duffy, Ken

356

Multimedia Systems as Immune System to Improve Automotive Security?  

E-Print Network [OSTI]

Multimedia Systems as Immune System to Improve Automotive Security? Jana Dittmann1 , Tobias Hoppe1 and environment. Especially in the field of automotive security, producers are seek- ing cost efficient- using resources. Initially, working in automotive security, it was easy to see that a wide variety

Paris-Sud XI, Université de

357

Service-Oriented Modelling of Automotive Systems Laura Bocchi  

E-Print Network [OSTI]

Service-Oriented Modelling of Automotive Systems Laura Bocchi Department of Computer Science@di.fc.ul.pt ABSTRACT We discuss the suitability of service-oriented computing for the automotive domain. We present a formal high-level language in which complex automotive activities can be modelled in terms of core

Bocchi, Laura

358

Digital Styling for Designers: in Prospective Automotive Design  

E-Print Network [OSTI]

Digital Styling for Designers: in Prospective Automotive Design Seok-Hyung Bae and Ryugo Kijima}@vsl.gifu-u.ac.jp Abstract. Although a great part of the new-product development process in automotive industry is already-aided styling (CAS), (2) to propose desirable CAS guidelines reflecting the characteristics of the automotive

Toronto, University of

359

Holistic Data-Driven Diagnosis for Dependable Automotive Systems  

E-Print Network [OSTI]

Holistic Data-Driven Diagnosis for Dependable Automotive Systems Patrick E. Lanigan Carnegie Mellon, emer- gent behavior will still appear at runtime in dependable automotive systems. Such behavior occurs The automotive industry has become steadily more reliant on software- intensive distributed systems to imple

Rajkumar, Ragunathan "Raj"

360

Master Thesis Defining Materials in an Automotive Environment to Support  

E-Print Network [OSTI]

Master Thesis ­ Defining Materials in an Automotive Environment to Support Realistic Virtual will decrease project time and cost. In the automotive industry, virtual evaluation is of special importance to material library in RD&T. · Demonstration on an automotive case in RD&T. Prior knowledge Knowledge

Assarsson, Ulf

Note: This page contains sample records for the topic "light-duty automotive technology" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

WE -ADKWindows Embedded Automotive Development Kit Benefits to the developer  

E-Print Network [OSTI]

WE -ADKWindows Embedded Automotive Development Kit Benefits to the developer: The Official-ADK, Microsoft Auto 4.1 installs on top of Windows® Embedded CE 6.0 R3 and adds automotive -specific an Automotive Infotainment Solution with Microsoft Auto 4.1 and Qualnetics WE

Narasayya, Vivek

362

A Driving Simulator for Teaching Embedded Automotive Control Applications  

E-Print Network [OSTI]

A Driving Simulator for Teaching Embedded Automotive Control Applications Paul G. Griffiths component uses a typical automotive power- train micro-controller and teaches topics in system dynamics students build a fixed-based driving simulator to test advanced automotive control system designs

Gillespie, Brent

363

Challenges for Qualitative Electrical Reasoning in Automotive Circuit Simulation  

E-Print Network [OSTI]

Challenges for Qualitative Electrical Reasoning in Automotive Circuit Simulation Neal Snooke it to be used for applications on realistic automotive circuits. The type of circuits for which it is most automotive circuits with more complex overall behaviour can be approximated using this type of modelling

Snooke, Neal

364

Analysis and Clustering of Model Clones: An Automotive Industrial Experience  

E-Print Network [OSTI]

Analysis and Clustering of Model Clones: An Automotive Industrial Experience Manar H. Alalfi, James similarity in industrial automotive models. We apply our model clone detection tool, SIMONE, to identify and suggests better ways to maintain them. I. INTRODUCTION In todays automotive industry, models are widely

Cordy, James R.

365

Towards Characterizing and Classifying Communication-based Automotive Applications  

E-Print Network [OSTI]

Towards Characterizing and Classifying Communication-based Automotive Applications from a Wireless opportunity to develop various types of communication-based automotive applications. To date, many applications have been identified by the automotive community. Given the large number and diverse nature

Perrig, Adrian

366

Platform Based Design for Automotive Sensor Conditioning L. Fanucci1  

E-Print Network [OSTI]

Platform Based Design for Automotive Sensor Conditioning L. Fanucci1 , A. Giambastiani2 , F. Iozzi3 kinds of sensors for automotive applications is presented. A platform based design approach is pursued prototyping. A case study is presented concerning the conditioning of a Gyro yaw rate sensor for automotive

Paris-Sud XI, Université de

367

The Marginalized Particle Filter for Automotive Tracking Applications  

E-Print Network [OSTI]

1 The Marginalized Particle Filter for Automotive Tracking Applications Andreas Eidehall Thomas Sch surroundings (lane geometry and the position of other vehicles), which is needed for intelligent automotive in a nonlinear estimation problem. For automotive tracking systems, these problems are traditionally handled

Gustafsson, Fredrik

368

Design of automotive X-by-Wire systems Cdric Wilwert  

E-Print Network [OSTI]

Design of automotive X-by-Wire systems Cédric Wilwert PSA Peugeot - Citroën 92000 La Garenne Phone : +33 3 83 58 17 62 simonot@loria.fr CONTENTS Design of automotive X-by-Wire systems ................................................................................................................................ 9 3.2 Main time-triggered protocols for automotive industry

Paris-Sud XI, Université de

369

STATISTICAL SIGNAL PROCESSING FOR AUTOMOTIVE SAFETY SYSTEMS Fredrik Gustafsson  

E-Print Network [OSTI]

STATISTICAL SIGNAL PROCESSING FOR AUTOMOTIVE SAFETY SYSTEMS Fredrik Gustafsson Department The amount of software in general and safety systems in particular increases rapidly in the automotive- cessing area. 1. INTRODUCTION Henry Ford revolutionized the automotive industry more than 100 years ago

Gustafsson, Fredrik

370

Secure Embedded Platform for Networked Automotive M. Gomathisankaran  

E-Print Network [OSTI]

Secure Embedded Platform for Networked Automotive Systems M. Gomathisankaran Dept. of Computer University of North Texas 1 Introduction Modern automotive systems contain numerous electronic sensors automotive systems, is a challenge for our generation. Our focus in this position paper is on the security

Rajkumar, Ragunathan "Raj"

371

Design Automation Challenges in Automotive CPS Sayan Mitra  

E-Print Network [OSTI]

Design Automation Challenges in Automotive CPS Sayan Mitra mitras@illinois.edu In principle, best theorem proving. Unfortunately, a stan- dardized open repository of benchmarks for automotive CPS-up companies, in which each play a role and the automotive CPS community flourishes. A good benchmark

Rajkumar, Ragunathan "Raj"

372

The Economic Impact of South Carolina's Automotive Cluster  

E-Print Network [OSTI]

The Economic Impact of South Carolina's Automotive Cluster Developed by: Division of Research Moore's Automotive Cluster 1 Study Prepared by: Dr. Douglas P. Woodward Director, Division of Research woodward-777-4425 Research Assistants Yuri Bhanage and David Jonathan Prepared for the South Carolina Automotive Council

Almor, Amit

373

Model-Based Quality Assurance of Automotive Software  

E-Print Network [OSTI]

Model-Based Quality Assurance of Automotive Software Jan Jürjens1 , Daniel Rei�2 , and David, Germany Abstract. Software in embedded (e.g. automotive) systems requires a high level of reliability to the automotive sector, characterized by strict safety requirements to com- ponents of a motor vehicle (see [5, 16

Jurjens, Jan

374

Tackling Automotive Challenges with an Integrated RE & Design Artifact Model  

E-Print Network [OSTI]

Tackling Automotive Challenges with an Integrated RE & Design Artifact Model Birgit Penzenstadler Boltzmannstr. 3, 85748 Garching, Germany {penzenst}@in.tum.de Abstract. The automotive industry faces the need, Documentation, Automotive, Em- bedded Systems 1 Introduction A well-known fact is that the complexity

375

Measurement of Dynamic Parameters of Automotive Exhaust Mohan D. Rao  

E-Print Network [OSTI]

1 01NVC-121 Measurement of Dynamic Parameters of Automotive Exhaust Hangers Mohan D. Rao ME Copyright © 2001 Society of Automotive Engineers, Inc. ABSTRACT Different methodologies to test and analyze the dynamic stiffness (K) and damping (C) properties of several silicone and EPDM rubber automotive exhaust

Rao, Mohan

376

TEACHING DURABILITY IN AUTOMOTIVE APPLICATIONS USING A RELIABILITY  

E-Print Network [OSTI]

1 TEACHING DURABILITY IN AUTOMOTIVE APPLICATIONS USING A RELIABILITY APPROACH Anne Morel (1), André gained over five academic years of teaching fatigue the assessment of automotive components using, initially developed in the automotive industry and since extended to the aeronautical and mechanical

Paris-Sud XI, Université de

377

Computer Graphic Tools for Automotive Paint Engineering Gary W. Meyer  

E-Print Network [OSTI]

Computer Graphic Tools for Automotive Paint Engineering Gary W. Meyer University of Minnesota graphics programs that can be used to solve automotive paint engineering problems. New surface reflection models have been created for simulating the appearance of automotive paint, and the hardware available

Minnesota, University of

378

Model-based Quality Assurance of Automotive Software  

E-Print Network [OSTI]

Model-based Quality Assurance of Automotive Software Jan Jürjens1 , Daniel Reiss2 , David (Germany) #12;Jan Jürjens et al.: Model-based Quality Assurance of Automotive Software 2 The Problem (Meta. #12;Jan Jürjens et al.: Model-based Quality Assurance of Automotive Software 3 The Problem (Meta

Jurjens, Jan

379

The Marginalized Particle Filter for Automotive Tracking Applications  

E-Print Network [OSTI]

The Marginalized Particle Filter for Automotive Tracking Applications Andreas Eidehall Thomas B surroundings (lane geometry and the position of other vehicles), which is needed for intelligent automotive in a nonlinear estimation problem. For automotive tracking systems, these problems are traditionally handled

Schön, Thomas

380

Reliability and Throughput in Future Automotive Communication Networks  

E-Print Network [OSTI]

Reliability and Throughput in Future Automotive Communication Networks John Liu, Timothy TaltyStar. This action created a new industry called automotive telematics, helping to save lives and providing, the automotive telematics industry has experienced a healthy growth in North America. During the current economic

Rajkumar, Ragunathan "Raj"

Note: This page contains sample records for the topic "light-duty automotive technology" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Automatic Parallelization of Hand Written Automotive Engine Control  

E-Print Network [OSTI]

Automatic Parallelization of Hand Written Automotive Engine Control Codes Using OSCAR Compiler Dan approach to realize the next- generation automobiles integrated control system. However, automotive-core processors for a long time. This paper proposes to parallelize an automotive engine crankshaft control

Kasahara, Hironori

382

Modeling Buffers with Data Refresh Semantics in Automotive Architectures  

E-Print Network [OSTI]

studies from the automotive electronics domain. Categories and Subject Descriptors: C.3 [SpecialModeling Buffers with Data Refresh Semantics in Automotive Architectures Linh T.X. Phan1 Reinhard,lee}@cis.upenn.edu reinhard.schneider@rcs.ei.tum.de samarjit@tum.de ABSTRACT Automotive architectures consist of multiple

Pennsylvania, University of

383

Development of Sensors for Automotive PEM-based Fuel Cells  

E-Print Network [OSTI]

organization #12;4 Sensors for Automotive PEM Fuel Cells - Motivation Sensor Performance and Cost ImprovementsDevelopment of Sensors for Automotive PEM-based Fuel Cells DOE Agreement DE-FC04-02AL67616 Brian FC Series 200 - 50 kW PEM #12;2 Development of Sensors for Automotive PEM-based Fuel Cells ­ Program

384

Automotive Powertrain Control: A Survey Jeffrey A. Cook, Jing Sun  

E-Print Network [OSTI]

recent and historical publications on automotive powertrain control. Control- oriented models of gasoline, hybrid electric powertrains and automotive fuel cells. In each case, fundamental models are discussed developments spurred major efforts by automotive manufacturers to reduce fuel consumption and vehicle emissions

Grizzle, Jessy W.

385

2011 Automotive Industry Seminar -"Challenges after the Earthquake" In recent years, the automotive industry has experienced a severe economic depression led by  

E-Print Network [OSTI]

2011 Automotive Industry Seminar - "Challenges after the Earthquake" In recent years, the automotive industry has experienced a severe economic depression led by subprime loan issues, recalls Automotive Industry Seminar "Challenges after the Earthquake" in cooperation with the Consulate

386

Global Assessment of Hydrogen Technologies - Executive Summary  

SciTech Connect (OSTI)

This project was a collaborative effort involving researchers from the University of Alabama at Birmingham (UAB) and Argonne National Laboratory (ANL), drawing on the experience and expertise of both research organizations. The goal of this study was to assess selected hydrogen technologies for potential application to transportation and power generation. Specifically, this study evaluated scenarios for deploying hydrogen technologies and infrastructure in the Southeast. One study objective was to identify the most promising near-term and long-term hydrogen vehicle technologies based on performance, efficiency, and emissions profiles and compare them to traditional vehicle technologies. Hydrogen vehicle propulsion may take many forms, ranging from hydrogen or hythane fueled internal combustion engines (ICEs) to fuel cells and fuel cell hybrid systems. This study attempted to developed performance and emissions profiles for each type (assuming a light duty truck platform) so that effective deployment strategies can be developed. A second study objective was to perform similar cost, efficiency, and emissions analysis related to hydrogen infrastructure deployment in the Southeast. There will be many alternative approaches for the deployment of hydrogen fueling infrastructure, ranging from distributed hydrogen production to centralized production, with a similar range of delivery options. This study attempted to assess the costs and potential emissions associated with each scenario. A third objective was to assess the feasibility of using hydrogen fuel cell technologies for stationary power generation and to identify the advantages and limits of different technologies. Specific attention was given to evaluating different fuel cell membrane types. A final objective was to promote the use and deployment of hydrogen technologies in the Southeast. This effort was to include establishing partnerships with industry as well promoting educational and outreach efforts to public service providers. To accomplish these goals and objectives a work plan was developed comprising 6 primary tasks: • Task 1 - Technology Evaluation of Hydrogen Light-Duty Vehicles – The PSAT powertrain simulation software was used to evaluate candidate hydrogen-fueled vehicle technologies for near-term and long-term deployment in the Southeastern U.S. • Task 2 - Comparison of Performance and Emissions from Near-Term Hydrogen Fueled Light Duty Vehicles - An investigation was conducted into the emissions and efficiency of light-duty internal combustion engines fueled with hydrogen and compressed natural gas (CNG) blends. The different fuel blends used in this investigation were 0%, 15%, 30%, 50%, 80%, 95%, and ~100% hydrogen, the remainder being compressed natural gas. • Task 3 - Economic and Energy Analysis of Hydrogen Production and Delivery Options - Expertise in engineering cost estimation, hydrogen production and delivery analysis, and transportation infrastructure systems was used to develop regional estimates of resource requirements and costs for the infrastructure needed to deliver hydrogen fuels to advanced-technology vehicles. • Task 4 –Emissions Analysis for Hydrogen Production and Delivery Options - The hydrogen production and delivery scenarios developed in Task 3 were expanded to include analysis of energy and greenhouse gas emissions associated with each specific case studies. • Task 5 – Use of Fuel Cell Technology in Power Generation - The purpose of this task was to assess the performance of different fuel cell types (specifically low-temperature and high temperature membranes) for use in stationary power generation. • Task 6 – Establishment of a Southeastern Hydrogen Consortium - The goal of this task was to establish a Southeastern Hydrogen Technology Consortium (SHTC) whose purpose would be to promote the deployment of hydrogen technologies and infrastructure in the Southeast.

Fouad, Fouad H.; Peters, Robert W.; Sisiopiku, Virginia P.; Sullivan, Andrew J.

2007-12-01T23:59:59.000Z

387

System modeling, analysis, and optimization methodology for diesel exhaust after-treatment technologies  

E-Print Network [OSTI]

Developing new aftertreatment technologies to meet emission regulations for diesel engines is a growing problem for many automotive companies and suppliers. Balancing manufacturing cost, meeting emission performance, ...

Graff, Christopher Dominic

2006-01-01T23:59:59.000Z

388

Vehicle Technologies Office Merit Review 2014: Electric PCM Assisted Thermal Heating System  

Broader source: Energy.gov [DOE]

Presentation given by Delphi Automotive at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about electric PCM assisted...

389

NONLINEAR MAGNETIC LEVITATION OF AUTOMOTIVE ENGINE VALVES  

E-Print Network [OSTI]

NONLINEAR MAGNETIC LEVITATION OF AUTOMOTIVE ENGINE VALVES K. Peterson, J.W. Grizzle, and A.G. Stefanopoulou £ ½ £ University of Michigan, Ann Arbor Abstract: Position regulation of a magnetic levitation the region of attraction. The effects of magnetic saturation are included in the model, and accounted

Grizzle, Jessy W.

390

Model-Based Testing of Automotive Electronic Control Units Ghmann, Clemens {clemens.guehmann@tu-berlin.de}  

E-Print Network [OSTI]

Model-Based Testing of Automotive Electronic Control Units Gühmann, Clemens {clemens.guehmann@tu-berlin.de} Technische Universität Berlin, Department of Electronic Measurement and Diagnostic Technology Einsteinufer 17 by networking electronic control units (ECUs), and by implementation of the functions distributed throughout

Wichmann, Felix

391

Managing the integration of technology into the product development pipeline  

E-Print Network [OSTI]

Managing the integration of technology is a complex task in any industry, but especially so in the highly competitive automotive industry. Automakers seek to develop plans to integrate technology into their products such ...

Barretto, Eduardo F., 1971-

2005-01-01T23:59:59.000Z

392

Response-Time Minimization of Automotive-Inspired Dataflows on Multicore Platforms  

E-Print Network [OSTI]

Response-Time Minimization of Automotive-Inspired Dataflows on Multicore Platforms Glenn A Abstract Dataflow software architectures are prevalent in prototypes of advanced automotive systems guarantees in these systems. Many existing automotive prototypes ensure such constraints through over

Anderson, James

393

Crossing innovation & product projects management: A comparative analysis in automotive industry  

E-Print Network [OSTI]

1 Crossing innovation & product projects management: A comparative analysis in automotive industry Keywords: organizational learning, new product projects portfolio, innovation management, automotive in automotive industry INTRODUCTION Projectification and platform approaches have been two main transformation

Paris-Sud XI, Université de

394

Thermoelectric Generators for Automotive Waste Heat Recovery Systems Part II: Parametric Evaluation  

E-Print Network [OSTI]

Thermoelectric Generators for Automotive Waste Heat Recovery Systems Part II: Parametric Evaluation been proposed to model thermoelectric generators (TEGs) for automotive waste heat recovery. Details: Thermoelectric generators, waste heat recovery, automotive exhaust, skutterudites INTRODUCTION In part I

Xu, Xianfan

395

Effect of automotive electrical system changes on fuel consumption using incremental efficiency methodology  

E-Print Network [OSTI]

There has been a continuous increase in automotive electric power usage. Future projections show no sign of it decreasing. Therefore, the automotive industry has a need to either improve the current 12 Volt automotive ...

Hardin, Christopher William

2004-01-01T23:59:59.000Z

396

Forecasting the Costs of Automotive PEM Fuel Cell Systems: Using Bounded Manufacturing Progress Functions  

E-Print Network [OSTI]

Costs of Automotive PEM Fuel Cell Systems - Using BoundedCosts of Automotive PEM Fuel Cell Systems - Using BoundedCosts of Automotive PEM Fuel Cell Systems Forecasting the

Lipman, Timonthy E.; Sperling, Daniel

2001-01-01T23:59:59.000Z

397

In Proceedings of the Automotive Software Workshop on Future Generation Software Architectures in the Automotive Domain, San Diego, CA, Jan. 10-12, 2004.  

E-Print Network [OSTI]

In Proceedings of the Automotive Software Workshop on Future Generation Software Architectures in the Automotive Domain, San Diego, CA, Jan. 10-12, 2004. Two-tiered Architectural Design for Automotive Control two-tiered design methods for automotive control systems at Ford Motor Company. Currently, Ford has

Garlan, David

398

Platform Based Design for Automotive Sensor Conditioning  

E-Print Network [OSTI]

In this paper a general architecture suitable to interface several kinds of sensors for automotive applications is presented. A platform based design approach is pursued to improve system performance while minimizing time-to-market.. The platform is composed by an analog front-end and a digital section. The latter is based on a microcontroller core (8051 IP by Oregano) plus a set of dedicated hardware dedicated to the complex signal processing required for sensor conditioning. The microcontroller handles also the communication with external devices (as a PC) for data output and fast prototyping. A case study is presented concerning the conditioning of a Gyro yaw rate sensor for automotive applications. Measured performance results outperform current state-of-the-art commercial devices.

Fanucci, L; Iozzi, F; Marino, C; Rocchi, A

2011-01-01T23:59:59.000Z

399

Friction of Materials for Automotive Applications  

SciTech Connect (OSTI)

This brief overview of friction-related issues in materials for automobiles is invited for a special issue on automotive materials in the ASM journal AM&P. It describes a range of areas in a ground vehicle in which friction must be controlled or minimized. Applications range from piston rings to tires, and from brakes to fuel injector components. A perspective on new materials and lubricants, and the need for validation testing is presented.

Blau, Peter Julian [ORNL

2013-01-01T23:59:59.000Z

400

STATEMENT OF CONSIDERATIONS REQUEST BY DELPHI AUTOMOTIVE SYSTEMS...  

Broader source: Energy.gov (indexed) [DOE]

waiver petition and in subsequent discussions with DOE Patent Counsel, Delphi Automotive Systems, L.L.C (Delphi) has requested an advance waiver of domestic and foreign...

Note: This page contains sample records for the topic "light-duty automotive technology" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Status and Prospects of the Global Automotive Fuel Cell Industry...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

ORNLTM-2013222 Status and Prospects of the Global Automotive Fuel Cell Industry and Plans for Deployment of Fuel Cell Vehicles and Hydrogen Refueling Infrastructure Revised July...

402

Automotive Import Taxation : Trade from Germany to Finland.  

E-Print Network [OSTI]

??The automotive taxation in Finland is high on international standards. Vehicles are be-ing imported to Finland daily. A significant share - over 23 000 automobiles… (more)

Lautamäki, Lassi

2014-01-01T23:59:59.000Z

403

Status and Prospects of the Global Automotive Fuel Cell Industry...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Status and Prospects of the Global Automotive Fuel Cell Industry and Plans for Deployment of Fuel Cell Vehicles and Hydrogen Refueling Infrastructure Status and Prospects of the...

404

automotive emissions control: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

analysis; automotive control system. I. INTRODUCTION In reliability Zachmann, Gabriel 25 Research on Calculation Method of Period and Deadline of Frame in...

405

automotive emission control: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

analysis; automotive control system. I. INTRODUCTION In reliability Zachmann, Gabriel 25 Research on Calculation Method of Period and Deadline of Frame in...

406

automotive propulsion system: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

analysis; automotive control system. I. INTRODUCTION In reliability Zachmann, Gabriel 49 Mini-Micro Thrusters, LOX Hydrocarbon Propulsion, and Attitude Control...

407

automotive propulsion systems: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

analysis; automotive control system. I. INTRODUCTION In reliability Zachmann, Gabriel 49 Mini-Micro Thrusters, LOX Hydrocarbon Propulsion, and Attitude Control...

408

Powder Metal Performance Modeling of Automotive Components ?AMD...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Automotive Components: Manufacturing Process Feasibility StudyAMD 310 Structural Cast Magnesium Development (SCMD) AMD 111 Magnesium Front End Design And Development (AMD603)...

409

FY 2009 Progress Report for Lightweighting Materials - 6. Automotive...  

Broader source: Energy.gov (indexed) [DOE]

2008 Progress Report for Lightweighting Materials - 6. Automotive Metals-Crosscutting Magnesium Front End Research and Development AMD 604 Magnesium Front End Development (AMD 603...

410

automotive structural applications: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AUTOMOTIVE ACCESSORIES: RETHINKING DESIGN MATERIALS THROUGH CORNSTARCH, SUGARCANE AND HEMP CiteSeer Summary: Current bioproducts or bio-based products do not only require less...

411

Webinar: Automotive and MHE Fuel Cell System Cost Analysis  

Broader source: Energy.gov [DOE]

Video recording and text version of the webinar titled, Automotive and MHE Fuel Cell System Cost Analysis, originally presented on April 16, 2013.

412

Transportation Energy Futures Series: Vehicle Technology Deployment Pathways: An Examination of Timing and Investment Constraints  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched Ferromagnetism in Layered NbS2Topo II:LIGHT-DUTY VEHICLES Vehicle Technology

413

E-Print Network 3.0 - automotive small brush-type Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

automotive aftermarket industry and the oil... and gas industry. Recent projects have centered around hybridelectric vehicles and automotive battery Source: Liblit, Ben -...

414

E-Print Network 3.0 - automotive quality systems Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Quality Assurance of Automotive Software Jan Jrjens1 , Daniel Reiss2 , David... (Germany) 12;Jan Jrjens et al.: Model-based Quality Assurance of Automotive Software 2 The...

415

E-Print Network 3.0 - automotive life cycle Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

STATIONARY AND AUTOMOTIVE PARTICIPANTS Summary: , life cycle efficiency Standards for air path, electric path and fuel path Corporate goals... AND AUTOMOTIVE PARTICIPANTS...

416

E-Print Network 3.0 - axisymmetric automotive components Sample...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Automotive EMC Performance and Reliability Todd Hubing Michelin... Systems 3 Current automotive electronics design and integration strategies are not sustainable. ... Source:...

417

E-Print Network 3.0 - automotive environmental impact Sample...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

environmental impact Search Powered by Explorit Topic List Advanced Search Sample search results for: automotive environmental impact Page: << < 1 2 3 4 5 > >> 1 Automotive...

418

E-Print Network 3.0 - automotive components Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

and Search in Model-Based Automotive SWHW Summary: Master Thesis Examensarbete (30 hp) Optimization and Search in Model-Based Automotive SW... of embedded HWSW for the...

419

E-Print Network 3.0 - australian automotive door Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Quality Assurance of Automotive Software Jan Jrjens1 , Daniel Reiss2 , David... (Germany) 12;Jan Jrjens et al.: Model-based Quality Assurance of Automotive Software 2...

420

E-Print Network 3.0 - automotive vehicle sensors Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

mission-critical tasks, automotive CPSes pose stringent requirements... automotive sensor networks. In IEEE ... Source: Zhang, Hongwei - Department of Computer Science, Wayne State...

Note: This page contains sample records for the topic "light-duty automotive technology" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

E-Print Network 3.0 - automotive condensed solution Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

of IMECE'03 Summary: the evaporator model and seven from the condenser) for a subcritical automotive air conditioning cycle. The model... ADAPTIVE CONTROL TO AUTOMOTIVE AIR...

422

Millimeter-wave radar sensor for automotive intelligent cruise control (ICC)  

SciTech Connect (OSTI)

If automotive intelligent cruise-control (ICC) systems are to be successful in the marketplace, they must provide robust performance in a complex roadway environment. Inconveniences caused by reduced performance during inclement weather, interrupted performance due to dropped tracks, and annoying nuisance alarms will not be tolerated by the consumer, and would likely result in the rejection of this technology in the marketplace. An all-weather automotive millimeter-wave (MMW) radar sensor is described that uses a frequency-modulation coplanar-wave (FMCW) radar design capable of acquiring and tracking all obstacles in its field of view. Design tradeoffs are discussed and radar-sensor test results are presented along with the applicability of the radar to collision-warning systems.

Russell, M.E.; Crain, A.; Curran, A.; Campbell, R.A.; Drubin, C.A.; Miccioli, W.F. [Raytheon, Tewksbury, MA (United States)] [Raytheon, Tewksbury, MA (United States)

1997-12-01T23:59:59.000Z

423

Topics in Modeling, Control, and Implementation in Automotive Systems  

E-Print Network [OSTI]

on inclusion of the dynamics of load transfer, which are of importance in active yaw-control and rollTopics in Modeling, Control, and Implementation in Automotive Systems #12;#12;Topics in Modeling, Control, and Implementation in Automotive Systems Magnus Gäfvert Lund 2003 #12;To my Mother (1943 ­ 1995

424

Nonlinear Control for Magnetic Levitation of Automotive Engine Valves  

E-Print Network [OSTI]

1 Nonlinear Control for Magnetic Levitation of Automotive Engine Valves Katherine Peterson, Member of a magnetic levitation device is achieved through a control Lyapunov function (CLF) feedback design for and implemented on an electromagnetic valve actuator for use in automotive engines, the control methodology

Grizzle, Jessy W.

425

Exhaust Gas Sensor Based On Tin Dioxide For Automotive Application  

E-Print Network [OSTI]

Exhaust Gas Sensor Based On Tin Dioxide For Automotive Application Arthur VALLERON a,b , Christophe, Engineering Materials Department The aim of this paper is to investigate the potentialities of gas sensor based on semi-conductor for exhaust gas automotive application. The sensing element is a tin dioxide

Paris-Sud XI, Université de

426

Advanced Technology Vehicle Testing  

SciTech Connect (OSTI)

The light-duty vehicle transportation sector in the United States depends heavily on imported petroleum as a transportation fuel. The Department of Energy’s Advanced Vehicle Testing Activity (AVTA) is testing advanced technology vehicles to help reduce this dependency, which would contribute to the economic stability and homeland security of the United States. These advanced technology test vehicles include internal combustion engine vehicles operating on 100% hydrogen (H2) and H2CNG (compressed natural gas) blended fuels, hybrid electric vehicles, neighborhood electric vehicles, urban electric vehicles, and electric ground support vehicles. The AVTA tests and evaluates these vehicles with closed track and dynamometer testing methods (baseline performance testing) and accelerated reliability testing methods (accumulating lifecycle vehicle miles and operational knowledge within 1 to 1.5 years), and in normal fleet environments. The Arizona Public Service Alternative Fuel Pilot Plant and H2-fueled vehicles are demonstrating the feasibility of using H2 as a transportation fuel. Hybrid, neighborhood, and urban electric test vehicles are demonstrating successful applications of electric drive vehicles in various fleet missions. The AVTA is also developing electric ground support equipment (GSE) test procedures, and GSE testing will start during the fall of 2003. All of these activities are intended to support U.S. energy independence. The Idaho National Engineering and Environmental Laboratory manages these activities for the AVTA.

James Francfort

2003-11-01T23:59:59.000Z

427

Directions in automotive engine research and development  

SciTech Connect (OSTI)

The advent of high fuel costs and automotive fuel economy and emission regulations has cast doubt on the economic superiority and even the technical feasibility of conventional spark ignition and diesel engines, and has opened the field to other concepts. The emission regulations and their effect on the design and efficiency of conventional engines are reviewed, the research and development effort to improve the performance of conventional engines and to develop advanced engines is discussed, and the current status of these engines is presented.

Samuels, G.

1980-01-01T23:59:59.000Z

428

Fisker Automotive Inc | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision has beenFfe2fb55-352f-473b-a2dd-50ae8b27f0a6Theoretical vs Actual DataNext 25 Years |Fisker Automotive

429

Sandia National Laboratories: Automotive Fuel Cell Cooperation  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -the Mid-Infrared0Energy Advanced Nuclear EnergyCouncilSandia'sCenterAutomotive

430

Engineering-economic analyses of automotive fuel economy potential in the United States  

SciTech Connect (OSTI)

Over the past 25 years more than 20 major studies have examined the technological potential to improve the fuel economy of passenger cars and light trucks in the US. The majority has used technology/cost analysis, a combination of analytical methods from the disciplines of economics and automotive engineering. In this paper the authors describe the key elements of this methodology, discuss critical issues responsible for the often widely divergent estimates produced by different studies, review the history of its use, and present results from six recent assessments. Whereas early studies tended to confine their scope to the potential of proven technology over a 10-year time period, more recent studies have focused on advanced technologies, raising questions about how best to include the likelihood of technological change. The paper concludes with recommendations for further research.

Greene, D.L.; DeCicco, J.

2000-02-01T23:59:59.000Z

431

Atmospheric Environment 41 (2007) 49084919 Particle size and composition distribution analysis of automotive  

E-Print Network [OSTI]

of automotive brake abrasion dusts for the evaluation of antimony sources of airborne particulate matter Akihiro

Short, Daniel

432

Direct Hydrogen PEMFC Manufacturing Cost Estimation for Automotive Applications: Fuel Cell Tech Team Review  

Broader source: Energy.gov [DOE]

This presentation reports on direct hydrogen PEMFC manufacturing cost estimation for automotive applications.

433

PENN STATE DOE GRADUATE AUTOMOTIVE TECHNOLOGY EDUCATION (GATE...  

Broader source: Energy.gov (indexed) [DOE]

Methods * ANL donated licenses for Powertrain Systems Analysis Toolkit (PSAT) * Matlab Sponsored software and hardware 100K * Support EcoCAR team * Energy storage focus -...

434

Penn State DOE Graduate Automotive Technology Education (Gate...  

Broader source: Energy.gov (indexed) [DOE]

Methods * ANL donated licenses for Powertrain Systems Analysis Toolkit (PSAT) * Matlab Sponsored softwarehardware 100K * Support EcoCAR team goals * Energy storage focus...

435

Low Cost PM Technology for Particle Reinforced Titanium Automotive...  

Broader source: Energy.gov (indexed) [DOE]

25, 2008 in Bethesda, Maryland. merit08mccarty4.pdf More Documents & Publications Magnesium Front End Design And Development (AMD603) Magnesium Front End Research And...

436

Looking From A Hilltop: Automotive Propulsion System Technology...  

Broader source: Energy.gov (indexed) [DOE]

Valve Lift, Active Fuel Management Spark Ignition Direct Injection Downsized SIDI Turbo Boosting Advanced Combustion 6 DOWNSIZED TURBO GASOLINE ENGINE Diesel Particulate...

437

Develop Thermoelectric Technology for Automotive Waste Heat Recovery  

Broader source: Energy.gov (indexed) [DOE]

Budget Barriers * Interactionscollaborations ORNL - High temperature transport and mechanical property measurements UNLV - Computational materials development Marlow - TE module...

438

Develop Thermoelectric Technology for Automotive Waste Heat Recovery  

Broader source: Energy.gov (indexed) [DOE]

4 K to room temperature * High temperature transport property measurements (ORNL) * Neutron scattering for phonon DOS and phonon mode analysis (NCNR) * Computational research...

439

automotive technology education: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

understanding of life-limiting and performance-limiting phenomena, improve relevant engineering science and design, and insure a high level Kwak, Juhyoun 14 Company Profile...

440

PENN STATE DOE GRADUATE AUTOMOTIVE TECHNOLOGY EDUCATION (GATE) PROGRAM FOR  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department ofT ib l L d F SSales LLCDieselEnergyHistory andPEMFC R&D at the DOE

Note: This page contains sample records for the topic "light-duty automotive technology" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Low Cost PM Technology for Particle Reinforced Titanium Automotive  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector General Office0-72.pdfGeorgeDoesn't Happen toLeveragingLindseyLong-TermLosof EnergyLow

442

Thermoelectric Technology for Automotive Waste Heat Recovery | Department  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy Usage »of EnergyThe EnergyDepartment ofPowered VehicleDepartment

443

Thermoelectrics: The New Green Automotive Technology | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy Usage »of EnergyThe EnergyDepartment ofPoweredEngine-Powered2 DOE Hydrogen and

444

Thermoelectrics: The New Green Automotive Technology | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy Usage »of EnergyThe EnergyDepartment ofPoweredEngine-Powered2 DOE Hydrogen and1

445

Looking From A Hilltop: Automotive Propulsion System Technology |  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensionalthe10IO1OP001Long-Term Storage of Cesium andDepartment of

446

Development of Thermoelectric Technology for Automotive Waste Heat Recovery  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeat Pump Models |Conduct, Parent CompanyaUSAMP AMDHeavy Duty Trucks |2| Department of

447

Development of Thermoelectric Technology for Automotive Waste Heat Recovery  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector General Office of Audit Services AuditTransatlantic RelationsDepartmentJon T. Carter,NOTand|

448

Advanced Thermoelectric Materials and Generator Technology for Automotive  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartment of EnergyAdministrative2| DepartmentEnergy 2Waste Heat at GM |

449

Develop Thermoelectric Technology for Automotive Waste Heat Recovery |  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeat Pump Models |Conduct, Parent Company AgreesDesiree PipkinsSuperIntegrated

450

Develop Thermoelectric Technology for Automotive Waste Heat Recovery |  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeat Pump Models |Conduct, Parent Company AgreesDesiree

451

Develop Thermoelectric Technology for Automotive Waste Heat Recovery |  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeat Pump Models |Conduct, Parent Company AgreesDesireeDepartment of Energy 1 DOE

452

Develop Thermoelectric Technology for Automotive Waste Heat Recovery |  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeat Pump Models |Conduct, Parent Company AgreesDesireeDepartment of Energy 1

453

Develop Thermoelectric Technology for Automotive Waste Heat Recovery |  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeat Pump Models |Conduct, Parent Company AgreesDesireeDepartment of Energy

454

Fact #868: April 13, 2015 Automotive Technology Has Improved Performance  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in Review:Department of Energyand6-OPAMElectricEnergy4FY 2014Department ofand Fuel

455

Fact #868: April 13, 2015 Automotive Technology Has Improved Performance  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector General Office of Audit|Department ofof EnergyUnited States- Dataset |Price ofAlone inand Fuel

456

Innovative Drivetrains in Electric Automotive Technology Education (IDEATE)  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensionalthe U.S.Indiana CollegeManager (ISSM)Successof Energy||

457

Market Acceptance of Advanced Automotive Technologies (MA3T) Model  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in3.pdfEnergy HealthComments MEMA: CommentsEnergy 13, 1968:CampMarissaMarkAcceptance

458

Electromagnetic interference filter for automotive electrical systems  

DOE Patents [OSTI]

A filter for an automotive electrical system includes a substrate having first and second conductive members. First and second input terminals are mounted to the substrate. The first input terminal is electrically connected to the first conductive member, and the second input terminal is electrically connected to the second conductive member. A plurality of capacitors are mounted to the substrate. Each of the capacitors is electrically connected to at least one of the first and second conductive members. First and second power connectors are mounted to the substrate. The first power connector is electrically connected to the first conductive member, and the second power connector is electrically connected to the second conductive member. A common mode choke is coupled to the substrate and arranged such that the common mode choke extends around at least a portion of the substrate and the first and second conductive members.

Herron, Nicholas Hayden; Carlson, Douglas S; Tang, David; Korich, Mark D

2013-07-02T23:59:59.000Z

459

Advancing Material Models for Automotive Forming Simulations  

SciTech Connect (OSTI)

Simulations in automotive industry need more advanced material models to achieve highly reliable forming and springback predictions. Conventional material models implemented in the FEM-simulation models are not capable to describe the plastic material behaviour during monotonic strain paths with sufficient accuracy. Recently, ESI and Corus co-operate on the implementation of an advanced material model in the FEM-code PAMSTAMP 2G. This applies to the strain hardening model, the influence of strain rate, and the description of the yield locus in these models. A subsequent challenge is the description of the material after a change of strain path.The use of advanced high strength steels in the automotive industry requires a description of plastic material behaviour of multiphase steels. The simplest variant is dual phase steel consisting of a ferritic and a martensitic phase. Multiphase materials also contain a bainitic phase in addition to the ferritic and martensitic phase. More physical descriptions of strain hardening than simple fitted Ludwik/Nadai curves are necessary.Methods to predict plastic behaviour of single-phase materials use a simple dislocation interaction model based on the formed cells structures only. At Corus, a new method is proposed to predict plastic behaviour of multiphase materials have to take hard phases into account, which deform less easily. The resulting deformation gradients create geometrically necessary dislocations. Additional micro-structural information such as morphology and size of hard phase particles or grains is necessary to derive the strain hardening models for this type of materials.Measurements available from the Numisheet benchmarks allow these models to be validated. At Corus, additional measured values are available from cross-die tests. This laboratory test can attain critical deformations by large variations in blank size and processing conditions. The tests are a powerful tool in optimising forming simulations prior to larger scale industrial validation.

Vegter, H.; An, Y.; Horn, C.H.L.J. ten; Atzema, E.H.; Roelofsen, M.E. [Corus Research Development and Technology, PO Box 10000, 1970 CA IJmuiden (Netherlands)

2005-08-05T23:59:59.000Z

460

automotive radar systems: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

L. 10 Detection of arcs in automotive electrical systems MIT - DSpace Summary: At the present time, there is no established method for the detection of DC electric arcing. This is...

Note: This page contains sample records for the topic "light-duty automotive technology" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Direct Hydrogen PEMFC Manufacturing Cost Estimation for Automotive...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

for Automotive Applications Jayanti Sinha Stephen Lasher Yong Yang Peter Kopf Fuel Cell Tech Team Review September 24, 2008 TIAX LLC 15 Acorn Park Cambridge, MA 02140-2390...

462

Automotive Waste Heat Conversion to Electric Power using Skutterudites...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Waste Heat Conversion to Electric Power using Skutterudites, TAGS, PbTe and Bi2Te3 Automotive Waste Heat Conversion to Electric Power using Skutterudites, TAGS, PbTe and Bi2Te3...

463

Analysis of Automotive Turbocharger Nonlinear Response Including Bifurcations  

E-Print Network [OSTI]

Automotive turbochargers (TCs) increase internal combustion engine power and efficiency in passenger and commercial vehicles. TC rotors are usually supported on floating ring bearings (FRBs) or semi-floating ring bearings (SFRBs), both of which...

Vistamehr, Arian

2010-10-12T23:59:59.000Z

464

Hybrid method for aerodynamic shape optimization in automotive industry  

E-Print Network [OSTI]

Hybrid method for aerodynamic shape optimization in automotive industry Freedeerique Muyl April 2003; accepted 4 June 2003 Abstract An aerodynamic shape optimization tool for complex industrial reasons, concerns car manufacturers. Consequently, the improvement of the aerodynamics of car shapes, more

Dumas, Laurent

465

Improved supplier selection and cost management for globalized automotive production  

E-Print Network [OSTI]

For many manufacturing and automotive companies, traditional sourcing decisions rely on total landed cost models to determine the cheapest supplier. Total landed cost models calculate the cost to purchase a part plus all ...

Franken, Joseph P., II (Joseph Philip)

2012-01-01T23:59:59.000Z

466

Next Generation Bipolar Plates for Automotive PEM Fuel Cells  

Broader source: Energy.gov (indexed) [DOE]

Bipolar Plates for Automotive PEM Fuel Cells (Topic 4) GrafTech International, Ltd. * Funding DOE Cost Share Recipient Cost Share TOTAL 2,325,943 581,486 2,907,429 80% 20% 100%...

467

Green automotive supply chain for an emerging market  

E-Print Network [OSTI]

Green Supply Chain Management (GSCM) within the automotive industry is largely based on combining lean manufacturing with mandated supplier adoption of ISO 14001-compliant Environmental Management Systems (EMS). This ...

Fisch, Gene (Gene Joseph)

2008-01-01T23:59:59.000Z

468

Electrical build issues in automotive product development : an analysis  

E-Print Network [OSTI]

To be competitive and successful within the automotive industry the Original Equipment Manufacturers (OEMs) have to bring new products with features fast to market. The OEMs need to reduce the Product Development cycle ...

Chacko, John

2008-01-01T23:59:59.000Z

469

Energy Conservation Measures at an Automotive Instructional Facility  

E-Print Network [OSTI]

Energy consumption and costs to operate an automotive technical training facility at Texas State Technical Institute in Waco have been significantly reduced through implementation of several energy conservation measures. This paper reviews building...

Godsey, F. W.

1989-01-01T23:59:59.000Z

470

automotive catalytic converter: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

18 19 20 21 22 23 24 25 Next Page Last Page Topic Index 121 Analysis of Automotive Turbocharger Nonlinear Response Including Bifurcations Texas A&M University - TxSpace Summary:...

471

automotive catalytic converters: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

18 19 20 21 22 23 24 25 Next Page Last Page Topic Index 121 Analysis of Automotive Turbocharger Nonlinear Response Including Bifurcations Texas A&M University - TxSpace Summary:...

472

Applications of color powder paint in the automotive industry  

E-Print Network [OSTI]

Both color keyed and color specific liquid primers have been used successfully in automotive paint application, reducing the use of costly topcoat materials. Generally, color keyed primer is close in color to the topcoat ...

Barberich, Bevin, 1975-

2004-01-01T23:59:59.000Z

473

Meeting the Embedded Design Needs of Automotive Applications  

E-Print Network [OSTI]

The importance of embedded systems in driving innovation in automotive applications continues to grow. Understanding the specific needs of developers targeting this market is also helping to drive innovation in RISC core design. This paper describes how a RISC instruction set architecture has evolved to better meet those needs, and the key implementation features in two very different RISC cores are used to demonstrate the challenges of designing for real-time automotive systems.

Lyons, Wayne

2011-01-01T23:59:59.000Z

474

Evaluation of reformed methanol as an automotive engine fuel  

E-Print Network [OSTI]

EVALUATION OF REFORMED METHANOL AS AN AUTOMOTIVE ENGINE FUEL A Thesis by DAVID MICHAEL MCCALL Submitted to the Graduate College of Texas A&M University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE December... 1903 Major Subject: Mechanical Engineering EVALUATION OF REFORMED METHANOL AS AN AUTOMOTIVE ENGINE FUEL A Thesis by DAVID MICHAEL MCCALL Approved as to style and content by: Dr. T. R. Lalk (Chairman o f Committee ) Dr. R. R. Davison (Member...

McCall, David M

1983-01-01T23:59:59.000Z

475

Lightweighting Automotive Materials for Increased Fuel Efficiency and Delivering Advanced Modeling and Simulation Capabilities to U.S. Manufacturers  

SciTech Connect (OSTI)

Abstract The National Center for Manufacturing Sciences (NCMS) worked with the U.S. Department of Energy (DOE), National Energy Technology Laboratory (NETL), to bring together research and development (R&D) collaborations to develop and accelerate the knowledgebase and infrastructure for lightweighting materials and manufacturing processes for their use in structural and applications in the automotive sector. The purpose/importance of this DOE program: • 2016 CAFÉ standards. • Automotive industry technology that shall adopt the insertion of lightweighting material concepts towards manufacturing of production vehicles. • Development and manufacture of advanced research tools for modeling and simulation (M&S) applications to reduce manufacturing and material costs. • U.S. competitiveness that will help drive the development and manufacture of the next generation of materials. NCMS established a focused portfolio of applied R&D projects utilizing lightweighting materials for manufacture into automotive structures and components. Areas that were targeted in this program: • Functionality of new lightweighting materials to meet present safety requirements. • Manufacturability using new lightweighting materials. • Cost reduction for the development and use of new lightweighting materials. The automotive industry’s future continuously evolves through innovation, and lightweight materials are key in achieving a new era of lighter, more efficient vehicles. Lightweight materials are among the technical advances needed to achieve fuel/energy efficiency and reduce carbon dioxide (CO2) emissions: • Establish design criteria methodology to identify the best materials for lightweighting. • Employ state-of-the-art design tools for optimum material development for their specific applications. • Match new manufacturing technology to production volume. • Address new process variability with new production-ready processes.

Hale, Steve

2013-09-11T23:59:59.000Z

476

Paper title: A practical model-based statistical approach for generating functional test cases: application in the automotive  

E-Print Network [OSTI]

: application in the automotive industry Authors: Roy AWEDIKIAN (Corresponding Author) Affiliation 1 Affiliation 2 : Johnson Controls Automotive Electronics Electronics Division Europe Parc Saint Christophe. This approach was tested on two representative case studies from the automotive industry. The experiment

Paris-Sud XI, Université de

477

Design with Uncertain Technology Evolution  

E-Print Network [OSTI]

of an automotive manufacturing firm entering the electric vehicle market deciding which battery technology to include in their new line of electric cars is used to demonstrate the decision-making method. Another scenario of a wind turbine energy company deciding...

Arendt, Jonathan Lee

2012-10-19T23:59:59.000Z

478

Ultra-Low Sulfur diesel Update & Future Light Duty Diesel  

Broader source: Energy.gov (indexed) [DOE]

MARATHON PETROLEUM COMPANY LLC PARENT-MARATHON OIL COMPANY FIFTH LARGEST US REFINERY (OVER 1 MILLION BBLS OF CRUDE CAPACITY) MAJOR MARKETS IN MIDWEST AND SOUTHEAST ...

479

Light Duty Plug-in Hybrid Vehicle Systems Analysis  

Broader source: Energy.gov (indexed) [DOE]

and Hybrids-Plus - Have experience with hardware from all three conversion vendors * Tesla Motors and AC Propulsion - Interest and support in testing next generation EVs for...

480

Fire hazards evaluation for light duty utility arm system  

SciTech Connect (OSTI)

In accordance with DOE Order 5480.7A, Fire Protection, a Fire Hazards Analysis must be performed for all new facilities. LMHC Fire Protection has reviewed and approved the significant documentation leading up to the LDUA operation. This includes, but is not limited to, development criteria and drawings, Engineering Task Plan, Quality Assurance Program Plan, and Safety Program Plan. LMHC has provided an appropriate level of fire protection for this activity as documented.

HUCKFELDT, R.A.

1999-02-24T23:59:59.000Z

Note: This page contains sample records for the topic "light-duty automotive technology" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Light-Duty Diesel Market Potential in North America  

Broader source: Energy.gov (indexed) [DOE]

Diesel Engineering General Motors Corporation GM's Long Term Vision Remove the automobile from the energy & environmental equation Reduced Vehicle Emissions and Increased...

482

Fueling U.S. Light Duty Diesel Vehicles  

Broader source: Energy.gov (indexed) [DOE]

- Cylinder deactivation - Variable valve timing & lift - Direct injectionlean burn - Turbo chargingdownsizing - Integrated starter generators - Low temperature combustion *...

483

Emissions from the European Light Duty Diesel Vehicle During...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

DPF Regeneration Events Repeated partial regenerations may cause changes in the mechanical and chemical properties of the PM in the DPF. deer09dwyer.pdf More Documents &...

484

Opportunity Assessment Clean Diesels in the North American Light Duty  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department ofT ib l L d F SSales LLCDiesel Enginesthe U.S. -- An Overview |Market |

485

Organic Rankine Cycle for Light Duty Passenger Vehicles | Department of  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department ofT ib l L d F SSales LLCDiesel Enginesthe U.S.Solar CompanyEngine |

486

Overview of Light-Duty Vehicle Studies | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department ofT ib l L d F SSales LLCDieselEnergy Joining Activities in

487

Light Duty Efficient Clean Combustion | Department of Energy  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector General Office0-72.pdfGeorgeDoesn't Happen toLeveraging National Laboratories toPower Systems

488

Light-Duty Advanced Diesel Combustion Research | Department of Energy  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector General Office0-72.pdfGeorgeDoesn't Happen toLeveraging National

489

Thermoelectric HVAC for Light-Duty Vehicle Applications | Department of  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy Usage »of EnergyThe EnergyDepartment ofPowered Vehicle |DepartmentEnergy 1

490

Thermoelectric HVAC for Light-Duty Vehicle Applications | Department of  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy Usage »of EnergyThe EnergyDepartment ofPowered Vehicle |DepartmentEnergy

491

Thermoelectric Opportunities for Light-Duty Vehicles | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy Usage »of EnergyThe EnergyDepartment ofPowered VehicleDepartment offor2for

492

Thermoelectric Opportunities in Light-Duty Vehicles | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy Usage »of EnergyThe EnergyDepartment ofPowered VehicleDepartment offor2forin

493

Light-Duty Vehicle Energy Demand, Demographics, and Travel Behavior  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecember 2005 (Thousand9,0, 1997EnvironmentElectricityrgy81 § ¨,43332EIA

494

Light Duty Efficient Clean Combustion | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensionalthe10IO1OP001 Letter Report:Life-Cycle AnalysisPresentation

495

Light Duty Fuel Cell Electric Vehicle Hydrogen Fueling Protocol  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensionalthe10IO1OP001 Letter Report:Life-Cycle AnalysisPresentationDOE

496

First Semi-Annual Report AFDC Light Duty Vehicles  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsing ZirconiaPolicyFeasibilityField OfficeFirmFirst Proof ofFirstFirst Savannah River

497

Emissions from the European Light Duty Diesel Vehicle During DPF  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeat PumpRecord ofESPC ENABLE: ECMConstructionApplications |Applicationsa Suezmax

498

Sandia National Laboratories: light-duty diesel engine  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1developmentturbine blade manufacturinglife-cycle analysis Northrop-Grumman,

499

Business Case for Light-Duty Diesels | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartmentTie Ltd:June 2015 < prevBuilding theINNOVATIONof EnergyDiesel

500

DOE Light Duty Vehicle Workshop | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in Review: Top FiveDepartmentfor06/2015)09 I. Steps Taken5ofLNGDevelopment » DOELight Duty