Sample records for light unitil national

  1. Unitil- Residential Energy Efficiency Programs

    Broader source: Energy.gov [DOE]

    Unitil offers New Hampshire residential customers a number of programs to encourage more energy efficient homes. The Energy Star Appliance Program provides rebates for clothes washers, air...

  2. Unitil- Commercial and Industrial Energy Efficiency Programs

    Broader source: Energy.gov [DOE]

    Unitil offers three different programs for its commercial, industrial, and institutional customers in New Hampshire: the Small Business Energy Efficiency Services Program, the Large Business...

  3. Unitil Corporation | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof Energy 2,AUDITCalifornia Sector:Shreniksource History ViewFarmingUnitedUnitil

  4. Unitil (Gas)- Residential Energy Efficiency Programs

    Broader source: Energy.gov [DOE]

    Unitil offers its New Hampshire residential customers a number of programs to encourage more energy efficient homes. The Home Performance with Energy Star Program can help to improve the energy...

  5. Unitil Energy Systems (Massachusetts) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTown of Ladoga, IndianaTurtleCooperative Place: Beaver RedirectResponsesUnitil

  6. Efficiency Maine Business Programs (Unitil Gas)- Commercial Energy Efficiency Programs (Maine)

    Broader source: Energy.gov [DOE]

    Efficiency Maine offers natural gas efficiency rebates to Unitil customers. Equipment eligible for rebates includes boilers, furnaces, ECM units, unit heaters and food service equipment. Rebates...

  7. National Synchrotron Light Source

    ScienceCinema (OSTI)

    None

    2010-01-08T23:59:59.000Z

    A tour of Brookhaven's National Synchrotron Light Source (NSLS). The NSLS is one of the world's most widely used scientific research facilities, hosting more than 2,500 guest researchers each year. The NSLS provides intense beams of infrared, ultraviole

  8. National Synchrotron Light Source

    ScienceCinema (OSTI)

    BNL

    2009-09-01T23:59:59.000Z

    A tour of Brookhaven's National Synchrotron Light Source (NSLS), hosted by Associate Laboratory Director for Light Sources, Stephen Dierker. The NSLS is one of the world's most widely used scientific research facilities, hosting more than 2,500 guest researchers each year. The NSLS provides intense beams of infrared, ultraviolet, and x-ray light for basic and applied research in physics, chemistry, medicine, geophysics, environmental, and materials sciences.

  9. Brookhaven National Laboratory National Synchrotron Light Source

    E-Print Network [OSTI]

    Ohta, Shigemi

    Brookhaven National Laboratory National Synchrotron Light Source Number: Revision: LS-ESH-0027 06 copy of this file is the one on-line in the NSLS ESH website. Before using a printed copy, verify that it is the most current version by checking the document issue date on the NSLS ESH website. BROOKHAVEN NATIONAL

  10. Brookhaven National Laboratory National Synchrotron Light Source

    E-Print Network [OSTI]

    Ohta, Shigemi

    Brookhaven National Laboratory National Synchrotron Light Source Number: Revision: PS-ESH-0025 01 of this file is the one on-line in the NSLS ESH website. Before using a printed copy, verify that it is the most current version by checking the document issue date on the NSLS ESH website. BROOKHAVEN NATIONAL

  11. Brookhaven National Laboratory National Synchrotron Light Source

    E-Print Network [OSTI]

    Ohta, Shigemi

    Brookhaven National Laboratory National Synchrotron Light Source Number: Revision: LS-ESH-0026 4 of this file is the one on-line in the PS ESH website. Before using a printed copy, verify that it is the most current version by checking the document issue date on the PS ESH website. BROOKHAVEN NATIONAL LABORATORY

  12. Sandia National Laboratories: Lighting

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lighting Solid-State Lighting Science EFRC On November 11, 2010, in Welcome History of Incandescence History of LEDs Grand Challenges Our EFRC SSLS-EFRC Contacts News Publications...

  13. National Synchrotron Light Source II

    ScienceCinema (OSTI)

    Steve Dierker

    2010-01-08T23:59:59.000Z

    The National Synchrotron Light Source II (NSLS-II) at the U.S. Department of Energy's Brookhaven National Laboratory is a proposed new state-of-the-art medium energy storage ring designed to deliver world-leading brightness and flux with top-off operation

  14. National Synchrotron Light Source annual report 1991

    SciTech Connect (OSTI)

    Hulbert, S.L.; Lazarz, N.N. (eds.)

    1992-04-01T23:59:59.000Z

    This report contains abstracts from research conducted at the national synchrotron light source. (LSP)

  15. National Synchrotron Light Source Activity Report 1998

    SciTech Connect (OSTI)

    Rothman, Eva

    1999-05-01T23:59:59.000Z

    National Synchrotron Light Source Activity Report for period October 1, 1997 through September 30, 1998

  16. Unitil (Electric) - Commercial and Industrial Energy Efficiency Programs |

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA group current C3E AmbassadorsUS-EU-Japan-JapanHighly Enriched Uranium

  17. Unitil (Electric) - Residential Energy Efficiency Programs | Department of

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA group current C3E AmbassadorsUS-EU-Japan-JapanHighly Enriched UraniumEnergy

  18. National Synchrotron Light Source annual report 1988

    SciTech Connect (OSTI)

    Hulbert, S.; Lazarz, N.; Williams, G. (eds.)

    1988-01-01T23:59:59.000Z

    This report discusses the experiment done at the National Synchrotron Light Source. Most experiments discussed involves the use of the x-ray beams to study physical properties of solid materials. (LSP)

  19. Sandia National Laboratories: White Light Creation Architectures

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Light Creation Architectures White Light Creation Architectures Overview of SSL White Light Creation Architectures The entire spectral range of visible light can be...

  20. Sandia National Laboratories: Lighting Developments to 2030

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ClimateLighting Developments to 2030 Lighting Developments to 2030 videobanner Lighting Technologies, Costs, and Energy Demand: Global Developments to 2030 V iew Slides: Lighting...

  1. Quantifying National Energy Savings Potential of Lighting Controls in

    E-Print Network [OSTI]

    Quantifying National Energy Savings Potential of Lighting Controls in Commercial Buildings Alison of Lighting Controls in Commercial Buildings Alison Williams, Barbara Atkinson, Karina Garbesi and Francis savings. Researchers have been quantifying energy savings from lighting controls in commercial buildings

  2. Sandia National Laboratories: efficient LED lighting

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Partnership, Research & Capabilities, Solid-State Lighting Solid state lighting (SSL), which uses light-emitting diodes (LEDs), has the potential to be 10 times more energy...

  3. Sandia National Laboratories: Light Creation Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    TechnologiesLight Creation Materials Light Creation Materials Overview of SSL Light Creation Materials Different families of inorganic semiconductor materials can...

  4. Sandia National Laboratories: Solid-State Lighting

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lighting Developments to 2030 On July 30, 2012, in Lighting Technologies, Costs, and Energy Demand: Global Developments to 2030 View Slides: Lighting Technologies, Costs, and...

  5. Sandia National Laboratories: (Lighting and) Solid-State Lighting...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    on the third and upcoming revolution (illumination). Topics cover the basics of light-emitting diode (LED) operation; a 200-year history of lighting technology; the importance of...

  6. National Synchrotron Light Source 2008 Activity Report

    SciTech Connect (OSTI)

    Nasta,K.

    2009-05-01T23:59:59.000Z

    Funded by the U.S. Department of Energy's Office of Basic Energy Sciences, the National Synchrotron Light Source (NSLS) is a national user facility that operates two electron storage rings: X-Ray (2.8 GeV, 300 mA) and Vacuum Ultraviolet (VUV) (800 mev, 1.0A). These two rings provide intense light spanning the electromagnetic spectrum -- from very long infrared rays to ultraviolet light and super-short x-rays -- to analyze very small or highly dilute samples. The properties of this light, and the specially designed experimental stations, called beamlines, allow scientists in many diverse disciplines of research to perform experiments not possible at their own laboratories. Each year, about 2,200 scientists from more than 400 universities and companies use the NSLS for research in such diverse fields as biology, physics, chemistry, geology, medicine, and environmental and materials sciences. For example, researchers have used the NSLS to examine the minute details of computer chips, decipher the structures of viruses, probe the density of bone, determine the chemical composition of moon rocks, and reveal countless other mysteries of science. The facility has 65 operating beamlines, with 51 beamlines on the X-Ray Ring and 14 beamlines on the VUV-Infrared Ring. It runs seven days a week, 24 hours a day throughout the year, except during periods of maintenance and studies. Researchers are not charged for beam time, provided that the research results are published in open literature. Proprietary research is conducted on a full-cost-recovery basis. With close to 1,000 publications per year, the NSLS is one of the most prolific scientific facilities in the world. Among the many accolades given to its users and staff, the NSLS has won nine R&D 100 Awards for innovations ranging from a closed orbit feedback system to the first device able to focus a large spread of high-energy x-rays. In addition, a visiting NSLS researcher shared the 2003 Nobel Prize in Chemistry for work explaining how one class of proteins helps to generate nerve impulses.

  7. National Synchrotron Light Source 2010 Activity Report

    SciTech Connect (OSTI)

    Rowe, M.; Snyder, K. J.

    2010-12-29T23:59:59.000Z

    This is a very exciting period for photon sciences at Brookhaven National Laboratory. It is also a time of unprecedented growth for the Photon Sciences Directorate, which operates the National Synchrotron Light Source (NSLS) and is constructing NSLS-II, both funded by the Department of Energy's Office of Science. Reflecting the quick pace of our activities, we chose the theme 'Discovery at Light Speed' for the directorate's 2010 annual report, a fiscal year bookended by October 2009 and September 2010. The year began with the news that NSLS users Venki Ramakrishnan of Cambridge University (also a former employee in Brookhaven's biology department) and Thomas A. Steitz of Yale University were sharing the 2009 Nobel Prize in Chemistry with Ada E. Yonath of the Weizmann Institute of Science. Every research project has the potential for accolades. In 2010, NSLS users and staff published close to 900 papers, with about 170 appearing in premiere journals. Those are impressive stats for a facility nearly three decades old, testament to the highly dedicated team keeping NSLS at peak performance and the high quality of its user community. Our NSLS users come from a worldwide community of scientists using photons, or light, to carry out research in energy and environmental sciences, physics, materials science, chemistry, biology and medicine. All are looking forward to the new capabilities enabled by NSLS-II, which will offer unprecedented resolution at the nanoscale. The new facility will produce x-rays more than 10,000 times brighter than the current NSLS and host a suite of sophisticated instruments for cutting-edge science. Some of the scientific discoveries we anticipate at NSLS-II will lead to major advances in alternative energy technologies, such as hydrogen and solar. These discoveries could pave the way to: (1) catalysts that split water with sunlight for hydrogen production; (2) materials that can reversibly store large quantities of electricity or hydrogen; (3) high-temperature superconducting materials that carry electricity with no loss for efficient power transmission lines; and (4) materials for solid-state lighting with half of the present power consumption. Excitement about NSLS-II is evident in many ways, most notably the extraordinary response we had to the 2010 call for beamline development proposals for the anticipated 60 or more beamlines that NSLS-II will ultimately host. A total of 54 proposals were submitted and, after extensive review, 34 were approved. Funding from both the Department of Energy and the National Institutes of Health has already been secured to support the design and construction of a number of these beamlines. FY11 is a challenging and exciting year for the NSLS-II Project as we reach the peak of our construction activity. We remain on track to complete the project by March 2014, a full 15 months ahead of schedule and with even more capabilities than originally planned. The Photon Sciences Directorate is well on its way to fulfilling our vision of being a provider of choice for world-class photon sciences and facilities.

  8. Sandia National Laboratories: Solid-State Lighting

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    light, which could also impact so-called smart (or higher functionality) lighting, another . Among InGaN ... Research Challenge 3: Competing Radiative and...

  9. Sandia National Laboratories: Solid-State Lighting

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Solid-State Lighting InAs Quantum Dot Transitions On April 5, 2011, in EC, Energy, Energy Efficiency, News, Solid-State Lighting March 1, 2011singlepic id364 w320 h240...

  10. Sandia National Laboratories: light-emitting diode

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    light-emitting diode Sandian Receives the Illuminating Engineering Society of North America, South Region Technical Award On December 12, 2014, in Capabilities, Energy, Energy...

  11. Sandia National Laboratories: Solid-State Lighting

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Unfortunately, red emitters that satisfy all criteria for use in solid-state lighting (SSL) applications are ... Sandia's Dr. Jeffrey Tsao Is Recognized as an Asian-American...

  12. Sandia National Laboratories: Solid-State Lighting

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Massachusetts Institute of Technology Date: September 14, 2011 Event: Solid-State Lighting Science Workshop in Novel Emitters and Nanostructured Materials Abstract: The...

  13. Sandia National Laboratories: Solid-State Lighting

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nuclear Energy photovoltaic Photovoltaics PV Renewable Energy solar Solar Energy solar power Solar Research Solid-State Lighting SSLS Connect Contact Us RSS Google+ Twitter...

  14. Sandia National Laboratories: Solid-State Lighting

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Could Lead to Better Lights, Lenses, Solar Cells On July 1, 2014, in Capabilities, CINT, Energy, Energy Efficiency, Facilities, Materials Science, News, News & Events,...

  15. Sandia National Laboratories: Solid-State Lighting

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    security and economic prosperity. Energy security research at Sandia seeks to address key challenges facing our nation and the world. We work ... Page 13 of 13...

  16. Sandia National Laboratories: Solid-State Lighting

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Updated: May 23, 2013 Go To Top Exceptional service in the national interest EC About Energy and Climate (EC) Energy Security Climate Security Infrastructure Security Energy...

  17. Sandia National Laboratories: Solid-State Lighting

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    III-Nitride core-shell nanowire arrayed solar cells On April 27, 2012, in Energy, Energy Efficiency, News, News & Events, Solid-State Lighting In a new EFRC-supported publication...

  18. Sandia National Laboratories: Solid-State Lighting

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    a roughly 50 billion per year cost to the U.S. consumer. Solid-state lighting (SSL) is an emerging technology with the potential to reduce that energy consumption by a...

  19. Sandia National Laboratories: Solid State Lighting EFRC

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Solid State Lighting EFRC SSLS CoffeeDessert Hour Calendar of Topics On June 24, 2013, in All Publications On June 10, 2013, in A list of all publications can be found here: SSLS...

  20. Sandia National Laboratories: Solid-State Lighting

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Dot Transitions On April 5, 2011, in EC, Energy, Energy Efficiency, News, Solid-State Lighting March 1, 2011singlepic id364 w320 h240 floatright The fundamental interaction...

  1. NATIONAL SYNCHROTRON LIGHT SOURCE ACTIVITY REPORT 1998.

    SciTech Connect (OSTI)

    ROTHMAN,E.

    1999-05-01T23:59:59.000Z

    In FY 1998, following the 50th Anniversary Year of Brookhaven National Laboratory, Brookhaven Science Associates became the new Managers of BNL. The new start is an appropriate time to take stock of past achievements and to renew or confirm future goals. During the 1998 NSLS Annual Users Meeting (described in Part 3 of this Activity Report), the DOE Laboratory Operations Board, Chaired by the Under Secretary for Energy, Ernest Moniz met at BNL. By chance all the NSLS Chairmen except Martin Blume (acting NSLS Chair 84-85) were present as recorded in the picture. Under their leadership the NSLS has improved dramatically: (1) The VUV Ring current has increased from 100 mA in October 1982 to nearly 1 A today. For the following few years 10 Ahrs of current were delivered most weeks - NSLS now exceeds that every day. (2) When the first experiments were performed on the X-ray ring during FY1985 the electron energy was 2 GeV and the current up to 100 mA - the X-Ray Ring now runs routinely at 2.5 GeV and at 2.8 GeV with up to 350 mA of current, with a very much longer beam half-life and improved reliability. (3) Starting in FY 1984 the proposal for the Phase II upgrade, mainly for a building extension and a suite of insertion devices and their associated beamlines, was pursued - the promises were delivered in full so that for some years now the NSLS has been running with two undulators in the VUV Ring and three wigglers and an undulator in the X-Ray Ring. In addition two novel insertion devices have been commissioned in the X13 straight. (4) At the start of FY 1998 the NSLS welcomed its 7000th user - attracted by the opportunity for pursuing research with high quality beams, guaranteed not to be interrupted by 'delivery failures', and welcomed by an efficient and caring user office and first class teams of PRT and NSLS staff. R & D have lead to the possibility of running the X-Ray Ring at the higher energy of 2.8 GeV. Figure 1 shows the first user beam, which was provided thereafter for half of the running time in FY 1998. In combination with the development of narrow gap undulators this mode opens the possibility of new undulators which could produce hard X-rays in the fundamental, perhaps up to 10 keV. On 27 September 1998, a low horizontal emittance lattice became operational at 2.584 GeV. This results in approximately a 50% decrease in the horizontal beam-size on dipole bending magnet beamlines, and somewhat less of a decrease on the insertion device lines. The beam lifetime is not degraded by the low emittance lattice. This represents an important achievement, enhancing for all users the x-ray ring brightness. The reduced horizontal emittance electron beam will produce brighter x-ray beams for all the beamlines, both bending magnets and insertion devices, adding to other recent increases in the X-Ray ring brightness. During FY 1999 users will gain experience of the new running mode and plans are in place to do the same at 2.8GeV during further studies sessions. Independent evidence of the reduced emittance is shown in Figure 2. This is a pinhole camera scan showing the X-ray beam profile, obtained on the diagnostic beamline X28. Finally, work has begun to update and refine the proposal of the Phase III upgrade endorsed by the Birgeneau panel and BESAC last year. With the whole NSLS facility in teenage years and with many demonstrated enhancements available, the time has come to herald in the next stage of life at the Light Source.

  2. National Synchrotron Light Source II Project Progress Report

    E-Print Network [OSTI]

    Ohta, Shigemi

    , girders and components for the vacuum system started to ramp up and substantial progress was made of the deionized cooling water systems havNational Synchrotron Light Source II Project Progress Report March 2010 Erection of structural

  3. 2011 Beamline Development Proposals National Synchrotron Light Source II

    E-Print Network [OSTI]

    Ohta, Shigemi

    2011 Beamline Development Proposals National Synchrotron Light Source II 1. High-energy x-ray micro- uniformity in the X-Ray and Gamma-ray Response of Large-Area/Volume Radiation Detectors (MDM) Ralph James) Konstantine Kaznatcheev, Brookhaven National Laboratory Insertion device 11. Scanning Transmission X

  4. National Synchrotron Light Source annual report 1991. Volume 2, October 1, 1990--September 30, 1991

    SciTech Connect (OSTI)

    Hulbert, S.L.; Lazarz, N.N. [eds.

    1992-04-01T23:59:59.000Z

    This report contains abstracts from research conducted at the national synchrotron light source. (LSP)

  5. MassSAVE- Financing for Business Program (Massachusetts)

    Broader source: Energy.gov [DOE]

    Business customers of Berkshire Gas, Cape Light Compact, Columbia Gas of Massachusetts, National Grid, New England Gas Company, NSTAR, Unitil and Western Massachusetts Electric Company may be...

  6. MassSAVE- HEAT Loan Program

    Broader source: Energy.gov [DOE]

    Residential customers of Cape Light Compact, National Grid, NSTAR, Unitil and Western Massachusetts Electric Company may be eligible for zero-interest financing to help increase the energy...

  7. National Synchrotron Light Source II Project Progress Report

    E-Print Network [OSTI]

    Ohta, Shigemi

    in September. Accelerator Systems progress continued with successful procurement and delivery of major. 25 ASD Secondary Cooling System Design Review Sept. 1­2 RF Bellows and Absorbers Review Sept. 8National Synchrotron Light Source II Project Progress Report July 2010 July 30: Roof surfacing

  8. National Synchrotron Light Source II November 2013 Activity

    E-Print Network [OSTI]

    Ohta, Shigemi

    the conformance of our injector commissioning program with the requirements of the Accelerator Safety Order and effective commissioning of the NSLS-II linac and booster. Injector commissioning is expected to last EXECUTIVE SUMMARY NOVEMBER 2013 ACTIVITY 2 OVERALL ASSESSMENT The National Synchrotron Light Source II

  9. National Synchrotron Light Source safety-analysis report

    SciTech Connect (OSTI)

    Batchelor, K. (ed.)

    1982-07-01T23:59:59.000Z

    This document covers all of the safety issues relating to the design and operation of the storage rings and injection system of the National Synchrotron Light Source. The building systems for fire protection, access and egress are described together with air and other gaseous control or venting systems. Details of shielding against prompt bremstrahlung radiation and synchrotron radiation are described and the administrative requirements to be satisfied for operation of a beam line at the facility are given.

  10. Phase II beam lines at the National Synchrotron Light Source

    SciTech Connect (OSTI)

    Thomlinson, W.

    1984-06-01T23:59:59.000Z

    The expansion of the National Synchrotron Light Source has been funded by the US Department of Energy. The Phase II program consists of both increased conventional facilities and six new beam lines. In this paper, an overview of the six beam lines which will be constructed during Phase II is presented. For five of the lines special radiation sources are necessary and the designs of four of the devices are complete. The relevant parameters of the insertion devices under construction and development are presented.

  11. EA-1321: Proposed Upgrade and Improvement of The National Synchrotron Light Source Complex at Brookhaven National Laboratory, Upton, New York

    Broader source: Energy.gov [DOE]

    This EA evaluates the environmental impacts for the proposal to upgrade the facilities of the U.S. Department of Energy's National Synchrotron Light Source Complex, namely the National Synchrotron...

  12. National Synchrotron Light Source guidelines for the conduct of operations

    SciTech Connect (OSTI)

    Buckley, M. [Brookhaven National Lab., Upton, NY (United States). National Synchrotron Light Source

    1998-01-01T23:59:59.000Z

    To improve the quality and uniformity of operations at the Department of Energy`s facilities, the DOE issued Order 5480.19 ``Conduct of Operations Requirements at DOE facilities.`` This order recognizes that the success of a facilities mission critically depends upon a high level of performance by its personnel and equipment. This performance can be severely impaired if the facility`s Conduct of Operations pays inadequate attention to issues of organization, safety, health, and the environment. These guidelines are Brookhaven National Laboratory`s and the National Synchrotron Light Source`s acknowledgement of the principles of Conduct of Operations and the response to DOE Order 5480.19. These guidelines cover the following areas: (1) operations organization and administration; (2) shift routines and operating practices; (3) control area activities; (4) communications; (5) control of on-shift training; (6) investigation of abnormal events; (7) notifications; (8) control of equipment and system studies; (9) lockouts and tagouts; (10) independent verification; (11) log-keeping; (12) operations turnover; (13) operations aspects of facility process control (14) required reading; (15) timely orders to operators; (16) operations procedures; (17) operator aid posting; and (18) equipment sizing and labeling.

  13. Sandia National Laboratories: fuel-cell-powered mobile lighting...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    fuel-cell-powered mobile lighting system ECIS, Boeing, Caltrans, and Others: Fuel-Cell-Powered Mobile Lighting Applications On March 29, 2013, in Capabilities, CRF, Energy, Energy...

  14. Sandia National Laboratories: fuel cell mobile lighting system

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    fuel cell mobile lighting system Patent Awarded for the Fuel Cell Mobile Light On August 28, 2013, in Center for Infrastructure Research and Innovation (CIRI), CRF, Energy, Energy...

  15. Sandia National Laboratories: solid-state lighting technology

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    in the ... Optical performance of top-down fabricated InGaNGaN nanorod light emitting diode arrays On November 30, 2011, in Energy, Energy Efficiency, Solid-State Lighting...

  16. Environmental Assessment for the National Synchrotron Light Source...

    Broader source: Energy.gov (indexed) [DOE]

    synchrotron light source, NSLS-II, would incorporate advanced insertion devices, optics, detectors and non-destructive tools and instruments to image the structure and...

  17. Sandia National Laboratories: Solid State Lighting Science Energy...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Unfortunately, red emitters that satisfy all criteria for use in solid-state lighting (SSL) applications are ... Last Updated: May 23, 2013 Go To Top Exceptional service in...

  18. Shedding new light on LEDs | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    diodes, are the secret behind your iPhone screen, flatscreen TVs, Christmas lights and crosswalk signals. They can last longer and save more energy than traditional...

  19. Sandia National Laboratories: "Solid-state Lighting: 'The case...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    illumination. Since then, investments in the now-renamed field of solid-state lighting (SSL) have accelerated and considerable progress has been made, not always in the directions...

  20. Sandia National Laboratories: Taiwan Solid-State Lighting

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Taiwan Solid-State Lighting George Wang's Invited Talk at 2013 tSSL On March 26, 2013, in Conferences, EC, Energy, Energy Efficiency, Energy Surety, Events, News, News & Events,...

  1. Sandia National Laboratories: solid-state lighting science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Efficiency, Solid-State Lighting A new top-down method for fabricating gallium nitride (GaN) nanowires with precisely controlled geometries enables single-mode, rather than...

  2. National synchrotron light source. [Annual report], October 1, 1992--September 30, 1993

    SciTech Connect (OSTI)

    Rothman, E.Z.; Hulbert, S.L.; Lazarz, N.M. [eds.

    1994-04-01T23:59:59.000Z

    This report contains brief discussions on the research being conducted at the National Synchrotron Light source. Some of the topics covered are: X-ray spectroscopy; nuclear physics; atomic and molecular science; meetings and workshops; operations; and facility improvements.

  3. BNL National Synchrotron Light Source activity report 1997

    SciTech Connect (OSTI)

    NONE

    1998-05-01T23:59:59.000Z

    During FY 1997 Brookhaven National Laboratory celebrated its 50th Anniversary and 50 years of outstanding achievement under the management of Associated Universities, Inc. This progress report is divided into the following sections: (1) introduction; (2) science highlights; (3) meetings and workshops; (4) operations; (5) projects; (6) organization; and (7) abstracts and publications.

  4. LANL Instrument to Shine Light on Mars Habitability | National Nuclear

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |Is Your Home as ReadyAppointedKyungmin Ham, Ph.D. Title:

  5. PHOTOINJECTED ENERGY RECOVERY LINAC UPGRADE FOR THE NATIONAL SYNCHROTRON LIGHT SOURCE.

    SciTech Connect (OSTI)

    BEN-ZVI,I.; BABZIEN,M.; BLUM,E.; CASEY,W.; CHANG,X.; GRAVES,W.; HASTINGS,J.; HULBERT,S.; JOHNSON,E.; KAO,C.C.; KRAMER,S.; KRINSKY,S.; MORTAZAVI,P.; MURPHY,J.; OZAKI,S.; PJEROV,S.; PODOBEDOV,B.; RAKOWSKY,G.; ROSE,J.; SHAFTAN,T.; SHEEHY,B.; SIDDONS,D.; SMEDLEY,J.; SRINIVASAN-RAO,T.; TOWNE,N.; WANG,J.M.; WANG,X.; WU,J.; YAKIMENKO,V.; YU,L.H.

    2001-06-18T23:59:59.000Z

    We describe a major paradigm shift in the approach to the production of synchrotron radiation This change will considerably improve the scientific capabilities of synchrotron light sources. We introduce plans for an upgrade of the National Synchrotron Light Source (NSLS). This upgrade will be based on the Photoinjected Energy Recovering Linac (PERL). This machine emerges from the union of two technologies, the laser-photocathode RF gun (photoinjector) and superconducting linear accelerators with beam energy recovery (Energy Recovering Linac). The upgrade will bring the NSLS users many new insertion device beam lines, brightness greater than 3rd generation lightsource's and ultra-short pulse capabilities, not possible with storage ring light sources.

  6. Residential Central Wood Pellet Heating Program

    Broader source: Energy.gov [DOE]

    Project sites must be located in a utility territory that contributes to the Renewable Energy Trust Fund (National Grid, NSTAR, WMECO, Unitil, and municipal light plants that have agreed to pay i...

  7. Residential Ground-Source Heat Pump Program

    Broader source: Energy.gov [DOE]

    Project sites must be located in a utility territory that contributes to the Renewable Energy Trust Fund (National Grid, NSTAR, WMECO, Unitil, and municipal light plants that have agreed to pay i...

  8. 1994 Activity Report, National Synchrotron Light Source. Annual report, October 1, 1993-September 30, 1994

    SciTech Connect (OSTI)

    Rothman, E.Z. [ed.

    1995-05-01T23:59:59.000Z

    This report is a summary of activities carried out at the National Synchrotron Light Source during 1994. It consists of sections which summarize the work carried out in differing scientific disciplines, meetings and workshops, operations experience of the facility, projects undertaken for upgrades, administrative reports, and collections of abstracts and publications generated from work done at the facility.

  9. Lighting

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12electron 9 5Let us countLighting Sign In About | Careers |

  10. National Synchrotron Light Source users manual: Guide to the VUV and x-ray beam lines

    SciTech Connect (OSTI)

    Gmuer, N.F.; White-DePace, S.M. (eds.)

    1987-08-01T23:59:59.000Z

    The success of the National Synchrotron Light Source in the years to come will be based, in large part, on the size of the users community and the diversity of the scientific disciplines represented by these users. In order to promote this philosophy, this National Synchrotron Light Source (NSLS) Users Manual: Guide to the VUV and X-Ray Beam Lines, has been published. This manual serves a number of purposes. In an effort to attract new research, it will present to the scientific community-at-large the current and projected architecture and capabilities of the various VUV and x-ray beam lines and storage rings. We anticipate that this publication will be updated periodically in order to keep pace with the constant changes at the NSLS.

  11. EA-1975: LINAC Coherent Light Source-Il, SLAC National Accelerator Laboratory, Menlo Park, California

    Broader source: Energy.gov [DOE]

    DOE prepared an EA on the potential environmental impacts of a proposal to upgrade the existing LINAC Coherent Light Source (LCLS) at the SLAC National Accelerator Laboratory. The proposed LCLS-II would extend the photon energy range, increase control over photon pulses, and enable two-color pump-probe experiments. The X-ray laser beams generated by LCLS-II would enable a new class of experiments: the simultaneous investigation of a material’s electronic and structural properties.

  12. National synchrotron light source annual report 1987: For the period of October 1, 1986--September 30, 1987

    SciTech Connect (OSTI)

    White-DePace, S.; Gmur, N.F.; Thomlinson, W.

    1987-10-01T23:59:59.000Z

    This report contains the reports and operational information of the National Synchrotron Light source facility for 1987. The reports are grouped mainly under VUV research and x-ray research. (LSP)

  13. Environmental Remediation Science at Beamline X26A at the National Synchrotron Light Source- Final Report

    SciTech Connect (OSTI)

    Bertsch, Paul

    2013-11-07T23:59:59.000Z

    The goal of this project was to provide support for an advanced X-ray microspectroscopy facility at the National Synchrotron Light Source, Brookhaven National Laboratory. This facility is operated by the University of Chicago and the University of Kentucky. The facility is available to researchers at both institutions as well as researchers around the globe through the general user program. This facility was successfully supported during the project period. It provided access to advanced X-ray microanalysis techniques which lead to fundamental advances in understanding the behavior of contaminants and geochemistry that is applicable to environmental remediation of DOE legacy sites as well as contaminated sites around the United States and beyond.

  14. Quantifying National Energy Savings Potential of Lighting Controls in Commercial Buildings

    E-Print Network [OSTI]

    Williams, Alison

    2013-01-01T23:59:59.000Z

    Performance of Occupancy-Based Lighting Control Systems: AReview. ” Lighting Residential Technology 42:415-431. Itron,Information Template – Indoor Lighting Controls. Pacific Gas

  15. National synchrotron light source. Activity report, October 1, 1994--September 30, 1995

    SciTech Connect (OSTI)

    Rothman, E.Z.; Hastings, J. [eds.

    1996-05-01T23:59:59.000Z

    This report discusses research conducted at the National Synchrotron Light Source in the following areas: atomic and molecular science; energy dispersive diffraction; lithography, microscopy, and tomography; nuclear physics; scattering and crystallography studies of biological materials; time resolved spectroscopy; UV photoemission and surface science; x-ray absorption spectroscopy; x-ray scattering and crystallography; x-ray topography; the 1995 NSLS annual users` meeting; 17th international free electron laser conference; micro bunches workshop; VUV machine; VUV storage ring parameters; beamline technical improvements; x-ray beamlines; x-ray storage ring parameters; the NSLS source development laboratory; the accelerator test facility (ATF); NSLS facility improvements; NSLS advisory committees; NSLS staff; VUV beamline guide; and x-ray beamline guide.

  16. Unitil Energy Systems (Massachusetts) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTri Global Energy LLCEnergy) Redirect page JumpCorp Jump to:

  17. Unitil Energy Systems | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit withTianlin BaxinUmwelt Management AG UMaAGUnitil Energy Systems (Redirected from

  18. Unitil Energy Systems | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit withTianlin BaxinUmwelt Management AG UMaAGUnitil Energy Systems (Redirected

  19. National Syncrotron Light Source (NSLS-II) | U.S. DOE Office...

    Office of Science (SC) Website

    Syncrotron Light Source (NSLS-II) Stanford Synchrotron Radiation Light Source (SSRL) Neutron Scattering Facilities Nanoscale Science Research Centers (NSRCs) Projects...

  20. DOE Announces Selection of National Laboratory Center for Solid-State Lighting R&D and Seven Projects for Core Technology Research in Nanotechnology

    Broader source: Energy.gov [DOE]

    The National Energy Technology Laboratory (NETL), on behalf of the U.S. Department of Energy (DOE), is pleased to announce the selection of the National Laboratory Center for Solid-State Lighting...

  1. National Synchrotron Light Source Facility Manual Maintenance Management Program. Revision 1

    SciTech Connect (OSTI)

    Fewell, N.

    1993-12-01T23:59:59.000Z

    The purpose of this program s to meet the policy and objectives for the management and performance of cost-effective maintenance and repair of the National Synchrotron Light Source, as required by the US Department of Energy order DOE 433O.4A. It is the DOE`s policy that: The maintenance management program for the NSLS be consistent with this Order and that NSLS property is maintained in a manner which promotes operational safety, worker health, environmental protection and compliance, property preservation, and cost-effectiveness while meeting the NSLS`s programmatic mission. Structures, components and systems (active and passive) that are imporant to safe operation of the NSLS shall be subject to a maintenance program to ensure that they meet or exceed their design requirements throughout the life of the NSLS. Periodic examination of structures, systems components and equipment be performed to determine deterioration or technical obsolescence which may threaten performance and/or safety. Primary responsibility, authority, and accountability for the direction and management of the maintenance program at the NSLS reside with the line management assigned direct programmatic responsibility. Budgeting and accounting for maintenance programs are consistent with DOE Orders guidance.

  2. NSLS (National Synchrotron Light Source) X-19A beamline performance for x-ray absorption measurements

    SciTech Connect (OSTI)

    Yang, C.Y.; Penner-Hahn, J.E.; Stefan, P.M. (Michigan Univ., Ann Arbor, MI (USA). Dept. of Chemistry; Brookhaven National Lab., Upton, NY (USA))

    1989-01-01T23:59:59.000Z

    Characterization of the X-19A beamline at the National Synchrotron Light Source (NSLS) is described. The beamline is designed for high resolution x-ray absorption spectroscopy over a wide energy range. All of the beamline optical components are compatible with ultrahigh vacuum (UHV) operation. This permits measurements to be made in a window-less mode, thereby facilitating lower energy (<4 KeV) studies. To upgrade the beamline performance, several possible improvements in instrumentation and practice are discussed to increase photon statistics with an optimum energy resolution, while decreasing the harmonic contamination and noise level. A special effort has been made to improve the stability and UHV compatibility of the monochromator system. Initial x-ray absorption results demonstrate the capabilities of this beamline for x-ray absorption studies of low Z elements (e.g. S) in highly dilute systems. The future use of this beamline for carrying out various x-ray absorption experiments is presented. 10 refs., 4 figs.

  3. NSLS 2007 Activity Report (National Synchrotron Light Source Activity Report 2007)

    SciTech Connect (OSTI)

    Miller ,L.; Nasta, K.

    2008-05-01T23:59:59.000Z

    The National Synchrotron Light Source is one of the world's most productive and cost-effective user facilities. With 2,219 individual users, about 100 more than last year, and a record-high 985 publications, 2007 was no exception. In addition to producing an impressive array of science highlights, which are included in this Activity Report, many NSLS users were honored this year for their scientific accomplishments. Throughout the year, there were major strides in the development of the scientific programs by strengthening strategic partnerships with major research resources and with the Center for Functional Nanomaterials (CFN). Of particular note, the Consortium for Materials Properties Research in Earth Sciences (COMPRES) received renewed funding for the next five years through the National Science Foundation. COMPRES operates four high-pressure NSLS beamlines--X17B2, X17B3, X17C, and U2A--and serves the earth science community as well as the rapidly expanding segment of researchers using high-pressure techniques in materials, chemical, and energy-related sciences. A joint appointment was made between the NSLS and Stony Brook University to further enhance interactions with COMPRES. There was major progress on two key beamline projects outlined in the Five-Year Strategic Plan: the X25 beamline upgrade and the construction of the X9 small angle scattering (SAXS) beamline. The X25 overhaul, which began with the installation of the in-vacuum mini-gap undulator (MGU) in January 2006, is now complete. X25 is once again the brightest beamline for macromolecular crystallography at the NSLS, and in tandem with the X29 undulator beamline, it will keep the NSLS at the cutting edge in this important area of research. Upgrade work associated with the new MGU and the front end for the X9 SAXS beamline--jointly developed by the NSLS and the CFN--also was completed. Beamline X9 will host the SAXS program that currently exists at beamline X21 and will provide new microbeam SAXS capabilities and much-needed beam time for the life sciences, soft condensed matter physics, and nanoscience communities. Looking toward the future, a significant step has been made in expanding the user base and diversifying the work force by holding the first Historically Black Colleges and Universities (HBCU) Professors' Workshop. The workshop, which brought 11 professors to the NSLS to learn how to become successful synchrotron users, concluded with the formation of an HBCU User Consortium. Finally, significant contributions were made in optics and detector development to enhance the utilization of the NSLS and address the challenges of NSLS-II. In particular, x-ray detectors developed by the NSLS Detector Section have been adopted by an increasing number of research programs both at the NSLS and at light sources around the world, speeding up measurement times by orders of magnitude and making completely new experiments feasible. Significant advances in focusing and high-energy resolution optics have also been made this year.

  4. National synchrotron light source. Activity report, October 1, 1995--September 30, 1996

    SciTech Connect (OSTI)

    Rothman, E.Z.; Hastings, J.B. [eds.

    1997-05-01T23:59:59.000Z

    The hard work done by the synchrotron radiation community, in collaboration with all those using large-scale central facilities during 1995, paid off in FY 1996 through the DOE`s Presidential Scientific Facilities Initiative. In comparison with the other DOE synchrotron radiation facilities, the National Synchrotron Light Source benefited least in operating budgets because it was unable to increase running time beyond 100%-nevertheless, the number of station hours was maintained. The major thrust at Brookhaven came from a 15% increase in budget which allowed the recruitment of seven staff in the beamlines support group and permitted a step increment in the funding of the extremely long list of upgrades; both to the sources and to the beamlines. During the December 1995 shutdown, the VUV Ring quadrant around U10-U12 was totally reconstructed. New front ends, enabling apertures up to 90 mrad on U10 and U12, were installed. During the year new PRTs were in formation for the infrared beamlines, encouraged by the investment the lab was able to commit from the initiative funds and by awards from the Scientific Facilities Initiative. A new PRT, specifically for small and wide angle x-ray scattering from polymers, will start work on X27C in FY 1997 and existing PRTs on X26C and X9B working on macromolecular crystallography will be joined by new members. Plans to replace aging radio frequency cavities by an improved design, originally a painfully slow six or eight year project, were brought forward so that the first pair of cavities (half of the project for the X-Ray Ring) will now be installed in FY 1997. Current upgrades to 350 mA initially and to 438 mA later in the X-Ray Ring were set aside due to lack of funds for the necessary thermally robust beryllium windows. The Scientific Facilities Initiative allowed purchase of all 34 windows in FY 1996 so that the power upgrade will be achieved in FY 1997.

  5. Improving National and Homeland Security through a proposed Laboratory for nformation Globalization and Harmonization Technologies (LIGHT)

    E-Print Network [OSTI]

    Choucri, Nazli

    2004-12-10T23:59:59.000Z

    A recent National Research Council study found that: "Although there are many private and public databases that contain information potentially relevant to counter terrorism programs, they lack the ...

  6. Improving National and Homeland Security through a proposed Laboratory for Information Globalization and Harmonization Technologies (LIGHT)

    E-Print Network [OSTI]

    Choucri, Nazli

    2004-11-30T23:59:59.000Z

    A recent National Research Council study found that: "Although there are many private and public databases that contain information potentially relevant to counter terrorism programs, they lack the ...

  7. Thermal Issues Associated with the Lighting Systems, Electronics Racks, and Pre-Amplifier Modules in the National Ignition System

    SciTech Connect (OSTI)

    A. C. Owen; J. D. Bernardin; K. L. Lam

    1998-08-01T23:59:59.000Z

    This report summarizes an investigation of the thermal issues related to the National Ignition Facility. The influence of heat sources such as lighting fixtures, electronics racks, and pre-amplifier modules (PAMs) on the operational performance of the laser guide beam tubes and optical alignment hardware in the NE laser bays were investigated with experiments and numerical models. In particular, empirical heat transfer data was used to establish representative and meaningful boundary conditions and also serve as bench marks for computational fluid dynamics (CFD) models. Numerical models, constructed with a commercial CFD code, were developed to investigate the extent of thermal plumes and radiation heat transfer from the heat sources. From these studies, several design modifications were recommended including reducing the size of all fluorescent lights in the NIF laser bays to single 32 W bulb fixtures, maintaining minimum separation distances between light fixtures/electronics racks and beam transport hardware, adding motion sensors in areas of the laser bay to control light fixture operation during maintenance procedures, properly cooling all electronics racks with air-water heat exchangers with heat losses greater than 25 W/rack to the M1 laser bay, ensuring that the electronics racks are not overcooked and thus maintain their surface temperatures to within a few degrees centigrade of the mean air temperature, and insulating the electronic bays and optical support structures on the PAMs.

  8. Lawrence Berkeley National Laboratory Advanced Light Source Beamline 1.4

    E-Print Network [OSTI]

    Levenson, UC student at beamline1.4. #12;3 Table of Contents ABOUT LBNL......................................................................................................................4 THE LBNL calculation Second calculation · Janis He-3 cryostat #12;4 About LBNL The LBNL The Lawrence Berkeley National

  9. National Ignition Facility computational fluid dynamics modeling and light fixture case studies

    SciTech Connect (OSTI)

    Martin, R.; Bernardin, J.; Parietti, L.; Dennison, B.

    1998-02-01T23:59:59.000Z

    This report serves as a guide to the use of computational fluid dynamics (CFD) as a design tool for the National Ignition Facility (NIF) program Title I and Title II design phases at Lawrence Livermore National Laboratory. In particular, this report provides general guidelines on the technical approach to performing and interpreting any and all CFD calculations. In addition, a complete CFD analysis is presented to illustrate these guidelines on a NIF-related thermal problem.

  10. Y-12 team raises more than $20,000 for Light the Night event | National

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA Approved: 5-13-14Russian NuclearNational Nuclear Securitysafety workshopNuclear

  11. DOE Kicks Off National "Change a Light, Change the World" Campaign |

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613PortsmouthBartlesvilleAbout »Department of2 DOE Fits Princeton PlasmaDepartment of

  12. Lighting the night one step at a time | Y-12 National Security Complex

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |Is Your HomeLatestCenter (LMI-EFRC) -Choices to Saveand

  13. National Library of Energy : Main View : Search Results for Keyword: "light

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilAElectronicCurves | SciTechLagrangeEnergy,neutronsystem

  14. National Synchrotron Light Source user`s manual: Guide to the VUV and x-ray beamlines. Fifth edition

    SciTech Connect (OSTI)

    Gmuer, N.F. [ed.

    1993-04-01T23:59:59.000Z

    The success of the National Synchrotron Light Source is based, in large part, on the size of the user community and the diversity of the scientific and technical disciplines represented by these users. As evidence of this success, the VUV Ring has just celebrated its 10th anniversary and the X-ray Ring will do the same in 1995. In order to enhance this success, the NSLS User`s Manual: Guide to the VUV and X-Ray Beamlines - Fifth Edition, is being published. This Manual presents to the scientific community-at-large the current and projected architecture, capabilities and research programs of the various VUV and X-ray beamlines. Also detailed is the research and computer equipment a General User can expect to find and use at each beamline when working at the NSLS. The Manual is updated periodically in order to keep pace with the constant changes on these beamlines.

  15. Solid-State lighting ReSeaRch & development at Sandia national laboRatoRieS

    E-Print Network [OSTI]

    &d Technology snapshoT SSL uses inorganic or organic light-emitting diodes (LEDs or OLEDs)--which are solid

  16. Light Duty Combustion Research: Advanced Light-Duty Combustion...

    Broader source: Energy.gov (indexed) [DOE]

    duty Diesel Combustion Research Advanced Light-Duty Combustion Experiments Paul Miles Sandia National Laboratories Light-Duty Combustion Modeling Rolf Reitz University of Wisconsin...

  17. Special Analysis for the Disposal of the Idaho National Laboratory Unirradiated Light Water Breeder Reactor Rods and Pellets Waste Stream at the Area 5 Radioactive Waste Management Site, Nevada National Security Site, Nye County, Nevada

    SciTech Connect (OSTI)

    Shott, Gregory [NSTec

    2014-08-31T23:59:59.000Z

    The purpose of this special analysis (SA) is to determine if the Idaho National Laboratory (INL) Unirradiated Light Water Breeder Reactor (LWBR) Rods and Pellets waste stream (INEL103597TR2, Revision 2) is suitable for disposal by shallow land burial (SLB) at the Area 5 Radioactive Waste Management Site (RWMS). The INL Unirradiated LWBR Rods and Pellets waste stream consists of 24 containers with unirradiated fabricated rods and pellets composed of uranium oxide (UO2) and thorium oxide (ThO2) fuel in zirconium cladding. The INL Unirradiated LWBR Rods and Pellets waste stream requires an SA because the 229Th, 230Th, 232U, 233U, and 234U activity concentrations exceed the Nevada National Security Site (NNSS) Waste Acceptance Criteria (WAC) Action Levels.

  18. Municipal Consortium LED Street Lighting Workshop Presentations...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    National Association of Energy Services Companies Calculating Light Loss Factors for Solid-State Lighting Systems Chad Stalker, Philips Lumileds Lighting Intro to MSSLC's...

  19. Producing Light Oil from a Frozen Reservoir: Reservoir and Fluid Characterization of Umiat Field, National Petroleum Reserve, Alaska

    SciTech Connect (OSTI)

    Hanks, Catherine

    2012-12-31T23:59:59.000Z

    Umiat oil field is a light oil in a shallow, frozen reservoir in the Brooks Range foothills of northern Alaska with estimated oil-in-place of over 1 billion barrels. Umiat field was discovered in the 1940’s but was never considered viable because it is shallow, in the permafrost, and far from any transportation infrastructure. The advent of modern drilling and production techniques has made Umiat and similar fields in northern Alaska attractive exploration and production targets. Since 2008 UAF has been working with Renaissance Alaska Inc. and, more recently, Linc Energy, to develop a more robust reservoir model that can be combined with rock and fluid property data to simulate potential production techniques. This work will be used to by Linc Energy as they prepare to drill up to 5 horizontal wells during the 2012-2013 drilling season. This new work identified three potential reservoir horizons within the Cretaceous Nanushuk Formation: the Upper and Lower Grandstand sands, and the overlying Ninuluk sand, with the Lower Grandstand considered the primary target. Seals are provided by thick interlayered shales. Reserve estimates for the Lower Grandstand alone range from 739 million barrels to 2437 million barrels, with an average of 1527 million bbls. Reservoir simulations predict that cold gas injection from a wagon-wheel pattern of multilateral injectors and producers located on 5 drill sites on the crest of the structure will yield 12-15% recovery, with actual recovery depending upon the injection pressure used, the actual Kv/Kh encountered, and other geologic factors. Key to understanding the flow behavior of the Umiat reservoir is determining the permeability structure of the sands. Sandstones of the Cretaceous Nanushuk Formation consist of mixed shoreface and deltaic sandstones and mudstones. A core-based study of the sedimentary facies of these sands combined with outcrop observations identified six distinct facies associations with distinctive permeability trends. The Lower Grandstand sand consists of two coarsening-upward shoreface sands sequences while the Upper Grandstand consists of a single coarsening-upward shoreface sand. Each of the shoreface sands shows a distinctive permeability profile with high horizontal permeability at the top getting progressively poorer towards the base of the sand. In contrast, deltaic sandstones in the overlying Ninuluk are more permeable at the base of the sands, with decreasing permeability towards the sand top. These trends impart a strong permeability anisotropy to the reservoir and are being incorporated into the reservoir model. These observations also suggest that horizontal wells should target the upper part of the major sands. Natural fractures may superimpose another permeability pattern on the Umiat reservoir that need to be accounted for in both the simulation and in drilling. Examination of legacy core from Umiat field indicate that fractures are present in the subsurface, but don't provide information on their orientation and density. Nearby surface exposures of folds in similar stratigraphy indicate there are at least three possible fracture sets: an early, N/S striking set that may predate folding and two sets possibly related to folding: an EW striking set of extension fractures that are parallel to the fold axes and a set of conjugate shear fractures oriented NE and NW. Analysis of fracture spacing suggests that these natural fractures are fairly widely spaced (25-59 cm depending upon the fracture set), but could provide improved reservoir permeability in horizontal legs drilled perpendicular to the open fracture set. The phase behavior of the Umiat fluid needed to be well understood in order for the reservoir simulation to be accurate. However, only a small amount of Umiat oil was available; this oil was collected in the 1940’s and was severely weathered. The composition of this ‘dead’ Umiat fluid was characterized by gas chromatography. This analysis was then compared to theoretical Umiat composition derived using the Pedersen method with original Umiat

  20. COMMUNIQU DE PRESSE NATIONAL I PARIS I 31 JANVIER 2014 La course la miniaturisation des diodes lectroluminescentes (DEL, en anglais : Light-

    E-Print Network [OSTI]

    Arleo, Angelo

    diodes électroluminescentes (DEL, en anglais : Light- Emitting Diode, LED) vient sans doute de franchir l

  1. Validation Work to Support the Idaho National Engineering and Environmental Laboratory Calculational Burnup Methodology Using Shippingport Light Water Breeder Reactor (LWBR) Spent Fuel Assay Data

    SciTech Connect (OSTI)

    J. W. Sterbentz

    1999-08-01T23:59:59.000Z

    Six uranium isotopes and fourteen fission product isotopes were calculated on a mass basis at end-of-life (EOL) conditions for three fuel rods from different Light Water Breeder Reactor (LWBR) measurements. The three fuel rods evaluated here were taken from an LWBR seed module, a standard blanket module, and a reflector (Type IV) module. The calculated results were derived using a depletion methodology previously employed to evaluate many of the radionuclide inventories for spent nuclear fuels at the Idaho National Engineering and Environmental Laboratory. The primary goal of the calculational task was to further support the validation of this particular calculational methodology and its application to diverse reactor types and fuels. Result comparisons between the calculated and measured mass concentrations in the three rods indicate good agreement for the three major uranium isotopes (U-233, U-234, U-235) with differences of less than 20%. For the seed and standard blanket rod, the U-233 and U-234 differences were within 5% of the measured values (these two isotopes alone represent greater than 97% of the EOL total uranium mass). For the major krypton and xenon fission product isotopes, differences of less than 20% and less than 30% were observed, respectively. In general, good agreement was obtained for nearly all the measured isotopes. For these isotopes exhibiting significant differences, possible explanations are discussed in terms of measurement uncertainty, complex transmutations, etc.

  2. New Laser's "First Light" Shatters Record | Jefferson...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Jefferson National Accelerator Facility have delivered first light from their Free Electron Laser (FEL). Only 2 years after ground was broken for the FEL, infrared light of more...

  3. Assessing the Performance of LED-Based Flashlights Available in the Kenyan Off-Grid Lighting Market

    E-Print Network [OSTI]

    Tracy, Jennifer

    2010-01-01T23:59:59.000Z

    30), 477-499. Efficient Lighting Initiative. 2004. Lighting Energy Bill, Internationalfor Energy-Efficient Lighting and Lawrence Berkeley National

  4. ARGONNE NATIONAL LABORATORY May

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ARGONNE NATIONAL LABORATORY May 9, 1994 Light Source Note: LS234 Comparison of the APS and UGIMAG Helmholtz Coil Systems David W. Carnegie Accelerator Systems Division Advanced...

  5. Building the World's Most Advanced Light Source

    SciTech Connect (OSTI)

    None

    2012-08-03T23:59:59.000Z

    View this time-lapse video showing construction of the National Synchrotron Light Source II at Brookhaven National Laboratory. Construction is shown from 2009-2012.

  6. Light Source

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12electron 9 5Let us count theLienertLift Forces in a Light

  7. Idaho National Laboratory/Nuclear Power Industry Strategic Plan for Light Water Reactor Research and Development An Industry-Government Partnership to Address Climate Change and Energy Security

    SciTech Connect (OSTI)

    Electric Power Research

    2007-11-01T23:59:59.000Z

    The dual issues of energy security and climate change mitigation are driving a renewed debate over how to best provide safe, secure, reliable and environmentally responsible electricity to our nation. The combination of growing energy demand and aging electricity generation infrastructure suggests major new capacity additions will be required in the years ahead.

  8. Smart lighting: New Roles for Light

    E-Print Network [OSTI]

    Salama, Khaled

    Smart lighting: New Roles for Light in the Solid State Lighting World Robert F. Karlicek, Jr. Director, Smart Lighting Engineering Research Center Professor, Electrical, Systems and Computer Lighting · What is Smart Lighting · Technology Barriers to Smart Lighting · Visible Light Communications

  9. Sandia National Laboratories: Semiconductor Revolution

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    National Laboratories and Chief Scientist of the Energy Frontier Research Center for Solid-State Lighting Science Date: March 31, 2010 Event: Lecture at Albuquerque Academy...

  10. Commercial Lighting

    Broader source: Energy.gov [DOE]

    Commercial lighting accounts for more than 20 percent of total commercial building energy use. The Energy Department works to reduce lighting energy use through research and deployment.

  11. New Facility to Shed Light on Offshore Wind Resource (Fact Sheet), Highlights in Research & Development, NREL (National Renewable Energy Laboratory)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated CodesTransparency VisitSilverNephelineNeuralNew AdvancesNewNewEnergyAs a

  12. assessing light scattering: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    430 Brookhaven National Laboratory LIGHT SOURCES DIRECTORATE Subject: Building 725 Fire Hazard AnalysisFire Hazard Assessment Physics Websites Summary: Brookhaven National...

  13. LED Street Lighting Conversion Workshop Presentations

    Broader source: Energy.gov [DOE]

    This page provides links to the presentations given at the National League of Cities Mobile Workshop, LED Street Lighting Conversion: Saving Your Community Money, While Improving Public Safety,...

  14. New Facility to Shed Light on Offshore Wind Resource (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2013-05-01T23:59:59.000Z

    Chesapeake Light Tower facility will gather key data for unlocking the nation's vast offshore wind resource.

  15. Light Properties Light travels at the speed of light `c'

    E-Print Network [OSTI]

    Mojzsis, Stephen J.

    LIGHT!! #12;Light Properties Light travels at the speed of light `c' C = 3 x 108 m/s Or 190,000 miles/second!! Light could travel around the world about 8 times in one second #12;What is light?? Light is a "wave packet" A photon is a "light particle" #12;Electromagnetic Radiation and You Light is sometimes

  16. Smart Lighting Controller!! Smart lighting!

    E-Print Network [OSTI]

    Anderson, Betty Lise

    1! Smart Lighting Controller!! #12;2! Smart lighting! No need to spend energy lighting the room if://blogs.stthomas.edu/realestate/2011/01/24/residential-real-estate-professionals-how-do-you- develop feedback! There is a connection between the output and the input! Therefore forces inputs to same voltage

  17. Cerenkov Light

    ScienceCinema (OSTI)

    Slifer, Karl

    2014-05-22T23:59:59.000Z

    The bright blue glow from nuclear reactors is Cerenkov light. Karl Slifer describes how nuclear physicists can use this phenomenon to study the nucleus of the atom.

  18. Cerenkov Light

    SciTech Connect (OSTI)

    Slifer, Karl

    2013-06-13T23:59:59.000Z

    The bright blue glow from nuclear reactors is Cerenkov light. Karl Slifer describes how nuclear physicists can use this phenomenon to study the nucleus of the atom.

  19. Lighting Renovations

    Broader source: Energy.gov [DOE]

    When undertaking a lighting renovation in a Federal building, daylighting is the primary renewable energy opportunity. Photovoltaics (PV) also present an excellent opportunity. While this guide...

  20. National Synchrotron Light Source. Annual report 1992

    SciTech Connect (OSTI)

    Hulbert, S.L.; Lazarz, N.M. [eds.

    1993-04-01T23:59:59.000Z

    This report contains seven sections discussing the following: (1) scientific research at the NSLS; (2) symposia and workshops held at the NSLS; (3) a facility report; (4) NSLS projects; (5) NSLS operational highlights; (6) informational guides to the VUV and X-ray beamlines; and (7) appendices which include abstracts on projects carried out at the VUV and X-ray beamlines.

  1. Sandia National Laboratories: Advanced Light Source

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Capabilities Solar power and other sources of renewable energy can help combat global warming but they have a draw-back: they don't produce energy as predictably as generating...

  2. Sandia National Laboratories: Solid State Lighting EFRC

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    providing new predictions for the next ... Manos Kioupakis visits Sandia and gives an SSL Special Seminar On December 13, 2012, in EC, Energy, Energy Efficiency, Events, News &...

  3. Sandia National Laboratories: Solid-State Lighting

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    knowledge into actions that will benefit the general populace." His talk titled, "Latest SSL work at Sandia ... George Wang's Invited Talk at 2013 tSSL On March 26, 2013, in...

  4. Sandia National Laboratories: Solid-State Lighting

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    participated in a series of breakout ... Manos Kioupakis visits Sandia and gives an SSL Special Seminar On December 13, 2012, in EC, Energy, Energy Efficiency, Events, News &...

  5. Sandia National Laboratories: Solid-State Lighting

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    in This research challenge is aimed at studying materials architectures suitable for SSL wavelength down-conversion. Particular materials we have focused on in this research...

  6. National Synchrotron Light Source annual report 1991

    SciTech Connect (OSTI)

    Hulbert, S.L.; Lazarz, N.M. (eds.)

    1992-04-01T23:59:59.000Z

    This report discusses the following research conducted at NSLS: atomic and molecular science; energy dispersive diffraction; lithography, microscopy and tomography; nuclear physics; UV photoemission and surface science; x-ray absorption spectroscopy; x-ray scattering and crystallography; x-ray topography; workshop on surface structure; workshop on electronic and chemical phenomena at surfaces; workshop on imaging; UV FEL machine reviews; VUV machine operations; VUV beamline operations; VUV storage ring parameters; x-ray machine operations; x-ray beamline operations; x-ray storage ring parameters; superconducting x-ray lithography source; SXLS storage ring parameters; the accelerator test facility; proposed UV-FEL user facility at the NSLS; global orbit feedback systems; and NSLS computer system.

  7. Sandia National Laboratories: Solid-State Lighting

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and NREL Announce Two New H2FIRST Reports New Report Describes Joint Opportunities for Natural Gas and Hydrogen Fuel-Cell Vehicle Markets Sandians Participate in 46th Annual...

  8. Activity Report 2001 National Synchrotron Light Source

    E-Print Network [OSTI]

    Ohta, Shigemi

    .B. Parise, and G. Artioli, "First Structural Investigation of a Super-hydrated Zeolite," page 2-87. 4. from

  9. Sandia National Laboratories: Solid-State Lighting

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Assessment of deep level defects in m-plane GaN grown by metalorganic chemical vapor deposition On February 22, 2012, in Energy Efficiency, News, News & Events, Solid-State...

  10. Sandia National Laboratories: Light Creation Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    for example ZnO, will be important. AlGaInN Materials LEDs based on gallium nitride (GaN) and ternary alloys with indium (InGaN) and aluminum (AlGaN) as well as quaternary...

  11. Sandia National Laboratories: Light Creation Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    for example ZnO, will be important. AlGaInN Materials LEDs based on gallium nitride (GaN) and ternary ... Last Updated: June 13, 2012 Go To Top Exceptional service in the...

  12. Brookhaven National Laboratory The National Synchrotron Light Source II

    E-Print Network [OSTI]

    Ohta, Shigemi

    and neutron facilities, the power of the world's finest experts and facilities for fabricating and government institutions.Their myriad research programs pro- duce about 900 publications per year, with more by researchers to explain how a class of proteins helps to generate nerve impulses ­ the electrical activity

  13. Radioluminescent lighting technology

    SciTech Connect (OSTI)

    Not Available

    1990-01-01T23:59:59.000Z

    The glow-in-the-dark stereotype that characterizes the popular image of nuclear materials is not accidental. When the French scientist, Henri Becquerel, first discovered radioactivity in 1896, he was interested in luminescence. Radioluminescence, the production of light from a mixture of energetic and passive materials, is probably the oldest practical application of the unstable nucleus. Tritium-based radioluminescent lighting, in spite of the biologically favorable character of the gaseous tritium isotope, was included in the general tightening of environmental and safety regulations. Tritium light manufacturers would have to meet two fundamental conditions: (1) The benefit clearly outweighed the risk, to the extent that even the perceived risk of a skeptical public would be overcome. (2) The need was significant enough that the customer/user would be willing and able to afford the cost of regulation that was imposed both in the manufacture, use and eventual disposal of nuclear materials. In 1981, researchers at Oak Ridge National Laboratory were investigating larger radioluminescent applications using byproduct nuclear material such as krypton-85, as well as tritium. By 1982, it appeared that large source, (100 Curies or more) tritium gas tube, lights might be useful for marking runways and drop zones for military operations and perhaps even special civilian aviation applications. The successful development of this idea depended on making the light bright enough and demonstrating that large gas tube sources could be used and maintained safely in the environment. This successful DOE program is now in the process of being completed and closed-out. Working closely with the tritium light industry, State governments and other Federal agencies, the basic program goals have been achieved. This is a detailed report of what they have learned, proven, and discovered. 91 refs., 29 figs., 5 tabs. (JF)

  14. About the DOE Municipal Solid-State Street Lighting Consortium

    Broader source: Energy.gov [DOE]

    Numerous cities and organizations around the nation are announcing plans to conduct large scale retrofits/comparisons of LED street and area lighting products with their conventional street lights.

  15. Light Computing

    E-Print Network [OSTI]

    Gordon Chalmers

    2006-10-13T23:59:59.000Z

    A configuration of light pulses is generated, together with emitters and receptors, that allows computing. The computing is extraordinarily high in number of flops per second, exceeding the capability of a quantum computer for a given size and coherence region. The emitters and receptors are based on the quantum diode, which can emit and detect individual photons with high accuracy.

  16. The Advanced Light Source

    SciTech Connect (OSTI)

    Jackson, A.

    1991-05-01T23:59:59.000Z

    The Advanced Light Source (ALS), a national user facility currently under construction at the Lawrence Berkeley Laboratory (LBL), is a third-generation synchrotron light source designed to produce extremely bright beams of synchrotron radiation in the energy range from a few eV to 10 keV. The design is based on a 1--1.9-GeV electron storage ring (optimized at 1.5 GeV), and utilizes special magnets, known as undulators and wigglers (collectively referred to as insertion devices), to generate the radiation. The facility is scheduled to begin operating in April 1993. In this paper we describe the progress in the design, construction, and commissioning of the accelerator systems, insertion devices, and beamlines. Companion presentations at this conference give more detail of specific components in the ALS, and describe the activities towards establishing an exciting user program. 3 figs., 2 tabs.

  17. Lighting Test Facilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12electron 9 5Let us countLighting Sign In About

  18. Keeping Pace with LED Lighting Trends

    Office of Energy Efficiency and Renewable Energy (EERE)

    This year’s Solid State Lighting Market Introduction Workshop, to be held November 13-14 in Portland, Oregon, will include expert guidance from industry leaders and the Energy Department's national laboratories.

  19. Scientists produce transparent, light-harvesting material

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    light-harvesting material The material could be used in development of transparent solar panels. November 3, 2010 Los Alamos National Laboratory sits on top of a once-remote...

  20. Lighting and Electrical Team Leadership and Project Delivery...

    Broader source: Energy.gov (indexed) [DOE]

    Linda Sandahl, Pacific Northwest National Laboratory Learn More Lighting and Electrical Team Leadership and Project Delivery - 2014 BTO Peer Review Presentation More Documents &...

  1. Fact #744: September 10, 2012 Average New Light Vehicle Price...

    Broader source: Energy.gov (indexed) [DOE]

    light trucks. Source: Used vehicles - Ward's Automotive, New cars - Bureau of Economic Analysis, National Income and Product Accounts (NIPA) Underlying Detail Tables, Table 7.2.5S...

  2. Residential Lighting

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiation Protection Technical squestionnairesquestionnaires AgreementLighting

  3. Lighting Inventory Lighting Theatre and Drama

    E-Print Network [OSTI]

    Indiana University

    Lighting Inventory Lighting Theatre and Drama Description Totals R.Halls Wells- Metz Light ERS ETC SourceFour 25 25 50 degree ERS Strand Lighting 64 14 24 12 14 36 degree ERS ETC Source Four 15 15 36 degree ERS Strand Lighting 124 60 58 2 4 26 degree ERS ETC SourceFour 2 2 26 degree ERS Strand

  4. Controls for Solid-State Lighting Final Report

    E-Print Network [OSTI]

    National Energy Technology Laboratory and James Brodrick Building Technologies Program Office of Energy-State Lighting Final Report Prepared for: Joel Chaddock National Energy Technology Laboratory and James Brodrick

  5. LED Lighting Basics

    Broader source: Energy.gov [DOE]

    Light-Emitting diodes (LEDs) efficiently produce light in a fundamentally different way than any legacy or traditional source of light.

  6. Study of an HHG-Seeded Free-Electron Laser for the LBNL Next Generation Light Source

    E-Print Network [OSTI]

    Thompson, Neil

    2011-01-01T23:59:59.000Z

    Electron Laser for the LBNL Next Generation Light SourceElectron Laser for the LBNL Next Generation Light SourceBerkeley National Laboratory (LBNL). The proposed facil- ity

  7. Light Show

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12electron 9 5Let us count theLienertLift Forces in9 Lightning

  8. Lighting market sourcebook for the US

    SciTech Connect (OSTI)

    Vorsatz, D.; Shown, L.; Koomey, J.; Moezzi, M.; Denver, A.; Atkinson, B.

    1997-12-01T23:59:59.000Z

    Throughout the United States, in every sector and building type, lighting is a significant electrical end-use. Based on the many and varied studies of lighting technologies, and experience with programs that promote lighting energy-efficiency, there is a significant amount of cost-effective energy savings to be achieved in the lighting end use. Because of such potential savings, and because consumers most often do not adopt cost-effective lighting technologies on their own, programs and policies are needed to promote their adoption. Characteristics of lighting energy use, as well as the attributes of the lighting marketplace, can significantly affect the national pattern of lighting equipment choice and ownership. Consequently, policy makers who wish to promote energy-efficient lighting technologies and practices must understand the lighting technologies that people use, the ways in which they use them, and marketplace characteristics such as key actors, product mix and availability, price spectrum, and product distribution channels. The purpose of this report is to provide policy-makers with a sourcebook that addresses patterns of lighting energy use as well as data characterizing the marketplace in which lighting technologies are distributed, promoted, and sold.

  9. Sustainable Office Lighting Options

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    Sustainable Office Lighting Options Task Lighting: Task lighting is a localized method of lighting a workspace so that additional, unnecessary lighting is eliminated, decreasing energy usage and costs. Illumination levels in the targeted work areas are higher with task lighting than with the ambient levels

  10. Advanced light source, User`s Handbook, Revision 1

    SciTech Connect (OSTI)

    NONE

    1995-07-01T23:59:59.000Z

    The Advanced Light Source (ALS) is a national facility for scientific research and development located at the Lawrence Berkeley National Laboratory (LBNL) of the University of California. Its purpose is to generate beams of very bright light in the ultraviolet and soft x-ray regions of the spectrum. The facility is open to researchers from industry, universities, and government laboratories.

  11. The Municipal Solid-State Street Lighting Consortium Public Outdoor Lighting Inventory: Phase I: Survey Results

    SciTech Connect (OSTI)

    Kinzey, Bruce R.; Smalley, Edward; Haefer, R.

    2014-09-30T23:59:59.000Z

    This document presents the results of a voluntary web-based inventory survey of public street and area lighting across the U.S. undertaken during the latter half of 2013.This survey attempts to access information about the national inventory in a “bottoms-up” manner, going directly to owners and operators. Adding to previous “top down” estimates, it is intended to improve understanding of the role of public outdoor lighting in national energy use.

  12. Lighting Options for Homes.

    SciTech Connect (OSTI)

    Baker, W.S.

    1991-04-01T23:59:59.000Z

    This report covers many aspects of various lighting options for homes. Types of light sources described include natural light, artificial light, incandescent lamps, fluorescent lamps, and high intensity discharge lamps. A light source selection guide gives the physical characteristics of these, design considerations, and common applications. Color, strategies for efficient lighting, and types of lighting are discussed. There is one section giving tips for various situations in specific rooms. Rooms and types of fixtures are shown on a matrix with watts saved by using the recommended type lighting for that room and room location. A major emphasis of this report is saving energy by utilizing the most suitable, recommended lighting option. (BN)

  13. Mobile lighting apparatus

    DOE Patents [OSTI]

    Roe, George Michael; Klebanoff, Leonard Elliott; Rea, Gerald W; Drake, Robert A; Johnson, Terry A; Wingert, Steven John; Damberger, Thomas A; Skradski, Thomas J; Radley, Christopher James; Oros, James M; Schuttinger, Paul G; Grupp, David J; Prey, Stephen Carl

    2013-05-14T23:59:59.000Z

    A mobile lighting apparatus includes a portable frame such as a moveable trailer or skid having a light tower thereon. The light tower is moveable from a stowed position to a deployed position. A hydrogen-powered fuel cell is located on the portable frame to provide electrical power to an array of the energy efficient lights located on the light tower.

  14. Light disappears rapidly (exponentially)

    E-Print Network [OSTI]

    Kudela, Raphael M.

    #12;#12;#12;#12;Light disappears rapidly (exponentially) with depth At the same time, the color of the light shifts #12;#12;#12;#12;· Euphotic zone ­ plentiful light ­ 0-100 m (about) · Dysphotic zone ­ very, very little light ­ 100-1000 m (about) · Aphotic zone ­ no light ­ below 1000 m #12;Sunlight in Water

  15. New Light Sources for Tomorrow's Lighting Designs

    E-Print Network [OSTI]

    Krailo, D. A.

    can ever be saved on that monthly energy bill. During the past several years, many new light sources have been developed and introduced. These product introductions have not been limited to anyone lamp type, but instead may be found in fila ment..., fluorescent and high intensity discharge lamp families. Man , ufacturers of light sources have two basic goals for new product development. These goals are high efficiency lighting and improved colo'r rendering properties. High efficiency lighting may take...

  16. EK101 Engineering Light Smart Lighting

    E-Print Network [OSTI]

    Bifano, Thomas

    EK101 Engineering Light Smart Lighting Homework for 9/10 1. Make an estimate (using if the patent is granted.) 3. What is a lumen? A lux? How are the two related? How would you use a lux meter, (Lux, Lumens/m2) Luminous Flux: Perceivable light power from a source, (Lumens) Use the lux meter

  17. Specific light in sculpture

    E-Print Network [OSTI]

    Powell, John William

    1989-01-01T23:59:59.000Z

    Specific light is defined as light from artificial or altered natural sources. The use and manipulation of light in three dimensional sculptural work is discussed in an historic and contemporary context. The author's work ...

  18. Light Duty Combustion Research: Advanced Light-Duty Combustion...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Light Duty Combustion Research: Advanced Light-Duty Combustion Experiments Light Duty Combustion Research: Advanced Light-Duty Combustion Experiments 2009 DOE Hydrogen Program and...

  19. Exciting White Lighting

    Broader source: Energy.gov [DOE]

    Windows that emit light and are more energy efficient? Universal Display’s PHOLED technology enables windows that have transparent light-emitting diodes in them.

  20. PFP Emergency Lighting Study

    SciTech Connect (OSTI)

    BUSCH, M.S.

    2000-02-02T23:59:59.000Z

    NFPA 101, section 5-9 mandates that, where required by building classification, all designated emergency egress routes be provided with adequate emergency lighting in the event of a normal lighting outage. Emergency lighting is to be arranged so that egress routes are illuminated to an average of 1.0 footcandle with a minimum at any point of 0.1 footcandle, as measured at floor level. These levels are permitted to drop to 60% of their original value over the required 90 minute emergency lighting duration after a power outage. The Plutonium Finishing Plant (PFP) has two designations for battery powered egress lights ''Emergency Lights'' are those battery powered lights required by NFPA 101 to provide lighting along officially designated egress routes in those buildings meeting the correct occupancy requirements. Emergency Lights are maintained on a monthly basis by procedure ZSR-12N-001. ''Backup Lights'' are battery powered lights not required by NFPA, but installed in areas where additional light may be needed. The Backup Light locations were identified by PFP Safety and Engineering based on several factors. (1) General occupancy and type of work in the area. Areas occupied briefly during a shiftly surveillance do not require backup lighting while a room occupied fairly frequently or for significant lengths of time will need one or two Backup lights to provide general illumination of the egress points. (2) Complexity of the egress routes. Office spaces with a standard hallway/room configuration will not require Backup Lights while a large room with several subdivisions or irregularly placed rooms, doors, and equipment will require Backup Lights to make egress safer. (3) Reasonable balance between the safety benefits of additional lighting and the man-hours/exposure required for periodic light maintenance. In some plant areas such as building 236-Z, the additional maintenance time and risk of contamination do not warrant having Backup Lights installed in all rooms. Sufficient light for egress is provided by existing lights located in the hallways.

  1. Globalization Nationalized

    E-Print Network [OSTI]

    Mazlish, Bruce

    Globalism and globalization have been seen as competitors to other allegiances, namely regionalism and nationalism. A look at recent efforts at reconceptualizing global history in China, Korea and the U.S., however, suggests ...

  2. Nanoengineering for solid-state lighting.

    SciTech Connect (OSTI)

    Schubert, E. Fred (Rensselaer Polytechnic Institute,Troy, NY); Koleske, Daniel David; Wetzel, Christian (Rensselaer Polytechnic Institute,Troy, NY); Lee, Stephen Roger; Missert, Nancy A.; Lin, Shawn-Yu (Rensselaer Polytechnic Institute,Troy, NY); Crawford, Mary Hagerott; Fischer, Arthur Joseph

    2009-09-01T23:59:59.000Z

    This report summarizes results from a 3-year Laboratory Directed Research and Development project performed in collaboration with researchers at Rensselaer Polytechnic Institute. Our collaborative effort was supported by Sandia's National Institute for Nanoengineering and focused on the study and application of nanoscience and nanoengineering concepts to improve the efficiency of semiconductor light-emitting diodes for solid-state lighting applications. The project explored LED efficiency advances with two primary thrusts: (1) the study of nanoscale InGaN materials properties, particularly nanoscale crystalline defects, and their impact on internal quantum efficiency, and (2) nanoscale engineering of dielectric and metal materials and integration with LED heterostructures for enhanced light extraction efficiency.

  3. Brookhaven highlights - Brookhaven National Laboratory 1995

    SciTech Connect (OSTI)

    NONE

    1996-09-01T23:59:59.000Z

    This report highlights research conducted at Brookhaven National Laboratory in the following areas: alternating gradient synchrotron; physics; biology; national synchrotron light source; department of applied science; medical; chemistry; department of advanced technology; reactor; safety and environmental protection; instrumentation; and computing and communications.

  4. 2006 Site Environmental Report brookhaven national laboratory

    E-Print Network [OSTI]

    that is distributed to various U.S. Department of Energy sites, local libraries, and local regulators and stakeholders of the summary and CD, please write or call: Brookhaven National Laboratory Environmental and Waste Management constructed Center for Functional Nanomaterials, the planned National Synchrotron Light Source II project

  5. Achieving Energy Savings with Highly-Controlled Lighting in an Open-Plan

    E-Print Network [OSTI]

    LBNL-3831E Achieving Energy Savings with Highly- Controlled Lighting in an Open-Plan Office Author-Controlled Lighting 1 of 50 April 19, 2010 Achieving Energy Savings with Highly-Controlled Lighting in an Open Berkeley National Laboratory #12;Highly-Controlled Lighting 2 of 50 April 19, 2010 DISCLAIMER This document

  6. Lighting and Daylight Harvesting

    E-Print Network [OSTI]

    Bos, J.

    2011-01-01T23:59:59.000Z

    exposing us to the latest products and technologies. Daylight Harvesting A system of controlling the direction and the quantity of light both natural and artificial within a given space. This implies: Control of fenestration in terms of size..., transmission and direction. Control of reflected light within a space. Control of electric light in terms of delivery and amount Daylight harvesting systems are typically designed to maintain a minimum recommended light level. This light level...

  7. EK101 Engineering Light Project: Evaluate Residential Lighting

    E-Print Network [OSTI]

    Bifano, Thomas

    EK101 Engineering Light Project: Evaluate Residential Lighting Compare technical and economic characteristics of three sources of residential light. Two teams of four complete the same project Engineering Light Project: Evaluate Residential Lighting Project Assignment: Evaluate current options

  8. Sandia National Laboratories: Veeco

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Partnership, Research & Capabilities, Solid-State Lighting Solid state lighting (SSL), which uses light-emitting diodes (LEDs), has the potential to be 10 times more energy...

  9. Sandia National Laboratories: MOCVD

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Partnership, Research & Capabilities, Solid-State Lighting Solid state lighting (SSL), which uses light-emitting diodes (LEDs), has the potential to be 10 times more energy...

  10. Types of Lighting in Commercial Buildings - Lighting Types

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17 34 44Year Jan Feb Mar Apr May Jun602 1,397 125 Q 69ChangesLighting

  11. Shedding Light on Nanocrystal Defects

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del Sol HomeFacebookScholarship Fund scholarshipsShedding Light on Nanocrystal

  12. Lighting Basics | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12electron 9 5Let us countLighting Sign In About | Careers

  13. NRC Construction Light Source Flicker: What We

    E-Print Network [OSTI]

    California at Davis, University of

    NRC Construction Light Source Flicker: What We Need to Know, and Why You Should Care NRC Construction Jennifer A. Veitch, Ph.D. (c) 2013, National Research Council Canada #12;NRC Construction Handbook: Reference & Application (9th Ed.), 2000, p. 3-20 #12;NRC Construction Flicker Effects 1

  14. Science and Technology of Future Light Sources

    E-Print Network [OSTI]

    Knowles, David William

    Science and Technology of Future Light Sources A White Paper Report prepared by scientists from ANL Berkeley, CA 94720 SLAC National Accelerator Laboratory 2575 Sand Hill Road Menlo Park, CA 94025 Editors. This work was supported by the Director, Office of Science, Office of Basic Energy Sciences, of the U

  15. Light Duty Vehicle Pathways July 26, 2010

    E-Print Network [OSTI]

    Light Duty Vehicle Pathways July 26, 2010 Sam Baldwin Chief Technology Officer Office of Energy Efficiency and Renewable Energy U.S. Department of Energy #12;2 Conventional Oil International Energy Agency #12;3 InterAcademy Panel Statement On Ocean Acidification, 1 June 2009 · Signed by the National

  16. Layering Mismatched Lattices Creates Long-Sought-After Green Light-Emitting Diode (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2011-02-01T23:59:59.000Z

    Scientists at the National Renewable Energy Laboratory (NREL) invent a deep green LED that can lead to higher-efficiency white light, lower electric bills.

  17. LED Linear Lamps and Troffer Lighting: CALiPER Report Series 21

    ScienceCinema (OSTI)

    Beeson, Tracy; Miller, Naomi

    2014-06-23T23:59:59.000Z

    Video about CALiPER Report Series 21 on LED Linear Lamps and Troffer Lighting, featuring interviews with Tracy Beeson and Naomi Miller of Pacific Northwest National Laboratory.

  18. Deficiencies of Lighting Codes and Ordinances in Controlling Light Pollution from Parking Lot Lighting Installations

    E-Print Network [OSTI]

    Royal, Emily

    2012-05-31T23:59:59.000Z

    The purpose of this research was to identify the main causes of light pollution from parking lot electric lighting installations and highlight the deficiencies of lighting ordinances in preventing light pollution. Using an industry-accepted lighting...

  19. OpenGL Lighting 13. OpenGL Lighting

    E-Print Network [OSTI]

    McDowell, Perry

    OpenGL Lighting 13. OpenGL Lighting · Overview of Lighting in OpenGL In order for lighting to have an effect in OpenGL, two things are required: A light An object to be lit Lights can be set to any color determine how they reflect the light which hits them. The color(s) of an object is determined

  20. National Nuclear Security Administration | National Nuclear Security...

    National Nuclear Security Administration (NNSA)

    National Nuclear Security Administration | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing...

  1. Office of National Infrastructure & Sustainability | National...

    National Nuclear Security Administration (NNSA)

    National Infrastructure & Sustainability | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing...

  2. Pantex receives National Weather Service recognition | National...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    receives National Weather Service recognition | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing...

  3. Caterpillar Light Truck Clean Diesel Program

    SciTech Connect (OSTI)

    Robert L. Miller; Kevin P. Duffy; Michael A. Flinn; Steve A. Faulkner; Mike A. Graham

    1999-04-26T23:59:59.000Z

    In 1998, light trucks accounted for over 48% of new vehicle sales in the U.S. and well over half the new Light Duty vehicle fuel consumption. The Light Truck Clean Diesel (LTCD) program seeks to introduce large numbers of advanced technology diesel engines in light-duty trucks that would improve their fuel economy (mpg) by at least 50% and reduce our nation's dependence on foreign oil. Incorporating diesel engines in this application represents a high-risk technical and economic challenge. To meet the challenge, a government-industry partnership (Department of Energy, diesel engine manufacturers, and the automotive original equipment manufacturers) is applying joint resources to meet specific goals that will provide benefits to the nation. [1] Caterpillar initially teamed with Ford Motor Company on a 5 year program (1997-2002) to develop prototype vehicles that demonstrate a 50% fuel economy improvement over the current 1997 gasoline powered light truck vehicle in this class while complying with EPA's Tier II emissions regulations. The light truck vehicle selected for the demonstration is a 1999 Ford F150 SuperCab. To meet the goals of the program, the 4.6 L V-8 gasoline engine in this vehicle will be replaced by an advanced compression ignition direct injection (CIDI) engine. Key elements of the Caterpillar LTCD program plan to develop the advanced CIDI engine are presented in this paper.

  4. Adaptive Street Lighting Controls

    Broader source: Energy.gov [DOE]

    This two-part DOE Municipal Solid-State Street Lighting Consortium webinar focused on LED street lighting equipped with adaptive control components. In Part I, presenters Amy Olay of the City of...

  5. Light emitting device comprising phosphorescent materials for white light generation

    DOE Patents [OSTI]

    Thompson, Mark E.; Dapkus, P. Daniel

    2014-07-22T23:59:59.000Z

    The present invention relates to phosphors for energy downconversion of high energy light to generate a broadband light spectrum, which emit light of different emission wavelengths.

  6. Advanced Demand Responsive Lighting

    E-Print Network [OSTI]

    Advanced Demand Responsive Lighting Host: Francis Rubinstein Demand Response Research Center demand responsive lighting systems ­ Importance of dimming ­ New wireless controls technologies · Advanced Demand Responsive Lighting (commenced March 2007) #12;Objectives · Provide up-to-date information

  7. Light Rail Transit Strengthening

    E-Print Network [OSTI]

    Minnesota, University of

    Light Rail Transit Improving mobility Easing congestion Strengthening our communities Central Corridor Communicating to the Public During Major Construction May 25, 2011 #12;2 Light Rail Transit;Light Rail Transit Central Corridor Route and Stations 3 · 18 new stations · 9.8 miles of new double

  8. THE LUMINA PROJECT http://light.lbl.gov

    E-Print Network [OSTI]

    Jacobson, Arne

    THE LUMINA PROJECT http://light.lbl.gov Technical Report #2 The Off-Grid Lighting Market in Western, and Josephine Achleng Jeje. We also thank Maina Mumbi of Off-Grid Solar for his expert contributions. Note on Climate Change asked Lawrence Berkeley National Laboratory to evaluate the potential for off- grid LED

  9. The Advantages of Highly Controlled Lighting for Offices and Commercial

    E-Print Network [OSTI]

    LBNL-2514E The Advantages of Highly Controlled Lighting for Offices and Commercial Buildings F for Offices and Commercial Buildings Francis Rubinstein and Dmitriy Bolotov, Lawrence Berkeley National 25% of the electrical energy used in US commercial buildings (DOE 2007). Advanced lighting controls

  10. Next Generation Lighting Technologies (LBNL Summer Lecture Series)

    ScienceCinema (OSTI)

    Siminovittch, Micheal

    2014-05-06T23:59:59.000Z

    For the past several years, Michael Siminovittch, a researcher in the Environmental Energy Technologies Division of Lawrence Berkeley National Laboratory, has worked to package efficient lighting in an easy-to-use and good-looking lamp. His immensely popular "Berkeley Lamp" has redefined how America lights its offices.

  11. Transformations in Lighting: The Sixth Annual Solid-State Lighting R&D Workshop

    Broader source: Energy.gov [DOE]

    More than 400 SSL technology leaders from industry, research organizations, universities, national laboratories, manufacturing, energy efficiency organizations, utilities and municipalities gathered in San Francisco, CA to participate in the "Transformations in Lighting" Solid-State Lighting Workshop on February 3-5, 2009. The workshop, hosted by DOE, with sponsors BetaLED, Echelon, Pacific Gas & Electric, and Southern California Edison, was the sixth annual DOE meeting to accelerate SSL technology advances and guide market introduction of quality SSL products. The workshop brought together a diverse gathering of participants - from the R&D community to lighting designers and architects - to share insights, ideas, and updates on the rapidly evolving SSL market.

  12. Light extraction from organic light-emitting diodes for lighting applications by sand-blasting

    E-Print Network [OSTI]

    Light extraction from organic light-emitting diodes for lighting applications by sand@ust.hk Abstract: Light extraction from organic light-emitting diodes (OLEDs) by scattering the light is one of the effective methods for large-area lighting applications. In this paper, we present a very simple and cost

  13. Photonic crystal light source

    DOE Patents [OSTI]

    Fleming, James G. (Albuquerque, NM); Lin, Shawn-Yu (Albuquerque, NM); Bur, James A. (Corrales, NM)

    2004-07-27T23:59:59.000Z

    A light source is provided by a photonic crystal having an enhanced photonic density-of-states over a band of frequencies and wherein at least one of the dielectric materials of the photonic crystal has a complex dielectric constant, thereby producing enhanced light emission at the band of frequencies when the photonic crystal is heated. The dielectric material can be a metal, such as tungsten. The spectral properties of the light source can be easily tuned by modification of the photonic crystal structure and materials. The photonic crystal light source can be heated electrically or other heating means. The light source can further include additional photonic crystals that exhibit enhanced light emission at a different band of frequencies to provide for color mixing. The photonic crystal light source may have applications in optical telecommunications, information displays, energy conversion, sensors, and other optical applications.

  14. Energy Efficiency Through Lighting Upgrades

    SciTech Connect (OSTI)

    Kara Berst; Maria Howeth

    2010-06-01T23:59:59.000Z

    Lighting upgrades including neon to LED, incandescent to CFL's and T-12 to T-8 and T-5's were completed through this grant. A total of 16 Chickasaw nation facilities decreased their carbon footprint because of these grant funds. Calculations used were based on comparing the energy usage from the previous year�¢����s average and the current energy usage. For facilities without a full year's set of energy bills, the month after installation was compared to the same month from the previous year. Overall, the effect the lighting change-outs had for the gaming centers and casinos far exceeded expectations. For the Madill Gaming Center; both an interior and exterior upgrade was performed which resulted in a 31% decrease in energy consumption. This same reduction was seen in every facility that participated in the grant. Just by simply changing out light bulbs to newer energy efficient equivalents, a decrease in energy usage can be achieved and this was validated by the return on investment seen at Chickasaw Nation facilities. Along with the technical project tasks were awareness sessions presented at Chickasaw Head Starts. The positive message of environmental stewardship was passed down to head start students and passed along to Chickasaw employees. Excitement was created in those that learned what they could do to help reduce their energy bills and many followed through and took the idea home. For a fairy low cost, the general public can also use this technique to lower their energy consumption both at home and at work. Although the idea behind the project was somewhat simple, true benefits have been gained through environmental awareness and reductions of energy costs.

  15. National Competitiveness

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > The EnergyCenterDioxide CaptureSee theOilNRELTechnologies

  16. National Security

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > The EnergyCenterDioxide CaptureSeeNUCLEAR SCIENCE WEEKSecurity LLNL's

  17. NATIONAL LABORATORY

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem Not Found Item Not Found TheHot electron dynamicsAspen Aerogels,AluminumApproved for

  18. NATIONAL LABORATORY

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33Frequently Asked QuestionsDepartment of Energy 3Services and LowersSafety andNASAand North

  19. Foundations and Light Compass Foundations and Light Compass

    E-Print Network [OSTI]

    Wong, Jennifer L.

    Foundations and Light Compass Case Study Foundations and Light Compass Case Study Jennifer L. WongQuantitative Sensor--centric Designcentric Design Light CompassLight Compass ­­ Models and Abstractions Contaminant Transport Marine Microorganisms Ecosystems, Biocomplexity What is a Light Compass?What is a Light

  20. Lighting and Surfaces 11.1 Introduction to Lighting

    E-Print Network [OSTI]

    Boyd, John P.

    Chapter 11 Lighting and Surfaces 11.1 Introduction to Lighting Three-dimensional surfaces can react to light, and how computer graphics simulates this. There are three species of light (or "illumination models"): 1. Intrinsic (self-emitting) 2. Ambient light (sometimes called "diffuse light") 3

  1. Arnold Schwarzenegger LIGHTING RESEARCH PROGRAM

    E-Print Network [OSTI]

    Project Summaries ELEMENT 2: ADVANCE LIGHTING TECHNOLOGIES PROJECT 2.1 LIGHT EMITTING DIODE (LED light emitting diodes (LED) technology for general lighting applications by developing a task lamp

  2. Lighting Market Study: Illuminating the Northwest Efficiency

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12electron 9 5Let us countLighting Sign In About |Lighting

  3. High efficiency incandescent lighting

    DOE Patents [OSTI]

    Bermel, Peter; Ilic, Ognjen; Chan, Walker R.; Musabeyoglu, Ahmet; Cukierman, Aviv Ruben; Harradon, Michael Robert; Celanovic, Ivan; Soljacic, Marin

    2014-09-02T23:59:59.000Z

    Incandescent lighting structure. The structure includes a thermal emitter that can, but does not have to, include a first photonic crystal on its surface to tailor thermal emission coupled to, in a high-view-factor geometry, a second photonic filter selected to reflect infrared radiation back to the emitter while passing visible light. This structure is highly efficient as compared to standard incandescent light bulbs.

  4. LED Lighting Retrofit

    E-Print Network [OSTI]

    Shaw-Meadow, N.

    2011-01-01T23:59:59.000Z

    ? Municipal Street Lighting Consortium ? American Public Power Association (APPA) ? Demonstration in Energy Efficiency Development (DEED) ? Source of funding and database of completed LED roadway projects 6 Rules of the Road ESL-KT-11-11-57 CATEE 2011..., 2011 ? 9 Solar-Assisted LED Case Study LaQuinta Hotel, Cedar Park, Texas ? Utilizes 18 - ActiveLED Solar-Assisted Parking Lot Lights ? Utilizes ?power management? to extend battery life while handling light output ? Reduces load which reduces PV...

  5. INTEGRATED SIMULATION ENVIRONMENT FOR LIGHTING DESIGN Vineeta Pal, Ph.D. and Konstantinos Papamichael, Ph.D.

    E-Print Network [OSTI]

    1 INTEGRATED SIMULATION ENVIRONMENT FOR LIGHTING DESIGN Vineeta Pal, Ph.D. and Konstantinos Lawrence Berkeley National Laboratory 1 Cyclotron Road MS 90-3111 Berkeley CA 94720 ABSTRACT: Lighting and electric lighting, b) qualitative analysis of the lighting design with photometrically accurate renderings

  6. Edmund G. Brown Jr. LIGHTING CALIFORNIA'S FUTURE

    E-Print Network [OSTI]

    Edmund G. Brown Jr. Governor LIGHTING CALIFORNIA'S FUTURE: SMART LIGHT-EMITTING DIODE LIGHTING's Future: Smart LightEmitting Diode Lighting in Residential Fans. California Energy Commission, PIER

  7. Comparing Light Bulbs

    Broader source: Energy.gov [DOE]

    In this exercise, students will use a light to demonstrate the difference between being energy-efficient and energy-wasteful, and learn what energy efficiency means.

  8. Total Light Management

    Broader source: Energy.gov [DOE]

    Presentation covers total light management, and is given at the Spring 2010 Federal Utility Partnership Working Group (FUPWG) meeting in Providence, Rhode Island.

  9. Lighting Technology Panel

    Broader source: Energy.gov [DOE]

    Presentation covers the Lighting Technology Panel for the Federal Utility Partnership Working Group (FUPWG) meeting, held on November 18-19, 2009. 

  10. Hybrid Solar Lighting

    SciTech Connect (OSTI)

    Maxey, L Curt [ORNL

    2008-01-01T23:59:59.000Z

    Hybrid solar lighting systems focus highly concentrated sunlight into a fiber optic bundle to provide sunlight in rooms without windows or conventional skylights.

  11. Solid-State Lighting

    Broader source: Energy.gov (indexed) [DOE]

    into the market. On the market side, DOE works closely with drivers, heat sinks, and optics. LEDs must be carefully energy efficiency program partners, lighting professionals,...

  12. National System Templates: Building Sustainable National Inventory...

    Open Energy Info (EERE)

    Templates: Building Sustainable National Inventory Management Systems Jump to: navigation, search Tool Summary LAUNCH TOOL Name: National System Templates: Building Sustainable...

  13. The 4th Generation Light Source at Jefferson Lab

    SciTech Connect (OSTI)

    Stephen Benson; George Biallas; James Boyce; Donald Bullard; James Coleman; David Douglas; H. Dylla; Richard Evans; Pavel Evtushenko; Albert Grippo; Christopher Gould; Joseph Gubeli; David Hardy; Carlos Hernandez-Garcia; Kevin Jordan; John Klopf; Steven Moore; George Neil; Thomas Powers; Joseph Preble; Daniel Sexton; Michelle D. Shinn; Christopher Tennant; Richard Walker; Shukui Zhang; Gwyn Williams

    2007-04-25T23:59:59.000Z

    A number of "Grand Challenges" in Science have recently been identified in reports from The National Academy of Sciences, and the U.S. Dept. of Energy, Basic Energy Sciences. Many of these require a new generation of linac-based light source to study dynamical and non-linear phenomena in nanoscale samples. In this paper we present a summary of the properties of such light sources, comparing them with existing sources, and then describing in more detail a specific source at Jefferson Lab. Importantly, the JLab light source has developed some novel technology which is a critical enabler for other new light sources.

  14. Facilities | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Some of the nation's most powerful and sophisticated facilities for energy research Argonne National Laboratory is home to some of the nation's most powerful and sophisticated...

  15. Sandia National Laboratories: Overview

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ahead. Our own EFRC is focused on solid-state lighting science. Solid-state lighting (SSL) is simply the use of solid-state devices, like light-emitting diodes, or like the...

  16. Sandia National Laboratories: Video

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Video SMART Rotor Video On September 17, 2012, in (Lighting and) Solid-State Lighting: Science, Technology, Economic Perspectives On July 30, 2012, in (Lighting and) Solid-State...

  17. Sandia National Laboratories: Videos

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    on the third and upcoming revolution (illumination). Topics cover the basics of light-emitting diode (LED) operation; a 200-year history of lighting technology; the importance of...

  18. Sandia National Laboratories: EFRC

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Revolution On July 30, 2012, in The Next Semiconductor Revolution: This Time It's Lighting View Slides:The Next Semiconductor Revolution: This Time It's Lighting (.pdf - 455...

  19. Sandia National Laboratories: Brief History of Artificial Lighting...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Beyond Spontaneous Emission News Highlights 2013 Archives 2012 Archives 2011 Archives 2010 Archives 2009 Archives Copy of News Highlights Publications, Presentations, Videos...

  20. ENVIRONMENTAL ASSESSMENT NATIONAL SYNCHROTRON LIGHT SOURCE-II

    E-Print Network [OSTI]

    Ohta, Shigemi

    .............................................................................15 Energy Recovery Linac (ERL); Beamlines Beyond the Building Envelope; General Facility...........................................................................................20 5.8 Radiological Characteristics

  1. National Synchrotron Light Source II Project Progress Report

    E-Print Network [OSTI]

    Ohta, Shigemi

    and no reportable safety incident in June. Construction of the ring building and central chilled water plant production components such as vacuum chambers, girders, BPM and power supply parts, injector transfer lines of the accelerator systems. Schedule floats for key elements in the accelerator systems are being closely monitored

  2. National Synchrotron Light Source II Project Progress Report

    E-Print Network [OSTI]

    Ohta, Shigemi

    Mar 29 Science Advisory Committee (SAC) meeting Apr 4­5 Earned Value Management System (EVMS) training% complete with 31% of contingency and management reserve for the remaining cost to go. The DOE Independent activities, management of the construction site and site access process have been further strengthened

  3. National Synchrotron Light Source II Project Progress Report

    E-Print Network [OSTI]

    Ohta, Shigemi

    Advisory Committee (SAC) meeting Apr 4­5 Earned Value Management System (EVMS) training Apr 13­14 Trends, with over 32% of contingency and management reserve for the remaining cost to go. The cumulative cost

  4. National Synchrotron Light Source II Project Progress Report

    E-Print Network [OSTI]

    Ohta, Shigemi

    EVENTS 2012 Installation Retreat Mar 13 Science Advisory Committee (SAC) Mar 15­16 Earned Value, the project was 72% complete with over 36% of contingency and management reserve for the remaining Budget Management System (EVMS) training Mar 20­21 Final Design Review (FDR) meetings, IXS and CSX Hutches Mar 20

  5. Slideshow: Flipping the Switch on LED Lighting for the National...

    Broader source: Energy.gov (indexed) [DOE]

    President & CEO, OSRAM SYLVANIA - Eric Spiegel, President and Chief Executive Officer, Siemens Corporation & CEO, U.S. Region - Interior Department Secretary Ken Salazar - Joseph...

  6. National Synchrotron Light Source II Project Progress Report

    E-Print Network [OSTI]

    Ohta, Shigemi

    Commissioning Safety Assessment Document and Accelerator Safety Envelope have been completed and submitted for the linac, booster, RF transmitter, and damping wigglers continue to progress on schedule. The Linac

  7. Project Progress Report National Synchrotron Light Source II

    E-Print Network [OSTI]

    Ohta, Shigemi

    and released are the tungsten blade clamp design on all Day 1 slits, drift pipe support assembly, drift pipe of the storage ring (SR) and integrated testing. The monthly SPI for Accelerator Systems in September was 2

  8. 2001 NSLS ACTIVITY REPORT (NATIONAL SYNCHROTRON LIGHT SOURCE).

    SciTech Connect (OSTI)

    CORWIN, M.A.

    2002-05-01T23:59:59.000Z

    The year 2001 has been another highly productive year at the NSLS, with over 2500 users, including 720 first time users, conducting nearly 1200 experiments in fields ranging from the life, materials, chemical, and environmental sciences to applied science and technology. An impressive array of highlights from this scientific activity is included in this Activity Report. They include the first demonstration of a direct structural probe of the superconducting ground state in the cuprates by utilizing anomalous soft x-ray resonance effects to selectively enhance the scattering from doped holes. Another highly significant result was the determination of the structure of the potassium channel membrane protein. This is especially significant as it provides insight into how the channel functions and how it selects a particular kind of ion. In the nanoscience area, small angle x-ray scattering measurements played an essential role in determining that preferential sequestering of tailored metal nanocrystals into a self-assembled lamellar diblock copolymer can produce high quality metallodielectric photonic bandgap structures, demonstrating the potential of these nanocomposites for photonic crystal engineering. The infrared microscopy program continued to yield noteworthy results, including an important study that characterized the types and abundances of organic materials in contaminated and uncontaminated sediments from the New York/New Jersey Harbor. These results will be useful in devising improved methods for the destruction or removal of these environmental contaminants.

  9. Sandia National Laboratories: Solid-State Lighting Technology...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    colors of objects in the environment around us. The efficiency of this state-of-the-art SSL lamp is about 20%-25%, slightly better than that of a fluorescent lamp, but far from...

  10. Sandia National Laboratories: solid-state lighting science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    knowledge into actions that will benefit the general populace." His talk titled, "Latest SSL work at Sandia ... George Wang's Invited Talk at 2013 tSSL On March 26, 2013, in...

  11. Sandia National Laboratories: solid-state lighting science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    "Overarching" research is what connects the six main scientific research challenges to SSL technology. SSL technology is itself evolving rapidly, and we devote some effort to...

  12. National Synchrotron Light Source II Project Progress Report

    E-Print Network [OSTI]

    Ohta, Shigemi

    continued to maintain satisfactory cost and schedule performance with cumulative cost and schedule indices is on budget and on schedule and activities continue to wind down. Monthly schedule performance for accelerator based on thorough analysis, and a number of weaknesses in current designs are being addressed. Hutch

  13. National Synchrotron Light Source II Project Progress Report

    E-Print Network [OSTI]

    Ohta, Shigemi

    Project continued to maintain satisfactory cost and schedule performance with cumulative cost and schedule activities and conventional facilities project staff continue to wind down as the overall conventional for booster and storage ring are making excellent progress and enhanced radiation shielding analysis

  14. National Synchrotron Light Source guidelines for the conduct of operations

    SciTech Connect (OSTI)

    Fewell, N.

    1990-03-01T23:59:59.000Z

    This report briefly discusses the following topics: NSLS operations organization and administration; shift routines and operating practices; NSLS control room activities; communications; control of on-shift training; investigation of abnormal events; notifications; control of equipment and system status; lock-out tagout; independent verification; logkeeping; shift turnover; required reading; shift orders; equipment operations guides; operator aid postings; and equipment labeling.

  15. Sandia National Laboratories: light-duty diesel engine

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Paper Presented at American Society of Mechanical Engineers' (ASME) 2012 Internal Combustion Engine Division (ICED) Conference On August 28, 2013, in CRF, Energy, Energy...

  16. National Synchrotron Light Source II Project Progress Report

    E-Print Network [OSTI]

    Ohta, Shigemi

    Performance Index (SPI) for the overall project is 0.96; the cumulative Cost Performance Index (CPI) is 1 cost and schedule performance, completing 65% of the project by the end of October with about 32 the current status of the conventional construction, updated magnet production and accelerator installation

  17. National Synchrotron Light Source II Project Progress Report

    E-Print Network [OSTI]

    Ohta, Shigemi

    to maintain satisfactory cost and schedule performance. The cumulative Schedule Perform- ance Index (SPI) improved to 0.97 from 0.96 in June and the cumulative Cost Performance Index (CPI) is 1.02. The current month SPI is 1.17, due to excellent progress in the ring building and LOB construction, and improvements

  18. National Synchrotron Light Source II Project Progress Report

    E-Print Network [OSTI]

    Ohta, Shigemi

    (SPI) for the overall project is 0.96; the cumulative Cost Performance Index (CPI) is 1 and management reserve for the remaining Budget At Completion (BAC). The cumulative Schedule Performance Index.01. Construction of the ring building continues with beneficial occupancy for pentant 5, the last section

  19. National Synchrotron Light Source II Project Progress Report

    E-Print Network [OSTI]

    Ohta, Shigemi

    Performance Index (SPI) for the overall project is 0.96; the cumulative Cost Performance Index (CPI) is 1.00. Construction of the ring building continues its excellent progress with beneficial occupancy for pentant 4 of the ring building occurring in December and rapid progress in construction of all five lab­office buildings

  20. National Synchrotron Light Source II Project Progress Report

    E-Print Network [OSTI]

    Ohta, Shigemi

    .95 in previous month while the cumulative cost index remaining at 0.95. The Project was 86% complete with 48 excellent progress in January with the current month schedule performance index (SPI) for overall project and concurred at the DOE mini-review held in December 2012. Conventional construction activities continue

  1. National Synchrotron Light Source II Project Progress Report

    E-Print Network [OSTI]

    Ohta, Shigemi

    . The cumulative schedule index is 0.97 and the cumulative cost index is 1.02, both well within the acceptable. The project is 48% complete with 30% of contingency and management reserve for the remaining cost to go range. The current-month schedule variance is negative due to conventional construction being slowed

  2. National Synchrotron Light Source II Project Progress Report

    E-Print Network [OSTI]

    Ohta, Shigemi

    progress with the current month schedule performance index (SPI) for the overall project at 1.39 (+$2.1M). The cumulative cost and schedule indices for the overall project are 0.99 and 0.96. The project was 85% (88 construction activities are nearly complete, while work to address punchlist items continues. Proposals

  3. National Synchrotron Light Source II Project Progress Report

    E-Print Network [OSTI]

    Ohta, Shigemi

    with conventional construction, the monthly schedule perfor- mance index for the overall project was 0 progress in August, maintaining its satisfactory cost and schedule performance with cumulative cost and management reserve for the remaining Estimate at Completion. Conventional construction continued to wind down

  4. Sandia National Laboratories: solid-state lighting science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    that illustrated the differences ... Assessment of deep level defects in m-plane GaN grown by metalorganic chemical vapor deposition On February 22, 2012, in Energy...

  5. SciTech Connect: National synchrotron light source. Activity...

    Office of Scientific and Technical Information (OSTI)

    materials; time resolved spectroscopy; UV photoemission and surface science; x-ray absorption spectroscopy; x-ray scattering and crystallography; x-ray topography; the 1995 NSLS...

  6. LED Lighting on the National Mall | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreaking ofOil & Gas » MethaneJohnsonKristina Pflanz About Us KristinaLED

  7. Reducing home lighting expenses

    SciTech Connect (OSTI)

    Aimone, M.A.

    1981-02-01T23:59:59.000Z

    Ways to reduce lighting expenses are summarized. These include: turning off lights when not in use; keeping fixtures and lamps clean; replacing lamps with more efficient types; using three-way bulbs; use of daylighting; buying fewer lamps and reducing lamp wattage; consider repainting rooms; replacing recessed fixtures with tracklighting; and using efficient lamps for outdoor use. (MCW)

  8. Explosively pumped laser light

    DOE Patents [OSTI]

    Piltch, Martin S. (Los Alamos, NM); Michelotti, Roy A. (Los Alamos, NM)

    1991-01-01T23:59:59.000Z

    A single shot laser pumped by detonation of an explosive in a shell casing. The shock wave from detonation of the explosive causes a rare gas to luminesce. The high intensity light from the gas enters a lasing medium, which thereafter outputs a pulse of laser light to disable optical sensors and personnel.

  9. Light intensity compressor

    DOE Patents [OSTI]

    Rushford, Michael C. (Livermore, CA)

    1990-01-01T23:59:59.000Z

    In a system for recording images having vastly differing light intensities over the face of the image, a light intensity compressor is provided that utilizes the properties of twisted nematic liquid crystals to compress the image intensity. A photoconductor or photodiode material that is responsive to the wavelength of radiation being recorded is placed adjacent a layer of twisted nematic liquid crystal material. An electric potential applied to a pair of electrodes that are disposed outside of the liquid crystal/photoconductor arrangement to provide an electric field in the vicinity of the liquid crystal material. The electrodes are substantially transparent to the form of radiation being recorded. A pair of crossed polarizers are provided on opposite sides of the liquid crystal. The front polarizer linearly polarizes the light, while the back polarizer cooperates with the front polarizer and the liquid crystal material to compress the intensity of a viewed scene. Light incident upon the intensity compressor activates the photoconductor in proportion to the intensity of the light, thereby varying the field applied to the liquid crystal. The increased field causes the liquid crystal to have less of a twisting effect on the incident linearly polarized light, which will cause an increased percentage of the light to be absorbed by the back polarizer. The intensity of an image may be compressed by forming an image on the light intensity compressor.

  10. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn April 23, 2014,ZaleskiThisTexas-New Mexico PowerBusinessUnitil (Electric)-Unitil

  11. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn April 23, 2014,ZaleskiThisTexas-New Mexico PowerBusinessUnitil (Electric)-UnitilPSEG

  12. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn April 23, 2014,ZaleskiThisTexas-New Mexico PowerBusinessUnitilUnitil (Electric)-

  13. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn April 23, 2014,ZaleskiThisTexas-New Mexico PowerBusinessUnitilUnitil

  14. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn April 23, 2014,ZaleskiThisTexas-New Mexico PowerBusinessUnitilUnitilAlliant Energy

  15. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn April 23, 2014,ZaleskiThisTexas-New Mexico PowerBusinessUnitilUnitilAlliant

  16. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn April 23, 2014,ZaleskiThisTexas-New Mexico PowerBusinessUnitilUnitilAlliantBusiness

  17. Lighting affects appearance LightSource emits photons

    E-Print Network [OSTI]

    Jacobs, David

    1 Lighting affects appearance #12;2 LightSource emits photons Photons travel in a straight line). And then some reach the eye/camera. #12;3 Reflectance Model how objects reflect light. Model light sources Algorithms for computing Shading: computing intensities within polygons Determine what light strikes what

  18. VIRTUAL LIGHT: DIGITALLY-GENERATED LIGHTING FOR VIDEO CONFERENCING APPLICATIONS

    E-Print Network [OSTI]

    Fisher, Kathleen

    VIRTUAL LIGHT: DIGITALLY-GENERATED LIGHTING FOR VIDEO CONFERENCING APPLICATIONS Andrea Basso method to improve the lighting conditions of a real scene or video sequence. In particular we concentrate on modifying real light sources intensities and inserting virtual lights into a real scene viewed from a fixed

  19. Renewable Energy Laboratory for Lighting Systems

    E-Print Network [OSTI]

    Dumitru Cristian; Gligor Adrian

    2010-02-23T23:59:59.000Z

    Nowadays, the electric lighting is an important part of our lives and also represents a significant part of the electric power consumption. Alternative solutions such as renewable energy applied in this domain are thus welcomed. This paper presents a workstation conceived for the study of photovoltaic solar energy for lighting systems by students of power engineering and civil engineering faculty. The proposed system is realized to study the generated photovoltaic solar energy parameters for lighting systems. For an easier way to study the most relevant parameters virtual instrumentation is implemented. National Instruments LabWindows CVI environment is used as a platform for virtual instrumentation. For future developments remote communication feature intends to be added on which currently remote monitoring of solar photovoltaic energy and electric energy parameters are monitored.

  20. Hybrid Solar Lighting - Fiber Optics Brings Sunlight Inside

    SciTech Connect (OSTI)

    Maxey, L Curt [ORNL

    2008-01-01T23:59:59.000Z

    Hybrid solar lighting systems focus highly concentrated sunlight into a fiber optic bundle to provide sunlight in rooms without windows or conventional skylights. The flexible sunlight bundles are easily routed through small openings and around obstacles to carry the light to where it is needed. The optical fibers terminate in hybrid luminaires where the sunlight is combined with electric light that is automatically adjusted to keep the overall light level constant within the lighted area. The hybrid solar lighting concept was originally proposed at Oak Ridge National Laboratory in Tennessee in the mid-1990s, but funding hurdles prevented the idea from seeing daylight for more than five years. Hybrid solar lighting was touted as a means for using solar energy directly without any conversion losses and for increasing the visual quality of interior lighting. As such, it promised to be both energy-efficient and aesthetically appealing, but its technical complexity made potential sponsors wary. They had to be convinced that the lighting concept could be accepted into the marketplace and that the systems could be manufactured at an acceptable cost. An earlier fiber-coupled daylighting system marketed in the early 1990s used expensive quartz optical fibers to distribute the light and served only a niche market that was willing to pay a premium for the novelty. By contrast, the hybrid solar lighting system proposed using inexpensive plastic optical fibers to distribute the light to hybrid (sunlight/electric) luminaires that would be visually and functionally identical to conventional luminaires. In this way, the lighting could be integrated seamlessly into existing design concepts and thus easily embraced by architects and lighting designers as a means for offering daylight as a lighting option.

  1. Lakeview Light and Power- Commercial Lighting Rebate Program

    Broader source: Energy.gov [DOE]

    Lakeview Light and Power offers a commercial lighting rebate program. Rebates apply to the installation of energy efficient lighting retrofits in non-residential buildings. The rebate program is...

  2. Green Light Pulse Oximeter

    DOE Patents [OSTI]

    Scharf, John Edward (Oldsmar, FL)

    1998-11-03T23:59:59.000Z

    A reflectance pulse oximeter that determines oxygen saturation of hemoglobin using two sources of electromagnetic radiation in the green optical region, which provides the maximum reflectance pulsation spectrum. The use of green light allows placement of an oximetry probe at central body sites (e.g., wrist, thigh, abdomen, forehead, scalp, and back). Preferably, the two green light sources alternately emit light at 560 nm and 577 nm, respectively, which gives the biggest difference in hemoglobin extinction coefficients between deoxyhemoglobin, RHb, and oxyhemoglobin, HbO.sub.2.

  3. White light velocity interferometer

    DOE Patents [OSTI]

    Erskine, D.J.

    1999-06-08T23:59:59.000Z

    The invention is a technique that allows the use of broadband and incoherent illumination. Although denoted white light velocimetry, this principle can be applied to any wave phenomenon. For the first time, powerful, compact or inexpensive sources can be used for remote target velocimetry. These include flash and arc lamps, light from detonations, pulsed lasers, chirped frequency lasers, and lasers operating simultaneously in several wavelengths. The technique is demonstrated with white light from an incandescent source to measure a target moving at 16 m/s. 41 figs.

  4. Non-Residential Energy Code National and Regional Codes

    E-Print Network [OSTI]

    Non-Residential Energy Code Comparison National and Regional Codes David Baylon Mike Kennedy #12 2003 · ASHRAE 90.1 2001 & addenda · E-Benchmark Guidelines (NBI) #12;Approach · Comparison of the State;Approach (cont.) · Provisions compared ­ Lighting power ­ Lighting controls ­ Mechanical systems ­ Building

  5. Sandia Energy - (Lighting and) Solid-State Lighting: Science...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    on the third and upcoming revolution (illumination). Topics cover the basics of light-emitting diode (LED) operation; a 200-year history of lighting technology; the importance of...

  6. Columbia Water and Light- HVAC and Lighting Efficiency Rebates

    Broader source: Energy.gov [DOE]

    Columbia Water and Light (CWL) offers rebates to its commercial and industrial customers for the purchase of high efficiency HVAC installations and efficient lighting. Incentives for certain...

  7. Reading Municipal Light Department- Business Lighting Rebate Program

    Broader source: Energy.gov [DOE]

    Reading Municipal Light Department (RMLD) offers incentives for non-residential customers to install energy efficient lights and sensors in existing facilities. In addition to rebates for the...

  8. Peninsula Light Company- Commercial Efficient Lighting Rebate Program

    Broader source: Energy.gov [DOE]

    Peninsula Light Company (PLC) offers a rebate program for commercial customers who wish to upgrade to energy efficient lighting. Participating customers must be served by PLC commercial service....

  9. Efficient Light Sources Today

    E-Print Network [OSTI]

    Hart, A. L.

    1982-01-01T23:59:59.000Z

    This paper reviews new lamp and lighting technology in terms of application and economic impact. Included are the latest advances in High Intensity Discharge systems, energy saving fluorescent lamps and ballasts, and the new state of the art high...

  10. Natural lighting and skylights

    E-Print Network [OSTI]

    Evans, Benjamin Hampton

    1961-01-01T23:59:59.000Z

    outlined herein, the feasibility of using scale models for studying skylights is also an established fact. The method of analysis by models can be a valuable tool to any designer who is concerned about day-lighting....

  11. Light Vector Mesons

    E-Print Network [OSTI]

    Alexander Milov

    2008-12-21T23:59:59.000Z

    This article reviews the current status of experimental results obtained in the measurement of light vector mesons produced in proton-proton and heavy ion collisions at different energies. The review is focused on two phenomena related to the light vector mesons; the modification of the spectral shape in search of Chiral symmetry restoration and suppression of the meson production in heavy ion collisions. The experimental results show that the spectral shape of light vector mesons are modified compared to the parameters measured in vacuum. The nature and the magnitude of the modification depends on the energy density of the media in which they are produced. The suppression patterns of light vector mesons are different from the measurements of other mesons and baryons. The mechanisms responsible for the suppression of the mesons are not yet understood. Systematic comparison of existing experimental results points to the missing data which may help to resolve the problem.

  12. Light and Plants Plants use light to photosynthesize. Name two places that light can come from

    E-Print Network [OSTI]

    Koptur, Suzanne

    Light and Plants Plants use light to photosynthesize. Name two places that light can come from: 1 (CO2, a gas) from the air and turn it into SUGARS (food). This process is powered by energy from light plants) for energy. Photosynthetically Active Radiation (PAR) is a combination of red light and blue

  13. Light and Energy -Daylight measurements

    E-Print Network [OSTI]

    Light and Energy - Daylight measurements #12;Light and Energy - Daylight measurements Authors: Jens;3 Title Light and Energy Subtitle Daylight measurements Authors Jens Christoffersen, Ásta Logadóttir ........................................................................................................ 5 Daylight quantity

  14. Light as a Healing Mechanism

    E-Print Network [OSTI]

    Lingampalli, Nithya

    2013-01-01T23:59:59.000Z

    S. (1991). Meridians conduct light. Moskow: Raum and Zeit.the bod’ys absorption of light. Explore, 9(2), doi: https://01). The healing use of light and color. Health Care Design

  15. Solid state lighting component

    DOE Patents [OSTI]

    Yuan, Thomas; Keller, Bernd; Ibbetson, James; Tarsa, Eric; Negley, Gerald

    2010-10-26T23:59:59.000Z

    An LED component comprising an array of LED chips mounted on a planar surface of a submount with the LED chips capable of emitting light in response to an electrical signal. The LED chips comprise respective groups emitting at different colors of light, with each of the groups interconnected in a series circuit. A lens is included over the LED chips. Other embodiments can comprise thermal spreading structures included integral to the submount and arranged to dissipate heat from the LED chips.

  16. Solid state lighting component

    DOE Patents [OSTI]

    Keller, Bernd; Ibbetson, James; Tarsa, Eric; Negley, Gerald; Yuan, Thomas

    2012-07-10T23:59:59.000Z

    An LED component comprising an array of LED chips mounted on a planar surface of a submount with the LED chips capable of emitting light in response to an electrical signal. The LED chips comprise respective groups emitting at different colors of light, with each of the groups interconnected in a series circuit. A lens is included over the LED chips. Other embodiments can comprise thermal spreading structures included integral to the submount and arranged to dissipate heat from the LED chips.

  17. July 18, 2012 Using QECBs for Street Lighting Upgrades

    E-Print Network [OSTI]

    lighting technologies (e.g. light-emitting diodes, induction lighting) can reduce street light energy

  18. LINAC COHERENT LIGHT SOURCE The Linac Coherent Light Source at SLAC National Accelerator Laboratory is

    E-Print Network [OSTI]

    Wechsler, Risa H.

    is the world's most powerful X-ray laser. The LCLS's highly focused beam, which arrives in staccato bursts one-rays are scientists' best tool for probing matter on the atomic scale, and the LCLS is an x-ray source unlike any before. Shining a billion times brighter than previous X-ray sources, the LCLS probes matter in new ways

  19. Direct Use of Solar Energy for Lighting-Results of the Hybrid Solar Lighting Field Trial Program

    SciTech Connect (OSTI)

    Lapsa, Melissa Voss [ORNL; Beshears, David L [ORNL; Maxey, L Curt [ORNL; Ward, Christina D [ORNL

    2007-01-01T23:59:59.000Z

    Today, lighting in United States residential and commercial buildings consumes close to 5 quadrillion BTUs of primary energy and one-fifth of all electricity. In commercial buildings, one-quarter of all energy demand is for lighting. With a forecasted doubling of commercial floor space by the year 2020 comes an urgent and growing need to find more efficient ways of lighting our nation's buildings. Hybrid Solar Lighting (HSL) is a technology that can do just that by collecting sunlight and distributing it via optical fibers, into the interior of a building. A nation-wide field trial program is currently under way to provide system performance data and user-feedback essential for successful commercialization of HSL. This paper will describe several locations of the HSL system and their intended use as well as some energy savings data.

  20. Interior Light Level Measurements Appendix F -Interior Light Level Measurements

    E-Print Network [OSTI]

    Appendix F ­ Interior Light Level Measurements #12;F.1 Appendix F - Interior Light Level. A potential concern is that a lower VT glazing may increase electric lighting use to compensate for lost qualify and quantify a representative loss of daylighting, and therefore electric lighting use

  1. Quasi light fields: extending the light field to coherent radiation

    E-Print Network [OSTI]

    Wornell, Gregory W.

    Quasi light fields: extending the light field to coherent radiation Anthony Accardi1,2 and Gregory light field, and for coherent radiation using electromagnetic field theory. We present a model of coherent image formation that strikes a balance between the utility of the light field

  2. Lighting affects appearance LightSource emits photons

    E-Print Network [OSTI]

    Jacobs, David

    1 Lighting affects appearance #12;2 LightSource emits photons Photons travel in a straight line). And then some reach the eye/camera. #12;3 Basic fact: Light is linear Double intensity of sources, double photons reaching eye. Turn on two lights, and photons reaching eye are same as sum of number when each

  3. Smart Lighting: A Second Wave in Solid State Lighting?

    E-Print Network [OSTI]

    Salama, Khaled

    Smart Lighting: A Second Wave in Solid State Lighting? OIDA Conference on Green Photonics Bob Karlicek Director, Smart Lighting Engineering Research Center Rensselaer Polytechnic Institute June 2010 #12;2 Outline · The First Wave of Solid State Lighting · Complex Dynamics in the Supply Chain · What

  4. Sneaky light stop

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Eifert, Till; Nachman, Benjamin

    2015-04-01T23:59:59.000Z

    A light supersymmetric top quark partner (stop) with a mass nearly degenerate with that of the standard model (SM) top quark can evade direct searches. The precise measurement of SM top properties such as the cross-section has been suggested to give a handle for this ‘stealth stop’ scenario. We present an estimate of the potential impact a light stop may have on top quark mass measurements. The results indicate that certain light stop models may induce a bias of up to a few GeV, and that this effect can hide the shift in, and hence sensitivity from, cross-section measurements. Duemore »to the different initial states, the size of the bias is slightly different between the LHC and the Tevatron. The studies make some simplifying assumptions for the top quark measurement technique, and are based on truth-level samples.« less

  5. Pupillary efficient lighting system

    DOE Patents [OSTI]

    Berman, Samuel M. (San Francisco, CA); Jewett, Don L. (Mill Valley, CA)

    1991-01-01T23:59:59.000Z

    A lighting system having at least two independent lighting subsystems each with a different ratio of scotopic illumination to photopic illumination. The radiant energy in the visible region of the spectrum of the lighting subsystems can be adjusted relative to each other so that the total scotopic illumination of the combined system and the total photopic illumination of the combined system can be varied independently. The dilation or contraction of the pupil of an eye is controlled by the level of scotopic illumination and because the scotopic and photopic illumination can be separately controlled, the system allows the pupil size to be varied independently of the level of photopic illumination. Hence, the vision process can be improved for a given level of photopic illumination.

  6. Light emitting ceramic device

    DOE Patents [OSTI]

    Valentine, Paul; Edwards, Doreen D.; Walker, Jr., William John; Slack, Lyle H.; Brown, Wayne Douglas; Osborne, Cathy; Norton, Michael; Begley, Richard

    2010-05-18T23:59:59.000Z

    A light-emitting ceramic based panel, hereafter termed "electroceramescent" panel, is herein claimed. The electroceramescent panel is formed on a substrate providing mechanical support as well as serving as the base electrode for the device. One or more semiconductive ceramic layers directly overlay the substrate, and electrical conductivity and ionic diffusion are controlled. Light emitting regions overlay the semiconductive ceramic layers, and said regions consist sequentially of a layer of a ceramic insulation layer and an electroluminescent layer, comprised of doped phosphors or the equivalent. One or more conductive top electrode layers having optically transmissive areas overlay the light emitting regions, and a multi-layered top barrier cover comprising one or more optically transmissive non-combustible insulation layers overlay said top electrode regions.

  7. Light harvesting arrays

    DOE Patents [OSTI]

    Lindsey, Jonathan S. (Raleigh, NC)

    2002-01-01T23:59:59.000Z

    A light harvesting array useful for the manufacture of devices such as solar cells comprises: (a) a first substrate comprising a first electrode; and (b) a layer of light harvesting rods electrically coupled to the first electrode, each of the light harvesting rods comprising a polymer of Formula I: X.sup.1.paren open-st.X.sup.m+1).sub.m (I) wherein m is at least 1, and may be from two, three or four to 20 or more; X.sup.1 is a charge separation group (and preferably a porphyrinic macrocycle, which may be one ligand of a double-decker sandwich compound) having an excited-state of energy equal to or lower than that of X.sup.2, and X.sup.2 through X.sup.m+1 are chromophores (and again are preferably porphyrinic macrocycles).

  8. National Science Bowl Finals

    ScienceCinema (OSTI)

    None

    2010-09-01T23:59:59.000Z

    National Science Bowl finals and awards at the National Building Museum in Washington D.C. Monday 5/3/2010

  9. Sandia National Laboratories: solar

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Interactive Tour Operated by Sandia National Laboratories for the U.S. Department of Energy (DOE), the National Solar Thermal Test Facility (NSTTF) is the only test facility...

  10. Sandia National Laboratories: PV

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2014 Sandia Corporation | Questions & Comments | Privacy & Security U.S. Department of Energy National Nuclear Security Administration Sandia National Laboratories is a...

  11. Sandia National Laboratories: Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    National Solar Thermal Test Facility, News, News & Events, Partnership, Renewable Energy, Solar, Solar Newsletter On November 24, 2012 the National Solar Thermal Test...

  12. Sandia National Laboratories: ACEC

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ACEC Sandia Solar Energy Test System Cited in National Engineering Competition On May 16, 2013, in Concentrating Solar Power, Energy, Energy Storage, Facilities, National Solar...

  13. National Science Bowl Finals

    SciTech Connect (OSTI)

    2010-05-03T23:59:59.000Z

    National Science Bowl finals and awards at the National Building Museum in Washington D.C. Monday 5/3/2010

  14. National Nuclear Security Administration

    Broader source: Energy.gov (indexed) [DOE]

    and Related Structures within TA-3 at Los Alamos National Laboratory, Los Alamos, New Mexico U. S. Department of Energy National Nuclear Security Administration Los Alamos Area...

  15. Sandia National Laboratories: SSLS

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    in the ... Optical performance of top-down fabricated InGaNGaN nanorod light emitting diode arrays On November 30, 2011, in Energy, Energy Efficiency, Solid-State Lighting...

  16. MANDATORY MEASURES INDOOR LIGHTING CONTROLS

    E-Print Network [OSTI]

    California at Davis, University of

    MANDATORY MEASURES INDOOR LIGHTING CONTROLS (Reference: Sub-Chapter 4, Section 130.1) #12;SECTION 4 MANDATORY LIGHTING CONTROLS 1. 130.1 (a) Area Controls: Manual controls that control lighting in each area separately 2. 130.1 (b) Multi-level Controls: Allow occupants to choose the appropriate light level for each

  17. MANDATORY MEASURES INDOOR LIGHTING CONTROLS

    E-Print Network [OSTI]

    California at Davis, University of

    MANDATORY MEASURES INDOOR LIGHTING CONTROLS (Reference: Sub-Chapter 4, Section 130.1) #12;SECTION 3 MANDATORY LIGHTING CONTROLS 1. 130.1 (a) Area Controls: Manual controls that control lighting in each area separately 2. 130.1 (b) Multi-level Controls: "Dimmability." Allow occupants to choose the appropriate light

  18. MANDATORY MEASURES INDOOR LIGHTING CONTROLS

    E-Print Network [OSTI]

    California at Davis, University of

    MANDATORY MEASURES INDOOR LIGHTING CONTROLS (Reference: Sub-Chapter 4, Section 130.1) #12;SECTION 5 MANDATORY LIGHTING CONTROLS 1. Area Controls: Manual controls that control lighting in each area separately 2. Multi-level Controls: Allow occupants to choose the appropriate light level for each area 3. Shut

  19. LIGHTING 101 1. Common terminology

    E-Print Network [OSTI]

    California at Davis, University of

    SECTION 3 LIGHTING 101 1. Common terminology 2. Sources & luminaires 3. Controls #12;SECTION 3SECTION 3 DISCUSSION: COMMON LIGHTING TERMINOLOGY 1. What are the definitions of the following lighting terms? 2. Do you use these terms in professional practice? 3. What other lighting terminology do you use

  20. LIGHTING 101 1. Common terminology

    E-Print Network [OSTI]

    California at Davis, University of

    LIGHTING 101 1. Common terminology 2. Sources and luminaires 3. Controls #12;SECTION 2 DISCUSSION: COMMON LIGHTING TERMINOLOGY 1. What are the definitions of the following lighting terms? 2. Do you use these terms in professional practice? 3. What other lighting terminology do you use on the job? SLIDE 14

  1. Evaluation of Methods to Increase Light under Large Overwater Structures

    SciTech Connect (OSTI)

    Sargeant, Susan L.; Thom, Ronald M.; Diefenderfer, Heida L.; Borde, Amy B.; Southard, John A.

    2003-03-31T23:59:59.000Z

    To address resource agency concerns about potential impacts of ferry terminal expansion on habitat functions and resource use of nearshore areas, the Pacific Northwest National Laboratory, in partnership with the Washington State Department of Transportation, conducted field trials with several products that promote light passage through dock structures. Photosynthetically active radiation (PAR) measurements were compared with known minimum requirements for survival of eelgrass, Zostera marina, which provides critical habitat for the federally listed chinook salmon, Oncorhynchus tshawytscha. PAR measurements were also related to what is known about the effects of light on juvenile salmonid feeding and passage under overwater structures. In general, the products predicted to provide the most to the least light were the grating, SunTunnel, metal halide greenhouse light, and prisms. All the light technologies tested could provide enough light for eelgrass underneath a ferry terminal, though multiples of some devices would be required. Because less light is required for fish to feed than for photosynthesis, any of the products would provide enough light for juvenile salmon to feed under the structure. The number and placement of these devices could be arranged to maximize light penetration for particular purposes in different situations.

  2. New Lighting Fixtures: Combining Creativity and Style with Energy Efficiency

    SciTech Connect (OSTI)

    Gordon, Kelly L.; Foster, Rebecca; McGowan, Terry

    2004-10-01T23:59:59.000Z

    This article for a building trade magazine describes a national design competition for energy efficient lighting sponsored by the U.S. Department of Energy, the American Lighting Association, and the Consortium for Energy Efficiency, with winners announced at ALA's Annual Conference May 14, 2004, in Tucson. The Lighting for Tomorrow competition was the first national lighting fixture design competition focusing on energy-efficient residential lighting. The competition invited fixture manufacturers and designers to come up with beautiful, functional lighting fixtures that also happen to be energy efficient. Fixtures were required to use a ''dedicated'' energy-efficient light source, such as a pin-based fluorescent lamp that cannot be replaced with a screw-in incandescent bulb. Fixtures also had to meet a minimum energy efficiency level that eliminated use of incandescent and halogen lamps, leaving the door open only to fluorescent sources and LEDs. More than 150 paper designs were submitted in the first phase of the competition, in 2003. Of those, 24 finalists were invited to submit working prototypes in 2004, and the winners were announced in May. The Grand Prize of $10,000 went to American Fluorescent of Waukegan, Illinois, for its ''Salem'' chandelier. Some winning fixtures are already available through Lowe's Home Improvement Centers.

  3. Brookhaven National Laboratory/National Synchrotron Light Source Subject: Devalving of compressed gas cylinders

    E-Print Network [OSTI]

    Ohta, Shigemi

    gas cylinders Number: LS-ESH-0052 Revision: 2 Effective: 08/05/2008 Page 1 of 1 Prepared By: Keith, retighten the valve, immediately stop the process, and contact NSLS ESH staff to investigate. The only official copy of this file is the one on-line in the NSLS ESH website. Before using a printed copy, verify

  4. Sustainable LED Fluorescent Light Replacement Technology

    SciTech Connect (OSTI)

    None

    2011-06-30T23:59:59.000Z

    Ilumisys and the National Center for Manufacturing Sciences (NCMS) partnered on a three-year project awarded by the United States (U.S.) Department of Energy (DOE), to quantify the impacts of LED lamps, incandescent lamps and fluorescent benchmark lamps over a product lifecycle – i.e. to develop a sustainable design and manufacturing strategy that addresses product manufacturing, use, recycling and disposal scenarios for LED-based lighting. Based on the knowledge gained from extensive product tear-down studies of fluorescent and screw-in lighting products, lifecycle assessment tools, and accelerated lifecycle testing protocols, an interactive Sustainable LED Design Guide has been developed to aid architectural and lighting designers and engineers in making design decisions that consider three important environmental impacts (greenhouse gas emissions, energy use and mercury emission) across all phases of the life of an LED lighting product. Critical information developed for the lifecycle analysis and product feature comparisons is the useful life of the lighting product as well as its performance. The Design Guide is available at www.ncms.org, and was developed based on operational and durability testing of a variety of lighting products including power consumption, light output, and useful life of a lamp in order to allow a more realistic comparison of lamp designs. This report describes the main project tasks, results and innovative features of the lifecycle assessment (LCA)-based design tools, and the key considerations driving the sustainable design of LED lighting systems. The Design Guide incorporates the following three novel features for efficiently evaluating LED lighting features in value-chains: • Bill-of-Materials (BOM) Builder – Designers may import process data for each component and supply functional data for the product, including power, consumption, lumen output and expected useful life. • Environmental Impact Review – Designs are comparable across lifecycle phases, subsystems, and environmental impact category, and can be normalized to a userdefined functional unit. • Drill-down Review – These provide an indepth look at individual lamp designs with the ability to review across subsystem or lifecycle phase.

  5. LIGHTING CONTROLS: SURVEY OF MARKET POTENTIAL

    SciTech Connect (OSTI)

    Verderber, R.R.; Rubinstein, F.

    1982-09-01T23:59:59.000Z

    This study describes the impact of lighting management systems that dynamically control lights in accordance with the needs of occupants. Various control strategies are described: scheduling, tuning, lumen depreciation, and daylighting. From initial experimental results, the energy savings provided by each of the above strategies are estimated to be 26, 12, 14, and 15%, respectively. Based upon a cost of $0.05-0.10 per kWh for electric energy and a 2-, 3-, or 4-yr payback, target costs for a simple and a sophisticated lighting management system are found to be $0.24 and 1.89 per ft{sup 2}, respectively, for a cost-effective investment. A growth model, based upon an extrapolation of the increase in building stock since 1975, indicates that the commercial and industrial (C and I) building stock will grow from 40 x 10{sup 9} ft{sup 2} in 1980 to about 67 x 10{sup 9} ft{sup 2} by the year 2000. Even with the use of more efficient lighting components, the energy required for this additional C and I stock will be 307 x 10{sup 9} kWh, an increase of only 13 x 10{sup 9} kWh above current use. The specified information is used to analyze the economic impacts that using these systems will have on the lighting industry, end users, utility companies, and the nation's economy. A $1 - 4 x 10{sup 9} annual lighting control industry can be generated, creating many jobs. The estimated return on investment (ROI) for controls for end users would be between 19 and 38%. Utilities will be able to make smaller additions to capacity and invest less capital at 7-10% ROI. Finally, the annual energy savings, up to $3.4 x 10{sup 9} for end users and about $5 x 10{sup 9} for utilities, representing unneeded generating capacity, will be available to capitalize other areas of the economy.

  6. Windows and lighting program

    SciTech Connect (OSTI)

    Not Available

    1990-06-01T23:59:59.000Z

    More than 30% of all energy use in buildings is attributable to two sources: windows and lighting. Together they account for annual consumer energy expenditures of more than $50 billion. Each affects not only energy use by other major building systems, but also comfort and productivity -- factors that influence building economics far more than does direct energy consumption alone. Windows play a unique role in the building envelope, physically separating the conditioned space from the world outside without sacrificing vital visual contact. Throughout the indoor environment, lighting systems facilitate a variety of tasks associated with a wide range of visual requirements while defining the luminous qualities of the indoor environment. Windows and lighting are thus essential components of any comprehensive building science program. Despite important achievements in reducing building energy consumption over the past decade, significant additional savings are still possible. These will come from two complementary strategies: (1) improve building designs so that they effectively apply existing technologies and extend the market penetration of these technologies; and (2) develop advanced technologies that increase the savings potential of each application. Both the Windows and Daylighting Group and the Lighting System Research Group have made substantial contributions in each of these areas, and continue to do so through the ongoing research summarized here. 23 refs., 16 figs.

  7. AIRPORT LIGHTING Session Highlights

    E-Print Network [OSTI]

    Minnesota, University of

    Administration advisory circulars, available online at www.faa.gov or by mail at the following address: Federal Aviation Administration, Airports 800 Independence Ave. S.W. Washington, D.C. 20591 To qualify for federal AND NAVIGATIONAL AIDS A complete list of federal regulations for airfield lighting is located in Federal Aviation

  8. Tokyo Street Lights

    E-Print Network [OSTI]

    Hacker, Randi; Tsutsui, William

    2008-03-12T23:59:59.000Z

    that you have only 17, no 16, no 15 seconds left to get to the other side before the light changes and the impatient American drivers put the pedal to the metal and it's road kill time. Talk about stress! In Tokyo, crossing the street is a leisurely...

  9. Sweetness and light 

    E-Print Network [OSTI]

    Craig, Katie

    2014-07-03T23:59:59.000Z

    1. Sweetness and Light. A novel. Judi lives in a nice, clean house with her seventeen year old stepson, who won’t talk to her in anything but monosyllables. His father, Nelson, and she are struggling to relate to each ...

  10. National Renewable Energy Laboratory

    E-Print Network [OSTI]

    National Renewable Energy Laboratory Innovation for Our Energy Future ponsorship Format Reversed Color:White rtical Format Reversed-A ertical Format Reversed-B National Renewable Energy Laboratory National Renewable Energy Laboratory Innovation for Our Energy Future National Renewable Energy Laboratory

  11. Sandia National Laboratories: Sandia National Laboratories

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    in Hosted by Sandia National Laboratories and the Electric Power Research Institute (EPRI) Inverter reliability drives project life cycle costs and plant performance. This...

  12. Sandia National Laboratories: National Rotor Testbed Functional...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of the National Rotor Testbed: An Aeroelastically Relevant Research-Scale Wind Turbine Rotor." Approximately 60 researchers from various institutions and countries attended...

  13. Consent Order, Lawrence Livermore National National Security...

    Energy Savers [EERE]

    for deficiencies associated with the Lawrence Livermore National Laboratory Chronic Beryllium Disease Prevention Program On October 29, 2010, the U.S. Department of Energy (DOE)...

  14. Sandia National Laboratories: Jawaharlal Nehru Solar National...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Jawaharlal Nehru Solar National Solar Energy Mission Solar Energy Research Institute for India and the United States Kick-Off On November 27, 2012, in Concentrating Solar Power,...

  15. National Security Photo Gallery | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    National Security Photo Gallery Richard Cirillo 1 of 10 Richard Cirillo RICHARD R. CIRILLO Dr. Richard R. Cirillo serves as Director of the Decision and Information Sciences...

  16. Sandia National Laboratories: national reliability database

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    national reliability database Third Annual Continuous Reliability Enhancement for Wind (CREW) Database Report Now Available On October 17, 2013, in Energy, News, News & Events,...

  17. Argonne National Laboratory | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Argonne National Laboratory Slip sliding away Graphene and diamonds prove a slippery combination Read More ACT-SO winners Argonne mentors students for the next generation of...

  18. Characterization of Gatewell Orifice Lighting at the Bonneville Dam Second Powerhouse and Compendium of Research on Light Guidance with Juvenile Salmonids

    SciTech Connect (OSTI)

    Mueller, Robert P.; Simmons, Mary Ann

    2007-12-29T23:59:59.000Z

    The goal of the study described in this report is to provide U.S. Army Corps of Engineers (USACE) biologists and engineers with general design guidelines for using artificial lighting to enhance the passage of juvenile salmonids into the collection channel at the Bonneville Dam second powerhouse (B2). During fall 2007, Pacific Northwest National Laboratory (PNNL) researchers measured light levels in the field at one powerhouse orifice through which fish must pass to reach the collection channel. Two light types were evaluated—light-emitting diode (LED) lights and halogen spot lights. Additional measurements with mercury lamps were made at the PNNL Aquatic Research Laboratory to determine baseline intensity of the current lighting. A separate chapter synthesizes the relevant literature related to light and fish guidance for both field and laboratory studies. PNNL will also review the Corps plans for existing lighting protocol at all of the Portland District projects and help develop a uniform lighting scheme which could be implemented. The specific objectives for this study are to 1. Create a synthesis report of existing lighting data for juvenile salmonid attraction and deterrence and how the data are used at fish bypass facilities. 2. Evaluate current B2 orifice lighting conditions with both LED and halogen sources. 3. Make recommendations as to what lighting intensity, source, and configuration would improve passage at the B2 orifices. 4. Review USACE plans for retrofit of existing systems (to be assessed at a later date).

  19. Superposed Coherent and Squeezed Light

    E-Print Network [OSTI]

    Fesseha Kassahun

    2012-01-18T23:59:59.000Z

    We first calculate the mean photon number and quadrature variance of superposed coherent and squeezed light, following a procedure of analysis based on combining the Hamiltonians and using the usual definition for the quadrature variance of superposed light beams. This procedure of analysis leads to physically unjustifiable mean photon number of the coherent light and quadrature variance of the superposed light. We then determine both of these properties employing a procedure of analysis based on superposing the Q functions and applying a slightly modified definition for the quadrature variance of a pair of superposed light beams. We find the expected mean photon number of the coherent light and the quadrature variance of the superposed light. Moreover, the quadrature squeezing of the superposed output light turns out to be equal to that of the superposed cavity light.

  20. Fuel Economy of the Light-Duty Vehicle Fleet (released in AEO2005)

    Reports and Publications (EIA)

    2005-01-01T23:59:59.000Z

    The U.S. fleet of light-duty vehicles consists of cars and light trucks, including minivans, sport utility vehicles (SUVs) and trucks with gross vehicle weight less than 8,500 pounds. The fuel economy of light-duty vehicles is regulated by the (Corporate Average Fuel Economy) CAFE standards set by the National Highway Traffic Safety Administration. Currently, the CAFE standard is 27.5 miles per gallon (mpg) for cars and 20.7 mpg for light trucks. The most recent increase in the CAFE standard for cars was in 1990, and the most recent increase in the CAFE standard for light trucks was in 1996.

  1. DarkLight radiation backgrounds

    SciTech Connect (OSTI)

    Kalantarians, N. [Department of Physics, Hampton University, Hampton VA 23668 (United States); Collaboration: DarkLight Collaboration

    2013-11-07T23:59:59.000Z

    We report measurements of photon and neutron radiation levels observed while transmitting a 0.43 MW electron beam through millimeter-sized apertures and during beam-on, but accelerating gradient RF-on, operation. These measurements were conducted at the Free-Electron Laser (FEL) facility of the Jefferson National Accelerator Laboratory (JLab) using a 100 MeV electron beam from an energy-recovery linear accelerator. The beam was directed successively through 6 mm, 4 mm, and 2 mm diameter apertures of length 127 mm in aluminum at a maximum current of 4.3 mA (430 kW beam power). This study was conducted to characterize radiation levels for experiments that need to operate in this environment, such as the proposed DarkLight Experiment. We find that sustained transmission of a 430 kW CW beam through a 2 mm aperture is feasible with manageable beam-related backgrounds. We also find that during beam-off, RF-on operation, field emission inside the niobium cavities of the accelerator cryomodules is the primary source of ambient radiation.

  2. Transformations in Lighting: The Ninth Annual Solid-State Lighting...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    in DOE's "Transformations in Lighting" Solid-State Lighting (SSL) R&D Workshop. DOE SSL Portfolio Manager James Brodrick kicked off Day 1 by observing that although LED...

  3. September 2011 | National Nuclear Security Administration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del Sol HomeFacebook TwitterSearch-CommentsSolid-State lighting Electrical1 | National

  4. September 2013 | National Nuclear Security Administration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del Sol HomeFacebook TwitterSearch-CommentsSolid-State lighting Electrical1 | National3

  5. Sandia Energy - Lighting Developments to 2030

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > TheNuclear PressLaboratory Fellows Jerry Simmons Is One ofLighting

  6. SLAC Linac Coherent Light Source User Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Scienceand Requirements RecentlyElectronicResourcesjobs RunningSEABRV2/01/12 Linac Coherent Light

  7. A New Light on Disordered Ensembles

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032) -Less isNFebruaryOctober 2, AlgeriaQ1A Month toA NewA New Light on

  8. Advanced Light Source Activity Report 1997/1998

    SciTech Connect (OSTI)

    Greiner, Annette (ed.)

    1999-03-01T23:59:59.000Z

    This Lawrence Berkeley National Laboratory, Advanced Light Source (ALS) activity report for 1997/98 discusses the following topics: Introduction and Overview; Science Highlights; Facility Report; Special Events; ALS Advisory Panels 1997/98; ALS Staff 1997/98 and Facts and Figures for the year.

  9. LED Linear Lamps and Troffer Lighting: CALiPER Report Series 21

    Broader source: Energy.gov [DOE]

    View the video about CALiPER Report Series 21 on LED Linear Lamps and Troffer Lighting, featuring interviews with Tracy Beeson and Naomi Miller of Pacific Northwest National Laboratory.

  10. DOE Announces Selections for Solid-State Lighting Core Technology Research Call (Round 6)

    Broader source: Energy.gov [DOE]

    The National Energy Technology Laboratory (NETL), on behalf of the U.S. Department of Energy (DOE), is pleased to announce four selections in response to the Solid-State Lighting (SSL) Core...

  11. Vehicle Technologies Office Merit Review 2015: Light-Duty Diesel Combustion

    Broader source: Energy.gov [DOE]

    Presentation given by Sandia National Laboratories at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about light-duty...

  12. Have You Seen the Light? Nearly 1 Million Take Pledge to Make...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    1 Million Take Pledge to Make Energy Efficient Change October 23, 2007 - 3:45pm Addthis New York City, N.Y. - The 20-day national ENERGY STAR Change a Light Bus Tour concluded...

  13. Text-Alternative Version: Solid-State Lighting Early Lessons Learned Webinar

    Broader source: Energy.gov [DOE]

    Linda Sandahl: Welcome, ladies and gentlemen. I'm Linda Sandahl with the Pacific Northwest National Laboratory, and I'd like to welcome you to today's webcast, Solid-State Lighting: Early Lessons...

  14. Keeping The Lights on

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12electron beamJoin2015JustKate BannanNational| Department of

  15. Light cone matrix product

    SciTech Connect (OSTI)

    Hastings, Matthew B [Los Alamos National Laboratory

    2009-01-01T23:59:59.000Z

    We show how to combine the light-cone and matrix product algorithms to simulate quantum systems far from equilibrium for long times. For the case of the XXZ spin chain at {Delta} = 0.5, we simulate to a time of {approx} 22.5. While part of the long simulation time is due to the use of the light-cone method, we also describe a modification of the infinite time-evolving bond decimation algorithm with improved numerical stability, and we describe how to incorporate symmetry into this algorithm. While statistical sampling error means that we are not yet able to make a definite statement, the behavior of the simulation at long times indicates the appearance of either 'revivals' in the order parameter as predicted by Hastings and Levitov (e-print arXiv:0806.4283) or of a distinct shoulder in the decay of the order parameter.

  16. Nonequilibrium lighting plasmas

    SciTech Connect (OSTI)

    Dakin, J.T. (GE Lighting, Nela Park, Cleveland, OH (US))

    1991-12-01T23:59:59.000Z

    In this paper the science of a variety of devices employing nonequilibrium lighting plasmas is reviewed. The devices include the fluorescent lamp, the low-pressure sodium lamp, the neon sign, ultraviolet lamps, glow indicators, and a variety of devices used by spectroscopists, such as the hollow cathode light source. The plasma conditions in representative commercial devices are described. Recent research on the electron gas, the role of heavy particles, spatial and temporal inhomogeneities, and new electrodeless excitation schemes is reviewed. Areas of future activity are expected to be in new applications of high-frequency electronics to commercial devices, new laser-based diagnostics of plasma conditions, and more sophisticated models requiring more reliable and extensive rate coefficient data.

  17. Scattering Of Light Nuclei

    SciTech Connect (OSTI)

    Quaglioni, S; Navratil, P; Roth, R

    2009-12-15T23:59:59.000Z

    The exact treatment of nuclei starting from the constituent nucleons and the fundamental interactions among them has been a long-standing goal in nuclear physics. Above all nuclear scattering and reactions, which require the solution of the many-body quantum-mechanical problem in the continuum, represent an extraordinary theoretical as well as computational challenge for ab initio approaches.We present a new ab initio many-body approach which derives from the combination of the ab initio no-core shell model with the resonating-group method [4]. By complementing a microscopic cluster technique with the use of realistic interactions, and a microscopic and consistent description of the nucleon clusters, this approach is capable of describing simultaneously both bound and scattering states in light nuclei. We will discuss applications to neutron and proton scattering on sand light p-shell nuclei using realistic nucleon-nucleon potentials, and outline the progress toward the treatment of more complex reactions.

  18. Fusion pumped light source

    DOE Patents [OSTI]

    Pappas, Daniel S. (Los Alamos, NM)

    1989-01-01T23:59:59.000Z

    Apparatus is provided for generating energy in the form of light radiation. A fusion reactor is provided for generating a long, or continuous, pulse of high-energy neutrons. The neutron flux is coupled directly with the lasing medium. The lasing medium includes a first component selected from Group O of the periodic table of the elements and having a high inelastic scattering cross section. Gamma radiation from the inelastic scattering reactions interacts with the first component to excite the first component, which decays by photon emission at a first output wavelength. The first output wavelength may be shifted to a second output wavelength using a second liquid component responsive to the first output wavelength. The light outputs may be converted to a coherent laser output by incorporating conventional optics adjacent the laser medium.

  19. Solar light bulb

    SciTech Connect (OSTI)

    Smith, D.A.

    1983-07-26T23:59:59.000Z

    A system for generating light directly using solar energy is provided herein. It includes a concentrator and accumulator for the sun's rays to generate a concentrated beam of visible solar radiation. A distributor shaft is provided for distributing the beam of visible solar radiation. A fork is provided in the distributor shaft to define a plurality of branch lines, each provided with a mirror at the intersection to direct the beam down the respective branch line to permit parallel fractions of the beam to be reflected off the respective mirrors and to pass down the respective branch line. A solar bulb is provided including a double walled upper bulbous portion including the inlet from the branch line and a pair of heat outlet tubes, and a double walled lower bulbous portion, the upper portion thereof being divergently reflective, with the lower portion having walls which are either transparent or translucent to provide greater light diffusion, and the space between the two walls being maintained under vacuum to provide heat insulation values. A structure is provided within the solar bulb for the absorption and radiation of the concentrated beam of visible solar radiation. Preferably structure is provided connected to the solar bulb to draw in outside air in the summer to direct it past the solar bulb and to air vent hot air produced at the solar bulb to the outside, thereby providing light with minimal heat in the summer. The same structure is operated in the winter to draw in household air to direct it past the solar bulb and to recirculate such heated air produced at the solar bulb to the house, thereby providing light and heat in the winter.

  20. Evaluation of Methods to Increase Light Under Ferry Terminals

    SciTech Connect (OSTI)

    Blanton, Susan L.; Thom, Ronald M.; Borde, Amy B.; Diefenderfer, Heida L.; Southard, John A.

    2002-01-02T23:59:59.000Z

    To address concerns of resource agencies about the potential impacts of ferry terminal expansion on valuable habitat functions and resource use of nearshore areas, the Pacific Northwest National Laboratory (PNNL), in partnership with the Washington State Department of Transportation (WSDOT), conducted field trials with off-the-shelf products that promote light passage through dock structures. These products included a SunTunnel, deck prisms, and a metal halide greenhouse light. Light measurements (photosynthetically active radiation, PAR) were also recorded beneath glass blocks and a metal grating installed at Clinton Ferry Terminal on Whidbey Island, WA. A review of other studies measuring the effects of dock shading and alternate dock materials was conducted. PAR measurements from this study were related to minimum requirements for eelgrass Zostera marina photosynthesis and to the known maximum photosynthetic ?saturation? rate for Z. marina. We also related PAR measurements to what we know about light effects on juvenile salmonid feeding and passage under overwater structures. Of the light technologies tested, the metal halide light, SunTunnel, glass blocks, and grating potentially provide enough light for eelgrass growth underneath a ferry terminal with similar construction to the Clinton Ferry Terminal. All of these technologies would potentially provide adequate light under conditions where eelgrass is located at its upper depth limit and a dock is close to the water surface. Light levels needed to allow fish to feed and to form schools are low (~ 1-2 mmol/m2/s), and much less than those required for photosynthesis. Our research indicates that installing any of the tested light products would likely maintain light levels under the dock above those required for active feeding by juvenile salmonids.

  1. Residential market transformation: National and regional indicators

    SciTech Connect (OSTI)

    Van Wie McGrory, Laura L.; McNamara, Maureen; Suozzo, Margaret

    2000-06-01T23:59:59.000Z

    A variety of programs are underway to address market barriers to the adoption of energy-efficient residential technologies and practices. Most are administered by utilities, states, or regions that rely on the Energy Star as a consistent platform for program marketing and messaging. This paper reviews regional and national market transformation activities for three key residential end-uses -- air conditioning, clothes washing, and lighting -- characterizing current and ongoing programs; reporting on progress; identifying market indicators; and discussing implications.

  2. Baker-Barry Tunnel Lighting: Evaluation of a Potential GATEWAY Demonstrations Project

    SciTech Connect (OSTI)

    Tuenge, Jason R.

    2011-06-01T23:59:59.000Z

    The U.S. Department of Energy (DOE) is evaluating the Baker-Barry Tunnel as a potential GATEWAY Demonstrations project for deployment of solid-state lighting (SSL) technology. The National Park Service (NPS) views this project as a possible proving ground and template for implementation of light-emitting diode (LED) luminaires in other NPS tunnels, thereby expanding the estimated 40% energy savings from 132 MWh/yr for this tunnel to a much larger figure national

  3. Turbo-Charged Lighting Design

    E-Print Network [OSTI]

    Clark, W. H. II

    TURBO-CHARGED LIGHTING DESIGN William H. Clark II Design Engineer O'Connell Robertson & Assoc Austin/ Texas ABSTRACT The task of the lighting designer has become very complex, involving thousands of choices for fixture types and hundreds...

  4. Webinar: Fuel Cell Mobile Lighting

    Broader source: Energy.gov [DOE]

    Video recording of the Fuel Cell Technologies Office webinar, Fuel Cell Mobile Lighting, originally presented on November 13, 2012.

  5. Faster than Light Quantum Communication

    E-Print Network [OSTI]

    A. Y. Shiekh

    2008-04-05T23:59:59.000Z

    Faster than light communication might be possible using the collapse of the quantum wave-function without any accompanying paradoxes.

  6. Sandia National Laboratories: EC

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    primary purpose is to model severe-accident progression in light-water-reactor (LWR) nuclear power plants. Sandia developed MELCOR for the US Nuclear Regulatory ... DOE OE...

  7. Sandia National Laboratories: Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    primary purpose is to model severe-accident progression in light-water-reactor (LWR) nuclear power plants. Sandia developed MELCOR for the US Nuclear Regulatory ... DOE OE...

  8. Sandia National Laboratories: News

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    primary purpose is to model severe-accident progression in light-water-reactor (LWR) nuclear power plants. Sandia developed MELCOR for the US Nuclear Regulatory ... DOE OE...

  9. Sandia National Laboratories: IES

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    lighting knowledge and by translating that knowledge into actions that will benefit the general populace." His talk titled, "Latest SSL work at Sandia ... Last Updated: April 12...

  10. National Nuclear Security Administration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    initiatives to be accomplished within the next five years using light technologies and best practices to provide enterprise-wide services in a cost effective and efficient...

  11. Sandia National Laboratories: SSLS

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nuclear Energy photovoltaic Photovoltaics PV Renewable Energy solar Solar Energy solar power Solar Research Solid-State Lighting SSLS Connect Contact Us RSS Google+ Twitter...

  12. Sandia National Laboratories: nanowires

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nuclear Energy photovoltaic Photovoltaics PV Renewable Energy solar Solar Energy solar power Solar Research Solid-State Lighting SSLS Connect Contact Us RSS Google+ Twitter...

  13. Sandia National Laboratories: Conferences

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nuclear Energy photovoltaic Photovoltaics PV Renewable Energy solar Solar Energy solar power Solar Research Solid-State Lighting SSLS Connect Contact Us RSS Google+ Twitter...

  14. Sandia National Laboratories: solar

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Test Facility NSTTF Nuclear Energy photovoltaic Photovoltaics PV Renewable Energy solar Solar Energy solar power Solar Research Solid-State Lighting SSLS Connect Contact Us RSS...

  15. Sandia National Laboratories: LEDs

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    News & Events, Photovoltaic, Research & Capabilities, Solar, Solid-State Lighting Titanium-dioxide (TiO2) nanoparticles show great promise as fillers to tune the refractive...

  16. Sandia National Laboratories: SSL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    News & Events, Photovoltaic, Research & Capabilities, Solar, Solid-State Lighting Titanium-dioxide (TiO2) nanoparticles show great promise as fillers to tune the refractive...

  17. Sandia National Laboratories: Photovoltaic

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Could Lead to Better Lights, Lenses, Solar Cells On July 1, 2014, in Capabilities, CINT, Energy, Energy Efficiency, Facilities, Materials Science, News, News & Events,...

  18. Sandia National Laboratories: Capabilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    to Better Lights, Lenses, Solar Cells On July 1, 2014, in Capabilities, CINT, Energy, Energy Efficiency, Facilities, Materials Science, News, News & Events, Photovoltaic,...

  19. Sandia National Laboratories: solar

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NSTTF Nuclear Energy photovoltaic Photovoltaics PV Renewable Energy solar Solar Energy solar power Solar Research Solid-State Lighting SSLS Connect Contact Us RSS Google+...

  20. Sandia National Laboratories: SSLS

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Thermal Test Facility NSTTF Nuclear Energy photovoltaic Photovoltaics PV Renewable Energy solar Solar Energy solar power Solar Research Solid-State Lighting SSLS Connect...

  1. MANDATORY MEASURES OUTDOOR LIGHTING CONTROLS

    E-Print Network [OSTI]

    California at Davis, University of

    MANDATORY MEASURES OUTDOOR LIGHTING CONTROLS (Reference: Sub-Chapter 4, Section 130.2) #12;SECTION level of each multi-tier garage. · General lighting must have occupant sensing controls with at least one control step between 20% and 50% of design lighting power · No more than 500 watts of rated

  2. MANDATORY MEASURES OUTDOOR LIGHTING CONTROLS

    E-Print Network [OSTI]

    California at Davis, University of

    MANDATORY MEASURES OUTDOOR LIGHTING CONTROLS (Reference: Sub-Chapter 4, Section 130.2) #12;SECTION 5 Additions and Alterations Any alteration that increases the connected lighting load must meet all No measures required OUTDOOR LIGHTING11/20/2014 #12;SECTION 5 BACKLIGHT, UPLIGHT, AND GLARE (BUG) RATINGS

  3. STATE OF CALIFORNIA RESIDENTIAL LIGHTING

    E-Print Network [OSTI]

    STATE OF CALIFORNIA RESIDENTIAL LIGHTING CEC-CF-6R-LTG-01 (Revised 08/09) CALIFORNIA ENERGY COMMISSION INSTALLATION CERTIFICATE CF-6R-LTG-01 Residential Lighting (Page 1 of 6) Site Address: Enforcement Agency: Permit Number: 2008 Residential Compliance Forms August 2009 1. Kitchen Lighting Does project

  4. Arnold Schwarzenegger, LIGHTING RESEARCH PROGRAM

    E-Print Network [OSTI]

    ;#12;Prepared By: Lighting Research Center Andrew Bierman, Project Lead Troy, New York 12180 Managed ByArnold Schwarzenegger, Governor LIGHTING RESEARCH PROGRAM PROJECT 3.2 ENERGY EFFICIENT LOAD- SHEDDING LIGHTING TECHNOLOGY Prepared For: California Energy Commission Public Interest Energy Research

  5. Slow-light solitons revisited

    E-Print Network [OSTI]

    A. V. Rybin; I. P. Vadeiko; A. R. Bishop

    2006-08-16T23:59:59.000Z

    We investigate propagation of slow-light solitons in atomic media described by the nonlinear $\\Lambda$-model. Under a physical assumption, appropriate to the slow light propagation, we reduce the $\\Lambda$-scheme to a simplified nonlinear model, which is also relevant to 2D dilatonic gravity. Exact solutions describing various regimes of stopping slow-light solitons can then be readily derived.

  6. Take a quick trip around the experimental floor of the Lab's new light source

    SciTech Connect (OSTI)

    None

    2012-04-30T23:59:59.000Z

    Take a quick trip around the experimental floor of Brookhaven Lab's new light source -- the $912-million National Synchrotron Light Source II. Construction of the facility is now over 70 percent completed. With much of the conventional construction done, accelerator and experimental components are being installed.

  7. Largest-area Photonic Crystal LED Fabricated Demonstrates Uniform Light Emission

    Broader source: Energy.gov [DOE]

    Lumileds Lighting, the University of New Mexico, and Sandia National Laboratories teamed to demonstrate uniform light emission from the largest-area III-Nitride photonic crystal LED (1 x 1 mm2) ever fabricated. Most previous photonic crystal LED research has relied on small-area patterns written by slow, serial-writing electron-beam lithography.

  8. Pacific Northwest National Laboratory

    E-Print Network [OSTI]

    Pacific Northwest National Laboratory Operated by Battelle for the U.S. Department of Energy Northwest National Laboratory (PNNL) operated by Battelle Memorial Institute. Battelle has a unique contract

  9. Argonne National Laboratory's Nondestructive

    E-Print Network [OSTI]

    Kemner, Ken

    Argonne National Laboratory's Nondestructive Evaluation Technologies NDE #12;Over45yearsexperienceinNondestructiveEvaluation... Argonne National Laboratory's world-renowned researchers have a proven the safe operationof advanced nuclear reactors. Argonne's World-Class Nondestructive Evaluation

  10. Mentoring | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    As one of the largest laboratories in the nation for science and engineering research, Argonne National Laboratory is home to some of the most prolific and well-renowned scientists...

  11. National Energy Education Summit

    Broader source: Energy.gov [DOE]

    The National Energy Education Summit is organized by the Council of Energy Research and Education Leaders (CEREL) and will serve as a first-of-its-kind national forum for energy educators, subject...

  12. Sandia National Laboratories: Facilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Laboratory (PSEL) National Supervisory Control and Data Acquisition (SCADA) Test Bed Center for Integrated Nanotechnologies (CINT) Distributed Energy Technologies Laboratory...

  13. National Hydropower Map

    Broader source: Energy.gov [DOE]

    High-resolution map produced by Oak Ridge National Laboratory showing hydropower resources throughout the United States.

  14. National Nuclear Security Administration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    FROM: SUBJECT: USIUK Memorandum of Understanding between National Nuclear Security Administration's (NNSA) Associate Administrator for Defense Nuclear Security (AADNS)...

  15. Sandia National Laboratories: AREVA

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Concentrating Solar Power, Energy, Energy Storage, Facilities, National Solar Thermal Test Facility, News, News & Events, Partnership, Renewable Energy, Research &...

  16. National Residential Efficiency Measures Database

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    The National Residential Efficiency Measures Database is a publicly available, centralized resource of residential building retrofit measures and costs for the U.S. building industry. With support from the U.S. Department of Energy, NREL developed this tool to help users determine the most cost-effective retrofit measures for improving energy efficiency of existing homes. Software developers who require residential retrofit performance and cost data for applications that evaluate residential efficiency measures are the primary audience for this database. In addition, home performance contractors and manufacturers of residential materials and equipment may find this information useful. The database offers the following types of retrofit measures: 1) Appliances, 2) Domestic Hot Water, 3) Enclosure, 4) Heating, Ventilating, and Air Conditioning (HVAC), 5) Lighting, 6) Miscellaneous.

  17. Sandia National Laboratories: National Rotor Testbed

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy, SWIFT, Systems Analysis, Wind Energy The National Rotor Testbed (NRT) team is examining the effect of airfoil choice on the final design of the new rotor for the Scaled...

  18. NATIONAL HYDROGEN ENERGY ROADMAP

    E-Print Network [OSTI]

    NATIONAL HYDROGEN ENERGY ROADMAP NATIONAL HYDROGEN ENERGY ROADMAP . . Toward a More Secure and Cleaner Energy Future for America Based on the results of the National Hydrogen Energy Roadmap Workshop to make it a reality. This Roadmap provides a framework that can make a hydrogen economy a reality

  19. Ecological Consequences of Artificial Night Lighting

    E-Print Network [OSTI]

    Piselli, Kathy

    2006-01-01T23:59:59.000Z

    of Artificial Night Lighting Catherine Rich and Travisof artificial night lighting. This book provides editedage of modern urban lighting was ushered in. Coincidentally,

  20. LIGHTING CONTROLS: SURVEY OF MARKET POTENTIAL

    E-Print Network [OSTI]

    Verderber, R.R.

    2010-01-01T23:59:59.000Z

    REFERENCES Task Report to Lighting Systems Research,Berkeley Laboratory, "Lighting Control System Market1980). Task Report to Lighting Systems Research, Lawrence

  1. Demand Responsive Lighting: A Scoping Study

    E-Print Network [OSTI]

    Rubinstein, Francis; Kiliccote, Sila

    2007-01-01T23:59:59.000Z

    3 3.0 Previous Experience with Demand Responsive Lighting11 4.3. Prevalence of Lighting13 4.4. Impact of Title 24 on Lighting

  2. Municipal Consortium LED Street Lighting Workshop Presentations...

    Broader source: Energy.gov (indexed) [DOE]

    A Rational View of LM-79 Reports, IES Files, and Product Variation Gary Steinberg, GE Lighting Solutions Solid-State Street Lighting: Calculating Light Loss Factors Dana Beckwith,...

  3. Light propagation and Imaging in Indefinite Metamaterials

    E-Print Network [OSTI]

    Yao, Jie

    2010-01-01T23:59:59.000Z

    photolithography by polarized light,” Applied PhysicsZhang, “Imaging visible light using anisotropic metamaterialcross-sectional review of the light propagation of TE mode (

  4. Advances in Lighting

    E-Print Network [OSTI]

    Tumber, A. J.

    1981-01-01T23:59:59.000Z

    colour rendition. The quartz-halogen incandescent lam s operate at higher temperatures, and have a somewhat higher efficacy, but they are rarely used except for special applicati ns. 3-2 High Intensity Discharge Lamps. Mercury is the grandfather... of the H.I.D. lamps. Its blue-green light, has been used almost exclusively for streetlighti and, often with colour-improving phospho it is still being used in industrial and commercial applications. Reactor-type ballasted mercury lamps can now...

  5. Pedestrian Friendly Outdoor Lighting

    SciTech Connect (OSTI)

    Miller, Naomi J.; Koltai, Rita; McGowan, Terry

    2013-12-31T23:59:59.000Z

    This GATEWAY report discusses the problems of pedestrian lighting that occur with all technologies with a focus on the unique optical options and opportunities offered by LEDs through the findings from two pedestrian-focused projects, one at Stanford University in California, and one at the Chautauqua Institution in upstate New York. Incorporating user feedback this report reviews the tradeoffs that must be weighed among visual comfort, color, visibility, efficacy and other factors to stimulate discussion among specifiers, users, energy specialists, and in industry in hopes that new approaches, metrics, and standards can be developed to support pedestrian-focused communities, while reducing energy use.

  6. Lighting | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroup |Jilin ZhongdiantouLichuan City Yujiang River ValleyLighting

  7. Way Beyond Widgets: Delivering Integrated Lighting Design in Actionable Solutions

    SciTech Connect (OSTI)

    Myer, Michael; Richman, Eric E.; Jones, Carol C.

    2008-08-17T23:59:59.000Z

    Previously, energy-efficiency strategies for commercial spaces have focused on using efficient equipment without providing specific detailed instructions. Designs by experts in their fields are an energy-efficiency product in its own right. A new national program has developed interactive application-specific lighting designs for widespread use in four major commercial sectors. This paper will describe the technical basis for the solutions, energy efficiency and cost-savings methodology, and installations and measurement/verification to-date. Lighting designs have been developed for five types of retail stores (big box, small box, grocery, specialty market, and pharmacy) and are planned for the office, healthcare, and education sectors as well. Nationally known sustainable lighting designers developed the designs using high-performance commercially available products, daylighting, and lighting controls. Input and peer review was received by stakeholders, including manufacturers, architects, utilities, energy-efficiency program sponsors (EEPS), and end-users (i.e., retailers). An interactive web tool delivers the lighting solutions and analyzes anticipated energy savings using project-specific inputs. The lighting solutions were analyzed against a reference building using the space-by-space method as allowed in the Energy Standard for Buildings Except Low-Rise Residential Buildings (ASHRAE 2004) co-sponsored by the American Society of Heating, Refrigeration, and Air Conditioning Engineers (ASHRAE) and the Illuminating Engineering Society of North America (IESNA). The results showed that the design vignettes ranged from a 9% to 28% reduction in the allowed lighting power density. Detailed control strategies are offered to further reduce the actual kilowatt-hour power consumption. When used together, the lighting design vignettes and control strategies show a modeled decrease in energy consumption (kWh) by 33% to 50% below the baseline design.

  8. Posters | Posters --721 Exploring lighting cultures

    E-Print Network [OSTI]

    Boyer, Edmond

    Posters | Posters -- 721 Exploring lighting cultures Beyond light and emotions Vincent LAGANIER 1 , Jasmine van der POL 2 1. Lighting Applications Services (LiAS), Philips Lighting, France vincent.laganier@philips.com 2

  9. LIGHTING CONTROLS: SURVEY OF MARKET POTENTIAL

    E-Print Network [OSTI]

    Verderber, R.R.

    2010-01-01T23:59:59.000Z

    Floors Floor Area Lighting Power Density Light Output Lampenergy den- sity and power density for lighting to 3.5 kWh/Lighting Level (Lumens/Watt) (Footcandles) Power Density (

  10. Low-Pressure Sodium Lighting Basics

    Broader source: Energy.gov [DOE]

    Low-pressure sodium lighting provides more energy-efficient outdoor lighting than high-intensity discharge lighting, but it has very poor color rendition. Typical applications include highway and security lighting, where color is not important.

  11. Radioluminescent lighting for Alaskan runway lighting and marking

    SciTech Connect (OSTI)

    Jensen, G.A.; Leonard, L.E.

    1985-03-01T23:59:59.000Z

    Alaska and other far northern areas have special logistical, environmental, and economic problems that make radioluminescent (RL) lighting applications, especially in the area of airport lighting, an attractive alternative to electrical systems and flare pots. Tests and demonstrations of prototype systems conducted in Alaska over the past two years have proved the basic technological worth of RL airport lighting systems for civilian and military use. If regulatory issues and other factors identified during these tests can be favorably resolved and if the system and its components can be refined through production engineering, attractive applications for RL airfield lighting systems in Alaska and other remote locations could result.

  12. Energy Savings Estimates of Light Emitting Diodes in Niche Lighting...

    Office of Environmental Management (EM)

    in Niche Lighting Applications Prepared for: Building Technologies Program Office of Energy Efficiency and Renewable Energy U.S. Department of Energy Prepared by: Navigant...

  13. Sandia National Laboratories: Renewable Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    10, 2012, in Concentrating Solar Power, EC, National Solar Thermal Test Facility, Renewable Energy Dr. David Danielson visited Sandia National Laboratories and toured the National...

  14. National Audobon Society project description and building biography

    SciTech Connect (OSTI)

    Salzberg, M.

    1996-01-01T23:59:59.000Z

    The National Audubon Society sought to create a welcoming headquarters facility that emphasizes environmentally aware design. Rather than build from scratch, Audubon chose to reclaim an aging, abandoned building, recycle the demolition wastes, and retrofit with all new energy-efficient systems, including windows, HVAC, and lighting. The lighting was designed as a task/ambient lighting system providing 25 to 30 footcandles (fc) average maintained ambient light and 75 to 100 fc of task light. Energy-efficient, high color rendering, fluorescent lamp sources were employed throughout, utilizing less than 1 W/sq ft. No incandescent lamps were used. Readily available technologies were utilized to provide a model that was useful to other facilities. A cohesive energy-efficient design emerged from the strategy of integrating many small efficiencies. The entire program was highly sensitive to the staff members` desire to keep in touch with the cycle of the day and year through daylight penetration.

  15. Embodied Energy and Off-Grid Lighting

    E-Print Network [OSTI]

    Alstone, Peter

    2012-01-01T23:59:59.000Z

    as a point of comparison with LED lighting product embodieda fairer comparison between off- grid LED lighting and other

  16. Northeast Energy Efficiency Partnerships: Advanced Lighting Controls...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Northeast Energy Efficiency Partnerships: Advanced Lighting Controls - 2015 Peer Review Northeast Energy Efficiency Partnerships: Advanced Lighting Controls - 2015 Peer Review...

  17. Overcoming Common Pitfalls: Energy Efficient Lighting Projects...

    Broader source: Energy.gov (indexed) [DOE]

    Overcoming Common Pitfalls: Energy Efficient Lighting Projects Overcoming Common Pitfalls: Energy Efficient Lighting Projects Transcript Presentation More Documents & Publications...

  18. Lighting | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > The EnergyCenter (LMI-EFRC) - Center

  19. Light-Source Facilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |Is Your HomeLatestCenter (LMI-EFRC) - EliCenterCenterCenterSafety

  20. SSRL Light Source Status

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > TheNuclear Press ReleasesIn theTreatmentSRS Economic0 - June

  1. Commercial / Industrial Lighting

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power Administration would like submit the following comments response NAESBEnergy

  2. SSRL Light Source Status

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Scienceand Requirements RecentlyElectronicResourcesjobsJuly throughR E Q U E N C4 October,3333

  3. Extragalactic Background Light

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem Not Found Item Not Found The itemAIR57451 CleanFORTechnical Information

  4. Advanced Light Source

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem NotEnergy, science,SpeedingWu,IntelligenceYou are here Western Pages westernNext

  5. Light Meson Distribution Amplitudes

    E-Print Network [OSTI]

    R. Arthur; P. A. Boyle; D. Brömmel; M. A. Donnellan; J. M. Flynn; A. Jüttner; H. Pedroso de Lima; T. D. Rae; C. T. Sachrajda; B. Samways

    2010-11-12T23:59:59.000Z

    We calculated the first two moments of the light-cone distribution amplitudes for the pseudoscalar mesons ($\\pi$ and $K$) and the longitudinally polarised vector mesons ($\\rho$, $K^*$ and $\\phi$) as part of the UKQCD and RBC collaborations' $N_f=2+1$ domain-wall fermion phenomenology programme. These quantities were obtained with a good precision and, in particular, the expected effects of $SU(3)$-flavour symmetry breaking were observed. Operators were renormalised non-perturbatively and extrapolations to the physical point were made, guided by leading order chiral perturbation theory. The main results presented are for two volumes, $16^3\\times 32$ and $24^3\\times 64$, with a common lattice spacing. Preliminary results for a lattice with a finer lattice spacing, $32^3\\times64$, are discussed and a first look is taken at the use of twisted boundary conditions to extract distribution amplitudes.

  6. Light modulating device

    DOE Patents [OSTI]

    Rauh, R.D.; Goldner, R.B.

    1989-12-26T23:59:59.000Z

    In a device for transmitting light, means for controlling the transmissivity of the device, including a ceramic, reversibly electrochromic, crystalline element having a highly reflective state when injected with electrons and charge compensating ions and a highly transmissive state when the electrons and ions are removed, the crystalline element being characterized as having a reflectivity of at least 50% in the reflective state and not greater than 10% in the transmissive state, and means for modulating the crystalline element between the reflective and transmissive states by injecting ions into the crystalline element in response to an applied electrical current of a first polarity and removing the ions in response to an applied electrical current of a second polarity are disclosed. 1 fig.

  7. Energy and lighting

    SciTech Connect (OSTI)

    Berman, S.

    1985-01-01T23:59:59.000Z

    Advances in research for new types of lighting with increased efficacies (lumens/watt) are discussed in the following areas: (1) high-frequency, solid-state ballasts, (2) isotopic enhancement of mercury isotopes, (3) magnetic augmentation, (4) electrodeless, ultra-high frequency, (5) tuned phosphors, (6) two-photon phosphors, (7) heat mirrors, and (3) advanced control circuits to take advantage of daylight and occupancy. As of 1985, improvements in efficacy have been accomplished on an economic basis to save energy for (1) high-frequency ballasts (25%), (2) isotopic enhancement (5%), and (8) advanced control circuits (up to 50%). Most of these advances depend on a deeper understanding of the weakly ionized plasma as a radiating and diffusing medium. 3 figures, 4 tables.

  8. Light modulating device

    DOE Patents [OSTI]

    Rauh, R. David (Newton, MA); Goldner, Ronald B. (Lexington, MA)

    1989-01-01T23:59:59.000Z

    In a device for transmitting light, means for controlling the transmissivity of the device, including a ceramic, reversibly electrochromic, crystalline element having a highly reflective state when injected with electrons and charge compensating ions and a highly transmissive state when the electrons and ions are removed, the crystalline element being characterized as having a reflectivity of at least 50% in the reflective state and not greater than 10% in the transmissive state, and means for modulating the crystalline element between the reflective and transmissive states by injecting ions into the crystalline element in response to an applied electrical current of a first polarity and removing the ions in response to an applied electrical current of a second polarity.

  9. Ultrafast Magnetic Light

    E-Print Network [OSTI]

    Makarov, Sergey V; Krasnok, Alexander E; Belov, Pavel A

    2015-01-01T23:59:59.000Z

    We propose a novel concept for efficient dynamic tuning of optical properties of a high refractive index subwavelength nanoparticle with a magnetic Mie-type resonance by means of femtosecond laser radiation. This concept is based on ultrafast generation of electron-hole plasma within such nanoparticle, drastically changing its transient dielectric permittivity. This allows to manipulate by both electric and magnetic nanoparticle responses, resulting in dramatic changes of its extinction cross section and scattering diagram. Specifically, we demonstrate the effect of ultrafast switching-on a Huygens source in the vicinity of the magnetic dipole resonance. This approach enables to design ultrafast and compact optical switchers and modulators based on the "ultrafast magnetic light" concept.

  10. Automatic Mechetronic Wheel Light Device

    DOE Patents [OSTI]

    Khan, Mohammed John Fitzgerald (Silver Spring, MD)

    2004-09-14T23:59:59.000Z

    A wheel lighting device for illuminating a wheel of a vehicle to increase safety and enhance aesthetics. The device produces the appearance of a "ring of light" on a vehicle's wheels as the vehicle moves. The "ring of light" can automatically change in color and/or brightness according to a vehicle's speed, acceleration, jerk, selection of transmission gears, and/or engine speed. The device provides auxiliary indicator lights by producing light in conjunction with a vehicle's turn signals, hazard lights, alarm systems, and etc. The device comprises a combination of mechanical and electronic components and can be placed on the outer or inner surface of a wheel or made integral to a wheel or wheel cover. The device can be configured for all vehicle types, and is electrically powered by a vehicle's electrical system and/or battery.

  11. Cognitive Informatics, Pacific Northwest National Laboratory | National

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA groupTubahq.na.gov Office of theNuclearNanotechnologies | NationalNuclear

  12. Sandia National Laboratories | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA Approved: 5-13-14 FEDERALAmerica HighSTART Signed | National|Operations /

  13. Sandia National Laboratories | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA Approved: 5-13-14 FEDERALAmerica HighSTART Signed | National|Operations /Allison

  14. Sandia National Laboratories | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA Approved: 5-13-14 FEDERALAmerica HighSTART Signed | National|Operations

  15. Sandia National Laboratories | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA Approved: 5-13-14 FEDERALAmerica HighSTART Signed | National|OperationsSandia

  16. Sandia National Laboratory | National Nuclear Security Administration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del Sol HomeFacebook Twitter YouTubeCenters:FacebookContractor/Bidder| National Nuclear

  17. Light Pollution as Part of the Environmental Problems

    E-Print Network [OSTI]

    Quaranta, Nancy

    2012-01-01T23:59:59.000Z

    Unscrupulous outdoor lighting produces a number of effects that are currently included under the term light pollution. Its consequences (e.g. loss of resources by energy waste), are being recognized for some time, as well as the possibility to mitigate this pollution. In the present work, we present some lines of action developed at the Facultad Regional San Nicol\\'as of National Technological University (UTN) of Argentina to include the CL as a regular topic of study in the problems of air pollution.

  18. Sandia National Laboratories: 2010 Archives

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The lecture was tutorial in nature, and described: the basics of light-emitting diode operation; a 200-year history of lighting technology; the importance of white...

  19. Sandia National Laboratories: 2009 Archives

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    lighting: progress and challenges); Eric Shaner 1123 (Plasmonic approaches to light manipulation, absorption and emission); Willie Luk 1725 (Enhancing solar energy...

  20. Sandia National Laboratories: Energy Efficiency

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    annual capacity factors up to 60 percent, and as high as 80 percent in summer ... (Lighting and) Solid-State Lighting: Science, Technology, Economic Perspectives On July 30,...

  1. Sandia National Laboratories: Energy Efficiency

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Down the Costs of Efficient LED Lighting On February 14, 2013, in Energy, Energy Efficiency, Materials Science, Partnership, Research & Capabilities, Solid-State Lighting Solid...

  2. anticorrelation light yield: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    for Light Engineering Websites Summary: Smart lighting: New Roles for Light in the Solid State Lighting World Robert F. Karlicek, Jr as the largest supplier of LED Lighting...

  3. LED Lighting Off the Grid

    Energy Savers [EERE]

    D. & Kammen, D. M. Decentralized energy systems for clean electricity access. Nature Climate Change accepted, in press, (2015). Off-Grid Status Quo : Fuel Based Lighting...

  4. Pedestrian-Friendly Nighttime Lighting

    Broader source: Energy.gov [DOE]

    This November 19, 2013 webinar presented issues and considerations related to pedestrian-friendly nighttime lighting, such as color rendering, safety, and adaptation. When it comes to outdoor...

  5. Linac Coherent Light Source Overview

    Broader source: Energy.gov [DOE]

    Take an animated tour of the Linac Coherent Light Source (LCLS). Follow the laser pulse from the injector gun all the way through to the Far Experimental Hall.

  6. Linac Coherent Light Source Overview

    SciTech Connect (OSTI)

    None

    2010-01-01T23:59:59.000Z

    Take an animated tour of the Linac Coherent Light Source (LCLS). Follow the laser pulse from the injector gun all the way through to the Far Experimental Hall.

  7. Utility lighting summit proves illuminating

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Utility-lighting-summit-proves-illuminating Sign In About | Careers | Contact | Investors | bpa.gov Search News & Us Expand News & Us Projects & Initiatives Expand Projects...

  8. Linac Coherent Light Source Overview

    ScienceCinema (OSTI)

    None

    2013-05-29T23:59:59.000Z

    Take an animated tour of the Linac Coherent Light Source (LCLS). Follow the laser pulse from the injector gun all the way through to the Far Experimental Hall.

  9. Lighting with Paint FABIO PELLACINI

    E-Print Network [OSTI]

    Pellacini, Fabio

    Lighting with Paint FABIO PELLACINI Dartmouth College and FRANK BATTAGLIA, R. KEITH MORLEY, animation, rendering, optimization, painting ACM Reference Format: Pellacini, F., Battaglia, F., Morley, R

  10. Arnold Schwarzenegger LIGHTING RESEARCH PROGRAM

    E-Print Network [OSTI]

    Institute; David Shiller, Environmental Protection Agency. Program Advisory Committee: Ron Lewis Corporation; Don Aumann, California Lighting Technology Center; Holly Larsen, Larsen Communications

  11. Employment at National Laboratories

    SciTech Connect (OSTI)

    E. S. Peterson; C. A. Allen

    2007-04-01T23:59:59.000Z

    Scientists enter the National Laboratory System for many different reasons. For some, faculty positions are scarce, so they take staff-scientist position at national laboratories (i.e. Pacific Northwest, Idaho, Los Alamos, and Brookhaven). Many plan to work at the National Laboratory for 5 to 7 years and then seek an academic post. For many (these authors included), before they know it it’s 15 or 20 years later and they never seriously considered leaving the laboratory system.

  12. Transportation Sector Model of the National Energy Modeling System. Volume 2 -- Appendices: Part 1

    SciTech Connect (OSTI)

    NONE

    1998-01-01T23:59:59.000Z

    This volume contains input data and parameters used in the model of the transportation sector of the National Energy Modeling System. The list of Transportation Sector Model variables includes parameters for the following: Light duty vehicle modules (fuel economy, regional sales, alternative fuel vehicles); Light duty vehicle stock modules; Light duty vehicle fleet module; Air travel module (demand model and fleet efficiency model); Freight transport module; Miscellaneous energy demand module; and Transportation emissions module. Also included in these appendices are: Light duty vehicle market classes; Maximum light duty vehicle market penetration parameters; Aircraft fleet efficiency model adjustment factors; and List of expected aircraft technology improvements.

  13. Sandia National Laboratories: AMI

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Manufacturing Initiative (AMI) is a multiple-year, 3-way collaboration among TPI Composites, Iowa State University, and Sandia National Laboratories. The goal of this...

  14. Sandia National Laboratories: Microgrid

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    to solve many of the nation's most complex challenges in satisfying its electric energy needs. Initial focus has been on enabling resilient and reliable performance when...

  15. National Day of Remembrance

    ScienceCinema (OSTI)

    None

    2013-03-01T23:59:59.000Z

    Ames Laboratory observed the National Day of Remembrance for weapons workers from the Cold War era with a ceremony held Oct. 27, 2009 at the Ames Public Library.

  16. Sandia National Laboratories: Photovoltaics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Security National Solar Thermal Test Facility NSTTF Nuclear Energy photovoltaic Photovoltaics PV Renewable Energy solar Solar Energy solar power Solar Research Solid-State...

  17. Sandia National Laboratories: Photovoltaics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2013 Inverter Reliability Workshop On May 31, 2013, in Hosted by Sandia National Laboratories and the Electric Power Research Institute (EPRI) Inverter reliability drives project...

  18. Sandia National Laboratories: photovoltaic

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    photovoltaic Microsystems Enabled Photovoltaics (MEPV) On April 14, 2011, in About MEPV Flexible MEPV MEPV Publications MEPV Awards Researchers at Sandia National Laboratories are...

  19. News | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Researchers from Argonne National Laboratory modeled several scenarios to add more solar power to the electric grid, using real-world data from the southwestern power...

  20. Sandia National Laboratories: SPI

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Conference, the Department of Energy (DOE), the Electric Power Research Instisute (EPRI), Sandia National Laboratories, ... Last Updated: September 10, 2012 Go To Top ...

  1. Sandia National Laboratories: IRED

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    SMART Grid, Solar Sandia National Laboratories, the Electric Power Research Institute (EPRI) and European Distributed Energies Research Laboratories (DERlab) have organized a...

  2. Sandia National Laboratories: PV

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Photovoltaic Technology and Tour of PV Test Facilities On February 12, 2013, in The Photovoltaics and Distributed Systems Integration Department at Sandia National...

  3. Sandia National Laboratories: Climate

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Climate A Model for the Nation: Promoting Education and Innovation in Vermont's Electricity Sector On May 8, 2012, in Climate, Customers & Partners, Energy, Energy Surety,...

  4. Sandia National Laboratories: Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Summit and Technology Forum will convene the ... A Model for the Nation: Promoting Education and Innovation in Vermont's Electricity Sector On May 8, 2012, in Climate,...

  5. Sandia National Laboratories: Infrastructure

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Quallion Eaton Corp. Air Products ExxonTonen ... A Model for the Nation: Promoting Education and Innovation in Vermont's Electricity Sector On May 8, 2012, in Climate,...

  6. Sandia National Laboratories: CETI

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    CETI A Model for the Nation: Promoting Education and Innovation in Vermont's Electricity Sector On May 8, 2012, in Climate, Customers & Partners, Energy, Energy Surety,...

  7. Sandia National Laboratories: Vermont

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Vermont A Model for the Nation: Promoting Education and Innovation in Vermont's Electricity Sector On May 8, 2012, in Climate, Customers & Partners, Energy, Energy Surety,...

  8. Sandia National Laboratories: Publications

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    This public benchmark represents analysis ... A Model for the Nation: Promoting Education and Innovation in Vermont's Electricity Sector On May 8, 2012, in Climate,...

  9. Sandia National Laboratories: Workshops

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Geoscience, Climate and Consequence Effect at Sandia National Laboratories presented on "Hydraulic Fracturing: Role of Government-Sponsored R&D." Marianne's presentation was part...

  10. The National Mission | JCESR

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    place huge demand on the nation's electrical grid, while the increased use of wind and solar energy will challenge the grid's ability to provide a stable electrical supply...

  11. Sandia National Laboratories: publications

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Laboratories, August 2010. 2009 Adrian R. Chavez, Position Paper: Protecting Process Control Systems against Lifecycle Attacks Using Trust Anchors Sandia National ... Page 1...

  12. National Day of Remembrance

    SciTech Connect (OSTI)

    None

    2010-01-01T23:59:59.000Z

    Ames Laboratory observed the National Day of Remembrance for weapons workers from the Cold War era with a ceremony held Oct. 27, 2009 at the Ames Public Library.

  13. Transportation | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Patented technologies created by Argonne - which includes solutions for the smart grid, electric vehicles, emissions control and more - will help our nation conserve energy and...

  14. Sandia National Laboratories: performance

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    performance Photovoltaic (PV) Regional Test Center (RTC) Website Goes Live On February 26, 2013, in Energy, National Solar Thermal Test Facility, News, News & Events, Partnership,...

  15. Los Alamos National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the first results of joint work by scientists from Lawrence Berkeley, Pacific Northwest, Savannah River, and Los Alamos national laboratories at the Savannah River Site to model...

  16. Sandia National Laboratories: Combustion

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    security and economic prosperity. Energy security research at Sandia seeks to address key challenges facing our nation and the world. We work ... Page 2 of 212 Last...

  17. National Laboratory Photovoltaics Research

    Broader source: Energy.gov [DOE]

    DOE supports photovoltaic (PV) research and development and facilities at its national laboratories to accelerate progress toward achieving the SunShot Initiative's technological and economic...

  18. Discoveries | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    nation's pressing scientific and technological challenges. Robert Fischetti and Janet Smith developed the first micro X-ray beam for structural biology at Argonne's Advanced...

  19. Sandia National Laboratories: Solar

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Photovoltaic (PV) Regional Test Center (RTC) Website Goes Live On February 26, 2013, in Energy, National Solar Thermal Test Facility, News, News & Events, Partnership,...

  20. Sandia National Laboratories: photostability

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Updated: May 23, 2013 Go To Top Exceptional service in the national interest EC About Energy and Climate (EC) Energy Security Climate Security Infrastructure Security Energy...

  1. Sandia National Laboratories: CCT

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Updated: May 23, 2013 Go To Top Exceptional service in the national interest EC About Energy and Climate (EC) Energy Security Climate Security Infrastructure Security Energy...

  2. Sandia National Laboratories: QY

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Updated: May 23, 2013 Go To Top Exceptional service in the national interest EC About Energy and Climate (EC) Energy Security Climate Security Infrastructure Security Energy...

  3. Los Alamos National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    23, 2013-Nearly 400 Los Alamos National Laboratory employees on 47 teams received Pollution Prevention awards for protecting the environment and saving taxpayers more than 8...

  4. Sandia National Laboratories: HRSAM

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and the National Renewable Energy Laboratory (NREL) announce the publication of two new Hydrogen Fueling Infrastructure Research and Station Technology (H2FIRST) reports on...

  5. National Women's History Month

    Broader source: Energy.gov [DOE]

    NATIONAL WOMEN’S HISTORY MONTH is an annual declared month that highlights the contributions of women to events in history and contemporary society.

  6. Sandia National Laboratories: NASA

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    National Laboratories (partnering with Northrup Grumman Aerospace Systems and the University of Michigan) has developed a solar electric propulsion concept capable of a wide...

  7. Sandia National Laboratories: Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    at a critical juncture where pressing issues in energy security, climate change, and economic competitiveness are converging. Aggressive national goals for reducing petroleum use...

  8. Licensing | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (TDC) Division negotiates and manages license agreements on behalf of UChicago Argonne, LLC, which operates Argonne National Laboratory for the U.S. Department of Energy....

  9. Procurement | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Procurement More than 150 attend second joint Argonne-Fermilab small business fairSeptember 2, 2014 On Thursday, Aug. 28, Illinois' two national laboratories - Argonne and Fermi...

  10. Procurement | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Video "Doing business with Argonne and Fermi national labs" - Aug. 21, 2013 Procurement Argonne spends approximately 300,000,000 annually through procurements to a diverse group...

  11. Research | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    our dependence on imported energy and to enhance our national security. In addition, Argonne provides many ways for researchers from academia, industry and other government...

  12. Sandia National Laboratories: NSTTF

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    & Events, Partnership, Renewable Energy, Solar, Solar Newsletter SolarReserve is testing engineering units at the National Solar Thermal Test Facility (NSTTF) operated by Sandia....

  13. Los Alamos National Laboratory

    National Nuclear Security Administration (NNSA)

    for national defense and homeland security programs; and U.S. Department of Energy (DOE) waste management activities. The Plutonium Facility at Technical Area 55 (TA-55) is...

  14. Sandia National Laboratories: solar

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Gas Sectors in the United States View all EC Publications Related Topics Concentrating Solar Power CRF CSP EFRC Energy Energy Efficiency Energy Security National Solar Thermal...

  15. Sandia National Laboratories: Partnership

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Armstrong using deep level optical spectroscopy to investigate defects in the m-plane GaN. Jim is a professor ... Vermont and Sandia National Laboratories Announce Energy...

  16. Los Alamos National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    this tenth member of our National Centers for Systems Biology program," said James Anderson, who oversees systems biology awards at NIGMS. "The new center will apply...

  17. Sandia National Laboratories: EFRC

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    electroluminescence was first reported by H.J. Round in 1907, and the first light-emitting diode (LED) was reported by O.V. Losev in 1927. Not until the birth of semiconductor...

  18. Sandia National Laboratories: LED

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    electroluminescence was first reported by H.J. Round in 1907, and the first light-emitting diode (LED) was reported by O.V. Losev in 1927. Not until the birth of semiconductor...

  19. Sandia National Laboratories: Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    electroluminescence was first reported by H.J. Round in 1907, and the first light-emitting diode (LED) was reported by O.V. Losev in 1927. Not until the birth of semiconductor...

  20. Sandia National Laboratories: QD

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the addition of a red-emitting component. Unfortunately, red emitters that satisfy all criteria for use in solid-state lighting (SSL) applications are ... Last Updated: May 23...

  1. Sandia National Laboratories: CRI

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    addition of a red-emitting component. Unfortunately, red emitters that satisfy all criteria for use in solid-state lighting (SSL) applications are ... Last Updated: May 23, 2013...

  2. Sandia National Laboratories: Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    a roughly 50 billion per year cost to the U.S. consumer. Solid-state lighting (SSL) is an emerging technology with the potential to reduce that energy consumption by a...

  3. Sandia National Laboratories: Videos

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Videos NASA Earth at Night Video On January 9, 2013, in EC, Energy, Energy Efficiency, Global, Modeling, News & Events, Solid-State Lighting, Videos Have you ever wondered what the...

  4. National Park Service- Yellowstone National Park, Wyoming

    Broader source: Energy.gov [DOE]

    Yellowstone National Park, Wyoming, has many historical sites within its boundaries. One of these is the Lamar Buffalo Ranch, a ranch that was set up in the early 1900s to breed buffalo for replacement stock within the park during a time when their numbers were very low. The ranch buildings are currently being used by the Yellowstone Association Institute for ecology classes.

  5. National Disaster Resilience Competition Webinar Series- Q&A Session: Review Completeness Requirements

    Office of Energy Efficiency and Renewable Energy (EERE)

    In light of the recent announcement of the National Disaster Resilience Competition (NDRC), HUD is offering a series of webinars to discuss NDRC NOFA requirements, answer NDRC NOFA questions and...

  6. National Disaster Resilience Competition Webinar Series- Q&A Session: Walk through FAQ's

    Office of Energy Efficiency and Renewable Energy (EERE)

    In light of the recent announcement of the National Disaster Resilience Competition (NDRC), HUD is offering a series of webinars to discuss NDRC NOFA requirements, answer NDRC NOFA questions and...

  7. National Disaster Resilience Competition Webinar Series: Long-Term Commitment Factor

    Broader source: Energy.gov [DOE]

    In light of the recent announcement of the National Disaster Resilience Competition (NDRC), HUD is offering a series of webinars to discuss NDRC NOFA requirements, answer NDRC NOFA questions and...

  8. Light-by-Light Scattering Effect in Light-Cone Supergraphs

    E-Print Network [OSTI]

    Renata Kallosh; Pierre Ramond

    2010-06-24T23:59:59.000Z

    We give a relatively simple explanation of the light-cone supergraph prediction for the UV properties of the maximally supersymmetric theories. It is based on the existence of a dynamical supersymmetry which is not manifest in the light-cone supergraphs. It suggests that N=4 supersymmetric Yang-Mills theory is UV finite and N=8 supergravity is UV finite at least until 7 loops whereas the $n$-point amplitudes have no UV divergences at least until $L=n+3$. Here we show that this prediction can be deduced from the properties of light-cone supergraphs analogous to the light-by-light scattering effect in QED. A technical aspect of the argument relies on the observation that the dynamical supersymmetry action is, in fact, a compensating field-dependent gauge transformation required for the retaining the light-cone gauge condition $A_+=0$.

  9. Sandia Energy - National SCADA Testbed

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    National SCADA Testbed Home Stationary Power Safety, Security & Resilience of Energy Infrastructure Grid Modernization Cyber Security for Electric Infrastructure National...

  10. National Research Council Canada

    E-Print Network [OSTI]

    Fleming, Michael W.

    National Research Council Canada Institute for Information Technology Conseil national de recherches Canada Institut de technologie de l'information Determining Internet Users' Values for Private in The Second Annual Conference on Privacy, Security and Trust (PST'04). Fredericton, New Brunswick, Canada

  11. The National Cancer Institute,

    E-Print Network [OSTI]

    The National Cancer Institute, International Cancer Information Center Bldg. 82, Rm 123 Bethesda, MD 20892 The National Cancer Institute (NCI) is part of the Federal Government. NCI coordinates the government's cancer research program. It is the largest of the 17 biomedical research institutes and centers

  12. National Osteoporosis Prevention Month

    E-Print Network [OSTI]

    MAY National Osteoporosis Prevention Month JUNE National Dairy Month Texas AgriLife Extension - Bone Health Power Point # P4-1 Eat Smart for Bone Health # P4-2 Osteoporosis Disease Statistics # P4-3 Osteoporosis = Porous Bones # P4-4 Risk Factors # P4-5 Risk Factors (continued) # P4-6 Steps to Prevention # P4

  13. INDIAN NATIONAL SCIENCE ACADEMY

    E-Print Network [OSTI]

    Srinivasan, N.

    INDIAN NATIONAL SCIENCE ACADEMY Science academies play a crucial role in promoting, recognizing and bring out proceedings and monographs. The academies promote public awareness and understanding the country. In this section the growth of the Indian National Science Academy and its functions

  14. Success Stories | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ---Maglev systems ---Powertrain research ---Vehicle testing --Building design ---Construction ---Industrial heating & cooling ---Industrial lighting --Manufacturing -Energy...

  15. Lawrence Berkeley National Laboratory Safety Assessment Document (SAD)

    E-Print Network [OSTI]

    Knowles, David William

    Lawrence Berkeley National Laboratory Safety Assessment Document (SAD) for the Advanced Light Assessment Document, Rev. 7 (May 29, 2009) ii Signature Page for Rev. 7 of the ALS SAD Prepared by: ALS EHS Program Manager Date: Reviewed by: ALS Deputy Division Director Date: ALS Deputy for Operations

  16. Supercomputing Sheds Light on the Dark Universe

    SciTech Connect (OSTI)

    Salman Habib

    2012-11-15T23:59:59.000Z

    At Argonne National Laboratory, scientists are using supercomputers to shed light on one of the great mysteries in science today, the Dark Universe. With Mira, a petascale supercomputer at the Argonne Leadership Computing Facility, a team led by physicists Salman Habib and Katrin Heitmann will run the largest, most complex simulation of the universe ever attempted. By contrasting the results from Mira with state-of-the-art telescope surveys, the scientists hope to gain new insights into the distribution of matter in the universe, advancing future investigations of dark energy and dark matter into a new realm. The team's research was named a finalist for the 2012 Gordon Bell Prize, an award recognizing outstanding achievement in high-performance computing.

  17. Lighting Up Enzymes for Solar Hydrogen Production (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2011-02-01T23:59:59.000Z

    Scientists at the National Renewable Energy Laboratory (NREL) have combined quantum dots, which are spherical nanoparticles that possess unique size-tunable photophysical properties, with the high substrate selectivity and fast turnover of hydrogenase enzymes to achieve light-driven hydrogen (H2) production. They found that quantum dots of cadmium telluride coated in carboxylic acids easily formed highly stable complexes with the hydrogenase and that these hybrid assemblies functioned to catalyze H2 production using the energy of sunlight.

  18. Light-harvesting materials: Soft support for energy conversion

    SciTech Connect (OSTI)

    Stolley, Ryan M.; Helm, Monte L.

    2014-11-10T23:59:59.000Z

    To convert solar energy into viable fuel sources, coupling light-harvesting materials to catalysts is a critical challenge. Now, coupling between an organic supramolecular hydrogel and a non precious metal catalyst has been demonstrated to be effective for photocatalytic H2 production. Ryan M. Stolley and Monte L. Helm are at Pacific Northwest National Laboratory (PNNL), Richland, WA, USA 99352. PNNL is operated by Battelle for the US Department of Energy. e-mail: Monte.Helm@pnnl.gov

  19. Lighting energy efficiency opportunities at Cheyenne Mountain Air Station

    SciTech Connect (OSTI)

    Molburg, J.C.; Rozo, A.J.; Sarles, J.K.; Haffenden, R.A.; Thimmapuram, P.R.; Cavallo, J.D.

    1996-06-01T23:59:59.000Z

    CMAS is an intensive user of electricity for lighting because of its size, lack of daylight, and 24-hour operating schedule. Argonne National Laboratory recently conducted a lighting energy conservation evaluation at CMAS. The evaluation included inspection and characterization of existing lighting systems, analysis of energy-efficient retrofit options, and investigation of the environmental effects that these lighting system retrofits could have when they are ready to be disposed of as waste. Argonne devised three retrofit options for the existing lighting systems at various buildings: (1) minimal retrofit--limited fixture replacement; (2) moderate retrofit--more extensive fixture replacement and limited application of motion detectors; and (3) advanced retrofit--fixture replacement, reduction in the number of lamps, expansion of task lighting, and more extensive application of motion detectors. Argonne used data on electricity consumption to analyze the economic and energy effects of these three retrofit options. It performed a cost analysis for each retrofit option in terms of payback. The analysis showed that lighting retrofits result in savings because they reduce electricity consumption, cooling load, and maintenance costs. The payback period for all retrofit options was found to be less than 2 years, with the payback period decreasing for more aggressive retrofits. These short payback periods derived largely from the intensive (24-hours-per-day) use of electric lighting at the facility. Maintenance savings accounted for more than half of the annual energy-related savings under the minimal and moderate retrofit options and slightly less than half of these savings under the advanced retrofit option. Even if maintenance savings were excluded, the payback periods would still be impressive: about 4.4 years for the minimal retrofit option and 2 years for the advanced option. The local and regional environmental impacts of the three retrofit options were minimal.

  20. OLED lighting devices having multi element light extraction and luminescence conversion layer

    DOE Patents [OSTI]

    Krummacher, Benjamin Claus (Regensburg, DE); Antoniadis, Homer (Mountain View, CA)

    2010-11-16T23:59:59.000Z

    An apparatus such as a light source has a multi element light extraction and luminescence conversion layer disposed over a transparent layer of the light source and on the exterior of said light source. The multi-element light extraction and luminescence conversion layer includes a plurality of light extraction elements and a plurality of luminescence conversion elements. The light extraction elements diffuses the light from the light source while luminescence conversion elements absorbs a first spectrum of light from said light source and emits a second spectrum of light.