Powered by Deep Web Technologies
Note: This page contains sample records for the topic "light types figure" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Figure 77. Electricity generation capacity additions by fuel type ...  

U.S. Energy Information Administration (EIA)

Sheet3 Sheet2 Sheet1 Figure 77. Electricity generation capacity additions by fuel type, including combined heat and power, 2012-2040 (gigawatts) Coal

2

Figure 6. Type of Homes by Insulation, 2001  

U.S. Energy Information Administration (EIA)

Home >>Residential Home Page>>Insulation > Figure 6. Type of Homes by Insulation, 2001. To Top. Contacts: Specific questions may be directed to:

3

Types of Lighting in Commercial Buildings - Changes  

U.S. Energy Information Administration (EIA) Indexed Site

Changes in Lighting Changes in Lighting The percentage of commercial buildings with lighting was unchanged between 1995 and 2003; however, three lighting types did show change in usage. Compact fluorescent lamps and halogen lamps showed a significant increase between 1995 and 2003 while the use of incandescent lights declined. The lighting questions in the 1995, 1999, and 2003 CBECS questionnaires were virtually identical which facilitates comparison across survey years. The use of compact fluorescent lamps more than doubled, from just under 10 percent of lit buildings to more than 20 percent (Figure 17 and Table 5). The use of halogen lamps nearly doubled, from 7 percent to 13 percent of lit buildings. Use of incandescent lights was the only lighting type to decline; their use dropped from 59 percent to just over one-half of lit buildings.

4

Figure 71. Average fuel economy of new light-duty vehicles, 1980 ...  

U.S. Energy Information Administration (EIA)

Sheet3 Sheet2 Sheet1 Figure 71. Average fuel economy of new light-duty vehicles, 1980-2040 (miles per gallon, CAFE compliance values) History Reference case

5

Figure 2. Stratigraphic Summary of Ages, Names and Rock Types in ...  

U.S. Energy Information Administration (EIA)

Figure 2. Stratigraphic Summary of Ages, Names and Rock Types in the ANWR 1002 and Coastal Plain Area of the Alaska North Slope. Potentially Productive ...

6

Types of Lighting in Commercial Buildings - Lighting Types  

U.S. Energy Information Administration (EIA) Indexed Site

Lighting Types Lighting Types The following are the most widely used types of lighting equipment used in commercial buildings. Characteristics such as energy efficiency, light quality, and lifetime vary by lamp type. Standard Fluorescent A fluorescent lamp consists of a sealed gas-filled tube. The gas in the tube consists of a mixture of low pressure mercury vapor and an inert gas such as argon. The inner surface of the tube has a coating of phosphor powder. When an electrical current is applied to electrodes in the tube, the mercury vapor emits ultraviolet radiation which then causes the phosphor coating to emit visible light (the process is termed fluorescence). A ballast is required to regulate and control the current and voltage. Two types of ballasts are used, magnetic and electronic. Electronic ballasts

7

Figure 2. Stratigraphic Summary of Ages, Names and Rock Types...  

U.S. Energy Information Administration (EIA) Indexed Site

2. Stratigraphic Summary of Ages, Names and Rock Types in the ANWR 1002 and Coastal Plain Area of the Alaska North Slope. Potentially Productive Reservoirs and Plays Assessed by...

8

Figure6a. Type of Home by Insulation, 2001  

U.S. Energy Information Administration (EIA)

The RECS relies on the respondents to provide the energy-related details of their homes. Typically, the respondents do not know technical details such as the type of ...

9

Federal Energy Management Program: Lighting Control Types  

NLE Websites -- All DOE Office Websites (Extended Search)

Lighting Control Types Characteristics of the most common lighting controls for offices and other public buildings are outlined below. Typical Lighting Control Applications...

10

Federal Energy Management Program: Lighting Control Types  

NLE Websites -- All DOE Office Websites (Extended Search)

Lighting Control Lighting Control Types to someone by E-mail Share Federal Energy Management Program: Lighting Control Types on Facebook Tweet about Federal Energy Management Program: Lighting Control Types on Twitter Bookmark Federal Energy Management Program: Lighting Control Types on Google Bookmark Federal Energy Management Program: Lighting Control Types on Delicious Rank Federal Energy Management Program: Lighting Control Types on Digg Find More places to share Federal Energy Management Program: Lighting Control Types on AddThis.com... Energy-Efficient Products Federal Requirements Covered Product Categories Product Designation Process Low Standby Power Energy & Cost Savings Calculators Model Acquisitions Language Working Group Resources Technology Deployment Renewable Energy

11

Types of Lighting | Department of Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

selection. Types of lighting include: Fluorescent Incandescent Outdoor solar Light-emitting diode (LED) Also learn how energy-efficient lightbulbs compare to traditional...

12

Figure 73. Sales of light-duty vehicles using non-gasoline ...  

U.S. Energy Information Administration (EIA)

Sales of light-duty vehicles using non-gasoline technologies by type, 2011, 2025, ... Hybrid electric Flex-fuel Micro Total 2011.00 0.06 5.38E-03 0.54 0.25 1.61 0.01 2.49

13

Lighting Type at Home and at Work  

Reports and Publications (EIA)

Information on what types of lights are used at home and at work (data from 1995 CBECS and 1993 RECS).

Information Center

1998-01-15T23:59:59.000Z

14

Types of Lighting | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Types of Lighting Types of Lighting Types of Lighting October 17, 2013 - 5:36pm Addthis When it comes to lighting options, you have a number of choices. | Photo courtesy of Clean Energy Resource Teams. When it comes to lighting options, you have a number of choices. | Photo courtesy of Clean Energy Resource Teams. You have several options to consider when selecting what type of lighting you should use in your home. When selecting energy-efficient lighting, it's a good idea to understand basic lighting terms and principles. Also, it helps to explore your lighting design options if you haven't already. This will help narrow your selection. Types of lighting include: Fluorescent

15

Lighting Control Types | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Lighting Control Types Lighting Control Types Lighting Control Types October 7, 2013 - 11:27am Addthis Characteristics of the most common lighting controls for offices and other public buildings are outlined below. Also provided is a portable document format version of How to Select Lighting Controls for Offices and Public Buildings. Typical Lighting Control Applications Type of Control Private Office Open Office - Daylit Open Office - Interior Occupancy Sensors ++ ++ ++ Time Scheduling + ++ ++ Daylight Dimming ++ ++ 0 Bi-Level Switching ++ + + Demand Lighting + ++ ++ ++ = good savings potential + = some savings potential 0 = not applicable Back to Top Occupancy Sensors Occupancy sensors are the most common lighting control used in buildings today. Two technologies dominate: infrared and ultrasonic. Infrared sensors

16

Types of Lighting in Commercial Buildings - Lighting Characteristics  

U.S. Energy Information Administration (EIA) Indexed Site

Characteristics of Lighting Types Characteristics of Lighting Types Efficacy Efficacy is the amount of light produced per unit of energy consumed, expressed in lumens per watt (lm/W). Lamps with a higher efficacy value are more energy efficient. Average Rated Life The average rated life of a particular type of lamp is defined by the number of hours when 50 percent of a large sample of that type of lamp has failed. Color Rendering Index (CRI) The CRI is a measurement of a light source's accuracy in rendering different colors when compared to a reference light source. The highest attainable CRI is 100. Lamps with CRIs above 70 are typically used in office and living environments. Correlated Color Temperature (CCT) The CCT is an indicator of the "warmth" or "coolness" of the color

17

Types of Lighting in Commercial Buildings - Introduction  

U.S. Energy Information Administration (EIA) Indexed Site

Introduction Introduction Lighting is a major consumer of electricity in commercial buildings and a target for energy savings through use of energy-efficient light sources along with other advanced lighting technologies. The Commercial Buildings Energy Consumption Survey (CBECS) collects information on types of lighting equipment, the amount of floorspace that is lit, and the percentage of floorspace lit by each type. In addition, CBECS data are used to model end-use consumption, including energy consumed for lighting in commercial buildings. CBECS building characteristics data can answer a wide range of questions about lighting from the most basic, "How many buildings are lit?" to more detailed questions such as, "How many office buildings have compact

18

Types of Lighting in Commercial Buildings - Lighting Characteristics  

U.S. Energy Information Administration (EIA) Indexed Site

U.S. Lighting Market Characterization, Vol. 1: National Lighting Inventory and Energy Consumption Estimate, Office of Energy Efficiency and Renewable Energy,...

19

Figure 7a. Type of Home by Level of Drafts, 2001  

U.S. Energy Information Administration (EIA)

The RECS relies on the respondents to provide the energy-related details of their homes. Typically, the respondents do not know technical details such as the type of ...

20

Types of Lighting in Commercial Buildings - Full Report  

U.S. Energy Information Administration (EIA) Indexed Site

Types of Lighting in Commercial Buildings - Full Report Types of Lighting in Commercial Buildings - Full Report file:///C|/mydocs/CBECS%20analysis/CBECS%20lighting/lighting_pdf.html[4/28/2009 9:20:44 AM] Introduction Lighting is a major consumer of electricity in commercial buildings and a target for energy savings through use of energy-efficient light sources along with other advanced lighting technologies. The Commercial Buildings Energy Consumption Survey (CBECS) collects information on types of lighting equipment, the amount of floorspace that is lit, and the percentage of floorspace lit by each type. In addition, CBECS data are used to model end-use consumption, including energy consumed for lighting in commercial buildings. CBECS building characteristics data can answer a wide range of questions about lighting from the

Note: This page contains sample records for the topic "light types figure" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Star formation and figure rotation in the early-type galaxy NGC2974  

E-Print Network (OSTI)

We present Galaxy Evolution Explorer (GALEX) far (FUV) and near (NUV) ultraviolet imaging of the nearby early-type galaxy NGC2974, along with complementary ground-based optical imaging. In the ultraviolet, the galaxy reveals a central spheroid-like component and a newly discovered complete outer ring of radius 6.2kpc, with suggestions of another partial ring at an even larger radius. Blue FUV-NUV and UV-optical colours are observed in the centre of the galaxy and from the outer ring outward, suggesting young stellar populations (< 1Gyr) and recent star formation in both locations. This is supported by a simple stellar population model which assumes two bursts of star formation, allowing us to constrain the age, mass fraction and surface mass density of the young component pixel by pixel. Overall, the mass fraction of the young component appears to be just under 1per cent (lower limit, uncorrected for dust extinction). The additional presence of a nuclear and an inner ring (radii 1.4 and 2.9kpc, respectively), as traced by [OIII] emission, suggests ring formation through resonances. All three rings are consistent with a single pattern speed of $78\\pm6$ km/s/kpc, typical of S0 galaxies and only marginally slower than expected for a fast bar if traced by a small observed surface brightness plateau. This thus suggests that star formation and morphological evolution in NGC2974 at the present epoch are primarily driven by a rotating asymmetry (probably a large-scale bar), despite the standard classification of NGC2974 as an E4 elliptical.

Hyunjin Jeong; Martin Bureau; Sukyoung Ken Yi; Davor Krajnovic; Roger L. Davies

2006-08-09T23:59:59.000Z

22

Late Light Curves of Normally-Luminous Type Ia Supernovae  

E-Print Network (OSTI)

The use of Type Ia supernovae as cosmological tools has reinforced the need to better understand these objects and their light curves. The light curves of Type Ia supernovae are powered by the nuclear decay of $^{56}Ni \\to ^{56}Co \\to ^{56}Fe$. The late time light curves can provide insight into the behavior of the decay products and their effect of the shape of the curves. We present the optical light curves of six "normal" Type Ia supernovae, obtained at late times with template image subtraction, and the fits of these light curves to supernova energy deposition models.

J. C. Lair; M. D. Leising; P. A. Milne; G. G. Williams

2006-01-05T23:59:59.000Z

23

Figure S.1  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

2- Figures and Table 2.1 2- Figures and Table 2.1 Figure S.1 Figure 1.1 Figure 1.2 Figure 1.3 Figure 2.1 Figure 2.2 Figure 2.3 Figure 3.1 Figure 3.2 Figure 3.3 Figure 3.4 Figure 3.5 Figure 3.6 Figure 3.7 Figure 3.8 Figure 3.9 Figure 3.10 Figure 3.11 Figure 3.12 Figure 3.13 Figure 3.14 Figure 3.15 Figure 3.16 Figure 3.17 Figure 3.18 Figure 3.19 Figure 4.1 Figure 4.2 Figure 4.3 Figure 4.4 Figure 4.5 Figure 4.6 Figure 4.7 Figure 4.8 Figure 4.9 Figure 4.10 Figure 4.11 Figure 4.12 Figure 4.13 Figure 4.14 Figure 4.15 Figure 4.16 Figure 4.17 Figure 4.18 Figure 4.19 J.1 Lewiston Stage Contents Relationship (NOT AVAILABLE IN ELECTRONIC FORMAT) J.2 Keswick Stage Contents Relationship (NOT AVAILABLE IN ELECTRONIC FORMAT) J.3 Natoma Stage Contents Relationship (NOT AVAILABLE IN ELECTRONIC

24

Types of Lighting in Commercial Buildings - Full Report  

U.S. Energy Information Administration (EIA) Indexed Site

PDF PDF Lighting in Commercial Buildings Introduction Lighting is a major consumer of electricity in commercial buildings and a target for energy savings through use of energy-efficient light sources along with other advanced lighting technologies. The Commercial Buildings Energy Consumption Survey (CBECS) collects information on types of lighting equipment, the amount of floorspace that is lit, and the percentage of floorspace lit by each type. In addition, CBECS data are used to model end-use consumption, including energy consumed for lighting in commercial buildings. CBECS building characteristics data can answer a wide range of questions about lighting from the most basic, "How many buildings are lit?" to more detailed questions such as, "How many office buildings have compact

25

Lighting  

Energy.gov (U.S. Department of Energy (DOE))

There are many different types of artificial lights, all of which have different applications and uses. Types of lighting include:

26

Light-Duty Vehicle Energy Consumption by Technology Type from...  

Open Energy Info (EERE)

Light-Duty Vehicle Energy Consumption by Technology Type from EIA AEO 2011 Early Release Supplemental Table 47 of EIA AEO 2011 Early Release
2011-02-23T15:57:46Z...

27

MECS Fuel Oil Figures  

U.S. Energy Information Administration (EIA) Indexed Site

: Percentage of Total Purchased Fuels by Type of Fuel : Percentage of Total Purchased Fuels by Type of Fuel Figure 1. Percent of Total Purchased Fuel Sources: Energy Information Administration. Office of Energy Markets and End Use, Manufacturing Energy Consumption Survey (MECS): Consumption of Energy; U.S. Department of Commerce, Bureau of the Census, Annual Survey of Manufactures (ASM): Statistics for Industry Groups and Industries: Statistical Abstract of the United States. Note: The years below the line on the "X" Axis are interpolated data--not directly from the Manufacturing Energy Consumption Survey or the Annual Survey of Manufactures. Figure 2: Changes in the Ratios of Distillate Fuel Oil to Natural Gas Figure 2. Changes in the Ratios of Distillate Fuel Oil to Natural Gas Sources: Energy Information Administration. Office of

28

Types of Lighting in Commercial Buildings - Table L1  

U.S. Energy Information Administration (EIA) Indexed Site

L1. Floorspace Lit by Lighting Type for Non-Mall Buildings, 1995 L1. Floorspace Lit by Lighting Type for Non-Mall Buildings, 1995 Floorspace (million square feet) Total (Lit or Unlit) in All Buildings Total (Lit or Unlit) in Buildings With Any Lighting Lighted Area Only Area Lit by Each Type of Light Incan- descent Standard Fluor-escent Compact Fluor- escent High Intensity Discharge Halogen All Buildings*........................ 54,068 51,570 45,773 6,746 34,910 1,161 3,725 779 Building Floorspace (Square Feet) 1,001 to 5,000....................... 6,272 5,718 4,824 986 3,767 50 22 54 5,001 to 10,000.................... 7,299 6,667 5,728 1,240 4,341 61 169 45 10,001 to 25,000.................. 10,829 10,350 8,544 1,495 6,442 154 553 Q 25,001 to 50,000.................. 7,170 7,022 6,401 789 5,103 151 485 86

29

Types of Lighting in Commercial Buildings - Table L3  

U.S. Energy Information Administration (EIA) Indexed Site

L3. Floorspace Lit by Lighting Type (Non-Mall Buildings), 2003 L3. Floorspace Lit by Lighting Type (Non-Mall Buildings), 2003 Floorspace (million square feet) Total (Lit or Unlit) in All Buildings Total (Lit or Unlit) in Buildings With Any Lighting Lighted Area Only Area Lit by Each Type of Light Incan- descent Standard Fluor-escent Compact Fluor- escent High Intensity Discharge Halogen All Buildings*............................. 64,783 62,060 51,342 5,556 37,918 4,004 4,950 2,403 Building Floorspace (Square Feet) 1,001 to 5,000............................. 6,789 6,038 4,826 678 3,932 206 76 124 5,001 to 10,000........................... 6,585 6,090 4,974 739 3,829 192 238 248 10,001 to 25,000........................ 11,535 11,229 8,618 1,197 6,525 454 506 289 25,001 to 50,000........................ 8,668 8,297 6,544 763 4,971 527 454 240

30

Types of Lighting in Commercial Buildings - Table L2  

U.S. Energy Information Administration (EIA) Indexed Site

L2. Floorspace Lit by Lighting Types (Non-Mall Buildings), 1999 L2. Floorspace Lit by Lighting Types (Non-Mall Buildings), 1999 Floorspace (million square feet) Total (Lit or Unlit) in All Buildings Total (Lit or Unlit) in Buildings With Any Lighting Lighted Area Only Area Lit by Each Type of Light Incan- descent Standard Fluor-escent Compact Fluor- escent High Intensity Discharge Halogen All Buildings* ............................. 61,707 58,693 49,779 6,496 37,150 3,058 5,343 1,913 Building Floorspace (Square Feet) 1,001 to 5,000 ............................ 6,750 5,836 4,878 757 3,838 231 109 162 5,001 to 10,000 .......................... 7,940 7,166 5,369 1,044 4,073 288 160 109 10,001 to 25,000 ....................... 10,534 9,773 7,783 1,312 5,712 358 633 232 25,001 to 50,000 ....................... 8,709 8,452 6,978 953 5,090 380 771 281

31

Quantifying National Energy Savings Potential of Lighting Controls in Commercial Buildings  

E-Print Network (OSTI)

type, such as wasted light hours and energy costs. However,percent of wasted light hours. Figure 3. Energy Savings for

Williams, Alison

2013-01-01T23:59:59.000Z

32

Types of Lighting in Commercial Buildings - Principal Building...  

U.S. Energy Information Administration (EIA) Indexed Site

lit floorspace in commercial buildings. Figure 5. Office, education, and warehouse and storage buildings account for more than half of total lit floorspace in commercial...

33

APPENDIX A: FIGURES  

NLE Websites -- All DOE Office Websites (Extended Search)

APPENDIX A: FIGURES Project Name: Archbold Area Schools Wind Turbine Source Information: USGS, TRG Survey Figure Name: Turbine Location Notes: Turbine Location TRG Archbold...

34

APPENDIX A: FIGURES  

NLE Websites -- All DOE Office Websites (Extended Search)

APPENDIX A: FIGURES Project Name: Pettisville Local Schools Wind Turbine Source Information: USGS, TRG Survey Figure Name: Turbine Location Notes: Turbine Location TRG...

35

Reflections on Reflexions: I. Light Echoes in Type Ia Supernovae  

E-Print Network (OSTI)

In the last ten years, observational evidences about a possible connection between Type Ia Supernovae (SNe) properties and the environment where they explode have been steadily growing. In this paper I discuss, from a theoretical point of view but with an observer's perspective, the usage of light echoes (LEs) to probe the CSM around SNe of Type Ia since, in principle, they give us a unique opportunity of getting a three-dimensional description of the SN environment. In turn, this can be used to check the often suggested association of some Ia's with dusty/star forming regions, which would point to a young population for the progenitors. After giving a brief introduction to the LE phenomenon in single scattering approximation, I derive analytical and numerical solutions for the optical light and colour curves for a few simple dust geometries. A fully 3D multiple scattering treatment has also been implemented in a Monte Carlo code, which I have used to investigate the effects of multiple scattering. In particu...

Patat, F

2004-01-01T23:59:59.000Z

36

Reflections on Reflexions: I. Light Echoes in Type Ia Supernovae  

E-Print Network (OSTI)

In the last ten years, observational evidences about a possible connection between Type Ia Supernovae (SNe) properties and the environment where they explode have been steadily growing. In this paper I discuss, from a theoretical point of view but with an observer's perspective, the usage of light echoes (LEs) to probe the CSM around SNe of Type Ia since, in principle, they give us a unique opportunity of getting a three-dimensional description of the SN environment. In turn, this can be used to check the often suggested association of some Ia's with dusty/star forming regions, which would point to a young population for the progenitors. After giving a brief introduction to the LE phenomenon in single scattering approximation, I derive analytical and numerical solutions for the optical light and colour curves for a few simple dust geometries. A fully 3D multiple scattering treatment has also been implemented in a Monte Carlo code, which I have used to investigate the effects of multiple scattering. In particular, I have explored in detail the LE colour dependency from time and dust distribution, since this is a promising tool to determine the dust density and derive the effective presence of multiple scattering from the observed properties. Finally, again by means of Monte Carlo simulations, I have studied the effects of multiple scattering on the LE linear polarization, analyzing the dependencies from the dust parameters and geometry. Both the analytical formalism and MC codes described in this paper can be used for any LE for which the light curve of the central source is known.

F. Patat

2004-09-28T23:59:59.000Z

37

Compact light source performance in recessed type luminaires  

SciTech Connect

Photometric comparisons were made with an indoor, recessed, type luminaire using incandescent, high intensity discharge and compact fluorescent lamps. The test results show substantial performance advantages, as expected, for the discharge light sources where the efficacy gains can be in the order for 400% even when including the ballast losses associated with the discharge lamps. The candlepower distribution patterns emerging from these luminaries are also different from those associated with the baseline incandescent lamps, and which are in some ways, even more desirable from a uniformity of illuminance perspective. A section on fluorescent lamp starting is also included which describes a system having excellent starting characteristics in terms of electrode starting temperature (RH/RC technique), proper operating frequency to minimize unwanted IR interactions, and satisfactory current crest factor values to help insure life performance.

Hammer, E.E.

1998-11-01T23:59:59.000Z

38

Types of Lighting in Commercial Buildings - Building Size and Year  

U.S. Energy Information Administration (EIA) Indexed Site

Lighting and Building Size and Year Constructed Lighting and Building Size and Year Constructed Building Size Smaller commercial buildings are much more numerous than larger commercial buildings, but comprise less total floorspace-the 1,001 to 5,000 square feet category includes more than half of total buildings, but just 11 percent of total floorspace. In contrast, just 5 percent of buildings are larger than 50,000 square feet, but they account for half of total floorspace. Lighting consumes 38 percent of total site electricity. Larger buildings consume relatively more electricity for lighting than smaller buildings. Nearly half (47%) of electricity is consumed by lighting in the largest buildings (larger than 500,000 square feet). In the smallest buildings (1,001 to 5,000 square feet), one-fourth of electricity goes to lighting

39

Types of Lighting in Commercial Buildings - Full Report  

Gasoline and Diesel Fuel Update (EIA)

Office of Energy Efficiency and Renewable Energy, U.S. Department of Energy (www1.eere.energy.govbuildingsssltechreports.htmllmcvol1final.pdf. (Back) Lighting in...

40

Light-Duty Vehicle Energy Consumption by Fuel Type from EIA AEO...  

Open Energy Info (EERE)

Linked Data Search Share this page on Facebook icon Twitter icon Light-Duty Vehicle Energy Consumption by Fuel Type from EIA AEO 2011 Early Release Dataset Summary...

Note: This page contains sample records for the topic "light types figure" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Figure 6 - TMS  

Science Conference Proceedings (OSTI)

Figure 6. In wet stretching, (a) the fiber is allowed to contract unrestrained up to the supercontracted length; (b) it is stretched to the selected length and the ends

42

Demand Responsive Lighting: A Scoping Study  

E-Print Network (OSTI)

2003 Data] Figure 9: Lighting Energy Usage for Commercialhas analyzed lighting energy usage across different buildings La Figure 9: Lighting Energy Usage for Commercial Building

Rubinstein, Francis; Kiliccote, Sila

2007-01-01T23:59:59.000Z

43

Demand Responsive Lighting: A Scoping Study  

E-Print Network (OSTI)

Figure 9: Lighting Energy Usage for Commercial Buildinghas analyzed lighting energy usage across different buildings La Figure 9: Lighting Energy Usage for Commercial Building

Rubinstein, Francis; Kiliccote, Sila

2007-01-01T23:59:59.000Z

44

Role of BCS-type pairing in light deformed nuclei: A relativistic mean field approach  

E-Print Network (OSTI)

We calculate the binding energy and deformation parameter for light nuclei with and without pairing using a deformed relativistic mean field model. The role of BCS-type pairing effect is analyzed for Ne and F isotopes. The calculated odd-even staggering and the deformation parameters argue strongly against the role of pairing in the light nuclei.

P. Arumugam; T. K. Jha; S. K. Patra

2003-11-25T23:59:59.000Z

45

Ultra-thin ohmic contacts for p-type nitride light emitting devices  

DOE Patents (OSTI)

A semiconductor based Light Emitting Device (LED) can include a p-type nitride layer and a metal ohmic contact, on the p-type nitride layer. The metal ohmic contact can have an average thickness of less than about 25 .ANG. and a specific contact resistivity less than about 10.sup.-3 ohm-cm.sup.2.

Raffetto, Mark (Raleigh, NC); Bharathan, Jayesh (Cary, NC); Haberern, Kevin (Cary, NC); Bergmann, Michael (Chapel Hill, NC); Emerson, David (Chapel Hill, NC); Ibbetson, James (Santa Barbara, CA); Li, Ting (Ventura, CA)

2012-01-03T23:59:59.000Z

46

Evolution in lighting  

SciTech Connect

Lights consume 20-25% of the nation's electricity, establishing strong incentives to develop more efficient lighting strategies. Attention is turning to where, when, and how we light our environment, and the potential savings add up to half the lighting load nationwide. Some types of lamp are more efficient than others, but characteristics other than energy consumption may dictate where they can be used. Current lighting strategies consider task requirements, light quality, and the potential for daylighting. Energy management systems that control the timing and intensity of light and new types of energy-efficient bulbs and fixtures are increasingly attractive to consumers. The effort will require continued research and the awareness of decision makers. 4 references, 8 figures.

Lihach, N.; Pertusiello, S.

1984-06-01T23:59:59.000Z

47

Lighting.  

SciTech Connect

Since lighting accounts for about one-third of the energy used in commercial buildings, there is opportunity to conserve. There are two ways to reduce lighting energy use: modify lighting systems so that they used less electricity and/or reduce the number of hours the lights are used. This booklet presents a number of ways to do both. Topics covered include: reassessing lighting levels, reducing lighting levels, increasing bulb & fixture efficiency, using controls to regulate lighting, and taking advantage of daylight.

United States. Bonneville Power Administration.

1992-09-01T23:59:59.000Z

48

Light-Duty Vehicle Energy Consumption by Fuel Type from EIA AEO...  

Open Energy Info (EERE)

Light-Duty Vehicle Energy Consumption by Fuel Type from EIA AEO 2011 Early Release Supplemental Table 47 of EIA AEO 2011 Early Release
2011-02-23T16:04:28Z 2011-03-31T19:33:44Z...

49

Microsoft Word - figure_20.doc  

Gasoline and Diesel Fuel Update (EIA)

4 4 0 2 4 6 8 10 12 14 16 1980 1982 1984 1986 1988 1990 1992 1994 1996 1998 2000 2002 2004 2006 2008 2010 Sources: Nominal dollars: Energy Information Administration (EIA), Form EIA-176, "Annual Report of Natural and Supplemental Gas Supply and Disposition," and Form EIA-910, "Monthly Natural Gas Marketer Survey." Constant dollars: Prices were converted to 2005 dollars using the chain-type price indexes for Gross Domestic Product (2005 = 1.0) as published by the U.S. Department of Commerce, Bureau of Economic Analysis. dollars per thousand cubic feet base year Figure 21. Average price of natural gas delivered to residential consumers, 1980-2011 nominal dollars

50

THE FIRST MAXIMUM-LIGHT ULTRAVIOLET THROUGH NEAR-INFRARED SPECTRUM OF A TYPE Ia SUPERNOVA  

Science Conference Proceedings (OSTI)

We present the first maximum-light ultraviolet (UV) through near-infrared (NIR) Type Ia supernova (SN Ia) spectrum. This spectrum of SN 2011iv was obtained nearly simultaneously by the Hubble Space Telescope at UV/optical wavelengths and the Magellan Baade telescope at NIR wavelengths. These data provide the opportunity to examine the entire maximum-light SN Ia spectral energy distribution. Since the UV region of an SN Ia spectrum is extremely sensitive to the composition of the outer layers of the explosion, which are transparent at longer wavelengths, this unprecedented spectrum can provide strong constraints on the composition of the SN ejecta, and similarly the SN explosion and progenitor system. SN 2011iv is spectroscopically normal, but has a relatively fast decline ({Delta}m{sub 15}(B) = 1.69 {+-} 0.05 mag). We compare SN 2011iv to other SNe Ia with UV spectra near maximum light and examine trends between UV spectral properties, light-curve shape, and ejecta velocity. We tentatively find that SNe with similar light-curve shapes but different ejecta velocities have similar UV spectra, while those with similar ejecta velocities but different light-curve shapes have very different UV spectra. Through a comparison with explosion models, we find that both a solar-metallicity W7 and a zero-metallicity delayed-detonation model provide a reasonable fit to the spectrum of SN 2011iv from the UV to the NIR.

Foley, Ryan J.; Marion, G. Howie; Challis, Peter; Kirshner, Robert P.; Berta, Zachory K. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Kromer, Markus; Taubenberger, Stefan; Hillebrandt, Wolfgang; Roepke, Friedrich K.; Ciaraldi-Schoolmann, Franco; Seitenzahl, Ivo R. [Max-Planck-Institut fuer Astrophysik, Karl-Schwarzschild-Strasse 1, D-85748 Garching bei Muenchen (Germany); Pignata, Giuliano [Departamento de Ciencias Fisicas, Universidad Andres Bello, Avda. Republica 252, Santiago (Chile); Stritzinger, Maximilian D. [Department of Physics and Astronomy, Aarhus University, Ny Munkegade, DK-8000 Aarhus C (Denmark); Filippenko, Alexei V.; Li Weidong; Silverman, Jeffrey M. [Department of Astronomy, University of California, Berkeley, CA 94720-3411 (United States); Folatelli, Gaston [Kavli Institute for the Physics and Mathematics of the Universe (Kavli IPMU, WPI), Todai Institutes for Advanced Study, University of Tokyo, Kashiwa 277-8583 (Japan); Hsiao, Eric Y.; Morrell, Nidia I. [Carnegie Observatories, Las Campanas Observatory, La Serena (Chile); Simcoe, Robert A., E-mail: rfoley@cfa.harvard.edu [MIT-Kavli Institute for Astrophysics and Space Research, 77 Massachusetts Avenue, 37-664D Cambridge, MA 02139 (United States); and others

2012-07-01T23:59:59.000Z

51

A light triplet boson and Higgs-to-diphoton in supersymmetric type II seesaw  

E-Print Network (OSTI)

The supersymmetric type II seesaw may leave a limit where a triplet boson along with the standard Higgs boson remains light. Working in this limit with small triplet vacuum expectation vlaues, we explore how much such a light triplet boson can contribute to the Higgs boson decay to diphoton, and analyze the feasibility to observe it through same-sign di-lepton and tetra-lepton signals in the forthcoming LHC run after setting a LHC7 limit in a simplified parameter space of the triplet vaccum expectation value and the doubly charged boson mass.

Eung Jin Chun; Pankaj Sharma

2013-01-08T23:59:59.000Z

52

Buildings*","Lit Buildings","Lighting Equipment Types  

U.S. Energy Information Administration (EIA) Indexed Site

4. Lighting Equipment, Floorspace for Non-Mall Buildings, 2003" 4. Lighting Equipment, Floorspace for Non-Mall Buildings, 2003" ,"Total Floorspace (million square feet)" ,"All Buildings*","Lit Buildings","Lighting Equipment Types (more than one may apply)" ,,,"Incand- escent","Standard Fluor- escent","Compact Fluor- escent","High-Intensity Discharge","Halogen" "All Buildings* ...............",64783,62060,38528,59688,27571,20643,17703 "Building Floorspace" "(Square Feet)" "1,001 to 5,000 ...............",6789,6038,2918,5579,1123,312,604 "5,001 to 10,000 ..............",6585,6090,3061,5726,1109,686,781 "10,001 to 25,000 .............",11535,11229,6424,10458,2944,1721,1973

53

Buildings*","Lit Buildings","Lighting Equipment Types  

U.S. Energy Information Administration (EIA) Indexed Site

3. Lighting Equipment, Number of Buildings for Non-Mall Buildings, 2003" 3. Lighting Equipment, Number of Buildings for Non-Mall Buildings, 2003" ,"Number of Buildings (thousand)" ,"All Buildings*","Lit Buildings","Lighting Equipment Types (more than one may apply)" ,,,"Incand- escent","Standard Fluor- escent","Compact Fluor- escent","High-Intensity Discharge","Halogen" "All Buildings* ...............",4645,4248,2184,3943,941,455,565 "Building Floorspace" "(Square Feet)" "1,001 to 5,000 ...............",2552,2261,1070,2068,382,101,205 "5,001 to 10,000 ..............",889,821,416,772,148,88,107 "10,001 to 25,000 .............",738,716,412,665,189,105,123 "25,001 to 50,000 .............",241,231,145,223,102,60,55

54

LATE-TIME LIGHT CURVES OF TYPE II SUPERNOVAE: PHYSICAL PROPERTIES OF SUPERNOVAE AND THEIR ENVIRONMENT  

Science Conference Proceedings (OSTI)

We present BVRIJHK-band photometry of six core-collapse supernovae, SNe 1999bw, 2002hh, 2003gd, 2004et, 2005cs, and 2006bc, measured at late epochs (>2 yr) based on the Hubble Space Telescope (HST), and the Gemini North, and WIYN telescopes. We also show the JHK light curves of supernova impostor SN 2008S up to day 575 because it was serendipitously in our SN 2002hh field of view. Of our 43 HST observations in total, 36 observations are successful in detecting the light from the SNe alone and measuring magnitudes of all the targets. HST observations show a resolved scattered light echo around SN 2003gd at day 1520 and around SN 2002hh at day 1717. Our Gemini and WIYN observations detected SNe 2002hh and 2004et as well. Combining our data with previously published data, we show VRIJHK-band light curves and estimate decline magnitude rates at each band in four different phases. Our prior work on these light curves and other data indicate that dust is forming in our targets from days {approx}300 to 400, supporting SN dust formation theory. In this paper we focus on other physical properties derived from late-time light curves. We estimate {sup 56}Ni masses for our targets (0.5-14 Multiplication-Sign 10{sup -2} M{sub Sun }) from the bolometric light curve of each of days {approx}150-300 using SN 1987A as a standard (7.5 Multiplication-Sign 10{sup -2} M{sub Sun }). The flattening or sometimes increasing fluxes in the late-time light curves of SNe 2002hh, 2003gd, 2004et, and 2006bc indicate the presence of light echoes. We estimate the circumstellar hydrogen density of the material causing the light echo and find that SN 2002hh is surrounded by relatively dense materials (n(H) >400 cm{sup -3}) and SNe 2003gd and 2004et have densities more typical of the interstellar medium ({approx}1 cm{sup -3}). We analyze the sample as a whole in the context of physical properties derived in prior work. The {sup 56}Ni mass appears well correlated with progenitor mass with a slope of 0.31 Multiplication-Sign 10{sup -2}, supporting the previous work by Maeda et al., who focus on more massive Type II SNe. The dust mass does not appear to be correlated with progenitor mass.

Otsuka, Masaaki; Meixner, Margaret; Panagia, Nino [Space Telescope Science Institute, 3700 San Martin Dr., Baltimore, MD 21218 (United States); Fabbri, Joanna; Barlow, Michael J.; Wesson, Roger [Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT (United Kingdom); Clayton, Geoffrey C.; Andrews, Jennifer E. [Department of Physics and Astronomy, Louisiana State University, Baton Rouge, LA 70803 (United States); Gallagher, Joseph S. [Department of Mathematics, Physics, and Computer Science, Raymond Walters College, 9555 Plain field Rd., Blue Ash, OH 45236 (United States); Sugerman, Ben E. K. [Department of Physics and Astronomy, Goucher College, 1021 Dulaney Valley Road, Baltimore, MD 21204 (United States); Ercolano, Barbara [Universitaets-Sternwarte Muenchen, Scheinerstr. 1, 81679 Muenchen (Germany); Welch, Douglas, E-mail: otsuka@stsci.edu, E-mail: otsuka@asiaa.sinica.edu.tw [Department of Physics and Astronomy, McMaster University, Hamilton, Ontario L8S 4M1 (Canada)

2012-01-01T23:59:59.000Z

55

Microsoft Word - Figure_15.docx  

U.S. Energy Information Administration (EIA) Indexed Site

Source: Energy Information Administration (EIA), Form EIA-191A, "Annual Underground Gas Storage Report." U.S. Energy Information Administration | Natural Gas Annual Figure 16....

56

Silicon Nanoparticle Biocompatibility Figure 1  

Science Conference Proceedings (OSTI)

... Figure 2. Effect of SNs and SMs on cell survival percentage in RAW 264.7 cells based on trypan blue dye exclusion (A) and MTT (B) assay. ...

2012-10-01T23:59:59.000Z

57

Figure 7.9 Coal Prices - Energy Information Administration  

U.S. Energy Information Administration (EIA)

Figure 7.9 Coal Prices Total, 1949-2011 By Type, 1949-2011 By Type, 2011 214 U.S. Energy Information Administration / Annual Energy Review 2011

58

Three prominent figures (3PF)  

Science Conference Proceedings (OSTI)

Three Prominent Figures, a sub-group of the VOLT Collective (http://www.voltcollective.com) is a performance piece combining live DJ-ing, video art, and physical computing to explore non-invasive musical expression. Three Prominent Figures will be presented ...

Roberto Osorio-Goenaga; Gregory Boland; Nathaniel Weiner

2007-06-01T23:59:59.000Z

59

Figure and finish of grazing incidence mirrors  

SciTech Connect

Great improvement has been made in the past several years in the quality of optical components used in synchrotron radiation (SR) beamlines. Most of this progress has been the result of vastly improved metrology techniques and instrumentation permitting rapid and accurate measurement of the surface finish and figure on grazing incidence optics. A significant theoretical effort has linked the actual performance of components used as x-ray wavelengths to their topological properties as measured by surface profiling instruments. Next-generation advanced light sources will require optical components and systems to have sub-arc second surface figure tolerances. This paper will explore the consequences of these requirements in terms of manufacturing tolerances to see if the present manufacturing state-of-the-art is capable of producing the required surfaces. 15 refs., 14 figs., 2 tabs.

Takacs, P.Z. (Brookhaven National Lab., Upton, NY (USA)); Church, E.L. (Picatinny Arsenal, Dover, NJ (USA). Army Armament Research, Development and Engineering Center)

1989-08-01T23:59:59.000Z

60

Figure correction of multilayer coated optics  

DOE Patents (OSTI)

A process is provided for producing near-perfect optical surfaces, for EUV and soft-x-ray optics. The method involves polishing or otherwise figuring the multilayer coating that has been deposited on an optical substrate, in order to correct for errors in the figure of the substrate and coating. A method such as ion-beam milling is used to remove material from the multilayer coating by an amount that varies in a specified way across the substrate. The phase of the EUV light that is reflected from the multilayer will be affected by the amount of multilayer material removed, but this effect will be reduced by a factor of 1-n as compared with height variations of the substrate, where n is the average refractive index of the multilayer.

Chapman; Henry N. (Livermore, CA), Taylor; John S. (Livermore, CA)

2010-02-16T23:59:59.000Z

Note: This page contains sample records for the topic "light types figure" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Lighting energy management for colleges and universities  

SciTech Connect

The degree to which lighting satisfies the diverse illumination requirements of colleges and universities depends on the quality of lighting involved, how well it is designed, and how well it is maintained. It is unfortunate that lighting quality is often made secondary to energy consumption because the two are totally compatible if the difference between lighting energy conservation and lighting energy management is understood. Lighting energy management considers lighting interrelationships as well as illumination technology, and requires three types of knowledge: lighting systems and their components, lighting's impact on activities and safety, and an awareness of the existing lighting systems. The authors develop these concepts and present a variety of lighting options and guidelines for designing a lighting system. 16 figures, 3 tables.

1982-01-01T23:59:59.000Z

62

Lighting  

SciTech Connect

The lighting section of ASHRAE standard 90.1 is discussed. It applies to all new buildings except low-rise residential, while excluding specialty lighting applications such as signage, art exhibits, theatrical productions, medical and dental tasks, and others. In addition, lighting for indoor plant growth is excluded if designed to operate only between 10 p.m. and 6 a.m. Lighting allowances for the interior of a building are determined by the use of the system performance path unless the space functions are not fully known, such as during the initial stages of design or for speculative buildings. In such cases, the prescriptive path is available. Lighting allowances for the exterior of all buildings are determined by a table of unit power allowances. A new addition the exterior lighting procedure is the inclusion of facade lighting. However, it is no longer possible to trade-off power allotted for the exterior with the interior of a building or vice versa. A significant change is the new emphasis on lighting controls.

McKay, H.N. (Hayden McKay Lighting Design, New York, NY (US))

1990-02-01T23:59:59.000Z

63

The First Systematic Study of Type Ibc Supernova Multi-color Light-curves  

E-Print Network (OSTI)

We present detailed optical photometry for 25 Type Ibc supernovae within d~150 Mpc obtained with the robotic Palomar 60-inch telescope in 2004-2007. This study represents the first uniform, systematic, and statistical sample of multi-color SNe Ibc light-curves available to date. We correct the light-curves for host galaxy extinction using a new technique based on the photometric color evolution, namely, we show that the (V-R) color of extinction-corrected SNe Ibc at t~10 days after V-band maximum is tightly distributed, (V-R)=0.26+-0.06 mag. Using this technique, we find that SNe Ibc typically suffer from significant host galaxy extinction, E(B-V)~0.4 mag. A comparison of the extinction-corrected light-curves for SNe Ib and Ic reveals that they are statistically indistinguishable, both in luminosity and decline rate. We report peak absolute magnitudes of M_R=-17.9+-0.9 mag and M_R=-18.3+-0.6 mag for SNe Ib and Ic, respectively. Focusing on the broad-lined SNe Ic, we find that they are more luminous than the n...

Drout, Maria R; Gal-Yam, A; Cenko, S B; Fox, D B; Leonard, D C; Sand, D J; Moon, D -S; Arcavi, I; Green, Y

2010-01-01T23:59:59.000Z

64

Microsoft Word - figure_24.doc  

U.S. Energy Information Administration (EIA) Indexed Site

1 Figure 25. Average price of natural gas delivered to U.S. onsystem industrial consumers, 2011 (dollars per thousand cubic feet) U.S. Energy Information Administration | Natural...

65

Microsoft Word - figure_03.doc  

U.S. Energy Information Administration (EIA) Indexed Site

0 U.S. Energy Information Administration | Natural Gas Annual Figure 3. Marketed production of natural gas in the United States and the Gulf of Mexico, 2011 (million cubic feet)...

66

Microsoft Word - figure_99.doc  

U.S. Energy Information Administration (EIA) Indexed Site

6 U.S. Energy Information Administration | Natural Gas Annual Figure 6. Natural gas processing in the United States and the Gulf of Mexico, 2011 (million cubic feet) None 1-15,000...

67

Towards a poetics of light : the conceits of light.  

E-Print Network (OSTI)

??Towards a Poetics of Light; The Conceits of Light is a critical quest to map associations between rhetorical figures, psychological defences and spatial tropes in… (more)

Evans, M

2006-01-01T23:59:59.000Z

68

Spin light of neutrino in matter: a new type of electromagnetic radiation  

E-Print Network (OSTI)

A short review of the properties of the spin light of neutrino (SL?) in matter, supplied with some historical notes on the discussed subject, is given. It is shown that consideration of the SL? in matter in hep-ph/0605114 is based on erroneous calculations which ignore the fact that the energy-momentum conservation law can not be violated for this process. An attempt to rename the SL? in matter, undertaken in hep-ph/0606262, is groundless. In a series of our papers [1]- [11], we have proposed and studied in detail a new type of electromagnetic radiation that can be emitted by a massive neutrino with nonzero magnetic moment moving in background matter. We have termed this radiation the “spin light of neutrino ” (SL?) [1]. At first we have developed the quasi-classical theory of this radiation on the basis of the generalized Bargmann-Michel-Telegdi equation that we have derived [12], [4] for description of the neutrino spin evolution in the presence of matter. As it was clear from the very beginning [1], the SL? is a quantum phenomenon by its nature. Therefore, we later on considered the SL? on a solid base of the modified Dirac equation

Alexander Grigoriev; Andrey Lobanov; Er Studenikin; Alexei Ternov

2006-01-01T23:59:59.000Z

69

Microsoft Word - Figure_14_15.doc  

Gasoline and Diesel Fuel Update (EIA)

44 0 2 4 6 8 10 1980 1982 1984 1986 1988 1990 1992 1994 1996 1998 2000 2002 Dollars per Thousand Cubic Feet 0 40 80 120 160 200 240 280 320 Dollars per Thousand Cubic Meters Constant Dollars Nominal Dollars Figure 14. Average Price of Natural Gas Delivered to Residential Consumers, 1980-2002 Figure 15. Average City Gate Price of Natural Gas in the United States, 2002 (Dollars per Thousand Cubic Feet) Sources: Nominal dollars: Energy Information Administration (EIA), Form EIA-176, "Annual Report of Natural and Supplemental Gas Supply and Disposition," and Form EIA-910, "Monthly Natural Gas Marketer Survey." Constant dollars: Prices were converted to 2002 dollars using the chain-type price indexes for Gross Domestic Product (1996 = 1.0) as published by the U.S. Department of Commerce, Bureau of Economic Analysis.

70

Improving light output power of InGaN-based light emitting diodes with pattern-nanoporous p-type GaN:Mg surfaces  

SciTech Connect

InGaN-based light emitting diodes (LEDs) with a top pattern-nanoporous p-type GaN:Mg surface were fabricated by using a photoelectrochemical (PEC) process. The peak wavelengths of electroluminescence (EL) and operating voltages were measured as 461.2 nm (3.1 V), 459.6 nm (9.2 V), and 460.1 nm (3.3 V) for conventional, nanoporous, and pattern-nanoporous LEDs using 20 mA operation current. The EL spectrum of the nanoporous LED had a larger blueshift phenomenon as a result of a partial compression strain release in the InGaN active layer through the formation of a top nanoporous surface. The light output power had 12.1% and 26.4% enhancements for the nanoporous and the pattern-nanoporous LEDs compared with conventional LEDs. The larger operating voltage of the nanoporous LED was due to the non-ohmic contact on the PEC treated p-type GaN:Mg surface. By using a pattern-nanoporous p-type GaN:Mg structure, the operating voltage of the pattern-nanoporous LED was reduced to 3.3 V. A lower compression strain in the InGaN active layer and a higher light extraction efficiency at the top nanoporous surface were observed in pattern-nanoporous LEDs for higher efficiency nitride-based LED applications.

Yang, C.C.; Lin, C.F.; Lin, C.M.; Chang, C.C.; Chen, K.T.; Chien, J.F.; Chang, C.Y. [Department of Materials Engineering, National Chung Hsing University, Taichung 402, Taiwan (China)

2008-11-17T23:59:59.000Z

71

EIS-0268-Figures-1997.pdf  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DOFJ'EIS-0268 DOFJ'EIS-0268 - PKw.2F Figure 4-L L-Lake and environs. 4-3 -- =----- 90 --m--- -m- EAST o (C.nti""ed O"figure 4.4b) AA 320 1 300 1 Fourmile Indian Grave Upland Pen Branch Brench Formation Branch 280 ~ 280 240 : E -220 ~ L 200 180 I 160 140 1 I I 1 2 3 4 5 Miles Legend: _ _ Inferredcontact Note:TO converito kilometersmultiply by 1.609 to convetito metersmultiply by0.304e Figure 4-4a. Generalized geologic cross section from Fourmile Branch to L DO~IS-0268 I t" 1 I I t 4-8 DOE/EIS-0268 I 4-60 I t t i I I DOE/EIS-0268 ,. ,. 4-61 DOE/EIS-0268 ,. ,,.':, .. ,.. , 4-62 I 1 I I I DOE/EIS-0268 4-63 DOEI'EIS-0268 ., . . 4-64 I I 1 B I I I m 1 I I I I 1 I I I m I DOE~IS-0268 4-65 DO~IS-0268 Radon in homes: 200 millirem per year Notes me major contributor to the annual average individual dose in the United StaIeS, [ncluti"g residents of the Central Savannah River Area, is naturally occuning radiation

72

Do it yourself lighting power survey: lighting power audit for use with the Massachusetts type watts per square foot method of calculating a building's lighting power budget  

SciTech Connect

Advantages of the self-audit approach to energy conservation are presented. These are that it is cheaper to do it yourself; the employees become part of the corporate conservation effect; and no one knows the building and its needs better than the occupant. Steps described in the lighting survey procedure are: (1) divide the building into categories; (2) determine the total square footage for each category; (3) assign a power allowance for each category; (4) multiply the total square footage for each category by the respective power allowances; (5) add the budget sub-totals for each category to determine total building budget; and (6) walk through the building room-by-room and calculate the connected lighting load fixture-by-fixture. Some worksheets are provided. (MCW)

Not Available

1980-06-01T23:59:59.000Z

73

A pattern of light : a new library for Newton and an analysis of the building type  

E-Print Network (OSTI)

Natural light can add clarity to the organization of buildings by distinguishing areas of occupation with varying quantities and qualities of illumination. Libraries are good to study in this regard because of their varying ...

Flavin, Colin

1985-01-01T23:59:59.000Z

74

Microsoft Word - Figure_14_15.doc  

Gasoline and Diesel Fuel Update (EIA)

5 5 0.00-2.49 2.50-4.49 4.50-6.49 6.50-8.49 8.50-10.49 10.50+ WA ID MT OR CA NV UT AZ NM CO WY ND SD MN WI NE IA KS MO TX IL IN OH MI OK AR TN WV VA KY MD PA WI NY VT NH MA CT ME RI NJ DC NC SC GA AL MS LA FL HI AK DE 0 2 4 6 8 10 1980 1982 1984 1986 1988 1990 1992 1994 1996 1998 2000 2002 2004 Dollars per Thousand Cubic Feet 0 40 80 120 160 200 240 280 320 360 Dollars per Thousand Cubic Meters Constant Dollars Nominal Dollars Figure 14. Average Price of Natural Gas Delivered to Residential Consumers, 1980-2004 Figure 15. Average City Gate Price of Natural Gas in the United States, 2004 (Dollars per Thousand Cubic Feet) Sources: Nominal dollars: Energy Information Administration (EIA), Form EIA-176, "Annual Report of Natural and Supplemental Gas Supply and Disposition," and Form EIA-910, "Monthly Natural Gas Marketer Survey." Constant dollars: Prices were converted to 2004 dollars using the chain-type price indexes for Gross Domestic Product

75

Microsoft Word - figure_15.doc  

Gasoline and Diesel Fuel Update (EIA)

38 38 0 2 4 6 8 10 2002 2003 2004 2005 2006 Trillion Cubic Feet 0 50 100 150 200 250 Billion Cubic Meters Residential Commercial Industrial Electric Power Sources: Energy Information Administration (EIA), Form EIA-176, "Annual Report of Natural and Supplemental Gas Supply and Disposition," and Form EIA-906, "Power Plant Report." Figure 15. Natural Gas Delivered to Consumers in the United States, 2002-2006 Cautionary Note: Number of Residential and Commercial Consumers The Energy Information Administration (EIA) expects that there may be some double counting in the number of residential and commercial customers reported for 2002 through 2006. EIA collects information on the number of residential and commercial consumers through a survey of companies that deliver gas

76

Microsoft Word - figure_18.doc  

Gasoline and Diesel Fuel Update (EIA)

0 0 0 2 4 6 8 10 12 14 2001 2002 2003 2004 2005 Dollars per Thousand Cubic Feet 0 40 80 120 160 200 240 280 320 360 400 440 Dollars per Thousand Cubic Meters Residential Commercial Industrial Electric Power Vehicle Fuel Figure 18. Average Price of Natural Gas Delivered to Consumers in the United States, 2001-2005 Note: Coverage for prices varies by consumer sector. See Appendix A for further discussion on consumer prices. Sources: Energy Information Administration (EIA), Form EIA-176, "Annual Report of Natural and Supplemental Gas Supply and Disposition"; Form EIA-857, "Monthly Report of Natural Gas Purchases and Deliveries to Consumers"; Federal Energy Regulatory Commission (FERC), Form FERC-423, "Monthly Report of Cost and Quality of Fuels for

77

Microsoft Word - figure_13.doc  

Gasoline and Diesel Fuel Update (EIA)

Egypt Figure 13. Net Interstate Movements, Imports, and Exports of Natural Gas in the United States, 2007 (Million Cubic Feet) Nigeria Algeria 37,483 WA M T I D OR W Y ND SD C A N V UT CO NE KS AZ NM OK TX MN WI MI IA I L IN OH MO AR MS AL GA TN KY FL SC NC WV MD DE VA PA NJ NY CT RI MA VT NH ME LA HI AK Mexico C a n a d a C a n a d a Canada Canada Canada Canada Canada Algeria Canada Canada i i N g e r a Gulf of Mexico Gulf o f M e x i c o Gulf of Mexico Canada Gulf of Mexico Sources: Energy Information Administration (EIA), Form EIA-176, "Annual Report of Natural and Supplemental Gas Supply and Disposition," and the Office of Fossil Energy, Natural Gas Imports and Exports.

78

Microsoft Word - figure_15.doc  

Gasoline and Diesel Fuel Update (EIA)

0 0 0 2 4 6 8 10 2003 2004 2005 2006 2007 Trillion Cubic Feet 0 50 100 150 200 250 Billion Cubic Meters Residential Commercial Industrial Electric Power Sources: Energy Information Administration (EIA), Form EIA-176, "Annual Report of Natural and Supplemental Gas Supply and Disposition"; Form EIA-906, "Power Plant Report"; Form EIA-920, "Combined Heat and Power Plant Report"; and Form EIA-923, "Power Plant Operations Report." Figure 15. Natural Gas Delivered to Consumers in the United States, 2003-2007 Cautionary Note: Number of Residential and Commercial Consumers The Energy Information Administration (EIA) expects that there may be some double counting in the number of residential and commercial customers reported for 2003 through 2007.

79

Microsoft Word - figure_15.doc  

Gasoline and Diesel Fuel Update (EIA)

38 38 0 2 4 6 8 10 2001 2002 2003 2004 2005 Trillion Cubic Feet 0 50 100 150 200 250 Billion Cubic Meters Residential Commercial Industrial Electric Power Figure 15. Natural Gas Delivered to Consumers in the United States, 2001-2005 Sources: Energy Information Administration (EIA), Form EIA -176, "Annual Report of Natural and Supplemental Gas Supply and Disposition," and Form EIA-906, "Power Plant Report." Cautionary Note: Number of Residential and Commercial Consumers The Energy Information Administration (EIA) expects that there may be some double counting in the number of residential and commercial customers reported for 2001 through 2005. EIA collects information on the number of residential and commercial consumers through a survey of companies that deliver gas

80

PHOBOS Experiment: Figures and Data  

DOE Data Explorer (OSTI)

PHOBOS consists of many silicon detectors surrounding the interaction region. With these detectors physicists can count the total number of produced particles and study the angular distributions of all the products. Physicists know from other branches of physics that a characteristic of phase transitions are fluctuations in physical observables. With the PHOBOS array they look for unusual events or fluctuations in the number of particles and angular distribution. The articles that have appeared in refereed science journals are listed here with separate links to the supporting data plots, figures, and tables of numeric data.  See also supporting data for articles in technical journals at http://www.phobos.bnl.gov/Publications/Technical/phobos_technical_publications.htm and from conference proceedings at http://www.phobos.bnl.gov/Publications/Proceedings/phobos_proceedings_publications.htm

The PHOBOS Collaboration

Note: This page contains sample records for the topic "light types figure" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

The Rise and Fall of Type Ia Supernova Light Curves in the SDSS-II Supernova Survey  

Science Conference Proceedings (OSTI)

We analyze the rise and fall times of Type Ia supernova (SN Ia) light curves discovered by the Sloan Digital Sky Survey-II (SDSS-II) Supernova Survey. From a set of 391 light curves k-corrected to the rest-frame B and V bands, we find a smaller dispersion in the rising portion of the light curve compared to the decline. This is in qualitative agreement with computer models which predict that variations in radioactive nickel yield have less impact on the rise than on the spread of the decline rates. The differences we find in the rise and fall properties suggest that a single 'stretch' correction to the light curve phase does not properly model the range of SN Ia light curve shapes. We select a subset of 105 light curves well observed in both rise and fall portions of the light curves and develop a '2-stretch' fit algorithm which estimates the rise and fall times independently. We find the average time from explosion to B-band peak brightness is 17.38 {+-} 0.17 days, but with a spread of rise times which range from 13 days to 23 days. Our average rise time is shorter than the 19.5 days found in previous studies; this reflects both the different light curve template used and the application of the 2-stretch algorithm. The SDSS-II supernova set and the local SNe Ia with well-observed early light curves show no significant differences in their average rise-time properties. We find that slow-declining events tend to have fast rise times, but that the distribution of rise minus fall time is broad and single peaked. This distribution is in contrast to the bimodality in this parameter that was first suggested by Strovink (2007) from an analysis of a small set of local SNe Ia. We divide the SDSS-II sample in half based on the rise minus fall value, t{sub r} - t{sub f} {approx} 2 days, to search for differences in their host galaxy properties and Hubble residuals; we find no difference in host galaxy properties or Hubble residuals in our sample.

Hayden, Brian T.; /Notre Dame U.; Garnavich, Peter M.; /Notre Dame U.; Kessler, Richard; /KICP, Chicago /Chicago U., EFI; Frieman, Joshua A.; /KICP, Chicago /Chicago U. /Fermilab; Jha, Saurabh W.; /Stanford U., Phys. Dept. /Rutgers U., Piscataway; Bassett, Bruce; /Cape Town U., Dept. Math. /South African Astron. Observ.; Cinabro, David; /Wayne State U.; Dilday, Benjamin; /Rutgers U., Piscataway; Kasen, Daniel; /UC, Santa Cruz; Marriner, John; /Fermilab; Nichol, Robert C.; /Portsmouth U., ICG /Baltimore, Space Telescope Sci. /Johns Hopkins U.

2010-01-01T23:59:59.000Z

82

Microsoft Word - figure_13.doc  

Gasoline and Diesel Fuel Update (EIA)

,833 ,833 35 Egypt Figure 13. Net Interstate Movements, Imports, and Exports of Natural Gas in the United States, 2009 (Million Cubic Feet) Norway Trinidad/ Tobago Trinidad/ Tobago Egypt Interstate Movements Not Shown on Map From Volume To From Volume To CT RI RI MA MA CT VA DC MD DC 111,144 WA M T I D OR W Y ND SD C A N V UT CO NE KS AZ NM OK TX MN WI MI IA I L IN OH MO AR MS AL GA TN KY FL SC NC WV MD DE VA PA NJ NY CT RI MA VT NH ME LA HI AK Mexico C a n a d a C a n a d a Canada Canada Canada Canada Canada Canada Canada i i N g e r a Gulf of Mexico Gulf o f M e x i c o Gulf of Mexico Canada Gulf of Mexico Sources: Energy Information Administration (EIA), Form EIA-176, "Annual Report of Natural and Supplemental Gas Supply and Disposition," the Office of Fossil Energy, Natural Gas Imports and Exports, and EIA estimates

83

Microsoft Word - figure_02.doc  

Gasoline and Diesel Fuel Update (EIA)

Egypt Figure 2. Natural Gas Supply and Disposition in the United States, 2010 (Trillion Cubic Feet) Extraction Loss Gross Withdrawals From Gas and Oil Wells Nonhydrocarbon Gases Removed Vented/Flared Reservoir Repressuring Production Dry Gas Imports Canada Trinidad/Tobago Nigeria Natural Gas Storage Facilities Exports Japan Canada Mexico Additions Withdrawals Gas Industry Use Residential Commercial Industrial Vehicle Fuel Electric Power 26.8 0.8 0.2 3.4 3.280 0.190 0.042 0.333 0.739 0.033 21.3 1.1 3.3 3.3 2.0 3.1 6.5 0.03 7.4 0.073 Sources: Energy Information Administration (EIA), Form EIA-176, "Annual Report of Natural and Supplemental Gas Supply and Disposition"; Form EIA-895, "Annual Quantity and Value of Natural Gas Production Report"; Form EIA-914, "Monthly Natural Gas Production Report"; Form EIA-857, "Monthly Report of Natural Gas Purchases and Deliveries to

84

Microsoft Word - figure_02.doc  

Gasoline and Diesel Fuel Update (EIA)

Egypt Figure 2. Natural Gas Supply and Disposition in the United States, 2009 (Trillion Cubic Feet) Extraction Loss Gross Withdrawals From Gas and Oil Wells Nonhydrocarbon Gases Removed Vented/Flared Reservoir Repressuring Production Dry Gas Imports Canada Trinidad/Tobago Nigeria Natural Gas Storage Facilities Exports Japan Canada Mexico Additions Withdrawals Gas Industry Use Residential Commercial Industrial Vehicle Fuel Electric Power 26.0 0.7 0.2 3.5 3.271 0.236 0.013 0.338 0.701 0.031 20.6 1.0 3.4 3.0 1.9 3.1 6.2 0.03 6.9 0.160 Sources: Energy Information Administration (EIA), Form EIA-176, "Annual Report of Natural and Supplemental Gas Supply and Disposition"; Form EIA-895, "Annual Quantity and Value of Natural Gas Production Report"; Form EIA-914, "Monthly Natural Gas Production Report"; Form EIA-857, "Monthly Report of Natural Gas Purchases and Deliveries to

85

Microsoft Word - figure_02.doc  

Gasoline and Diesel Fuel Update (EIA)

Egypt Algeria Figure 2. Natural Gas Supply and Disposition in the United States, 2007 (Trillion Cubic Feet) Extraction Loss Gross Withdrawals From Gas and Oil Wells Nonhydrocarbon Gases Removed Vented/Flared Reservoir Repressuring Production Dry Gas Imports Canada Trinidad/Tobago Nigeria Natural Gas Storage Facilities Exports Japan Canada Mexico Additions Withdrawals Gas Industry Use Residential Commercial Industrial Vehicle Fuel Electric Power 24.6 0.6 0.2 3.8 3.783 0.448 0.077 0.095 0.292 0.482 0.047 19.1 0.9 3.2 3.4 1.8 3.0 6.6 0.03 6.8 0.115 Sources: Energy Information Administration (EIA), Form EIA-176, "Annual Report of Natural and Supplemental Gas Supply and Disposition"; Form EIA-895A, "Annual Quantity and Value of Natural Gas Production Report"; Form EIA-914, "Monthly Natural Gas Production Report"; Form EIA-857, "Monthly Report of Natural Gas Purchases and Deliveries to

86

Microsoft Word - figure_14.doc  

Gasoline and Diesel Fuel Update (EIA)

Egypt Figure 14. Net Interstate Movements, Imports, and Exports of Natural Gas in the United States, 2010 (Million Cubic Feet) Norway India Trinidad/ Tobago Egypt Yemen Japan Interstate Movements Not Shown on Map From Volume To From Volume To CT RI RI MA MA CT VA DC MD DC 53,122 WA M T I D OR W Y ND SD C A N V UT CO NE KS AZ NM OK TX MN WI MI IA I L IN OH MO AR MS AL GA TN KY FL SC NC WV MD DE VA PA NJ NY CT RI MA VT NH ME LA HI AK Mexico C a n a d a C a n a d a Canada Canada Canada Canada Canada Canada Canada Gulf of Mexico Canada Sources: Energy Information Administration (EIA), Form EIA-176, "Annual Report of Natural and Supplemental Gas Supply and Disposition," the Office of Fossil Energy, Natural Gas Imports and Exports, and EIA estimates based on historical data. Energy Information

87

Microsoft Word - figure_16.doc  

Gasoline and Diesel Fuel Update (EIA)

4 4 Commercial All Other States Wisconsin Minnesota Pennsylvania Texas Ohio New Jersey Michigan California New York Illinois 0.0 0.5 1.0 1.5 2.0 2.5 3.0 Trillion Cubic Feet Residential Wisconsin Indiana Texas New Jersey Pennsylvania Ohio Michigan Illinois California All Other States New York 0.0 0.5 1.0 1.5 2.0 2.5 3.0 Trillion Cubic Feet Figure 16. Natural Gas Delivered to Consumers in the United States, 2008 Volumes in Million Cubic Feet Trillion Cubic Feet Trillion Cubic Feet Electric Pow er 6,668,379 31% Industrial 6,650,276 31% Commercial 3,135,852 15% Residential 4,872,107 23% Industrial All Other States Georgia Iow a Oklahom a Pennsylvania Illinois Indiana Ohio Louisiana Texas California 0.0 0.5 1.0 1.5 2.0 2.5 3.0 Electric Power All Other States Mississippi New Jersey Louisiana

88

Microsoft Word - figure_17.doc  

Gasoline and Diesel Fuel Update (EIA)

3 3 Commercial All Other States Wisconsin M innesota Pennsylvania Ohio M ichigan Texas New Jersey California New York Illinois 0.0 0.5 1.0 1.5 2.0 2.5 3.0 Trillion C ubic Feet Residential Colorado Indiana Texas New Jersey Pennsylvania Ohio M ichigan Illinois California All Other States New York 0.0 0.5 1.0 1.5 2.0 2.5 3.0 Trillion C ubic Feet Figure 18. Natural gas delivered to consumers in the United States, 2011 Volumes in Million Cubic Feet Trillion Cubic Feet Trillion Cubic Feet Residential 4,713,695 21% Commercial 3,153,605 14% Industrial 6,904,843 31% Electric Power 7,573,863 34% Industrial All Other States M innesota Iowa Oklahoma Pennsylvania Ohio Illinois Indiana Louisiana Texas California 0.0 0.5 1.0 1.5 2.0 2.5 3.0 Electric Power

89

Microsoft Word - figure_16.doc  

Gasoline and Diesel Fuel Update (EIA)

4 4 Commercial All Other States Wisconsin Minnesota Pennsylvania Ohio Texas Michigan New Jersey California New York Illinois 0.0 0.5 1.0 1.5 2.0 2.5 3.0 Trillion Cubic Feet Residential Wisconsin Indiana Texas New Jersey Pennsylvania Ohio Michigan Illinois California All Other States New York 0.0 0.5 1.0 1.5 2.0 2.5 3.0 Trillion Cubic Feet Figure 16. Natural Gas Delivered to Consumers in the United States, 2007 Volumes in Million Cubic Feet Trillion Cubic Feet Trillion Cubic Feet Electric Pow er 6,841,408 33% Industrial 6,624,846 31% Commercial 3,017,105 14% Residential 4,717,311 22% Industrial All Other States Georgia Oklahom a Michigan Pennsylvania Illinois Indiana Ohio Louisiana Texas California 0.0 0.5 1.0 1.5 2.0 2.5 3.0 Trillion Cubic Feet Electric Power All Other States Alabam a

90

Microsoft Word - figure_02.doc  

Gasoline and Diesel Fuel Update (EIA)

Egypt Figure 2. Natural Gas Supply and Disposition in the United States, 20088 (Trillion Cubic Feet) Extraction Loss Gross Withdrawals From Gas and Oil Wells Nonhydrocarbon Gases Removed Vented/Flared Reservoir Repressuring Production Dry Gas Imports Canada Trinidad/Tobago Nigeria Natural Gas Storage Facilities Exports Japan Canada Mexico Additions Withdrawals Gas Industry Use Residential Commercial Industrial Vehicle Fuel Electric Power 25.8 0.7 0.2 3.6 3.589 0.267 0.012 0.365 0.590 0.050 20.3 1.0 3.4 3.4 1.9 3.1 6.7 0.03 6.7 0.055 Sources: Energy Information Administration (EIA), Form EIA-176, "Annual Report of Natural and Supplemental Gas Supply and Disposition"; Form EIA-895, "Annual Quantity and Value of Natural Gas Production Report"; Form EIA-914, "Monthly Natural Gas Production Report"; Form EIA-857, "Monthly Report of Natural Gas Purchases and Deliveries to

91

Microsoft Word - figure_02.doc  

Gasoline and Diesel Fuel Update (EIA)

4 4 Egypt Algeria Figure 2. Natural Gas Supply and Disposition in the United States, 2006 (Trillion Cubic Feet) Extraction Loss Gross Withdrawals From Gas and Oil Wells Nonhydrocarbon Gases Removed Vented/Flared Reservoir Repressuring Production Dry Gas Imports Canada Trinidad/Tobago Nigeria Natural Gas Storage Facilities Exports Japan Canada Mexico Additions Withdrawals Gas Industry Use Residential Commercial Industrial Vehicle Fuel Electric Power 23.5 0.7 0.1 3.3 3.590 0.389 0.017 0.057 0.322 0.341 0.061 18.5 0.9 3.0 2.5 1.7 4.4 2.8 6.5 0.02 6.2 0.120 Sources: Energy Information Administration (EIA), Form EIA-176, "Annual Report of Natural and Supplemental Gas Supply and Disposition"; Form EIA-895A, "Annual Quantity and Value of Natural Gas Production Report"; Form EIA-857, "Monthly Report of Natural Gas Purchases and Deliveries to Consumers"; Form EIA-816, "Monthly Natural Gas Liquids

92

Microsoft Word - figure_13.doc  

Gasoline and Diesel Fuel Update (EIA)

Egypt Figure 13. Net Interstate Movements, Imports, and Exports of Natural Gas in the United States, 2008 (Million Cubic Feet) Norway Trinidad/ Tobago Interstate Movements Not Shown on Map From Volume To From Volume To CT RI RI MA MA CT VA DC MD DC 45,772 WA M T I D OR W Y ND SD C A N V UT CO NE KS AZ NM OK TX MN WI MI IA I L IN OH MO AR MS AL GA TN KY FL SC NC WV MD DE VA PA NJ NY CT RI MA VT NH ME LA HI AK Mexico C a n a d a C a n a d a Canada Canada Canada Canada Canada Canada Canada i i N g e r a Gulf of Mexico Gulf o f M e x i c o Gulf of Mexico Canada Gulf of Mexico Sources: Energy Information Administration (EIA), Form EIA-176, "Annual Report of Natural and Supplemental Gas Supply and Disposition," the Office of Fossil Energy, Natural Gas Imports and Exports, and EIA estimates.

93

Microsoft Word - figure_16.doc  

Gasoline and Diesel Fuel Update (EIA)

4 4 Commercial All Other States Wisconsin Minnesota Pennsylvania Ohio Michigan Texas New Jersey California New York Illinois 0.0 0.5 1.0 1.5 2.0 2.5 3.0 Trillion Cubic Feet Residential Minnesota Indiana Texas New Jersey Pennsylvania Ohio Michigan Illinois California All Other States New York 0.0 0.5 1.0 1.5 2.0 2.5 3.0 Trillion Cubic Feet Figure 16. Natural Gas Delivered to Consumers in the United States, 2009 Volumes in Million Cubic Feet Trillion Cubic Feet Trillion Cubic Feet Electric Pow er 6,872,049 33% Industrial 6,167,193 29% Commercial 3,118,833 15% Residential 4,778,478 23% Industrial All Other States Georgia Iow a Pennsylvania Oklahom a Ohio Illinois Indiana Louisiana Texas California 0.0 0.5 1.0 1.5 2.0 2.5 3.0 Electric Power All Other States Nevada Pennsylvania Alabam a Arizona

94

Microsoft Word - figure_17.doc  

Gasoline and Diesel Fuel Update (EIA)

5 5 C ommercial All O ther States W isconsin Minnesota Pennsylvania Michigan O hio N ew Jersey Texas California N ew York Illinois 0.0 0.5 1.0 1.5 2.0 2.5 3.0 Trillion C ubic Feet Residential Indiana G eorgia N ew Jersey Pennsylvania Texas O hio Michigan Illinois California All O ther States N ew York 0.0 0.5 1.0 1.5 2.0 2.5 3.0 Trillion C ubic Feet Figure 17. Natural Gas Delivered to Consumers in the United States, 2010 Volumes in Million Cubic Feet Trillion Cubic Feet Trillion Cubic Feet E lectric P ower 7,387,184 34% Industrial 6,517,477 30% C om m ercial 3,101,675 14% R esidential 4,787,320 22% Industrial All O ther States Minnesota Iowa Pennsylvania O klahoma Illinois O hio Indiana Louisiana Texas California 0.0 0.5 1.0 1.5 2.0 2.5 3.0 E lectric Power All O ther States Arizona Mississippi Louisiana Alabama

95

Lighting in Residential and Commercial Buildings (1993 and 1995 Data) --  

U.S. Energy Information Administration (EIA) Indexed Site

Commercial Buildings Home > Special Topics and Data Reports > Types of Lights Commercial Buildings Home > Special Topics and Data Reports > Types of Lights Picture of a light bulb At Home and At Work: What Types of Lights Are We Using? Two national EIA surveys report that . . . Of residential households, 98 percent use incandescent, 42 percent use fluorescent. Of commercial buildings, 59 percent use incandescent, 92 percent use fluorescent. At a glance, we might conclude that substantial energy savings could occur in both the residential and commercial sectors if they replaced their incandescent lights with fluorescent lights, given that fluorescent lights consume approximately 75-85 percent less electricity than incandescent lights. In the residential sector, this is true. However, in the commercial sector, where approximately 92 percent of the buildings already use fluorescent lights, increasing energy savings will require upgrading existing lights and lighting systems. To maximize energy savings, analysis must also consider the hours the lights are used and the amount of floorspace lit by that lighting type. Figures 1 and 2 show the types of lights used by the percent of households and by the percent of floorspace lit for the residential and the commercial sectors, respectively.

96

Energy Efficiency Report: Chapter 3 Figures (Residential)  

U.S. Energy Information Administration (EIA)

Figure 3.1. Total Site Residential Energy Consumption and Personal Consumption Expenditures Indices, 1980 to 1993. Notes: Personal consumption expenditures used ...

97

Figure 70. Delivered energy consumption for transportation ...  

U.S. Energy Information Administration (EIA)

Sheet3 Sheet2 Sheet1 Figure 70. Delivered energy consumption for transportation by mode, 2011 and 2040 (quadrillion Btu) Total Rail Pipeline Marine ...

98

Figure 37. Carbon dioxide emissions from electricity ...  

U.S. Energy Information Administration (EIA)

Sheet3 Sheet2 Sheet1 Figure 37. Carbon dioxide emissions from electricity generation in three cases, 2005-2040 (million metric tons carbon dioxide ...

99

Figure F2. Electricity market module regions  

U.S. Energy Information Administration (EIA)

U.S. Energy Information Administration Annual Energy Outlook 2013 227 Regional maps Figure F2. Electricity market module regions Source: U.S. Energy Information ...

100

Figure 4.17 Geothermal Resources  

U.S. Energy Information Administration (EIA)

Figure 4.17 Geothermal Resources 124 U.S. Energy Information Administration / Annual Energy Review 2011 Notes: • Data are for locations of identified hydrothermal ...

Note: This page contains sample records for the topic "light types figure" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Outlaw lighting  

SciTech Connect

Demand-side management programs by utilities and the federal government`s Green Lights program have made significant inroads in promoting energy-efficient lighting. But the Energy Policy Act now prohibits certain types of lighting. This article provides analysis to help architects determine new lamp performance compared with older lighting products.

Bryan, H.

1994-12-01T23:59:59.000Z

102

Microsoft Word - Figure_03_04.doc  

U.S. Energy Information Administration (EIA) Indexed Site

8 8 0 2 4 6 8 10 12 14 16 18 20 22 2010 2011 2012 2013 2014 Residential Commercial Industrial Electric Power Citygate dollars per thousand cubic feet Figure 3 and 4 0 2 4 6 8 10 12 14 16 18 20 22 2010 2011 2012 2013 2014 NGPL Composite Spot Price NG Spot Price at Henry Hub dollars per thousand c ubic feet Note: Prices are in nominal dollars. Source: Table 3. Figure 3. Average citygate and consumer prices of natural gas in the United States, 2010-2013 Figure 4. Spot prices of natural gas and natural gas plant liquids in the United States, 2010-2013

103

Kaganovich et al Supplementary Figure S1  

E-Print Network (OSTI)

n n Kaganovich et al Supplementary Figure S1 WT+MG13237°Ccim3-1 Ubc9 ts Ubc9 ts 37°C a b n n cim3 al Supplementary Figure S2 c b ts cim3-1 (min): 0 5 10 15 60 60 GFP-Ubc9 + 20M Benomyltime at 37 °C Figure S3 GFP-VHL T S P T S P 30°C 37°C 1hr Ub-GFP Sup-Pellet assay cim3-1 GFP-VHL a b VHL in cim3

Bedwell, David M.

104

Figure ES1. Map of Northern Alaska  

U.S. Energy Information Administration (EIA) Indexed Site

Figure ES1. Map of Northern Alaska figurees1.jpg (61418 bytes) Source: Edited from U.S. Geological Survey, "The Oil and Gas Resource Potential of the Arctic National Wildlife...

105

arXiv.org help - Bitmapping Figures  

NLE Websites -- All DOE Office Websites (Extended Search)

Bitmapping Figures Many graphics and plotting programs do not take into account that people might want to send their output over the internet instead of to a local printer. These...

106

Microsoft Word - figure_08_2008.doc  

Annual Energy Outlook 2012 (EIA)

9 48.5 Egypt Japan Canada Mexico Figure 8. Flow of Natural Gas Imports and Exports, 2007 (Billion Cubic Feet) Note: U.S. exports to Canada and Mexico include liquefied natural gas...

107

Microsoft Word - Figure_8_Oct2009.doc  

Gasoline and Diesel Fuel Update (EIA)

19 50 Japan Canada Mexico Figure 8. Flow of Natural Gas Imports and Exports, 2008 (Billion Cubic Feet) Note: U.S. exports to Canada and Mexico include liquefied natural gas (LNG)....

108

EIS-0023-FEIS-Figures-1979.pdf  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

NORTM NORTM CAROLINA 2 -- r /'- 3Charlo,te Gree,v:; I, o s. \ '~ ( % SOUTH CAROLINA ".4 o " .Alkenoco'"mb'a A1l.a,to \ August. ( SRP O Macon \ GEORGIA ? Charleston 50 MI ".* / 100 Ml 150 Mi 1 \ ATLANTIC OCEAN Sov.nn.h / FIGURE III-1. Location of SRP Relative to Surrounding Population Centers III-2 --- - FIGURE III-2. The Savannah River Plant III-3 FIGURE 'III-3. Profile of Geologic Formation Beneath the Savannah River Plant . III-5 ,-, -,.. . . . . . 5 .-- -612 CRYSTALLINE ROCK . II rfoce FIGURE III-4. Hydrostatic Head in Ground Water Near H Area III-8 ~'z 'Kw ) -.- ________ Alu EN F PLATEAU ";<--'-----% \ ~//i.s,t,,7 --- I '220--- Heed in Tuscaloosa ft H20 obove me.. $,0 level - 5 0 5 10 ,5 MILES FIGURE III-5. Flow in Tuscaloosa Aquifer (Ongoing hydrographic measurements indicate that this flow pattern has remained the same under the SRP site since the early 1950' s.) 111-10 . FIGURE

109

Incandescent Lighting | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Incandescent Lighting Incandescent Lighting August 16, 2013 - 10:00am Addthis Incandescent lighting is the most common type of lighting used in homes. Incandescent lamps operate...

110

Wet-Etch Figuring Optical Figuring by Controlled Application of Liquid Etchant  

SciTech Connect

WET-ETCH FIGURING (WEF) is an automated method of precisely figuring optical materials by the controlled application of aqueous etchant solution. This technology uses surface-tension-gradient-driven flow to confine and stabilize a wetted zone of an etchant solution or other aqueous processing fluid on the surface of an object. This wetted zone can be translated on the surface in a computer-controlled fashion for precise spatial control of the surface reactions occurring (e.g. chemical etching). WEF is particularly suitable for figuring very thin optical materials because it applies no thermal or mechanical stress to the material. Also, because the process is stress-free the workpiece can be monitored during figuring using interferometric metrology, and the measurements obtained can be used to control the figuring process in real-time--something that cannot be done with traditional figuring methods.

Britten, J

2001-02-13T23:59:59.000Z

111

Finding Six-Figure ROI From Energy Efficiency | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Finding Six-Figure ROI From Energy Efficiency Finding Six-Figure ROI From Energy Efficiency Finding Six-Figure ROI From Energy Efficiency September 28, 2010 - 10:20am Addthis Kevin Craft What are the key facts? Recovery Act funded energy efficiency lighting upgrades in Huntington, New York. Street lighting accounts for 40% of town's electric costs. Huntington estimates $151,000 in annual savings through lighting changes. Return-on-investment -- that is the phrase town officials in Huntington, New York, carefully considered before commissioning several projects to improve municipal energy efficiency. "Saving town residents money on energy bills is one way to help stimulate the local economy. So we looked for projects that would save our residents as much money as possible," said Huntington Supervisor Frank Petrone.

112

Finding Six-Figure ROI From Energy Efficiency | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Finding Six-Figure ROI From Energy Efficiency Finding Six-Figure ROI From Energy Efficiency Finding Six-Figure ROI From Energy Efficiency September 28, 2010 - 10:20am Addthis Kevin Craft What are the key facts? Recovery Act funded energy efficiency lighting upgrades in Huntington, New York. Street lighting accounts for 40% of town's electric costs. Huntington estimates $151,000 in annual savings through lighting changes. Return-on-investment -- that is the phrase town officials in Huntington, New York, carefully considered before commissioning several projects to improve municipal energy efficiency. "Saving town residents money on energy bills is one way to help stimulate the local economy. So we looked for projects that would save our residents as much money as possible," said Huntington Supervisor Frank Petrone.

113

Lighting Enhancement of GaN LEDs by Applying p-Type Ni(P):SnO2 ...  

Science Conference Proceedings (OSTI)

About this Abstract. Meeting, Materials Science & Technology 2013. Symposium, Multifunctional Oxides. Presentation Title, Lighting Enhancement of GaN LEDs ...

114

EIS-0317-S1: Environmental Impact Statement, Maps and Figures...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Environmental Impact Statement, Maps and Figures Kangley-Echo Lake Transmission Line Project Maps and Figures Bonneville Power Administration is proposing to build a new...

115

Sheet Metal Forming: A Review - Figure 18 - TMS  

Science Conference Proceedings (OSTI)

Figure 18. Fracture and local necking strains in aluminum alloy 5154. Under balanced biaxial tension, failure occurs by fracture before local necking. Figure 18 ...

116

Figure 2. Energy Consumption of Vehicles, Selected Survey Years  

U.S. Energy Information Administration (EIA) Indexed Site

Home > Households, Buildings & Industry >Transportation Surveys > Household Vehicles Energy Use > Figure 2 Figure 2. Energy Consumption of Vehicles, Selected Survey Years...

117

Lighting Options for Homes.  

SciTech Connect

This report covers many aspects of various lighting options for homes. Types of light sources described include natural light, artificial light, incandescent lamps, fluorescent lamps, and high intensity discharge lamps. A light source selection guide gives the physical characteristics of these, design considerations, and common applications. Color, strategies for efficient lighting, and types of lighting are discussed. There is one section giving tips for various situations in specific rooms. Rooms and types of fixtures are shown on a matrix with watts saved by using the recommended type lighting for that room and room location. A major emphasis of this report is saving energy by utilizing the most suitable, recommended lighting option. (BN)

Baker, W.S.

1991-04-01T23:59:59.000Z

118

Solid State Lighting Semiconductor Spectroscopy & Devices  

E-Print Network (OSTI)

information: jochen.bruckbauer@strath.ac.uk Overview Conventional light sources, like the light bulb of lighting Figure 4: In light bulbs a current is passed through a wire, which is very inefficient due than a light bulb, but they contain traces of toxic materials. LEDs utilise the movement of electrons

Strathclyde, University of

119

Short-Term Energy Outlook Figures  

U.S. Energy Information Administration (EIA) Indexed Site

Independent Statistics & Analysis" Independent Statistics & Analysis" ,"U.S. Energy Information Administration" ,"Short-Term Energy Outlook Figures, December 2013" ,"U.S. Prices" ,,"West Texas Intermediate (WTI) Crude Oil Price" ,,"U.S. Gasoline and Crude Oil Prices" ,,"U.S. Diesel Fuel and Crude Oil Prices" ,,"Henry Hub Natural Gas Price" ,,"U.S. Natural Gas Prices" ,"World Liquid Fuels" ,,"World Liquid Fuels Production and Consumption Balance" ,,"Estimated Unplanned Crude Oil Production Outages Among OPEC Producers" ,,"Estimated Unplanned Crude Oil Production Disruptions Among non-OPEC Producers" ,,"World Liquid Fuels Consumption" ,,"World Liquid Fuels Consumption Growth"

120

A1. Form EIA-176 Figure Energy Information Administration  

Gasoline and Diesel Fuel Update (EIA)

Form EIA-176 Form EIA-176 Figure Energy Information Administration / Natural Gas Annual 1996 214 EIA-176, ANNUAL REPORT OF NATURAL AND SUPPLEMENTAL GAS SUPPLY AND DISPOSITION, 19 PART IV: SUPPLY OF NATURAL AND SUPPLEMENTAL GAS RECEIVED WITHIN OR TRANSPORTED INTO REPORT STATE RESPONDENT COPY Page 2 PART III: TYPE OF COMPANY AND GAS ACTIVITIES OPERATED IN THE REPORT STATE 1.0 Type of Company (check one) 1.0 Control No. 2.0 Company Name 3.0 Report State 4.0 Resubmittal EIA Date: a b c d e Investor owned distributor Municipally owned distributor Interstate pipeline Intrastate pipeline Storage operator f g h i j SNG plant operator Integrated oil and gas Producer Gatherer Processor k Other (specify) 2.0 Gas Activities Operated On-system Within the Report State (check all that apply) a b c d e Produced Natural Gas

Note: This page contains sample records for the topic "light types figure" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

STAR (Solenoidal Tracker at RHIC) Figures and Data  

DOE Data Explorer (OSTI)

The primary physics task of STAR is to study the formation and characteristics of the quark-gluon plasma (QGP), a state of matter believed to exist at sufficiently high energy densities. STAR consists of several types of detectors, each specializing in detecting certain types of particles or characterizing their motion. These detectors work together in an advanced data acquisition and subsequent physics analysis that allows final statements to be made about the collision. The STAR Publications page provides access to all published papers by the STAR Collaboration, and many of them have separate links to the figures and data found in or supporting the paper. See also the data-rich summaries of the research at http://www.star.bnl.gov/central/physics/results/. [See also DDE00230

The STAR Collaboration

122

Light pipe - design for efficiency  

Science Conference Proceedings (OSTI)

The high cost and availability of materials which are clear enough to transmit light without absorption has limited the idea of piping large-scale quantities of light. The light pipe uses the principle of Total Internal Reflection, with the light guided by very accurate prisms. The transmission of light directed into the end of a Light Pipe at an angle of less than 27.6 degrees is theoretically 100% efficient. The author describes its uses and advantages for lighting offices, cold storage areas, difficult access and hazardous areas, and for solar lighting. Future directions will be to improve the economics and accuracy of the technology. 4 references, 2 figures.

Hockey, S.N.

1985-08-01T23:59:59.000Z

123

Microsoft Word - Figure_18_19.doc  

Gasoline and Diesel Fuel Update (EIA)

9 9 0.00-2.49 2.50-4.49 4.50-6.49 6.50-8.49 8.50-10.49 10.50+ WA ID MT OR CA NV UT AZ NM CO WY ND SD MN WI NE IA KS MO TX IL IN OH MI OK AR TN WV VA KY PA WI NY VT NH MA CT ME RI NJ DE DC NC SC GA AL MS LA FL HI AK MD 0.00-2.49 2.50-4.49 4.50-6.49 6.50-8.49 8.50-10.49 10.50+ WA ID MT OR CA NV UT AZ NM CO WY ND SD MN WI NE IA KS MO TX IL IN OH MI OK AR TN WV VA KY MD PA WI NY VT NH MA CT ME RI NJ DE DC NC SC GA AL MS LA FL HI AK Figure 18. Average Price of Natural Gas Delivered to U.S. Onsystem Industrial Consumers, 2004 (Dollars per Thousand Cubic Feet) Figure 19. Average Price of Natural Gas Delivered to U.S. Electric Power Consumers, 2004 (Dollars per Thousand Cubic Feet) Source: Energy Information Administration (EIA), Form EIA-176, "Annual Report of Natural and Supplemental Gas Supply and Disposition." Note: States where the electric power price has been withheld (see Table 23) are included in the $0.00-$2.49 price category.

124

Microsoft Word - Figure_3_4.doc  

Gasoline and Diesel Fuel Update (EIA)

7 7 None 1-15,000 15,001-100,000 100,001-200,000 200,001-500,000 500,001-and over WA ID MT OR CA NV UT AZ NM CO WY ND SD MN WI NE IA KS MO TX IL IN OH MI OK AR TN WV VA KY MD PA WI NY VT NH MA CT ME RI NJ DE DC NC SC GA AL MS LA FL HI AK GOM 0 1 2 3 4 5 6 7 T e x a s G u l f o f M e x i c o N e w M e x i c o O k l a h o m a W y o m i n g L o u i s i a n a C o l o r a d o A l a s k a K a n s a s A l a b a m a A l l O t h e r S t a t e s Trillion Cubic Feet 0 30 60 90 120 150 180 Billion Cubic Meters 2002 2003 2002 Figure 4. Marketed Production of Natural Gas in Selected States and the Gulf of Mexico, 2002-2003 Figure 3. Marketed Production of Natural Gas in the United States and the Gulf of Mexico, 2003 (Million Cubic Feet) GOM = Gulf of Mexico Sources: Energy Information Administration (EIA), Form EIA-895, "Monthly and Annual Quantity and Value of Natural Gas Report," and the United States Mineral Management

125

Industrial lighting handbook  

SciTech Connect

Technological advances in industrial lighting system components now make it possible to reduce lighting system consumption by up to 50% or more without loss of the benefits inherent in good quality electric illumination. Management involvement in decisions about industrial lighting is essential, however, and this document provides generalized information in lay terms to help decision-makers become familiar with the concerns that affect industrial environment and the financial well-being of their companies. The five sections (1) discuss the benefits of good lighting, (2) review certain major lighting issues and terms, (3) identify procedures for developing a lighting energy management plan, (4) identify lighting energy management options (LEMOs), and (5) discuss sources of assistance. 19 figures, 8 tables.

1985-01-01T23:59:59.000Z

126

Microsoft Word - Figure_3_4.doc  

Gasoline and Diesel Fuel Update (EIA)

7 7 0 1 2 3 4 5 6 7 T e x a s G u l f o f M e x i c o O k l a h o m a N e w M e x i c o W y o m i n g L o u i s i a n a C o l o r a d o A l a s k a K a n s a s C a l i f o r n i a A l l O t h e r S t a t e s Trillion Cubic Feet 0 30 60 90 120 150 180 Billion Cubic Meters 2003 2004 2003 Figure 4. Marketed Production of Natural Gas in Selected States and the Gulf of Mexico, 2003-2004 GOM = Gulf of Mexico Sources: Energy Information Administration (EIA), Form EIA -895, "Monthly Quantity and Value of Natural Gas Report," and the United States Mineral Management Service. Sources: Energy Information Administration (EIA), Form EIA -895, "Monthly Quantity and Value of Natural Gas Report," and the United States Mineral Management Service. None 1-15,000 15,001-100,000 100,001-200,000 200,001-500,000 500,001-and over

127

High-Intensity Discharge Lighting  

Energy.gov (U.S. Department of Energy (DOE))

High-intensity discharge (HID) lighting provides the highest efficacy and longest service life of any lighting type. It can save 75%-90% of lighting energy when it replaces incandescent lighting.

128

Figure 13. Poverty by Insulation, 2001  

U.S. Energy Information Administration (EIA)

The RECS relies on the respondents to provide the energy-related details of their homes. Typically, the respondents do not know technical details such as the type of ...

129

Figure 8. Renewable energy share of U.S. electricity ...  

U.S. Energy Information Administration (EIA)

Title: Figure 8. Renewable energy share of U.S. electricity generation in four cases, 2000-2040 (percent) Subject: Annual Energy Outlook 2013 Author

130

Figure 79. Electricity sales and power sector generating ...  

U.S. Energy Information Administration (EIA)

Title: Figure 79. Electricity sales and power sector generating capacity, 1949-2040 (index, 1949 = 1.0) Subject: Annual Energy Outlook 2013 Author

131

Figure 15. Renewable electricity generation in three cases ...  

U.S. Energy Information Administration (EIA)

Sheet3 Sheet2 Sheet1 Figure 15. Renewable electricity generation in three cases, 2005-2040 (billion kilowatthours) Extended Policies No Sunset ...

132

Figure 17. Electricity generation from natural gas in ...  

U.S. Energy Information Administration (EIA)

Sheet3 Sheet2 Sheet1 Figure 17. Electricity generation from natural gas in three cases, 2005-2040 (billion kilowatthours) Extended Policies No Sunset

133

Figure 14. Lease condensate and natural gas plant liquids ...  

U.S. Energy Information Administration (EIA)

Figure 14 Date % LC % NGPL NGL Reserves Bn Barrels OGR-Brent Average 2009-2011 Liquids Reserves NGPL Reserves Condensate Reserves % Lease condensate ...

134

Figure 38. Levelized costs of nuclear electricity generation in ...  

U.S. Energy Information Administration (EIA)

Sheet3 Sheet2 Sheet1 Figure 38. Levelized costs of nuclear electricity generation in two cases, 2025 (2011 dollars per megawatthour) Reference Small Modular Reactor

135

Figure 58. Residential sector adoption of renewable energy ...  

U.S. Energy Information Administration (EIA)

Sheet3 Sheet2 Sheet1 Figure 58. Residential sector adoption of renewable energy technologies in two cases, 2005-2040 PV and wind (gigawatts) Heat pump ...

136

Figure 1. Microsupercapacitors developed with novel carbon nano-  

E-Print Network (OSTI)

Figure 1. Microsupercapacitors developed with novel carbon nano- onion electrodes exhibit extremely resolution (Balke et al, Nano Letters 10, 3420, 2010). #12;

137

Mobility of Ions in Lanthanum Fluoride Nanoclusters--Figure 9  

Science Conference Proceedings (OSTI)

c, d. Figure 9. Shows the r-dependence of this function at several different temperatures. At each temperature the upper graph represents the F- van Hove ...

138

Figure 59. Commercial delivered energy intensity in four cases ...  

U.S. Energy Information Administration (EIA)

Sheet3 Sheet2 Sheet1 Figure 59. Commercial delivered energy intensity in four cases, 2005-2040 (index, 2005 = 1) Reference case 2011 Technology case

139

Figure 55. Residential delivered energy intensity in four ...  

U.S. Energy Information Administration (EIA)

Sheet3 Sheet2 Sheet1 Figure 55. Residential delivered energy intensity in four cases, 2005-2035 (index, 2005 = 1) Best Available Technology case High Technology case

140

Figure 64. Industrial energy consumption by fuel, 2011, 2025, and ...  

U.S. Energy Information Administration (EIA)

Sheet3 Sheet2 Sheet1 Figure 64. Industrial energy consumption by fuel, 2011, 2025, and 2040 (quadrillion Btu) Natural Gas Petroleum and other liquids

Note: This page contains sample records for the topic "light types figure" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Figure 63. Industrial delivered energy consumption by application ...  

U.S. Energy Information Administration (EIA)

Sheet3 Sheet2 Sheet1 Figure 63. Industrial delivered energy consumption by application, 2011-2040 (quadrillion Btu) Manufacturing heat and power Nonmanufacturing heat ...

142

Figure 51. World production of liquids from biomass, coal ...  

U.S. Energy Information Administration (EIA)

Title: Figure 51. World production of liquids from biomass, coal, and natural gas in three cases, 2011 and 2040 (million barrels per day) Subject

143

Figure 18. Energy-related carbon dioxide emissions in three ...  

U.S. Energy Information Administration (EIA)

Sheet3 Sheet2 Sheet1 Figure 18. Energy-related carbon dioxide emissions in three cases, 2005-2040 (million metric tons) Extended Policies No Sunset

144

Ayn Rand, Alberti and the Authorial Figure of the Architect  

E-Print Network (OSTI)

Authorial Figure of the Architect Marvin Trachtenberg Whatnor was it written by an architect, historian, or critic. InRoark, an aspiring architect who, echoing the megalomania of

Trachtenberg, Marvin

2011-01-01T23:59:59.000Z

145

Annual Energy Outlook with Projections to 2025-Figure 1. Energy...  

Gasoline and Diesel Fuel Update (EIA)

With Projections to 2025 Figure 1. Energy price projectionsm 2001-2025: AEO2002 and AEO2003 compared (2001 dollars). For more detailed information, contact the National Energy...

146

Figure 34. Ratio of average per megawatthour fuel costs ...  

U.S. Energy Information Administration (EIA)

Title: Figure 34. Ratio of average per megawatthour fuel costs for natural gas combined-cycle plants to coal-fired steam turbines in the RFC west ...

147

Figure 57. Change in residential delivered energy consumption ...  

U.S. Energy Information Administration (EIA)

Sheet3 Sheet2 Sheet1 Figure 57. Change in residential delivered energy consumption for selected end uses in four cases, 2011-2040 (percent) Best Available Technology

148

Figure 5. Percentage change in natural gas dry production and ...  

U.S. Energy Information Administration (EIA)

Figure 5. Percentage change in natural gas dry production and number of gas wells in the United States, 2007?2011 annual ...

149

Lighting Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Lighting Basics Lighting Basics Lighting Basics August 15, 2013 - 5:12pm Addthis Text Version There are many different types of artificial lights, all of which have different applications and uses. Types of lighting include: Fluorescent Lighting High-intensity Discharge Lighting Incandescent Lighting LED Lighting Low-pressure Sodium Lighting. Which type is best depends on the application. See the chart below for a comparison of lighting types. Lighting Comparison Chart Lighting Type Efficacy (lumens/watt) Lifetime (hours) Color Rendition Index (CRI) Color Temperature (K) Indoors/Outdoors Fluorescent Straight Tube 30-110 7000-24,000 50-90 (fair to good) 2700-6500 (warm to cold) Indoors/outdoors Compact Fluorescent 50-70 10,000 65-88 (good) 2700-6500 (warm to cold) Indoors/outdoors

150

Assessing the Performance of 5mm White LED Light Sources for Developing-Country Applications  

E-Print Network (OSTI)

Stewart Craine collected the LED samples in Shenzen, China4. Variation in efficacy of LEDs tested. Figure 5. Figure 6.Performance of 5mm White LED Light Sources for Developing-

Mills, Evan

2007-01-01T23:59:59.000Z

151

arXiv:1004.0236v1[astro-ph.CO]1Apr2010 Figures of merit for present and future dark energy probes  

E-Print Network (OSTI)

arXiv:1004.0236v1[astro-ph.CO]1Apr2010 Figures of merit for present and future dark energy probes constraints on dynamical dark energy models from Type Ia supernovae and the cosmic microwave background using figures of merit based on the volume of the allowed dark energy parameter space. For a two-parameter dark

Hu, Wayne

152

Figure 33. Ratio of average per megawatthour fuel costs for ...  

U.S. Energy Information Administration (EIA)

Sheet3 Sheet2 Sheet1 Figure 33. Ratio of average per megawatthour fuel costs for natural gas combined-cycle plants to coal-fired steam turbines in the SERC southeast ...

153

Figure 27. Ratio of average per megawatthour fuel costs for ...  

U.S. Energy Information Administration (EIA)

Sheet3 Sheet2 Sheet1 Figure 27. Ratio of average per megawatthour fuel costs for natural gas combined-cycle plants to coal-fired steam turbines in five cases, 2008-2040

154

Figure 3 from "Plutonium: Coping with Instability" by Siegfried S ...  

Science Conference Proceedings (OSTI)

This figure shows the (a) U.S. and (b) Russian versions of the Pu-Ga phase diagram. The Russian version, with a eutectoid point of 97°C and 7.9 at.% Ga, is

155

Figure 88. Annual average Henry Hub spot prices for natural ...  

U.S. Energy Information Administration (EIA)

Sheet3 Sheet2 Sheet1 Figure 88. Annual average Henry Hub spot prices for natural gas in five cases, 1990-2040 (2011 dollars per million Btu) Reference

156

Figure 86. Annual average Henry Hub spot natural gas prices ...  

U.S. Energy Information Administration (EIA)

Sheet3 Sheet2 Sheet1 Figure 86. Annual average Henry Hub spot natural gas prices, 1990-2040 (2011 dollars per million Btu) Henry Hub Spot Price 1990.00

157

Figure ES2. Annual Indices of Real Disposable Income, Vehicle...  

U.S. Energy Information Administration (EIA) Indexed Site

ES2 Figure ES2. Annual Indices of Real Disposable Income, Vehicle-Miles Traveled, Consumer Price Index (CPI-U), and Real Average Retail Gasoline Price, 1978-2004, 1985100...

158

Figure 6. Transportation energy consumption by fuel, 1990-2040 ...  

U.S. Energy Information Administration (EIA)

Sheet3 Sheet2 Sheet1 Figure 6. Transportation energy consumption by fuel, 1990-2040 (quadrillion Btu) Motor Gasoline, no E85 Pipeline Other E85 Jet Fuel

159

Figure 5. Energy-related carbon dioxide emissions in four ...  

U.S. Energy Information Administration (EIA)

Sheet3 Sheet2 Sheet1 Reference High Oil/Gas Resouce CO2$15 CO2$15HR Released: May 2, 2013 Figure 5. Energy-related carbon dioxide emissions in four ...

160

Figure 10.1 Renewable Energy Consumption (Quadrillion Btu)  

U.S. Energy Information Administration (EIA)

Figure 10.1 Renewable Energy Consumption (Quadrillion Btu) Total and Major Sources, 1949–2012 By Source, 2012 By Sector, 2012 Compared With Other Resources, 1949–2012

Note: This page contains sample records for the topic "light types figure" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Particle Data Group - Figures from 2012 edition of RPP  

NLE Websites -- All DOE Office Websites (Extended Search)

Leptons Quarks Mesons Baryons Searches Figures from the Reviews in the Gauge and Higgs Boson Listings: The Mass and Width of the W Boson (rev.) Fig. 1 Fig. 2 Higgs Bosons:...

162

Particle Data Group - Figures from 2009 edition of RPP  

NLE Websites -- All DOE Office Websites (Extended Search)

Leptons Quarks Mesons Baryons Searches Figures from the Reviews in the Gauge and Higgs Boson Listings: The Mass and Width of the W Boson (Rev.) Fig. 1 Fig. 2 Higgs Bosons:...

163

Particle Data Group - Figures from 2007 web update of RPP  

NLE Websites -- All DOE Office Websites (Extended Search)

Leptons Quarks Mesons Baryons Searches Figures from the Reviews in the Gauge and Higgs Boson Listings: The Mass of the W Boson Fig. 1 Searches for Higgs Bosons Fig. 1 Fig. 2...

164

Particle Data Group - Figures from 2008 edition of RPP  

NLE Websites -- All DOE Office Websites (Extended Search)

Leptons Quarks Mesons Baryons Searches Figures from the Reviews in the Gauge and Higgs Boson Listings: The Mass and Width of the W Boson Fig. 1 Fig. 2 Higgs Bosons: Theory and...

165

Particle Data Group - Figures from 2010 edition of RPP  

NLE Websites -- All DOE Office Websites (Extended Search)

Leptons Quarks Mesons Baryons Searches Figures from the Reviews in the Gauge and Higgs Boson Listings: The Mass and Width of the W Boson (rev.) Fig. 1 Fig. 2 Higgs Bosons:...

166

Particle Data Group - Figures from 2011 edition of RPP  

NLE Websites -- All DOE Office Websites (Extended Search)

Leptons Quarks Mesons Baryons Searches Figures from the Reviews in the Gauge and Higgs Boson Listings: The Mass and Width of the W Boson (2010) Fig. 1 Fig. 2 Higgs Bosons:...

167

Sheet Metal Forming: A Review - Figure 6 - TMS  

Science Conference Proceedings (OSTI)

Figure 6. Forming-limit diagram for low-carbon steel. Data of Reference 6 have been replotted and a dashed line has been added for maximum tension (T = st), ...

168

Figure SR2. Net Imports as Percentage of Domestic Consumption ...  

U.S. Energy Information Administration (EIA)

Figure SR2 of the U.S. Natural Gas Imports & Exports: 2009. This report provides an overview of U.S. international natural gas trade in 2009. Natural gas import and ...

169

A system-wide productivity figure of merit  

Science Conference Proceedings (OSTI)

The goal of this note is to combine productivity and performance benchmark measurement and subjective evaluations into a single system-wide figure of merit that could, for example, be used for budget justifications and procurements. With simplifying ...

Declan Murphy; Thomas Nash; Lawrence Votta

2006-01-01T23:59:59.000Z

170

New Light Sources for Tomorrow's Lighting Designs  

E-Print Network (OSTI)

The lighting industry is driven to provide light sources and lighting systems that, when properly applied, will produce a suitable luminous environment in which to perform a specified task. Tasks may include everything from office work, manufacturing and inspection to viewing priceless art objects, selecting the right chair for your living room, and deciding which produce item to select for tonight's dinner. While energy efficiency is a major consideration in any new lighting system design, the sacrifice of lighting quality may cost more in terms of lost productivity and user dissatisfaction than can ever be saved on that monthly energy bill. During the past several years, many new light sources have been developed and introduced. These product introductions have not been limited to anyone lamp type, but instead may be found in filament, fluorescent and high intensity discharge lamp families. Manufacturers of light sources have two basic goals for new product development. These goals are high efficiency lighting and improved color rendering properties. High efficiency lighting may take the form of either increasing lamp efficiency (lumens of light delivered per watt of power consumed) or decreasing lamp size, thus making a more easily controlled light source that places light where it is needed. The manufacturer's second goal is to produce lamps that render colors accurately while maintaining high efficiency. This paper will discuss new introductions in light sources and lighting systems and how they may impact the design of luminous environments of the future.

Krailo, D. A.

1986-06-01T23:59:59.000Z

171

Inorganic volumetric light source excited by ultraviolet light  

DOE Patents (OSTI)

The invention relates to a composition for the volumetric generation of radiation. The composition comprises a porous substrate loaded with a component capable of emitting radiation upon interaction with an exciting radiation. Preferably, the composition is an aerogel substrate loaded with a component, e.g., a phosphor, capable of interacting with exciting radiation of a first energy, e.g., ultraviolet light, to produce radiation of a second energy, e.g., visible light. 4 figures.

Reed, S.; Walko, R.J.; Ashley, C.S.; Brinker, C.J.

1994-04-26T23:59:59.000Z

172

Light-Light Scattering  

E-Print Network (OSTI)

For a long time, it is believed that the light by light scattering is described properly by the Lagrangian density obtained by Heisenberg and Euler. Here, we present a new calculation which is based on the modern field theory technique. It is found that the light-light scattering is completely different from the old expression. The reason is basically due to the unphysical condition (gauge condition) which was employed by the QED calcualtion of Karplus and Neumann. The correct cross section of light-light scattering at low energy of $(\\frac{\\omega}{m} \\ll 1)$ can be written as $ \\displaystyle{\\frac{d\\sigma}{d\\Omega}=\\frac{1}{(6\\pi)^2}\\frac{\\alpha^4} {(2\\omega)^2}(3+2\\cos^2\\theta +\\cos^4\\theta)}$.

Kanda, Naohiro

2011-01-01T23:59:59.000Z

173

Light-Light Scattering  

E-Print Network (OSTI)

For a long time, it is believed that the light by light scattering is described properly by the Lagrangian density obtained by Heisenberg and Euler. Here, we present a new calculation which is based on the modern field theory technique. It is found that the light-light scattering is completely different from the old expression. The reason is basically due to the unphysical condition (gauge condition) which was employed by the QED calcualtion of Karplus and Neumann. The correct cross section of light-light scattering at low energy of $(\\frac{\\omega}{m} \\ll 1)$ can be written as $ \\displaystyle{\\frac{d\\sigma}{d\\Omega}=\\frac{1}{(6\\pi)^2}\\frac{\\alpha^4} {(2\\omega)^2}(3+2\\cos^2\\theta +\\cos^4\\theta)}$.

Naohiro Kanda

2011-06-03T23:59:59.000Z

174

Computer modeling and experimental verification of figure-eight-shaped null-flux coil suspension system  

DOE Green Energy (OSTI)

This report discusses the computer modeling and experimental verification of the magnetic forces associated with a figure-eight-shaped null-flux coil suspension system. A set of computer codes called COILGDWY, were developed on the basis of the dynamic circuit model and verified by means of a laboratory model. The experimental verification was conducted with a rotating PVC drum, the surface of which held various types of figure-eight-shaped null-flux coils that interacted with a stationary permanent magnet. The transient and dynamic magnetic forces between the stationary magnet and the rotating conducting coils were measured and compared with results obtained from the computer model. Good agreement between the experimental results and computer simulations was obtained. The computer model can also be used to calculate magnetic forces in a large-scale magnetic-levitation system.

He, J.L.; Mulcahey, T.M.; Rote, D.M.; Kelly, T.

1994-12-01T23:59:59.000Z

175

Table 37. Light-Duty Vehicle Energy Consumption by Technology ...  

U.S. Energy Information Administration (EIA)

Table 37. Light-Duty Vehicle Energy Consumption by Technology Type and Fuel Type (trillion Btu) Light-Duty Consumption by Technology Type Conventional Vehicles 1/

176

BILIWG: Consistent "Figures of Merit" (Presentation)  

NLE Websites -- All DOE Office Websites (Extended Search)

BILIWG: Consistent "Figures of Merit" BILIWG: Consistent "Figures of Merit" A finite set of results reported in consistent units * To track progress of individual projects on a consistent basis * To enable comparing projects in a transparent manner Potential BILIWG Figures of Merit Key BILI Distributed Reforming Targets * Cost ($/kg of H2): H2A analysis - Distributed reforming station,1000 kg/day ave./daily dispensed, 5000/6250 psi (and 10,000/12,000 psi) dispensing, 500 units/yr. * nth unit vs. 500 units/yr ? * production unit only (with 300 psi outlet pressure) ? * Production unit efficiency: LHV H2 out/(LHV of feedstocks and all other energy in) GTG - WTG efficiency? - Feedstock conversion energy efficiency? * Production unit capital cost: Distributed reforming station,1000 kg/day ave./daily dispensed, 300 psi outlet pressure

177

Energy-efficient lighting for the home  

SciTech Connect

This is a guide to energy efficient residential lighting systems. Topics include discussion of the types of bulbs available; lighting basics about how light is produced; light quality; flicker and buzz of lighting systems; how to arrange the lights and which one goes where; additional hints on using lighting.

Byrne, J.

1994-11-01T23:59:59.000Z

178

Lakeview Light and Power - Commercial Lighting Rebate Program | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Lakeview Light and Power - Commercial Lighting Rebate Program Lakeview Light and Power - Commercial Lighting Rebate Program Lakeview Light and Power - Commercial Lighting Rebate Program < Back Eligibility Commercial Fed. Government Local Government Nonprofit State Government Savings Category Appliances & Electronics Commercial Lighting Lighting Program Info Funding Source Funded by Bonneville Power Administration Expiration Date 9/1/2013 State District of Columbia Program Type Utility Rebate Program Rebate Amount Commercial Lighting Installation: Up to 70% of cost Provider Lakeview Light and Power Lakeview Light and Power offers a commercial lighting rebate program. Rebates apply to the installation of energy efficient lighting retrofits in non-residential buildings. The rebate program is funded by BPA and ends in September of 2010 or earlier if the funding is exhausted. Lakeview Light

179

Reading Municipal Light Department - Business Lighting Rebate Program |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Reading Municipal Light Department - Business Lighting Rebate Reading Municipal Light Department - Business Lighting Rebate Program Reading Municipal Light Department - Business Lighting Rebate Program < Back Eligibility Agricultural Commercial Fed. Government Industrial Institutional Local Government Nonprofit Schools State Government Savings Category Appliances & Electronics Commercial Lighting Lighting Maximum Rebate Commercial Customers: $10,000 per calendar year Municipal Customers: $15,000 per calendar year Program Info State Massachusetts Program Type Utility Rebate Program Rebate Amount T-8/T-5 Lamp with Electronic Ballasts: $11 - $35/fixture Interior High Output Lamp with Electronic Ballasts: $100/fixture De-lamping: $4 - $9/lamp Lighting Sensors: $20/sensor LED Exit Signs: $20/fixture Provider Incentive Programs

180

Spectrally Enhanced Lighting  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

November 2007 November 2007 AfterImage + s p a c e 1 Spectrally Enhanced Lighting Spectrally Enhanced Lighting Brian Liebel, PE, LC Brian Liebel, PE, LC November 29, 2007 November 29, 2007 Federal Utilities Partnership Working Group Federal Utilities Partnership Working Group November 29, 2007 November 29, 2007 29 November 2007 AfterImage + s p a c e 2 Spectrally Enhanced Lighting Spectrally Enhanced Lighting Spectrally Enhanced Lighting Spectrally Enhanced Lighting This is not a technology; just a This is not a technology; just a different way to quantify light based on different way to quantify light based on well established scientific findings well established scientific findings Can be used in conjunction with ANY Can be used in conjunction with ANY type of lighting design to gain

Note: This page contains sample records for the topic "light types figure" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Natural lighting and skylights  

E-Print Network (OSTI)

There are many physiological and psychological factors which enter into the proper design of space for human occupancy. One of these elements is light. Both natural light and manufactured light are basic tools with which any designer must work. However, they are only two of the many, many elements which must be considered; and they, therefore, must be considered, always, in relation to the other elements. The achievement of good lighting depends on a reasonable understanding of three primary factors: one, the visual response to lighting; two, the availability and types of lighting; and three, methods for controlling light. This thesis is intended to supply enough information to provide a working knowledge of each of these facets. The human visual response is discussed in "Goals For Good Lighting." The availability and types of lighting are dealt with in the section on available light. The remainder of the thesis concerns methods for controlling light. The use of scale models for studying the natural lighting characteristics of buildings due to the building geometry, the fenestration details and the interior reflectance has been well established as pointed out in the earlier part of this thesis. With the completion of the work outlined herein, the feasibility of using scale models for studying skylights is also an established fact. The method of analysis by models can be a valuable tool to any designer who is concerned about day-lighting.

Evans, Benjamin Hampton

1961-01-01T23:59:59.000Z

182

Thermoelectric figure of merit of LSCoO-Mn perovskites  

Science Conference Proceedings (OSTI)

Oxide ceramics with nominal composition of La"0"."8Sr"0"."2Co"1"-"xMn"xO"3(0= Keywords: 72.20.Pa, 84.60.Bk, 84.60.Rb, 85.80.Fi, LSCoO compounds, Thermoelectric figure of merit, Thermoelectric materials

J. E. Rodríguez; D. Cadavid; L. C. Moreno

2008-11-01T23:59:59.000Z

183

Object Recognition by Sequential Figure-Ground Ranking  

Science Conference Proceedings (OSTI)

We present an approach to visual object-class segmentation and recognition based on a pipeline that combines multiple figure-ground hypotheses with large object spatial support, generated by bottom-up computational processes that do not exploit knowledge ... Keywords: Learning and ranking, Object recognition, Semantic segmentation

Joăo Carreira; Fuxin Li; Cristian Sminchisescu

2012-07-01T23:59:59.000Z

184

List of Figures xii List of Tables xv  

E-Print Network (OSTI)

. . . . . . . . . . . . . . . . . . . . . . . . 137 II Energy Supply Chains 139 6 Electric Power Supply Chains 141 6.1 The Supply Chain ModelContents List of Figures xii List of Tables xv Preface xvi I Supply Chain Networks 1 1 Introduction and Overview 3 2 Supply Chain Networks 9 2.1 The Supply Chain Network Model . . . . . . . . . . . . . . . 11 2

Nagurney, Anna

185

Figure 62. Additions to electricity generation capacity in the ...  

U.S. Energy Information Administration (EIA)

Microturbines Wind Solar photovoltaics Released: April 30, 2013 No Sunset $0.90 $0.80 $2.27 $2.15 $5.04 $4.65 $2.96 $0.66 $13.72 $10.17. Title: Figure 62.

186

LED Lighting  

Energy.gov (U.S. Department of Energy (DOE))

Light-emitting diodes (LEDs) are light sources that differ from more traditional sources of light in that they are semiconductor devices that produce light when an electrical current is applied....

187

Lighting for remote viewing systems  

SciTech Connect

Scenes viewed by television do not provide the same channels of information for judgment of distances as scenes viewed directly, since television eliminates or degrades several depth perception cues. However, it may be possible to improve depth perception of televised scenes by enhancing the information available through depth cues that are available from lighting. A literature survey and expert opinions were integrated to design a remote lighting arrangement which could enhance depth perception of operators performing remote handling operations. This paper describes the lighting arrangement and discusses some of its advantages and disadvantages. 10 references, 2 figures.

Draper, J.V.

1984-01-01T23:59:59.000Z

188

Lighting for remote viewing systems  

SciTech Connect

Scenes viewed by television do not provide the same channels of information for judgement of distances as scenes viewed directly, since television eliminates or degrades several depth perception cues. However, it may be possible to improve depth perception of televised scenes by enhancing the information available through depth cues that are available from lighting. A literature survey and expert opinions were integrated to design a remote lighting arrangement which could enhance depth perception of operators performing remote handling operations. This paper describes the lighting arrangement and discusses some of its advantages and disadvantages. 10 references, 2 figures.

Draper, J.V.

1984-01-01T23:59:59.000Z

189

Columbia Water and Light - HVAC and Lighting Efficiency Rebates |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Columbia Water and Light - HVAC and Lighting Efficiency Rebates Columbia Water and Light - HVAC and Lighting Efficiency Rebates Columbia Water and Light - HVAC and Lighting Efficiency Rebates < Back Eligibility Commercial Industrial Savings Category Heating & Cooling Commercial Heating & Cooling Cooling Heat Pumps Appliances & Electronics Commercial Lighting Lighting Maximum Rebate Lighting: 50% of invoiced cost up to $22,500 Program Info State Missouri Program Type Utility Rebate Program Rebate Amount HVAC Replacements: $570 - $3,770 Lighting: $300/kW reduction or half of project cost Provider Columbia Water and Light Columbia Water and Light (CWL) offers rebates to its commercial and industrial customers for the purchase of high efficiency HVAC installations and efficient lighting. Incentives for certain measures are based upon the

190

Energy-saving lighting systems. [Includes glossary  

SciTech Connect

Artificial lighting accounts for 20% of electrical energy, 7.6% of total energy, and 3.8% of total fuel in the US. Because conserving lighting energy can reduce operating costs as well as save energy, this book explores several practical ways to do that. The book first describes the complete range of light sources and their accessories, then goes on to cover photometric reports, techniques of lighting design, fluorescent luminaires, industrial lighting systems, manual and automatic lighting controls, the impact of air-conditioning on lighting systems, and exterior lighting. A glossary of lighting terminology, conversion tables, and recommended illumination levels appear in the appendix. The book is designed for students and practicity lighting engineers and designers. 56 references, 169 figures, 45 tables. (DCK)

Sorcar, P.C.

1982-01-01T23:59:59.000Z

191

Automatic lighting controls demonstration  

SciTech Connect

The purpose of this work was to demonstrate, in a real building situation, the energy and peak demand reduction capabilities of an electronically ballasted lighting control system that can utilize all types of control strategies to efficiently manage lighting. The project has demonstrated that a state-of-the-art electronically ballasted dimmable lighting system can reduce energy and lighting demand by as least 50% using various combinations of control strategies. By reducing light levels over circulation areas (tuning) and reducing after hours light levels to accommodate the less stringent lighting demands of the cleaning crew (scheduling), lighting energy consumption on weekdays was reduced an average of 54% relative to the initial condition. 10 refs., 14 figs., 3 tabs.

Rubinstein, F.; Verderber, R.

1990-03-01T23:59:59.000Z

192

Hybrid Infrared and Visible Light Projection for Location Tracking  

E-Print Network (OSTI)

-output light emitting diodes. Figure 5. Inside our projector: A) LED light source B) culminating lens C) DMD for application content. In [4], Nii et al. created an infrared projector prototype using discrete light emitting diodes (LEDs). The projection lens focused directly onto the LED array creating a low resolution infrared

Olsen Jr., Dan R.

193

Figure 30. Decomposition 4941 of Energy Use by Effect, 1988-1994 ...  

U.S. Energy Information Administration (EIA)

Home > Households, Buildings & Industry >Transportation Surveys > Household Vehicles Energy Use > Figure 30

194

Figure ES4. Sales-Weighted Inertia Weight and On-Road Fuel Mileage ...  

U.S. Energy Information Administration (EIA)

Home > Households, Buildings & Industry >Transportation Surveys > Household Vehicles Energy Use > Figure ES4

195

Figure ES3. Sales-Weighted Horsepower and On-Road Fuel Mileage for ...  

U.S. Energy Information Administration (EIA)

Home > Households, Buildings & Industry >Transportation Surveys > Household Vehicles Energy Use > Figure ES3

196

Figure ES1. Schema for Estimating Energy and Energy-Related ...  

U.S. Energy Information Administration (EIA)

Home > Households, Buildings & Industry >Transportation Surveys > Household Vehicles Energy Use > Figure ES1

197

NOvA (Fermilab E929) Official Plots and Figures  

DOE Data Explorer (OSTI)

The NOvA collaboration, consisting of 180 researchers across 28 institutions and managed by the Fermi National Accelerator Laboratory (FNAL), is developing instruments for a neutrino-focused experiment that will attempt to answer three fundamental questions in neutrino physics: 1) Can we observe the oscillation of muon neutrinos to electron neutrinos; 2) What is the ordering of the neutrino masses; and 3) What is the symmetry between matter and antimatter? The collaboration makes various data plots and figures available. These are grouped under five headings, with brief descriptions included for each individual figure: Neutrino Spectra, Detector Overview, Theta12 Mass Hierarchy CP phase, Theta 23 Delta Msqr23, and NuSterile.

198

Light & Heavy Product Price Differences - U.S. Energy ...  

U.S. Energy Information Administration (EIA)

This figure shows how light and heavy products were moving relative to crude oil. The top line is the 3-2-1 spread that captures the margins of gasoline and ...

199

Resource-technology combinations for domestic lighting in rural India: A comparative financial evaluation  

Science Conference Proceedings (OSTI)

Financial analysis and evaluation of various resource-technology combinations for rural domestic lighting is undertaken. The options include kerosene lamps, liquefied petroleum gas (LPG) and biogas lamps, solar photovoltaic lighting systems, and electric lamps. The figures of merit considered for financial comparison are the cost per hour of lighting and the cost per unit of useful energy for lighting. Sensitivity of these figures of merit to the uncertainties in the values of some of the input variables has also been studied.

Rubab, S.; Kandpal, T.C. [Indian Inst. of Tech., New Delhi (India). Centre for Energy Studies

1997-10-01T23:59:59.000Z

200

Peninsula Light Company - Commercial Efficient Lighting Rebate Program |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Peninsula Light Company - Commercial Efficient Lighting Rebate Peninsula Light Company - Commercial Efficient Lighting Rebate Program Peninsula Light Company - Commercial Efficient Lighting Rebate Program < Back Eligibility Commercial Savings Category Appliances & Electronics Commercial Lighting Lighting Program Info State District of Columbia Program Type Utility Rebate Program Rebate Amount General: 30% - 70% of cost Provider Peninsula Light Company Peninsula Light Company (PLC) offers a rebate program for commercial customers who wish to upgrade to energy efficient lighting. Participating customers must be served by PLC commercial service. Customers who upgrade to highly efficient fixtures and systems are eligible to receive a rebate generally covering 30% - 70% of the project cost. These retrofits improve light quality and reduce energy costs in participating facilities. PLC

Note: This page contains sample records for the topic "light types figure" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Waverly Light and Power | Open Energy Information  

Open Energy Info (EERE)

Light and Power Jump to: navigation, search Name Waverly Light and Power Place Waverly, IA Information About Partnership with NREL Partnership with NREL Yes Partnership Type Other...

202

Incandescent Lighting | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Incandescent Lighting Incandescent Lighting Incandescent Lighting October 17, 2013 - 6:15pm Addthis Incandescent lighting is the most common, and least energy efficient, type of lighting used in homes. | Photo courtesy of ©iStockphoto/TokenPhoto. Incandescent lighting is the most common, and least energy efficient, type of lighting used in homes. | Photo courtesy of ©iStockphoto/TokenPhoto. Incandescent lamps are often considered the least energy efficient type of electric lighting commonly found in residential buildings. Although inefficient, incandescent lamps possess a number of key advantages--they are inexpensive to buy, turn on instantly, are available in a huge array of sizes and shapes and provide a pleasant, warm light with excellent color rendition. However, because of their relative inefficiency and short life spans, they

203

Incandescent Lighting | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Incandescent Lighting Incandescent Lighting Incandescent Lighting October 17, 2013 - 6:15pm Addthis Incandescent lighting is the most common, and least energy efficient, type of lighting used in homes. | Photo courtesy of ©iStockphoto/TokenPhoto. Incandescent lighting is the most common, and least energy efficient, type of lighting used in homes. | Photo courtesy of ©iStockphoto/TokenPhoto. Incandescent lamps are often considered the least energy efficient type of electric lighting commonly found in residential buildings. Although inefficient, incandescent lamps possess a number of key advantages--they are inexpensive to buy, turn on instantly, are available in a huge array of sizes and shapes and provide a pleasant, warm light with excellent color rendition. However, because of their relative inefficiency and short life spans, they

204

LED Lighting | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

LED Lighting LED Lighting LED Lighting July 29, 2012 - 4:43pm Addthis LED Lighting What are the key facts? Quality LED products can last 25 times longer than an incandescent bulb and use 75% less energy. LEDs are directional, focusing light in ways that are useful in homes and commercial settings. The light-emitting diode (LED) is one of today's most energy-efficient and rapidly-developing lighting technologies. Quality LED light bulbs last longer, are more durable, and offer comparable or better light quality than other types of lighting. Check out the top 8 things about LEDs to learn more. Energy Savings LED is a highly energy efficient lighting technology, and has the potential to fundamentally change the future of lighting in the United States. Residential LEDs -- especially ENERGY STAR rated products -- use at least

205

Light Logger Placement Guidelines for Residential Lighting Studies  

Science Conference Proceedings (OSTI)

New technological advancements in lighting have increased the efficiency of residential lighting loads. Light loggers, which use a photocell to sense when lights are on or off, provide valuable metering information for use in measuring technology effectiveness and designing marketing programs. Placement of the loggers is critical to the accuracy and reliability of the measurements. This report provides placement recommendations for various types of lighting, expected accuracy compared to metered energy, ...

1996-03-28T23:59:59.000Z

206

Lighting Techniques  

Science Conference Proceedings (OSTI)

...Lighting is very critical in photography. The specimen should be placed on a background which will not detract from the resolution of the fracture surface. For basic lighting, one spotlight is suggested. The light is then raised or lowered, and

207

Figure 61. Efficiency gains for selected commercial equipment ...  

U.S. Energy Information Administration (EIA)

Efficiency gains for selected commercial equipment in three cases, 2040 ... Refrigeration Electric water heating Ventilation Lighting $4.74 $4.35 ...

208

Figure 60. Energy intensity of selected commercial end uses ...  

U.S. Energy Information Administration (EIA)

Refrigeration Lighting Heating, cooling, and ventilation Other 2040.00 2011.00 ... Energy intensity of selected commercial end uses, 2011 and 2040 ...

209

Slow-light solitons  

E-Print Network (OSTI)

A new type of soliton with controllable speed is constructed generalizing the theory of slow-light propagation to an integrable regime of nonlinear dynamics. The scheme would allow the quantum-information transfer between optical solitons and atomic media.

Ulf Leonhardt

2004-08-06T23:59:59.000Z

210

PFP Emergency Lighting Study  

SciTech Connect

NFPA 101, section 5-9 mandates that, where required by building classification, all designated emergency egress routes be provided with adequate emergency lighting in the event of a normal lighting outage. Emergency lighting is to be arranged so that egress routes are illuminated to an average of 1.0 footcandle with a minimum at any point of 0.1 footcandle, as measured at floor level. These levels are permitted to drop to 60% of their original value over the required 90 minute emergency lighting duration after a power outage. The Plutonium Finishing Plant (PFP) has two designations for battery powered egress lights ''Emergency Lights'' are those battery powered lights required by NFPA 101 to provide lighting along officially designated egress routes in those buildings meeting the correct occupancy requirements. Emergency Lights are maintained on a monthly basis by procedure ZSR-12N-001. ''Backup Lights'' are battery powered lights not required by NFPA, but installed in areas where additional light may be needed. The Backup Light locations were identified by PFP Safety and Engineering based on several factors. (1) General occupancy and type of work in the area. Areas occupied briefly during a shiftly surveillance do not require backup lighting while a room occupied fairly frequently or for significant lengths of time will need one or two Backup lights to provide general illumination of the egress points. (2) Complexity of the egress routes. Office spaces with a standard hallway/room configuration will not require Backup Lights while a large room with several subdivisions or irregularly placed rooms, doors, and equipment will require Backup Lights to make egress safer. (3) Reasonable balance between the safety benefits of additional lighting and the man-hours/exposure required for periodic light maintenance. In some plant areas such as building 236-Z, the additional maintenance time and risk of contamination do not warrant having Backup Lights installed in all rooms. Sufficient light for egress is provided by existing lights located in the hallways.

BUSCH, M.S.

2000-02-02T23:59:59.000Z

211

Lighting Group: Light Distribution Systems  

NLE Websites -- All DOE Office Websites (Extended Search)

Retrofit Alternatives to Incandescent Downlights Hotel and Institutional Bathroom Lighting Portable Office Lighting Systems Low Glare Outdoor Retrofit Luminaire LED Luminaires...

212

Lighting Research Center Lighting Products  

Science Conference Proceedings (OSTI)

... 12) Solid State Lighting Luminaires - Color Characteristic Measurements. [22/S04] IES LM-16:1993 Practical Guide to Colorimetry of Light Sources. ...

2013-07-26T23:59:59.000Z

213

Energy Basics: High-Intensity Discharge Lighting  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

and longest service life of any lighting type. It can save 75%-90% of lighting energy when it replaces incandescent lighting. HID lamps use an electric arc to produce...

214

Damage tolerant light absorbing material  

DOE Patents (OSTI)

A light absorbing article comprised of a composite of carbon-bonded carbon fibers, is prepared by: blending carbon fibers with a carbonizable organic powder to form a mixture; dispersing the mixture into an aqueous slurry; vacuum molding the aqueous slurry to form a green article; drying and curing the green article to form a cured article; and, carbonizing the cured article at a temperature of at least about 1000 C to form a carbon-bonded carbon fiber light absorbing composite article having a bulk density less than 1 g/cm[sup 3]. 9 figures.

Lauf, R.J.; Hamby, C. Jr.; Akerman, M.A.; Seals, R.D.

1993-09-07T23:59:59.000Z

215

Evaluation of solar mirror figure by moire contouring  

DOE Green Energy (OSTI)

Moire topography is applied to the figure assessment of solar mirrors. The technique is demonstrated on component facets of a six-meter diameter, four-meter focal length, parabolic dish collector. The relative ease of experimental implementation and subsequent data analysis suggests distinct advantages over the more established laser ray trace or BCS/ICS technique for many applications. The theoretical and experimental considerations necessary to fully implement moire topography on mirror surfaces are detailed. A procedure to de-specularize the mirror is demonstrated which conserves the surface morphology without damaging the reflective surface. The moire fringe patterns observed for the actual mirror facets are compared with theoretical contours generated for representative dish facets using a computer simulation algorithm. A method for evaluating the figure error of the real facet is presented in which the error parameter takes the form of an average absolute deviation of the surface slope from theoretical. The experimental measurement system used for this study employs a 200 line/inch Ronchi transmission grating. The mirror surface is illuminated by a collimated beam at 60/sup 0/. The fringe observation is performed normal to the grating. These parameters yield contour intervals for the fringe patterns of 0.073 mm. The practical considerations for extending the techniques to higher resolution are discussed.

Griffin, J.W.; Lind, M.A.

1980-06-01T23:59:59.000Z

216

Fermilab E866 (NuSea) Figures and Data Plots  

DOE Data Explorer (OSTI)

The NuSea Experiment at Fermilab studied the internal structure of protons, in particular the difference between up quarks and down quarks. This experiment also addressed at least two other physics questions: nuclear effects on the production of charmonia states (bound states of charm and anti-charm quarks) and energy loss of quarks in nuclei from Drell-Yan measurements on nuclei. While much of the NuSea data are available only to the collaboration, figures, data plots, and tables are presented as stand-alone items for viewing or download. They are listed in conjunction with the published papers, theses, or presentations in which they first appeared. The date range is 1998 to 2008. To see these figures and plots, click on E866 publications or go directly to http://p25ext.lanl.gov/e866/papers/papers.html. Theses are at http://p25ext.lanl.gov/e866/papers/e866theses/e866theses.html and the presentations are found at http://p25ext.lanl.gov/e866/papers/e866talks/e866talks.html. Many of the items are postscript files.

E866 NuSea Collaboration

217

Figure 5.16 Petroleum Primary Stocks by Type, End of Year  

U.S. Energy Information Administration (EIA)

1949 1954 1959 1964 1969 1974 1979 1984 1989 1994 1999 2004 2009 0 500 1,000 1,500 2,000 Million Barrels (Cumulative) Petroleum Products SPRą Crude ...

218

Figure A.9 Technical drawings of the plastic holder end for the iron cores in the ferrofluid-magnetic pipet.  

E-Print Network (OSTI)

Field intensity in the air gap of a core as a function of current and type of material comprising Field flux den- sity B weber/m2 = Tesla (T) Gauss (G) = maxwell/cm2 1 T = 104 G Field flux weber 8 0 2 4 6 8 10 12 applied current in Amps percenterrorfromidealairgapfield 4 3 2 #12;64 Figure A.3

219

Survey and forecast of marketplace supply and demand for energy- efficient lighting products  

SciTech Connect

The rapid growth in demand for energy-efficient lighting products has led to supply shortages for certain products. To understand the near-term (1- to 5-year) market for energy-efficient lighting products, a selected set of utilities and lighting product manufacturers were surveyed in early 1991. Two major U. S. government programs, EPA's Green Lights and DOE's Federal Relighting Initiative, were also examined to assess their effect on product demand. Lighting product manufacturers predicted significant growth through 1995. Lamp manufacturers indicated that compact fluorescent lamp shipments tripled between 1988 and 1991, and predicted that shipments would again triple, rising from 25 million units in 1991 to 72 million units in 1995. Ballast manufacturers predicted that demand for power-factorcorrected ballasts (both magnetic and electronic) would grow from 59.4 million units in 1991 to 71.1 million units in 1995. Electronic ballasts were predicted to grow from 11% of ballast demand in 1991 to 40% in 1995. Manufacturers projected that electronic ballast supply shortages would continue until late 1992. Lamp and ballast producers indicated that they had difficulty in determining what additional supply requirements might result due to demand created by utility programs. Using forecasts from 27 surveyed utilities and assumptions regarding the growth of U. S. utility lighting DSM programs, low, median, and high forecasts were developed for utility expenditures for lighting incentives through 1994. The projected median figure for 1992 was $316 million, while for 1994, the projected median figure was $547 million. The allocation of incentive dollars to various products and the number of units needed to meet utility-stimulated demand were also projected. To provide a better connection between future supply and demand, a common database is needed that captures detailed DSM program information including incentive dollars and unit-volume mix by product type.

Gough, A. (Lighting Research Inst., New York, NY (United States)); Blevins, R. (Plexus Research, Inc., Donegal, PA (United States))

1992-12-01T23:59:59.000Z

220

Noise figure and photon probability distribution in Coherent Anti-Stokes Raman Scattering (CARS)  

E-Print Network (OSTI)

The noise figure and photon probability distribution are calculated for coherent anti-Stokes Raman scattering (CARS) where an anti-Stokes signal is converted to Stokes. We find that the minimum noise figure is ~ 3dB.

Dimitropoulos, D; Jalali, B; Solli, D R

2006-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "light types figure" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Figure 1.6 State-Level Energy Consumption Estimates and Estimated ...  

U.S. Energy Information Administration (EIA)

Figure 1.6 State-Level Energy Consumption Estimates and Estimated Consumption per Capita, 2010 Consumption Consumption per Capita

222

Lighting Controls  

NLE Websites -- All DOE Office Websites (Extended Search)

corridors. The overall range of savings was six to 80 percent. The Advanced Lighting Guidelines On-Line Edition New Buildings Institute 2011 presents a table of lighting energy...

223

Shape the light, light the shape - lighting installation in performance.  

E-Print Network (OSTI)

??This thesis investigates the lighting design theory Light Inside Out, which is the technique of shaping light toward a creation of lighting installation in performance… (more)

Yu, Lih-Hwa, 1972-

2010-01-01T23:59:59.000Z

224

Lighting Systems  

NLE Websites -- All DOE Office Websites (Extended Search)

Purple LED lamp Purple LED lamp Lighting Systems Lighting research is aimed at improving the energy efficiency of lighting systems in buildings and homes across the nation. The goal is to reduce lighting energy consumption by 50% over twenty years by improving the efficiency of light sources, and controlling and delivering illumination so that it is available, where and when needed, and at the required intensity. Research falls into four main areas: Sources and Ballasts, Light Distribution Systems, Controls and Communications, and Human Factors. Contacts Francis Rubinstein FMRubinstein@lbl.gov (510) 486-4096 Links Lighting Research Group Batteries and Fuel Cells Buildings Energy Efficiency Applications Commercial Buildings Cool Roofs and Heat Islands Demand Response Energy Efficiency Program and Market Trends

225

Fluorescent Lighting | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Fluorescent Lighting Fluorescent Lighting Fluorescent Lighting October 17, 2013 - 5:44pm Addthis Fluorescent Lighting Fluorescent Lighting Fluorescent lamps use 25%-35% of the energy used by incandescent products to provide a similar amount of light. They also last about 10 times longer (7,000-24,000 hours). The two general types of fluorescent lamps are: Compact fluorescent lamps (CFLs) -- commonly found with integral ballasts and screw bases, these are popular lamps often used in household fixtures Fluorescent tube and circline lamps -- typically used for task lighting such as garages and under cabinet fixtures, and for lighting large areas in commercial buildings. CFLs CFLs combine the energy efficiency of fluorescent lighting with the convenience and popularity of incandescent fixtures. CFLs fit most fixtures

226

Melanin Types  

NLE Websites -- All DOE Office Websites (Extended Search)

Melanin Types Melanin Types Name: Irfan Location: N/A Country: N/A Date: N/A Question: What are different types of melanins? And what are the functions of these types? Replies: Hi Irfan! Melanin is a dark compound or better a photoprotective pigment. Its major role in the skin is to absorb the ultraviolet (UV) light that comes from the sun so the skin is not damaged. Sun exposure usually produces a tan at the skin that represents an increase of melanin pigment in the skin. Melanin is important also in other areas of the body, as the eye and the brain., but it is not completely understood what the melanin pigment does in these areas. Melanin forms a special cell called melanocyte. This cell is found in the skin, in the hair follicle, and in the iris and retina of the eye.

227

Transverse-type laser assembly using induced electrical discharge excitation and method  

DOE Patents (OSTI)

A transverse-type laser assembly is disclosed herein. This assembly defines a laser cavity containing a vapor or gaseous substance which lases when subjected to specific electrical discharge excitation between a pair of spaced-apart electrodes located within the cavity in order to produce a source of light. An arrangement located entirely outside the laser cavity is provided for inducing a voltage across the electrodes within the cavity sufficient to provide the necessary electrical discharge excitation to cause a vapor substance between the electrodes to lase. 3 figures.

Ault, E.R.

1994-04-19T23:59:59.000Z

228

Ion polarization in the MEIC figure-8 ion collider ring  

SciTech Connect

The nuclear physics program envisaged at the Medium-energy Electron-Ion Collider (MEIC) currently being developed at the Jefferson Lab calls for collisions of 3-11 GeV/c longitudinally polarized electrons and 20-100 GeV/c, in equivalent proton momentum, longitudinally/ transversely polarized protons/ deuterons/ light ions. We present a scheme that provides the required ion polarization arrangement in the MEIC's ion collider ring.

V.S. Morozov, Ya.S. Derbenev, Y. Zhang, P. Chevtsov, A.M. Kondratenko, M.A. Kondratenko, Yu.N. Filatov

2012-07-01T23:59:59.000Z

229

Commercial Lighting and LED Lighting Incentives  

Energy.gov (U.S. Department of Energy (DOE))

Incentives for energy efficient commercial lighting equipment as well as commercial LED lighting equipment are available to businesses under the Efficiency Vermont Lighting and LED Lighting...

230

OVERVIEW OF ASSESSMENT PROBLEM FORMULATION 199 Figure 4.44 Five-Mile Creek SSO discharge during Figure 4.45 Five-Mile Creek under normal flow  

E-Print Network (OSTI)

for a significant portion of the dry-weather * Color figures follow page 370. #12;200 STORMWATER EFFECTS HANDBOOK-diameter plastic pipes (with coarse screening on the ends) for protection and anchored in the streams. Bags were

Pitt, Robert E.

231

Northern Lights  

NLE Websites -- All DOE Office Websites (Extended Search)

Northern Lights Northern Lights Nature Bulletin No. 178-A February 6, 1965 Forest Preserve District of Cook County Seymour Simon, President Roland F. Eisenbeis, Supt. of Conservation NORTHERN LIGHTS To a person seeing the Aurora Borealis or "northern lights" for the first time, it is an uncanny awe-inspiring spectacle. Sometimes it begins as a glow of red on the northern horizon, ominously suggesting a great fire, gradually changing to a curtain of violet-white, or greenish-yellow light extending from east to west. Some times this may be transformed to appear as fold upon fold of luminous draperies that march majestically across the sky; sometimes as a vast multitude of gigantic flaming swords furiously slashing at the heavens; sometimes as a flowing crown with long undulating colored streamers fanning downward and outward.

232

Figure 1.8 Motor Vehicle Fuel Economy, 1973-2011 (Miles per Gallon)  

U.S. Energy Information Administration (EIA)

Figure 1.8 Motor Vehicle Fuel Economy, 1973-2011 (Miles per Gallon) U.S. Energy Information Administration / Monthly Energy Review August 2013 17

233

Figure 4.16 Offshore Wind Resources - U.S. Energy Information ...  

U.S. Energy Information Administration (EIA)

Figure 4.16 Offshore Wind Resources U.S. Energy Information Administration / Annual Energy Review 2011 123 Notes: • Data are annual average wind speed at 90 meters.

234

Figure SR4. U.S. Natural Gas Import & Export Prices, 2007-2008  

U.S. Energy Information Administration (EIA)

A run-up on natural gas prices began in the spring before a weakened economy drove prices below 2007 levels during the fall and winter. Figure Data:

235

Figure 102. U.S. motor gasoline and diesel fuel consumption ...  

U.S. Energy Information Administration (EIA)

Sheet3 Sheet2 Sheet1 Figure 102. U.S. motor gasoline and diesel fuel consumption, 2000-2040 (million barrels per day) Motor Gasoline Petroleum Portion ...

236

Figure 52. Energy use per capita and per dollar of gross ...  

U.S. Energy Information Administration (EIA)

Title: Figure 52. Energy use per capita and per dollar of gross domestic product, 1980-2040 (index, 1980 = 1) Subject: Annual Energy Outlook 2013

237

Figure 9.1 Nuclear Generating Units - U.S. Energy Information ...  

U.S. Energy Information Administration (EIA)

Figure 9.1 Nuclear Generating Units Operable Units,1 1957-2011 Nuclear Net Summer Capacity Change, 1950-2011 Status of All Nuclear Generating Units, ...

238

Figure SR1. Flow of Natural Gas Imports and Exports, 2009  

U.S. Energy Information Administration (EIA)

Figure SR1 of the U.S. Natural Gas Imports & Exports: 2009. This report provides an overview of U.S. international natural gas trade in 2009. ...

239

Figure 9.4 Natural Gas Prices (Dollarsa per Thousand Cubic Feet)  

U.S. Energy Information Administration (EIA)

Figure 9.4 Natural Gas Prices (Dollarsa per Thousand Cubic Feet) Wellhead and Citygate, 1949–2012 Consuming Sectors, 1967–2012 Consuming Sectors, Monthly

240

Waste Toolkit A-Z Light bulbs  

E-Print Network (OSTI)

Waste Toolkit A-Z Light bulbs Can I recycle light bulbs? It depends what type of bulbs you have for the `hazardous' symbol on the packaging or on the light bulb (crossed out wheelie bin symbol). How can I recycle light bulbs? Standard filament bulbs Put in the waste bin (landfill waste) as these are not classified

Melham, Tom

Note: This page contains sample records for the topic "light types figure" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

History Overview of Solid-State Lighting - History  

NLE Websites -- All DOE Office Websites (Extended Search)

Condensed History of Lighting | Review Articles | FAQs | Condensed History of Lighting | Review Articles | FAQs | Documents Archive | CONDENSED HISTORY OF LIGHTING Figure courtesy of Jeff Tsao; a version of this figure was published in IEEE Circuits and Devices Vol 20, No 3, pp 28-37, May/June, 2004 Lighting technologies are substitutes for sunlight in the 425-675 nm spectral region where sunlight is most concentrated and to which the human eye has evolved to be most sensitive. The history of lighting can be viewed as the development of increasingly efficient technologies for creating visible light inside, but not wasted light outside, of that spectral region. A 200-year perspective on that history is shown in the figure above. The left axis indicates luminous efficacy, in units of lumens (a measure of light which factors in the human visual response to various wavelengths) per watt. The right axis indicates the corresponding power-conversion efficiency for a tri-LED tri-color white light source with moderate color rendering (CRI=80) and relatively warm color temperature (CCT=3900K). For such a source, 400lm/W would correspond to 100% power-conversion efficiency.

242

To appear in the ACM SIGGRAPH conference proceedings Accurate Light Source Acquisition and Rendering  

E-Print Network (OSTI)

thickness in halogen light bulbs can have a significant impact on the illumination patterns generatedTo appear in the ACM SIGGRAPH conference proceedings Accurate Light Source Acquisition 2) The University of British Columbia Figure 1: Stages of light source measurement and rendering

Heidrich, Wolfgang

243

To appear in the ACM SIGGRAPH conference proceedings Accurate Light Source Acquisition and Rendering  

E-Print Network (OSTI)

thickness in halogen light bulbs can have a significant impact on the illumination patterns generatedTo appear in the ACM SIGGRAPH conference proceedings Accurate Light Source Acquisition) The University of British Columbia Figure 1: Stages of light source measurement and rendering (from left to right

Recanati, Catherine

244

LS-35 6 GeV Light Source Storage Ring Quadrupole and Sextupole...  

NLE Websites -- All DOE Office Websites (Extended Search)

5 6 GeV Light Source Storage Ring Quadrupole and Sextupole Magnet Field Calculations Robert J. Lari September 23, 1985 Quadrupole Magnet Figure 1 shows the cross section of...

245

Light Organizing/Organizing Light [Light in Place  

E-Print Network (OSTI)

a street through alter­ nating areas of dark and light, welandscapes, streets and squares. Light summons our spiritfor changing light, both outside rooms (such as streets and

Schwartz, Martin

1992-01-01T23:59:59.000Z

246

Estes Park Light and Power Department - Commercial and Industrial...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Appliances & Electronics Commercial Lighting Lighting Windows, Doors, & Skylights Maximum Rebate 50,000 per year Program Info State Colorado Program Type Utility Rebate...

247

Lighting Choices to Save You Money | Department of Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

EPA's website for more information. LEDs -- about 75%-80% energy savings The light emitting diode (LED) are a type of solid-state lighting -- semiconductors that convert...

248

Investigations of silica alcogel aging using coherent light  

NLE Websites -- All DOE Office Websites (Extended Search)

Investigations of silica alcogel aging using coherent light Title Investigations of silica alcogel aging using coherent light Publication Type Journal Article Year of Publication...

249

DOE Science Showcase - Light-emitting Diode (LED) Lighting Research | OSTI,  

Office of Scientific and Technical Information (OSTI)

Science Showcase - Light-emitting Diode (LED) Lighting Research Science Showcase - Light-emitting Diode (LED) Lighting Research Light-emitting diode (LED) lighting is a type of solid-state lighting that uses a semiconductor to convert electricity to light. LED lighting products are beginning to appear in a wide variety of home, business, and industrial products such as holiday lighting, replacement bulbs for incandescent lamps, street lighting, outdoor area lighting and indoor ambient lighting. Over the past decade, LED technology research and development supported by the U.S. Department of Energy (DOE) has yielded impressive improvements in the cost, color performance, light output, efficacy, reliability, lifetime, and manufacturability of LED products and this upward trend is expected to continue. Read about the latest DOE research, the technology behind LEDs,

250

A Web-Based Virtual Lighting Simulator  

NLE Websites -- All DOE Office Websites (Extended Search)

A Web-Based Virtual Lighting Simulator Title A Web-Based Virtual Lighting Simulator Publication Type Conference Paper LBNL Report Number LBNL-51065 Year of Publication 2002 Authors...

251

Effect of phonon confinement on the thermoelectric figure of merit of quantum wells  

E-Print Network (OSTI)

Effect of phonon confinement on the thermoelectric figure of merit of quantum wells Alexander in quantum wells and superlattices due to two-dimensional carrier confinement. We predict that the figure of merit can increase even further in quantum well structures with free-surface or rigid boundaries

252

Figure 1:Energy Consumption in USg gy p 1E Roberts, Energy in US  

E-Print Network (OSTI)

: High Voltage DC Charging of fa Nissan Leaf. E Roberts, Energy in US 53 NPC Future Transportation FuelsFigure 1:Energy Consumption in USg gy p 2008 1E Roberts, Energy in US Source: www.eia.gov #12;Figure 2: US Liquid Demand by Sector and Fuel 2E Roberts, Energy in US Source: EIA: Annual Energy Outlook

Sutton, Michael

253

Keywords: Photovoltaic System, fault-tolerance, recon-figurable PV panel  

E-Print Network (OSTI)

1 Keywords: Photovoltaic System, fault-tolerance, recon- figurable PV panel Photovoltaic (PV plants, and satellites. The output power of a PV cell (also called solar cell) is dependent on the solar irradiance level and temperature. Figure 1 shows PV cell output current-voltage and power

Pedram, Massoud

254

Real-time motion effect enhancement based on fluid dynamics in figure animation  

Science Conference Proceedings (OSTI)

In fast figure animation, motion blur is often employed to generate fantastic effects of figure motion, for exaggerating the atmosphere one wants to convey. In the previous works for long time, the solution based on certain kind of image blending in ... Keywords: GPU geometric processing, fluid dynamics, motion blur, skeletal animation

Tian-Chen Xu; En-Hua Wu; Mo Chen; Ming Xie

2011-12-01T23:59:59.000Z

255

Morning Light | Open Energy Information  

Open Energy Info (EERE)

Morning Light Morning Light Jump to: navigation, search Name Morning Light Facility Morning Light Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner MidAmerican Energy Developer Clipper Windpower Development Company Energy Purchaser MidAmerican Energy Location Casey IA Coordinates 41.44819506°, -94.58280087° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.44819506,"lon":-94.58280087,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

256

Solid-State Lighting: LED Lighting Facts  

NLE Websites -- All DOE Office Websites (Extended Search)

Market-Based Programs Printable Version Share this resource Send a link to Solid-State Lighting: LED Lighting Facts to someone by E-mail Share Solid-State Lighting: LED Lighting Facts on Facebook Tweet about Solid-State Lighting: LED Lighting Facts on Twitter Bookmark Solid-State Lighting: LED Lighting Facts on Google Bookmark Solid-State Lighting: LED Lighting Facts on Delicious Rank Solid-State Lighting: LED Lighting Facts on Digg Find More places to share Solid-State Lighting: LED Lighting Facts on AddThis.com... LED Lighting Facts CALiPER Program Standards Development Technical Information Network Gateway Demonstrations Municipal Consortium Design Competitions LED Lighting Facts LED lighting facts - A Program of the U.S. DOE DOE's LED Lighting Facts® program showcases LED products for general

257

Fiberoptic home lighting  

Science Conference Proceedings (OSTI)

Initial effort on this grant project was to construct a model that would demonstrate the feasibility of various lighting theories. Testing of suitable materials for utilization as fibreoptic components was the second priority. The material chosen for the project was 5/8 inch diameter plexiglas rod. The next step involved determining the limitations and other properties of the plexiglas rod. The final factor in developing a useable system involved testing different types and colors of light and their ability to be transmitted by the optic fibre. The culmination of the research and testing resulted in the demonstration projects.

Keleher, D.

1982-01-01T23:59:59.000Z

258

When to Turn Off Your Lights | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

When to Turn Off Your Lights When to Turn Off Your Lights When to Turn Off Your Lights August 30, 2012 - 7:53pm Addthis The cost effectiveness of when to turn off lights depends on the type of lights and the price of electricity. | Photo courtesy of ©iStockphoto.com/kyoshino. The cost effectiveness of when to turn off lights depends on the type of lights and the price of electricity. | Photo courtesy of ©iStockphoto.com/kyoshino. What does this mean for me? The type of lights and the price of electricity determine whether it's best to turn lights off when you leave a room. Consider using sensors, timers, and other automatic lighting controls. The cost effectiveness of when to turn off lights depends on the type of bulb and the cost of electricity. The type of lightbulb you use is

259

When to Turn Off Your Lights | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

When to Turn Off Your Lights When to Turn Off Your Lights When to Turn Off Your Lights August 30, 2012 - 7:53pm Addthis The cost effectiveness of when to turn off lights depends on the type of lights and the price of electricity. | Photo courtesy of ©iStockphoto.com/kyoshino. The cost effectiveness of when to turn off lights depends on the type of lights and the price of electricity. | Photo courtesy of ©iStockphoto.com/kyoshino. What does this mean for me? The type of lights and the price of electricity determine whether it's best to turn lights off when you leave a room. Consider using sensors, timers, and other automatic lighting controls. The cost effectiveness of when to turn off lights depends on the type of bulb and the cost of electricity. The type of lightbulb you use is

260

The History of the Light Bulb | Department of Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

Future is Here One of the fastest developing lighting technologies today is the light-emitting diode (or LED). A type of solid-state lighting, LEDs use a semiconductor to convert...

Note: This page contains sample records for the topic "light types figure" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Flathead Electric Cooperative - Commercial Lighting Rebate Program |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

You are here You are here Home » Flathead Electric Cooperative - Commercial Lighting Rebate Program Flathead Electric Cooperative - Commercial Lighting Rebate Program < Back Eligibility Agricultural Commercial Industrial Savings Category Appliances & Electronics Commercial Lighting Lighting Heating & Cooling Commercial Heating & Cooling Maximum Rebate 70% of project cost Program Info State Montana Program Type Utility Rebate Program Rebate Amount Retrofit Lighting: $3 - $400 per unit New Construction Lighting: $10 - $50 per unit Provider Flathead Electric Cooperative Flathead Electric Cooperative, in conjunction with Bonneville Power Administration, encourages energy efficiency in the commercial sector by providing a commercial lighting retro-fit rebate program and a new

262

Indianapolis Power & Light - Business Energy Incentives Program...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Incentives Program assists commercial and industrial customers with reducing energy consumption through three common types of equipment: lighting, motors and pumps (for HVAC and...

263

Light Computing  

E-Print Network (OSTI)

A configuration of light pulses is generated, together with emitters and receptors, that allows computing. The computing is extraordinarily high in number of flops per second, exceeding the capability of a quantum computer for a given size and coherence region. The emitters and receptors are based on the quantum diode, which can emit and detect individual photons with high accuracy.

Gordon Chalmers

2006-10-13T23:59:59.000Z

264

New Electronic Light Sources for Sustainability in a Greener Environment  

Science Conference Proceedings (OSTI)

This EPRI Technical Update continues the technical assessment of advanced lighting technologies in the product areaselectronic linear fluorescent, electronic compact fluorescent, electronic high-intensity discharge (HID), and light-emitting diode (LED). This year, a new type of light sourcesolid-state plasma lighting (a miniature HID technology)was assessed. This project demonstrates how light sources are making their way into new designs providing new types of light fixtures. A total of seven products w...

2010-12-31T23:59:59.000Z

265

EK101 Engineering Light Smart Lighting  

E-Print Network (OSTI)

extensively in concert lighting and are finding increased usage in dance lighting because refers to the upstage back curtain (is white or a light color), which can be us for lighting or special Mixer #12;Monitor House speaker Lighting System Control Board: Similar to the sound board, the light

Bifano, Thomas

266

Automatic Mechetronic Wheel Light Device  

DOE Patents (OSTI)

A wheel lighting device for illuminating a wheel of a vehicle to increase safety and enhance aesthetics. The device produces the appearance of a "ring of light" on a vehicle's wheels as the vehicle moves. The "ring of light" can automatically change in color and/or brightness according to a vehicle's speed, acceleration, jerk, selection of transmission gears, and/or engine speed. The device provides auxiliary indicator lights by producing light in conjunction with a vehicle's turn signals, hazard lights, alarm systems, and etc. The device comprises a combination of mechanical and electronic components and can be placed on the outer or inner surface of a wheel or made integral to a wheel or wheel cover. The device can be configured for all vehicle types, and is electrically powered by a vehicle's electrical system and/or battery.

Khan, Mohammed John Fitzgerald (Silver Spring, MD)

2004-09-14T23:59:59.000Z

267

Automatic Mechetronic Wheel Light Device  

SciTech Connect

A wheel lighting device for illuminating a wheel of a vehicle to increase safety and enhance aesthetics. The device produces the appearance of a "ring of light" on a vehicle's wheels as the vehicle moves. The "ring of light" can automatically change in color and/or brightness according to a vehicle's speed, acceleration, jerk, selection of transmission gears, and/or engine speed. The device provides auxiliary indicator lights by producing light in conjunction with a vehicle's turn signals, hazard lights, alarm systems, and etc. The device comprises a combination of mechanical and electronic components and can be placed on the outer or inner surface of a wheel or made integral to a wheel or wheel cover. The device can be configured for all vehicle types, and is electrically powered by a vehicle's electrical system and/or battery.

Khan, Mohammed John Fitzgerald (Silver Spring, MD)

2004-09-14T23:59:59.000Z

268

Figure 91. Natural gas production by source, 1990-2040 (trillion ...  

U.S. Energy Information Administration (EIA)

Sheet3 Sheet2 Sheet1 Figure 91. Natural gas production by source, 1990-2040 (trillion cubic feet) Alaska Coalbed Methane Lower 48 Offshore Lower 48 Onshore Conventional

269

Figure 1. Net import share of U.S. liquids supply in two ...  

U.S. Energy Information Administration (EIA)

16.87 2040.00 11.96 18.95 18.08 16.80. Title: Figure 1. Net import share of U.S. liquids supply in two cases, 1970-2040 (percent) Subject: Annual ...

270

Figure 41. U.S. Brent crude oil and Henry Hub natural gas spot ...  

U.S. Energy Information Administration (EIA)

Sheet3 Sheet2 Sheet1 Figure 41. U.S. Brent crude oil and Henry Hub natural gas spot market prices in three cases, 2005-2040 Natural Gas Crude Oil Reference

271

Figure 98. API gravity of U.S. domestic and imported crude ...  

U.S. Energy Information Administration (EIA)

Title: Figure 98. API gravity of U.S. domestic and imported crude oil supplies, 1990-2040 (degrees) Subject: Annual Energy Outlook 2013 Author: U.S. E ...

272

Figure 97. Total U.S. tight oil production by geologic formation ...  

U.S. Energy Information Administration (EIA)

Sheet3 Sheet2 Sheet1 Figure 97. Total U.S. tight oil production by geologic formation, 2011-2040 (million barrels per day) Permian Basin Bakken Eagle Ford

273

Mobility of Ions in Lanthanum Fluoride Nanoclusters---Figure 7 - TMS  

Science Conference Proceedings (OSTI)

... April 1997 edition of JOM-e. a, b. c, d. e, f. g, h. F (bulk) F (surface). La (bulk) La (surface). Figure 7. The MSD as a function of time for several temperatures.

274

Figure 72. Vehicle miles traveled per licensed driver, 1970-2040 ...  

U.S. Energy Information Administration (EIA)

Sheet3 Sheet2 Sheet1 Figure 72. Vehicle miles traveled per licensed driver, 1970-2040 (thousand miles) History Reference case 1970.00 $8.69 1971.00 $9.01

275

Figure 10. Annual change in U.S. wet natural gas proved reserves ...  

U.S. Energy Information Administration (EIA)

Figure 8 Bcf Shale Total Other Shale % Total Proved Reserves Change in Natural Gas Proved Reserves Tcf Natural Gas Proved Reserves shale other 2006.00 14182.00

276

Figure 11. Shale gas proved reserves by selected states, wet after ...  

U.S. Energy Information Administration (EIA)

Figure 11 Shale_History_Summary state Alabama AL Arkansas AR CA Colorado CO Kentucky KY Louisiana LA Michigan MI Montana MT North Dakota ND NM Oklahoma OK Pennsylvania

277

Figure 111. Energy-related carbon dioxide emissions in three cases ...  

U.S. Energy Information Administration (EIA)

Sheet3 Sheet2 Sheet1 Figure 111. Energy-related carbon dioxide emissions in three cases with three levels of emissions fees, 2000-2040 (million metric tons)

278

Figure 21. Annual average spot price for Brent crude oil in three ...  

U.S. Energy Information Administration (EIA)

Sheet3 Sheet2 Sheet1 Figure 21. Annual average spot price for Brent crude oil in three cases, 1990-2040 (2011 dollars per barrel) Reference Low Oil Price

279

Figure 87. Ratio of Brent crude oil price to Henry Hub spot ...  

U.S. Energy Information Administration (EIA)

Sheet3 Sheet2 Sheet1 Figure 87. Ratio of Brent crude oil price to Henry Hub spot natural gas price in energy-equivalent terms, 1990-2040 Ratio Released:April 15, 2013

280

Figure 49. Brent crude oil spot prices in three cases, 1990-2040 ...  

U.S. Energy Information Administration (EIA)

Sheet3 Sheet2 Sheet1 Figure 49. Brent crude oil spot prices in three cases, 1990-2040 (2011 dollars per barrel) Reference High Oil Price Low Oil Price

Note: This page contains sample records for the topic "light types figure" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Figure 3.1 Fossil Fuel Production Prices - U.S. Energy ...  

U.S. Energy Information Administration (EIA)

Figure 3.1 Fossil Fuel Production Prices Prices, 1949-2011 Fossil Fuel Composite Price,˛ Change From Previous Year, 1950-2011 68 U.S. Energy Information ...

282

Figure 3.8 Value of Fossil Fuel Exports - U.S. Energy ...  

U.S. Energy Information Administration (EIA)

Figure 3.8 Value of Fossil Fuel Exports Total, 1949-2011 By Fuel, 1949-2011 By Fuel, 2011 82 U.S. Energy Information Administration / Annual Energy Review 2011

283

Figure 7. U.S. dry natural gas consumption by sector, 2005-2040 ...  

U.S. Energy Information Administration (EIA)

Sheet3 Sheet2 Sheet1 Figure 7. U.S. dry natural gas consumption by sector, 2005-2040 (trllion cubic feet) Residential Commercial Transportation Gas to liquids

284

Figure 75. U.S. electricity demand growth, 1950-2040 (percent, 3 ...  

U.S. Energy Information Administration (EIA)

Sheet3 Sheet2 Sheet1 Figure 75. U.S. electricity demand growth, 1950-2040 (percent, 3-year moving average) Year 3-year moving average Trendline 1950.00

285

Figure 6.3 Natural Gas Imports, Exports, and Net Imports  

U.S. Energy Information Administration (EIA)

Figure 6.3 Natural Gas Imports, Exports, and Net Imports Trade Overview, 1949-2011 Trade, 2011 Net Imports as Share of Consumption, 1958-2011 182 U.S. ...

286

Figure SR3. U.S. Natural Gas Imports and Exports, 1994-2008  

U.S. Energy Information Administration (EIA)

Figure SR3 of the U.S. Natural Gas Imports & Exports: 2008. This report provides an overview of U.S. international natural gas trade in 2008. Natu ...

287

Figure 8.1 Electricity Overview - U.S. Energy Information ...  

U.S. Energy Information Administration (EIA)

Figure 8.1 Electricity Overview Overview, 2011 Electricity Trade, 1949-2011 Net-Generation-to-End-Use Flow, 2011 (Billion Kilowatthours) 220 U.S. Energy Information ...

288

Figure SR1. Flow of Natural Gas Imports and Exports, 2008  

U.S. Energy Information Administration (EIA)

Figure SR1 of the U.S. Natural Gas Imports & Exports: 2008. ... In 2008 LNG exports went primarily to Japan, after a small amount went to Russia in 2007.

289

Texas Electric Lighting Report  

NLE Websites -- All DOE Office Websites (Extended Search)

electric lighting electric lighting The SNAP House's lighting design aims for elegant simplicity in concept, use, and maintenance. Throughout the house, soft, ambient light is juxtaposed with bright, direct task lighting. All ambient and most task lighting is integrated directly into the architectural design of the house. An accent light wall between the bedroom and bathroom provides a glowing light for nighttime navigation.

290

Advanced Light Source Activity Report 1997/1998  

SciTech Connect

This Lawrence Berkeley National Laboratory, Advanced Light Source (ALS) activity report for 1997/98 discusses the following topics: Introduction and Overview; Science Highlights; Facility Report; Special Events; ALS Advisory Panels 1997/98; ALS Staff 1997/98 and Facts and Figures for the year.

Greiner, Annette (ed.)

1999-03-01T23:59:59.000Z

291

ZnSe light?emitting diodes  

Science Conference Proceedings (OSTI)

We report the successful fabrication of ZnSe p?n junction light?emitting diodes in which Li and Cl are used as p?type and n?type dopants

J. Ren; K. A. Bowers; B. Sneed; D. L. Dreifus; J. W. Cook Jr.; J. F. Schetzina; R. M. Kolbas

1990-01-01T23:59:59.000Z

292

Development of Advanced LED Phosphors by Spray-based Processes for Solid State Lighting  

SciTech Connect

The overarching goal of the project was to develop luminescent materials using aerosol processes for making improved LED devices for solid state lighting. In essence this means improving white light emitting phosphor based LEDs by improvement of the phosphor and phosphor layer. The structure of these types of light sources, displayed in Figure 1, comprises of a blue or UV LED under a phosphor layer that converts the blue or UV light to a broad visible (white) light. Traditionally, this is done with a blue emitting diode combined with a blue absorbing, broadly yellow emitting phosphor such as Y{sub 3}Al{sub 5}O{sub 12}:Ce (YAG). A similar result may be achieved by combining a UV emitting diode and at least three different UV absorbing phosphors: red, green, and blue emitting. These emitted colors mix to make white light. The efficiency of these LEDs is based on the combined efficiency of the LED, phosphor, and the interaction between the two. The Cabot SSL project attempted to improve the over all efficiency of the LED light source be improving the efficiency of the phosphor and the interaction between the LED light and the phosphor. Cabot's spray based process for producing phosphor powders is able to improve the brightness of the powder itself by increasing the activator (the species that emits the light) concentration without adverse quenching effects compared to conventional synthesis. This will allow less phosphor powder to be used, and will decrease the cost of the light source; thus lowering the barrier of entry to the lighting market. Cabot's process also allows for chemical flexibility of the phosphor particles, which may result in tunable emission spectra and so light sources with improved color rendering. Another benefit of Cabot's process is the resulting spherical morphology of the particles. Less light scattering results when spherical particles are used in the phosphor layer (Figure 1) compared to when conventional, irregular shaped phosphor particles are used. This spherical morphology will result in better light extraction and so an improvement of efficiency in the overall device. Cabot is a 2.5 billion dollar company that makes specialized materials using propriety spray based technologies. It is a core competency of Cabot's to exploit the spray based technology and resulting material/morphology advantages. Once a business opportunity is clearly identified, Cabot is positioned to increase the scale of the production to meet opportunity's need. Cabot has demonstrated the capability to make spherical morphology micron-sized phosphor powders by spray based routes for PDP and CRT applications, but the value proposition is still unproven for LED applications. Cabot believes that the improvements in phosphor powders yielded by their process will result in a commercial advantage over existing technologies. Through the SSL project, Cabot has produced a number of different compositions in a spherical morphology that may be useful for solid state lights, as well as demonstrated processes that are able to produce particles from 10 nanometers to 3 micrometers. Towards the end of the project we demonstrated that our process produces YAG:Ce powder that has both higher internal quantum efficiency (0.6 compared to 0.45) and external quantum efficiency (0.85 compared to 0.6) than the commercial standard (see section 3.4.4.3). We, however, only produced these highly bright materials in research and development quantities, and were never able to produce high quantum efficiency materials in a reproducible manner at a commercial scale.

Cabot Corporation

2007-09-30T23:59:59.000Z

293

Energy Conversion: Solid-State Lighting  

E-Print Network (OSTI)

and global climate change. Historically, electric light bulbs have been of the incandescent type. Although this technology was developed more than 100 years ago, it is still in use today. Incandescent light bulbs operate, which allows the bulb to operate at a higher temperature. However, the efficiency of incandescent light

294

Light Emitting Diode (LED) Lighting and Systems  

Science Conference Proceedings (OSTI)

This EPRI Technical Update addresses the most promising and unique energy efficient light source light emitting diode (LED) lighting. Business and technical market factors (Chapter 2) explain the upcoming growth of the LED and LED lighting market. Future technical improvements to LEDs and systems are also emphasized. Discussion of the importance of utility involvement in helping their customers make the switch from traditional lighting to LED lighting is provided. LED lighting technologies are covered in...

2007-12-21T23:59:59.000Z

295

Springfield Utility Board - Energy Smart Lighting Program | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Springfield Utility Board - Energy Smart Lighting Program Springfield Utility Board - Energy Smart Lighting Program Springfield Utility Board - Energy Smart Lighting Program < Back Eligibility Commercial Fed. Government Industrial Local Government Nonprofit State Government Savings Category Appliances & Electronics Commercial Lighting Lighting Maximum Rebate Commercial Lighting Replacement: $1,500 Program Info State Oregon Program Type Utility Rebate Program Rebate Amount Incentives are based upon three programs offered by SUB: New Construction Lighting: $10 - $50/light fixture Commercial Lighting Replacement: $3 - $100 Commercial Lighting Implementation: not specified Energy Smart Design Office: $0.50 per square foot Provider Springfield Utility Board The Springfield Utility Board (SUB) works with their commercial customers

296

Sulfur Lamps-The Next Generation of Efficient Light?  

NLE Websites -- All DOE Office Websites (Extended Search)

5 5 Sulfur Lamps-The Next Generation of Efficient Light? The figure above is a schematic of the system installed at the National Air and Space Museum and the DOE headquarters in Washington, D.C., Light from the sulfur lamp is focused by a parabolic reflector so that it enters the light pipe within a small angular cone. Light travels down the pipe, reflecting off the prismatic film (A) that lines the outer acrylic tube. The prismatic film reflects the light through total internal reflection (C), an intrinsically efficient process. Some of the light striking the film (at A) is not reflected and "leaks out" of the pipe walls (B), giving the pipe a glowing appearance. A light ray that travels all the way down the pipe will strike the mirror at the end (D) and return back up the pipe.

297

Poudre Valley REA - Commercial Lighting Rebate Program (Colorado) |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Commercial Lighting Rebate Program (Colorado) Commercial Lighting Rebate Program (Colorado) Poudre Valley REA - Commercial Lighting Rebate Program (Colorado) < Back Eligibility Commercial Savings Category Appliances & Electronics Commercial Lighting Lighting Maximum Rebate Commercial Lighting Retrofit: 50% of equipment cost, $20,000 LED Street Lighting/Induction Street Lighting: $20,000 Program Info State Colorado Program Type Utility Rebate Program Rebate Amount LED Refrigerated Case Lighting (Top Lighting): $60 per ln ft LED Refrigerated Case Lighting (Case Lighting): $60 per door LED Street Lighting: $44 - $475 per fixture Induction Street Lighting: $33 - $355 per fixture Commercial Lighting Retrofit: $250 per kW saved Provider Poudre Valley REA Poudre Valley Rural Electric Association (PVREA), a Touchstone Energy

298

TTRDC - Light Duty E-Drive Vehicles Monthly Sales Updates  

NLE Websites -- All DOE Office Websites (Extended Search)

Light Duty Electric Drive Vehicles Monthly Sales Updates Currently available electric-drive vehicles (EDV) in the U.S market include hybrid electric vehicles (HEV), plug-in hybrid electric vehicles (PHEV), and all electric vehicles (AEV). Plug-in Vehicles (PEV) include both PHEV and AEV. HEVs debuted in the U.S. market in December 1999 with 17 sales of the first-generation Honda Insight, while the first PHEV (Chevrolet Volt) and AEV (Nissan Leaf) most recently debuted in December 2010. Electric drive vehicles are offered in several car and SUV models, and a few pickup and van models. Historical sales of HEV, PHEV, and AEV are compiled by Argonne's Center for Transportation Research and reported to the U.S. Department of Energy's Vehicle Technology Program Office each month. These sales are shown in Figures 1, 2 and 3. Figure 1 shows monthly new PHEV and AEV sales by model. Figure 2 shows yearly new HEV sales by model. Figure 3 shows electric drive vehicles sales share of total light-duty vehicle (LDV) sales since 1999. Figure 4 shows HEV and PEV sales change with gasoline price..

299

Duquesne Light Company - Commercial and Industrial Energy Efficiency  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Duquesne Light Company - Commercial and Industrial Energy Duquesne Light Company - Commercial and Industrial Energy Efficiency Program Duquesne Light Company - Commercial and Industrial Energy Efficiency Program < Back Eligibility Commercial Fed. Government Industrial Institutional Local Government Schools State Government Savings Category Heating & Cooling Commercial Heating & Cooling Cooling Commercial Weatherization Manufacturing Appliances & Electronics Commercial Lighting Lighting Program Info State Pennsylvania Program Type Utility Rebate Program Rebate Amount Custom: Varies Lighting: Varies widely by type Controls and Sensors: $10-$75 VFD for Chilled Water Loop $150/hp VFD for HVAC Fans: $80/hp Packaged Terminal AC: $45-$75/ton Food Service Equipment: Varies widely by type Refrigeration Equipment: Varies widely by type

300

Energy and lighting design  

SciTech Connect

A detailed examination of the current energy conservation practices for lighting systems is presented. This first part of a two-part presentation covers the following: energy and lighting design; lighting and energy standards; lighting efficiency factors; light control and photometrics; lighting and the architectural interior; luminaire impact on the environment; basic design techniques; the lighting power budget; and conservation through control.

Helms, R.N.

1979-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "light types figure" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Technology reviews: Lighting systems  

SciTech Connect

We present a representative review of existing, emerging, and future technology options in each of five hardware and systems areas in envelope and lighting technologies: lighting systems, glazing systems, shading systems, daylighting optical systems, and dynamic curtain wall systems. The term technology is used here to describe any design choice for energy efficiency, ranging from individual components to more complex systems to general design strategies. The purpose of this task is to characterize lighting system in the state of the art in envelope and lighting technologies in order to identify those with promise for advanced integrated systems, with an emphasis on California commercial buildings. For each technology category, the following activities have been attempted to the extent possible: Identify key performance characteristics and criteria for each technology. Determine the performance range of available technologies. Identify the most promising technologies and promising trends in technology advances. Examine market forces and market trends. Develop a continuously growing in-house database to be used throughout the project. A variety of information sources have been used in these technology characterizations, including miscellaneous periodicals, manufacturer catalogs and cut sheets, other research documents, and data from previous computer simulations. We include these different sources in order to best show the type and variety of data available, however publication here does not imply our guarantee of these data. Within each category, several broad classes are identified, and within each class we examine the generic individual technologies that fall into that class.

Schuman, J.; Rubinstein, F.; Papamichael, K.; Beltran, L.; Lee, E.S.; Selkowitz, S.

1992-09-01T23:59:59.000Z

302

Light Emitting Diodes and General Lighting  

NLE Websites -- All DOE Office Websites (Extended Search)

Light Emitting Diodes and General Lighting Speaker(s): Martin Moeck Date: August 6, 2009 - 12:00pm Location: 90-3122 We give a short overview on high-power light emitting diodes,...

303

Wire-shaped semiconductor light-emitting diodes for general-purpose lighting  

SciTech Connect

The object of this work is to develop and optimize a new type of light-emitting diode (LED) with a wire-shaped, cylindrical geometry.

Mauk, Michael G.

2002-10-28T23:59:59.000Z

304

Evaluation of Lighting and Lighting Control Technologies  

Science Conference Proceedings (OSTI)

Energy efficient lighting and lighting controls have been a means to significant energy savings for many facilities around the world. Advances in lighting sources often allow for the conservation of quality of light while providing more flexibility in the control of light. Additionally, advances in core technologies within the lighting marketplace regularly lead to the introduction of new lamps, fixtures and controls.  With the rapid introduction of new products and designs, it is important to ...

2013-11-15T23:59:59.000Z

305

Figure 1  

Science Conference Proceedings (OSTI)

Total = $759.2 billion. Source: Organisation for Economic Co-Operation and Development (OECD), Main Science and Technology Indicators, 2004. * Argentina ...

306

Figure 3  

Science Conference Proceedings (OSTI)

skip to main content, National Institute of Standards and Technology. Home, Instruments, Science, Experiments, SiteMap. Back ...

307

Figure 2  

Science Conference Proceedings (OSTI)

skip to main content, National Institute of Standards and Technology. Home, Instruments, Science, Experiments, SiteMap. Back ...

308

Figure 1  

Science Conference Proceedings (OSTI)

skip to main content, National Institute of Standards and Technology. Home, Instruments, Science, Experiments, SiteMap. Back ...

309

Lighting in Residential and Commercial Buildings (1993 and 1995 Data)  

U.S. Energy Information Administration (EIA) Indexed Site

Types > 1995 CBECS Lighting Equipment Types > 1995 CBECS Lighting Equipment 1995 CBECS Lighting Equipment Profile Lighting Equipment - Type and Characteristics of Equipment Emits Found In Incandescent Incandescent Light Bulb Produces light by electrically heating a tungsten filament Includes energy-efficient incandescent bulbs, such as Reflector or R-Lamps (accent and task lighting), Parabolic Aluminized Reflector (PAR) lamps (flood and spot lighting), and Ellipsoidal Reflector (ER) lamps (recessed lighting) Highly inefficient because much of the energy is lost as heat 14-18 Lumens Per Watt (LPW) 14% of Lit Commercial Floorspace Standard Fluorescent Lighting with Magnetic Ballast Standard Fluorescent with Magnetic Ballast Produces light by passing electricity through mercury vapor, causing the fluorescent coating to glow or fluoresce

310

Lighting Group: Controls: PIER Lighting Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

PIER Lighting Projects CEC Public Interest Energy Research (PIER) Projects Objective Lighting controls are often expensive, complex, hard to commission properly and difficult to...

311

Architectural Lighting Analysis in Virtual Lighting Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

Architectural Lighting Analysis in Virtual Lighting Laboratory NOTICE Due to the current lapse of federal funding, Berkeley Lab websites are accessible, but may not be updated...

312

Next Generation Light Source  

•Next Generation Light Source – Super Thin Light Bulb, Energy Efficient, Long Life, Dimmable, and Uniform Illumination •High Entry Barrier – 71 ...

313

First Light  

E-Print Network (OSTI)

The first dwarf galaxies, which constitute the building blocks of the collapsed objects we find today in the Universe, had formed hundreds of millions of years after the big bang. This pedagogical review describes the early growth of their small-amplitude seed fluctuations from the epoch of inflation through dark matter decoupling and matter-radiation equality, to the final collapse and fragmentation of the dark matter on all mass scales above \\~10^{-4} solar masses. The condensation of baryons into halos in the mass range of ~10^5-10^{10} solar masses led to the formation of the first stars and the re-ionization of the cold hydrogen gas, left over from the big bang. The production of heavy elements by the first stars started the metal enrichment process that eventually led to the formation of rocky planets and life. A wide variety of instruments currently under design [including large-aperture infrared telescopes on the ground or in space (JWST), and low-frequency arrays for the detection of redshifted 21cm radiation], will establish better understanding of the first sources of light during an epoch in cosmic history that was largely unexplored so far. Numerical simulations of reionization are computationally challenging, as they require radiative transfer across large cosmological volumes as well as sufficently high resolution to identify the sources of the ionizing radiation. The technological challenges for observations and the computational challenges for numerical simulations, will motivate intense work in this field over the coming decade.

Abraham Loeb

2006-03-14T23:59:59.000Z

314

Estimate Greenhouse Gas Emissions by Building Type | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Estimate Greenhouse Gas Emissions by Building Type Estimate Greenhouse Gas Emissions by Building Type Estimate Greenhouse Gas Emissions by Building Type October 7, 2013 - 10:51am Addthis YOU ARE HERE Step 2 Starting with the programs contributing the greatest proportion of building greenhouse gas (GHG) emissions, the agency should next determine which building types operated by those programs use the most energy (Figure 1). Energy intensity is evaluated instead of emissions in this approach because programs may not have access to emissions data by building type. Figure 1 - An image of an organizational-type chart. A rectangle labeled 'Program 1' has lines pointing to three other rectangles below it labeled 'Building Type 1,' 'Building Type 2,' and 'Building Type 3.' Next to the building types it says, 'Step 2. Estimate emissions by building type.

315

Lighting | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Lighting Lighting Lighting When you're shopping for lightbulbs, compare lumens and use the Lighting Facts label to be sure you're getting the amount of light, or level of brightness, you want. You can save money and energy while lighting your home and still maintaining good light quantity and quality. Consider energy-efficient lighting options to use the same amount of light for less money. Learn strategies for comparing and buying lighting products and using them efficiently. Featured Lighting Choices to Save You Money Light your home for less money while using the same amount of light. How Energy-Efficient Light Bulbs Compare with Traditional Incandescents Energy-efficient light bulbs are available today and could save you about $50 per year in energy costs when you replace 15 traditional incandescent bulbs in your home.

316

Experimental Setup Measurements were made with the experimental configuration depicted in Figure 1. Tissue  

E-Print Network (OSTI)

depicted in Figure 1. Tissue samples were heated in an insulated tank that was filled with deionized water, which had been degassed by vacuum pumping in an appropriate vessel. Tissue was placed with a MetroTek pulser and echoes recorded. The transducer was moved to the next site of interest and a new

Arthur, R. Martin

317

AMS Copyright Notice Copyright 2010 American Meteorological Society (AMS). Permission to use figures,  

E-Print Network (OSTI)

-state vertical wind shear. The present work addresses a related assertion, that squall-line intensity ought, long-lived squall lines'' (often called ``RKW theory'') represented a paradigm shift. Although a number figures, tables, and brief excerpts from this work in scientific and educational works is hereby granted

Parker, Matthew D. Brown

318

AMS Copyright Notice Copyright 2004 American Meteorological Society (AMS). Permission to use figures,  

E-Print Network (OSTI)

with inflow passing through their line-leading precipitation can be stable and long lived. Lower figures, tables, and brief excerpts from this work in scientific and educational works is hereby granted provided that the source is acknowledged. Any use of material in this work that is determined to be "fair

Parker, Matthew D. Brown

319

Thermoelectric figure of merit for bulk nanostructured composites with distributed parameters  

Science Conference Proceedings (OSTI)

The effective properties of composites whose structure includes nanocontacts between bulk-phase macrocrystallites are considered. A model for such a nanostructured composite is constructed. Effective values of the thermoelectric power, thermal and electrical conductivities, and thermoelectric figure of merit are calculated in the mean-field approximation.

Snarskii, A. A. [National Technical University 'Kyiv Polytechnic Institute' (Ukraine); Sarychev, A. K. [Russian Academy of Sciences, Institute for Theoretical and Applied Electromagnetics (Russian Federation); Bezsudnov, I. V., E-mail: biv@akuan.ru ['Nauka-Service' Scientific and Production Company (Russian Federation); Lagarkov, A. N. [Russian Academy of Sciences, Institute for Theoretical and Applied Electromagnetics (Russian Federation)

2012-05-15T23:59:59.000Z

320

Data Sources for Figures ER2006-0227 C-1 April 2006  

E-Print Network (OSTI)

Appendix C Data Sources for Figures #12;#12;ER2006-0227 C-1 April 2006 Feature Data Source Laboratory, ENV­Environmental Remediation & Surveillance Program, ER2005-0496; 1:2,500 Scale Data; 22 Sept:2,500 Scale Data; 10 March 2006. Canyon Rim, Location of the, Townsite South Rim in 1991; in "Line Features

Note: This page contains sample records for the topic "light types figure" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

NEC's Itanium prototype server (see Figure 1), code-named AzusA after a river  

E-Print Network (OSTI)

aimed at reliability, availability, and serviceability. These features include cell hot- plug capability 200 ns for a local memory access or local CPU cache hit, and less than 300 ns for a remote (other cell. Availability As in PCI cards, a cell in a partitioned con- figuration can be hot swapped while other domains

Skadron, Kevin

322

Monitored lighting energy savings from dimmable lighting controls in The  

NLE Websites -- All DOE Office Websites (Extended Search)

Monitored lighting energy savings from dimmable lighting controls in The Monitored lighting energy savings from dimmable lighting controls in The New York Times Headquarters Building Title Monitored lighting energy savings from dimmable lighting controls in The New York Times Headquarters Building Publication Type Journal Article LBNL Report Number LBNL-6171E Year of Publication 2013 Authors Fernandes, Luis L., Eleanor S. Lee, Dennis L. DiBartolomeo, and Andrew McNeil Journal Energy and Buildings Volume 68 Issue A Pagination 498-514 Date Published 01/2014 Keywords Building energy-efficiency, daylighting, lighting control systems Abstract Digital addressable, dimmable lighting controls were introduced to the US market in the early 2000s with the promise of facilitating capture of potential energy savings with greater flexibility over their historic, typically unreliable, analog counterpart. The New York Times Company installed this emerging technology, after having tested the system thoroughly prior to procurement, in their new building in New York, New York. Four years after full occupancy in 2007, the owner agreed to participate in a post-occupancy monitored evaluation of the dimmable lighting system to verify actual performance in the field. Annual lighting energy savings from daylighting, setpoint tuning and occupancy controls were determined for the daylit, open-plan office areas on three typical floors (6, 11, and 20th floors) of the 51-story high-rise tower. Energy savings were calculated from ballast control signal and occupancy data recorded by the manufacturer's lighting control system. The ballast data were calibrated with independent measurements of lighting energy consumption. Savings from dimming controls (daylighting and setpoint tuning) were 12.6 kWh/m2-yr (1.17 kWh/ft2-yr) for the daylit spaces on the three floors overall, or 20%, relative to ASHRAE 90.1-2007. Compared to the prescriptive code in effect at the time of the building's construction (ASHRAE 90.1-2001), savings were 21.0 kWh/m2-yr (1.95 kWh/ft2-yr) or 28%. Annual lighting energy use with all lighting control strategies was 33.9 kWh/m2-yr (3.15 kWh/ft2-yr) in the daylit, open plan zones on average for the three floors. A simple payback analysis was conducted.

323

Accurate phase measurement with classical light  

E-Print Network (OSTI)

In this paper we investigate whether it is in general possible to substitute maximally path-entangled states, namely NOON-states by classical light in a Doppleron-type resonant multiphoton detection processes by studying adaptive phase measurement with classical light. We show that multiphoton detection probability using classical light coincides with that of NOON-states and the multiphoton absorbtion rate is not hindered by the spatially unconstrained photons of the classical light in our scheme. We prove that the optimal phase variance with classical light can be achieved and scales the same as that using NOON-states.

Sabine Wölk; Wenchao Ge; M. Suhail Zubairy

2012-11-13T23:59:59.000Z

324

Physics of light  

Science Conference Proceedings (OSTI)

A fourth interpretation for the principle of light invariance is proposed. After Maxwell equations, relativity, Lorentz group, another possibility stands into consider the Lorentz group representations as species. By specie one means fields with same nature under light invariance. For instance, given a ((1/2),(1/2)) representation, instead of just one specific field, we should associate to it the potential fields specie. Thus, starting from such fields specie interpretation the features of a certain potential field A{sub {mu}I} will be determined in terms of its associated fields set {l_brace}A{sub {mu}I}{r_brace}, where I means a diversity index. It says that, the original field equation to be searched for a given field description is that one corresponding to the associated group of fields, and not more, for the field being taken isolated. It introduces the meaning of parts enfolded in the whole through whole relativistic equations. There is a more primitive equation to be understood. Instead Maxwell equation this fourth light invariance interpretation is guiding us to a more basic equation describing a fields set {l_brace}A{sub {mu}I}{r_brace}. It will be entitled as Global Maxwell equation. Three steps are necessary for characterizing this Global Maxwell equation. The first one is to derive on abelian terms a generic expression for the fields set {l_brace}A{sub {mu}I}{r_brace}. Further, show the diversity between these associated fields. Prove that every field carries a different quantum number (spin, mass, charges; C, P, T, CPT). The third one is on the photon singularity. Being the light invariance porter, it should be distinguished from others fields. This is done through the group gauge directive symmetry and Noether current. A Global Lorentz force complements the Global Maxwell by introducing three types of force. The first one generalizes the usual Lorentz force while the last two introduce relationships between fields and masses and fields with fields. A Physics of Light is derived. Based on such interpretation relating fields with same Lorentz nature, the electromagnetism is enlarged. The electromagnetic phenomena is not more restricted to Maxwell and electric charge. It englobes Maxwell and produces new types of electromagnetic fields and sectors. It centers the photon at its origin, new aspects as photonic charges and selfinteracting photons are obtained. As a case of this new electromagnetic spectrum one can take the set {l_brace}{gamma}Z{sup 0},W{sup {+-}}{r_brace}. It provides an electromagnetism involving photonic, massive, neutral, electric charged sectors which may antecede the electroweak unification.

Doria, R. [Aprendanet, Petropolis, 25600 (Brazil)

2012-09-24T23:59:59.000Z

325

[symphony orchestra] [light music  

E-Print Network (OSTI)

] [Christianity] [life philosophy] [unification church study] [quiz study] [role playing game] SF [Science] [geography] [railroad study] [astronomy] [science] [biology] [outdoor activity] [wild creature study training] [volleyball] [volleyball] [handball] [field hockey] [figure skating] [fencing] [bowling

Takada, Shoji

326

Architectural Lighting Analysis in Virtual Lighting Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

Architectural Lighting Analysis in Virtual Lighting Laboratory Architectural Lighting Analysis in Virtual Lighting Laboratory Speaker(s): Mehlika Inanici Date: July 7, 2003 - 12:00pm Location: Bldg. 90 Seminar Host/Point of Contact: Satkartar K. Kinney Virtual Lighting Laboratory is a Radiance-based lighting analysis tool and methodology that proposes transformations in the utilization of computer visualization in lighting analysis and design decision-making. It is a computer environment, where the user has been provided with matrices of illuminance and luminance values extracted from high dynamic range images. The principal idea is to provide the laboratory to the designer and researcher to explore various lighting analysis techniques instead of imposing limited number of predetermined metrics. In addition, it introduces an analysis approach for temporal and spatial lighting

327

Baker-Barry Tunnel Lighting: Evaluation of a Potential GATEWAY Demonstrations Project  

SciTech Connect

The U.S. Department of Energy is evaluating the Baker-Barry Tunnel as a potential GATEWAY Demonstrations project for deployment of solid-state lighting (SSL) technology. The National Park Service views this project as a possible proving ground and template for implementation of light-emitting diode (LED) luminaires in other tunnels, thereby expanding the estimated 40% energy savings from 132 MWh/yr to a much larger figure nationally. Most of the energy savings in this application is attributable to the instant-restrike capability of LED products and to their high tolerance for frequent on/off switching, used here to separately control either end of the tunnel during daytime hours. Some LED luminaires rival or outperform their high-intensity discharge (HID) counterparts in terms of efficacy, but options are limited, and smaller lumen packages preclude true one-for-one equivalence. However, LED products continue to improve in efficacy and affordability at a rate unmatched by other light source technologies; the estimated simple payback period of eight years (excluding installation costs and maintenance savings) can be expected to improve with time. The proposed revisions to the existing high-pressure sodium (HPS) lighting system would require slightly increased controls complexity and significantly increased luminaire types and quantities. In exchange, substantial annual savings (from reduced maintenance and energy use) would be complemented by improved quantity and quality of illumination. Although advanced lighting controls could offer additional savings, it is unclear whether such a system would prove cost-effective; this topic may be explored in future work.

Tuenge, Jason R.

2011-06-28T23:59:59.000Z

328

A web-based virtual lighting simulator  

SciTech Connect

This paper is about a web-based ''virtual lighting simulator,'' which is intended to allow architects and lighting designers to quickly assess the effect of key parameters on the daylighting and lighting performance in various space types. The virtual lighting simulator consists of a web-based interface that allows navigation through a large database of images and data, which were generated through parametric lighting simulations. At its current form, the virtual lighting simulator has two main modules, one for daylighting and one for electric lighting. The daylighting module includes images and data for a small office space, varying most key daylighting parameters, such as window size and orientation, glazing type, surface reflectance, sky conditions, time of the year, etc. The electric lighting module includes images and data for five space types (classroom, small office, large open office, warehouse and small retail), varying key lighting parameters, such as the electric lighting system, surface reflectance, dimming/switching, etc. The computed images include perspectives and plans and are displayed in various formats to support qualitative as well as quantitative assessment. The quantitative information is in the form of iso-contour lines superimposed on the images, as well as false color images and statistical information on work plane illuminance. The qualitative information includes images that are adjusted to account for the sensitivity and adaptation of the human eye. The paper also includes a section on the major technical issues and their resolution.

Papamichael, Konstantinos; Lai, Judy; Fuller, Daniel; Tariq, Tara

2002-05-06T23:59:59.000Z

329

A web-based virtual lighting simulator  

SciTech Connect

This paper is about a web-based ''virtual lighting simulator,'' which is intended to allow architects and lighting designers to quickly assess the effect of key parameters on the daylighting and lighting performance in various space types. The virtual lighting simulator consists of a web-based interface that allows navigation through a large database of images and data, which were generated through parametric lighting simulations. At its current form, the virtual lighting simulator has two main modules, one for daylighting and one for electric lighting. The daylighting module includes images and data for a small office space, varying most key daylighting parameters, such as window size and orientation, glazing type, surface reflectance, sky conditions, time of the year, etc. The electric lighting module includes images and data for five space types (classroom, small office, large open office, warehouse and small retail), varying key lighting parameters, such as the electric lighting system, surface reflectance, dimming/switching, etc. The computed images include perspectives and plans and are displayed in various formats to support qualitative as well as quantitative assessment. The quantitative information is in the form of iso-contour lines superimposed on the images, as well as false color images and statistical information on work plane illuminance. The qualitative information includes images that are adjusted to account for the sensitivity and adaptation of the human eye. The paper also includes a section on the major technical issues and their resolution.

Papamichael, Konstantinos; Lai, Judy; Fuller, Daniel; Tariq, Tara

2002-05-06T23:59:59.000Z

330

Lakeview Light and Power - Energy Smart Grocer Rebate Program | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Lakeview Light and Power - Energy Smart Grocer Rebate Program Lakeview Light and Power - Energy Smart Grocer Rebate Program Lakeview Light and Power - Energy Smart Grocer Rebate Program < Back Eligibility Commercial Savings Category Heating & Cooling Commercial Heating & Cooling Cooling Home Weatherization Construction Commercial Weatherization Design & Remodeling Manufacturing Sealing Your Home Windows, Doors, & Skylights Appliances & Electronics Commercial Lighting Lighting Other Program Info Funding Source Lakeview Light and Power and Bonneville Power Administration State District of Columbia Program Type Utility Rebate Program Rebate Amount Varies by technology Provider Lakeview Light and Power Lakeview Light and Power, in association with the Bonneville Power Administration, offers the Energy Smart Program through which grocery

331

Mobile lighting apparatus  

DOE Patents (OSTI)

A mobile lighting apparatus includes a portable frame such as a moveable trailer or skid having a light tower thereon. The light tower is moveable from a stowed position to a deployed position. A hydrogen-powered fuel cell is located on the portable frame to provide electrical power to an array of the energy efficient lights located on the light tower.

Roe, George Michael; Klebanoff, Leonard Elliott; Rea, Gerald W; Drake, Robert A; Johnson, Terry A; Wingert, Steven John; Damberger, Thomas A; Skradski, Thomas J; Radley, Christopher James; Oros, James M; Schuttinger, Paul G; Grupp, David J; Prey, Stephen Carl

2013-05-14T23:59:59.000Z

332

Dynamic Organic Light Inc | Open Energy Information  

Open Energy Info (EERE)

Organic Light Inc Organic Light Inc Jump to: navigation, search Name Dynamic Organic Light, Inc. Place Longmont, Colorado Zip 80503 Product Dynamic Organic Light is a VC/PE backed company that engages in R&D and licensing of materials for OLED displays and lights. Coordinates 40.16394°, -105.100504° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.16394,"lon":-105.100504,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

333

ATS Lighting Inc | Open Energy Information  

Open Energy Info (EERE)

ATS Lighting Inc ATS Lighting Inc Jump to: navigation, search Name ATS Lighting Inc Address PO Box 1383 Place Concord, Massachusetts Zip 01742 Sector Efficiency Product Effienct lighting and portable lighting systems Website http://www.atslighting.com/ Coordinates 42.4527187°, -71.3705616° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.4527187,"lon":-71.3705616,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

334

Moon Solar Light MSL | Open Energy Information  

Open Energy Info (EERE)

Moon Solar Light MSL Moon Solar Light MSL Jump to: navigation, search Name Moon Solar Light (MSL) Place Rehovot, Israel Zip 76122 Sector Solar Product developed and distributes solar-based lighting applications using PV panels, LED lights and ultra-capacitors. Coordinates 31.899309°, 34.807999° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":31.899309,"lon":34.807999,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

335

Buildings Energy Data Book: 5.6 Lighting  

Buildings Energy Data Book (EERE)

2 Value of Electric Lighting Fixture Shipments (Million) Lighting Fixture Type 1985 1990 1995 2000 2001 Residential 786.8 827.6 983.8 983.9 CommercialInstitutional (except...

336

MidAmerican Energy (Electric) - Municipal Solid-State Lighting...  

Open Energy Info (EERE)

must be an Iowa electric governmental customer of MidAmerican Energy Company. Light-emitting diode and induction types of solid state lighting (SSL) qualify under this program....

337

Section 5.4.4 Lighting Controls: Greening Federal Facilities...  

NLE Websites -- All DOE Office Websites (Extended Search)

dimming ballasts can lower the lighting power to as little as 1-10%, depending on the ballast type. Ev- ery time the lights are dimmed, energy is saved. DAYLIGHT CONTROLS...

338

M/e update: lighting fixtures, ballasts  

SciTech Connect

A review of the factors influencing the selection of a lighting system is presented and the components that each type requires are considered. The energy conservation in lighting systems through the proper choice of fixtures and energy-efficient ballasts is explained. Actual retrofit installations are given as examples of the cost savings and reduced energy consumption realized when a proper indoor lighting system has been specified.

Plankenhorn, J.H.

1981-12-01T23:59:59.000Z

339

Figure A1. Natural gas processing plant capacity in the United States, 2013 2012  

U.S. Energy Information Administration (EIA) Indexed Site

5 5 Figure A1. Natural gas processing plant capacity in the United States, 2013 2012 Table A2. Natural gas processing plant capacity, by state, 2013 (million cubic feet per day) Alabama 1,403 Arkansas 24 California 926 Colorado 5,450 Florida 90 Illinois 2,100 Kansas 1,818 Kentucky 240 Louisiana 10,737 Michigan 479 Mississippi 1,123

340

Geometry-dependent lighting  

E-Print Network (OSTI)

Abstract — In this paper we introduce geometrydependent lighting that allows lighting parameters to be defined independently and possibly discrepantly over an object or scene based on the local geometry. We present and discuss Light Collages, a lighting design system with geometry-dependent lights for effective feature-enhanced visualization. Our algorithm segments the objects into local surface patches and places lights that are locally consistent but globally discrepant to enhance the perception of shape. We use spherical harmonics for efficiently storing and computing light placement and assignment. We also outline a method to find the minimal number of light sources sufficient to illuminate an object well with our globally discrepant lighting approach. Index Terms — Lighting design, scientific illustration, discrepant lighting, light placement, silhouette enhancement, proximity shadows, spherical harmonics I.

Chang Ha Lee; Xuejun Hao; Amitabh Varshney

2005-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "light types figure" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Lighting Group: What's New  

NLE Websites -- All DOE Office Websites (Extended Search)

What's New What's New in the Lighting Group For more information on what's new in the Lighting Group, please contact: Francis Rubinstein Lighting Group Leader (510) 486-4096...

342

Light in the city  

E-Print Network (OSTI)

This thesis focuses on enhancing the awareness of light for the pedestrian,and using light as a way of revealing the structure of the city and its relation to the cosmos. It proposes that aesthetic qualities of light inform ...

Srinivasan, Kavita, 1976-

2002-01-01T23:59:59.000Z

343

Specific light in sculpture  

E-Print Network (OSTI)

Specific light is defined as light from artificial or altered natural sources. The use and manipulation of light in three dimensional sculptural work is discussed in an historic and contemporary context. The author's work ...

Powell, John William

1989-01-01T23:59:59.000Z

344

Incandescent Lighting Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Incandescent Lighting Basics Incandescent Lighting Basics Incandescent Lighting Basics August 16, 2013 - 10:00am Addthis Incandescent lamps operate simply by heating a metal filament inside a bulb filled with inert gas. Because they operate directly on variety of common power types including common household alternating current or direct current such as batteries or automobiles, they do not require a special power supply or ballast. They turn on up instantly, providing a warm light with excellent color rendition because the light is produced in much the same way as the light from the sun. They can also be easily dimmed using inexpensive controls and are available in a staggering variety of shapes and sizes. However, incandescent lamps have a low efficacy (10-17 lumens per watt) compared with other lighting options and a short average

345

Incandescent Lighting Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Incandescent Lighting Basics Incandescent Lighting Basics Incandescent Lighting Basics August 16, 2013 - 10:00am Addthis Incandescent lamps operate simply by heating a metal filament inside a bulb filled with inert gas. Because they operate directly on variety of common power types including common household alternating current or direct current such as batteries or automobiles, they do not require a special power supply or ballast. They turn on up instantly, providing a warm light with excellent color rendition because the light is produced in much the same way as the light from the sun. They can also be easily dimmed using inexpensive controls and are available in a staggering variety of shapes and sizes. However, incandescent lamps have a low efficacy (10-17 lumens per watt) compared with other lighting options and a short average

346

Lighting in Residential and Commercial Buildings (1993 and 1995 data) --  

U.S. Energy Information Administration (EIA) Indexed Site

Light Type Used > Related Goverment Sites Light Type Used > Related Goverment Sites Links to Related Government Sites Publications list from U.S. Department of Energy's Office of Federal Energy Management Programs (FEMP) U.S. Environmental Protection Agency Green Lights Program Updated FLEX 3.0 Lighting software solution available from U.S. Department of Energy's Office of Federal Energy Management Programs Section 3.4 on Lighting and Section 7.2 on Lighting Control can be obtained at this site U.S. Department of Energy's Office of Federal Energy Management Programs lights basic training will be completed in FY '98 Lighting mailing list for exchange of information on lighting issues Lights in commercial buildings in the 21st Century List of major areas of expertise at Lawrence Berkeley National Laboratory, illustrated with specific projects

347

Energy_Savings_Light_Emitting_Diodes_Niche_Lighting_Apps.pdf...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

EnergySavingsLightEmittingDiodesNicheLightingApps.pdf EnergySavingsLightEmittingDiodesNicheLightingApps.pdf EnergySavingsLightEmittingDiodesNicheLightingApps.p...

348

Chicopee Electric Light - Commercial Energy Efficiency Rebate...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Massachusetts Program Type Utility Rebate Program Rebate Amount Custom: 0.17 per annual kWh saved Lighting: 0.17 per annual kWh saved New Construction: 0.17 per annual kWh saved...

349

Lighting market sourcebook for the US  

Science Conference Proceedings (OSTI)

Throughout the United States, in every sector and building type, lighting is a significant electrical end-use. Based on the many and varied studies of lighting technologies, and experience with programs that promote lighting energy-efficiency, there is a significant amount of cost-effective energy savings to be achieved in the lighting end use. Because of such potential savings, and because consumers most often do not adopt cost-effective lighting technologies on their own, programs and policies are needed to promote their adoption. Characteristics of lighting energy use, as well as the attributes of the lighting marketplace, can significantly affect the national pattern of lighting equipment choice and ownership. Consequently, policy makers who wish to promote energy-efficient lighting technologies and practices must understand the lighting technologies that people use, the ways in which they use them, and marketplace characteristics such as key actors, product mix and availability, price spectrum, and product distribution channels. The purpose of this report is to provide policy-makers with a sourcebook that addresses patterns of lighting energy use as well as data characterizing the marketplace in which lighting technologies are distributed, promoted, and sold.

Vorsatz, D.; Shown, L.; Koomey, J.; Moezzi, M.; Denver, A.; Atkinson, B.

1997-12-01T23:59:59.000Z

350

Prospects for LED lighting.  

SciTech Connect

Solid-state lighting using light-emitting diodes (LEDs) has the potential to reduce energy consumption for lighting by 50% while revolutionizing the way we illuminate our homes, work places, and public spaces. Nevertheless, substantial technical challenges remain in order for solid-state lighting to significantly displace the well-developed conventional lighting technologies. We review the potential of LED solid-state lighting to meet the long-term cost goals.

Tsao, Jeffrey Yeenien; Gee, James Martin; Simmons, Jerry Alvon

2003-08-01T23:59:59.000Z

351

Lighting Control Systems  

Science Conference Proceedings (OSTI)

The demand for lighting control systems in residential, commercial, and industrial facilities is on the rise with the demand for increased energy savings. With lighting accounting for almost 23% of grid load, there is significant opportunity to reduce lighting load while improving the quality of light for customers. Lighting control systems are becoming more intelligent as the need for them to interface with building control systems and demand response systems also increases. Lighting control systems use...

2009-12-17T23:59:59.000Z

352

Composite Lighting Simulations with Lighting Networks  

E-Print Network (OSTI)

A whole variety of different techniques for simulating global illumination in virtual environments have been developed over recent years. Each technique, including Radiosity, Monte-Carlo ray- or photon tracing, and directional-dependent Radiance computations, is best suited for simulating only some special case environments. None of these techniques is currently able to efficiently simulate all important lighting effects in non-trivial scenes. In this paper, we describe a new approach for efficiently combining different global illumination algorithms to yield a composite lighting simulation: Lighting Networks. Lighting Networks can exploit the advantages of each algorithm and can combine them in such a way as to simulate lighting effects that could only be computed at great costs by any single algorithm. Furthermore, this approach allows a user to configure the Lighting Network to compute only specific lighting effects that are important for a given task, while avoiding a costly simulation of the full global illumination in a scene. We show how the light paths computed by a Lighting Network can be described using regular expressions. This mapping allows us to analyze the composite lighting simulation and ensure completeness and redundant-free computations. Several examples demonstrate the advantages and unique lighting effects that can be obtained using this technique. 1

Philipp Slusallek; Marc Stamminger; Wolfgang Heidrich; Jan-Christian Popp; Hans-peter Seidel

1998-01-01T23:59:59.000Z

353

Lighting Group: Links  

NLE Websites -- All DOE Office Websites (Extended Search)

Links Links Links Organizations Illuminating Engineering Society of North America (IESNA) International Commission on Illumination (CIE) International Association of Lighting Designers (IALD) International Association of Energy-Efficient Lighting Lightfair International Energy Agency - Task 21: Daylight in Buildings: Design Tools and Performance Analysis International Energy Agency - Task 31: Daylighting Buildings in 21st Century National Association on Qualifications for the Lighting Professions (NCQLP) National Association of Independent Lighting Distributors (NAILD) International Association of Lighting Management Companies (NALMCO) Research Centers California Lighting Technology Center Lighting Research Center Lighting Research at Canada Institute for Research in Construction

354

Advanced Demand Responsive Lighting  

NLE Websites -- All DOE Office Websites (Extended Search)

Demand Demand Responsive Lighting Host: Francis Rubinstein Demand Response Research Center Technical Advisory Group Meeting August 31, 2007 10:30 AM - Noon Meeting Agenda * Introductions (10 minutes) * Main Presentation (~ 1 hour) * Questions, comments from panel (15 minutes) Project History * Lighting Scoping Study (completed January 2007) - Identified potential for energy and demand savings using demand responsive lighting systems - Importance of dimming - New wireless controls technologies * Advanced Demand Responsive Lighting (commenced March 2007) Objectives * Provide up-to-date information on the reliability, predictability of dimmable lighting as a demand resource under realistic operating load conditions * Identify potential negative impacts of DR lighting on lighting quality Potential of Demand Responsive Lighting Control

355

Plant and Lighting  

NLE Websites -- All DOE Office Websites (Extended Search)

publicationshouseplantligh t.html Sincerely, Anthony R. Brach "Artificial" light comes from many kinds of bulbs that emit different wavelengths of light; Many plants...

356

National Synchrotron Light Source  

NLE Websites -- All DOE Office Websites (Extended Search)

Angle Limit," Phys. Rev. Lett., 99: 134801 (2007). 33 Researchers Produce Firsts with Bursts of Light BNL researchers have generated extremely short pulses of light that are the...

357

Light Metals 2010  

Science Conference Proceedings (OSTI)

Feb 1, 2010 ... Softcover book: Light Metals 2008 Volume 2: Aluminum Reduction. Hardcover book and CD-ROM: Light Metals 2009 ...

358

Lighting | Open Energy Information  

Open Energy Info (EERE)

Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon Lighting Jump to: navigation, search TODO: Add description List of Lighting Incentives...

359

Lighting Systems Test Facilities  

NLE Websites -- All DOE Office Websites (Extended Search)

Measurement equipment with light beam Lighting Systems Test Facilities NOTICE Due to the current lapse of federal funding, Berkeley Lab websites are accessible, but may not be...

360

Lighting and Daylighting  

Energy.gov (U.S. Department of Energy (DOE))

Buildings can be lit in two ways: by using artificial lighting, or by using daylighting, or the process of using natural sunlight, windows, and skylights to provide lighting.

Note: This page contains sample records for the topic "light types figure" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Light Laboratory, Inc.  

Science Conference Proceedings (OSTI)

... 12) Solid State Lighting Luminaires - Color Characteristic Measurements. [22/S04] IES LM-16:1993 Practical Guide to Colorimetry of Light Sources. ...

2013-07-26T23:59:59.000Z

362

Hubbell Lighting Photometric Laboratory  

Science Conference Proceedings (OSTI)

... 12) Solid State Lighting Luminaires - Color Characteristic Measurements. [22/S04] IES LM-16:1993 Practical Guide to Colorimetry of Light Sources. ...

2013-07-26T23:59:59.000Z

363

Energy Efficient Lighting Products  

Science Conference Proceedings (OSTI)

... Road Vista, San Diego, CA [200823- 0] Light Laboratory, Inc ... GA. CSA Group, Alpharetta, GA [200732- 0] Cooper Lighting Photometric Laboratory ...

2013-07-26T23:59:59.000Z

364

Looking For Light.  

E-Print Network (OSTI)

??In my search for the way light can dictate the overall expression of an image, I have found that light is the means that activates… (more)

Lindholm, Kevin R.

2010-01-01T23:59:59.000Z

365

LBNL Lighting Research Group  

NLE Websites -- All DOE Office Websites (Extended Search)

LED and ballast berkeley lamp workstation light switch Overview | What's New | Publications | Software | Facilities | People | Contact Us | Links Sources and Ballasts | Light...

366

Properties of Light  

Science Conference Proceedings (OSTI)

... Scattering of Light. Exploration: Sunset in a glass. ... How would you design a camera that could see through a sand storm? Invisible Light. ...

2012-03-23T23:59:59.000Z

367

Lighting and Daylighting Basics  

Energy.gov (U.S. Department of Energy (DOE))

Buildings can be lit in two ways: by using artificial lighting, or by using daylighting, or the process of using natural sunlight, windows, and skylights to provide lighting.

368

Lighting Controls in Commercial Buildings  

NLE Websites -- All DOE Office Websites (Extended Search)

Lighting Controls in Commercial Buildings Lighting Controls in Commercial Buildings Title Lighting Controls in Commercial Buildings Publication Type Report Year of Publication 2012 Authors Williams, Alison A., Barbara A. Atkinson, Karina Garbesi, Erik Page, and Francis M. Rubinstein Series Title The Journal of the Illuminating Engineering Society of North America Volume 8 Document Number 3 Pagination 161-180 Date Published January ISBN Number 1550-2716 Keywords controls, daylighting, energy, occupancy sensors, tuning. Abstract Researchers have been quantifying energy savings from lighting controls in commercial buildings for more than 30 years. This study provides a meta-analysis of lighting energy savings identified in the literature-240 savings estimates from 88 papers and case studies, categorized into daylighting strategies, occupancy strategies, personal tuning, and institutional tuning. Beginning with an overall average of savings estimates by control strategy, successive analytical filters are added to identify potential biases introduced to the estimates by different analytical approaches. Based on this meta-analysis, the bestestimates of average lighting energy savings potential are 24 percent for occupancy, 28 percent for daylighting, 31 percent for personal tuning, 36 percent for institutional tuning, and 38 percent for multiple approaches. The results also suggest that simulations significantly overestimate (by at least 10 percent) the average savings obtainable from daylighting in actual buildings.

369

Cree LED Lighting Solutions Formerly LED Lighting Fixtures LLF...  

Open Energy Info (EERE)

Cree LED Lighting Solutions Formerly LED Lighting Fixtures LLF Jump to: navigation, search Name Cree LED Lighting Solutions (Formerly LED Lighting Fixtures (LLF)) Place...

370

What is the fastest type of energy?  

NLE Websites -- All DOE Office Websites (Extended Search)

What is the fastest type of energy? Since almost all forms of radiation move at the speed of light, we can determine that there are SEVERAL types of energies that are equally fast....

371

Demand Responsive Lighting: A Scoping Study  

E-Print Network (OSTI)

8 Figure 7: Maximum Demands Savings Intensity due toaddressed in this report. Maximum Demand Savings Intensity (Echelon Figure 7: Maximum Demands Savings Intensity due to

Rubinstein, Francis; Kiliccote, Sila

2007-01-01T23:59:59.000Z

372

OVERVIEW OF ASSESSMENT PROBLEM FORMULATION 149 Figure 4.19 Stilling well at Bellevue flow monitoring Figure 4.20 Level recorder at Bellevue flow monitor  

E-Print Network (OSTI)

, which is heavily canopied along most of its length, can be considered light-limited. Maximum fish growth, Corvallis Environ mental Research Laboratory, Corvallis, OR. 1982.) #12;154 STORMWATER EFFECTS HANDBOOK, while the street dirt PAHs are from petroleum product spills. In August of 1980, ash from the eruption

Pitt, Robert E.

373

Solid-State Lighting: Registration  

NLE Websites -- All DOE Office Websites (Extended Search)

Lighting: Registration on Twitter Bookmark Solid-State Lighting: Registration on Google Bookmark Solid-State Lighting: Registration on Delicious Rank Solid-State Lighting:...

374

Solid-State Lighting: Postings  

NLE Websites -- All DOE Office Websites (Extended Search)

Solid-State Lighting: Postings on Twitter Bookmark Solid-State Lighting: Postings on Google Bookmark Solid-State Lighting: Postings on Delicious Rank Solid-State Lighting:...

375

Limit of concentration under extended nonhomogeneous light sources  

SciTech Connect

Static photovoltaic concentrators, which see the sky as an extended distribution of radiance, are analyzed in a general way. The rules for achieving the highest energy on the cell are derived and the appropriate figures of merit are defined. It is concluded that casting increasingly high values of energy on the cell, which would be bifacial, require collecting a lower portion of the total sky energy. The corresponding figures of merit for the concentrators of the CPC family are analyzed, concluding that a better type of concentrator should be developed for photovoltaic applications.

Minano, J.C.; Luque, A.

1983-09-01T23:59:59.000Z

376

Detroit Public Lighting Department - Residential Energy Wise Program |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Detroit Public Lighting Department - Residential Energy Wise Detroit Public Lighting Department - Residential Energy Wise Program Detroit Public Lighting Department - Residential Energy Wise Program < Back Eligibility Low-Income Residential Multi-Family Residential Residential Savings Category Heating & Cooling Cooling Appliances & Electronics Commercial Lighting Lighting Program Info State Michigan Program Type Utility Rebate Program Rebate Amount CFLs: $2-$10 LED Task Light: $10.00 LED Night light: $1.25 Energy Star Ceiling Fan: $10 Provider Detroit Public Lighting Department The Detroit Public Lighting Department (PLD) offers residential customers rebates for energy efficient lights. In addition, low-income residential customers may qualify for free compact fluorescent lights (CFLs). Specific rebate amounts, equipment requirements, and applications are available on

377

Lighting Research Group  

NLE Websites -- All DOE Office Websites (Extended Search)

Lighting Research Group overview what's new publications software facilities people contact us links...

378

Garland Power and Light - Energy Efficiency Rebate Programs | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Garland Power and Light - Energy Efficiency Rebate Programs Garland Power and Light - Energy Efficiency Rebate Programs Garland Power and Light - Energy Efficiency Rebate Programs < Back Eligibility Commercial Industrial Residential Savings Category Home Weatherization Commercial Weatherization Sealing Your Home Heating & Cooling Commercial Heating & Cooling Cooling Design & Remodeling Windows, Doors, & Skylights Ventilation Heat Pumps Appliances & Electronics Commercial Lighting Lighting Maximum Rebate Weatherization: $500 per home Lighting: $20,000 Program Info State Texas Program Type Utility Rebate Program Rebate Amount Commercial Lighting: $100/kW reduced Small Commercial Central Air Conditioning: $400 - $600 per unit, depending on efficiency Central Heat Pump: $500 - $700 per unit, depending on efficiency

379

Cedarburg Light & Water Utility - Commercial Shared Savings Loan Program  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Cedarburg Light & Water Utility - Commercial Shared Savings Loan Cedarburg Light & Water Utility - Commercial Shared Savings Loan Program (Wisconsin) Cedarburg Light & Water Utility - Commercial Shared Savings Loan Program (Wisconsin) < Back Eligibility Agricultural Commercial Industrial Savings Category Other Heating & Cooling Commercial Heating & Cooling Heating Cooling Appliances & Electronics Manufacturing Home Weatherization Sealing Your Home Design & Remodeling Windows, Doors, & Skylights Commercial Weatherization Ventilation Construction Heat Pumps Commercial Lighting Lighting Water Heating Maximum Rebate $50,000 Program Info State Wisconsin Program Type Utility Loan Program Rebate Amount $2,500 - $50,000 Provider Cedarburg Light and Water Utility Cedarburg Light and Water Utility (CLWU) provides loans for commercial,

380

Cedarburg Light and Water Utility - Commercial Energy Efficiency Rebate  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Cedarburg Light and Water Utility - Commercial Energy Efficiency Cedarburg Light and Water Utility - Commercial Energy Efficiency Rebate Program Cedarburg Light and Water Utility - Commercial Energy Efficiency Rebate Program < Back Eligibility Agricultural Commercial Fed. Government Industrial Local Government Nonprofit Schools State Government Savings Category Other Heating & Cooling Commercial Heating & Cooling Cooling Home Weatherization Construction Commercial Weatherization Design & Remodeling Manufacturing Appliances & Electronics Commercial Lighting Lighting Maximum Rebate Unspecified ($250,000 per bid cycle) Program Info State Wisconsin Program Type Utility Rebate Program Rebate Amount Varies by measure Provider Cedarburg Light and Water Utility Cedarburg Light and Water Utility provides incentives for commercial,

Note: This page contains sample records for the topic "light types figure" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Vision 2020: Lighting Technology Roadmap | Open Energy Information  

Open Energy Info (EERE)

Vision 2020: Lighting Technology Roadmap Vision 2020: Lighting Technology Roadmap Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Vision 2020: Lighting Technology Roadmap Agency/Company /Organization: United States Department of Energy, LBNL International Energy Studies, International Association of Lighting Designers, International Association of Lighting Management Companies Partner: NAED, NEMA, NEMRA, NECA, NAILD Sector: Energy Focus Area: Energy Efficiency Topics: Market analysis, Technology characterizations Resource Type: Guide/manual Website: www.nrel.gov/docs/fy00osti/27996.pdf References: Vision 2020: Lighting Technology Roadmap[1] Overview "Continued innovation in lamps and other system components, as well as in design practices, have made lighting progressively more effective,

382

Coldwater Board of Public Utilities - Commercial and Industrial Lighting  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Coldwater Board of Public Utilities - Commercial and Industrial Coldwater Board of Public Utilities - Commercial and Industrial Lighting Rebate Program Coldwater Board of Public Utilities - Commercial and Industrial Lighting Rebate Program < Back Eligibility Commercial Industrial Local Government Multi-Family Residential Nonprofit Savings Category Other Appliances & Electronics Commercial Lighting Lighting Manufacturing Heating & Cooling Commercial Heating & Cooling Cooling Buying & Making Electricity Maximum Rebate 50% of Project Cost Cannot exceed 100% of a single energy efficient measure's cost. Program Info State Michigan Program Type Utility Rebate Program Rebate Amount Custom: Not Specified Lighting Fluorescent Lighting: $2 - $50/fixture HID Lighting: $20 - $25/fixture Induction Bulb: $10 Metal Halide PAR Bulb: $20

383

Interstate Power and Light (Alliant Energy) - Farm Equipment...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Light Program Info State Minnesota Program Type Utility Rebate Program Rebate Amount Farm Energy Audit: Free Automatic Milker Takeoffs: 5cow Dairy Scroll Compressor: 250 Heat...

384

Energy and lighting decisions  

SciTech Connect

This report reviews the fundamental principles of lighting and uses them to evaluate energy-conserving lighting equipment and techniques. The selection of the proper lighting components and systems is complex, requiring a knowledge of the characteristics of light sources and their interactions with the auxiliary equipment and the environment. Furthermore, there are subjective aspects of lighting that are difficult to quantify. We address the simplistic way in which lighting is commonly approached, then present an argument as to the critical nature of the lighting decision. In the final sections we discuss and evaluate lighting equipment in terms of its applications and characteristics. Familiarity with the fundamental characteristics of the elements of lighting equipment will also permit more judicious appraisal and use of lighting concepts that may be introduced in the future. 6 figs., 9 tabs.

Verderber, R.R.

1986-06-01T23:59:59.000Z

385

Lighting Inventory Lighting Theatre and Drama  

E-Print Network (OSTI)

Strand Basic Palette 400 channel 800 attrib. 1 Strand Lighting 200 Series 24/48 1 1 MicroVision 2 HORIZON

Indiana University

386

Cone Penetration of Lubricating Grease Operating Fluorescent Light Apparatus for UV Exposure of Nonmetallic Materials California Test 413 ? Testing Cold Applied Two-Component Polysulfide Polymer Type Joint Sealing Compound  

E-Print Network (OSTI)

This test method describes the procedure for testing two-component joint sealants used for filling joints in concrete structures where movement occurs. These sealants must meet the table of properties in Section 51-2.02B Type A and AL Joint Seals in the Caltrans Standard Specifications.

Type A Sealants; Astm D; C. Apparatus

2012-01-01T23:59:59.000Z

387

Lighting Retrofit Study  

SciTech Connect

The Lighting Retrofit Study was an effort to determine the most cost-effective methods of retrofitting several configurations of lighting systems at Lawrence Berkeley Laboratory (LBL) and Lawrence Livermore National Laboratory (LLNL). We developed a test protocol to compare a variety of lighting technologies for their applicability in labs and offices and designed and constructed a novel lighting contrast potential meter to allow for comparison of lighting quality as well as quantity.

Kromer, S.; Morse, O.; Siminovitch, M.

1991-09-01T23:59:59.000Z

388

Nuclear Detection Figure Of Merit (NDFOM) Version 1.2 User's Guide  

SciTech Connect

NDFOM is a detector database and detector evaluation system, accessible as a web service. It runs on the same server as the Patriot service, but uses port 8081. In this user's guide, we will use the example case that the patriot service is running on http://patriot.lanl.gov. Then the NDFOM service would be accessible at the URL http://patriot.lanl.gov:8081/ndfom. In addition to local server installations, common server locations are 1) a patriot server running on a virtual machine (use the virtual machine URL with :8081/ndfom), and 2) a patriot server running on a local machine (use http://localhost:8081/ndfom or http://127.0.0.1:8081/ndfom). The home screen provides panels to select detectors, a scenario, and a figure-of-merit. It also has an 'analyze' button, which will evaluate the selected figure-of-merit for the selected detectors, for the scenario selected by the user. The detector effectiveness evaluations are presented through the browser in a ranked list of detectors. The user does not need to log in to perform analysis with pre-supplied detectors, scenarios, and FOMs. The homepage view is shown in Figure 1. The first panel displays a list of the detectors in the current detector database. The user can select one, some, or all detectors to evaluate. On the right of each listed detector, there is a star icon. Clicking that icon will open a panel that displays the details about that detector, such as detector material, dimensions, thresholds, etc. The center panel displays the pre-supplied scenarios that are in the database. A scenario specifies the source of interest, the spectrum of the radiation, the background radiation spectrum, the distance or distance of closest approach, the allowable false positive rate, and the dwell time or speed. Scenario details can be obtained by clicking the star to the right of a scenario. A scenario can be selected by clicking it.

Stroud, Phillip D [Los Alamos National Laboratory; Dufresne, Thomas A. [Los Alamos National Laboratory

2012-08-27T23:59:59.000Z

389

Ningbo Liaoyuan Lighting Co | Open Energy Information  

Open Energy Info (EERE)

Liaoyuan Lighting Co Liaoyuan Lighting Co Jump to: navigation, search Name Ningbo Liaoyuan Lighting Co Place Yuyao, Zhejiang Province, China Zip 315408 Sector Solar, Wind energy Product Engaged in outdoor LED lighting manufacture and design including street lamps and solar/wind hybrid street lamps. Coordinates 30.047501°, 121.151222° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":30.047501,"lon":121.151222,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

390

Laser Light Engines | Open Energy Information  

Open Energy Info (EERE)

Laser Light Engines Laser Light Engines Jump to: navigation, search Name Laser Light Engines Place Salem, New Hampshire Zip NH 03079 Sector Efficiency Product Salem-based, designs, develops and manufactures ultra-high brightness, digitally controlled laser-driven light sources. The firm contributes to green building efficiency. Coordinates 42.554485°, -88.110549° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.554485,"lon":-88.110549,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

391

Lighting in Commercial Buildings (1986 Data)> -- Publication and Tables  

U.S. Energy Information Administration (EIA) Indexed Site

Executive Summary > Publication and Tables Executive Summary > Publication and Tables Publication and Tables Figure ES1. Ranges of Potential Savings, Maintaining Current Lighting Levels Figure on Ranges of Potential Savings, Maintaining Current Lighting Levels Note: Each shaded band indicates the range of savings estimates obtained, under varying assumptions for the effectiveness of the conservation features considered for each case. The potential savings are shown for each case as a percent of the base case lighting energy estimate (321 billion kilowatthours). Additional savings are possible if lighting levels are reduced. Sources: Adapted from Energy Information Administration, Office of Energy Markets and End Use, Form EIA-871A, "Building Questionnaire" of the 1986 Nonresidential Buildings Energy Consumption Survey; and sources described in Appendices B and C.

392

Pedernales Electric Cooperative - Commercial Lighting Rebate Program |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Pedernales Electric Cooperative - Commercial Lighting Rebate Pedernales Electric Cooperative - Commercial Lighting Rebate Program Pedernales Electric Cooperative - Commercial Lighting Rebate Program < Back Eligibility Commercial Savings Category Other Appliances & Electronics Commercial Lighting Lighting Program Info Expiration Date Installation must be made within one year of the preliminary approval date State Texas Program Type Utility Rebate Program Rebate Amount 20-29 kW saved: $75/kW new; $150/kW retrofit 30-39 kW saved: $100/kW new; $200/kW retrofit 40-49 kW saved: $125/kW new; $250/kW retrofit 50 or more kW saved: $150/kW new; $300/kW retrofit Provider Conservation Section For existing and new commercial construction, Pedernales Electric Cooperative provides incentives for kW saved through efficient lighting.

393

Solar Electric Light Fund | Open Energy Information  

Open Energy Info (EERE)

Solar Electric Light Fund Solar Electric Light Fund Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Solar Electric Light Fund Agency/Company /Organization: Solar Electric Light Fund Sector: Energy Focus Area: Solar Phase: Create Early Successes Resource Type: Publications, Training materials Website: www.self.org/ Locality: US, Africa, Asia, Latin America Cost: Free The mission of the Solar Electric Light Fund (SELF) is to empower people in developing countries to rise from poverty using energy from the sun. What We Do The Solar Electric Light Fund (SELF) has been working in the field of renewable energy, household energy and decentralized rural electrification for over 18 years. We have a proven track record of managing complex, multi-disciplinary international projects and have worked on renewable

394

Information Resources: Pedestrian-Friendly Nighttime Lighting  

NLE Websites -- All DOE Office Websites (Extended Search)

Pedestrian-Friendly Nighttime Lighting Pedestrian-Friendly Nighttime Lighting This November 19, 2013 webinar presented issues and considerations related to pedestrian-friendly nighttime lighting, such as color rendering, safety, and adaptation. When it comes to outdoor lighting, the industry has understandably focused on footcandles and uniformity, efficacy, pole spacing, and cutoff-but those are not the chief criteria for all neighborhoods. Presenter Naomi Miller of Pacific Northwest National Laboratory discussed the types of communities and spaces that should consider pedestrian-friendly outdoor lighting, what pedestrian-friendly lighting looks like, the basic principles of glare control, color and visibility, and metrics. View the presentation slides View the text-alternative version

395

EK101 Engineering Light Smart Lighting  

E-Print Network (OSTI)

represents high usage of an engine and the violet end represents low usage. A light blue coloring represents from red to light blue), and slowly increase their usage of engine A. The seventh row show a patternModeling Long-Term Search Engine Usage Ryen W. White, Ashish Kapoor, and Susan T. Dumais Microsoft

Bifano, Thomas

396

Controls for Solid-State Lighting  

SciTech Connect

This study predicts new hybrid lighting applications for LEDs. In hybrid lighting, LEDs provide a low-energy 'standby' light level while another, more powerful, efficient light source provides light for occupied periods. Lighting controls will allow the two light sources to work together through an appropriate control strategy, typically motion-sensing. There are no technical barriers preventing the use of low through high CRI LEDs for standby lighting in many interior and exterior applications today. The total luminous efficacy of LED systems could be raised by increasing the electrical efficiency of LED drivers to the maximum practically achievable level (94%). This would increase system luminous efficacy by 20-25%. The expected market volumes for many types of LEDs should justify the evolution of new LED drivers that use highly efficient ICs and reduce parts count by means of ASICs. Reducing their electronics parts count by offloading discrete components onto integrated circuits (IC) will allow manufacturers to reduce the cost of LED driver electronics. LED luminaire manufacturers will increasingly integrate the LED driver and thermal management directly in the LED fixture. LED luminaires of the future will likely have no need for separable lamp and ballast because the equipment life of all the LED luminaire components will all be about the same (50,000 hours). The controls and communications techniques used for communicating with conventional light sources, such as dimmable fluorescent lighting, are appropriate for LED illumination for energy management purposes. DALI has been used to control LED systems in new applications and the emerging ZigBee protocol could be used for LEDs as well. Major lighting companies are already moving in this direction. The most significant finding is that there is a significant opportunity to use LEDs today for standby lighting purposes. Conventional lighting systems can be made more efficient still by using LEDs to provide a low-energy standby state when lower light levels are acceptable.

Rubinstein, Francis

2007-06-22T23:59:59.000Z

397

Controls for Solid-State Lighting  

SciTech Connect

This study predicts new hybrid lighting applications for LEDs. In hybrid lighting, LEDs provide a low-energy 'standby' light level while another, more powerful, efficient light source provides light for occupied periods. Lighting controls will allow the two light sources to work together through an appropriate control strategy, typically motion-sensing. There are no technical barriers preventing the use of low through high CRI LEDs for standby lighting in many interior and exterior applications today. The total luminous efficacy of LED systems could be raised by increasing the electrical efficiency of LED drivers to the maximum practically achievable level (94%). This would increase system luminous efficacy by 20-25%. The expected market volumes for many types of LEDs should justify the evolution of new LED drivers that use highly efficient ICs and reduce parts count by means of ASICs. Reducing their electronics parts count by offloading discrete components onto integrated circuits (IC) will allow manufacturers to reduce the cost of LED driver electronics. LED luminaire manufacturers will increasingly integrate the LED driver and thermal management directly in the LED fixture. LED luminaires of the future will likely have no need for separable lamp and ballast because the equipment life of all the LED luminaire components will all be about the same (50,000 hours). The controls and communications techniques used for communicating with conventional light sources, such as dimmable fluorescent lighting, are appropriate for LED illumination for energy management purposes. DALI has been used to control LED systems in new applications and the emerging ZigBee protocol could be used for LEDs as well. Major lighting companies are already moving in this direction. The most significant finding is that there is a significant opportunity to use LEDs today for standby lighting purposes. Conventional lighting systems can be made more efficient still by using LEDs to provide a low-energy standby state when lower light levels are acceptable.

Rubinstein, Francis

2007-06-22T23:59:59.000Z

398

Advanced Lighting Program Development (BG9702800) Final Report  

Science Conference Proceedings (OSTI)

The report presents a long-range plan for a broad-based, coordinated research, development and market transformation program for reducing the lighting energy intensities in commercial and residential buildings in California without compromising lighting quality. An effective program to advance lighting energy efficiency in California must be based on an understanding that lighting is a mature field and the lighting industry has developed many specialized products that meet a wide variety of light needs for different building types. Above all else, the lighting field is diverse and there are applications for a wide range of lighting products, systems, and strategies. Given the range of existing lighting solutions, an effective energy efficient lighting research portfolio must be broad-based and diverse to match the diversity of the lighting market itself. The belief that there is one solution--a magic bullet, such as a better lamp, for example--that will propel lighting efficiency across all uses to new heights is, in the authors' opinion, an illusion. A multi-path program is the only effective means to raising lighting efficiency across all lighting applications in all building types. This report presents a list of 27 lighting technologies and concepts (key activities) that could form the basis of a coordinated research and market transformation plan for significantly reducing lighting energy intensities in California buildings. The total 27 key activities into seven broad classes as follows: Light sources; Ballasts; Luminaires; Lighting Controls; Lighting Systems in Buildings; Human Factors and Education. Each of the above technology classes is discussed in terms of background, key activities, and the energy savings potential for the state. The report concludes that there are many possibilities for targeted research, development, and market transformation activities across all sectors of the building lighting industry. A concerted investment by the state to foster efficiency improvements in lighting systems in commercial and residential buildings would have a major positive impact on energy use and environmental quality in California.

Rubinstein, Francis; Johnson, Steve

1998-02-01T23:59:59.000Z

399

Baker-Barry Tunnel Lighting: Evaluation of a Potential GATEWAY Demonstrations Project  

SciTech Connect

The U.S. Department of Energy (DOE) is evaluating the Baker-Barry Tunnel as a potential GATEWAY Demonstrations project for deployment of solid-state lighting (SSL) technology. The National Park Service (NPS) views this project as a possible proving ground and template for implementation of light-emitting diode (LED) luminaires in other NPS tunnels, thereby expanding the estimated 40% energy savings from 132 MWh/yr for this tunnel to a much larger figure national

Tuenge, Jason R.

2011-06-01T23:59:59.000Z

400

LED Lighting | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

LED Lighting LED Lighting August 16, 2013 - 10:07am Addthis Light-emitting diodes (LEDs) are light sources that differ from more traditional sources of light in that they are...

Note: This page contains sample records for the topic "light types figure" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Lighting practices in coal mines of the United States  

SciTech Connect

Existing conditions of underground lighting in coal mines and attitude of coal-mining States toward mine lighting are discussed as expressed in coal-mine regulations. Types of lamps available are listed. Ways of obtaining better illumination with present lighting equipment are suggested.

Hooker, A.B.; Owings, C.W.

1938-01-01T23:59:59.000Z

402

Lighting Group: Overview  

NLE Websites -- All DOE Office Websites (Extended Search)

Overview Overview Overview of the Lighting Research Group The Lighting Research Group at Lawrence Berkeley National Laboratory performs research aimed at improving the energy efficiency of lighting systems in buildings and homes, throughout the State of California and across the Nation. The goal is to reduce lighting energy consumption by 50% over twenty years by improving the efficiency of light sources, and controlling and delivering illumination so that it is available, where and when needed, and at the required intensity. Research in the Lighting Group falls into three main areas: Sources and Ballasts, Light Distribution Systems and Controls and Communications. Click on a link below for more information about each of these research areas. Sources and Ballasts investigates next generation light sources, such as

403

Inverse Lighting for Photography  

E-Print Network (OSTI)

We introduce a technique for improving photographs using inverse lighting, a new process based on algorithms developed in computer graphics for computing the reflection of light in 3D space. From a photograph and a 3D surface model for the object pictured, inverse lighting estimates the directional distribution of the incident light. We then use this information to process the photograph digitally to alter the lighting on the object. Inverse lighting is a specific example of the general idea of inverse rendering. This refers to the practice of using the methods of computer graphics, which normally are used to render images from scene information, to infer scene information from images. Our system uses physically based rendering technology to construct a linear least squares system that we solve to find the lighting. As an application, the results are then used to simulate a change in the incident light in the photograph. An implementation is described that uses 3D models from a laser...

Stephen R. Marschner; Donald P. Greenberg

1997-01-01T23:59:59.000Z

404

Fast Light, Fast Neutrinos?  

E-Print Network (OSTI)

Light has been observed with group velocities both faster and slower than the speed of light. The recent report from OPERA of superluminal 17 GeV neutrinos may describe a similar phenomenon.

Cahill, Kevin

2011-01-01T23:59:59.000Z

405

Madrid Electric Lighting Report  

NLE Websites -- All DOE Office Websites (Extended Search)

Electric Lighting Quality Page 1 of 2 ELECTRIC LIGHTING QUALITY MAGIC BOX is a versatile home. Its design allows to change the room size by opening and closing the movable walls...

406

Lighting energy audit workbook  

SciTech Connect

A simple test to determine the need for a lighting energy audit is followed by how-to information on conducting the audit, identifying savings opportunities, and developing an energy management plan for lighting.

1984-01-01T23:59:59.000Z

407

Light Wavelength and Plants  

NLE Websites -- All DOE Office Websites (Extended Search)

Light Wavelength and Plants Name: John Location: NA Country: NA Date: NA Question: I just was wandering whether plants grow better in artificial light or in sunlight. I am...

408

Germinating and Light  

NLE Websites -- All DOE Office Websites (Extended Search)

Germinating and Light Name: Chris Location: NA Country: NA Date: NA Question: Can you tell me how plants determine where the light is once they are out of the soil and not a...

409

TMS Light Metals Publication  

Science Conference Proceedings (OSTI)

The following instructions should be used when submitting a manuscript for any TMS Light Metals proceedings volume. INTRODUCTION. Orientation to ...

410

1999 Commercial Buildings Characteristics--End-Use Equipment  

Annual Energy Outlook 2012 (EIA)

Energy Consumption Survey Lighting Equipment Standard fluorescent and incandescent light bulbs were the most widely used types of lighting equipment (Figure 3). The vast...

411

Solid-State Lighting: Solid-State Lighting  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Solid-State Lighting Search Solid-State Lighting Search Search Help Solid-State Lighting HOME ABOUT THE PROGRAM R&D PROJECTS MARKET-BASED PROGRAMS SSL BASICS INFORMATION RESOURCES FINANCIAL OPPORTUNITIES EERE » Building Technologies Office » Solid-State Lighting Printable Version Share this resource Send a link to Solid-State Lighting: Solid-State Lighting to someone by E-mail Share Solid-State Lighting: Solid-State Lighting on Facebook Tweet about Solid-State Lighting: Solid-State Lighting on Twitter Bookmark Solid-State Lighting: Solid-State Lighting on Google Bookmark Solid-State Lighting: Solid-State Lighting on Delicious Rank Solid-State Lighting: Solid-State Lighting on Digg Find More places to share Solid-State Lighting: Solid-State Lighting on AddThis.com... Pause/Resume Photo of a large room with people standing around poster boards.

412

Advanced Lighting Guidelines  

Science Conference Proceedings (OSTI)

Information about energy-effective lighting technologies is required to be updated as old technologies become obsolete and new technologies begin to make important market impacts. Providing a comprehensive, state-of-the-art update of lighting technology application and information is necessary to ensure that lighting decision-makers have the best possible information available at all times.

2001-10-22T23:59:59.000Z

413

Lighting management casebook  

SciTech Connect

Fifteen examples illustrate how lighting system projects can save energy as well as improve productivity and safety. The case histories include the use of programmable lighting, fiber optics, skylights, voltage reduction, ultrasonic and infrared sensors, and other strategies for improving lighting efficiency. Each case history includes the management approach, site information, and applications. (DCK)

1982-06-01T23:59:59.000Z

414

Energy and lighting design  

SciTech Connect

Energy conserving practices in providing lighting for today's buildings are examined in this second of a two-part presentation. Discussion on light source characteristics, ballast characteristics for gaseous discharge lamps, quality and the cost of lighting, and equivalent sphere illumination are included.

Helms, R.N.

1979-12-01T23:59:59.000Z

415

Alliant Energy (Wisconsin Power and Light) - Shared Savings Program |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

(Wisconsin Power and Light) - Shared Savings Program (Wisconsin Power and Light) - Shared Savings Program Alliant Energy (Wisconsin Power and Light) - Shared Savings Program < Back Eligibility Agricultural Savings Category Other Heating & Cooling Commercial Heating & Cooling Heating Appliances & Electronics Commercial Lighting Lighting Maximum Rebate 50% of project Program Info State Wisconsin Program Type Utility Loan Program Rebate Amount Not Specified Provider Alliant Energy Alliant Energy (Wisconsin Power and Light) offers the Shared Savings financing program for the installation of energy efficient farm improvements. Farms or ag-related businesses are eligible if Alliant Energy supplies the electricity or natural gas on a retail rate basis for the applicable technology. With the Shared Savings Program, agricultural

416

Indianapolis Power & Light - Residential Energy Incentives Program |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Indianapolis Power & Light - Residential Energy Incentives Program Indianapolis Power & Light - Residential Energy Incentives Program Indianapolis Power & Light - Residential Energy Incentives Program < Back Eligibility Residential Savings Category Heating & Cooling Commercial Heating & Cooling Cooling Heat Pumps Appliances & Electronics Commercial Lighting Lighting Program Info State Indiana Program Type Utility Rebate Program Rebate Amount CFLs: In store discounts A/C Cycling: $20/summer Split System AC: $300 - $400 Air Source Heat Pump: $200 - $300 Home Energy Evaluation and Energy Efficiency Kit: Free Refrigerator/Freezer Recycling: $30/unit Provider IPL Energy Incentives Program The Indianapolis Power and Light Energy Incentives Programs assist residential customers with reducing energy consumption. The program offers

417

Portugal Egypt Figure 2. Natural gas supply and disposition in the United States, 2012  

U.S. Energy Information Administration (EIA) Indexed Site

Portugal Egypt Figure 2. Natural gas supply and disposition in the United States, 2012 (trillion cubic feet) Natural Gas Plant Liquids Production Gross Withdrawals From Gas and Oil Wells Nonhydrocarbon Gases Removed Vented/Flared Reservoir Repressuring Production Dry Gas Imports Canada Trinidad/Tobago Natural Gas Storage Facilities Exports Japan Canada Mexico Additions Withdrawals Gas Industry Use Residential Commercial Industrial Vehicle Fuel Electric Power 29.5 0.8 0.2 3.3 2.963 0.112 0.620 0.971 0.014 24.1 1.3 2.9 2.8 2.5 2.9 7.2 0.03 9.1 0.003 Sources: Energy Information Administration (EIA), Form EIA-176, "Annual Report of Natural and Supplemental Gas Supply and Disposition"; Form EIA-895, "Annual Quantity and

418

Thermoelectric figure of merit of Ag{sub 2}Se with Ag and Se excess  

Science Conference Proceedings (OSTI)

In the temperature range of 100-300 K, the electric ({sigma}) and thermoelectric ({alpha}{sub 0}) properties of Ag{sub 2}Se with an excess of Ag as high as {approx}0.1 at. % and Se as high as {approx}1.0 at. %, respectively, are investigated. From the data on {sigma}, {alpha}{sub 0}, and {chi}{sub tot} (thermal conductivities), the thermoelectric power {alpha}{sub 0}{sup 2}{sigma} and the figure of merit Z are calculated. It is found that {alpha}{sub 0}{sup 2}{sigma} and Z attain the peak values at room temperature and the electron concentration n {approx} 6.5 x 10{sup 18} cm{sup -3}.

Aliev, F. F., E-mail: farzali@physics.ab.az; Jafarov, M. B.; Eminova, V. I. [Azerbaijan National Academy of Sciences, Institute of Physics (Azerbaijan)

2009-08-15T23:59:59.000Z

419

PHENIX (Pioneering High Energy Nuclear Interaction eXperiment): Data Tables and Figures from Published Papers  

DOE Data Explorer (OSTI)

The PHENIX Experiment is the largest of the four experiments currently taking data at the Relativistic Heavy Ion Collider. PHENIX, the Pioneering High Energy Nuclear Interaction eXperiment, is an exploratory experiment for the investigation of high energy collisions of heavy ions and protons. PHENIX is designed specifically to measure direct probes of the collisions such as electrons, muons, and photons. The primary goal of PHENIX is to discover and study a new state of matter called the Quark-Gluon Plasma. More than 60 published papers and preprints are listed here with links to the full text and separate links to the supporting PHENIX data in plain text tables and to EPS and GIF figures from the papers.

420

Resonant energy transfer in light harvesting and light emitting applications.  

E-Print Network (OSTI)

??The performance of light emitting and light harvesting devices is improved by utilising resonant energy transfer. In lighting applications, the emission energy of a semiconductor… (more)

Chanyawadee, Soontorn

2009-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "light types figure" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

LIGHT FORCE: An Exploration of Light through Design.  

E-Print Network (OSTI)

??What falls into the realm of light and what it means to design and the human experience? Can light be material? How does light change… (more)

Chen, Tzu

2007-01-01T23:59:59.000Z

422

Solid-State Lighting: Webcast: Evaluating LED Street Lighting...  

NLE Websites -- All DOE Office Websites (Extended Search)

Webcast: Evaluating LED Street Lighting Solutions to someone by E-mail Share Solid-State Lighting: Webcast: Evaluating LED Street Lighting Solutions on Facebook Tweet about...

423

Lighting Group: Sources and Ballasts: LED Task Light  

NLE Websites -- All DOE Office Websites (Extended Search)

light The goal of this project is to accelerate the use of energy efficient light emitting diode (LED) technology for general lighting applications by developing a task lamp...

424

Award Types  

NLE Websites -- All DOE Office Websites (Extended Search)

nuclear deterrent; reduce global threats; and solve other emerging national security and energy challenges. Contact Awards Team (505) 667-7824 Email Types of Awards The Awards...

425

Solid-State Lighting: Solid-State Lighting Videos  

NLE Websites -- All DOE Office Websites (Extended Search)

Solid-State Lighting Videos to Solid-State Lighting Videos to someone by E-mail Share Solid-State Lighting: Solid-State Lighting Videos on Facebook Tweet about Solid-State Lighting: Solid-State Lighting Videos on Twitter Bookmark Solid-State Lighting: Solid-State Lighting Videos on Google Bookmark Solid-State Lighting: Solid-State Lighting Videos on Delicious Rank Solid-State Lighting: Solid-State Lighting Videos on Digg Find More places to share Solid-State Lighting: Solid-State Lighting Videos on AddThis.com... Conferences & Meetings Presentations Publications Webcasts Videos Tools Solid-State Lighting Videos On this page you can access DOE Solid-State Lighting (SSL) Program videos. Photo of a museum art gallery with LED lights in track fixtures overhead. The City of Los Angeles LED Streetlight Program

426

Solid-State Lighting: Solid-State Lighting  

NLE Websites -- All DOE Office Websites (Extended Search)

Lighting Lighting Printable Version Share this resource Send a link to Solid-State Lighting: Solid-State Lighting to someone by E-mail Share Solid-State Lighting: Solid-State Lighting on Facebook Tweet about Solid-State Lighting: Solid-State Lighting on Twitter Bookmark Solid-State Lighting: Solid-State Lighting on Google Bookmark Solid-State Lighting: Solid-State Lighting on Delicious Rank Solid-State Lighting: Solid-State Lighting on Digg Find More places to share Solid-State Lighting: Solid-State Lighting on AddThis.com... Pause/Resume Photo of a large room with people standing around poster boards. Register Now for DOE's 11th Annual SSL R&D Workshop January 28-30, join other SSL R&D professionals from industry, government, and academia to learn, share, and shape the future of lighting.

427

Solid-State Lighting: Solid-State Lighting Contacts  

NLE Websites -- All DOE Office Websites (Extended Search)

About the About the Program Printable Version Share this resource Send a link to Solid-State Lighting: Solid-State Lighting Contacts to someone by E-mail Share Solid-State Lighting: Solid-State Lighting Contacts on Facebook Tweet about Solid-State Lighting: Solid-State Lighting Contacts on Twitter Bookmark Solid-State Lighting: Solid-State Lighting Contacts on Google Bookmark Solid-State Lighting: Solid-State Lighting Contacts on Delicious Rank Solid-State Lighting: Solid-State Lighting Contacts on Digg Find More places to share Solid-State Lighting: Solid-State Lighting Contacts on AddThis.com... Contacts Partnerships Solid-State Lighting Contacts For information about Solid-State Lighting, contact James Brodrick Lighting Program Manager Building Technologies Office U.S. Department of Energy

428

Solid-State Lighting: Adaptive Street Lighting Controls  

NLE Websites -- All DOE Office Websites (Extended Search)

Adaptive Street Lighting Adaptive Street Lighting Controls to someone by E-mail Share Solid-State Lighting: Adaptive Street Lighting Controls on Facebook Tweet about Solid-State Lighting: Adaptive Street Lighting Controls on Twitter Bookmark Solid-State Lighting: Adaptive Street Lighting Controls on Google Bookmark Solid-State Lighting: Adaptive Street Lighting Controls on Delicious Rank Solid-State Lighting: Adaptive Street Lighting Controls on Digg Find More places to share Solid-State Lighting: Adaptive Street Lighting Controls on AddThis.com... Conferences & Meetings Presentations Publications Webcasts Videos Tools Adaptive Street Lighting Controls This two-part DOE Municipal Solid-State Street Lighting Consortium webinar focused on LED street lighting equipped with adaptive control components.

429

Light scattering for aerogel characterization  

NLE Websites -- All DOE Office Websites (Extended Search)

for aerogel characterization for aerogel characterization Title Light scattering for aerogel characterization Publication Type Journal Article Year of Publication 1998 Authors Hunt, Arlon J. Journal Journal of Non-Crystalline Solids Volume 225 Pagination 303-306 Keywords aerogel, light scattering, microstructure Abstract Light scattering is a useful tool to evaluate aerogel clarity, study its structure, pore size, mechanical strain, and examine the modes of sol-gel evolution that determine its microstructure. Ultraviolet-visible transmission spectroscopy can be used to study the wavelength dependent scattering to readily compare aerogels of differing origins, thickness, and to evaluate effects of residual contaminants. Infrared reflectance measurements can be used to determine the effective real and imaginary indices of refraction of porous aerogel materials for material property and radiant heat transfer studies. Measurements of scattering at a fixed angle can be used for quality control, to evaluate sources of scattering, and study inhomogeneities. Measurement of the Mueller matrix (describing the 16-element angle-dependent transformation of intensity and polarization of incident to scattered light) provides information about the anisotropy, large pore fraction, induced stresses, microstructure and inhomogeneities in the aerogel. The time evolution of scattering before and after gel formation gives information.

430

Metacapacitors for LED Lighting: Metacapacitors  

Science Conference Proceedings (OSTI)

ADEPT Project: The CUNY Energy Institute is developing less expensive, more efficient, smaller, and longer-lasting power converters for energy-efficient LED lights. LEDs produce light more efficiently than incandescent lights and last significantly longer than compact fluorescent bulbs, but they require more sophisticated power converter technology, which increases their cost. LEDs need more sophisticated converters because they require a different type of power (low voltage direct current, or DC) than what's generally supplied by power outlets. The CUNY Energy Institute is developing sophisticated power converters for LEDs that contain capacitors made from new, nanoscale materials. Capacitors are electrical components that are used to store energy. CUNY's unique capacitors are configured with advanced power circuits to more efficiently control and convert power to the LED lighting source. They also eliminate the need for large magnetic components, instead relying on networks of capacitors that can be easily printed on plastic substrate. CUNY's prototype LED power converter already meets DOE's 2020 projections for the energy efficiency of LED power converters.

None

2010-09-02T23:59:59.000Z

431

Turbo-Charged Lighting Design  

E-Print Network (OSTI)

The task of the lighting designer has become very complex, involving thousands of choices for fixture types and hundreds of possible lamps. The designer who can consider the most combinations of these items guarantees each client the optimal lighting conditions and the best energy efficiency. This kind of professional service, however, is not available from the software design programs presently on the market. These programs generally let the designer analyze one room at a time, while providing perhaps three possible fixtures to choose from. Additional choices can be accessed from the software’s data base, though at considerable expense in time and patience. This is a real hindrance when designing for a complex structure such as a hospital, which has many spaces with different task-specific lighting standards. The author was challenged by lighting-level requirements that spanned the range of possibilities, and was able to devise an accurate, expedient solution using a dBase language program. The result was a powerful tool integrating the entire gamut of design possibilities provided by the luminaire industry.

Clark, W. H. II

1992-05-01T23:59:59.000Z

432

Photonic crystal light source  

DOE Patents (OSTI)

A light source is provided by a photonic crystal having an enhanced photonic density-of-states over a band of frequencies and wherein at least one of the dielectric materials of the photonic crystal has a complex dielectric constant, thereby producing enhanced light emission at the band of frequencies when the photonic crystal is heated. The dielectric material can be a metal, such as tungsten. The spectral properties of the light source can be easily tuned by modification of the photonic crystal structure and materials. The photonic crystal light source can be heated electrically or other heating means. The light source can further include additional photonic crystals that exhibit enhanced light emission at a different band of frequencies to provide for color mixing. The photonic crystal light source may have applications in optical telecommunications, information displays, energy conversion, sensors, and other optical applications.

Fleming, James G. (Albuquerque, NM); Lin, Shawn-Yu (Albuquerque, NM); Bur, James A. (Corrales, NM)

2004-07-27T23:59:59.000Z

433

Advances in Lighting  

E-Print Network (OSTI)

Increasing electricity costs have made a significant impact on lighting. The Illuminating Engineering society (I.E.S.) and the lighting industry are producing new standards, procedures and products to make lighting more appropriate and energy efficient. This paper will describe the factors which affect the performance of lighting systems, introduce the new I.E.S. procedures for selecting illuminance values and lighting power limits, and illustrate some of the recent developments in the lighting industry. The importance of efficient lighting may be measured by the potential reduction in the electrical demand, and energy consumed. Since it also represents a visible use (or misuse) of energy, it may also reflect on other aspects of a company's energy management program.

Tumber, A. J.

1981-01-01T23:59:59.000Z

434

Emerging Lighting Technology  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Emerging Lighting Technology Emerging Lighting Technology Bruce Kinzey Pacific Northwest National Laboratory FUPWG - Portland, OR April 20, 2011 www.ssl.energy.gov 2 | Solid-State Lighting Program GATEWAY Demonstration Program * Purpose: demonstrate new SSL products in real-world applications that save energy, match or improve illumination, and are cost- effective * Demos generate critical field experience providing: - Feedback to manufacturers - Data for utility incentives - Market readiness of specific applications to users - Advancement in lighting knowledge Central Park, NY Photo: Ryan Pyle Smithsonian American Art Museum, Washington, D.C. Photo: Scott Rosenfeld www.ssl.energy.gov 3 | Solid-State Lighting Program LED Product Explosion www.ssl.energy.gov 4 | Solid-State Lighting Program LEDs are Not a Universal Lighting

435

Lighting in Commercial Buildings, 1986  

Gasoline and Diesel Fuel Update (EIA)

6 Lighting in Commercial Buildings Lighting in Commercial Buildings --1986 Overview Full Report and Tables Detailed analysis of energy consumption for lighting for U.S. commercial...

436

Energy Basics: Lighting and Daylighting  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Lighting Daylighting Passive Solar Design Space Heating & Cooling Water Heating Lighting and Daylighting Buildings can be lit in two ways: by using artificial lighting, or by...

437

Lighting Group: Sources and Ballasts  

NLE Websites -- All DOE Office Websites (Extended Search)

incorporating LEDs into tomorrows task lights, to reducing light entrapment within the LED, to fundamental research into how Organic Lighting Emitting Diodes operate. LED and...

438

Energy Basics: Lighting and Daylighting  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

by using artificial lighting, or by using daylighting, or the process of using natural sunlight, windows, and skylights to provide lighting. Learn more about: Lighting Daylighting...

439

Seattle City Light - Multi-Family Residential Energy Efficiency Rebate  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Seattle City Light - Multi-Family Residential Energy Efficiency Seattle City Light - Multi-Family Residential Energy Efficiency Rebate Program Seattle City Light - Multi-Family Residential Energy Efficiency Rebate Program < Back Eligibility Multi-Family Residential Savings Category Home Weatherization Commercial Weatherization Appliances & Electronics Commercial Lighting Lighting Windows, Doors, & Skylights Program Info State District of Columbia Program Type Utility Rebate Program Rebate Amount Lighting: 85% discount on installation costs Insulation: 50% discount on installation costs Window Replacement: $3 - $5/sq. ft. Provider Seattle City Light Seattle City Light provides incentives for its multi-family housing customers to increase their energy efficiency. Rebates are offered for common area lighting and weatherization measures including the installation

440

NYSEG (Electric) - Small Business Lighting Retrofit Program | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

NYSEG (Electric) - Small Business Lighting Retrofit Program NYSEG (Electric) - Small Business Lighting Retrofit Program NYSEG (Electric) - Small Business Lighting Retrofit Program < Back Eligibility Commercial Savings Category Appliances & Electronics Commercial Lighting Lighting Program Info Funding Source System Benefits Charge State New York Program Type Utility Rebate Program Rebate Amount Energy Assessment: Free Lighting Retrofit: 70% of cost Provider RG&E and NYSEG NYSEG offers a lighting incentive program designed to serve small business customers with a demand of 100 kilowatts (kW) or less. These small business customers may schedule a free energy assessment and then receive a 70% discount on the installed cost of recommended lighting measures. Eligible lighting measures include the retrofitting of fluorescent fixtures,

Note: This page contains sample records for the topic "light types figure" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

A design for a lighting demonstration module: Final report  

SciTech Connect

The conceptual design for a lighting demonstration unit was developed to support utilities' educational and marketing efforts in lighting. Preceded by a review of the lighting industry's existing demonstration facilities, two meetings were held to focus the project specifically on utility applications. The first, a planning session held in New York City in September 1985 with utility representatives, helped define utility needs and possible ways of meeting those needs through lighting demonstrations. The second, a design session, was held the following month to consider the physical structure of the exhibit and the types of information to be conveyed about lighting. The resulting conceptual design, critiqued by utility representatives, includes multiple modules. The core module is intended to explain and demonstrate the basic principles of lighting. Optional auxiliary modules would focus on specific lighting applications, such as office or home lighting, or on specific lighting system components. 5 figs.

Vincent, R.L.

1989-04-01T23:59:59.000Z

442

Stationary light in cold atomic gases  

E-Print Network (OSTI)

We discuss stationary light created by a pair of counter-propagating control fields in Lambda-type atomic gases with electromagnetically induced transparency for the case of negligible Doppler broadening. In this case the secular approximation used in the discussion of stationary light in hot vapors is no longer valid. We discuss the quality of the effective light-trapping system and show that in contrast to previous claims it is finite even for vanishing ground-state dephasing. The dynamics of the photon loss is in general non exponential and can be faster or slower than in hot gases.

Gor Nikoghosyan; Michael Fleischhauer

2009-03-10T23:59:59.000Z

443

List of Lighting Incentives | Open Energy Information  

Open Energy Info (EERE)

Incentives Incentives Jump to: navigation, search The following contains the list of 1032 Lighting Incentives. CSV (rows 1-500) CSV (rows 501-1000) CSV (rows 1001-1032) Incentive Incentive Type Place Applicable Sector Eligible Technologies Active AEP (Central and North) - CitySmart Program (Texas) Utility Rebate Program Texas Commercial Industrial Institutional Local Government Schools Boilers Central Air conditioners Chillers Comprehensive Measures/Whole Building Custom/Others pending approval Energy Mgmt. Systems/Building Controls Furnaces Heat pumps Lighting Lighting Controls/Sensors Motor VFDs Motors Roofs Windows Yes AEP (Central, North and SWEPCO) - Commercial Solutions Program (Texas) Utility Rebate Program Texas Commercial Industrial Institutional Local Government

444

Hemphill Power Light Company | Open Energy Information  

Open Energy Info (EERE)

Power Light Company Power Light Company Jump to: navigation, search Name Hemphill Power & Light Company Place Springfield, New Hampshire Sector Biomass Product Owner and operator of a 16MW biomass-fired generating plant in New Hampshire. Coordinates 42.640925°, -88.413644° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.640925,"lon":-88.413644,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

445

Connecticut Light and Power | Open Energy Information  

Open Energy Info (EERE)

Connecticut Light and Power Connecticut Light and Power Jump to: navigation, search Name Connecticut Light and Power Address P.O. Box 270 Place Hartford, Connecticut Zip 06141 Sector Services Product Green Power Marketer Website http://www.cl-p.com/ Coordinates 41.7638°, -72.6859° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.7638,"lon":-72.6859,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

446

Whitefield Power Light | Open Energy Information  

Open Energy Info (EERE)

Whitefield Power Light Whitefield Power Light Jump to: navigation, search Name Whitefield Power & Light Place Whitefield, New Hampshire Sector Biomass Product Developer of biomass projects using wood chips as feedstock. Coordinates 35.253°, -95.237229° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":35.253,"lon":-95.237229,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

447

Nexxus Lighting Inc | Open Energy Information  

Open Energy Info (EERE)

Nexxus Lighting Inc Nexxus Lighting Inc Jump to: navigation, search Name Nexxus Lighting, Inc. Place Charlotte, North Carolina Zip 28269 Product Manufacturer Of LED Lamps and related products for use in swimming pools, decorative water falls, entertainment and other areas. Coordinates 35.2225°, -80.837539° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":35.2225,"lon":-80.837539,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

448

Pacific Light Power | Open Energy Information  

Open Energy Info (EERE)

Light Power Light Power Jump to: navigation, search Name Pacific Light & Power Place Anahola, Hawaii Zip 96703 Sector Solar Product Hawaii-based which develops mainly solar projects. Coordinates 22.14522°, -159.315234° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":22.14522,"lon":-159.315234,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

449

Wenzhou Dazhan Lighting Co | Open Energy Information  

Open Energy Info (EERE)

Wenzhou Dazhan Lighting Co Wenzhou Dazhan Lighting Co Jump to: navigation, search Name Wenzhou Dazhan Lighting Co Place Wenzhou, Zhejiang Province, China Zip 325000 Sector Solar Product China-based solar PV-based system provider. Coordinates 28.002501°, 120.64772° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":28.002501,"lon":120.64772,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

450

Indianapolis Power Light | Open Energy Information  

Open Energy Info (EERE)

Light Light Jump to: navigation, search Name Indianapolis Power & Light Place Indianapolis, Indiana Sector Wind energy Product US utility company. The firm is buying wind energy from EDF Nouvelles Coordinates 39.76691°, -86.149964° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.76691,"lon":-86.149964,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

451

Preliminary results from an advanced lighting controlstestbed  

SciTech Connect

Preliminary results from a large-scale testbed of advanced lighting control technologies at the Phillip Burton Federal Building at 450 Golden Gate Ave. in San Francisco are presented. The first year objective of this project is to determine the sustainable energy savings and cost-effectiveness of different lighting control technologies compared to a portion of the building where only minimal controls are installed. The paper presents the analyzed results from six months of tests focused on accurately characterizing the energy savings potential of one type of daylight-linked lighting controls compared to the lighting in similar open-planned areas without dimming controls. After analyzing a half year;s data, we determined that the annual energy savings for this type of daylight- linked controls was 41% and 30% for the outer rows of lights on the South and North sides of the building, respectively. The annual energy savings dropped to 22% and 16% for the second row of lights for the South and North, respectively, and was negligible for the third rows of lights.

Avery, Douglas; Jennings, Judity; Rubinstein, Francis

1998-03-01T23:59:59.000Z

452

Solid-State Lighting: Solid-State Lighting Manufacturing Workshop  

NLE Websites -- All DOE Office Websites (Extended Search)

Solid-State Lighting Solid-State Lighting Manufacturing Workshop to someone by E-mail Share Solid-State Lighting: Solid-State Lighting Manufacturing Workshop on Facebook Tweet about Solid-State Lighting: Solid-State Lighting Manufacturing Workshop on Twitter Bookmark Solid-State Lighting: Solid-State Lighting Manufacturing Workshop on Google Bookmark Solid-State Lighting: Solid-State Lighting Manufacturing Workshop on Delicious Rank Solid-State Lighting: Solid-State Lighting Manufacturing Workshop on Digg Find More places to share Solid-State Lighting: Solid-State Lighting Manufacturing Workshop on AddThis.com... Conferences & Meetings Past Conferences Presentations Publications Webcasts Videos Tools Solid-State Lighting Manufacturing Workshop Nearly 200 lighting industry leaders, chip makers, fixture and component

453

Lighting the Way with Compact Fluorescent Lighting | Department...  

NLE Websites -- All DOE Office Websites (Extended Search)

and compact fluorescent lights. And I've already purchased a few of the new light emitting diode (LED) solid-state lighting lights-but that's the topic of a future blog. Stay...

454

LightBox -Exploring Interaction Modalities with Colored Light  

E-Print Network (OSTI)

-bright multi- colored light-emitting diodes (LEDs) of our system can generate any visible lighting color

455

Lighting the Night: Technology, Urban Life and the Evolution of Street Lighting [Light in Place  

E-Print Network (OSTI)

Electrical 16. "Highway Lighting by So­ dium Vapor Lamps,"Possibilities of Street: Lighting Improve­ ments," TheLaunches Broad Street Lighting Promotion Campaign," The

Holden, Alfred

1992-01-01T23:59:59.000Z

456

Lighting the Night: Technology, Urban Life and the Evolution of Street Lighting [Light in Place  

E-Print Network (OSTI)

May 1912), 783. 8. "New Street Lights Increase Trade 3 5 Perlight, including street light, became part of America'sBeautiful-inspired street­ lights graced wealthy residen­

Holden, Alfred

1992-01-01T23:59:59.000Z

457

Lighting Research Group: Facilities  

NLE Websites -- All DOE Office Websites (Extended Search)

Facilities Facilities Lighting Research Facilities at LBNL gonio-photometer Gonio-photometer We use this device to measure the intensity and direction of the light from a lamp or fixture. integrating sphere Integrating sphere This instrument allows us to get a fast and accurate measurement of the total light output of a lamp. We are not able to determine the direction of the light, only the intensity. power analyzer Power analyzer We use our power analyzer with the lamps in the gonio-photometer to measure input power, harmonic distortion, power factor, and many other signals that tell us how well a lamp is performing. spectro-radiometer Spectro-radiometer This device measures not only the intensity of a light source but also the intensity of the light at each wavelength.

458

Lighting Group: Software  

NLE Websites -- All DOE Office Websites (Extended Search)

Software Software Lighting Software The Lighting Group has developed several computer programs in the course of conducting research on energy efficient lighting. Several of these programs have proven useful outside the research environment. One of the most popular programs for advanced lighting applications is Radiance. For more information on this program and its availability, click on the link below. RADIANCE Radiance is a suite of programs for the analysis and visualization of lighting in design. The primary advantage of Radiance over simpler lighting calculation and rendering tools is that there are no limitations on the geometry or the materials that may be simulated. Radiance is used by architects and engineers to predict illumination, visual quality and appearance of innovative design spaces, and by researchers to evaluate new

459

Figure 1. Nicaragua at night. The circled area is the Bluefields region.  

E-Print Network (OSTI)

volt car battery, a radio, and the bulbs, switches and wiring needed to provide electric lighting of the world's population, live without access to electricity. Over 99% of these people live in developing countries and four out of five live in rural areas1 . As electricity is the most efficient fuel source

Kammen, Daniel M.

460

Solid-State Lighting: Tools  

NLE Websites -- All DOE Office Websites (Extended Search)

about Solid-State Lighting: Tools on Twitter Bookmark Solid-State Lighting: Tools on Google Bookmark Solid-State Lighting: Tools on Delicious Rank Solid-State Lighting: Tools on...

Note: This page contains sample records for the topic "light types figure" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Solid-State Lighting: News  

NLE Websites -- All DOE Office Websites (Extended Search)

about Solid-State Lighting: News on Twitter Bookmark Solid-State Lighting: News on Google Bookmark Solid-State Lighting: News on Delicious Rank Solid-State Lighting: News on...

462

Arnold Schwarzenegger LIGHTING RESEARCH PROGRAM  

E-Print Network (OSTI)

Project Summaries ELEMENT 2: ADVANCE LIGHTING TECHNOLOGIES PROJECT 2.1 LIGHT EMITTING DIODE (LED light emitting diodes (LED) technology for general lighting applications by developing a task lamp

463

Advanced Light Sources  

Science Conference Proceedings (OSTI)

In the generation of artificial light using electric lamps, photometric and color performance have been paramount in lamp design, manufacturing, measurement, lighting design, and visual perception. Many designers and researchers have strived to understand how light and color are generated, related, and to improve them. This has stemmed from the development of incandescent lamps, halogen lamps, linear fluorescent lamps, high-intensity discharge (HID) lamps, and compact fluorescent lamps (CFLs) among other...

2008-03-31T23:59:59.000Z

464

Advanced Lighting Technologies  

Science Conference Proceedings (OSTI)

This report continues the technical assessment of advanced lighting technologies in the following product areasdimmable light-emitting diode (LED) screw-in replacement lamp, hybrid compact fluorescent lamp/halogen screw-in replacement lamp, replacement recessed can LED downlight, organic LED (OLED) disc, replacement mini high-intensity discharge (HID) lamp and ballast system, and solid-state plasma lighting (miniature HID technology) high-bay fixture. The research in this project helps to demonstrate how...

2011-12-21T23:59:59.000Z

465

Solid-State Lighting: Pedestrian-Friendly Nighttime Lighting  

NLE Websites -- All DOE Office Websites (Extended Search)

Pedestrian-Friendly Nighttime Pedestrian-Friendly Nighttime Lighting to someone by E-mail Share Solid-State Lighting: Pedestrian-Friendly Nighttime Lighting on Facebook Tweet about Solid-State Lighting: Pedestrian-Friendly Nighttime Lighting on Twitter Bookmark Solid-State Lighting: Pedestrian-Friendly Nighttime Lighting on Google Bookmark Solid-State Lighting: Pedestrian-Friendly Nighttime Lighting on Delicious Rank Solid-State Lighting: Pedestrian-Friendly Nighttime Lighting on Digg Find More places to share Solid-State Lighting: Pedestrian-Friendly Nighttime Lighting on AddThis.com... Conferences & Meetings Presentations Publications Webcasts Videos Tools Pedestrian-Friendly Nighttime Lighting This November 19, 2013 webinar presented issues and considerations related to pedestrian-friendly nighttime lighting, such as color rendering, safety,

466

Type systems  

Science Conference Proceedings (OSTI)

The study of type systems has emerged as one of the most active areas of research in programming languages, with applications in software engineering, language design, high-performance compiler implementation, and security. This chapter discusses the ...

Benjamin C. Pierce

2003-01-01T23:59:59.000Z

467

Covered Product Category: Luminaires (Light Fixtures) | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Luminaires (Light Fixtures) Luminaires (Light Fixtures) Covered Product Category: Luminaires (Light Fixtures) October 7, 2013 - 10:49am Addthis Did You Know? The ENERGY STAR luminaires product category covers a wide range of lighting products, both residential and commercial. FEMP provides acquisition guidance and Federal efficiency requirements across a variety of product categories, including luminaires, or light fixtures. The luminaires product category is very broad and covers a wide variety of lighting products. Both ENERGY STAR® and FEMP provide programmatic guidance for various types of luminaires. See table 2 for more information about which types of light fixtures are covered by which program (FEMP or ENERGY STAR). Federal laws and executive orders mandate that agencies meet these efficiency requirements in all procurement and

468

Alexandria Light and Power - Commercial Energy Efficiency Rebate Program |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Alexandria Light and Power - Commercial Energy Efficiency Rebate Alexandria Light and Power - Commercial Energy Efficiency Rebate Program Alexandria Light and Power - Commercial Energy Efficiency Rebate Program < Back Eligibility Commercial Industrial Savings Category Heating & Cooling Commercial Heating & Cooling Cooling Manufacturing Other Heat Pumps Appliances & Electronics Commercial Lighting Lighting Water Heating Home Weatherization Windows, Doors, & Skylights Maximum Rebate All Incentives: Limited to 75% of total project cost Custom Program: $100,000 per calendar year per customer Program Info State Minnesota Program Type Utility Rebate Program Rebate Amount Targeted Audit: Varies by building type and size Lighting (New Construction): Varies widely Lighting (Existing Buildings): Varies widely Custom Measures: $300 kW; $0.01/kWh; $0.40/Therm

469

Agricultural Lighting and Equipment Rebate Program | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Agricultural Lighting and Equipment Rebate Program Agricultural Lighting and Equipment Rebate Program Agricultural Lighting and Equipment Rebate Program < Back Eligibility Agricultural Savings Category Other Appliances & Electronics Commercial Lighting Lighting Manufacturing Program Info Funding Source Efficiency Vermont Public Benefit Fund Expiration Date 06/30/2013 State Vermont Program Type State Rebate Program Rebate Amount Varies according to technology; prescriptive and custom rebates available Provider Efficiency Vermont In Vermont, agricultural operations are eligible for prescriptive and customized incentives on equipment proven to help make farms more efficient. Prescriptive rebates are available for lighting (free to $175 per fixture, depending on the type of fixture or lighting) and for a variety of equipment including plate coolers, variable speed milk transfer

470

Luminance in computer-aided lighting design  

SciTech Connect

Traditionally, the lighting engineering community has emphasized illuminance, the amount of light reaching a surface, as the primary design goal. The Illuminating Engineering Society (IES) provides tables of illuminances for different types of tasks which lighting engineers consult in designing lighting systems. Illuminance has proven to be a popular metric because it corresponds closely to the amount of energy needed to light a building as well as the initial cost of the lighting system. Perhaps more importantly, illuminance is easy to calculate, especially in simple unobstructed spaces with direct lighting. However,illuminance is not well correlated with visual performance, which is the real reason for installing a lighting system in the first place. Visual performance is a psychophysiological quantity that has been tied to physical quantities such as contrast, size and adaptation level by subject experiments. These physical quantities can be approximated from illuminance using a host of assumptions about the environment, or derived directly from the distribution of luminance. Luminance is the quantity of light traveling through a point in a certain direction, and it is this quantity that the eye actually ``sees``. However, the difficulty of calculating luminance for common tasks has made it an unpopular metric. Despite its importance to lighting design, luminance is rarely used because there is a lack of the necessary computational tools.In this paper, we will demonstrate a computer calculation of luminance that has significant advantages for lighting design. As well as providing an immediate evaluation of visual quality for task performance, less quantifiable factors such as aesthetics can be studied in synthetic images produced by the program.

Ward, G.J.; Rubinstein, F.M.; Grynberg, A.

1987-08-01T23:59:59.000Z

471

Luminance in computer-aided lighting design  

SciTech Connect

Traditionally, the lighting engineering community has emphasized illuminance, the amount of light reaching a surface, as the primary design goal. The Illuminating Engineering Society (IES) provides tables of illuminances for different types of tasks which lighting engineers consult in designing lighting systems. Illuminance has proven to be a popular metric because it corresponds closely to the amount of energy needed to light a building as well as the initial cost of the lighting system. Perhaps more importantly, illuminance is easy to calculate, especially in simple unobstructed spaces with direct lighting. However,illuminance is not well correlated with visual performance, which is the real reason for installing a lighting system in the first place. Visual performance is a psychophysiological quantity that has been tied to physical quantities such as contrast, size and adaptation level by subject experiments. These physical quantities can be approximated from illuminance using a host of assumptions about the environment, or derived directly from the distribution of luminance. Luminance is the quantity of light traveling through a point in a certain direction, and it is this quantity that the eye actually sees''. However, the difficulty of calculating luminance for common tasks has made it an unpopular metric. Despite its importance to lighting design, luminance is rarely used because there is a lack of the necessary computational tools.In this paper, we will demonstrate a computer calculation of luminance that has significant advantages for lighting design. As well as providing an immediate evaluation of visual quality for task performance, less quantifiable factors such as aesthetics can be studied in synthetic images produced by the program.

Ward, G.J.; Rubinstein, F.M.; Grynberg, A.

1987-08-01T23:59:59.000Z

472

Total Light Management  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Light Management Light Management Why is saving Energy Important World Electricity Consumption (2007) Top 20 Countries 0 500 1000 1500 2000 2500 3000 3500 4000 4500 U n i t e d S t a t e s C h i n a J a p a n R u s s i a I n d i a G e r m a n y C a n a d a A f r i c a F r a n c e B r a z i l K o r e a , S o u t h U n i t e d K i n g d o m I t a l y S p a i n A u s t r a l i a T a i w a n S o u t h A f r i c a M e x i c o S a u d i A r a b i a I r a n Billion kWh Source: US DOE Energy Information Administration Lighting Control Strategies 4 5 6 Occupancy/Vacancy Sensing * The greatest energy savings achieved with any lighting fixture is when the lights are shut off * Minimize wasted light by providing occupancy sensing or vacancy sensing 7 8 Daylight Harvesting * Most commercial space has enough natural light flowing into it, and the amount of artificial light being generated can be unnecessary * Cut back on the production of artificial lighting by

473

Light truck forecasts  

SciTech Connect

The recent dramatic increase in the number of light trucks (109% between 1963 and 1974) has prompted concern about the energy consequences of the growing popularity of the light truck. An estimate of the future number of light trucks is considered to be a reasonable first step in assessing the energy impact of these vehicles. The monograph contains forecasts based on two models and six scenarios. The coefficients for the models have been derived by ordinary least squares regression of national level time series data. The first model is a two stage model. The first stage estimates the number of light trucks and cars (together), and the second stage applies a share's submodel to determine the number of light trucks. The second model is a simultaneous equation model. The two models track one another remarkably well, within about 2%. The scenarios were chosen to be consistent with those used in the Lindsey-Kaufman study Projection of Light Truck Population to Year 2025. Except in the case of the most dismal economic scenario, the number of light trucks is expected to increase from the 1974 level of 0.09 light truck per person to about 0.12 light truck per person in 1995.

Liepins, G.E.

1979-09-01T23:59:59.000Z

474

Photovoltaic lighting system performance  

DOE Green Energy (OSTI)

The performance of 21 PV-powered low pressure sodium lighting systems on a multi-use has been documented in this paper. Specific areas for evaluation include the vandal resistant PV modules, constant voltage and on/off PV charge controllers, flooded deep-cycle lead-antimony and valve regulated lead-acid (VLRA) gel batteries, and low pressure sodium ballasts and lights. The PV lighting system maintenance intervals and lessons learned have been documented over the past 2.5 years. The above performance data has shown that with careful hardware selection, installation, and maintenance intervals the PV lighting systems will operate reliably.

Harrington, S.R.; Hund, T.D.

1996-06-01T23:59:59.000Z

475

Faster Than Light?  

E-Print Network (OSTI)

It is argued that special relativity remains a viable physical theory even when there is permitted signals traveling faster than light.

Robert Geroch

2010-05-10T23:59:59.000Z

476

SITE LIGHTING FOUNDATIONS  

SciTech Connect

The purpose of this analysis is to design structural foundations for the Site Lighting. This analysis is in support of design drawing BABBDF000-01717-2100-23016.

M. Gomez

1995-01-17T23:59:59.000Z

477

Advanced Demand Responsive Lighting  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Efficiency Program and Market Trends High Technology and Industrial Buildings Lighting Systems Residential Buildings Simulation Tools Sustainable Federal Operations Windows...

478

NIST Stray light correction  

Science Conference Proceedings (OSTI)

... A correction, which can be done in real time, can reduce errors due to stray light by more than one order of magnitude. ...

2012-10-02T23:59:59.000Z

479

Energy Basics: Fluorescent Lighting  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

& Cooling Water Heating Fluorescent Lighting Fluorescent lamps use 25%-35% of the energy used by incandescent lamps to provide the same amount of illumination (efficacy of...

480

The gravity of light  

E-Print Network (OSTI)

A solution of the old problem raised by Tolman, Ehrenfest, Podolsky and Wheeler, concerning the lack of attraction of two light pencils "moving parallel", is proposed, considering that the light can be source of nonlinear gravitational waves corresponding (in the would be quantum theory of gravity) to spin-1 massless particles.

G. Sparano; G. Vilasi; S. Vilasi

2010-09-12T23:59:59.000Z

Note: This page contains sample records for the topic "light types figure" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Explosively pumped laser light  

DOE Patents (OSTI)

A single shot laser pumped by detonation of an explosive in a shell casing. The shock wave from detonation of the explosive causes a rare gas to luminesce. The high intensity light from the gas enters a lasing medium, which thereafter outputs a pulse of laser light to disable optical sensors and personnel.

Piltch, Martin S. (Los Alamos, NM); Michelotti, Roy A. (Los Alamos, NM)

1991-01-01T23:59:59.000Z

482

Developing architectural lighting representations  

Science Conference Proceedings (OSTI)

This paper reports on the development of a visualization system for architectural lighting designers. It starts by motivating the problem as both complex in its physics and social organization. Three iterations of prototypes for displaying time and space ... Keywords: architectural lighting design, energy efficiency, ethnographic fieldwork, information visualization, qualitative analysis

Daniel C. Glaser; Roger Tan; John Canny; Ellen Yi-Luen Do

2003-10-01T23:59:59.000Z

483

Light intensity compressor  

DOE Patents (OSTI)

In a system for recording images having vastly differing light intensities over the face of the image, a light intensity compressor is provided that utilizes the properties of twisted nematic liquid crystals to compress the image intensity. A photoconductor or photodiode material that is responsive to the wavelength of radiation being recorded is placed adjacent a layer of twisted nematic liquid crystal material. An electric potential applied to a pair of electrodes that are disposed outside of the liquid crystal/photoconductor arrangement to provide an electric field in the vicinity of the liquid crystal material. The electrodes are substantially transparent to the form of radiation being recorded. A pair of crossed polarizers are provided on opposite sides of the liquid crystal. The front polarizer linearly polarizes the light, while the back polarizer cooperates with the front polarizer and the liquid crystal material to compress the intensity of a viewed scene. Light incident upon the intensity compressor activates the photoconductor in proportion to the intensity of the light, thereby varying the field applied to the liquid crystal. The increased field causes the liquid crystal to have less of a twisting effect on the incident linearly polarized light, which will cause an increased percentage of the light to be absorbed by the back polarizer. The intensity of an image may be compressed by forming an image on the light intensity compressor.

Rushford, Michael C. (Livermore, CA)

1990-01-01T23:59:59.000Z

484

City Water Light and Power - Commercial Energy Efficiency Rebate Programs |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Water Light and Power - Commercial Energy Efficiency Rebate Water Light and Power - Commercial Energy Efficiency Rebate Programs City Water Light and Power - Commercial Energy Efficiency Rebate Programs < Back Eligibility Commercial Nonprofit Savings Category Home Weatherization Commercial Weatherization Heating & Cooling Commercial Heating & Cooling Heat Pumps Appliances & Electronics Commercial Lighting Lighting Maximum Rebate Insulation: $3,000 Retro-Commissioning: $50,000 Lighting: $15,000 Program Info State Illinois Program Type Utility Rebate Program Rebate Amount Air-Source Heat Pumps: $300/ton Geothermal Heat Pump: $500/ton Insulation: 30% Retro-Commissioning Study: $0.30 per sq. ft. of conditioned space Retro-Commissioning EMC: varies Lighting: $3 - $35/unit Lighting (Custom): $0.28/Watt reduced Water Loop Heat Pump: Contact CWLP

485

Cheyenne Light, Fuel and Power (Electric) - Residential Energy Efficiency  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Cheyenne Light, Fuel and Power (Electric) - Residential Energy Cheyenne Light, Fuel and Power (Electric) - Residential Energy Efficiency Rebate Program Cheyenne Light, Fuel and Power (Electric) - Residential Energy Efficiency Rebate Program < Back Eligibility Multi-Family Residential Residential Savings Category Appliances & Electronics Commercial Lighting Lighting Water Heating Program Info State Wyoming Program Type Utility Rebate Program Rebate Amount Home Energy Audit: Contact Cheyenne Light, Fuel and Power CFL Bulbs: Up to 10 CFL bulbs at reduced cost Water Heater: $75 Refrigerator Recycling: $30 Cheyenne Light, Fuel and Power offers incentives to electric customers who wish to install energy efficient equipment in participating homes. Incentives are available for home energy audits, CFL light bulbs, tank water heaters and refrigerator recycling. Water heater purchases and

486

South River EMC - Business Energy Efficient Lighting Rebate Program |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

River EMC - Business Energy Efficient Lighting Rebate Program River EMC - Business Energy Efficient Lighting Rebate Program South River EMC - Business Energy Efficient Lighting Rebate Program < Back Eligibility Agricultural Commercial Savings Category Appliances & Electronics Commercial Lighting Lighting Program Info State North Carolina Program Type Utility Rebate Program Rebate Amount Complete Lighting Retrofit: $0.30/watt saved Incandescent to CFL or LED: $1/bulb Provider South River EMC South River EMC (SREMC) offers a rebate to eligible business customers who wish to upgrade the energy efficiency of lighting systems. The business must upgrade from an older, less efficient system to a high-efficiency system. An incentive of $0.30 per watt saved is available to eligible lighting projects. For commercial customers switching fron incandescent

487

CoServ Electric Cooperative - Commercial Energy Efficient Lighting Rebate  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

CoServ Electric Cooperative - Commercial Energy Efficient Lighting CoServ Electric Cooperative - Commercial Energy Efficient Lighting Rebate Program CoServ Electric Cooperative - Commercial Energy Efficient Lighting Rebate Program < Back Eligibility Commercial Industrial Savings Category Appliances & Electronics Commercial Lighting Lighting Program Info Funding Source Via partnership with whole sale provider Brazos Electric Power, Inc. and escheat funds Start Date 09/01/2009 State Texas Program Type Utility Rebate Program Rebate Amount Custom Lighting Upgrade: 0.30/watt saved per fixture T8 Fluorescent Upgrade: 1.50 - 2.25/bulb per fixture Provider CoServ Electric Cooperative CoServ Electric Cooperative provides rebates for commercial and industrial customers who upgrade to high efficiency lighting for the workplace. A rebate of $0.30/watt saved is available on custom lighting upgrades and a

488

Tillamook County PUD - Dairy Lighting Retrofit Rebate Program | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Tillamook County PUD - Dairy Lighting Retrofit Rebate Program Tillamook County PUD - Dairy Lighting Retrofit Rebate Program Tillamook County PUD - Dairy Lighting Retrofit Rebate Program < Back Eligibility Agricultural Savings Category Appliances & Electronics Commercial Lighting Lighting Program Info State Oregon Program Type Utility Rebate Program Provider Tillamook County PUD Tillamook PUD offers the Dairy Lighting Retrofit Program for its agricultural members to save energy on lighting in eligible barns/facilities. Tillamook PUD completes a lighting audit of the facility to calculate the energy savings and rebate amount. Incentives are provided for the replacement of existing mercury vapor, incandescent, and T12 fluorescent fixtures with new ORION AG9000 3-lamp T8 fluorescent fixtures. This rebate is available for retrofits only, new construction is not

489

FirstEnergy (Potomac Edison) - Municipal and Street Lighting Program  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

FirstEnergy (Potomac Edison) - Municipal and Street Lighting FirstEnergy (Potomac Edison) - Municipal and Street Lighting Program (Maryland) FirstEnergy (Potomac Edison) - Municipal and Street Lighting Program (Maryland) < Back Eligibility Commercial Industrial Institutional Local Government Nonprofit Schools State Government Savings Category Appliances & Electronics Commercial Lighting Lighting Program Info State Maryland Program Type Utility Rebate Program Rebate Amount '''Street Lighting'''br/> High Pressure Sodium Fixtures: $10 - $50/unit LED/Induction Fixtures: $50 '''Traffic/Pedestrian Signals''' Lamp/Signal/Arrows: $35/unit Provider FirstEnergy (Potomac Edison) FirstEnergy offers several incentives for non-residential and municipal customers to upgrade traffic signals, pedestrian signals, street lights to more efficient fixtures. The Municipal Lighting Incentive Program offers

490

High-Intensity Discharge Lighting Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

High-Intensity Discharge Lighting Basics High-Intensity Discharge Lighting Basics High-Intensity Discharge Lighting Basics August 15, 2013 - 5:59pm Addthis High-intensity discharge (HID) lighting provides the highest efficacy and longest service life of any lighting type. It can save 75%-90% of lighting energy when it replaces incandescent lighting. Illustration of a high-intensity discharge (HID) lIllustration amp. The lamp is a tall cylindrical shape, and a cutout of the outer tube shows the materials inside. A long, thin cylinder called the arc tube runs through the lamp between two electrodes. The space around the arc tube is labeled as a vacuum. In a high-intensity discharge lamp, electricity arcs between two electrodes, creating an intensely bright light. Mercury, sodium, or metal halide gas

491

Exploring Lighting Spaces  

E-Print Network (OSTI)

We present a simple system for interactively specifying lighting parameters, including position, for high-quality image synthesis. Unlikeinverse approaches to the lighting-design problem, we do not require the user to indicate a priori the desired illuminative characteristics of an image. In our approach the computer proposes, culls, and organizes a set of candidate lights automatically, using an elementary measure of image similarityasthe basis for both culling and organization. The user then browses the set of candidate-light images, selects which lights to include, and combines them as desired. This work is a particular instance of a general strategy --- sampling a design space broadly and intelligently and organizing the results for rapid browsing by the user --- that may be applicable to many other design problems in computer graphics.

T. Kang; J. Seims; J. Marks; S. Shieber

1996-01-01T23:59:59.000Z

492

The HOL Light System REFERENCE  

E-Print Network (OSTI)

This volume is the reference manual for the HOL Light system. In contrast to the Tutorial, it is mainly intended for reference purposes, though some readers will find it productive to browse through it as part of the learning process. The main entries for the reference manual are generated from the same database that is used by the online HOL Light help system. The entries that follow provide documentation on essentially all the pre-defined ML variable bindings in the HOL Light system. These include: general-purpose functions, such as ML functions for list processing, arithmetic, input/output, and interface configuration; functions for processing the types and terms of the HOL logic and for using the subgoal package; primitive and derived forward inference rules; tactics and tacticals; and pre-proved built-in theorems. The manual entries for these ML identifiers are divided into two chapters. The first chapter is an alphabetical sequence of manual entries for all ML identifiers in the system except those identifiers that are bound to theorems (or pairs of theorems, etc.) The theorems are listed in the second chapter, roughly grouped into sections based on subject matter. Our documentation does not cover basic functions in the OCaml toplevel, such as addition, string concatenation etc. In fact, relatively few native OCaml functions are used, and those are all documented in the Objective CAML Reference Manual:

Tom Melham; Larry Paulson The Typeset

2013-01-01T23:59:59.000Z

493

Hybrid lighting: Illuminating our future  

SciTech Connect

Hybrid lighting is a combination of natural and artificial illumination to be used indoors for all lighting needs. Ideally, hybrid lighting is effectively indistinguishable from standard artificial lighting except in quality and cost, where it will likely be an improvement. Hybrid lighting systems are produced by a combination of four technologies: collecting natural light, generating artificial light, transporting and distributing light to where it is needed, and controlling the amounts of both natural and artificial light continuously during usage. Lighting demands a large fraction of our energy needs. If we can control or decrease this demand, we are able to accommodate societal growth without energy demand growth.

Cates, M.R.

1996-12-31T23:59:59.000Z

494

Alliant Energy Interstate Power and Light (Electric) - Residential Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Alliant Energy Interstate Power and Light (Electric) - Residential Alliant Energy Interstate Power and Light (Electric) - Residential Energy Efficiency Rebate Program (Iowa) Alliant Energy Interstate Power and Light (Electric) - Residential Energy Efficiency Rebate Program (Iowa) < Back Eligibility Multi-Family Residential Residential Savings Category Home Weatherization Commercial Weatherization Heating & Cooling Cooling Commercial Heating & Cooling Appliances & Electronics Other Heat Pumps Commercial Lighting Lighting Water Heating Windows, Doors, & Skylights Program Info State Iowa Program Type Utility Rebate Program Rebate Amount Central Air Conditioners: $100 - $200 Air Source Heat Pumps: $100 - $400 Geothermal Heat Pumps: $300/ton + $50/EER/ton Fan Motors: $50/unit Programmable Thermostats: $25 Tank Water Heater: $50

495

California Lighting Technology Center (University of California, Davis) |  

Open Energy Info (EERE)

Lighting Technology Center (University of California, Davis) Lighting Technology Center (University of California, Davis) Jump to: navigation, search Name California Lighting Technology Center (University of California, Davis) Place Davis, CA Website http://cltc.ucdavis.edu/ References CLTC Website[1] Information About Partnership with NREL Partnership with NREL Yes Partnership Type Test & Evaluation Partner Partnering Center within NREL Electricity Resources & Building Systems Integration LinkedIn Connections California Lighting Technology Center (University of California, Davis) is a research institution located in Davis, CA. References ↑ "CLTC Website" Retrieved from "http://en.openei.org/w/index.php?title=California_Lighting_Technology_Center_(University_of_California,_Davis)&oldid=381592"

496

Northern Lights Inc. - Energy Conservation Rebate Program | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Northern Lights Inc. - Energy Conservation Rebate Program Northern Lights Inc. - Energy Conservation Rebate Program Northern Lights Inc. - Energy Conservation Rebate Program < Back Eligibility Commercial Construction Industrial Installer/Contractor Multi-Family Residential Nonprofit Residential Savings Category Appliances & Electronics Heating & Cooling Home Weatherization Construction Commercial Weatherization Commercial Heating & Cooling Design & Remodeling Heat Pumps Commercial Lighting Lighting Water Heating Windows, Doors, & Skylights Program Info State Idaho Program Type Utility Rebate Program Rebate Amount Refrigerator/Freezer: $15 each Clothes Washer: $30 Energy Star Manufactured Home: $1,000 Water Heater: $25 - $100 Window Replacement: $6/sq ft Insulation: Varies Duct Sealing: Free Ductless Heat Pumps: $1,500

497

Wakefield Municipal Gas and Light Department - Residential Conservation  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Wakefield Municipal Gas and Light Department - Residential Wakefield Municipal Gas and Light Department - Residential Conservation Services Program Wakefield Municipal Gas and Light Department - Residential Conservation Services Program < Back Eligibility Residential Savings Category Home Weatherization Commercial Weatherization Sealing Your Home Heating & Cooling Commercial Heating & Cooling Cooling Appliances & Electronics Design & Remodeling Windows, Doors, & Skylights Manufacturing Commercial Lighting Lighting Water Heating Maximum Rebate Energy Audit Recommended Measures: $300 Programmable Thermostats: 2 units Program Info State Massachusetts Program Type Utility Rebate Program Rebate Amount Energy Audit Recommended Measures: 25% of total cost Refrigerators: $50 Clothes Washer: $50 Dishwasher: $50 Room AC: $50

498

Memphis Light, Gas and Water (Electric) - Commercial Efficiency Advice and  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Memphis Light, Gas and Water (Electric) - Commercial Efficiency Memphis Light, Gas and Water (Electric) - Commercial Efficiency Advice and Incentives Program Memphis Light, Gas and Water (Electric) - Commercial Efficiency Advice and Incentives Program < Back Eligibility Commercial Industrial Savings Category Heating & Cooling Commercial Heating & Cooling Heating Cooling Manufacturing Other Appliances & Electronics Heat Pumps Commercial Lighting Lighting Commercial Weatherization Maximum Rebate 70% of project cost Program Info State Tennessee Program Type Utility Rebate Program Rebate Amount Commercial Dishwashers: $400 - $1500 Commercial Refrigerator: $60 - $100 Ice Machines: $100 - $400 Insulated Holding Cabinets: $250 - $600 Electric Steam Cookers: $400 Electric Convection Ovens: $200 Electric Griddles: $200 Electric Combination Ovens: $2,000

499

Alliant Energy Interstate Power and Light (Electric) - Business Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Interstate Power and Light (Electric) - Business Interstate Power and Light (Electric) - Business Energy Efficiency Rebate Programs Alliant Energy Interstate Power and Light (Electric) - Business Energy Efficiency Rebate Programs < Back Eligibility Commercial Fed. Government Local Government Multi-Family Residential Nonprofit State Government Savings Category Home Weatherization Commercial Weatherization Sealing Your Home Heating & Cooling Commercial Heating & Cooling Cooling Appliances & Electronics Construction Design & Remodeling Other Windows, Doors, & Skylights Heat Pumps Commercial Lighting Lighting Manufacturing Water Heating Maximum Rebate See program web site Program Info State Iowa Program Type Utility Rebate Program Rebate Amount Custom: Based on Annual Dollar Energy Savings New Construction: Varies widely

500

Dayton Power and Light - Residential Energy Efficiency Rebate Program |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Dayton Power and Light - Residential Energy Efficiency Rebate Dayton Power and Light - Residential Energy Efficiency Rebate Program Dayton Power and Light - Residential Energy Efficiency Rebate Program < Back Eligibility Residential Savings Category Heating & Cooling Commercial Heating & Cooling Cooling Heat Pumps Appliances & Electronics Commercial Lighting Lighting Program Info State Ohio Program Type Utility Rebate Program Rebate Amount Refrigerator Recycling: $25 Freezer Recycling: $25 HVAC Tune-Up: $25 credit CFL's: $1.40 average off of each bulb purchased at participating stores Air Conditioning: $100 - $300, varies by efficiency and equipment application Air Source Heat Pump: $200 - $600, varies by efficiency and equipment application Geothermal Heat Pump: $200 - $600, varies by efficiency and equipment