National Library of Energy BETA

Sample records for light trucks including

  1. Diesel Engine Light Truck Application

    SciTech Connect (OSTI)

    2007-12-31

    The Diesel Engine Light Truck Application (DELTA) program consists of two major contracts with the Department of Energy (DOE). The first one under DE-FC05-97-OR22606, starting from 1997, was completed in 2001, and consequently, a final report was submitted to DOE in 2003. The second part of the contract was under DE-FC05-02OR22909, covering the program progress from 2002 to 2007. This report is the final report of the second part of the program under contract DE-FC05-02OR22909. During the course of this contract, the program work scope and objectives were significantly changed. From 2002 to 2004, the DELTA program continued working on light-duty engine development with the 4.0L V6 DELTA engine, following the accomplishments made from the first part of the program under DE-FC05-97-OR22606. The program work scope in 2005-2007 was changed to the Diesel Particulate Filter (DPF) soot layer characterization and substrate material assessment. This final report will cover two major technical tasks. (1) Continuation of the DELTA engine development to demonstrate production-viable diesel engine technologies and to demonstrate emissions compliance with significant fuel economy advantages, covering progress made from 2002 to 2004. (2) DPF soot layer characterization and substrate material assessment from 2005-2007.

  2. Cummins Light Truck Clean Diesel | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Light Truck Clean Diesel Cummins Light Truck Clean Diesel 2004 Diesel Engine Emissions Reduction (DEER) Conference Presentation 2004_deer_stang2.pdf (257.78 KB) More Documents & Publications Cummins/DOE Light Truck Clean Diesel Engine Progress Report Cummins Work Toward Successful Introduction of Light-Duty Clean Diesel Engines in US Cummins/DOE Light Truck Diesel Engine Progress Report

  3. Progress in Thermoelectrical Energy Recovery from a Light Truck...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of an Exhaust Thermoelectric Generator of a GM Sierra Pickup Truck Thermoelectrical Energy Recovery From the Exhaust of a Light Truck Automotive Thermoelectric Generators and HVAC

  4. Caterpillar Light Truck Clean Diesel Program

    SciTech Connect (OSTI)

    Robert L. Miller; Kevin P. Duffy; Michael A. Flinn; Steve A. Faulkner; Mike A. Graham

    1999-04-26

    In 1998, light trucks accounted for over 48% of new vehicle sales in the U.S. and well over half the new Light Duty vehicle fuel consumption. The Light Truck Clean Diesel (LTCD) program seeks to introduce large numbers of advanced technology diesel engines in light-duty trucks that would improve their fuel economy (mpg) by at least 50% and reduce our nation's dependence on foreign oil. Incorporating diesel engines in this application represents a high-risk technical and economic challenge. To meet the challenge, a government-industry partnership (Department of Energy, diesel engine manufacturers, and the automotive original equipment manufacturers) is applying joint resources to meet specific goals that will provide benefits to the nation. [1] Caterpillar initially teamed with Ford Motor Company on a 5 year program (1997-2002) to develop prototype vehicles that demonstrate a 50% fuel economy improvement over the current 1997 gasoline powered light truck vehicle in this class while complying with EPA's Tier II emissions regulations. The light truck vehicle selected for the demonstration is a 1999 Ford F150 SuperCab. To meet the goals of the program, the 4.6 L V-8 gasoline engine in this vehicle will be replaced by an advanced compression ignition direct injection (CIDI) engine. Key elements of the Caterpillar LTCD program plan to develop the advanced CIDI engine are presented in this paper.

  5. Progress in Thermoelectrical Energy Recovery from a Light Truck Exhaust |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy in Thermoelectrical Energy Recovery from a Light Truck Exhaust Progress in Thermoelectrical Energy Recovery from a Light Truck Exhaust Presentation given at DEER 2006, August 20-24, 2006, Detroit, Michigan. Sponsored by the U.S. DOE's EERE FreedomCar and Fuel Partnership and 21st Century Truck Programs. 2006_deer_thacher.pdf (780.57 KB) More Documents & Publications The Effects of an Exhaust Thermoelectric Generator of a GM Sierra Pickup Truck Thermoelectrical Energy

  6. Ten Years of Development Experience with Advanced Light Truck Diesel

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Engines | Department of Energy Ten Years of Development Experience with Advanced Light Truck Diesel Engines Ten Years of Development Experience with Advanced Light Truck Diesel Engines 2004 Diesel Engine Emissions Reduction (DEER) Conference Presentation: Cummins Engines 2004_deer_stang1.pdf (49.18 KB) More Documents & Publications The California Demonstration Program for Control of PM from Diesel Backup Generators = Demonstrated Petroleum Reduction Using Oil Bypass Filter Technology on

  7. Cummins Next Generation Tier 2, Bin 2 Light Truck Diesel engine...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Next Generation Tier 2, Bin 2 Light Truck Diesel engine Cummins Next Generation Tier 2, Bin 2 Light Truck Diesel engine Discusses plan, baselining, and modeling, for new light ...

  8. DOE Light Truck Clean Diesel (LTCD) Program Final Caterpillar Public Report Light Truck Clean Diesel Program

    SciTech Connect (OSTI)

    Eric Fluga

    2004-09-30

    The US Department of Energy and Caterpillar entered a Cooperative Agreement to develop compression ignition engine technology suitable for the light truck/SUV market. Caterpillar, in collaboration with a suitable commercialization partner, developed a new Compression Ignition Direct Injection (CIDI) engine technology to dramatically improve the emissions and performance of light truck engines. The overall program objective was to demonstrate engine prototypes by 2004, with an order of magnitude emission reduction while meeting challenging fuel consumption goals. Program emphasis was placed on developing and incorporating cutting edge technologies that could remove the current impediments to commercialization of CIDI power sources in light truck applications. The major obstacle to commercialization is emissions regulations with secondary concerns of driveability and NVH (noise, vibration and harshness). The target emissions levels were 0.05 g/mile NOx and 0.01 g/mile PM to be compliant with the EPA Tier 2 fleet average requirements of 0.07 g/mile and the CARB LEV 2 of 0.05 g/mile for NOx, both have a PM requirement of 0.01 g/mile. The program team developed a combustion process that fundamentally shifted the classic NOx vs. PM behavior of CIDI engines. The NOx vs. PM shift was accomplished with a form of Homogeneous Charge Compression Ignition (HCCI). The HCCI concept centers on appropriate mixing of air and fuel in the compression process and controlling the inception and rate of combustion through various means such as variable valve timing, inlet charge temperature and pressure control. Caterpillar has adapted an existing Caterpillar design of a single injector that: (1) creates the appropriate fuel and air mixture for HCCI, (2) is capable of a more conventional injection to overcome the low power density problems of current HCCI implementations, (3) provides a mixed mode where both the HCCI and conventional combustion are functioning in the same combustion cycle

  9. Design and Development of e-Turbo for SUV and Light Truck Applications...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Development of e-Turbo for SUV and Light Truck Applications Design and Development of ... More Documents & Publications Design & Development of e-TurboTM for SUV and Light Truck ...

  10. Design & Development of e-TurboTM for SUV and Light Truck Applications...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Design & Development of e-TurboTM for SUV and Light Truck Applications 2003 DEER ... More Documents & Publications Design and Development of e-Turbo for SUV and Light Truck ...

  11. Fact #720: March 26, 2012 Eleven Percent of New Light Trucks...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    0: March 26, 2012 Eleven Percent of New Light Trucks Sold have Gasoline Direct Injection Fact 720: March 26, 2012 Eleven Percent of New Light Trucks Sold have Gasoline Direct Injection ...

  12. Cummins/DOE Light Truck Diesel Engine Progress Report | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Diesel Engine Progress Report Cummins/DOE Light Truck Diesel Engine Progress Report 2002 DEER Conference Presentation: Cummins 2002_deer_stang.pdf (2.47 MB) More Documents & Publications Cummins/DOE Light Truck Clean Diesel Engine Progress Report Cummins' Next Generation Tier 2, Bin 2 Light Truck Diesel Engine Thermodynamic Systems for Tier 2 Bin 2 Diesel Engines

  13. Cummins/DOE Light Truck Clean Diesel Engine Progress Report | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Clean Diesel Engine Progress Report Cummins/DOE Light Truck Clean Diesel Engine Progress Report 2003 DEER Conference Presentation: Cummins Inc. 2003_deer_stang.pdf (168.78 KB) More Documents & Publications Cummins Light Truck Clean Diesel Cummins/DOE Light Truck Diesel Engine Progress Report Cummins Work Toward Successful Introduction of Light-Duty Clean Diesel Engines in US

  14. Fact #553: January 12, 2009 Market Share of New Cars vs. Light Trucks |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy 3: January 12, 2009 Market Share of New Cars vs. Light Trucks Fact #553: January 12, 2009 Market Share of New Cars vs. Light Trucks The market share of new light trucks climbed steadily through the 1980's and most of the 1990's, much of it due to the rising popularity of the minivan and the sport utility vehicle. In 2004, light trucks outsold cars. In recent years, however, consumers have shifted purchasing preferences back toward cars. Market Share of Cars and Light

  15. Design & Development of e-TurboTM for SUV and Light Truck Applications |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy & Development of e-TurboTM for SUV and Light Truck Applications Design & Development of e-TurboTM for SUV and Light Truck Applications 2003 DEER Conference Presentation: Garrett Engine Boosting Systems 2003_deer_shahed.pdf (477.34 KB) More Documents & Publications Design and Development of e-Turbo for SUV and Light Truck Applications The Potential of Elelcltric Exhaust Gas Turbocharging for HD DIesel Engines SuperTurbocharger

  16. Design and Development of e-Turbo for SUV and Light Truck Applications |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Development of e-Turbo for SUV and Light Truck Applications Design and Development of e-Turbo for SUV and Light Truck Applications 2004 Diesel Engine Emissions Reduction (DEER) Conference Presentation: Honeywell Corporation 2004_deer_shahed.pdf (427.61 KB) More Documents & Publications Design & Development of e-TurboTM for SUV and Light Truck Applications SuperTurbocharger Electric Turbo Compounding...A Technology Who's Time Has Come

  17. Fact #571: May 18, 2009 Light Truck CAFE Standards - 2006 Reformation |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy 1: May 18, 2009 Light Truck CAFE Standards - 2006 Reformation Fact #571: May 18, 2009 Light Truck CAFE Standards - 2006 Reformation In 2006 the National Highway Traffic Safety Administration (NHTSA) established new requirements for the light truck Corporate Average Fuel Economy (CAFE) standards. In the new rule, there are Unreformed CAFE standards for model years (MY) 2008 through 2010 using the same CAFE calculations as in the past, and there are Reformed CAFE standards

  18. Fact #611: February 22, 2010 Top Ten Best Selling Cars and Light Trucks |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy 1: February 22, 2010 Top Ten Best Selling Cars and Light Trucks Fact #611: February 22, 2010 Top Ten Best Selling Cars and Light Trucks The top ten lists of best selling cars and light trucks in 2009 show that the Toyota Camry was the best selling car, while the Ford F-Series pickup was the best selling light truck. The F-Series outsold the Camry by about 50,000 units. The hybrid Toyota Prius was the tenth bestselling car in 2009. Top Ten Best Selling Cars, 2009 Graph

  19. Cummins' Next Generation Tier 2, Bin 2 Light Truck Diesel Engine...

    Broader source: Energy.gov (indexed) [DOE]

    Development of a new light truck, in-line 4-cylinder turbocharged diesel engine that will ... Passive Catalytic Approach to Low Temperature NOx Emission Abatement Cummins Next ...

  20. Urea SCR Durability Assessment for Tier 2 Light-Duty Truck

    Broader source: Energy.gov [DOE]

    Summarizes progress toward development of a durable urea SCR system to meet Tier 2 Bin 5 on 3780 lb light truck

  1. Fact #757: December 10, 2012 The U.S. Manufactures More Light Trucks than Cars

    Broader source: Energy.gov [DOE]

    Most of the 16 States that manufacture light vehicles dedicated at least two-thirds of total production to light trucks in 2011. Kansas, Mississippi, and Tennessee are the only States that produced...

  2. Fact #647: November 1, 2010 Sales Shifting from Light Trucks to Cars |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy 7: November 1, 2010 Sales Shifting from Light Trucks to Cars Fact #647: November 1, 2010 Sales Shifting from Light Trucks to Cars From 2005 to 2009 light vehicle sales have gradually shifted toward cars over light trucks. The graph below shows this trend broken down by the major manufacturers. This trend is more evident among the major import brands than the domestic brands. Share of Car Sales by Selected Manufacturer Graph showing share of car sales from 2005 to 2009

  3. Proposed Revisions to Light Truck Fuel Economy Standard (released in AEO2006)

    Reports and Publications (EIA)

    2006-01-01

    In August 2005, the National Highway Traffic Safety Administration (NHTSA) published proposed reforms to the structure of CAFE standards for light trucks and increases in light truck Corporate Average Fuel Economy (CAFE) standards for model years 2008 through 201. Under the proposed new structure, NHTSA would establish minimum fuel economy levels for six size categories defined by the vehicle footprint (wheelbase multiplied by track width), as summarized in Table 3. For model years 2008 through 2010, the new CAFE standards would provide manufacturers the option of complying with either the standards defined for each individual footprint category or a proposed average light truck fleet standard of 22.5 miles per gallon in 2008, 23.1 miles per gallon in 2009, and 23.5 miles per gallon in 2010. All light truck manufacturers would be required to meet an overall standard based on sales within each individual footprint category after model year 2010.

  4. Cummins' Next Generation Tier 2, Bin 2 Light Truck Diesel Engine

    Broader source: Energy.gov [DOE]

    Development of a new light truck, in-line 4-cylinder turbocharged diesel engine that will meet Tier 2, Bin 2 emissions and at least a 40% fuel economy benefit over the V-8 gasoline engine it could replace

  5. Cummins Next Generation Tier 2, Bin 2 Light Truck Diesel engine

    Broader source: Energy.gov [DOE]

    Discusses plan, baselining, and modeling, for new light truck 4-cylinder turbocharged diesel meeting Tier 2, Bin 2 emissions and 40 percent better fuel economy than the V-8 gasoline engine it will replace

  6. Urea SCR and DPF System for Tier 2 Diesel Light-Duty Trucks | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Tier 2 Diesel Light-Duty Trucks Urea SCR and DPF System for Tier 2 Diesel Light-Duty Trucks Presentation given at DEER 2006, August 20-24, 2006, Detroit, Michigan. Sponsored by the U.S. DOE's EERE FreedomCar and Fuel Partnership and 21st Century Truck Programs. 2006_deer_lambert.pdf (460.97 KB) More Documents & Publications Urea SCR and DPF System for Diesel Sport Utility Vehicle Meeting Tier II Bin 5 Urea SCR and DPF System for Diesel Sport Utility Vehicle Meeting Tier II Bin 5

  7. DESIGN & DEVELOPMENT OF E-TURBO FOR SUV AND LIGHT TRUCK APPLICATIONS

    SciTech Connect (OSTI)

    Balis, C; Middlemass, C; Shahed, SM

    2003-08-24

    The purpose of the project is to develop an electronically controlled, electrically assisted turbocharging system, e-Turbo, for application to SUV and light truck class of passenger vehicles. Earlier simulation work had shown the benefits of e-Turbo system on increasing low-end torque and improving fuel economy. This paper will present further data from the literature to show that advanced turbocharging can enable diesel engine downsizing of 10-30% with 6-17% improvement in fuel economy. This is in addition to the fuel economy benefit that a turbocharged diesel engine offers over conventional gasoline engines. E-Turbo is necessary to get acceptable driving characteristics with downsized diesel engines. As a first step towards the development of this technology for SUV/light truck sized diesel engines (4-6 litre displacement), design concepts and hardware were evaluated for a smaller engine (2 litre displacement). It was felt that design and developments issues could be minimized, the concept proven progressively on the bench, on a small engine and then applied to a large Vee engine (one on each bank). After successful demonstration of the concept, large turbomachinery could be designed and built specifically for larger SUV sized diesel engines. This paper presents the results of development of e-Turbo for a 2 litre diesel engine. A detailed comparison of several electric assist technologies including permanent magnet, six-phase induction and conventional induction motor/generator technology was done. A comparison of switched reluctance motor technology was also done although detailed design was not carried out.

  8. Electric Boosting System for Light Truck/SUV Application

    SciTech Connect (OSTI)

    Steve Arnold, Craig Balis, Pierre Barthelet, Etienne Poix, Tariq Samad, Greg Hampson, S.M. Shahed

    2005-06-22

    Turbo diesel engine use in passenger cars in Europe has resulted in 30-50% improvement in fuel economy. Diesel engine application is particularly suitable for US because of vehicle size and duty cycle patterns. Adopting this technology for use in the US presents two issues--emissions and driveability. Emissions reduction technology is being well addressed with advanced turbocharging, fuel injection and catalytic aftertreatment systems. One way to address driveability is to eliminate turbo lag and increase low speed torque. Electrically assisted turbocharging concepts incorporated in e-TurboTM designs do both. The purpose of this project is to design and develop an electrically assisted turbocharger, e-TurboTM, for diesel engine use in the US. In this report, early design and development of electrical assist technology is described together with issues and potential benefits. In this early phase a mathematical model was developed and verified. The model was used in a sensitivity study. The results of the sensitivity study together with the design and test of first generation hardware was fed into second generation designs. In order to fully realize the benefits of electrical assist technology it was necessary to expand the scope of work to include technology on the compressor side as well as electronic controls concepts. The results of the expanded scope of work are also reported here. In the first instance, designs and hardware were developed for a small engine to quantify and demonstrate benefits. The turbo size was such that it could be applied in a bi-turbo configuration to an SUV sized V engine. Mathematical simulation was used to quantify the possible benefits in an SUV application. It is shown that low speed torque can be increased to get the high performance expected in US, automatic transmission vehicles. It is also shown that e-TurboTM can be used to generate modest amounts of electrical power and supplement the alternator under most load-speed conditions

  9. Selection of Light Duty Truck Engine Air Systems Using Virtual Lab Tests

    SciTech Connect (OSTI)

    Zhang, Houshun

    2000-08-20

    An integrated development approach using seasoned engine technology methodologies, virtual lab parametric investigations, and selected hardware verification tests reflects today's state-of-the-art R&D trends. This presentation will outline such a strategy. The use of this ''Wired'' approach results in substantial reduction in the development cycle time and hardware iterations. An example showing the virtual lab application for a viable design of the air-exhaust-turbocharger system of a light duty truck engine for personal transportation will be presented.

  10. Fact #923: May 2, 2016 Cylinder Deactivation was Used in More than a Quarter of New Light Trucks Produced in 2015- Dataset

    Broader source: Energy.gov [DOE]

    Excel file and dataset for Cylinder Deactivation was Used in More than a Quarter of New Light Trucks Produced in 2015

  11. Fuel Economy Standards for New Light Trucks (released in AEO2007)

    Reports and Publications (EIA)

    2007-01-01

    In March 2006, the National Highway Traffic Safety Administration (NHTSA) finalized Corporate Average Fuel Economy (CAFE) standards requiring higher fuel economy performance for light-duty trucks in model year (MY) 2008 through 2011. Unlike the proposed CAFE standards discussed in Annual Energy Outlook 2006, which would have established minimum fuel economy requirements by six footprint size classes, the final reformed CAFE standards specify a continuous mathematical function that determines minimum fuel economy requirements by vehicle footprint, defined as the wheelbase (the distance from the front axle to the center of the rear axle) times the average track width (the distance between the center lines of the tires) of the vehicle in square feet.

  12. The Detroit Diesel DELTA Engine for Light Trucks and SUVs - Year 2000 Update

    SciTech Connect (OSTI)

    Nabil S. Hakim; Charles E. Freese; Stanley P. Miller

    2000-06-19

    Detroit Diesel Corporation (DDC) is developing the DELTA 4.0L V6 engine, specifically for the North American light truck market. This market poses unique requirements for a diesel engine, necessitating a clean sheet engine design. DELTA was developed from a clean sheet of paper, with the first engine firing just 228 days later. The process began with a Quality Function Deployment (QFD) analysis, which prioritized the development criteria. The development process integrated a co-located, fully cross-functional team. Suppliers were fully integrated and maintained on-site representation. The first demonstration vehicle moved under its own power 12 weeks after the first engine fired. It was demonstrated to the automotive press 18 days later. DELTA has repeatedly demonstrated its ability to disprove historical North American diesel perceptions and compete directly with gasoline engines. This paper outlines the Generation 0.0 development process and briefly defines the engine. A brief indication of the Generation 0.5 development status is given.

  13. SBIR/STTR FY15 Phase 1 Release 2 Awards Announced—Includes Fuel Cell-Battery Electric Hybrid Truck and Fuel Cell Manufacturing Quality Control Processes

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy has announced the 2015 Small Business Innovation Research and Small Business Technology Transfer (SBIR/STTR) Phase I Release 2 Awards, including projects demonstrating fuel cell-battery electric hybrid trucks and developing a real-time, in-line optical detector for the measurement of fuel cell membrane thickness.

  14. Technologies and policies for controlling greenhouse gas emissions from the U. S. automobile and light truck fleet.

    SciTech Connect (OSTI)

    Plotkin, S.

    1999-01-01

    The message conveyed by the above discussion is that there are no shortages of technologies available to improve the fuel efficiency of the U.S. fleet of autos and light trucks. It clearly is technically feasible to improve greatly the fuel economy of the average new light-duty vehicle. Many of these technologies require tradeoffs, however, that manufacturers are unwilling or (as yet) unable to make in today's market and regulatory environment. These tradeoffs involve higher costs (that might be reduced substantially over time with learning and economies of scale), technical risk and added complexity, emissions concerns (especially for direct injection engines, and especially with respect to diesel engine technology), and customer acceptance issues. Even with current low U.S. oil prices, however, many of these technologies may find their way into the U.S. market, or increase their market share, as a consequence of their penetration of European and Japanese markets with their high gasoline prices. Automotive technology is ''fungible'' that is, it can be easily transported from one market to another. Nevertheless, it probably is unrealistic to expect substantial increases in the average fuel economy of the U.S. light-duty fleet without significant changes in the market. Without such changes, the technologies that do penetrate the U.S. market are more likely to be used to increase acceleration performance or vehicle structures or enable four wheel drive to be included in vehicles without a net mpg penalty. In other words, technology by itself is not likely to be enough to raise fleet fuel economy levels - this was the conclusion of the 1995 Ailomar Conference on Energy and Sustainable Transportation, organized by the Transportation Research Board's Committees on Energy and Alternative Fuels, and it is one I share.

  15. DELTA-DIESEL ENGINE LIGHT TRUCK APPLICATION Contract DE-FC05-97OR22606 Final Report

    SciTech Connect (OSTI)

    Hakim, Nabil Balnaves, Mike

    2003-05-27

    DELTA Diesel Engine Light Truck Application End of Contract Report DE-FC05-97-OR22606 EXECUTIVE SUMMARY This report is the final technical report of the Diesel Engine Light Truck Application (DELTA) program under contract DE-FC05-97-OR22606. During the course of this contract, Detroit Diesel Corporation analyzed, designed, tooled, developed and applied the ''Proof of Concept'' (Generation 0) 4.0L V-6 DELTA engine and designed the successor ''Production Technology Demonstration'' (Generation 1) 4.0L V-6 DELTA engine. The objectives of DELTA Program contract DE-FC05-97-OR22606 were to: Demonstrate production-viable diesel engine technologies, specifically intended for the North American LDT and SUV markets; Demonstrate emissions compliance with significant fuel economy advantages. With a clean sheet design, DDC produced the DELTA engine concept promising the following attributes: 30-50% improved fuel economy; Low cost; Good durability and reliability; Acceptable noise, vibration and harshness (NVH); State-of-the-art features; Even firing, 4 valves per cylinder; High pressure common rail fuel system; Electronically controlled; Turbocharged, intercooled, cooled EGR; Extremely low emissions via CLEAN Combustion{copyright} technology. To demonstrate the engine technology in the SUV market, DDC repowered a 1999 Dodge Durango with the DELTA Generation 0 engine. Fuel economy improvements were approximately 50% better than the gasoline engine replaced in the vehicle.

  16. Heavy Truck Clean Diesel (HTCD) Program: 2007 Demonstration Truck |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Heavy Truck Clean Diesel (HTCD) Program: 2007 Demonstration Truck Heavy Truck Clean Diesel (HTCD) Program: 2007 Demonstration Truck 2003 DEER Conference Presentation: Caterpillar Incorporated 2003_deer_milam.pdf (10.59 MB) More Documents & Publications Transient Simulation of a 2007 Prototype Heavy-Duty Engine Diesel Aftertreatment Systems development Demonstration of a 50% Thermal Efficient Diesel Engine - Including HTCD Program Overview

  17. Development of Technologies for a High Efficiency, Very Low Emission, Diesel Engine for Light Trucks and Sport Utility Vehicles

    SciTech Connect (OSTI)

    Stang, John H.

    1997-12-01

    Cummins Inc., in partnership with the Department of Energy, has developed technology for a new highly efficient, very low emission, diesel engine for light trucks and sport utility vehicles. This work began in April 1997, and started with very aggressive goals for vehicles in the 5751 to 8500 pound GCW weight class. The primary program goals were as follows: (1) EMISSIONS NOx = 0.50 g/mi PM = 0.05 g/mi CO = 2.8 g/mi NMHC = 0.07 g/mi California decided to issue new and even tougher LEV II light truck regulations late in 1999. EPA also issued its lower Tier 2 regulations late in 2000. The net result was that the targets for this diesel engine project were lowered, and these goals were eventually modified by the publication of Federal Tier 2 emission standards early in 2000 to the following: NOx = 0.07 g/mi PM = 0.01 g/mi (2) FUEL ECONOMY The fuel economy goal was 50 percent MPG improvement (combined city/highway) over the 1997 gasoline powered light truck or sport utility vehicle in the vehicle class for which this diesel engine is being designed to replace. The goal for fuel economy remained at 50 percent MPG improvement, even with the emissions goal revisions. (3) COOPERATIVE DEVELOPMENT Regular design reviews of the engine program will be conducted with a vehicle manufacturer to insure that the concepts and design specifics are commercially feasible. (DaimlerChrysler has provided Cummins with this design review input.) Cummins has essentially completed a demonstration of proof-of-principle for a diesel engine platform using advanced combustion and fuel system technologies. Cummins reported very early progress in this project, evidence that new diesel engine technology had been developed that demonstrated the feasibility of the above emissions goals. Emissions levels of NOx = 0.4 g/mi and PM = 0.06 g/mi were demonstrated for a 5250 lb. test weight vehicle with passive aftertreatment only. These results were achieved using the full chassis dynamometer FTP-75 test

  18. Development of Technologies for a High Efficiency, Very Low Emission, Diesel Engine for Light Trucks and Sport Utility Vehicles

    SciTech Connect (OSTI)

    Stang, John H.

    2005-12-19

    Cummins Inc., in partnership with the Department of Energy, has developed technology for a new highly efficient, very low emission, diesel engine for light trucks and sport utility vehicles. This work began in April 1997, and started with very aggressive goals for vehicles in the 5751 to 8500 pound GCW weight class. The primary program goals were as follows: (1) EMISSIONS -- NOx = 0.50 g/mi; PM = 0.05 g/mi; CO = 2.8 g/mi; and NMHC = 0.07 g/mi. California decided to issue new and even tougher LEV II light truck regulations late in 1999. EPA also issued its lower Tier 2 regulations late in 2000. The net result was that the targets for this diesel engine project were lowered, and these goals were eventually modified by the publication of Federal Tier 2 emission standards early in 2000 to the following: NOx = 0.07 g/mi; and PM = 0.01 g/mi. (2) FUEL ECONOMY -- The fuel economy goal was 50 percent MPG improvement (combined city/highway) over the 1997 gasoline powered light truck or sport utility vehicle in the vehicle class for which this diesel engine is being designed to replace. The goal for fuel economy remained at 50 percent MPG improvement, even with the emissions goal revisions. (3) COOPERATIVE DEVELOPMENT -- Regular design reviews of the engine program will be conducted with a vehicle manufacturer to insure that the concepts and design specifics are commercially feasible. (DaimlerChrysler has provided Cummins with this design review input.) Cummins has essentially completed a demonstration of proof-of-principle for a diesel engine platform using advanced combustion and fuel system technologies. Cummins reported very early progress in this project, evidence that new diesel engine technology had been developed that demonstrated the feasibility of the above emissions goals. Emissions levels of NOx = 0.4 g/mi and PM = 0.06 g/mi were demonstrated for a 5250 lb. test weight vehicle with passive aftertreatment only. These results were achieved using the full chassis

  19. Development of Technologies for a High Efficiency, Very Low Emission, Diesel Engine for Light Trucks and Sport Utility Vehicles

    SciTech Connect (OSTI)

    John H. Stang

    2005-12-31

    Cummins Inc., in partnership with the Department of Energy, has developed technology for a new highly efficient, very low emission, diesel engine for light trucks and sport utility vehicles. This work began in April 1997, and started with very aggressive goals for vehicles in the 5751 to 8500 pound GCW weight class. The primary program goals were as follows: (1) EMISSIONS--NO{sub x} = 0.50 g/mi; PM = 0.05 g/mi; CO = 2.8 g/mi; and NMHC = 0.07 g/mi. California decided to issue new and even tougher LEV II light truck regulations late in 1999. EPA also issued its lower Tier 2 regulations late in 2000. The net result was that the targets for this diesel engine project were lowered, and these goals were eventually modified by the publication of Federal Tier 2 emission standards early in 2000 to the following: NO{sub x} = 0.07 g/mi; and PM = 0.01 g/mi. (2) FUEL ECONOMY--The fuel economy goal was 50 percent MPG improvement (combined city/highway) over the 1997 gasoline powered light truck or sport utility vehicle in the vehicle class for which this diesel engine is being designed to replace. The goal for fuel economy remained at 50 percent MPG improvement, even with the emissions goal revisions. (3) COOPERATIVE DEVELOPMENT--Regular design reviews of the engine program will be conducted with a vehicle manufacturer to insure that the concepts and design specifics are commercially feasible. (DaimlerChrysler has provided Cummins with this design review input.) Cummins has essentially completed a demonstration of proof-of-principle for a diesel engine platform using advanced combustion and fuel system technologies. Cummins reported very early progress in this project, evidence that new diesel engine technology had been developed that demonstrated the feasibility of the above emissions goals. Emissions levels of NOx = 0.4 g/mi and PM = 0.06 g/mi were demonstrated for a 5250 lb. test weight vehicle with passive aftertreatment only. These results were achieved using the full

  20. Light reflecting apparatus including a multi-aberration light reflecting surface

    DOE Patents [OSTI]

    Sawicki, Richard H.; Sweatt, William

    1987-01-01

    A light reflecting apparatus including a multi-aberration bendable light reflecting surface is disclosed herein. This apparatus includes a structural assembly comprised of a rectangular plate which is resiliently bendable, to a limited extent, and which has a front side defining the multi-aberration light reflecting surface and an opposite back side, and a plurality of straight leg members rigidly connected with the back side of the plate and extending rearwardly therefrom. The apparatus also includes a number of different adjustment mechanisms, each of which is connected with specific ones of the leg members. These mechanisms are adjustably movable in different ways for applying corresponding forces to the leg members in order to bend the rectangular plate and light reflecting surface into different predetermined curvatures and which specifically include quadratic and cubic curvatures corresponding to different optical aberrations.

  1. A light reflecting apparatus including a multi-aberration light reflecting surface

    DOE Patents [OSTI]

    Sawicki, R.H.; Sweatt, W.

    1985-11-21

    A light reflecting apparatus including a multi-aberration bendable light reflecting surface is disclosed herein. This apparatus includes a structural assembly comprised of a rectangular plate which is resiliently bendable, to a limited extent, and which has a front side defining the multi-aberration light reflecting surface and an opposite back side, and a plurality of straight leg members rigidly connected with the back side of the plate and extending rearwardly therefrom. The apparatus also includes a number of different adjustment mechanisms, each of which is connected with specific ones of the leg members. These mechanisms are adjustably movable in different ways for applying corresponding forces to the leg members in order to bend the rectangular plate and light reflecting surface into different predetermined curvatures and which specifically include quadratic and cubic curvatures corresponding to different optical aberrations.

  2. Lift truck safety review

    SciTech Connect (OSTI)

    Cadwallader, L.C.

    1997-03-01

    This report presents safety information about powered industrial trucks. The basic lift truck, the counterbalanced sit down rider truck, is the primary focus of the report. Lift truck engineering is briefly described, then a hazard analysis is performed on the lift truck. Case histories and accident statistics are also given. Rules and regulations about lift trucks, such as the US Occupational Safety an Health Administration laws and the Underwriter`s Laboratories standards, are discussed. Safety issues with lift trucks are reviewed, and lift truck safety and reliability are discussed. Some quantitative reliability values are given.

  3. Evaluations of 1997 Fuel Consumption Patterns of Heavy Duty Trucks

    SciTech Connect (OSTI)

    Santini, Danilo

    2001-08-05

    The proposed 21st Century Truck program selected three truck classes for focused analysis. On the basis of gross vehicle weight (GVW) classification, these were Class 8 (representing heavy), Class 6 (representing medium), and Class 2b (representing light). To develop and verify these selections, an evaluation of fuel use of commercial trucks was conducted, using data from the 1997 Vehicle Inventory and Use Survey (VIUS). Truck fuel use was analyzed by registered GVW class, and by body type.

  4. Fuel Economy of the Light-Duty Vehicle Fleet (released in AEO2005)

    Reports and Publications (EIA)

    2005-01-01

    The U.S. fleet of light-duty vehicles consists of cars and light trucks, including minivans, sport utility vehicles (SUVs) and trucks with gross vehicle weight less than 8,500 pounds. The fuel economy of light-duty vehicles is regulated by the (Corporate Average Fuel Economy) CAFE standards set by the National Highway Traffic Safety Administration. Currently, the CAFE standard is 27.5 miles per gallon (mpg) for cars and 20.7 mpg for light trucks. The most recent increase in the CAFE standard for cars was in 1990, and the most recent increase in the CAFE standard for light trucks was in 1996.

  5. HAND TRUCK FOR HANDLING EQUIPMENT

    DOE Patents [OSTI]

    King, D.W.

    1959-02-24

    A truck is described for the handling of large and relatively heavy pieces of equipment and particularly for the handling of ion source units for use in calutrons. The truck includes a chassis and a frame pivoted to the chassis so as to be operable to swing in the manner of a boom. The frame has spaced members so arranged that the device to be handled can be suspended between or passed between these spaced members and also rotated with respect to the frame when the device is secured to the spaced members.

  6. The new Mercedes-Benz OM 904 LA light heavy-duty diesel engine for class 6 trucks

    SciTech Connect (OSTI)

    Schittler, M.; Bergmann, H.; Flathmann, K.

    1996-09-01

    As part of a comprehensive strategic product initiative the most important commercial vehicle manufacturer--Mercedes-Benz AG--is step by step renewing its entire product range. This primarily refers to the heart of the vehicles--the engine. After the OM 457 LA, which was developed together with DDC for the special American market demands and which is produced and sold in the US by DDC under the label Series 55, has had its premiere in Freightliner`s Century Class, the OM 904 LA will now follow in the light commercial vehicle class. This engine has a completely new concept of a direct-injection, highly sophisticated turbocharged four-cylinder in-line engine with air-to-air intercooler, whose main characteristics can be outlined by the terms multi-valve technology, high-pressure injection via unit pumps and electronic engine control. This small engine has several interesting features, which--up to now--were only known from class 8 engines. In addition to fulfilling increased customer demands with regard to long service life, easy maintenance, reliability and economy, great attention was paid during the design of the engine to not only fulfill the global regulations, but also account for sufficient potential to comply with further aggravations to be expected. The most important design features and the attained engine ratings are indicated and explained in detail.

  7. Barge Truck Total

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Barge Truck Total delivered cost per short ton Shipments with transportation rates over total shipments Total delivered cost per short ton Shipments with transportation rates over...

  8. Solar hydrogen for urban trucks

    SciTech Connect (OSTI)

    Provenzano, J.: Scott, P.B.; Zweig, R.

    1997-12-31

    The Clean Air Now (CAN) Solar Hydrogen Project, located at Xerox Corp., El Segundo, California, includes solar photovoltaic powered hydrogen generation, compression, storage and end use. Three modified Ford Ranger trucks use the hydrogen fuel. The stand-alone electrolyzer and hydrogen dispensing system are solely powered by a photovoltaic array. A variable frequency DC-AC converter steps up the voltage to drive the 15 horsepower compressor motor. On site storage is available for up to 14,000 standard cubic feet (SCF) of solar hydrogen, and up to 80,000 SCF of commercial hydrogen. The project is 3 miles from Los Angeles International airport. The engine conversions are bored to 2.9 liter displacement and are supercharged. Performance is similar to that of the Ranger gasoline powered truck. Fuel is stored in carbon composite tanks (just behind the driver`s cab) at pressures up to 3600 psi. Truck range is 144 miles, given 3600 psi of hydrogen. The engine operates in lean burn mode, with nil CO and HC emissions. NO{sub x} emissions vary with load and rpm in the range from 10 to 100 ppm, yielding total emissions at a small fraction of the ULEV standard. Two trucks have been converted for the Xerox fleet, and one for the City of West Hollywood. A public outreach program, done in conjunction with the local public schools and the Department of Energy, introduces the local public to the advantages of hydrogen fuel technologies. The Clean Air Now program demonstrates that hydrogen powered fleet development is an appropriate, safe, and effective strategy for improvement of urban air quality, energy security and avoidance of global warming impact. Continued technology development and cost reduction promises to make such implementation market competitive.

  9. Road to Fuel Savings: Clean Diesel Trucks Gain Momentum with...

    Office of Environmental Management (EM)

    ... Plus, it's compliant with new emissions standards -- an important element in cutting our air pollution in the U.S. If all light trucks and SUVs used an engine like this, Americans ...

  10. Empty WIPP truck overturns

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Washington TRU Solutions (505) 234-7204 www.wipp.energy.gov U.S. Department of Energy Carlsbad Field Office Waste Isolation Pilot Plant P.O. Box 3090 Carlsbad, New Mexico 88221 DOENews For Immediate Release Empty WIPP truck overturns CARLSBAD, N.M., December 27, 2005 - The U.S. Department of Energy (DOE) Carlsbad Field Office reports that a Waste Isolation Pilot Plant (WIPP) truck carrying three empty TRUPACT-II shipping containers overturned on Interstate 15 near Blackfoot, Idaho, at

  11. LANL debuts hybrid garbage truck

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hybrid garbage truck LANL debuts hybrid garbage truck The truck employs a system that stores energy from braking and uses that pressure to help the truck accelerate after each stop. November 19, 2010 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials. Los Alamos National Laboratory sits

  12. Truckstop -- and Truck!-- Electrification

    SciTech Connect (OSTI)

    Skip Yeakel

    2001-12-13

    The conclusions of this paper are: 0.5-1.5 G/H and/or BUSG/Y--how much time and money will it take to quantify and WHY BOTHER TO DO SO? No shortage of things to do re truckstop--+ truck!-- electrification; Better that government and industry should put many eggs in lots of baskets vs. all in one or few; Best concepts will surface as most viable; Economic appeal better than regulation or brute force; Launch Ground Freight Partnership and give it a chance to work; Demonstration is an effective means to educate, and learn from, customers--learning is a two way street; Research, Development, Demonstration, and Deployment (RD 3) are all important but only deployment gets results; TSE can start small in numbers of spaces to accommodate economically inspired growth but upfront plans should be made for expansion if meaningful idle reduction is to follow via TE; 110VAC 15A service/ parking space is minimal--if infrastructure starts like this, upfront plans must be made to increase capacity; Increased electrification of truckstop and truck alike will result in much better life on the road; Improved sleep will improve driver alertness and safety; Reduced idling will significantly reduce fuel use and emissions; Universal appeal for DOD, DOE, DOT, EPA, OEMs, and users alike; Clean coal, gas, hydro, nuclear, or wind energy sources are all distinctly American means by which to generate electricity; Nothing can compete with diesel fuel to serve mobile truck needs; stationary trucks are like power plants--they don't move and should NOT be powered by petroleum products whenever possible; Use American fueled power plants--electricity--to serve truck idling needs wherever practical to do so; encourage economic aspect; Create and reward industry initiatives to reduce fuel use; Eliminate FET on new trucks, provide tax credits (non highway fuel use and investment), provide incentives based on results; Encourage newer/ cleaner truck use; solicit BAAs with mandatory OEM/ fleet

  13. Thermoelectrical Energy Recovery From the Exhaust of a Light...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications The Effects of an Exhaust Thermoelectric Generator of a GM Sierra Pickup Truck Progress in Thermoelectrical Energy Recovery from a Light Truck Exhaust ...

  14. Fact #653: December 13, 2010 Import Cars and Trucks Gaining Ground |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy 3: December 13, 2010 Import Cars and Trucks Gaining Ground Fact #653: December 13, 2010 Import Cars and Trucks Gaining Ground The market share for import cars and light trucks has been growing nearly every year since the mid-1990's. Import car market share more than doubled in that time -- from 14.9% in 1996 to 33.7% in 2009. Imports cars have a larger share of the market than import trucks, but import truck market share has nearly tripled since the mid-1990's. Import

  15. Fact #710: January 16, 2012 Engine Energy Use for Heavy Trucks: Where Does

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    the Energy Go? | Department of Energy 10: January 16, 2012 Engine Energy Use for Heavy Trucks: Where Does the Energy Go? Fact #710: January 16, 2012 Engine Energy Use for Heavy Trucks: Where Does the Energy Go? As with light vehicles, heavy trucks also have significant energy losses. The losses shown below are for a typical combination tractor-trailer, but these losses will vary depending on the weight, shape, and size of the truck, and the type of driving (the truck's duty cycle). On the

  16. Improving haul truck productivity

    SciTech Connect (OSTI)

    Fiscor, S.

    2007-06-15

    The paper reviews developments in payload management and cycle times. These were discussed at a roundtable held at the Haulage and Loading 2007 conference held in May in Phoenix, AZ, USA. Several original equipment manufacturers (OEMs) explaind what their companies were doing to improve cycle times for trucks, shovels and excavators used in surface coal mining. Quotations are given from Dion Domaschenz of Liebherr and Steve Plott of Cat Global Mining. 4 figs.

  17. Lighted display devices for producing static or animated visual displays, including animated facial features

    DOE Patents [OSTI]

    Heilbron, Valerie J; Clem, Paul G; Cook, Adam Wade

    2014-02-11

    An illuminated display device with a base member with a plurality of cavities therein. Illumination devices illuminate the cavities and emit light through an opening of the cavities in a pattern, and a speaker can emit sounds in synchronization with the pattern. A panel with translucent portions can overly the base member and the cavities. An animated talking character can have an animated mouth cavity complex with multiple predetermined mouth lighting configurations simulative of human utterances. The cavities can be open, or optical waveguide material or positive members can be disposed therein. Reflective material can enhance internal reflectance and light emission.

  18. Registrations and vehicle miles of travel of light duty vehicles, 1985--1995

    SciTech Connect (OSTI)

    Hu, P.S.; Davis, S.C.; Schmoyer, R.L.

    1998-02-01

    To obtain vehicle registration data that consistently and accurately reflect the distinction between automobiles and light-duty trucks, Oak Ridge National Laboratory (ORNL) was asked by FHWA to estimate the current and historical vehicle registration numbers of automobiles and of other two-axle four-tire vehicles (i.e., light-duty trucks), and their associated travel. The term automobile is synonymous with passenger car. Passenger cars are defined as all sedans, coupes, and station wagons manufactured primarily for the purpose of carrying passengers. This includes taxicabs, rental cars, and ambulances and hearses on an automobile chassis. Light-duty trucks refer to all two-axle four-tire vehicles other than passenger cars. They include pickup trucks, panel trucks, delivery and passenger vans, and other vehicles such as campers, motor homes, ambulances on a truck chassis, hearses on a truck chassis, and carryalls. In this study, light-duty trucks include four major types: (1) pickup truck, (2) van, (3) sport utility vehicle, and (4) other 2-axle 4-tire truck. Specifically, this project re-estimates statistics that appeared in Tables MV-1 and MV-9 of the 1995 Highway Statistics. Given the complexity of the approach developed in this effort and the incompleteness and inconsistency of the state-submitted data, it is recommended that alternatives be considered by FHWA to obtain vehicle registration data. One alternative is the Polk`s NVPP data (via the US Department of Transportation`s annual subscription to Polk). The second alternative is to obtain raw registration files from individual states` Departments of Motor Vehicles and to decode individual VINs.

  19. WORKSHOP REPORT: Trucks and Heavy-Duty Vehicles Technical Requirements and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Gaps for Lightweight and Propulsion Materials | Department of Energy Trucks and Heavy-Duty Vehicles Technical Requirements and Gaps for Lightweight and Propulsion Materials WORKSHOP REPORT: Trucks and Heavy-Duty Vehicles Technical Requirements and Gaps for Lightweight and Propulsion Materials wr_trucks_hdvehicles.pdf (811.37 KB) More Documents & Publications WORKSHOP REPORT:Light-Duty Vehicles Technical Requirements and Gaps for Lightweight and Propulsion Materials Summary of the Output

  20. Road to Fuel Savings: Clean Diesel Trucks Gain Momentum with Nissan and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Cummins Collaboration | Department of Energy Road to Fuel Savings: Clean Diesel Trucks Gain Momentum with Nissan and Cummins Collaboration Road to Fuel Savings: Clean Diesel Trucks Gain Momentum with Nissan and Cummins Collaboration August 28, 2014 - 9:51am Addthis Pictured here is a clean diesel engine for light trucks that was part of Cummins research and development effort from 1997-2004. Supported with funding by the Energy Department, this engine is as clean and quiet as a gasoline

  1. Volvo Trucks North America | Open Energy Information

    Open Energy Info (EERE)

    Volvo Trucks North America Jump to: navigation, search Name: Volvo Trucks North America Place: Dublin, VA Information About Partnership with NREL Partnership with NREL Yes...

  2. Fact #929: June 13, 2016 Heavy Truck Speed Limits Are Inconsistent -

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Dataset | Department of Energy 9: June 13, 2016 Heavy Truck Speed Limits Are Inconsistent - Dataset Fact #929: June 13, 2016 Heavy Truck Speed Limits Are Inconsistent - Dataset Excel file and dataset for Heavy Truck Speed Limits Are Inconsistent fotw#929_web.xlsx (87.51 KB) More Documents & Publications Fact #932: July 4, 2016 Longer Combination Trucks Are Only Permitted on Some Routes - Dataset Fact #923: May 2, 2016 Cylinder Deactivation was Used in More than a Quarter of New Light

  3. FUEL ASSEMBLY SHAKER AND TRUCK TEST SIMULATION

    SciTech Connect (OSTI)

    Klymyshyn, Nicholas A.; Jensen, Philip J.; Sanborn, Scott E.; Hanson, Brady D.

    2014-09-25

    This study continues the modeling support of the SNL shaker table task from 2013 and includes analysis of the SNL 2014 truck test campaign. Detailed finite element models of the fuel assembly surrogate used by SNL during testing form the basis of the modeling effort. Additional analysis was performed to characterize and filter the accelerometer data collected during the SNL testing. The detailed fuel assembly finite element model was modified to improve the performance and accuracy of the original surrogate fuel assembly model in an attempt to achieve a closer agreement with the low strains measured during testing. The revised model was used to recalculate the shaker table load response from the 2013 test campaign. As it happened, the results remained comparable to the values calculated with the original fuel assembly model. From this it is concluded that the original model was suitable for the task and the improvements to the model were not able to bring the calculated strain values down to the extremely low level recorded during testing. The model needs more precision to calculate strains that are so close to zero. The truck test load case had an even lower magnitude than the shaker table case. Strain gage data from the test was compared directly to locations on the model. Truck test strains were lower than the shaker table case, but the model achieved a better relative agreement of 100-200 microstrains (or 0.0001-0.0002 mm/mm). The truck test data included a number of accelerometers at various locations on the truck bed, surrogate basket, and surrogate fuel assembly. This set of accelerometers allowed an evaluation of the dynamics of the conveyance system used in testing. It was discovered that the dynamic load transference through the conveyance has a strong frequency-range dependency. This suggests that different conveyance configurations could behave differently and transmit different magnitudes of loads to the fuel even when travelling down the same road at

  4. Class 8 Truck Freight Efficiency Improvement Project

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Daimler Trucks and Buses 1 Super Truck Program: Vehicle Project Review Recovery Act -Class 8 Truck Freight Efficiency Improvement Project Project ID: ARRAVT080 This presentation does not contain any proprietary, confidential, or otherwise restricted information Derek Rotz (PI & Presenter) Dr. Maik Ziegler Daimler Truck North America LLC June 19 th , 2014 Daimler Trucks and Buses 2 Overview * Project start: April 2010 * Project end: March 2015 * Percent complete: 80% * Resolve thermal &

  5. NREL Highlight: Truck Platooning Testing; NREL (National Renewable Energy Laboratory)

    SciTech Connect (OSTI)

    2015-05-21

    NREL's fleet test and evaluation team assesses the fuel savings potential of semi-automated truck platooning of line-haul sleeper cabs with modern aerodynamics. Platooning reduces aerodynamic drag by grouping vehicles together and safely decreasing the distance between them via electronic coupling, which allows multiple vehicles to accelerate or brake simultaneously. In 2014, the team conducted track testing of three SmartWay tractor - two platooned tractors and one control tractor—at varying steady-state speeds, following distances, and gross vehicle weights. While platooning improved fuel economy at all speeds, travel at 55 mph resulted in the best overall miles per gallon. The lead truck demonstrated fuel savings up to 5.3% while the trailing truck saved up to 9.7%. A number of conditions impact the savings attainable, including ambient temperature, distance between lead and trailing truck, and payload weight. Future studies may look at ways to optimize system fuel efficiency and emissions reductions.

  6. APBF-DEC NOx Adsorber/DPF Project: SUV / Pick-up Truck Platform

    SciTech Connect (OSTI)

    Webb, C; Weber, P; Thornton,M

    2003-08-24

    The objective of this project is to determine the influence of diesel fuel composition on the ability of NOX adsorber catalyst (NAC) technology, in conjunction with diesel particle filters (DPFs), to achieve stringent emissions levels with a minimal fuel economy impact. The test bed for this project was intended to be a light-duty sport utility vehicle (SUV) with a goal of achieving light-duty Tier 2-Bin 5 tail pipe emission levels (0.07 g/mi. NOX and 0.01 g/mi. PM). However, with the current US market share of light-duty diesel applications being so low, no US 2002 model year (MY) light-duty truck (LDT) or SUV platforms equipped with a diesel engine and having a gross vehicle weight rating (GVWR) less than 8500 lb exist. While the current level of diesel engine use is relatively small in the light-duty class, there exists considerable potential for the diesel engine to gain a much larger market share in the future as manufacturers of heavy light-duty trucks (HLDTs) attempt to offset the negative impact on cooperate average fuel economy (CAFE) that the recent rise in market share of the SUVs and LDTs has caused. The US EPA Tier 2 emission standards also contain regulation to prevent the migration of heavy light-duty trucks and SUV's to the medium duty class. This preventive measure requires that all medium duty trucks, SUV's and vans in the 8,500 to 10,000 lb GVWR range being used as passenger vehicles, meet light-duty Tier 2 standards. In meeting the Tier 2 emission standards, the HLDTs and medium-duty passenger vehicles (MDPVs) will face the greatest technological challenges. Because the MDPV is the closest weight class and application relative to the potential upcoming HLDTs and SUV's, a weight class compromise was made in this program to allow the examination of using a diesel engine with a NAC-DPF system on a 2002 production vehicle. The test bed for this project is a 2500 series Chevrolet Silverado equipped with a 6.6L Duramax diesel engine certified to 2002

  7. Truck Essential Power Systems Efficiency Improvements for Medium-Duty Trucks

    SciTech Connect (OSTI)

    Larry Slone; Jeffery Birkel

    2007-12-31

    With a variety of hybrid vehicles available in the passenger car market, electric technologies and components of that scale are becoming readily available. Commercial vehicle segments have lagged behind passenger car markets, leaving opportunities for component and system development. Escalating fuel prices impact all markets and provide motivation for OEMs, suppliers, customers, and end-users to seek new techniques and technologies to deliver reduced fuel consumption. The research presented here specifically targets the medium-duty (MD), Class 4-7, truck market with technologies aimed at reducing fuel consumption. These technologies could facilitate not only idle, but also parasitic load reductions. The development efforts here build upon the success of the More Electric Truck (MET) demonstration program at Caterpillar Inc. Employing a variety of electric accessories, the MET demonstrated the improvement seen with such technologies on a Class 8 truck. The Truck Essential Power Systems Efficiency Improvements for Medium-Duty Trucks (TEPS) team scaled the concepts and successes of MET to a MD chassis. The team designed an integrated starter/generator (ISG) package and energy storage system (ESS), explored ways to replace belt and gear-driven accessory systems, and developed supervisory control algorithms to direct the usage of the generated electricity and system behavior on the vehicle. All of these systems needed to fit within the footprint of a MD vehicle and be compatible with the existing conventional systems to the largest extent possible. The overall goal of this effort was to demonstrate a reduction in fuel consumption across the drive cycle, including during idle periods, through truck electrification. Furthermore, the team sought to evaluate the benefits of charging the energy storage system during vehicle braking. The vehicle features an array of electric accessories facilitating on-demand, variable actuation. Removal of these accessories from the belt or

  8. French intensive truck garden

    SciTech Connect (OSTI)

    Edwards, T D

    1983-01-01

    The French Intensive approach to truck gardening has the potential to provide substantially higher yields and lower per acre costs than do conventional farming techniques. It was the intent of this grant to show that there is the potential to accomplish the gains that the French Intensive method has to offer. It is obvious that locally grown food can greatly reduce transportation energy costs but when there is the consideration of higher efficiencies there will also be energy cost reductions due to lower fertilizer and pesticide useage. As with any farming technique, there is a substantial time interval for complete soil recovery after there have been made substantial soil modifications. There were major crop improvements even though there was such a short time since the soil had been greatly disturbed. It was also the intent of this grant to accomplish two other major objectives: first, the garden was managed under organic techniques which meant that there were no chemical fertilizers or synthetic pesticides to be used. Second, the garden was constructed so that a handicapped person in a wheelchair could manage and have a higher degree of self sufficiency with the garden. As an overall result, I would say that the garden has taken the first step of success and each year should become better.

  9. Heavy Truck Engine Program

    SciTech Connect (OSTI)

    Nelson, Christopher

    2009-01-08

    The Heavy Duty Truck Engine Program at Cummins embodied three significant development phases. All phases of work strove to demonstrate a high level of diesel engine efficiency in the face of increasingly stringent emission requirements. Concurrently, aftertreatment system development and refinement was pursued in support of these efficiency demonstrations. The program's first phase focused on the demonstration in-vehicle of a high level of heavy duty diesel engine efficiency (45% Brake Thermal Efficiency) at a typical cruise condition while achieving composite emissions results which met the 2004 U.S. EPA legislated standards. With a combination of engine combustion calibration tuning and the development and application of Urea-based SCR and particulate aftertreatment, these demonstrations were successfully performed by Q4 of 2002. The second phase of the program directed efforts towards an in-vehicle demonstration of an engine system capable of meeting 2007 U.S. EPA legislated emissions requirements while achieving 45% Brake Thermal Efficiency at cruise conditions. Through further combustion optimization, the refinement of Cummins Cooled EGR architecture, the application of a high pressure common rail fuel system and the incorporation of optimized engine parasitics, Cummins Inc. successfully demonstrated these deliverables in Q2 of 2004. The program's final phase set a stretch goal of demonstrating 50% Brake Thermal Efficiency from a heavy duty diesel engine system capable of meeting 2010 U.S. EPA legislated emissions requirements. Cummins chose to pursue this goal through further combustion development and refinement of the Cooled EGR system architecture and also applied a Rankine cycle Waste Heat Recovery technique to convert otherwise wasted thermal energy to useful power. The engine and heat recovery system was demonstrated to achieve 50% Brake Thermal Efficiency while operating at a torque peak condition in second quarter, 2006. The 50% efficient engine

  10. Vehicle Technologies Office: 21st Century Truck Technical Goals and Teams

    Broader source: Energy.gov [DOE]

    Fuel efficiency in heavy trucks depends on a number of factors associated with the truck and its components. The top figure shows the power use inventory for a basic Class 8 tractor-trailer combination, listing its balance of fuel input, engine output, and tractive power (losses from aerodynamics, rolling resistance, and inertia). The power use inventory in this diagram highlights areas in which research efforts can lead to major benefits in truck fuel efficiency, including engine efficiency, aerodynamics, and rolling resistance.

  11. Raley's LNG Truck Site Final Data Report

    SciTech Connect (OSTI)

    Battelle

    1999-07-01

    Raley's is a 120-store grocery chain with headquarters in Sacramento, California, that has been operating eight heavy-duty LNG trucks (Kenworth T800 trucks with Cummins L10-300G engines) and two LNG yard tractors (Ottawa trucks with Cummins B5.9G engines) since April 1997. This report describes the results of data collection and evaluation of the eight heavy-duty LNG trucks compared to similar heavy-duty diesel trucks operating at Raley's. The data collection and evaluation are a part of the U.S. Department of Energy (DOE)/National Renewable Energy Laboratory (NREL) Alternative Fuel Truck Evaluation Project.

  12. FUEL CONSUMPTION AND COST SAVINGS OF CLASS 8 HEAVY-DUTY TRUCKS POWERED BY NATURAL GAS

    SciTech Connect (OSTI)

    Gao, Zhiming; LaClair, Tim J; Daw, C Stuart; Smith, David E

    2013-01-01

    We compare the fuel consumption and greenhouse gas emissions of natural gas and diesel heavy-duty (HD) class 8 trucks under consistent simulated drive cycle conditions. Our study included both conventional and hybrid HD trucks operating with either natural gas or diesel engines, and we compare the resulting simulated fuel efficiencies, fuel costs, and payback periods. While trucks powered by natural gas engines have lower fuel economy, their CO2 emissions and costs are lower than comparable diesel trucks. Both diesel and natural gas powered hybrid trucks have significantly improved fuel economy, reasonable cost savings and payback time, and lower CO2 emissions under city driving conditions. However, under freeway-dominant driving conditions, the overall benefits of hybridization are considerably less. Based on payback period alone, non-hybrid natural gas trucks appear to be the most economic option for both urban and freeway driving environments.

  13. Truck acoustic data analyzer system

    DOE Patents [OSTI]

    Haynes, Howard D.; Akerman, Alfred; Ayers, Curtis W.

    2006-07-04

    A passive vehicle acoustic data analyzer system having at least one microphone disposed in the acoustic field of a moving vehicle and a computer in electronic communication the microphone(s). The computer detects and measures the frequency shift in the acoustic signature emitted by the vehicle as it approaches and passes the microphone(s). The acoustic signature of a truck driving by a microphone can provide enough information to estimate the truck speed in miles-per-hour (mph), engine speed in rotations-per-minute (RPM), turbocharger speed in RPM, and vehicle weight.

  14. Class 8 Truck Freight Efficiency Improvement Project

    Broader source: Energy.gov (indexed) [DOE]

    least 20% improvement through a heavy-duty diesel engine capable of ... Tractor Trailer 16.5% 2.4% (incl. hybrid) NEXT STEP: build the truck Approach Daimler Trucks and Buses ...

  15. Norcal Prototype LNG Truck Fleet: Final Results

    SciTech Connect (OSTI)

    Not Available

    2004-07-01

    U.S. DOE and National Renewable Energy Laboratory evaluated Norcal Waste Systems liquefied natural gas (LNG) waste transfer trucks. Trucks had prototype Cummins Westport ISXG engines. Report gives final evaluation results.

  16. EERE Success Story-SuperTruck Initiative Partner Improves Class 8 Truck

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Efficiency by 115% | Department of Energy SuperTruck Initiative Partner Improves Class 8 Truck Efficiency by 115% EERE Success Story-SuperTruck Initiative Partner Improves Class 8 Truck Efficiency by 115% June 23, 2015 - 3:21pm Addthis EERE Success Story—SuperTruck Initiative Partner Improves Class 8 Truck Efficiency by 115% With help from the Energy Department, Class 8 trucks recently hit a record of 12 miles per gallon (mpg) freight efficiency. This milestone is actually a 115%

  17. Truck Thermoacoustic Generator and Chiller

    SciTech Connect (OSTI)

    Keolian, Robert

    2011-03-31

    This Final Report describes the accomplishments of the US Department of Energy (DOE) cooperative agreement project DE-FC26-04NT42113 - Truck Thermoacoustic Generator and Chiller - whose goal is to design, fabricate and test a thermoacoustic piezoelectric generator and chiller system for use on over-the-road heavy-duty-diesel trucks, driven alternatively by the waste heat of the main diesel engine exhaust or by a burner integrated into the thermoacoustic system. The thermoacoustic system would utilize engine exhaust waste heat to generate electricity and cab air conditioning, and would also function as an auxiliary power unit (APU) for idle reduction. The unit was to be tested in Volvo engine performance and endurance test cells and then integrated onto a Class 8 over-the-road heavy-duty-diesel truck for further testing on the road. The project has been a collaboration of The Pennsylvania State University Applied Research Laboratory, Los Alamos National Laboratory, Clean Power Resources Inc., and Volvo Powertrain (Mack Trucks Inc.). Cost share funding was provided by Applied Research Laboratory, and by Clean Power Resources Inc via its grant from Innovation Works - funding that was derived from the Commonwealth of Pennsylvania. Los Alamos received its funding separately through DOE Field Work Proposal 04EE09.

  18. Anti-Idling Battery for Truck Applications

    SciTech Connect (OSTI)

    Keith Kelly

    2011-09-30

    In accordance to the Assistance Agreement DE-EE0001036, the objective of this project was to develop an advanced high voltage lithium-ion battery for use in an all-electric HVAC system for Class-7-8 heavy duty trucks. This system will help heavy duty truck drivers meet the tough new anti-idling laws being implemented by over 23 states. Quallion will be partnering with a major OEM supplier of HVAC systems to develop this system. The major OEM supplier will provide Quallion the necessary interface requirements and HVAC hardware to ensure successful testing of the all-electric system. At the end of the program, Quallion will deliver test data on three (3) batteries as well as test data for the prototype HVAC system. The objectives of the program are: (1) Battery Development - Objective 1 - Define battery and electronics specifications in preparation for building the prototype module. (Completed - summary included in report) and Objective 2 - Establish a functional prototype battery and characterize three batteries in-house. (Completed - photos and data included in report); (2) HVAC Development - Objective 1 - Collaborate with manufacturers to define HVAC components, layout, and electronics in preparation for establishing the prototype system. (Completed - photos and data included in report) and Objective 2 - Acquire components for three functional prototypes for use by Quallion. (Completed - photos and data included in report).

  19. UPS CNG Truck Fleet Final Report

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    ® ® ® ® ® ® ® Clean Air Natural Gas Vehicle This is a Clean Air Natural Gas Vehicle This is a UPS CNG Truck Fleet UPS CNG Truck Fleet UPS CNG Truck Fleet Final results Final Results Produced for the U.S. Department of Energy (DOE) by the National Renewable Energy Laboratory (NREL), a DOE national laboratory Alternative Fuel Trucks DOE/NREL Truck Evaluation Project By Kevin Chandler, Battelle Kevin Walkowicz, National Renewable Energy Laboratory Nigel Clark, West Virginia University

  20. Simulated fuel economy and emissions performance during city and interstate driving for a heavy-duty hybrid truck

    SciTech Connect (OSTI)

    Daw, C Stuart; Gao, Zhiming; Smith, David E; LaClair, Tim J; Pihl, Josh A; Edwards, Kevin Dean

    2013-01-01

    We compare simulated fuel economy and emissions for both conventional and hybrid class 8 heavy-duty diesel trucks operating over multiple urban and highway driving cycles. Both light and heavy freight loads were considered, and all simulations included full aftertreatment for NOx and particulate emissions controls. The aftertreatment components included a diesel oxidation catalyst (DOC), urea-selective catalytic NOx reduction (SCR), and a catalyzed diesel particulate filter (DPF). Our simulated hybrid powertrain was configured with a pre-transmission parallel drive, with a single electric motor between the clutch and gearbox. A conventional HD truck with equivalent diesel engine and aftertreatment was also simulated for comparison. Our results indicate that hybridization can significantly increase HD fuel economy and improve emissions control in city driving. However, there is less potential hybridization benefit for HD highway driving. A major factor behind the reduced hybridization benefit for highway driving is that there are fewer opportunities to utilize regenerative breaking. Our aftertreatment simulations indicate that opportunities for passive DPF regeneration are much greater for both hybrid and conventional trucks during highway driving due to higher sustained exhaust temperatures. When passive DPF regeneration is extensively utilized, the fuel penalty for particulate control is virtually eliminated, except for the 0.4%-0.9% fuel penalty associated with the slightly higher exhaust backpressure.

  1. Fact #846: November 10, 2014 Trucks Move 70% of all Freight by...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Notes: Air transport includes truck and air. The CFS data for pipeline exclude most shipments of crude oil. Multiple modes includes data for parcel, U.S. Postal Service, or ...

  2. NREL: Transportation Research - Truck Stop Electrification Testing

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Truck drivers typically idle their vehicles during mandated rest periods to maintain access to air conditioning, heat, and electricity. TSE sites allow truckers to enjoy these ...

  3. POST 10/Truck Inspection Station (Map 3

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Station (Map 3) Changes Effective January 11, 2010 Pajarito Corridor Deliveries: Drivers of commercial delivery trucks headed to the Pajarito Corridor (Pajarito Road bounded...

  4. Class 8 Truck Freight Efficiency Improvement Project

    Broader source: Energy.gov (indexed) [DOE]

    Derek Rotz (PI & Presenter) Dr. Maik Ziegler Daimler Truck ... controls integration (aux, hybrid, powertrain, waste heat, ... 20% improvement through a heavy-duty diesel engine capable ...

  5. Vehicle Technologies Office Merit Review 2015: Volvo SuperTruck...

    Energy Savers [EERE]

    Volvo SuperTruck Vehicle Technologies Office Merit Review 2015: Volvo SuperTruck Presentation given by Volvo Trucks at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle ...

  6. Underground Salt Haul Truck Fire at the Waste Isolation Pilot...

    Office of Environmental Management (EM)

    Underground Salt Haul Truck Fire at the Waste Isolation Pilot Plant February 5, 2014 March 2014 Salt Haul Truck Fire at the Waste Isolation Pilot Plant Salt Haul Truck Fire at the ...

  7. Fuel Cell Powered Lift Truck

    SciTech Connect (OSTI)

    Moulden, Steve

    2015-08-20

    This project, entitled “Recovery Act: Fuel Cell-Powered Lift Truck Sysco (Houston) Fleet Deployment”, was in response to DOE funding opportunity announcement DE-PS36-08GO98009, Topic 7B, which promotes the deployment of fuel cell powered material handling equipment in large, multi-shift distribution centers. This project promoted large-volume commercialdeployments and helped to create a market pull for material handling equipment (MHE) powered fuel cell systems. Specific outcomes and benefits involved the proliferation of fuel cell systems in 5-to 20-kW lift trucks at a high-profile, real-world site that demonstrated the benefits of fuel cell technology and served as a focal point for other nascent customers. The project allowed for the creation of expertise in providing service and support for MHE fuel cell powered systems, growth of existing product manufacturing expertise, and promoted existing fuel cell system and component companies. The project also stimulated other MHE fleet conversions helping to speed the adoption of fuel cell systems and hydrogen fueling technology. This document also contains the lessons learned during the project in order to communicate the successes and difficulties experienced, which could potentially assist others planning similar projects.

  8. Fuel comsumption of heavy-duty trucks : potential effect of future technologies for improving energy efficiency and emission.

    SciTech Connect (OSTI)

    Saricks, C. L.; Vyas, A. D.; Stodolsky, F.; Maples, J. D.; Energy Systems; USDOE

    2003-01-01

    The results of an analysis of heavy-duty truck (Classes 2b through 8) technologies conducted to support the Energy Information Administration's long-term projections for energy use are summarized. Several technology options that have the potential to improve the fuel economy and emissions characteristics of heavy-duty trucks are included in the analysis. The technologies are grouped as those that enhance fuel economy and those that improve emissions. Each technology's potential impact on the fuel economy of heavy-duty trucks is estimated. A rough cost projection is also presented. The extent of technology penetration is estimated on the basis of truck data analyses and technical judgment.

  9. Hydrogen Industrial Trucks | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Industrial Trucks Hydrogen Industrial Trucks Slides from the U.S. Department of Energy Hydrogen Component and System Qualification Workshop held November 4, 2010 in Livermore, CA. csqw_harris.pdf (1.5 MB) More Documents & Publications Non-Metals Workshop Fuel Cell Technologies Program Overview: 2012 IEA HIA Hydrogen Safety Stakeholder Workshop US DRIVE Hydrogen Codes and Standards Technical Team Roadmap

  10. Waste Management's LNG Truck Fleet: Final Results

    SciTech Connect (OSTI)

    Chandler, K.; Norton, P.; Clark, N.

    2001-01-25

    Waste Management, Inc., began operating a fleet of heavy-duty LNG refuse trucks at its Washington, Pennsylvania, facility. The objective of the project was to provide transportation professionals with quantitative, unbiased information on the cost, maintenance, operational, and emissions characteristics of LNG as one alternative to conventional diesel for heavy-duty trucking applications.

  11. Fact #726: May 7, 2012 SUVs: Are They Cars or Trucks? | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fact 726: May 7, 2012 SUVs: Are They Cars or Trucks? The Corporate Average Fuel Economy (CAFE) Standards set for model years (MY) 2011 through 2016 include small, 2-wheel drive ...

  12. Vehicle Technologies Office Merit Review 2015: Class 8 Truck...

    Office of Environmental Management (EM)

    Vehicle Technologies Office Merit Review 2015: SuperTruck Program: Engine Project Review Vehicle Technologies Office Merit Review 2014: SuperTruck Program: Engine Project Review

  13. Cummins SuperTruck Program - Technology and System Level Demonstration...

    Broader source: Energy.gov (indexed) [DOE]

    More Documents & Publications Cummins SuperTruck Program - Technology and System Level Demonstration of Highly Efficient and Clean, Diesel Powered Class 8 Trucks Supertruck ...

  14. Volvo SuperTruck - Powertrain Technologies for Efficiency Improvement...

    Broader source: Energy.gov (indexed) [DOE]

    More Documents & Publications Volvo SuperTruck - Powertrain Technologies for Efficiency Improvement Vehicle Technologies Office Merit Review 2015: Volvo SuperTruck - Powertrain ...

  15. Vehicle Technologies Office Merit Review 2015: Cummins SuperTruck...

    Broader source: Energy.gov (indexed) [DOE]

    Peer Evaluation Meeting about Cummins SuperTruck program technology and system level ... Vehicle Technologies Office Merit Review 2015: Volvo SuperTruck - Powertrain Technologies ...

  16. Normal Conditions of Transport Truck Test of a Surrogate Fuel...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Normal Conditions of Transport Truck Test of a Surrogate Fuel Assembly. Citation Details In-Document Search Title: Normal Conditions of Transport Truck Test of a Surrogate Fuel...

  17. Energy Department, Volvo Partnership Builds More Efficient Trucks...

    Energy Savers [EERE]

    Department, Volvo Partnership Builds More Efficient Trucks and Manufacturing Plants Energy Department, Volvo Partnership Builds More Efficient Trucks and Manufacturing Plants ...

  18. Boondocks Truck Stop Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    In Service Owner Boondocks Truck Stop Energy Purchaser Boondocks Truck Stop Location IA Coordinates 42.4703, -93.5624 Show Map Loading map... "minzoom":false,"mappingservi...

  19. SuperTruck Team Achieves 115% Freight Efficiency Improvement...

    Broader source: Energy.gov (indexed) [DOE]

    While the original SuperTruck goal was to improve freight efficiency by 50 percent compared to a baseline vehicle, Daimler Trucks North America (DTNA) announced that their ...

  20. DOE Seeks Trucking Services for Transuranic Waste Shipments ...

    Office of Environmental Management (EM)

    Seeks Trucking Services for Transuranic Waste Shipments DOE Seeks Trucking Services for Transuranic Waste Shipments March 30, 2011 - 12:00pm Addthis Media Contact Bill Taylor ...

  1. Vehicle Technologies Office Merit Review 2014: Class 8 Truck...

    Energy Savers [EERE]

    Vehicle Technologies Office Merit Review 2014: Class 8 Truck Freight Efficiency Improvement Project Presentation given by Daimler Truck North America LLC at 2014 DOE Hydrogen and ...

  2. Solid SCR Demonstration Truck Application | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    SCR Demonstration Truck Application Solid SCR Demonstration Truck Application Demonstrate the feasibility and performance of the FEV Solid SCR (Ammonium Carbamate) Technology ...

  3. Hydrogen Fuel Cells and Electric Forklift Trucks | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fuel Cells and Electric Forklift Trucks Hydrogen Fuel Cells and Electric Forklift Trucks Presentation for Dec. 17, 2008 hydrogen bimonthly informational call and meeting series for ...

  4. WORKSHOP REPORT: Trucks and Heavy-Duty Vehicles Technical Requirements...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Trucks and Heavy-Duty Vehicles Technical Requirements and Gaps for Lightweight and Propulsion Materials WORKSHOP REPORT: Trucks and Heavy-Duty Vehicles Technical Requirements and ...

  5. Volvo Truck Headquarters in North Carolina to Host Event With...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Volvo Truck Headquarters in North Carolina to Host Event With Acting Under Secretary of Energy Majumdar Volvo Truck Headquarters in North Carolina to Host Event With Acting Under ...

  6. Vehicle Technologies Office: 21st Century Truck Technical Goals

    Broader source: Energy.gov [DOE]

    The 21st Century Truck Partnership aims to improve fuel efficiency in heavy trucks through improvements in engine efficiency, aerodynamics, and rolling resistance.

  7. Vehicle Technologies Office Merit Review 2015: Volvo SuperTruck...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    SuperTruck - Powertrain Technologies for Efficiency Improvement Vehicle Technologies Office Merit Review 2015: Volvo SuperTruck - Powertrain Technologies for Efficiency Improvement...

  8. NJ Compressed Natural Gas Refuse Trucks, Shuttle Buses and Infrastruct...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    NJ Compressed Natural Gas Refuse Trucks, Shuttle Buses and Infrastructure NJ Compressed Natural Gas Refuse Trucks, Shuttle Buses and Infrastructure 2012 DOE Hydrogen and Fuel Cells ...

  9. SANBAG Natural Gas Truck Project | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    SANBAG Natural Gas Truck Project SANBAG Natural Gas Truck Project 2010 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, ...

  10. INFOGRAPHIC: How SuperTruck is Making Heavy Duty Vehicles More Efficient

    Broader source: Energy.gov [DOE]

    How the Energy Department's SuperTruck initiative is making America's heavy duty trucks more sustainable.

  11. Assessment of the Emissions Behavior of Higher Mileage Class-8 Trucks and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Engines | Department of Energy the Emissions Behavior of Higher Mileage Class-8 Trucks and Engines Assessment of the Emissions Behavior of Higher Mileage Class-8 Trucks and Engines Study of in-use emission levels of trucks near the mid-point of their regulatory useful life, including PEMS (on-road) testing as well as engine dynamometer testing p-11_smith.pdf (52.45 KB) More Documents & Publications Recent Research to Address Technical Barriers to Increased Use of Biodiesel Diesel NOx-PM

  12. EERE Success Story-Cummins Improving Pick-Up Truck Engine Efficiency with

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    DOE and Nissan | Department of Energy Cummins Improving Pick-Up Truck Engine Efficiency with DOE and Nissan EERE Success Story-Cummins Improving Pick-Up Truck Engine Efficiency with DOE and Nissan April 8, 2015 - 12:00am Addthis Cummins, the world's largest diesel engine manufacturer, has long partnered with the Vehicle Technologies Office's (VTO) advanced combustion program to develop high-efficiency, advanced engines for heavy and light-duty vehicles. While one major light-duty technology

  13. Plug-In Hybrid Urban Delivery Truck Technology Demonstration

    SciTech Connect (OSTI)

    Miyasato, Matt; Impllitti, Joseph; Pascal, Amar

    2015-07-31

    The I-710 and CA-60 highways are key transportation corridors in the Southern California region that are heavily used on a daily basis by heavy duty drayage trucks that transport the cargo from the ports to the inland transportation terminals. These terminals, which include store/warehouses, inland-railways, are anywhere from 5 to 50 miles in distance from the ports. The concentrated operation of these drayage vehicles in these corridors has had and will continue to have a significant impact on the air quality in this region whereby significantly impacting the quality of life in the communities surrounding these corridors. To reduce these negative impacts it is critical that zero and near-zero emission technologies be developed and deployed in the region. A potential local market size of up to 46,000 trucks exists in the South Coast Air Basin, based on near- dock drayage trucks and trucks operating on the I-710 freeway. The South Coast Air Quality Management District (SCAQMD), California Air Resources Board (CARB) and Southern California Association of Governments (SCAG) — the agencies responsible for preparing the State Implementation Plan required under the federal Clean Air Act — have stated that to attain federal air quality standards the region will need to transition to broad use of zero and near zero emission energy sources in cars, trucks and other equipment (Southern California Association of Governments et al, 2011). SCAQMD partnered with Volvo Trucks to develop, build and demonstrate a prototype Class 8 heavy-duty plug-in hybrid drayage truck with significantly reduced emissions and fuel use. Volvo’s approach leveraged the group’s global knowledge and experience in designing and deploying electromobility products. The proprietary hybrid driveline selected for this proof of concept was integrated with multiple enhancements to the complete vehicle in order to maximize the emission and energy impact of electrification. A detailed review of all

  14. Running Line-Haul Trucks on Ethanol

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    I magine driving a 55,000-pound tractor- trailer that runs on corn! If you find it difficult to imagine, you can ask the truck drivers for Archer Daniels Midland (ADM) what it's like. For the past 4 years, they have been piloting four trucks powered by ethyl alcohol, or "ethanol," derived from corn. Several advantages to operating trucks on ethanol rather than on conventional petro- leum diesel fuel present themselves. Because ethanol can be produced domestically, unlike most of our

  15. Vehicle Technologies Office: 21st Century Truck Partnership | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy 21st Century Truck Partnership Vehicle Technologies Office: 21st Century Truck Partnership Logo for 21st Century Truck Partnership. Partial outline of three various size medium to heavy-duty trucks followed by the words, 21st Century Truck Partnership. Medium-duty and heavy-duty trucks play a vital role in moving freight and passengers, serving as the backbone of America's economy. These trucks also play essential roles in other parts of society, such as maintaining our electricity

  16. In-Cab Air Quality of Trucks Air Conditioned and Kept in Electrified Truck Stop

    SciTech Connect (OSTI)

    Lee, Doh-Won; Zietsman, Josias; Farzaneh, Mohamadreza; Li, Wen-Whai; Olvera, Hector; Storey, John Morse; Kranendonk, Laura

    2009-01-01

    At night, long-haul truck drivers rest inside the cabins of their vehicles. Therefore, the in-cab air quality while air conditioning (A/C) is being provided can be a great concern to the drivers health. The effect of using different A/C methods [truck's A/C, auxiliary power unit (APU), and truck stop electrification (TSE) unit] on in-cab air quality of a heavy-duty diesel vehicle was investigated at an electrified truck stop in the El Paso, Texas, area. The research team measured the in-cabin and the ambient air quality adjacent to the parked diesel truck as well as emissions from the truck and an APU while it was providing A/C. The measured results were compared and analyzed. On the basis of these results, it was concluded that the TSE unit provided better in-cab air quality while supplying A/C. Furthermore, the truck and APU exhaust emissions were measured, and fuel consumption of the truck (while idling) and the APU (during operation) were compared. The results led to the finding that emissions from the APU were less than those from the truck's engine idling, but the APU consumed more fuel than the engine while providing A/C under given conditions.

  17. Slow speed object detection for haul trucks

    SciTech Connect (OSTI)

    2009-09-15

    Caterpillar integrates radar technology with its current camera based system. Caterpillar has developed the Integrated Object Detection System, a slow speed object detection system for mining haul trucks. Object detection is a system that aids the truck operator's awareness of their surroundings. The system consists of a color touch screen display along with medium- and short-range radar as well as cameras, harnesses and mounting hardware. It is integrated into the truck's Work Area Vision System (WAVS). After field testing in 2007, system commercialization began in 2008. Prototype systems are in operation in Australia, Utah and Arizona and the Integrated Object Detection System will be available in the fourth quarter of 2009 and on production trucks 785C, 789C, 793D and 797B. The article is adapted from a presentation by Mark Richards of Caterpillar to the Haulage & Loading 2009 conference, May, held in Phoenix, AZ. 1 fig., 5 photos.

  18. NREL: Transportation Research - Truck Platooning Testing

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    vehicles to accelerate or brake simultaneously. Track Testing of Platooned Tractor-Trailer Trucks In 2014, the team conducted track testing of three SmartWay tractors-two...

  19. Raley's LNG Truck Fleet: Final Results

    SciTech Connect (OSTI)

    Chandler, K.; Norton, P.; Clark, N.

    2000-05-03

    Raley's, a large retail grocery company based in Northern California, began operating heavy-duty trucks powered by liquefied natural gas (LNG) in 1997, in cooperation with the Sacramento Metropolitan Air Quality Management District (SMAQMD). The US Department of Energy (DOE) Office of Heavy Vehicle Technologies (OHVT) sponsored a research project to collect and analyze data on the performance and operation costs of eight of Raley's LNG trucks in the field. Their performance was compared with that of three diesel trucks operating in comparable commercial service. The objective of the DOE research project, which was managed by the National Renewable Energy Laboratory (NREL), was to provide transportation professionals with quantitative, unbiased information on the cost, maintenance, operational, and emissions characteristics of LNG as one alternative to conventional diesel fuel for heavy-duty trucking applications.

  20. Alternative Fuels Data Center: Kentucky Trucking Company Adds CNG Vehicles

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    to Its Fleet Kentucky Trucking Company Adds CNG Vehicles to Its Fleet to someone by E-mail Share Alternative Fuels Data Center: Kentucky Trucking Company Adds CNG Vehicles to Its Fleet on Facebook Tweet about Alternative Fuels Data Center: Kentucky Trucking Company Adds CNG Vehicles to Its Fleet on Twitter Bookmark Alternative Fuels Data Center: Kentucky Trucking Company Adds CNG Vehicles to Its Fleet on Google Bookmark Alternative Fuels Data Center: Kentucky Trucking Company Adds CNG

  1. Alternative Fuels Data Center: Liquefied Natural Gas Powers Trucks in

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Connecticut Liquefied Natural Gas Powers Trucks in Connecticut to someone by E-mail Share Alternative Fuels Data Center: Liquefied Natural Gas Powers Trucks in Connecticut on Facebook Tweet about Alternative Fuels Data Center: Liquefied Natural Gas Powers Trucks in Connecticut on Twitter Bookmark Alternative Fuels Data Center: Liquefied Natural Gas Powers Trucks in Connecticut on Google Bookmark Alternative Fuels Data Center: Liquefied Natural Gas Powers Trucks in Connecticut on Delicious

  2. Super Truck -- 50% Improvement In Class 8 Freight Efficiency | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Super Truck -- 50% Improvement In Class 8 Freight Efficiency Super Truck -- 50% Improvement In Class 8 Freight Efficiency Presents first year highlights from Detroit Diesel Corporation and Daimler Trucks, NA joint SuperTruck engine and vehicle project to demonstrate a 50 percent freight efficiency improvement deer11_sisken.pdf (2.17 MB) More Documents & Publications Super Truck Program: Engine Project Review High-Efficiency Engine Technologies Session Introduction Roadmapping

  3. Volvo Super Truck Overview and Approach | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Volvo Super Truck Overview and Approach Volvo Super Truck Overview and Approach Provides overview and discusses approach of the Volvo Super Truck Team to develop a number of advanced technologies to significantly improve freight efficiency of long-haul trucks deer11_amar.pdf (936.68 KB) More Documents & Publications Impact of Vehicle Efficiency Improvements on Powertrain Design Vehicle Technologies Office Merit Review 2016: Volvo SuperTruck - Powertrain Technologies for Efficiency

  4. The Evaluation of Developing Vehicle Technologies on the Fuel Economy of Long-Haul Trucks

    SciTech Connect (OSTI)

    Gao, Zhiming; Smith, David E.; Daw, C. Stuart; Edwards, Kevin Dean; Kaul, Brian C.; Domingo, Norberto; Parks, II, James E.; Jones, Perry T.

    2015-12-01

    We present fuel savings estimates resulting from the combined implementation of multiple advanced energy management technologies in both conventional and parallel hybrid class 8 diesel trucks. The energy management technologies considered here have been specifically targeted by the 21st Century Truck Partnership (21 CTP) between the U.S. Department of Energy and U.S. industry and include advanced combustion engines, waste heat recovery, and reductions in auxiliary loads, rolling resistance, aerodynamic drag, and gross vehicle weight. Furthermore, we estimated that combined use of all these technologies in hybrid trucks has the potential to improve fuel economy by more than 60% compared to current conventional trucks, but this requires careful system integration to avoid non-optimal interactions. Major factors to be considered in system integration are discussed.

  5. The Evaluation of Developing Vehicle Technologies on the Fuel Economy of Long-Haul Trucks

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Gao, Zhiming; Smith, David E.; Daw, C. Stuart; Edwards, Kevin Dean; Kaul, Brian C.; Domingo, Norberto; Parks, II, James E.; Jones, Perry T.

    2015-12-01

    We present fuel savings estimates resulting from the combined implementation of multiple advanced energy management technologies in both conventional and parallel hybrid class 8 diesel trucks. The energy management technologies considered here have been specifically targeted by the 21st Century Truck Partnership (21 CTP) between the U.S. Department of Energy and U.S. industry and include advanced combustion engines, waste heat recovery, and reductions in auxiliary loads, rolling resistance, aerodynamic drag, and gross vehicle weight. Furthermore, we estimated that combined use of all these technologies in hybrid trucks has the potential to improve fuel economy by more than 60% compared tomore » current conventional trucks, but this requires careful system integration to avoid non-optimal interactions. Major factors to be considered in system integration are discussed.« less

  6. Test, Evaluation, and Demonstration of Practical Devices/Systems to Reduce Aerodynamic Drag of Tractor/Semitrailer Combination Unit Trucks

    SciTech Connect (OSTI)

    Scott Smith; Karla Younessi; Matt Markstaller; Dan Schlesinger; Bhaskar Bhatnagar; Donald Smith; Bruno Banceu; Ron Schoon; V.K. Sharma; Mark Kachmarsky; Srikant Ghantae; Michael Sorrels; Conal Deedy; Justin Clark; Skip Yeakel; Michael D. Laughlin; Charlotte Seigler; Sidney Diamond

    2007-04-30

    Class 8 heavy-duty trucks account for over three-quarters of the total diesel fuel used by commercial trucks (trucks with GVWRs more than 10,000 pounds) in the United States each year. At the highway speeds at which these trucks travel (i.e., 60 mph or greater), aerodynamic drag is a major part of total horsepower needed to move the truck down the highway, Reductions in aerodynamic drag can yield measurable benefits in fuel economy through the use of relatively inexpensive and simple devices. The goal of this project was to examine a number of aerodynamic drag reduction devices and systems and determine their effectiveness in reducing aerodynamic drag of Class 8 tractor/semitrailer combination-units, thus contributing to DOE's goal of reducing transportation petroleum use. The project team included major heavy truck manufacturers in the United States, along with the management and industry expertise of the Truck Manufacturers Association as the lead investigative organization. The Truck Manufacturers Association (TMA) is the national trade association representing the major North American manufacturers of Class 6-8 trucks (GVWRs over 19,500 lbs). Four major truck manufacturers participated in this project with TMA: Freightliner LLC; International Truck and Engine Corporation; Mack Trucks Inc.; and Volvo Trucks North America, Inc. Together, these manufacturers represent over three-quarters of total Class 8 truck sales in the United States. These four manufacturers pursued complementary research efforts as part of this project. The project work was separated into two phases conducted over a two-year period. In Phase I, candidate aerodynamic devices and systems were screened to focus research and development attention on devices that offered the most potential. This was accomplished using full-size vehicle tests, scale model tests, and computational fluid dynamics analyses. In Phase II, the most promising devices were installed on full-size trucks and their effect on

  7. Lighting

    Broader source: Energy.gov [DOE]

    One of the simplest ways to save energy and money is to switch to energy-efficient lights. Learn about your lighting choices that can save you money.

  8. Hydraulic Hybrid Parcel Delivery Truck Deployment, Testing & Demonstration

    SciTech Connect (OSTI)

    Gallo, Jean-Baptiste

    2014-03-07

    Although hydraulic hybrid systems have shown promise over the last few years, commercial deployment of these systems has primarily been limited to Class 8 refuse trucks. In 2005, the Hybrid Truck Users Forum initiated the Parcel Delivery Working Group including the largest parcel delivery fleets in North America. The goal of the working group was to evaluate and accelerate commercialization of hydraulic hybrid technology for parcel delivery vehicles. FedEx Ground, Purolator and United Parcel Service (UPS) took delivery of the world’s first commercially available hydraulic hybrid parcel delivery trucks in early 2012. The vehicle chassis includes a Parker Hannifin hydraulic hybrid drive system, integrated and assembled by Freightliner Custom Chassis Corp., with a body installed by Morgan Olson. With funding from the U.S. Department of Energy, CALSTART and its project partners assessed the performance, reliability, maintainability and fleet acceptance of three pre-production Class 6 hydraulic hybrid parcel delivery vehicles using information and data from in-use data collection and on-road testing. This document reports on the deployment of these vehicles operated by FedEx Ground, Purolator and UPS. The results presented provide a comprehensive overview of the performance of commercial hydraulic hybrid vehicles in parcel delivery applications. This project also informs fleets and manufacturers on the overall performance of hydraulic hybrid vehicles, provides insights on how the technology can be both improved and more effectively used. The key findings and recommendations of this project fall into four major categories: -Performance, -Fleet deployment, -Maintenance, -Business case. Hydraulic hybrid technology is relatively new to the market, as commercial vehicles have been introduced only in the past few years in refuse and parcel delivery applications. Successful demonstration could pave the way for additional purchases of hydraulic hybrid vehicles throughout the

  9. Cummins Work Toward Successful Introduction of Light-Duty Clean Diesel

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Engines in US | Department of Energy Work Toward Successful Introduction of Light-Duty Clean Diesel Engines in US Cummins Work Toward Successful Introduction of Light-Duty Clean Diesel Engines in US 2005 Diesel Engine Emissions Reduction (DEER) Conference Presentations and Posters 2005_deer_stang.pdf (109.08 KB) More Documents & Publications Cummins Light Truck Clean Diesel Cummins/DOE Light Truck Clean Diesel Engine Progress Report Cummins/DOE Light Truck Diesel Engine Progress Repor

  10. Emissions from Trucks using Fischer-Tropsch Diesel Fuel

    SciTech Connect (OSTI)

    Paul Norton; Keith Vertin; Brent Bailey; Nigel N. Clark; Donald W. Lyons; Stephen Goguen; James Eberhardt

    1998-10-19

    The Fischer-Tropsch (F-T) catalytic conversion process can be used to synthesize diesel fuels from a variety of feedstocks, including coal, natural gas and biomass. Synthetic diesel fuels can have very low sulfur and aromatic content, and excellent autoignition characteristics. Moreover, Fischer-Tropsch diesel fuels may also be economically competitive with California B- diesel fuel if produced in large volumes. overview of Fischer-Tropsch diesel fuel production and engine emissions testing is presented. Previous engine laboratory tests indicate that F-T diesel is a promising alternative fuel because it can be used in unmodified diesel engines, and substantial exhaust emissions reductions can be realized. The authors have performed preliminary tests to assess the real-world performance of F-T diesel fuels in heavy-duty trucks. Seven White-GMC Class 8 trucks equipped with Caterpillar 10.3 liter engines were tested using F-T diesel fuel. Vehicle emissions tests were performed using West Virginia University's unique transportable chassis dynamometer. The trucks were found to perform adequately on neat F-T diesel fuel. Compared to a California diesel fuel baseline, neat F-T diesel fuel emitted about 12% lower oxides of nitrogen (NOx) and 24% lower particulate matter over a five-mile driving cycle.

  11. Fact #744: September 10, 2012 Average New Light Vehicle Price...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    light trucks. Source: Used vehicles - Ward's Automotive, New cars - Bureau of Economic Analysis, National Income and Product Accounts (NIPA) Underlying Detail Tables, Table 7.2.5S

  12. Heavy Truck Clean Diesel Cooperative Research Program

    SciTech Connect (OSTI)

    Milam, David

    2006-12-31

    This report is the final report for the Department of Energy on the Heavy Truck Engine Program (Contract No. DE-FC05-00OR22806) also known as Heavy Truck Clean Diesel (HTCD) Program. Originally, this was scoped to be a $38M project over 5 years, to be 50/50 co-funded by DOE and Caterpillar. The program started in June 2000. During the program the timeline was extended to a sixth year. The program completed in December 2006. The program goal was to develop and demonstrate the technologies required to enable compliance with the 2007 and 2010 (0.2g/bhph NOx, 0.01g/bhph PM) on-highway emission standards for Heavy Duty Trucks in the US with improvements in fuel efficiency compared to today's engines. Thermal efficiency improvement from a baseline of 43% to 50% was targeted.

  13. Fuel Cell Lift Trucks: A Grocer's Best Friend | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Lift Trucks: A Grocer's Best Friend Fuel Cell Lift Trucks: A Grocer's Best Friend December 1, 2011 - 3:21pm Addthis Baldor Specialty Foods relies on fuel cell technology from Oorja ...

  14. Fact #707: December 26, 2011 Illustration of Truck Classes

    Broader source: Energy.gov [DOE]

    There are eight truck classes, categorized by the gross vehicle weight rating (GVWR) that the vehicle is assigned when it is manufactured. These categories are used by the trucking industry and...

  15. EERE Success Story-SuperTruck Initiative Partner Improves Class...

    Office of Environmental Management (EM)

    ... INFOGRAPHIC: How SuperTruck is Making Heavy Duty Vehicles More Efficient As part of the 21st Century Truck Partnership, the Army will demonstrate technology that converts waste ...

  16. Vehicle Technologies Office Merit Review 2014: SuperTruck Program...

    Broader source: Energy.gov (indexed) [DOE]

    about SuperTruck Program: Engine Project Review. ace058singh2014o.pdf (1.9 MB) More Documents & Publications Vehicle Technologies Office Merit Review 2015: SuperTruck ...

  17. Vehicle Technologies Office Merit Review 2015: SuperTruck Program...

    Broader source: Energy.gov (indexed) [DOE]

    about SuperTruck program: engine project review. ace058singh2015o.pdf (2.57 MB) More Documents & Publications Vehicle Technologies Office Merit Review 2014: SuperTruck ...

  18. NREL: Transportation Research - NREL's Complete-Cab Truck Climate...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Long-haul Class 8 trucks use approximately 7% of their fuel for rest period idling, ... 774 gallons of fuel used per truck for rest period air conditioning, with the ...

  19. SCR Systems for Heavy Duty Trucks: Progress Towards Meeting Euro...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Systems for Heavy Duty Trucks: Progress Towards Meeting Euro 4 Emission Standards in 2005 SCR Systems for Heavy Duty Trucks: Progress Towards Meeting Euro 4 Emission Standards in 2005 ...

  20. California: SQAMD Replaces Drayage Trucks with CNG | Department...

    Energy Savers [EERE]

    California: SQAMD Replaces Drayage Trucks with CNG California: SQAMD Replaces Drayage Trucks with CNG November 6, 2013 - 12:00am Addthis In 2008, the South Coast Air Quality ...

  1. Vehicle Technologies Office: 21st Century Truck Partners

    Office of Energy Efficiency and Renewable Energy (EERE)

    The 21st Century Truck Partnership is an industry-government collaboration among heavy-duty engine manufacturers, medium-duty and heavy-duty truck and bus manufacturers, heavy-duty hybrid...

  2. Manhattan Project Truck Unearthed in Recovery Act Cleanup

    Office of Environmental Management (EM)

    April 20, 2011 Remnants of 1940s military truck buried in a Manhattan Project-era landfill ... uncovered the remnants of a 1940s military truck buried in a Manhattan Project landfill. ...

  3. 21st Century Truck Partnership - Roadmap and Technical White...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Electric Truck (document) 21CTP-003-A FreedomCAR and ... (DOE), the life of a diesel engine in long-haul trucks ... of a highly integrated system specifically designed to ...

  4. Norcal Prototype LNG Truck Fleet: Final Data Report

    SciTech Connect (OSTI)

    Chandler, K.; Proc, K.

    2005-02-01

    U.S. DOE and National Renewable Energy Laboratory evaluated Norcal Waste Systems liquefied natural gas (LNG) waste transfer trucks. Trucks had prototype Cummins Westport ISXG engines. Report gives final data.

  5. Nuclear Waste Partnership (NWP) Corrective Action Plan - Truck Fire and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Radiological Release Phase I | Department of Energy - Truck Fire and Radiological Release Phase I Nuclear Waste Partnership (NWP) Corrective Action Plan - Truck Fire and Radiological Release Phase I Submittal of the Underground Salt Haul Truck Fire Corrective Action Plan and the Radiological Release Event Corrective Action Plan under Nuclear Waste Partnership LLC Contract DE-EM0001971. Nuclear Waste Partnership (NWP) Corrective Action Plan - Truck Fire and Radiological Release Phase I (4.46

  6. Alternative Fuels Data Center: Delaware Reduces Truck Idling With

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Electrified Parking Areas Delaware Reduces Truck Idling With Electrified Parking Areas to someone by E-mail Share Alternative Fuels Data Center: Delaware Reduces Truck Idling With Electrified Parking Areas on Facebook Tweet about Alternative Fuels Data Center: Delaware Reduces Truck Idling With Electrified Parking Areas on Twitter Bookmark Alternative Fuels Data Center: Delaware Reduces Truck Idling With Electrified Parking Areas on Google Bookmark Alternative Fuels Data Center: Delaware

  7. Vehicle Technologies Office Merit Review 2014: Class 8 Truck Freight

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Efficiency Improvement Project | Department of Energy Class 8 Truck Freight Efficiency Improvement Project Vehicle Technologies Office Merit Review 2014: Class 8 Truck Freight Efficiency Improvement Project Presentation given by Daimler Truck North America LLC at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about Class 8 Truck Freight Efficiency Improvement Project. arravt080_vss_rotz_2014_o.pdf (1.59 MB) More

  8. The 21st Century Truck Partnership | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The 21st Century Truck Partnership The 21st Century Truck Partnership 2002 DEER Conference Presentation: 2002_deer_howden.pdf (268.3 KB) More Documents & Publications 21st Century Truck Partnership Roadmap Roadmap and Technical White Papers - 21CTP-0003, December 2006 Roadmap and Technical White Papers for 21st Century Truck Partnership Vehicle Technologies Office Merit Review 2016: Annual Merit Review and Peer Evaluation Meeting

  9. Cummins SuperTruck Program - Technology Demonstration of Highly Efficient

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Clean, Diesel Powered Class 8 Trucks | Department of Energy Demonstration of Highly Efficient Clean, Diesel Powered Class 8 Trucks Cummins SuperTruck Program - Technology Demonstration of Highly Efficient Clean, Diesel Powered Class 8 Trucks Low temperature combustion at part load combined with diffusion controlled combustion at higher loads, and robust control system dynamically adjusting engine operation, maximize engine efficiency while meeting tailpipe emissions standards

  10. Other Exports by Truck out of the U.S. | Department of Energy

    Office of Environmental Management (EM)

    Truck out of the U.S. Other Exports by Truck out of the U.S. Other Exports by Truck Form (Excel) (40.5 KB) Other Exports by Truck Form (pdf) (10.88 KB) More Documents & Publications Other Exports by Rail out of the U.S. CNG Imports by Truck into the U.S. Other Imports by Truck

  11. EERE: VTO - UPS Truck PNG Image | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    EERE: VTO - UPS Truck PNG Image EERE: VTO - UPS Truck PNG Image ups_truck_18187.png (33.15 MB) More Documents & Publications EERE: VTO - Red Leaf PNG Image EERE: VTO - Hybrid Bus PNG Image Research Site Locations for Current EERE Postdoctoral Awards

  12. UPS CNG Truck Fleet Final Results: Alternative Fuel Truck Evaluation Project (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2002-08-01

    This report provides transportation professionals with quantitative, unbiased information on the cost, maintenance, operational and emissions characteristics of CNG as one alternative to conventional diesel fuel for heavy-duty trucking applications.

  13. SuperTruck Initiative Partner Improves Class 8 Truck Efficiency by 115%

    Broader source: Energy.gov [DOE]

    With help from the Energy Department, Class 8 trucks recently hit a record of 12 miles per gallon (mpg) freight efficiency. This milestone is actually a 115% increase in freight efficiency (which...

  14. Volvo Trucks Manufacturing Plant in Virginia

    Broader source: Energy.gov [DOE]

    Volvo Group North America’s 1.6-million-square-foot New River Valley Plant in Dublin, Virginia, is the company’s largest truck manufacturing plant in the world. The company has implemented many energy savings solutions as part of the Better Buildings, Better Plants Challenge.

  15. Manhattan Project truck unearthed at landfill cleanup site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Manhattan project truck Manhattan Project truck unearthed at landfill cleanup site A LANL excavation crew working on a Recovery Act cleanup project has uncovered the remnants of a 1940s military truck buried in a Manhattan Project-era landfill. April 8, 2011 image description Excavator operator Kevin Miller looks at the remnants of a 1940s military truck buried in a Manhattan Project-era landfill. Contact Fred deSousa Communications Office (505) 665-3430 Email Remnants of a 1940s military truck

  16. Vehicle Technologies Office Merit Review 2015: Volvo SuperTruck |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy SuperTruck Vehicle Technologies Office Merit Review 2015: Volvo SuperTruck Presentation given by Volvo Trucks at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about Volvo SuperTruck. vss081_amar_2015_o.pdf (2.12 MB) More Documents & Publications SuperTruck … Development and Demonstration of a Fuel-Efficient Class 8 Tractor & Trailer Vehicle Technologies Office Merit Review 2015: Volvo

  17. Thermal management for heavy vehicles (Class 7-8 trucks)

    SciTech Connect (OSTI)

    Wambsganss, M.W.

    2000-04-03

    Thermal management is a crosscutting technology that has an important effect on fuel economy and emissions, as well as on reliability and safety, of heavy-duty trucks. Trends toward higher-horsepower engines, along with new technologies for reducing emissions, are substantially increasing heat-rejection requirements. For example, exhaust gas recirculation (EGR), which is probably the most popular near-term strategy for reducing NO{sub x} emissions, is expected to add 20 to 50% to coolant heat-rejection requirements. There is also a need to package more cooling in a smaller space without increasing costs. These new demands have created a need for new and innovative technologies and concepts that will require research and development, which, due to its long-term and high-risk nature, would benefit from government funding. This document outlines a research program that was recommended by representatives of truck manufacturers, engine manufacturers, equipment suppliers, universities, and national laboratories. Their input was obtained through personal interviews and a plenary workshop that was sponsored by the DOE Office of Heavy Vehicle Technologies and held at Argonne National Laboratory on October 19--20, 1999. Major research areas that received a strong endorsement by industry and that are appropriate for government funding were identified and included in the following six tasks: (1) Program management/coordination and benefits/cost analyses; (2) Advanced-concept development; (3) Advanced heat exchangers and heat-transfer fluids; (4) Simulation-code development; (5) Sensors and control components development; and (6) Concept/demonstration truck sponsorship.

  18. Hydrogen Fuel Cells and Electric Forklift Trucks

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fuel Cells and Electric Forklift Trucks Steve Medwin The Raymond Corporation December 10, 2008 Value Proposition and Fuel Cell Tax Credit * Federal fuel cell tax credit increased in "Bailout Bill" - $3000/kW or 30% of unit price whichever is less * Tax credits extended to 2016 * Has a significant impact on financial viability Sample Financial Analysis * Illustrate impact of key factors on value proposition - Tax credit - Labor rate - Battery change time - Productivity improvement *

  19. Application of Sleeper Cab Thermal Management Technologies to Reduce Idle Climate Control Loads in Long-Haul Trucks

    SciTech Connect (OSTI)

    Lustbader, J. A.; Venson, T.; Adelman, S.; Dehart, C.; Yeakel, S.; Castillo, M. S.

    2012-10-01

    Each intercity long-haul truck in the U.S. idles approximately 1,800 hrs per year, primarily for sleeper cab hotel loads. Including workday idling, over 2 billion gallons of fuel are used annually for truck idling. NREL's CoolCab project works closely with industry to design efficient thermal management systems for long-haul trucks that keep the cab comfortable with minimized engine idling and fuel use. The impact of thermal load reduction technologies on idle reduction systems were characterized by conducting thermal soak tests, overall heat transfer tests, and 10-hour rest period A/C tests. Technologies evaluated include advanced insulation packages, a solar reflective film applied to the vehicle's opaque exterior surfaces, a truck featuring both film and insulation, and a battery-powered A/C system. Opportunities were identified to reduce heating and cooling loads for long-haul truck idling by 36% and 34%, respectively, which yielded a 23% reduction in battery pack capacity of the idle-reduction system. Data were also collected for development and validation of a CoolCalc HVAC truck cab model. CoolCalc is an easy-to-use, simplified, physics-based HVAC load estimation tool that requires no meshing, has flexible geometry, excludes unnecessary detail, and is less time-intensive than more detailed computer-aided engineering modeling approaches.

  20. Natural Gas as a Fuel for Heavy Trucks: Issues and Incentives (released in AEO2010)

    Reports and Publications (EIA)

    2010-01-01

    Environmental and energy security concerns related to petroleum use for transportation fuels, together with recent growth in U.S. proved reserves and technically recoverable natural gas resources, including shale gas, have sparked interest in policy proposals aimed at stimulating increased use of natural gas as a vehicle fuel, particularly for heavy trucks.

  1. CNG Imports by Truck into the U.S. | Department of Energy

    Office of Environmental Management (EM)

    Truck into the U.S. CNG Imports by Truck into the U.S. CNG Imports by Truck Form (Excel) (41 KB) CNG Imports by Truck Form (pdf) (14.11 KB) More Documents & Publications Other Exports by Rail out of the U.S. Other Imports by Truck into the U.S. CNG Imports by Rail

  2. Ten Years of Development Experience with Advanced Light Truck...

    Broader source: Energy.gov (indexed) [DOE]

    4 Diesel Engine Emissions Reduction (DEER) Conference Presentation: Cummins Engines PDF icon 2004deerstang1.pdf More Documents & Publications The California Demonstration Program ...

  3. Advanced Technology Light Duty Diesel Aftertreatment System ...

    Broader source: Energy.gov (indexed) [DOE]

    Passive Catalytic Approach to Low Temperature NOx Emission Abatement Cummins' Next Generation Tier 2, Bin 2 Light Truck Diesel Engine ATP-LD; Cummins Next Generation Tier 2 Bin 2 ...

  4. Class 8 Truck Freight Efficiency Improvement Project | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting arravt080_vss_rotz_2012_o.pdf (2.58 MB) More Documents & Publications Vehicle Technologies Office Merit Review 2014: Class 8 Truck Freight Efficiency Improvement Project Class 8 Truck Freight Efficiency Improvement Project Vehicle Technologies Office Merit Review 2015: Class 8 Truck Freight Efficiency

  5. Class 8 Truck Freight Efficiency Improvement Project | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    3 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting arravt080_vss_rotz_2013_o.pdf (1.46 MB) More Documents & Publications Vehicle Technologies Office Merit Review 2015: Class 8 Truck Freight Efficiency Improvement Project Vehicle Technologies Office Merit Review 2014: Class 8 Truck Freight Efficiency Improvement Project Class 8 Truck Freight Efficiency

  6. Energy Secretary Bodman Showcases Advanced Clean Diesel and Hybrid Trucks,

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Buses | Department of Energy Showcases Advanced Clean Diesel and Hybrid Trucks, Buses Energy Secretary Bodman Showcases Advanced Clean Diesel and Hybrid Trucks, Buses May 10, 2005 - 12:45pm Addthis Says Energy Bill Essential to Develop Clean Diesel Technology WASHINGTON, D.C. - Highlighting the promise of alternative fuel trucks and buses, Secretary of Energy Samuel W. Bodman today opened an exhibition of energy-efficient, clean diesel and advanced hybrid commercial vehicles at a press

  7. Environmental Management Headquarters Corrective Action Plan - Truck Fire |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Truck Fire Environmental Management Headquarters Corrective Action Plan - Truck Fire The purpose of this Corrective Action Plan (CAP) is to specify U.S. Department of Energy (DOE) actions for addressing Office of Environmental Management (EM) Headquarters (HQ) issues identified in the Accident Investigation Report for the Underground Salt Haul Truck Fire at the Waste Isolation Pilot Plant (WIPP) February 5, 2014. The report identified 22 Conclusions and 35 Judgments of

  8. Energy Department, Volvo Partnership Builds More Efficient Trucks and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Manufacturing Plants | Department of Energy Department, Volvo Partnership Builds More Efficient Trucks and Manufacturing Plants Energy Department, Volvo Partnership Builds More Efficient Trucks and Manufacturing Plants January 27, 2012 - 3:00pm Addthis Washington, D.C. -Today, Acting Under Secretary of Energy Arun Majumdar joined with North Carolina Congressman Howard Coble (NC-6) to tour the Volvo Group's truck headquarters in Greensboro, North Carolina, and highlight the blueprint for an

  9. DOE Expands International Effort to Develop Fuel-Efficient Trucks |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Expands International Effort to Develop Fuel-Efficient Trucks DOE Expands International Effort to Develop Fuel-Efficient Trucks June 30, 2008 - 2:15pm Addthis GOTHENBURG, SWEDEN - U.S. Department of Energy's (DOE) Assistant Secretary for Energy Efficiency and Renewable Energy Alexander Karsner and Volvo Group CEO Leif Johansson today agreed to expand cooperation to develop more fuel-efficient trucks. Once contractual negotiations are complete later this year, the

  10. Super Duty Diesel Truck with NOx Aftertreatment | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Super Duty Diesel Truck with NOx Aftertreatment Super Duty Diesel Truck with NOx Aftertreatment A profile of a Ford-Energy Department program to develop a three-stage aftertreatment technology, which cleans the vehicle exhaust emissions. This profile is part of the U.S. Drive 2011 Accomplishment Report. U.S. DRIVE Highlights of Technical Accomplishments 2011: Super Duty Diesel Truck with NOx Aftertreatment (246.82 KB) More Documents & Publications Development of the 2011MY Ford Super Duty

  11. Sysco Deploys Hydrogen Powered Pallet Trucks | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Sysco Deploys Hydrogen Powered Pallet Trucks Sysco Deploys Hydrogen Powered Pallet Trucks July 12, 2010 - 2:50pm Addthis Food service distribution company Sysco celebrated the grand opening of its highly efficient distribution center in June in Houston. As part of Sysco's efforts to reduce its carbon footprint, the company deployed almost 100 pallet trucks powered by fuel cells that create only water and heat as by-products. The hydrogen fuel cell project's cost was partially covered by funding

  12. Super Truck Program: Engine Project Review | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    of Energy Presents first year highlights from Detroit Diesel Corporation and Daimler Trucks, NA joint SuperTruck engine and vehicle project to demonstrate a 50 percent freight efficiency improvement deer11_sisken.pdf (2.17 MB) More Documents & Publications Super Truck Program: Engine Project Review High-Efficiency Engine Technologies Session Introduction Roadmapping Engine Technology for Post-2020 Heavy Duty Vehicles

    1 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies

  13. Vehicle Technologies Office Merit Review 2015: Class 8 Truck Freight

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Efficiency Improvement Project | Department of Energy Class 8 Truck Freight Efficiency Improvement Project Vehicle Technologies Office Merit Review 2015: Class 8 Truck Freight Efficiency Improvement Project Presentation given by DTNA at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about class 8 truck freight efficiency improvement project. arravt080_vss_rotz_2015_o.pdf (2.28 MB) More Documents & Publications

  14. Vehicle Technologies Office Merit Review 2015: Volvo SuperTruck -

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Powertrain Technologies for Efficiency Improvement | Department of Energy SuperTruck - Powertrain Technologies for Efficiency Improvement Vehicle Technologies Office Merit Review 2015: Volvo SuperTruck - Powertrain Technologies for Efficiency Improvement Presentation given by Volvo at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about Volvo SuperTruck - powertrain technologies for efficiency improvement.

  15. California Policy Stimulates Carbon Negative CNG for Heavy Duty Trucks |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy California Policy Stimulates Carbon Negative CNG for Heavy Duty Trucks California Policy Stimulates Carbon Negative CNG for Heavy Duty Trucks Describes system for fueling truck fleet with biomethane generated from anaerobic digestion of organic waste it collects p-10_edgar.pdf (364.34 KB) More Documents & Publications Advanced Natural Gas Engine Technology for Heavy Duty Vehicles Technical Workshop: Annual Merit Review Lessons Learned on Alternative Transportation

  16. Carlsbad Field Office (CBFO) Corrective Action Plan - Truck Fire and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Radiological Release | Department of Energy Carlsbad Field Office (CBFO) Corrective Action Plan - Truck Fire and Radiological Release Carlsbad Field Office (CBFO) Corrective Action Plan - Truck Fire and Radiological Release The purpose of this Corrective Action Plan (CAP) is to specify U.S. Department of Energy (DOE) Carlsbad Field Office (CBFO) actions for addressing issues identified in the March 2014, accident investigation report for the Underground Salt Haul Truck Fire at the Waste

  17. Fabrication of A Quantum Well Based System for Truck HVAC

    Broader source: Energy.gov [DOE]

    Discusses performance differences between conventional modules and quantum well modules and details a conventional HZ-14 device, using bulk bismuth-telluride advantageous for truck HVAC applications.

  18. CoolCab Truck Testing Project Update (Presentation)

    SciTech Connect (OSTI)

    Proc, K.

    2007-10-31

    Presentation describes the CoolCab project, a DOE/NREL initiative to design efficient thermal management systems in heavy trucks to eliminate idling and reduce petroleum consumption.

  19. Emissions from Idling Trucks for Extended Time Periods | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications 21st Century Truck Partnership - Roadmap and Technical White Papers Appendix of Supporting Information - 21CTP-0003, December 2006 Technical ...

  20. Truck Duty Cycle and Performance Data Collection and Analysis...

    Broader source: Energy.gov (indexed) [DOE]

    Collection and Analysis Program Heavy Duty & Medium Duty Drive Cycle Data Collection for Modeling Expansion Roadmap and Technical White Papers for 21st Century Truck Partnership

  1. HD Truck and Engine Fuel Efficiency Opportunities and Challenges...

    Broader source: Energy.gov (indexed) [DOE]

    More Documents & Publications Supertruck - Development and Demonstration of a Fuel-Efficient Class 8 Tractor & Trailer Comments of Tendril Networks Inc SuperTruck Development ...

  2. Normal Conditions of Transport Truck Test of a Surrogate Fuel...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Normal Conditions of Transport Truck Test of a Surrogate Fuel Assembly. McConnell, Paul E.; Wauneka, Robert; Saltzstein, Sylvia J.; Sorenson, Ken B. Abstract not provided. Sandia...

  3. Truck fire Corrective Action Plan submitted to Carlsbad Field...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    fire Accident Investigation Board report. On February 5, an underground mine fire involving a salt haul truck occurred in WIPP's underground mine. The DOE-appointed Accident ...

  4. NJ Compressed Natural Gas Refuse Trucks, Shuttle Buses and Infrastruct...

    Broader source: Energy.gov (indexed) [DOE]

    icon arravt051tifeinberg2011p.pdf More Documents & Publications NJ Compressed Natural Gas Refuse Trucks, Shuttle Buses and Infrastructure NJ Compressed Natural Gas Refuse ...

  5. The Role of Batteries in Auxiliary Power for Heavy Trucks

    SciTech Connect (OSTI)

    D. Crouch

    2001-12-12

    The problem that this paper deals with is that Heavy trucks leave their engines on while they are stopped and the driver is sleeping, eating, etc.

  6. Vehicle Technologies Office Merit Review 2016: Volvo SuperTruck

    Broader source: Energy.gov [DOE]

    Presentation given by Volvo Trucks at the 2016 DOE Vehicle Technologies Office and Hydrogen and Fuel Cells Program Annual Merit Review and Peer Evaluation Meeting about Vehicle Systems

  7. Vehicle Technologies Office Merit Review 2014: Cummins SuperTruck...

    Energy Savers [EERE]

    Cummins SuperTruck Program Technology and System Level Demonstration of Highly Efficient ... Program Technology and System Level Demonstration of Highly Efficient and Clean, Diesel ...

  8. NREL to Host Demonstration of Ford's Electric Ranger PU Truck

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Renewable Energy Laboratory to Host Demonstration of Ford's Electric Ranger Pickup Truck ... Media are invited to cover Ford's demonstration of the Electric Ranger at the National ...

  9. New Truck Stop Electrification Station Maps Help Truckers Reduce...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    capabilities because reducing heavy-duty truck idling is an important step in reducing ... fuels and vehicles, fuel blends, fuel economy, hybrid vehicles, and idle reduction

  10. Manhattan Project Truck Unearthed in Recovery Act Cleanup | Department...

    Broader source: Energy.gov (indexed) [DOE]

    A Los Alamos National Laboratory (LANL) excavation crew working on an American Recovery and Reinvestment Act cleanup project has uncovered the remnants of a 1940s military truck ...

  11. Nuclear Waste Partnership (NWP) Corrective Action Plan - Truck...

    Office of Environmental Management (EM)

    Nuclear Waste Partnership (NWP) Corrective Action Plan - Truck Fire and Radiological ... Corrective Action Plan under Nuclear Waste Partnership LLC Contract DE-EM0001971. ...

  12. Truck Duty Cycle and Performance Data Collection and Analysis...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Heavy Duty & Medium Duty Drive Cycle Data Collection for Modeling Expansion Truck Duty Cycle and Performance Data Collection and Analysis Program 2010 ...

  13. 21st Century Truck Partnership Roadmap Roadmap and Technical...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Roadmap Roadmap and Technical White Papers - 21CTP-0003, December 2006 21st Century Truck Partnership Roadmap Roadmap and Technical White Papers - 21CTP-0003, December 2006 Report ...

  14. 21st Century Truck Partnership - Roadmap and Technical White...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    - Roadmap and Technical White Papers Appendix of Supporting Information - 21CTP-0003, December 2006 21st Century Truck Partnership - Roadmap and Technical White Papers Appendix of ...

  15. Vehicle Technologies Office - AVTA: All Electric Delivery Trucks...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    from Smith Newton all-electric delivery trucks in a variety of fleets. This research was conducted by the National Renewable Energy Laboratory (NREL). Smith Newton Vehicle ...

  16. Fact #847: November 17, 2014 Cars were Over 50% of Light Vehicle Production in 2014

    Broader source: Energy.gov [DOE]

    In 1975, cars were just over 80% of light vehicle production. From the early 1980s to 2005, light trucks were an increasing share of the light vehicles produced. The share of sport utility vehicles...

  17. UPS CNG Truck Fleet Start Up Experience: Alternative Fuel Truck Evaluation Project

    SciTech Connect (OSTI)

    Walkowicz, K.

    2001-08-14

    UPS operates 140 Freightliner Custom Chassis compressed natural gas (CNG)-powered vehicles with Cummins B5.9G engines. Fifteen are participating in the Alternative Fuel Truck Evaluation Project being funded by DOE's Office of Transportation Technologies and the Office of Heavy Vehicle Technologies.

  18. Truck Roll Stability Data Collection and Analysis

    SciTech Connect (OSTI)

    Stevens, SS

    2001-07-02

    The principal objective of this project was to collect and analyze vehicle and highway data that are relevant to the problem of truck rollover crashes, and in particular to the subset of rollover crashes that are caused by the driver error of entering a curve at a speed too great to allow safe completion of the turn. The data are of two sorts--vehicle dynamic performance data, and highway geometry data as revealed by vehicle behavior in normal driving. Vehicle dynamic performance data are relevant because the roll stability of a tractor trailer depends both on inherent physical characteristics of the vehicle and on the weight and distribution of the particular cargo that is being carried. Highway geometric data are relevant because the set of crashes of primary interest to this study are caused by lateral acceleration demand in a curve that exceeds the instantaneous roll stability of the vehicle. An analysis of data quality requires an evaluation of the equipment used to collect the data because the reliability and accuracy of both the equipment and the data could profoundly affect the safety of the driver and other highway users. Therefore, a concomitant objective was an evaluation of the performance of the set of data-collection equipment on the truck and trailer. The objective concerning evaluation of the equipment was accomplished, but the results were not entirely positive. Significant engineering apparently remains to be done before a reliable system can be fielded. Problems were identified with the trailer to tractor fiber optic connector used for this test. In an over-the-road environment, the communication between the trailer instrumentation and the tractor must be dependable. In addition, the computer in the truck must be able to withstand the rigors of the road. The major objective--data collection and analysis--was also accomplished. Using data collected by instruments on the truck, a ''bad-curve'' database can be generated. Using this database

  19. Fact #620: April 26, 2010 Class 8 Truck Tractor Weight by Component...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    0: April 26, 2010 Class 8 Truck Tractor Weight by Component Fact 620: April 26, 2010 Class 8 Truck Tractor Weight by Component A typical class 8 truck tractor weighs about 17,000 ...

  20. Fact #899: November 16, 2015 World Production of Cars and Trucks...

    Energy Savers [EERE]

    Trucks - Dataset Fact 899: November 16, 2015 World Production of Cars and Trucks - Dataset Excel file and dataset for World Production of Cars and Trucks fotw899web.xlsx More...

  1. Roadmap and Technical White Papers for 21st Century Truck Partnership...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Roadmap and Technical White Papers for 21st Century Truck Partnership Roadmap and Technical White Papers for 21st Century Truck Partnership Roadmap document for 21st Century Truck ...

  2. Rail versus truck fuel efficiency: The relative fuel efficiency of truck-competitive rail freight and truck operations compared in a range of corridors. Final report

    SciTech Connect (OSTI)

    Not Available

    1991-04-01

    The report summarizes the findings of a study to evaluate the fuel efficiency of rail freight operations relative to competing truckload service. The objective of the study was to identify the circumstances in which rail freight service offers a fuel efficiency advantage over alternative truckload options, and to estimate the fuel savings associated with using rail service. The findings are based on computer simulations of rail and truck freight movements between the same origins and destinations. The simulation input assumptions and data are based on actual rail and truck operations. Input data was provided by U.S. regional and Class I railroads and by large truck fleet operators.

  3. LNG Exports by Truck out of the U.S. Form | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Exports by Truck out of the U.S. Form LNG Exports by Truck out of the U.S. Form LNG Exports by Truck Form (Excel) (40.5 KB) LNG Exports by Truck Form (pdf) (11 KB) More Documents & Publications LNG Exports by Vessel out of the U.S. Form CNG Exports by Truck out of the U.S. Form LNG Imports by Truck into the U.S. Form

  4. Fact #671: April 18, 2011 Average Truck Speeds | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    1: April 18, 2011 Average Truck Speeds Fact #671: April 18, 2011 Average Truck Speeds The Federal Highway Administration studies traffic volume and flow on major truck routes by tracking more than 500,000 trucks. The average speed of trucks on selected interstate highways is between 50 and 60 miles per hour (mph). The average operating speed of trucks is typically below 55 mph in major urban areas, border crossings, and in mountainous terrain. The difference in average speed between peak traffic

  5. Heavy-Truck Clean Diesel (HTCD) Program | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Heavy-Truck Clean Diesel (HTCD) Program Heavy-Truck Clean Diesel (HTCD) Program 2004 Diesel Engine Emissions Reduction (DEER) Conference Presentation: Caterpillar 2004_deer_duffy.pdf (1.36 MB) More Documents & Publications Diesel HCCI Results at Caterpillar Diesel HCCI Results at Caterpillar Heavy-Duty HCCI Development Activities

  6. SuperTruck Team Achieves 115% Freight Efficiency Improvement in Class 8

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Long-Haul Truck | Department of Energy SuperTruck Team Achieves 115% Freight Efficiency Improvement in Class 8 Long-Haul Truck SuperTruck Team Achieves 115% Freight Efficiency Improvement in Class 8 Long-Haul Truck April 2, 2015 - 10:49am Addthis SuperTruck Team Achieves 115% Freight Efficiency Improvement in Class 8 Long-Haul Truck Last week, the Vehicle Technologies Office's (VTO) SuperTruck project broke another record in efficiency for Class 8 tractor-trailers. While the original

  7. SuperTruck … Development and Demonstration of a Fuel-Efficient...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications SuperTruck Development and Demonstration of a Fuel-Efficient Class 8 Tractor & Trailer SuperTruck Development and Demonstration of a ...

  8. Like no other, Kemmerer keeps on trucking

    SciTech Connect (OSTI)

    Buchsbaum, L.

    2008-03-15

    Despite its unique challenges, production at Chevron Mining's western Wyoming mine is increasing. The 1,200 foot deep pits consecutively terrace down (more similar to the open pits used in hard rock mining), exposing multiple splitting seams of varying coal qualities. The seams dip from 17 to 22{sup o} and vary in thickness from five to 80 feet or more. Generally three different pits, all of changing coal properties, are worked. The coal is blended to meet specific specifications. The article describes operations at the mine and its transport, once blended, to the nearby Naughton power station or by haul truck to the Elkol tipple. Employment at the mine, with its good safety record, is discussed.

  9. Light-duty vehicle summary

    SciTech Connect (OSTI)

    Williams, L.S. ); Hu, P.S. )

    1990-07-01

    This document brings you up to date on the most recent fuel economy and market share data for the new light-duty vehicle fleet. Model year 1990 fuel economies are weighted based on the sales of the first six months of model year 1990 (from September 1989 to March 1990). Sales-weighted fuel economy of all new automobiles decreased in the first six months of model year 1990, from 28.0 mpg in model year 1989 to 27.7 mpg. The compact, midsize, and large size classes, which together claimed 75% of the new automobile market, each showed fuel economy declines of 0.4 mpg or more. Unlike automobiles, new 1990 light trucks showed an overall 0.4 mpg gain from model year 1989. This increase was primarily due to the increased fuel economy of the small van size class. In the first half of model year 1990, small van replaced small pickup as the second most popular light truck size class. Although the fuel economy of light trucks improved, the larger market share of automobiles in the light-duty vehicle market (automobiles and light trucks combined) and the decreased fuel economy in automobiles resulted in an overall reduction of 0.2 mpg for the entire light-duty vehicle fleet in the first half of model year 1990. Also, in the first half of model year 1990, light trucks claimed more than 33% of the light-duty vehicle market--a considerable increase from the 19.8% share in 1976. 9 figs., 18 tabs.

  10. Long-Haul Truck Idling Burns Up Profits

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Long-Haul Truck Idling Burns Up Profits Long-haul truck drivers perform a vitally important service. In the course of their work, they must take rest periods as required by federal law. Most drivers remain in their trucks, which they keep running to provide power for heating, cooling, and other necessities. Such idling, however, comes at a cost; it is an expensive and polluting way to keep drivers safe and comfortable. Increasingly affordable alternatives to idling not only save money and reduce

  11. Fact #626: June 7, 2010 Fuel Economy for Light and Heavy Vehicles |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy 6: June 7, 2010 Fuel Economy for Light and Heavy Vehicles Fact #626: June 7, 2010 Fuel Economy for Light and Heavy Vehicles In the next few years it is expected that fuel economy standards will be imposed on new medium and heavy trucks sold in the U.S. Currently, the estimates of the medium and heavy truck population range from a high of 15 miles per gallon (mpg) for class 2b trucks to a low of 2.5 mpg for class 8a trucks. The chart below shows the range of fuel economy

  12. Heavy-Duty Truck Engine: 2007 Emissions with Excellent Fuel Economy

    Broader source: Energy.gov [DOE]

    2004 Diesel Engine Emissions Reduction (DEER) Conference Presentation: Cummins Inc. Heavy-Duty Truck Engine Program

  13. The Increasing Role of Diesel Trucks in National Petroleum Use...

    Broader source: Energy.gov (indexed) [DOE]

    Presentation given at DEER 2006, August 20-24, 2006, Detroit, Michigan. Sponsored by the U.S. DOE's EERE FreedomCar and Fuel Partnership and 21st Century Truck Programs. ...

  14. Emission Controls for Heavy-Duty Trucks | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Presentation given at DEER 2006, August 20-24, 2006, Detroit, Michigan. Sponsored by the U.S. DOE's EERE FreedomCar and Fuel Partnership and 21st Century Truck Programs. ...

  15. Dual-Fuel Truck Fleet: Start-Up Experience

    SciTech Connect (OSTI)

    NREL

    1998-09-30

    Although dual-fuel engine technology has been in development and limited use for several years, it has only recently moved toward full-scale operational capability for heavy-duty truck applications. Unlike a bifuel engine, which has two separate fuel systems that are used one at a time, a dual-fuel engine uses two fuel systems simultaneously. One of California's South Coast Air Quality Management District (SCAQMD) current programs is a demonstration of dual-fuel engine technology in heavy-duty trucks. These trucks are being studied as part of the National Renewable Energy Laboratory's (NREL's) Alternative Fuel Truck Program. This report describes the start-up experience from the program.

  16. ATVM Loans Help Boost Pickup Truck Efficiency | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    "The pickup truck is very much a part of Americana," says Ed Kim, vice president of industry analysis at the research firm AutoPacific. "It's connected with the idea of a man going ...

  17. Fuel economy and emissions reduction of HD hybrid truck over...

    Broader source: Energy.gov (indexed) [DOE]

    Compares simulated fuel economy and emissions fro conventional and hybrid Class 8 heavy trucks p-12gao.pdf (345.05 KB) More Documents & Publications Advanced HD Engine Systems and ...

  18. National Academy of Sciences Reviews 21st Century Truck Partnership...

    Broader source: Energy.gov (indexed) [DOE]

    For more than 15 years, the 21st Century Truck Partnership ... America's medium and heavy-duty vehicles to safely and ... proposed expansion of the hybrid team's scope to "lead to ...

  19. Company Adds Commercial Trucks to List of Hybrids

    Broader source: Energy.gov [DOE]

    Allison's bus hybrid drive unit for transit buses can be found in 164 cities around the world. The company will use similar technology in the commercial truck hybrid system.

  20. Alternative Fuels Data Center: Electric Trucks Deliver at Kansas...

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    ... Regional Heavy-Duty LNG Fueling Station March 21, 2015 Photo of a street sweeper New Hampshire Fleet Revs up With Natural Gas March 7, 2015 Photo of a truck pulling into a CNG ...

  1. EERE Success Story-California: SQAMD Replaces Drayage Trucks...

    Energy Savers [EERE]

    ... converted its fleet of heavy-duty trucks to run on liquefied natural gas (LNG) and built the first LNG station east of the Mississippi River with help from the Energy Department's ...

  2. Volvo Trucks Achieves Lofty Energy and Carbon Goals

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    facility achieves plant-wide targets that surpass both corporate and Save Energy Now goals; leverages company and ITP resources The New River Valley (NRV) plant is Volvo Trucks'-a ...

  3. Alternative Fuels Data Center: Natural Gas Powers Milk Delivery Trucks in

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Indiana Natural Gas Powers Milk Delivery Trucks in Indiana to someone by E-mail Share Alternative Fuels Data Center: Natural Gas Powers Milk Delivery Trucks in Indiana on Facebook Tweet about Alternative Fuels Data Center: Natural Gas Powers Milk Delivery Trucks in Indiana on Twitter Bookmark Alternative Fuels Data Center: Natural Gas Powers Milk Delivery Trucks in Indiana on Google Bookmark Alternative Fuels Data Center: Natural Gas Powers Milk Delivery Trucks in Indiana on Delicious Rank

  4. Six Manufacturers to Offer Natural-Gas-Powered Trucks in 1996

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    ix truck manufacturers will offer natural-gas-powered versions of their medium- and heavy-duty trucks in 1996, according to the Gas Research Institute (GRI). The trucks will be the first fully dedicated natural gas vehicles (NGVs) offered in U.S. medium- and heavy-duty markets by original equipment manufacturers (OEMs). Four manufacturers will design trucks to operate on liquefied natural gas (LNG), and one manufacturer will design trucks to run on compressed natural gas (CNG). These

  5. Vehicle Technologies Office Merit Review 2014: Cummins SuperTruck Program

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technology and System Level Demonstration of Highly Efficient and Clean, Diesel Powered Class 8 Trucks | Department of Energy Cummins SuperTruck Program Technology and System Level Demonstration of Highly Efficient and Clean, Diesel Powered Class 8 Trucks Vehicle Technologies Office Merit Review 2014: Cummins SuperTruck Program Technology and System Level Demonstration of Highly Efficient and Clean, Diesel Powered Class 8 Trucks Presentation given by Cummins Inc. at 2014 DOE Hydrogen and

  6. LNG Imports by Truck into the U.S. Form | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Imports by Truck into the U.S. Form LNG Imports by Truck into the U.S. Form LNG Imports by Truck Form (Excel) (41 KB) LNG Imports by Truck Form (pdf) (14.14 KB) More Documents & Publications LNG Imports by Vessel into the U.S. Form LNG Exports by Truck out of the U.S. Form LNG Imports by Rail into the U.S.

  7. Normal Conditions of Transport Truck Test of a Surrogate Fuel Assembly |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Normal Conditions of Transport Truck Test of a Surrogate Fuel Assembly Normal Conditions of Transport Truck Test of a Surrogate Fuel Assembly This report describes a test of an instrumented surrogate PWR fuel assembly on a truck trailer conducted to simulate normal conditions of truck transport. The purpose of the test was to measure strains and accelerations on a Zircaloy-4 fuel rod during the transport of the assembly on the truck. This test complements tests conducted

  8. Vehicle Technologies Office Merit Review 2015: Cummins SuperTruck Program

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technology and System Level Demonstration of Highly Efficient and Clean, Diesel Powered Class 8 Trucks | Department of Energy Cummins SuperTruck Program Technology and System Level Demonstration of Highly Efficient and Clean, Diesel Powered Class 8 Trucks Vehicle Technologies Office Merit Review 2015: Cummins SuperTruck Program Technology and System Level Demonstration of Highly Efficient and Clean, Diesel Powered Class 8 Trucks Presentation given by Cummins at 2015 DOE Hydrogen and Fuel

  9. CNG Exports by Truck out of the U.S. Form | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    CNG Exports by Truck out of the U.S. Form CNG Exports by Truck out of the U.S. Form CNG Exports by Truck Form (Excel) (40.5 KB) CNG Exports by Truck Form (pdf) (10.89 KB) More Documents & Publications LNG Exports by Truck out of the U.S. Form LNG Exports by Vessel out of the U.S. Form LNG Exports by Vessel in ISO Containers out of the U.S. Form

  10. High Fuel Economy Heavy-Duty Truck Engine | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fuel Economy Heavy-Duty Truck Engine High Fuel Economy Heavy-Duty Truck Engine 2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation ace060_tai_2011_o.pdf (434.09 KB) More Documents & Publications Volvo SuperTruck - Powertrain Technologies for Efficiency Improvement Vehicle Technologies Office Merit Review 2016: Volvo SuperTruck - Powertrain Technologies for Efficiency Improvement SuperTruck Program: Engine Project Review

  11. CoolCab Truck Thermal Load Reduction | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Truck Thermal Load Reduction CoolCab Truck Thermal Load Reduction 2009 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting, May 18-22, 2009 -- Washington D.C. vssp_09_proc.pdf (2.28 MB) More Documents & Publications CoolCab Test and Evaluation CoolCab Thermal Load Reduction Project: CoolCalc HVAC Tool Development CoolCab Test and Evaluation and

  12. Vehicle Technologies Office - AVTA: All Electric Delivery Trucks |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Delivery Trucks Vehicle Technologies Office - AVTA: All Electric Delivery Trucks The Vehicle Technologies Office's Advanced Vehicle Testing Activity carries out testing on a wide range of advanced vehicles and technologies on dynamometers, closed test tracks, and on-the-road. These results provide benchmark data that researchers can use to develop technology models and guide future research and development. The following set of reports (part of the medium and heavy-duty

  13. NOx Adsorbers for Heavy Duty Truck Engines - Testing and Simulation |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Adsorbers for Heavy Duty Truck Engines - Testing and Simulation NOx Adsorbers for Heavy Duty Truck Engines - Testing and Simulation This report provides the results of an analytical and experimental sA 2002_deer_hakim.pdf (669.56 KB) More Documents & Publications Use of a Diesel Fuel Processor for Rapid and Efficient Regeneration of Single Leg NOx Adsorber Systems Design, Modeling, and Validation of a Flame Reformer for LNT External Bypass Regeneration Cleaner

  14. Vehicle Technologies Office: Lightweight Materials for Cars and Trucks |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Lightweight Materials for Cars and Trucks Vehicle Technologies Office: Lightweight Materials for Cars and Trucks PBS's Motorweek highlights the research and development on lightweight materials supported by the Vehicle Technologies Office at Oak Ridge National Laboratory. Read the text version. Advanced materials are essential for boosting the fuel economy of modern automobiles while maintaining safety and performance. Because it takes less energy to accelerate a lighter

  15. Shorepower Truck Electrification Project (STEP) - Cumulative through June 2014

    SciTech Connect (OSTI)

    2014-08-01

    The Fleet Test and Evaluation Team at the U.S. Department of Energy's National Renewable Energy Laboratory is evaluating and documenting the use of shorepower at 50 planned American Recovery and Reinvestment Act (ARRA)-funded truck stop electrification (TSE) sites across the nation. Trucks participating in the study have idle-reduction equipment installed that was purchased with rebates through the ARRA. A total of 5,000 rebates will be approved.

  16. Shorepower Truck Electrification Project (STEP) - Cumulative through February 2015

    SciTech Connect (OSTI)

    2015-02-01

    The Fleet Test and Evaluation Team at the U.S. Department of Energy's National Renewable Energy Laboratory is evaluating and documenting the use of shorepower at 50 planned American Recovery and Reinvestment Act (ARRA)-funded truck stop electrification sites across the nation. Trucks participating in the study have idle-reduction equipment installed that was purchased with rebates through the ARRA. A total of 5,000 rebates will be approved.

  17. Shorepower Truck Electrification Project (STEP) - 2013 (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2014-01-01

    The Fleet Test and Evaluation Team at the U.S. Department of Energy's National Renewable Energy Laboratory (NREL) is evaluating and documenting the use of shorepower at 50 planned American Recovery and Reinvestment Act (ARRA)-funded truck stop electrification sites across the nation. Trucks participating in the study have idle-reduction equipment installed that was purchased with rebates through the ARRA. A total of 5,000 rebates will be approved.

  18. Parametric study of radiation dose rates from rail and truck spent fuel transport casks

    SciTech Connect (OSTI)

    Parks, C.V.; Hermann, O.W.; Knight, J.R.

    1985-08-01

    Neutron and gamma dose rates from typical rail and truck spent fuel transport casks are reported for a variety of spent PWR fuel sources and cask conditions. The IF 300 rail cask and NLI 1/2 truck cask were selected for use as appropriate cask models. All calculations (cross section preparation, generation of spent fuel source terms, radiation transport calculations, and dose evaluation) were performed using various modules of the SCALE computational system. Conditions or parameters for which there were variations between cases include: detector distance from cask, spent fuel cooling time, the setting of fuel or neutron shielding cavities to either wet or dry, the cobalt content of assembly materials, normal fuel assemblies and consolidated cannisters, the geometry mesh interval size, and the order of the angular quadrature set. 13 refs., 6 figs., 9 tabs.

  19. Liquefied Natural Gas for Trucks and Buses

    SciTech Connect (OSTI)

    James Wegrzyn; Michael Gurevich

    2000-06-19

    Liquefied natural gas (LNG) is being developed as a heavy vehicle fuel. The reason for developing LNG is to reduce our dependency on imported oil by eliminating technical and costs barriers associated with its usage. The U.S. Department of Energy (DOE) has a program, currently in its third year, to develop and advance cost-effective technologies for operating and refueling natural gas-fueled heavy vehicles (Class 7-8 trucks). The objectives of the DOE Natural Gas Vehicle Systems Program are to achieve market penetration by reducing vehicle conversion and fuel costs, to increase consumer acceptance by improving the reliability and efficiency, and to improve air quality by reducing tailpipe emissions. One way to reduce fuel costs is to develop new supplies of cheap natural gas. Significant progress is being made towards developing more energy-efficient, low-cost, small-scale natural gas liquefiers for exploiting alternative sources of natural gas such as from landfill and remote gas sites. In particular, the DOE program provides funds for research and development in the areas of; natural gas clean up, LNG production, advanced vehicle onboard storage tanks, improved fuel delivery systems and LNG market strategies. In general, the program seeks to integrate the individual components being developed into complete systems, and then demonstrate the technology to establish technical and economic feasibility. The paper also reviews the importance of cryogenics in designing LNG fuel delivery systems.

  20. Medium Truck Duty Cycle Data from Real-World Driving Environments: Final Report

    SciTech Connect (OSTI)

    Lascurain, Mary Beth; Franzese, Oscar; Capps, Gary J; Siekmann, Adam; Thomas, Neil; LaClair, Tim J; Barker, Alan M; Knee, Helmut E

    2012-11-01

    Since the early part of the 20th century, the US trucking industry has provided a safe and economical means of moving commodities across the country. At present, nearly 80% of US domestic freight movement involves the use of trucks. The US Department of Energy (DOE) is spearheading a number of research efforts to improve heavy vehicle fuel efficiencies. This includes research in engine technologies (including hybrid and fuel cell technologies), lightweight materials, advanced fuels, and parasitic loss reductions. In addition, DOE is developing advanced tools and models to support heavy vehicle research and is leading the 21st Century Truck Partnership and the SuperTruck development effort. Both of these efforts have the common goal of decreasing the fuel consumption of heavy vehicles. In the case of SuperTruck, a goal of improving the overall freight efficiency of a combination tractor-trailer has been established. This Medium Truck Duty Cycle (MTDC) project is a critical element in DOE s vision for improved heavy vehicle energy efficiency; it is unique in that there is no other existing national database of characteristic duty cycles for medium trucks based on collecting data from Class 6 and 7 vehicles. It involves the collection of real-world data on medium trucks for various situational characteristics (e.g., rural/urban, freeway/arterial, congested/free-flowing, good/bad weather) and looks at the unique nature of medium trucks drive cycles (stop-and-go delivery, power takeoff, idle time, short-radius trips). This research provides a rich source of data that can contribute to the development of new tools for FE and modeling, provide DOE a sound basis upon which to make technology investment decisions, and provide a national archive of real-world-based medium-truck operational data to support energy efficiency research. The MTDC project involved a two-part field operational test (FOT). For the Part-1 FOT, three vehicles each from two vocations (urban transit and

  1. PACKAGE INCLUDES:

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    PACKAGE INCLUDES: Airfare from Seattle, 4 & 5 Star Hotels, Transfers, Select Meals, Guided Tours and Excursions DAY 01: BANGKOK - ARRIVAL DAY 02: BANGKOK - SIGHTSEEING DAY 03: BANGKOK - FLOATING MARKET DAY 04: BANGKOK - AT LEISURE DAY 05: BANGKOK - CHIANG MAI BY AIR DAY 06: CHIANG MAI - SIGHTSEEING DAY 07: CHIANG MAI - ELEPHANT CAMP DAY 08: CHIANG MAI - PHUKET BY AIR DAY 09: PHUKET - PHI PHI ISLAND BY FERRY DAY 10: PHUKET - AT LEISURE DAY 11: PHUKET - CORAL ISLAND BY SPEEDBOAT DAY 12: PHUKET

  2. Assessment of the risk of transporting propane by truck and train

    SciTech Connect (OSTI)

    Geffen, C.A.

    1980-03-01

    The risk of shipping propane is discussed and the risk assessment methodology is summarized. The risk assessment model has been constructed as a series of separate analysis steps to allow the risk to be readily reevaluated as additional data becomes available or as postulated system characteristics change. The transportation system and accident environment, the responses of the shipping system to forces in transportation accidents, and release sequences are evaluated to determine both the likelihood and possible consequences of a release. Supportive data and analyses are given in the appendices. The risk assessment results are related to the year 1985 to allow a comparison with other reports in this series. Based on the information presented, accidents involving tank truck shipments of propane will be expected to occur at a rate of 320 every year; accidents involving bobtails would be expected at a rate of 250 every year. Train accidents involving propane shipments would be expected to occur at a rate of about 60 every year. A release of any amount of material from propane trucks, under both normal transportation and transport accident conditions, is to be expected at a rate of about 110 per year. Releases from propane rail tank cars would occur about 40 times a year. However, only those releases that occur during a transportation accident or involve a major tank defect will include sufficient propane to present the potential for danger to the public. These significant releases can be expected at the lower rate of about fourteen events per year for truck transport and about one event every two years for rail tank car transport. The estimated number of public fatalities resulting from these significant releases in 1985 is fifteen. About eleven fatalities per year result from tank truck operation, and approximately half a death per year stems from the movement of propane in rail tank cars.

  3. Plug-In Hybrid Medium-Duty Truck Demonstration and Evaluation

    SciTech Connect (OSTI)

    Miyasato, Matt; Kosowski, Mark

    2015-10-01

    The Plug-In Hybrid Medium-Duty Truck Demonstration and Evaluation Program was sponsored by the United States Department of Energy (DOE) using American Recovery and Reinvestment Act of 2009 (ARRA) funding. The purpose of the program is to develop a path to migrate plug-in hybrid electric vehicle (PHEV) technology to medium-duty vehicles by demonstrating and evaluating vehicles in diverse applications. The program also provided three production-ready PHEV systems—Odyne Systems, Inc. (Odyne) Class 6 to 8 trucks, VIA Motors, Inc. (VIA) half-ton pickup trucks, and VIA three-quarter-ton vans. The vehicles were designed, developed, validated, produced, and deployed. Data were gathered and tests were run to understand the performance improvements, allow cost reductions, and provide future design changes. A smart charging system was developed and produced during the program. The partnerships for funding included the DOE; the California Energy Commission (CEC); the South Coast Air Quality Management District (SCAQMD); the Electric Power Research Institute (EPRI); Odyne; VIA; Southern California Edison; and utility and municipal industry participants. The reference project numbers are DOE FOA-28 award number EE0002549 and SCAQMD contract number 10659.

  4. World's First Fuel Cell Cargo Trucks Deployed at U.S. Airport | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy World's First Fuel Cell Cargo Trucks Deployed at U.S. Airport World's First Fuel Cell Cargo Trucks Deployed at U.S. Airport June 10, 2015 - 1:30pm Addthis World's First Fuel Cell Cargo Trucks Deployed at U.S. Airport World's First Fuel Cell Cargo Trucks Deployed at U.S. Airport World's First Fuel Cell Cargo Trucks Deployed at U.S. Airport World's First Fuel Cell Cargo Trucks Deployed at U.S. Airport Sunita Satyapal Director, Fuel Cell Technologies Office What looks like a golf cart

  5. Acceptance test report for core sample trucks 3 and 4

    SciTech Connect (OSTI)

    Corbett, J.E.

    1996-04-10

    The purpose of this Acceptance Test Report is to provide documentation for the acceptance testing of the rotary mode core sample trucks 3 and 4, designated as HO-68K-4600 and HO-68K-4647, respectively. This report conforms to the guidelines established in WHC-IP-1026, ``Engineering Practice Guidelines,`` Appendix M, ``Acceptance Test Procedures and Reports.`` Rotary mode core sample trucks 3 and 4 were based upon the design of the second core sample truck (HO-68K-4345) which was constructed to implement rotary mode sampling of the waste tanks at Hanford. Successful completion of acceptance testing on June 30, 1995 verified that all design requirements were met. This report is divided into four sections, beginning with general information. Acceptance testing was performed on trucks 3 and 4 during the months of March through June, 1995. All testing was performed at the ``Rock Slinger`` test site in the 200 West area. The sequence of testing was determined by equipment availability, and the initial revision of the Acceptance Test Procedure (ATP) was used for both trucks. Testing was directed by ICF-KH, with the support of WHC Characterization Equipment Engineering and Characterization Project Operations. Testing was completed per the ATP without discrepancies or deviations, except as noted.

  6. American Recovery & Reinvestment Act: Fuel Cell Hybrid Power Packs and Hydrogen Refueling for Lift Trucks

    SciTech Connect (OSTI)

    Block, Gus

    2011-07-31

    HEB Grocery Company, Inc. (H-E-B) is a privately-held supermarket chain with 310 stores throughout Texas and northern Mexico. H-E-B converted 14 of its lift reach trucks to fuel cell power using Nuvera Fuel Cells’ PowerEdge™ units to verify the value proposition and environmental benefits associated with the technology. Issues associated with the increasing power requirements of the distribution center operation, along with high ambient temperature in the summer and other operating conditions (such as air quality and floor surface condition), surfaced opportunities for improving Nuvera’s PowerEdge fuel cell system design in high-throughput forklift environments. The project included on-site generation of hydrogen from a steam methane reformer, called PowerTap™ manufactured by Nuvera. The hydrogen was generated, compressed and stored in equipment located outside H-E-B’s facility, and provided to the forklifts by hydrogen dispensers located in high forklift traffic areas. The PowerEdge fuel cell units logged over 25,300 operating hours over the course of the two-year project period. The PowerTap hydrogen generator produced more than 11,100 kg of hydrogen over the same period. Hydrogen availability at the pump was 99.9%. H-E-B management has determined that fuel cell forklifts help alleviate several issues in its distribution centers, including truck operator downtime associated with battery changing, truck and battery maintenance costs, and reduction of grid electricity usage. Data collected from this initial installation demonstrated a 10% productivity improvement, which enabled H-E-B to make economic decisions on expanding the fleet of PowerEdge and PowerTap units in the fleet, which it plans to undertake upon successful demonstration of the new PowerEdge reach truck product. H-E-B has also expressed interst in other uses of hydrogen produced on site in the future, such as for APUs used in tractor trailers and refrigerated transport trucks in its fleet.

  7. Effect of Weight and Roadway Grade on the Fuel Economy of Class-8 Frieght Trucks

    SciTech Connect (OSTI)

    Franzese, Oscar; Davidson, Diane

    2011-11-01

    In 2006-08, the Oak Ridge National Laboratory, in collaboration with several industry partners, collected real-world performance and situational data for long-haul operations of Class-8 trucks from a fleet engaged in normal freight operations. Such data and information are useful to support Class-8 modeling of combination truck performance, technology evaluation efforts for energy efficiency, and to provide a means of accounting for real-world driving performance within combination truck research and analyses. The present study used the real-world information collected in that project to analyze the effects that vehicle speed and vehicle weight have on the fuel efficiency of Class-8 trucks. The analysis focused on two type of terrains, flat (roadway grades ranging from -1% to 1%) and mild uphill terrains (roadway grades ranging from 1% to 3%), which together covered more than 70% of the miles logged in the 2006-08 project (note: almost 2/3 of the distance traveled on mild uphill terrains was on terrains with 1% to 2% grades). In the flat-terrain case, the results of the study showed that for light and medium loads, fuel efficiency decreases considerably as speed increases. For medium-heavy and heavy loads (total vehicle weight larger than 65,000 lb), fuel efficiency tends to increase as the vehicle speed increases from 55 mph up to about 58-60 mph. For speeds higher than 60 mph, fuel efficiency decreases at an almost constant rate with increasing speed. At any given speed, fuel efficiency decreases and vehicle weight increases, although the relationship between fuel efficiency and vehicle weight is not linear, especially for vehicle weights above 65,000 lb. The analysis of the information collected while the vehicles were traveling on mild upslope terrains showed that the fuel efficiency of Class-8 trucks decreases abruptly with vehicle weight ranging from light loads up to medium-heavy loads. After that, increases in the vehicle weight only decrease fuel

  8. Shorepower Truck Electrification Project (STEP) - 1Q - 2Q 2013

    SciTech Connect (OSTI)

    2014-02-01

    The Fleet Test and Evaluation Team at the U.S. Department of Energy's National Renewable Energy Laboratory is evaluating and documenting the use of shorepower at 50 planned American Recovery and Reinvestment Act (ARRA)-funded truck stop electrification (TSE) sites across the nation. Trucks participating in the study have idle-reduction equipment installed that was purchased with rebates through the ARRA. A total of 5,000 rebates will be approved. the ARRA. A total of 5,000 rebates will be approved.

  9. Long-Haul Truck Idling Burns Up Profits

    SciTech Connect (OSTI)

    2015-08-12

    Long-haul truck drivers perform a vitally important service. In the course of their work, they must take rest periods as required by federal law. Most drivers remain in their trucks, which they keep running to provide power for heating, cooling, and other necessities. Such idling, however, comes at a cost; it is an expensive and polluting way to keep drivers safe and comfortable. Increasingly affordable alternatives to idling not only save money and reduce pollution, but also help drivers get a better night's rest.

  10. Roadmap and technical white papers for the 21st century truck partnership

    SciTech Connect (OSTI)

    None, None

    2006-12-01

    21st Century Truck Partnership will support the development and implementation of technologies that will cut fuel use and emissions and enhance safety, affordability, and performance of trucks and buses.

  11. Fuels of the Future for Cars and Trucks | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of the Future for Cars and Trucks Fuels of the Future for Cars and Trucks 2002 DEER Conference Presentation: U.S. Department of Energy PDF icon 2002deereberhardt.pdf More...

  12. Non-uniform Aging on Super Duty Diesel Truck Aged Urea Cu/Zeolite...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Aging on Super Duty Diesel Truck Aged Urea CuZeolite SCR Catalysts Non-uniform Aging on Super Duty Diesel Truck Aged Urea CuZeolite SCR Catalysts CuZeolite SCR catalysts aged ...

  13. Real-World Greenhouse Gas Emissions from a MY2010 Diesel Truck...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Real-World Greenhouse Gas Emissions from a MY2010 Diesel Truck Traveling Across the Continental United States Real-World Greenhouse Gas Emissions from a MY2010 Diesel Truck ...

  14. SuperTruck … Development and Demonstration of a Fuel-Efficient...

    Energy Savers [EERE]

    SuperTruck Development and Demonstration of a Fuel-Efficient Class 8 Tractor & Trailer SuperTruck Development and Demonstration of a Fuel-Efficient Class 8 Tractor & Trailer ...

  15. Alternative Fuels Data Center: Saving Fuel in the Garden State with Truck

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Stop Electrification Saving Fuel in the Garden State with Truck Stop Electrification to someone by E-mail Share Alternative Fuels Data Center: Saving Fuel in the Garden State with Truck Stop Electrification on Facebook Tweet about Alternative Fuels Data Center: Saving Fuel in the Garden State with Truck Stop Electrification on Twitter Bookmark Alternative Fuels Data Center: Saving Fuel in the Garden State with Truck Stop Electrification on Google Bookmark Alternative Fuels Data Center:

  16. Daimler's SuperTruck Program; 50% Brake Thermal Efficiency | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Daimler's SuperTruck Program; 50% Brake Thermal Efficiency Daimler's SuperTruck Program; 50% Brake Thermal Efficiency Presents highlights of engine and vehicle advances made, and progress towards achieving aggressive goals deer12_sisken.pdf (2.38 MB) More Documents & Publications Vehicle Technologies Office Merit Review 2015: SuperTruck Program: Engine Project Review SuperTruck Program: Engine Project Review Supertruck - Improving Transportation Efficiency through Integrated

  17. Firm Uses DOE's Fastest Supercomputer to Streamline Long-Haul Trucks

    DOE R&D Accomplishments [OSTI]

    2011-03-28

    Sophisticated simulation on the world's fastest computer for science makes trucks more aerodynamic, saves fuel, helps environment.

  18. Appendix of Supporting Information for the 21st Century Truck Technology Partnership

    SciTech Connect (OSTI)

    2009-01-18

    Appendix contains supporting information to the 21st Century Truck Partnership's Roadmap and Technical White Papers (21CTP-003)

  19. Fact #932: July 4, 2016 Longer Combination Trucks Are Only Permitted on

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Some Routes - Dataset | Department of Energy 2: July 4, 2016 Longer Combination Trucks Are Only Permitted on Some Routes - Dataset Fact #932: July 4, 2016 Longer Combination Trucks Are Only Permitted on Some Routes - Dataset Excel file and dataset for Longer Combination Trucks Are Only Permitted on Some Routes fotw#932_web.xlsx (198.09 KB) More Documents & Publications Fact #929: June 13, 2016 Heavy Truck Speed Limits Are Inconsistent - Dataset Fact #923: May 2, 2016 Cylinder

  20. Project Startup: Evaluating Coca-Cola's Class 8 Hybrid-Electric Delivery Trucks (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2011-03-01

    Fact sheet describing the project startup for evaluating Coca-Cola's Class 8 hybrid-electric delivery trucks.

  1. DOE Announces $80 Million in Funding to Increase SuperTruck Efficiency |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Announces $80 Million in Funding to Increase SuperTruck Efficiency DOE Announces $80 Million in Funding to Increase SuperTruck Efficiency March 1, 2016 - 2:59pm Addthis News release from the Department of Energy WASHINGTON - Building on the notable successes of the SuperTruck initiative, Deputy Assistant Secretary for Transportation Reuben Sarkar today announced SuperTruck II, an $80 million funding opportunity, subject to congressional appropriations, for research,

  2. Volvo Trucks Achieves Lofty Energy and Carbon Goals | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Volvo Trucks Achieves Lofty Energy and Carbon Goals Volvo Trucks Achieves Lofty Energy and Carbon Goals This case study describes how Volvo Truck's New River Valley facility in Dublin, Virgina, was able to achieve plant-wide targets that surpassed both corporate and DOE program energy and carbon goals. Volvo Trucks Achieves Lofty Energy and Carbon Goals (March 2011) (2.9 MB) More Documents & Publications Volvo: Certification of an Integrated ISO 14001 and ISO 50001/SEP System Metal and Glass

  3. Heavy-Duty Natural Gas Drayage Truck Replacement Program | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Natural Gas Drayage Truck Replacement Program Heavy-Duty Natural Gas Drayage Truck Replacement Program 2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting arravt045_ti_white_2012_o.pdf (517.25 KB) More Documents & Publications Heavy-Duty Natural Gas Drayage Truck Replacement Program Heavy-Duty Natural Gas Drayage Truck Replacement Program UPS Ontario - Las Vegas LNG Corridor Extension Project: Bridging the Gap

  4. High Efficient Clean Combustion for SuperTruck | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    High Efficient Clean Combustion for SuperTruck High Efficient Clean Combustion for SuperTruck Presentation given at the 16th Directions in Engine-Efficiency and Emissions Research (DEER) Conference in Detroit, MI, September 27-30, 2010. deer10_stanton.pdf (1.76 MB) More Documents & Publications Supertruck technologies for 55% thermal efficiency and 68% freight efficiency Cummins SuperTruck Program - Technology Demonstration of Highly Efficient Clean, Diesel Powered Class 8 Trucks Technology

  5. Cummins SuperTruck Program Technology and System Level Demonstration of Highly Efficient and Clean, Diesel Powered Class 8 Trucks

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Innovation You Can Depend On David Koeberlein- Principal Investigator Cummins Inc. Cummins SuperTruck Program Technology and System Level Demonstration of Highly Efficient and Clean, Diesel Powered Class 8 Trucks June 20, 2014 This presentation does not contain any proprietary, confidential, or otherwise restricted information Project ID: ACE057 Innovation You Can Depend On Overview Budget: * Total: $77,662,230 * DoE share* $36,335,608 * CMI share* $36,335,608 * actuals as of 12/31/2013 Today

  6. CoolCab: Reducing Thermal Loads in Long-Haul Trucks (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2010-02-01

    This fact sheet describes how the National Renewable Energy Laboratory's CoolCab project tested and modeled the effects of several thermal-load reduction strategies applied to long-haul truck cabs. NREL partnered with two major truck manufacturers to evaluate three long-haul trucks at NREL's outdoor test facility in Golden, Colorado.

  7. Powertrain Controls Optimization for HD Hybrid Line Haul Trucks - FY2014 Annual Report

    SciTech Connect (OSTI)

    Smith, David E.

    2014-12-01

    This is a vehicle system level project, encompassing analytical modeling and supervisory controls development as well as experimental verification/validation testing at the component, powertrain, and full vehicle system level. This project supports the goal of petroleum consumption reduction for medium and heavy trucks through the development of advanced hybrid technologies and control systems. VSST has invested previously in R&D to support hybrid energy storage systems (Li-ion plus ultra-caps) for light duty, passenger car applications. This research will be extended to the MD and HD sector where current battery technology is not mature enough to handle the substantial regenerative braking power levels these trucks are capable of producing. With this hybrid energy storage system, substantial gains in overall vehicle efficiency are possible. In addition, advanced combustion technologies, such as RCCI, will be implemented into an advanced hybrid powertrain for a Class 8 line haul application. This powertrain, leveraged from other VSST work (Meritor, a current ORNL/VSST partner), is ideal for taking advantage of the benefits of RCCI operation due to its series hybrid mode of operation. Emissions control is also a focus of this project, especially due to the fact that RCCI creates a low temperature exhaust stream that must addressed.

  8. Thermoelectric Generator Development at Renault Trucks-Volvo Group |

    Broader source: Energy.gov (indexed) [DOE]

    Department of Energy Reviews project to study the potential of thermoelectricity for diesel engines of trucks and passenger cars, where relatively low exhaust temperature is challenging for waste heat recovery systems aixala.pdf (2.28 MB) More Documents & Publications RENOTER Project RENOTER Project Integrated Design and Manufacturing of Thermoelectric Generator Using Thermal Spray

  9. Fact #917: March 21, 2016 Work Truck Daily Idle Time by Industry |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy 7: March 21, 2016 Work Truck Daily Idle Time by Industry Fact #917: March 21, 2016 Work Truck Daily Idle Time by Industry SUBSCRIBE to the Fact of the Week Results of the 2015 Work Truck Electrification and Idle Management Study showed the daily idle time for work truck fleets. Daily idle times by industry show that the truck fleets in the utility/telecommunications industry had the longest idle times. Thirty-nine percent of respondents indicated that their fleets idled

  10. Video: SuperTruck Barreling Down the Road of Sustainability | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy SuperTruck Barreling Down the Road of Sustainability Video: SuperTruck Barreling Down the Road of Sustainability May 14, 2015 - 4:30pm Addthis New Energy 101 video shows how the Energy Department's SuperTruck initiative is making Class 8 trucks more fuel efficient and less expensive to operate. | Office of Energy Efficiency and Renewable Energy video. Paul Lester Paul Lester Digital Content Specialist, Office of Public Affairs KEY FACTS SuperTruck initiative helping make Class 8

  11. SuperTruck Making Leaps in Fuel Efficiency | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    SuperTruck Making Leaps in Fuel Efficiency SuperTruck Making Leaps in Fuel Efficiency February 26, 2014 - 12:00am Addthis Pedestrians passing by the Energy Department headquarters in Washington, D.C., on February 19 saw quite a strange sight - an ultra-modern 18-wheeler, Class 8 tractor-trailer parked outside the headquarters building. This is no ordinary truck - €it' s called a SuperTruck, a demonstration vehicle that is part of the Energy Department's SuperTruck initiative. This program's

  12. DIESEL TRUCK IDLING EMISSIONS - MEASUREMENTS AT A PM2.5 HOT SPOT

    SciTech Connect (OSTI)

    Parks, II, James E; Miller, Terry L.; Storey, John Morse; Fu, Joshua S.; Hromis, Boris

    2007-01-01

    The University of Tennessee and Oak Ridge National Laboratory conducted a 5-month long air monitoring study at the Watt Road interchange on I-40 in Knoxville Tennessee where there are 20,000 heavy-duty trucks per day traveling the interstate. In addition, there are 3 large truck stops at this interchange where as many as 400 trucks idle engines at night. As a result, high levels of PM2.5 were measured near the interchange often exceeding National Ambient Air Quality Standards. This paper presents the results of the air monitoring study illustrating the hourly, day-of-week, and seasonal patterns of PM2.5 resulting from diesel truck emissions on the interstate and at the truck stops. Surprisingly, most of the PM2.5 concentrations occurred during the night when the largest contribution of emissions was from idling trucks rather than trucks on the interstate. A nearby background air monitoring site was used to identify the contribution of regional PM2.5 emissions which also contribute significantly to the concentrations measured at the site. The relative contributions of regional background, local truck idling and trucks on the interstate to local PM2.5 concentrations are presented and discussed in the paper. The results indicate the potential significance of diesel truck idling emissions to the occurrence of hot-spots of high PM2.5 concentrations near large truck stops, ports or border crossings.

  13. Truck and rail charges for shipping spent fuel and nuclear waste

    SciTech Connect (OSTI)

    McNair, G.W.; Cole, B.M.; Cross, R.E.; Votaw, E.F.

    1986-06-01

    The Pacific Northwest Laboratory developed techniques for calculating estimates of nuclear-waste shipping costs and compiled a listing of representative data that facilitate incorporation of reference shipping costs into varius logistics analyses. The formulas that were developed can be used to estimate costs that will be incurred for shipping spent fuel or nuclear waste by either legal-weight truck or general-freight rail. The basic data for this study were obtained from tariffs of a truck carrier licensed to serve the 48 contiguous states and from various rail freight tariff guides. Also, current transportation regulations as issued by the US Department of Transportation and the Nuclear Regulatory Commission were investigated. The costs that will be incurred for shipping spent fuel and/or nuclear waste, as addressed by the tariff guides, are based on a complex set of conditions involving the shipment origin, route, destination, weight, size, and volume and the frequency of shipments, existing competition, and the length of contracts. While the complexity of these conditions is an important factor in arriving at a ''correct'' cost, deregulation of the transportation industry means that costs are much more subject to negotiation and, thus, the actual fee that will be charged will not be determined until a shipping contract is actually signed. This study is designed to provide the baseline data necessary for making comparisons of the estimated costs of shipping spent fuel and/or nuclear wastes by truck and rail transportation modes. The scope of the work presented in this document is limited to the costs incurred for shipping, and does not include packaging, cask purchase/lease costs, or local fees placed on shipments of radioactive materials.

  14. Quantum Well Thermoelectric Truck Air Conditioning

    Office of Energy Efficiency and Renewable Energy (EERE)

    Discusses advantages of quantum-well TE cooler, including no moving parts, no gases, performance on par with conventional, and easy switching to heat pump mode

  15. Development of a Waste Heat Recovery System for Light Duty Diesel...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Performance of an Organic Rankine Cycle Waste Heat Recovery System for Light Duty Diesel Engines A Quantum Leap for Heavy-Duty Truck Engine Efficiency - Hybrid Power System of ...

  16. Fact #715: February 20, 2012 The Average Age of Light Vehicles Continues to Rise

    Broader source: Energy.gov [DOE]

    The average age for cars and light trucks continues to rise as consumers hold onto their vehicles longer. Between 1995 and 2011, the average age for cars increased by 32% from 8.4 years to 11.1...

  17. Fact #806: December 2, 2013 Light Vehicle Market Shares, Model Years 1975–2012

    Broader source: Energy.gov [DOE]

    In 1975, cars were by far the dominant vehicle style among new light vehicle sales, with a few vans and pickup trucks. Sport Utility Vehicles (SUVs) accounted for less than 2% of the market at that...

  18. SBIR/STTR Phase I Release 2 Technical Topics Announced for FY14 Fuel Cell Topics Included

    Broader source: Energy.gov [DOE]

    Phase I Release 2 technical topics include prototype fuel cell-battery electric hybrid trucks for waste transportation and novel membranes and non-platinum group metal catalysts for direct methanol as well as hydrogen fuel cells.

  19. Fuel Cell Based Auxiliary Power Unit for Refrigerated Trucks

    SciTech Connect (OSTI)

    Brooks, Kriston P.

    2014-09-02

    This is the annual report for the Market Transformation project as required by DOE EERE's Fuel Cell Technologies Office. We have been provided with a specific format. It describes the work that was done in developing fuel-cell powered Transport Refrigeration Units for Reefer Trucks. It describes the progress that has been made by Nuvera and Plug Power as they develop and ultimately demonstrate this technology in real world application.

  20. 21st Century Truck Partnership - Roadmap and Technical White Papers

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Appendix of Supporting Information - 21CTP-0003, December 2006 | Department of Energy - Roadmap and Technical White Papers Appendix of Supporting Information - 21CTP-0003, December 2006 21st Century Truck Partnership - Roadmap and Technical White Papers Appendix of Supporting Information - 21CTP-0003, December 2006 Appendix containing supporting information to the 21st Century Partnership's Roadmap and Technical White Papers (21CTP-003). 21ctp_roadmap_appendix_2007.pdf (3.98 MB) More

  1. The ethanol heavy-duty truck fleet demonstration project

    SciTech Connect (OSTI)

    1997-06-01

    This project was designed to test and demonstrate the use of a high- percentage ethanol-blended fuel in a fleet of heavy-duty, over-the- road trucks, paying particular attention to emissions, performance, and repair and maintenance costs. This project also represents the first public demonstration of the use of ethanol fuels as a viable alternative to conventional diesel fuel in heavy-duty engines.

  2. Fuel Cell-Powered Lift Truck Fleet Deployment Projects Final Technical Report May 2014

    SciTech Connect (OSTI)

    Klingler, James J

    2014-05-06

    The overall objectives of this project were to evaluate the performance, operability and safety of fork lift trucks powered by fuel cells in large distribution centers. This was accomplished by replacing the batteries in over 350 lift trucks with fuel cells at five distribution centers operated by GENCO. The annual cost savings of lift trucks powered by fuel cell power units was between $2,400 and $5,300 per truck compared to battery powered lift trucks, excluding DOE contributions. The greatest savings were in fueling labor costs where a fuel cell powered lift truck could be fueled in a few minutes per day compared to over an hour for battery powered lift trucks which required removal and replacement of batteries. Lift truck operators where generally very satisfied with the performance of the fuel cell power units, primarily because there was no reduction in power over the duration of a shift as experienced with battery powered lift trucks. The operators also appreciated the fast and easy fueling compared to the effort and potential risk of injury associated with switching heavy batteries in and out of lift trucks. There were no safety issues with the fueling or operation of the fuel cells. Although maintenance costs for the fuel cells were higher than for batteries, these costs are expected to decrease significantly in the next generation of fuel cells, making them even more cost effective.

  3. Demonstration of a 50% Thermal Efficient Diesel Engine - Including...

    Broader source: Energy.gov (indexed) [DOE]

    The Path to a 50% Thermal Efficient Engine Heavy Truck Clean Diesel (HTCD) Program: 2007 Demonstration Truck Integrated Virtual Lab in Supporting Heavy Duty Engine and Vehicle ...

  4. Medium Truck Duty Cycle Data from Real-World Driving Environments: Project Interim Report

    SciTech Connect (OSTI)

    Franzese, Oscar; Lascurain, Mary Beth; Capps, Gary J

    2011-01-01

    Since the early part of the 20th century, the US trucking industry has provided a safe and economical means of moving commodities across the country. At the present time, nearly 80% of the US domestic freight movement involves the use of trucks. The US Department of Energy (DOE) is spearheading a number of research efforts to improve heavy vehicle fuel efficiencies. This includes research in engine technologies (including hybrid and fuel cell technologies), lightweight materials, advanced fuels, and parasitic loss reductions. In addition, DOE is developing advanced tools and models to support heavy vehicle truck research, and is leading the 21st Century Truck Partnership whose stretch goals involve a reduction by 50% of the fuel consumption of heavy vehicles on a ton-mile basis. This Medium Truck Duty Cycle (MTDC) Project is a critical element in DOE s vision for improved heavy vehicle energy efficiency and is unique in that there is no other national database of characteristic duty cycles for medium trucks. It involves the collection of real-world data for various situational characteristics (rural/urban, freeway/arterial, congested/free-flowing, good/bad weather, etc.) and looks at the unique nature of medium trucks drive cycles (stop-and-go delivery, power takeoff, idle time, short-radius trips), to provide a rich source of data that can contribute to the development of new tools for fuel efficiency and modeling, provide DOE a sound basis upon which to make technology investment decisions, and provide a national archive of real-world-based medium-truck operational data to support heavy vehicle energy efficiency research. The MTDC project involves a two-part field operational test (FOT). For the Part-1 FOT, three vehicles, each from two vocations (urban transit and dry-box delivery) were instrumented for one year of data collection. The Part-2 FOT will involve the towing/recovery and utility vocations. The vehicles participating in the MTDC project are doing so

  5. Light-duty vehicle mpg and market shares report, model year 1988

    SciTech Connect (OSTI)

    Hu, P.S.; Williams, L.S.; Beal, D.J.

    1989-04-01

    This issue of Light-Duty Vehicle MPG and Market Shares Report: Model Year 1988 reports the estimated sales-weighted fuel economies, sales, market shares, and other vehicle characteristics of automobiles and light trucks. The estimates are made on a make and model basis, from model year 1976 to model year 1988. Vehicle sales data are used as weighting factors in the sales-weighted estimation procedure. Thus, the estimates represent averages of the overall new vehicle fleet, reflecting the composition of the fleet. Highlights are provided on the trends in the vehicle characteristics from one model year to the next. Analyses are also made on the fuel economy changes to determine the factors which caused the changes. The sales-weighted fuel economy for the new car fleet in model year 1988 showed an improvement of 0.1 mpg from model year 1987, while light trucks showed a 0.2 mpg loss. The 0.2 mpg loss by the light trucks can be attributed to the fact that every light truck size class experienced either losses or no change in their fuel economies from the previous model year, except for the large van size class. Overall, the sales-weighted fuel economy of the entire light-duty vehicle fleet (automobiles and light trucks combined) has remained relatively stable since model year 1986. Domestic light-duty vehicles began to gain popularity over their import counterparts; and light trucks increased their market shares relative to automobiles. Domestic cars regained 0.3% of the automobile market, reversing the previous trend. Similar to the automobile market, domestic light trucks continued to gain popularity over their import counterparts, partly due to the increasing popularity of domestic small vans. 3 refs., 35 figs., 48 tabs.

  6. Volvo Truck Headquarters in North Carolina to Host Event With Acting Under

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Secretary of Energy Majumdar | Department of Energy Volvo Truck Headquarters in North Carolina to Host Event With Acting Under Secretary of Energy Majumdar Volvo Truck Headquarters in North Carolina to Host Event With Acting Under Secretary of Energy Majumdar January 26, 2012 - 2:00pm Addthis Washington, D.C. - Tomorrow, Friday, January 27, Acting Under Secretary of Energy Arun Majumdar and North Carolina Congressman Howard Coble will visit the Volvo Group's truck headquarters in Greensboro,

  7. DOE Awards Grants to Evaluate Technologies that Reduce Truck Idling - News

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Releases | NREL DOE Awards Grants to Evaluate Technologies that Reduce Truck Idling January 29, 2004 Golden, Colo. - The U.S. Department of Energy's Advanced Vehicle Testing Activity has awarded separate project grants to Caterpillar Inc. and Schneider National Inc. to investigate technologies that reduce truck idling. According to industry experts, truck idling consumes more than 800 million gallons of fuel each year. Reducing the amount of fuel needed to support idling activities, such as

  8. Fuel economy and emissions reduction of HD hybrid truck over transient

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    driving cycles and interstate roads | Department of Energy economy and emissions reduction of HD hybrid truck over transient driving cycles and interstate roads Fuel economy and emissions reduction of HD hybrid truck over transient driving cycles and interstate roads Compares simulated fuel economy and emissions fro conventional and hybrid Class 8 heavy trucks p-12_gao.pdf (345.05 KB) More Documents & Publications Advanced HD Engine Systems and Emissions Control Modeling and Analysis

  9. EERE Success Story-World's First Fuel Cell Cargo Trucks Deployed at

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Memphis International Airport | Department of Energy Fuel Cell Cargo Trucks Deployed at Memphis International Airport EERE Success Story-World's First Fuel Cell Cargo Trucks Deployed at Memphis International Airport June 25, 2015 - 1:57pm Addthis EERE Success Story—World's First Fuel Cell Cargo Trucks Deployed at Memphis International Airport Thanks to R&D funding from the Energy Department's Fuel Cell Technologies Office (FCTO), the Federal Express Hub at the Memphis International

  10. Policy Discussion - Heavy-Duty Truck Fuel Economy | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Policy Discussion - Heavy-Duty Truck Fuel Economy Policy Discussion - Heavy-Duty Truck Fuel Economy 2004 Diesel Engine Emissions Reduction (DEER) Conference Presesntation: National Commission on Energy Policy 2004_deer_kodjak.pdf (168.97 KB) More Documents & Publications 21st Century Truck Partnership Roadmap Roadmap and Technical White Papers - 21CTP-0003, December 2006 The Energy Efficiency Potential of Global Transport to 2050 Vehicle Technologies Office Merit Review 2014: DOE's Effort to

  11. State-of-the-Art and Emergin Truck Engine Technologies | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy State-of-the-Art and Emergin Truck Engine Technologies State-of-the-Art and Emergin Truck Engine Technologies 2003 DEER Conference Presentation: DaimlerChrysler Powersystems 2003_deer_schittler.pdf (940.29 KB) More Documents & Publications SCR Systems for Heavy Duty Trucks: Progress Towards Meeting Euro 4 Emission Standards in 2005 Aftertreatment Modeling Status, Futur Potential, and Application Issues Diesel Emission Control Technology Review

  12. Fuel-Borne Catalyst Assisted DPF regeneration on a Renault truck...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fuel-Borne Catalyst Assisted DPF regeneration on a Renault truck MD9 Engine Outfitted with SCR Poster presentation at the 2007 Diesel Engine-Efficiency & Emissions Research ...

  13. Vehicle Technologies Office Issues Notice of Intent for SuperTruck...

    Office of Environmental Management (EM)

    ... are "impressive" and will "significantly reduce the fuel consumption of Class 8 tractor-trailer vehicles." National Academy of Sciences Reviews 21st Century Truck Partnership

  14. SuperTruck … Development and Demonstration of a Fuel-Efficient...

    Broader source: Energy.gov (indexed) [DOE]

    More Documents & Publications SuperTruck Development and Demonstration of a Fuel-Efficient Class 8 Tractor & Trailer Supertruck - Development and Demonstration of a ...

  15. Fact #597: November 16, 2009 Median Age of Cars and Trucks Rising in 2008 |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy 7: November 16, 2009 Median Age of Cars and Trucks Rising in 2008 Fact #597: November 16, 2009 Median Age of Cars and Trucks Rising in 2008 The median age of cars and trucks in the U.S. continued to grow in 2008. Due to the economic climate and high gasoline prices that summer, consumers held onto their vehicles longer and delayed new purchases of vehicles. The median age of cars was at an all-time high in 2008, while the median age of trucks reached its highest point

  16. Heavy-Duty Truck Engine: 2007 Emissions with Excellent Fuel Economy...

    Broader source: Energy.gov (indexed) [DOE]

    Heavy-Duty Truck Engine Program PDF icon 2004deernelson.pdf More Documents & Publications High Engine Efficiency at 2010 Emissions Achieving High Efficiency at 2010 Emissions ...

  17. DOEs Effort to Reduce Truck Aerodynamic Drag through Joint...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Vehicle Technologies Office Merit Review 2014: DOE's Effort to Improve Heavy Vehicle Fuel Efficiency through Improved Aerodynamics DOEs Effort to Reduce Truck Aerodynamic Drag ...

  18. DOEs Effort to Reduce Truck Aerodynamic Drag through Joint...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fuel Efficiency through Improved Aerodynamics DOEs Effort to Reduce Truck ... 2015: DOE's Effort to Improve Heavy Vehicle Fuel Efficiency through Improved Aerodynamics

  19. Fact #899: November 16, 2015 World Production of Cars and Trucks - Dataset

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    | Department of Energy 9: November 16, 2015 World Production of Cars and Trucks - Dataset Fact #899: November 16, 2015 World Production of Cars and Trucks - Dataset Excel file and dataset for World Production of Cars and Trucks fotw#899_web.xlsx (46.61 KB) More Documents & Publications Diesel Trucks - Then and Now Fact #848: November 24, 2014 Nearly Three-Fourths of New Cars have Fuel Economy above 25 Miles per Gallon - Dataset Fact #851: December 15, 2014 The Average Number of Gears

  20. Fact #917: March 21, 2016 Work Truck Daily Idle Time by Industry - Dataset

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    | Department of Energy 7: March 21, 2016 Work Truck Daily Idle Time by Industry - Dataset Fact #917: March 21, 2016 Work Truck Daily Idle Time by Industry - Dataset Excel file and dataset for Work Truck Daily Idle Time by Industry fotw#917_web.xlsx (15.85 KB) More Documents & Publications Fact #916: March 14, 2016 Fuel Savings/Emissions Reduction was the Top Reason Cited by Truck Fleet Management for Adopting Idle Reduction Technologies - Dataset Fact #833: August 11, 2014 Fuel Economy

  1. DOE Announces $80 Million in Funding to Increase SuperTruck Efficiency...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    to focus on research, development and demonstration of plug-in electric powertrain ... for research, development and demonstration of long-haul tractor-trailer truck technology. ...

  2. Roadmap and Technical White Papers for 21st Century Truck Partnership

    Office of Energy Efficiency and Renewable Energy (EERE)

    Roadmap document for 21st Century Truck Partnership developed to pursue detailed goals for engine systems, heavy-duty hybrids, parasitic losses, idle reduction, and safety,

  3. Secretary of Energy Bodman Remarks for 21st Century Truck Event...

    Office of Environmental Management (EM)

    Without significant technology development, our Department is forecasting that heavy truck ... are full partners in this effort, putting forth almost 90 million in cost sharing. ...

  4. DOE Announces $80 Million in Funding to Increase SuperTruck Efficiency...

    Broader source: Energy.gov (indexed) [DOE]

    and demonstrate technologies to improve heavy-truck freight efficiency by more than 100 ... plug in hybrid vehicle powertrain that reduces fuel consumption by 50 percent. ...

  5. Analysis of liquid natural gas as a truck fuel: a system dynamics approach

    SciTech Connect (OSTI)

    Bray, M.A.; Sebo, D.E.; Mason, T.L.; Mills, J.I.; Rice, R.E.

    1996-10-01

    The purpose of this analysis is to evaluate the potential for growth in use of liquid natural gas (LNG) fueled trucks. . A system dynamics model was constructed for the analysis and a variety of scenarios were investigated. The analysis considers the economics of LNG fuel in the context of the trucking industry to identify barriers to the increased use of LNG trucks and potential interventions or leverage points which may overcome these barriers. The study showed that today, LNG use in trucks is not yet economically viable. A large change in the savings from fuel cost or capital cost is needed for the technology to take off. Fleet owners have no way now to benefit from the environmental benefits of LNG fuel nor do they benefit from the clean burning nature of the fuel. Changes in the fuel cost differential between diesel and LNG are not a research issue. However, quantifying the improvements in reliability and wear from the use of clean fuel could support increased maintenance and warranty periods. Many people involved in the use of LNG for trucks believe that LNG has the potential to occupy a niche within the larger diesel truck business. But if LNG in trucks can become economic, the spread of fuel stations and technology improvements could lead to LNG trucks becoming the dominant technology. An assumption in our simulation work is that LNG trucks will be purchased when economically attractive. None of the simulation results show LNG becoming economic but then only to the level of a niche market.

  6. Recovery Act--Class 8 Truck Freight Efficiency Improvement Project

    SciTech Connect (OSTI)

    Trucks, Daimler

    2015-07-26

    Daimler Trucks North America completed a five year, $79.6M project to develop and demonstrate a concept vehicle with at least 50% freight efficiency improvement over a weighted average of several drive cycles relative to a 2009 best-in-class baseline vehicle. DTNA chose a very fuel efficient baseline vehicle, the 2009 Freightliner Cascadia with a DD15 engine, yet successfully demonstrated a 115% freight efficiency improvement. DTNA learned a great deal about the various technologies that were incorporated into Super Truck and those that, through down-selection, were discarded. Some of the technologies competed with each other for efficiency, and notably some of the technologies complemented each other. For example, we found that Super Truck’s improved aerodynamic drag resulted in improved fuel savings from eCoast, relative to a similar vehicle with worse aerodynamic drag. However, some technologies were in direct competition with each other, namely the predictive technologies which use GPS and 3D digital maps to efficiently manage the vehicles kinetic energy through controls and software, versus hybrid which is a much costlier technology that essentially targets the same inefficiency. Furthermore, the benefits of a comprehensive, integrated powertrain/vehicle approach was proven, in which vast improvements in vehicle efficiency (e.g. lower aero drag and driveline losses) enabled engine strategies such as downrating and downspeeding. The joint engine and vehicle developments proved to be a multiplier-effect which resulted in large freight efficiency improvements. Although a large number of technologies made the selection process and were used on the Super Truck demonstrator vehicle, some of the technologies proved not feasible for series production.

  7. Microsoft Word - 2011sr10-fire truck donation.docx

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Monday, August 8, 2011 james-r.giusti@srs.gov Rick McLeod, SRSCRO, (803) 593-9954, Ext. 1411 rick.mcleod@srscro.org DOE's Excess Property Donation Protects Lives, Property and the Environment AIKEN, SC - The recent purchase of new fire engines at Savannah River Site resulted in the availability of two excess fire trucks under the SRS Community Reuse Organization's (SRS CRO) Asset Transition Program. The primary goal of the Department of Energy's (DOE) Asset Transition Program is to utilize

  8. Unemployed Truck Driver Trains for New Career in Weatherization |

    Broader source: Energy.gov (indexed) [DOE]

    Department of Energy Maya Payne Smart Former Writer for Energy Empowers, EERE What does this mean for me? Workers across the country are being retrained for careers in the new clean energy economy. Tyrone Bailey had been out of work for 14 months when an unemployment office staffer told him about a home-weatherization training program offered by the state of New Jersey. The former truck driver and construction worker jumped at the opportunity to acquire new skills and began training January

  9. Volvo SuperTruck - Powertrain Technologies for Efficiency Improvement |

    Broader source: Energy.gov (indexed) [DOE]

    | Department of Energy Presentation given at DEER 2006, August 20-24, 2006, Detroit, Michigan. Sponsored by the U.S. DOE's EERE FreedomCar and Fuel Partnership and 21st Century Truck Programs. 2006_deer_musculus.pdf (9.8 MB) More Documents & Publications In-Cylinder Processes of EGR-Diluted Low-Load, Low-Temperature Diesel Combustion A Conceptual Model for Partially PremixedLow-Temperature Diesel Combustion Based onIn-Cylinder Laser Diagnostics and Chemical Kinetics Modeling Heavy-Duty

  10. "Dedicated To The Continued Education, Training and Demonstration of PEM Fuel Cell Powered Lift Trucks In Real-World Applications."

    SciTech Connect (OSTI)

    Dever, Thomas J.

    2011-11-29

    The project objective was to further assist in the commercialization of fuel cell and H2 technology by building further upon the successful fuel cell lift truck deployments that were executed by LiftOne in 2007, with longer deployments of this technology in real-world applications. We involved facilities management, operators, maintenance personnel, safety groups, and Authorities Having Jurisdiction. LiftOne strived to educate a broad group from many areas of industry and the community as to the benefits of this technology. Included were First Responders from the local areas. We conducted month long deployments with end-users to validate the value proposition and the market requirements for fuel cell powered lift trucks. Management, lift truck operators, Authorities Having Jurisdiction and the general public experienced 'hands on' fuel cell experience in the material handling applications. We partnered with Hydrogenics in the execution of the deployment segment of the program. Air Products supplied the compressed H2 gas and the mobile fueler. Data from the Fuel Cell Power Packs and the mobile fueler was sent to the DOE and NREL as required. Also, LiftOne conducted the H2 Education Seminars on a rotating basis at their locations for lift trucks users and for other selected segments of the community over the project's 36 month duration. Executive Summary The technology employed during the deployments program was not new, as the equipment had been used in several previous demos and early adoptions within the material handling industry. This was the case with the new HyPx Series PEM - Fuel Cell Power Packs used, which had been demo'd before during the 2007 Greater Columbia Fuel Cell Challenge. The Air Products HF-150 Fueler was used outdoors during the deployments and had similarly been used for many previous demo programs. The methods used centered on providing this technology as the power for electric sit-down lift trucks at high profile companies operating large

  11. Technology Roadmap for the 21st Century Truck Program, a government-industry research partnership

    SciTech Connect (OSTI)

    2000-12-01

    The 21st Century Truck Program has been established as a government-industry research partnership to support the development and implementation of commercially viable technologies that will dramatically cut fuel use and emissions of commercial trucks and buses while enhancing their safety and affordability as well as maintaining or enhancing performance. The innovations resulting from this program will reduce dependence on foreign oil, improve our nation's air quality, provide advanced technology for military vehicles, and enhance the competitiveness of the U.S. truck and bus industry while ensuring safe and affordable freight and bus transportation for the nation's economy. This Technology Roadmap for the 21st Century Truck Program has been prepared to guide the development of the technical advancements that will enable the needed improvements in commercial truck fuel economy, emissions, and safety.

  12. Analysis of major trends in U.S. commercial trucking, 1977-2002.

    SciTech Connect (OSTI)

    Bertram, K. M.; Santini, D .J.; Vyas, A. D.

    2009-06-10

    This report focuses on various major long-range (1977-2002) and intermediate-range (1982-2002) U.S. commercial trucking trends. The primary sources of data for this period were the U.S. Bureau of the Census Vehicle Inventory and Use Survey and Truck Inventory and Use Survey. In addition, selected 1977-2002 data from the U.S. Department of Energy/Energy Information Administration and from the U.S. Department of Transportation/Federal Highway Administration's Highway Statistics were used. The report analyzes (1) overall gasoline and diesel fuel consumption patterns by passenger vehicles and trucks and (2) the population changes and fuels used by all commercial truck classes by selected truck type (single unit or combination), during specified time periods, with cargo-hauling commercial trucks given special emphasis. It also assesses trends in selected vehicle miles traveled, gallons per vehicle miles traveled, and gallons per cargo ton-mile traveled, as well as the effect of cargo tons per truck on fuel consumption. In addition, the report examines long-range trends for related factors (e.g., long-haul mileages driven by heavy trucks) and their impacts on reducing fuel consumption per cargo-ton-mile and the relative shares of total commercial fuel use among truck classes. It identifies the effects of these trends on U.S. petroleum consumption. The report also discusses basic engineering design and performance, national legislation on interstate highway construction, national demographic trends (e.g., suburbanization), and changes in U.S. corporate operations requirements, and it highlights their impacts on both the long-distance hauling and shorter-distance urban and suburban delivery markets of the commercial trucking industry.

  13. Clean Diesel Engine Component Improvement Program Diesel Truck Thermoelectric Generator

    SciTech Connect (OSTI)

    Elsner, N. B.; Bass, J. C.; Ghamaty, S.; Krommenhoek, D.; Kushch, A.; Snowden, D.; Marchetti, S.

    2005-03-16

    Hi-Z Technology, Inc. (Hi-Z) is currently developing four different auxiliary generator designs that are used to convert a portion (5 to 20%) of the waste heat from vehicle engines exhaust directly to electricity. The four designs range from 200 Watts to 10 kW. The furthest along is the 1 kW Diesel Truck Thermoelectric Generator (DTTEG) for heavy duty Class 8 Diesel trucks, which, under this program, has been subjected to 543,000 equivalent miles of bouncing and jarring on PACCAR's test track. Test experience on an earlier version of the DTTEG on the same track showed the need for design modifications incorporated in DTTEG Mod 2, such as a heavy duty shock mounting system and reinforcement of the electrical leads mounting system, the thermocouple mounting system and the thermoelectric module restraints. The conclusion of the 543,000 mile test also pointed the way for an upgrading to heavy duty hose or flex connections for the internal coolant connections for the TEG, and consideration of a separate lower temperature cooling loop with its own radiator. Fuel savings of up to $750 per year and a three to five year payback are believed to be possible with the 5 % efficiency modules. The economics are expected to improve considerably to approach a two year payback when the 5 kW to 10 kW generators make it to the market in a few years with a higher efficiency (20%) thermoelectric module system called Quantum Wells, which are currently under development by Hi-Z. Ultimately, as automation takes over to reduce material and labor costs in the high volume production of QW modules, a one year payback for the 5 kW to10 kW generator appears possible. This was one of the stated goals at the beginning of the project. At some future point in time, with the DTTEG becoming standard equipment on all trucks and automobiles, fuel savings from the 25% conversion of exhaust heat to useable electricity nationwide equates to a 10% reduction in the 12 to 15 million barrels per day of

  14. Comparative Study of Hybrid Powertrains on Fuel Saving, Emissions, and Component Energy Loss in HD Trucks

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Gao, Zhiming; Finney, Charles; Daw, Charles; LaClair, Tim J.; Smith, David

    2014-09-30

    We compared parallel and series hybrid powertrains on fuel economy, component energy loss, and emissions control in Class 8 trucks over both city and highway driving. A comprehensive set of component models describing battery energy, engine fuel efficiency, emissions control, and power demand interactions for heavy duty (HD) hybrids has been integrated with parallel and series hybrid Class 8 trucks in order to identify the technical barriers of these hybrid powertrain technologies. The results show that series hybrid is absolutely negative for fuel economy benefit of long-haul trucks due to an efficiency penalty associated with the dual-step conversions of energymore » (i.e. mechanical to electric to mechanical). The current parallel hybrid technology combined with 50% auxiliary load reduction could elevate 5-7% fuel economy of long-haul trucks, but a profound improvement of long-haul truck fuel economy requires additional innovative technologies for reducing aerodynamic drag and rolling resistance losses. The simulated emissions control indicates that hybrid trucks reduce more CO and HC emissions than conventional trucks. The simulated results further indicate that the catalyzed DPF played an important role in CO oxidations. Limited NH3 emissions could be slipped from the Urea SCR, but the average NH3 emissions are below 20 ppm. Meanwhile our estimations show 1.5-1.9% of equivalent fuel-cost penalty due to urea consumption in the simulated SCR cases.« less

  15. Comparative Study of Hybrid Powertrains on Fuel Saving, Emissions, and Component Energy Loss in HD Trucks

    SciTech Connect (OSTI)

    Gao, Zhiming; Finney, Charles; Daw, Charles; LaClair, Tim J.; Smith, David

    2014-09-30

    We compared parallel and series hybrid powertrains on fuel economy, component energy loss, and emissions control in Class 8 trucks over both city and highway driving. A comprehensive set of component models describing battery energy, engine fuel efficiency, emissions control, and power demand interactions for heavy duty (HD) hybrids has been integrated with parallel and series hybrid Class 8 trucks in order to identify the technical barriers of these hybrid powertrain technologies. The results show that series hybrid is absolutely negative for fuel economy benefit of long-haul trucks due to an efficiency penalty associated with the dual-step conversions of energy (i.e. mechanical to electric to mechanical). The current parallel hybrid technology combined with 50% auxiliary load reduction could elevate 5-7% fuel economy of long-haul trucks, but a profound improvement of long-haul truck fuel economy requires additional innovative technologies for reducing aerodynamic drag and rolling resistance losses. The simulated emissions control indicates that hybrid trucks reduce more CO and HC emissions than conventional trucks. The simulated results further indicate that the catalyzed DPF played an important role in CO oxidations. Limited NH3 emissions could be slipped from the Urea SCR, but the average NH3 emissions are below 20 ppm. Meanwhile our estimations show 1.5-1.9% of equivalent fuel-cost penalty due to urea consumption in the simulated SCR cases.

  16. Comparative Study of Hybrid Powertrains on Fuel Saving, Emissions, and Component Energy Loss in HD Trucks

    SciTech Connect (OSTI)

    Gao, Zhiming; FINNEY, Charles E A; Daw, C Stuart; LaClair, Tim J; Smith, David E

    2014-01-01

    We compared parallel and series hybrid powertrains on fuel economy, component energy loss, and emissions control in Class 8 trucks over both city and highway driving. A comprehensive set of component models describing battery energy, engine fuel efficiency, emissions control, and power demand interactions for heavy duty (HD) hybrids has been integrated with parallel and series hybrid Class 8 trucks in order to identify the technical barriers of these hybrid powertrain technologies. The results show that series hybrid is absolutely negative for fuel economy benefit of long-haul trucks due to an efficiency penalty associated with the dual-step conversions of energy (i.e. mechanical to electric to mechanical). The current parallel hybrid technology combined with 50% auxiliary load reduction could elevate 5-7% fuel economy of long-haul trucks, but a profound improvement of long-haul truck fuel economy requires additional innovative technologies for reducing aerodynamic drag and rolling resistance losses. The simulated emissions control indicates that hybrid trucks reduce more CO and HC emissions than conventional trucks. The simulated results further indicate that the catalyzed DPF played an important role in CO oxidations. Limited NH3 emissions could be slipped from the Urea SCR, but the average NH3 emissions are below 20 ppm. Meanwhile our estimations show 1.5-1.9% of equivalent fuel-cost penalty due to urea consumption in the simulated SCR cases.

  17. SuperTruck Making Leaps in Fuel Efficiency | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    SuperTruck Making Leaps in Fuel Efficiency SuperTruck Making Leaps in Fuel Efficiency February 19, 2014 - 12:37pm Addthis This Class 8 tractor-trailer by heavy-duty manufacturers Cummins and Peterbilt reaches more than 10 miles per gallon under real world driving conditions. The truck was on display at the Energy Department today. | Photo by <a href="http://www.energy.gov/contributors/sarah-gerrity">Sarah Gerrity</a>, Energy Department This Class 8 tractor-trailer by

  18. SuperTruck … Development and Demonstration of a Fuel-Efficient Class 8

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Tractor & Trailer | Department of Energy SuperTruck … Development and Demonstration of a Fuel-Efficient Class 8 Tractor & Trailer SuperTruck … Development and Demonstration of a Fuel-Efficient Class 8 Tractor & Trailer 2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting vss064_jadin_2012_o.pdf (2.16 MB) More Documents & Publications SuperTruck … Development and Demonstration of a Fuel-Efficient Class 8

  19. SCR Systems for Heavy Duty Trucks: Progress Towards Meeting Euro 4 Emission

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Standards in 2005 | Department of Energy Systems for Heavy Duty Trucks: Progress Towards Meeting Euro 4 Emission Standards in 2005 SCR Systems for Heavy Duty Trucks: Progress Towards Meeting Euro 4 Emission Standards in 2005 2003 DEER Conference Presentation: PUREM 2003_deer_frank.pdf (716.31 KB) More Documents & Publications The PUREM SCR System with AdBlue State-of-the-Art and Emergin Truck Engine Technologies Ensuring the Availability and Reliability of Urea Dosing For On-Road and

  20. Non-uniform Aging on Super Duty Diesel Truck Aged Urea Cu/Zeolite SCR

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Catalysts | Department of Energy uniform Aging on Super Duty Diesel Truck Aged Urea Cu/Zeolite SCR Catalysts Non-uniform Aging on Super Duty Diesel Truck Aged Urea Cu/Zeolite SCR Catalysts Cu/Zeolite SCR catalysts aged for 50k miles on a Super Duty diesel truck deer10_cheng.pdf (950.84 KB) More Documents & Publications Deactivation Mechanisms of Base Metal/Zeolite Urea Selective Catalytic Reduction Materials, and Development of Zeolite-Based Hydrocarbon Adsorber Materials Deactivation

  1. Alternative-fueled truck demonstration natural gas program: Caterpillar G3406LE development and demonstration

    SciTech Connect (OSTI)

    1995-06-01

    In 1990, the California Energy Commission, the South Coast Air Quality Management District, and the Southern California Gas Company joined together to sponsor the development and demonstration of compressed natural gas engines for Class 8 heavy-duty line-haul trucking applications. This program became part of an overall Alternative-Fueled Truck Demonstration Program, with the goal of advancing the technological development of alternative-fueled engines. The demonstration showed natural gas to be a technically viable fuel for Class 8 truck engines.

  2. Fact #721: April 2, 2012 Heavy Trucks Move Freight Efficiently | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy 1: April 2, 2012 Heavy Trucks Move Freight Efficiently Fact #721: April 2, 2012 Heavy Trucks Move Freight Efficiently Though discussions of vehicle efficiency are often centered on a measurement of miles per gallon, it is also important to consider how efficiently a vehicle carries its payload. Although heavy vehicles like buses or class 8 trucks get much fewer miles per gallon than cars, a greater percentage of their mass is payload which means that they are much more efficient at

  3. EERE Success Story-California: SQAMD Replaces Drayage Trucks with CNG |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy SQAMD Replaces Drayage Trucks with CNG EERE Success Story-California: SQAMD Replaces Drayage Trucks with CNG November 6, 2013 - 12:00am Addthis In 2008, the South Coast Air Quality Management District (AQMD) Heavy-Duty Natural Gas Drayage Truck Replacement Program started to address a significant need to reduce diesel emissions and associated public health risks from goods movement at the Ports of Los Angeles and Long Beach. In 2010, the two ports processed goods worth

  4. SuperTruck … Development and Demonstration of a Fuel-Efficient Class 8

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Tractor & Trailer | Department of Energy 3 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting vss064_oehlerking_2013_o.pdf (2.41 MB) More Documents & Publications SuperTruck … Development and Demonstration of a Fuel-Efficient Class 8 Tractor & Trailer SuperTruck … Development and Demonstration of a Fuel-Efficient Class 8 Tractor & Trailer Vehicle Technologies Office Merit Review 2015: SuperTruck - Development

  5. Technical documentation for the 1990 Nationwide Truck Activity and Commodity Survey Public Use File

    SciTech Connect (OSTI)

    Not Available

    1992-09-01

    The Nationwide Truck Activity and Commodity Survey (NTACS) provides detailed activity data for a sample of trucks covered in the 1987 Truck Inventory and Use Survey (TIUS) for days selected at random over a 12-month period ending in 1990. The NTACS was conducted by the US Bureau of the Census for the US Department of Transportation (DOT). A Public Use File for the NTACS was developed by Oak Ridge National Laboratory (ORNL) under a reimbursable agreement with the DOT. The content of the Public Use File and the design of the NTACS are described in this document.

  6. Engineering task plan for the development, fabrication and installation of rotary mode core sample truck grapple hoist box level wind system

    SciTech Connect (OSTI)

    BOGER, R.M.

    1999-05-12

    This Engineering Task Plan is to design, generate fabrication drawings, fabricate, test, and install the grapple hoist level wind system for Rotary Mode Core Sample Trucks (RMCST) 3 and 4. Deliverables will include generating fabrication drawings, fabrication of one level wind system, updating fabrication drawings as required, and installation of level wind systems on RMCST 3 or 4. The installation of the level wind systems will be done during a preventive maintenance outage.

  7. Vehicle Technologies Office Merit Review 2014: SuperTruck Program: Engine Project Review

    Broader source: Energy.gov [DOE]

    Presentation given by Detroit Diesel Corporation at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about SuperTruck Program...

  8. Goodyear Testing Self-Inflating Tire Systems in U.S. Trucking Fleets

    Broader source: Energy.gov [DOE]

    The Goodyear Tire & Rubber Company is demonstrating its award-winning self-inflating tires by testing the Air Maintenance Technology (AMT) on U.S. trucking fleets. Goodyear has received...

  9. Vehicle Technologies Office Merit Review 2014: Volvo SuperTruck- Powertrain Technologies for Efficiency Improvement

    Broader source: Energy.gov [DOE]

    Presentation given by Volvo at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about Volvo SuperTruck powertrain...

  10. Fact #899: November 16, 2015 World Production of Cars and Trucks...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    In 2013, China was the largest producer of both cars and trucks. In 2000, Japan produced ... World Production of Cars, 1983-2013 (thousands) Year China Japan Germany U.S. Brazil India ...

  11. Vehicle Technologies Office Merit Review 2015: SuperTruck Program: Engine Project Review

    Broader source: Energy.gov [DOE]

    Presentation given by Detroit Diesel at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about SuperTruck program: engine...

  12. Vehicle Technologies Office Merit Review 2014: Modeling for Market Analysis: HTEB, TRUCK, and LVChoice

    Broader source: Energy.gov [DOE]

    Presentation given by TA Engineering, Inc. at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about HTEB, TRUCK, and...

  13. Fact #929: June 13, 2016 Heavy Truck Speed Limits Are Inconsistent...

    Broader source: Energy.gov (indexed) [DOE]

    Heavy Truck Speed Limits Are Inconsistent fotw929web.xlsx (87.51 KB) More Documents & Publications Fact 923: May 2, 2016 Cylinder Deactivation was Used in More than a Quarter of ...

  14. Development of an ORC system to improve HD truck fuel efficiency

    Broader source: Energy.gov [DOE]

    Describes a waste heat recovery system developed for a class 8 truck engine using an organic Rankine cycle (ORC), which promises fuel economy benefits of up to 6% at cruise conditions

  15. Price of Liquefied U.S. Natural Gas Exports by Truck to Canada...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Canada (Dollars per Thousand Cubic Feet) Price of Liquefied U.S. Natural Gas Exports by Truck to Canada (Dollars per Thousand Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep...

  16. Liquefied U.S. Natural Gas Exports by Truck to Canada (Million...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Canada (Million Cubic Feet) Liquefied U.S. Natural Gas Exports by Truck to Canada (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2007 2 2008 0 0 0 0 0 0...

  17. Vehicle Technologies Office Merit Review 2015: Zero-Emission Heavy-Duty Drayage Truck Demonstration

    Office of Energy Efficiency and Renewable Energy (EERE)

    Presentation given by SCAQMD at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about zero-emission heavy-duty drayage truck...

  18. A Quantum Leap for Heavy-Duty Truck Engine Efficiency - Hybrid...

    Broader source: Energy.gov (indexed) [DOE]

    Presentation given at DEER 2006, August 20-24, 2006, Detroit, Michigan. Sponsored by the U.S. DOE's EERE FreedomCar and Fuel Partnership and 21st Century Truck Programs. ...

  19. Fact #787: July 8, 2013 Truck Stop Electrification Reduces Idle Fuel Consumption

    Office of Energy Efficiency and Renewable Energy (EERE)

    The U.S. Department of Transportation mandates that truckers rest for 10 hours after driving for 11 hours, during which time they often park at truck stops idling the engines to provide heating,...

  20. Vehicle Technologies Office Merit Review 2015: Advanced Bus and Truck Radial Materials for Fuel Efficiency

    Broader source: Energy.gov [DOE]

    Presentation given by PPG at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about advanced bus and truck radial materials...

  1. Norcal Prototype LNG Truck Fleet: Final Data Report. Advanced Technology Vehicle Evaluation: Advanced Vehicle Testing Activity

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Data Report Norcal Prototype LNG Truck Fleet: Final Data Report By Kevin Chandler, Battelle Ken Proc, National Renewable Energy Laboratory February 2005 This report provides detailed data and analyses from the U.S. Department of Energy's evaluation of prototype liquefied natural gas (LNG) waste transfer trucks operated by Norcal Waste Systems, Inc. The final report for this evaluation, published in July 2004, is available from the Alternative Fuels Data Center at www.eere.energy.gov/afdc or by

  2. Vehicle Technologies Office Issues Notice of Intent for SuperTruck II

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Funding Opportunity Announcement | Department of Energy SuperTruck II Funding Opportunity Announcement Vehicle Technologies Office Issues Notice of Intent for SuperTruck II Funding Opportunity Announcement February 10, 2016 - 10:40am Addthis The Vehicle Technologies Office (VTO) has issued a Notice of Intent (No. DE-FOA-0001447) to make interested parties aware of its plan to issue a Funding Opportunity Announcement entitled "Advanced Systems Level Technology Development, Integration

  3. Real-World Greenhouse Gas Emissions from a MY2010 Diesel Truck Traveling

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Across the Continental United States | Department of Energy Real-World Greenhouse Gas Emissions from a MY2010 Diesel Truck Traveling Across the Continental United States Real-World Greenhouse Gas Emissions from a MY2010 Diesel Truck Traveling Across the Continental United States Data analysis from this study will provide insight into real-world performance of current emissions reduction devices, under various operating conditions, and with respect to greenhouse gas emissions. p-03_carder.pdf

  4. Development and Demonstration of a Fuel-Efficient HD Engine (DOE SuperTruck

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Program) | Department of Energy Engine (DOE SuperTruck Program) Development and Demonstration of a Fuel-Efficient HD Engine (DOE SuperTruck Program) Discusses engine efficiency contributions of enhanced fuel injection rematched to new piston geometry, improved charge air system, revised base engine components reduce friction and turbocompounding. deer11_deojeda.pdf (2.06 MB) More Documents & Publications Development and Demonstration of a Fuel-Efficient HD Engine

  5. HEAVY-DUTY TRUCK EMISSIONS AND FUEL CONSUMPTION SIMULATING REAL-WORLD

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    DRIVING IN LABORATORY CONDITIONS | Department of Energy HEAVY-DUTY TRUCK EMISSIONS AND FUEL CONSUMPTION SIMULATING REAL-WORLD DRIVING IN LABORATORY CONDITIONS HEAVY-DUTY TRUCK EMISSIONS AND FUEL CONSUMPTION SIMULATING REAL-WORLD DRIVING IN LABORATORY CONDITIONS 2005 Diesel Engine Emissions Reduction (DEER) Conference Presentations and Posters 2005_deer_erkkila.pdf (398.95 KB) More Documents & Publications Evaluating Exhaust Emission Performance of Urban Buses Using Transient Heavy-Duty

  6. Organic Rankine Cycle Turbine for Exhaust Energy Recovery in a Heavy Truck

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Engine | Department of Energy Turbine for Exhaust Energy Recovery in a Heavy Truck Engine Organic Rankine Cycle Turbine for Exhaust Energy Recovery in a Heavy Truck Engine Presentation given at the 16th Directions in Engine-Efficiency and Emissions Research (DEER) Conference in Detroit, MI, September 27-30, 2010. deer10_baines.pdf (807.9 KB) More Documents & Publications Two-Stage Variable Compression Ratio (VCR) System to Increase Efficiency in Gasoline Powertrains Environmental Effects

  7. DOE Selects Two Small Businesses to Truck Transuranic Waste to New Mexico

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Waste Isolation Pilot Plant | Department of Energy Selects Two Small Businesses to Truck Transuranic Waste to New Mexico Waste Isolation Pilot Plant DOE Selects Two Small Businesses to Truck Transuranic Waste to New Mexico Waste Isolation Pilot Plant January 9, 2012 - 12:00pm Addthis Media Contact Bill Taylor 803-952-8564 bill.taylor@srs.gov Cincinnati - The Department of Energy (DOE) today awarded two small-business contracts to CAST Specialty Transportation, Inc. and Visionary Solutions,

  8. 21st Century Truck Partnership Roadmap Roadmap and Technical White Papers -

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    21CTP-0003, December 2006 | Department of Energy Roadmap Roadmap and Technical White Papers - 21CTP-0003, December 2006 21st Century Truck Partnership Roadmap Roadmap and Technical White Papers - 21CTP-0003, December 2006 Report on specific technology goals that will reduce fuel usage and emissions while increasing heavy vehicle safety. 21ctp_roadmap_2007.pdf (1.7 MB) More Documents & Publications Roadmap and Technical White Papers for 21st Century Truck Partnership The 21st Century

  9. At its Largest Truck Plant, Volvo Recognized for Leadership in Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Efficiency | Department of Energy At its Largest Truck Plant, Volvo Recognized for Leadership in Energy Efficiency At its Largest Truck Plant, Volvo Recognized for Leadership in Energy Efficiency April 1, 2014 - 3:37pm Addthis NEWS MEDIA CONTACT (202) 586-4940 DUBLIN, Va. - Building on President Obama's Better Buildings Initiative and the Administration's broader efforts to double energy productivity by 2030, the Department of Energy today recognized Volvo Group North America for its

  10. Mobile lighting apparatus

    DOE Patents [OSTI]

    Roe, George Michael; Klebanoff, Leonard Elliott; Rea, Gerald W; Drake, Robert A; Johnson, Terry A; Wingert, Steven John; Damberger, Thomas A; Skradski, Thomas J; Radley, Christopher James; Oros, James M; Schuttinger, Paul G; Grupp, David J; Prey, Stephen Carl

    2013-05-14

    A mobile lighting apparatus includes a portable frame such as a moveable trailer or skid having a light tower thereon. The light tower is moveable from a stowed position to a deployed position. A hydrogen-powered fuel cell is located on the portable frame to provide electrical power to an array of the energy efficient lights located on the light tower.

  11. Fact #692: September 12, 2011 Fuel Economy Distribution for New Cars and Light Trucks

    Broader source: Energy.gov [DOE]

    Nearly 64% of new cars sold in model year (MY) 1975 had combined highway/city fuel economy of 15 miles per gallon (mpg) or less [blue shading]. By 2010, 63% of cars had fuel economy of 25 mpg or...

  12. Analysis of Corporate Average Fuel Economy (CAFE) Standards for Light Trucks and Increased Alternative Fuel Use

    Reports and Publications (EIA)

    2002-01-01

    Sen. Frank Murkowski, the Ranking Minority Member of the Senate Committee on Energy and Natural Resources requested an analysis of selected portions of Senate Bill 1766 (S. 1766, the Energy Policy Act of 2002), House Resolution 4 (the Securing America's Future Energy Act of 2001) and Senate Bill 517 (S. 517, the Energy Policy Act of 2002). In response, the Energy Information Administration (EIA) has prepared a series of analyses showing the impacts of each of the selected provisions of the bills on energy supply, demand, and prices, macroeconomic variables where feasible, import dependence, and emissions.

  13. Vehicle Technologies Office Merit Review 2014: High Strength, Light-Weight Engines for Heavy Duty Trucks

    Broader source: Energy.gov [DOE]

    Presentation given by Oak Ridge National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about high strength,...

  14. Fact #714: February 13, 2012 Light Truck Sales on the Rise |...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    10.7 3.3 14.0 1980 8.9 2.2 11.2 1981 8.5 2.1 10.5 1982 8.0 2.4 10.4 1983 9.1 3.0 12.1 1984 10.3 3.9 14.2 1985 11.0 4.5 15.4 1986 11.4 4.7 16.1 1987 10.2 4.7 14.9 1988 10.5 4.9 ...

  15. Fact #693: September 19, 2011 Average Vehicle Footprint for Cars and Light Trucks

    Broader source: Energy.gov [DOE]

    A vehicle footprint is the area defined by the four points where the tires touch the ground. It is calculated as the product of the wheelbase and the average track width of the vehicle. The...

  16. Fact #725: April 30, 2012 Cylinder Deactivation is More Prevalent in Light Trucks than Cars

    Broader source: Energy.gov [DOE]

    Cylinder deactivation is a fuel-saving technology that allows a vehicle to shut down some of its cylinders when extra power is not needed like when cruising down the highway at a constant speed....

  17. Fact #720: March 26, 2012 Eleven Percent of New Light Trucks Sold have Gasoline Direct Injection

    Broader source: Energy.gov [DOE]

    Gasoline direct fuel injection (GDI) allows fuel to be injected directly into the cylinder so the timing and shape of the fuel mist can be controlled more precisely. The improved combustion and...

  18. Lighting Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Homes & Buildings » Lighting & Daylighting » Lighting Basics Lighting Basics August 15, 2013 - 5:12pm Addthis Text Version There are many different types of artificial lights (formally called "lamps" in the lighting industry,) which have different applications and uses. Types of lighting include: Fluorescent Lighting High-intensity Discharge Lighting Incandescent Lighting LED Lighting. New lamp designs that use energy-efficient technology are now readily available in the

  19. Large Scale Duty Cycle (LSDC) Project: Tractive Energy Analysis Methodology and Results from Long-Haul Truck Drive Cycle Evaluations

    SciTech Connect (OSTI)

    LaClair, Tim J

    2011-05-01

    This report addresses the approach that will be used in the Large Scale Duty Cycle (LSDC) project to evaluate the fuel savings potential of various truck efficiency technologies. The methods and equations used for performing the tractive energy evaluations are presented and the calculation approach is described. Several representative results for individual duty cycle segments are presented to demonstrate the approach and the significance of this analysis for the project. The report is divided into four sections, including an initial brief overview of the LSDC project and its current status. In the second section of the report, the concepts that form the basis of the analysis are presented through a discussion of basic principles pertaining to tractive energy and the role of tractive energy in relation to other losses on the vehicle. In the third section, the approach used for the analysis is formalized and the equations used in the analysis are presented. In the fourth section, results from the analysis for a set of individual duty cycle measurements are presented and different types of drive cycles are discussed relative to the fuel savings potential that specific technologies could bring if these drive cycles were representative of the use of a given vehicle or trucking application. Additionally, the calculation of vehicle mass from measured torque and speed data is presented and the accuracy of the approach is demonstrated.

  20. Independent design review report for truck {number_sign}1 modifications for flammable gas tanks

    SciTech Connect (OSTI)

    Wilson, G.W.

    1997-05-09

    The East and West Tank Farm Standing Order 97-01 requires that the PMST be modified to include purging of the enclosed space underneath the shielded receiver weather cover per National Fire Protection Association (NFPA) 496, Purged and Pressurized Enclosures for Electrical Equipment. The Standing Order also requires that the PMST be modified by replacing the existing electrical remote latch (RLU) unit with a mechanical remote latch unit. As the mechanical remote latch unit was exactly like the RLU installed on the Rotary Mode Core Sampler Trucks (RMCST) and the design for the RMCST went through formal design review, replacing the RLU was done utilizing informal design verification and was completed per work package ES-97-0028. As the weather cover purge was similar to the design for the RMCSTS, this design was reviewed using the independent review method with multiple independent reviewers. A function design criteria (WHC-SD-WM-FDC-048, Functional Design Criteria for Core Sampling in Flammable Gas Watch List Tanks) provided the criteria for the modifications. The review consisted of distributing the design review package to the reviewers and collecting and dispositioning the RCR comments. The review package included the ECNs for review, the Design Compliance Matrix, copies of all drawings affected, and copies of outstanding ECNs against these drawings. A final meeting was held to ensure that all reviewers were aware of the changes to ECNs from incorporation of RCR comments.

  1. Project Results: Evaluating FedEx Express Hybrid-Electric Delivery Trucks (Fact Sheet), Vehicle Technologies Program (VTP)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Renewable Energy Laboratory's (NREL's) Fleet Test and Evaluation Team evaluated the 12-month, in-service performance of three Class 4 gasoline hybrid-electric delivery trucks and three comparable conventional diesel trucks operated by FedEx Express in Southern California. In addition, the tailpipe emissions and fuel economy of one of the gasoline hybrid-electric vehicles (gHEVs) and one diesel truck were tested on a chassis dynamometer. The gHEVs were equipped with a parallel hybrid system

  2. Project Results: Evaluating FedEx Express Hybrid-Electric Delivery Trucks (Fact Sheet), Vehicle Technologies Program (VTP)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Renewable Energy Laboratory's (NREL's) Fleet Test and Evaluation Team evaluated the 12-month, in-service performance of three Class 4 gasoline hybrid-electric delivery trucks and three comparable conventional diesel trucks operated by FedEx Express in Southern California. In addition, the tailpipe emissions and fuel economy of one of the gasoline hybrid-electric vehicles (gHEVs) and one diesel truck were tested on a chassis dynamometer. The gHEVs were equipped with a parallel hybrid system

  3. Demonstration Project 111, ITS/CVO Technology Truck, Final Project Report

    SciTech Connect (OSTI)

    Gambrell, KP

    2002-01-11

    In 1995, the planning and building processes began to design and develop a mobile demonstration unit that could travel across the nation and be used as an effective outreach tool. In 1997, the unit was completed; and from June 1997 until December 2000, the Federal Highway Administration (FHWA)/Federal Motor Carrier Safety Administration (FMCSA) mobilized the Technology Truck, also known as Demonstration Project No. 111, ''Advanced Motor Carrier Operations and Safety Technologies.'' The project featured the latest available state-of-the-practice intelligent transportation systems (ITS) technologies designed to improve both the efficiency and safety of commercial vehicle operations (CVO). The Technology Truck was designed to inform and educate the motor carrier community and other stakeholders regarding ITS technologies, thus gaining support and buy-in for participation in the ITS program. The primary objective of the project was to demonstrate new and emerging ITS/CVO technologies and programs, showing their impact on motor carrier safety and productivity. In order to meet the objectives of the Technology Truck project, the FHWA/FMCSA formed public/private partnerships with industry and with Oak Ridge National Laboratory to demonstrate and display available ITS/CVO technologies in a cooperative effort. The mobile demonstration unit was showcased at national and regional conferences, symposiums, universities, truck shows and other venues, in an effort to reach as many potential users and decision makers as possible. By the end of the touring phase, the ITS/CVO Technology Truck had been demonstrated in 38 states, 4 Canadian provinces, 88 cities, and 114 events; been toured by 18,099 people; and traveled 115,233 miles. The market penetration for the Technology Truck exceeded 4,000,000, and the website received more than 25,000 hits. In addition to the Truck's visits, the portable ITS/CVO kiosk was demonstrated at 31 events in 23 cites in 15 states.

  4. The potential effect of future energy-efficiency and emissions-improving technologies on fuel consumption of heavy trucks.

    SciTech Connect (OSTI)

    Vyas, A.; Saricks, C.; Stodolsky, F.

    2003-03-14

    Researchers at Argonne National Laboratory analyzed heavy-duty truck technologies to support the Energy Information Administration's long-term energy use projections. Researchers conducted an analysis of several technology options that have potential to improve heavy truck fuel economy and emissions characteristics. The technologies are grouped as fuel-economy-enhancing and emissions-improving. Each technology's potential impact on heavy truck fuel economy has been estimated, as has the cost of implementation. The extent of technology penetration is estimated on the basis of truck data analyses and technical judgment.

  5. Guidance manual for the identification of hazardous wastes delivered to publicly owned treatment works by truck, rail, or dedicated pipe

    SciTech Connect (OSTI)

    Not Available

    1987-06-01

    The manual is directed towards two types of facilities: First, guidance is to POTWs that wish to preclude the entry of hazardous wastes into their facilities and avoid regulation and liability under RCRA. Administrative/technical recommendations for control of such wastes is provided, many of which are already in use by POTWs. Second, the responsibilities of POTWs that choose to accept hazardous wastes from truck, rail, or dedicated pipeline are discussed, including relevant regulatory provisions, strict liability and corrective action requirements for releases, and recommended procedures for waste acceptance/management. The manual describes the RCRA regulatory status of wastes that POTW operators typically may encounter. The manual includes a Waste Monitoring Plan. Appendices give the following: RCRA lists; RCRA listed hazardous wastes; examples of POTW sewer use ordinance language, waste hauler permit; waste tracking form, notification of hazardous waste activity; uniform hazardous waste manifest; biennial hazardous waste report; and state hazardous waste contacts.

  6. Exploring Fuel-Saving Potential of Long-Haul Truck Hybridization

    SciTech Connect (OSTI)

    Gao, Zhiming; LaClair, Tim J.; Smith, David E.; Daw, C. Stuart

    2015-10-01

    We report our comparisons on the simulated fuel economy for parallel, series, and dual-mode hybrid electric long-haul trucks, in addition to a conventional powertrain configuration, powered by a commercial 2010-compliant 15-L diesel engine over a freeway-dominated heavy-duty truck driving cycle. The driving cycle was obtained by measurement during normal driving conditions. The results indicated that both parallel and dual-mode hybrid powertrains were capable of improving fuel economy by 7% to 8%. But there was no significant fuel economy benefit for the series hybrid truck because of internal inefficiencies in energy exchange. When reduced aerodynamic drag and tire rolling resistance were combined with hybridization, there was a synergistic fuel economy benefit for appropriate hybrids that increased the fuel economy benefit to more than 15%. Long-haul hybrid trucks with reduced aerodynamic drag and rolling resistance offered lower peak engine loads, better kinetic energy recovery, and reduced average engine power demand. Therefore, it is expected that hybridization with load reduction technologies offers important potential fuel energy savings for future long-haul trucks.

  7. Exploring Fuel-Saving Potential of Long-Haul Truck Hybridization

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Gao, Zhiming; LaClair, Tim J.; Smith, David E.; Daw, C. Stuart

    2015-10-01

    We report our comparisons on the simulated fuel economy for parallel, series, and dual-mode hybrid electric long-haul trucks, in addition to a conventional powertrain configuration, powered by a commercial 2010-compliant 15-L diesel engine over a freeway-dominated heavy-duty truck driving cycle. The driving cycle was obtained by measurement during normal driving conditions. The results indicated that both parallel and dual-mode hybrid powertrains were capable of improving fuel economy by 7% to 8%. But there was no significant fuel economy benefit for the series hybrid truck because of internal inefficiencies in energy exchange. When reduced aerodynamic drag and tire rolling resistance weremore » combined with hybridization, there was a synergistic fuel economy benefit for appropriate hybrids that increased the fuel economy benefit to more than 15%. Long-haul hybrid trucks with reduced aerodynamic drag and rolling resistance offered lower peak engine loads, better kinetic energy recovery, and reduced average engine power demand. Therefore, it is expected that hybridization with load reduction technologies offers important potential fuel energy savings for future long-haul trucks.« less

  8. FedEx Gasoline Hybrid Electric Delivery Truck Evaluation: 6-Month Interim Report

    SciTech Connect (OSTI)

    Barnitt, R.

    2010-05-01

    This interim report presents partial (six months) results for a technology evaluation of gasoline hybrid electric parcel delivery trucks operated by FedEx in and around Los Angeles, CA. A 12 month in-use technology evaluation comparing in-use fuel economy and maintenance costs of GHEVs and comparative diesel parcel delivery trucks was started in April 2009. Comparison data was collected and analyzed for in-use fuel economy and fuel costs, maintenance costs, total operating costs, and vehicle uptime. In addition, this interim report presents results of parcel delivery drive cycle collection and analysis activities as well as emissions and fuel economy results of chassis dynamometer testing of a gHEV and a comparative diesel truck at the National Renewable Energy Laboratory's (NREL) ReFUEL laboratory. A final report will be issued when 12 months of in-use data have been collected and analyzed.

  9. NREL Collaborates with Trucking Industry to Prioritize R&D Opportunities -

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    News Feature | NREL Collaborates with Trucking Industry to Prioritize R&D Opportunities September 15, 2015 Photo of a UPS heavy-duty truck by the NREL entrance sign. NREL's fleet test and evaluation team collaborates with industry partners to conduct real-world performance evaluations of advanced medium- and heavy-duty fleet vehicles. Photo by Dennis Schroeder Six to seven seconds-that's the typical time between a pair of tractor-trailers traveling together at 65 mph. But, through the

  10. Structural safety evaluation of the K Basin railcar and truck applications

    SciTech Connect (OSTI)

    Winkel, B.V.

    1995-08-01

    There are two rail spurs in the storage/transfer areas of both the K East and K West fuel storage basins. These rail spurs both end at the west edge of the basins. To avoid accidental entry of a railcar into a basin, administrative procedures and rail control hardware have been provided. Based upon a combination of historical documentation and existing adminstrative controls, a maximum credible impact accident was established. Using this design basis accident, the existing rail control hardware was evaluated for structural adequacy. The K Basin rail spurs are embedded in concrete, which permits truck/trailer entry into the same area. Safety issues for truck applications are also addressed.

  11. Fact #625: May 31, 2010 Distribution of Trucks by On-Road Vehicle Weight |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy 5: May 31, 2010 Distribution of Trucks by On-Road Vehicle Weight Fact #625: May 31, 2010 Distribution of Trucks by On-Road Vehicle Weight According to weigh-in-motion data collected by fifteen states, the majority of 5-axle tractor-trailers on the road weigh between 33,000 and 73,000 lbs.Eleven percent of the tractor-trailers had weight recorded around 72,800 lbs and 10% around 68,300 lbs. Another 10% of tractor-trailers were on the lighter end of the scale - around

  12. Fact #932: July 4, 2016 Longer Combination Trucks Are Only Permitted on

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Some Routes | Department of Energy 2: July 4, 2016 Longer Combination Trucks Are Only Permitted on Some Routes Fact #932: July 4, 2016 Longer Combination Trucks Are Only Permitted on Some Routes SUBSCRIBE to the Fact of the Week Although all states allow the conventional combinations consisting of two 28-foot semi-trailers, only 14 states and six state turnpike authorities allow longer combination vehicles (LCVs) on some parts of their road networks. LCVs are tractors pulling a semi-trailer

  13. Predicted Impact of Idling Reduction Options for Heavy-Duty Diesel Trucks:

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    A Comparison of Full-Fuel-Cycle Emissions, Energy Use, and Proximity to Urban Populations in Five States | Department of Energy Predicted Impact of Idling Reduction Options for Heavy-Duty Diesel Trucks: A Comparison of Full-Fuel-Cycle Emissions, Energy Use, and Proximity to Urban Populations in Five States Predicted Impact of Idling Reduction Options for Heavy-Duty Diesel Trucks: A Comparison of Full-Fuel-Cycle Emissions, Energy Use, and Proximity to Urban Populations in Five States Poster

  14. Calibraton of a Directly Injected Natural Gas HD Engine for Class 8 Truck

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Applications | Department of Energy Calibraton of a Directly Injected Natural Gas HD Engine for Class 8 Truck Applications Calibraton of a Directly Injected Natural Gas HD Engine for Class 8 Truck Applications This poster offers a comparison of high-pressure direct injection (HPDI) of natural gas engines with pilot diesel ignition with diesel engines used in heavy-duty diesel engine applications deer09_munshi.pdf (69.91 KB) More Documents & Publications State of the Art and Future

  15. Accident Investigation of the February 5, 2014, Underground Salt Haul Truck Fire at the Waste Isolation Pilot Plant, Carlsbad NM

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy (DOE) Accident Prevention Investigation Board was appointed to investigate a fire at the Waste Isolation Pilot Plant that occurred on February 5, 2014. An aged EIMCO 985-T15 salt haul truck (dump truck) caught fire in an underground mine.

  16. Diesel NOx-PM Reduction with Fuel Economy Increase by IMET-OBC-DPF + Hydrated-EGRŽ System for Retrofit of In-UseŽ Trucks

    Broader source: Energy.gov [DOE]

    Reports on truck fleet emission test results obtained from retrofitting in-useŽ old class-8 trucks with IMETs GreenPower’ DPF-Hydrated-EGR system

  17. Pump apparatus including deconsolidator

    DOE Patents [OSTI]

    Sonwane, Chandrashekhar; Saunders, Timothy; Fitzsimmons, Mark Andrew

    2014-10-07

    A pump apparatus includes a particulate pump that defines a passage that extends from an inlet to an outlet. A duct is in flow communication with the outlet. The duct includes a deconsolidator configured to fragment particle agglomerates received from the passage.

  18. Light-duty vehicle MPG (miles per gallon) and market shares report, Model year 1989

    SciTech Connect (OSTI)

    Williams, L.S. ); Hu, P.S. )

    1990-04-01

    This issue of Light-Duty Vehicle MPG and Market Shares Report: Model Year 1989 reports the estimated sales-weighted fuel economies, sales, market shares, and other vehicle characteristics of automobiles and light trucks. The estimates are made on a make and model basis (e.g., Chevrolet is a make and Corsica is a model), from model year 1976 to model year 1989. Vehicle sales data are used as weighting factors in the sales-weighted estimation procedure. Thus, the estimates represent averages of the overall new vehicle fleet, reflecting the composition of the fleet. Highlights are provided on the trends in the vehicle characteristics from one model year to the next. Analyses are also made on fuel economy changes to determine what caused the changes. Both new automobile and new light truck fleets experienced fuel economy losses of 0.5 mpg from the previous model year, dropping to 28.0 mpg for automobiles and 20.2 mpg for light trucks. This is the first observed decline in fuel economy of new automobiles since model year 1983 and the largest decline since model year 1976. The main reason for the fuel economy decline in automobiles was that every automobile size class showed either losses or no change in their fuel economies. The fuel economy decline in light trucks was primarily due to the fact that two popular size classes, large pickup and small utility vehicle, both experienced losses in their fuel economies. Overall, the sales-weighted fuel economy of the entire light-duty vehicle fleet (automobiles and light trucks) dropped to 25.0 mpg, a reduction of 0.5 mpg from model year 1988. 9 refs., 32 figs., 50 tabs.

  19. Optical modulator including grapene

    DOE Patents [OSTI]

    Liu, Ming; Yin, Xiaobo; Zhang, Xiang

    2016-06-07

    The present invention provides for a one or more layer graphene optical modulator. In a first exemplary embodiment the optical modulator includes an optical waveguide, a nanoscale oxide spacer adjacent to a working region of the waveguide, and a monolayer graphene sheet adjacent to the spacer. In a second exemplary embodiment, the optical modulator includes at least one pair of active media, where the pair includes an oxide spacer, a first monolayer graphene sheet adjacent to a first side of the spacer, and a second monolayer graphene sheet adjacent to a second side of the spacer, and at least one optical waveguide adjacent to the pair.

  20. Analysis of Technology Options to Reduce the Fuel Consumption of Idling Trucks

    SciTech Connect (OSTI)

    F. Stodolsky; L. Gaines; A. Vyas

    2000-06-01

    Long-haul trucks idling overnight consume more than 838 million gallons (20 million barrels) of fuel annually. Idling also emits pollutants. Truck drivers idle their engines primarily to (1) heat or cool the cab and/or sleeper, (2) keep the fuel warm in winter, and (3) keep the engine warm in the winter so that the engine is easier to start. Alternatives to overnight idling could save much of this fuel, reduce emissions, and cut operating costs. Several fuel-efficient alternatives to idling are available to provide heating and cooling: (1) direct-fired heater for cab/sleeper heating, with or without storage cooling; (2) auxiliary power units; and (3) truck stop electrification. Many of these technologies have drawbacks that limit market acceptance. Options that supply electricity are economically viable for trucks that are idled for 1,000-3,000 or more hours a year, while heater units could be used across the board. Payback times for fleets, which would receive quantity discounts on the prices, would be somewhat shorter.

  1. CoolCalc: A Long-Haul Truck Thermal Load Estimation Tool: Preprint

    SciTech Connect (OSTI)

    Lustbader, J. A.; Rugh, J. P.; Rister, B. R.; Venson, T. S.

    2011-05-01

    In the United States, intercity long-haul trucks idle approximately 1,800 hrs annually for sleeper cab hotel loads, consuming 838 million gallons of diesel fuel per year. The objective of the CoolCab project is to work closely with industry to design efficient thermal management systems for long-haul trucks that keep the cab comfortable with minimized engine idling. Truck engine idling is primarily done to heat or cool the cab/sleeper, keep the fuel warm in cold weather, and keep the engine warm for cold temperature startup. Reducing the thermal load on the cab/sleeper will decrease air conditioning system requirements, improve efficiency, and help reduce fuel use. CoolCalc is an easy-to-use, simplified, physics-based HVAC load estimation tool that requires no meshing, has flexible geometry, excludes unnecessary detail, and is less time-intensive than more detailed computer-aided engineering modeling approaches. It is intended for rapid trade-off studies, technology impact estimation, and preliminary HVAC sizing design and to complement more detailed and expensive CAE tools by exploring and identifying regions of interest in the design space. This paper describes the CoolCalc tool, provides outdoor long-haul truck thermal testing results, shows validation using these test results, and discusses future applications of the tool.

  2. Development of LNG-Powered Heavy-Duty Trucks in Commercial Hauling

    SciTech Connect (OSTI)

    Detroit Diesel Corporation; Trucking Research Institute

    1998-12-03

    In support of the U.S. Department of Energy's development, deployment, and evaluation of alternative fuels, NREL and the Trucking Research Institute contracted with Detroit Diesel Corporation (DDC) to develop and operate a liquid natural gas fueled tractor powered by a DDC Series 50 prototype natural gas engine. This is the final report on the project.

  3. Solid Oxide Fuel Cell Successfully Powers Truck Cab and Sleeper in DOE-Sponsored Test

    Broader source: Energy.gov [DOE]

    In a test sponsored by the U.S. Department of Energy, a Delphi auxiliary power unit employing a solid oxide fuel cell (SOFC) successfully operated the electrical system and air conditioning of a Peterbilt Model 386 truck under conditions simulating idling conditions for 10 hours.

  4. NOx Adsorbers for Heavy Duty Truck Engines-Testing and Simulation

    SciTech Connect (OSTI)

    Hakim, N; Hoelzer, J.; Liu, Y.

    2002-08-25

    This feasibility study of NOx adsorbers in heavy-duty diesel engines examined three configurations (dual-leg, single-leg and single-leg-bypass) in an integrated experimental setup, composed of a Detroit Diesel Class-8 truck engine, a catalyzed diesel particulate filter and the NOx absorber system. The setup also employed a reductant injection concept, sensors and advanced control strategies.

  5. Cummins SuperTruck Program - Technology and System Level Demonstration of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Highly Efficient and Clean, Diesel Powered Class 8 Trucks | Department of Energy 3 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting ace057_koeberlein_2013_o.pdf (3.18

  6. Cummins SuperTruck Program - Technology and System Level Demonstration of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Highly Efficient and Clean, Diesel Powered Class 8 Trucks | Department of Energy 2 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting ace057_koeberlein_2012_o.pdf (1.99

  7. VP 100: Producing Electric Truck Vehicles with a Little Something Extra

    Broader source: Energy.gov [DOE]

    Through a Recovery Act grant, that company - Smith Electric Vehicles (SEV) – is taking a different tact that could lay the foundation for the industry's future. Not only is the company manufacturing all-electric, zero-emission commercial trucks, it's collecting data on how these commercial EVs are used.

  8. Emission Changes Resulting from the San Pedro Bay, California Ports Truck Retirement Program

    SciTech Connect (OSTI)

    Bishop, G. A.; Schuchmann, B. G.; Stedman, D. H.; Lawson, D. R.

    2012-01-03

    Recent U.S. Environmental Protection Agency emissions regulations have resulted in lower emissions of particulate matter and oxides of nitrogen from heavy-duty diesel trucks. To accelerate fleet turnover the State of California in 2008 along with the Ports of Los Angeles and Long Beach (San Pedro Bay Ports) in 2006 passed regulations establishing timelines forcing the retirement of older diesel trucks. On-road emissions measurements of heavy-duty diesel trucks were collected over a three-year period, beginning in 2008, at a Port of Los Angeles location and an inland weigh station on the Riverside freeway (CA SR91). At the Port location the mean fleet age decreased from 12.7 years in April of 2008 to 2.5 years in May of 2010 with significant reductions in carbon monoxide (30%), oxides of nitrogen (48%) and infrared opacity (a measure of particulate matter, 54%). We also observed a 20-fold increase in ammonia emissions as a result of new, stoichiometrically combusted, liquefied natural gas powered trucks. These results compare with changes at our inland site where the average ages were 7.9 years in April of 2008 and 8.3 years in April of 2010, with only small reductions in oxides of nitrogen (10%) being statistically significant. Both locations have experienced significant increases in nitrogen dioxide emissions from new trucks equipped with diesel particle filters; raising the mean nitrogen dioxide to oxides of nitrogen ratios from less than 10% to more than 30% at the Riverside freeway location.

  9. Impact of Paint Color on Rest Period Climate Control Loads in Long-Haul Trucks: Preprint

    SciTech Connect (OSTI)

    Lustbader, J.; Kreutzer, C.; Jeffers, M.; Adelman, S.; Yeakel, S.; Brontz, P.; Olson, K.; Ohlinger, J.

    2014-02-01

    Cab climate conditioning is one of the primary reasons for operating the main engine in a long-haul truck during driver rest periods. In the United States, sleeper cab trucks use approximately 667 million gallons of fuel annually for rest period idling. The U.S. Department of Energy's National Renewable Energy Laboratory's (NREL) CoolCab Project works closely with industry to design efficient thermal management systems for long-haul trucks that minimize engine idling and fuel use while maintaining occupant comfort. Heat transfer to the vehicle interior from opaque exterior surfaces is one of the major heat pathways that contribute to air conditioning loads during long-haul truck daytime rest period idling. To quantify the impact of paint color and the opportunity for advanced paints, NREL collaborated with Volvo Group North America, PPG Industries, and Dometic Environmental Corporation. Initial screening simulations using CoolCalc, NREL's rapid HVAC load estimation tool, showed promising air-conditioning load reductions due to paint color selection. Tests conducted at NREL's Vehicle Testing and Integration Facility using long-haul truck cab sections, 'test bucks,' showed a 31.1% of maximum possible reduction in rise over ambient temperature and a 20.8% reduction in daily electric air conditioning energy use by switching from black to white paint. Additionally, changing from blue to an advanced color-matched solar reflective blue paint resulted in a 7.3% reduction in daily electric air conditioning energy use for weather conditions tested in Colorado. National-level modeling results using weather data from major U.S. cities indicated that the increase in heating loads due to lighter paint colors is much smaller than the reduction in cooling loads.

  10. Carlsbad Field Office (CBFO) Corrective Action Plan - Truck Fire...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    This consolidated CAP specifies the CBFO corrective actions responsive to the three Accident Investigation Boards' reports. Each corrective action includes the associated JON, the ...

  11. EM Awards Two Large Contracts to Small Businesses for Trucking...

    Broader source: Energy.gov (indexed) [DOE]

    The contracts are firm-fixed-price with cost-reimbursable expenses over five years. Both ... that have atomic numbers greater than uranium, including tools, rags, protective ...

  12. Lighting fundamentals handbook: Lighting fundamentals and principles for utility personnel

    SciTech Connect (OSTI)

    Eley, C.; Tolen, T. Associates, San Francisco, CA ); Benya, J.R. )

    1992-12-01

    Lighting accounts for approximately 30% of overall electricity use and demand in commercial buildings. This handbook for utility personnel provides a source of basic information on lighting principles, lighting equipment, and other considerations related to lighting design. The handbook is divided into three parts. Part One, Physics of Light, has chapters on light, vision, optics, and photometry. Part Two, Lighting Equipment and Technology, focuses on lamps, luminaires, and lighting controls. Part Three, Lighting Design Decisions, deals with the manner in which lighting design decisions are made and reviews relevant methods and issues. These include the quantity and quality of light needed for visual tasks, calculation methods for verifying that lighting needs are satisfied, lighting economics and methods for evaluating investments in efficient lighting systems, and miscellaneous design issues including energy codes, power quality, photobiology, and disposal of lighting equipment. The handbook contains a discussion of the role of the utility in promoting the use of energy-efficient lighting. The handbook also includes a lighting glossary and a list of references for additional information. This convenient and comprehensive handbook is designed to enable utility lighting personnel to assist their customers in developing high-quality, energy-efficient lighting systems. The handbook is not intended to be an up-to-date reference on lighting products and equipment.

  13. Economic Analysis of Commercial Idling Reduction Technologies: Which idling reduction system is most economical for truck owners?

    Office of Energy Efficiency and Renewable Energy (EERE)

    Presentation given at DEER 2006, August 20-24, 2006, Detroit, Michigan. Sponsored by the U.S. DOE's EERE FreedomCar and Fuel Partnership and 21st Century Truck Programs.

  14. A Quantum Leap for Heavy-Duty Truck Engine Efficiency- Hybrid Power System of Diesel and WHR-ORC Engines

    Broader source: Energy.gov [DOE]

    Presentation given at DEER 2006, August 20-24, 2006, Detroit, Michigan. Sponsored by the U.S. DOE's EERE FreedomCar and Fuel Partnership and 21st Century Truck Programs.

  15. Vehicle Technologies Office 2013 Merit Review: A System for Automatically Maintaining Pressure in a Commercial Truck Tire

    Broader source: Energy.gov [DOE]

    A presentation given by PPG during the 2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting on a system for automatically maintaining tire pressure in commercial truck tires.

  16. Fact #846: November 10, 2014 Trucks Move 70% of all Freight by Weight and 74% of Freight by Value

    Broader source: Energy.gov [DOE]

    According to the preliminary 2012 Commodity Flow Survey (CFS) data, trucks transport the vast majority of freight by both weight and value. The two pie charts below show the share of freight moved...

  17. Vehicle Technologies Office Merit Review 2015: Plug-In Hybrid Medium-Duty Truck Demonstration and Evaluation Program

    Office of Energy Efficiency and Renewable Energy (EERE)

    Presentation given by SCAQMD at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about plug-in hybrid medium-duty truck...

  18. Fleet DNA Project Data Summary Report for Bucket Trucks

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    40% 60% 80% 100% of Vehicles Reporting: 20 of Days Included: 283 Generated: Thu Aug 07, 2014 34 32 27 Deployment ID 0 5 10 15 20 20 Number of Vehicles Breakdown of Total ...

  19. Fleet DNA Project Data Summary Report for Delivery Trucks

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    80% 100% of Vehicles Reporting: 36 of Days Included: 553 Generated: Thu Aug 07, 2014 43 40 47 29 41 56 Deployment ID 0 5 10 15 20 25 30 35 36 Number of Vehicles Breakdown of ...

  20. Fleet DNA Project Data Summary Report for Refuse Trucks

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    80% 100% of Vehicles Reporting: 39 of Days Included: 387 Generated: Thu Aug 07, 2014 62 16 30 31 61 Deployment ID 0 5 10 15 20 25 30 35 39 Number of Vehicles Breakdown of ...

  1. Engineering tasl plan for the development, fabrication and installation of rotary mode core sample truck bellows

    SciTech Connect (OSTI)

    BOGER, R.M.

    1999-06-24

    The Rotary Mode Core Sampling Trucks (RMSCTs) currently use a multi-sectioned bellows between the grapple box and the quill rod to compensate for drill head motion and to provide a path for purge gas. The current bellows, which is detailed on drawing H-2-690059, is expensive to procure, has a lengthy procurement cycle, and is prone to failure. Therefore, a task has been identified to design, fabricate, and install a replacement bellows. This Engineering Task Plan (ETP) is the management plan document for accomplishing the identified tasks. Any changes in scope of the ETP shall require formal direction by the Characterization Engineering manager. This document shall also be considered the work planning document for developmental control per Development Control Requirements (HNF 1999a). This Engineering Task Plan (ETP) is the management plan document for accomplishing the design, fabrication, and installation of a replacement bellows assembly for the Rotary Mode Core Sampling Trucks 3 and 4 (RMCST).

  2. lighting in the library

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Determine the Feasibility of Installing Energy Efficient Lighting In this part of the exercise, you will plan a new approach to lighting your school library. This new plan will use less energy, cost less, and result in less greenhouse gas. Your plan will also include bottom line calculations and decision factors such as: identifying the costs and payback for buying and installing new lighting equipment and making a determination about whether or not the new, more efficient lighting will provide

  3. SuperTruck … Development and Demonstration of a Fuel-Efficient Class 8 Tractor & Trailer

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technologies 1 SuperTruck - Development and Demonstration of a Fuel Efficient Class 8 Tractor & Trailer DE-EE0003303 This presentation does not contain any proprietary, confidential, or otherwise restricted information SuperTruck - Development and Demonstration of a Fuel-Efficient Class 8 Tractor & Trailer Vehicle Systems DOE Contract: DE-EE0003303 NETL Project Manager: Ralph Nine Program Investigator : Dennis W. Jadin, Navistar DOE MERIT REVIEW WASHINGTON, D.C. May 17th, 2012 National

  4. NREL Shows Heavy Duty Hybrid Trucks Deliver on Fuel Economy - News Releases

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    | NREL NREL Shows Heavy Duty Hybrid Trucks Deliver on Fuel Economy September 11, 2012 A performance evaluation of Class 8 hybrid electric tractor trailers compared with similar conventional vehicles by the U.S. Department of Energy's (DOE's) National Renewable Energy Laboratory (NREL) shows significant improvements in fuel economy. "During our 13-month study, the hybrid tractors demonstrated 13.7 percent higher fuel economy than the conventional tractors, resulting in a 12 percent

  5. NREL Highlight: Truck Platooning Testing (Fact Sheet), NREL (National Renewable Energy Laboratory)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    An NREL study found that platooning of long-haul trucks reduces fuel consumption at all tested highway speeds. Vehicle automation is a promising fuel-saving strategy; semiautomated platooning systems for heavy-duty vehicles represent a likely first step toward public acceptance. Platooning reduces aerodynamic drag by grouping vehicles and safely decreasing the distance between them via electronic coupling, which allows multiple vehicles to accelerate or brake simultaneously. Researchers at the

  6. Norcal Waste Systems, Inc. Advanced Technology Vehicles in Service, LNG Heavy-Duty Trucks Fact Sheet.

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    TRUCKS ARE EQUIPPED WITH CUMMINS WESTPORT'S ISXG HEAVY-DUT Y ENGINE. Cummins Westport Inc. is a joint venture company formed by Cummins Inc. and Westport Innovations Inc. to bring natural gas engines to market. Westport Innovations is an alternative fuel engine technology company that developed the High-Pressure Direct Injection (HPDI(tm)) system and other natural gas technologies; Cummins is a veteran diesel engine manufacturer that provides the compression ignition engines with technology for

  7. 21st Century Truck Partnership Roadmap Roadmap and Technical White Papers - 21CTP-0003, December 2006

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ACKNOWLEDGEMENTS The 21 st Century Truck Partnership would like to acknowledge the time and resource investment that all our partners have made in developing this roadmap and technical white paper document, and in remaining committed to the goals and objectives outlined herein. We would also like to extend our appreciation to the industry and government teams that produced the individual technical white papers, and the leaders of those teams who are listed below. Engines: Ron Graves (Oak Ridge

  8. Sleeper Cab Climate Control Load Reduction for Long-Haul Truck Rest Period Idling

    SciTech Connect (OSTI)

    Lustbader, J. A.; Kreutzer, C.; Adelman, S.; Yeakel, S.; Zehme, J.

    2015-04-29

    Annual fuel use for long-haul truck rest period idling is estimated at 667 million gallons in the United States. The U.S. Department of Energy’s National Renewable Energy Laboratory’s CoolCab project aims to reduce heating, ventilating, and air conditioning (HVAC) loads and resulting fuel use from rest period idling by working closely with industry to design efficient long-haul truck climate control systems while maintaining occupant comfort. Enhancing the thermal performance of cab/sleepers will enable smaller, lighter, and more cost-effective idle reduction solutions. In order for candidate idle reduction technologies to be implemented at the original equipment manufacturer and fleet level, their effectiveness must be quantified. To address this need, a number of promising candidate technologies were evaluated through experimentation and modeling to determine their effectiveness in reducing rest period HVAC loads. For this study, load reduction strategies were grouped into the focus areas of solar envelope, occupant environment, and conductive pathways. The technologies selected for a complete-cab package of technologies were “ultra-white” paint, advanced insulation, and advanced curtains. To measure the impact of these technologies, a nationally-averaged solar-weighted reflectivity long-haul truck paint color was determined and applied to the baseline test vehicle. Using the complete-cab package of technologies, electrical energy consumption for long-haul truck daytime rest period air conditioning was reduced by at least 35% for summer weather conditions in Colorado. The National Renewable Energy Laboratory's CoolCalc model was then used to extrapolate the performance of the thermal load reduction technologies nationally for 161 major U.S. cities using typical weather conditions for each location over an entire year.

  9. SuperTruck … Development and Demonstration of a Fuel-Efficient Class 8

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Tractor & Trailer | Department of Energy 1 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation vss064_jadin_2011_o.pdf (1020.57 KB) More Documents & Publications SuperTruck … Development and Demonstration of a Fuel-Efficient Class 8 Tractor & Trailer Supertruck - Development and Demonstration of a Fuel-Efficient Class 8 Tractor & Trailer Supertruck - Development and Demonstration of a Fuel-Efficient Class 8 Tractor

  10. Driving R&D for the Next Generation Work Truck; NREL (National Renewable Energy Laboratory)

    SciTech Connect (OSTI)

    Melendez, M.

    2015-03-04

    Improvements in medium- and heavy-duty work truck energy efficiency can dramatically reduce the use of petroleum-based fuels and the emissions of greenhouse gases. The National Renewable Energy Laboratory (NREL) is working with industry partners to develop fuel-saving, high-performance vehicle technologies, while examining fleet operational practices that can simulateneously improve fuel economy, decrease emissions, and support bottom-line goals.

  11. WORKSHOP REPORT:Light-Duty Vehicles Technical Requirements and Gaps for

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Lightweight and Propulsion Materials | Department of Energy Light-Duty Vehicles Technical Requirements and Gaps for Lightweight and Propulsion Materials WORKSHOP REPORT:Light-Duty Vehicles Technical Requirements and Gaps for Lightweight and Propulsion Materials wr_ldvehicles.pdf (765.43 KB) More Documents & Publications WORKSHOP REPORT: Trucks and Heavy-Duty Vehicles Technical Requirements and Gaps for Lightweight and Propulsion Materials Summary of the Output from the VTP Advanced

  12. Appendix J - GPRA06 vehicle technologies program

    SciTech Connect (OSTI)

    None, None

    2009-01-18

    The target market for the Office of FreedomCAR and Vehicle Technologies (FCVT) program include light vehicles (cars and light trucks) and heavy vehicles (trucks more than 10,000 pounds Gross Vehicle Weight).

  13. Lighting Controls | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Controls Lighting Controls Use lighting controls to automatically turn lights on and off as needed, and save energy. Use lighting controls to automatically turn lights on and off as needed, and save energy. Use lighting controls to automatically turn lights on and off as needed, and save energy. Of course you can save energy by turning off lights when they're not needed, but sometimes we forget or don't notice that we've left them on. The most common types of lighting controls include: Dimmers

  14. SBIR/STTR Release 2 Topics Announced-Includes Hydrogen and Fuel Cells |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Topics Announced-Includes Hydrogen and Fuel Cells SBIR/STTR Release 2 Topics Announced-Includes Hydrogen and Fuel Cells October 31, 2014 - 12:05pm Addthis The 2015 Small Business Innovation Research and Small Business Technology Transfer (SBIR/STTR) Phase I Release 2 topics have been released and include two hydrogen and fuel cell related topics: fuel cell-battery electric hybrid trucks and in-line quality control devices for polymer electrolyte membrane (PEM) fuel

  15. Liquid natural gas as a transportation fuel in the heavy trucking industry. Final technical report, May 10, 1994--December 30, 1995

    SciTech Connect (OSTI)

    Sutton, W.H.

    1995-12-31

    This report encompasses the first year of a proposed three year project with emphasis focused on LNG research issues in Use of Liquid Natural Gas as a Transportation Fuel in the Heavy Trucking Industry. These issues may be categorized as (i) direct diesel replacement with LNG fuel, and (ii) long term storage/utilization of LNG vent gases produced by tank storage and fueling/handling operation. Since this work was for fundamental research in a number of related areas to the use of LNG as a transportation fuel for long haul trucking, many of those results have appeared in numerous refereed journal and conference papers, and significant graduate training experiences (including at least one M.S. thesis and one Ph.D. dissertation) in the first year of this project. In addition, a potential new utilization of LNG fuel has been found, as a part of this work on the fundamental nature of adsorption of LNG vent gases in higher hydrocarbons; follow on research for this and other related applications and transfer of technology are proceeding at this time.

  16. High efficiency incandescent lighting

    DOE Patents [OSTI]

    Bermel, Peter; Ilic, Ognjen; Chan, Walker R.; Musabeyoglu, Ahmet; Cukierman, Aviv Ruben; Harradon, Michael Robert; Celanovic, Ivan; Soljacic, Marin

    2014-09-02

    Incandescent lighting structure. The structure includes a thermal emitter that can, but does not have to, include a first photonic crystal on its surface to tailor thermal emission coupled to, in a high-view-factor geometry, a second photonic filter selected to reflect infrared radiation back to the emitter while passing visible light. This structure is highly efficient as compared to standard incandescent light bulbs.

  17. Heavy Truck Engine Development & HECC | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Department of Energy 3 DEER Conference Presentation: Caterpillar Incorporated 2003_deer_milam.pdf (10.59 MB) More Documents & Publications Transient Simulation of a 2007 Prototype Heavy-Duty Engine Diesel Aftertreatment Systems development Demonstration of a 50% Thermal Efficient Diesel Engine - Including HTCD Program Overview

    ace_42_zhang.pdf (1.18 MB) More Documents & Publications High Efficiency Clean Combustion for Heavy-Duty Engine High Efficiency Clean Combustion for

  18. Assessing Potential Exposure from Truck Transport of Low-level Radioactive Waste to the Nevada Test Site

    SciTech Connect (OSTI)

    J. Miller; D. Shafer; K. Gray; B. Church; S.Campbell; B. Holz

    2005-08-15

    This study has shown that, based upon measurements from industry standard radiation detection instruments, such as the RS model RSS-131 PICs in a controlled configuration, a person may be exposed to gamma radiation above background when in close proximity to some LLW trucks. However, in approximately half (47.7 percent) the population of trucks measured in this study, a person would receive no exposure above background at a distance of 1.0 m (3.3 ft) away from a LLW truck. An additional 206 trucks had net exposures greater than zero, but equal to or less than 1 {micro}R/h. Finally, nearly 80 percent of the population of trucks (802 of 1,012) had net exposures less than or equal to 10 {micro}R/h. Although there are no shipping or exposure standards at 1.0 m (3.3 ft) distance, one relevant point of comparison is the DOT shipping standard of 10 mrem/h at 2.0 m (6.6 ft) distance. Assuming a one-to-one correspondence between Roentgens and Rems, then 903 trucks (89.2 percent of the trucks measured) were no greater than one percent of the DOT standard at 1.0 m (3.3 ft). Had the distance at which the trucks been measured increased to 2.0 m (6.6 ft), the net exposure would be even less because of the increase in distance between the truck and the receptor. However, based on the empirical data from this study, the rate of decrease may be slower than for either a point or line source as was done for previous studies (Gertz, 2001; Davis et al., 2001). The highest net exposure value at 1.0 m (3.3 ft) distance, 11.9 mR/h, came from the only truck with a value greater than 10 mR/h at 1.0 m (3.3 ft) distance.

  19. Commercial Lighting

    Broader source: Energy.gov [DOE]

    Commercial lighting accounts for more than 20 percent of total commercial building energy use. The Energy Department works to reduce lighting energy use through research and deployment.

  20. National Academy of Sciences Reviews 21st Century Truck Partnership

    Broader source: Energy.gov [DOE]

    By accelerating collaborative research and development among government and industry partners, including the Vehicle Technologies Office, 21CTP aims to enable America’s medium and heavy-duty vehicles to safely and cost-effectively move ever larger volumes of freight and number of passengers while minimizing pollution and the dependency on foreign oil. VTO regularly works with the National Academy of Sciences (NAS) to evaluate program direction, assess technical progress towards meeting the stated goals, and offer suggestions to improve the Partnership.

  1. Design and Commissioning of a Wind Tunnel for Integrated Physical and Chemical Measurements of PM Dispersing Plume of Heavy Duty Diesel Truck

    Broader source: Energy.gov [DOE]

    Presents plume characterization of three vehicles with different aftertreatment configuration, representative of legacy, current and future heavy-duty truck fleets

  2. Fact #846: November 10, 2014 Trucks Move 70% of all Freight by Weight and 74% of Freight by Value – Dataset

    Broader source: Energy.gov [DOE]

    Excel file with dataset for Fact #846: Trucks Move 70% of all Freight by Weight and 74% of Freight by Value

  3. Fact #916: March 14, 2016 Fuel Savings/Emissions Reduction was the Top Reason Cited by Truck Fleet Management for Adopting Idle Reduction Technologies- Dataset

    Broader source: Energy.gov [DOE]

    Excel file and dataset for Fuel Savings/Emissions Reduction was the Top Reason Cited by Truck Fleet Management for Adopting Idle Reduction Technologies

  4. Fact #660: January 31, 2011 Light Vehicle Sales Rise in 2010 | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy 0: January 31, 2011 Light Vehicle Sales Rise in 2010 Fact #660: January 31, 2011 Light Vehicle Sales Rise in 2010 The total sales of light vehicles (cars and light trucks) in the U.S. have ranged between 10 million and 17 million over the course of the last 40 years. Though the sales have experienced highs and lows over this period, the recent sales plummet from 16.1 million vehicles in 2007 to 10.4 million vehicles in 2009 was the largest drop in the 40 year period with sales

  5. Fact #862 March 2, 2015 Light Vehicle Production in Mexico More than

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Doubled in Last Five Years | Department of Energy 2 March 2, 2015 Light Vehicle Production in Mexico More than Doubled in Last Five Years Fact #862 March 2, 2015 Light Vehicle Production in Mexico More than Doubled in Last Five Years Total production of light vehicles in Mexico remained nearly flat between 2004 and 2009 but in the following five-year span from 2009 to 2014, production more than doubled. In 2004, cars and light trucks made up an almost equal share of that production but since

  6. Photonic crystal light source

    DOE Patents [OSTI]

    Fleming, James G.; Lin, Shawn-Yu; Bur, James A.

    2004-07-27

    A light source is provided by a photonic crystal having an enhanced photonic density-of-states over a band of frequencies and wherein at least one of the dielectric materials of the photonic crystal has a complex dielectric constant, thereby producing enhanced light emission at the band of frequencies when the photonic crystal is heated. The dielectric material can be a metal, such as tungsten. The spectral properties of the light source can be easily tuned by modification of the photonic crystal structure and materials. The photonic crystal light source can be heated electrically or other heating means. The light source can further include additional photonic crystals that exhibit enhanced light emission at a different band of frequencies to provide for color mixing. The photonic crystal light source may have applications in optical telecommunications, information displays, energy conversion, sensors, and other optical applications.

  7. DOE Hydrogen and Fuel Cells Program Record, Record # 13008: Industry Deployed Fuel Cell Powered Lift Trucks

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    8 Date: 10/04/2013 Title: Industry Deployed Fuel Cell Powered Lift Trucks Originators: Pete Devlin, Jim Alkire, Sara Dillich, Kristen Nawoj, Stephanie Byham Approved by: Sunita Satyapal and Rick Farmer Date: 10/15/2013 Item: Table 1: Number of fuel cell deployments (installed and on-order) for applications in material handling equipment (MHE). The successful deployment of nearly 700 U.S. Department of Energy (DOE) fuel cell material handling units has led to almost 5,400 industry installation

  8. Voluntary Truck and Bus Fuel-Economy-Program marketing plan. Final technical report, September 29, 1980-January 29, 1982

    SciTech Connect (OSTI)

    1982-01-01

    The aim of the program is to improve the utilization of fuel by commercial trucks and buses by updating and implementing specific approaches for educating and monitoring the trucking industry on methods and means of conserving fuels. The following outlines the marketing plan projects: increase use of program logo by voluntary program members and others; solicit trade publication membership and support; brief Congressional delegations on fuel conservation efforts; increase voluntary program presence before trade groups; increase voluntary program presence at truck and trade shows; create a voluntary program display for use at trade shows and in other areas; review voluntary program graphics; increase voluntary program membership; and produce placemats carrying fuel conservation messages; produce a special edition of Fuel Economy News, emphasizing the driver's involvement in fuel conservation; produce posters carrying voluntary program fuel conservation message. Project objectives, activities, and results for each project are summarized.

  9. Advanced Hybrid Propulsion and Energy Management System for High Efficiency, Off Highway, 240 Ton Class, Diesel Electric Haul Trucks

    SciTech Connect (OSTI)

    Richter, Tim; Slezak, Lee; Johnson, Chris; Young, Henry; Funcannon, Dan

    2008-12-31

    The objective of this project is to reduce the fuel consumption of off-highway vehicles, specifically large tonnage mine haul trucks. A hybrid energy storage and management system will be added to a conventional diesel-electric truck that will allow capture of braking energy normally dissipated in grid resistors as heat. The captured energy will be used during acceleration and motoring, reducing the diesel engine load, thus conserving fuel. The project will work towards a system validation of the hybrid system by first selecting an energy storage subsystem and energy management subsystem. Laboratory testing at a subscale level will evaluate these selections and then a full-scale laboratory test will be performed. After the subsystems have been proven at the full-scale lab, equipment will be mounted on a mine haul truck and integrated with the vehicle systems. The integrated hybrid components will be exercised to show functionality, capability, and fuel economy impacts in a mine setting.

  10. Project Startup: Evaluating Coca-Cola's Class 8 Hybrid-Electric Delivery Trucks (Fact Sheet), Vehicle Technologies Program (VTP)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Although the largest trucks-Class 8, with a gross vehicle weight rating (GVWR) above 33,000 lb-make up only 1% of the U.S. highway vehicle fleet, they are responsible for almost 20% of highway petroleum consumption. 1 Improving the efficiency of Class 8 trucks through strategies such as alternative fuels and hybridization is a high-impact way to reduce petroleum consumption and associated emissions. The National Renewable Energy Laboratory's (NREL's) Fleet Test and Evaluation Team is evaluating

  11. Photodetector with enhanced light absorption

    DOE Patents [OSTI]

    Kane, James

    1985-01-01

    A photodetector including a light transmissive electrically conducting layer having a textured surface with a semiconductor body thereon. This layer traps incident light thereby enhancing the absorption of light by the semiconductor body. A photodetector comprising a textured light transmissive electrically conducting layer of SnO.sub.2 and a body of hydrogenated amorphous silicon has a conversion efficiency about fifty percent greater than that of comparative cells. The invention also includes a method of fabricating the photodetector of the invention.

  12. Types of Lighting | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    selection. Types of lighting include: Fluorescent Incandescent Outdoor solar Light-emitting diode (LED) Also learn how energy-efficient lightbulbs compare to traditional...

  13. Solid state lighting component

    DOE Patents [OSTI]

    Yuan, Thomas; Keller, Bernd; Ibbetson, James; Tarsa, Eric; Negley, Gerald

    2010-10-26

    An LED component comprising an array of LED chips mounted on a planar surface of a submount with the LED chips capable of emitting light in response to an electrical signal. The LED chips comprise respective groups emitting at different colors of light, with each of the groups interconnected in a series circuit. A lens is included over the LED chips. Other embodiments can comprise thermal spreading structures included integral to the submount and arranged to dissipate heat from the LED chips.

  14. Solid state lighting component

    DOE Patents [OSTI]

    Keller, Bernd; Ibbetson, James; Tarsa, Eric; Negley, Gerald; Yuan, Thomas

    2012-07-10

    An LED component comprising an array of LED chips mounted on a planar surface of a submount with the LED chips capable of emitting light in response to an electrical signal. The LED chips comprise respective groups emitting at different colors of light, with each of the groups interconnected in a series circuit. A lens is included over the LED chips. Other embodiments can comprise thermal spreading structures included integral to the submount and arranged to dissipate heat from the LED chips.

  15. OLED lighting devices having multi element light extraction and luminescence conversion layer

    DOE Patents [OSTI]

    Krummacher, Benjamin Claus; Antoniadis, Homer

    2010-11-16

    An apparatus such as a light source has a multi element light extraction and luminescence conversion layer disposed over a transparent layer of the light source and on the exterior of said light source. The multi-element light extraction and luminescence conversion layer includes a plurality of light extraction elements and a plurality of luminescence conversion elements. The light extraction elements diffuses the light from the light source while luminescence conversion elements absorbs a first spectrum of light from said light source and emits a second spectrum of light.

  16. Device structure for OLED light device having multi element light extraction and luminescence conversion layer

    DOE Patents [OSTI]

    Antoniadis; Homer , Krummacher; Benjamin Claus

    2008-01-22

    An apparatus such as a light source has a multi-element light extraction and luminescence conversion layer disposed over a transparent layer of the light source and on the exterior of said light source. The multi-element light extraction and luminescence conversion layer includes a plurality of light extraction elements and a plurality of luminescence conversion elements. The light extraction elements diffuses the light from the light source while luminescence conversion elements absorbs a first spectrum of light from said light source and emits a second spectrum of light.

  17. Copy of Forms FE-746R 2015 Edits v3 BAN (FINAL) LNG Exports - Truck.xls

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    LNG Exports (Truck) Monthly Sales and Price Report Month/Year: _______________Exporter (Authorization Holder):________________________________________________________________ E-Mail Address:_____________________________ Address:_______________________________________________________ Preparer of Report:__________________________ Telephone No.:______________________ FAX No.:____________________ Exports Made Pursuant to DOE Opinion and Order No.________, under FE Docket No._______________. (1) (2)

  18. Copy of Forms FE-746R 2015 Edits v3 BAN (FINAL) LNG Imports - Truck.xls

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    LNG Imports (Truck) Monthly Sales and Price Report Month/Year: _______________ Importer (Authorization Holder):_________________________________________________________________ E-Mail Address:_____________________________ Address:_______________________________________________________ Preparer of Report:__________________________ Telephone No.:___________________ FAX No.:____________________ Imports Made Pursuant to DOE Opinion and Order No.________, under FE Docket No._______________. (1) (2)

  19. Assessing Potential Exposure from Truck Transport of Low-level Radioactive Waste to the Nevada Test Site

    SciTech Connect (OSTI)

    J. Miller; D. Shafer; K. Gray; B. Church; S. Campbell; B. Holz

    2005-08-01

    Since 1980, over 651,558 m{sup 3} (23,000,000 ft{sup 3}) of low-level radioactive waste (LLW) have been disposed of at the Nevada Test Site (NTS) by shallow land burial. Since 1988, the majority of this waste has been generated at other United States (U.S.) Department of Energy (DOE) and Department of Defense (DoD) sites and facilities in the U.S. Between fiscal year (FY) 2002 and the publication date, the volumes of LLW being shipped by truck to the NTS increased sharply with the accelerated closure of DOE Environmental Management (EM) Program sites (DOE, 2002). The NTS is located 105 km (65 mi) northwest of Las Vegas, Nevada, in the U.S. There continue to be public concerns over the safety of LLW shipments to the NTS. They can be broadly divided into two categories: (1) the risk of accidents involving trucks traveling on public highways; and (2) whether residents along transportation routes receive cumulative exposure from individual LLW shipments that pose a long-term health risk. The DOE and U.S. Department of Transportation (DOT) regulations ensure that radiation exposure from truck shipments to members of the public is negligible. Nevertheless, particularly in rural communities along transportation routes in Utah and Nevada, there is a perceived risk from members of the public about cumulative exposure, particularly when ''Main Street'' and the routes being used by LLW trucks are one in the same. To provide an objective assessment of gamma radiation exposure to members of the public from LLW transport by truck, the Desert Research Institute (DRI) and the DOE, National Nuclear Security Administration Nevada Site Office (NNSA/NSO) established a stationary and automated array of four pressurized ion chambers (PICs) in a vehicle pullout for LLW trucks to pass through just outside the entrance to the NTS. The PICs were positioned at a distance of 1.0 m (3.3 ft) from the sides of the truck trailer and at a height of 1.5 m (5.0 ft) to simulate conditions that a

  20. Assessing Potential Exposure from Truck Transport of Low-level Radioactive Waste to the Nevada Test Site

    SciTech Connect (OSTI)

    Miller, J; Shafer, D; Gray, K; Church, B; Campbell, S; Holtz, B.

    2005-08-15

    Since 1980, over 651,558 m{sup 3} (23,000,000 ft{sup 3}) of low-level radioactive waste (LLW) have been disposed of at the Nevada Test Site (NTS) by shallow land burial. Since 1988, the majority of this waste has been generated at other United States (U.S.) Department of Energy (DOE) and Department of Defense (DoD) sites and facilities in the U.S. Between fiscal year (FY) 2002 and the publication date, the volumes of LLW being shipped by truck to the NTS increased sharply with the accelerated closure of DOE Environmental Management (EM) Program sites (DOE, 2002). The NTS is located 105 km (65 mi) northwest of Las Vegas, Nevada, in the U.S. There continue to be public concerns over the safety of LLW shipments to the NTS. They can be broadly divided into two categories: (1) the risk of accidents involving trucks traveling on public highways; and (2) whether residents along transportation routes receive cumulative exposure from individual LLW shipments that pose a long-term health risk. The DOE and U.S. Department of Transportation (DOT) regulations ensure that radiation exposure from truck shipments to members of the public is negligible. Nevertheless, particularly in rural communities along transportation routes in Utah and Nevada, there is a perceived risk from members of the public about cumulative exposure, particularly when ''Main Street'' and the routes being used by LLW trucks are one in the same. To provide an objective assessment of gamma radiation exposure to members of the public from LLW transport by truck, the Desert Research Institute (DRI) and the DOE, National Nuclear Security Administration Nevada Site Office (NNSA/NSO) established a stationary and automated array of four pressurized ion chambers (PICs) in a vehicle pullout for LLW trucks to pass through just outside the entrance to the NTS. The PICs were positioned at a distance of 1.0 m (3.3 ft) from the sides of the truck trailer and at a height of 1.5 m (5.0 ft) to simulate conditions that a

  1. EFFECT OF IMPACT LIMITER MATERIAL DEGRATION ON STRUCTURAL INTEGRITY OF 9975 PACKAGE SUBJECTED TO TWO FORKLIFT TRUCK IMPACT

    SciTech Connect (OSTI)

    Wu, T

    2007-07-09

    This paper evaluates the effect of the impact limiter material degradation on the structural integrity of the 9975 package containment vessel during a postulated accident event of forklift truck collision. The analytical results show that the primary and secondary containment vessels remain structurally intact for Celotex material degraded to 20% of the baseline value.

  2. Light Source

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    a Light Source Data and Analysis Framework at NERSC Jack Deslippe, Shane Canon, Eli Dart, Abdelilah Essiari, Alexander Hexemer, Dula Parkinson, Simon Patton, Craig Tull + Many More The ALS Data Needs September 21, 2010 - NIST (MD) Light source data volumes are growing many times faster than Moore's law. ● Light source luminosity ● Detector resolution & rep-rates ● Sample automation BES user facilities serve 10,000 scientists and engineers every year. Mostly composed of many small

  3. Lighting Renovations

    Broader source: Energy.gov [DOE]

    When undertaking a lighting renovation in a Federal building, daylighting is the primary renewable energy opportunity. Photovoltaics (PV) also present an excellent opportunity. While this guide...

  4. Cerenkov Light

    SciTech Connect (OSTI)

    Slifer, Karl

    2013-06-13

    The bright blue glow from nuclear reactors is Cerenkov light. Karl Slifer describes how nuclear physicists can use this phenomenon to study the nucleus of the atom.

  5. Cerenkov Light

    ScienceCinema (OSTI)

    Slifer, Karl

    2014-05-22

    The bright blue glow from nuclear reactors is Cerenkov light. Karl Slifer describes how nuclear physicists can use this phenomenon to study the nucleus of the atom.

  6. Residential Lighting

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    & Events Expand News & Events Skip navigation links Residential Residential Lighting Energy Star Appliances Consumer Electronics Heat Pump Water Heaters Electric Storage Water...

  7. Fact #567: April 20, 2009 Cars are Growing Older

    Broader source: Energy.gov [DOE]

    The median age of cars continues to grow in 2008 while the median age of light trucks has remained fairly constant over the last ten years. The average age for all trucks, which includes heavy...

  8. Fuel Economy Improvement Potential of a Heavy Duty Truck using V2x Communication

    SciTech Connect (OSTI)

    LaClair, Tim J; Verma, Rajeev; Norris, Sarah; Cochran, Robert

    2014-01-01

    In this paper, we introduce an intelligent driver assistance system to reduce fuel consumption in heavy duty vehicles irrespective of the driving style of the driver. We specifically study the potential of V2I and V2V communications to reduce fuel consumption in heavy duty trucks. Most ITS communications today are oriented towards vehicle safety, with communications strategies and hardware that tend to focus on low latency. This has resulted in technologies emerging with a relatively limited range for the communications. For fuel economy, it is expected that most benefits will be derived with greater communications distances, at the scale of many hundred meters or several kilometers, due to the large inertia of heavy duty vehicles. It may therefore be necessary to employ different communications strategies for ITS applications aimed at fuel economy and other environmental benefits than what is used for safety applications in order to achieve the greatest benefits.

  9. Oxidation catalyst systems for emission control of LPG-powered forklift trucks

    SciTech Connect (OSTI)

    Majewski, W.A.; Martin, E.P.; Pietrasz, E.

    1994-10-01

    An oxidation catalyst was installed on an industrial LPG-powered forklift truck. For high conversion efficiency in an oxidation system on a rich burning engine a secondary air supply to the catalyst is necessary. Two simple and cost-effective ways of secondary air supply were tested: an air valve and a venturi type injector. The amount of secondary air supplied by both devices was measured under a variety of conditions - different engine speed, load and exhaust system pressure. Carbon monoxide emissions and the catalyst performance were measured and evaluated in terms of the secondary air flow. Advantages and drawbacks of the air valve and venturi injector systems are discussed and compared. 1 refs., 11 figs., 3 tabs.

  10. UF{sub 6} tiedowns for truck transport - right way/wrong way

    SciTech Connect (OSTI)

    Stout, F.W. Jr.

    1991-12-31

    Tiedown systems for truck transport of UF{sub 6} must be defined and controlled to assure the least risk for hauling the material over the highways. This paper and an associated poster display will present the current status of regulatory criteria for tiedowns, analyze the structural stresses involved in tiedowns for two major UF{sub 6} packaging systems, the 21PF series of overpacks and the 48 in. diameter shipping cylinders, and will present photographs showing some {open_quote}right ways{close_quotes} and some {open_quotes}wrong (or risky) ways{close_quotes} currently used for tiedown systems. Risky tiedown methods must be replaced with safer less risky methods to insure the safe transport of UF{sub 6}.

  11. Diesel Fueled SOFC for Class 7/Class 8 On-Highway Truck Auxiliary Power

    SciTech Connect (OSTI)

    Vesely, Charles John-Paul; Fuchs, Benjamin S.; Booten, Chuck W.

    2010-03-31

    The following report documents the progress of the Cummins Power Generation (CPG) Diesel Fueled SOFC for Class 7/Class 8 On-Highway Truck Auxiliary Power (SOFC APU) development and final testing under the U.S. Department of Energy (DOE) Energy Efficiency and Renewable Energy (EERE) contract DE-FC36-04GO14318. This report overviews and summarizes CPG and partner development leading to successful demonstration of the SOFC APU objectives and significant progress towards SOFC commercialization. Significant SOFC APU Milestones: Demonstrated: Operation meeting SOFC APU requirements on commercial Ultra Low Sulfur Diesel (ULSD) fuel. SOFC systems operating on dry CPOX reformate. Successful start-up and shut-down of SOFC APU system without inert gas purge. Developed: Low cost balance of plant concepts and compatible systems designs. Identified low cost, high volume components for balance of plant systems. Demonstrated efficient SOFC output power conditioning. Demonstrated SOFC control strategies and tuning methods.

  12. Lighting In the Library: A Student Energy Audit

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Homes & Buildings » Lighting & Daylighting » Lighting Basics Lighting Basics August 15, 2013 - 5:12pm Addthis Text Version There are many different types of artificial lights (formally called "lamps" in the lighting industry,) which have different applications and uses. Types of lighting include: Fluorescent Lighting High-intensity Discharge Lighting Incandescent Lighting LED Lighting. New lamp designs that use energy-efficient technology are now readily available in the

  13. Solid-State Lighting Webcasts

    SciTech Connect (OSTI)

    2011-12-16

    Links to past webcast presentations related to solid-state lighting, including presentation slides and question-and-answer sessions, where available.

  14. Connected Lighting Systems Workshop Registration

    Broader source: Energy.gov [DOE]

    The registration fee for the 2016 DOE Connected Lighting Systems Workshop includes admission to all sessions, networking breakfasts and lunches, and an evening networking reception.

  15. Optical probe with light fluctuation protection

    DOE Patents [OSTI]

    Da Silva, Luiz B.; Chase, Charles L.

    2003-11-11

    An optical probe for tissue identification includes an elongated body. Optical fibers are located within the elongated body for transmitting light to and from the tissue. Light fluctuation protection is associated with the optical fibers. In one embodiment the light fluctuation protection includes a reflective coating on the optical fibers to reduce stray light. In another embodiment the light fluctuation protection includes a filler with very high absorption located within the elongated body between the optical fibers.

  16. White light velocity interferometer

    DOE Patents [OSTI]

    Erskine, D.J.

    1997-06-24

    The invention is a technique that allows the use of broadband and incoherent illumination. Although denoted white light velocimetry, this principle can be applied to any wave phenomenon. For the first time, powerful, compact or inexpensive sources can be used for remote target velocimetry. These include flash and arc lamps, light from detonations, pulsed lasers, chirped frequency lasers, and lasers operating simultaneously in several wavelengths. The technique is demonstrated with white light from an incandescent source to measure a target moving at 16 m/s. 41 figs.

  17. White light velocity interferometer

    DOE Patents [OSTI]

    Erskine, David J.

    1997-01-01

    The invention is a technique that allows the use of broadband and incoherent illumination. Although denoted white light velocimetry, this principle can be applied to any wave phenomenon. For the first time, powerful, compact or inexpensive sources can be used for remote target velocimetry. These include flash and arc lamps, light from detonations, pulsed lasers, chirped frequency lasers, and lasers operating simultaneously in several wavelengths. The technique is demonstrated with white light from an incandescent source to measure a target moving at 16 m/s.

  18. White light velocity interferometer

    DOE Patents [OSTI]

    Erskine, David J.

    1999-01-01

    The invention is a technique that allows the use of broadband and incoherent illumination. Although denoted white light velocimetry, this principle can be applied to any wave phenomenon. For the first time, powerful, compact or inexpensive sources can be used for remote target velocimetry. These include flash and arc lamps, light from detonations, pulsed lasers, chirped frequency lasers, and lasers operating simultaneously in several wavelengths. The technique is demonstrated with white light from an incandescent source to measure a target moving at 16 m/s.

  19. White light velocity interferometer

    DOE Patents [OSTI]

    Erskine, D.J.

    1999-06-08

    The invention is a technique that allows the use of broadband and incoherent illumination. Although denoted white light velocimetry, this principle can be applied to any wave phenomenon. For the first time, powerful, compact or inexpensive sources can be used for remote target velocimetry. These include flash and arc lamps, light from detonations, pulsed lasers, chirped frequency lasers, and lasers operating simultaneously in several wavelengths. The technique is demonstrated with white light from an incandescent source to measure a target moving at 16 m/s. 41 figs.

  20. MHK technology developments include current

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    technology developments include current energy conversion (CEC) devices, for example, hydrokinetic turbines that extract power from water currents (riverine, tidal, and ocean) and wave energy conversion (WEC) devices that extract power from wave motion. Sandia's MHK research leverages decades of experience in engineering, design, and analysis of wind power technologies, and its vast research complex, including high- performance computing (HPC), advanced materials and coatings, nondestructive

  1. Cost-Effective Fabrication Routes for the Production of Quantum Well Type Structures and Recovery of Waste Heat from Heavy Duty Trucks

    Broader source: Energy.gov [DOE]

    Presentation given at DEER 2006, August 20-24, 2006, Detroit, Michigan. Sponsored by the U.S. DOE's EERE FreedomCar and Fuel Partnership and 21st Century Truck Programs.

  2. Vehicle Technologies Office Merit Review 2015: SuperTruck – Development and Demonstration of a Fuel-Efficient Class 8 Tractor & Trailer Vehicle

    Broader source: Energy.gov [DOE]

    Presentation given by Navistar at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about SuperTruck – development and...

  3. Vehicle Technologies Office Merit Review 2015: SuperTruck – Development and Demonstration of a Fuel-Efficient Class 8 Tractor & Trailer, Engine Systems

    Broader source: Energy.gov [DOE]

    Presentation given by Navistar International Corp. at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about SuperTruck –...

  4. Downspeeding a Heavy-Duty Pickup Truck with a Combined Supercharger and Turbocharger Boosting System to Improve Drive Cycle Fuel Economy

    Broader source: Energy.gov [DOE]

    Discusses forward looking dynamic models developed for 6.6L diesel engine and a ¾ ton pickup truck with 8500 lb. curb weight, and validation against in-house engine and vehicle data library

  5. REPORT on the TRUCK BRAKE LINING WORKSHOP and FLEET OPERATORS' SURVEY

    SciTech Connect (OSTI)

    Blau, P.J.

    2003-02-03

    The report summarizes what transpired during brake linings-related workshop held at the Fall 2003 meeting of the Technology and Maintenance Council (TMC) in Charlotte, NC. The title of the workshop was ''Developing a Useful Friction Material Rating System''. It was organized by a team consisting of Peter Blau (Oak Ridge National Laboratory), Jim Britell (National Highway Traffic Safety Administration), and Jim Lawrence (Motor and Equipment Manufacturers Association). The workshop was held under the auspices of TMC Task Force S6 (Chassis), chaired by Joseph Stianche (Sanderson Farms, Inc.). Six invited speakers during the morning session provided varied perspectives on testing and rating aftermarket automotive and truck brake linings. They were: James R. Clark, Chief Engineer, Foundation Brakes and Wheel Equipment, Dana Corporation, Spicer Heavy Axle and Brake Division; Charles W. Greening, Jr, President, Greening Test Labs; Tim Duncan, General Manager, Link Testing Services;Dennis J. McNichol, President, Dennis NationaLease; Jim Fajerski, Business Manager, OE Sales and Applications Engineering, Federal Mogul Corporation; and Peter J. Blau, Senior Materials Development Engineer, Oak Ridge National Laboratory. The afternoon break-out sessions addressed nine questions concerning such issues as: ''Should the federal government regulate aftermarket lining quality?''; ''How many operators use RP 628, and if so, what's good or bad about it?''; and ''Would there be any value to you of a vocation-specific rating system?'' The opinions of each discussion group, consisting of 7-9 participants, were reported and consolidated in summary findings on each question. Some questions produced a greater degree of agreement than others. In general, the industry seems eager for more information that would allow those who are responsible for maintaining truck brakes to make better, more informed choices on aftermarket linings. A written fleet operator survey was also conducted during the

  6. In-Use and Vehicle Dynamometer Evaluation and Comparison of Class 7 Hybrid Electric and Conventional Diesel Delivery Trucks

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NREL/CP-5400-60098. Posted with permission. Presented at the SAE 2013 Commercial Vehicle Engineering Congress. 2013-01-2468 Published 09/24/2013 doi:10.4271/2013-01-2468 saecomveh.saejournals.org In-Use and Vehicle Dynamometer Evaluation and Comparison of Class 7 Hybrid Electric and Conventional Diesel Delivery Trucks Jonathan Burton, Kevin Walkowicz, Petr Sindler, and Adam Duran National Renewable Energy Laboratory ABSTRACT This study compared fuel economy and emissions between heavy-duty

  7. WORKSHOP REPORT: Trucks and Heavy-Duty Vehicles Technical Requirements and Gaps for Lightweight and Propulsion Materials

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    VEHICLE TECHNOLOGIES OFFICE WORKSHOP REPORT: Trucks and Heavy-Duty Vehicles Technical Requirements and Gaps for Lightweight and Propulsion Materials February 2013 FINAL REPORT This report was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or

  8. Illuminating system and method for specialized and decorative lighting using liquid light guides

    DOE Patents [OSTI]

    Zorn, Carl J.; Kross, Brian J.; Majewski, Stanislaw; Wojcik, Randolph F.

    1998-01-01

    The present invention comprises an illumination system for specialized decorative lighting including a light source, a flexible plastic tube sheath for distributing the light to a remote location, a transparent liquid core filling the tube that has an index of refraction greater than that of the plastic tube and an arrangement where light coupled from the light source is caused to leak from the liquid light guide at desired locations for the purposes of specialized lighting, such as underwater illumination in swimming pools.

  9. Commercial Lighting and LED Lighting Incentives | Department...

    Broader source: Energy.gov (indexed) [DOE]

    Schools Institutional Savings Category Lighting Lighting ControlsSensors Other EE LED Lighting Maximum Rebate Up to 100% of cost; incentives that exceed 5,000 should be...

  10. Light's Darkness

    ScienceCinema (OSTI)

    Padgett, Miles [University of Glasgow, Glasgow, Scotland

    2010-01-08

    Optical vortices and orbital angular momentum are currently topical subjects in the optics literature. Although seemingly esoteric, they are, in fact, the generic state of light and arise whenever three or more plane waves interfere. To be observed by eye the light must be monochromatic. Laser speckle is one such example, where the optical energy circulates around each black spot, giving a local orbital angular momentum. This talk with report three on-going studies. First, when considering a volume of interfering waves, the laser specs map out threads of complete darkness embedded in the light. Do these threads form loops? Links? Or even knots? Second, when looking through a rapidly spinning window, the image of the world on the other side is rotated: true or false? Finally, the entanglement of orbital angular momentum states means measuring how the angular position of one photons sets the angular momentum of another: is this an angular version of the EPR (Einstein, Podolsky, and Rosen) paradox?

  11. SCReaming for Low NOx - SCR for the Light Duty Market | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy SCReaming for Low NOx - SCR for the Light Duty Market SCReaming for Low NOx - SCR for the Light Duty Market Presentation given at DEER 2006, August 20-24, 2006, Detroit, Michigan. Sponsored by the U.S. DOE's EERE FreedomCar and Fuel Partnership and 21st Century Truck Programs. 2006_deer_traver.pdf (260.76 KB) More Documents & Publications Validated SCR Concept Development Simulation and Analysis of HP/LP EGR for Heavy-Duty Applications New Demands on Heavy Duty Engine Management

  12. Three-dimensional finite element impact analysis of a nuclear waste truck cask

    SciTech Connect (OSTI)

    Miller, J.D.

    1985-05-01

    A three-dimensional finite element impact analysis of a hypothetical accident event for the preliminary design of a shipping cask to be used to transport radioactive waste by standard tractor-semitrailer truck is presented. The dynamic structural analysis code DYNA3D, run on Sandia's Cray-1 computer, was used to calculate the effects of the closure-end of the cask impacting a rigid, frictionless surface on an edge of its external impact limiter after a 30-foot fall. The center of gravity of the 304 stainless steel and depleted uranium cask was assumed to be directly above the impact point. An elastic-plastic material constitutive model was used to calculate the nonlinear response of the cask components to the transient loading. Results from the calculations show the cask sustained large localized deformations. However, these were almost entirely confined to the impact limiters built into the cask. The closure sections were determined to remain intact and leakage would not be expected after the event. Interactive color computer graphics were used throughout the analysis, proving to be extremely helpful for generation and verification of the geometry and boundary conditions of the finite element model and for interpretation of the analysis results. 12 refs., 29 figs., 4 tabs.

  13. Liquid natural gas as a transportation fuel in the heavy trucking industry. Final technical report

    SciTech Connect (OSTI)

    Sutton, W.H.

    1997-06-30

    This report encompasses the second year of a proposed three year project with emphasis focused on fundamental research issues in Use of Liquid Natural Gas as a Transportation Fuel in the Heavy Trucking Industry. These issues may be categorized as (1) direct diesel replacement with LNG fuel, and (2) long term storage/utilization of LNG vent gases produced by tank storage and fueling/handling operation. The results of this work are expected to enhance utilization of LNG as a transportation fuel. The paper discusses the following topics: (A) Fueling Delivery to the Engine, Engine Considerations, and Emissions: (1) Atomization and/or vaporization of LNG for direct injection diesel-type natural gas engines; (2) Fundamentals of direct replacement of diesel fuel by LNG in simulated combustion; (3) Distribution of nitric oxide and emissions formation from natural gas injection; and (B) Short and long term storage: (1) Modification by partial direct conversion of natural gas composition for improved storage characteristics; (2) LNG vent gas adsorption and recovery using activate carbon and modified adsorbents; (3) LNG storage at moderate conditions.

  14. High efficiency light source using solid-state emitter and down-conversion material

    DOE Patents [OSTI]

    Narendran, Nadarajah; Gu, Yimin; Freyssinier, Jean Paul

    2010-10-26

    A light emitting apparatus includes a source of light for emitting light; a down conversion material receiving the emitted light, and converting the emitted light into transmitted light and backward transmitted light; and an optic device configured to receive the backward transmitted light and transfer the backward transmitted light outside of the optic device. The source of light is a semiconductor light emitting diode, a laser diode (LD), or a resonant cavity light emitting diode (RCLED). The down conversion material includes one of phosphor or other material for absorbing light in one spectral region and emitting light in another spectral region. The optic device, or lens, includes light transmissive material.

  15. Emissions characteristics of ethyl and methyl ester of rapeseed oil compared with low sulfur diesel control fuel in a chassis dynamometer test of a pickup truck

    SciTech Connect (OSTI)

    Peterson, C.; Reece, D.

    1996-05-01

    Comprehensive tests were performed on an on-road vehicle in cooperation with the Los Angeles County Metropolitan Transit Authority emissions test facility. All tests were with a transient chassis dynamometer. Tests included both a double arterial cycle of 768 s duration and an EPA heavy duty vehicle cycle of 1,060 s duration. The test vehicle was a 1994 pickup truck with a 5.9-L turbocharged and intercooled, direct injection diesel engine. Rapeseed methyl (RME) and ethyl esters (REE) and blends were compared with low sulfur diesel control fuel. Emissions data include all regulated emissions: hydrocarbons (HC), carbon monoxide (CO), carbon dioxide (CO{sub 2}), oxides of nitrogen (NO{sub x}), and particulate matter (PM). In these tests the average of 100% RME and 100% REE reduced HC (52.4%), CO (47.6%), NO{sub x} (10.0%), and increases in CO{sub 2} (0.9%) and PM (9.9%) compared to the diesel control fuel. Also, 100% REE reduced HC (8.7%), CO (4.3%), and NO{sub x} (3.4%) compared to 100% RME. 33 refs., 1 figs., 8 tabs.

  16. Lighting fundamentals handbook: Lighting fundamentals and principles for utility personnel. Final report

    SciTech Connect (OSTI)

    Eley, C.; Tolen, T.; Benya, J.R.

    1992-12-01

    Lighting accounts for approximately 30% of overall electricity use and demand in commercial buildings. This handbook for utility personnel provides a source of basic information on lighting principles, lighting equipment, and other considerations related to lighting design. The handbook is divided into three parts. Part One, Physics of Light, has chapters on light, vision, optics, and photometry. Part Two, Lighting Equipment and Technology, focuses on lamps, luminaires, and lighting controls. Part Three, Lighting Design Decisions, deals with the manner in which lighting design decisions are made and reviews relevant methods and issues. These include the quantity and quality of light needed for visual tasks, calculation methods for verifying that lighting needs are satisfied, lighting economics and methods for evaluating investments in efficient lighting systems, and miscellaneous design issues including energy codes, power quality, photobiology, and disposal of lighting equipment. The handbook contains a discussion of the role of the utility in promoting the use of energy-efficient lighting. The handbook also includes a lighting glossary and a list of references for additional information. This convenient and comprehensive handbook is designed to enable utility lighting personnel to assist their customers in developing high-quality, energy-efficient lighting systems. The handbook is not intended to be an up-to-date reference on lighting products and equipment.

  17. Optical panel system including stackable waveguides

    DOE Patents [OSTI]

    DeSanto, Leonard; Veligdan, James T.

    2007-03-06

    An optical panel system including stackable waveguides is provided. The optical panel system displays a projected light image and comprises a plurality of planar optical waveguides in a stacked state. The optical panel system further comprises a support system that aligns and supports the waveguides in the stacked state. In one embodiment, the support system comprises at least one rod, wherein each waveguide contains at least one hole, and wherein each rod is positioned through a corresponding hole in each waveguide. In another embodiment, the support system comprises at least two opposing edge structures having the waveguides positioned therebetween, wherein each opposing edge structure contains a mating surface, wherein opposite edges of each waveguide contain mating surfaces which are complementary to the mating surfaces of the opposing edge structures, and wherein each mating surface of the opposing edge structures engages a corresponding complementary mating surface of the opposite edges of each waveguide.

  18. Optical panel system including stackable waveguides

    DOE Patents [OSTI]

    DeSanto, Leonard; Veligdan, James T.

    2007-11-20

    An optical panel system including stackable waveguides is provided. The optical panel system displays a projected light image and comprises a plurality of planar optical waveguides in a stacked state. The optical panel system further comprises a support system that aligns and supports the waveguides in the stacked state. In one embodiment, the support system comprises at least one rod, wherein each waveguide contains at least one hole, and wherein each rod is positioned through a corresponding hole in each waveguide. In another embodiment, the support system comprises at least two opposing edge structures having the waveguides positioned therebetween, wherein each opposing edge structure contains a mating surface, wherein opposite edges of each waveguide contain mating surfaces which are complementary to the mating surfaces of the opposing edge structures, and wherein each mating surface of the opposing edge structures engages a corresponding complementary mating surface of the opposite edges of each waveguide.

  19. Organic electroluminescent devices having improved light extraction

    DOE Patents [OSTI]

    Shiang, Joseph John

    2007-07-17

    Organic electroluminescent devices having improved light extraction include a light-scattering medium disposed adjacent thereto. The light-scattering medium has a light scattering anisotropy parameter g in the range from greater than zero to about 0.99, and a scatterance parameter S less than about 0.22 or greater than about 3.

  20. Nonimaging light concentrator with uniform irradiance

    DOE Patents [OSTI]

    Winston, Roland; Gee, Randy C.

    2003-04-01

    A nonimaging light concentrator system including a primary collector of light, an optical mixer disposed near the focal zone for collecting light from the primary collector, the optical mixer having a transparent entrance aperture, an internally reflective housing for substantially total internal reflection of light, a transparent exit aperture and an array of photovoltaic cells disposed near the transparent exit aperture.

  1. Cummins Improving Pick-Up Truck Engine Efficiency with DOE and Nissan

    Broader source: Energy.gov [DOE]

    Cummins, the world's largest diesel engine manufacturer, received funds from EERE to research advanced engine technology for heavy-duty and light-duty vehicles.

  2. EERE Success Story-Cummins Improving Pick-Up Truck Engine Efficiency...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Cummins continued to build on their success with the Advanced Technology Light Automotive Systems (ATLAS) project, supported by VTO. Starting in 2010, Cummins worked to develop a ...

  3. National Lighting Energy Consumption

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Lighting Energy National Lighting Energy Consumption Consumption 390 Billion kWh used for lighting in all 390 Billion kWh used for lighting in all commercial buildings in commercial buildings in 2001 2001 LED (<.1% ) Incandescent 40% HID 22% Fluorescent 38% Lighting Energy Consumption by Lighting Energy Consumption by Breakdown of Lighting Energy Breakdown of Lighting Energy Major Sector and Light Source Type Major Sector and Light Source Type Source: Navigant Consulting, Inc., U.S. Lighting

  4. Light Show

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    9 Lightning - Nature's Light Show Lightning provides one of nature's most spectacular displays of energy. Though fascinating to observe, lightning can be dangerous and deadly. Protecting ARM instruments from lightning damage is vital. Putting equipment worth millions of dollars into open fields (Photo: NOAA) ARM Facilities Newsletter is published by Argonne National Laboratory, a multiprogram laboratory operated by The University of Chicago under contract W-31-109-Eng-38 with the U.S. Department

  5. Driver circuit for solid state light sources

    DOE Patents [OSTI]

    Palmer, Fred; Denvir, Kerry; Allen, Steven

    2016-02-16

    A driver circuit for a light source including one or more solid state light sources, a luminaire including the same, and a method of so driving the solid state light sources are provided. The driver circuit includes a rectifier circuit that receives an alternating current (AC) input voltage and provides a rectified AC voltage. The driver circuit also includes a switching converter circuit coupled to the light source. The switching converter circuit provides a direct current (DC) output to the light source in response to the rectified AC voltage. The driver circuit also includes a mixing circuit, coupled to the light source, to switch current through at least one solid state light source of the light source in response to each of a plurality of consecutive half-waves of the rectified AC voltage.

  6. In-Use and Vehicle Dynamometer Evaluation and Comparison of Class 7 Hybrid Electric and Conventional Diesel Delivery Trucks

    SciTech Connect (OSTI)

    Burton, J.; Walkowicz, K.; Sindler, P.; Duran, A.

    2013-10-01

    This study compared fuel economy and emissions between heavy-duty hybrid electric vehicles (HEVs) and equivalent conventional diesel vehicles. In-use field data were collected from daily fleet operations carried out at a FedEx facility in California on six HEV and six conventional 2010 Freightliner M2-106 straight box trucks. Field data collection primarily focused on route assessment and vehicle fuel consumption over a six-month period. Chassis dynamometer testing was also carried out on one conventional vehicle and one HEV to determine differences in fuel consumption and emissions. Route data from the field study was analyzed to determine the selection of dynamometer test cycles. From this analysis, the New York Composite (NYComp), Hybrid Truck Users Forum Class 6 (HTUF 6), and California Air Resource Board (CARB) Heavy Heavy-Duty Diesel Truck (HHDDT) drive cycles were chosen. The HEV showed 31% better fuel economy on the NYComp cycle, 25% better on the HTUF 6 cycle and 4% worse on the CARB HHDDT cycle when compared to the conventional vehicle. The in-use field data indicates that the HEVs had around 16% better fuel economy than the conventional vehicles. Dynamometer testing also showed that the HEV generally emitted higher levels of nitric oxides than the conventional vehicle over the drive cycles, up to 77% higher on the NYComp cycle (though this may at least in part be attributed to the different engine certification levels in the vehicles tested). The conventional vehicle was found to accelerate up to freeway speeds over ten seconds faster than the HEV.

  7. Adoption of Light-Emitting Diodes in Common Lighting Applications

    SciTech Connect (OSTI)

    Yamada, Mary; Chwastyk, Dan

    2013-05-01

    Report estimating LED energy savings in nine applications where LEDs compete with traditional lighting sources such as incandescent, halogen, high-pressure sodium, and certain types of fluorescent. The analysis includes indoor lamp, indoor luminaire, and outdoor luminaire applications.

  8. Appendix G - GPRA06 hydrogen, fuel cells, and infrastructure technologies (HFCIT) program

    SciTech Connect (OSTI)

    None, None

    2009-01-18

    The target markets for the Office of Hydrogen, Fuel Cells, and Infrastructure Technologies (HFCIT) program include transportation (cars and light trucks) and stationary (particularly residential and commercial) applications.

  9. Word Pro - S1

    Gasoline and Diesel Fuel Update (EIA)

    Note: Through 1965, "Light-Duty Vehicles, Long Wheelbase" data are included in "Heavy-Duty Trucks." Web Page: http:www.eia.govtotalenergydatamonthlysummary. Source: Table ...

  10. Light extraction block with curved surface

    DOE Patents [OSTI]

    Levermore, Peter; Krall, Emory; Silvernail, Jeffrey; Rajan, Kamala; Brown, Julia J.

    2016-03-22

    Light extraction blocks, and OLED lighting panels using light extraction blocks, are described, in which the light extraction blocks include various curved shapes that provide improved light extraction properties compared to parallel emissive surface, and a thinner form factor and better light extraction than a hemisphere. Lighting systems described herein may include a light source with an OLED panel. A light extraction block with a three-dimensional light emitting surface may be optically coupled to the light source. The three-dimensional light emitting surface of the block may includes a substantially curved surface, with further characteristics related to the curvature of the surface at given points. A first radius of curvature corresponding to a maximum principal curvature k.sub.1 at a point p on the substantially curved surface may be greater than a maximum height of the light extraction block. A maximum height of the light extraction block may be less than 50% of a maximum width of the light extraction block. Surfaces with cross sections made up of line segments and inflection points may also be fit to approximated curves for calculating the radius of curvature.

  11. Secretary Moniz Applauds Detroit's LED Street Lighting Upgrades...

    Broader source: Energy.gov (indexed) [DOE]

    an update of its largely broken public lighting system, speaking at the Detroit Area ... The Detroit street lighting project includes the participation of the Energy Department, ...

  12. DOE Announces Winners of Lighting for Tomorrow 2010 Competition...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2004. This year, the SSL competition was expanded beyond fixtures to include light-emitting diode (LED) replacement bulbs as well as lighting control devices that are compatible...

  13. Reading Municipal Light Department - Business Lighting Rebate...

    Broader source: Energy.gov (indexed) [DOE]

    with Electronic Ballasts: 100fixture De-lamping: 4 - 9lamp Lighting Sensors: 20sensor LED Exit Signs: 20fixture Summary Reading Municipal Light Department (RMLD) offers...

  14. White Light Creation Architectures

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Frontier Research Centers: Solid-State Lighting Science Center for Frontiers of ... White Light Creation Architectures HomeEnergy ResearchEFRCsSolid-State Lighting Science ...

  15. Light Creation Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Frontier Research Centers: Solid-State Lighting Science Center for Frontiers of ... Light Creation Materials HomeEnergy ResearchEFRCsSolid-State Lighting Science EFRC...

  16. light-emitting diode

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Cost The high-brightness, rapidly pulsed, multicolor light-emitting diode (LED) driver delivers lighting performance that exceeds that of conventional (laserarc-light) sources ...

  17. Flexible, liquid core light guide with focusing and light shaping attachments

    DOE Patents [OSTI]

    Wojcik, Randolph Frank; Majewski, Stanislaw; Zorn, Carl John; Kross, Brian

    1999-01-01

    A liquid light guide system for ultraviolet light is disclosed that has a light shaping arrangement for the emitted light, a stable liquid core and sheath and reliable and effective end closures. The end closures include a metal crimping arrangement that utilizes two layers of deformable materials to prevent cracking of endplugs.

  18. Flexible, liquid core light guide with focusing and light shaping attachments

    DOE Patents [OSTI]

    Wojcik, R.F.; Majewski, S.; Zorn, C.J.; Kross, B.

    1999-04-20

    A liquid light guide system for ultraviolet light is disclosed that has a light shaping arrangement for the emitted light, a stable liquid core and sheath and reliable and effective end closures. The end closures include a metal crimping arrangement that utilizes two layers of deformable materials to prevent cracking of endplugs. 19 figs.

  19. Radioluminescent lighting technology

    SciTech Connect (OSTI)

    Not Available

    1990-01-01

    The glow-in-the-dark stereotype that characterizes the popular image of nuclear materials is not accidental. When the French scientist, Henri Becquerel, first discovered radioactivity in 1896, he was interested in luminescence. Radioluminescence, the production of light from a mixture of energetic and passive materials, is probably the oldest practical application of the unstable nucleus. Tritium-based radioluminescent lighting, in spite of the biologically favorable character of the gaseous tritium isotope, was included in the general tightening of environmental and safety regulations. Tritium light manufacturers would have to meet two fundamental conditions: (1) The benefit clearly outweighed the risk, to the extent that even the perceived risk of a skeptical public would be overcome. (2) The need was significant enough that the customer/user would be willing and able to afford the cost of regulation that was imposed both in the manufacture, use and eventual disposal of nuclear materials. In 1981, researchers at Oak Ridge National Laboratory were investigating larger radioluminescent applications using byproduct nuclear material such as krypton-85, as well as tritium. By 1982, it appeared that large source, (100 Curies or more) tritium gas tube, lights might be useful for marking runways and drop zones for military operations and perhaps even special civilian aviation applications. The successful development of this idea depended on making the light bright enough and demonstrating that large gas tube sources could be used and maintained safely in the environment. This successful DOE program is now in the process of being completed and closed-out. Working closely with the tritium light industry, State governments and other Federal agencies, the basic program goals have been achieved. This is a detailed report of what they have learned, proven, and discovered. 91 refs., 29 figs., 5 tabs. (JF)

  20. Materials processing with light

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Materials processing with light, plasmas and other sources of energy At the ARC various processing technologies are used to create materials, struc- tures, and devices that play an increasingly important role in high value-added manufacturing of computer and communications equipment, physical and chemical sensors, biomedical instruments and treatments, semiconductors, thin films, photovoltaics, electronic components and optical components. For example, making coatings, including paint, chrome,